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ABSTRACT

This study used ocean observations, 16 rRNA, and taxonomic insights to understand the
relationships between meltwater-modified ocean circulation, iron supply, and pelagic bacterial
community structure in the Amundsen Sea Polynya (ASP), Antarctica. Polynyas are marine
ecosystems characterized by seasonal sea ice cover and massive phytoplankton blooms; the ASP
is one of the most productive polynyas globally. Ocean models of the ASP suggest the
importance of an "iron conveyor belt,” comprising iron-rich deepwater upwelled via meltwater
entrainment under ice-shelf cavities, delivering key micronutrients to the phytoplankton. How
the microbial community changes along this “conveyor belt,” and the influence of bacteria on the
bioavailability of the iron, was yet to be explored. This research found distinct communities in
each water mass, characterized by location within the ASP, suggesting community succession
along the route. Aerobic decomposers dominated in the surface waters, within and below the
bloom, while bottom-water communities included known siderophore producers. Communities
likely performing nitrification and sulfur-oxidization were found near the ice shelf. Our findings
indicate a possible coupling of the nitrogen and iron cycle in this system.
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INTRODUCTION

When the coastal Antarctic becomes exposed to more sunlight in the austral summer, sea
ice floes from the previous winter begin to melt (Stammerjohn et al. 2012; Arrigo and van
Dijken 2003; Giddy et al. 2023). Coastal polynyas, characterized by open water surrounded by
sea ice, form from solar heating, higher temperatures, and catabatic winds pushing the sea ice out
and away from the ice shelves (Parish and Cassano 2003). The Southern Ocean is considered a
high-nutrient, low-chlorophyll (HNLC) zone, with primary production limited by iron and light
availability (Debeljak et al. 2023; Schine et al. 2021). The combination of increased light from
open water and the iron available from winter mixing and sea ice melt enables initial
phytoplankton blooms, primarily diatoms and the haptophyte Phaeocystis antarctica (Yager et
al., 2016; Ducklow et al. 2015; Richert et al. 2019; Wang et al. 2022). Because there are no
rivers and airborne dust deposition is rare in this region, additional iron from deepwater,
sediments, and glacial meltwater is needed to sustain the observed bloom (St-Laurent et al. 2017,
2019). According to models, sedimentary and deep water iron likely account for a large fraction
of the total Fe supply to the bloom (St-Laurent et al., 2017).

Coastal polynyas host high rates of primary productivity and carbon uptake per unit area
(Tremblay and Smith 2007; Mu et al. 2014). One of the most productive polynyas is the
Amundsen Sea Polynya (ASP; Figure 1), at a maximum net primary production of about 2.5 g C
m-* d (Arrigo and van Dijken 2003; Arrigo et al., 2012). The ASP hosts a large phytoplankton
bloom annually that starts in the southeast in November and grows towards the northwest over
the next three to four months as the sea ice melts (Mu et al., 2014; Yager et al. 2016).

Phaeocystis rapidly draws down carbon dioxide concentrations in these polynyas (Mu et al.,



2014), supplying organic matter to the rest of the polynya ecosystem, and harboring a microbial
heterotrophic community (Wang et al. 2022; Richert et al. 2019) distinct from those found
offshore in the Antarctic Circumpolar and the Palmer Peninsula (Delmont et al. 2014).

The dynamics between phytoplankton blooms and bacterioplankton communities in
coastal polynyas are well described (Ducklow and Yager, 2007; Williams et al. 2016). Surface
communities dominated by opportunistic heterotrophic bacteria actively degrade algal-derived
organic matter (Teeling et al. 2012; Richert et al. 2019; Delmont et al. 2015). Some particle-
associated bacteria in the surface waters likely associate mutualistically with P. antarctica
(Delmont et al., 2014). In the mid-waters, free-living communities are distinct from particle-
associated communities, with the latter more responsible for remineralizing detrital material
(Delmont et al. 2014, 2015). The seasonal bloom drives changes in bacterial community
structure in the surface and subsurface communities (Richert et al., 2019), but less is known
about bottom-water communities and how they might change in response to sinking
phytodetritus, suspended sediments, or advection by bottom currents.

In the ASP, there are three distinct water masses: Antarctic Surface Water (AASW),
Winter Water (WW), and Circumpolar Deep Water (CDW) (Randall-Goodwin et al. 2015; Yager
et al. 2012). Coldest WW dominates the upper water column in the winter, resulting from winter
sea ice production and convection, where strong winds cause evaporation and surface waters are
overturned (Kovalevsky et al., 2020). The warmer and fresher AASW forms above the WW
during the spring and summer with solar heating and sea ice melt. AASW is typically
characterized as freshened, warmed surface water, separated by the colder water below (Park et
al., 1998; Yager et al. 2012). The warmer and saltier CDW sourced from the Antarctic

Circumpolar Current off the continental shelf, is at the bottom. This deepwater contains



dissolved iron (dFe; Gerringa et al. 2012), which is likely supplemented by interacting with the
nepheloid layer and sediments of the continental shelf where sediment dissolution and increased
remineralization occur (Dinniman et al. 2023, 2020; St-Laurent et al. 2017). Due to a lack of full-
depth convection and dense shelf water, the CDW spreads across the continental shelf and
eventually reaches underneath the Getz Ice Shelf (GIS) and Dotson Ice Shelf (DIS) in the ASP
(Silvano et al. 2018).

Heat from the CDW melts the underside of the ice shelf (Jenkins and Jacobs 2008).
Entrained meltwater makes the CDW more buoyant so it rises from the ice-shelf cavity and
flows out to the polynya, transporting CDW- and sediment-derived dissolved iron (dFe) to the
upper 300 m of the water column (Sherrell et al., 2015; Randall-Goodwin et al. 2015).
Sedimentary iron accounts for 39% of the total Fe supply, 75% of which is first advected into the
ice-shelf cavity before delivery to the surface waters (St-Laurent et al., 2017; Dinniman et al.
2023). Glacial meltwater likely also contributes nutrients, metals, particles, and freshwater
microorganisms into the now “meltwater modified” CDW (mCDW) that flows out into the
polynya. The flow of iron-rich waters from the offshore CDW to the ice-shelf-outflow plume has
been dubbed the “iron conveyor belt.” Few studies have examined how this circulation and iron
delivery affect the microbial community structure, nutrient cycling, or the rest of the food web
(Alcaméan-Arias et al. 2021).

A ROMS model of the ASP (St-Laurent et al., 2019) further suggests the importance of
iron delivery by a coastal current (CC), which travels along the face of the ice shelves in the
upper 200 m (Kim et al. 2016; Alcaman-Avrias et al. 2021). This coastal current is driven by
winds and is responsible for bringing freshwater and other inputs from upstream glaciers (Figure

1), such as the Pine Island Glacier (P1G) and Thwaites Glacier (TG; Yang et al. 2022). Both



glaciers have some of the highest basal melting rates in Antarctica; Thwaites being dubbed the
“Doomsday Glacier” because of rapid ice sheet mass loss, potentially raising sea level by ~0.1
mm a* (Scambos et al. 2017; Min et al. 2022). Little is known about how the coastal current may
influence microbial communities, although model results suggest that it is a hot spot for particle
deposition in the southwestern ASP (St-Laurent et al. 2019). As basal melt from the PIG, TG,
and DIS continues to increase, it will likely affect both the primary production and physical
properties of the ASP, influencing the microbial community as well.

Antarctic polynyas are of great interest to those studying climate-sensitive marine areas,
as temperatures rise, seasonal sea ice declines and ice shelves melt at an increasing rate (Yager et
al., 2012; Stammerjohn et al. 2015). The effects of freshwater input affect not only physical
properties, but also primary production and the bacterial response, influencing the biological
pump of carbon from the atmosphere to the deep ocean (St-Laurent et al. 2019).

This research is part of the NSF-funded Accelerating Thwaites Ecosystem Impacts for the
Southern Ocean (ARTEMIS), an interdisciplinary effort to “bridge the gap between physics and
biogeochemistry” in the Amundsen Sea Polynya. This study serves as a preliminary exploration
of the diversity and potential activities of microorganisms along the “iron conveyor belt,” and

how they may affect the biogeochemistry of the ASP.

The main questions of this study were:
1. How do bacterial communities (both free-living and particle-associated) vary by

location within the ASP? By depth?

2. How do communities change as the CDW flows onto and across the continental

shelf? Can we detect changes that reflect exchange with the sediments?



How does the bacteria community change between the CDW flowing into and the
mCDW flowing out of the ice shelf cavity? Can we detect changes that indicate the
contributions of the glacial cavity and meltwater?

How does the community in the coastal current change as it flows along the DIS? Is
there any contribution from the basal melt of upstream ice shelves?

How do communities differ under high- and low-iron conditions? Are there any

specific indicator taxa that may indicate biogeochemical processing?



METHODS

Sample collection

Samples were collected on the R/V Nathaniel B. Palmer 22-02 expedition, (January 07—
March 08, 2022) in the Amundsen Sea, Antarctica (Figure 2), and then followed a standard
methodological pipeline (Figure 3). Sampling was carried out with a profiling rosette of 24 12-L
Niskin bottles equipped with a SBE 911 (Sea-Bird Electronics) CTD (conductivity-temperature-
depth recorder) with additional chlorophyll a fluorescence and dissolved oxygen sensors. Water
samples were collected from 3 to 6 depths at each of 21 stations and then filtered for DNA
extraction. Seawater samples were collected at varying depths, including surface (ASW),
intermediate (WW), and near-bottom waters (CDW; Table 1). Intermediate depths varied, but
samples were collected at the temperature minimum (T-min; top of WW) or at another feature of
interest such as an mCDW intrusion into the WW (Table 1). Per sample, 8-12 L of seawater
were filtered first onto a 2- or 3-um polycarbonate pre-filter (GE Water & Process
Technologies), then split onto duplicate 0.2-um Durapore (47 mm polyvinylidene
fluoride membrane) or Sterivex (polyethersulfone membrane cartridge) filters (Millipore,
Burlington, MA; Figure 3). A peristaltic pump at low speed and a large (293- or 142-mm) pre-
filter was used to avoid excessive pressure on the particle-associated cells. Communities were
distinguished as “free-living” or “particle-associated” according to whether they were retained
on the 0.2-um or 2 or 3-pum pre-filter, respectively. Filters were stored in cryovials at -80C and
returned to UGA within six months of sampling.

Samples for DOC concentration and composition were collected at similar stations and

depths from the same conventional CTD used to collect DNA samples. Samples were frozen,



shipped home, and analyzed in the Medeiros lab (University of Georgia) using standard
protocols (Letourneau and Medeiros, 2019).

Dissolved iron samples were collected at similar stations and depths (using a Trace-Metal
Clean CTD that was deployed immediately after the conventional CTD) and analyzed by the
Sherrell lab (Rutgers University) using standard protocols (Sherrell et al., 2015).

Nutrient samples for nitrite, nitrate, ammonia, silicate, and phosphate, were collected at
similar stations and depths from the conventional CTD, filtered (0.45-um), frozen (-80C), and
analyzed at the Oceanographic Data Facility (ODF) Chemistry Laboratory at Scripps Institute of
Oceanography, University of California San Diego. Silicate data were lost during analysis.

Additional samples were collected and fixed for bacterial abundance, chlorophyll a,
particulate organic carbon, total dissolved inorganic carbon and alkalinity, and dissolved oxygen

(data not reported here).

DNA Sample preparation

DNA was extracted from each filter using the Zymo Research Quick-DNA Fecal/Soil
Midiprep Kit according to the manufacturer's instructions (NA. cat 11-322MD).

Polymerase Chain Reactions (PCRs) were set up in a dedicated laminar-flow hood that
underwent daily bleach and UV light sterilization. The V3-V4 region of 16S rRNA genes were
amplified using primers 515F (GTGYCAGCMGCCGCGGTAA) and 806R
(GGACTACNVGGGTWTCTAAT). Sequencing was performed on a MiSeq platform (Illumina,
San Diego, CA) using 2 x 300 bp paired-end libraries according to the "16S Metagenomic
Sequencing Library Preparation protocol™ (Illumina). Both positive (ZymoBIOMICS™

Microbial Community Standard (Zymo Research, Irvine, CA)) and negative controls (molecular-



grade water) were included in all PCRs. The following PCR temperature cycling protocol was
used for amplification of 16S rRNA gene fragments: 94°C for 3 min; 94°C for 45 s, 50°C for 60
s and 72°C for 90 s for 35 cycles; and 72°C for 10 min. PCR amplification success was evaluated
with gel electrophoresis (agar 1%). Purification of PCR products was subsequently carried out
using a magnetic bead purification protocol using Agencourt AMPure XP beads (Beckman
Coulter, CA, USA) and following the manufacturer's protocol. All analyses were performed

separately on each community, and statistical significance will not be reiterated.

Sequence processing

Reads were demultiplexed, denoised, and complied into amplicon sequence variants
(ASVs) using QIIME2 v2023.7. Taxonomy was assigned using a trained naive bayes classifier
from the SILVA v138 database. The ASV and taxonomy tables, metadata file, and raw sequence
reads can be found at:

https://github.com/sierra-uga/ARTEMIS_MS_Project/tree/main/required_files

Data analysis

Samples were further distinguished according to the water mass they were collected
from: either pure AASW, an AASW-WW mixture, pure WW, a WW-CDW mixture, or pure
CDW according to their temperature and salinity (Figure 4). The endmembers of the T-S plot
determined the “pure” water masses, i.e. AASW, WW, CDW, while the mixing lines between
those end-members were considered “mixed” samples, i.e. AASW-WW or WW-CDW. The
“pure” water masses were also determined by following the previous distributions set by

Randall-Goodwin et al. 2015. Samples were also grouped by geographic location (Figure 2) and



by depth (0 — 200 m or > 200 m) and examined according to their positions along the iron
conveyor belt, “CDW waterfall” (Stations 2, 4, 12, 12.3, 115, 14), inflow — outflow (Stations 14,
22, 564, 56b; Table 2), and coastal current (Stations 89, 132, 106, 20, 14, 78, 56, 68, 146; Figure
2).

The Amplicon Sequence Variants (ASV) generated from QIIME2 were loaded into
RStudio v4.4.0 using the gqza_to_phyloseq function from the giime2R package. The taxonomy
table (Table S1), ASV table, phylogenetic tree, and metadata (Table S2) were compiled into a
phyloseq object using the phyloseq R package. Before analysis, the R package decontam was
used to remove potential contaminants using the prevalence and frequency method based on the
controls. Using the phyloseq object, Bray-Curtis dissimilarly was calculated using the distance
function in the vegan package. To compare how communities differed based on metadata groups
(i.e. location or water mass), the distance matrices were run through the adonis2 function from
the vegan package, which is a Permutational Multivariate Analysis of Variance (PERMANOVA)
test. If output was considered significant, a multilevel pairwise posthoc test was done using the
adonis.pairwise function from the pairwiseAdonis package to see which combination of groups
were significant.

Canonical correspondence analysis (CCA) was carried out using the plot_ordination
function within the phyloseq package to discern the association between microbial community
structure and environmental parameters. To visualize Bray-Curtis dissimilarity, nonmetric
multidimensional scaling (NMDS) was also performed using the plot_ordination function. To
aid the visualizations and for stylistic purposes, the ggplot2 package was used. To observe the
relationships between environmental parameters without community structure, a principal

components analysis (PCA) was used to explore which individual parameters corresponded
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(using correlation coefficient R) with each other or with principal axes. To achieve this, the
metadata was sorted based on unique station and depth and converted to a matrix, then processed
and visualized with the functions prcomp and plot from base R (v4.4.0).

To test if there were certain indicator species that were in one or a combination of
metadata group(s), the multiplatt function from the indicspecies package was used. Indicator
species analysis was performed at the Genus level. The output was compiled into a table and
visualized using Microsoft Excel v16.59.

For the differential abundance test, which attempts to find differences in the abundance of
taxa between two groups (i.e. high vs low iron), an analysis of composition of microbiomes with
bias correction (ANCOM-BC) was used; This was from the ANCOMBC package, using the
ancombc? function. Then, the list of significant taxa names from the ancombc2 output was used
to filter the ASV table to include only those taxa. Then, the cmultRepl function (zCompositions)
was used to handle count zeros and the ASV table was log-transformed. The scale function from
base R was used to transform to z-score, to center and scale the transformed count numbers. The
final transformed table was then visualized using the Heatmap function from ComplexHeatmap.

Relative abundance plots were generated to help visualize community composition. The
main phyloseq object was filtered by the desired samples, then the tax_glom function was used
to agglomerate taxa by a specific taxonomic level. Then, taxa with a total sum of zero and low
abundance taxa (<5%) were filtered out, and counts were transformed to relative abundance by
the transform_sample_counts function from the phyloseq package. Ggplot2 and RColorBrewer
were used to create the relative abundance plots. PICRUSt (Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States) was used to predict the functional
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profiles of communities by water mass, performed on the Sapelo2 cluster from the Georgia
Advanced Computing Resource Center (University of Georgia).

The define_water_type function from the PlotSvalbard package was used to define
water masses, based on temperature and salinity, to add the water mass column to the metadata
file. The map (Figure 2) was made using the ggOceanMaps function, basemap, to visualize the
CTD casts where DNA samples were taken. The temperature-salinity (T-S) plot (Figure 4) from
CTD casts from the ARTEMIS cruise was made using Ocean Data View (ODV).

We separated each phyloseq object into either “bloom-associated” (the upper 200 m) or
“below bloom” (all depths greater than 200 m, to the seafloor). We excluded the continental
slope station, Station 198, from most of the microbial community analyses since it was off the
shelf and outside the polynya boundaries. We intended for it to represent an “endmember” for
CDW flowing onto the shelf, but no other data confirm this to be the case. Based on velocity
profiles provided by the Acoustic Doppler Current Profiler (ADCP) onboard the ARTEMIS
cruise, samples were denoted “outflow” if the northward velocity was > 0.1 m s, Inflow stations
were samples closest to the DIS, with a southward velocity < 0.1 m s (Table 2). For
categorizing dissolved iron (dFe) levels, inventories > 0.5 nmol/kg dFe were considered “high
iron” and inventories < 0.5 nmol/kg were considered “low iron”.

The bioinformatics workflow, including the PICRUSt2 pipeline, is available at

https://github.com/sierra-uga/ARTEMIS-MS.
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RESULTS

Environmental Data

The samples came from a full range of typical polar water temperature (-1.8 — +1.1 °C),
salinity (33.49 — 34.70), and depth (2 — 1271 m) for the region, and they all represent some
combination of the three main water masses (ASW, WW, CDW) with varying degrees of
meltwater inclusion (Figure 4). Other inventories reflected the state of the bloom or
biogeochemical fluxes along the iron conveyor belt (Table S2), with water samples exhibiting a
range of nitrate (9.22-38.6 pmol/L); phosphate (0.87—2.74 umol/L); nitrite (0-0.08 pmol/L);
ammonia (0.03-0.65 umol/L); dissolved oxygen (0.107-1.173); dissolved iron (4.17-9.36); and
dissolved organic carbon (34.6-77.6). The individual metadata and nutrient profiles (Table S2)
can also be found electronically on the GitHub provided in Methods.

In the upper 200 m, environmental parameters grouped along two principal components
(PC; Figure 5): the first PC correlated positively with nitrate (R = 0.38), phosphate (R = 0.37),
and salinity (R = 0.31) and negatively with temperature (R = -0.31) and oxygen (R =-0.37). The
second PC correlated positively with latitude (R = 0.54) and depth (R = 0.50) and negatively with
longitude (R = -0.48). In the waters below 200 m, the first PC correlated positively with
temperature (R = 0.45), salinity (R = 0.42), and depth (R = 0.41), and negatively with oxygen (R
=-0.42). The second PC correlated positively with latitude (R = 0.45) and negatively with
longitude (R = -0.5). The environmental parameters in the upper 200 m grouped by water mass
(Figure 5) and not location (Figure 6). Waters below 200 m were grouped by water mass and
location, but not by nutrients, except for nitrite, shown by the third PC (R =-0.51); Figure 5,

Figure 6).
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Free-living and particle-associated taxa and overall trends

Organisms such as Polaribacter (Flavobacteriaceae), Pseudomonas
(Pseudomonadaceae), and Nitrincolaceae (Oceanospirillales), were the most abundant taxa
found in both free-living and particle-associated communities across the region (Figure 7A, 7B;
Table S1). Despite this result, free-living and particle-associated communities were significantly
different (p < 0.001) at the Family-level (Figure 7A, 7B), where free-living communities
included taxa like SUPO5 (Thioglobaceae), SAR11 (Clade I/11), llumatobacteraceae
(Acidimicrobiia), and Nitrospina (Nitrospinaceae; Table S1). Distinct particle-associated taxa
included Colwellia (Colwelliaceae), Pirellulaceae, Saprospiraceae, and Phycisphaeraceae
(Table S1).

PICRUSt analysis suggested that microbial communities exhibited the potential to
assimilate many different forms of iron and used either siderophore-, ferric- or ferrous-iron
uptake pathways (Figure 8). Most of the free-living taxa we observed shared the ability to
excrete and actively uptake siderophores, while the particle-associated taxa we observed were
better known for their role in nitrogen-related pathways, such as nitrification, ammonia-
oxidation, or dissimilatory nitrate reduction. By contrast, particle-associated communities had a
higher capacity for iron-storage pathways (Figure 7A, 7B). Taxa such as Polaribacter
(Flavobacteriaceae), Pseudomonas (Pseudomonadaceae), and Nitrincolaceae
(Oceanospirillales) were found most abundant in both communities, but had different
distributions based on depth and location within the ASP (Figure 7A, 7B; Table S1).

Overall, community composition varied significantly with water mass (p < 0.001;
NMDS, CCA, PCA), although some water masses harbored similar taxonomic compositions

when compared pairwise. In the free-living community, the community composition in AASW
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differed from that in deeper waters (WW, WW-CDW, and CDW; p = 0.01), but did not differ
from the mixture of AASW-WW (p = 0.12), which was dominated by Flavobactericeae and
Oceanospiralles. Deeper free-living communities in WW and CDW were different from all other
water masses or mixtures (p = 0.01). In the particle-associated communities, the AASW
composition did not differ from that of the WW (p = 0.28), but they were distinguishable from
the WW-CDW and CDW communities (p = 0.01). The WW and CDW communities also

contained different particle-associated taxa, including Pseudomonas or Colwellia (p = 0.01).

Community structure in upper 200 m

The upper 200 m included AASW, WW, and some mixture of WW-CDW, which may be
mCDW from underneath the Dotson Ice Shelf getting upwelled and then entrained into the
coastal current. Free-living and particle-associated community structure only differed
significantly at open polynya from Dotson Ice Shelf stations (p = 0.01). The lack of significant
difference for the other locations may be due to small sample size, which influences Type II
error. For instance, the Getz group only had two CTD casts, while open polynya had five. CCA
was used in conjunction with environmental factors to compare regions in the ASP. In the free-
living CCA (Figure 9A), the top two axes accounted for 23.9% of variance and taxonomic
information, with oxygen and nitrate demonstrating the highest explanatory power, denoted by
the length of the environmental vector arrow. In the particle-associated surface CCA, the top two
axes accounted for 34.5% taxonomic variance, with nitrate and nitrite as the most explanatory
power.

In the upper 200 m, both free-living and particle-associated communities were dominated

by bloom-associated taxa such as Polaribacter (Flavorbactercae) and Oceanospirillales, no
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matter location (Figure 7A, 7B). In the indicator analysis (Table 3; Table 4), confirmed by the
CCA (Figure 9A, 9B), no specific species appeared as indicators based on location in the surface
waters of the polynya. At Station 174, part of western open polynya (Figure 2), the particle-
associated taxa were distinctly different from other stations, especially in the surface, due to the
high prevalence of Saprospiraceae (Figure 9B and Figure 7A, 7B). Only one free-living
organism, an unidentified Flavobactercae, was found to be an indicator for Getz Ice Shelf

stations (p = 0.04; Table 3).

Community structure below 200 m

Community structure in deep water (> 200 m; WW, WW-CDW, and CDW, Figure 10C,
10D) varied with location within the polynya, based on PERMANOVA and the CCAs of deeper
waters (p = 0.02; Figure 10C, 10D). In the CCA of free-living samples (Figure 10C, 10D), the
first two axes accounted for 27.3% of variance, with oxygen and temperature demonstrating the
highest explanatory power. In the CCA of particle-associated surface samples, the first two axes
accounted for 27.5% taxonomic variance, with the highest power from ammonia.

In free-living communities, SUPO5 (Thioglobaceae; a sulfur-oxidizing bacteria) and
Nitrosopumilus (Nitrospumilaceae; an ammonia-oxidizing archaea) dominated WW to CDW
(Figure 7A, 7B; Figure 11). Nitrosopumilus was found uniformly in deep-water free-living
samples, despite location, where nitrate was high, and ammonia was low. For simplicity,
archaeal analysis was excluded from the other analyses in this study, but re-running
PERMANOVA with Archaea showed that communities, based on location and water mass, were
still different (Figure 11). Certain deepwater particle-associated taxa, like Pseudomonas and

Porticoccaceae, were found consistently in WW and CDW samples (Figure 7A, 7B; Table S1).
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The structure of both free-living and particle-associated deepwater communities was
driven partially by their location in the ASP, which may be a result of nutrient availability or
proximity to bloom (p = 0.02) as it grew from the southeast to the northwest during the summer.
Free-living communities exhibited many indicator taxa at the Dotson, eastern CC, and Getz
stations, including Woesia (p = 0.12), Nitrospina (p = 0.03), and Sva0996 (p = 0.02; Table 4).
Saccharospirillaceae was an indicator species for free-living communities in the open polynya
(Table 3). Particle-associated communities in deeper waters did not have as many indicator taxa,

but Pseudomonas was also found in the Dotson, eastern CC, and Getz station cluster (Table 3).

CDW inflow to ASP from continental shelf

As the CDW from the circumpolar current travelled down the retrograde continental shelf
toward the ice shelves, there was a change in community structure. Stations 2 and 4, both open
polynya stations nearer to the shelf break, harbored a higher relative abundance of
Pseudoalteromonas (Pseudoalteromonadaceae) and Vibrio (Vibrionaceae), unique to these two
stations. Pseudoaltermonas dominated the near-bottom community at Station 4 (Figure 12). As
the communities reached closer proximity to the Dotson Ice Shelf, they began to resemble other
deepwater communities at the shelf, with organisms like SUPO5 and SAR11. Along with this
change, sea-ice related species like Colwellia began to increase in abundance closer to the
Dotson (Figure 7A, 7B).
Inflow, DIS outflow, and coastal current

A central objective of this study was to determine if the bacterial community changed
during the passage of CDW through the ice-shelf cavity and its entrainment of basal or

subglacial meltwater. We found that free-living and particle-associated communities in the
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outflow plume were significantly different from the inflow (p = 0.02, 0.03, respectively), but the
indicator analysis showed that much of the distinction between free-living and particle-
associated communities came from taxa found in the inflow but not in the outflow. This finding
suggested that particle-associated taxa were generally lost but not gained during the passage. In
contrast, the free-living community in the outflow exhibited seven indicator taxa (Table 5),
including Colwellia, that distinguished the outflow from the inflow. A differential abundance
analysis, ANCOM-BC, similarly identified different free-living taxa, like Pseudomonas and
Rhodobacteraceae, in the outflow versus the inflow (Figure 13; Table S1). It is likely that the
indicator species analysis identified low-abundance (rare) taxa, which could correspond to the
relatively low input (1-2%) of glacial meltwater to the mCDW. The community of the inflow
(Station 14) versus the outflow (Station 56a, Station 56b, and Station 22; Figure 2) showed very
similar family-level structure in the relative abundance plots (Figure 7A, 7B)

As the outflow began to mix into the coastal current (CC) and shoal into the open
polynya, the communities showed changes as the current traveled north and westward. Based on
the indicator analysis and relative abundance plot (Figure 7A), the CC communities were likely
influenced by bloom dynamics because of the increased presence of bloom-related taxa, such as
Flavobacteriaceae and Nitrincolaceae. It is worth noting that eastern CC and western CC
communities were quite different in both free-living and particle associated taxa (p = 0.001).
Nitrospina, an important nitrite-oxidizer, was found in the indicator analysis for Eastern CC,
namely at Station 89, where surface phytoplankton abundance was very low and surface iron
concentration was considerably higher compared to the open polynya (Figure 7A, 7B; Figure
12; Table S2). The surface waters at this station were likely recently exposed meltwater inputs

from the Thwaites and Pine Island glaciers.
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High and low iron communities

Within both free-living and particle-associated communities, taxa were significantly
different (p < 0.001) for high- versus low-iron samples and they could be distinguished using
both indicator species and differential abundance analysis. Using ANCOM-BC, free-living taxa
such as Nitrospina, Roseibacillus, and Ilumatobacteraceae were enriched in high-iron samples
(Figure 14). Similarly, specific taxa such as Salinirepens, Pseudomonas, and Pirellutaceae were
found in high-iron particle-associated communities (Figure 15). As noted above,
Pseudoalteromonas and Vibrionaceae were present in both size fractions from CDW samples in
the northern Dotson Trough (Station 2 and Station 4), where dissolved iron was low (<0.5;

Figure 7A, 7B; Figure 12).
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DISCUSSION

The aim of this study was to explore whether specific bacterial taxa could be responsible
for processing iron from known sources along the iron conveyor belt, such as glacial melt,
sediments, or CDW. Our results suggest that distinct communities within the ASP — such as the
communities at the bottom of the Dotson Trough, or the Dotson outflow and western polynya.

Due to the inherent limitations of 16S rRNA metabarcoding approaches, it was difficult
to recognize specific iron-processing taxa, particularly in remote regions like Antarctica, where
many microorganisms are uncultured and understudied. The potential for iron-processing was
only assessed through predictions of genome function using PICRUST2 and was not investigated
directly through metagenomic or metatranscriptomic sequencing. Considering this, we focused
on documenting the dominant organisms within this system, which correlated with depth, the
proximity to CDW, glacial outflow, or the Phaeocystis bloom itself.

Our findings from the polynya surface and intermediate waters agree with previous
microbial community studies within the ASP. For instance, Delmont et al. (2014) show a distinct
free-living and particle-associated community, which corresponds considerably to the P.
antarctica bloom. Additionally, Richert et al. 2017 found that bacterial communities were
distinct with depth, precisely the different water masses: AASW, WW, and CDW, with surface
communities dominated by heterotrophic bacteria also found in Delmont et al. 2014. Our results
for the open polynya region are similar, with surface waters consisting of opportunistic organic
degraders such as Polaribacter (Flavobacteriales), SAR92 clade (Porticoccaceae), and
Nitrincolaceae (Oceanospirillales), which are known to be associated with P. antarctica blooms

(Choi et al. 2016; Delmont et al. 2014; Piontek et al. 2022; Delmont et al. 2015; Thiele et al.
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2023). Those studies report that the surface communities are less diverse than bottom waters,
which is also consistent with our results. It is worth noting that Nitrincolaceae has been
associated with late summer bacterial communities in the ASP, and many taxa discussed in this
study have been found to differ in their translational regulation based on season in the Southern
Ocean (Debeljak et al., 2023).

This research had an opportunity to examine the deep waters more thoroughly than
before, especially those nearest to the ice shelf cavities. Deeper in the water column, the free-
living and particle-associated communities are more distinct. Compared to the surface, where
similar organisms dominate in both types of communities due to the presence of Phaeocystis, the
bottom waters harbor unique organisms. In particle-associated communities, Pseudomonas
(Pseudomonadaceae) dominates most of WW to CDW, besides the AASW-WW toward the
Eastern notch. This prevalence is likely from the input of basal melt from the upstream glaciers
(P1G and TG), where we found that Pseudomonas dominates near high iron sources and
appeared in Dotson glacial outflow (Silvano et al. 2018). Pseudomonas species are known to
have very diverse genomic capabilities, including production of extracellular polymeric
substances (EPS), carrying out nitrogen fixation, denitrification, and degrading hydrocarbons.
This bacterial group has been found in high nitrate environments, such as wastewater, which
corresponds with the nutrient gradient in the ASP, with higher nitrate at depth (A. Choi et al.,
2016; Arat et al., 2015; Nilsson et al., 1980) In open polynya samples of pure CDW, the particle-
associated communities included Colwellia, a known sea-ice related organism that produces EPS
to retain salt and reduce freezing; along with this, it can use nitrate as an electron acceptor,
perhaps contributing to the denitrification process of turning NOs™ to N2 (Thiele et al. 2022).

Dominant taxa in deeper waters below the bloom included Archaea, Nitrosopumilus (an
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ammonia-oxidizer), and SUPQ5 (a sulfur-oxidizer). Nitrosopumilus and ammonia oxidation are
important to high-latitude areas, including ASP, supporting the nitrogen cycle, and potentially
iron cycling (Thiele et al. 2023; Anantharaman et al. 2013; Gwak et al. 2023).

In other areas of West Antarctica, such as the Ross Sea, a previously published
transcriptomic analysis confirms that sulfur-oxidation and nitrification occur underneath ice
shelves, where ammonia from the basal melt is high (Martinez-Pérez et al. 2022; Anantharaman
et al. 2013). We seem to find similar communities in the ASP, though we do not detect
Nitrospina (Nitrospinaceae), a nitrite-oxidizing bacteria that usually accompanies
Nitrosopumilus to complete the nitrification pathway. Nitrospina was found where surface iron
was higher in concentration, possibly from upstream glacier influence. The missing nitrite
oxidizer in the rest of the polynya may come from a different genus, such as Nitrincolaceae or
Pseudomonas, which is difficult to speculate without transcriptional analysis. Nitrosopumilus,
found only in deeper waters, is also known to perform dark carbon fixation, taking in COz2, and
converting it into organic carbon, which may be an unexplored carbon supply to the polynya
(Kharbush et al. 2020; Martinez-Pérez et al. 2022). This result may also be supported by the
increase in DOC in the Dotson outflow, incorporated into the Western CC. This has been found
mainly under ice shelves, but Nitrosopumilus and SUPO5 at the face of the DIS and GIS may
indicate a similar function (Martinez-Pérez et al. 2022; Lopez and Hansell 2023; Min et al.
2022). SUPO05 is known to exist in oxygen minimum zones and has been found in other areas of
the Antarctic, at the Western Antarctica Peninsula (WAP) or the Ross Sea (Anantharaman et al.
2013; Morris and Spietz 2022; Liu et al. 2024).

This consortium we found of S-oxidizing lithoautotrophs and nitfrying organisms may be

key component to iron cycling in the ASP, answering one of the original aims of ARTEMIS. A



22

recent GEOTRACES special issue that discusses nitrogen availability and its overall cycling in
the ocean, reports that the nitrogen cycle is largely mediated by enzymes that require trace
metals, such as iron, as catalysts (Casciotti et al. 2024). Nitrification, denitrification, nitrogen
assimilation, and anammox all require Fe and other trace elements to occur. The waters where
these processes occur, such as underneath ice shelves, where iron is high, may be advected back
to the polynya. Higher iron concentrations stimulate higher rates of nitrification, and this
correlation may provide new bioavailable iron (Hogle et al. 2016; Ma et al. 2021). Though we
found just a few indicator species in the Dotson outflow, many organisms were lost from deep
CDW inflow, perhaps indicating a dominant heterotrophic organism within the cavity. This
result would agree with results from under the Ross Sea Ice Shelf (Martinez-Pérez et al. 2022).
However, confirmation of this hypothesis would require a direct bacterial abundance
measurement. Those analyses are forthcoming from the ARTEMIS grant. Such an increase in
heterotrophic activity may release bioavailable iron back to the polynya.

Iron is a significant determiner of the biological activity in this HNLC zone. While CDW
and sediment resuspensions are primary iron sources, glacial and sea-ice melts also stimulate
production. As stated before, as planetary warming increases, so will ice shelf melt as warmer
waters can intrude into the cavities more quickly (Silvano et al. 2018). With the evidence of the
importance of bacterial communities to many nutrient cycles in this area, it is essential to
understand any microorganisms that may play a role in iron cycling, especially as more iron is
released into the polynya. When comparing high and low iron communities, we could not infer
any specific iron-reducers or iron-oxidizers based on taxa alone. However, many organisms were
correlated with higher iron concentrations. For free-living communities, we identified organisms

such as the NS5 marine group, a known aerobic heterotrophic organism with nitrogen and
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phosphorous metabolism, which was only found in stations near ice shelves (Priest et al. 2022).
We also found Rhodopirellula, another aerobic chemoorganotrophic bacteria associated with
global carbon and nitrogen cycles (Zure et al. 2017). For particle-associated taxa, Pseudomonas
was enriched across all samples, with especially high relative abundances in the high iron
samples. As previously stated, Pseudomonas is typically found in high-nutrient conditions and
has diverse genomic capabilities, further supporting the coupling of nitrogen, carbon, and iron
cycling in this area. In the particle-associated taxa, we also identified other organisms, including
Salinirepens, Gimesiaceae, and Pirellulaceae, which are ubiquitous heterotrophic bacteria
(Bowman 2014; Cho et al. 2020). It is likely that iron and nitrogen co-vary in this environment,
due to the many nitrogen-related organisms upregulated in high iron samples.

Though we did not identify any specific iron-related taxa, it may be a matter of the
limitations of the 16S rRNA metabarcoding approach, the lack of biological and technical
replicates, or the lack of cultured organisms in this system. Many factors could affect the
detection of iron-related taxa, such as time, location, and proximity to bloom. The supply of
organic matter ultimately determines the composition of benthic microbial communities (Richert
et al. 2017). Pseudoaltermonas and Vibironaceae were found in open polynya CDW samples,
where iron was low, and both genera are known to be able to produce siderophores and
synthesize vitamin B12, which can help stimulate phytoplankton growth (Bertrand et al. 2007,
Santiago et al. 2024). These organisms may take up iron and bind them to organic molecules,
which is typically part of dFe concentrations (J. Park et al. 2023; Bundy et al. 2018). It may be
the case that they are outcompeting other microorganisms by decreasing the amount of available
iron to other microbes (J. Park et al. 2023). Though not a perfect method, PICRUSt2 can be used

to determine the potential genomic capabilities of Antarctic microbial communities. We found
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that all communities are uniformly equipped with iron-related genes, with siderophore uptake
being a potentially prominent genomic pathway in free-living communities. As many organisms
in this dataset are uncultured and understudied (and genomic predictions rely on public databases
of bacterial genomes), PICRUSt only serves as an estimate for what organisms may be capable

of expressing.
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CONCLUSION

This study offers a first glimpse into the bacterial communities along the iron conveyor
belt and their potential role in biogeochemical cycling in the ASP. In summary, our research
suggests that inflow and outflow communities were not significantly different at the DIS but
change towards the west. Also, nitrification may be a key player in both nitrogen and iron
cycling, basal melt from upstream glaciers likely influences the coastal current and community
composition, and there may be siderophore-producing organisms in CDW below the open
polynya. While we initially anticipated an iron-centric narrative, our findings unveiled greater
complexity that demands further investigation for comprehensive understanding. A future study
incorporating metagenomics, transcriptomics and experimental manipulation could bridge the
knowledge gaps identified in this project. As sea-surface temperatures continue to rise and
stimulate glacial melt — adding additional iron to the system, reducing sea ice formation, and
reducing the formation of bottom water, it becomes increasingly crucial to comprehend how this
environment and its microorganisms may change in the future. Such understanding can enhance
our projections, enrich our knowledge of global cycling and circulation, and bolster the

protection of these systems.
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FIGURES

Figure 1A. Map of the
Amundsen Sea Embayment
(modified from Walker et al.

2007).

Pine Island Cosgrove
Amundsen Sea Polynya
Polynya

Dotson

Thwaites

Crosson

Figure 1B. MODIS satellite image (nsidc.org/data/iceshelves_images) from Feb 2019 of southeastern
Amundsen Sea with its two notable polynyas labeled in green and five rapidly melting ice shelves

labeled in yellow.



72 S

73 S+

74 S+

' Dotson

EastCC
West CC
Getz

Open Polynya
West OP

S‘N1 74 n

STN115
STN146 ?'2'3
STNG12

120 W

Figure 2. Station map with bathymetry. Colors are coordinated with location.

115 W

110 W

1500 2000 2500 3000 3500

1000

500

27

Depth [m]



28

% %
Buijood ==
¢7] .Nws___cu — Burouanbas fieiqy| \2” ﬂm\m\\ :o:mN.__._m:mS
sasAjeue J — <« basiy «— . Gz
oleuLIojulolg - euny| A :o_amﬂn__mzm:_u
o VvNa K
o o
(ousb wNY! sialy > ¥/ suyidap
mm_\_,_wwwwm f suonoee £ ajduies % e buidues
o VNG L %\ alo
o J o J o

Figure 3. Pipeline of study.



29

o2 Imi/i1

MBIA Bje(g ueadQ

34
Sal Prac [psu]

[Hbap] g aimjesadwa] jenuajod

34.5

Salinity plot for all ARTEMIS CTD casts, with oxygen as color and black points as samples

Figure 4. Temperature

with DNA collected.



Upper 200m
o
4 — AASW
AASW-WW )
3 | ® ww Latitude Depth
® ww-cbw
2 —
o
e 17 o
0 —
i
_2
T I T T T T
-8 -6 -4 -2 0 4
PC1
Below 200m
4 — °®
® ww
® ww-cbw
[ ] Latitude ® cow
2 oo @ Salinity
Temperature
o . apth
g o- . °
.o
@‘{9%"
o
-2 7 Phegphate
°
®
sonfftude
I I I I I I I
-6 -4 -2 0 2 4 6
PC1

30

Figure 5. PCA of sample metadata by water mass in the ASP. Top PCA is surface-200m and bottom PCA is 200 m

to seafloor.
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Figure 6. PCA of sample metadata by location in the ASP. Top PCA is surface-200m and bottom PCA is 200-

bottom.



Free-living (<0.2 um)

32

Particle—associated (>3 ym)

1.00
0.75
050 (% %
= =
0.25
0.00 —
1.00 ] ] : ] I ] — —
075 | - 3; || 3;
— (2] — 1 w
0.50 || 2 2
0.00 - = . L -
1.00 ) — . —
075 L T ] -
0.50 é %
025
: s 3
T £
| g 2
: 2 =
2
=
onwooasawrsodZ8yoo-s N oo NsTNwNso88 0o Nm
ocmogoocorrarhB8oevao~rsw omogooorrarch 88V OoTOrRT O
S-S0 092s 2088580 SoccSocof8gern 220388280
2222222222235 FE2222352 Z22Z2E22222z2225E2222352
FEEBEFEEEEFEEEEEREEEEZE FEEREEFFFFFEFRFEEREREEEZE
nonPonnnnpgnoggPonnnlo nonPonnnopgnngrPononolo
—— — — — —
Eastern  Open Polynya (OP) Dotson West. West gapr Eastern  Open Polynya (OP) Dotson West. West o1
cc / CDW inflow cc orp cc / CDW inflow cc orp

Figure 7A. Relative abundance for free-living (left) and particle-associated (right) communities at the family

level. Each row represents a water mass, labeled on the right.

Alteromonadaceae
Bacteriovoracaceae
Cellvibrionaceae

Clade |

Clade Il

Colwelliaceae
Crocinitomicaceae
Cryomorphaceae
Ectothiorhodospiraceae
Flavobacteriaceae
hydrothermal vent metagenome 1
llumatobacteraceae
Lentimicrobiaceae
Moraxellaceae
Moritellaceae
Nitrincolaceae

Nitrospinaceae

NS9 marine group

Phycisphaeraceae

Pirellulaceae

Porticoccaceae

Pseudoalteromonadaceae

Pseudohongiellaceae Figure 7B. Legend for the Family-

Pseudomonad -
seudomonadaceae level taxa that corresponds with

Figure 7A.

Rhizobiaceae
Rhodobacteraceae
Rubritaleaceae
Saccharospirillaceae
Saprospiraceae
Sphingomonadaceae
Thioglobaceae

Vibrionaceae



33

Free-living Particle-associated
1.00 7 1.00 —
0.75 4 075
2 2
0.50 4 %) . %)
= =
0.25 4 :
0.00 L L
1.00 —_— 1 —
> >
074 2 Z
7 »
0.50 1 IE IE
= =
0.254 s =
0.0 — —
100 —
0754 ‘
= =
0.50 1
3 =
0.254 025
0.00 — —
1.00 — ) —
1
0.75 b I 2
2 . £
0.50 4 5 | 5
g =}
0.25 1 = : =
L | ||
i -
0 e}
-. w] v}
II s =
™ © Q — N ) © QO - N
2089383 NRIIReeyB8FHR -8 288988302 IRy rR -8
Ov—v—zw—OOOv—‘—OOOQZOw—w—w—mv— O‘l—w—zv—OOOv—‘_OOOOZOV—v—v—ev—
ZZZEZZZ2272ZZZZ2EZ22252Z ZZZgEzZzZ2222Z2z2zZ2ZZ22%EZ222Z2Z52
FEEELEEEEEEEEEELEEEEER EEELEEEEEEEEEEREEEEER
vnoPooonnpungpPoonnlon DnaPonnvnpdngnPoonnnl;o

Figure 8A. Relative abundance of PICRUSt2 KO numbers by water mass and station. Free-living on left and particle-
associated on the right.

3-Hydroxypropionate bi-cycle|Ethylmalonyl pathway | Formaldehyde assimilation

Calvin Cycle

CO-Oxidation

CO2 => methane

Coenzyme M biosynthesis

Denitrification, nitrate => nitrogen Figure 8B. Legend that
Dissimilatory nitrate reduction, nitrate => ammonia

Fe Storage

Fe-S

Fe2+ (ferrous)

Fe3+ (ferric)
methylamine/dimethylamine/trimethylamine => methane
Nitrification, ammonia => nitrite => nitrate|Denitrification, nitrate => nitrogen|Dissimilatory nitrate reduction, nitrate => ammonia|
Rrf2 family

Siderophore uptake

Thiosulfate oxidation by SOX complex, thiosulfate => sulfate

troR

corresponds to Figure 8A.



CCA2 [6.8%]

CCA2 [10%]

34

Free-living B Particle-associated
44 o L] Dotson
@ EastCC
o 4l ® WestCC
) @ Get
Y oy
Ammonla. . Depth <
o @\itrate ‘_'2-
o] Nitrite ) <
Oxygen s ® 8 Temperature
® ®
TemperatdPe e Oxygef® @ ° o
3] 04 Depth
Nitrite
° Ammonia Nitrate
2 T 0 i 2 -2 . 0 :
CCAT [17.1%] CCA1 [20.3%] 0-200m
D >200m
3{® ”
El
o, 1o .
24
Temperature Salinity
o Temperature
11 g
3 0
0 o g
e o 5
6]
24
-14 .
.
©
-2
-4 ¢
7 2 0 -2 . 0 i

CCA1 [17.3%]

CCA1 [16.9%]

Figure 9. Canonical Correspondence Analysis (CCA) of free-living (A, C) and particle-associated (B, D)
bacterial communities based on location within the ASP. First row CCAs are surface-200m and bottom row

CCAs are 200m-bottom.



35

A Free-living B Particle-associated
4-
. Water Mass
AASW
" AASW-WY
o ww
_ 21 .. - ® ww-cow
N @ & @ cow
) Ammonia N
S ° Depth ¥
0a o i 2-
N Nitrite
5 of " P, Temperature
Ox Q
6] O :
®
Temperature K o o
21 01 Oxyge Depth
Nitrite
Ammonia " Nitrate
-2 1 0 1 2 2 i 0
CCA1 [17.7%] CCA1 [20.4%] 0-200m
c D >200m
31 @ o
L]
. . 2' .
21 °
Temperature . Salinity : [
mperatur
sdinty pgtn ~ ® | _ RS
—_— ]
g MN A
= e | 2
o
S e o < Ammonia
O 8
-1 -2
Nitrite .
Oqu.‘ i
5
-24 °
LI ™ o
4 2 0 2 -1 0 1

CCA1 [17.3%]

CCA1 [16.9%)

Figure 10. Canonical Correspondence Analysis (CCA) of free-living (A, C) and particle-associated (B,
D) bacterial communities based on defined water mass. First row CCAs are surface-200m and bottom
row CCAs are 200m-bottom.



36

a10Asexoid painynoun

11 dnoJb surrew painynaun
aeaoepeuowobulyds
aeadeIqozIyy
aeaoe|aibuoyopnasd
aeadeuldsoIN
aeadelaloRgORWN]|

11 8pe|o

29e22eUOLGIA
aeadeqolboly L
aeaoeldsoldes
oeaoe||ludsoleydoes
aeadeaeNIgny
9eaRIaI0RIOPOYY
aeadepeuowopnasd
eadepeuowolajeopnasd

9e80ed2021110d

NENENE "EEETE EEN

seade|n|jaild
aeaselaeydsidAyd

dnoJb suirew SN
oeaoewndosonN
9e22e|0oULIIN

oeade|[@IoN

oeade||aXeIoN
29e208IqOoIOIWRUST
awouabelaw JuaA [ewsayiolpAy
aeadelIaloRgoAR|d
aeadseydiowokiD
9e90EeIIWONUIN0ID
29e90R||9M|0D

1 8pe;d

9e9oRUOLIGIAIIRD

29eadedelonolisloeg

ECNEE T EEEEE B EN

aeadepeuowola)y

Ajjwre

[ ESTNLS
C'TSINLS
VLINLS
T8INLS

F 9YTINLS
I 890NLS
[ 2ZNLS
[ 49SONLS
| B9SONLS
I 8/0NLS
I VIONLS
€'CINLS
STINLS
CTONLS
70ONLS
COONLS
86TNLS
I O0ZNLS
F 90TNLS
[ CEINLS
[ 680NLS

Ccbw

z
[a]
?
z
z

[ Aasw-ww | ww |
I —
. S
(I

AASW

e

=

pajeloosse—s|oijied

I ESTNLS
C'TSINLS
VLINLS
T8INLS
IVINLS
890NLS
CCNI1S
G9SONLS
BISONLS
8L0NLS
YTONLS
€CINLS
STINLS
CTONLS
Y0ONLS
COONLS
86TNLS
0¢NLS
90TNLS
CETINLS
680NLS

L

-

[0S0

FSL0

~00'T
r 000

IFSC0

[0S0

FSL0

“00'T
r 000

=AY

[0S0

FSL0

“00'T
r 000

=AY

[0S0

FS.0

~ 00T

Buinlj—-aa14

~00T

Figure 11. Relative abundance by water mass and station at the Family level, including Archaea. Similar to previous

relative abundance plots (Figure 7; Figure 8) but includes prevalence of Nitrosopumilaceae, a known ammonia-

oxidizing archaea.



37

€13/20/.04H Wnuajoeq painynaun
oea0BIglORqOPOYY
aeade||elbuoyopnasd
seadeuldsolN
aeaoe|iydojAyiey
oesorIBIORqOIRWN||

| awouabelaw JusA [ewayjoIpAy
oea0elIdsopoyIoIy10103

11 peQ

1 9pe|n

©9BA0BUOLIGIA

aeaodeqo|boly |

oeaoeldsoideg
oea0e||IdsoseyooeS

seaoesEIIgNY

0 B "N EEEEEEN

oBesdBpRUOWOPNaSY
9B9OEPBUOWIOIS}EOPNASY
990000011104
oeade|n|jalld
oeaoeIaeydsIdAUd

dnoib auuew SN
9B80B|0OULIIN
oBOOBISIOBGOAR]H
9B80B1I9J0B]0[IAD
aeaoeydiowoki)

9B90BOIWONUIO0ID

ELEEIN o)
2BB0BUOLIGIAI9D
9BOOBOBIONOLISIOEY

9B30EPEUOLIOISYY

BN N ' EE m

=
5
w

€CINLS
I CLONLS
Y0ONLS
C00NLS
86INLS
I VLONLS
F€CINLS
FGLINLS
I CLONLS
I YOONLS

Bottom
Bottom

T-min

200NLS

86INLS

Mid
Mid

L
.
:

| T-min |

(wrl g<) paleloosse—-s|oiied (wrl g'0>) Buin—sa14

suonels |[e}ale\ MAD WoNog 40} 3dUepUNqY SANE|Y [elo)

I (] 7.

r 000

FSco

F 0S°0

FSL0

F G20

I 0S0

FSL0

[ G20

[0S0

fSL°0

- 00}

Figure 12. Relative abundance of stations coming from off the continental shelf at the family level.

Free-living on left and particle-associated on the right.
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Figure 14. Significant free-living taxa from ANCOM-BC analysis for high (>0.5 nmol/kg) or low

(<0.5 nmol/kg) dFe concentrations. Z-score derived from log-transformed data. Black boxes

indicate taxa that are more present in high iron versus low iron.
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Figure 15. Significant particle-associated taxa from ANCOM-BC analysis for high (>0.5 nmol/kg) or

low (<0.5 nmol/kg) dFe concentrations. Z-score derived from log-transformed data.
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TABLES

Table 1. Water mass characterization with temperature and salinity ranges.

Water Mass Temperature Range Salinity Range

AASW -1.15 — 0.5 32.75 — 33.87
AASW-WW -2 —-1.15 33.5 — 33.87
WwW 2 —-14 33.88 — 34.5
WW-CDW -1.4 — 0.1 33.88 — 34.5

CDW 01—2 33.88 — 35



Table 2. Inflow and outflow stations and depth.

Station Latitude Longitude Depth

STNO14 -74.23 -112.08 860
STNO14 -74.23 -112.08 700
Inflow STNO14 -74.23 -112.08 580
STN20 -74.15 -111.9 499
STN20 -74.15 -111.9 480

STN22 -74.1753  -113.34488 465
STN22 -74.1753  -113.34488 325
STN22 -74.1753  -113.34488 250
STN22 -74.1753  -113.34488 150

STNO056a -74.18 -113.34 310
STNO056a -74.18 -113.34 170
STNO56a -74.18 -113.34 150
Outflow
STNO56b -74.18 -113.34 410
STNO056b -74.18 -113.34 390
STNO56b -74.18 -113.34 350
STNO56b -74.18 -113.34 190

STNO68 -74.02906 -113.34464 257
STNO68 -74.02906 -113.34464 190
STNOGS8 -74.02906 -113.34464 90
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Table 3. Indicator species analysis of significant taxa in free-living outflow community. No significant indicator taxa

appeared for particle-associated community.
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Table 4. Indicator species for free-living communities based on location, separated into surface-200m (upper 200m)
and 200-bottom (below 200m).
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Table 5. Indicator species for particle-associated communities based on location, separated into surface-
200m (upper 200m) and 200-bottom (below 200m). No significant taxa for upper 200m.
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APPENDIX — SUPPLEMENTARY TABLES

Table S1. Taxonomy table for unique taxonomic ranks going to species.
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Table S2. Metadata table for size-fractionation and environmental data for each sample.
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