EVALUATING STATISTICAL AND TREE-BASED
FORECASTING METHODS IN PYTHON AND ScarLaTIioN

by

ZAINAB AGBOOLA
(Under the Direction of John Miller)
ABSTRACT

The COVID-19 pandemic has highlighted the critical need for accurate forecasting methods to predict
mortality rates and inform public health interventions. This research evaluates the comparative perfor-
mance of tree-based forecasting models, specifically Gradient Boosting, Random Forest, and Linear Model
Trees, against traditional statistical forecasting approaches like ARMA and Random Walk models. The
study is conducted using two distinct programming environments, Python and ScalaTion, to examine
their influence on forecasting accuracy.

The analysis employs Symmetric Mean Absolute Percentage Error (sMAPE) as the primary metric to
assess the forecasting models. Findings indicate that tree-based methods outperform traditional models in
predictive accuracy across both platforms, demonstrating their robustness in handling complex data pat-
terns. Moreover, the research confirms high consistency between Python and Scalal'ion implementations,
with minor variations attributed to platform-specific numerical and optimization differences.

Additionally, this thesis explores the impact of rolling validation combined with train-test splits on
model performance, revealing that regression tree models maintain superior accuracy across multiple
forecasting horizons. This study contributes to the literature by providing a comprehensive evaluation of
traditional and tree-based forecasting methods in varying programming environments, offering insights
into their suitability for pandemic-related forecasting applications.

INDEX WORDS: Forecasting, Tree-Based Models, Statistical Methods, Python, ScalaTion,
COVID-19

EVALUATING STATISTICAL AND TREE-BASED FORECASTING METHODS IN PYTHON
AND ScaraTioN

by
ZAINAB AGBooOLA

B.Sc., Lagos State University, Nigeria, 2013
A Thesis Submitted to the Graduate Faculty of the
University of Georgia in Partial Fulfillment of the Requirements for the Degree.
MASTER OF SCIENCE
ATHENS, GEORGIA

2024

©2024
Zainab Agboola
All Rights Reserved

EVALUATING STATISTICAL AND TREE-BASED FORECASTING METHODS IN PYTHON
AND ScarLaTionN

by

ZAINAB AGBooOLA

Major Professor: ~ John Miller

Committee: Ismailcem B. Arpinar
Frederick Maier

Electronic Version Approved:

Ron Walcott

Dean of the Graduate School
The University of Georgia
December 2024

ACKNOWLEDGMENTS

I am deeply grateful to God for making this a success. I extend my heartfelt thanks to my advisor, Dr.
John Miller, and to the committee members Dr. Ismailcem B. Arpinar and Dr. Frederick Maier, whose
guidance, expertise, and unwavering patience have been instrumental in shaping this research. Your men-
torship has been invaluable, and I am privileged to have had the opportunity to learn from you.

Special thanks go to my family for their love, understanding, and the countless moments they sacrificed
while I pursued this milestone. To my parents and younger brother, thank you for always believing in me
and providing the encouragement I needed to persevere. I am also indebted to my colleagues and peers,
especially Adetayo Okunoye, whose thought-provoking discussions and collaboration have enriched my
understanding and broadened my perspectives.

Lastly, I want to acknowledge the University of Georgia for providing me with the resources and
environment to undertake this research. This journey has been both challenging and rewarding, and I am
immensely thankful for everyone who contributed to its completion.

iv

CONTENTS

|Acknowledgments| iv
IList of Figures| vi
vii
ir__Introductionl| I
1 MotivationforStudy| Lo Lo 2
[z Research Objectivel 2
.3 AdditionalIssues| 3
[Literature Review| 4
.1 Related Study: COVID-19 Forecasting] 4
[2.2 Related Study: Traditional and Tree-Based Forecasting Methods| 5
[2.3 Related Study: Tree-Based Forecasting and Deep Learning Forecasting Methods| 5
3 Python and ScalaTion Software Environments for Time Series and Regression Trees| 7
3.1 Time Series Analysis and Regression Treesin Python| 7
[3.2 Python Libraries for Tree-Based Forecasting|. 7
.3 Implementation of Tree-Based Forecasting in Scalalion|. 8
l4 Time Series Predictive Analytics in Scalal'ion — Traditional Statistical Models and Re- |
| gression Trees Models| 10
l41 Predictive Modelingin Scalalion|o o 0oL 10
l4.2 Analytical Databasesin Scalalion| 000000 11
43 RemovingIdentifierso o L oo 12
ls Methodology and Data Set| 14
[.1 BaselineModels| 14
[s.2 Multi-Horizon Forecasting| 4
[s.3 Rolling Validation, Train-and-Test Method and In-Sample Training| 15
[s.4 Direct and Recursive Methods of Multi-Horizon Forecasting|. Is

[s.s Traditional ForecastingModels| oo o 0oL 16
[.6 Tree-Based Forecasting Models| 0 .. 19
[s.7 How Regression Irees are Adapted to Time Series| 21
[5.8 COVID-t9DataSet| e e 21
[s.0 Cross-Correlation Analysis|, 23
{6 Performance Evaluation and Discussions| 25
[6.1 Symmetric Mean Absolute Percentage Error (sMAPE) Metric| 25
(6.2 TestSetup| 26
[6.3 Forecasting Performance: Iraditional ForecastingModels|. 27
[6.4 Rolling Validation: Traditional ForecastingModels| 27
[6.s Forecasting Performance of Regression Tree Models| 29
[6.6 Rolling Validation: Tree-Based ForecastingModels| 30
[6.7 Conclusion| 31
(6.8 FutureStudies|. e 31
[6.0 Bibliography|. 33

vi

LisT OF FIGURES

[t Regression Tree Diagram| 19
[o Plot of Daily and Weekly Deaths from COVID-19| 22
B ACF Plots of the Daily and Weekly Deaths| 22
4 Plot of Weekly Deaths from COVID-19 26

vii

LisT OF TABLES

[t

Types of Time Series Forecasting Models|

[

Variable Descriptions|

Table 4: sSMAPEs In'T with Rolling Validation, skip=0|

viii

CHAPTER I

INTRODUCTION

Accurate forecasting is crucial in fields like finance, economics, and biomedical sciences. Due to exten-
sive data collection during the COVID-19 pandemic, there is a unique opportunity to study pandemics
forecasting. Forecasting the number of deaths and infections of COVID-19 is crucial for policymakers
and healthcare systems to allocate resources, control outbreaks, and implement preventive measures to
protect public health. Thus, utilizing predictive modeling is important for accurate forecasting. This
thesis extends the current literature on COVID-19 pandemics forecasting by comparing the performance
of tree-based forecasting methods against the traditional forecasting approaches within two distinct pro-
gramming environments.

Traditional statistical forecasting methods like Random Walk, Autoregressive Integrated Moving Av-
erage (ARIMA) model, Auto-regressive (AR) model, Moving Average (MA) model, Exponential Smooth-
ing, etc. often fail to model complex, non-linear data patterns effectively (Rady, Fawzy, and Abdel Fattah,
2021). To overcome the shortcomings of these forecasting methods, the field of data science has advanced
machine learning-based approaches. These include tree-based and deep learning-based forecasting tech-
niques, which are designed to effectively enhance prediction accuracy. While traditional and deep learning-
based models are prevalent in forecasting literature, tree-based methods like Linear Model Trees (LM T),
Random Forests (RF), and Gradient Boosting (GB) have proven superior in competitions such as the Ms,
GEFCom, and various Kaggle forecasting competitions (Januschowski et al., 2022; Bojer and Melgaard,
2020). Therefore, tree-based methods represent a promising avenue in forecasting techniques.

In data science, choosing the right software environments and libraries is as crucial as selecting the best
forecasting methods because these decisions impact the efficiency, effectiveness, and viability of projects,
especially in fields that demand accurate predictions, such as epidemiological forecasting. Python and
ScalaTion stand out as two prominent programming environments for forecasting. Consequently, fore-
casting accuracy hinges on the synergy between choosing the correct software environment and effective

forecasting techniques.

1.1 Motivation for Study

Making useful predictions is often clouded in uncertainty. So, accurate forecasting is an indispensable
tool across various disciplines. Predictive models, both traditional and tree-based, tend to be highly pa-
rameterized and are inherently data-dependent. Thus, these models have the potential to perform very
well for short and near-term forecasting.

Since the COVID-19 pandemic, government agencies and researchers in academia have forecasted
COVID-19 deaths, infections, etc. using one or a combination of traditional and deep-learning-based
forecasting techniques (see Crammer et al., 2020; Barmparis and Tsironis, 2020; Picchiotti et al., 20205
Nishimoto and Inoue, 2020; Shamil, et al., 2021; Fazeli et al., 2020; Javeri et al., 2021). These studies
compare traditional and deep learning techniques using metrics like Mean Absolute Error (MAE) and
symmetric Mean Absolute Percentage Error (sMAPE).

As statistical software, including black-boxes and object-oriented systems that utilize time series fore-
casting, continue to grow across various disciplines, there has been a corresponding rise in the development
of time series forecasting libraries for these statistical platforms. Prominent examples are Statsmodels and
Sktime in Python, Time Series Analytical Packages in R (see R project), Spark-Ts and Flint in Spark, etc.
However, it is important to note that several packages are not part of the core platform, rather they are
often built and published in these platforms by third-party additions. In contrast, Scalal'ion utilizes its
underlying libraries, analytical packages, and forecasting models that are natively incorporated within the
framework.

Considering the differences in programming environments between Python and ScalaT’ion, as well as
the limitations of traditional forecasting methods relative to tree-based models, an evaluation of both tradi-
tional and tree-based methods in Python and ScalaTion can help determine their suitability for forecasting
models. Furthermore, tree-based methods benefit from features like hyperparameter tuning, feature engi-
neering, and ensembling, but they require robust software to effectively balance efficiency and accuracy.
Januschowski et al. (2022) emphasize the need for powerful software to minimize loss functions. Eval-
uating tools like Python and ScalaTion can help determine their suitability for tree-based forecasting in
machine learning projects. Ultimately, while tree-based methods are increasingly favored for time-series
analysis, their success depends on the strength of the underlying statistical software.

1.2 Research Objective

The main goal of this research is to assess the efficiency and practicality of tree-based models for predicting
COVID-19 mortality rates. This involves evaluating predictive models against baseline models—Random
Walk (RW), Random Walk with slope adjustment (RWS), Auto Regressive (AR), and the Auto Regressive
Moving Average(ARMA)—as identified by Miller (2024). These baselines serve as benchmarks due to
their simplicity. Because time series data are time-ordered and serially correlated, the quality of forecasts

is likely to degrade as the forecasting horizon increases.

Although the application of rolling validation combined with train and test split (TnT) as opposed
to in-sample testing (In-ST) to time series models addresses some of these anomalies, the extent to which
these corrections are effective for regression tree models remains unclear in the literature. Specifically, the

objectives of this research include:

1. Comparative Analysis: How do regression trees and traditional statistical models perform rela-
tive to the baseline benchmarks in terms of forecasting accuracy. Examining if the programming
environment influences the result of these forecasting performances.

2. Rolling Validation: Does the use of rolling validation with train and test splits, as opposed to in-
sample testing, affect the relative performance of regression trees compared to traditional statistical
models?

3. Overall Performance Evaluation: Conduct a detailed overall performance evaluation of regres-
sion trees and traditional statistical models developed in Python and Scalalion. Which program-
ming environment, offers the superior performance for forecasting COVID-19 mortality rates?

1.3 Additional Issues

The rest of the thesis is organized as follows: Chapter 2 contains the literature review pertaining to relevant
topics, and Chapter 3 examines software environments and libraries that were used and presents some
background information about the different approaches. Chapter 4 deals with time series analytics in
ScalaTion. Chapter 5 focuses on the methodology and dataset of this thesis. Finally, in Chapter 6, the
conclusion is presented, as well as what the future works could entail.

This thesis evaluates the performance of tree-based forecasting models (Gradient Boosting, Random
Forest, and Linear Model Trees) compared to traditional statistical models (RW, ARMA, and AR) for
predicting COVID-19 mortality rates. The results demonstrate that tree-based models consistently out-
perform traditional statistical models in terms of forecasting accuracy. For instance, in Python, Gradient
Boosting achieved an average sSMAPE of 18.423% under in-sample validation, compared to 39.814% for the
AR(1) model. Similarly, in ScalaTion, Gradient Boosting yielded an average sMAPE of 48.240%, while
AR(1) achieved 39.573%. These discrepancies highlight the challenges in optimizing tree-based models
within ScalaTion.

The results also reveal that regression tree models maintain superior accuracy across multiple fore-
casting horizons when evaluated under rolling validation. For example, in Python, Gradient Boosting
achieved an average SMAPE of 25.567% across six horizons under rolling validation, compared to 48.043%
for the ARMAC(1,0) model. Similarly, Random Forest achieved an average sSMAPE of 23.404%, further
underscoring the robustness of tree-based models.

Although Python consistently exhibits better alignment with expectations, Scalalion demonstrates
comparable performance in traditional statistical models like AR and ARMA, where sMAPE deviations
between platforms are within 1.5%. These findings emphasize the need for further debugging and opti-
mization of tree-based model implementations in Scalalion to ensure parity with Python.

CHAPTER 2

LITERATURE REVIEW

In the last few years, academic research groups, government bodies, industrial teams, and individuals have
produced forecasts related to COVID-19. As mortality and morbidity in the U.S. rose between 2020 and
2021, a great amount of research was conducted to facilitate measures for predicting the COVID-19 pan-
demic course. High mortality rate from COVID-19 pandemic made it clear to public health policymakers

and academic research groups that effective measures to counter future pandemics are needed.

2.1 Related Study: COVID-19 Forecasting

Studies have been conducted since the beginning of the COVID-19 pandemic. Most of these studies dwell
on forecasting the number of people affected across hospitals and intensive care units (ICU). Barmparis
and Tsironis (2020) use the Susceptible, Infected and Recovered (SIR) model to forecast COVID-19 in-
fection rate in eight countries and find that the infection in China follows a Gaussian distribution, while
the United Kingdom and the U.S. have discrepancies in their peak dynamics. Fazeli, Moatamed, and
Sarrafzadeh (2020) use statistical methodologies and machine learning to model the underlying patterns
of COVID-19 occurrences and find that these methods exhibit clear training convergence and efficient
prediction results. Javeri et al. (2021) utilized Automated Machine Learning techniques such as Neural
Architecture, a deep learning approach, and find that this method improves forecasting accuracy. Pic-
chiotti et al. (2020) used the Susceptible, Exposed, Infectious, and Recovered (SEIR) model to adjust for
mobility restrictions due to regional lockdowns and find that the SEIR model improves the forecasting
power of COVID-19 prediction. Nishimoto and Inoue (2020) used a simple curve-fitting model that can
be implemented in Microsoft Excel using a log-normal function. Shamil et al. (2021) investigate how
agent-based models are used in COVID-19 infection rate prediction.

2.2 Related Study: Traditional and Tree-Based Forecasting Meth-
ods

Traditional forecasting methods like Random Walk and ARIMA models are popular for forecasting
stochastic time series data. Khan (2013) uses the ARIMA model to forecast the price of gold between 2003
and 2012 and shows that the ARIMA (o, 1, 1) model is the best model for this purpose. While traditional
forecasting methods have long been favored in economics and stock market studies, their application in
epidemiological research has gained prominence following the COVID-19 outbreak (See Yang et al., 20205
Ismail et al., 2020). However, these traditional approaches typically presume that the time series data are
linear and adhere to a specific distribution, such as the normal distribution, as noted by Taib (2014) and
Rady, Fawzy, and Abdel Fattah (2021).

Krauss, Do, and Huck (2017) examine stock market movements using logistic regression. The authors
compared gradient boosting and random forest to traditional regression methods, finding that tree-based
approaches outperformed regression due to their superior ability to capture non-linear dependencies in
the S&P soo data. In predicting climate extremes, Ham and Kug (2015) also show that tree-based methods,
especially gradient boosting, are superior to traditional regression models.

2.3 Related Study: Tree-Based Forecasting and Deep Learning
Forecasting Methods

“The prominence of Gradient Boosted Decision Trees (GBDTs) on Kaggle is the most glaring
difference between what is used on Kaggle and what is fashionable in academia” — Anthony
Goldbloom, the CEO of Kaggle.

This section of the literature review explains why tree-based models frequently surpass traditional
and deep learning forecasting methods by examining both theoretical frameworks and empirical studies.
It highlights the benefits of tree-based approaches and reviews research that supports these advantages
across different applications, including epidemiological forecasting.

Forecasting literature extensively explores the search for efhicient time series forecasting techniques,
motivated by the dynamic nature of the problem and the desire for enhanced results. Navin (2016) created a
forecasting model to predict gold prices using decision trees and support vector regression (SVR), utilizing
historical gold price data. The results demonstrated that the decision tree was faster in processing data
and yielded a lower mean square error than the SVR.

Recentdiscussions in machine learning literature often highlight the prevalence of deep learning-based
forecasting models (refer to Zhou et al., 2021; Rasul, Steward, Schuster, and Vollgraf, 2021; Lim, Arik,
Loeff, and Pfister, 2019). Januschowski et al. (2022) credit the widespread adoption of deep learning-based
forecasting methods to the availability of open-source, specialized packages such as GluonTS (Alexandrov
etal, 2020), PytorchTS (Rasul, 2021), and PyTorch Forecasting that implement these techniques.

However, in Ms, Global Energy Forecasting Competitions (GEFCom), and various Kaggle competi-
tions, tree-based methods like Decision Trees (DT), Random Forests (RF), and Gradient Boosted Decision
Trees (GBDT) have shown superior performance over deep learning models (Bojer and Melgaard, 2020;
Januschowski et al., 2022). Notably, Januschowski et al. (2022) observed that tree-based models excel
over deep learning in handling data that is not related to images, text, or videos. Tree-based forecasting
methods consistently rank highly, securing top positions in these competitions and achieving top 10 in
many others, as outlined by Bojer and Meldgaard (2020). Deep learning forecasting methods like Neural
Networks, using methods like DeepAR and Neural Basis Expansion Analysis for Time Series (NBEATYS),

secured second and third places in the Ms accuracy competition.

CHAPTER 3

PYTHON AND SCALATION SOFTWARE
ENVIRONMENTS FOR TIME SERIES AND
REGRESSION TREES

This chapter examines the tools of predictive statistical analysis in Python and ScalaTion focusing on
tree-based forecasting. Python and ScalaTion stand out as two prominent programming environments
for complex statistical and machine learning analysis. Python is well known for its robust forecasting data
science libraries: Pandas, Numpy, scikit-learn, Statsmodels, Tensor Flow, Keras, GluonTs, PytorchTS, etc.
Although less widely used, ScalaTion excels in simulation and mathematical modeling by leveraging on
its functional programming and efficient large-scale data processing capabilities.

Python is highly regarded for its intuitive usability and extensive suite of data science libraries, in-
cluding Pandas, scikit-learn, and Matplotlib, rendering it highly suitable for a broad spectrum of data
analysis and predictive modeling endeavors. Conversely, ScalaTion, though less frequently utilized, excels
in areas of simulation and mathematical modeling, capitalizing on ScalaT'ion’s functional programming at-
tributes like Java Virtual Machine (JVM)/Java Development Kit (JDK) interoperability and its proficiency
in managing large-scale data processing with remarkable efficiency.

3.1 Time Series Analysis and Regression Trees in Python

An open-source programming package, Python is known for its simple and readable syntax, flexibility, and
robust community and support. Python supports time series analysis and regression trees in the following
libraries:

3.2 Python Libraries for Tree-Based Forecasting

1. Scikit-learn (Sklearn)

One of the most popular libraries in Python, Sklearn is mostly utilized in predictive analytics, data

mining, classification regression, etc. Sklearn also supports limited time series algorithms like shap-
ing time series data into future matrices. Specifically, Sklearn can be utilized for random forest
regression and random forecast analysis in the areas of parameter tuning, number of trees, and max

depth. Specifically, Sklearn library can be found at https://scikit-learn.org/stable.

2. Sktime
Built on Sklearn, Sktime is a time series version of Sklearn that facilitates and transforms time
series data into supervised learning problems. Sktime also performs time series classifications like
classifications, regression trees, etc. The Sktime library that pertains to the time series analysis can
be found at https://www.sktime.net/en/stable.

3. Statsmodels
Statsmodels is the main Python library for modeling traditional time series techniques like Auto-
Regressive Integrated Moving Average Model (ARIMA), Random Walk, etc. This library in-
tegrates with Pandas for handling time series forecasting. This library can be found at https:
//www.statsmodels.org/stable/index.html.

4. PyTorch-Forecasting and PyTorchTS
As the name implies, the PyTorch Forecasting library handles time series forecasting with deep
learning models. These libraries can implement advanced models like Temporal Fusion Trans-
formers, which can handle multivariate time series with multi-horizons. PyTorch can also handle
Neural Networks models like Recurrent Neural Networks (RNNs). This library can be found at
https://github.com/jdb78/pytorch-forecasting?tab=readme-ov-file.

5. XGBoost
The XGBoost library is utilized for classification, but it can also be used for gradient boosting. This
library supports GPU acceleration, thus speeding up computations. It also combats overfitting by
utilizing advanced regularization features. This library can be found athttps://xgboost.readthedocs!
io/en/latest/.

6. LightGBM
The LightGBM library supports high-performance gradient boosting frameworks like Gradient
Boosting Decision Trees (GBDT) and Gradient Boosting Regression Trees (GBRT). It also sup-
ports fast training and reducing memory usage during the implementation of classification and re-
gression trees algorithms. This library can be found at https://lightgbm.readthedocs.io/en/latest/.

3.3 Implementation of Tree-Based Forecasting in ScalaTion

ScalaTion programming language is an oftshoot of Scala, another programming language developed by
Martin Odersky in 1993 (Odersky, Spoon, and Venners, 2016). Scala simplifies simulation modeling by
reducing the complexities of using Java. Scalal'ion programming language is developed as an academic

https://scikit-learn.org/stable
https://www.sktime.net/en/stable
https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html
https://github.com/jdb78/pytorch-forecasting?tab=readme-ov-file
https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/
https://lightgbm.readthedocs.io/en/latest/

research project by John A. Miller of the University of Georgia. Scalal'ion functions as an embedded
Domain-Specific Language (DSL) designed for modeling and simulation (M&S) and provides support for
multi-paradigm modeling, enabling its use in simulation, optimization, and analytics (Cotterell, Miller,
and Horton, 2011). According to Cotterell, Miller, and Horton (2011), the earlier version of ScalaTion was
restricted to random variation generation, output, and comparative analysis. Improving on the earlier
version of ScalaTion, Professor John A. Miller of the University of Georgia has enhanced ScalaTion’s
programming capability to cover tools for analytical packages, thereby addressing the needs of large datasets
that require parallel and/or distributed computing for statistical analytics and machine learning.

The key attributes of ScalaTion include a functional object model, Java Virtual Machine (JVM)
Compatibility, extensive libraries and tools, extensive enhancing features (such as comprehension, tu-
ples, generic arrays, etc.), and performance optimization. The latest release of ScalaTion, ScalaTion 2.0,
has ten top-level packages:

* Animation: The animation package supports the animation of models.

* Calculus: The calculus package supports numerical differentiation and integration.

* Database: The database package supports relational and graph databases.

* Dynamics: The dynamics package supports the development of ODE models.

* Mathstat: The mathstat package supports basic math and statistics.

* Modeling: The modeling package supports the development of several types of data science models.
* Optimization: The optimization package supports linear and nonlinear optimization.

* Random: The random package supports random variate generation.

* Scalazd: The scalazd package supports simple 2D graphics in Scala, based upon java.swing,
java.awt, and java_awt_geom.

* Simulation: The simulation package supports the development of simulation models.

CHAPTER 4

TiME SERIES PREDICTIVE ANALYTICS
IN ScALATION - TRADITIONAL
STATISTICAL MODELS AND
REGRESSION TREES MODELS

This chapter covers data management and data analytics in ScalaTion. According to Miller (2020), Scala-
Tion facilitates multi-paradigm modeling that can be used for simulation, optimization, and analytics. To
ensure that high-quality data are used in forecasting, data preprocessing should be implemented prior to
applying analytics techniques. Scalalion provides a variety of preprocessing time series and data structures.
ScalaTion makes provision for tools that can handle, store, scale, preprocess, and perform analytics on large
datasets beyond those found in traditional On-Line Analytic Preprocessing (OLAP). These analytical
components in Scalalion consist of six tools: predictors, classifiers, forecasters, clusterers, recommenders,
and reducers.

4.1 Predictive Modeling in Scalalion

Like other statistical software, modeling types in Scalal'ion depend on the nature of the response variable.
Forecasting models such as ARIMA, Regression Trees, and Gradient Boosting models are used if the goal
is to forecast continuous response variables into the future. Beyond the prediction function of simple
regression models, time series are set up to use prior values of the response variables or past errors (or

innovations) to improve forecasts.

Traditional Statistical Models

Besides the response variable or the shocks, other variables (also called exogenous variables) may be used

to improve forecasting. Thus, a time-dependent model can be formulated as:

10

y=f(z,t;b) +e¢

where:

* y is a response variable,
* xisaninput vector,

* ¢is the residual term,

* tistime, and

* bis the vector of parameters of the function that can be scaled so that the predictive model matches
available data.

This model can be generalized by turning v into a vector, the parameters into a matrix, and allowing
feedback into the function f.

Estimating the parameters for traditional statistical techniques like AR, the model predicts the next
value y; from the last p values, each weighted by its own coeflicient, ¢;. Here, the residual term is repre-
sented by €, in:

Y = [+ Q1Y+ -+ OplYip + &

Estimating the parameters involves forming Yule-Walker equations and using one of the Method of
Moments (MOM) or Least Squares Estimation (LSE). After these coefficients are estimated, the AR(p)
model can be used for forecasting.

The ‘Forecaster® trait within the ‘scalation.modeling.forecasting® package in Scalal'ion provides a
common framework for several forecasters for estimating the parameters. The ‘Stats4TS® class in the
‘scalation.mathstat’ package defines the Auto-Correlation Function (ACF). It holds the mean, variance,
the auto-covariance vector, and the auto-correlation vector (Miller, 2024). In addition to the ‘Forecaster®
trait, several Quality of Fit (QoF) measures are available, including R-squared, R-Squared adjusted, MAE,
MSE, RMSE, and AIC in the ‘Fit* trait package.

4.2 Analytical Databases in Scalalion

Prior to the application of time series analytics in Scalalion, data preprocessing should be applied to the
data to ensure that the data is of high quality. ScalaTion database has Python-like dataframes and SQL-like
APIs. In ScalaTion, the data management framework is provided by ScalaTion’s Time Series Database
(TSDB). ScalaTion’s TSDB has built-in capabilities for handling time series data. It is also able to store
non-time series data as well. It provides two Application Programming Interfaces (APIs) for convenient

access to the data:

II

1. Columnar Relational Algebra API
2. SQL-Like API

In ScalaTion’s database module, the ScalaTion TSDB is located within the timeseries_db package,
a subpackage of the columnar_db package. Also, several adjustments to Coordinated Universal Time
(UTC) can be made on TSDB. For example, the TimeNum class, a class wrapped around Java’s Instant,
facilitates time-zone information storage and adjustment time, including micro- and nanoseconds and

Daylight Savings Time.

4.3 Removing Identifiers

Since arbitrary values serve no purpose in data analytics beyond their use as unique identifiers, they should
be removed once they have fulfilled this function. For example, Scalal'ion may utilize a composite pri-
mary key, ‘Seq(o, 1), which combines both time and sensorID for unique identification. These unique
identifications must be removed during data preprocessing.

Object Coverter

Converta VectorS into a VectorI by mapping each distinct value in VectorS into a distinct numeric integer
value, returning the new vector and the bidirectional mapping. Use the ’from’ method in BiMap to recover

the original string. e.g., VectorS ("A", "B", "C", "A", "D") will be mapped to Vectorl (o, 1, 2, 0, 3)

Identifying and Handling Missing Values

Missing values are common in datasets. Special characters such as dots (°.°), question marks (%), large
integers (‘99999°), etc., are often used to indicate missing values in datasets. In data management, zeros
or negative numbers may also indicate missing values when such values are invalid or unsuitable for the
application. In Scalalion, a ‘MissingVal‘ parameter in the ‘replaceMissingValues® API can be set to zero or
any value to be considered as missing and will need to be imputed. Missing values are sometimes handled
by imputation.

Imputation implementations are based on the ‘Imputation® trait in the ‘scalation.modeling® package
(See Miller, 2020). Scalalion offers flexible APIs for imputing missing values such as Linear Interpolation,
Moving Average, etc., within the class ‘Imputation.replaceMissingValues‘. Another alternative could be
to use a modeling technique like SARIMA for imputation.

Detecting Outliers

Strategies for managing outliers include addressing them separately or re-coding them as missing values,
thus enabling a unified approach to handling both outliers and missing data. To manage outliers, Scala-

Tion has several methods, including:

12

* ‘DistanceOutlier: Identifies outliers as data points that are a specified number of standard deviation

units from the mean.
* ‘QuantileOutlier’: Uses the smallest and largest percent values.
* ‘QuartileXOutlier’: Applies an expansion multiplier beyond the middle two quartiles.

An example in Miller (2020) for reassigning an outlier to ‘noDouble in ScalaTion’s indicator of a

missing value of type ‘Double is:

DistanceOutlier.rmOutlier(traffic.column("speed"))

3

CHAPTER §

METHODOLOGY AND DATA SET

This chapter outlines the methodology employed in this thesis and provides information about the dataset
used. In this chapter, benchmark forecasting models for evaluating the performance of all other models
are identified. Because forecasting is more challenging than one-step ahead predictions (thatis A > 1),
a benchmark is established for the forecasting horizon. This chapter also examines, In-Sample Testing

(In-ST), and Train-and-Test (TnT) with Rolling Vallidation.

5.1 Baseline Models

Traditional statistical forecasting methods and decision tree-based machine learning techniques function
as complementary models. Studies like Miller et al. (2024) adopt some of the traditional statistical forecast-
ing techniques like Random Walk (RW), Random Walk with slope adjustment (RWS), and Null Model
as reliable baseline models for evaluating the performance of more quality models, including those based
on deep learning models. Like Miller et al. (2024), this thesis uses three models as baselines to assess the
forecasting performance of tree-based models in Python and Scalal'ion programming environments.

s.2 Multi-Horizon Forecasting

The quality of forecast is likely to degrade as the forecasting horizon increases because time series data
are time ordered and serially correlated. To correct this anomaly, a multi-horizon forecasting technique
is employed across the time series models (see Miller, 2024; Hyndman and Athanasopoulos, 2018). The
horizon refers to the number of time units (e.g., days or weeks) into the future for which forecast values are
to be generated. While there is no established hard and fast rule on the length of the forecasting horizon,
Hyndman and Athanasopoulos (2018) recommend that the number of lags h be 10 for non-seasonal
processes, thatis 1 < h < 10. Miller (2024) recommends the length of the forecasting horizon to be 6
for COVID-19, thatis 1 < h < 6. Unless stated otherwise, Miller (2024) approach will be used in this
thesis.

14

5.3 Rolling Validation, Train-and-Test Method and In-Sample
Training

With respect to traditional statistical techniques and regression trees forecasting analytics, the concept of
rolling validation is closely related to multi-horizon forecasting. Cross-validation methods are not suitable
for time-series data due to the existence of serial dependence. A rolling validation method is used to correct
this anomaly.

Rolling validation is employed with Train-and-Test (TnT) analytic method. Usingthe 1 < h < 6
horizon, the rolling window is moved forward by one step. This step appends the first value from the test
set to the training set and removes the first value from the training set. Then, rolling windows move to
the end of the test set, and 6-steps forecasts are obtained on each step.

Alternatively, in-sample training (In-ST) can be employed without rolling validation. Here, the In-ST
training technique does not require rolling validation. Instead, In-ST is assessed and computed over the
tull dataset. However, for TnT with rolling validation, each retraining may produce a slightly different

values for the mean and parameters.

s.4 Direct and Recursive Methods of Multi-Horizon Forecasting

Still on Multi-Horizon Forecasting, Hyndman et al. (2012) identify three main techniques available for
multi-horizon forecasting:

Recursive Method of Multi-Horizon Forecasting

The recursive forecasting method generates forecasts sequentially, storing them in a matrix referred to as
Yy, starting with actual data and progressively incorporating earlier forecasts (Miller, 2024). Over time,
depending on the model’s reliance on past values, these forecasts transition to being based entirely on

previously forecasted data.

Direct Method of Multi-Horizon Forecasting

The direct method applies a trained forecasting function f to recent data to obtain an h-step ahead forecast.
In this case, the training minimizes the h-step ahead forecast error. For example, in a single output model
like ARIMA, a separate model could be built for each forecasting horizon 1 through h. Thus, in the
Direct Method of rolling validation for time series, each test set is composed of a single future observation,

and the training set includes only prior data.

15

Hybrid Method of Forecasting

This method which combines both recursive and direct methods ensuring both short-term precision and
computational tractability for extended horizons enhancing overall forecast accuracy.

s.s Traditional Forecasting Models

To predict the future values of a response variable, say v, it is important to identify variables that could in-
fluence y. The most obvious predictor is the previous (or lagged) values of y itself. Traditional forecasting
models are mostly based on this simple but fundamental concept.

Random Walk (RW) Model

A time series is said to follow an RW model if the first differences are random. That is, the series is non-
stationary. The RW model is one of the simplest time series models, and it is applicable to time series data
when the difference have Gaussian distribution and are independent of each other. An RW model for a
variable y; can be expressed as:

Yy = Y1 + €

where ¢€; follows a Gaussian distribution.

Random Walk with Slope Adjustment (RWS) Model

RWS is an extension of the baseline RW model. It adds a ‘slope’ to the RW model to account for trends in
the data. This model assumes that future values will continue in the direction of the past trend, adjusted
by a slope derived from historical data. Like the RW model, the white noise €; in the model also follows a
Gaussian distribution. The general equation for the RWS model is:

Y =7+ Y1+ €&

where the term 7 is the slope.

Null Model

Also known as the mean model, the null model is a basic baseline model that predicts future values as
the historical mean. Although the null model is generally less accurate than the RW model, it is a good
alternative to the RW model if the average is stable over time.

yt:wy_'_Et

where /1, is the mean of the response variable.

16

Trend Model

Unlike the null model, which assumes that the average is stable over time, the trend model adjusts for trend
in the data by adding a slope parameter to the null model. That is, the null model is just a generalization
of trend and similar models. Following Miller (2024), the trend model is also considered a basic baseline

model in this study. The trend model is denoted by:

Yy = g + 1t + &

where g and «; are the intercept and slope of the trend model, respectively.

Simple Exponential Smoothing (SES) Model

In simple terms, the SES model is a forecasting technique that adjusts the value of past observation values
to compute the next predicted value by exponentially decreasing the weights given to the older values. The
SES model is most useful when there is no trend or seasonal patterns in the data. This model is denoted

by:

U= agi—1 + (1 —)P

where p is the weight. The SES Model updates the forecast by applying the smoothing constant

parameter « to the most recent observation and (1 — a) to the past smoothed values.

Moving Average (MA) Model

The Moving Average (MA) model forecasts future values of a time series by smoothing short-term fluctu-
ations (or shocks) and minimizing noise, thereby revealing the underlying trend in the data. The model
equation for an M A(q) includes the past g values of ¢, as shown below:

Yy=p+be 1+ +06 4+e€

Auto-Regressive (AR) Model

The AR model is ideally suited when the future values of a variable linearly depend on its lagged values. A
p'-order Auto-Regressive AR(p) model predicts the next value y; from the sum of the last p values each
weighted by its own coefficient/parameter, say ¢;. Yule-Walker equations are recursively applied to solve
for the coefficients/parameters of autoregressive (AR) models (see Miller, 2024). This model is denoted

by:

Y=+ OrYi—1+ GoYi—o + -+ Opls—p + €

17

Auto-Regressive Moving Average (ARMA) Model

An ARM A(p, q) time series model of order p and ¢ integrates AR (p) and M A(q) models. This model is
often used for describing stationary time series. It combines the principles of autoregression and moving
average: the autoregressive component AR (p) represents the current value of the series as a linear function
of its previous values, and the moving average component M A(q) depictsitasalinear function of previous
error terms. By combining both AR(p) and M A(q) models, the ARM A model captures the dynamics
and noise within the series. The model equation can be formulated as follows:

Y=+ QY1+ Qayp—a + -+ Opyp—p F 01601 + - F 0464 + €

Auto-Regressive Integrated Moving Average (ARIMA) Model

When time series data is not stationary over time, the ARIM A forecasting model is effective in predicting
future values. To account for non-stationarity in this case, a non-seasonal differencing hyper-parameter

is added to the ARM A model, resulting in a new model ARIM A(p, q, d). The differencing operation

involves subtracting a value from its previous value. The formula for taking the difference is below:
Ay =y — Y

Table 1: Types of Time Series Forecasting Models

Model Type Short Description Type

Baseline Random Walk | Random Walk Baseline - Guess the previous | Statistical Forecasting Model
value

RWS Random Walk with Slope Statistical Forecasting Model

SES Simple Exponential Smoothing Statistical Forecasting Model

SMA Simple Moving Average Statistical Forecasting Model

WMA Weighted Moving Average Statistical Forecasting Model

AR Auto-Regressive (AR) Model Statistical Forecasting Model

ARMA Auto-Regressive Moving Average Model Statistical Forecasting Model

ARIMA Auto-Regressive Integrated Moving Average | Statistical Forecasting Model
Model

RFRTM Random Forest Regression Tree Model Regression Tree

GBRTM Gradient Boosting Regression Tree Model | Regression Tree

LMRTM Linear Model Regression Tree Model Regression Tree

18

5.6 Tree-Based Forecasting Models

This section focuses on regression tree models: Random Forest Regression (RFR), Gradient Boosting
Regression (GBR), and Linear Model Trees (LMT). Analogous to Decision Trees and other classification
or regression algorithms, a Regression Tree is a machine learning approach that utilizes classification
and regression methods by dividing data into branches to make predictions. These models are a part of
predictive tools that can effectively handle complex, non-linear patterns observed in time series data.

Additionally, regression trees estimate their parameters by incorporating adjustments for depth, leave
nodes, pruning, and splitting to enhance their predictive accuracy and prevent overfitting.

In contrast to traditional statistical modeling techniques of the previous sections, which minimize
errors (predict method), regression tree models are related to decision tree models in the sense thatboth are
types of predictive models that divide data into branches to make predictions. However, the two methods
are used for different types of predictive tasks. Decision trees are utilized for classification problems, aiming
to categorize each input into one of several discrete classes, where the response variable y is defined on
small domainsy € Bory € {0,1,...,k — 1}. On the other hand, regression trees predict continuous

outcomes.

True False

4.5% effective

True False

2.5% effective

True False

530 effective 100% effective

Figure 1: Regression Tree Diagram

9

Linear Model Trees (LMT)

In the modeling of LMT, the feature split identifies suitable thresholds to partition the variables using
piecewise linear prediction functions. Like all regression tree models, building an LM T essentially requires
finding thresholds for splitting variables/features. Unlike other regression trees, for LM T the region for
leaf node is covered by hyperplanes. LMT employs multiple linear regression across these hyperplanes
instead of using the average of all the points to estimate the parameters.

As the degrees of freedom in the leaves becomes smaller, the stepwise refinement reduces the number
of parameters. Using the example provided in Miller (2024), consider a binary split, at a threshold ¢j, that
partitions the dataset into two groups. Applying this splitting variable X ;, we may split the rows in the
X matrix into left and right groups:

lefty (X) = {X; | Xi; < 6i}

For splitting variable X;, the threshold 8, should be chosen to minimize the weighted sum of the
Mean Squared Error (MSE) of the left and right sides. A node should only be split and pruned if its
multiple regression model is significantly worse than the combination of the two regression models of its

children.

Gradient Boosting Regression (GBR)

This is a machine learning technique used to predict continuous values by combining multiple weak
models (usually decision trees) in a sequential manner. It starts with a simple model, calculates residuals
(errors), and fits new models to these residuals to improve predictions iteratively. The new model corrects
the mistakes of the previous ones, and the predictions are combined to form a strong model. It is effective
for capturing complex patterns in data but requires careful tuning to avoid overfitting. Additionally,
Training multiple sequential models can be time-consuming, especially for large datasets or a high number
of iterations. It can be sensitive to outliers, as residuals might disproportionately focus on extreme values.

By focusing on minimizing residual errors, GBR often achieves high predictive accuracy.

N

F(z) = argmin | L{y:, F(x:))

~

* F(x): The optimized predictive model.
* y;: The actual target value for the i-th data point.
* F(x;): The prediction of the model for input z;.

* L(y;, F(x;)): The loss function.

20

5.6.1 Random Forest Regression (RFR)

Random Forest Regression is a machine learning algorithm that uses an ensemble of decision trees to
predict continuous values. It builds multiple decision trees during training and combines their predic-
tions to improve accuracy and robustness. At each split in a decision tree, a random subset of features is
considered for splitting, reducing correlation between trees and improving generalization. Trees grow to
their maximum depth without pruning, ensuring that they can capture as much information as possible
from the sampled data, the predictions from all individual trees in the forest are averaged to produce the
final prediction. The final prediction § of the RFR of a given input vector x is computed by averaging
the predictions of all numbers of trees in the forest.

where:
* §: Predicted output.
* t;(x): Prediction from the i-th tree for input z.

¢ N: Total number of trees.

s.7 How Regression Trees are Adapted to Time Series

Adapration of time series requires modifying how data is structured and used in the model. It transforms
time series data into supervised learning format. A regression tree typically predicts a target variable
(y) using features (X), and the features are created using lagged values of time series created by itself.
Since time series data is sequential, it requires careful transformation to capture temporal dependencies.
Features are created using lagged values of the time series itself, this transformation ensures that the model
has access to past information which is critical for accurate predictions. In addition to lagged values of
the response variable, external variables (exogenous variables) that may influence the target can also be
included, which can be integrated into the feature set. Time-based features can be encoded as categorical
or numerical variables which helps to capture periodic effects or irregularities.

5.8 COVID-19 Data Set

The main source of the dataset used in this study is Our World in Data (OWID). This dataset contains
COVID-19 cases, deaths, hospitalizations, ICU patients, tests, vaccinations, etc. The OWID dataset is

aggregated from various sources, including the official Center for Disease Control (CDC) and the Center
for Systems Science and Engineering at Johns Hopkins University (CSSE-JHU). Although the OWID

21

data contains COVID-19 information from all over the world, only U.S.-related cases are used in this
thesis.

While the dataset on COVID-19 is of daily and weekly frequency, weekly patterns in the 'new death’
variable are more distinct than daily frequency, as illustrated in Figure 2.

Daily (Raw) and Weekly COVID-19 Deaths (Scaled to tens)

5000 4 —— Daily Deaths
—— Weekly Deaths (in tens)

g

.

2000 1

Number of Deaths

1000 4

2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05
| Fig. 1. Plot of Daily and WeBKfy Deaths from COVID-19 |

Figure 2: Plot of Daily and Weekly Deaths from COVID-19

The autocorrelation function (ACF), also depicted in B turther corroborates this weekly pattern.
The weekly ACF is smoother with less oscillation, implying that for strategic planning and understanding
broader trends without the daily noise, weekly data could be more useful.

| i ” IH ‘|’““H”HH \lnﬂlhmm N HHHﬁrrr.h_“ ol
N N RIS

Figure 3: ACF Plots of the Daily and Weekly Deaths

22

Similar patterns in COVID-19 death rates have been observed in other studies like Miller et al. (2024),
indicating that weekly data frequencies provide a more robust basis for analysis. This study, therefore,
employs a weekly data frequency for assessing COVID-19 death trends.

The data covers the period February 29th, 2020, to May 20th, 2024, February 29th, 2020, being when
the first COVID-19 death in the US was recorded. So, the data covers 169 weeks of data. However, 116
weeks of data is utilized in the study because COVID-19 reported cases reduced, and the trend flattened
by May 7, 2022. The variable descriptions are listed on table 2:

5.9 Cross-Correlation Analysis

The Cross-Correlation examines the relationship between two time series to determine how one series
is related to or affects the other at various time lags. It is used to find patterns, lead-lag relationships, or
dependencies between time-dependent data. It also normalizes or scales the data if needed and ensures

time series are stationary.

23

Table 2: Variable Descriptions

Variable Description
new_cases New confirmed cases of COVID-19
new_deaths New deaths attributed to COVID-19

reproduction_rate

Real-time estimate of the effective reproduction rate (R) of
COVID-19. See here

icu_patients

Number of COVID-19 patients in intensive care units (ICUs)

each week

hosp_patients

Number of COVID-19 patients in hospital each week

new_tests

New tests for COVID-19 each week

positive_rate

The share of COVID-19 tests that are positive, given as a rolling
7-day average

tests_per_case

Tests conducted per new confirmed case of COVID-19, given as
arolling 7-day average

people_vaccinated

Total number of people who received at least one vaccine dose

people_fully_vaccinated

Total number of people who received all doses prescribed by the

vaccination protocol

total_boosters

Total number of COVID-19 vaccination booster doses adminis-
tered

new_vaccinations

New COVID-19 vaccination doses administered

excess_mortality_Abs

Cumulative difference between the reported number of deaths
since 1 January 2020 and the projected number of deaths for the

same period based on previous years

excess_mortality_cum

Percentage difference between the cumulative number of deaths
since 1 January 2020 and the cumulative projected deaths for the

same period based on previous years

excess_mortality

Percentage difference between the reported number of weekly
deaths in 2020-2021 and the projected number of deaths for the
same period based on previous years

excess_mortality_Mill

Cumulative difference between the reported number of deaths
since 1 January 2020 and the projected number of deaths for the

same period based on previous years, per million people

24

https://github.com/crondonm/TrackingR/tree/main/Estimates-Database

CHAPTER 6

PERFORMANCE EVALUATION AND
DISCUSSIONS

The result and discussion section of this thesis aims to comprehensively evaluate the performance of
regression tree forecasting against traditional forecasting approaches within Python and ScalaT’ion pro-
gramming environments. First, this section is organized to evaluate how the choice of statistical software
and forecasting models influence forecast performance. Prior to that, the choice of statistical software
should not affect the forecasting evaluated in this section. Next, the analysis in this section examines the
performance of regression trees and traditional statistical models relative to their baseline models. sSMAPE
and MAE are the main metrics utilized for this purpose. Furthermore, this section delves into the impacts
of validation techniques, including train-test splits with rolling validation (TnT) and in-sample testing
(In-ST), on the performance of regression trees and traditional statistical models relative to their baseline
models and within Python and ScalaTlion. Lastly, the programming environment, Python or ScalaT’ion,

that offers superior overall performance for forecasting is presented.

6.1 Symmetric Mean Absolute Percentage Error (sMAPE) Metric

The forecast accuracy is measured by the symmetric Mean Absolute Percentage Error (sMAPE), where
smaller values indicate better performance. The sMAPE is one of the many metrics used to measure the
accuracy of a forecasting model. Although sMAPE is like the traditional Mean Absolute Percentage Error
(MAPE), it has an in-built symmetric measure which treats over- and under-forecasting equally. The

sMAPE is calculated using the formula:

1 n o A~
SMAPE — 00% Z |y iyt‘
no = |y + [:])/2

where n is the number of observations, ¥ is the actual value, and g, is the predicted value. The
apparent advantage of SMAPE over MAPE is that it typically can avoid divide-by-zero errors.

25

6.2 Test Setup

The response variable, which is COVID-19 deaths, is described as the new deaths attributed to COVID-19.
Although the OWID dataset covers 169 weeks from February 29th, 2020, to May 20th, 2024, only the
first 116 weeks of data are covered in this study because COVID-19-related deaths flattened by May 7, 2022.
only the first 116 weeks of data is covered in this study because covid-19 related deaths flattened by May 7,
2022 as shown on the red colored portion of the trend on Figure 4 below

Weekly Covid-19 Death (Scaled to tens)

— Weekly Death (in tens)
— Trend

20000 4

15000 4

10000 4

Number of Deaths

5000 A

T T T T
Apr Jul Oct Jan Apr Jul Oct Jan Apr
2021 2022
Date

Figure 4: Plot of Weekly Deaths from COVID-19

Since classical multi-fold cross-validation is not applicable to time series data (see Miller, 2024) due
to the presence of serial correlation, in-sample validation and rolling validation with test and train split
are used in this study. Specifically, I train and test on the same dataset to implement in-sample validation
on both traditional and regression tree models. Since in-sample validation trains and tests on the same
dataset, it is considered the basic and starting point of forecasting performance analysis in this study.

For rolling validation, the train-test split is set at 80/20. That is, 80% of the data is used for training,
and the remaining 20% of the dataset is used for testing the rolling validation to make a new COVID-19
death forecast. A forecast horizon of 1 < h < 6 is used in training and testing the forecasting models.
That s, an input from a rolling window which contains the information from ¢ — 5 to time ¢, and an out-
of-sample forecast for time ¢ 4 h. Then, the rolling window moves forward, and the process is repeated.
On the other hand, I also consider the ability of this model to predict the value one step ahead in the
in-sample validation (also known as skip = 1 in ScalaTion and Python).

26

To evaluate the performance of both traditional statistical forecasting methods and the Random Walk
model, the Random Walk model is considered the baseline method against which the performance of other
forecasting models is measured. Three traditional statistical models are considered in this study: Random
Walk (RW), Auto-Regressive AR (1), and Auto-Regressive Moving Average ARMA (1, o) models. Three
regression tree models are evaluated against the benchmark and traditional forecasting models: Gradient
Boosting Regression Tree (GBRT) Model, Random Forest Regression Tree (RFRT) Model, and Linear
Model Regression Tree (LMRT) Model.

6.3 Forecasting Performance: Traditional Forecasting Models

I compare the forecasting performance of statistical models RW, AR (1), ARMA (1,0). The statistical
forecasting model is shown in Table 3 below. For each model, a 6-week forecasting horizon specified
sMAPE of COVID-19 ‘new deaths’ is computed for each horizon (or week) under the in-sample validation.

I compare the performance of all the statistical models with the baseline under ScalaT'ion and Python.
RW model exhibited perfect alignment between ScalaTion and Python across all horizons, with identical
sMAPE values. This consistency underscores the correctness and robustness of the implementation in
both platforms. The average sSMAPE for the RW model was 42.086%. For the AR (1) model, Python
produced slightly higher sMAPE values than ScalaTion, with an average sSMAPE of 39.814% in Python
compared to 39.573% in Scalalion. The absolute difference of 0.241 corresponds to a 0.609% higher
value in Python, indicating near-equivalent results. Python showed marginally higher sMAPE values
than ScalaTion for the ARMA (1,0) model. The average SMAPE was 40.549% in Python compared to
39.588% in Scalal'ion, with an absolute difference of 0.961. This represents a 2.428% higher value in Python,
indicating strong agreement with minor variance.

Summing up, the results demonstrate excellent consistency between Scalalion and Python for all
three models, with minimal discrepancies. However, the Random Walk model exhibited perfect parity,
while differences for the AR (1) and ARMA (1,0) models were within a 2.4% margin. These small devia-
tions could stem from platform-specific implementation differences, such as parameter initialization or
numerical precision.

The close alignment across platforms supports the reliability of both ScalaTion and Python for time
series forecasting, with the observed differences.

6.4 Rolling Validation: Traditional Forecasting Models

This section presents the SMAPEs of traditional statistical models in ScalaTion and Python under Train
and Test split with Rolling Validation with skip of o. Like the in-sample validation, skip of 1 method in
Tables 3, AR and ARMA forecasting models outperform the benchmark in both ScalaTion and Python
environments, thus demonstrating equivalent forecasting efficiency between Python and ScalaTion.
Notably, the AR and ARMA forecasting models have the least sMAPEs in both Python and Scala-

Tion environments, thus showing greater consistency. In Table 4, both Scalal'ion and Python produced

27

Table 3: sSMAPEs, In-sample, Skip = 1

Horizon | RW | AR (1) | ARMA (1,0)
ScalaTion

I 19.037 | 18.880 20.219

2, 29.580 28.591 29.911

3 39-074 | 37.096 38.153

4 47464 | 45.503 45-586

5 55179 | 51.446 52..292

6 62.182 | 55.924 57.367
Average 42.086 | 39.573 39.588

Python

I 19.037 | 18.75% 19.740

2 29.580 | 28.567 29.537

3 39-074 | 37.240 38.067

4 47-464 | 45.801 45294

5 55.179 51.896 §2.718

6 62.182 | 56.624 §7.940
Average 42.086 | 39.814 40.549
Abs Difference 0.000 0.241 0.961
As a % of ScalaTion | 0.000% | 0.609% 2.428%

identical average SMAPE values of 46.514%, indicating perfect alignment. This highlights the consistency
and robustness of the RW implementation in both environments.

The AR (1) model showed marginal differences between the platforms, with Python yielding an average
sMAPE of 48.137%, compared to 48.367% in ScalaTion. The absolute difference is 0.231, reflecting a 0.477%
lower sMAPE in Python. ARMA (1,0) Python and ScalaTion results were nearly identical, with average
sMAPEs of 48.043% in Python and 47.990% in ScalaTion. The absolute difference is 0.053, corresponding
to a 0.110% increase in Python.

The results demonstrate high consistency between Scalal'ion and Python implementations across
all models, with difterences well within 3% for any model. The AR (1) and ARMA (1,0) exhibited near-
equivalent performance.

These findings reinforce the reliability of both platforms for rolling validation. Again, the minor
discrepancies likely arise from platform-specific optimization factors, and they are unlikely to affect the
overall conclusions of this study. Further analysis could explore whether these small variations impact

long—term forecas til’lg accuracy.

2.8

Table : Table 4: sSMAPEs TnT with Rolling Validation, skip=o

Horizon ‘ RW ‘ AR(x) ‘ ARMAC(1,0)
ScalaTion
I 18.671 19.159 19.001
2 27.572 | 3L198 30.394
3 40.939 | 44-48s 43.801
4 52.350 | 55.312 54.825
s 64.248 | 65.554 65.374
6 75302 | 74.497 74-546
Average 46.514 | 48.367 47.990
Python
I 18.671 | 18.894 18.211
2 27.572 | 3L331 30.197
3 40.939 | 44.545 43374
4 52.350 | 55.939 55-320
5 64.248 | 64.653 65.832
6 75302 | 73.458 75:325
Average 46.514 | 48.137 48.043
Abs Difference 0.000 0.231 0.053
As a % of ScalaTion | 0.000% | 0.477% 0.110%

6.5 Forecasting Performance of Regression Tree Models

In this section, I compare the forecasting performance of regression tree models in Scalalion and Python
environments. For each model, a 6-week forecasting horizon is specified, and the sSMAPE of ‘COVID-19’
new-deaths are computed for each horizon (or week) under the in-sample validation as shown in Table s.

Gradient Boosting ScalaTion average SMAPE of 48.240% while Python average sMAPE is 18.423%,
with an absolute difference of 19.919, corresponding to a 61.809% reduction in Python. The large discrep-
ancy suggests possible implementation issues in ScalaTion for this model.

Random Forest ScalaTion has an average sSMAPE of 48.798% and Python exhibits an average sSMAPE
of 28.879%, with an absolute difference of 19.919, equating to a 40.820% reduction in Python. This model
also shows a substantial deviation, indicating potential problems in the ScalaT’ion results.

For the Linear Model Tree, Scalalion exhibits an average sSMAPE of 49.262%, while Python shows an
average SMAPE of 19.299%, with an absolute difference of 29.963, representing a 60.824% reduction in
Python. While smaller than the other models, the difference is still significant and suggests inconsistencies.

The results indicate that Python consistently produces significantly lower sMAPEs across all models
compared to Scalal'ion. The discrepancies range from 60% to nearly 70%, suggesting that the Scalal'ion

29

Table s: sSMAPEs, In-sample, Regression Tree Models, Skip = o

Horizon \ Gradient Boosting \ Random Forest \ Linear Model
ScalaTion

I 21.5134 18.3946 20.4691

2, 25.9738 2.4.5295 30.2268

3 41.1092 42.6127 40.3940

4 56.5362 58.8470 56.7983

5 68.8753 69.8738 70.2365

6 75-4296 78.5313 77-4489
Average 48.240 48.798 49.262

Python

I 13.4349 20.9072 11.8157

2 15.9854 24.7410 14.2732

3 17.4999 28.4262 18.8723

4 19.6251 31.6257 21.1263

5 21.3466 33.1615 26.8958

6 22.6463 34.4114 22.8107
Average 18.423 28.879 19.299
Abs Difference 29.817 19.919 29.963

As a % of ScalaTion 61.809% 40.820% 60.824%

results for Gradient Boosting, Random Forest, and Linear Model Tree may be inflated due to potential
bugs or inaccuracies in the implementation.

The Python results align better with expectations for in-sample validation, suggesting they are likely
more reliable. Further investigation is needed to debug the ScalaTion implementation, particularly for
Gradient Boosting and Random Forest models, to ensure accurate comparisons. For the purposes of this
study, Python results may serve as a more reliable benchmark.

6.6 Rolling Validation: Tree-Based Forecasting Models

In this section, Table 6 reports the symmetric Mean Absolute Percentage Errors (sSMAPEs) for three
forecasting models: Gradient Boosting, Random Forest, and a Linear Model Tree, evaluated using rolling

validation over six forecast horizons. All models were implemented in Python.

30

Table 6: sMAPEs, Rolling Validation, Python

Horizon | Gradient Boosting | Random Forest | Linear Model

I 19.9130 19.86320 11.8157

2 20.0057 19.84750 14.2732

3 21.5491 20.88040 18.8723

4 26.1935 23.71190 21.1263

5 30.7703 26.55390 26.8958

6 34.9731 29.56960 22.8107
Average 25.567 23.404 19.299

6.7 Conclusion

This thesis examines the predictive powers of Regression tree and Traditional statistical models in two
distinct programming environments — Python and ScalaTion, with focusing on the performance of both
models in predicting COVID-19 deaths. For this comparison, this thesis uses sSMAPE. Importantly, the
findings in this thesis demonstrate that the choice of programming environment does not significantly
affect the predictive performance of the models.

Additionally, the findings in this thesis show that Python results align better with expectations for
In-Sample and TnT with rolling validation, suggesting they are likely more reliable. Furthermore, investi-
gation is needed to debug the Scalal'ion implementation, despite the inherent advantages of ScalaTion in
handling time-series data through its embedded libraries and optimized packages, the observed deviations
emphasize the need for rigorous debugging and validation. Ensuring consistent hyperparameter settings,
numerical precision, and parameter initialization in ScalaTion is essential to achieve results comparable
to Python.

Within statistical forecasting models, advanced statistical models like AR and ARMA outperform
their baseline models in both Python and ScalaTion, suggesting their enhanced ability to handle complex
forecasting tasks compared to simpler models. Among traditional models, AR and ARMA models per-
formed exceptionally well. While Python emerges as the more reliable platform in this study, the results
underscore the necessity of addressing potential bugs in Scalalion’s implementation. This will not only
ensure fair comparisons but also leverage Scalal'ion’s capabilities for more accurate and scalable forecasting

in future studies.

6.8 Future Studies

This research has several opportunities for future investigation in the field of forecasting, particularly in
the context of Tree-based models and pandemic response:

31

1. Integration of Advanced Machine Learning Techniques: Future studies could explore the
incorporation of advanced machine learning methods, such as deep learning architectures, into
Tree-based forecasting models. This integration may yield improvements in predictive accuracy

and model interpretability, particularly for complex non-linear relationships in the data.

2. Expansion of Exogenous Variables: Future research should investigate the impact of additional
exogenous variables, such as socioeconomic factors, mobility data, and vaccination rates, on the
accuracy of forecasting models. By broadening the feature set, researchers may uncover new insights

and improve model robustness.

3. Long-Term Forecasting and Seasonal Adjustments: Investigating the long-term forecasting
capabilities of Tree-based models, particularly in the presence of seasonal trends, could enhance
understanding of pandemic dynamics. Future work could explore methods for effectively incorpo-

rating seasonal adjustments within the framework of tree-based models.

By pursuing these directions, future research can further advance the understanding and application
of Tree-based forecasting methods, ultimately contributing to improved pandemic preparedness and
response.

32

6.9 Bibliography

* Barmparis, G., and Tsironis, G. (2020). Estimating the infection horizon of COVID-19 in eight
countries with a data-driven approach. Chaos, Solitons € Fractals, 135, 1098 42. https://doi.org/10.

1016/j.cha0s.2020.109842

* Bojer, C. S., & Meldgaard, J. P. (2020). Kaggle forecasting competitions: An overlooked learning
opportunity. International Journal of Forecasting. https://arxiv.org/pdt/2009.07701

* Cotterell, M. E,, Miller, J. A., and Horton, T. (2011). Unicode in Domain-Specific Programming
Languages for Modeling & Simulation: ScalaTion as a Case Study. University of Georgia. https:
//doi.org/10.48550/arXiv.1112.1751

* Cutler, R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J. (2007).
Random forests for classification in ecology. Ecology Society of America, 2783-2792. https://doi
0rg/10.1890/07-0539.1

* Cramer, E. Y, Lopez, V. K., Niemi, J., et al. (2021). Evaluation of individual and ensemble
probabilistic forecasts of COVID-19 mortality in the US. medRxzv. https://doi.org/10.1073/pnas!
2113561119

¢ Fazeli, S., Moatamed, B., and Sarrafzadeh, M. (2020). Statistical analytics and regional representa-
tion learning for COVID-19 pandemic understanding. https://doi.org/10.48550/arXiv.2008.07342

* Ham, Y,, and Kug, J. (2015). Improvement of ENSO Simulation Based on Intermodel Diversity.
Journal of Climate, 28, 998-1015. https://doi.org/10.1175/]J CLI-D-14-00376.1

* Hyndman, R.]., and Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts.

* Hyndman, R. ., and Taieb, S. B. (2012). Recursive and direct multi-step forecasting: the best of
both worlds. Citeseer, 19.

¢ Ismail, L., Materwala, H., Znati, T., Turaev, S., Khan (2020). Tailoring time series models for fore-
casting coronavirus spread: Case studies of 187 countries. Computational and Structural Biotech-
nology Journal, 2972-3206. https://doi.org/10.1016/j.csbj.2020.09.015

* Januschowski, T., Wang, Y., Torkkola, K., et al. (2022). Forecasting with trees. International
Journal of Forecasting, 38, 1473-1481. https://doi.org/10.1016/].ijforecast

* Javeri, I. Y., Toutiace, M., Arpinar, I. B., et al. (2021). Improving Neural Networks for Time Series
Forecasting using Data Augmentation and AutoML. https://arxiv.org/abs/2103.01992

* Jeon, Y., and Seong, S. (2021). Robust recurrent network model for intermittent time-series fore-
casting. International Journal of Forecasting. http://dx.doi.org/10.1016/j.ijforecast.2021.07.004

33

https://doi.org/10.1016/j.chaos.2020.109842
https://doi.org/10.1016/j.chaos.2020.109842
https://arxiv.org/pdf/2009.07701
https://doi.org/10.48550/arXiv.1112.1751
https://doi.org/10.48550/arXiv.1112.1751
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1073/pnas.2113561119
https://doi.org/10.1073/pnas.2113561119
https://doi.org/10.48550/arXiv.2008.07342
https://doi.org/10.1175/JCLI-D-14-00376.1
https://doi.org/10.1016/j.csbj.2020.09.015
https://doi.org/10.1016/j.ijforecast
https://arxiv.org/abs/2103.01992
http://dx.doi.org/10.1016/j.ijforecast.2021.07.004

Khan, M. M. A. (2013). Forecasting gold prices (Box Jenkins approach). International Journal of
Emerging Technology and Advanced Engineering, 3(3), 662-670.

Krauss, C., Do, X. A., Huck, N. (2017). Deep neural networks, gradient-boosted trees, random
forests: Statistical arbitrage on the SP soo. FAU Discussion paper in Economics (Working Paper).
https://www.econstor.eu/bitstream/10419/130166/1/856307327.pdf

Lim, B., Arik, S. O., Loeff, N., Pfister, T. (2019). Temporal fusion transformers for interpretable
multi-horizon time series forecasting. https://arxiv.org/abs/1912.09363

Miller, J. A. (2020). Introduction to Data Science using ScalaTion. Release 2. Department
of Computer Science, University of Georgia. https://cobweb.cs.uga.edu/~jam/scalation_guide/
data_science.pdf

Miller, J. A. (2024). Introduction to Computational Data Science using ScalaTion. Department
of Computer Science, University of Georgia. https://cobweb.cs.uga.edu/~jam/scalation_guide/
comp_data_science.pdf

Navin, G. V. (2015). Big Data Analytics for Gold Price Forecasting Based on Decision Tree Algo-
rithm and Support Vector Regression (SVR). International Journal of Science and Research (IJSR),
4(3), 2026-2030.

Nishimoto, Y., and Inoue, K. (2020). Curve-fitting approach for COVID-19 data and its physical
background. https://www.medrxiv.org/content/10.1101/2020.07.02.20144899v2.full

Odersky, M., Spoon, L., Venners, B. (2016). Programming in Scala. Artima.

Picchiotti, N., Salvioli, M., Zanardini, E., etal. (2020). COVID-19 pandemic: a mobility-dependent
SEIR model with undetected cases in Italy, Europe, and the US. https://arxiv.org/pdf/2005.08882

Rady, H. A., Fawzy, H., and Abdel Fattah, A. M. (2021). Time Series Forecasting Using Tree-Based
Methods. Journal of Statistics Applications Probability, 1,229-244.

Rasul, K., Seward, C., Schuster, I, and Vollgraf, R. (2021). Autoregressive Denoising Diffusion
Models for Multivariate Probabilistic Time Series Forecasting. http://arxiv.org/abs/2101.12072

Shamil, M. §S., Farheen, F., Ibtehaz, N., Khan, I. M., and Rahman, M. S. (2021). An agent-
based modeling of COVID-19: Validation, analysis, and recommendations. Cognitive Computation.
https://www.medrxiv.org/content/10.1101/2020.07.05.20146977v1.tull. pdf

Tweedie, M. (1947). Functions of a statistical variate with given means, with special reference
to Laplacian distributions. Mathematical Proceedings of the Cambridge Philosophical Society, 43,
41-49. Cambridge University Press.

Zhou, H., Zhang, S., Peng, J., et al. (2021). Informer: Beyond Efficient Transformer for Long
Sequence, Time Series Forecasting. In The thirty-fifth AAAI conference on artificial intelligence.

34

https://www.econstor.eu/bitstream/10419/130166/1/856307327.pdf
https://arxiv.org/abs/1912.09363
https://cobweb.cs.uga.edu/~jam/scalation_guide/data_science.pdf
https://cobweb.cs.uga.edu/~jam/scalation_guide/data_science.pdf
https://cobweb.cs.uga.edu/~jam/scalation_guide/comp_data_science.pdf
https://cobweb.cs.uga.edu/~jam/scalation_guide/comp_data_science.pdf
https://www.medrxiv.org/content/10.1101/2020.07.02.20144899v2.full
https://arxiv.org/pdf/2005.08882
http://arxiv.org/abs/2101.12072
https://www.medrxiv.org/content/10.1101/2020.07.05.20146977v1.full.pdf

	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivation for Study
	Research Objective
	Additional Issues

	Literature Review
	Related Study: COVID-19 Forecasting
	Related Study: Traditional and Tree-Based Forecasting Methods
	Related Study: Tree-Based Forecasting and Deep Learning Forecasting Methods

	Python and ScalaTion Software Environments for Time Series and Regression Trees
	Time Series Analysis and Regression Trees in Python
	Python Libraries for Tree-Based Forecasting
	Implementation of Tree-Based Forecasting in ScalaTion

	Time Series Predictive Analytics in ScalaTion – Traditional Statistical Models and Regression Trees Models
	Predictive Modeling in ScalaTion
	Analytical Databases in ScalaTion
	Removing Identifiers

	Methodology and Data Set
	Baseline Models
	Multi-Horizon Forecasting
	Rolling Validation, Train-and-Test Method and In-Sample Training
	Direct and Recursive Methods of Multi-Horizon Forecasting
	Traditional Forecasting Models
	Tree-Based Forecasting Models
	How Regression Trees are Adapted to Time Series
	COVID-19 Data Set
	Cross-Correlation Analysis

	Performance Evaluation and Discussions
	Symmetric Mean Absolute Percentage Error (sMAPE) Metric
	Test Setup
	Forecasting Performance: Traditional Forecasting Models
	Rolling Validation: Traditional Forecasting Models
	Forecasting Performance of Regression Tree Models
	Rolling Validation: Tree-Based Forecasting Models
	Conclusion
	Future Studies
	Bibliography

