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ABSTRACT 

A soil classification scheme for fine-grained subgrade soils was developed using resilient modulus 

data extracted from the Long-Term Pavement Performance (LTPP) database. This classification 

scheme categorizes soils based on resilient properties defined in this study. By employing the rpart 

library in an R programming environment, a decision tree model with a good correlation was 

developed between resilient modulus test data and various soil index properties. Based on a 

statistical analysis of the decision tree output, clearly defined ranges for poor, fair, and stiff resilient 

properties based on average resilient modulus values were established for the purpose of creating 

three soil classes. These newly defined soil classes provide engineers with a valuable tool for 

determining the suitability of fine-grained soils in subgrade construction for pavement structures 

designed using the Mechanistic-Empirical Pavement Design Guide (MEPDG). This classification 

scheme aims to align the current pavement design method from the American Association of State 

Highway and Transportation Officials (AASHTO) with the properties of fine-grained soils that 

influence their resilient behavior under repeated traffic loadings. In addition, the resilient modulus-

based scheme can aid engineers in identifying problematic soils, so that testing resources and 



 

remediation efforts can be effectively directed to improve the capacity of the pavement to support 

the overlying pavement structure and design traffic.  
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CHAPTER 1: INTRODUCTION 

The purpose of soil classification systems is to provide a convenient method for engineers to group 

soils with common properties that are expected to exhibit similar behaviors when supporting 

design traffic loads (Reale, Librić, & Jurić-Kaćunić, 2018). These classification systems generally 

reflect the current state of knowledge about soils and should be upgraded as more knowledge about 

these materials is gained (Arnold, 2001) (Gerasimova, 2019). Therefore, keeping classification 

systems static while other innovations, such as the Mechanistic-Empirical Pavement Design Guide 

(MEPDG), are incorporated into the pavement design practice, hinders the progression of 

knowledge on subgrade soil behavior. It also fails to support engineers in identifying and 

understanding the quality and expected behavior of the materials they are tasked with using to 

construct the subgrade layer that supports the overlying pavement structure.  

 In the field of pavement design, the resilient modulus (MR) has become the soil property 

that represents the behavior of the subgrade soils since the release of the 1986 AASHTO Pavement 

Design Guide (AASHTO, 1986). The challenge for engineers is that no revisions to the AASHTO 

soil classification system have been made to assist engineers in identifying the physical properties 

of soils that reflect their resilient behavior and suitability for use in construction that are consistent 

with the MEPDG methodology.  

 Some researchers have taken an approach to develop MR predictive models by separating 

data into coarse-grained and fine-grained soil groupings (Smart & Humphrey, 1999) (Kutner, 

Nachtsheim, Neter, & Li, 2005). The reason is that this segregation produces better results in 

correlation development (Elias & Titi, 2006). Therefore, this strategy was adopted for the current 
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study with the focus on the more problematic fine-grained soils, which in general have lower MR 

values than coarse-grained soils (Elias & Titi, 2006). To accomplish the goal of developing soil 

classes based on the resilient behavior of fine-grained subgrade soils, the application of a decision 

tree algorithm was used to demonstrate that a soil classification scheme for fine-grained subgrade 

soils can be developed that reflect the resilient behavior of these soils using the Long-Term 

Pavement Performance (LTPP) data. Using the resulting decision tree diagram, different leaf nodes 

with similar average MR values were grouped together to form proposed soils classes. It will be 

demonstrated that the grouping process is flexible and can produce useful results supportable with 

traditional statistical techniques.  

1.1: Background 

Since the release of the 1986 AASHTO Pavement Design Guide, the American Association of 

State Highway and Transportation Officials has replaced the soil support value (SSV) parameter 

with the resilient modulus (AASHTO, 1986). The resilient modulus has been promoted as a 

property that more accurately represents the response of the subgrade soil to traffic loadings. The 

SSV was a concept that was developed to allow state agencies to apply the results of the American 

Association of State Highway Officials (AASHO) Road Test for local use (AASHTO, 1974). 

AASHTO recommended that state agencies develop their own correlations to the SSV, using 

parameters such as the California Bearing Ratio (CBR) and even resilient modulus (MR), to 

translate the use of the AASHTO pavement design equation to the states that chose to adopt the 

design guide (AASHTO, 1974).  

 The AASHTO and Unified Soil Classification Systems have not been proven to provide a 

reliable indication of the soil strength or resilience (Thompson & Robnett, 1979) (Webb, 1990). 
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Therefore, some states developed supplemental materials to aid themselves in identifying soil 

strength (Webb, 1990).  

1.2: Problem statement 

Determining how soils will behave is a challenging task as no two soils are alike (Baldwin, 

Kellogg, & Thorp, 1938). They are formed from the deterioration of igneous, sedimentary, and 

metamorphic rocks under a variety of natural conditions (Dumbleton, 1968).  The decomposition 

of rock produces a wild range of materials that engineers attempt to group with a limited set of 

properties, which has led to the many efforts of developing correlation models to estimate subgrade 

resilient modulus (Puppala, 2008). Researchers have developed models using the soils from their 

localities by collecting their own soil samples or by utilizing of the LTPP database (Smart & 

Humphrey, 1999) (Elias and Titi, 2006).  

 With the inability of the AASHTO and Unified Soil Classification Systems to assess the 

resilient behavior of subgrade soils, there is a pressing need to address this issue. The continued 

use of the resilient modulus in the design of pavement structures highlights this need (AASHTO, 

2015). Field engineers require tools to aid them in understanding the resilient behavior of fine-

grained subgrade materials so that they can determine how to manage these materials on the job 

site. However, there is a disconnect with the current soil classification systems, as these systems 

do not support the field engineer in making decisions that ensure quality materials are used in 

subgrade construction. Consequently, the use of poor-quality subgrade soils can lead to failures in 

the overlying pavement structure, wasting valuable resources.  

 Using the freely available LTPP database that contains pavement data collected from test 

sites across the United States and Canada, a soil classification scheme for fine-grained soils can 

be developed and converted into a format suitable for construction specification manuals. With an 
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easy-to-understand table as an aid, engineers can identify problem soils and use other guidelines 

to address the handling of potential problems that are flagged during the design and construction 

phases of a roadway project.   

1.3: Research objectives 

The primary objectives of this study were: 

(1) To identify a suitable source of resilient modulus test data,

(2) To develop a correlation model for the resilient modulus of fine-grained subgrade soils

using the Long-Term Pavement Performance (LTPP) database and a decision tree

algorithm, and

(3) To provide a table using the decision tree model results that can be used to a draft soil

classification specification that demonstrates the application of the preliminary findings

of this study.

1.4: Significance of the study 

This research effort is a first step in developing a soil classification system that more accurately 

represents the resilient properties of subgrade soils used in highway construction. It is only a first 

step because of the challenge of developing a correlation model for resilient modulus (MR) for 

fine-grained and coarse-grained soils. Therefore, the results of this study can only be described 

of as a scheme and not a complete soil classification system. However, development of  a soil 

classification scheme for fine-grained subgrade soils will serve as an aid to engineers in 

identifying the more problematic soils and properly directing resources to ensure that the 

pavement system that will last for its design life.  
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1.5: Organizations of the remainder of the study 

The remaining chapters of this dissertation are divided into the following six (6) chapters to 

provide sufficient background and information to support the analyses and to satisfy the objectives 

of this study:  

 Chapter 2 supplies a literature review of previous work that supports the premises and 

methods of this work.  

 Chapter 3 presents the methodology and tools used to develop a soil classification scheme 

for fine-grained soils. 

 Chapter 4 describes the LTPP Program and the dataset used in this study.  

 Chapter 5 discusses the procedure used to correlate resilient modulus to LTPP data using 

a decision tree algorithm.  

 Chapter 6 provides conclusions based on the analyses and findings of this work.  

 Chapter 7 provides the recommendations based on this work.  
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CHAPTER 2: LITERATURE REVIEW 

The subject of determining the resilient modulus for subgrade soils has pre-occupied the minds of 

many engineers over the years, and it is a challenge that still continues. Although the list of relevant 

topics regarding this subject could be much longer, the items in the following list were seen as the 

most important ones in developing the understanding of this researcher: 

(1) Current soil classification systems

(2) Subgrade Construction

(3) Subgrade resilient modulus

(4) Factors influencing resilient modulus

(5) Behavior of fine-grained soils under traffic loading

(6) Correlations for estimating resilient modulus

2.1: Current soil classification systems 

AASHTO M-145 and ASTM D-2487 are the most commonly used soil classification systems by 

state transportation agencies within the United States (Webb, 1990). Both systems use the 75 µm 

(No. 200) sieve, plastic index (PI), liquid limit (LL), and/or plastic limit (PL) in their classifications 

of finer grained inorganic soils. Other transportation agencies have designed their own systems 

that include other properties such as maximum dry density, clay content, and/or California Bearing 

Ratio (CBR) (Georgia DOT, 2013) (SANRAL, 2013). In whatever form these systems take, the 
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ultimate goal of them is to aid engineers in identifying suitable soils for use and unsuitable soils 

for removal or remediation.  

 Webb (1990) found that transportation agencies in the United States tended to use the 

AASHTO and/or Unified soil classification systems. A majority of these agencies required the use 

of supplemental methods for determining soil strength and suitability for subgrade construction. 

These additional methods were needed because the existing classification systems did not 

effectively group soils by strength.  

 With the adoption of the 1986 AASHTO pavement design guide, the design parameter 

representing subgrade behavior was changed from the soil support value to the resilient modulus 

(MR) (AASHTO, 1974) (AASHTO, 1986). The use of MR has been maintained with the adoption 

of the subsequent 1993 AASHTO Design Guide and the current Mechanistic-Empirical Pavement 

Design Guide (MEPDG) (AASHTO, 1993) (AASHTO, 2015).   

In a study of 50 fine-grained soils, Thompson & Robnett (1979) found that neither the 

AASHTO or Unified soil classes were reliable for grouping finer grained soils on the basis of 

resilient behavior. Therefore, none of these classification systems provide anything but general 

guidance in identifying suitable soils for subgrade construction. Only AASHTO M-145 provided 

general ratings for granular materials as good and for silt-clay (non-granular) materials as fair to 

poor. 

 In order to understand the primary classification systems used in the United States, a brief 

review of them was conducted. Both the AASHTO and ASTM (Unified) classification systems 

use a combination of gradation and Atterberg limits. In addition, both systems divide soils into 

two broad, general classifications or divisions based on the material passing the 75 µm (No. 200) 

sieve. AASHTO M-145 divides soils into granular and silt-clay materials (non-granular) general 
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classifications based on the breakpoint of 35% of the material passing the 75 µm (No. 200) sieve. 

Granular soils have less than 35% passing the 75 µm (No. 200) sieve, and non-granular soils have 

more than 35%. When the material passing the No. 200 (75 µm) sieve exceeds 35%, the voids in 

the soil are commonly filled with fines and coarse-grained soils begin to behave more like a fine-

grained soils because the coarse particles lose contact with each other (Liu, 1970).  

  The ASTM system divides soils into coarse-grained and fine-grained divisions based on 

the breakpoint of 50% of the material passing the 75 µm (No. 200) sieve. Coarse-grained soils 

have less than 50% of a soil’s material passing the 75µm (No. 200) sieve, and fine-grained soils 

have more than 50%. ASTM D-2487 included a division for peat materials, which is not suitable 

for subgrade construction. Therefore, further discussion about these materials will not be made.  

  Beyond these very broad categories, the group classifications of both systems do not 

provide reliable estimates of MR to aid the field engineer in identifying the quality of subgrade 

materials (Thompson & Robnett, 1979). However, it has been found that coarse-grained soils have 

MR values that are generally greater than those of fine-grained soils (Elias & Titi, 2006).  

  The tests used to classify soils are generally straight-forward and inexpensive to perform, 

which satisfy two basic classification principles (Baldwin, Kellogg, & Thorp, 1938). The 

disadvantage of these systems is that they lack the robustness needed to effectively classify 

materials formed from a variety of parent materials and through numerous deterioration methods. 

Determining how soils will behave is a challenging task as no two soils are alike (Baldwin, 

Kellogg, & Thorp, 1938). Soils are formed from the deterioration of igneous, sedimentary, and 

metamorphic rocks under a variety of natural conditions (Dumbleton, 1968).  The decomposition 

of rock produces a wild range of materials that engineers attempt to describe with a limited set of 
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properties . This situation has led to ongoing and independent efforts to develop reliable correlation 

models for estimating resilient modulus (Puppala, 2008).  

2.2: Subgrade Construction 

The subgrade is the top six (6) inches of compacted roadbed materials upon which the overlying 

pavement structure rests (Huang, 2004). In Table 2-1, a visualization of a pavement structure 

demonstrates the placement of the subgrade beneath two of several possible combinations of 

subbase, base course, and/or surface course layers (Colorado DOT, 2017). The necessary layers 

are selected by transportation agencies based on the materials available and their specific 

requirements to support the design traffic.  

The subgrade material may be in-situ soils, or soils that have been hauled in from cut areas 

of the roadway project, or from approved borrow pits. This layer is often compacted between 95% 

to 100% of its maximum dry density (Georgia DOT, 2013) (Arizona DOT, 2021) (Indiana DOT, 

2018). The target moisture contents for subgrade construction can range from 3% below optimum 

moisture to optimum moisture, but in-situ moisture contents can be equal to or greater than 2% 

above optimum before some type of remediation treatment is required (Pennsylvania DOT, 2016) 

(Indiana DOT, 2018).  

Many state agencies conduct soil classifications on the materials that are used for subgrade 

construction (Webb, 1990). The range of acceptable materials can be established by a state agency 

based on its own specifications. For instance, the Indiana DOT requires that subgrade materials 

have a maximum dry density greater than 100 pcf (1602 kg/m³), a liquid limit (LL) less than 50, 

and an organic content of less than 3% among other requirements. The Georgia DOT uses a soil 

classification system that it developed for identifying suitable subgrade materials. In addition to 
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the No. 60 and No. 200 sieves, clay content percentage, volume change percentage, and maximum 

dry density are used by the Georgia DOT to classify soils that are acceptable for roadway projects.  

 

Table 2-1: Examples of pavement structures 

Asphaltic Concrete Pavement  Concrete Pavement 
Unbound Base Layer  Base Course 

Compacted Subgrade Layer  Subbase Course 
Natural Subgrade Layer  Compacted Subgrade Layer 

Embankment 
 Natural Subgrade 
 Embankment 

 

  This brief subgrade construction review revealed that there appears to be some relationship 

between LTPP Protocol P-46 for resilient modulus laboratory testing and state roadway 

specifications. The minimum test specimen length is 6 inches (152 mm), which is the same 

thickness as is typically specified for the subgrade layer. The target moisture and compaction 

requirements for testing are intended to represent the construction specifications conditions 

discussed earlier. When this information is not available to the testing laboratory, the optimum 

moisture contents and maximum dry densities are used instead.  

2.3: Subgrade resilient modulus 

The resilient modulus (MR) is a measure of subgrade stiffness which quantifies the response of a 

soil to rebound after applied loads, such as traffic loads from passing vehicles, have been removed. 

It became an important parameter in pavement design when it replaced the soil support value as 

the parameter that represented the behavior of subgrade soil underlying the pavement structure 

(AASHTO, 1986). It was incorporated into the 1986 AASHTO Design Guide and continues to be 
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used to model the subgrade layer in the Mechanistic-Empirical Pavement Design Guide (MEPDG) 

(AASHTO, 1993) (AASHTO, 2015). It is defined by the following equation (Huang, 2004): 

𝑀ோ =
𝜎ௗ

𝜖
Eq. 2.1 

where, 

MR  = Resilient modulus of subgrade soil (ksi or MPa), 

σd  = Deviator stress (psi or kPa), and 

εr   = Recoverable strain (in/in or mm/mm) 

 Since the introduction of MR into the AASHTO pavement design methodology, the laboratory 

work needed to test for this property was likely seen as a disruption to the normal way of doing 

business. This perspective can be attributed to the 1972 Interim Design Guide, which had been in 

use for about 14 years before the 1986 Guide was introduced. Established infrastructures and 

protocols for testing, designing, and constructing pavements were already in place, and the 

introduction of a new soil property inevitably would lead to changes in a familiar system. Resilient 

modulus testing has also been considered as time-consuming, requiring specialized equipment, 

and highly trained staff (Puppala, 2008) (Lee, Bohra, Altschaeffl, & White, 1997). Therefore, 

many state agencies have taken the approach of developing correlation equations to estimate the 

resilient modulus instead of conducting laboratory or field MR testing. Some of these correlations 

are discussed later in this chapter.  
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  The resilient modulus test data in the LTPP database were collected by state agencies, 

contractors, and various commercial laboratories (FHWA, 2015). The laboratories followed LTTP 

Protocol P-46 for all testing (FHWA, 1996). The protocol standards for defining material types, 

sample preparation techniques depending on material types, and various testing conditions are 

based on whether the materials were subgrade or subbase soils. The variables or features collected 

from using the test protocol are discussed in Chapter 4.  

  What has been recognized about this property is that the MR of coarse-grained and fine-

grained soils are different, which complicates the efforts in understanding this soil property. From 

the calculation equation (Eq 2.1), it can be determined that MR is stress dependent by definition, 

so the findings by researchers that stresses are important factors that influence resilient modulus 

are understandable. However, understanding the influence of other features on MR has proven to 

be more challenging.  

2.4: Factors influencing resilient modulus  

When identifying factors that influence the resilient behavior of fine-grade subgrade soils, 

researchers generally have three types of data readily available to them from the LTPP database: 

(1) soil index properties (2) laboratory test conditions, and (3) testing measurements (Elkins & 

Ostrom, 2021). These types of data are recorded to document details about the in-situ pavement 

layers, traffic loadings, and subgrade reactions to those field conditions. With these data, engineers 

have the ability to search for a better understanding about the nature of pavements and how to 

extend their design lives. Since the resilient modulus (MR) has become an important  parameter to 

pavement designers and field engineers, recognizing the factors that influence the resilient 

modulus has become an essential task for every researcher to understand the reactions of the 

subgrade to traffic loadings.  
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In general, understanding the behavior of soils has been a challenge to this day. In a state-

of-the-art study about granular soils, Lekarp, Isacsson, and Dawson (2000) concluded that the 

behavior of unbound granular materials was not understood very well. If the authors had extended 

their study to non-granular or fine-grained soils, they would have likely reached the same 

conclusion. The reasonableness of this assumption can be supported with the host of research that 

has been conducted and continues to be conducted over the years (Mitchell, Shen, & Monismith, 

1965) (Thompson & Robnett, 1979) (Puppala (2008) (Liu, Zhang, Wang, & Jiang, 2019). This 

lack of full understanding about the resilient behavior of all subgrade soils has been an obstacle 

that engineers have striven to overcome in designing and constructing long-life pavements.  

In fact, the literature reveals some researchers have generally divided soils into two general 

soil types: coarse-grained and fine-grained soils (Yau and Von Quintus, 2002) (Rahim, 2005) 

(Elias & Titi, 2006) . This separation has uncovered different levels of influence that some factors 

have on the resilient behavior of fine-grained soils. After analyzing the Long-Term Pavement 

Performance (LTPP) database, Yau and Von Quintus (2002) and Malla and Joshi (2008) were not 

able to find one property that was common to all their predictive models. Yau and Von Quintus 

(2002) concluded that correlating soil properties to resilient modulus was dependent on soil type 

after analyzing the LTPP data at the time of their study. Fitting the k-coefficients within a 

constitutive model, they found that liquid limit, plasticity index, and the percentage of material 

passing the finer sieves were important factors relating to the resilient modulus to lower strength 

materials. Malla and Joshi (2008) also used fitted k-coefficients of a constitutive model with a 

larger LTPP dataset, but found that resilient modulus was only weakly influenced by optimum 

moisture content, maximum dry density, Atterberg limits, stress state, and gradation. While other 
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researchers may not agree on the level of influence, there seemed to be agreement that these factors 

are influential (Li & Selig, 1994) (Drumm, Reeves, Madgett, and Trolinger, 1997) (Rahim, 2005).  

2.5: Behavior of fine-grained soils under traffic loading 

The subgrade resilient modulus (MR) is a complex parameter that may be influenced by many 

factors. Some of these factors were identified in the previous section. In this section, the findings 

of some research about the behavior of MR with respect to some of the more significant factors are 

discussed. This review was necessary to gain a better understanding of how MR was affected by 

these factors. For the purpose of this study, identifying the effects of some of these factors can be 

useful in reviewing the features that were included in the proposed soil classification scheme. 

Burczyk, Ksaibati, Anderson-Sprecher, and Farrar (1994) and Kim and Kim (2007) found that 

resilient modulus decreased with increasing moisture content with soils from different regions of 

the United States. Burczyk, Ksaibati, et al. (1994) tested undisturbed and remolded cohesive 

Wyoming soils (A-4, A-6) to make this determination, but also found that A-7 soils were not 

significantly affected by moisture. Whereas Kim and Kim (2007) discovered that the resilient 

modulus was higher for Indiana sandy-silty-clay soils at moisture contents less that optimum. They 

also found that resilient modulus increased with increasing confining pressure. 

  With the understanding that moisture effected resilient modulus, a case study on a low-

volume road in north Texas, Hedayati and Hossain (2015) found that the seasonal in-situ moisture 

varied as much as 5% from the average moisture content over a two-year period.  Temporary 

moisture swings as high as 12% from the seasonal average for homogenous highly plastic clay 

were recorded. This number is far greater than the allowable 0.5% deviation from the in-situ 

moisture content established in Protocol P-46 as the primary moisture condition for the testing of 

Type 2 soils.   
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  As noted above, moisture content has been reported in the United States as influencing the 

resilient modulus of subgrade soils, but researchers in other countries have recorded similar results. 

For instance, Nguyen and Mohajerani (2015) tested several fine-grained soils from different 

locations in Victoria, Australia and reported that resilient modulus decreased as the deviator stress 

increased, which were the same results that Liu, Zhang, Wang, & Jiang (2019) found in China 

with low plasticity clays (CL) and low plasticity silts (ML), which are non-granular soils using 

AASHTO M-145. Not surprisingly, both groups of researchers observed that resilient modulus 

increased as the confining stress increased and decreased as moisture content increased.  

2.6: Correlations for estimating resilient modulus 

Many studies have been conducted over the years to predict the resilient modulus (MR) from soil 

index properties, which are routinely collected for classifying soils using one or both of the current 

soil classification systems. Despite these efforts, no conclusive relationship between MR and 

predictive features has been discovered to date as is demonstrated in the sampling of correlations 

collected in this chapter. Therefore, it seems a reasonable assumption that these efforts will 

continue without an actual prediction model and with only correlation models resulting if the same 

collection of feature variables are used. This explanation may be the reason for the cautionary 

recommendations from some researchers because there may be a missing feature or features that 

are not collected using the current sampling and laboratory testing routines. These researchers have 

recommended that transportation agencies develop their own regional correlations to estimate a 

MR for pavement design (Hossain, 2009) (Soliman & Shalaby, 2014). Nevertheless, if an adequate 

number of representative soil specimens are gathered, useful information may still be gathered that 

allows for a growing understanding of the expected resilient behavior of fine-grained soils with 

the use of a correlation model. As will be shown in Chapters 3 and 4, the available dataset of fine-
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gained soils from the LTPP database consists of data for only 64 soil samples that do not uniformly 

cover the North American continent.  

 Elias & Titi (2006) found that by separating their MR test data into coarse-grained and fine-

grained datasets their correlation models improved. Other researchers referenced in this chapter 

have taken the same approach of separating data into coarse-grained and fine-grained soil datasets, 

which was also adopted in this study to concentrate on classifying the more problematic fine-

grained soils and leaving the task of classifying coarse-grained soils for another time.  

 There are two approaches that haven been taken by engineers to develop equations for 

estimating the subgrade MR.  The first one, the direct approach, correlates the modulus to the soil 

index properties and/or testing conditions.  The indirect approach, correlates modulus to a stress-

based (constitutive) model to determine the model’s constant parameter values, typically k-

constants. Then correlations are developed between these parameter constants and available soil 

properties (Puppala, 2008).  

 Within this chapter, a sample of five correlation models using these approaches are 

presented. The purpose for this examination was to demonstrate the different features that have 

been found to estimate the MR of subgrade soils. While there is a general similarity in the 

features used, these similarities may be due to the use of the same collection of features and 

nothing more.  

2.6.1: Direct methods 

The most recognized correlation (Eq. 2.2) to resilient modulus (MR) was developed by Heukelom 

and Klomp in 1962 (Dione et al., 2014).  The equation has been used for fine-grained soils when 

the California Bearing Ratio (CBR) is less than or equal to 10% (George, 2004). There have been 

several critics of this correlation that have suggested CBR is a measure of shear strength and may 
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not correlate to stiffness (Thompson & Robnett, 1979) (E. C. Drumm, Boateng‐Poku, & Pierce, 

1990) (Smart and Humphrey, 1999) (Dione et al., 2014). A couple of key criticisms of the CBR 

model are that it is based on a soaked test procedure and its stress conditions have not been taken 

into account, whereas the specimens for resilient modulus testing are tested at more restrictive 

conditions  (Smart and Humphrey, 1999) (AASHTO, 2015). In addition, modulus testing is 

conducted over a range of stress combinations to  account for the estimated field conditions while 

CBR testing are conducted at stress levels do not match in-situ conditions (Smart and Humphrey, 

1999).  

𝑀(𝑝𝑠𝑖) = 1500 𝑥 𝐶𝐵𝑅 Eq 2.2 

 Eq 2.3 was developed with data that was independent of the LTPP database (Rahim, 2005). 

For MR testing, Shelby tube samples were collected from sites in the state of Mississippi. Seven 

(7) of these non-granular test specimens classified as AASHTO A-4, A-6, and/or A-7. The results

for Eq 2.3 provided an R2 of 0.70 and Se/Sy of 0.204. Its RMSE was 32.5 MPa (4,714 psi). The 

laboratory MR ranged from 31 MPa (4,436 psi) to 269 MPa (38,986 psi), which seemed greater 

than the range for the MR data on bulk soil samples, which is discussed in Chapter 4.  

𝑀ோ = 17.29 ቈ൬
𝐿𝐿

(𝑤 + 1)
× 𝛾ௗ൰

ଶ.ଵ଼

+ ൬
#200

100
൰

ି.ଽ

 Eq 2.3 

where, 

MR = resilient modulus (MPa) 
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LL = Liquid Limit 

wc = Moisture content (%) 

γdr = γd / γmax 

γd = dry density (kN/m3) 

γmax = maximum dry density (kN/m3) 

#200 = Percent of material passing the No. 200 sieve (%) 

Although the Rahim model used parameters commonly acknowledged as influencing the 

MR, it did not contain a stress variable. The absence of a stress parameter would suggest a relatively 

constant modulus value regardless of the overlying pavement structure and level of traffic, as long 

as the moisture and density conditions remain stable.  

2.6.2: Indirect methods 

As with the direct approach, numerous regression equations have been developed using the indirect 

approach. Yau and Von Quintus (2002) fit the following constitutive equation (Eq. 2.4) for resilient 

modulus (MR) to the LTPP data for fine-grained silty and fine-grained clayey subgrade materials 

with two separate sets of k-coefficients:  

𝑀ோ = 𝑘ଵ𝑃 ൬
𝜃 − 3𝑘

𝑃
൰

మ

൬
𝜏௧

𝑃
+ 1൰

య

Eq 2.4 

where, 

Pa = Atmospheric pressure 

θ = Bulk stress 
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τoct = Octahedral shear stress 

k1, k2, k3, k6 = Regression constants 

 During the regression process, the k- coefficients in Eq. 2.4 were determined using resilient 

modulus and stress conditions. Afterwards, the k- coefficients in the equations below were 

regressed using soil features. Researchers found that k6 was zero in more than 50% of the tests. 

Consequently, they set k6 to zero and reran the regressions, which did not significantly alter the 

results. Therefore, the process was followed for the subsequent two sets of regression equations.  

 The first set of k-coefficients (Eq. 2.5 to Eq 2.7) estimates the resilient modulus of fine-

grained silts. A mean square error of 193.0 and Se/Sy of 0.5622 were reported. In addition, the 

authors determined that fair to good correlations were found between the LTPP data and the MR 

test results based on the k- coefficient equations.  

𝑘ଵ = 1.0480 + 0.0177(%𝐶𝑙𝑎𝑦) + 0.0279𝑃𝐼 − 0.0370𝑤௦  Eq 2.5 

𝑘ଶ = 0.5097 − 0.0286𝑃𝐼 
 Eq 2.6 

𝑘ଷ = −0.2218 + 0.0047(%𝑆𝑖𝑙𝑡) + 0.0849𝑃𝐼 − 0.1399𝑤௦ 
 Eq 2.7 

 For fine-grained clay soils, Eq. 2.8 to 2.10 were used to estimate the resilient modulus for 

fine-grained clay soils with the constitutive equation (Eq. 2.4). A mean square error of 557.9 and 

Se/Sy of 0.8082 were reported.  
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𝑘ଵ = 1.3577 + 0.0106(%𝐶𝑙𝑎𝑦) − 0.0437𝑤  Eq 2.8 

 

𝑘ଶ = 0.5193 − 0.0073𝑃ସ + 0.0095𝑃ସ − 0.0027𝑃ଶ − 0.003𝐿𝐿 − 0.0049𝑤௧  Eq 2.9 

 

𝑘ଷ = 1.4258 − 0.0288𝑃ସ + 0.0303𝑃ସ − 0.0521𝑃ଶ + 0.0251(%𝑆𝑖𝑙𝑡)

+ 0.0535𝐿𝐿 − 0.0672𝑤௧ − 0.0026𝛾௧ + 0.0025𝛾௦

− 0.6055 ቀ
𝑤

𝑤௧
ൗ ቁ 

 Eq 2.10 

where, 

%Clay = Clay content of the specimen, % 

wc = Moisture content of the specimen, % 

P4 = Percent of material passing the No. 4 sieve, by weight 

P40 = Percent of material passing the No. 40 sieve, by weight 

P200 = Percent of material passing the No. 200 sieve, by weight 

LL = Liquid Limit  

wopt = Optimum moisture content of the specimen, % 

%Silt = Silt content of the specimen, % 

γopt = Optimum dry density of the sample, kg/m3  

γs = Dry density of the sample, kg/m3  

 

 Elias and Titi (2006) used the following constitutive model, which  substitutes σb for the more 

commonly used θ symbol for bulk stress in Eq 2.11.  
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𝑀ோ = 𝑘ଵ𝑃 ൬
𝜎

𝑃
൰

మ

൬
𝜏௧

𝑃
+ 1൰

య

 Eq 2.11 

 

where,  

σb = Bulk stress 

 

  Eqs. 2.12 to 2.14 were developed using four (4) fine-grained Wisconsin soils with 72% or 

more material passing the No. 200 (75 µm) sieve. The R2 values for those equations were 0.84, 

0.65, and 0.76, respectively. The k models from this study were unique in that all three (3) 

models used the plastic index (PI), dry density (γd), and optimum moisture ratio (w/wopt) in this 

set of correlations. The k2 model included the maximum dry density (γdmax).  

 

𝑘ଵ = 404.166 + 42.933(𝑃𝐼) + 52.260𝛾ௗ − 987.353 ቀ𝑤
𝑤௧ൗ ቁ  Eq 2.12 

 

𝑘ଶ = 0.25113 − 0.0292𝑃𝐼 + 0.5573 ቀ𝑤
𝑤௧ൗ ቁ ൫

𝛾ௗ
𝛾ௗ ௫

ൗ ൯  Eq 2.13 

 

𝑘ଷ = −0.20772 + 0.23088𝑃𝐼 + 0.00367𝛾ௗ − 5.4238 ቀ𝑤
𝑤௧ൗ ቁ  Eq 2.14 

where,  

  PI = Plastic Index  

  γd = Dry unit weight, kN/m3  

  γdmax = Maximum dry unit weight, kN/m3  

  w = Moisture content of the specimen, % 
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CHAPTER 3: METHODOLOGY 

This discussion will continue with explanations about the methods, database, and software tools 

used to meet the objectives of this study, as provided below. This effort was made to support the 

decisions made in conducting this study.  

(1) To identify a suitable source of resilient modulus test data,

(2) To develop a correlation model for the resilient modulus of fine-grained subgrade soils

using the Long-Term Pavement Performance (LTPP) database and a decision tree

algorithm, and

(3) To provide a table using the decision tree model results that can be used to a draft soil

classification specification that demonstrates the application of the preliminary findings

of this study.

3.1: Decision Tree Algorithm 

Decision tree modeling was selected for use in developing the soil classification scheme for fine-

grained subgrade soils because it offered the following benefits:  

(1) a simple and straight-forward tree modelling procedure that was easy to interpret and

translate into a soil classification table,

(2) a decision tree hierarchy that can provide engineers with a general understanding of the

resilient behavior of this soil type by identifying features and their general level of

importance, and
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(3) a similar classification structure to the current AASHTO soil classification system.  

 

  To implement the use of the decision tree algorithm, a decision tree prediction model had 

to be created to begin the process. Then the average MR values within each leaf node prediction at 

the bottom of the tree were grouped with other leaf nodes that that had similar average MR values 

to create proposed soil classes (Figure 3-1). The features in the decision tree diagram were 

identified as being most influential in predicting MR and would be used to create criteria to separate 

the soil into any proposed soil class groupings.  

  Using the R programming language, the rpart function of the rpart library was used to 

construct decision tree regressions to predict laboratory MR values. This function used a recursive 

splitting procedure, which began by arranging the values of the target feature (MR) for each 

predictive feature from the lowest to highest. From that point, the algorithm searched for a binary 

split point for each predictive feature that minimized the prediction squared error (Rokach and 

Maimon, 2005). The predictive feature that minimized the error the most was selected as the root 

node. Then the process was repeated for each succeeding lower-level child node until a stopping 

criterion was met (Suthaharan, 2016). The splitting process has been described as “greedy” 

because it does not evaluate the global effect of each nodal split, just the immediate benefit 

resulting from the split (Bi, Goodman, Kaminsky, & Lessler, 2019). This procedure was practical 

because programming the algorithm to consider every possible split and its global consequences 

could consume a considerable amount of computational resources and slow down the development 

of the decision tree model.  

  There are a number of stopping criteria for tree development that can be used to end the 

splitting process. For instance, the maximum number of levels of the tree, or a minimum required 
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number of MR test results within a leaf node can be used to stop model development and control 

the size of the decision tree. It was decided to use the default stopping criteria to end the tree 

building process.  

  The result of executing the algorithm was a decision tree model that looked like an upside-

down tree with the root node at the top of the diagram and the leaf nodes at the bottom (see Figure 

3-1). The root node indicated the silt content (SILT) feature that was the most important one in 

predicting the target feature, which is the MR in this study and example diagram. In between the 

root and leaf nodes were intermediate (child) nodes with features that represented lower levels of 

feature importance compared to the features at the higher levels. The intermediate node labelled 

CLAY was the only intermediate node in Figure 3-1. Model developers can simply assess that it 

was of secondary importance to the root node (SILT) in predicting MR. If there were child nodes 

emanating from the CLAY node, these nodes would have indicated features of lower importance 

to the CLAY feature. In the leaf node depictions are displayed the average values of MR (target 

feature) of the nodal contents that resulted from following the hierarchy of conditional statements.  

  The final reason for applying a decision tree algorithm to develop a new soil classification 

scheme was because the current AASHTO soil classification scheme already has a structure that 

is similar to a decision tree (compare Table 3-2 and Figure 3-4) even though it may not be seen as 

such at first glance. Therefore, modifying the current classification structure to a newer tree with 

parameters that are more reflective of the resilient properties of fine-grained soils may aid in 

overcoming any natural resistance to altering the status quo, which is essential for users in 

accepting a revision to the current soil classification system (Jick, 1991) (Mento, Jones, & 

Dirndorfer, 2002).  



 

25 

  The current AASHTO scheme is essentially composed of a series of “yes” or “no” 

decisions as displayed in Figure 3-4. The decision condition splitting the soils into granular and  

non-granular general classifications is based on the material by weight passing the 75µm (No. 

200) sieve. A minimum of 36% passing the 75µm (No. 200) sieve is required for the soil to be 

classified as a non-granular soil (75µm or No. 200, PN200 sieve ≥ 36%). If the condition is false, 

then the soil is a granular soil and would not be used in this study.   

 

Figure 3-1: Decision tree example 

 

Table 3-1: AASHTO group classification scheme for silt-clay materials 

Group 
Classification 

A-4 A-5 A-6 A-7-5 A-7-6 

75 µm 
(No. 200) 

36 min 36 min 36 min 36 min 36 min 

Liquid Limit 
(LL) 

40 max 41 min 40 max 41 min 41 min 

Plasticity Index 
(PI) 

10 max 10 max 11 min 
11 min & 

PI ≤ LL-30 
11 min & 

PI > LL-30 
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Figure 3-2: AASHTO M-145 for non-granular soils in a decision tree format 

 

  Using a more advanced machine learning algorithm can produce a better predictive 

accuracy, but cannot be more easily interpreted than a decision tree model (James, Witten, Hastie, 

& Tibshirani, 2013). Random forest algorithms can result in hundreds of smaller decision trees to 

determine a final prediction (Maindonald, 2021). The output for this type model can produce many 

pages of output that would be difficult to review and understand. XGBoost algorithms can also 

produce hundreds of trees that correct the errors of earlier tree iterations (Chen & Guestrin, 2015). 

Again, this type model would be more difficult to review and understand that a decision tree model.  

3.2: The Long-Term Pavement Performance Program 

Before explaining the database used in this study, it was necessary to discuss the origins of the 

data collection effort, which began with the Long-Term Pavement Performance (LTPP) Program. 
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It is one of the largest and most comprehensive pavement monitoring efforts in the world (FHWA, 

2015). Its test sites are located throughout the United States and Canada. The program was 

carefully developed for seven years by the Federal Highway Administration (FHWA), American 

Association of State Highway and Transportation (AASHTO), the Road and Transportation 

Association of Canada, and the Transportation Research Board (TRB). Part of the development 

included a pilot study that was conducted in eight states beginning in 1982. This initial study was 

intended to address the issues that are involved with building a database that could be used to 

improve various aspects of managing a multi-faceted research program.  

  After the program beginning in 1987, the data collected was intended to be used to better 

understand the long-term behavior of pavements and the variables that influence them. Some of 

the variables that were acknowledged as being influential fall into the general categories of  

climate, materials, maintenance practices, and various others. To ensure that research-quality data 

was collected, many guidelines and tools have been developed for use in the program. The 

following list provides a very small sample of the guidelines that have been developed for 

collecting high-quality research data: 

 Guidelines for the Collection of Long-Term Pavement Performance Data, 

 LTPP Information Management System (IMS) Quality Control Checks,  

 LTPP Traffic Analysis Software, and 

 LTPP Protocol P46: Resilient Modulus of Unbound Granular Base/Subbase Materials 

and Subgrade Soils.  
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  The approach taken by the LTPP Program has been a departure from the earlier methods 

of conducting research (Elkins & Ostrom, 2021). Previous approaches concentrated on studying 

specific interests with a limited scope and within a limited timeframe. This strategy was used in 

the AASHO Road Test that was conducted over a 2-year period on a pavement structure that was 

devoted to the research project. The truck loadings eventually exceeded those from the study by 

the mid 1980’s. The LTPP began data collection in 1987 and continues to collect data on in-service 

roadways to gain a better understanding of pavement behavior. Another difference from previous 

research approaches is that data from studies like AASHO Road Test were not freely and easily 

assessable. The LTPP data is easily and freely available to the public for anyone to conduct 

pavement research. Needless to say, the LTPP strives to produce high-quality data by establishing 

standards for data collection, quality control checks, and testing from which all researchers can 

benefit.  

3.3: The Pavement Performance Database 

One of the challenges that researchers face is developing a set of conclusions based on sample data 

and applying those inferences to a larger population (Tintle, et.al). The attempt to achieve this goal 

involves gathering and describing representative sample data so that these generalizations can be 

developed. The LTPP database was selected as the source of the sample data for this study, as it is 

one of the most comprehensive pavement performance databases in the world (FHWA, 2015). The 

data in the LTPP database was collected from test sites across the United States and Canada 

(Figure3-3). These sites were established to investigate a wide range of research questions about 

materials, construction practices, and rehabilitation techniques for example. Therefore, the soil 

data may or may not necessarily be representative of all fine-grained subgrade soils of interest that 

are generally used in highway construction in the United States and Canada. The data did span a 
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wide range of geographic locations and geological formations that may be able to provide some 

insight into the resilient behavior of fine-grained subgrade soils that could lead to the 

characterizing these soils into a classification scheme that could be useful in identifying soils that 

are suitable for highway construction whenever they are encountered on the job site.  

 

Figure 3-3: LTPP test sites with fine-grained subgrade soils 

 

  Table 3-2 provides a tabular representation of the LTPP test site map from where the fine-

grained soils originated. It unmasks the clumping of the data from test sites that were located very 

close to each other. The main purpose for providing Figure 3-3 and Table 3-2 was to provide a 

visual aid to demonstrate that the fine-grained soil data was not evenly spread out across the United 

States and Canada. In fact, there were no test sites/ fine-grained soils from Canada in the dataset 
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that was used to develop the decision tree model in Chapter 5. Despite the apparent data gaps with 

respect to geographic location, some useful decision tree models were developed.  

Table 3-2: Fine-grained subgrade soils in the base dataset 

State 
Number of 

Soil 
Specimens 

State 
Number of 

Soil 
Specimens 

State 
Number of 

Soil 
Specimens 

Alabama 7 Hawaii 1 
North 

Carolina 
1 

Arizona 2 Idaho 2 Oregon 3 
Arkansas 2 Louisiana 1 Texas 3 
California 8 Montana 5 Utah 1 
Colorado 15 Nevada 1 Washington 4 
Delaware 1 New Mexico 5 Wyoming 2 

 

  As has been discussed in Chapter 2, predicting the MR of any subgrade soil type has been 

a very challenging task, as can be surmised by the continued efforts to develop more MR 

correlations after so many that have already been developed throughout the years (Puppala, 2008). 

Some researchers have used the strategy of segregating regional soils into unique sets of 

independent variables that can be used for correlating subgrade MR (Hossain, 2009) (Smart & 

Humphrey, 1999). In addition, the literature revealed that researchers have developed stronger 

correlations by separating the distinction of fine-grained and coarse-grained soils (Yau and Von 

Quintus, 2002).  

  The data used in this study was downloaded from the InfoPave website, which served as 

the public interface to the Information Management System (IMS) that was composed of three 

components: (1) Products, (2) Pavement Performance Database, and (3) Ancillary Information 

Management System (AIMS). The component of interest for this study was the Pavement 

Performance Database (PPDB) which housed the data of interest. Table 4-1 lists the tables and 
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descriptions of these tables from which the all-subgrade data was contained. The data in these 

tables provided details about sample type, locations of the test sites, test site designations, layer 

identifications, soil index properties, laboratory testing conditions, resilient modulus test results, 

and AASHTO soil classifications.  

  The soil data used in this study were selected from the tables associated with bulk soil 

samples. Bulk soil samples are more likely to be collected during the preliminary field 

investigation of a roadway project as this type of sample is quicker and more economical to collect. 

The thin-walled (Shelby) tube samples are more likely to be selectively used in areas that are 

potentially unstable. Because “pushing” tubes takes more time to set up and to focus on the changes 

in the underlying strata changes, this procedure would not be practical to use during the 

investigation of a proposed construction alignment. In addition, because of differences in sample 

test dimensions, test procedures, and test results, the data from these two groups cannot be 

combined.  

  The descriptions of the data tables were provided in the IMS User Guide and other PPDB 

tables (Table Reference and Field Reference). Although table TST_SS02_UG03 was described as 

containing gradations for “unbound fine-grained granular base, subbase and subgrade materials”, 

it included gradation data for all non-granular subgrade soils. Therefore, the data for non-granular 

soils was used as the starting point for cleaning the raw dataset. This starting point also served as 

a means for understanding the differences between the coarse-grained (CGF) and fine-grained 

(FGF) fractions of the non-granular soil general classification.  

  The subgrade soil data was organized into a group of relatable  tables, which required 

merging into a single base dataset using primary keys within an R programing environment. The 

LTPP Information Management System User Guide provided the guidance needed for identifying 
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the set of features that served as primary keys. Examples of these keys are SHRP ID code, layer 

number, and location number. More details about the data tables and primary keys are provided in 

Appendix A.  

Table 3-3: LTPP data tables with data of interest  

Table Name Description of Relevant Data 

SECTION_COORDINATES Longitude/Latitude of test site locations 

TST_SS02_UG03 Gradations of fine-grained soil samples 

TST_UG04_SS03 Atterberg limits of soil samples  

TST_UG05_SS05 Maximum dry density and optimum moisture content 

TST_UG07_SS07_A Testing details on molded bulk soil samples 

TST_UG07_SS07_WKSHT_SUM 
Average resilient modulus and stress/strain conditions for 
the testing sequences for bulk soil samples 

TST_SS04_UG08 AASHTO soil classifications 

TST_L05B Identification code of subgrade layer 

EXPERIMENT_SECTION Identification codes for GPS and SPS sections 

 

  By identifying the data tables that contained the subgrade data of interest, the relevant data 

was merged into a single dataset that could be examined for areas of concern in the following 

sections. These issues were related to limiting the sample data to fine-grained subgrade soils, 

adherence to LTPP Protocol P-46 for MR testing, samples not achieving a record status of “E”, and 

removal of test results that exhibited anomalous behavior. The record status of “E” indicated that 

the individual test results had undergone all available quality control checks. The researcher was 

cautioned that records in the PPDB with an “E” status may still have errors that have not been 

flagged by the current quality control procedures (FHWA, 2015).   
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3.4: Software tools for data analysis 

In this section, several software applications used to examine the PPDB (LTPP database) and 

conduct the analyses of the data in this study. These tools are briefly described in this section to 

understand the benefits of their selection for use.  

3.4.1: Anaconda and Anaconda Navigator  

The Anaconda software distribution was selected for use in this study because it was freely 

available from its website (https://www.anaconda.com) and provided many tools that were suitable 

for educational research. It included an environment manager, a graphical user interface (GUI), 

many automatically installed packages, and a large public repository of freely available data 

science and machine learning packages (Anaconda Software Distribution, 2020).  

  The conda package manager made it easy to install, update, and remove the packages that 

were used to perform a variety of tasks. Packages to create plots, conduct t-tests, and conduct 

decision tree analyses were among some of the packages that were used in this study.  

  The conda environment manager allowed the creation of multiple programming 

environments that could be established to perform various tasks. While R programming was used 

exclusively in this study, the option to use Python or another programming language was also 

available. A benefit of using different programming environments when using only the R 

programming language was that R and the R packages are constantly in a state of being updated. 

While it was easy enough to create an environment for using R version 3.6.3, the challenge 

occurred when adding new packages that were not compatible with previously installed packages. 

The strategy that was followed was to use R version 3.6.3 for all programming environments 

because most of the same basic packages were needed for all tasks. However, when installing new 
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packages that were developed for higher versions of R, a new environment was created to 

experiment with the new package. Needless to say, this strategy was only developed after some 

time-consuming mishaps.  

  Another tool that was provided in the distribution was Anaconda Navigator, which was a 

graphical user interface (see Appendix A, Part 2) that made performing many functions easier than 

having to type commands at a command prompt. Some of the actions that were performed with 

Navigator were the environment and package management tasks mentioned earlier in this section 

in addition to launching Jupyter Notebooks in the environment to be used for coding.  

3.4.2:  Jupyter Notebook 

Jupyter Notebook is a web-based application that was also available within the Anaconda 

software distribution. It uses the default web browser to create computational documents that can 

be annotated to remind the programmer of the purpose of coding blocks, which can help during 

debugging process  and to inform members of a coding collaboration team about the function of 

the code (Kluyver, et al, 2016).  

  The Google Chrome and Mozilla Firefox web browsers were used at different times. 

Each browser worked equally well with Jupyter Notebooks. A screenshot is provided while using 

the Firefox browser to provide a visual representation of the application layout (see Appendix A, 

Part 2). Having two monitors to work with, it was decided to use Google Chrome for any UGA 

library and non-school-related internet searches and to use Firefox for Jupyter Notebooks. By 

assigning these functions to different browsers, it was simpler to move the browsers to different 

monitors.  
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  As can also be observed in Figure 3-2, Jupyter Notebooks allowed for incremental coding 

and annotation with the use of cells without having to re-run each line of code, which could be 

over 400 lines, depending on the task being performed. While this capability was seen as a benefit, 

others have criticized Jupyter Notebooks as leading to poor coding behaviors that resulted in 

irreproducible results (Perkel, 2018) (Pimentel, Murta, Braganholo, & Freire, 2019). However, it 

seemed like these issues were more likely a problem with inexperienced programmers. As long, 

as the programmer understands basic programming principles, annotates his/her code properly, 

and understands the effects of the code being written, these reported problems can be managed, as 

they were during this study with a little effort.  

3.4.3: R programing environment and language 

In order to use the capabilities of the R programming language, a programming environment for 

it was created using Anaconda Navigator. The R environment consisted of the R language in 

addition to the many packages for statistical analysis, data visualization, data manipulation 

(Albert & Rizzo, 2012) (R Core Team, 2023a). The robustness of R was apparent from its open-

source status and its supportive community that has developed over 20 thousand packages to 

conduct a variety of functions (de Micheaux, Drouilhet, & Liquet, 2013) (R Core Team, 2024). 

The primary drawback to using R was the steep learning curve (Zuur, Ieno, & Meesters, 2009).  

  The R programming language (version 3.6.3) was used for the analysis of the LTPP data 

and model development for this study (R Core Team, 2020). Version 3.6.3 was the one that was 

provided during the original installation of the distribution. Throughout the process of learning 

more about Anaconda environments and the R programming language, it was decided to keep 

using this version because of various issues that resulted from incompatibility with some R 

packages by updating R language versions. The benefit of this course of action became apparent 
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after the various software/package updates and reinstallations necessary because of unsuccessful 

experimentation with the software and virus infections. Some of these mishaps were another 

reason why creating new environments or cloning existing environments for experimentation 

was seen as necessary. More experience or understanding of Anaconda Navigator and the R 

programming language would have been useful in avoiding these setbacks.  

  Although the R software was freely provided with the Anaconda Navigator, it was also 

freely available from the R project website (https://www.r-project.org/), which provided useful 

references to help with understanding and programming in the language (R Core Team, 2000) (R 

Core Team, 2000a) (R Core Team, 2020).  

  There were many packages, or library functions, that were available for use with the R 

language. Some were installed during the initial creation of the R environment and others required 

manual installation. If the packages were pre-installed, the install.packages() function updated the 

specified package library. After the installations, the commands were commented out, so that they 

would not be re-executed and kept for future use in a new programming environment.  

  The primary library packages that were used were as follows:  

(1) rpart: training decision tree models (Therneau & Atkinson, 2019), 

(2) rpart.plot: plotting decision tree models (Milborrow, 2024), and 

(3) ggplot2: creating graphical plots (Wickham, 2016).  

 

3.4.4: Miscellaneous commercial software applications 

While most of the work in this study was performed using freely available software, there were 

several commercial applications that were used because of personal familiarity with their functions 
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and because of possession of licenses for their use.  These applications and how they were used 

are given below. No other description of their use was deemed necessary.  

 Microsoft (MS) Access was only used to export the relevant data tables from the MS 

Access bucket file that was downloaded from the InfoPave website to MS Excel. Having 

the data in an Excel format made manipulating the data simpler with the R programming 

language.  

 MS Excel was used to manually examine the contents of the exported data tables. The 

datasets created with R were written into Excel files for review of the dataset contents. In 

addition, some tables in this document were created with Excel and pasted into MS Word 

for editing.  

 Affinity Photo was used to format some of the images in this document.  

 Microsoft Word was used to prepare this document.  

 Microsoft Publisher was used to draw some of the diagrams in this document.  

 

3.5: Assumptions and limitations 

The following assumptions were necessary in order to conduct this study: 

 Use of the Long-Term Pavement Performance (LTPP) Protocol P-46 provided an accurate 

and stable method for measuring the resilient modulus properties of fine-grained subgrade 

soils in the laboratory that could be applied to pavement design using the Mechanistic-

Empirical Pavement Design Guide (MEPDG). Should the protocol be revised or replaced 

with a new protocol, the effect upon the resilient modulus test results should be analyzed.  
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 The subgrade resilient modulus testing data in the PPDB (LTPP database) were 

representative of the true populations of ASTM-defined fine-grained subgrade soils that 

have been used in highway construction of the LTPP test sections.  

The following were limitations of the database used in this study: 

 Because not all AASHTO soil group classifications were represented in the PPDB, it was 

unclear if the unbalanced distribution of subgrade soil classifications was because the 

imbalance was representative of the construction materials actually used, or because the 

selection of the test sites did not properly consider the various AASHTO group 

classifications.  

 Without a complete and representative database of all fine-grained subgrade soils that have 

been used in highway construction in the United States and Cananda, it was unclear if the 

imbalance of AASHTO group classifications were meaningful.  

 

3.6: Summary 

Based on the methodology detailed in this chapter, the appropriate database, tools, and analysis 

procedure have been selected to develop a classification scheme for fine-grained subgrade soils 

that reflect their resilient behavior. The PPDB (LTPP database) from the LTPP Program was used 

because it was identified as the largest research-quality database of its kind, which satisfied one of 

the objectives of this study. The freely available Anaconda, Jupyter Notebook, and R programming 

provided a manageable programming environment to develop the decision tree models. The use of 

Microsoft Office Suite and Affinity Photo were useful and relatively simple software packages to 

prepare this study.  
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CHAPTER 4: STATISTICAL EXPLORATION OF THE LTPP DATA 

With a source of research-quality resilient modulus (MR) test results, the next logical step was to 

review the raw dataset before conducting the decision tree analyses to develop the soil 

classification scheme for fine-grained subgrade soils. ASTM D-2487, AASHTO M-145, and LTPP 

Protocol P-46 were the documents used to process and review the raw data.  

 The data processing consisted of creating smaller datasets that could be used to compare 

various groupings, such as capped and uncapped specimens, against each other. The first part of 

the data review consisted of confirming the test specimens were prepared and tested per the 

standards established by LTPP Protocol P-46. Test results that did not conform to that protocol 

were removed from the raw dataset.  The second part of the review consisted of searching for 

possible data anomalies, which would be removed if encountered. The third and final part of the 

data review consisted of plotting the resilient modulus (MR) versus each of the predictor features 

to check if the LTPP data mimicked the responses documented in the literature review. Even 

though decision trees are nonparametric models and the trendlines in the plots represent linear 

relationships, it still was of interest to see how and where the data would fall within the plots.  

4.1: Fine-grained Soil Criterion 

As was noted in the literature, good correlations for resilient modulus (MR) were not found when 

using a single dataset for both coarse-grained and fine-grained soil types. However, good models 

could be developed when using separate datasets for these soil types (Elias and Titi, 2006). 

Therefore, that approach was adopted for this study while focusing only on fine-grained soils in 
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order to keep the work more manageable because developing correlation models has continued to 

be a challenge for research engineers for many years (Puppala, 2008) (Yau & Von Quintus, 2002). 

Another reason for limiting the scope of this study was to concentrate on the more problematic 

fine-grained soils, which would be more useful for design and field engineers to identify the 

properties that could contribute to a soil’s resilient behavior (AASHTO, 2000).  

  Elias and Titi (2006) followed ASTM D-2487 for distinguishing coarse-grained and fine-

grained soils. The need for making this distinction in defining soil types became evident due to the 

inherent confusion that arose from reviewing the PPDB (LTPP database), which included 

AASHTO group classifications and “fine-grained material” descriptions in the database. These 

fine-grained descriptions applied to all soils that had group classifications of A-4, A-5, A-6, and 

A-7, which are under the AASHTO general classification of silt-clay (non-granular) materials. 

AASHTO M-145 states that silt-clay materials are fine soil particles that will pass the 75µm (No. 

200) sieve, but it sets the criterion for the silt-clay (non-granular) general classification as having 

greater than 35% of its material passing the 75 µm (No. 200). While this confusion may simply be 

a personal challenge, it seemed necessary to address it. With all this being said, the definitions for 

ASTM D-2487 and AASHTO M-145 have been presented below, as the broad categories from 

each classification system were examined for differences in MR results later in this chapter to 

further support the decision to use the ASTM standard.  

  Before examination of the MR values between the broad categories in the AASHTO and 

ASTM standards could begin, it was necessary to separate the soils into the appropriate subgrade 

soil datasets using the R programming language. For ASTM D-2487, datasets for the soil divisions 

of coarse-grained and fine-grained were created. The highly organic soil type was not encountered 
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in the PPDB, so it was not included in the MR comparison. The ASTM standard defined the soil 

divisions as follows:  

(1) Coarse-grained soils: more than 50% of material by weight retained on the No. 200 

(75µm) sieve,  

(2) Fine-grained soils: more than 50% of material by weight passing the No. 200 (75µm) 

sieve, and 

(3) Highly organic soils: primarily organic matter, dark in color, and with an organic odor.  

 

  Using AASHTO M-145 subgrade soil datasets were created for the two general 

classifications of soils, using the following criteria:   

(1) Granular materials: if 35% or less of the material passes the 75 µm (No. 200) sieve and 

(2) Silt-clay materials (non-granular): if greater than 35% of material passing the 75 µm 

(No. 200) sieve.  

 

  The LTPP database (PPDB) did not include ASTM group symbols, and these group labels 

were not added with R programming code to identify them in the analyses.  However, the database 

did include the group classifications from AASHTO M-145, so datasets for these group classes 

were created. The caveat being that the plots later in this chapter and analyses in Chapter 5 were 

prepared with the primary intention of evaluating ASTM fine-grained soils, which are the same as 

the fine-grained fraction (FGF) of the silt-clay (non-granular) general classification of the 

AASHTO specification. With the FGF being defined using the 50% of material by weight passing 

the No. 200 (75 µm) criterion from ASTM.  
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4.2: LTPP Protocol P-46 

LTPP Protocol P-46 is the laboratory testing procedure for the LTPP Program to test soil samples 

for resilient modulus (MR). It provided a consistent procedure with guidelines for sample type, 

specimen dimensions, and test conditions. This data was stored in the database with measured 

physical dimensions and stress conditions that varied slightly from those prescribed in the protocol. 

A review of the database was conducted using Protocol P-46 to verify that the testing followed the 

established procedure.  

  The soil samples in the bulk soil tables consisted of bulk soil samples and remolded thin-

walled tube samples. The thin-walled samples included were remolded and tested in the same 

manner as bulk soil samples.  

  The test specimens were compacted to the in-situ moisture and density conditions when 

that information was available. If these conditions were not known, the specimens were compacted 

to the optimum moisture content at 95% of the maximum dry density. The plots based on these 

criteria were reviewed later in this chapter, but none of the data were removed if these conditions 

were not met. Although subgrade construction specifications typically specify a 95 to 100% 

compaction range, the actual compaction range can vary beyond the specification limits and cannot 

always be identified without extensive testing. Therefore, removal from the final analysis dataset 

was not conducted based on compaction results.  

  Materials were defined as being either Type 1 or 2. This distinction was made to determine 

the mold size to use in specimen preparation. Fine-grained subgrade soils fell into the Type 2 

category, which were prepared in 71-mm (2.8-inch) diameter molds. Type 1 soils were prepared 

with 152-mm (6-inch) diameter molds. Therefore, test specimens that varied significantly from 71 

mm were targeted for removal from the basic analysis dataset. Because the specimen length was 
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required to be at least twice the specimen diameter, specimen lengths were reviewed to ensure that 

the lengths were at least 142 mm. None of the test results from these specimens were removed as 

long as the specimen lengths were at least 142 mm long.  

  Fine-grained soils were categorized as Type 2 because they did not meet the following 

criteria for Type 1 soils:  

a) Untreated soils with less than 70% passing the 2.00 mm (No. 10) sieve,  

b) Less than 20% passing the 75mm (No. 200) sieve, and  

c) With PI values less than or equal to 10%.  

 

  Sub-section 8.1: Resilient Modulus Test for Subgrade Soils of the protocol did not specify 

the use of test caps. The use of test caps was only specified for base materials in Sub-section 8.2: 

Resilient Modulus Test for Base/Subbase Materials. Therefore, specimens identified as being 

tested with caps were targeted for removal from the base analysis dataset. A significant number of 

records were eventually removed because of this criterion. Contact with the InfoPave support staff 

was made to learn the reason for this deviation from the protocol. No explanation could be 

determined from the InfoPave staff, who generously spent some time researching the issue.  

However, they did provide documents that could resolve this issue. Although the documents were 

reviewed briefly, an in-depth analysis was believed to be necessary to answer the question. As the 

specimens that were tested with test caps failed the criterion of not using test caps, the investigation 

into their use was postponed to a future, undefined study. As by chance, a possible explanation for 

the use of test caps on these Type 2 soils was found. It seems that these materials were tested for 

use as subbase materials, which would necessitate these specimens be tested as Type 1 soils, i.e. 
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with test caps (Smart and Humphrey, 1999). In any case, the testing of these capped specimens 

were removed from the dataset.  

  The P-46 Protocol specified testing at three levels of confining stresses and five levels of 

axial stresses, as given in Table 4-1. The prepared test specimens are tested in decreasing levels of 

confining pressures and decreasing levels of maximum axial stresses for each confining pressure 

level, excluding the conditioning sequence (Sequence No. 0).  Therefore, there are 15 testing 

sequences with 15 resulting MR test values. In theory, the stress combinations result in 15 unique 

MR test results with the soil properties repeated 15 times. The actual number of soils used to 

prepare the test specimens was determined by using the stress conditions from Sequence Number 

1. This determination was conducted by coding with the R programming language to match each 

combination of stress conditions to the resulting MR test result. Simply dividing the total number 

of MR tests by 15 did not guarantee a correct number count of tests because not all specimens 

survived the full testing sequence.  

Table 4-1: P-46 MR laboratory testing sequence 

Sequence 
No. 

Confining 
Pressure, S3 

Maximum 
Axial Stress, 

MAS 

Cyclic Stress, 
DEV 

Contact Stress, 
CS 

kPa psi kPa psi kPa psi kPa psi 
0 41.4 6 27.6 4 24.8 3.6 2.8 0.4 
1 41.4 6 13.8 2 12.4 1.8 1.4 0.2 
2 41.4 6 27.6 4 24.8 3.6 2.8 0.4 
3 41.4 6 41.4 6 37.3 5.4 4.1 0.6 
4 41.4 6 55.2 8 49.7 7.2 5.5 0.8 
5 41.4 6 68.9 10 62.0 9.0 6.9 1.0 
6 27.6 4 13.8 2 12.4 1.8 1.4 0.2 
7 27.6 4 27.6 4 24.8 3.6 2.8 0.4 
8 27.6 4 41.4 6 37.3 5.4 4.1 0.6 
9 27.6 4 55.2 8 49.7 7.2 5.5 0.8 

10 27.6 4 68.9 10 62.0 9.0 6.9 1.0 
11 13.8 2 13.8 2 12.4 1.8 1.4 0.2 
12 13.8 2 27.6 4 24.8 3.6 2.8 0.4 
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Sequence 
No. 

Confining 
Pressure, S3 

Maximum 
Axial Stress, 

MAS 

Cyclic Stress, 
DEV 

Contact Stress, 
CS 

kPa psi kPa psi kPa psi kPa psi 
13 13.8 2 41.4 6 37.3 5.4 4.1 0.6 
14 13.8 2 55.2 8 49.7 7.2 5.5 0.8 
15 13.8 2 68.9 10 62.0 9.0 6.9 1.0 

 

  In summary, the only samples that were eventually removed from the base dataset were 

due to being tested with test caps. The analyses that support this decision are discussed in Section 

4.3.4. No test results were removed because of unprescribed stress conditions or sample 

dimensions.  

4.3: Development of the Base Dataset 

4.3.1: Data Processing 

Some of the data downloaded from the InfoPave website required processing in order to make it 

useable in the analyses in this study. The need for this processing related to renaming feature 

names, unit conversion, recalculation of the plastic index (PI), and the calculation of new 

features that are acknowledged in the literature as having potential influence on the resilient 

behavior of soils.  

  The field names in the PPDB data tables were long and not practical for use in writing the 

code to analyze the subgrade testing data. For example, the AASHTO soil classification data was 

given in the AASHTO_SOIL_CLASS_EXP field which was shortened to AASHTO. Most 

feature names were shortened to the symbols given in Table 4.3 in the next section.  

  Although the subgrade testing data was downloaded in SI units, the maximum dry density 

values were in English units. Therefore, these values were converted to kg/m3 (SI units) by 

multiplying them by 16.0184684.  
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  The plastic index (PI) values in the PPDB were stored as character values because some 

soils were non-plastic as indicated by their PI values of  “NP”. Therefore, the PI values were 

recalculated as numeric ones using the liquid limit (LL) and plastic limit (PL) with Equation 4.1. 

When the soils were non-plastic, they were assigned a PI value of zero (0).  

𝑃𝐼 = 𝑃𝐿 − 𝐿𝐿 Eq. 4.1 

 

  The features listed in Table 4.4 were added to the dataset for inclusion in the analyses. 

These features have been noted as being influential on MR behavior. However, the values for the 

features had to be calculated and inserted into the dataset using the following list of equations. A 

description of these calculated features can be found in Tables 4.3 and 4.4.   

𝜃 = 𝜎ଵ + 2𝜎ଷ Eq. 4.2 

𝜏௧ =
1

3
ඥ(𝜎ଵ − 𝜎ଷ)ଶ − (𝜎ଷ − 𝜎ଵ)ଶ 

Eq. 4.3 

𝑂𝑀𝐶. 𝑅𝐴𝑇𝐼𝑂2 =
𝐶𝑀𝐶

𝑙𝑎𝑏𝑂𝑀𝐶
 

Eq. 4.4 

𝑀𝐷𝐷. 𝑅𝐴𝑇𝐼𝑂2 =
𝐶𝐷𝐷

𝑙𝑎𝑏𝑀𝐷𝐷
 

Eq. 4.5 

 

4.3.2: Potential Features 

The list of the features (independent variables) in Tables 4.3 and 4.4 are many of the variables 

that are commonly considered for use when attempting to correlate soil index properties to 

subgrade resilient modulus (MR). The features in Table 4.3 came directly from the PPDB. The 

feature symbols were abbreviated from the lengthy ones in the database to simplify the R code 

that was written for analyzing the data, plotting the data, and modeling.  
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Table 4-2: Initial potential list of features (variables) from the base dataset 

* Required some processing  

 

  The use of MDD.RATIO2 and OMC.RATIO2 feature names stemmed from the maximum 

dry density (labMDD) and optimum moisture content (labOMC) properties being measured and 

Symbol Used Feature Description  
DIA Diameter of laboratory test specimen (mm)  
LENGTH Initial length of laboratory test specimen (mm) 
CAP_HT Cap height used in MR testing (mm) 
AASHTO AASHTO soil class of the test specimen  
P3IN Percent material passing the 3-inch sieve by weight (%)  
P2IN   Percent material passing the 2-inch sieve by weight (%) 
P1p5   Percent material passing the 1.5-inch sieve by weight (%)   
P1IN   Percent material passing the 1-inch sieve by weight (%)   
P3d4   Percent material passing the ¾-inch sieve by weight (%)   
P1d2   Percent material passing the ½-inch sieve by weight (%)   
P3d8   Percent material passing the ⅜-inch sieve by weight (%) 
PN4    Percent material passing the No. 4 sieve by weight (%) 
PN10   Percent material passing the No. 10 sieve by weight (%) 
PN40   Percent material passing the No. 40 sieve by weight (%)   
PN80   Percent material passing the No. 80 sieve by weight (%) 
PN200 Percent material passing the No. 200 sieve by weight (%)   
cSAND Percentage of coarse sand  by weight (%)  
fSAND Percentage of fine sand  by weight (%)  
SILT   Percentage of silt  by weight (%)  
CLAY   Percentage of clay  by weight (%)  
LL     Liquid limit of soil sample (%)  
PL     Plastic limit of soil sample (%) 
PI* Plastic index of soil sample (%)  
CDD Compacted dry density of test specimen during MR testing (kg/m3) 
CMC Compacted moisture content of test specimen during MR testing (%) 
labMDD* Maximum dry density of soil sample (kg/m3) 
labOMC Optimum moisture of soil sample (%)  
S3 (σ3) Confining stress  (kPa) 
DEV (σdev) Deviator stress (kPa) 
STRAIN Recoverable strain (mm/mm)  
MR     Resilient modulus (MPa) 
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recorded twice. One set of density and moisture measurements was made for MR testing and was 

not used in this analysis. A second set of testing was conducted during a separate operation and 

was stored in a different database table. This second set of measurements was used in this study. 

These two sets of measurements were plotted and visually compared against each other. The two 

sets of data appeared to be virtually equal.   

 

Table 4-3: Calculated features  

Symbol Used Feature Description  
S1 (σ1) Principle stress  (kPa)  
TOCT  (τoct) Octahedral stress (kPa)  
THETA (θ) Bulk stress  (kPa)  
OMC.RATIO2 Ratio of CDD to labOMC  
MDD.RATIO2 Ratio of CMD to labMDD  

 

4.3.3: Raw Dataset 

The raw dataset was composed of 6603 resilient modulus (MR) test results for 442 ASTM 

coarse- and fine-grained soils, or 442 AASHTO granular and non-granular soils. The specimen 

count was determined by totaling the number of records tested at a single confining stress 

condition of 41.4 kPa and deviator stress of 61 kPa. Each record in this total represented one MR 

result of the 15 stress conditions that each specimen was tested at using LTPP Protocol P-46. It 

should be noted that some specimens did not complete the full set of stress conditions, which 

prohibited the simple division of the total number of test results by 15. This initial discussion 

about the raw dataset will continue with all granular/non-granular or coarse-/fine-grained soil 

data.  
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  With the establishment of the total number of raw data records, the first consideration 

taken to clean the dataset was to remove data that had not passed all the quality control checks 

(Yau & Von Quintus, 2002). This step of the cleaning process was conducted during the reading 

of the data into individual datasets for each Microsoft Excel tables, which were exported from 

the downloaded Microsoft Access database. When a table had the feature RECORD_STATUS, it 

was reviewed to ensure that it had achieved the status of “E”. Out of the five tables with this 

status feature, two of the tables had a total of 1525 records that had not passed all quality checks. 

However, the combined dataset was only reduced by 100 records. 

  Although this study is focused on fine-grained soils, all contents of the raw dataset will be 

reviewed with respect to Protocol P-46 to understand the complete contents of the database with 

respect to MR laboratory testing. In Figure 4.1, it can be seen that 253 test specimens were tested 

with caps, which does not comply with the P-46 Protocol for Type 2 subgrade soils (fine-grained 

soils). Therefore, these capped specimens were scheduled for removal from the dataset. In Figure 

4.2, the ten specimen diameters of 76, 152, and 153 mm were much greater than the 71 mm 

specified for Type 2 soils; therefore, these specimens were removed without further consideration.  

  In Figure 4.3, it can be seen that there were 170 granular soils with AASHTO 

classifications of A-1, A-2, and A-3. These soils were targeted for immediate removal. The 272 

non-granular soils (A-4 to A-7-6) would be retained for further examination to determine their 

suitability for this study, but the initial prejudice was to remove the coarse-grained fractions of 

every non-granular soil type. This prejudice will be supported with t-tests in a later section.  

  Another filter that was applied is related to the specimen diameters presented in Figure 

4.4. The initial specimen lengths were required to be twice those diameters. Therefore, lengths 

less than 142 to 144 mm, depending on the actual specimen diameter were scheduled for 
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removal. The lengths that were 307 mm and greater were related to the 152 mm (6-inch) 

diameter molds for Type 1 soils, which are typically coarse-grained soils. These soils were also 

marked for removal.  

 

Figure 4-1: Distribution of specimens in the 
raw dataset by cap height  

 

Figure 4-2: Distribution of specimens in the 
raw dataset by mold diameter 

 

Figure 4-3: Granular and non-granular 
specimens by AASHTO soil class 

 

Figure 4-4: Granular and non-granular 
specimens by initial specimen length  
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4.3.4: T-tests for Data Cleaning 

In this section, two issues presented themselves during the review of the dataset and the current 

literature that will be discussed. The first issue was in regards to the presence of data features 

that indicated a significant portion of the MR testing was performed using test caps, contrary to 

the procedure outlined in LTPP Protocol P-46. The second issue dealt with the handling of the 

AASHTO silt-clay (non-granular) materials.  

  The first inclination was to exclude the test results that were collected during the testing 

of soil specimens using test caps because Section 8.1 Resilient Modulus Test for Subgrade Soils 

does not discuss the use of test caps. However, Sub-Section 8.2.1 Assembly of the Triaxial 

Chamber (Resilient Modulus Test for Base/Subbase Materials) does mention the use of test 

(sample) caps. By removing the specimens tested with sample caps, the number of specimens 

decreased from a total of 442 granular and non-granular specimens to 189 specimens tested 

without sample caps in the raw dataset. This estimated 57.2% reduction in useable test data was a 

concern to the development and application of the findings to be made in this study.  

  The decision was made  to conduct an in-depth review of the test specimens using t-tests 

to investigate whether the uncapped and capped specimens were different, so that the dataset. If 

no difference was detected based on this laboratory test condition, then the option to include the 

capped specimens with the uncapped specimens or to perform an additional analysis with the 

capped specimens would be reasonable. The t-test analyses included a review of the following:  

 Laboratory resilient modulus (MR), 

 Maximum dry density (labMDD), 

 Maximum dry density ratio or compaction (MDD.RATIO2), 
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 Optimum moisture content (labOMC), and  

 Optimum moisture content ratio (OMC.RATIO2).  

 

  These properties were considered as relevant because of their use in the AASHTO 

pavement design guides and/or subgrade construction specifications. In addition to the latest 

pavement design guide (Mechanistic-Empirical Pavement Design Guide), the 1986 and 1993 

AASHTO  guides use the resilient modulus (MR) as the property to represent the behavior of the 

subgrade soil layer. Therefore, this property was the primary one to investigate. The other 

properties were included because state agency specifications often include them in their 

construction specifications for quality control. In addition, the contractor is often required to 

prepare the subgrade at specified compaction (maximum dry density ratio) levels depending on 

the site conditions. The optimum moisture contents are associated with the maximum dry density, 

so both forms of this soil property were included in the t-tests.  

  The second issue concerning the handling of non-granular soils requires addressing 

because the literature has found that correlations to MR improve when separating the independent 

variables into coarse-grained and fine-grained datasets. However, the AASHTO soil classification 

does not use coarse-grained and fine-grained soil divisions. Instead, granular and silt-clay (non-

granular) material general classifications are used to broadly divide soils. It seemed that some 

consideration to the AASHTO M-145: Classification Soils and Soil-Aggregate Mixtures for 

Highway Construction Purposes was necessary. The main reasons being that the MEPDG is an 

AASHTO product, the PPDB contains AASHTO soil classifications, and this AASHTO Standard 

Specification was developed for highway construction. Ignoring AASHTO M-145 needed 

addressing. After all, the only difference between the systems was that the silt-clay (non-granular) 
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general classification included soils with more than 35% of its material passing the 75 µm (No. 

200) sieve by weight. The fine-grained fraction of the non-granular soils is the same as the fine-

grained soil division because both broad categories include materials with more 50% or more 

material passing the 75 µm (No. 200) sieve by weight. It was decided that t-tests could also help 

to resolve this conundrum.  

  Therefore, these two issues will be addressed with a series of t-tests that will compare the 

soil properties discussed earlier of the: 

 Capped and non-capped soil specimens, and 

 Coarse- and fine-grained fractions of the non-granular general classification.  

 

  The next logical step was  that all five (5) properties would have to be the same for each 

comparison of the specimen groupings to be the same. The following is a list of the three (3) null 

hypotheses that will be addressed with t-test analyses:  

(1) There is no difference in the mean resilient modulus (MR), maximum dry density, 

maximum dry density ratio (compaction), optimum moisture content, and optimum 

moisture content ratios between the non-granular specimens tested with and without test 

caps.  

(2) There is no difference in the mean resilient modulus (MR), maximum dry density, 

maximum dry density ratio (compaction), optimum moisture content, and optimum 

moisture content ratios between the uncapped specimens of coarse-grained and fine-

grained soils, and  

(3) There is no difference in the mean resilient modulus (MR), maximum dry density, 

maximum dry density ratio (compaction), optimum moisture content, and optimum 
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moisture content ratios between the fine-grained specimens tested with and without test 

caps.  

 

4.3.4.1: Non-granular Specimens Tested with and without Test Caps 

The given series of null hypotheses were presented in the same general order that the questions 

came to the researcher. While the first hypothesis may not be the most logical one based on the 

primary objective of this study, it was the first set that presented itself during the initial coding 

process. The results from the first null hypothesis series in Table 4-5 supported the decision to 

remove the capped specimens from this research study. The low p-values (> 0.05) provided the 

evidence that there was enough evidence to reject the null hypothesis that the soil properties 

were the same. Therefore, the alternate hypothesis that these soils were different was 

supportable. The complete t-test output for this first series of t-test hypotheses are given in 

Appendix B.  

Table 4-5: T-test summary for all non-granular subgrade soils with and without caps 

 
Average Values 

p-value Conclusion 
Cap (No) Caps (Yes) 

MR 67.7 88.0 < 2.2 x 10-16 Reject null 
labMDD 1787.9 1821.7 1.316 x 10-13 Reject null 

MDD.RATIO2 0.9586 0.9470 < 2.2 x 10-16 Reject null 
labOMC 15.3 14.9 0.0049 Reject null 

OMC.RATIO2 0.9938 1.0048 1.31 x 10-8 Reject null 
 

4.3.4.2: Uncapped specimens of coarse-grained and fine-grained fractions 

The next series of t-tests were conducted to determine if the coarse-grained fraction (CGF) and 

fine-grained fraction (FGF) of the non-granular general classification were significantly different 



 

55 

based on the non-use of test caps. Table 4-6 presented a summary of a mixed set of t-test results 

with the complete set of output in Appendix C.  

  Examination of the t-test results  reveals that the average MR of the CGF and FGF were 

equal which is interesting. This finding supports the AASHTO general rating of non-granular soils 

(CGF and FGF) as fair to poor. Using the CGF as the reference point, the labMDD was 6.4% lower 

for the FGF, and the labOMC was 25.1% higher for the FGF. The similarity in compaction 

(MDD.RATIO2) and OMC ratios could simply reflect that the quality control during the laboratory 

testing was good because these values did not vary greatly.  

Table 4-6: T-test summary for non-granular fractions without caps 

 
Average Values 

p-value Conclusion 
CGF FGF 

MR 67.9 67.6 0.7987 Cannot Reject 
labMDD 1867.8 1748.0 < 2.2 x 10-16 Reject null 

MDD.RATIO2 0.9593 0.9595 0.7431 Cannot Reject 
labOMC 13.1 16.4 < 2.2 x 10-16 Reject null 

OMC.RATIO2 0.9987 0.9913 0.0761 Cannot Reject 
 

4.3.4.3: Fine-grained Fraction Tested with and without Caps 

While this series of hypotheses may appear to be a repeat of the first series, the first series of 

hypotheses was performed on the non-granular soils as a whole to document the learning 

progression of the data in the PPDB. Additionally, the information from the first set of hypotheses 

could be of use to researchers that may come across this study in the future. As expected, this final 

series of t-tests determined that the soil properties of the capped and uncapped fine-grained soil 

fraction (FGF) specimens were significantly different from each other.  

  Table 4-7 provides a summary of the t-test outputs that can be found in Appendix D. The 

average MR and maximum dry density (labMDD) of the capped fine-grained fraction specimens 
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were found to be greater than the uncapped specimens. Thes findings were identical to those of 

the non-granular soils as a single group. The only property that was the same for the capped and 

uncapped FGF specimens was the optimum moisture content (labOMC). The use of the test cap 

appeared to provide an additional compaction effort during the MR testing process, but this 

conclusion will require additional investigation. The similarity in labOMC between the capped 

and uncapped specimens was not totally unexplainable. There would not be any reason for the 

average labOMC to be different between these testing conditions unless one method was able to 

dry out the sample more than the other.  

Table 4-7: T-test summary for FGF subgrade soils  with and without caps 

 
Average Values 

p-value Conclusion 
NO Cap YES Cap 

MR 67.6 86.8 < 2.2 x 10-16 Reject null 
labMDD 1748.0 1762.3 0.0059 Reject null 

MDD.RATIO2 0.9595 0.9475 < 2.2 x 10-16 Reject null 
labOMC 16.4 16.6 0.3026 Cannot Reject 

OMC.RATIO2 0.9913 1.0051 5.498 x 10-10 Reject null 
 

4.3.4.4: Summary 

The t-tests for the hypotheses presented supported the decisions to remove the MR and associated 

tests performed on capped soil specimens. The t-tests also supported the decision to disregard the 

fine-grained fraction (CGF) of the AASHTO non-granular general classification. With these  

conundrums resolved, only the uncapped specimens as prescribed for MR testing by LTPP Protocol 

P-46 will be used in this study from this point forward, and the soils of the FGF will be referred to 

as simply fine-grained soils.  
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4.4: Data Cleaning and Review 

Records in the raw dataset were purged using the criteria discussed earlier in this chapter. As a 

review of these criteria, records were removed for the following: 

 Not having undergone all quality control checks;  

 Not conforming to the LTPP Protocol P-46; and 

 Not conforming to the ASTM D-2487 description for fine-grained soils.  

 

  The plots in this section were prepared using the cleaned raw dataset, i.e. the base dataset. 

Figure 4-8 confirms that the dataset consists of specimens tested without a test (sample) cap. Figure 

4-9 displays the rounded average specimen diameter of 72 mm, despite the fact that 71 mm 

diameter molds were used for specimen preparation.  

 

 

Figure 4-8: Number of fine-grained 
specimens by cap height 

 

Figure 4-9: Number of fine-grained 
specimens by diameter 
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  Figure 4-10 displays the lengths of the soil specimens. These lengths were greater than 

twice the specimen diameters, which satisfies the length requirement in Protocol P-46.  

 

 

Figure 4-10: Number of fine-grained 
specimens by specimen length 

 

4.5: Plots for Fine-Grained Subgrade Soils in the Base Dataset 

The analysis of the data within the base dataset continued with a review of the distribution of the 

fine-grained (FG) subgrade soils among the AASHTO soil classes. As a reminder, the use of the 

AASHTO soil classifications was done as a matter of convenience instead of using ASTM soil 

classes, as the AASHTO classes were provided in the LTPP database. All references to AASHTO 

classifications in the base dataset were made with the understanding that only fine-grained soils 

were discussed.    
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4.5.1: Plots of Basic Properties of Fine-Grained Soils by AASHTO Soil Class 

Figure 4-11shows that the distribution of the 64 fine-grained (FG) soil specimens among the 

AASHTO soil classifications was unbalanced. The A-6 class was best represented with 26 soil 

samples. The A-5 was not represented at all with no soil samples. The A-7-5 soil class was the 

next least represented class with five (3) soils. In Figure 4-12, the generally A-4 silty soils had 

median MR values that were typically less than those of the generally clayey soils (A-6, A-7). The 

A-4 and A-6 soils also had MR test values that fluctuated more than the clayey soils.  

 

 

Figure 4-11: Distribution of FG specimens 
by AASHTO soil class 

 

Figure 4-12: MR ranges by AASHTO soil 
classes (FG soils) 

 

  The deviator stress and strain for FG soils were selected for discussion because these 

parameters are used to define MR. Therefore, reviewing the plots of these parameters versus the 

AASHTO soil classifications was deemed necessary. As expected, the plot in Figure 4-13 depicts 

the deviator stresses used in MR laboratory testing as being consistent for all soil classes. This 

consistency supported the expectation that testing was consistent among the laboratories that 
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conducted these tests and followed the P-46 Protocol. In Figure 4-14, the median strain (0.000615 

mm/mm) for the A-4 soils was the greatest and were consistent with that class having the lowest 

median values (58 MPa) of MR. Also, the A-7-5 soil class had a median strain that was the lowest 

of the four soil classes and expectedly the highest median MR values (73 MPa).  

 

 

Figure 4-13: Deviator stress by AASHTO 
class for FG soils  

 

Figure 4-14: Strain by AASHTO class for 
FG soils   

 

  In Figures 4-15 and 4-16, distinct breaks in maximum dry densities (MDDs) and optimum 

moisture contents (OMCs) were noticeable between the A-4/A-6 grouping of soils and the A-7-

5/A-7-6 grouping. The MDDs were generally greater in the first grouping of silty soils while the 

OMCs were generally lower when compared to the second group of clayey soils.  
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Figure 4-15: Maximum dry density by 
AASHTO class for FG soils 

 

Figure 4-16: Optimum moisture content by 
AASHTO classes for FG soils  

 

4.5.2: Review of resilient modulus (MR) values by features 

The following and final set of plots for data analysis depict the relationships between the MR and 

each potential predictive feature in the base dataset.  The purpose of this exercise was to confirm 

that the data was successfully imported from the downloaded LTPP database that was hosted on 

the InfoPave website. This confirmation took the form of plots that reflected some of the same 

general relationships that were reported in the literature. Although a decision tree algorithm was 

used to develop the predictive model for MR that was necessary to develop a soil classification 

scheme for fine-grained soils (FG), it should be remembered that the algorithm does not rely on 

linear relationships. When the lines are drawn on the plots, they are an aid to visualize the 

relationships that are typically drawn for linear regressions.  

  As Figure 3-1 shows,  the decision tree algorithm creates nodes that divides the data into 

clumps based on the conditional statement given in the nodes. Therefore, the following plots were 
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presented as a familiar representation of the data. Notes are provided for the figures to identify 

noticeable characteristics of the plots.  

 

Figure 4-17 Notes: The diameters of the 

specimens prepared with the 71-mm mold 

ranged from 71.80 to 72.30 mm. The larger 

diameters represent a 1.13% to 1.83% increase 

from the inside diameter of the mold with a 

resulting increase in top surface area of 2.27% 

to 3.70%.   

  

Figure 4-17: MR vs Initial Diameters  

Figure 4-18 Notes: The initial specimen 

lengths ranged from 152 to 156 mm. Protocol 

P-46 specifies the specimen lengths be twice 

the diameter (143.6 to 144.6 mm), which these 

fine-grained specimens met.   

 

 

Figure 4-18: MR vs Initial Lengths 
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Figure 4-19 Notes: The MR decreased as the 

strain increased.  

 

Figure 4-19: MR vs Strain  

  

  

Figure 4-20 Notes: By visual inspection of the 

trendline, MR did not indicate a significant 

negative linear relationship with deviator 

stress. The deviator stress data was not 

rounded, which led to the multiple bars at each 

deviator stress level. In addition, the bar 

groups in other stress plots resulted from the 

same reason.   

Figure 4-20: MR vs Deviator Stress 
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Figure 4-21 Notes: The MR increased as the 

confining stress increased. The median MR 

increased 7.9% when the confining stress 

increased from 13.8 to 27.6 kPa. The median 

MR increased 7.4% when the confining stress 

increased from 27.6 to 41.4 kPa.  

 

Figure 4-21: MR vs confining stress  

  

  

Figure 4-22 Notes: Based on a visual 

inspection of the trendline, the MR did not 

appear to decrease significantly as the 

octahedral stress increased.  

 

 

Figure 4-22: MR vs Octahedral Stress  
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Figure 4-23 Notes: Based on a visual 

inspection of the trendline, the MR decreased 

as the optimum moisture content (OMC) 

increased.  

 

Figure 4-23: MR vs OMC  

  

  

 Figure 4-24 Notes: Based on a visual 

inspection of the trendline, the MR increased as 

the optimum moisture content ratio increased. 

Based on a visual inspection of the plot, the 

ratio of most specimens were prepared within 

10% of the OMC. More than 92% of the test 

specimens were prepared within 10% of the 

optimum moisture content.  

 

 

Figure 4-24: MR vs OMC.RATIO2  
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Figure 4-25 Notes: Based on a visual 

inspection of the trendline, there was a gradual 

increase in MR as the maximum dry density 

increased. 

 

Figure 4-25: MR vs MDD  

  

  

Figure 4-26 Notes: Based on a visual 

inspection of the trendline, there was a 

decrease in MR as the maximum dry density 

ratio (compaction) increased. More than 82% 

of the test specimens were prepared between 

95 and 97.5% of the maximum dry density. 

 

 

Figure 4-26: MR vs Compaction  
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Figure 4-27 Notes: Based on a visual 

inspection of the trendline, there did not appear 

to be any effect on MR as the plastic index 

increased.  

 

Figure 4-27: MR by PI  

  

Figure 4-28 Notes: Based on a visual 

inspection of the trendline, there was an 

increase in MR as the liquid limit (LL) 

increased.  

 

Figure 4-28: MR by LL 
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Figure 4-29 Notes: Based on a visual 

inspection of the trendline, there was an 

increase in MR as the plastic limit (PL) 

increased.  

 

Figure 4-29: MR by PL 

  

Figure 4-30 Notes: Based on a visual 

inspection of the trendline, there did not appear 

to be a significant change in MR as the material 

passing the ⅜-inch sieve (P3d8) increased.  

 

 

Figure 4-30: MR by P3d8 
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Figure 4-31 Notes: Based on a visual 

inspection of the trendline, there did not appear 

to be a significant change in MR as the material 

passing the No. 4 sieve (PN4) increased.  

 

Figure 4-31: MR by PN4 

Figure 4-32 Notes: Based on a visual 

inspection of the trendline, there did not appear 

to be a significant change in MR as the material 

passing the No. 10 sieve increased. 

 

 

Figure 4-32: MR by PN10 
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Figure 4-33 Notes: Based on a visual 

inspection of the trendline, the MR gradually 

increased as the material passing the No. 80 

sieve increased. 

 

Figure 4-33: MR by PN80 

  

Figure 4-34 Notes: Based on a visual 

inspection of the trendline, the MR did not 

change significantly as the material passing the 

No. 200 sieve increased.  

 

 

 

Figure 4-34: MR by PN200 
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Figure 4-35 Notes: Based on a visual 

inspection of the trendline, the MR increased as 

the clay content increased. 

 

 

Figure 4-35: MR by CLAY  

  

Figure 4-36 Notes: Based on a visual 

inspection of the trendline, the MR decreased 

as the silt content increased.  

 

 

Figure 4-36: MR by SILT  
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Figure 4-37 Notes: Based on a visual 

inspection of the trendline, the MR does not 

appear to be influenced by the coarse sand 

content (cSAND). 

 

Figure 4-37: MR by cSAND 

  

  

Figure 4-38 Notes: Based on a visual 

inspection of the trendline, the MR increases as 

the fine sand content (fSAND) increases. 

 

 

Figure 4-38: MR by fSAND 
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4.6: Summary 

In Chapter 4, the case has been made for using PPDB as a data source for resilient modulus test 

data for fine-grained subgrade soils. Although some Type 2 specimens were found to have been 

tested with caps, contrary to P-46, they were easily identifiable during the review process. ASTM 

D-2487 was used as the criterion for separating the coarse-grained and fine-grained soils. The 

capped soils and coarse-grained fraction of the non-granular soils were removed based on t-tests. 

Plots of the resilient modulus versus the potential features were made to provide additional support 

for the findings of other researchers and to verify that the base dataset developed in this study was 

composed properly.  
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CHAPTER 5: DEVELOPMENT OF SOIL CLASSIFICATION SCHEME 

In this chapter the development of a soil classification scheme that would reflect the resilient 

behavior of fine-grained subgrade soils using the methodology discussed in Chapter 3. The scheme 

produced from the analyses was described as such because it was not a full classification system, 

which would also need to include classifications for coarse-grained soils. However, even with 

better correlation results, predicting MR has been a challenge for engineers since before the 

AASHO Road Test, which ended in 1960. Only fine-grained soils were included in this study 

because separating soils into coarse-grained and fine-grained subsets had been found to produce 

better correlations to resilient modulus than a single dataset that combined all soils together. In 

addition, identifying the more problematic fine-grained soils would be of a more immediate benefit 

to engineers during subgrade construction, so this challenge was approached first.  

  Because the current AASHTO soil classification system resembled a decision tree, it 

seemed a suitable strategy to use a decision tree algorithm to develop a soils classification scheme. 

As the tree would not only correlate MR to soil index properties and testing parameters, but it 

would also provide the framework that would easily translate to a table that could be inserted into 

a complete soil classification standard. The tree model provided a good R2, despite the cautions 

from multiple studies that recommended segregating soils into regional datasets. This suggestion  

was probably to account for unknown soil properties that were not typically measured (Hossain, 

2009) (Soliman & Shalaby, 2014). The modulus-based classes were found to be significant and 

the process of supporting their use was also discussed.  
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  The main benefit of the decision tree model is that it was easy to understand. The primary 

disadvantage is that the model can change with the addition of even a few more data records. 

Therefore, the small collection of records using the 64 soil samples from 18 states would likely 

lead to further modifications to the system with the addition of more test data.  

5.1: Model development procedure 

The primary reasons for using decision tree modeling as the basis for developing a soil 

classification scheme were (1) the transparency of decision tree models that can provide 

correlations similar in accuracy to those of multiple linear regression models (Pahno, Yang, & 

Kim, 2021) and (2) the conversion of the decision tree model to a classification table that has a 

structure similar to the current AASHTO soil classification table.  

  As was seen in Figure 3.3, the decision tree example model provided the binary split 

conditions that was readily available for review. There was no need to sift through multiple pages 

of output to determine how the model was constructed, as would be necessary with the better 

predictive XGBoost or random forest models. Therefore, the model resulting from using decision 

tree modeling was easy to understand and easily revealed the features that were most influential in 

finding a correlation between the predictive features and MR.  

  The following eight (8) steps were used to develop a decision tree correlation model for 

predicting the MR of fine-grained subgrade soils. The conditional statements in the decision tree 

would later be transformed into a tabular format. These steps only applied to specimens that were 

compliant with the P-46 Protocol and any testing results identified as being non-anomalous in 

Chapter 4.  

(1) Create training and testing datasets.  
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(2) Create a decision tree regression model that correlated MR to most influential soil 

properties and/or stress conditions using the training dataset.  

(3) Review statistics of leaf node contents using the training dataset of the decision tree 

model to create a criterion for grouping soils. Evaluate the pruned decision tree model 

(4) Group leaf nodes with similar average MR values based on resilient quality levels of fine-

grained soils 

(5) Conduct t-test and one-way ANOVA analyses to establish the statistical significance of the 

new classification scheme using the results from the testing dataset. Apply resilient quality 

property criteria to leaf nodes 

(6) Compare new fine-grained classes to AASHTO soil classes from the fine-grained fraction 

of the non-granular (silt-clay materials) general classification.  T-tests to support the M 

class groupings 

(7) Create a table that could be applied as a specification for classifying fine-grained subgrade 

soils with the new classification scheme. Compare M classes to AASHTO soil classes for 

fine-grained soils 

(8) Convert decision tree into a table format 

 

5.2: Model for all fine-grained subgrade soils and all stress conditions 

As a reminder, the decision tree model was trained on the features identified in Tables 4-2 and 4-

3. The three primary requirements of the specimens and data are that:  

(1) they conform to LTPP Protocol P-46, 

(2) they were identified as subgrade materials in the PPDB,  

(3) they passed all LTPP quality control checks to achieve a record status of “E”, and  
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(4) they meet the definition of fine-grained soils according to ASTM D-2487.  

 

5.2.1: STEP 1 - Create training and testing datasets 

The first step in the decision tree development process was to create training and testing datasets 

with the features in Tables 4-2 and Table 4-3. These two datasets would be used to develop the 

decision tree model and to test the model for accuracy. The base dataset consisting of resilient 

modulus (MR) testing records for fine-grained subgrade soil specimens was the source from which 

the training and testing datasets were created with a user-specified split of 80-20 (Table 5-1). The 

splitting of the test results was based on random selection of records from the base dataset.  

  The larger training dataset (ds_train) comprising 80% of the 960 test records was used to 

develop the decision tree model, and the smaller testing dataset (ds_test) with the remaining 20% 

of the records was used to test the accuracy of the model. The summary statistics on the 960 MR 

tests for the 64 soil specimens indicated that the training and testing datasets were representative 

of the base dataset.  

 

Table 5-1: Summary statistics on MR for the no-capped specimens of fine-grained soils 

 Training Dataset Testing Dataset Base Dataset 
Number of 

Observations 
768 192 960 

Average MR 67.8 MPa 66.9 MPa 67.6 MPa 
Standard Deviation 18.1 MPa 18.2 MPa 18.1 MPa 

Coefficient of 
Variation 

26.7% 27.2% 26.8% 
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5.2.2: STEP 2 - Create decision tree regression model 

The decision tree regression model that was developed in this study was trained using the rpart 

library in a Jupyter notebook (Kluyver, T. et al., 2016).  The R programming environment  was 

created and managed with Anaconda Navigator (R Core Team, 2020) (Therneau, T. & Atkinson, 

B., 2019). The rpart function presented in Eq. 5.1 was used to train the decision tree model 

(tree.MR) to estimate MR. The equation required only a minimum number of inputs, which 

demonstrated the ease of applying this machine learning algorithm to develop prediction models.  

 

tree.MR ← rpart(MR~., ds_train[dt.list], method="anova") Eq 5-1 

 

  The arguments used in the equation are explained as follows: 

 tree.MR: dataset that stored the components of the resulting decision tree model.  

 MR~.: formula that predicted the resilient modulus (MR), is the target feature. The “~.” 

indicated that all features within the features list (dt.list) will be used to train the model 

for MR.  

 ds_train: the training dataset that contained the features and feature values used to train the 

model.  

 dt.list : a list of features that was used to store the features used in conjunction with the 

training dataset. The list argument was created to more easily prepare a long list of features 

that could be edited once and applied to numerous equations. This programming strategy 

allowed for experimentation with different combinations of features while only having to 

type the feature list once.  
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 anova: the method that was required to conduct a regression model analysis.  

  Running Eq 5.1 produced the tree.MR dataset, which was used to plot the unpruned 

decision tree in Figure 5-1 with the rpart.plot function from the rpart.plot library. The diagram 

displays the root node at the top of the tree with the binary split condition of SILT>=41.  The root 

node identifies the silt content (SILT) of fine-grained soils as the most important feature with 

respect to reducing the mean square error (MSE) of the average nodal MR by splitting the ordered 

data with the given condition (Greenwell, 2022). The lower leveled internal nodes were established 

using the same recursive process that also reduced the MSE for their contents with respect to MR. 

The 21 leaf nodes at the bottom of the decision tree provided the average MR values and 

percentages of the 768 test records of the training dataset that were contained within them.  

  The concern with the model in its current state was with overfitting the training dataset, 

which could result in an ineffective model for estimating the MR of the testing dataset and 

independent soil data. To remedy this potential, the decision tree was pruned using a cost 

complexity factor (cp) of 0.013 from Figure 5-2 that minimized the corresponding error to 

generalize the model.  

  The plot in Figure 5-3 displayed the relationship between the theoretical R2 and the number 

of splits used to create a tree model. The maximum theoretical R2 for the model was approximately 

0.8 using the training dataset. Therefore, any model produced from the selected data was evaluated 

as being useful in estimating MR. It should be noted that editing the number of features used in the 

model can result in a different model with different results.  
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Figure 5-1: Unpruned decision tree model 

 

  From examination of the unpruned and pruned decision trees in Figures 5-1 and 5-4, it 

can be seen that two intermediate nodes (with conditional statements of LL<47 and PL<28) near 

the bottom were removed from the unpruned tree. The resulting pruned tree had 9 levels using 9 

unique features: (1) SILT, (2) PL, (3) labOMC, (4) PN200, (5) PN10, (6) CLAY, (7) cSAND, (8) 

fSAND, and (9) labMDD.  
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  In comparison, the AASHTO soil classification system used an equivalent of 4 levels to 

classify non-granular soils with only 2 unique features (LL and PI), neglecting the PN200, which 

was also neglected in the count for the decision tree models. Interestingly, neither set of predictive 

features has any in common. The reason being that the decision tree model was developed to 

predict MR while the AASHTO M-145 was not.  

  Returning to the pruned decision tree regression model in Figure 5-4, it can be seen that 

the 18 leaf nodes at the bottom of the tree were manually labelled “A” to “R” from left to right to 

make referencing these nodes easier in later sections.  

 

 

Figure 5-2: Cross-validation error versus 
cost complexity factor 

 

Figure 5-3: R2 versus number of theoretical 
splits in the decision tree model  
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Figure 5-4: Pruned decision tree regression model.  

 

  The root node at the top of the tree indicated that the silt content (SILT) was the most 

important variable for predicting MR. At each subsequent lower level, the next most important 

features can be detected. For example, the plastic limit (PL) and optimum moisture content 

(labOMC) were the next most important features at level 2. The recursive search process allows 

for a feature to be re-identified as important at lower tree levels. The following five features were 

repeated multiple times with the repeat count given in parenthesis: SILT (3), PL (4), PN10 (2), 

cSAND (2), and CLAY (2).  
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Figure 5-5: Ranking of most important features 

 

  The difference between the findings from the tree model and the variable importance plot 

was because the most important feature plot considers surrogate splits when determining 

importance.  Surrogate splits are created by the algorithm to be used as an alternate means of 

determining an average leaf node value in the event there is missing data. While it was not 

immediately apparent from the tree diagram what the surrogate features and split conditions could 

be substituted at each node, the surrogate features were available using the summary function from 

the rpart library (Appendix E).  

5.2.3: STEP 3 - Evaluate the pruned decision tree model 

Next, the testing dataset was used to test the decision tree model. The plot of the estimated versus 

the observed MR showed that the R² of the tree model was 0.772 with a root mean squared error 

(RMSE) of 8.67 MPa. The RMSE provides an estimate of the model's prediction error and is 

related to the standard deviation of the residuals (Judd, McClelland, & Ryan, 2009).  
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Figure 5-6: Plot of estimated versus 
observed MR using testing data 

 

  Although there was not a substantial difference between the average predicted MR (67.1 

MPa) and the average laboratory MR (67.6 MPa), the pruned tree produced an RMSE of 8.67 MPa. 

This RMSE was approximately 52% lower than the standard deviation of the laboratory MR values 

(18.1 MPa), highlighting the model's precision. With an R² of 0.772, the tree model demonstrated 

a strong fit and was subsequently used to advance this research study.   

5.2.4: STEP 4 - Resilient quality levels for fine-grained soils 

A soil classification system that provides design values was not a practical expectation for this 

research effort due to the complexity of soils, which vary widely in parent materials and 

deterioration histories. However, it seemed feasible to develop a scheme representing MR values 

that were below average, average, and above average based on their laboratory test results. These 

three ranges of MR values were categorized as poor, fair, and stiff resilient quality (RQ) levels to 

create a new soil classification scheme for fine-grained soils. 
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  The new categorical descriptions adapted the AASHTO general rating of fair to poor for 

non-granular subgrade soils, taking into account the statistical analysis of the test data. These RQ 

levels and the assigned M classes in Table 5-2 serve as a guide for field engineers to identify soils 

suitable or unsuitable for subgrade construction. Using the RQ levels/M classes, field engineers 

can order targeted field and/or laboratory testing to confirm that the resilient behavior of the 

subgrade soil is as expected. 

  The first RQ established was the fair level (Class M-2), representing an average fine-

grained subgrade soil. It was defined using the average MR (67.1 MPa) and RMSE (8.7 MPa) from 

the plot of the estimated versus the observed MR (Figure 5-6). Because the RMSE estimates the 

average prediction error and is related to the standard deviation of the residuals, it was used to 

define the fair quality level, which initially ranged from 58 to 76 MPa. However, these limits were 

later adjusted to 55 MPa and 75 MPa, as the adjusted range limits were considered easier to 

remember and still yielded acceptable results, as demonstrated in Step 6. The statistics in Table 5-

4 were not used because the standard deviations from the MR laboratory test data (18.1 MPa) were 

approximately 2.1 times greater than the RMSE from the correlation model. The decision was 

made to utilize the precision of the correlation model by using the RMSE, which provided a more 

accurate measure of the model's prediction error compared to the larger standard deviations from 

the MR laboratory test data. Subsequently, the poor and stiff RQ levels were easily established as 

being less than and greater than the fair RQ range, respectively.  

Table 5-2: MR resilient quality (RQ) levels and M classes for fine-grained soils 

Resilient Quality MR (MPa) MR (ksi) M Class 
Poor < 55 < 8 M-1 
Fair 55 to 75 8 to 11 M-2 
Stiff > 75 > 11 M-3 
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5.2.5: STEP 5 - Apply resilient quality property criterion to leaf nodes  

With the information in Table 5-2, the associated M classes were generally assigned to the leaf 

nodes in the decision tree in Figure 5-4 based on their average MR values. However, some class 

assignments were made based on the average MR values of higher-level parent nodes. The parent 

nodes were used in some cases to reduce the number of MR prediction nodes. There were four 

cases where parent nodes of adjacent leaf nodes were used, which will be discussed later. The 

disadvantage of using the parent nodes was that the variability in the MR averages increased from 

those of the individual leaf nodes. The parent nodes selected are identifiable by the nodal condition 

in the tree that divided that parent node into the lower-level child nodes or leaf nodes. The 

following list of nodal condition statements identifies the parent nodes, which were assigned the 

M classes instead of the leaf nodes, with a brief explanation of their selection:  

 Node condition cSAND<0.05 with an average MR of 69 MPa was used to assign leaf nodes 

E  and F to class M-2. Leaf node E contained only 2% of the training data, and leaf node F 

contained 15% of the data.  

 Node condition SILT<40 with an average MR of 59 MPa was used to assign leaf nodes H, 

I, and J to class M-2. Leaf node H contained only 7% of the data, leaf node I contained 3%, 

and leaf node J contained 5%. Use of this parent node resulted in a relatively balanced 

combination of poor and fair RQ soils; However, it was the most volatile combination of 

soils because of the range of MR values and the possible consequences of not identifying 

the poor RQ constituent during construction. Nevertheless, using the parent node in this 

case was still shown to work in segregating the soils into meaningful M classes later in this 

chapter.  
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 Node condition SILT<41 with average MR of 74 MPa was used to assign leaf nodes L, M, 

and N to class M-2. Leaf node L contained only 14% of the data, leaf node M contained 

3%, and leaf node N contained 1%. Use of this parent node resulted in a majority of fair 

RQ soils with only 1% having a stiff RQ. There does not seem to be a downside to using 

this parent node.   

 Node condition PN10>100 with average MR of 84 MPa was used to assign leaf nodes O 

and P to class M-3. Leaf node O contained only 2% of the training data, and leaf node P 

contained 10% of the data. Use of this parent node resulted in a majority of the soils having 

a stiff RQ with a subset of fair RQ soils. There did not seem to be a downside to using this 

parent node either.  

 

  The decision to use the parent nodes with poor RQ soil constituents is a concern that can 

be addressed with additional notes or a suffix appended to the M class. For instance, M-2 soils that 

sifted into leaf node E could have a note that would caution the engineer to confirm the RQ of the 

soils with a cSAND of zero percent (0%). A similar note can be made for soils that sifted into leaf 

node H and classified as a M-2 soil. For example, a caution would be made to confirm the RQ of 

soils with a soil content (SILT) of less than 40% and a fine sand content (fSAND) of less than 

25%.  

  Table 5-3 provides the statistics for the leaf nodes and the used parent nodes using the 

training dataset. The statistics for the training dataset was selected for this review instead of the 

testing dataset because it was used to create the tree model. Therefore, the goal was to gain a better 

understanding of the data used to create the decision tree model.  The italicized text designated the 

leaf nodes that were constituents of the parent nodes combining the same leaf node designations. 
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For example, intermediate parent node EF contained the testing data of leaf nodes E and F. The 

asterisked nodal combinations and corresponding statistics were calculated and presented for 

comparison.  

  The following observations were noted: 

 As expected, individual leaf nodes typically had lower CVs (6.0 to 21.1%) than the parent 

nodes used for classification (14.2 to 22.7%).  

 The poor RQ soils (nodes A, B, C, E, and H) had CVs ranging from 10.0 to 21.1%.  

 The fair RQ soils (nodes D, F ,I , J , K, L, and O) had CVs ranging from 8.1 to 12.0%. 

 The stiff RQ soils (nodes G, M, N, P, Q, and R) had CVs ranging from 6.0 to 12.3%.  

 

Table 5-3: Leaf node statistics using the training dataset 

Leaf Node 
Number of 

Tests 
Mean MR 

(MPa) 
Std Dev 
(MPa) 

CV 
(%) 

M  
Class 

A 85 48.3 8.7 18.1 M-1 
B 51 44.4 9.4 21.1 M-1 
C 23 53.7 5.4 10.0 M-1 
D 51 68.1 7.3 10.7 M-2 
E 12 49.3 7.3 14.8 --- 
F 112 71.6 7.2 10.1 --- 

EF* 124 69.4 9.8 14.1 M-2 
G 14 95.9 5.8 6.0 M-3 
H 55 47.4 8.8 18.6 --- 
I 23 68.0 7.8 11.5 --- 
J 38 69.8 5.6 8.1 --- 

HIJ* 116 58.8 13.3 22.7 M-2 
K 23 60.0 7.2 11.9 M-2 
L 110 69.0 8.3 12.0 --- 
M 23 85.3 6.5 7.7 --- 
N 11 97.3 9.7 10.0 --- 

LMN* 144 73.7 12.1 16.4 M-2 
O 13 62.8 5.5 8.7 --- 
P 74 87.2 10.1 11.6 --- 

OP* 87 83.5 12.9 15.5 M-3 
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Leaf Node 
Number of 

Tests 
Mean MR 

(MPa) 
Std Dev 
(MPa) 

CV 
(%) 

M  
Class 

Q 26 95.8 10.2 10.6 M-3 
R 24 101.8 12.5 12.3 M-3 

* Higher-level intermediate parent node that combined the leaf nodes 

 

  Table 5-4 provides a summary of the M classes with respect to the target feature of MR 

from the training dataset. It can be seen that the average MR increased moving from the M-1 class 

to the M-3 class. In addition, the coefficient of variation (CV) of the M-1 and M-2 classes were 

greater than the M-3 class.  

 

Table 5-4: MR statistics for M classes from training dataset 

M Class Number 
Average 
(MPa) 

Std Dev  
(MPa) 

CV 
(%) 

M-1 159 47.8 9.0 18.8 
M-2 458 67.5 12.7 18.8 
M-3 151 89.7 14.0 15.6 

Note: CV= Coefficient of variation 

 

  As expected, the data from Table 5-4 reflected the same tendencies as the data from the 

training dataset. The data from the testing dataset was used to create the plot in Figure 5-7 because 

the testing dataset provides the confirming support that the tree model reflected the RQ qualities 

defined in the previous section. The boxplot indicates that there are clear separation of interquartile 

ranges (IQR) of the M classes that comprises 50% of the MR correlation data. This finding is in 

contrast to Figure 4-12, which does not depict any meaningful separation among the AASHTO 

classes of the complete set of fine-grained subgrade soils. Therefore, the M classes should provide 

more useful information to the engineer than the AASHTO classes do.  
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Table 5-5: MR statistics for M classes from testing dataset 

M Class Number 
Average 
(MPa) 

Std Dev  
(MPa) 

CV 
(%) 

M-1 36 47.4 9.6 20.2 
M-2 127 66.9 13.6 20.3 
M-3 29 91.1 14.8 16.3 

Note: CV= Coefficient of variation 

 

 

Figure 5-7: MR ranges for M classes (testing dataset) 

 

5.2.6: STEP 6 - One-way ANOVA and Tukey testing 

Next, one-way ANOVA and Tukey tests were performed on the average MR values from the M 

classes. The one-way ANOVA was run to determine if there were significant differences in the 

mean MR values of at least one of the M classes. As will be demonstrated, the ANOVA test did 

support the alternative hypothesis that were was at least one class group with a different average 

MR. Because the one-way ANOVA only indicated that is a difference and not where the difference 
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or differences were, a Tukey test was conducted. The Tukey test performs a pairwise comparison 

of each combination of average MR values to identify which classes are different from each other.   

  To introduce the ANOVA analysis, the null and alternative hypotheses are presented as 

follows:  

 Null hypothesis (Ho): There is no difference among the average resilient moduli of the M 

soil classes, i.e. 

Ho: µM1 = µM2 = µM3 

 Alternate hypothesis (Ha): There is at least one M class with an average resilient modulus 

that is different from averages of the other M classes, i.e. 

Ha: µM1 ≠ µM2 and/or µM1 ≠ µM3 and/or µM2 ≠ µM3 

 

  In Table 5-6, the p-value (<2e-16) from the one-way ANOVA analysis, which is less than 

the significance level of 0.05,  indicated that there is enough evidence to reject the null hypothesis 

that there are no differences in average MR values among the proposed M classes. Therefore, there 

is at least one M class with an average MR that is different from the other M classes.  

 

Table 5-6: One-way ANOVA for M classes 

 Df Sum Sq Mean Sq F value Pr(>F) 
classMR 2 30741 15371    89.37 <2e-16 *** 
Residuals 189 32507 172                   --- --- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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  With evidence that there is at least one M class with an average MR that is different from 

the other M classes, a Tukey test was run to pairwise comparisons of the M classes. It is an post 

hoc test used after an ANOVA provides evidence that there is at least one group mean that is 

different from the other group means. The Tukey test provided where the group mean differences 

in MR were found. The test results are introduced with the following null and alternate hypotheses: 

 Null hypothesis (Ho): The MR means of all M class groups are equal, i.e. 

Ho: µM1 = µM2 = µM3 

 Alternate hypothesis (Ha): There is at least one M class with an average resilient modulus 

that is different from averages of the other M classes, i.e. 

Ha: µM1 ≠ µM2 and/or µM1 ≠ µM3 and/or µM2 ≠ µM3 

 

  From Table 5-7, the p-values (p adj) of each pairwise comparison were equal to zero (0). 

From these results, there is evidence to reject the null hypothesis. Reviewing each comparison, it 

can be determined that all M classes have MR averages that are different from each other. 

Therefore, the conclusions from the ANOVA and Tukey tests support the proposed M classes and 

the criteria used to establish them.  

Table 5-7: Tukey results on proposed M classes 

Tukey multiple comparisons of means 
95% family-wise confidence level 

 diff lwr upr p adj 
M-2-M-1 19.51662 13.66687 25.36637 0 
M-3-M-1 43.74904 36.01862 51.47946 0 
M-3-M-2 24.23242 17.85628 30.60856 0 
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5.2.7: STEP 7 - Testing dataset statistics for AASHTO soil classes  

For comparison, some basic statistics on the testing dataset were prepared with respect to the 

AASHTO soil classes. The statistics in Table 5-8 are presented in contrast to Table 5-5, which 

contains statistics with the same testing dataset, but with respect to the M classifications. Based on 

the standard deviations (Std Dev), the variability in the AASHTO classification was greater than 

that for the M classifications. The A-7-6 soils had the lowest standard deviation at 15.1 MPa versus 

the M-3 with a standard deviation of 14.8 MPa.  

  The average MR for the M classes methodically increase from the lowest class (M-1) to the 

highest one (M-3). The MR values for the AASHTO classes also increase from the A-4 to the A-7 

class. However, the A-7-5 subgroup has a higher MR than the A-7-6.  

 

Table 5-8: MR statistics for fine-grained specimens (testing dataset) 

AASHTO Number 
Average 
(MPa) 

Std Dev  
(MPa) 

CV 
(%) 

A-4 44 59.4 18.7 31.5 
A-6 79 66.4 18.3 27.5 

A-7-5 17 80.5 16.8 20.8 
A-7-6 52 69.5 15.1 21.8 

Note: CV= Coefficient of variation 

  Besides the lower standard deviations with the M classes, another difference between the 

two classes can be seen in comparing Figure 5-7 and Figure 5-8. The M classes indicate more 

distinct separations among their constituents while the IQRs of the AASHTO classes overlap each 

other.  
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Figure 5-8: MR ranges for AASHTO soil classes (testing dataset) 

 

5.2.8: STEP 8 - Convert decision tree into a table format 

The pruned decision tree in Figure 5-4 was converted into Tables 5-11 and 5-12 to demonstrate 

how the tree diagram would appear in a format that would be accessible to design and field 

engineers. In both tables, the root node (SILT≥41) appears in the leftmost column with either the 

true (SILT≥41) or false (SILT<41) condition. Table 5-11 presents the true condition of the root 

node, and Table 5-12 presents the false condition of the root node. Although the decision tree 

works from top to bottom, the tables work from left to right.  

  In order to use these tables, the engineer would need possession of a soils report with at 

least the features given in the column headings. For instance, a fine-grained soil with a silt content 

of 45% would use Table 5-11 to classify the soil. With the other feature values of 15% for plastic 

limit, 45% for material passing the No. 200 sieve, and 100% for material passing the No. 10 sieve, 

the soil would be classified as an M-1 soil. With this data, a field engineer would then be alerted 
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to the presence of a possibly problematic soil on his/her project site. Therefore, localized testing 

such as proof-rolling or light-weight deflectometer (LWD) testing could be set up to verify the 

resilient properties of this material and decide on the appropriate course of action.  

Table 5-9: Classification scheme for fine-grained soils with silt content ≥ 41% 

SILT PL PN 200 PN 10 PL M Class 

> 41 

< 13 --- --- --- M-1 

> 13 

< 66 

> 90 --- M-1 

< 90 
> 23 M-1 

< 23 M-2 

> 66 --- 
> 14 M-2a* 

< 14 M-3 

Note: For M-2 soils with an “a” suffix, check the materials for their resilient behavior.  
 

Table 5-10: Classification scheme for fine-grained soils with silt content < 41% 

SILT labOMC PL CLAY cSAND M Class 

< 41 
> 11 

< 16 --- --- M-2b 

> 16 

< 12 --- M-3 

> 12 to 19 --- M-2 

> 19 
< 12 M-2 

> 12 M-3 

< 11 --- --- --- M-3 

Note: For M-2 soils with a “b” suffix, check the materials for their resilient behavior.  
 

5.3: Summary 

Using the data collected for the LTPP Program from test sites across the United States, a decision 

tree model was developed to correlate the MR of fine-grained subgrade soils to soil index properties 

and laboratory test conditions of LTPP Protocol P-46. A soil classification scheme was devised 
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using groupings of the leaf nodes. These groupings were based on the average MR values in the 

leaf nodes and a basic statistical analysis of these nodes.  

  The statistical analysis was conducted as a means to define the resilient qualities (RQ) of 

poor, fair, and stiff subgrade soils with the fair RQ representing a fine-grained soil within an 

average MR range. These RQs also served as the foundation for establishing three M (modulus) 

classes of subgrade soils that would act as a tool for engineers to identify the expected resilient 

behavior of these materials. For instance, if a field engineer received a report with M-1 (poor RQ) 

soils on it, he/she could set up targeted field and/or laboratory testing to verify the resilient 

behavior of those soils. If M-3 (stiff RQ) materials were reported, then more limited testing could 

be set up for those areas so as to more efficiently assign testing efforts to more problematic areas. 

Finally, the statistical significance of the M classes was established with one-way ANOVA and 

Tukey tests, which supported the analyses in this chapter that each M soil class had an MR range 

that clearly separated it from the other M soil classes.  

  



 

97 

 

 

CHAPTER 6: CONCLUSIONS 

In this study, a soil classification scheme was successfully developed for fine-grained subgrade 

soils based on their resilient properties, utilizing resilient modulus data extracted from the Long-

Term Pavement Performance (LTPP) database. This new classification scheme categorizes soils 

based on their resilient properties as defined in this study, using statistical analysis of outputs from 

the decision tree model that correlated resilient modulus to soil index properties. The decision tree 

model was used to create a table that provides soil classes based on the resilient properties of fine-

grained soils that can be easily interpreted and incorporated into construction specifications for 

subgrade materials. 

  The analysis in this study was conducted in an R programming environment using the rpart 

library within a Jupyter notebook to develop a decision tree model. Decision tree modeling was 

selected because it can provide models with predictive strengths comparable to linear regression 

analysis. The rpart library was chosen for decision tree modeling because of its recursive 

partitioning function, ease of use, transparency with respect to the model’s structure and feature 

importance, and integration with other R packages. 

  These newly defined soil classes align more closely with the Mechanistic-Empirical 

Pavement Design Guide than the current portion of the AASHTO soil classification system that 

includes fine-grained soils. Moreover, the resilient modulus-based scheme serves as a valuable 

tool for identifying potentially problematic soils, thereby aiding engineers in efficiently directing 

testing resources and remediation efforts. The redirection of resources and identification of areas 
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that require remediation ultimately enhance the capacity of the pavement to support the overlying 

structure and design traffic in the most economical way possible. 

  The following conclusions summarize the observations and limitations encountered in this 

study:  

6.1: The LTPP database 

(1) Approximately 56% of the fine-grained subgrade soil specimens were tested with test 

(sample) caps. Therefore, only 960 (44%) of the MR test results on fine-grained subgrade 

soils were tested according to the LTPP Protocol P-46 for Type 2 soils and were available 

for analysis.  

(2) Not all granular and silt-clay materials group classifications from AASHTO M-145 are 

equally represented in the LTPP database.  It is uncertain if this unbalance was significant. 

(3) The A-6 group based on AASHTO M-145 was the most predominate group of fine-grained 

subgrade soils in this study with more than 50% of its material passing the No. 200 (75 

µm) sieve. The A-5 group was not represented in the base dataset.  

(4) The average and median resilient moduli of the A-4 and A-6 soils are generally lower than 

those of the A-7-5 and A-7-6 soils.  

(5) The average and median maximum dry densities of the A-4 and A-6 soils are generally 

higher than those of the A-7-5 and A-7-6 soils.  

(6) The average and median optimum moisture contents of the A-4 and A-6 soils are generally 

lower than those of the A-7-5 and A-7-6 soils.  
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6.2: About the behavior of resilient modulus of fine-grained soils 

Despite the trendlines in the figures from Chapter 4, the resilient modulus in these plots did not 

consistently increase or decrease based on the slopes of the trendlines. When considering the 

effects of each feature, the range of the resilient modulus test results was compared across the 

value ranges of these features. If the individual boxplots did not rise or fall consistently with the 

trendline, those features were not considered influential on the resilient behavior of fine-grained 

soils as a collective group. Examining test data from individual soil specimens might have led to 

different conclusions. However, this study aimed to classify the resilient behavior of the fine-

grained division of soils in the LTPP database. Therefore, data from all fine-grained subgrade soils 

were analyzed as a whole. 

(7) The resilient modulus of fine-grained subgrade soils increased with increasing confining 

stress.  

(8) The plastic index of fine-grained subgrade soils did not appear to influence the resilient 

modulus of fine-grained soils.  

(9) The amount of material passing the No. 200 (75 µm) sieve of fine-grained subgrade soils 

did not appear to influence the resilient modulus of fine-grained soils.  

(10) The average laboratory resilient modulus of uncapped fine-grained subgrade soil 

specimens had a significantly lower average resilient modulus values than specimens 

tested with caps.  

(11) There is no statistical difference in the average resilient modulus values of the fine-grained 

and coarse-grained fractions of the silt-clay (non-granular) general classification of 

AASHTO M-145.  
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6.3: About the decision tree model and proposed soil classification scheme  

(12) The decision tree model, which correlated the features in the dataset to the resilient 

modulus target feature, yielded a good model that was easily converted to a classification 

table for fine-grained soils.  

(13) The silt content of fine-grained soils was found to be the most influential feature on 

resilient modulus based on the decision tree model. The plastic limit, optimum moisture 

content, and the material passing the No. 200 (75 µm) sieve are the next most important 

features.   

(14) The plastic limit of fine-grained soils was found to be the most influential on resilient 

modulus based on the ranking of most important features, which considered surrogate split 

data. The fine sand content, clay content, silt content, the material passing the No. 200 (75 

µm) sieve are the next most important features.  
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CHAPTER 7: RECOMMENDATIONS 

7.1: Recommendations for future research 

(1)  Create a separate and independent database of subgrade soils and resilient modulus data 

that follows the same quality control measures without the restrictions of adding and 

maintaining a limited number of LTPP test sites. Soil samples can be retrieved during 

preliminary field investigations and from construction sites. Although the ultimate goal is 

to create a database that covers the North American continent, this strategy can also be 

applied on a state-by-state basis for states interested in creating their own database without 

depending on a national effort.  

(2) Prepare a soil classification scheme for coarse-grained soils using the same procedures 

outlined in this study.  

(3) Conduct a study to research other soil properties that may affect the resilient behavior of 

fine-grained (and coarse-grained) subgrade soils.  

 

7.2: Recommendations for future practice 

(4) Strategically grow the LTPP database by including more fine-grained soils from the eastern 

United States and all of Canada to more evenly cover the continent.  

(5) The proposed soil classification table for fine-grained soils should only be used with 

caution by states that are represented in the LTPP database.  
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APPENDIX A  

Part 1: LTPP data tables 

Table A-1: Data tables downloaded from InfoPave website 

TST_UG07_SS07_A TST_SS02_UG03 

Beginning Column Column Continuation 

LINKED_LAYER_NO LINKED_LAYER_NO NO_80_PASSING 

LINKED_SHRP_ID LINKED_SHRP_ID NO_200_PASSING 

SHRP_ID* SHRP_ID* HYDRO_02 

STATE_CODE* STATE_CODE* HYDRO_002 

STATE_CODE_EXP STATE_CODE_EXP HYDRO_001 

LAYER_NO* LAYER_NO* GT_2MM 

TEST_NO* FIELD_SET* COARSE_SAND 

TEST_NO_EXP TEST_NO_EXP FINE_SAND 

FIELD_SET* TEST_NO* SILT 

LOC_NO* LOC_NO* CLAY 

SAMPLE_NO* CONSTRUCTION_NO COLLOIDS 

MR_MATL_TYPE_EXP SAMPLE_NO* HYGRO_MOIST 

MR_MATL_TYPE TEST_DATE  

TOTAL_HT THREE_PASSING  

IN_SITU_MOIST TWO_PASSING  

IN_SITU_DENSITY ONE_AND_HALF_PASSING  

MAX_DRY_DENSITY ONE_PASSING  

MAX_DRY_DENSITY_95 THREE_FOURTHS_PASSING  

COMP_MOIST_CONT ONE_HALF_PASSING  

COMP_DRY_DENSITY THREE_EIGHTHS_PASSING  

MAX_STRENGTH NO_4_PASSING  

TEST_DATE NO_10_PASSING  

CONSTRUCTION_NO NO_40_PASSING  

* Primary key elements used for merging tables into a single dataset 
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Table A-2:  Data tables downloaded from InfoPave website 

 
TST_UG07_SS07_WKSHT_SUM TST_UG04_SS03 

LINKED_SHRP_ID LINKED_SHRP_ID 

LINKED_LAYER_NO LINKED_LAYER_NO 

SHRP_ID* SHRP_ID* 

STATE_CODE* STATE_CODE* 

STATE_CODE_EXP STATE_CODE_EXP 

LAYER_NO* LAYER_NO* 

TEST_NO* FIELD_SET* 

TEST_NO_EXP TEST_NO* 

FIELD_SET* TEST_NO_EXP 

LOC_NO* LOC_NO* 

SAMPLE_NO* SAMPLE_NO* 

CON_PRESSURE LIQUID_LIMIT 

NOM_MAX_AXIAL_STRESS PLASTIC_LIMIT 

CONSTRUCTION_NO PLASTICITY_INDEX 

LAYER_TYPE TEST_DATE 

LAYER_TYPE_EXP CONSTRUCTION_NO 

RES_STRAIN_AVG  

RES_MOD_AVG  

TEST_DATE  

   * Primary key elements used for merging tables into a single dataset 
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Table A-3: Data tables downloaded from InfoPave website 

 
TST_UG05_SS05 SECTION_COORDINATES 
LINKED_SHRP_ID STATE_CODE* 
LINKED_LAYER_NO STATE_CODE_EXP 
SHRP_ID* SHRP_ID* 
STATE_CODE* LATITUDE 
STATE_CODE_EXP LONGITUDE 
LAYER_NO* DATUM 
FIELD_SET* DATUM_EXP 
TEST_NO* DATUM_OTHER 
TEST_NO_EXP ELEVATION 
LOC_NO* 
SAMPLE_NO* 
TEST_DATE 
CONSTRUCTION_NO 
MAX_LAB_DRY_DENSITY 
OPTIMUM_LAB_MOISTURE 

   * Primary key elements used for merging tables into a single dataset 
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Part 2: Software Screenshots 

 

Figure A-1: Anaconda Navigator layout 

 

 

Figure A-2: Jupyter Notebook screenshot  
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APPENDIX B 

T-test outputs for non-granular soils tested with and without caps 

 

Series B: A series of t-tests on all non-granular specimens prepared in a 71-mm (2.8-inch) mold 

and tested with caps (YES) and without caps (NO) using the following soil properties from the 

raw dataset. The t-test analyses provided supporting evidence to determine if the use of test caps 

altered the given soil properties from the established test conditions specified by LTPP Protocol 

P-46. A t-test was conducted for each of these properties to consider the properties that are 

commonly used during subgrade construction.  

 

(1) MR 

(2) labMDD, 

(3) MDD.RATIO2, 

(4) labOMC, and 

(5) OMC.RATIO2 
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The following Welch (Student) t-test evaluated the laboratory MR test results of all non-granular 

soils tested without and with test caps. The following null and alternate hypotheses were posed to 

determine if capped and non-capped specimens had equivalent MR values.   

 Null hypothesis B.1: The MR of soil specimens prepared in a 71-mm (2.8-inch) mold 

tested with test caps and the soil specimens tested without test caps are equal.  

 Alternate hypothesis B.1: The MR of soil specimens prepared in a 71-mm (2.8-inch) 

mold tested with test caps and the soil specimens tested without test caps are not equal.   

Conclusion: There is very strong evidence that the alternate hypothesis is true as supported by 

the p-value (< 2.2e-16) and 95% confidence interval. Therefore, the test data from these two 

groups are not equal and cannot be combined into a single dataset based on laboratory MR test 

results.   

 

Welch Two Sample t-test 
 
data:  ds$MR by ds$CAP 
t = -27.737, df = 3671.9, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -21.69256 -18.82833 
sample estimates: 
 mean in group NO mean in group YES  
         67.69840          87.95884 

Figure B-9: T-test for MR of non-granular soils versus use of caps 
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Figure B-10: MR versus use of test caps 
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The following Welch (Student) t-test evaluated the maximum dry density (labMDD) of all non-

granular soils tested without and with test caps. The following null and alternate hypotheses were 

posed to determine if capped and non-capped specimens had equivalent maximum dry density 

values.   

 Null hypothesis B.2: The maximum dry density of soil specimens prepared in a 71-mm 

(2.8-inch) mold tested with test caps and the soil specimens tested without test caps are 

equal.  

 Alternate hypothesis B.2: The maximum dry density of soil specimens prepared in a 71-

mm (2.8-inch) mold tested with test caps and the soil specimens tested without test caps 

are not equal.  

Conclusion: There is very strong evidence that the alternate hypothesis is true as supported by the 

p-value (= 1.316e-13) and 95% confidence interval. Therefore, the test data from these two groups 

are not equal and cannot be combined into a single dataset based on their maximum dry densities.   

 
 
Welch Two Sample t-test 
 
data:  ds$labMDD by ds$CAP 
t = -7.4328, df = 3664.4, p-value = 1.316e-13 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -42.77720 -24.92012 
sample estimates: 
 mean in group NO mean in group YES  
         1787.879          1821.728 

Figure B-11: T-test for Maximum dry density of non-granular soils versus use of caps  
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Figure B-12: Maximum dry density versus use of caps 
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The following Welch (Student) t-test evaluated the soil compaction (MDD.RATIO2) test results 

of all non-granular soils tested without and with test caps. The following null and alternate 

hypotheses were posed to determine if capped and non-capped specimens had equivalent 

compaction values.   

 Null hypothesis B.3: The compaction values of soil specimens prepared in a 71-mm 

(2.8-inch) mold tested with test caps and the soil specimens tested without test caps are 

equal.  

 Alternate hypothesis B.3: The compaction values of soil specimens prepared in a 71-

mm (2.8-inch) mold tested with test caps and the soil specimens tested without test caps 

are not equal.    

Conclusion: There is very strong evidence that the alternate hypothesis is true as supported by 

the p-value (< 2.2e-16) and 95% confidence interval. Therefore, the test data from these two 

groups are not equal and cannot be combined into a single dataset based on their compaction 

values.   

 

Welch Two Sample t-test 
 
data:  ds$MDD.RATIO2 by ds$CAP 
t = 37.184, df = 5790.6, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 0.01100562 0.01223067 
sample estimates: 
 mean in group NO mean in group YES  
        0.9585883         0.9469701 

Figure B-13: T-test for compaction of non-granular soils versus use of caps 
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Figure B-14: Compaction versus use of test caps 
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The following Welch (Student) t-test evaluated the optimum moisture content (labOMC) test 

results of all non-granular soils tested without and with test caps. The following null and 

alternate hypotheses were posed to determine if capped and non-capped specimens had 

equivalent optimum moisture contents.   

 Null hypothesis B.4: The optimum moisture contents (labOMC) of soil specimens 

prepared in a 71-mm (2.8-inch) mold tested with test caps and the soil specimens tested 

without test caps are equal.  

 Alternate hypothesis B.4: The optimum moisture contents (labOMC) of soil specimens 

prepared in a 71-mm (2.8-inch) mold tested with test caps and the soil specimens tested 

without test caps are not equal.    

Conclusion: There is evidence that the alternate hypothesis is true as supported by the p-value 

(0.004923) and 95% confidence interval. Therefore, the test data from these two groups are not 

equal and cannot be combined into a single dataset based on their optimum moisture contents.   

 

Welch Two Sample t-test 
 
data:  ds$labOMC by ds$CAP 
t = 2.8139, df = 3420.7, p-value = 0.004923 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 0.1207475 0.6756988 
sample estimates: 
 mean in group NO mean in group YES  
         15.29256          14.89434 

Figure B-15: T-test for labOMC of non-granular soils versus use of caps 
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Figure B-16: Optimum moisture content versus use of caps 
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The following Welch (Student) t-test evaluated the optimum moisture content ratio 

(OMC.RATIO2) test results of all non-granular soils tested without and with test caps. The 

following null and alternate hypotheses were posed to determine if capped and non-capped 

specimens had equivalent optimum moisture content ratios.   

 Null hypothesis B.5: The optimum moisture content ratios of soil specimens prepared in 

a 71-mm (2.8-inch) mold tested with test caps and the soil specimens tested without test 

caps are equal.  

 Alternate hypothesis B.5: The optimum moisture content ratios of soil specimens 

prepared in a 71-mm (2.8-inch) mold tested with test caps and the soil specimens tested 

without test caps are not equal.    

Conclusion: There is evidence that the alternate hypothesis is true as supported by the p-value (= 

1.31e-08) and 95% confidence interval. Therefore, the test data from these two groups are not 

equal and cannot be combined into a single dataset based on their optimum moisture content 

ratios.   

 

Welch Two Sample t-test 
 
data:  ds$OMC.RATIO2 by ds$CAP 
t = -5.711, df = 1812, p-value = 1.31e-08 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -0.014858449 -0.007261872 
sample estimates: 
 mean in group NO mean in group YES  
        0.9937628         1.0048229 

Figure B-17: T-test for OMC.RATIO2 of non-granular soils versus use of caps 
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Figure B-18: Optimum moisture content ratios versus use of test caps 
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APPENDIX C 

T-test outputs for non-granular soil fractions 

 
Series C: A series of t-tests on the two non-granular soil fractions (coarse-grained and fine-

grained) were conducted. These specimens were prepared in a 71-mm (2.8-inch) mold and tested 

without caps. The following soil properties from the raw dataset were analyzed using t-tests to 

determine if the coarse-grained and fine-grained soil fractions were equivalent based on these 

property values.  

 

(1) MR, 

(2) labMDD, 

(3) MDD.RATIO2, 

(4) labOMC, and 

(5) OMC.RATIO2 
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The following Welch (Student) t-tests evaluated the coarse- and fine-grained fractions of the 

non-granular general classification that were tested without caps. The following null and 

alternate hypotheses were posed to determine if the two non-granular fractions were equivalent 

based on MR values.   

 Null hypothesis No. C.1: The MR of the coarse- and fine-grained fractions prepared and 

tested in a 71-mm (2.8-inch) mold without test caps had MR values that were equal.  

 Alternate hypothesis No. C.1: The MR of the coarse- and fine-grained fractions prepared 

and tested in a 71-mm (2.8-inch) mold without test caps had MR values that were not 

equal.   

Conclusion: There is not enough evidence to reject the null hypothesis as supported by the p-

value (= 0.7987) and 95% confidence interval. Therefore, the test data from these two groups are 

equal based on laboratory MR test results.   

 

Welch Two Sample t-test 
 
data:  ds$MR by ds$Fraction 
t = 0.25515, df = 803.87, p-value = 0.7987 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -1.999573  2.597063 
sample estimates: 
mean in group CGF mean in group FGF  
         67.89770          67.59896 

Figure C-19: T-test for the MR of the non-granular soil fractions 
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Figure C-20: MR versus soil fractions 
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The following Welch (Student) t-tests evaluated the coarse- and fine-grained fractions of the non-

granular general classification that were tested without caps. The following null and alternate 

hypotheses were posed to determine if the two non-granular fractions were equivalent based on 

their maximum dry densities (labMDD).    

 Null hypothesis No. C.2: The maximum dry densities of soil specimens prepared in a 71-

mm (2.8-inch) mold and tested without test caps are equal.  

 Alternate hypothesis No. C.2: The maximum dry densities of soil specimens prepared in 

a 71-mm (2.8-inch) mold and tested without test caps are not equal.  

Conclusion: There is very strong evidence that the alternate hypothesis is true as supported by the 

p-value (< 2.2e-16) and 95% confidence interval. Therefore, the test data from these two non-

granular soil fractions are not equal based on their maximum dry densities.   

 
 
Welch Two Sample t-test 
 
data:  ds$labMDD by ds$Fraction 
t = 19.821, df = 963.4, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 107.9423 131.6653 
sample estimates: 
mean in group CGF mean in group FGF  
         1867.804          1748.000 

Figure C-21: T-test for labMDD of non-granular soil fractions tested without caps 
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Figure C-22: labMDD versus non-granular soil fractions 
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The following Welch (Student) t-test evaluated the compaction (MDD.RATIO2) test results of 

the coarse- and fine-grained soil fractions tested without caps. The following null and alternate 

hypotheses were posed to determine if the non-granular soil specimens had equivalent 

compaction values.   

 Null hypothesis No. C.3: The specimens of the two non-granular soil fractions prepared 

in a 71-mm (2.8-inch) mold and tested without caps are equal based on compaction 

values.  

 Alternate hypothesis No. C.3: The specimens of the two non-granular soil fractions 

prepared in a 71-mm (2.8-inch) mold and tested without caps are not equal based on 

compaction values.  

Conclusion: There is not enough evidence to reject the null hypothesis as supported by the p-

value (= 0.7431) and 95% confidence interval. Therefore, the test data from these two groups are 

equal based on their compaction values.   

 

Welch Two Sample t-test 
 
data:  ds$MDD.RATIO2 by ds$Fraction 
t = -0.32782, df = 876.93, p-value = 0.7431 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -0.001498278  0.001069409 
sample estimates: 
mean in group CGF mean in group FGF  
        0.9593215         0.9595359 

Figure C-23: T-test for compaction of non-granular soils tested without caps 
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Figure C-24: Compaction of non-granular soil fractions tested versus use of caps 
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The following Welch (Student) t-test evaluated the optimum moisture contents (labOMC) of the 

two non-granular soil fractions tested without caps. The following null and alternate hypotheses 

were posed to determine if coarse- and fine-grained soil specimens had equivalent optimum 

moisture contents.  

 Null hypothesis No. C.4: The optimum moisture contents of the coarse- and fine-grained 

soil specimens prepared in a 71-mm (2.8-inch) mold and tested without caps are equal.  

 Alternate hypothesis No. C.4: The optimum moisture contents of the coarse- and fine-

grained soil specimens prepared in a 71-mm (2.8-inch) mold and tested without caps are 

not equal.  

Conclusion: There is very strong evidence that the alternate hypothesis is true as supported by 

the p-value (< 2.2e-16) and 95% confidence interval. Therefore, these two non-granular soil 

fractions are not equal based on their optimum moisture contents.   

 

Welch Two Sample t-test 
 
data:  ds$labOMC by ds$Fraction 
t = -18.209, df = 1275.5, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -3.706175 -2.985240 
sample estimates: 
mean in group CGF mean in group FGF  
         13.06054          16.40625 

Figure C-25: T-test for labOMC of non-granular soil fractions tested without caps 
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Figure C-26: Optimum moisture contents versus non-granular soil fractions 
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The following Welch (Student) t-test evaluated the optimum moisture content ratios 

(OMC.RATIO2) of coarse- and fine-grained soil fractions tested without caps. The following null 

and alternate hypotheses were posed to determine if the coarse- and fine-grained specimens had 

equivalent optimum moisture content ratios.   

 Null hypothesis No. C.5: The optimum moisture content ratios of the coarse- and fine-

grained soil fractions of the non-granular general classification that were prepared in a 

71-mm (2.8-inch) mold and tested without caps are equal.  

 Alternate hypothesis No. C.5: The optimum moisture content ratios of the coarse- and 

fine-grained soil fractions of the non-granular general classification that were prepared in 

a 71-mm (2.8-inch) mold and tested without caps are not equal. 

Conclusion: There is not enough evidence to reject the null hypothesis as supported by the p-

value (= 0.07605) and 95% confidence interval. Therefore, the coarse- and fine-grained soil 

fractions of the non-granular general classification are equal based on their optimum moisture 

content ratios.   

 

Welch Two Sample t-test 
 
data:  ds$OMC.RATIO2 by ds$Fraction 
t = 1.7764, df = 783.06, p-value = 0.07605 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -0.0007799028  0.0156333083 
sample estimates: 
mean in group CGF mean in group FGF  
        0.9987173         0.9912906 

Figure C-27: T-test for OMC.RATIO2 of non-granular soil fractions versus use of caps 
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Figure C-28: Optimum moisture content ratios versus non-granular soil fractions 
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APPENDIX D 

T-test outputs for fine-grained soil fraction tested with and without caps 

 

Series D: A series of t-tests on the fine-grained soil fraction from the non-granular general 

classification was conducted. These specimens were prepared in a 71-mm (2.8-inch) mold and 

tested with and without caps. The following soil properties from the raw dataset were analyzed 

using t-tests to determine if the fine-grained soil fraction tested with and without test caps were 

equivalent based on the following property values. This series is different than Series B because 

that initial series of t-tests included the coarse- and fine-grained soil fractions in the initial 

analysis. This series of t-tests were conducted to further validate the use of only the fine-grained 

soil fraction from AASHTO M-145, which is equivalent to the ASTM D-2487 fine-grained soils.  

(1) MR, 

(2) labMDD, 

(3) MDD.RATIO2, 

(4) labOMC, and 

(5) OMC.RATIO2 
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The following Welch (Student) t-tests evaluated the laboratory MR test results of the fine-grained 

soil fraction from the AASHTO non-granular soils tested without and with test caps. The 

following null and alternate hypotheses were posed to determine if these capped and non-capped 

specimens had equivalent MR values.   

 Null hypothesis D.1: The MR of the fine-grained soil fraction from the AASHTO non-

granular general classification prepared and tested in a 71-mm (2.8-inch) mold without 

test caps had MR values that were equal.  

 Alternate hypothesis D.1: The MR of the fine-grained soil fraction from the AASHTO 

non-granular general classification prepared and tested in a 71-mm (2.8-inch) mold 

without test caps had MR values that were not equal.  

Conclusion: There is very strong evidence to reject the null hypothesis as supported by the p-

value (< 2.2e-16) and 95% confidence interval. Therefore, the test data from these two groups 

are not equal based on laboratory MR test results.   

  

Welch Two Sample t-test 
 
data:  ds$MR by ds$CAP 
t = -21.886, df = 2376.1, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -20.91565 -17.47585 
sample estimates: 
 mean in group NO mean in group YES  
         67.59896          86.79471 

Figure D-29: T-test for MR of the fine-grained soil fraction versus use of caps 
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Figure D-30: MR of the fine-grained soil fraction versus use of caps 
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The following Welch (Student) t-tests evaluated the maximum dry densities of the fine-grained 

soil fraction from the AASHTO non-granular soils tested without and with test caps. The following 

null and alternate hypotheses were posed to determine if these capped and non-capped specimens 

had equivalent maximum dry densities.   

 Null hypothesis D.2: The maximum dry densities of the fine-grained soil fraction from the 

AASHTO non-granular general classification prepared and tested in a 71-mm (2.8-inch) 

mold without test caps had maximum dry densities that were equal.  

 Alternate hypothesis D.2: The maximum dry densities of the fine-grained soil fraction 

from the AASHTO non-granular general classification prepared and tested in a 71-mm 

(2.8-inch) mold without test caps had maximum dry densities that were not equal.  

Conclusion: There is evidence to reject the null hypothesis as supported by the p-value 

(=0.005905) and 95% confidence interval. Therefore, the test data based on the use and non-use 

of test caps are not equal based on maximum dry densities.   

 
 
Welch Two Sample t-test 
 
data:  ds$labMDD by ds$CAP 
t = -2.7555, df = 2363.6, p-value = 0.005905 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -24.483580  -4.124632 
sample estimates: 
 mean in group NO mean in group YES  
         1748.000          1762.304 

Figure D-31: T-test for labMDD of fine-grained versus use of caps 
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Figure D-32: labMDD based on the fine-grained soil fraction versus the use of caps 
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The following Welch (Student) t-tests evaluated the compactions (MDD.RATIO2) of the fine-

grained soil fraction from the AASHTO non-granular soils tested without and with test caps. The 

following null and alternate hypotheses were posed to determine if these capped and non-capped 

specimens had equivalent compaction values.   

 Null hypothesis D.3: The compaction of the fine-grained soil fraction from the AASHTO 

non-granular general classification prepared and tested in a 71-mm (2.8-inch) mold with 

and without test caps had compactions that were equal.  

 Alternate hypothesis D.3: The compaction of the fine-grained soil fraction from the 

AASHTO non-granular general classification prepared and tested in a 71-mm (2.8-inch) 

mold with and without test caps had compactions that were not equal.  

Conclusion: There is very strong evidence to reject the null hypothesis as supported by the p-value 

(< 2.2e-16) and 95% confidence interval. Therefore, the test data from these non-capped and 

capped soil groups are equal based on their compaction values.   

 

Welch Two Sample t-test 
 
data:  ds$MDD.RATIO2 by ds$CAP 
t = 27.945, df = 1834.6, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 0.01118799 0.01287693 
sample estimates: 
 mean in group NO mean in group YES  
        0.9595359         0.9475035 

Figure D-33: T-test for compaction of the fine-grained fraction versus use of caps 
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Figure D-34: Compaction of the fine-grained soil fraction versus use of caps 
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The following Welch (Student) t-test evaluated the optimum moisture contents (labOMC) of the 

fine-grained soil fractions tested with and without caps. The following null and alternate 

hypotheses were posed to determine if coarse- and fine-grained soil specimens had equivalent 

optimum moisture contents.  

 Null hypothesis D.4: The optimum moisture contents of the fine-grained soil fractions 

prepared in a 71-mm (2.8-inch) mold and tested with and without caps are equal.  

 Alternate hypothesis D.: The optimum moisture contents of the fine-grained soil fractions 

prepared in a 71-mm (2.8-inch) mold and tested with and without caps are not equal.  

Conclusion: There is not enough evidence to reject the null hypothesis as supported by the p-value 

(= 0.3026) and 95% confidence interval. Therefore, the capped and non-capped soil specimens are 

not equal based on their optimum moisture contents.   

 

Welch Two Sample t-test 
 
data:  ds$labOMC by ds$CAP 
t = -1.031, df = 2208.7, p-value = 0.3026 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -0.5275243  0.1639630 
sample estimates: 
 mean in group NO mean in group YES  
         16.40625          16.58803  

Figure D-35: T-test for labOMC of the fine-grained soil fraction versus use of caps 
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Figure D-36: OMC of FGF versus the use of caps 
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The following Welch (Student) t-test evaluated the optimum moisture content ratios 

(OMC.RATIO2) of the fine-grained soil fraction tested with and without caps. The following 

null and alternate hypotheses were posed to determine if the fine-grained specimens had 

equivalent optimum moisture content ratios.   

 Null hypothesis D.5: The optimum moisture content ratios of the fine-grained soil 

fractions of the non-granular general classification that were prepared in a 71-mm (2.8-

inch) mold and tested without caps are equal.  

 Alternate hypothesis D.5: The optimum moisture content ratios of the fine-grained soil 

fractions of the non-granular general classification that were prepared in a 71-mm (2.8-

inch) mold and tested without caps are not equal.  

Conclusion: There is very strong evidence to reject the null hypothesis as supported by the p-value 

(5.498e-10) and 95% confidence interval. Therefore, the fine-grained soil fraction of the non-

granular general classification are not equal based on their optimum moisture content ratios.   

 

Welch Two Sample t-test 
 
data:  ds$OMC.RATIO2 by ds$CAP 
t = -6.2515, df = 1304.5, p-value = 5.498e-10 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -0.018140457 -0.009474535 
sample estimates: 
 mean in group NO mean in group YES  
        0.9912906         1.0050981 

Figure D-37: T-test for OMC.RATIO2 of the fine-grained soil fraction versus use of caps 
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Figure D-38: OMC ratios of the fine-grained soil fraction versus use of caps 
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APPENDIX E 

Decision Tree Primary and Surrogate Splits 

 
This appendix contains the output from the summary(MR.pruned) command discussed in Chapter 

5. The output was only edited by bolding “section” headers and by shifting some column contents 

by adding spaces to align them with the column headers to make reading the output easier.  

 
Call: 
rpart(formula = MR ~ ., data = ds_train[dt.list], method = "anova") 
  n= 768  
 
    CP                       nsplit    rel error      xerror             xstd 
1  0.13652517      0            1.0000000   1.0018949      0.04944148 
2  0.09792777      1            0.8634748   0.9053202      0.04360083 
3  0.06767235      3            0.6676193   0.7724299      0.03677768 
4  0.04432653      5            0.5322746   0.6073722      0.02977508 
5  0.03728374      6            0.4879481    0.5280192     0.02672805 
6  0.03500419      7            0.4506643    0.5207763     0.02628011 
7  0.02732880      8            0.4156601    0.4341295     0.02265109 
8  0.02540843     10           0.3610025    0.3642837    0.01804610 
9  0.02435663     11           0.3355941    0.3500992    0.01742595 
10 0.02133889    14          0.2625242    0.3335997     0.01646355 
11 0.02006902    15          0.2411853    0.3152389     0.01563206 
12 0.01324059    16          0.2211163    0.2718634     0.01401372 
13 0.01300000    17          0.2078757    0.2437686     0.01219033 
 
Variable importance 
    PL  fSAND   CLAY   SILT  PN200 labMDD   PN10 labOMC   PN40     LL   PN80  
    13     12      11       10      9          7               7         6               6            6      6  
 cSAND     PI  
     5          3  
 
Node number 1: 768 observations,    complexity param=0.1365252 
  mean=67.77214, MSE=327.0692  
  left son=2 (348 obs) right son=3 (420 obs) 
  Primary splits: 
      SILT   < 41     to the right, improve=0.13652520, (0 missing) 
      PL     < 12.5   to the left,  improve=0.12738690, (0 missing) 
      CLAY   < 7.9    to the left,  improve=0.11353960, (0 missing) 
      fSAND  < 38.5   to the left,  improve=0.08397612, (0 missing) 
      labMDD < 1914   to the left,  improve=0.06849857, (0 missing) 
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Surrogate splits: 
      fSAND < 11.25  to the left,  agree=0.729, adj=0.402, (0 split) 
      CLAY  < 18.65  to the left,  agree=0.691, adj=0.319, (0 split) 
      LL    < 28.5   to the left,  agree=0.660, adj=0.250, (0 split) 
      PN200 < 59.85  to the right, agree=0.645, adj=0.216, (0 split) 
      PL    < 13.5   to the left,  agree=0.638, adj=0.201, (0 split) 
 
Node number 2: 348 observations,    complexity param=0.06767235 
  mean=60.43103, MSE=240.0613  
  left son=4 (85 obs) right son=5 (263 obs) 
  Primary splits: 
      PL    < 12.5   to the left,  improve=0.1983160, (0 missing) 
      CLAY  < 17.9   to the left,  improve=0.1974283, (0 missing) 
      LL    < 27.5   to the left,  improve=0.1933494, (0 missing) 
      PN10  < 98.5   to the left,  improve=0.1323766, (0 missing) 
      cSAND < 1.5    to the right, improve=0.1269308, (0 missing) 
  Surrogate splits: 
      LL    < 22.5   to the left,  agree=0.853, adj=0.400, (0 split) 
      CLAY  < 7.6    to the left,  agree=0.816, adj=0.247, (0 split) 
      PN10  < 85.5   to the left,  agree=0.796, adj=0.165, (0 split) 
      PN200 < 50.85  to the left,  agree=0.796, adj=0.165, (0 split) 
      SILT  < 60.05  to the right, agree=0.793, adj=0.153, (0 split) 
 
Node number 3: 420 observations,    complexity param=0.09792777 
  mean=73.85476, MSE=317.5099  
  left son=6 (396 obs) right son=7 (24 obs) 
  Primary splits: 
      labOMC < 10.5   to the right, improve=0.14942040, (0 missing) 
      labMDD < 1914   to the left,  improve=0.14942040, (0 missing) 
      PN10   < 77.5   to the right, improve=0.14364890, (0 missing) 
      PL     < 15.5   to the left,  improve=0.13858090, (0 missing) 
      fSAND  < 38.5   to the left,  improve=0.09981178, (0 missing) 
  Surrogate splits: 
      labMDD < 1914   to the left,  agree=1.000, adj=1.000, (0 split) 
      PN10   < 77.5   to the right, agree=0.945, adj=0.042, (0 split) 
 
Node number 4: 85 observations 
  mean=48.29412, MSE=75.38408  
 
Node number 5: 263 observations,    complexity param=0.06767235 
  mean=64.35361, MSE=230.2894  
  left son=10 (125 obs) right son=11 (138 obs) 
  Primary splits: 
      PN200 < 66     to the left,  improve=0.2877770, (0 missing) 
      PI    < 9.5    to the left,  improve=0.2661370, (0 missing) 
      PL    < 13.5   to the right, improve=0.2423110, (0 missing) 
      CLAY  < 17.9   to the left,  improve=0.1869367, (0 missing) 
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      fSAND < 25.25  to the right, improve=0.1714114, (0 missing) 
  Surrogate splits: 
      PN80  < 77.75  to the left,  agree=0.947, adj=0.888, (0 split) 
      CLAY  < 19.1   to the left,  agree=0.913, adj=0.816, (0 split) 
      PN40  < 87.4   to the left,  agree=0.859, adj=0.704, (0 split) 
      PN10  < 92     to the left,  agree=0.810, adj=0.600, (0 split) 
      fSAND < 9.5    to the right, agree=0.776, adj=0.528, (0 split) 
 
Node number 6: 396 observations,    complexity param=0.09792777 
  mean=72.15909, MSE=277.3055  
  left son=12 (116 obs) right son=13 (280 obs) 
  Primary splits: 
      PL    < 15.5   to the left,  improve=0.2665528, (0 missing) 
      fSAND < 38.5   to the left,  improve=0.1412571, (0 missing) 
      PN80  < 81     to the left,  improve=0.1386855, (0 missing) 
      PN200 < 50.6   to the right, improve=0.1066891, (0 missing) 
      SILT  < 25.75  to the right, improve=0.0892466, (0 missing) 
  Surrogate splits: 
      LL     < 34     to the left,  agree=0.785, adj=0.267, (0 split) 
      labMDD < 1866   to the right, agree=0.785, adj=0.267, (0 split) 
      cSAND  < 3.3    to the left,  agree=0.740, adj=0.112, (0 split) 
      PI     < 3      to the left,  agree=0.735, adj=0.095, (0 split) 
      labOMC < 11.5   to the left,  agree=0.727, adj=0.069, (0 split) 
 
Node number 7: 24 observations 
  mean=101.8333, MSE=150.6389  
 
Node number 10: 125 observations,    complexity param=0.04432653 
  mean=55.8, MSE=177.392  
  left son=20 (51 obs) right son=21 (74 obs) 
  Primary splits: 
      PN10  < 90     to the right, improve=0.5021350, (0 missing) 
      PN40  < 85.5   to the right, improve=0.4904696, (0 missing) 
      fSAND < 22.5   to the right, improve=0.4904696, (0 missing) 
      PN80  < 73     to the right, improve=0.3098085, (0 missing) 
      PN200 < 62.2   to the right, improve=0.3048264, (0 missing) 
  Surrogate splits: 
      PN40  < 85.5   to the right, agree=0.904, adj=0.765, (0 split) 
      fSAND < 22.5   to the right, agree=0.904, adj=0.765, (0 split) 
      PI    < 9.5    to the left,  agree=0.808, adj=0.529, (0 split) 
      SILT  < 47.85  to the right, agree=0.712, adj=0.294, (0 split) 
      PL    < 22.5   to the right, agree=0.712, adj=0.294, (0 split) 
 
Node number 11: 138 observations,    complexity param=0.03500419 
  mean=72.10145, MSE=151.9028  
  left son=22 (124 obs) right son=23 (14 obs) 
  Primary splits: 
      PL    < 14     to the right, improve=0.4194461, (0 missing) 
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      cSAND < 0.05   to the left,  improve=0.3250119, (0 missing) 
      fSAND < 2.5    to the left,  improve=0.3250119, (0 missing) 
      CLAY  < 36.05  to the right, improve=0.2715898, (0 missing) 
      PN200 < 95.75  to the right, improve=0.2025764, (0 missing) 
  Surrogate splits: 
      PN10 < 94.1   to the right, agree=0.92, adj=0.214, (0 split) 
 
Node number 12: 116 observations,    complexity param=0.0273288 
  mean=58.80172, MSE=176.159  
  left son=24 (78 obs) right son=25 (38 obs) 
  Primary splits: 
      SILT  < 39.7   to the left,  improve=0.3338887, (0 missing) 
      fSAND < 18.5   to the left,  improve=0.3063364, (0 missing) 
      PI    < 14     to the right, improve=0.2727119, (0 missing) 
      LL    < 28     to the right, improve=0.2727119, (0 missing) 
      cSAND < 11.5   to the left,  improve=0.2620559, (0 missing) 
  Surrogate splits: 
      PN40  < 73     to the right, agree=0.784, adj=0.342, (0 split) 

      PN80  < 63     to the right, agree=0.784, adj=0.342, (0 split) 

      PN200 < 51.95  to the right, agree=0.784, adj=0.342, (0 split) 
      cSAND < 2.5    to the right, agree=0.784, adj=0.342, (0 split) 
      CLAY  < 11.2   to the right, agree=0.784, adj=0.342, (0 split) 
 
Node number 13: 280 observations,    complexity param=0.03728374 
  mean=77.69286, MSE=214.6699  
  left son=26 (254 obs) right son=27 (26 obs) 
  Primary splits: 
      CLAY   < 12.05  to the right, improve=0.1558084, (0 missing) 
      fSAND  < 34.5   to the left,  improve=0.1558084, (0 missing) 
      labOMC < 12.5   to the right, improve=0.1471994, (0 missing) 
      PN10   < 90.05  to the right, improve=0.1413185, (0 missing) 
      LL     < 31.5   to the right, improve=0.1340220, (0 missing) 
  Surrogate splits: 

      fSAND  < 34.5   to the left,  agree=1.000, adj=1.000, (0 split) 

      PN200  < 50.6   to the right, agree=0.957, adj=0.538, (0 split) 
      PI     < 6.5    to the right, agree=0.957, adj=0.538, (0 split) 
      labOMC < 12.5   to the right, agree=0.954, adj=0.500, (0 split) 
      LL     < 29.5   to the right, agree=0.914, adj=0.077, (0 split) 
 
Node number 20: 51 observations 
  mean=44.43137, MSE=86.44137  
 
Node number 21: 74 observations,    complexity param=0.01324059 
  mean=63.63514, MSE=89.61012  
  left son=42 (23 obs) right son=43 (51 obs) 
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  Primary splits: 
      PL     < 22.5   to the right, improve=0.5015559, (0 missing) 
      labMDD < 1650   to the left,  improve=0.5015559, (0 missing) 
      cSAND  < 7      to the left,  improve=0.3766064, (0 missing) 
      PN200  < 63.8   to the right, improve=0.2678080, (0 missing) 
      labOMC < 20.5   to the right, improve=0.2678080, (0 missing) 
  Surrogate splits: 
      labMDD < 1650   to the left,  agree=1.000, adj=1.000, (0 split) 
      PN200  < 63.8   to the right, agree=0.851, adj=0.522, (0 split) 
      SILT   < 41.4   to the left,  agree=0.851, adj=0.522, (0 split) 
      CLAY   < 21.45  to the right, agree=0.851, adj=0.522, (0 split) 
      LL     < 65.5   to the right, agree=0.851, adj=0.522, (0 split) 
 
Node number 22: 124 observations,    complexity param=0.02133889 
  mean=69.41935, MSE=94.66285  
  left son=44 (12 obs) right son=45 (112 obs) 
  Primary splits: 
      cSAND < 0.05   to the left,  improve=0.4566374, (0 missing) 
      fSAND < 2.5    to the left,  improve=0.4566374, (0 missing) 
      CLAY  < 31.55  to the right, improve=0.4014985, (0 missing) 
      PN200 < 95.75  to the right, improve=0.2303929, (0 missing) 
      PL    < 22     to the left,  improve=0.1727752, (0 missing) 
  Surrogate splits: 
      fSAND < 2.5    to the left,  agree=1.000, adj=1.000, (0 split) 
      PN200 < 95.75  to the right, agree=0.919, adj=0.167, (0 split) 
      CLAY  < 35.6   to the right, agree=0.911, adj=0.083, (0 split) 
 
Node number 23: 14 observations 
  mean=95.85714, MSE=30.83673  
 
Node number 24: 78 observations,    complexity param=0.0273288 
  mean=53.44872, MSE=159.4012  
  left son=48 (55 obs) right son=49 (23 obs) 
  Primary splits: 
      fSAND < 24.5   to the left,  improve=0.5554897, (0 missing) 
      PN200 < 56     to the right, improve=0.5554897, (0 missing) 
      CLAY  < 18.9   to the right, improve=0.5554897, (0 missing) 
      PN80  < 83.5   to the left,  improve=0.3973801, (0 missing) 
      LL    < 14.5   to the right, improve=0.3973801, (0 missing) 
  Surrogate splits: 
      PN200 < 56     to the right, agree=1.000, adj=1.000, (0 split) 
      CLAY  < 18.9   to the right, agree=1.000, adj=1.000, (0 split) 
      cSAND < 13     to the left,  agree=0.859, adj=0.522, (0 split) 
      PN80  < 83.5   to the left,  agree=0.846, adj=0.478, (0 split) 
      LL    < 14.5   to the right, agree=0.846, adj=0.478, (0 split) 
 
Node number 25: 38 observations 
  mean=69.78947, MSE=31.00831  
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Node number 26: 254 observations,    complexity param=0.02540843 
  mean=75.84252, MSE=189.55  
  left son=52 (23 obs) right son=53 (231 obs) 
  Primary splits: 
      CLAY  < 19     to the left,  improve=0.1325626, (0 missing) 
      SILT  < 25.75  to the right, improve=0.1304016, (0 missing) 
      S3    < 13.9   to the left,  improve=0.1303248, (0 missing) 
      fSAND < 28     to the right, improve=0.1219579, (0 missing) 
      THETA < 104.05 to the left,  improve=0.1177654, (0 missing) 
  Surrogate splits: 
      cSAND  < 20     to the right, agree=0.957, adj=0.522, (0 split) 
      labMDD < 1486   to the left,  agree=0.957, adj=0.522, (0 split) 
      labOMC < 27.5   to the right, agree=0.957, adj=0.522, (0 split) 
 
Node number 27: 26 observations 
  mean=95.76923, MSE=99.86982  
 
Node number 42: 23 observations 
  mean=53.65217, MSE=27.79206  
 
Node number 43: 51 observations 
  mean=68.13725, MSE=52.27528  
 
Node number 44: 12 observations 
  mean=49.33333, MSE=48.55556  
 
Node number 45: 112 observations 
  mean=71.57143, MSE=51.7449  
 
Node number 48: 55 observations 
  mean=47.36364, MSE=76.08595  
 
Node number 49: 23 observations 
  mean=68, MSE=58.34783  
 
Node number 52: 23 observations 
  mean=59.95652, MSE=48.99811  
 
Node number 53: 231 observations,    complexity param=0.02435663 
  mean=77.42424, MSE=175.9153  
  left son=106 (144 obs) right son=107 (87 obs) 
  Primary splits: 
      cSAND < 11.55  to the left,  improve=0.1275015, (0 missing) 
      SILT  < 25.75  to the right, improve=0.1211685, (0 missing) 
      CLAY  < 51.55  to the left,  improve=0.1197785, (0 missing) 
      S3    < 13.9   to the left,  improve=0.1175227, (0 missing) 
      PN80  < 96.15  to the left,  improve=0.1119750, (0 missing) 
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  Surrogate splits: 
      PN80  < 70.5   to the right, agree=0.810, adj=0.494, (0 split) 
      PN200 < 60.65  to the right, agree=0.810, adj=0.494, (0 split) 
      PN40  < 84.1   to the right, agree=0.805, adj=0.483, (0 split) 
      CLAY  < 23.5   to the right, agree=0.805, adj=0.483, (0 split) 
      fSAND < 23.5   to the left,  agree=0.792, adj=0.448, (0 split) 
 
Node number 106: 144 observations,    complexity param=0.02435663 
  mean=73.74306, MSE=146.1076  
  left son=212 (133 obs) right son=213 (11 obs) 
  Primary splits: 
      SILT  < 40.65  to the left,  improve=0.3134007, (0 missing) 
      PN80  < 96.15  to the left,  improve=0.3134007, (0 missing) 
      PN40  < 97.95  to the left,  improve=0.3134007, (0 missing) 
      fSAND < 16.5   to the right, improve=0.2973903, (0 missing) 
      cSAND < 5.15   to the right, improve=0.2878716, (0 missing) 
  Surrogate splits: 
      PN40 < 97.95  to the left,  agree=1, adj=1, (0 split) 
      PN80 < 96.15  to the left,  agree=1, adj=1, (0 split) 
 
Node number 107: 87 observations,    complexity param=0.02435663 
  mean=83.51724, MSE=165.698  
  left son=214 (13 obs) right son=215 (74 obs) 
  Primary splits: 
      PN10  < 99.5   to the right, improve=0.4564018, (0 missing) 
      cSAND < 16     to the right, improve=0.4564018, (0 missing) 
      fSAND < 28.2   to the right, improve=0.4564018, (0 missing) 
      PN80  < 66     to the left,  improve=0.4269449, (0 missing) 
      PN200 < 55.85  to the left,  improve=0.4269449, (0 missing) 
  Surrogate splits: 
      cSAND < 16     to the right, agree=1, adj=1, (0 split) 
      fSAND < 28.2   to the right, agree=1, adj=1, (0 split) 
 
Node number 212: 133 observations,    complexity param=0.02006902 
  mean=71.79699, MSE=101.5152  
  left son=424 (110 obs) right son=425 (23 obs) 
  Primary splits: 
      labMDD < 1778   to the left,  improve=0.3733743, (0 missing) 
      PN10   < 82     to the right, improve=0.3061743, (0 missing) 
      PN40   < 74     to the right, improve=0.3061743, (0 missing) 
      cSAND  < 5.4    to the right, improve=0.2287871, (0 missing) 
      fSAND  < 16.5   to the right, improve=0.1853190, (0 missing) 
  Surrogate splits: 
      PN10   < 99.15  to the left,  agree=0.917, adj=0.522, (0 split) 
      fSAND  < 25     to the left,  agree=0.917, adj=0.522, (0 split) 
      LL     < 30.5   to the right, agree=0.917, adj=0.522, (0 split) 
      PI     < 11     to the right, agree=0.917, adj=0.522, (0 split) 
      labOMC < 14     to the right, agree=0.917, adj=0.522, (0 split) 
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Node number 213: 11 observations 
  mean=97.27273, MSE=85.83471  
 
Node number 214: 13 observations 
  mean=62.76923, MSE=27.71598  
 
Node number 215: 74 observations 
  mean=87.16216, MSE=101.0278  
 
Node number 424: 110 observations 
  mean=68.98182, MSE=68.38149  
 
Node number 425: 23 observations 
  mean=85.26087, MSE=40.80151  
 

 




