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1 Introduction

Let {x, y}∗ denote the free monoid on letters x and y. A string of concatenated letters is then

called a word. For example, w = c1c2...cn, where each ci ∈ {x, y}∗. The binary operation

is concatenation, so if w1 = c1c2...cm and w2 = d1d2...dn are elements in {x, y}∗, then

w1w2 = c1c2...cmd1d2...dn. If none of ci, di are the identity elements, then c1c2...cmd1d2...dn is

in its most simplified form as there are no inverses in monoids. Furthermore, the property of

associativity is observed; for example, (yx)x = y(xx) = yx2. For a word w and an n ∈ N, it is

common to write the concatenation of n instances of w as w . . . w = wn. Two words w1 and

w2 are defined to be conjugate if w1 = uv and w2 = vu for some v, u ∈ {x, y}∗. The reversal

of a word w = c1c2...cn is denoted as w̃ = cncn−1...c2c1. Lastly, the number of instances of x

and y in a word w are denoted wx and wy, respectively.

This thesis concerns itself with a subset of {x, y}∗ called the Christoffel words and, in

particular, algorithms which produce Christoffel words. Each section other than Section 6

contains one of these algorithms and a proof explaining why it works. Section 6 contains an

application of Christoffel words in the context of calendar systems. Many of the theorems,

lemmas, and examples have graphical interpretations, and they have been included wherever

applicable.
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2 Basics of Christoffel Words

This section contains the definition of Christoffel words and some of their properties. Foun-

dational ideas for later theorems and algorithms are presented here as well as the first of the

Christoffel word-producing algorithms. The material included is based on the initial papers

on the subject from the late 1800’s ([7],[8],[12],[13],[14],[18]), and the geometric perspective

is based on ([2],[3],[15]).

2.1 Definition of Christoffel Words

Take a and b to be relatively prime, nonnegative integers, and consider the line of slope b
a

in the Cartesian coordinate plane. The lower Christoffel path of slope b
a
is defined as the

path on the Z× Z gridded integer lattice from (0, 0) to (a, b) satisfying two conditions:

1. The path lies under the line of slope b
a
.

2. The region enclosed by the line and the path contains no integer points other than

those on the boundary.

The lower Christoffel word of slope b
a
is then constructed by encoding the path as a

sequence of unit steps. Let (i, j) be an integer point on the Christoffel path. Then, a step

from (i, j) to (i + 1, j) is encoded as an x, and a step from (i, j) to (i, j + 1) is encoded as

a y. The Christoffel word is formed by putting each unit step in order starting from the

origin. Similarly, upper Christoffel words are defined using the path that lies above the line

of slope b
a
. Going forward, the terms ”Christoffel path” and ”Christoffel word” will mean

”lower Christoffel path” and ”lower Christoffel word” unless otherwise stated.

Since every positive rational number can be expressed as the unique ratio of two relatively

prime integers, there is a unique Christoffel word associated with a given slope. A word

w is defined to be primitive if for all words u, there is no integer k > 1 such that uk = w.

2



Figure 1: The red line segment is the line of slope 5
7
, and the green path is the Christoffel

path. The resulting Christoffel word is xxyxyxxyxyxy.

If w = uk where w is the Christoffel word of slope b
a
and k > 1, then wx = a = kux and

wy = b = kuy, which implies that the slope of w is kb
ka

which is not reduced. Thus, w is not a

Christoffel word. By similar logic, every conjugate of a Christoffel word is primitive as well.

It is important to note that there are exactly two Christoffel words of length 1.

1. The Christoffel word of slope 0 is x.

2. The Christoffel word of slope ∞ is y.

These are considered trivial Christoffel words. Note that there is no Christoffel word of length

0, as 0 ̸⊥ 0. For the purposes of this text, the empty word is not considered a Christoffel

word.

2.2 Label of a Point

Definition 2.1. Let a and b be relatively prime, positive integers. Define the label of a

point (i, j) on the Christoffel path of slope b
a
to be the number ib−ja

a
. This number is also

the vertical distance from (i, j) to the line of slope b
a
.
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The label of a point can be used to uniquely identify points on a Christoffel path for a

given slope, which is shown in the next lemma.

Lemma 2.1. Let a and b be relatively prime, positive integers, and let ( s
a
, t
a
) be the labels

of consecutive points on the Christoffel path from (0, 0) to (a, b). Then t ≡ s + b (mod

a+ b). Moreover, t takes as value each of 0, 1, 2, ..., a+ b− 1 exactly once as t ranges over all

consecutive pairs of labels.

Proof. Suppose s
a
is the label for (i, j). If s < a, then the next point on the Christoffel

path is (i + 1, j), which has label ib+b−ja
a

, and t ≡ ib + b − ja ≡ s + b mod (a + b). If

s ≥ a, then the next point on the Christoffel path is (i, j + 1), which has label ib−ja−a
a

, and

t ≡ ib − ja − a = s − a ≡ s + b mod a + b. Since b is relatively prime to a + b, t must

be equivalent to each of 0, 1, 2, ..., a + b − 1 exactly once over all points on the Christoffel

path.
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Figure 2: The Christoffel path of slope 5
4
with labels at each integer point.

2.3 GAP Implementation of the Basic Algorithm

We will now present the first of the Christoffel word algorithms, the basic algorithm.

cw := function(a) # returns the Christoffel Word for of slope a

local r, w, x, y, w_length, d, i;

r := a; # any positive, rational number

w := [0]; # 0 represents an x. 1 represents a y

x := 1;

y := 0;

w_length := DenominatorRat(r) + NumeratorRat(r);

for i in [2..w_length] do

d := r * x - y - 1; # calculates the numerator of the label-1

if d < 0 then # adds x if (numerator of the label)-1<1, else adds y

x := x + 1;

Append(w, [0]);

else

y := y + 1;
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Append(w, [1]);

fi;

od;

return w;

end;

The algorithms in this text return the appropriate Christoffel word as a list of 0’s and 1’s,

with 0 and 1 representing x and y, respectively. The basic algorithm works by checking if

the numerator of the label of a point is less than 1, in which case, an x is appended to the

word. Otherwise, a y is appended. The algorithm starts at the origin and continues until the

length of the word is a+ b, producing the correct Christoffel word.

2.4 Intersection Characterization

Definition 2.2. Let a and b be relatively prime, positive integers. Let L be the open line

segment of slope b
a
from (0, 0) to (a, b), and let Z denote the Z× Z gridded integer lattice.

Define

Int(a, b) := {(xi, yi) ∈ L ∩ Z | xi < xi+1 ∀ i ∈ {1, 2, . . . , a+ b− 2}}.

In other words, Int(a, b) denotes the sequence of points between (0, 0) and (a, b) on

L which intersect the gridded integer lattice. This definition can be used to construct a

characterization of Christoffel words.

Theorem 2.2. Let a and b be relatively prime, positive integers, and let (xi, yi) ∈ Int(a, b)

with i = 1, ..., a+ b− 2. Construct the word w as follows:

1. Let u ∈ {x, y}∗ with length a+ b− 2. For i = 1, ..., a+ b− 2, if xi ∈ Z, then the i-th

letter of u is x. If yi ∈ Z, then the i-th letter of u is y.

2. Set w = xuy.

w is the Christoffel word of slope b
a
.

6



Figure 3: The intersection points in Int(3, 2) correspond with steps on the Christoffel path.
The correspondence depends on which coordinate is an integer.

Proof. Let (xi, yi) ∈ Int(a, b). If xi ∈ Z, then the point (xi, ⌊yi⌋) must be on the Christoffel

path C of slope b
a
. Also, the point (xi + 1, ⌊yi⌋) must be on C, as the label of (xi, ⌊yi⌋)

is less than 1. In this manner, points of this type correspond to horizontal unit steps on

C. Similarly, if yi ∈ Z, then the point (⌈xi⌉, yi) must be on the C, as well as the point

(⌈xi⌉, yi − 1), since the label of (⌈xi⌉, yi − 1) must be greater than 1. Points of this type

correspond to vertical unit steps on C.

To finish the proof, since the sequence Int(a, b) follows the line of slope a
b
from the origin,

the points in Int(a, b) correspond to unit steps on C in the same order as the Christoffel

word w, which is the word u. The only unit steps on C not accounted for are the first and

last steps, so w = xuy.

This characterization is anticipated in the earliest papers by Christoffel and Smith in

[7],[18]. Section 5 and Section 6 will expand on this and present connections to new ideas.
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2.5 Christoffel Morphisms

Definition 2.3. A Christoffel morphism is an endomorphism on the free monoid {x, y}∗

that sends each Christoffel word to a Christoffel word or a conjugate of a Christoffel word.

Note that if G and H are Christoffel Morphisms, then G◦H is also a Christoffel morphism.

Since G is an endomorphism, G is determined by how G transforms x and y, which we will

denote as G = (G(x), G(y)). Using this notation, we will define five endomorphisms:

G = (x, xy), D = (yx, x)

G̃ = (x, yx), D̃ = (xy, y)

E = (y, x).

It must be shown that these five endomorphisms are injective.

Lemma 2.3. The morphisms G, D, G̃, D̃, and E are injective.

Proof. For E, note that E◦E is the identity morphism ⇒ E is an involution. Use induction to

prove the lemma for G. Let G(u) = G(v) with |G(u)| = |G(v)| = 1 for some u, v ∈ {x, y}∗.

Then G(u) = G(v) = x ⇒ u = v = x. Let |G(u)| = |G(v)| = n and assume the lemma

holds for all 1 ≤ i ≤ n− 1. Write G(u) = c1c2 . . . cn = G(v) where each ci ∈ {x, y}. There

are two cases: either cn = x or cn−1cn = xy. If cn = x, let

G(u) = G(w1x) = c1c2 . . . cn−1x = G(w2x) = G(v) for some w1, w2 ∈ {x, y}∗.

By the induction hypothesis, w1 = w2 ⇒ u = v. If cn−1cn = xy, let

G(u) = G(w1y) = c1c2 . . . cn−2xy = G(w2y) = G(v) for some w1, w2 ∈ {x, y}∗.
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Again, by the induction hypothesis, w1 = w2 ⇒ u = v. The proofs for D, G̃, and D̃ are

similar.

Now, we will show that the five endomorphisms are Christoffel morphisms.

Lemma 2.4. The morphisms G and D̃ take Christoffel words of slope b
a
to Christoffel words

of slope b
a+b

and a+b
a
, respectively.

Proof. First, prove the result for G. Suppose a ⊥ b, and consider the Christoffel path C of

slope b
a
. The Christoffel path encodes the Christoffel word w of slope b

a
as a series of unit

vectors e1 = (i, j) → (i+ 1, j) and e2 = (i, j) → (i, j + 1). The morphism G sends y → xy,

thus G sends e2 to steps e1 and e2. Now, let G : R2 → R2 be the linear transformation

defined by G(c, d) = (c, c+ d). Since G is a linear transformation of R2, the region R between

the line of slope b
a
and C maps to the region G(R) between the line of slope b

a+b
and G(C).

Note that (c, c + d) is an integer point if and only if (c, d) is an integer point. Since R

contains no integer points, neither does G(R). Also, the region between vectors e1, e2, and

e1 + e2 also contains no integer points. Extend the region G(R) by replacing each instance

of e1 + e2 with steps e1 and e2. The resulting region contains no integer points. The path

along the boundary of that region under the line of slope b
a+b

contains no integer points, so

it must be the Christoffel path of slope b
a+b

. Since this path is the same as the path encoded

by G(w), G takes Christoffel words of slope b
a
to Christoffel words of slope b

a+b
.

The proof for D̃ is similar. Define D : R2 → R2 with D(c, d) = (c+ d, d), and the same

argument works by replacing instances of e1 with steps e1 and e2.

Working backwards through the proof gives us the next result.

Corollary 2.5. If w is a Christoffel word of slope less than 1, then there exists a Christoffel

word u such that G(u) = w. Similarly, if w is a Christoffel word of slope greater than 1, then

there exists a Christoffel word u such that D̃(u) = w.

9



Figure 4: The graph on the left shows the Christoffel path of slope 5
4
. Under G, the graph is

transformed to the one on the right. The dotted line indicates where instances of e1 + e2 are
replaced with steps e1 and e2, which creates the Christoffel path of slope 5

9
.

Proof. Suppose w is a Christoffel word of slope less than 1. The path created by replacing

e1 and e2 with e1 + e2 is the image of some path transformed by G. This path must be a

Christoffel path since the region enclosed by the path and the corresponding line contains

no integer points. Thus, there is a Christoffel word u such that G(u) = w. The proof for D̃

is analogous.

Lemma 2.6. For every word w ∈ {x, y}∗, there exists a word u ∈ {x, y}∗ such that G(w) =

xu and G̃(w) = ux and a word v ∈ {x, y}∗ such that D(w) = yv and D̃(w) = vy.

Proof. Use induction on the length of w. In the case where |w| = 1, either w = x or w = y.

If w = x, let u = ϵ and v = x. Then G(x) = x, G̃(x) = x, D(x) = yx, and D̃(x) = xy. If

w = y, let u = y and v = ϵ. Then G(y) = yx, G̃(y) = xy, D(y) = y, and D̃(y) = y.

Assume the lemma is true for all words of length less than n. Let w = aw′ with a ∈ {x, y}.

Then w′ satisfies the induction hypothesis, so G(w′) = xu′ and G̃(w′) = u′x for some

10



u′ ∈ {x, y}∗ and D(w′) = yv′ and D̃(w′) = v′y for some v′ ∈ {x, y}∗. If a = x,

G(w) = G(xw′) = xxu′ and G̃(w) = G̃(xw′) = xu′x

D(w) = D(xw′) = yxyv′ and D̃(w) = D̃(xw′) = xyv′y.

Choosing u = xu′ and v = xyv′ satisfies the conditions. If a = y,

G(w) = G(yw′) = xyxu′ and G̃(w) = G̃(yw′) = yxu′x

D(w) = D(yw′) = yyv′ and D̃(w) = D̃(yw′) = yv′y.

Choosing u = yxu′ and v = yv′ satisfies the conditions and the proof is done.

Now, we shall prove the following theorem.

Theorem 2.7. The morphisms G, D, G̃, and D̃ are Christoffel morphisms.

Proof. Lemma 2.4 gives that G and D̃ take Christoffel words to Christoffel words. For G̃,

note that for every Christoffel word w, Lemma 2.6 guarantees a word u with G(w) = xu and

G̃(w) = ux. Since G takes Christoffel words to Christoffel words, xu is a Christoffel word

and hence, ux = G̃(w) is a conjugate of a Christoffel word. A similar proof works for D.

Lemma 2.6 guarantees a word v with D(w) = yv and D̃(w) = vy. Since vy is a Christoffel

word, yv = D(w) is a conjugate of a Christoffel word.

The next two lemmas and the subsequent theorem will show that E is a Christoffel

morphism.

Lemma 2.8. The morphism E takes lower Christoffel words of slope b
a
to upper Christoffel

words of slope a
b
.

11



Figure 5: The Christoffel word of slope 7
3
is constructed by swapping the horizontal and

vertical unit steps, as described in Lemma 2.8.

Proof. The technique from the proof of Lemma 2.4 is used. Consider the Christoffel path

C of slope b
a
as a sequence of unit vectors e1 and e2. The morphism E can be thought of

as swapping e1 and e2. Let E : R2 → R2 be the linear transformation with E(c, d) = (d, c).

Note that (c, d) is an integer point if and only if (d, c) is an integer point, and that E takes

the line of slope b
a
to the line of slope a

b
. Let R be the region between the line of slope b

a
and

C. Since R contains no integer points, neither does E(R). Thus, E(C) must be the upper

Christoffel path of slope a
b
.

Lemma 2.9 (Cohn [9], de Luca, Mignosi [10]). The upper Christoffel word and lower

Christoffel word of slope b
a
are conjugate.

Proof. Let w be the Christoffel word of slope b
a
. The word ww then encodes the path from

(0, 0) to (2a, 2b). Consider the point on the path with maximum label, that is, the point with

maximum vertical distance from L, the line of slope b
a
. Since each possible label is attained

12



Figure 6: This is the path encoded by ww where w is the Christoffel word of slope 2
3
. The

shaded region between the path and the line segment from P to P ′ contains no integer points,
so the path from P to P ′ is the upper Christoffel word of slope 2

3
.

exactly once on the path for w, say at point P , there are two such points on the path for

ww: P and P ′. By Lemma 2.1, the label for P and P ′ is a+b−1
a

. The line segment from P

to P ′ must have slope b
a
since both points are vertically equidistant from L. Construct the

word u by following the path encoded by ww from P to P ′.

Claim: u is the upper Christoffel word of slope b
a
. It must be shown that there are no

integer points contained in the region R enclosed by the line segment from P to P ′ and the

path encoded by u. Let (i, j) be a point on ww and assume that the integer point (i, j − 1)

is in R and not on the path ww. Then the point (i− 1, j) must be on the path encoded by

u. The vertical distance from (i, j − 1) to L is

1 +
ib− ja

a
=

ib− (j − 1)a

a
≤ a+ b− 1

a
⇔ (i− 1)b− ja

a
≤ −1

a
.

However, (i−1)b−ja
a

is the vertical distance from (i− 1, j) to L, which cannot be negative. By

contradiction, R contains no integer points. Note that |u| = |w| and u is a factor of ww, so

u is a conjugate of w.

13



Theorem 2.10. The endomorphisms G, D, G̃, D̃, and E are Christoffel morphisms.

Proof. By Theorem 2.7, G, D, G̃, and D̃ are Christoffel Morphisms. If w is a Christoffel

word, then E(w) is an upper Christoffel word by Lemma 2.8 which is the conjugate of a lower

Christoffel word by Lemma 2.9.

2.6 Generators of the Monoid of Christoffel Morphisms

The set of Christoffel morphisms under composition is a monoid. The morphisms studied

in the previous section generate this monoid, and this section will prove this fact. A short

lemma is required.

Lemma 2.11. If w is a Christoffel word or a conjugate of a Christoffel word, then xx and

yy cannot both be factors of w.

Proof. Use the intersection characterization. Let b
a
be the slope of w, and assume that xx

and yy are both factors of w. Since xx is a factor, for some (xi, yi) ∈ Int(a, b), |yi+1−yi| < 1,

which forces b
a
< 1. Similarly, since yy is a factor, for some (xi, yi) ∈ Int(a, b), |xi+1−xi| < 1,

which forces b
a
> 1. This is a contradiction.

Theorem 2.12. The monoid of Christoffel morphisms is generated by G, D, G̃, D̃, and E.

Proof. The proof takes five steps.

Step 1: Show that any Christoffel morphism H is nonerasing, i.e. show that |H(w)| > |w|

for any Christoffel word w. Suppose H is erasing. Then either H(x) = ϵ or H(y) = ϵ. In the

first case, H(xyy) = yy, which is not primitive. In the second case, H(xxy) = xx, which is

also not primitive. In either case, the resulting word is not a Christoffel word or a conjugate

of a Christoffel word since neither can be primitive.

Step 2: If H is a nonidentity Christoffel morphism, then H(x) and H(y) must begin or

end with the same letter. Suppose H(x) begins with an x and H(y) begins with a y. There

are two scenarios:

14



(i): H(x) ends with an x. If H(y) ends with a y, then xx is a factor of H(xxy) =

(x . . . x)(x . . . x)(y . . . y). By the lemma, yy cannot also be a factor of H(xxy). In particular,

yy cannot be a factor of H(x) or H(y). Similarly, H(xyy) = (x . . . x)(y . . . y)(y . . . y), and

the lemma gives that xx cannot be a factor of H(x) or H(y). This forces H(x) = (xy)ix and

H(y) = (yx)jy for some integers i and j. Also, H(xy) = (xy)ix(yx)jy = (xy)i+j+1. Since

H(xy) is primitive, then i + j + 1 = 1. But then H is the identity morphism, which is a

contradiction. Thus, H(y) ends with an x.

(ii): H(x) ends with a y. If H(y) ends with an x, then H(xy) = (x . . . y)(y . . . x). So xx

and yy are factors of every conjugate of H(xy) sans potentially H(y)H(x) = (y . . . x)(x . . . y).

This contradicts Lemma 2.11, since H(xy) is a conjugate of a Christoffel word. Hence, H(y)

ends with a y.

In the case where H(x) begins with a y and H(y) begins with an x, study E ◦H instead.

Step 3: If M is a nonidentity Christoffel morphism, then there exists a morphism H :

{x, y}∗ → {x, y}∗ and an H′ ∈ {G,D, G̃, D̃} such that M = H′ ◦H. Let w ̸= ϵ be a word in

{x, xy}∗, that is, w is a concatenation of xs and xys. Clearly, yy cannot be a factor of w. On

the contrary, if yy is not a factor of w, then w must be a concatenation of xs and xys, hence

w ∈ {x, xy}∗. Similar definitions hold for the free monoids {x, yx}∗, {xy, y}∗, and {yx, y}∗.

The claim is that the image of M is in one of these four monoids. To prove the claim, use the

fact that G, D, G̃, and D̃ are injective. The image of each of the morphisms are in {x, xy}∗,

{yx, y}∗, {x, yx}∗, and {xy, y}∗, respectively, so the composition of H′−1 ◦M = H.

By the lemma, xx and yy cannot both be factors of M(xy). Assume yy is not a factor,

which implies yy is also not a factor of M(x) or M(y). Now, use Step 2, and there are five

cases to check:

(i): Assume M(x) and M(y) both begin with an x. Then the image of M is a subset of

{x, xy}∗. Thus, G−1 ◦M = H is a morphism on {x, y}∗.
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(ii): Assume M(x) and M(y) both begin with a y. By the lemma, neither may end with

a y as otherwise that would contradict our assumption that yy is not a factor of M(xy).

Therefore, both M(x) and M(y) end with an x ⇒ the images of M(x) and M(y) are in the

monoid {x, yx}∗. Thus G̃−1 ◦M = H is a morphism on {x, y}∗.

(iii): If M(x) and M(y) both end with an x. By similar logic, the images of M(x) and

M(y) are in the monoid {x, yx}∗, and G̃
−1 ◦M = H is a morphism on {x, y}∗.

(iv): If M(x) and M(y) both end with a y. By similar logic, the images of M(x) and

M(y) are in the monoid {x, xy}∗, and G−1 ◦M = H is a morphism on {x, y}∗.

(v): If xx is not a factor of M(xy) instead of yy, use the same cases above using D, D̃,

{yx, y}∗, and {xy, y}∗.

Step 4: Show that the morphism H obtained in Step 3 is a Christoffel morphism. Using

the decomposition, M = H′ ◦H where H′ ∈ {G,D, G̃, D̃}. Here is the case where H′ = G.

From Corollary 2.5, if G(w) is a Christoffel word, then w is also a Christoffel word. Suppose

G(w) is a conjugate of a Christoffel word, and let G(w) = uv where vu is a Christoffel word.

Since G(w) ∈ {x, xy}∗ ⇒ yy is not a factor of u or v, and v begins with and x and u ends

with a y, then u and v must also be in {x, xy}∗. Thus G−1(u) and G−1(v) are in {x, y}∗,

and w = G−1(u)G−1(v) ⇒ G−1(v)G−1(u) is a Christoffel word. The proofs for D, G̃, and

D̃ are all similar.

Step 5: Show that M = H′
1 ◦ · · · ◦ H′

n such that each H′
i ∈ {G,D, G̃, D̃}. By Step

4, M = H′ ◦ H for some H′ ∈ {G,D, G̃, D̃} where H is a Christoffel morphism. Thus,

|M(x)|+ |M(y)| > |H(x)|+ |H(y)|, and using induction on |M(x)|+ |M(y)| completes the

proof.

This decomposition will prove useful in later sections, particularly in the proof of the

Box Algorithm. In fact, the morphisms D and G̃ are not required to generate the monoid of

Christoffel morphisms, as D = E ◦G ◦E and G̃ = E ◦ D̃ ◦E, but they are included in order

to simplify the proof of Theorem 2.12.
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2.7 Standard Factorization

Every nontrivial Christoffel word can be factored into a product of two Christoffel words in

a unique way. Doing so leads to the construction of the Christoffel tree and will allow us to

build Christoffel words using a new algorithm. Many of the results are due to Jean-Pierre

Borel and François Laubie [4].

Definition 2.4. Let a and b be relatively prime with a, b > 0, and let (i, j) be the point with

label 1
a
on the Christoffel path of slope b

a
. The standard factorization of the Christoffel

word of slope b
a
is the factorization w = (w1, w2) with w1 encoding the portion from (0, 0) to

(i, j) and w2 encoding the portion from (i, j) to (a, b).

The point with label 1
a
is the point on the Christoffel path with minimum, nonzero vertical

distance to the line of slope b
a
. Since each label is attained exactly once on the Christoffel

path, this factorization is unique. It can then be shown that this factorization is the only

way to factor a Christoffel word as two Christoffel words.

Theorem 2.13. If (w1, w2) is the standard factorization of a nontrivial Christoffel word,

then w1 and w2 are Christoffel words.

Proof. Let a ⊥ b and let (i, j) be the point on the Christoffel path from (0, 0) to (a, b) with

label 1
a
. Let L be the line segment from (0, 0) to (a, b), L1 be the line segment from (0, 0)

to (i, j), and L2 be the line segment from (i, j) to (a, b). Suppose there is an integer point

on L1 or L2. Such a point must be on the Christoffel path, but then (i, j) would not be the

point with minimum label. The regions enclosed by L1 and the Christoffel path and L2 and

the Christoffel path also contain no integer points, since they are both a subset of the region

enclosed by L and the Christoffel path. This causes i ⊥ j, and (a− i) ⊥ (b− j). Therefore,

the words w1 and w2 obtained in the standard factorization are the Christoffel words of j
i

and b−j
a−i

, respectively.
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Figure 7: Point P is the point on the Christoffel path closest to the line of slope 3
4
. As such

the factorization (w1, w2) is obtained where w1 is the portion of the path from O to P and
w2 is the portion of the path from P to A. Both of the words are Christoffel words since
there are no integer points in the region contained by the Christoffel path and the lines OP
and PA.

The proof of the next theorem is due to Hugh Thomas.

Theorem 2.14. (Borel, Laubie [4]). A nontrivial Christoffel word w has a unique factoriza-

tion w = w1w2 where w1 and w2 are Christoffel words.

Proof. Let (w1, w2) be the standard factorization of a Christoffel word w of slope b
a
. By

definition, the word w is split at the point P = (i, j) on the Christoffel path with label

1
a
. Suppose there was a different factorization of w into Christoffel words (w3, w4). Such

a factorization would split at a point Q = (k, l) on the Christoffel path. Let O = (0, 0)

and A = (a, b), and consider the two triangles ∆OPA and ∆OQA. From the proof of

Theorem 2.13, ∆OPA contains no integer points in its interior or on its boundary, save for

its vertices. Since w3 and w4 are also Christoffel words, ∆OQA also has no integer points

in its interior or on its boundary, save for its vertices. Since each label occurs exactly once

on the Christoffel path for w, the label of (k, l) is not 1
a
. By Pick’s theorem, the area of
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Figure 8: The first few layers of the Christoffel tree are shown here.

∆OPA = ∆OQA = 0+ 1
2
(3)− 1 = 1

2
. Thus, the triangles ∆OPA and ∆OQA have the same

base and the same area but different heights. This is a contradiction.

2.8 The Christoffel Tree

We can construct a complete, binary tree using G and D̃. To do this, set (x, y) as the root.

For any pair of words (u, v) in the tree, the left branch is (u, v) ◦G = (u, uv) and the right

branch is (u, v) ◦ D̃ = (uv, v). A pair in the tree (u, v) is the morphism which takes (x, y)

to (u, v). These rules were introduced by Gerard Rauzy in [17]. The Christoffel tree is also

described in ([4],[11]).

Theorem 2.15. The Christoffel tree contains the standard factorization of each lower

Christoffel word exactly once.

Proof. The proof is in three steps.

Step 1: Show that each vertex on the Christoffel tree has the property that u, v, and

uv are Christoffel words. This follows from the definition. Each node (u, v) on the tree is

a composition of Gs and D̃s by construction, and since G and D̃ take Christoffel words to

Christoffel words, (u, v)(x), (u, v)(y), and (u, v)(xy) are all Christoffel words.
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Step 2: Show that a vertex (u, v) is the standard factorization of the Christoffel word uv.

Since u and v are Christoffel words by Step 1, (u, v) must be the standard factorization of

uv by Theorem 2.14.

Step 3: Let w be a Christoffel word. Show that the standard factorization of a Christoffel

word (w1, w2) occurs exactly once in the Christoffel tree. In other words, show that (w1, w2) =

(H1 ◦ · · · ◦Hn)(x, y) for a unique sequence of Hi ∈ {G, D̃} and an n ∈ N. First, suppose

that the slope of w = (u, v) is less than 1. We want to show that (G−1(u),G−1(v)) is the

standard factorizaton of G−1(uv). From the proof of Lemma 2.11, since yy is not a factor of

uv, it cannot be a factor of either u or v, which means that u and v are in {x, xy}∗, which

contains the image of G. Thus, G−1(u) and G−1(v) are Christoffel words by Corollary 2.5,

and hence must be the standard factorization of G−1(uv) by Theorem 2.14. If the slope of

w is greater than 1, use the same argument with D̃ instead. Thus, each Hi ∈ {G, D̃}.

All that remains is to show that the standard factorization occurs exactly once in the

Christoffel tree. This fact follows from the nature of binary trees. Being a left branch on the

tree corresponds with a precomposition with G and being a right branch corresponds with a

precomposition with D̃. Thus, if (u, v) is at two nodes on the Christoffel tree, then

(u, v) = (H1 ◦ · · · ◦Hm)(x, y)

(u, v) = (H′
1 ◦ · · · ◦H′

n)(x, y)

where m,n ∈ N and Hi,H
′
i ∈ {G, D̃}. To finish off the proof, note that the only Christoffel

word in the image of both G and D̃ is xy, which is the root of the tree. For all other words,

the slope must be either greater than 1 or less than 1, which forces H1 = H′
1, . . . ,Hm = H′

n

and m = n. Thus, the two routes down the tree are identical.
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2.9 Christoffel Morphisms and Standard Factorizations

The following theorem will be important in the proof of the box algorithm, and it neatly ties

together much of the preliminary material.

Theorem 2.16. A Christoffel morphism f maps Christoffel words to Christoffel words if and

only if f = (w1, w2) where (w1, w2) is the standard factorization of some Christoffel word.

Proof. (⇐): Suppose f = (w1, w2) where (w1, w2) is the standard factorization of some

Christoffel word. By Theorem 2.15, f = H1 ◦ · · · ◦Hn where n ∈ N and Hi ∈ {G, D̃}∗ ⇒ f

is composed of G’s and D̃’s, so f takes Christoffel words to Christoffel words.

(⇒): Suppose f takes Christoffel words to Christoffel words. Then

w1w2 = f(x)f(y) = f(xy) = w

where w,w1, and w2 are Christoffel words. Since the standard factorization of w is unique,

f = (w1, w2).
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3 Box Algorithm

3.1 Box Algorithm Definition and Proof

This section introduces the box algorithm which is used to find Christoffel words of a particular

slope by using standard factorizations. We begin with the definition and then prove that the

algorithm works. Finally, there will be a few examples.

Definition 3.1. Let b
a
be a reduced, positive rational number such that a, b ≥ 1. Let

Hi : {x, y}∗ → {x, y}∗ be morphisms. Define the box algorithm as follows:

1. Let a0 = a and b0 = b.

2. If ai = 1, set n = i and Hi(w) = (xybi−1, y)(w) and proceed to step 6. If bi = 1, set

n = i and Hi(w) = (x, xai−1y)(w) and proceed to step 6. Otherwise, proceed to step 3.

3. Use the division algorithm to find qi, ri ∈ Z such that ai = biqi + ri with 0 ≤ ri < bi. If

ri ≥ bi − ri, proceed to step 4. If ri < bi − ri, proceed to step 5.

4. Set Hi to be Hi(w) = (xqi+1y, xqiy)(w). Set ai+1 = ri and bi+1 = bi − ri Repeat from

step 2.

5. Set Hi to be Hi(w) = (xqiy, xqi+1y)(w̃). Set ai+1 = bi − ri and bi+1 = ri. Repeat from

step 2.

6. Set w = H0 ◦H1 ◦ ... ◦Hn−1 ◦Hn(xy).

Theorem 3.1. The box algorithm produces the Christoffel word of a given slope b
a
.

Proof. The proof requires two parts. First, show that H0, ..., Hn each take Christoffel words

to Christoffel words. Second, show that the word w obtained in step 6 of the algorithm is

the correct Christoffel word.
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Part 1 : Take cases depending on each type of Hi. Let i = 0, .., n.

Case (i), ai = 1 or bi = 1: If ai = 1, then Hi(w) = (xybi−1, y)(w). (xybi−1, y) is the

standard factorization of the Christoffel word of slope bi
1
, hence Hi takes Christoffel words

to Christoffel words by Theorem 2.16. Similarly, if bi = 1, then Hi(w) = (x, xai−1y)(w).

(x, xai−1y) is the standard factorization of the Christoffel word of slope 1
ai
, hence Hi takes

Christoffel words to Christoffel words by Theorem 2.16.

Case (ii), ri ≥ bi − ri: In this case, Hi(w) = (xqi+1y, xqiy)(w). Note that

(G)q ◦ D̃ ◦ (x, y) = (G)q ◦ (xy, y) = (xqi+1y, xqiy) = Hi,

so Hi is a composition of Gs and D̃s, thus Hi takes Christoffel words to Christoffel words.

Case (iii), ri < bi − ri: In this case, Hi(w) = (xqiy, xqi+1y)(w̃). Let F = (xqiy, xqi+1y).

Consider

Hi(w) = F (w̃) = F ◦ E ◦ E−1(w̃).

Since E ◦ E = (y, x) ◦ (y, x) = (x, y), E = E−1, so

Hi(w) = F ◦ E ◦ E(w̃),

thus

F ◦ E = (xqiy, xqi+1y) ◦ (y, x) = (xqi+1y, xqiy).

As seen in case (i), F ◦E takes Christoffel words to Christoffel words. It remains to be shown

that E(w̃) takes Christoffel words to Christoffel words.

Let w0 be a Christoffel word. Consider the lower Christoffel path for w0 of slope d
c
.

Reversing the word w0 and switching the xs and ys is analogous to constructing the word w′
0

by following the Christoffel path for w starting at (c, d) and ending at (0, 0) and considering

each vertical step an x and each horizontal step a y. Since the region between the Christoffel
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path and the line of slope d
c
contains no integer points, and w0 ends in a y ⇒ w′

0 starts with

an x, w′
0 is a lower Christoffel word. Thus, E(w̃0) is a Christoffel word, so Hi takes Christoffel

words to Christoffel words.

Part 2 : In order to use induction on n, it is necessary to show that the algorithm

eventually terminates. Of course, if a = 1 or b = 1, that algorithm terminates after one

iteration. Suppose ai, bi ̸= 1. For any ai ⊥ bi, the division algorithm yields qi, ri ∈ Z such

that ai = biqi + ri with 0 ≤ ri < bi. ai ⊥ bi ⇒ ri ̸= 0. Then both ri and bi − ri are less than

bi ⇒ both ai+1 and bi+1 are less than bi.

We need to show that ri and bi − ri are relatively prime. Let k divide both ri and bi − ri.

Then k divides any linear combination of ri and bi − ri, in particular,

k|qi(bi − ri) + (qi + 1)r0 = biqi + ri = ai and k|bi − ri + ri = bi ⇒ k = 1.

Thus, gcd(ri, bi − ri) = 1 ⇒ gcd(ai+1, bi+1) = 1. Note that for ai, bi > 1, ri ̸= 0, otherwise

ai = biqi ⇒ gcd(ai, bi) = bi > 1, which is a contradiction. Since ri also cannot be equal to bi,

ai+1 and bi+1 cannot be 0. By induction, ai = 1 or bi = 1 for some 0 ≤ i ∈ Z. The algorithm

can then be applied to ri
bi−ri

or bi−ri
ri

, and the algorithm will eventually terminate.

Now, use induction on n. In the case where n = 0, w = H0(xy) = xyb0 = xyb or

w = H0(xy) = xa0y = xay. In either case, w is the correct Christoffel word. Let n > 0 and

assume the theorem holds for 0 ≤ i < n. Since n > 2, a0, b0 ̸= 1. Since the algorithm takes

n−1 iterations to find the Christoffel word of slope b1
a1
, the resulting word w1 = H1◦...◦Hn(xy)

is correct by hypothesis.

If r0 ≥ b0−r0, w = H0(w0) = (xq0+1y, xq0y)(w0). w0 contains r0 instances of x and b0−r0

instances of y, so w contains

r0(q0 + 1) + (b0 − r0)q0 = r0q0 + r0 + b0q0 − r0q0 = b0q0 + r0 = a0 = a
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instances of x and

r0(1) + (b0 − r0)(1) = b0 = b

instances of y. If r0 < b0 − r0, then w = H0(w0) = (xq0y, xq0+1y)(w̃0). w0 and w̃0 both

contain b0 − r0 instances of x and r0 instances of y, so w contains

(b0 − r0)q0 + r0(q0 + 1) = a0 = a

instances of x and

(b0 − r0)(1) + r0(1) = b0 = b

instances of y. In either case, H0 takes Christoffel words to Christoffel words by Part 1, so

w = H0(w0) is the Christoffel word of slope b
a
.

3.2 Box Algorithm Examples

Example 3.1. a = 9 and b = 5.

First iteration: a0 = 9, b0 = 5. The division algorithm yields q0 = 1 and r0 = 4.

4 ≥ 5− 4 = 1, so a1 = r0 = 4 and b1 = b0 − r0 = 1, thus, H0(w) = (x2y, xy).

Second iteration: a1 = 4, b1 = 1. Then H1(w) = (x, x3y)(w).

Finally, w = H0 ◦ H1(xy) = H0(x
4y) = (x2y)4xy = xxyxxyxxyxxyxy, which is indeed

the Christoffel word of slope 5
9
.

Example 3.2. a = 6 and b = 13.

First iteration: a0 = 6, b0 = 13. Then q0 = 0 and r0 = 6. 6 < 13− 6 = 7, so a1 = 7 and

b1 = 6. H0(w) = (y, xy)(w̃).

Second iteration: a1 = 7, b1 = 6. Then q1 = 1 and r1 = 1. 1 < 6− 1 = 5, so a2 = 5 and

b2 = 1. H2(w) = (xy, x2y)(w̃).

Third iteration: a2 = 5, b2 = 1. Then H2(w) = (x, x4y)(w).
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Finally, w = H0 ◦ H1 ◦ H2(xy) = H0 ◦ H1(x
5y) = H0(x

2y(xy)5) = (xyy)5xyy2 =

xyyxyyxyyxyyxyyxyyy, which is the Christoffel word of slope 13
6
.

These examples can be reworked in a similar way which showcases more clearly how this

algorithm builds Christoffel words from Christoffel words.

Example 3.3 (Example 3.1 reworked). a = 9 and b = 5. So there are 9 xs and 5 ys.

First iteration: Take 5 boxes and place a y in each box. Then distribute the xs evenly

among the boxes by placing an x in each box until there are 4 left, and put each of the 4 left

in one of the boxes. Call boxes with the extra x A, and call the box without the extra x B.

Then there are 4 boxes A containing xxy and 1 box B containing xy. Repeat the process

with the As and Bs taking the place of the xs and ys, respectively.

Second iteration: Take a box and put the lone B in it. To distribute the As evenly, they

must all go in the lone box with B, call it box C. Now, ”unpack” the boxes:

C = AAAAB = xxyxxyxxyxxyxy,

which is the Christoffel word of slope 5
9
.

The box algorithm can be thought of as ”packing” the xs and ys of a into boxes. Evenly

distributing the xs among the ys is analogous to using the division algorithm in step 3. Since

the number of boxes of each type is determined in the same way as step 3, those boxes can

then be packed into boxes. This process repeats until there is only one of a type of box, at

which point the boxes are then ”unpacked,” revealing the Christoffel word. The previous

example dealt with the case when ri ≥ bi − ri, in which case, subsequent iterations consider

the boxes with the extra x as the xs for the next iteration and the boxes without the extra x

the ys for the next iteration. This reflects how the homomorphism Hi(w) = (xqi+1y, xqiy)(w)

contains an extra x in the first input. The next example deals with the case where ri < bi−ri.

Example 3.4. (Example 3.2 reworked) a = 6 and b = 13. So there are 6 xs and 13 ys.
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First iteration: Take 13 boxes and place a y in each box. Then distribute the xs evenly

among the boxes by placing each of them in a box. Call boxes with an x A, and call the

box without an x B. Then there are 6 boxes A containing xy and 7 boxes B containing y.

Repeat the process with the Bs and As taking the place of the xs and ys, respectively.

Second iteration: Take 6 boxes and place an A in each box. Then distribute the Bs evenly

like the previous iteration. Then there is 1 box D containing ABB and 5 boxes C containing

AB. Repeat the process with the Ds and Cs taking the place of the Bs and As, respectively.

Third iteration: Since there is only 1 D, the box E contains all the Cs and Ds. Now,

”unpack” the boxes:

E = CCCCCD = ABABABABABABB = xyyxyyxyyxyyxyyxyyy.
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3.3 GAP Implementation of the Box Algorithm

This algorithm takes a rational number p and produces the Christoffel word of slope p using
the box algorithm.

AppendPower := function(w, l, n) # Appends l instances of n to w

local i;

for i in [1..l] do

Append(w,[n]);

od;

return(w);

end;

cwbox := function(p) # Box Algorithm, p > 0

local r, q, a, b, w, wi, j, f, i;

a := DenominatorRat(p); #Step 1

b := NumeratorRat(p);

r := a mod b; # Division algorithm, Step 3

q := (a-r)/b;

if (a > 1 and b > 1) then

if (r < b-r) then

wi := cwbox(r/(b-r)); # Step 5

else

wi := cwbox((b-r)/r); # Step 4

fi;

else # Step 2

w := [];

AppendPower(w,a,0);

AppendPower(w,b,1);

return w;

fi;

w := []; # Step 6, the remaining code builds the word

f := Length(wi);

if (r >= b - r) then

for i in [1..f] do

if (wi[i] = 0) then

Append(w, [0]);

fi;

AppendPower(w,q,0);

Append(w, [1]);

od;

else

for i in [1..f] do
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if (wi[f - (i-1)] = 1) then

Append(w, [0]);

fi;

AppendPower(w,q,0);

Append(w, [1]);

od;

fi;

return w;

end;
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4 Nearest Word Algorithm

In this section, we develop the next algorithm: the nearest word algorithm. This algorithm

does not produce the Christoffel word of a given slope, but it does produce a particular

conjugate. In order to understand this algorithm we will first gain an understanding of

how the conjugates of a Christoffel word are related via the Burrows-Wheeler matrix. This

construction was introduced by Burrows and Wheeler in [6].

4.1 Burrows-Wheeler Matrix

Let w be a Christoffel word. The Burrows-Wheeler matrix of w is constructed by listing

w and its conjugates in lexicographic order (i.e. the ordering in a dictionary). For our

purposes, we only need for x to come before y in the ordering. As an example, here is the

Burrows-Wheeler matrix for the Christoffel word of slope 3
4
,

x x y x y x y

x y x x y x y

x y x y x x y

x y x y x y x

y x x y x y x

y x y x x y x

y x y x y x x

By studying BMW , certain patterns become apparent. These are summarized as prop-

erties in the following theorem

Theorem 4.1. Let w be the Christoffel word of slope b
a
. Let BWM(w) denote the Burrows-

Wheeler matrix for w. The following properties hold:

1. The first and last rows of BWM(w) are, respectively, the lower and upper Christoffel

words of slope b
a
.
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2. Any two consecutive rows of BWM(w) differ in exactly two consecutive positions.

3. The t-th row of BWM(w) is the reversal of the (a+ b− 1− t)-th row of BWM(w).

4. If the first row of BWM(w) is xuy, the last row is yux.

Proof. Proof of (1) and (2): Let w be the Christoffel word of slope b
a
, and let wt denote

the word obtained by reading |w| words along the path given by ww starting at the lattice

point T with label t
a
. In particular, w0 = w, and note that 0 ≤ t < a + b. Define nt(k)

to be the numerator of the label of the point k steps after T along the path for wt. That

is, nt(k) = t + bk mod (a + b). By Lemma 2.1, n0(k) and thus nt(k) takes on each of

n = 0, 1, ..., a+ b− 1 exactly once as k ranges over {0, . . . , a+ b− 1}. Suppose wt−1 and wt

are two consecutive conjugates. Observe that

nt(k) = t+ kb mod (a+ b) and nt−1(k) = (t− 1) + kb mod (a+ b)

⇒ nt(k) = nt−1(k) + 1 mod (a+ b).

Since nt(k) = 0 mod (a + b) at exactly one instance of k, say k′, then for k ̸= k′,

nt−1(k) mod (a+ b) < nt(k) mod (a+ b) and

0 = nt(k
′) mod (a+ b) < nt−1(k

′) = a+ b− 1 mod (a+ b).

Recall that the (k + 1)-st letter of a Christoffel word is x if and only if the label at the

k-th point on the Christoffel path is less than 1. Then the (k + 1)-st letter of wt is x if and

only if nt(k) mod (a + b) < a. By using this fact, a correspondence can be made between

nt(k) and wt. If 0 < nt(k) < a , then 0 ≤ nt−1(k) < a− 1 ⇒ the (k + 1)-st letters of wt and

wt−1 are both x. If a < nt(k) < a+ b, then a ≤ nt−1(k) < a+ b− 1 ⇒ the (k + 1)-st letters

of wt and wt−1 are both y. In the case that nt(k) = 0, k = k′ and nt−1(k
′) = a + b − 1, so

the (k + 1)-st letter of wt is x and the (k + 1)-st of wt−1 is y. All that remains is nt(k) = a,
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in which case the (k+1)− st letter of wt is y and the (k+1)− st of wt−1 is x. Observe that

nt(k
′ − 1) = t+ (k′ − 1)b = t+ k′b− b = nt(k

′)− b = −b = a indicating that this case occurs

at k = (k′ − 1). Thus, for any t = 1, 2, ..., a + b − 1, wt−1 = uxyv and wt = uyxv for some

u, v ∈ {x, y}∗.

Using this representation, wt is after wt−1 in lexicographic order, thus the (t+1)-st row of

BWM(w) is wt, finishing the proof for Part 2. To finish off Part 1, w0 = w by the definition

of wt. Recall from the proof of Lemma 2.9 that the conjugate path for the upper Christoffel

word of slope b
a
begins at the point with label a+b−1

a
. It follows that wa+b−1 is the upper

Christoffel word.

Proof of (3): Suppose w is the Christoffel word of slope b
a
. Define ˜BWM(w) to be the

Burrows-Wheeler matrix of w with each row reversed. Then E( ˜BWM(w)) is the Burrows-

Wheeler matrix for the Christoffel word of slope a
b
, w′. Next, define ρ(BWM(w)) to be the

Burrows-Wheeler matrix of w with the (t + 1)-th row swapped with the (a + b − 1 − t)-th

row. Since the reversal of w is wa+b−1, E(ρ(BWM(w))) is also the Burrows-Wheeler matrix

for w′. Then E( ˜BWM(w)) = E(ρ(BWM(w))) ⇔ ˜BWM(w) = ρ(BWM)(w).

Proof of (4): Observe that

n0(k) = kb mod (a+ b) and na+b−1(k) = (−1) + kb mod (a+ b)

⇒ n0(k) = na+b−1(k) + 1 mod (a+ b)

and proceed as in the proof for (1) and (2).

Using these facts, it is easy to show that the central rows of BWM(w) have a special

property.

Corollary 4.2. If a+ b is odd, the middle row which is the (a+b−1
2

)-nd row of BWM(w) is

a palindrome.
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Proof. Using Part (3) of Theorem 4.1, the (a+b−1
2

)-nd row is the reversal of the (a+ b− 1−
a+b−1

2
)-nd row. Observe that a+ b− 1− a+b−1

2
= 2a+2b−2

2
− a+b−1

2
= a+b−1

2
, and the proof is

done.

A similar result is found when a+ b is even, and although no conjugates are palindromes

a certain pair of conjugates which are reversals of each other are close to being palindromes.

Corollary 4.3. If a+b is even, the (a+b−2
2

)-nd and (a+b
2
)-nd row of BWM(w) are respectively

of the form uxyũ and uyxũ for some u ∈ {x, y}∗.

Proof. By Part (3) of Theorem 4.1, the (a+b−2
2

)-nd row of BWM(w) is the reversal of the

(a+b
2
)-nd row. Observe that

na+b−2
2

(
a+ b− 2

2
) =

a+ b− 2

2
+

a+ b− 2

2
b = −1− b = a− 1, and

na+b
2
(
a+ b− 2

2
) =

a+ b

2
+

a+ b− 2

2
b = −b = a.

Thus, the x and y at the (a+b−2
2

)-nd and (a+b
2
)-nd position of the wa+b−2

2
and wa+b

2
swap.

This swap is guaranteed to occur only once between two consecutive rows of BWM(w) by

Part (2). Note that the positions of the swapping are the two in the middle of the word, so

wa+b−2
2

= uxyv and wa+b
2

= uyxv where u, v ∈ {x, y}∗ and |u| = |v|. But Part (3) gives that

ṽyxũ = uyxv, so ũ = v.

4.2 Nearest Word Algorithm

The next algorithm does not produce a Christoffel word, but it either produces a conjugate

of a Christoffel word which is a palindrome, or it produces two conjugates of a Christoffel

word which are reversals of one another. Interestingly, this algorithm arises from producing

a sequence of unit steps on the gridded integer lattice which lie as ”close” to the line of slope

b
a
as possible.
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Definition 4.1. Let a and b be relatively prime, positive integers. Define the nearest word

algorithm as follows:

1. Set i = j = 0. Let w be an empty word.

2. Repeat steps 2 through 4 until i+ j = a+ b.

(i) If |j − b
a
(i+ 1)| < |(j + 1)− b

a
(i)|, proceed to step 3.

(ii) If |j − b
a
(i+ 1)| > |(j + 1)− b

a
(i)|, proceed to step 4.

(iii) If |j − b
a
(i+ 1)| = |(j + 1)− b

a
(i)|, proceed to either step 3 or step 4.

3. Append an x to w and set i = i+ 1.

4. Append a y to w and set j = j + 1.

Theorem 4.4. Let a and b be relatively prime, positive integers. The nearest word algorithm

on a and b produces a conjugate(s) of the Christoffel word of slope b
a
. If a + b is odd, this

conjugate is a palindrome. If a+ b is even, the algorithm produces two conjugates which are

reversals of each other.

Proof. Let a and b be relatively prime, positive integers, and let w be the Christoffel word

of slope b
a
. Let L be the line of slope b

a
passing through the origin. Recall from the proof of

Lemma 2.9 that there is a unique point P on the Christoffel path C of w which has maximum

vertical distance from L. This is the point with label a+b−1
a

, and let L′ be the line of slope

b
a
passing through point P . As explained in the proof of Lemma 2.9, there are no integer

points in the region R between L and L′ inclusive which are not on C. The proof is now split

in two cases.

Case 1, a + b is odd: Let L̄ be the line y = b
a
x− a+b−1

2
. Note that L̄ is exactly halfway

between L and L′. The line L̄ also passes through the point P . Suppose P = (x0, y0), and

for an integer point (i′, j′) let (i, j) = (i′, j′) − P . Suppose i′ ≥ x0 and j′ ≥ y0, and then
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compare the vertical distance of (i′ + 1, j′) and (i′, j′ + 1) to L̄. Observe that

|(j′ + 1)− b

a
i′| = |(j + y0 + 1)− b

a
(i+ x0)| = |(j + y0 + 1)− b

a
i− y0)|

= |(j + 1)− b

a
i|, and

|j′ − b

a
(i′ + 1)| = |(j + y0)−

b

a
(i+ x0 + 1)| = |(j + y0)−

b

a
(i+ 1)− x0)|

= |j − b

a
(i+ 1)|.

Now, consider what happens when (i′, j′) is a point on the path encoded by ww. In this

scenario, either (i′ + 1, j′) is on the path or (i′, j′ + 1) is on the path. Suppose (i′ + 1, j′)

is on the path which forces (i′, j′ + 1) to be above the line L. Thus, |(j + 1)− b
a
i| > a+b−1

2a

and |j − b
a
(i + 1)| ≤ a+b−1

2a
since (i′ + 1, j′) is on the path and therefore between L and L′.

Consequently, |j − b
a
(i+1)| < |(j +1)− b

a
i|. The step from (i′, j′) to (i′ +1, j′) encodes an x.

A similar inequality arises in the case when (i′, j′ + 1) is on the path. In this case,

(i′+, j′ − 1) is below the line L′. Thus, |(j +1)− b
a
i| ≤ a+b−1

2a
and |j − b

a
(i+1)| > a+b−1

2a
since

(i′, j′ + 1) is on the path and hence between L and L′. Thus, |j − b
a
(i+ 1)| > |(j + 1)− b

a
i|.

The step from (i′, j′) to (i′, j′ + 1) encodes a y.

Define the sequence (i′, j′)k with 0 ≤ k < a+b with (i′, j′)0 = P . Let (i, j)k = (i′, j′)k−P ,

thus (i, j)0 = (0, 0). Let (i′, j′)k+1 = (i′ + 1, j′) if |j − b
a
(i + 1)| < |(j + 1) − b

a
i|, and

(i′, j′)k+1 = (i′, j′ + 1) if |j − b
a
(i + 1)| > |(j + 1) − b

a
i|. By the above inequalities, (i′, j′)k

forms, in order, the integer points on the path of ww from P to the second point with label

a+b−1
2a

. This is precisely the conjugate of w beginning at P which is the (a+b−1
2

+ 1)-st row of

BWM(w) which is a palindrome by Corollary 4.2.

Case 2, a + b is even: There are two possible starting points which will necessarily be

considered: the point on the path with label a+b−2
2a

and the point with label a+b
2a

. Let L̄ be the

line of slope b
a
which passes through the point P with label a+b−2

2a
. Suppose P = (x0, y0), and

for an integer point (i′, j′) define (i, j) = (i′, j′)− P . As before, suppose i′ ≥ x0 and j′ ≥ y0.
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Figure 9: The point P has label 2
3
, and the line L̄ which passes through P evenly splits L

and L′. The Christoffel path stays between L and L′. The nearest word algorithm produces
the portion of the path from P to the next integer point intersecting L̄.

The same procedure from Case 1 will be used to find vertical distances to L̄; however, there

is one situation which will be accounted for separately.

Suppose (i′, j′) is a point on w with (i′, j′ + 1) lying above L. In addition, assume the

vertical distance from (j′ + 1, i′) to L is greater than 1
a
. Recall that (i′ + 1, j′) is on the path,

and the vertical distance from (i′ + 1, j′) to L̄ is less than or equal to a+b
2a

. Then

|(j′ + 1)− b

a
i′| = |(j + y0 + 1)− b

a
(i+ x0)| = |(j + y0 + 1)− b

a
i− y0)|

= |(j + 1)− b

a
i| > a+ b− 2

2a
+

1

a
=

a+ b

2a
, and

|j′ − b

a
(i′ + 1)| = |(j + y0)−

b

a
(i+ x0 + 1)| = |(j + y0)−

b

a
(i+ 1)− x0)|

= |j − b

a
(i+ 1)| ≤ a+ b

2a
.
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Thus, |j− b
a
(i+1)| < |(j+1)− b

a
i|. In the case that (j′+1, i′) has vertical distance of exactly

1
a
to L̄, the equation

|(j + 1)− b

a
i| = a+ b− 2

2a
+

1

a
=

a+ b

2a
and

|j − b

a
(i+ 1)| = 1− a+ b− 2

2a
− 1

a
+

b

a
=

a+ b

2a

is obtained. Thus, |(j + 1)− b
a
i| = |j − b

a
(i+ 1)|. Note that this only occurs when the label

of (i′, j′) is a−1
a
, since 1− 1

a
= a−1

a
. Call P ′ the point with label a−1

a
. This lines up with the

(a+b−2
2

)-nd step of the (a+b−2
2

)-nd row of BWM(w) because na+b−2
2

(a+b−2
2

) = a+b−2
a

+ a+b−2
2

b =

−b− 1 = a− 1 mod (a+ b).

In the case where (i′ + 1, j′) is below L′, then

|j′ − b

a
(i′ + 1)| = |j − b

a
(i+ 1)| > a+ b

2a
and

|(j′ + 1)− b

a
i′| = |(j + 1)− b

a
i| ≤ a+ b

2a
⇒

|(j + 1)− b

a
i| < |j − b

a
(i+ 1)|.

Define the sequence (i′, j′)k with 0 ≤ k < a + b such that (i′, j′)0 = P . Let (i, j)k =

(i′, j′)k−P , thus (i, j)0 = (0, 0). Let (i′, j′)k+1 = (i′+1, j′) if |j− b
a
(i+1)| < |(j+1)− b

a
i|, and

(i′, j′)k+1 = (i′, j′+1) if |j− b
a
(i+1)| > |(j+1)− b

a
i|. At (i′, j′)′k = P ′, |j− b

a
(i+1)| = |(j+1)− b

a
i|,

in which case (i′, j′)k′+1 can be either (i′+1, j′) or (i′, j′+1). The choices eventually reunite at

(i′+1, j′+1), which is on the path. If (i′+1, j′) is chosen, then (i′, j′)k′+2 = (i′+1, j′+1) because

|(jk +1)− b
a
(ik +1)| ≤ a+b

2a
since (i′+1, j′+1) is between L and L′ and |jk − b

a
(ik +2)| > a+b

2a

since (i′ + 1, j′ + 1) is on the path ⇒ (i′ + 2, j′) is not on the path. If (i′, j′ + 1) is chosen,

then (i′, j′)k′+2 = (i′ + 1, j′ + 1) since |(jk + 2)− b
a
ik| > 1

a
+ a+b−2

2a
= a+b

2a
.

In summary, there are two possible paths defined by (i′, j′)k. One choice follows the

Christoffel path encoding the word wa+b−2
2

, and the other choice is obtained by swapping the
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x and y in the (a+b−2
2

)-nd and (a+b
2
)-nd places of wa+b−2

2
, which produces wa+b

2
. By Corollary

4.2, the (a+b−2
2

)-nd and (a+b
2
)-nd row of BWM(w) are reversals of each other, and the proof

is complete.

Here are a few examples:

Example 4.1. Let a = 7 and b = 2. Let w be the empty word.

1. i = j = 0, |0− 7
2
(1)| = 7

2
> 1 = |1− 7

2
(0)|. w = y, and i = 0, j = 1.

2. i = 0, j = 1, |1− 7
2
(1)| = 5

2
> 2 = |2− 7

2
(0)|. w = yy, and i = 0, j = 2.

3. i = 0, j = 2, |2− 7
2
(1)| = 3

2
< 3 = |3− 7

2
(0)|. w = yyx, and i = 1, j = 2.

4. i = 1, j = 2, |2− 7
2
(2)| = 5 > 1

2
= |3− 7

2
(1)|. w = yyxy, and i = 1, j = 3.

5. i = 1, j = 3, |3− 7
2
(2)| = 4 > 1

2
= |4− 7

2
(1)|. w = yyxyy, and i = 1, j = 4.

6. i = 1, j = 4, |4− 7
2
(2)| = 3 > 3

2
= |5− 7

2
(1)|. w = yyxyyy, and i = 1, j = 5.

7. i = 1, j = 5, |5− 7
2
(2)| = 2 < 5

2
= |6− 7

2
(1)|. w = yyxyyyx, and i = 2, j = 5.

8. i = 2, j = 5, |5− 7
2
(3)| = 11

2
> 1 = |6− 7

2
(2)|. w = yyxyyyxy, and i = 2, j = 6.

9. i = 2, j = 6, |6 − 7
2
(3)| = 9

2
> 0 = |7 − 7

2
(2)|. w = yyxyyyxyy, and i = 2, j = 7.

i+ j = 9 = a+ b, and the algorithm is complete.

Indeed, w = yyxyyyxyy is the correct conjugate.

The next example involves the case when a+ b is even.

Example 4.2. Let a = 3 and b = 5. Let w be the empty word.

1. i = j = 0, |0− 3
5
(1)| = 3

5
< 1 = |1− 3

5
(0)|. w = x, and i = 1, j = 0.

2. i = 1, j = 0, |0− 3
5
(2)| = 6

5
> 2

5
= |1− 3

5
(1)|. w = xy, and i = 1, j = 1.

38



3. i = 1, j = 1, |1− 3
5
(2)| = 1

5
< 7

5
= |2− 3

5
(1)|. w = xyx, and i = 2, j = 1.

4. i = 2, j = 1, |1 − 3
5
(3)| = 4

5
= 4

5
= |2 − 3

5
(2)|. Going forward there are two possible

words: w = xyxx and w′ = xyxy, and either i = 3 and j = 1 or i = 2 and j = 2.

5. If i = 3, j = 1, |1 − 3
5
(4)| = 7

5
> 1

5
= |2 − 3

5
(3)|. Then w = xyxxy. If i = 2, j = 2,

|2− 3
5
(3)| = 4

5
< 11

5
= |3− 3

5
(2)|. Then w′ = xyxyx. In either case, i = 3, j = 2.

6. i = 3, j = 2, |2− 3
5
(4)| = 2

5
< 4

5
= |3− 3

5
(3)|. w = xyxxyx or w′ = xyxyxx, and i = 4,

j = 2.

7. i = 4, j = 2, |2 − 3
5
(5)| = 1 > 3

5
= |3 − 3

5
(4)|. w = xyxxyxy or w′ = xyxyxxy, and

i = 4, j = 3.

8. i = 4, j = 3, |3 − 3
5
(5)| = 0 < 8

5
= |4 − 3

5
(4)|. w = xyxxyxyx or w′ = xyxyxxyx.

i+ j = 8 = a+ b, and the algorithm ends.

The words w and w′ are produced, which are the correct conjugates. Also, w̃ = w′, and

taking u = xyx gives that w = uxyũ and w′ = uyxũ.

There is another way to define Step 2 of the nearest word algorithm which has an identical

output. Instead of checking vertical distance, this version checks horizontal distance, and the

proof is analogous to the proof of the vertical case.

39



4.3 GAP Implementation of Nearest Word Algorithm

In the case when a+ b is even, the program produces the word which is the (a+b−2
2

)-nd row

of BWM(w).

NearestWord := function(r)

local l, word, x, y, i, a, b;

a := DenominatorRat(r);

b := NumeratorRat(r);

l := a + b;

word := []; # Step 1

x := 0;

y := 0;

for i in [1..l] do # Step 2

if (AbsoluteValue(y-(b/a)*(x+1))<=AbsoluteValue((y+1)-(b/a)*x)) then

Append(word,[0]); # Step 3

x := x + 1;

else

Append(word,[1]); # Step 4

y := y + 1;

fi;

od;

return(word);

end;
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5 Continued Fractions

This section observes the connection between Christoffel words and continued fractions. Much

of the work discussed is based on a note written by Henry J. Smith in 1876 [18], and his

explanation presents a connection to the integer characterization which will be used in Section

6. An algorithm which produces Christoffel words based on continued fraction representations

is included.

5.1 Definition of Continued Fractions

Definition 5.1. Let α = b
a
be a rational number. Construct a sequence as follows:

1. Set b0 = α and a0 = ⌊b0⌋.

2. If i > 0 and ai−1 ̸= bi−1, then set

bi =
1

bi−1 − ai−1

and ai = ⌊bi⌋.

3. If i > 0 and ai−1 = bi−1, the recursion terminates.

The resulting sequence [a0, ..., an] is called the simple continued fraction representation of α

and can also be written

α = a0 +
1

a1 +
1

a2 +
1

· · ·+ 1

an

.

Since α is a rational number, the sequence will always terminate. Furthermore, for 0 ≤ i ≤ n

the i-th continuant is the rational number obtained from the sequence [a0, ..., ai].
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It is important to note that every rational number has two continued fraction represen-

tations, [a0, ..., an] and [a0, ..., an − 1, 1]. Using continued fractions, Smith formulated the

following characterization of Christoffel words.

Theorem 5.1. (Smith [18]) A word w = xuy is a Christoffel word if and only if uxy = sn or

uyx = sn where sn is defined recursively as s−1 = x, s0 = y, and si+1 = scii si−1 for 0 ≤ i < n,

where [c0, . . . , cn] is the continued fraction representation of wy

wx
.

The following example uses both continued fraction representations.

Example 5.1. Let w be the Christoffel word of slope 8
3
. Begin by finding the continued

fraction representations.

b0 =
8

3
, a0 =

⌊
8

3

⌋
= 2

b1 =
1

8
3
− 2

=
1
2
3

=
3

2
, a1 =

⌊
3

2

⌋
= 1

b2 =
1

3
2
− 1

=
1
1
2

= 2, a2 = ⌊2⌋ = 2

Thus, the two representations are [2, 1, 2] and [2, 1, 1, 1]. Using the shorter representation,

the Christoffel word can be obtained as such:

s−1 = x, s0 = y

s1 = s20s−1 = y2x

s2 = s11s0 = (y2x)1y = y2xy

s3 = s22s1 = (y2xy)2y2x = yyxyyyxyyyx.
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Thus, u = yyxyyyxyy ⇒ w = xuy = xyyxyyyxyyy, which is indeed the correct Christoffel

word. Using the other continued fraction representation yields

s−1 = x, s0 = y

s1 = s20s−1 = y2x

s2 = s11s0 = (y2x)1y = y2xy

s3 = s12s1 = (y2xy)1y2x = y2xy3x

s4 = s13s2 = (y2xy3x)1y2xy = yyxyyyxyyxy.

The word u obtained is the same as before, as is w; notably, the yx at the end of s3 in the

first changed to an xy at the end of s4.

Remark If n is odd, sn ends in yx. If n is even, sn ends in xy. This is because sn+1 = scnn sn−1

ends with the same letter as sn−1. Since s−1 = x and s0 = y, an induction on n shows this

remark to be true.

This theorem can be used in the other direction to find the continued fraction represen-

tation of a rational number from the Christoffel word. Let v = uxy. Let c0 be the highest

power of y which is a prefix of v. Suppose that s1, s2, . . . , si+1 and c0, c1 . . . , ci have already

been found. Then ci+1 is the highest integer k such that ski+1si is a prefix of v. If v = uxy

does not work, try v = uyx. Here is an example using the Christoffel word of slope 8
3
.

Example 5.2. Suppose w = xyyxyyyxyyy, and let v = yyxyyyxyyxy. The highest power of

y which is a prefix of v is 2, so c0 = 2. From the theorem, s−1 = x, s0 = y, and si+1 = scii si−1.

Thus, s1 = s20s−1 = y2x. The highest power of s1 = y2x which is a prefix of v is 1 = c1. Then,

s2 = s11s0 = y2xy, and the highest power of s2 which is a prefix of v is 2 = c2. However,

s3 = s22s1 = yyxyyyxyyyx ̸= v, but this can be fixed be setting v = yyxyyyxyyyx and

repeating the same calculations. Hence, the continued fraction representation of 8
3
is [2, 1, 2],

and the second representation must be [2, 1, 1, 1].
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5.2 Recursive Continued Fractions Algorithm

The following algorithm is related to Theorem 5.2, and it also creates a relationship to the

standard factorization of Christoffel words. This algorithm is called the recursive continued

fractions algorithm, which is abbreviated as RCFA.

Theorem 5.2. Suppose b
a
is a reduced rational number and has continued fraction representa-

tion [c0, . . . , cn]. If n = 0, define w0 = xyc0 . If the continued fraction is empty, by convention

n = −1 and w−1 = y. Suppose n > 0. Let wn−2 be the Christoffel word of ratio with

convergent [c0, . . . , cn−2] and wn−1 the Christoffel word of ratio with convergent [c0, . . . , cn−1].

The Christoffel word wn of slope b
a
is wn = wn−2w

cn
n−1 if n is even and wn = wcn

n−1wn−2 if n is

odd.

Proof. A proof by induction will suffice. Clearly, the base cases n = −1 and n = 0 work, so

assume that wn−2 is the Christoffel word of ratio with convergent [c0, . . . , cn−2] and wn−1 is

the Christoffel word of ratio with convergent [c0, . . . , cn−1]. There are two cases based on the

parity of n.

Case 1, n is odd: By the remark, sn−1 ends with xy and sn ends with yx. From Theorem

5.1, sn+1 = scnn sn−1, sn−1 = un−1xy, and sn = unyx for some words un−1, un. Then sn+1 =

(unyx)
cn(un−1xy) ⇒ wn = x(unyx)

cnun−1y = (xuny)
cnxun−1y = wcn

n−1wn−2.

Case 2, n is even: By the remark, sn−1 ends with yx and sn ends with xy. From

Theorem 5.1, sn+1 = scnn sn−1, sn−1 = un−1yx, and sn = unxy for some words un−1, un. Then

sn+1 = (unxy)
cn(un−1yx) ⇒ w = x(unxy)

cnun−1y. Thus, the upper Christoffel word of b
a
is

w′ = y(unxy)
cnun−1x = (yunx)

cnyun−1x. By Theorem 4.1, w̃′ = w ⇒ xũn−1y(xũny)
cn , and

thus xũn−1y = xun−1y = wn−2 and xũny = xuny = wn−1. Thus, w = wn−2w
cn
n−1.

Corollary 5.3. Let n > 0. If [c0, . . . , cn] is the continued fraction representation of b
a

and cn = 1, then the words wn−2 and wn−1 obtained in Theorem 5.2 form the standard
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factorization of wn, the Christoffel word of slope b
a
. If n is even, wn = wn−2wn−1. If n is odd,

w = wn−1wn−2.

Proof. The words wn−2 and wn−1 are Christoffel words by Theorem 5.1. Since cn = 1, either

wn = wn−2wn−1 or wn = wn−1wn−2. Either way, since factorization into two Christoffel words

is unique, this must be the standard factorization.

If the convergent [c0, . . . , cn] does not end with cn = 1, then a separate factorization

wn = wn−2w
cn
n−1 or wn = wcn

n−1wn−2 is obtained. Here, w is factored into more than two

Christoffel words.

Example 5.3. Find the Christoffel word of slope 8
3
using Theorem 5.2. The continued

fraction representations of 8
3
are [2, 1, 2] and [2, 1, 1, 1]. Use the second representation.

1. n = −1, w−1 = y and n = 0, w0 = xy2.

2. n = 1, w1 = wc1
0 w−1 = (xy2)1y = xy3

3. n = 2, w2 = w0w
c2
1 = xy2(xy3)1 = xy2xy3

4. n = 3, w3 = wc3
2 w1 = (xy2xy3)1xy3 = xyyxyyyxyyy.

This is indeed the correct Christoffel word, and (w2, w1) is also the standard factorization of

wn by Corollary 5.3.

Using the factorizations in Theorem 5.2, we can observe a well known fact about continued

fractions.

Corollary 5.4. Let [c0, . . . , cn] be the continued fraction representation of a rational number

α with n ≥ 0. Let 0 ≤ i < n. If i is even, the i-th continuant of α is less than α. If i is odd,

the i-th continuant of α is greater than α. Furthermore, as i increases, the even continuants

increase and the odd continuants decrease.
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Proof. Use induction on n. For n = 0, the statement is vacuously true. For n = 1, [c0, c1] =

c0 +
1
c1

> c0 = [c0]. Suppose that the statement holds for 0 ≤ k < n. We will handle the

proof for the even case, with the odd case being analogous. Let [c0, . . . , cn] be the continued

fraction representation of α with n even. By Theorem 5.2, the Christoffel word obtained

used the RCFA is wn = wn−2w
cn
n−1. The slope of wn−2 must be less than the slope of wn

since wn−2 encodes the path from the origin to some point below the line of slope α. The

slope of wn−1 must be greater than the slope of wn since (wn−1)
cn encodes the path from

some point below the line of slope α to a point intersecting the line of slope α. Since wn−2

has slope the convergent [c0, . . . , cn−2] and wn−1 has slope the convergent [c0, . . . , cn−1], then

[c0, . . . , cn−2] < [c0, . . . , cn] < [c0, . . . , cn−1]. By the induction hypothesis,

[c0] < [c0, c1, c2] < · · · < [c0, . . . , cn−2] < [c0, . . . , cn] and

[c0, . . . , cn] < [c0, . . . , cn−1] < · · · < [c0, c1, c2, c3] < [c0, c1].
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5.3 GAP Implementation of RCFA

To use the algorithm, type

rcfa(r)

where r is a reduced, rational number.

cf:=function(a,b) # Finds the continued fraction representation

local x;

x:=Indeterminate(Integers);

return ContinuedFractionExpansionOfRoot(a*x-b,30);

end;

evenConv:=function(w_1,w_2,n) # Builds w if n is even

local i, w;

w := w_1;

for i in [1..n] do

w := Concatenation(w,w_2);

od;

return(w);

end;

oddConv:=function(w_1,w_2,n) # Builds w if n is odd

local i, w;

w := w_2;

for i in [1..(n-1)] do

w := Concatenation(w,w_2);

od;

w := Concatenation(w,w_1);

return(w);

end;

rcfa:=function(r)

local a, b, c, w, l, w_1, w_2, i, j;

if (r = 0) then

return([0]);

fi;

a := DenominatorRat(r);

b := NumeratorRat(r);

c := cf(a,b);

w := [];
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l := Length(c);

w_1 := [1];

w_2 := [0];

for i in [1..c[1]] do # Case when n = 0

Append(w_2,[1]);

od;

w := w_2;

for j in [2..Length(c)] do

if (IsEvenInt(j+1)) then

w := evenConv(w_1,w_2,c[j]);

else

w := oddConv(w_1,w_2,c[j]);

fi;

w_1 := w_2;

w_2 := w;

od;

return(w);

end;
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6 Calendar Systems

We conclude this thesis with an application. In order to reconcile periodic systems present in

astronomy, scientists and philosophers attempted to accurately align the calendar year with

natural events. To do this they had to understand how multiple periodic systems interacted.

6.1 Periodic Phenomena

There are multiple phenomena on which ancient societies based their calendar systems: the

tropical year, the lunar month, and the spring and autumn equinoxes. These periodic

phenomena do not exactly coincide on a regular basis, but astronomers in that time created

systems which would keep their calendar year aligned with natural cycles. In order to

maintain this alignment, scientists would have superimposed two periodic phenomena, which

is described in the following theorem.

Theorem 6.1. Suppose p and q are relatively prime, positive integers. Set P = {ip | 0 < i <

q} and Q = {jq | 0 < j < p}. Write P ∪ Q as A = {a1, a2, . . . , an} where a1 < a2, · · · < an

and n = p+ q− 2. Then the word xw1w2 . . . wny where wi = x if ai ∈ P and wi = y if ai ∈ Q

is the Christoffel word of slope q
p
.

Proof. Let L be the line segment from (0, 0) to (a, b). Divide L in two ways. In the first

way, divide L into p segments P1, . . . , Pp of equal length. In the second way, divide L into q

segments Q1, . . . , Qq of equal length. Let S denote the set of endpoints of the line segments

Pi, Qj, not including the endpoints of L. Using this construction, ai ∈ A corresponds with

the i-th point in S from (0, 0). Also, ai ∈ P ⇔ ai corresponds to an endpoint of some Pk.

The endpoints of the Pk are the points on L which intersect vertical lines at integer intervals,

which are the points in Int(p, q) which correspond to horizontal steps on the Christoffel path.

The argument for when ai ∈ Q is similar.
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An average tropical year is about 365.24 days. Some cultures, both modern and ancient,

base their calendar systems on the lunar month and solar year. However, twelve lunar

months is slighter shorter than a tropical year, about 354.36 days, and thirteen lunar months

is slightly longer, about 383.90 days. To reconcile this, there is a cycle of twelve-month and

thirteen-month years. In the 5th century BC, Meton of Athens judged the cycle to last 6,940

days, which is approximately 19 years, and this pattern is called a Metonic Cycle.

6.2 The Hebrew Calendar

The Hebrew calendar is a lunisolar calendar, and there is a 19-year cycle with 12-month regular

years and 13-month leap years on years 3, 6, 8, 11, 14, 17, and 19. By letting x represent a 12-

month year and y represent a 13-month year, the word xxyxxyxyxxyxxyxxyxy describes this

cycle. This is not a Christoffel word, but it is a conjugate of the Christoffel word of ratio 7
12
,

which is xxyxxyxxyxyxxyxxyxy. Before the Hebrew Calendar was standardized, scientists

relied on observation to determine when to insert a leap year. As such, the cycle is not exactly

a Christoffel word, because the ratio does not exactly approximate the astronomical ratio.

The advantages were that the calendar did not drift and that religious observances were on

the proper dates. When the system was standardized, the 19-year cycle was established,

which caused the calendar to drift slightly.

Others have proposed using continued fractions and Christoffel words to create more

accurate calendar systems. For example, there was proposal to change the current Hebrew

calendar to a 353-year system with 130 leap years, the distribution of which is determined

by the Christoffel word associated with the ratio 130
223

. This ratio is a closer approximation to

the astronomical ratio than 7
12
.
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6.3 The Gregorian Calendar

The Gregorian calendar is a solar calendar with regular 365-day years and 366-day leap years.

The rules for their inclusion are as follows: if the year is divisible by 4, it is a leap except

years which are both divisible by 100 and not divisible by 400. Representing regular years

with an x and leap years with a y, the word w′ = (((x3y)24x4))3(x3y)25 represents the pattern

of leap years. Note that this system involves 303 regular years and 97 leap years, and the

Christoffel word of ratio 97
303

can be calculated using the RCFA. The convergent of 97
303

is

[0, 3, 8, 12], and thus the Christoffel word is w = (x(x3y)8)12x3y. Clearly, w′ ̸= w and w′ is

not a conjugate of w since (x3y)24 is not a factor of w. This explains why the solstices and

equinoxes are not as consistent in the Gregorian calendar system. For example, the spring

equinox has occurred as early as March 19th and as late as March 21st.

However, this calculation is related to a truer approximation of the astronomical cycle.

Consider the 2nd continuant of [0, 3, 8, 12], which is 8/25. If there are 8 leap years and 25

regular years, the average year length is ((8 ·366)+(25 ·365))/33 ≈ 365.2424 days. If there are

97 leap years and 303 regular years, the average year length is ((97 · 366) + (303 · 365))/33 =

365.2425 days. The actual length of the tropical year is currently about 365.2422, thus the

33-year cycle would create a more accurate system than the 400-year cycle of the Gregorian

calendar in terms of tracking celestial phenomena. However, the division-by-4 rule makes

the Gregorian calendar much easier to remember than the 33-year system.
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