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Abstract

In game theory, we have three major categories of repeated games: repeated games with

perfect monitoring, repeated games with imperfect public monitoring, and repeated games

with imperfect private monitoring. Among them, repeated games with imperfect private

monitoring are the hardest instances because players lack reliable information shared by all.

If each player’s action on the equilibrium path is given by an automaton with finite number

of states, then the equilibrium in a repeated game with imperfect private monitoring is called

a finite state equilibrium. Given k players, we apply the partially observable Markov decision

process (POMDP) to a repeated game with imperfect private monitoring and analyze the

complexity of verifying a finite state equilibrium. This framework is new and has significant

applications in markets such as secret price cutting among firms.
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Chapter 1

Introduction

Game theory is the study of strategic decision making. More formally, it is the study

of mathematical models of conflict and cooperation between intelligent rational decision-

makers. Game theory has been widely used in many areas: economics, political science and

psychology. Also, it has come to play an increasingly important role in logic and computer

science. Several logical theories have a basis in game semantics. In addition, computer

scientists have used games to model interactive computations especially in the field of multi-

agent systems [36].

In game theory, we can divide games into two categories: one-shot games and repeated

games. In one-shot games, each player makes a decision only once and it carries no further

repercussions (rewards or punishments), so each player will try her best to gain the greatest

profit immediately, but in repeated games, strategies can be very different. All players learn

how to play the game by playing it many times and updating their strategies based on

current states and observations.

In repeated games with perfect monitoring, all players fully observe the action profile

chosen at the end of each time step [34]. However, in repeated games with imperfect public

monitoring, players no longer have the correct information about the past play. At the end
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of each time step, all players receive the same public signal which may be a noisy observation

about other players’ actions [34].

Repeated game with imperfect private monitoring is one of the newest and less studied

instances in game theory. This model has broader and more significant applications in

markets such as secret price cutting among firms [20]. In repeated games with imperfect

private monitoring, we do not have information shared by all players, and each player only

gets a noisy private signal that indicates other players’ actions in each round [34]. This

complicates computing the best response and realizing when the other players should be

punished to sustain equilibrium.

If each player’s action on the equilibrium path which is the game progression when players

are using strategies in equilibrium, is given by an automaton with a finite number of states,

then the equilibrium in a repeated game with imperfect private monitoring is called a finite

state equilibrium [26].

Verifying a finite state equilibrium is not easy because the best response of player i is

defined on an uncountable number of his beliefs of other players’ states. Hence, computing

value iteration for all beliefs in principle involves uncountably many calculations (i.e. one

for each belief). However, the theory of partially observable Markov decision processes

(POMDPs) [22] shows that we can confine attention to piecewise linear value functions, and

for those particular value functions, the computation is performed using a finite number of

steps as noted by Kandori and Obara [26].

1.1 Contributions

There are three main contributions of this thesis to the field of algorithmic game theory.

They are as follows:

(1) We review the recent framework for repeated games with imperfect private monitoring
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which has significant applications in markets, such as secret price cutting among firms.

(2) We provide the time complexity of verifying a finite state equilibrium in a repeated

game with imperfect private monitoring given a path preautomata of all players and an

initial correlation device.

(3) We identify the complexity class of verifying a finite state equilibrium in a repeated

game with imperfect private monitoring.

1.2 Structure of Thesis

This document is organized as follows. Chapter 2 covers the background of our approach

including the difference between one-shot games and repeated games, basic concepts of Nash

equilibrium, partially observable Markov decision process (POMDP), and the grim trigger

strategy. Chapter 3 shows the related work that has been done so far in repeated games with

perfect monitoring, repeated games with imperfect public monitoring and the complexity

class of finding Nash equilibria in different types of games. Chapter 4 describes the finite

state equilibrium in repeated games with imperfect private monitoring and continues with

a detailed example illustrating how to apply POMDP into a repeated game with imperfect

private monitoring by using a game called the prisoners’ dilemma. Chapter 5 presents the

time complexity of verifying a finite state equilibrium in a repeated game with imperfect

private monitoring in detail and its complexity class. Finally, Chapter 6 contians discussion

and future work.
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Chapter 2

Background

In this chapter, we introduce the background of our approach. We discuss the difference

between one-shot games and repeated games, the structure of normal form games and the

concepts of Nash equilibrium and partially observable Markov decision process (POMDP).

2.1 One-Shot Games and Repeated Games

In game theory, we can divide games into two categories: one-shot games and repeated

games.

In one-shot games, each player makes a decision only once, so he will try his best to

gain the greatest profit, while in repeated games, strategies will be very different because

each player’s action choice is based on his observation of other players’ action choices in the

previous time step.

When we are discussing games in game theory, our analysis mainly focuses on normal

form games [40], which are characterized by:

(1) A set of players who will be making decisions: i = {1, 2, ..., k} (k ≥ 2)

(2) A set of pure strategy profiles: S = S1×S2× ...×Sk where each Si = {a1, a2, ..., am} is

4



Cooperate Defect

Cooperate 1,1 -1,2

Defect 2,-1 0,0

Table 2.1: The prisoners’ dilemma game

the (finite) set of pure strategies (actions) available to player i. Here player i has m strategies

(actions) available

(3) A payoff function U(σ) = (U1(σ), U2(σ), ..., Uk(σ)), where Ui(σ) (i = 1, 2, ..., k) rep-

resents the payoff (or utility) that player i receives when a strategy profile σ is played

There are several classic games discussed in the game theory: Battle of Sexes; Rock,

Paper, Scissors; Matching Pennies etc. However, the prisoners’ dilemma game is perhaps

the best known and most studied game. It helps us understand what governs the balance

between cooperation and competition in business, politics, and social settings [13].

Table 2.1 shows a normal form of the prisoners’ dilemma game. In the prisoners’ dilemma

game, players are non-cooperative, and they make decisions simultaneously. Assume there

are two players, i (left side) and j (upper side), and both are rational players. Each player

has two actions available in each round of the game: Cooperate (C) or Defect (D). In each

round, player i and j are required to choose one element from their strategy spaces in

absence of knowledge of the other player’s choice. Players obtain payoffs according to the

payoff function in Table 2.1 and this payoff table is observed by all players in the game.

If both players cooperate, they both receive reward 1 for cooperating. If player i defects

while player j cooperates, then player i receives 2 while player j receives -1. Similarly, if

player i cooperates while player j defects, then player i receives -1 while player j receives 2.

If both players defect, they both receive nothing.

In a one-shot game, both players have complete knowledge of the payoff table and game
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is played only once, then there is no further repercussions. The best approach for each player

is to find an action which yields the greatest reward. So in the prisoners’ dilemma game,

both players will choose action D and get 0.

However, when playing a repeated game which for current time step, the outcomes of the

previous stage games are observed (fully or partially), players can behave differently. Instead

of choosing D, both players may get better returns in a long run by both cooperating. So

the better strategy in a repeated game is that players keep updating their strategies based

on their observations.

2.2 Nash Equilibrium

The Nash equilibrium is a solution concept of a non-cooperative game involving two or

more players. If each player has chosen a strategy and no player can benefit by changing

strategies while the other players keep theirs unchanged (all players have no incentive to

deviate), then the current set of strategy choices and the corresponding payoffs constitute a

Nash equilibrium [40]. In a formal definition, it is

∀i, xi ∈ Si : πi(x
∗
i , x
∗
−i) ≥ πi(xi, x

∗
−i) (2.1)

Here xi is a strategy profile of player i, x−i represents the strategy profiles of all other

players and (x∗i , x
∗
−i) constitutes a Nash equilibrium.

When the inequality above holds strictly (with > instead of ≥) for all players and all

feasible alternative strategies, then the equilibrium is classified as a strict Nash equilibrium.

If instead, for some player, there is exact equality between x∗i and some other strategy in the

set S, then the equilibrium is classified as a weak Nash equilibrium [51].

In the one-shot prisoners’ dilemma game shown in Table 2.1, the unique Nash equilibrium
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is for both players to defect because no player can benefit by switching strategies, given that

every other player sticks with the same strategy. If player i choose D, the best response for

player j is defection since we have 0 > −1 and if player j choose D, the best response for

player i is defection as well.

2.3 Grim Trigger Strategy

Many different kinds of strategies can be used for discussing repeated games, here we use

the grim trigger strategy for our analysis.

In the prisoners’ dilemma game, if a player is using the grim trigger strategy then initially,

he will cooperate, but as soon as his opponent defects (satisfying the trigger condition),

the player using grim trigger will defect for the remainder of the iterated game. Since a

single defection by the opponent triggers defection forever, grim trigger is the most strictly

unforgiving strategy in the repeated game.

2.4 Partially Observable Markov Decision Process

A sequential decision problem for a fully observable, stochastic environment with a Marko-

vian transition model and additive rewards is called a Markov decision process, or MDP. It

consists of a set of states with an initial state s0, a set ACTIONS(s) of actions in each state,

a transition model P (s′|s, a) which stands for the probability of moving to state s′ in the

next time step given current state s and action a, and a reward function R(s) given current

state [46].

In MDP, policy is the solution to a certain problem, and it specify what the agent should

do for any possible state that the agent might reach. The quality of a policy is therefore

measured by the expected utility of the possible environment histories generated by that
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policy. An optimal policy is a policy that yields the highest expected utility [46].

With the assumption of full observability in MDP, the agent always knows which state it

is in. This, combined with the Markov assumption for the transition model, means that the

optimal policy depends only on the current state. However, in partially observable Markov

decision process (POMDP), when the environment is partially observable, it has a noisy or

partial sensor instead of knowing its state correctly, so it cannot execute the optimal action

for that state. Furthermore, the utility of a state s and the optimal action in state s depend

not just on state s, but also on how much the agent knows when it is in state s. For these

reasons, partially observable MDPs (POMDPs) are usually viewed as much more difficult

than ordinary MDPs [46].

The framework of POMDP includes six parameters: S, A, T, Ω, O and R respectively.

S : The set of states

A : The set of actions available to the agent

T : S × A→ ∆(S), The transition function from one state to another, given an action and

current state

Ω: The set of possible observations

O : S × A → ∆(Ω), The observation function which gives the probability that an action

yields a given observation

R : S × A→ R, The reward function for executing an action in a given state

Since the state is not observable at any given time, the agent represents information

about the environment by using belief. The probability of perceiving e, given that action a

was performed starting in belief state b, is given by summing over all actual states s′ that
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the agent might reach [46]:

P (e|a, b) =
∑
s′

P (e|a, s′, b)P (s′|a, b)

=
∑
s′

P (e|s′)P (s′|a, b)

=
∑
s′

P (e|s′)
∑
s

P (s′|s, a)b(s).

(2.2)

Let us write the probability of reaching b′ from b, given action a, as P (b′|b, a). Then that

gives us:

P (b′|b, a) = P (b′|a, b) =
∑
e

P (b′|e, a, b)P (e|a, b)

=
∑
e

P (b′|e, a, b)
∑
s′

P (e|s′)
∑
s

P (s′|s, a)b(s)

(2.3)

When we are solving POMDP, we use the Bellman Equation which is

V h(bt) = max
a
{
∑
s

bt(s)R(s, a) + γ
∑
o

Pr(o|bt, a)V h−1(B.U(bt, a, o))} (2.4)

V h(bt) is the expected reward of an optimal horizon h policy at time step t, where γ is the

discount factor which means we discount future rewards so that they are not as important as

the current reward and B.U(bt, a, o) stands for the belief update based on the current belief,

action and observation.

In POMDP, a complete solution maps the entire set of beliefs to a corresponding policy.

At first, agent computes the optimal action according to its belief and then performs the

action that may alter the state of the environment. After that, agent receives observation

from the environment, and the agent updates its belief given action and observation. We do

this recursively until it satisfies the termination condition.
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Chapter 3

Related Work

Repeated games have a wide range of applications, such as collusion between firms, coopera-

tion among workers, and many military purposes. Repeated games with perfect monitoring

and repeated games with imperfect public monitoring have received considerable attention

from researchers. There are many studies and papers related to these two models and the

key assumption in the existing literature is that players share common information about

other players’ actions [25].

3.1 Repeated Games with Perfect Monitoring

In repeated games with perfect monitoring, all players observe the action profile chosen at

the end of each time step. In other words, the actions of every player are perfectly monitored

by all other players and any deviations from the equilibrium path of play can be detected

and punished.

Repeated games with perfect monitoring are relatively simple since they do not contain

any uncertainty. In the subsequent time step, players make their decisions based on their

observations. A strategy profile σ is a subgame-perfect equilibrium of the repeated game if
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for all histories ht ∈ H, the strategy profile σ|ht is a Nash equilibrium of the repeated game

[34].

There are several important concepts introduced in repeated games with perfect mon-

itoring. Fudenberg and Maskin [16] introduced the folk theorem. It indicates that in the

infinitely repeated version of the game, provided players are sufficiently patient, there is a

Nash equilibrium such that both players cooperate on the equilibrium path. Abreu, Pearce,

and Stacchette [2] discussed the ideas of a self-generating set of equilibrium payoffs. Mailath,

Obara, and Sekiguchi [33] provided a detailed analysis on subgame-perfect equilibria in which

player j always plays cooperate in the prisoners’ dilemma game. Farrell and Maskin [15]

illustrated the renegotiation in repeated games with perfect monitoring.

Suppose that players i and j are playing the prisoners’ dilemma game repeatedly at time

t = 0, 1, 2... and that player i’s payoff for the entire repeated game is:

ui({a1, a2, ...}) = (1− δ)
∞∑
t=0

δtgi(a
t
i, a

t
−i) (3.1)

The discount factor δ ∈ [0, 1) means that players discount the future. The overall payoffs

are multiplied by (1 − δ) to get a per-period average payoff for the game which makes the

repeated game payoff comparable to the stage game payoffs [29].

The following example is discussed in Levin’s tutorials on Repeated Games with Perfect

Monitoring [29].

Proposition 1. If δ ≥ 1/2, then the repeated prisoners’ dilemma game has a subgame-perfect

equilibrium in which (C, C) is played in every period.

To proof this proposition, we assume that players are using grim trigger strategies (Figure

3.1). We need to verify that there is no single period where player i can make a profitable

deviation.

We suppose up to time period t, D has never been played. Then player i’s payoff forward

11



Figure 3.1: Player i is using the grim trigger strategy for the prisoners’ dilemma game with
perfect monitoring

are:

Play C: (1− δ)[1 + δ + δ2 + ...] = 1 (3.2)

Play D: (1− δ)[2 + δ · 0 + δ2 · 0 + ...] = 2(1− δ) (3.3)

We can easily find out if δ ≥ 1/2, player i chooses C is optimal.

Suppose that at time period t, D has already been played. Then player j will play D and

no matter what will continue to play D, so player i’s payoffs are:

Play C: (1− δ)[−1 + δ · 0 + δ2 · 0 + ...] = (1− δ)(−1) (3.4)

Play D: (1− δ)[0 + δ · 0 + δ2 · 0 + ...] = 0 (3.5)

So play D is definitely optimal.

Repeated games with perfect monitoring has been widely used to address questions of

economic area. One of the most straightforward applications is the price of a same product

in two different places. We consider two supermarkets, A and B. They are in the same

neighborhood. They both sell a kind of milk with the same brand, type and size. Supermar-
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ket B knows the milk price in Supermarket A, and Supermarket A knows the milk price in

Supermarket B. In each time step, they have to decide whether to change the milk price or

not. In this case, we can apply a repeated game with perfect monitoring model.

Each supermarket makes a decision on the price of its milk based on the price observed

from another supermarket, and each supermarket is trying to make best response to its

opponent so that it can gain the greatest profits.

Besides that, Rotemberg and Saloner [44] studied price wars. They established condi-

tions under which oligopolistic firms will behave more competitively when demand is high

rather than low. Also, Chari and Kehoe [10] discussed the time inconsistency. Thomas and

Worrall [48] and Kocherlakota [27] examined the risk sharing without commitment in perfect

monitoring.

3.2 Repeated Games with Imperfect Public Monitor-

ing

In repeated games with imperfect public monitoring, players no longer have the correct

information about the past play. The link between current actions and future play is indirect

and deviations cannot be unambiguously detected. It is then relatively straightforward

to provide incentives for players to not play stage-game best replies [34]. In this class of

game, at the end of each time step, all players publicly receive imperfect signals, and in the

subsequent time step, they perform their actions based on their current states and public

signals observed. We consider the signal to be public because it is observed by all players in

the game, and it is imperfect because it contains noisy information.

There are at least two reasons why this information structure is worth special attention

[37]. First, it is simply a more reasonable assumption than perfect monitoring in some

settings. Second, the equilibrium behavior can be significantly different from the equilibrium
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behavior in models with perfect monitoring, and they sometimes have significant economic

implications.

The general model for repeated games with imperfect public monitoring [30] is shown as

follows:

Let A1..., AI be finite action sets;

Let Y be a finite set of public signals;

Let π(y|a) =Pr(y|a);

Let ri(ai, y) be i’s payoff that he plays ai and the public signal is y.

Player i’s expected payoff is

gi(a) =
∑
y∈Y

π(y|a)ri(ai, y) (3.6)

A perfect public equilibrium is a profile of public strategies σ that for any public history

ht, specifies a Nash equilibrium for the repeated game, that is, for all t and all ht, σ|ht is

a Nash equilibrium. A perfect public equilibrium is strict if each player strictly prefers his

equilibrium strategy to every other public strategy [34].

We again study the repeated prisoners’ dilemma game. The following example is studied

in Mailath and Samuelson’s book on Repeated Games and Reputations [34].

The imperfect monitoring is captured by two signals ȳ and y, whose distribution is given

by:

Pr(ȳ|a) =


p, if a=CC

q, if a=CD or DC

r, if a=DD

(3.7)
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ȳ y

Cooperate 1 + 2−2p
p−q 1− 2p

p−q

Defect 2−2r
q−r

−2r
q−r

Table 3.1: The payoff table for the prisoners’ dilemma game with the public monitoring

Figure 3.2: The grim trigger strategy for the prisoners’ dilemma game with imperfect public
monitoring

Since Pr(ȳ|a) + Pr(y|a) = 1, we can also get the Pr(y|a) as follows:

Pr(y|a) =


1− p, if a=CC

1− q, if a=CD or DC

1− r, if a=DD

(3.8)

where 0 < q < p < 1 and 0 < r < p. ȳ has a higher probability when both players cooperate.

Payoff table is given by Table 3.1.

We apply the grim trigger strategy again (Figure 3.2), the state space is {wCC , wDD} with

the initial state wCC . The action choice for each state is f(wCC) = CC and f(wDD) = DD.
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The transition function is given by

τ(w, y) =


wCC , if w = wCC and y = ȳ

wDD, otherwise

(3.9)

So the value function of player i is given by

Vi(wCC) = (1− δ)1 + δ{pV (wCC) + (1− p)V (wDD)} (3.10)

and

Vi(wDD) = (1− δ)0 + δV (wDD) (3.11)

We can get Vi(wDD)=0, and

Vi(wCC) =
(1− δ)
1− δp

(3.12)

The grim trigger strategy will be an equilibrium if and only if in each state, the prescribed

actions constitute a Nash equilibrium of the normal form game induced by the current payoffs

and continuation values. We can have the conditions for equilibrium are:

Vi(wCC) ≥ (1− δ)2 + δ{qV (wCC) + (1− q)V (wDD)} (3.13)

and

Vi(wDD) ≥ (1− δ)(−1) + δV (wDD) (3.14)

It is clear that the incentive constraint for defecting in state wDD is trivially satisfied.

The incentive constraint in the state wCC can be rewritten as

Vi(wCC) ≥ 2(1− δ)
1− δq

(3.15)
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We use (3.12) to substitute for Vi(wCC), and get

(1− δ)
1− δp

≥ 2(1− δ)
1− δq

(3.16)

that is,

δ(2p− q) ≥ 1 (3.17)

so that if (2p−q) > 1, then grim trigger is an equilibrium, provided the players are sufficiently

patient.

There are some new concepts studied in repeated games with imperfect public monitor-

ing. Abreu, Milgrom and Pearce [1] illustrated the timing of information which shows that

with imperfect monitoring, reducing the interest rate always increases the possibilities for

cooperation. Mailath et al. [34] [32] discussed private strategies in imperfect public moni-

toring, that is, strategies that are nontrivial functions of private histories rather than public

histories. In addition, folk theorem has also been analyzed in repeated games with imperfect

public monitoring [16].

Repeated auctions are important applications of repeated games with imperfect public

monitoring. In the first round, each bidder makes his own decision by giving out the price.

At the end of this round, all bidders do not know what other bidders’ prices. However,

Aoyagi [3] considers a model of repeated auction where bidders communicate their bids at

the end of each round. In this case, we can apply a repeated game with imperfect public

monitoring model.

Since communications may contain fake information, we consider it to be a noisy public

signal. In the following time step, each bidder makes his own decision (i.e. either to bid or

to give up) based on his current state and imperfect public signal observed.

In addition, Green and Porter [19] studied price wars with public monitoring. They

talked about the noncooperative collusion and under imperfect price information. Radner

17



[42] and Rubinstein [45] studied the applications of repeated games with imperfect public

monitoring which involves risk aversion of a firm owner. Levin [28] studied the design of

self-enforced relational contracts.

3.3 Complexity Class of Finding Nash Equilibria in

Different Types of Games

In recent years, determining the complexity class of finding Nash Equilibria in different types

of games has attracted much interest in computer science and economics.

Gottlob et al. [18] indicated that determining whether a strategic game has a pure Nash

equilibrium is NP-complete and remains NP-complete even for following two restricted cases:

(1) Games in graphical normal form having bounded neighborhood and (2) Acyclic-graph

games, and acyclic-hypergraph games.

Borgs et al. [6] proved that, in the general case, computing the Nash equilibria for a

repeated game is not easier than computing the Nash equilibria for one-shot finite games, a

problem which lies in the PPAD complexity class. Daskalakis, Goldberg and Papadimitriou

[12] showed that finding a Nash equilibrium in three-player games is indeed PPAD-complete,

and they did so by a reduction from Brouwer’s problem, thus establishing that the two

problems are computationally equivalent. By improving their construction, they showed

even two-player games are also PPAD-complete.

Partially observable stochastic games (POSGs) generalize the repeated games studied

in this document to a sequential state that is not perfectly observable. In this class of

games, multiagent generalizations of POMDPs [14] are making important contributions.

The complexity class of multiagent POMDP frameworks such as the decentralized POMDP

(DEC-POMDP) has also been identified. Bernstein et al. [5] considered decentralized control

of Markov decision processes and gave complexity bounds on the worst-case running time
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for algorithms that find optimal solutions. They indicated that for two players in the game,

the decision problem of DEC-POMDP is NEXP-complete and it is at least this hard when

there are more players.
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Chapter 4

Finite State Equilibrium in Repeated

Games with Imperfect Private

Monitoring

Repeated games with imperfect private monitoring represent long-term relationships. At

the end of each time step, each player receives a private signal that indicates what other

players’ actions were in the current time step. The signal is not fully accurate, so they can

be considered a noisy observation of the opponents’ actions.

Due to the lack of common information shared by all players, this class of game is

difficult to analyze. However, it has broader applications than repeated games with perfect

monitoring or imperfect public monitoring. One good example is the collusion under secret

price-cutting. Stigler [47] argued that collusion between firms is hard to sustain when other

firms cannot observe “cutting” (deviations from collusion) that a firm may offer customers.

For example, there are two stores, A and B. They are selling the same product privately.

When we apply the framework of repeated games with imperfect private monitoring and

focus on store A’s decision problem, we have:
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State: The price of the product offered by B

Action: Raise the price, reduce the price or keep the price unchanged

Signal: The level of sales

If store A observes a low level of sales, A is not sure whether this is because there is an

adverse shock to the demand for its product or B is cheating on the Cartel Agreement [49],

so the level of sales can be considered a noisy signal.

When we focus on repeated games with imperfect private monitoring, the arguments of

perfect monitoring and imperfect public monitoring do not immediately apply. The construc-

tion of equilibria in general imperfect private monitoring games require significantly differ-

ent techniques [34]. We present the partially observable Markov decision process (POMDP)

model in this section, which helps to complete the analysis.

We focus on verifying a finite state equilibrium in a repeated game with imperfect private

monitoring. A finite state equilibrium is a (correlated) sequential equilibrium of a repeated

game with private monitoring, where each player’s behavior on the equilibrium path is given

by finite state path preautomata mi ≡ (Θi, fi, Ti), i = 1, ..., k and an initial correlation device

which is a joint probability distribution of the initial states of the automata, r ∈ ∆(Θ) [26].

4.1 Repeated Games with Imperfect Private Monitor-

ing

Repeated games with imperfect private monitoring are much more complicated than repeated

games with perfect monitoring and repeated games with imperfect public monitoring. At

the end of each time step, each player only receives a private signal that indicates what other

players’ actions were in current time step, and the signal is not fully accurate, so they can

be considered a noisy observation of the opponents’ actions.

Assume there are k players in the game, with finite stage game action set for player
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i ∈ {1, ..., k} denoted Ai. At the end of each time step, each player i observes a private signal,

denoted ωi, drawn from a finite set Ωi. The signal vector ω ≡ (ω1, ..., ωk) ∈ Ω ≡ Ωi× ...×Ωk

occurs with probability q(ω|a) when the action profile a ∈ A ≡
∏

i Ai is chosen [34]. Player

i’s realized payoff is determined by his own action and signal, denoted Ui(ai, ωi), and his

expected payoff is given by
∑

ω∈Ω Ui(ai, ωi)q(ω|a) [26].

To illustrate the strategy of each player in a more general way, Osborne and Rubinstein

[38] introduced path automaton to represent the strategy a player is using. We are interested

in equilibria where each player’s behavior on the equilibrium can be described by a finite path

automaton. A path automaton without the specification of the initial state is referred as

a path preautomaton. Path preautomaton contains all states available for player i, denoted

by Θi, transition function Ti and action choice for each state fi. Figure 4.1 is a path

preautomata example of the grim trigger strategy applied in a repeated game with imperfect

private monitoring with two players in the game. In this preautomaton, each circle is one

player’s state and path arrow represents one transition, labeled by a signal leading to the

transition. So in state P, player’s action is D and if the player receives a private signal c or

d, he will stay in state P for the next time step. If the player is in state R, then the available

action is C, and the player will stay in state R if he receives private signal c. However, if the

signal is d, then he will move to state P and never return.

4.2 Partially Observable Markov Decision Process in

Repeated Games with Imperfect Private Monitor-

ing

To verify that a finite path preautomaton profile is a finite state equilibrium in a repeated

game with imperfect private monitoring, our analysis is based on player i’s decision problem
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Figure 4.1: This path preautomaton corresponds to the grim trigger strategy. P and R are
two automaton states denoting punishment and reward, respectively.

given all opponents’ finite state path preautomata m−i. This is complicated by the fact that

the opponents’ states are not truly observable, and player i only obtains partial information

through the private signal ωi he receives. The POMDP formulation for player i’s decision

problem contains following:

Θ−i : The set of joint states of all other players

Ai : The set of actions available to player i

Ti :
∏

j 6=i Ti(θ
′
j|θj, wj). The transition function from one state to another based on the

current state and a signal received

Ωi : The set of possible signals received

Oi : A → ∆(Ω). The observation function which gives the probability that a joint action

profile yields a given joint signal

Ri : A → Ri. The reward function for executing an action in a given state and it is the

expected payoff.

The joint distribution of current signal ωi and next state θ′−i given the current state θ−i

23



and action ai is

P (wi, θ
′
−i|θ−i, ai) ≡

∑
w−i

∏
j 6=i

Ti(θ
′
j|θj, wj)Oi(wi, w−i|ai, f−i(θ−i)). (4.1)

On the right side of the equation, they are transition function and observation function.

Player i’s posterior belief about his opponents’ states, denoted P [ai, ωi, bi](θ
′
−i), can be cal-

culated by his current belief bi, current action ai and current signal ωi. This posterior belief

is calculated by

P [ai, ωi, bi](θ
′
−i) = α · P (wi, θ

′
−i|bi, ai)

= α ·
∑
θ−i

P (wi, θ
′
−i|θ−i, ai)bi(θ−i)

(4.2)

where α is a normalization constant

α =
1∑

θ−i
P (wi|θ−i, ai)bi(θ−i)

. (4.3)

4.3 An Example

We implement the POMDP technique to the prisoner’s dilemma game introduced in Table

2.1. This example is referred from Kandori and Obara’s mimeo [26]. Assume there are two

players (i and j), and each player has two states (P and R), two actions (C and D), and

in each time step, they may receive either c or d as a private signal. When a player chose

action C, the opponent will most likely receive the signal c, but the noisy observation may

provide signal d instead. The probability that exactly one player receives an incorrect signal

is ε which is greater than 0, and both receive incorrect signals with probability ξ which is

also greater than 0. Based on the action profile, we can get the joint distributions of private

signals based on different action profiles. We analyze player i’s decision problem given player
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c d

c 1− 2ε− ξ ε

d ε ξ

Table 4.1: Joint distribution of private signals based on action profile (C,C)

c d

c ε 1− 2ε− ξ

d ξ ε

Table 4.2: Joint distribution of private signals based on action profile (D,C)

j’s path preautomaton. Player i’s path preautomaton mi corresponds to the grim trigger

strategy which is displayed in Figure 4.1.

Let ε = 5/36, ξ = 1/36, discount factor δ = 0.9. We can determine the value functions

under different joint states by solving the system of linear equations below. The value

function of a joint state equals the summation of the immediate reward and the long-term

expected reward:

c d

c ε ξ

d 1− 2ε− ξ ε

Table 4.3: Joint distribution of private signals based on action profile (C,D)
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c d

c ξ ε

d ε 1− 2ε− ξ

Table 4.4: Joint distribution of private signals based on action profile (D,D)



vRR = 1 + δ{(1− 2ε− ξ)vRR + εvRP + εvPR + ξvPP}

vRP = −1 + δ{(1− 2ε− ξ)vPP + εvRP + εvPP + ξvRP}

vPR = 2 + δ{(1− 2ε− ξ)vPP + εvPR + εvPP + ξvPR}

vPP = 0 + δ{(1− 2ε− ξ)vPP + εvPP + εvPP + ξvPP}

⇒



vRR = 3.0588

vRP = −1.1765

vPR = 2.3529

vPP = 0

The expected payoff for player i at state θi is V
(mi,θi)
i (bi) where mi is player i’s path

preautomaton corresponds to the grim trigger strategy, bi denotes player i’s belief that

player j is in state R and (1 − bi) denotes player i’s belief that player j is in state P. This

linear function can be calculated by

V
(mi,θi)
i (bi) = biv

θiR + (1− bi)vθiP (4.4)

We can get the following linear functions for player i in state R and P:

V
(mi,R)
i (bi) = 3.0588bi + (1− bi) · (−1.1764) = 4.2353b− 1.1765

V
(mi,P )
i (bi) = 2.3529bi + (1− bi) · 0 = 2.3529b

The initial value function in the POMDP iteration is the upper envelope of these two

linear functions in Figure 4.2 (Red line is V
(mi,P )
i (bi) and blue line is V

(mi,R)
i (bi). In the

Figure 4.2, X axis represents player i’s belief that player j is in state R and Y axis is the

corresponding value for each belief. We can see that two lines intersect at bi = 0.625. It

means if player i’s belief that player j is in state R with [0, 0.625] then he should be in state
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Figure 4.2: The initial value functions of player i

P as the best response. However, if the belief is [0.625, 1] then he should be in state R as

the best response.

In the first step of POMDP, we consider the one-shot extensions of player i and see

whether they are profitable. A one-shot extension is a one-step deviation from current

strategy to another strategy. The reason we consider one-shot extensions is that a strategy

profile σ is subgame perfect if and only if there are no profitable one-shot deviations. Let

Maiθθ
′
be a one-shot extension that player starts with an action ai and moves to state θ after

receiving signal c or moves to state θ′ after receiving signal d.

The number of one-shot extensions of player i is calculated by |Ai| · |θi||ωi| = 2 · 22 = 8

(|Ai| is the number of actions available of player i; |θi| is the number of states in player i′s

path preautomaton; ωi is the number of possible signals that player i may receive) and they

are : V CPR
i (bi), V

DPR
i (bi), V

CRR
i (bi), V

CPP
i (bi), V

DRR
i (bi), V

DRP
i (bi), V

CRP
i (bi) and V DPP

i (bi)

respectively. Among them, V CRP
i (bi) and V DPP

i (bi) implement the same strategies as V C
i (bi)
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and V D
i (bi).

Let Paiωi(b) denote the posterior belief of the opponent on state R when the action, signal

and belief of the opponent in state R and P are ai, ωi, b and (1− b). Based on Equation 4.1

to Equation 4.3, we can easily get:

PCc(b) =
b× (1− 2ε− ξ)

b× (1− ε− ξ) + (1− b)× (ε+ ξ)
(4.5)

PCd(b) =
b× ε

b× (ε+ ξ) + (1− b)× (1− ε− ξ)
(4.6)

PDc(b) =
b× ε

b× (1− ε− ξ) + (1− b)× (ε+ ξ)
(4.7)

PDd(b) =
b× ξ

b× (ε+ ξ) + (1− b)× (1− ε− ξ)
(4.8)

Let V aiθθ
′

i (bi) be the expected payoff to player i when he plays his automaton Maiθθ
′

under belief bi. This is a linear function in belief bi

V aizz
′

i (bi) = biv
aizz

′,R + (1− bi)vaizz
′,P (4.9)

where vaiθθ
′,R is the payoff under automaton Maiθθ

′
when the opponent j plays (mj, R) and

vaiθθ
′,P is the payoff under automaton Maiθθ

′
when the opponent j plays (mj, P ).

The calculation of the vaiθθ
′,R and vaiθθ

′,P above is determined by POMDP value function,

V R(b) is the current value function and δ is a discount factor. For example,

vCRR,R = R(C,C) + δ[V R(PCc(1))P (ωi = c|CC) + V R(PCd(1))P (ωi = d|CC)] (4.10)

vCRR,P = R(C,D) + δ[V R(PCc(0))P (ωi = c|CD) + V R(PCd(0))P (ωi = d|CD)] (4.11)

We get vCRR,R=3.1176, vCRR,P=-2.0589, and all other value functions: vCPP,R=2.7647,

vCPP,P=-1, vDRR,R=1.5764, vDRR,P=-1.0589, vCRP,R=1.7059 and vDRP,P=-0.17648.
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Since V CPR
i (bi) and V DPR

i (bi) are dominated by others, here we show the value functions

of the remaining six one-shot extensions:

V CRR
i (bi) = 5.1765b− 2.0589

V CPP
i (bi) = 3.3647b− 1

V DRR
i (bi) = 2.6353b− 1.0589

V DRP
i (bi) = 1.88238b− 0.17648

V CRP
i (bi) = 4.2353b− 1.1765

V DPP
i (bi) = 2.3529b

Since player i has two states, we have to solve two systems of linear inequalities and

determine the belief space that the given path preautomaton of player i is optimal after the

one-shot extension.

4.2353b− 1.1765 ≥ 5.1765b− 2.0589

4.2353b− 1.1765 ≥ 3.3647b− 1

4.2353b− 1.1765 ≥ 2.6353b− 1.0589

4.2353b− 1.1765 ≥ 1.88238b− 0.17648

4.2353b− 1.1765 ≥ 2.3529b

b ≥ 0

−b ≥ −1

⇒



−0.9412b+ 0.8824 ≥ 0

0.8706b− 0.1765 ≥ 0

1.6b− 0.1176 ≥ 0

2.35292b− 1.00002 ≥ 0

1.8824− 1.1765b ≥ 0

b ≥ 0

−b+ 1 ≥ 0
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Figure 4.3: The value functions of grim trigger strategy and all other one-shot extensions of
player i’s path preautomaton



2.3529b ≥ 5.1765b− 2.0589

2.3529b ≥ 3.3647b− 1

2.3529b ≥ 2.6353b− 1.0589

2.3529b ≥ 1.88238b− 0.17648

2.3529b ≥ 4.2353b− 1.1765

b ≥ 0

−b ≥ −1

⇒



−2.8236b+ 2.0589 ≥ 0

−1.0118b+ 1 ≥ 0

−0.2824b+ 1.0589 ≥ 0

0.47052b+ 0.17648 ≥ 0

−1.8824b+ 1.1765 ≥ 0

b ≥ 0

−b+ 1 ≥ 0

As we can see from Figure 4.3, the grim trigger strategy (bold lines) dominates all the

other one-shot extensions in the belief region [0, 0.9375].

As the number of states and players increases, so does the number of variables in the

systems of linear inequalities. If we have k players and each has |θj| states, then there will be
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(|θj|k−1− 1) variables and (|Ai| · |θi||ωi|− 1 + (|θj|k−1− 1) + 1) constraints/linear inequalities

in each of |θi| systems of linear inequalities where (|θj|k−1 − 1) is the number of constraints

that are greater or equal to 0 and last 1 is the number of constraints that should be less

than or equal to 1.
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Chapter 5

Complexity Results

In this chapter, we start with discussing the time complexity of verifying a finite state

equilibrium in a repeated game with imperfect private monitoring. Verifying an equilibrium

is hard because we need to check that each player has no incentive to deviate in any possible

belief he might have on the past histories. We then provide the complexity class of the whole

problem.

5.1 Problem Instance

In a repeated game with imperfect private monitoring with k players involved, we are given:

(1) (m, r) where m = {m1,m2, ...,mk} is the path preautomata of all players and r is the

initial correlation device

(2) Value functions of player i based on her belief about all other players’ automata start

states

(3) Value functions of all one-shot extensions of player i’s path preautomaton

The decision problem is stated as follows: Can we generate a closed belief region con-

sistent with the initial correlation device r that produces a summation of each value func-
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tion of player i minus each one-shot extension of player i that is at least zero (in form of∑
Ab− C ≥ 0, b is the variable, A is the coefficient of variable and C is a constant)? If so,

(m, r) is a finite state equilibrium (FSE).

We define a closed belief region such that no profitable one-shot extension exists. The

summation of all subtractions to be greater than or equal to zero means that player i’s path

preautomaton is the best response to other players’ path preautomata. Consistency means

the initial correlation device r is inside the closed belief region.

Let FSEk denote the decision problem for the k-agent FSE.

We provide a three-step procedure for an algorithm to verify a FSE:

(1) Find a belief region by solving the following system of linear inequalities, V
(mi,θi)
i (bi) ≥

V Mi
i (bi), for all Mi in the set of one-shot extensions (This gives us the belief region where no

one-shot extensions of player i’s path preautomaton are profitable.)

(2) Check the closedness of the belief region which guarantees that after doing two-shot

extensions, three-shot extensions and so on, the given path preautomata are still optimal

(3) Check the consistency of the initial correlation device r with the belief region

We also need to perform these steps for all other players.

5.2 The Algorithm

The three step procedure takes exponential time with respect to the number of states of

other players’ path preautomata in the game. We discuss it in detail.

Step 1: Find a belief region

In the first step of the process, we try to find a belief region which has no profitable

one-shot extensions by solving systems of linear inequalities.

Given: The value functions of player i, V
(mi,θi)
i ; The value functions of all one-shot extensions
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in the set of all one-shot extensions, Ex(mi); The number of players k in the game

Question: Do belief regions Bθi
i exist for which V

(mi,θi)
i (bi) ≥ V Mi

i (bi),∀Mi ∈ Ex(mi)?

If the answer is YES, then go to the next step and check whether the belief region is a

closed belief region. If the answer is NO to any state of player i’s preautomaton, then the

given path preautomata m cannot constitute a finite state equilibrium because a profitable

one-shot extension exists and therefore the preautomaton is not optimal.

Finding the belief region is equivalent to finding the feasible region of the system of linear

inequalities. We can find the feasible region by determining the corners of the feasible convex

polytope. There are several algorithms that can accomplish this. One efficient and practical

way is to introduce slack variables [8]. Slack variables were originally designed for solving

optimization problems, but in this case, there is no objective function. We are interested in

feasible regions only that satisfy the systems of linear inequalities.

Based on the example in Section 4.3, all constraints are in terms of inequalities, so we first

rewrite all inequalities as equations by introducing slack variables si, one for each inequality.

Since player i has two states R and P, the transformation will be the following respectively:

−0.9412b+ 0.8824 ≥ 0

0.8706b− 0.1765 ≥ 0

1.6b− 0.1176 ≥ 0

2.35292b− 1.00002 ≥ 0

1.8824− 1.1765b ≥ 0

b ≥ 0

−b+ 1 ≥ 0

⇒



−0.9412b+ 0.8824− s1 = 0

0.8706b− 0.1765− s2 = 0

1.6b− 0.1176− s3 = 0

2.35292b− 1.00002− s4 = 0

1.8824b− 1.1765− s5 = 0

b− s6 = 0

−b+ 1− s7 = 0
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−2.8236b+ 2.0589 ≥ 0

−1.0118b+ 1 ≥ 0

−0.2824b+ 1.0589 ≥ 0

0.47052b+ 0.17648 ≥ 0

−1.8824b+ 1.1765 ≥ 0

b ≥ 0

−b+ 1 ≥ 0

⇒



−2.8236b+ 2.0589− s8 = 0

−1.0118b+ 1− s9 = 0

−0.2824b+ 1.0589− s10 = 0

0.47052b+ 0.17648− s11 = 0

−1.8824b+ 1.1765− s12 = 0

b− s13 = 0

−b+ 1− s14 = 0

Note that we must have s1, s2...s7, each greater than or equal to 0. For solving the first

system of linear equations, we construct a basic solutions table that shows variable b and

slack variables s1, s2...s7. Set variables (including slack variables) equal 0 and choose n zeros

at a time, that is, Cm+n
n basic solutions in total where n is the number of variables (excluding

slack variables) and m is the number of slack variables which is equal to the number of linear

equations in each system of linear equations. The basic solutions table for the first system

of linear equations is shown as Table 5.1. Each row represents one calculation of a system

of linear equations based on the given variable. For example, in the first row of the basic

solutions table, we are given b equals to 0 and have to figure out s1 to s7.

We solve each system of linear equations with m variables and m constraints and only

those basic solutions with all nonnegative slack variables will be corner points of the feasible

region.

The time complexity of solving one system of linear equations with m constraints and

m variables is O(m3) by using Gaussian elimination [17], and checking all slack variables to

be nonzero in one basic solution is O(m). So the time complexity for finding belief regions

in |θi| systems of linear inequalities requires O(|θi| · Cm+n
n · (m3 +m)) = O(|θi| · Cm+n

n ·m3)

where Cm+n
n is the number of basic solutions we get. Meanwhile, we can generate a polytope
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b s1 s2 s3 s4 s5 s6 s7

0

0

0

0

0

0

0

0

Table 5.1: The basic solutions table for the first system of linear equations

with Cm+n
n corner points at most.

In our case, given k players in the game, there will be n= (|θj|k−1 − 1) variables and

m=(|Ai| · |θi||ωi|−1+ |θj|k−1) constraints (linear inequalities) in one system of linear inequal-

ities. We have |θi| systems of linear inequalities.

The whole time complexity is f(|θj|) = O(|θi| ·Cm+n
n · (|Ai| · |θi||ωi|− 1 + |θj|k−1)3). Since

Cm+n
n is bounded by 2m+n, so this complexity is exponential in the number of states of other

players’ preautomata.

Step 2: Check the closedness of the belief region

In the second step, we have to check whether the set of beliefs is closed under belief

updates.

Proposition 2. Checking the closedness of the belief region can guarantee that after doing

two-shot extensions, three-shot extensions, so on, the given path preautomata remain optimal.

36



Mathematically, V
(mi,θi)
i (bi) ≥ V

M ′i
i (bi),∀M ′

i ∈ Ex(Ex(mi)), V
(mi,θi)
i (bi) ≥ V

M ′′i
i (bi),∀M ′′

i ∈

Ex(Ex(Ex(mi))), so on.

Proof. Let Bθi
i be the region of belief for which V

(mi,θi)
i (bi) ≥ V Mi

i (bi), for all one-shot

extensions Mi in Ex(mi). Let Bθi
i be closed under the belief update. Now consider any two-

shot extension, M ′
i , with starting belief in Bθi

i . After following the action and an observation,

the updated belief will still be in Bθi
i because the region is closed, and we will arrive at a

one-shot extension in Ex(mi). However, because the controller mi is better than any one-

shot extension in the belief region, we can replace the one-shot extended controller with the

original controller and get a better quality two-shot extension. But this two-shot extension

now becomes just a one-shot extension to the original controller, mi. As we previously showed

that mi is better than any one-shot extension on Bθi
i , it will remain better than the previously

constructed one-shot extension as well. This argument can be extended inductively to any

n-shot extensions.

In the above argument, it is important that Bθi
i be closed. If it is not, then a two-shot

extension M
′
i (bi) where bi is in Bθi

i after the action and an observation may lead to a belief

that is not in Bθi
i . Then the original controller, mi, may not be better than any Mi for the

updated belief.

Given: Prior belief regions Bθi
i from Step 1

Question: Is each posterior belief still inside the prior belief region?

If the answer is YES, then the prior belief region is a closed belief region. We can proceed

to the third step for checking the consistency of initial correlation device r. If the answer is

NO, then the belief region from the first step is not a closed belief region. In other words,

after belief updates, the posterior belief will go outside the initial belief region meaning that

there exist profitable n-shot extensions. Therefore, player i’s path preautomaton mi is not

optimal, so m cannot constitute a finite state equilibrium. To check for closedness, we use
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the following lemma.

Lemma 1. [Phelan and Skyrzpacz [41]] All posterior beliefs are a convex combination of

posterior beliefs of all extreme priors.

For any history sequence, if prior belief bi is a convex combination of priors b′i and b′′i , then

after applying the belief updates, the posterior of bi is a convex combination of the posteriors

of b′i and b′′i . Therefore, in our case, we can focus solely on extreme priors and determine

whether each extreme prior is still in the initial belief region after the belief update.

We get the time complexity of checking the closedness of a belief region for more than

two players and each player has more than two states starting from the following three basic

cases:

(1) Two players in the game and the opponent has two states in its preautomaton (two-

dimensional belief space)

(2) Two players in the game and the opponent has three states in its preautomaton (three-

dimensional belief space)

(3) Two players in the game and the opponent has more than three states in its preautomaton

(higher-dimensional belief space)

Case 1: There are two players in the game, player j has two states in its preautomaton

(i.e. |θj|=2, two-dimensional belief space).

The overall belief region and simplex for this case is shown in Figure 5.1 (bold and dotted

line). b1 represents player i’s belief that his opponent is in one state, and b2 represents player

i’s belief that his opponent is in another state. The summation of these two beliefs is 1.

Figure 5.1 (bold line) shows a possible belief region after solving the system of linear

inequlities in Step 1. It has n corners (n=2). The time complexity of checking whether the

posterior beliefs are in the initial belief region is O(|θj| · n · |Ωj| · |θj|+ n · n) where the first

|θj| ·n is the number of belief updates we have to perform. |Ωj| · |θj| is the time complexity of
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b2

b1

1

1

Figure 5.1: An example of a belief region of two states

doing one belief update. The second n is the number of corner points we have, and the third

n is the time complexity of checking whether a posterior belief is in the initial belief region

or not by simply calculating the summation of the distance with two corners. If it equals

to the distance between two corner points, then it is on the line, otherwise, it is not. The

whole time complexity is polynomial in the number of states of other players’ preautomata.

Case 2: There are two players in the game, player j has three states in its preautoma-

ton.(i.e. |θj|=3, three-dimensional belief space).

In this case, the overall belief space is shown in Figure 5.2 (dotted line). b1 represents

player i’s belief that his opponent is in the first state, b2 represents player i’s belief that his

opponent is in the second state. b3 represents player i’s belief that his opponent is in the

third state. The summation of these three beliefs is 1.

Given a initial belief region (convex polygon) with n corners, for example, in Figure 5.2

(bold polygon), the complexity of checking whether posterior beliefs are in the initial belief

region is O(|θj| · n · |Ωj| · |θj| + n · n) where the first |θj| · n is the number of belief updates

we have to perform and |Ωj| · |θj| is the time complexity of doing one belief update. The
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Figure 5.2: An example of a belief region of three states

second n is the number of corners in the plane, and the third n comes from the algorithm

for determining if a point P is inside a convex polygon in a three-dimensional space.

To determine whether a point P is in the interior of a convex polygon in three-dimensional

space [7], we should first determine whether the point is on the plane, then determine its

interior status. Both of these can be accomplished by computing the sum of the angles

between the test point and every pair of corner points. If the sum is 2π, then the point is

on the plane of the polygon and on the interior (Figure 5.3). The angle sum will tend to be

0 the further point P is away from the polygon. The whole time complexity is polynomial

on the number of states of other players’ preautomata.

Case 3: There are two players in the game, player j has more than three states in its

preautomaton. (i.e. |θj| > 3, higher-dimensional belief space).

Given an initial belief region (convex polyhedron) with |θj| dimensions and n corners,

the complexity of checking whether the posterior beliefs are in the initial belief regions is
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1
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P

Figure 5.3: The sum of angles is 2π if the point P is in the plane of the 3D polygon and on
the interior

O(|θj| · n · |Ωj| · |θj| + n · (|θj| · n)) where |θj| · n is the number of belief updates we have

to perform and |Ωj| · |θj| is the time complexity of doing one belief update. We can use a

triangle algorithm to determine whether a point is in the polytope with the time bounded

by O(|θj| · n) [24, 31]. The whole time complexity is polynomial in the number of states of

other players’ preautomata.

The triangle algorithm [24, 31] shown in Algorithm 1 is designed to solve the following

convex hull decision problem: Given a set of points S = (v1, ..., vn) ⊂ Rm (m is the number of

dimensions) and a distinguished point p ∈ Rm, test if p lies in conv(S). In each iteration of

the triangle algorithm we have a current approximation p′ ∈ conv(S). Using this, we select

a pivot vj ∈ S, i.e. d(p′, vj) ≥ d(p, vj), where d(., .) is the Euclidean distance.

In summary, for two players, the time complexity of checking whether all posterior beliefs
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Algorithm 1 Triangle Algorithms

1: Input: S={v1, ..., vn}, a point p and a tolerance ε ∈ (0, 1)

2: Output: α, the convex combination of {v1, ..., vn} for p if p ∈ conv(S) or No, if p /∈

conv(S)

3: R=max d(p, vj) j ∈ {1, ...n}, k=0;

4: Arbitrarily choose initial point p0 ∈ conv(S) and corresponding α0;

5: while (d(p, pk) > εR) do

6: find vj such that d(p, vj) ≤ d(pk, vj);

7: if no such vj then

8: return NO and halt;

9: else

10: compute pk+1, the projection of p on line segment pkvj, update αk+1;

11: k=k+1;

12: end if

13: end while

14: Output αk;
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are in the initial belief region is

f(|θj|) =


O(|θi| · (|θj|2 · n · |Ωj|+ n2)) if |θj| = 2 or 3

O(|θi| · (|θj|2 · n · |Ωj|+ |θj| · n2)) if |θj| > 3

(5.1)

where n is the number of corners in the polytope, |θj| is the number of states of player j’s

path preautomaton as well as the number of dimensions of the belief space. |θi| is the number

of states of player i’s path preautomaton. |Ωj| is the size of set of signals of player j and we

have |θi| belief regions.

For more than two players, let k be the number of players and each player has at least

two states, the time complexity is f(|θj|) = O(|θi| · [|θj|k−1 ·n · [|Ωj|k−1 · (k− 1) · |θj|k−1] +n ·

(|θj|k−1 ·n)]), where the first |θj|k−1 is for each corner, the number of belief updates we have

to perform, n is the number of corners, [|Ωj|k−1 · (k − 1) · |θj|k−1] is the complexity of doing

one belief update, (|θj|k−1 · n) is the complexity of checking whether a posterior belief is in

the initial belief region or not and |θi| is the number of regions we have to check. We can see

that the time complexity is polynomial in the number of states of other players’ preautomata.

Step 3: Check the consistency of the initial correlation device

In the third step, we check the consistency of initial correlation device r.

Given: Closed belief regions Bθi
i and initial correlation device r

Question: Is the correlation device r inside the closed belief regions?

If the answer is YES, then the given (m, r) is a finite state equilibrium, but if the answer

is NO, then (m, r) is not a finite state equilibrium.

A correlation device r ∈ ∆(
∏

i∈k Θi) is a joint probability distribution, which chooses

θ = (θ1, . . . , θk) ∈
∏

i∈k Θi with probability r(θ), and recommends θi for player i as i’s initial

state in its preautomaton. We can calculate i’s belief for the initial joint states of other

43



players given player i’s state by using the Bayes’ rule with time complexity O(|θj|k−1 · |θi|).

For example, let the initial correlation device be given as r(R,R)= 3/5; r(P,P) =1/5;

r(R,P) = r(P,R) = 1/10, when player 1 is recommended R, he knows player 2 is recommended

R (or P) with probability

P (R2|R1) =
P (R1R2)

P (R1)
= (3/5)/(7/10) =

6

7
(5.2)

P (P2|R1) = 1− P (R2|R1) =
1

7
(5.3)

Also, when player 1 is recommended P, he knows player 2 is recommended R (or P) with

probability

P (R2|P1) =
P (P1R2)

P (P1)
= (1/10)/(3/10) =

1

3
(5.4)

P (P2|P1) = 1− P (R2|P1) =
2

3
(5.5)

Checking whether the initial correlation device is in the closed belief region is analogous

to verifying whether a point is in the polytope. So the time complexity is O(|θi| · (|θj|k−1 ·n))

where |θi| is the number of points to check and if all of them are in the corresponding

closed belief regions, then (m, r) is a finite state equilibrium. In all, the time complexity is

f(|θj|) = O(|θj|k−1 · |θi| + |θi| · (|θj|k−1 · n)) which is polynomial in the number of states of

other players’ preautomata.

The whole algorithm is shown in Algorithm 2. All parameters are defined as follows:

k: the number of players in the game

n: the number of corners of the polytope

|θj|: size of states of player j’s preautomaton

In all, the time complexity is not polynomial: it takes exponential time in the number of

states of other players’ preautomata.
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Algorithm 2 An algorithm for verifying finite state equilibrium in the repeated games with
imperfect private monitoring

1: Given the value function of player i, V
(mi,θ

l
i)

i ; All value functions of one-shot extensions

Ex(mi); Initial correlation device r; The number of players k

2: Use the method in Step 1 to determine the corner points of |θi| belief regions;

3: if there are no corner points exist then

4: return m can not constitute a finite state equilibrium;

5: else

6: Use the method in Step 2 to determine whether belief regions are closed;

7: if they are closed belief regions then

8: Use the method in Step 3 to check for the consistency of initial correlation device r;

9: if r is consistent then

10: return (m, r) is a finite state equilibrium;

11: else

12: return (m, r) is not a finite state equilibrium;

13: end if

14: else

15: return Some or all belief regions are not closed, and m cannot constitute a finite

state equilibrium;

16: end if

17: end if
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5.3 Analysis of Complexity Class

As we saw, given (m, r) and the number of players in the game, it is hard to find a closed

belief region that is consistent with the initial correlation device r: The algorithm we pro-

vide requires exponential time complexity for verifying that a given (m, r) is a finite state

equilibrium.

Theorem 1. For given k players in a game, FSEk is in NP if P 6= NP.

Proof. To show that FSEk belongs to NP, we show that a certificate consisting of a closed

belief region can be verified in polynomial time. The verification procedure can be reduced

in three steps:

(1) Verify the closedness of the given closed belief region

(2) Verify the consistency of the initial correlation device

(3) Verify there are no profitable one-shot extensions

The first step of the verification algorithm is performing belief updates for all corners

of the given closed belief region. We have to check whether all corners are still in the

given closed belief region after the belief updates. Since we know the number of corners

in the polytope and are given that there are k players in the game, the time complexity is

f(|θj|) = O(|θj|k−1·n·[|Ωj|k−1·(k−1)·|θj|k−1]+n·(|θj|k−1·n)), where the first |θj|k−1 is for each

corner, the number of belief updates we have to perform, n equal to the number of corners,

[|Ωj|k−1 · (k− 1) · |θj|k−1] is the complexity of doing one belief update, and (|θj|k−1 · n) is the

complexity of checking whether a posterior belief is in the initial belief region or not. The

total time complexity is polynomial in the number of states of other players’ preautomata.

In the second step, we check the given initial correlation device and see whether it is

in the given closed belief region or not. The time complexity is f(|θj|) = O(|θj|k−1 · |θi| +

|θi| · (|θj|k−1 · n)) where the first part is the time complexity of applying Bayes’ rule for the

initial correlation device r, and the second part is the time complexity of checking whether
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all distributions over joint states of other players for each state of player i are in the given

closed belief reigon. This time complexity is polynomial in the number of states of other

players’ preautomata.

The third step of the verification algorithm involves calculating i’s beliefs over other play-

ers’ joint states given player i’s state from r and then evaluating the finite state equilibrium by

replacing the variables in each inequality of the systems of linear inequalities (i.e. Is Ab−C ≥

0?) with the beliefs. The time complexity is O(|θi| · (|θj|k−1− 1) · [|Ai| · |θi||ωi|− 1 + |θj|k−1])

where (|θj|k−1−1) is the number of variables in each inequality and (|Ai| · |θi||ωi|−1+ |θj|k−1)

is the number of constraints as well as the number of linear inequalities in one system and

we have |θi| systems of linear inequalities. This step can also be done in polynomial time.

We conclude that verifying if the given closed belief region is closed and consistent with

the initial correlation device, and that there are no one-shot extensions, then the algorithm

has verified that (m, r) is a FSE. All three steps can be done in polynomial time. Thus,

FSEk is in NP if P 6= NP.

Observation 1. Whether FSEk is NP-Complete remains an open question.

In order to show whether FSEk is NP-complete, we first reduce the problem into two

subproblems:

(1) Determining the feasibility of the system of linear inequalities

(2) Given a feasible system of linear inequalities, generate all vertices in the polytope of the

feasible region.

Determining the feasibility of a system of linear inequalities is NP-hard only for integer

programming [39]. In our case, we have rational coefficients and variables. It can be solved

in polynomial time by using the ellipsoid algorithm [43].

The second question falls into the general problem of vertex enumeration [23]. The

problem of vertex enumeration is defined as follows:
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Input: A system of linear inequalities

Output: All corners of the feasible polytope P

For fixed dimensions which we know the dimensions of the polytope P beforehand,

Chazelle [11] found a polynomial time algorithm with complexity of O(mbd/2c) (m is the

number of inequalities in the input and d is the dimensions of the polytope) and it is op-

timized by the Upper bound Theorem introduced by McMullen [35]. However, for general

cases, there exists a reverse search method introduced by Avis and Fukuda [4] which solves

the problem for simple polyhedra in polynomial total time. Bremner, Fukuda and Marzetta

[9] solve the problem of simplicial polytopes using a polynomial algorithm. For other cases,

no NP-Complete problem that has been found has a polynomial time reduction [23]. In our

case, since we do not know the dimensions of the belief space beforehand and the belief space

is a subset of the simplicial polytope, so our problem remains open.

We conclude that FSEk is in NP if P 6=NP, but whether it is NP-Complete remains open

and needs further study.
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Chapter 6

Discussion and Future Work

In the thesis, we use one of the most famous and classic games in the game theory: The

prisoners’ dilemma to illustrate several important concepts, propositions and theorems. We

take a close look at three kinds of repeated games in the game theory. Among them, repeated

games with perfect monitoring and repeated games with imperfect public monitoring have

received considerable study. We analyze repeated games with imperfect private monitoring,

which is a new framework and has significant applications in markets.

We use the POMDP to verify a finite state equilibrium in a repeated game with imperfect

private monitoring given the path preautomata of all players and an initial correlation device.

The fact that the time complexity is not polynomial though the number of players is given

is important.

Given the number of players in the game, we conclude that the complexity class of

verifying a finite state equilibrium in a repeated game with imperfect private monitoring is

in NP if P 6= NP , but it is uncertain whether it is NP-Complete.

There are some alternate ways of proving the complexity analysis, but they are not effi-

cient. For example, we can use Fourier-Motzkin elimination [50] for answering the existence

of the belief region. It is a mathematical algorithm for eliminating variables from a system
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of linear inequalities.

Consider a system S of n inequalities with r variables x1 to xr, with xr the variable to be

eliminated. The linear inequalities in the system can be grouped into three classes depending

on the sign (positive, negative or null) of the coefficient for xr:

1) Those inequalities that are of the form xr ≥ bi −
∑r−1

k=1 aikxk; denote these by xr ≥

Aj(x1...xr−1), for j ranging from 1 to nA where nA is the number of such inequalities.

2) Those inequalities that are of the form xr ≤ bi −
∑r−1

k=1 aikxk; denote these by xr ≤

Bj(x1...xr−1), for j ranging from 1 to nB where nB is the number of such inequalities.

3) Those inequalities in which xr plays no role, grouped into a single conjunction ∅

The original system is thus equivalent to:

max(A1(x1...xr−1), ...AnA(x1...xr−1)) ≤ xr ≤ min(B1(x1...xr−1), ...BnB(x1...xr−1)) ∧ ∅ (6.1)

Elimination consists in producing a system equivalent to ∃xrS. Obviously, this formula

is equivalent to:

max(A1(x1...xr−1), ...AnA(x1...xr−1)) ≤ min(B1(x1...xr−1), ...BnB(x1...xr−1)) ∧ ∅ (6.2)

This inequality is equivalent to nAnB inequalities Ai(x1...xr−1) ≤ Bj(x1...xr−1), for 1 ≤

i ≤ nA and 1 ≤ j ≤ nB

We have therefore transformed the original system into another system where xr is elim-

inated. Note that the output system has (n−na−nb) +nanb inequalities. In the worst case,

the number of ouput inequalities is n2/4 (if na = nb = n/2). We repeat the process, and the

system of linear inequalities is satisfiable if and only if the maximum of all qi in inequalities

xn ≥ qi (Assume xn is the only variable left in the end) is less than the minimum of all qj

in the inequalities xn ≤ qj, and every qk in the inequalities 0 ≥ qk is non-postive. The time

complexity of doing these whole process is O(n2r).
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Method Computing Complexity

Laplace expansion n!

Gaussian elimination n3/3 + n2/2

Gauss-Jordan n3/3 + n2 − n/3

LU decomposition n3/3 + n2 − n/3

QR decomposition 2n3 + 3n3

Single value decomposition 2n3 + 4n3

Table 6.1: A comparison in direct and iterative methods (algorithms) for solving linear
equation systems

So in our case, for k players, there are (|θj|k−1 − 1) variables and (|Ai| · |θi||ωi| − 1 +

(|θj|k−1 − 1) + 1) constraints/linear inequalities in a system of linear inequalities. The time

complexity is f(|θj|) = O([|θj|(k−1)]2
|θj |

k

), a doubly exponential complexity, which is very

time consuming.

In addition, there are direct and iterative method for solving linear equation systems [21],

but most of them have higher time complexity than Gaussian elimination. The comparison

is shown in Table 6.1.

Future work will involve designing an algorithm for finding the finite state equilibrium

in repeated games with imperfect private monitoring.

Besides that, the complexity class of vertex enumeration with a given system of linear

inequalities needs further investigation. So far, there are many algorithms known for the

solving the problem of vertex enumeration, but none of them runs in polynomial time for

general polytopes.
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