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 African elephant (Loxodonta africana) population growth in Kruger National Park (KNP) 

and the subsequent environmental impacts, such as decreased biodiversity, has raised 

conservation concerns demanding thorough understandings about elephant behavior interplay 

with landscape dynamics. This thesis aims to examine how African elephant movement is 

affected by landscape changes in KNP from a combined geographic and ecological perspective. 

A landscape “Availability-Suitability-Connectivity” framework was employed to systematically 

evaluate landscape dynamics related to elephant movement by integrating GPS tracking data, 

satellite imagery and habitat suitability modeling as inputs. Following this framework, the study 

developed an individual-based model to simulate elephant movements and resulting landscape 

networks under various landscape conditions. Taken together, this study highlighted appealing 

features of coupling geospatial technologies and ecological modeling methods to assess 

relationships between animal movement and landscape connectivity, to evaluate potential 

impacts of landscape changes, and to inform effective conservation practices.   
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

INTRODUCTION 

Founded in 1926, Kruger National Park (KNP) is one of the largest wildlife sanctuaries in 

the world, covering nearly 20,000 km2 along the eastern boundary of South Africa. It offers 

critical habitats for African elephants (Loxodonta africana), a species that although regarded as 

endangered worldwide, has undergone a seemingly paradoxical population growth within KNP 

in recent decades. This over population has raised concerns about habitat overuse by elephants 

and subsequent decrease in biodiversity within the park boundary. To achieve a scientifically-

based elephant conservation and management plan, KNP has shifted conservation emphasis from 

solely population control to maintaining a healthy and heterogeneous landscape, including 

managing defragmentation, artificial waterholes, and fence control. Therefore, there is a demand 

for substantial research on elephant habitat use and landscape structure in order to consistently 

optimize conservation strategies. 

Consisting of 16 macro ecozones, the landscape of KNP is highly diverse and resources 

for elephants are patchily distributed across the park. Elephants are known to change their 

movement strategies to optimally use resourceswith distributions related to their preferences of 

different landscape structures and reflecting their dynamic habitat use (Whyte 2002; Owen-

Smith et al. 2006; Chamaillé-Jammes et al. 2013). This relation can be described by species-

specific functional connectivity, or the degree to which the arrangement of landscape elements 

facilitates or impedes movements of species (Taylor et al. 1993).  
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Understanding connectivity is one of the prime concerns when making conservation 

decisions for focal species (Freemark et al. 2002; Vogt et al. 2009; Saura and Rubio 2010). 

Landscape-level graph theory is a powerful concept underlying methods to quantify landscape 

connectivity, which is defined as a network of ecological flows (links), or animal movement as is 

in this study, among landscape patches (nodes) (Bunn et al. 2000). However, the landscape is 

treated as a dichotomous surface such as habitat/non-habitat when defining nodes in most of the 

graph theory-based models. Additionally, links are usually represented using general knowledge, 

which lacks support from observational data for specific study areas, and, unfortunately, is not 

always obtainable.  

LITERATURE REVIEW 

Kruger National Park and the Study Area 

The KNP is located in the northeast portion of South Africa with an area of 19,485 km2, 

lying between 22°20’ to 25°32’S and 30°53’ to 32°02’E (Figure 1.1). It was proclaimed as a 

national park in 1926. KNP is a part of the “lowveld” savanna (Figure1.1 A) with elevations 

varying from 200 m to 840 m and it is one of the largest wildlife sanctuaries in the world 

(Codron et al. 2006).  As a protected enclosed area, the difference of climate and geology results 

in a variety of landscapes across KNP (Gertenbach 1983). The primary vegetation regions 

include Northern Sandveld, Mopaneveld, Savanna Grasslands, Mixed Broadleaf Woodland, 

Thorn Thickets, Lebombo, South-western Foothills, and Riverine Bush. The landscape is highly 

diverse and resources for different species are patchily distributed across the landscape (Crooks 

and Sanjayan 2006). There are in total 16 ecozones in the whole park, mainly classified by 

dominant vegetation types. The focal study region (see details in Methods) primarily covers two 

ecozones: Sabie/Crocodile Thorn Thickets, and Mixed Bushwillow Woodlands. The rivers that 
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go through KNP cross into Mazoambique, where the Lowveld extends to coastal floodplains and 

estuaries. Following Dennis (2000), the whole area is divided into four regions (Figure 1.1A). 

The climate of KNP is tropical to subtropical, and the average annual precipitation varies from 

401 mm to 600 mm. Drought is endemic in this region in the dry season, which typically lasts 

from March to middle October, followed by the wet season till February (Tyson 1986). 

 

Figure 1.1 Kruger National Park (KNP, pink shade) and location of the study area (green shade) (A); 
KNP views and elephant (B, C).  

The districts that border KNP have a high incidence of human-elephant conflicts 

(Dunham et al. 2010). These conflicts take forms from crop raiding and infrastructural damage to 

poaching and injury or death of people and elephants (Hoare 2000). For example, crop raiding 

has been reported particularly common along borders of KNP at the Mozambique side, and it is 
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strongly correlated with the number of elephants that are killed (Dunham et al. 2010). Problem 

elephants were often animals that had dispersed from conservation areas to nearby areas that are 

highly populated. This can attribute to the expanding gap between the increasing human 

demands on space and resources raised by rural development and the deficiencies on wildlife 

conservation policies (Tapela and Omara-Ojungu 1999). There are at least two million people 

living within 50 km of the western border of KNP, with a diversity of cultures and major groups 

including the Tsonga, the Vhacenda, the Pedi and the Swazi. Though extensive research have 

been done on human-elephant conflicts in Africa (Osborn and Parker 2002; Sam et al. 2005; Lee 

and Graham 2006; Sitati and Walpole 2006), this issue has been regarded as one of the most 

difficult conservation problems and it consistently puts pressure on park managers to optimize 

management (Hoare 2001). 

Elephants Conservation in KNP 

Due to the serious mismatch between conservation science and practice concerning 

elephants, there has been a prevailing growth in the elephant population in KNP (Lindsay 1993; 

Blake and Hedges 2004; Kerley et al. 2008), which would lead to vegetation degradations and 

then biodiversity decreases (Valeix et al. 2011). Though elephants are endangered worldwide, 

the overpopulation of elephants in the park has paradoxically raised concerns for the potential 

impacts of elephant overabundance on the biodiversity in the park. This paradox is due to how 

quickly elephants can be eliminated by human persecution and how fast elephant populations can 

increase once protected (Loarie et al. 2009). Research has shown that the high numbers of 

elephants, destruction of trees and over grazing can change woodlands to grasslands, resulting in 

biodiversity loss (Cumming et al. 1997). Maintaining species and landscape heterogeneity has 

long been a primary management goal in KNP.  
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In order to avoid the anticipated destruction of the vegetation in the park (Van Wyk and 

Fairall 1969), the Board of South African National Parks initiated a program of elephant culling 

as a means of elephant population control. A total population of 7000 was decided as the ideal 

elephant population size in KNP, which led to 6000 to 8500 individuals being culled or removed 

from 1967 to 1996 (Aarde et al. 1999). It is claimed that without this intervention, the numbers 

will double in as little as ten years (Whyte et al. 1998). However, culling is always considered to 

be controversial among ecologists, and it raises ethical, social, and economic issues over the 

boundary of KNP. Being challenged by animal rights groups as lacking of scientific ground, this 

policy was brought to a moratorium. In the meanwhile, elephant population are under no major 

threat from outside. According to a report from KNP, elephant’s population increased by 1088 in 

5 years after culling was cease, and 22 elephants were poached during that period (Whyte et al. 

1999). Today, the consistent growing elephant population has reached 11500 in the park.  

In the recent decade, managing the heterogeneous landscape has been regarded as 

essential for scientific elephant management and more effective than solely controlling numbers 

of elephants (Owen-Smith et al. 2006; Van Aarde et al. 2006). Current landscape management in 

KNP primarily focuses on defragmentation, managing artificial waterholes, and 

constructing/destructing fences (Van Aarde et al. 2006). Artificial waterholes in KNP were first 

developed to increase the number of animals with low density because of poaching, diseases, 

fencing and low permanent water availability (Van Wyk 2011). These artificial waterholes can 

influence habitat use by herbivores even when natural water is available (Smit et al. 2007). After 

negative effects from over-developed and unnatural waterholes were realized, a new policy in 

KNP was proposed, stating all artificial waterholes should be part of natural ecosystem principles 

and open waterholes should be fully controlled (Pienaar et al. 1997).  Other human interventions, 
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such as fences, reduce seasonal difference in elephant movement patterns inter-seasonally and 

inter-landscape (Loarie et al. 2009). Elephants are regarded as “Keystone” fence breakers in 

KNP, and bulls are more likely to be the fence offenders. In KNP, it has been long suspected that 

the Marula tree fruiting season is the seasonal peak of elephant escape (Grant et al. 2008). One 

non-lethal mitigation method is to protect fences by spraying with chili pepper or indirect 

protection by aversion therapy (Ferguson et al. 2012).  

In 1989, Whyte claimed the effective elephant management in KNP should be built upon 

a better understanding of elephant movement, which is supported by “Elephant Science 

Roundtable” held in January 2006 (Whyte 2002; Owen-Smith et al. 2006). The use of 

triangulation (remote tracking) techniques in elephant studies dates back to the late 1970s, 

conducted at Sabi Sand Reserve neighboring KNP, and it was proved to be able to offer 

abundant location information covering a larger area (Fairall 1979). Following the advances in 

triangulation, remote sensing and geographic information science (GISci) have more recently 

been incorporated into landscape diversity monitoring and management in conservation lands 

such as National Parks. These technologies can be used as powerful leverage to record dynamic 

landscape conditions and are useful tools for conservation planning. South African National 

Parks has launched Geographic Information System service to support conservation management 

and research conducted in parks.  

On the one hand, data collection and analysis techniques have developed with 

unprecedented speed; on the other hand, conservation problems associated with elephants still 

exist. Therefore, there are always demands for better use of advancing technologies for elephant 

conservation for KNP. 
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Landscape connectivity and graph theory 

The distribution and movement of elephants is greatly influenced by the distribution of 

resources, since elephants may change their movement strategies in order to optimally use 

resources (Chamaillé-Jammes et al. 2013). Facilitating elephants’ local movements and regional 

dispersal could relieve elephant intensive range use for certain regions (Van Aarde et al. 2006). 

Therefore, substantial research is required to help understand the relationship between elephant 

habitat use and landscape patterns (Van Aarde et al. 2006; Loarie et al. 2009). One way to 

quantitatively describe this relation is to measure species-specific functional connectivity. 

Landscape functional connectivity, or the degree to which the arrangement of landscape 

elements facilitates or impedes movement and other ecological flows of species (Taylor et al. 

1993), is a prime concern when making conservation decisions for a focal species (Freemark et 

al. 2002; Vogt et al. 2009; Saura and Rubio 2010). Understanding connectivity is of special 

importance when resources are fragmentally distributed (Lookingbill, 2010).  

Landscape-level graph theory was introduced into ecological applications across 

landscapes by Urban and Keitt (2001), and is defined as a network of ecological flow (links), or 

animal movement as is in this study, among landscape patches (nodes).  In the recent decade, 

graph theory has become a powerful leverage describing and quantifying functional connectivity 

(Bunn et al. 2000; Urban et al. 2009; Dale and Fortin 2010). It is able to combine landscape 

patterns and focal species biology to demonstrate process-based connections (Hanski 1998; 

Urban and Keitt 2001). With reduced data requirements, it can provide a heuristic framework for 

landscape-level conservation management such as sensitive area detection and impact 

assessment (Bunn et al. 2000; Urban et al. 2009; Galpern et al. 2011). Resources for elephants in 

the savanna of KNP (i.e., surface water and forage vegetation) are patchily distributed. 
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Additionally, landscape structure is critical for effective elephant movement (Chamaillé-Jammes 

et al. 2007). Both of them make the savanna landscape at KNP an ideal landscape to assess 

graph-based functional connectivity. 

In landscape ecology, a classic graph describing functional connectivity is a model of a 

binary landscape system of habitat and inhospitable matrix (non-habitat), compromising a set of 

nodes (habitat patches) and links (potential connections between patches) (Urban and Keitt 

2001). In most cases, links represent the geographic distance between nodes and only exist when 

this distance is below a universally applied ecological threshold, such as the dispersal ability of a 

certain species (Galpern et al. 2011). Some others define links using model-based simulations, 

where connections are identified by modeled dispersal events (Lookingbill et al. 2010). 

However, there are two problems associated with these graph-based models that may severely 

constrain their use for conservation management aiming at maximizing the persistence for focal 

species (Baguette et al. 2013). First, the prediction of links usually has not been tested by 

observations. Although sometimes empirical measurements are used as parameters in graphs 

(Awade and Metzger 2008; Andersson and Bodin 2009), actual connectivity, measured by 

observational movement data such as Global Positioning System (GPS) tracking records, is 

usually not incorporated (Galpern et al. 2011). Second, in reality, habitat quality varies 

continuously but also subtly. Especially for large mammals, the landscape is not strictly 

dichotomous between habitat and non-habitat (Boyce and McDonald 1999). Hence, when 

defining nodes, the binarism of landscape as habitat/non-habitat would be inappropriate (Urban 

and Keitt 2001). 

Individual-Based Model 
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Ecological modeling is frequently used to prioritize areas for conservation actions. 

Multiple methods and software tools have been applied to spatial conservation planning 

(Moilanen et al. 2009; Guillera-Arroita et al. 2015). Developed as early as 1960s, Individual-

Based Modeling (IBM) has grown tremendously in the field of ecology in the past two decades. 

It is an effective method to determine the interrelationships between individual traits and spatial 

explicit landscape properties (Albeke et al. 2010; Grimm and Railsback 2013). For example, how 

do individuals respond to previous and current status? (Dunning Jr et al. 1995). The essence of 

IBM is to derive the properties of a system from the properties of the individual constituting 

these systems (Łomnicki 1992). IBM treats animals as unique individuals with different 

characteristics (Grimm 1999), and are able to integrate individual responses with landscape 

heterogeneity by specifying locations of individuals and their spatial relationship with landscape 

features. Once integrated with spatial information, IBM allows simulations of spatial relations 

between animals and landscape features, e.g., animal movement across landscapes (Albeke et al. 

2010; Bartoń et al. 2012). It is especially desirable given the myriad landscape patterns that can 

result from different management practices, and the limited availability of observational animal 

locomotion data. This method has been proved effective to evaluate the sensitivity of 

connectivity to variations in movement parameters (Zollner and Lima 1999; Pe’er and Kramer-

Schadt 2008; Palmer et al. 2011). 

Early attempts to model elephant-landscape interaction generally ignored spatial 

heterogeneity, which are in line with arguments that they are inadequate to describe the dynamic 

environment (Jeltsch et al. 2000). In addition, when considering elephant-environment 

interactions, the complexity of reality is usually either over-simplified or too specific and loses 

flexibility to adapt to different ecosystems. This study will produce an IBM for elephant 
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movement considering a series of landscape features while maintaining the flexibility for 

changing landscape structures. Therefore, landscape connectivity can be calculated under 

different landscape scenarios to reveal how the change of landscape structures will affect 

elephant movement and habitat use.  

Individual-based models (IBM) offers a solution for deficiencies on ecological process 

data and has been increasing applied to animal studies because of the growing interests on 

relation between this individual-level process and its population-level impacts (Tischendorf 

1997; Turchin 1998; Grimm and Railsback 2005; Nathan 2008; Black and McKane 2012). For 

example, Baxter and Wayne (2005) developed a grid-based model of elephant-savanna dynamics 

based on KNP, with focus on tree-grass interactions affected by elephant consumption, fire, and 

rainfall. Further, IBM considers the stochastic nature of ecological process, as is shown in animal 

movement, and also can be easily integrated with spatial-specific data (DeAngelis and Mooij 

2005; Grimm and Railsback 2005; Tang and Bennett 2010; Albeke et al. 2015). Thus, it has been 

extensively applied to spatial-related animal behavior simulations, for example, movement and 

home range dynamics (Turner et al. 1994; Nibbelink and Carpenter 1998; Dumont and Hill 

2004; Morales et al. 2005; Bennett and Tang 2006; Wang and Grimm 2007; Albeke et al. 2015). 

Additionally, IBM is flexible enough to be incorporated with well-established ecological models 

such as graph theory-based landscape network (Morzillo et al. 2011; Albeke et al. 2015).  

However, we do not aware any IBM designed specifically for elephant movement with relation 

to landscape connectivity.  

OBJECTIVES 

This thesis research aims to understand how African elephant (Loxodonta africana) 

movement is affected by landscape conditions changed by natural or managing processes in 
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Kruger National Park (KNP), South Africa. Systematically, external factors that drive animal 

movement and thus affect landscape connectivity include resources availability and habitat 

suitability (Roshier et al. 2008; Graham et al. 2009; Tang and Bennett 2010). The difficulties to 

collect observational movement data across the landscape, along with the stochastic nature of 

ecological processes, raised a demand for applications of ecological Individual-Based Models 

(IBMs). Specific research questions and hypothesis for the two manuscript style chapters were as 

below. 

Chapter 2: Resources availability, habitat suitability and landscape connectivity for elephant 

movement 

 The goal of Chapter 2 is to characterize landscape functional connectivity targeting 

elephant movement in KNP using observational GPS tracking data and satellite imagery. In this 

chapter, an “Availability-Suitability-Connectivity” framework was applied to analyze 

interactions between landscape conditions and elephant movement by integrating geospatial 

technologies and ecological modeling methods. In this chapter I address these questions: 

1) How to make use of observational movement data to inform real connectivity?  

I hypothesize that the GPS tracking recordings can reveal movement efficiency and 

directly reflect connectivity of elephant movement. Therefore, I test the use of a temporal 

criterion to define links in landscape network and to measure connectivity. I expect a higher 

connectivity among resources patches that elephants can travel to in a shorter time.  

2) How to incorporate landscape heterogeneity into landscape network construction and 

connectivity evaluation? 

I predict landscape patches as nodes in landscape networks are by themselves 

heterogeneous and therefore show different attractive levels for elephant movement. Thus, I 
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conducted habitat suitability modeling to examine node attributes. When evaluating connectivity, 

I considered both patch availability and suitability in order to more systematically gain 

evaluations for the landscape conditions. 

3) How can connectivity evaluation inform conservation management?  

 I predict a visualization and quantification of the landscape Availability-Suitability-

Connectivity patterns will allow us to differentiate the importance of different landscape features 

and therefore guide landscape conservation management.  

Chapter 3: Individual-based model to simulate elephant movement and landscape connectivity 

 Following the Availability-Suitability-Connectivity framework in Chapter 2, Chapter 3 

aims to overcome the lack of observational data and to develop an individual-based model 

elephant movement and landscape networks simulations. Different scenarios are modeled and 

analyzed under changing landscape conditions and potential conservation implementations of the 

model are demonstrated. Research questions that I examined are: 

1) How do landscape conditions affect elephant movement?  

 I expect multiple landscape features have strong effects on elephant movement, including 

relocation distances and relative turning angles. For example, considering the management 

practices carried out in KNP, I hypothesize locations of waterholes has a strong effect on 

elephants. Nevertheless, interactions between landscape elements and movement are complex 

and difficult to model. Therefore, I use habitat suitability as a single covariate to test elephant 

movement response.  

2) How can we model elephant movement while keeping the stochastic nature of this behavior?  

 I hypothesize that the relation between landscape suitability and elephant movement 

cannot explain all the variations of elephant movement. Actually, it reflects the stochastic nature 
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of movement (Tang and Bennett 2010). Therefore, I use individual-based modeling to 

incorporate this stochasticity and also be able to simulate movement and resulting landscape 

connectivity under changes of resources availability and habitat suitability. 

3) Does temporal scale affect measures of landscape connectivity for animal movement?  

I hypothesize landscape connectivity is also scale-dependent. Considering the 

Availability-Suitability-Connectivity framework is built upon elephant movement efficiency 

among landscape patches and the connectivity in this study is supposed to be higher under a 

larger temporal scale. To test this, I examined connectivity changes against a series of temporal 

units to define link existences.  

4) How can the model inform conservation management for elephants in KNP? 

I expect the model can differentiate patches importance in the park and reveal 

connectivity change under manipulation or change of resources availability or habitat suitability. 

Habitat suitability would be changed when, say, artificial waterholes are removed. Using the 

IBM, I simulate a series of landscape conditions and examine how connectivity and patch 

importance change accordingly. I expect a better connectivity when either availability or 

suitability is higher. I also expect a lower connectivity with removal of artificial waterholes.  

This thesis is organized in this way: The first chapter reviewed the current landscape 

conditions and elephant conservation status in KNP. Literature reviews were also conducted for 

graph-based landscape connectivity analysis, as well as ecological individual-based model. 

Chapter 1 was followed by two manuscript style chapters with objectives demonstrated above.  

Taken together, these two chapters used geospatial technologies (satellite imagery and GPS 

tracking technologies) and ecological modeling methods (habitat suitability modeling, landscape 

network modeling, individual-based modeling) to systematically evaluate landscapes for wildlife 
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movement. Additionally, I examined how landscape dynamics introduced by natural processes or 

management practices affect elephant movement and, in turn, landscape connectivity to achieve 

more effective conservation planning and landscape management. 
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ABSTRACT 

Context   Making appropriate conservation decisions often requires understanding the functional 

connectivity of the landscape for focal species. Graph theory and continuous surface methods 

have become powerful tools to quantify landscape connectivity for animal movement. However 

a key limitation of these methods is the use of thresholding to define either habitat patches or 

links between patches. 

Objectives   We explore how to incorporate African elephants’ (Loxodonta africana) movement 

data into an “Availability-Suitability-Connectivity (ASC)” landscape assessment framework 

which integrates habitat suitability modeling and graph-based network analysis, and how to then 

implement connectivity information to inform conservation management addressing locally 

intensive habitat utilization by elephants.  

Methods   In our ASC analysis, node availability was identified by satellite imagery 

classification while node suitability was estimated by MaxEnt model. Links represented 

movement efficiency and were determined by effective movement between nodes in 3 days. 

Differences of Integrative Index of Connectivity (dIIC) and its fractions were calculated to 

prioritize patch importance which were then used for mapping an example landscape 

management zones to reduce elephant local ecological impact.  

Results   In total, 544 nodes and 1345 links were identified in the landscape graph. Although 

suitable nodes were spread across the landscape, elephants intensively used habitat at the central 

study area. Our zonation map demonstrates zones for landscape management surrounding the 

central area that can facilitate elephant range expansion.  

Conclusions   Our integrative framework quantified the ASC interactions between animal 

movement and landscape features. The results highlighted the potential for coupling geographic 
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and ecological methods to effectively identify and focus conservation efforts, therefore to 

achieve a more operative conservation planning and management. 

Keywords   Landscape connectivity, graph theory, elephant movement, Kruger National Park, 

habitat suitability   
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INTRODUCTION 

Landscape functional connectivity, or the degree to which the spatial arrangement of 

landscape elements facilitates or obstructs movement and other ecological flows of species 

(Taylor et al., 1993), is a prime concern when making conservation decisions for a focal species 

(Freemark et al., 2002; Vogt et al., 2009; Saura and Rubio, 2010; Hanski, 1998). It is of special 

importance when resources are patchily distributed (Lookingbill, 2010) and it can provide an 

experimental framework for landscape-level conservation management, such as sensitive area 

detection and impact assessment (Bunn et al., 2000; Urban et al., 2009; Galpern et al., 2011). 

Two types of models are commonly used to calculate connectivity: discrete models such as 

graph-based habitat networks analysis (Urban et al., 2009; Alagador et al., 2012) and continuous 

models based on resistance surface such as ecological circuits (McRae et al., 2008). 

A landscape graph is a representation of functional connectivity in which the landscape is 

classified as either habitat nodes or non-habitat matrix and in which connectivity is depicted by 

links between nodes (Bunn et al., 2000; Galpern et al., 2011). It is able to combine landscape 

patterns and species biology to examine process-based connections with very little data. It also 

takes advantage of efficient computational algorithms which originated from mathematics and 

computer science (Bunn et al., 2000; Urban and Keitt 2001; Moilanen, 2011). As powerful as 

they are, these models are commonly limited by binary classifications of habitat patches (nodes) 

and universal thresholds (critical dispersal distance) in identifying links (Galpern et al., 2011; 

Moilanen, 2011). However, habitat quality continuously varies across landscape. In fact, 

classification of the landscape to habitat and non-habitat is a fundamental limitation in analysis 

of heterogeneous landscape (Chetkiewicz et al., 2006). Additionally, organisms are expected to 

alter their movements according to dynamic habitat attributes (Tischendorf, 1997; Wiens, 2001). 
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Applying thresholds in the process of defining habitat patches or links between them could be 

inappropriate for connectivity analysis and result in the loss of information (Urban and Keitt 

2001; Moilanen, 2011).  

On the other hand, continuous resistance surface-based models depict landscape using 

resistance values to reflect the hypothesized ease of movement of individuals (Koen et al., 2010). 

It is the most commonly used type of explicit connectivity modeling and it is sufficiently flexible 

to incorporate heterogeneous landscape information (Zeller et al., 2012). Nevertheless, the 

biggest challenge of calculating resistance surfaces is assigning resistance values to different 

landscape features (Seoane et al., 2005; Spear et al., 2010). Since resistance is based on 

relationships between landscape variables and underlying biological functions such as relative 

abundance (Gonzales and Gergel, 2007), researchers commonly equate resistance to the inverse 

of habitat preferences (e.g. Chetkiewicz et al., 2006; Gonzales and Gergel, 2007; LaRue and 

Nielsen, 2008). However, movement through the landscape is not necessarily equal to habitat 

suitability, and animal movement is often condition-dependent (Ronce et al., 2001). 

Incorporating actual or simulated movement data is one improvement to the performance of 

surface-based connectivity models (Epperson et al., 2010), so long as they are not deteriorated by 

the computational demands of analyzing movement paths compounded with raster-based 

landscape surface (Zeller et al., 2012).  

Both types of connectivity models have their limitations and merits and a combination of 

them is valuable for landscape connectivity examination (Cushman et al., 2013). Decout et al. 

(2012) combined graph-theoretical and surface-based connectivity analysis to achieve an 

“Availability-Suitability-Connectivity (ASC)” landscape assessment. In this framework, habitat 

availability and suitability influence how animals move through the landscape, and in turn 
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determines how we quantify and analyze connectivity for animal movement. When integrating 

habitat attributes with corresponding functional processes, movement data in our case, landscape 

connectivity measures can efficiently analyze ecological networks, landscape, and habitats 

(Urban and Keitt 2001; Saura and Rubio 2010; Decout et al., 2012). The framework maintains 

variances among habitat patches, offers straightforward connectivity visualization, and conducts 

efficient connectivity computation. Nevertheless, the thresholding applied when quantifying 

links in the landscape network is still a key issue (Decout et al., 2012).  

We demonstrate how to incorporate movement data instead of using a threshold for ASC 

examination. We employ this method to examine connectivity for African elephant (Loxodonta 

africana) movement in Kruger National Park (KNP), South Africa. Landscape conditions are 

critical for the movement efficiency of elephants (Chamaillé-Jammes et al., 2007), which may in 

turn impact landscape conditions (Whyte 2002; Codron et al., 2006). Manipulation of limiting 

resources for elephant distribution in landscape has been proposed with the objective to increase 

connectivity, promote dispersal, and thus reduce local impacts on vegetation (Owen-Smith 1996; 

Chamaillé-Jammes et al., 2007; Van Aarde et al., 2007). Understanding of the interplay between 

elephant movement and landscape conditions is valuable for identifying locations to focus 

management efforts (Owen-Smith et al., 2006; Roever et al., 2013). Here, we integrated 

individual GPS recordings for a systematic assessment of habitat availability, suitability, and 

connectivity. We quantified connectivity and demonstrated how the ASC results can inform 

conservation zone planning. This study highlights the potential of coupling geographic and 

ecological data and methods to guide effective conservation practices.   
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METHODS 

Study Site and Data Description 

Kruger National Park is located in the northeast portion of South Africa, with a total area 

of 19,485 km2 (Figure 2.1). It was proclaimed as a National Park in 1926 and is one of the largest 

wildlife sanctuaries in the world. KNP is a part of the “lowveld” savanna with distinct wet and 

dry seasons and is located at an altitude varying from 200 m to 840 m (Codron et al., 2006). As a 

protected enclosed area, the differences in climate and geology result in a variety of landscapes 

across the park (Gertenbach, 1983). The climate type in KNP varies from tropical to subtropical, 

with a range of average annual precipitation from 401 mm to 600 mm. This highly diverse 

landscape provides diverse resources for many species of differing requirements which are 

patchily distributed within 16 ecozones classified by dominant vegetation types (Crooks and 

Sanjayan, 2006).   

Hourly geographic coordinates from October 1998 to February 1999 were collected from 

three female elephants using GPS collars by Lotek fish and wildlife monitoring system. Data 

were saved cumulatively in the random access memory of the GPS units, including individual 

ID, geographic coordinates, position accuracy, time, and ambient temperature  (Fayrer-Hosken et 

al., 1997). The GPS collars generated 6,527 geographic coordinates in total. The home range of 

the females was defined as our area of interest using a minimum convex hull to incorporate all 

GPS records. The resulting study area is 6073 km2 (Figure 2.1). This focal region primarily 

covers two ecozones: Sabie/Crocodile Thorn Thickets, and Mixed Bushwillow Woodlands  
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Figure 2.1 KNP (green shade) and location of the study area (pink shade) and its relative locations in 
South Africa. 

Vector data of KNP, including landscape types, vegetation, rivers, water holes (including 

bore holes and concrete dams), tourist sites, and roads were provided by the South Africa 

National Parks Scientific Services (SANSPark). Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+) imagery of December 1999 was used to extract woodland from the rest of the landscape. 

The year 1999 was dryer than average (Presotto, 2015), thus it is a relatively conservative 

estimate of woodland extent. 
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Constructing the Landscape Graph 

We adapted ASC assessment to comprehensively describe landscape conditions. The 

workflow to construct landscape networks can be described as: 1) identify resource patches as 

nodes based on landcover classification; 2) determine patch suitability by MaxEnt habitat 

suitability modeling; and 3) determine links connecting nodes by elephant movement (Figure 

2.2). 

 

Figure 2.2 The “Availability-Suitability-Connectivity (ASC)” workflow for landscape evaluation. 

Node Availability 

Woodland, defined as open canopy forest, provides both diet and daily activity sites (e.g. 

resting) for elephants in open savanna such as KNP (Codron et al., 2006; Shannon et al., 2006; 

Harris et al., 2008). Though elephants eat both grass and tree leaves and the literature are divided 

on the relative diet proportions, there seems to be more support for larger trees being preferred 

(Barnes, et al., 1994; Swanepoel, 1993).  Thus locations of woodland patches were used to 

determine nodes. We performed supervised classification of a Landsat 7 satellite image in 

ArcGIS 10.2 using a maximum likelihood algorithm and classified the landscape into 5 classes: 

Grassland, Mixed Vegetation, Woodland, Bare soil, and Water. High spatial resolution imagery 
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from Google Earth was used as a reference for the selection of training data for the 5 classes. The 

signature (or spectral mean of reflectance values) of the training areas were then used to assign 

pixel classes to the entire image scene. We then extracted woodland pixels from the rest of the 

landscape. After aggregating adjacent woodland pixels into patches, the centroids of patches with 

area larger than 0.1 km2 were considered as available nodes in the landscape network. 

Node Suitability 

We used habitat suitability to describe node quality. The MaxEnt approach was 

implemented to generate a suitability map across the landscape using the freely available 

MaxEnt software 3.3.3k (Phillips et al. 2006). MaxEnt is a species distribution model based on 

relations between habitat environmental variables and animal presence/background locations. It 

is one of the most commonly used species distribution models for habitat analysis in last recent 

decade (Phillips and Dudík, 2008). The output raster map denotes species occurrence probability 

and is proportionate to habitat suitability for the species (Elith et al., 2011; Decout et al., 2012). 

Node suitability was calculated as the average pixel suitability within a patch.  

Table 2.1 Environmental variables in MaxEnt. 

Environmental Variables Type Contribution to the Overall Model 
Elevation Continuous 36.4% 
Landscape type  Categorical 17.5% 
Distance to main rivers Continuous 13.9% 
Distance to tourist sites Continuous 11.2% 
Distance to woodland patches Continuous 5.5% 
Distance to roads Continuous 5.0% 
Distance to bore holes Continuous 4.1% 
Distance to seasonal rivers Continuous 3.4% 
Distance to concrete dams Continuous 3.0% 

 

In order to reduce the effect of spatial and temporal correlation, we extracted the GPS 

location at 8 pm every day from the total elephant record pool.  This subset of 532 GPS records 

was used as input occurrence points into the MaxEnt model. The time 8 pm was selected because 
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it had the most complete data record across the study period. Environmental predictors related to 

the ecological requirement of elephants in MaxEnt are summarized in Table 2.1. All the 

predictor raster layers had a pixel resolution of 30 x 30 meters. A total of 75% of these points 

were used as training data for MaxEnt model construction, and the remaining 25% were used as 

test data for model assessment. We generated 10,000 random background points and averaged 50 

replicates in the construction of the MaxEnt model. The final model was selected according to 

the Receiver Operating Characteristic analysis and omission rate as well as tenth percentile 

training presence cut-off values (Phillips et al., 2006; Elith et al., 2011).  

Determination of Links 

Connectivity can be regarded as a global property approximating the number of effective 

movements occurring among patches (Baguette, 2007). In most cases links between patches are 

determined by patch distance relative to the upper limit of animals’ movement ability 

(Kindlemann and Burel, 2008). For African elephants, who have large home ranges varying from 

15 to 3,700km2 and high mobility (Douglas-Hamilton 1972; Leuthold1977), all of the patches 

throughout the landscape of the study area can be considered linked, making distance an 

inappropriate proxy.  

The longest distance across the study area from south to north is 106 km. Since elephants 

can travel up to 30km in a single day (Presotto, 2015), it is possible for an elephant to cross the 

entirety of the study area in an efficient manner in about 3 days. We used movement efficiency, 

measured as travel time, as a proxy for links between patches. We considered no links to exist if 

an elephant did not travel between patches in the same amount of time that it could cross the 

whole study area. We applied this criterion by assigning the time of GPS points as a time stamp 
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to the underlying patches. We then calculated temporal differences for all pairs of patches and 

created links between corresponding nodes if the difference was less than 3 days.  

The final constructed landscape network consisted of nodes representing woodland patch 

availability with suitability as an attribute and links representing at most 3-days of traveling 

between these nodes. 

Graph Analysis 

We performed connectivity analysis based on graph theory, including landscape-level 

and patch-level assessments. For landscape-level analysis, we calculated the numerator of 

Integral Index of Connectivity IIC (Pascual-Hortal and Saura, 2006). Numerators of IIC for all 

patches in a landscape are able to take into account purely topological features with ecological 

attributes of landscape elements (Bodin and Saura, 2010) and thus this index is able to perform 

as an efficient indicator for connectivity formed by the node availability and suitability. It is 

given by: 

𝐼𝐼𝐶$%& =
𝑎)𝑎*

1 + 𝑛𝑙)*

$

*/0

$

)/0

 

Equation 2.1 

where ai is the suitability of nodes and nlij is the number of links between patch i and j.  

At the patch level, we used Degree, and the difference in the IIC (dIIC) in order to quantify 

importance of structures for landscape connectivity within the graph network. Degree is a 

measure of the number of adjacent nodes connected to a specific node. The dIIC values for each 

node were calculated by removing each node in turn and measuring the difference in the IIC for 

the landscape (Pascual-Hortal and Saura 2006):  
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𝑑𝐼𝐼𝐶 % = 	100	
𝐼𝐼𝐶 − 𝐼𝐼𝐶67&897

𝐼𝐼𝐶  

Equation 2.2 

This index indicates the relative ranking of each patch/node by measuring their capacity to 

maintain the overall landscape connectivity. Under the ASC framework, this index regards nodes 

as connectivity providers in terms of resources availability and habitat suitability. 

We also calculated partitioned dIIC to evaluate different contributions made by 

individual patches: dIICintra-k, dIICflux-k, and dIICconnector-k (Saura and Rubio, 2010). The dIICintra 

value is the contribution of node k considering its intra-patch connectivity, or the overall node 

attribute (in this case suitability) that is provided by node k. The dIICflux value measures how 

well node k is connected to other nodes in the landscape, which is directly related to the number 

of links node k contains. A high dIICflux value thus shows areas intensively visited by elephants. 

Finally, dIICconnector measures how important that node is for maintaining connectivity between 

the remaining nodes.  

Landscape Zonation 

  In order to demonstrate how ASC can inform landscape management, we conducted 

zonation to prioritize regions that can promote elephant dispersal under proper landscape 

management. While we are aware that the movement data from only three females may not be 

able to show population traits, our purpose was to demonstrate the utility of the ASC framework 

for management planning.  

For each of the three dIIC fractions, we extracted nodes with the highest 10% values. We 

then conducted a kernel density analysis and took the 90% kernel areas to convert the nodes into 

rasterized surface with raster value of 1, which shows nodes density. With the objective to 

encourage elephant dispersal from intensively-used habitat to other suitable habitat, we applied 
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an equation to generate a surface which shows levels of importance (L) for landscape 

management efforts:  

L = dIICconnector + dIIcintra – dIICflux 

Equation 2.3 

L therefore ranged from -1 to 2. This calculation highlights regions that are both suitable (with 

high dIIcintra) and able to maintain connectivity among nodes (high dIICconnector). In the contrast, 

areas containing nodes currently heavily used would generate less importance for connectivity 

management. We defined regions with L equal to 2 as Core Zone, and those with L equal to 1 as 

Buffer Zone.  

The graph was constructed using Python code and can be obtained from the author upon 

request. Graph indices were calculated using Conefor Sensinode 2.2 and R (Saura and Torne, 

2009; R-Core-Team, 2014). Mapping and statistical analysis of the retrieved patch attributions 

were carried out in ArcGIS 10.2 by either pre-coded functions or customized Python 

programming. 

RESULTS 

We classified the Landsat-7 image and generated 554 patches as available nodes in the 

study area (Figure 2.3A).  Patch area ranged from 0.1 km2 to 45 km2, with an average of 1.02 

km2. Once overlaid with patches, nodes clearly denotes the locations of woodland patches 

(Figure 2.3B). According to the Area Under the Curve (AUC) model assessment value, the 

MaxEnt model revealed a habitat suitability model with an average discriminative capacity of 

75.0%. The environmental variables included are listed in Table 2.1 in order of contribution to 

the model. Figure 2.3C shows habitat suitability in the study area, where the variance of 

suitability values across the study area reflects the heterogeneity of the landscape. The areas with 



	

35	

high suitability values are generally concurrent with woodland patches and the river system in 

KNP. Elephants generally did not visit area with low suitability (Figure 2.3D). 

 

Figure 2.3 The distribution of patches (A); nodes as representations of patches (B); MaxEnt-generated 
habitat use probability map in shades of green denoting habitat suitability (C) and the map with 
movement paths overlaid (D). 
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In our landscape network, which demonstrates the A-S-C pattern (Figure 2.4A), there are 

1345 links connecting the 554 nodes with the Degree value of nodes ranging from 0 to 65. 

According to the map, most of the nodes with high Degree values also have relatively high 

suitability values. The average suitability of nodes with the top 10% Degree values is 0.55 while 

the average suitability of all nodes is 0.34. Though some nodes with low suitability may also be 

well connected, nodes that are physically far from each other are not necessarily isolated 

(Figure2.4B). The node ‘i’ denoted in Figure 2.4B is an example of a node that functions like a 

“bridge”, connecting two groups of nodes that are far from each other. Based on movement 

records from the three elephants, there are 398 isolated nodes. Most of these are located around 

the central area and are not included in the movement range of the elephants. If all of the 

unconnected single nodes are omitted, the remaining nodes can be lumped into four graph 

components (all nodes are connected within the same component but are not connected to nodes 

from other components). The largest component contained 148 nodes, while the smallest 

contains only 2. Figure 2.4C provide an example of an isolated component (ii) in the south of the 

study area.  
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Figure 2.4 Landscape network constructed based on the “Availability-Suitability-Connectivity” 
workflow. Node size is proportionate to the Degree values, which range from 0 to 65. Node i is an 
example functioning as a “bridge” to connect two components; Node ii shows a component isolated from 
the major component in the center of the study area.    

 

Figure 2.5 dIIC measures for patch importance classified by quantiles.  
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The landscape level IIC is equal to 711.7, which was later used to calculate node 

importance dIIC at patch-level (Figure 2.5B). Nodes with high dIIC values are concentrated at 

the center, similarly to nodes with high Degree values. On the contrary, partitioning dIIC into 

three fractions allows for a more detailed evaluation of the differential contributions to landscape 

connectivity by various nodes. Figure 2.6 shows the nodes with the top 10% values for each of 

the three fractions of dIIC. Nodes with dIICintra are distributed more evenly compared with the 

other two dIIC fractions. Figure 2.6B shows that nodes with high dIICconnector, those that are well 

connected to other patches, gather at the center of the study area, indicating the areas that 

intensively used by the three females. However, the nodes most important for maintaining 

connections among other nodes extended to the north and south part of the area rather than 

clustered in the center. 

 
Figure 2.6 Nodes with top 10% dIICintra, dIICflux, and  dIICconnector values (A, B, C) and example of 
utilizing dIIC fractions for conservation zonation (D).  
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The conservation zonation mapping based on the three dIIC fractions evaluates landscape 

management priority across the study area (Figure 2.6). Core zone mostly locates along the edge 

of the high dIICflux area, indicating areas important to maintain connectivity between the central 

study areas and the marginal areas. Habitat maintenance for these areas can encourage elephant 

inter-patch movement thus to relieve pressures on the intensively used areas (high dIICflux area). 

The buffer zone in Figure 2.6D indicates areas that would be used by elephants more frequently 

after expanding their inter-patch movement.  

DISCUSSION AND CONCLUSION 

This study demonstrates a methodology that combines ground-based observations, 

remotely sensed as well as modeled habitat suitability information, and an operational graph-

based analysis to assist conservation planning. Though wildlife tracking techniques have 

developed rapidly in recent years, few studies have directly used such ground-based observations 

for connectivity analysis or modeling (Galpern et al., 2011). This ASC framework based on 

movement data used in our study integrates the better parts from both continuous and binominal 

connectivity models. It 1) contains landscape heterogeneity information in connectivity analysis; 

2) applies well-established graph-based connectivity indices for quantifying connectivity; and 3) 

utilizes actual animal movement data instead of a subjective thresholding process.  

The ACS framework makes it possible to geospatially visualize and quantify the 

relationship between different landscape attributes, namely resource availability, patch 

suitability, and landscape connectivity. First, resource availability is measured by remote sensing 

imagery analysis; it is later used to define nodes in landscape graph. Second, patch suitability 

evaluated by the MaxEnt model varies across the study area, revealing a heterogeneous 
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landscape (Figure 2.3). Finally, both the availability and suitability information contribute in 

quantifying connectivity by involving in calculating dIIC and its fractions.  

It is commonly assumed in surface-based connectivity analysis that an inverse suitability 

surface can function as resistance to movement (McRae, 2006). However, our study 

incorporating movement data shows that for these specific elephants highly suitable areas are not 

always well-connected and thus don’t always facilitate movement. While suitable patches with 

high dIICintra are spread broadly across the landscape, elephants limit their daily range to the 

central area (Figure 2.6B). Elephants, especially female groups, act cautiously in exploring new 

areas (Douglas-Hamilton, et al., 2005; Druce et al., 2008). However, as they spend more time 

traveling through a given new area, this cautious behavior decreases (Druce et al., 2008). 

Therefore, it is important to consider specific animal behaviors when evaluating species-specific 

landscape connectivity and to use accurate movement data to provide more realistic connectivity 

information.   

At the patch scale, connectivity structures revealed by ASC can help identify critical 

patches for conservation. For example, nodes with high dIICconnector values produce movement 

flux to other habitat patches and function as “bridges” to facilitate movement between other 

patches. When mobility of animals is intermediate relative to the landscape pattern, the loss of a 

node with high dIICconnector can cause the breakdown of substantial network components into 

disconnected smaller components, producing a significant drop in overall landscape connectivity 

(Saura and Rubio, 2010). Though the physical distances among nodes would be the same, they 

are no longer functionally connected because elephants may not find an efficient path to reach 

another suitable patch within a reasonable time period.   
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At the landscape scale, ASC can help delineate conservation zones (Figure 2.6). Major 

concerns caused by elephants in KNP include vegetation degradation and biodiversity decrease 

in regions heavily used by elephants (Valeix et al., 2011). Promoting elephant movement to more 

spacious and less occupied habitats has become one goal of elephant conservation in South 

Africa (Van Aarde and Jackson, 2007; Gallagher, 2012). The ongoing creation of Transfrontier 

Conservation Areas has promoted elephant dispersal at the landscape scale, allowing elephant 

numbers to fluctuate locally, thereby reducing their impact on vegetation (Hanks, 2003; Van 

Aarde et al., 2007). The zonation map based on the ASC framework defines regions to guide 

active landscape management at landscape scale, for example waterhole provisioning and 

vegetation patch burning (see Biggs et al., 2008 for methods overview and appropriateness of 

options). By applying Equation 2.3, we located the core areas surrounding the central area 

(Figure 2.6D). The overall management goal should be to improve connectivity at the core area 

but not the central area. Over time, resources in the central area will be degraded by continued 

heavy elephant exploitation, leading to a natural tendency for elephants to alter their movement 

patterns to occupy the higher quality Core zone. This zonation method can also be adapted to 

different conservation goals and other ecological contexts. Planners can focus on different dIIC 

fractions or assign different weights to the three fractions to aid decision-making for their 

particular problems.  

We are aware that the limited amount of GPS in use in this study is a drawback. We were 

only able to simulate the connectivity condition for regions that were covered by movement 

records of the three elephants in this study. Though the results showed 398 isolated nodes, this 

may be more attributable to the lack of elephant movement information (see Figures 2.3A and 

2.4A) than to poor connectivity. Although graph-based network analysis does not require 
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intensive data input, additional data from more individuals covering larger area is always 

beneficial. Graph-based networks are an additive framework in the sense that, once constructed 

from observational data, they help to detect areas that lack information. In this way they can 

guide further data collection or ecological analysis for these locations (Bunn et al., 2000; Urban 

and Keitt, 2001). Another way to address animal movement data deficiencies is to use simulated 

data modeled from observational data via cost-distance modeling or individual-based modeling 

(Kindlmann and Burel, 2008; Lookingbill et al., 2010; Spear et al., 2010; Bergerot et al., 2013).  

To conclude, we demonstrated the applied value of the “Availability-Suitability-

Connectivity” framework using an integrative approach coupling GPS locational data of 

individuals, satellite imagery analysis, habitat suitability modeling, and graph theory. The use of 

integrative connectivity indices and its fractions can efficiently quantify the resulting 

connectivity without losing patch availability and suitability information. When combined with 

movement data, our framework offers an ecologically realistic perspective to prioritize habitat 

patches in terms of their importance for landscape connectivity, and thus aid in identifying 

critical areas for conservation management. Ultimately, this study is an effort to create a tool 

which can employ emerging technologies from a myriad of fields along with a continuously 

growing store of ecological data to efficiently and effectively inform and advance conservation 

efforts. 
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ABSTRACT 

One of the major conservation issues in Kruger National Park (KNP) in South Africa is 

the locally intensive habitat use by African elephants (Loxodonta Africana) and its subsequent 

impacts on landscape conditions. It has been proposed to manipulate limiting resources for 

elephant distribution in order to promote landscape connectivity and alleviate their local impact. 

It is thus highly important to understand the interplay between elephant movement and landscape 

conditions to facilitate landscape management efforts. However, actual elephant movement data 

is usually limited in spatial extent, sample size, or temporal resolution. This study aims to model 

emergent landscape connectivity network corresponding to simulated elephant movement and to 

examine how landscape management of resources availability (waterhole and woodland) or 

suitability would affect landscape connectivity. We used elephant GPS collar records to 

parameterize movement simulation in the model. Remote sensing imagery classification results 

and MaxEnt models were applied to characterize woodland availability and suitability. By 

calculating graph-based landscape connectivity indices, we were able to examine how landscape 

connectivity for elephant movement responds to varying woodland patch availability and 

suitability conditions. A comparison between network connectivity generated by GPS records 

and simulated movement confirmed the robustness of the simulation. Results showed a strong 

positive correlation between woodland availability and landscape connectivity, whereas an 

increase in overall patch suitability would cause a moderate decrease in connectivity. Artificial 

waterhole removal did not result in significant connectivity change. We therefore suggest 

management focus efforts more on maintaining or increasing woodland patch quantity rather 

than on only improving existent patch quality for local habitat utilization management. 

Generally, our model provides a viable method to overcome movement data deficiency; it also 
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offers a systematic evaluation for landscape conditions and predicts the effects of natural 

processes or landscape management practices.  

INTRODUCTION 

Landscape conditions - such as resource availability, forage quality, and habitat 

suitability - dynamically interact with animal movement and subsequent habitat use across the 

landscape (Stokke and Toit, 2000; Smit et al. 2007; Young et al 2009), eventually affecting other 

elements of the landscape (Wang and Grimm 2007, Buchmann et al., 2012). Relations between 

animal movement and landscape conditions can be quantified by metrics of landscape 

connectivity; this has become a prime consideration when making conservation decisions 

(Adriaensen et al. 2003; McRae et al. 2008; Saura and Rubio, 2010).  

One of the major conservation problems in Kruger National Park (KNP), South Africa, is 

local African elephant (Loxodonta africana) over-population and its subsequent impacts on 

vegetation due to patchily intensive habitat use (Whyte 2002; Kerley et al. 2008; Smit and 

Ferreira, 2010). One of the current management strategies in KNP is to improve connectivity in 

order to encourage elephant dispersal, thereby reducing their local influences on vegetation and 

helping to maintain landscape heterogeneity (Owen-Smith 1996; Owen-Smith et al. 2006; Van 

Aarde et al., 2007). Specific management practices include waterhole provisioning, fencing, and 

vegetation patch mosaic burning (Biggs et al. 2003; Chamaillé-Jammes et al. 2007a,b); these 

efforts deal with either availability or quality of resources. Yet few studies explicitly consider 

how changes in resource availability and suitability can affect landscape connectivity with 

respect to elephant movement.  

Graph-based landscape networks are one of the most popular landscape connectivity 

models; they model connectivity by using animal movement data to identify links and 
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incorporating species-specific traits in their calculations (Lookingbill et al. 2010; Decout et al. 

2012; Xu et al. 2016). Although there is a high demand for observational or experimental 

movement data to inform models, it is financially prohibitive and labor intensive to collect 

observational movement data at optimal time intervals across the entire targeted landscape 

(Lookingbill et al., 2010; Bergerot et al., 2013). One way to resolve this problem is to use 

simulated movement data, which can be computer generated at almost no cost. However, 

implementing movement simulations in traditional model construction is usually difficult, 

considering that movement is dependent upon a complex array of variables, such as organisms’ 

internal state, behavioral tendencies, and environmental cues (Patterson et al. 2008).  

Individual-based models (IBM), however, have the potential to address movement data 

limitations and to quantify elephant-landscape interactions. IBM has been extensively applied to 

simulate wildlife response to changing environments such as home range dynamics, foraging 

behavior, and movement patterns (Turner et al. 1994; Nibbelink and Carpenter 1998; Dumont 

and Hill 2004; Morales et al. 2005; Bennett and Tang 2006; Wang and Grimm 2007; Morzillo et 

al., 2013; Albeke et al. 2015). The popularity of IBM can be attributed to its 1) ability to connect 

individual-level processes and population-level impacts 2) incorporation of the stochastic nature 

of movement processes; and 3) flexibility to incorporate well-established ecological models, 

such as graph theory-based landscape network (Tischendorf 1997; Grimm and Railsback 2005; 

DeAngelis and Mooij 2005; Nathan 2008; Tang and Bennett 2010; Black and McKane 2012). 

Multiple models have been developed dealing with elephant-landscape interactions, employing 

elephant habitat use as a driver of vegetation change (Ben-Shahar, 1996; Duffy et. al., 1999; 

Duffy et. al. 2000; Baxter, 2003; Baxter and Wayne, 2005). However, very few studies have 
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addressed potential cascading effects on landscape conditions, which can be regarded as 

landscape-elephant-landscape dynamics.  

In this study, we constructed an IBM to model emergent graph-based landscape networks 

corresponding to simulated elephant movement and to examine how landscape management of 

resources availability or suitability would affect landscape connectivity. Specifically, we 

combined GPS records and habitat suitability model to parameterize elephant movement 

simulation. The model overcomes actual movement data limitations and it allows to quantify 

landscape connectivity by integrating elephant movement with graph-based network analysis 

under varying landscape conditions.  

METHODS 

The ASC framework combines habitat suitability modeling and graph-based network 

analysis (Decout et al. 2012). Xu et al. (2016) demonstrated how to incorporate GPS movement 

recordings into the framework to develop a realistic landscape connectivity model. Building 

upon this, here we show how to implement IBM to simulate movement, overcoming GPS data 

limitations for connectivity analysis. In the following, we describe data and study area. Secondly, 

we describe input landscape scenarios for IBM of varying patch availability and/or suitability. 

We then briefly presented the IBM, including elephant movement simulation and generating 

emergent landscape network connectivity. Model details can be found in Supplementary Material 

Appendix I, which follows the standard Overview, Design concepts, and Details (ODD) protocol 

(Grimm et al. 2006; Grimm et al. 2010). Finally, we illustrated methods for results analysis and 

sensitivity examination.  
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Data and study area 

The model was constructed from environmental data collected in southern KNP. 

Differences in climate and geology across the park produce a variety of landscapes (Gertenbach 

1983) such that resources for different species are patchily distributed (Crooks and Sanjayan 

2006). Environmental vector data of the study area, including landscape regions, surface water 

sites (waterholes), camp sites, and roads were provided by the South Africa National Parks 

Scientific Services (SANSPark). The waterhole data set contains a “status” column representing 

enclosure plan: “Closed”, “Open”, and “To Be Closed”. Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+) classified imagery in Xu et al. 2016 was used to derive information about 

woodland locations. 

Hourly geographic coordinates collected by Lotek GPS collars were used to parameterize 

movement patterns of elephants and were subsequently incorporated into the IBM. GPS collars 

were deployed on three female elephants. Though limited in sample size, the high temporal 

resolution offers detailed movement patterns. The collection was conducted from October 1998 

to February 1999, generating 5628 coordinates in total (Fayrer-Hosken et al. 1997).  

Landscape scenarios 

 Landscape is defined by resource availability and suitability, specifically woodlands, 

which provide both food and daily activity sites (e.g., sleeping and resting) for elephants in open 

savannas, the main habitat/ecotype in KNP (Codron et al. 2006; Harris et al. 2008). We defined 

resource availability as the presence of woodland patches with an area larger than 1 km2. Patch 

suitability was estimated by a MaxEnt model (Phillips et al. 2004), one of the most commonly 

used pixel-based species distribution models for habitat analysis (Phillips and Dudík, 2008). It 

predicts species occurrence probability according to the relation between animal presence data 
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and environmental variables. For modelling purpose, we only used points from three elephants 

collected at 8 pm each day to diminish spatial and temporal correlation of the presence data, 

giving us 392 presence points. Nine environmental variables were used in the MaxEnt model 

with a 300-meter pixel size: elevation, landscape zone type, distance to the main river, distance 

to seasonal rivers, distance to tourist sites, distance to woodland patches, distance to roads, 

distance to boreholes, and distance to concrete dams. Of the 392 presence points, 75% were used 

as training data, and the remainder were used to test the discriminative capacity of the model. We 

generated 10,000 random background points to construct the presence/background MaxEnt 

model and 50 replicates were processed for model construction (Phillips et al. 2006; Elith et al. 

2011). The resultant predicted probability of elephant occurrence can be considered a proxy for 

habitat suitability (Elith et al., 2011; Decout et al., 2012).  

In the baseline scenario S0, availability and suitability were derived from actual 

landscape data, which we called baseline landscape. S1-S5 are hypothesized landscape 

conditions (Table 3.1): in S1 and S2 we adjusted overall patch suitability; in S3 we projected the 

MaxEnt model fitted by baseline landscape, to a new waterhole provisioning situation according 

the waterhole file, in which we only retained waterholes with “Open” status as designated by 

park management; we modified woodland availability either randomly (S4) or by suitability rank 

(S5). It should be noticed that distance to patch is one of the MaxEnt variables, thus changes in 

patch availability would also affect suitability. 

Movement and network simulation 

We developed a model in NetLogo 5.2 to simulate elephant movement and build 

corresponding landscape connectivity network (Tisue and Wilensky 2004. Source code available 

upon request to the corresponding author). The model was initialized by two raster files (a 
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MaxEnt generated suitability map and an ETM+ landscape classification map with pixel values 

showing woodland patch ID, Figure 3.1). The raster used to define the background landscape of 

the model contains 230 columns and 350 rows of grid cells, where one cell represents an area of 

300m2. One model operation lasted for 1800 time ticks, with each tick representing 2 hours such 

that the the model represented 5 months - the time span of GPS collection. Four model entities 

were modeled in the IBM: elephants, nodes, links, and pixels (For state variables of each entities, 

refer Appendix I). Nodes are displayed as the centroid of woodland patches.  

 

Table 3.1 Model simulation for landscape scenarios and sensitivity analysis. 

Landscape scenarios 

Scenario Model Adjustment 

S0 
Baseline. Resource availability and suitability derived from remote sensing imagery and 

landscape data offered by KNP 

S1 -20% Suitability for all patches 

S2 +20% Suitability for all patches 

S3 Projected suitability with only waterholes that are planned to “remain open” 

S4 Randomly delete 20% nodes 

S5 Delete nodes with top 20% suitability values 

Sensitivity Analysis 

Adjusted Parameters Details 

Movement used for 

constructing network 

While the IBM constructed landscape networks using simulated movement, GPS 

recorded movement was applied to test model robustness, denoted as S-real.  

Time-span for 

defining links 

We considered links to exist if an elephant could travel from one node to another 

within 3 days after we tested 1-day through 15-day time units, denoted as D1 – 

D15.   
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Figure 3.1 Model scheduling following “availability-suitability-connectivity” analysis. 

 

The first part of the model simulates elephant movement according to woodland 

availability and patch suitability. Each step an elephant takes was achieved by deciding distance 

and turning angle according to the suitability of the pixel it is located in. A linear regression 

fitted by GPS records was used to predict the response of the elephant’s relocation distance for 

the subsequent tick in response to the suitability value. The residual of the linear model shows a 

normal distribution and therefore can be regarded as stochasticity in the movement process 

(Appendix I). The linear model is fitted by GPS data from the three elephants and is denoted as: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	 = 𝛽A + 𝛽0×	𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑠𝑖𝑡𝑦	 

Equation 3.1 

We did not find significant simple linear relationships between turning angles and patch 

suitability. However, the turning angle distribution is close to a normal distribution as shown in 

GPS records. We applied this distribution to turning angles at each tick in the model.  
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The second part of the model is a landscape connectivity network built according to the 

previously simulated elephant movement. We employed movement efficiency as a proxy for 

linkage between patches, measured by time spent traveling between patches. Following Xu et al. 

2016, we considered no link to exist if an elephant could not travel between two given patches in 

3 days. During the operation of the model, elephants left a time stamp on the pixel they were 

standing in at each tick. Temporal differences for all pairs of patches were calculated for each 

tick and subsequently links were created if the difference was less than 3 days.  

All scenarios contained 300 operations to simulate 300 individual elephants moving 

across the landscape, generating 300 node-link landscape networks. We aggregated the 300 

networks by adding up all of the non-repeating links in order to average individual difference 

and to quantify overall landscape connectivity.  

Sensitivity analysis 

We examined the model robustness from two aspects. First, we assessed whether similar 

landscape connectivity situations can be attained from simulated movement and actual 

movement. We also constructed a network with only GPS records (S-real in Table 3.1). Since 

this actual movement data only contained three elephants, we expected simulated networks 

would contain the same connectivity structures as in S-real but also adding extra connectivity 

information, while connectivity measures for connectivity generated from one operation (one 

elephant movement) would be close.  

Second, we tested whether using 3-day for defining effective elephant movement in 

constructing landscape network was a justifiable assumption. In order to examine model 

sensitivity to time unit and to test the robustness of using 3-day as default setting, we adjusted 

the time unit for establishing links between patches. We adjusted the unit from 1-day to 15-day 
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(D1 – D15 in Table 3.1, in which D3 is equal to S0). We expected a longer time unit would 

result in higher IIC measures since elephant movement can travel across more patches in longer 

time.   

Graph-based connectivity analysis 

Graph-based landscape network analysis was conducted in R and Conefore 2.6 (Saura 

and Torne 2009; R-Core-Team 2014). For landscape scenarios (S0 – S5), we calculated simple 

indices describing network structure: total number of links, average degree, and graph density. 

Graph density is a measure of how close the graph is to a complete network where all nodes are 

connected. It is independent of landscape attributes and can offer a simple and direct 

demonstration of structural features of various landscape networks.  

For sensitivity analysis cases D1-D15 and S-real, we calculated Integrative Indices of 

Connectivity (IIC) for each operation, which effectively represents connectivity conditions 

(Pascual-Hortal and Saura 2006, Saura and Pascual-Hortal 2007):   

𝐼𝐼𝐶$%& =
𝑎)𝑎)

1 + 𝑛𝑙)*

$

*/0

$

)/0

 

Equation 3.2 

To examine the robustness of our movement simulation, we also conducted a t-test for S-real and 

D3 (S0) to compare IIC generated by actual movement and simulated movement.  

RESULTS 

According to GPS movement records, the northern and central area were the two regions 

most frequently visited by elephants (Figure 3.2A). Land cover classification revealed 554 

woodland patches distributing across the study area. The baseline landscape was heterogeneous 
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in terms of suitability (Figure 3.2B). The eastern area had high suitability, though elephants 

seldom visited it. The Area Under the Curve (AUC) value of the MaxEnt model was 75.0%.  

 

Figure 3.2 Distribution of nodes extracted from actual landscape information with GPS-recorded path 
overlaid. Landscape suitability maps of S0 (S-real, B), S3 (C), S4 (D) and S5 (E). Suitability maps for S1 
and S2 are not presented since direct adjustments for suitability value from S0 did not change spatial 
patterns of suitability. 

Suitability conditions change among scenarios with adjustments to woodland patch 

conditions (Figure 3.2C-E). S3 yielded the greatest alteration to landscape suitability patterns 

after removing waterholes: suitability of the central area decreased and the suitable area in the 

south expanded. A random removal of 20% of all nodes (S4, Figure 3.2D) did not lead to much 

change in suitability. Removing nodes with the highest 20% suitability values resulted in some 
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suitability decreases at the center, though the general suitability pattern remained similar to S0 

(Figure 3.2E).  

Table 3.2 Rankings of environmental variable contributions to MaxEnt model in different scenarios and 
percentage contribution of the top three variables. 

 S0* S3 S4 S5 

Elevation 1 (36.4%) 1 (37%) 1 (37.7%) 1 (37.0%) 

Landscape zone types 2 (17.5%) 2 (18.7%) 2 (16.2%) 2 (18.2%) 

Distance to main rivers 3 (13.9%) 4 3 (12.1%) 4 

Distance to tourist sites 4 3 (13.2%) 4 3 (11.6%) 

Distance to woodland patches 5 5 5 5 

Distance to roads 6 6 7 7 

Distance to bore holes 7 9 9 9 

Distance to seasonal rivers 8 7 8 8 

Distance to concrete dam 9 8 6 6 

* S0 has the same suitability base map as S-real. S1 and S2 were directly calculated from S0, thus 
variable contributions remain the same.  

 

Elevation and landscape zone type were the two most important variables for MaxEnt 

models in all scenarios, although elevation was consistently twice as important as landscape zone 

type (Table 3.2). Both types of waterholes only contributed a small proportion; after removing 

waterholes in S3, distance to bore holes and dams became the least important variables. When 

patches were removed in S4 and S5, the importance of distance to concrete dams increased while 

distance to bore holes remained unimportant.  

When only using GPS records, the network is more complete in the center whereas there 

are almost no links in marginal areas, despite high suitability in the south and east (Figure 3.3A). 

There were 1344 links in total for the 554 nodes; 398 nodes had no links at all and were detached 

from the landscape network. The graph density for S-real is 0.009 (Table 3.4), indicating the 

network is far from structurally complete. 



	

61	

Our linear regression of the moving distance at each tick revealed a model with intercept 

(β0) equal to 2.6746, and slope (β1) equal to -0.2671 (Appendix I). Landscape networks created 

from the simulated movement of S0 through S3 were visually similar. In baseline scenario S0 

there were two major clusters (I and II) with high connectivity (Figure 3.3B). Cluster I 

overlapped with the cluster shown in S-real, though it was more expansive. Adjustments in 

landscape suitability (S1 and S2) introduced few changes to the overall landscape connectivity 

structure (Figure 3.3C and D).  Though the removal of waterholes (S3) shifted the spatial 

arrangement of landscape suitability, connectivity structure remained similar to S0 (Figure 3.3E). 

However, randomly removing woodland patches in S4 caused a significant connectivity decrease 

in terms of the absolute degree values (Figure 3.3F). Nevertheless, the clustering at I and II were 

still visible. After removing nodes with highest suitability in S5, cluster II disappeared from the 

network while cluster I remained well connected (Figure 3.3G).   
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Figure 3.3 Landscape networks for GPS-recorded elephant movement (A) and for networks summarizing 
all 300 individuals in S0 (B), S1 (C), S2 (D), S3 (E), S4 (F), and S5 (G). Node size is proportional to 
Degree values. 

Landscape-level graph indices describing connectivity structure are summarized in Table 

3.4. A comparison among S0, S1, and S2 revealed that patch suitability has a negative 

correlation with connectivity level: a decrease in patch suitability (S1) caused an increase in 

average degree and graph density (i.e. increased connectivity), whereas an increase (S2) led to 

decreases in both indices. Conversely, woodland availability is positively related to connectivity. 

A 20% decrease in woodland availability in S4 was associated with a graph density reduction of 

32.3%. In comparison, removing nodes with the top 20% suitability values (S5) produced a 

relatively moderate decrease in connectivity (- 17.4%). Though the impact of waterhole removal 

on landscape network structure is not visually easy to detect, graph density increased by 4.8% in 

S3.  



	

63	

Table 3.4 Graph description of landscape networks in different scenarios 

Scenario Total number of links Average degree Graph density 

S-real 1,344 2.43 0.009 

S0 9,512 17.17 0.062 

S1 10,177 18.37 0.066 (+ 3.2%) 

S2 9,021 16.28 0.059 (- 4.8%) 

S3 10,011 18.07 0.065 (+ 4.8%) 

S4 5,028 11.35 0.042 (- 32.3%) 

S5 5,137 11.57 0.051 (- 17.4%) 

 

D1-D15 proved that a longer time unit for landscape network construction produced 

higher landscape connectivity levels in terms of IIC. IIC increased quickly from 1D to 3D, but 

the rate slowed down after 3D when IIC tended to be saturated (Figure 3.4). The IIC of the 300 

elephants simulated in S0 has a mean of 741.702, while the average IIC generated from each of 

the 3 females is 711.714. The t-test results revealed a p-value equal to 2.2e-16 (< 0.05) thus 

proving that the IBM modeled landscape connectivity network using 3-day time unit was 

statistically not different from the one created from GPS data of real elephants.  
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Figure 3.4 (A) Summary of Landsacpe IIC for 300 runs versus time span for defining links. Purple dots 
stand for mean IIC values for each time span and box denotes the median, 25% quantile, and 75% 
quantile. Red line denotes average IIC generated by the 3 GPS-collared elephants. 

DISCUSSION 

Our study integrates remote sensing, habitat suitability modeling, and a simple 

Individual-Based Model to investigate the impacts of woodland availability and habitat 

suitability changes caused by management practices or natural dynamics on landscape 

connectivity. The combined graph-based network and IBM effectively quantify and visualize 

simulated elephant movement and emergent landscape dynamics. Our model overcomes 

observational data limitations: when only using GPS data, modeled landscape networks are 

incomplete and connectivity information for regions not covered by GPS recordings is missing 

(Figure 3.3A). The three collared elephants did not fully explore the available and suitable 

landscape in a period of 5 months. However, by using IBM simulation we generated alternative 

routes to cover the entire area and thus add connectivity information (Figure 3.3). A comparison 

of the graph density of S0 (0.062) and S-real (0.009) also demonstrates the additional 



	

65	

connectivity information introduced by IBM simulation. Moreover, we demonstrated that our 

IBM-simulated movement and usage of a 3-day time unit for landscape network construction are 

robust – simulated movement revealed similar landscape connectivity measures to actual 

individual elephant movement (Figure 3.4).  

Connectivity responses to availability and suitability 

Landscape connectivity for elephant movement is more sensitive to woodland availability 

than patch suitability. Changes in connectivity caused by alterations to suitability are less than 

5% in terms of graph density measures, whereas alterations to woodland availability produce 

graph density differences up to 32.3%. The smaller impact of changes in suitability is partly due 

to an elephant’s ability to adjust its movement (e.g. speed and distance) to reach the remaining 

available woodland patches (Loarie et al. 2009; De Knegt et al. 2011; Chamaillé-Jammes et al. 

2013). Nevertheless, the loss of patches both negatively impacts suitability (Figure 3.2D) and 

impedes elephants’ ability to effectively travel between patches in a timely manner.  

In addition, while there is a positive relationship between connectivity and woodland 

availability, connectivity and patch suitability are negatively related. Connectivity level goes 

down when there are fewer woodland patches. On the contrary, comparisons between S0 and S1, 

S0 and S2, S4 and S5 reveal that connectivity increases (or decreases less as in S5) when habitat 

suitability is reduced. Since animals tend to choose habitat with high productivity, they expand 

their range when their home range does not hold resources of sufficient quality (Wang and 

Grimm 2007). In other words, lower habitat quality would result in more active animal 

movement and thus higher connectivity. The negative slope in our linear regression fitted by 

GPS data also indicates that elephants increase their relocation distance in response to a drop in 

suitability at their current locations.  
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The negative relationship between suitability and connectivity shown in our study 

seemingly contradicts the commonly accepted opinion that suitability and connectivity are 

positively correlated (Hunter et al. 2003; Poor et al. 2012; Santos et al. 2013). In these studies, a 

sufficiently high connectivity makes it possible for organisms to cross; this is usually measured 

by occurrence of movement events (e.g. Decout et al. 2012). However, this contradiction is 

mainly caused by ecological attributes of studied animal. In this study, the high mobility of 

elephants and their large size, there is almost nothing that can impede their movement within 

KNP except for man-made fences.  We therefore measured connectivity by moving efficiency of 

elephant, i.e. time spent moving.  

Landscape management for elephant conservation in KNP  

One of the conservation concerns raised by managers in KNP was the overabundance of 

elephants in certain regions. The effectiveness of artificial waterhole provision for managing 

African elephant populations has long been debated (Chamaillé-Jammes et al. 2007 a; 

Chamaillé-Jammes et al. 2007b; Smit et al. 2007a; Smit et al. 2007b; Chamaillé-Jammes et al. 

2013). According to our ASC analysis for S3, although removal of waterholes changed the 

overall suitability structure more than any other scenario (Figure 3.2), the change in final 

connectivity measures were moderate (Table 3.4). One interpretation is that waterhole 

provisioning may change the suitability structure but not the magnitude of suitability of the 

region as a whole, considering their small contribution to MaxEnt model performance (Table 

3.2). The suitability models and the subsequent connectivity results were therefore insensitive to 

changes due to waterhole provisioning. Besides, elephants adjust movement strategies to water 

availability accordingly and therefore they can adapt to a broad range of waterhole availability 

(Loarie et al. 2009; Chamaillé-Jammes et al. 2013). In addition, female elephants were found to 
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be less associated with areas close to artificial waterholes in KNP (Smit et al. 2007a).  However, 

our dataset was built from entirely female movement data, it may be less responsive to changes 

in waterholes than a full population. 

Researchers who support waterhole management as a population control tool believed 

that artificial water supply is a major cause of local population density and therefore 

manipulating waterholes can spread elephant populations across the landscape (Chamaillé-

Jammes et al. 2007 a; Chamaillé-Jammes et al. 2007b; Chamaillé-Jammes et al. 2013). However, 

Smit et.al. (2007a) argued that the efficiency of waterhole provision is area- and population-

specific and will depend on management objectives. Elephants, as a species with high dispersal 

ability, are not surface-water-limited populations, and the easy availability of natural water in 

KNP may mitigate effects of artificial water management (Smit et al. 2007a; Smit et al. 2007b). 

Considering our IBM simulation results, we agree that water provision may not be effective as an 

elephant population management tool in KNP. The waterhole removal based on the closure plan 

will not have significant impact on connectivity for elephant movement in the park. However, 

the provision of artificial waterholes does create negative impacts on other animal and plant 

species, such as desertification and alien infestation (Thrash 1998; Van Wyk 2011). Thus, the 

policy to gradually close artificial waterholes in KNP can be beneficial for the overall ecosystem.  

The simulation results also indicate that woodland patch quantity should be the priority 

for connectivity maintenance. Connectivity goes down the most when nodes are randomly 

removed (S4). Therefore, more efforts should be made to maintain or improve the existence of 

woodlands, even if their quality is poor, rather than protecting only patches with high quality 

vegetation. Previous studies have shown that the loss of critical nodes with high suitability 

values, which serve as “bridges” connecting clusters, will cause a significant drop in the ability 
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of animals to reach other high quality patches and therefore decrease in connectivity 

(Lookingbill et al. 2010). However, highly mobile large animals such as elephants are able to 

disperse to other nearby habitat patches which may only contain moderate suitability but allow 

further dispersal (Keitt et al. 1997; Saura and Rubio 2010). As the landscape network shown in 

Figure 3.3F demonstrates, the loss of the central cluster does not cause critical damage to 

connectivity in other regions. In fact, the overall graph density decrease is not as serious as S4 

(Table 3.4). In this case, the animals actually may explore the landscape more broadly instead of 

remaining in the central region. 

CONCLUSION 

Effective elephant conservation and management in KNP requires a thorough 

understanding of the species’ responses to landscape changes. Our model demonstrates that 

resource availability and habitat suitability have impacts on elephant movement and 

consequently their habitat utilization. An increase in the number of woodland patches would 

effectively promote connectivity for elephants. Though the modeled scenarios in this study were 

mostly hypothetical, they can be used to simulate potential connectivity changes for species 

management planning. To alleviate locally intensive habitat utilization by elephants in KNP, we 

suggest management focus efforts more on maintaining or increasing woodland patch quantity 

rather than focusing on improving existent patch quality. In addition, waterhole removal only 

affects elephants moderately and may not be a major concern of management. Further movement 

data for bulls or mixed herds from other regions in KNP will help to improve the IBM by 

offering additional information to describe population movement in the park. Generally, our 

study demonstrates the utility of combining remote sensing data, habitat suitability models, and 

individual-based models to aid a systematic evaluation of landscape conditions.  
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CHAPTER 4 

CONCLUSIONS 

Humans are increasingly altering landscapes, modifying wildlife habitat, and affecting 

global climate(Parmesan, 2006). For protected areas such as Kruger National Park (KNP) in 

South Africa, managers and scientists now emphasize the incorporation of ecosystem changes in 

management plans, which leads to the need to understand the links between different parts of the 

system(Mabunda, Pienaar, Verhoef, Du Toit, & Biggs, 2003). This thesis demonstrated an 

example to understand relations between animal movement and the changing landscape 

conditions.  

The first manuscript demonstrated the use of an “Availability-Suitability-Connectivity 

(A-S-C)” framework for a systematic landscape condition evaluation, coupling satellite imagery 

analysis, habitat suitability modeling, and graph theory. Following the framework, I developed 

an individual-based model (IBM) to simulate elephant movement and the emergent graph-based 

landscape networks in the second manuscript. I applied the model to examine landscape 

connectivity conditions for elephant movement with varying resources availability and habitat 

suitability. Overall, the analysis framework offered an integrative perspective to prioritize habitat 

patches in terms of their importance facilitating elephant movement and form landscape 

connectivity. The model revealed appealing features to incorporate habitat suitability model and 

individual-based model in a graph theory framework, which overcomes movement data 

deficiency, offers a systematic evaluation for landscape conditions, and allows predictions of 

impacts caused by natural processes or landscape management practices. 
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KEY FINDINGS 

Applying the A-S-C framework in Chapter 2, we prioritized individual habitat patch 

importance for elephant movement, from which we also identified different ways that patches 

contribute to overall connectivity. We successfully adopted the observational GPS data into the 

construction of landscape network by using a time unit to measure efficiency of elephants 

moving from one patch to another so as to define links. By using the MaxEnt to model determine 

patch suitability and for node attribution to calculate connectivity indices, we incorporated 

landscape heterogeneity into the analysis.  Based on patch prioritization results, we partitioned 

the landscape into zones suitable for different conservation plans, though we found that a more 

detailed zoning requires a more comprehensive movement input. In our zoning example, the 

Core zone is characterized by high connectivity and compacted arrangement of important nodes 

and is sensitive to woodland degradation. The Bridge zone is featured by the linear arrangement 

of highly connected nodes and efforts to maintain current patch availability were suggested. 

We filled the gap of our GPS data deficiency by applying the IBM we developed in 

Chapter 3. The integrative model was able to show that landscape changes indeed have impacts 

on elephant movement, and therefore, landscape connectivity for movement. However, elevation 

is the most affective factor and artificial waterholes only contribution a small portion of elephant 

presences. A simple linear regression was employed to guide movement parameterization in 

IBM, and the expected large residual variation was used as stochasticity in the model, which 

allows us to maintain the stochastic nature of movement. Surprisingly, while woodland patch 

availability is positively related to connectivity level, a moderate decrease in patch suitability 

may actually help promote dispersals of elephants. As we hypothesized, a larger temporal scale 

when defining links between patches led to a higher connectivity level of the landscape. 
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However, our 3-day rule revealed enough space for variations in different scenarios, while still 

being able to fully describe the connection situation. Based on our simulation results, we 

suggested more efforts to be put on maintaining woodland patches, but not necessarily on 

improving patch quality. Waterhole removal is a reasonable strategy that may benefit the general 

heath of the ecosystem in KNP with only moderate effects on elephant movement.  

FUTURE WORK 

Further study will focus on model validation using field data and model improvement by 

incorporating more movement data for bulls or mixed herds of elephants from other regions in 

KNP will help to improve the IBM, especially to offer additional information to describe 

population movement in the park. Additionally, I would like to expand this study to other 

wildlife species in other parts of the world, especially ones with high mobility and actively 

interact with the changing landscape.  

I have been long interested in how to better use quantitative methods to predict species 

distribution and use of resources at the landscape level. Models based on GIS offer powerful 

tools to achieve this, yet they mostly depend on species occurrence data(P Anderson et al., 2006) 

and are therefore problematic when extrapolating information to novel environments. The model 

I used in this study, MaxEnt, is one of the most popular modeling packages in the recent 10 years 

(Elith & Leathwick, 2009; Phillips & Dudík, 2008) and is also under debate for its modeling 

performance(Renner & Warton, 2013).  An alternative modeling philosophy is modeling species 

distribution and habitat using the ecology of organisms based on ecophysiology and organism 

traits (Kearney et al., 2008). This requires a deeper knowledge about theoretical ecology, wildlife 

biology, and evolution.  
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Further, this thesis needs more qualitative inputs from a social perspective, which is one 

of possible direction to put futures efforts. The nine “Malawi Principles” for setting conservation 

priorities acknowledged conservation is essentially a matter of social choice(Prins, 1999). Thus, 

the society benefits in the long run and understandings of how ecosystem functions as a whole 

should always be considered in conservation related studies. As a geography student, I recognize 

the social-physical boundary even within the discipline of geography. With this caveat in mind, 

future efforts will purse questions of conservation from a social perspective and synthesize 

knowledge from both social and technological sides.  

FINAL NOTES 

This thesis is a first step using an interdisciplinary perspective to look at a wildlife 

problem. Throughout the thesis, I aimed to draw on combination geography (geospatial 

information science, remote sensing science) and ecology (landscape ecology, wildlife ecology 

ecology). Likewise, a wide variety of research tools were used, including remote sensing 

imagery analysis, geospatial analysis, statistics, individual-based modeling, habitat suitability 

modeling, and programming in Python and R. A lesson from this research experience is science, 

technology, and practice are not, and should never be, limited within disciplinary boundaries. 
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Appendix I: Individual-based Model ODD 

Overview 

 This individual-based model description follows the “Overview”, “Design concepts”, and 

“Details” (ODD) protocol (Grimm et al., 2006). The model was developed in NetLogo 5.2 (Tisue 

and Wilensky, 2004). Input data were generated using ArcGIS 10.2. All referenced tables and 

figures, if not shown here, can be found within the manuscript.  

Purpose of the model 

The model is designed to assess the relationship between woodland patch availability, 

patch suitability, and landscape connectivity for elephant movement in the Kruger National Park, 

South Africa. The model contains two parts: 1) Simulating elephant movement which connects 

woodland patches across the landscape; 2) Generating landscape networks for connectivity 

analysis.  

Entities, State Variables, and Scales 

The model has four entities: elephants, links, nodes, and patches. Patches here is a 

NetLogo-specific concept, which refers to the background cells/squares in the model and it is 

different from the woodland patch we mentioned in the manuscript. To avoid confusion, we used 

the word “pixel” to represent the NetLogo patch hereafter. Table I-1 lists details of state 

variables for the four entities. 

The simulated landscape represents the area for GPS collecting. There are 230 columns 

and 350 rows of grid cells overall. One cell represents an area of 300m2. One operation of the 

model lasts for 1800 time ticks with each tick representing 2 hours. Thus the total temporal 

extent of the model is 5 months. Both the temporal interval and temporal extent match with the 

ones of GPS recordings.  
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Table I-1 Summary of state variables of entities in the IBM. 

Entities Variable Description Possible value 

Elephant 

Distance Moving distance for this tick > 0 

Angle Relative turning angle for this tick 0 – 360  

Destination The pixel at <Angle> with <Distance> ID of a pixel 

Location Map coordinates x: 0 – 230; y: 0 – 350 

Link End1/2 ID of the end nodes of a link  

Node ID ID of the woodland patch that it represents 0 – 554 (differ in 
scenarios) 

Pixel  
(patch in the 
original 
NetLogo 
definition) 
 

Suitability Suitability value read from the background MaxEnt 
suitability maps 0 – 1  

Node-id 
If this pixel belongs to a woodland patch, then 
Node-id is equal to the ID of the node representing 
this patch 

- 

Tick-p  
Recording the tick of the most recent moment that 
an elephant steps on the patch represented by the 
node 

0 – 1800 

 

Process overview and scheduling 

At each tick, an elephant will conduct “Sense suitability”, “Set distance and turning 

angle” and “Move”; Nodes will conduct “Time stamp” and “Create links”.  Each of the step 

mentioned is one submodel (Figure 3.1). 

Design Concept 

Elephant movement is affected and in turn reflects connectivity conditions of landscape 

structure. Elephant movement is also directly related with resources availability and suitability. 

In this model, elephant moving distance is estimated in relation to suitability. Graph theory-
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based network is then constructed by analyzing whether landscape patches are connected by the 

simulated movement paths.  

Model adaption is achieved by the “set distance and turning angle” submodel. Elephant 

adjusts its movement for the coming tick according to pixel suitability where it locates at. GPS 

records show that elephants always relocate in every two hours. Accordingly, elephant in this 

model consistently move across the landscape.  

Stochasticity of the model is fulfilled by the “Set distance and turning angle” submodel. 

Uncertainties are included in both setting relocation distance and turning angle (Refer submodel 

section for details).  

The goal of this IBM to generate a landscape network based on simulated movement 

paths. Output for one model operation is a list of links with IDs of two ends, which can be input 

into R for further graph-based analysis. Elephant moving paths and emergent landscape network 

are updated in real time in the view window. 

Details 

Initialization 

Landscapes are initialized based on the input raster file (see input for details). For 

elephant, initialization involves specification of its location, which is a random location within 

the study area boundary. Elephants are born with a random turning angle, a random Distance, 

therefore a random destination. For all pixels, Tick-p is set to -9999 at the beginning.  

Input data 

Input data include two raster files. The two raster files are: 1) A raster layer generated 

from MaxEnt model. Raster values are assigned to corresponding pixels in IBM as its Suitability. 

Since maps in NetLogo have to be rectangular, only pixels within the study area have Suitability 
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value, while pixels outside of the area showing Suitability as “NoData”; 2) A raster generated 

from ETM+ image classification results, denoting the location of woodland patches. Raster 

values are equal to patch ID and are assigned to the overlay pixels as their Node-id. Only pixels 

overlaid with existent patches have Node-id value, while other pixels showing Node-id as 

“NoData”. We operated 6 different landscape scenarios with varying input (Table 3.2).  To be 

specific, S1 and S2 changed patch suitability through decreasing/ increasing the values by 20%. 

For S3 to S5, either environmental predictor “Distance to waterholes” or “distance to patch” 

were modified, therefore, node suitability was reprojected in MaxEnt based on the model fitted 

by the original landscape condition in S0.  

Other 16 scenarios belonged to sensitivity analysis. S-real used only GPS data for 

landscape network construction instead of using simulated movement. Aware that GPS records 

only provided movement information where these elephants had stepped on during that 5-month 

data collecting period, we expected S-real can only reflect connectivity conditions for these 

sampled regions. On the contrary, IBM simulated network would keep the connectivity features 

for the sampled regions and also would provide additional information for areas where real 

movement data was lacking. D1-D15 adjusted the time unit for landscape network construction 

from 1 day to 15 days in order to assess the model sensitivity to network construction rule (Table 

3.1, see submodel “Nodes: create link” for details about network construction).  

Finally, we generated 22 sets of landscape networks for the 22 scenarios, with 300 

networks in each set (except for S-real, which only contained 3 networks).  

Submodels 

1) Elephants: Sense Suitability 

Elephant senses the suitability value of the pixel it currently steps on.  
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2) Elephants: Set Distance and Turning Angle 

Animal movement is a complex phenomenon that is systematically affected by various 

biotic and abiotic factors and is usually non-linear. We used a linear regression to predict the 

response of elephant relocation distance for the following tick in response to the suitability value. 

Residual of the linear model shows normal distribution and therefore can be regarded as 

stochasticity in movement process. The model is denoted as: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	 = 𝛽A + 𝛽0×	𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑠𝑖𝑡𝑦	 

Equation 4.1 

In this model, residuals are treated as stochastisity in movement. From the first GPS point 0, the 

covariant is the suitability value of corresponding pixel, and response is the distance that the 

elephant is going to move in the coming tick.  

The linear region reveals a model with 𝛽Aequals to 2.6746, and 𝛽0equals to -0.2671. 

Figure I-1A shows the histogram of relocation distance in every two hours, Figure I-1B is the 

validation for the linear model. The stochasticity part reveals a distribution very close to normal. 

Therefore, a distribution replicating the one of residuals is applied in the submodel. Following 

the “Sense Suitability” submodel, a distance is calculated using this equation.  

We did not find significant simple linear relationships between turning angles and patch 

suitability. Instead, we directly applied the distribution of turning angle from the GPS recordings 

(Figure I-1C). 

3) Elephants: Move 

Elephant relocates to the set destination if it is within the study area. If not, re-do “Set 

distance and turning angle” until the destination is viable. 

4) Pixel: Time stamp 
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The pixel that elephant stands on will record the time tick.  

5) Nodes: Create link 

It is not reasonable to define a universal distance threshold represent elephant’s daily moving 

distance since their activity levels vary day by day. Based on our GPS records, the three females 

move from 7 to more than 30 kilometers. Yet, elephants manage to travel across landscape 

aiming to reach resources efficiently and their moving is not constrained by Euclidean distance 

between resource patches (Chamaillé-Jammes et al. 2013). According to this, we use movement 

efficiency to measure patch connectivity by testing whether the time that two patches are visited 

by elephants is within a certain time unit or not (Xu et al., 2016). Thus, to determine this time 

unit is critical. A unit that is too short rarely reveals connections between patches, and a long 

time span, say, 15-day, will result in most of the patches being connected so that patch 

importance cannot be differentiated. We consider a 3-day time unit in default setting. However, 

in scenarios D1 – D15, this time unit was changed to 1 day to 15 days accordingly in order to test 

sensitivity of connectivity measures to this link construction rule. We expected a longer time unit 

as temporal network construction rule would result in higher connectivity measures because 

elephant can travel more areas in longer time. For specific model operation, the pixel that 

elephant locates at will search the whole map whether there are any pixels with Time stamp 

smaller than 36 (equal to 3 days). If true, a link would be created connecting the two ends. 

We use MaxEnt suitability values as dependent variable of a simple linear regression for 

relocation distance. Animals tend to adjust their location in space by moving in order to 

maximize integrative resources use, which is determined by the interaction of various 

environmental factors (Hebblewhite and Merrill 2009). Using suitability as a covariate, we are 

able to systematically incorporate effects of various environmental variables without fitting a 
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complex movement prediction model, such as space-space models (Patterson et al. 2008). We are 

aware that elephant relocation distances may not have a restricted linear relation with habitat 

suitability and spatial correlation still exists regardless of the fact that we extracted presence 

points by day. It is impossible to draw the true relationships between covariates and dependent 

variables in real world situations (Miao et al. 2009), and we do not aim to precisely estimate 

parameters for our movement model. Instead, we hope to have the general response to direct the 

“Move” submodel in IBM. Additionally, linear regression offers general trend of how moving 

distance changes with suitability. It also retains residuals normally distributed as stochasticity 

nature of animal movement, which is especially important for ecological modeling concerning 

the stochastic nature of the systematic dynamics and individual-based processes (Black and 

McKane 2012). Therefore, a linear regression using suitability values as single covariate fits the 

purpose well.  
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Figure I-1 Statistics summary for GPS recordings: (A) histogram of relocation distance for every two 
hours; (B) validation for the linear regression; (C) histogram of relative turning angles every two hours. 
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