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ABSTRACT 

 Avian reoviruses (ARVs) and fowl adenoviruses (FAdVs) are ubiquitous, variably 

pathogenic viruses that are responsible for several economically costly diseases in commercial 

broilers due to high morbidity or mortality.  

Pathogenic reoviruses are etiologic agents of viral arthritis and tenosynovitis in chickens and 

turkeys and have been associated with several additional clinical syndromes, including 

stunting/malabsorption syndrome and enteric disease, hepatitis, immunosuppression, 

myocarditis, and respiratory disease. As of yet, no genetic or antigenic factor has been found to 

be predictive of an avian reovirus’s clinicopathologic manifestation of arthritic, enteric, or other 

disease. ARVs within genetic cluster (GC) 2 have been isolated from both arthritis and enteritis 

clinical cases. Here, the pathogenesis of a GC 2 isolate was examined via histopathology, in situ 

hybridization, and PCR, and the isolate was found to infect both epithelial cells within the 

intestine and synoviocytes within the tendon sheath.  

Fowl adenoviurses are the etiologic agents of inclusion body hepatitis (IBH) and hepatitis-

hydropericardium syndrome (HHS) in chickens, which both cause acute hepatic necrosis with 

high mortality rates. Rapid, cost-effective diagnosis of IBH can streamline further confirmatory 



laboratory testing and facilitate timely communication in the interim to affected parties, 

especially in locations with delayed access to a diagnostic laboratory. Here, Romanowsky-

stained impression smear cytopathology of the liver at the time of necropsy is demonstrated to 

successfully stain IBH intranuclear inclusion bodies, and IBH diagnosis via cytopathology 

maintains high agreement to the histopathologic diagnosis. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW: 

AVIAN REOVIRUSES IN CHICKENS 

INTRODUCTION 

Avian reoviruses (ARVs) are ubiquitous, variably pathogenic to nonpathogenic, 

nonenveloped, double-stranded RNA viruses within the Reoviridae family and Orthoreovirus 

genus that infect poultry and other avian species. Pathogenic viruses are etiologic agents of viral 

arthritis and tenosynovitis in chickens and turkeys and contribute to several additional clinical 

syndromes, including stunting/malabsorption syndrome and enteric disease, hepatitis, 

immunosuppression, myocarditis, and respiratory disease. Reoviral arthritis and its resulting 

lameness can lead to significant economic losses in market-aged broilers and growing turkeys 

due to increased culling, carcass downgrading, and poor flock uniformity. Historically, 

commercially available live attenuated vaccine strains closely matched circulating serotypes 

within the United States, and vaccination of breeder chickens effectively protected progeny via 

maternally derived neutralizing antibodies. However, emerging antigenically variant viruses 

have now circumvented commercial vaccine protection, frequently necessitating the use of 

autogenous vaccines to achieve disease control. 
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LITERATURE REVIEW 

Public Health Significance 

No zoonoses of avian reoviruses have been documented.  

History 

The first avian reovirus isolate in 1954 originated from chickens in Ontario with chronic 

respiratory disease (50). Another isolate in 1957 from chicken tenosynovitis cases in West 

Virginia (147) was later demonstrated to be the same agent (148), and both were classified as 

avian reoviruses (150,194). In the following years, additional serotypes of ARV were isolated 

from cases of tenosynovitis, malabsorption and enteritis, osteoporosis, hepatitis, and myocarditis 

in chickens and turkeys throughout the United States, Europe, and Japan 

(41,53,62,67,69,96,102,125), with consistent experimental reproduction of tenosynovitis and 

variable success in reproduction of other syndromes (65,88,97,146). Antigenic similarity was 

found amongst isolates mostly circulating in America and European countries and associated 

with tenosynovitis (204). The first commercially available live attenuated avian reovirus vaccine 

was developed in 1983 using the S1133 strain (66). Disease control in chickens was achieved 

worldwide for several decades via breeder vaccination by using live/live attenuated and 

inactivated commercial vaccines based on S1133, 1733, 2408, and 2177 strains 

(52,57,66,157,165,203), and disease in turkeys was prevented with autogenous vaccines. From 

the late 2000’s to early 2010’s, increasing numbers of tenosynovitis cases in chickens (123) and 

turkeys (138), as well as some cases of malabsorption in chickens (40) in the United States, 

Canada (149), Europe (68,190), and Israel (54) were associated with variant reoviruses that were 

antigenically distinct compared to common vaccine strains (122), and for which existing 
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commercial vaccines offered little protection. Increased use of autogenous vaccines by some 

poultry companies in the United States has assisted in disease control when field isolates 

represent geographically circulating viruses (165); however, widespread control is still lacking. 

The economic impact of avian reovirus culls and mortality in the United States is estimated at 

$90 million per year within the broiler industry and $33 million per year within the turkey 

industry, as of 2022 (51).  

Reoviral Taxonomy and Structure 

Taxonomy 

The virus family Reoviridae, so named for the respiratory enteric orphan viruses initially 

isolated from humans, contains subfamilies Spinareovirinae and Sedoreovirinae, which are 

distinguished by the presence or absence, respectively, of 12 turrets located at capsid icosahedral 

vertices. Spinareovirinae contains the Orthoreovirus genus, which encompasses five species that 

infect birds, mammals, and reptiles (232). Avian orthoreovirus is distinguished from mammalian, 

baboon, Nelson Bay, and reptilian orthoreovirus species by a combination of host specificity, 

fusogenic potential within cell culture (142), and lack of hemagglutination ability (53). Because 

viruses within the Avian orthoreovirus species vary genetically and molecularly amongst host 

species, they have become further denoted by the host species affected and associated clinical 

syndrome, where applicable. Viruses of importance to commercial avian species include duck 

(DRV) and Muscovy duck (MDRV) reoviruses, turkey reoviruses (TRV), and avian (chicken) 

reoviruses (ARV) (63,151). 
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Structure 

Avian reovirus (ARV) is a double stranded RNA (dsRNA) virus composed of ten linear 

genomic segments within a non-enveloped, turreted, double concentric icosahedral capsid with 

an 80–85 nm external diameter and a 50–60 nm internal diameter (14). The genomic segments 

are grouped according to electrophoretic mobility into large (L1, L2, L3), medium (M1, M2, 

M3), and small (S1, S2, S3, S4) sizes (14,191) and encode 18 proteins via a combination of 

primary translation and post-translational cleavage, resulting in 12 structural and 6 non-structural 

proteins (21,86,192). Viral proteins have both structural and non-structural functions that 

contribute to pathogenesis, which are reviewed in the following section. 

Viral proteins and their functions 

Lambda A (λA) is a 1293 residue structural protein that is a primary translational 

product of the 3958-nucleotide-long L1 segment (143,164,215). λA is the main protein that 

forms the inner viral capsid (14,129) and is highly conserved between ARV strains as well as to 

the mammalian reovirus (MRV) λ1 homologue (215). In the infected cell, λA is one of the 

earliest proteins recruited into viroplasms by μNS (see below) (13,187), where it is thought to 

serve as a scaffold for additional core assembly during early viral morphogenesis (14). 

Phylogenetic lineages from λA sequencing have not been shown to correlate with ARV 

serotypes or pathotypes (170). 

Lambda B (λB) is a 1259 residue protein encoded by the 3830-nucleotide-long L2 

segment (214). λB is a minor component of the inner viral capsid and is thought to be an RNA 

dependent RNA polymerase (RdRp) facilitated by cofactor μA (14,214), with putative function 

based on high conservancy between λB and the RdRp MRV homologue, λ3 (23,179,214). λB 
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interacts with σNS and σA in a strain-dependent manner, becomes associated with the viroplasm 

prior to σA, and may act to recruit σA to the viroplasm (13).  In turkey reoviruses, phylogenetic 

analysis of λB sequencing did not predict arthritic versus enteric tropism (136).  

Lambda C (λC) is a 1285 residue, 142.2 kDa structural protein that is a primary 

translational product of the 3907-nucletotide-long L3 segment (71,215). λC pentamers extend 

from the inner to outer capsid and form turrets along the virion surface (129,228). Within the N-

terminal region of λC, a 42 kDa fragment contains a guanylyltransferase capable of 

autoguanylylation activity, which functions as a viral mRNA capping enzyme via GMP binding 

and transference between GDP and GTP acceptors (71,130). The C-terminal portion of λC may 

possess methylase activity, which is suggested by its high degree of homology with mammalian 

and grass carp reovirus counterparts (71). L3 and other genes encoding viral capsid proteins, S1 

and M2, account for the majority of sequence variability between ARV isolates (46). In one 

study, differences in pathologic presentation were seen between two field isolates of the same 

genotype, as determined by a 99% shared identity based within the S1 gene, but that exhibited 

nucleotide divergence of 28% and 25% in the L3 and M2 genes, respectively (47). In other 

studies, phylogenetic lineages from λC sequencing have not been shown to correlate with 

serotype or pathotype in either chickens (170) or turkeys (137).  

Mu A (μA) is a 732 amino acid residue structural protein that is a primary translational 

product of the 2283-nucleotide-long M1 genome segment (129,144,181,191). μA proteins are 

minor components of the viral core (14) with NTPase and RTPase activity (180). μA shares 

approximately 30% amino acid homology with, and may serve similar function as, MRV μ2 

(144,181), which is an RNA-dependent RNA polymerase cofactor. Phylogenetic lineages of M1 

sequencing do not correlate with ARV serotype or pathotype (181). 
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Mu B (μB) is the 676-residue structural protein that is a primary translational product of 

the 2158-nucletotide-long M2 genomic segment (144,181,191). μB undergoes post-translational 

cleavage into a large carboxy-terminal fragment μBC and a small N-myristoylated amino-

terminal fragment, μBN (191). μB, μBC, and μBN are structural components of the outer capsid, 

and μB and μBC are capable of inducing neutralizing antibodies (4,58,129). μB cleavage to μBC 

and μBN occurs during viral entry and is dependent on a low pH that accompanies endosomal 

acidification (44). μBC is further cleaved twice to δ and δ’ polypeptides during intralysosomal 

viral uncoating (44), which may alter the lysosomal membrane conformation and allow viral 

release into the cytoplasm (14,44). Following cell entry, μBC localizes to the cell surface with 

σB, where it likely participates in the induction of cell fusion (142). MRV μ1, which shares 

approximately 44% amino acid identity with μB (144), achieves membrane penetration by 

insertion of a hydrophobic conformer within the myristoyl group (24,105). However, the 

crystalline structure of ARV μB lacks the “hub and spokes” conformation and disulfide bridges 

present in MRV μ1 (144,228), which may indicate differences in function between these protein 

homologues. Within the cytoplasm, μB and μBC rapidly form a ternary hetero-oligomeric 

complex with σB, which is then recruited to viroplasms and incorporated into the outer capsid 

(187). In one study, increased post-attachment infective success of macrophages by a highly 

pathogenic ARV strain and its reassorted derivatives was associated with the M2 segment (145). 

In another study, differences in pathologic presentation were seen between two genotype I field 

isolates that exhibited 99% shared identity within the S1 gene but had a nucleotide divergence of 

25% and 28% in the M2 and L3 genes, respectively (47). However, phylogenetic analysis of M2 

in another study showed no correlation to serotype or pathotype (181).  
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Mu NS (μNS) is a 635-residue nonstructural protein that is a primary translational 

product of the 1996-nucletotide-long M3 genomic segment (187,188,191). μNS undergoes post-

translational cleavage into the larger carboxy-terminal protein μNSC and the smaller amino-

terminal protein, μNSN (21,154). μNS cleavage occurs in a regulated manner with 

approximately 30% efficiency along an exposed, flexible loop between residues 154 and 155, via 

host cell caspase 3-like proteases during apoptosis, such that all three isoforms are 

simultaneously present within ARV-infected cells (21,154). The production of infective ARV 

particles is not diminished when apoptosis and μNS cleavage is inhibited (154). Since μNS is the 

only ARV protein capable of independent inclusion formation in transfected cells, it is 

considered the minimal viral factor necessary for viroplasm nucleation (188). μNS and μNSC 

both localize within non-polyubiquitinated viroplasms (19,188) in a vimentin- and microtubule-

independent manner (19,187); however, only μNS is able to attract λA and σNS to inclusions 

(154). μNS colocalizes with Caveolin-1 in lipid membranes (Wang 2020). μNS contains two α-

helical coiled segments which facilitate formation of homo- or hetero-oligomers, allowing μNS 

to serve as a scaffold within the viroplasm (19,187,188). Oligomer establishment and orientation 

is determined by the carboxy-terminal domain (19), and λA and σNS likely bind in a non-

competitive manner to the amino-terminal portion of μNS (14). μNS, λA, and σNS form strong, 

complex associations within viroplasms that resist purification (19,154); whereas μNSC is 

weakly associated and easily extracted (154). ARV μNS shares relatively low (~25%) amino 

acid identity with (144), and may somewhat differ in function from, its MRV counterpart, which 

has been shown to interact with viral RNA transcripts in addition to recruiting viral proteins to 

viroplasms (3,20). 
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P10 is a 98-amino acid residue, 10.3 kDa, nonstructural, translational product of the first 

open reading frame of the tricistronic S1 genomic segment and is a fusion-associated small 

transmembrane (FAST) protein responsible for cell-cell fusion (17,174). The S1 sequence 

divergence of the p10-encoding gene is lower than that of the subsequent p17 and σC-encoding 

genes, with a predominance of synonymous substitutions over nonsynonymous substitutions, and 

a lack of correlation to serotype or clinical disease presentation (73,118). p10 migrates to 

cholesterol-rich lipid rafts within the cellular membrane, with localization governed by the 

extreme carboxy terminus in a sequence-independent manner, and transport via the endoplasmic 

reticulum, likely utilizing a signal recognition particle (SRP)-dependent targeting mechanism 

(17,98,174,199). p10 induced cell membrane fusion reactions depend on the following essential 

regions: the cytoplasmic tail and conserved, membrane-proximal polybasic and palmitoylated 

dicysteine motif within the carboxy terminal, 36-amino acid residue endodomain; the triglycine 

motif within the central, single pass transmembrane domain; and two functional motifs within 

the amino-terminal, 40-amino acid residue ectodomain (11,98,174,175). The 13 amino acid 

residue membrane-proximal ectodomain mediates p10 homomultimerization within cholesterol-

rich lipid platforms and is connected to the fusion peptide by 2 residues (98,199). The p10 fusion 

peptide is a highly conserved, hydrophobic patch of 11 moderately apolar residues stablilized in 

a loop configuration by two flanking cystine residues joined by a disulfide bond, and 

substitutions within this motif result in loss of syncytiogenic activity (12,98,99). This cystine 

loop serves as a noose to expose hydrophobic residues, which drives pore formation, membrane 

partitioning, liposome lipid mixing, and cholesterol-dependent and tubulation-independent 

liposome membrane fusion (12,16,99). Within the p10 cytoplasmic tail, the membrane-distal 12 

residues mediate pore formation, while the last 8 residues enhance pore expansion (11). p10 
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induces RhoA and Rac1 GTPase membrane translocation and signaling with downstream 

phosphorylation of JNK and myosin light chain and activation of AP-1 and NF-κB transcription 

factors; however, inhibition of these pathways prevents syncytiogenisis (120). Extensive p10-

mediated syncytium formation increases plasma membrane permeability and initiates apoptosis 

(161). Increased syncytium formation between ARV strains does not influence viral replication 

in vitro, but has been associated with increased pathogenicity in chicken embryos (45). Targeting 

of the ectodomain causes p10 and E3 Ubiquitin Ligase Siah-1 to form a multicomponent 

complex utilizing a LAMP-1 scaffold that promotes rapid p10 degradation following synthesis 

and prior to membrane localization, which inhibits syncytia formation, apoptosis and ARV 

release (26,173,205). 

P17 is a 146-amino acid residue, 16.8 kDa nonstructural, translational product of the 

second open reading frame of the tricistronic S1 genomic segment and serves as a 

nucleocytoplasmic shuttling protein that interacts with numerous cellular components to 

modulate signaling pathways for cell cycling, gene transcription, autophagy, and DNA binding 

(17,30,34,35,39,78,119,226). The S1 sequence divergence of the p17-encoding gene is higher 

than that of the preceding p10-encoding gene, but less than that of the subsequent σC-encoding 

gene, with a predominance of synonymous substitutions over nonsynonymous substitutions, and 

a lack of correlation to serotype or clinical disease presentation (73,118). p17 distributes to both 

the cytoplasm and nucleus in a transcription-dependent manner, with nuclear entry via nuclear 

pore complexes reliant on signal- and energy-dependent mechanisms and nuclear exit occurring 

via a CRM1-independent pathway (39). Nuclear import relies on the nuclear localization signal 

from amino acid residues 119 to 127 of p17; and both nuclear import and export depend on the 

nuclear export signal and nucleocytoplasmic shuttling domain located from amino acid residues 
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19 to 40 of p17 that serve as a binding site to the cellular carrier protein hnRNP A1 and are 

facilitated by lamin A/C (34,39). p17 avoids ubiquitin-proteasome degradation by mediating 

phosphorylation of Cdc37 and facilitating Hsp90/Cdc37 chaperone complex formation, resulting 

in protection of p17. p17 suppresses Tpr via interaction and reduced transcription, which results 

in p53 and p21 nuclear accumulation and pathway activation, subsequent PTEN inhibition of 

ERK and the PI3K/AKT/mTORC1 pathway, PTEN- and p21-mediated downregulation of CDK4 

and cyclin D1, and Rb activation which lead to cell cycle arrest and autophagosome formation 

(79,119). p17 promotes β-arrestin-PTEN translocation from the cytoplasm to the plasma 

membrane and protects PTEN from E3 ligase NEDD4-1 ubiquitin-mediated proteasome 

degradation (79). In addition to PTEN interaction, p17 drives autophagosome formation by 

positively regulating AMPK and PKR/eIF2α signaling pathways, resulting in increased levels of 

Beclin 1, a subunit in PI3K class III complexes, and LC3-II, a surface component of 

autophagosomes (30,106). p17 possesses a cyclin-binding motif and has been shown to broadly 

inhibit CDKs, cyclins, and CDK–cyclin complexes by downregulating CDK transcription, 

decreasing CDK activation, and sequestering CDKs and cyclins within the cytoplasm, which 

collectively promote viral replication (32). p17 mimics cyclin B1 to compete for CDK1 binding, 

interferes with CDK1/vimentin interactions, binds to the CDK2/cyclin A2 complex via its 

carboxy terminus, suppresses Plk1 via the ATM/Chk1/PP2A pathway, and disrupts mTORC2 

assembly, which inhibits vimentin and Akt phosphorylation and promotes cell cycle arrest, 

translation shutoff, and autophagy (32,33,78,106). p17 activates the E3 ligase MDM2 to target 

ribosomal proteins for degradation, driving autophagy, and promotes ubiquitin-mediated 

proteosome degradation of CDC25, preventing CDK1 activation and halting mitotic progression 

through the G2/M phase (33,78). p17 further impedes cell cycle progression by binding and 
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downregulating the expression of the cellular mitotic checkpoint protein Bub3 (182). In human 

endothelial cells, p17 has been shown to upregulate tumor suppressor molecule DPP4, resulting 

in an antiangiogenic effect by inhibiting endothelial migration and new vessel formation (126). 

Sigma C (σC) is a 326 amino acid residue, translational product of the third open reading 

frame of the tricistronic S1 genomic segment (17,164,168,191). The S1 sequence divergence of 

the σC-encoding gene is higher than that of the preceding p10- and p17-encoding genes as well 

as other S-class genes, with a predominance of nonsynonymous substitutions over synonymous 

substitutions (118). Structurally, homotrimers of σC form fibers that anchor in and project from 

the outer capsid and are responsible for viral cell attachment and induction of group- and type-

specific neutralizing antibodies (59,60,129,131,166,167,177,201). Each monomer of σC consists 

of a stalk composed of two beta-spiral repeats and a conserved, hydrophilic, carboxy-terminal 

globular head that contains receptor binding domains composed of beta barrel secondary 

structures (22,166). A hydrophobic region of heptad repeats located amino-terminal to the stalk 

beta spirals is highly variable, sharing approximately 2% amino acid identity across 28 aligned 

sequences in one study, and serves a structural function to extend the receptor binding domain 

away from the capsid (22,116). The as of yet unidentified cell receptor for ARV σC is present on 

CEF cells at a density of approximately 2.2 x 105 receptor units per CEF cell (60). σC 

colocalizes with Caveolin-1 in the cell membrane during endocytosis (199). Within cells, 

synthesized σC is detectable in viroplasms within 30 minutes, but is not incorporated into the 

subviral particle until the following 30 minutes of morphogenesis, during which outer capsid 

proteins coat the viral core (187). Accumulation of σC into viroplasms is enhanced by host 

Hsp90/Cdc37 complex chaperoning of p17 (80). Further, σC is stabilized and protected from 

ubiquitin-proteasome degradation by cellular TRiC chaperonins CCT2 and CCT5 (80). 
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Functionally, σC acts as an apoptin via a p53-dependent pathway as well as by inducing DNA 

damage signaling and by interaction with eukaryotic elongation factor 1 alpha 1 (EEF1A1); with 

deletion of the σC carboxyl-terminus preventative for apoptosis induction (111,113,172,230). 

Comparatively, Muscovy duck reovirus (MDRV) σC and p10.8 proteins drive cell cycle arrest 

and apoptosis via ubiquitin-proteasome degradation of CDK2 and CDK4, mediated by cellular 

CCT2 and CCT5 stabilization of Cdc20 (195). Additionally, novel duck reovirus (NDRV) σC 

has been shown to interact with TRAM1, a cellular regulator of ER stress, with viral replication 

promoted or inhibited, respectively, by silencing or overexpression of TRAM1 (208). 

Sigma A (σA) is a 416-amino acid residue, primary translational product of the 1643 

nucleotide-long S2 genomic segment with both major structural and functional roles 

(82,129,163,185,222). σA monomers form 150 homopolymeric nodules throughout the inner 

capsid that join and stabilize λA proteins, as well as minorly contact λC and outer capsid protein 

μB via three α-helix and β-sheet rich, positively-charged domains, which may contribute to core 

coating, shell rigidity, and RNA impermeability during morphogenesis (61,216,228). In 

transfected cells, σA forms cytoplasmic, nonubiquitinated, perinuclear aggresomes that are 

protected from ubiquitin- proteasome degradation by the molecular chaperone TRiC (80,193). In 

the infected cell, σA distributes to viroplasm via uncharacterized interaction with ARV p17 and 

host Hsp90/Cdc37 chaperone complex at a later phase of core assembly (77), and to the 

nucleolus via an energy independent, non-diffusional, nucleoporin-dependent pathway that does 

not utilize cytosolic factors (13,193). Post-translational cleavage of σA yields a small amino-

terminus fragment, σAN, and a larger carboxy-terminus fragment, σAC, with σAC 

demonstrating both cytosolic and nuclear localization as well as progressive time and dose 

dependent accumulation rather than immediate degradation (86). σA self-assembles into two 
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hexamers that form a double helix around a centrally located, sequence-independent, 21 

nucleotide minimum length of dsRNA that is tightly bound in a cooperative manner 

(61,128,189,222). Nucleolar entry and dsRNA binding capabilities of σA are closely related, and 

both are dependent on the presence of arginine residues Arg 155 and Arg 273 (61). Additionally, 

σA possesses nonspecific nucleotidyl phosphatase activity that allows hydrolysis of all four types 

of nucleoside triphosphates (NTPs) into their respective di- and monophosphates and free 

phosphate (223). These various abilities allow σA to modulate host cell functions in several 

ways. σA downregulates activation of interferon-inducible and dsRNA-dependent protein kinase 

(PKR), contributing to interferon resistance (55,128). σA upregulates transcription of several 

genes associated with innate immunity, including IFN-α, IFN-β, IL-6, IL-8, TLR3, TLR7, 

MDA5, MyD88, MAVS, TRIF, NF-κB, IFITM3, Mx1, and OASL, but downregulates IRF3/7 

expression (75). The PXXP motif of σA activates the phosphatidylinositol3-kinase-dependent 

Akt signaling pathway, resulting in an anti-apoptotic response (114,210,211). The MDRV 

homologue of σA colocalizes with caveolin-1 during caveolin-dependent endocytosis and 

colocalizes with LC3-II, an autophagosome marker, supporting the role of the autophagosome in 

viral replication (107,108). σA enhances cellular energy available for viral replication by driving 

the TCA cycle, glycolysis, and ATP production via activation of the mTOC1/eIF4E/HIF-1α 

pathway (29) and by promoting fatty acid oxidation via upregulation of PSMB6 and suppression 

of Akt, SREBP1, ACC1, and ACC2 (72,78). In contrast, σA interaction with gallus NME/NM23 

nucleoside diphosphate kinase 2 impairs viral replication (209). Mutation within the S2 gene has 

been associated with maintenance of persistent infection (74). 

Sigma B (σB) is a 367 amino acid residue structural protein that is the primary 

translational product of the 1196-1204 nucletotide-long S3 genomic segment (129,143,185,229). 
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σB is a major outer capsid component with monomers forming approximately 600 knobby 

projections along the virion surface (129,228). The σB protein contains a leucine zipper pattern 

and basic amino acid motifs, with a secondary structure composed of 33% turn, 28% β-sheet, 

20% α-helix, and 19% random coil, in which 63% of α-helices are distributed within the N-

terminus (229). σB is involved in viral entry via interaction with caveolin-1 in lipid rafts and is 

capable of inducing group-specific neutralizing antibodies via two identified epitopes 

(115,197,200,218). Following cell entry, σB localizes to the cell surface with μBC, where it 

likely contributes to the induction of syncytium formation, as treatment with virus specific 

antisera or chymotrypsin inhibit this process (142). Membrane anchoring of σB may be due to 

the presence of a hydrophobic region between residues 246 and 268 (221). Within the cytoplasm, 

σB rapidly forms a ternary hetero-oligomeric complex with μB and μBC, with equal ratios of 

each component, which is then recruited to viroplasms and incorporated into the outer capsid 

(187). Transfection of cells with σB results in activation of several genes associated with 

progression of tenosynovitis and arthritis (152). 

Sigma NS (σNS) is a 367-residue nonstructural protein that is the primary translational 

product of the 1185 nucletotide-long S4 genomic segment (31,163,191). σNS acts as an RNA 

chaperone to aid selection of genome segments for encapsidation by facilitating RNA–RNA 

interactions and annealing and accelerating RNA folding (18,219). Suppression of σNS 

expression secondarily reduces the expression of other viral proteins, including σA and σC, 

likely due to disruption of inner core assembly and secondary transcript availability (84). σNS 

locates to viroplasms within 6 hpi, due to μNS recruitment, where it incorporates into large 

ribonucleoprotein complexes (187–189). The secondary structure of σNS is predicted to be 33% 

α-helix predominantly within the carboxy-terminal, and 23% β-sheet distributed towards the 
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amino-terminal, both of which may influence binding affinities, and contains one YXXXM and 

two PXXP motifs, and 5 potential glycosylation sites (31,76,211). Free σNS forms homodimers 

and homotrimers, but assembles into stable, elongated hexamers with high affinity electrostatic 

bonds to interact with single-stranded nucleic acids that have a minimum of 10-20 nucleotides 

(18,189). The σNS hexamer can unwind helices of partially double-stranded RNA and can bind 

and anneal multiple complimentary single-stranded RNA molecules (18). Binding of shorter, less 

stable RNA stem-loops is more efficient than with longer, more stable RNA helices, and affinity 

to the formed dsRNA decreased following spontaneous annealing, allowing dissociation prior to 

encapsidation and exclusion from the virion (18). RNA binding occurs with little sequence 

specificity, but with slight preference of poly(A) over poly(U), and lack of poly(C) or poly(G) 

affinity (18,189,219,220).  σNS-ssRNA binding occurs within oligomers, but not monomers, in a 

conformation-dependent manner involving five conserved basic residues distributed throughout 

the polypeptide (76,189). In contrast, a native conformation is not required for interaction 

between monoclonal antibodies and ssRNA binding site epitopes between residues 178–194 

(70). Within this region, residues 180–188 are highly conserved amongst strains, and changes in 

amino acid sequences at this and various other σNS epitopes do not correlate with either serotype 

or pathotype of ARV (76); however, mutation within the S4 gene has been associated with 

maintenance of persistent infection (74). Following infection, σNS has been shown to interact 

with several host cell molecules and processes. σNS is stabilized by and protected from 

ubiquitin-proteasome degradation by the host cell molecular chaperone TRiC, which facilitates 

viral replication (80). σNS activates the host cell phosphatidylinositol 3-kinase (PI3K)-dependent 

Akt signaling pathway, which modulates several cell functions, including survival, proliferation, 

migration, differentiation, and apoptosis (210). Multiple σNS PXXP or YXXXM/YXXM motifs 
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or other motifs may be involved in host PI3K p85 subunit interaction and PI3K/Akt pathway 

activation (210,211). Comparatively, the MDRV σNS protein, which is encoded by the S3 

genome segment and shares up to 90% amino acid identity with its ARV homologue, has been 

shown to increase intracellular levels of LC3-II and decrease levels of phosphorylated mTOR, 

which supports that this protein contributes to the induction of autophagy (103,206). Use of 

recombinant σNS in ELISAs may allow differentiation between vaccinated and naturally 

infected animals (213). 

Pathogenesis and Pathophysiology 

Transmission 

Horizontal transmission is the primary mode of ARV spread, predominantly via 

contaminated fecal matter, and to a lesser extent via respiratory secretions (69,89,90,94,124). 

Entry of infectious material to the enteric system via ingestion, the respiratory system via 

inhalation, or to the plantar subcutaneous tissues via traumatic inoculation represent the primary 

routes of experimental infection and documented or proposed routes of natural infection 

(1,65,90,94,97,146,169). Chicks older than 1 week-of-age are more resistant to infection than 

younger birds (159). 

Vertical transmission of ARV occurs transovarially (2,42,53) at a low rate of 

approximately 2% between 17–19 days post-infection of breeders (132). Congenitally infected 

chicks may then serve as nuclei for horizontal spread to hatch-mates.  

Viral distribution within the host  

ARVs have been detected throughout the gastrointestinal, respiratory, and female 

reproductive tracts, the cloacal bursa, liver, pancreas, spleen, kidneys, hock joint, flexor and 
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extensor tendons, heart, bone marrow, thymus, nervous system, and the blood 

(91,100,133,141,224). As ARVs may be detected within tissues without gross or microscopic 

lesions, or may not be isolated from tissues with extensive pathology, and viral replication sites 

may not necessarily be predicted solely by the presence or absence of tissue pathology 

(49,92,169).  

Sites of ARV infection, replication, and tissue distribution are dependent on both the 

route of inoculation and the isolate properties. Trypsin-sensitive strains readily colonize the 

respiratory tract and synovial tissues when inoculated locally but may be partially inactivated 

when introduced orally (1,95). In contrast, trypsin-resistant strains are better able to survive in 

gastrointestinal conditions to establish primary enteric infections (2,95).  

ARV sites of infection are described below, but in summary, following oral inoculation, 

ARV initially infects and replicates within enterocytes throughout the intestinal tract and cloacal 

bursal epithelial cells within 1 dpi and may persist for 21 dpi or longer. Pathogenic viruses may 

cause viremia between 1 to 10 dpi, with subsequent colonization of secondary target organs 

between 1 to 14 dpi and variable persistence within tissues. Parenteral inoculation follows a 

similar course, with initial isolation within 1 dpi from the respiratory tract following intranasal 

administration or from the hock following foot pad inoculation, and subsequent isolation at 2+ 

dpi from additional organs, including the gastrointestinal tract.   

Gastrointestinal tract. The gastrointestinal tract is considered the predominant site of 

ARV infection following oral introduction, representing an important site of viral replication and 

a portal of entry to systemic spread. Additionally, high viral titers and viral persistence indicate 

the intestinal tract as an important source of viral shedding via contaminated feces. In chicks 

inoculated orally with the arthrotropic, trypsin-resistant R2 strain, ARV was detected initially 
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within the gastrointestinal tract between 6 and 24 hours post infection (hpi) via virus isolation 

(VI) (91,95,100), immunofluorescence (IF) (91), or immunohistochemistry (IHC) (91). IF and

IHC localized viral antigen to the cytoplasm of epithelial cells and lamina propria of the 

duodenum, jejunum, and ileum, with the highest staining density within the duodenum and 

jejunum. Transmission electron microscopy (TEM) confirmed the presence of viral particles 

within cytoplasmic vesicles as well as interdigitated along the microvillous surface of some 

epithelial cells from 12–96 hpi (91). Viral titers within the intestinal tract peak between 2 and 10 

hours post infection (dpi), and persist until 12 to 21 dpi, a timepoint which often represented the 

end of the study (91,95,100). Generally, ARV was detected within the upper gastrointestinal tract 

prior to, or simultaneously to, detection within the lower tract, and viral persistence was greater 

within the lower tract. Specifically, ARV was isolated from the proventriculus until 7 dpi, the 

duodenum until 12 dpi, the ileum until 18 dpi, and the cecal tonsils and rectum until 21 dpi 

(100). In adult hens, intestinal colonization follows a similar timeline, with combined respiratory 

and enteric inoculation of the FDO-1 strain resulting in positive fluorescent antibody tests and 

virus isolation for ARV throughout all levels of the gastrointestinal tract at early timepoints (4 

dpi) and persistence within the intestines and cloaca at later timepoints (14–15 dpi) (133).   

In chicks inoculated via footpad or intranasally with the trypsin-sensitive TR1 strain, 

ARV was isolated from the jejunum from 2–12 dpi, and from the jejunum and ileum at 6–7 dpi, 

respectively (95). The delay in enteric replication following parenteral inoculation was 

interpreted as secondary colonization following viremia, a route by which the virus was 

protected from trypsin degradation via bypass of the intestinal lumen.  

Cloacal bursa. The cloacal bursa is considered a primary site of ARV infection and 

replication, and a portal to systemic spread following oral introduction. In orally inoculated 
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chicks, ARV was isolated from the cloacal bursa from 1 dpi until 12 dpi, with peak viral titers at 

2–3 dpi that surpassed paired gastrointestinal peak viral titers (91,95). Virion-containing vesicles 

within bursal epithelial cells were observed via TEM from 12–96 hpi (91). Intracytoplasmic viral 

antigen was detected within epithelial cells, macrophages, lymphoid follicles, and/or subserosal 

and stromal connective tissues via immunofluorescence from 1–2 dpi until 4–5 dpi (91,141) or 

via immunohistochemistry from 1–3 dpi until 5 dpi (91,183). In intranasally inoculated chicks, 

ARV was isolated from the cloacal bursa from 1–5 dpi, with a viral titer peak at 2 dpi (95). 

Liver. The liver may represent primary and secondary sites of ARV replication, with 

viral presence occurring 6–24 hpi and persisting up to 13 dpi across various strains and routes of 

inoculation. In chicks inoculated orally with the R2 strain, ARV was isolated from the liver 

within 6–24 hpi, with peak viral titers at 2–3 dpi, with persistence through 7 dpi (91,95,100). 

Footpad inoculation with TR1 or UM 1-203 strains resulted in ARV isolations from the liver 

from 2–12 dpi (95), and 2–6 dpi, respectively, with viral titer peaks at 4 dpi (125). Intranasal 

inoculation of the TR1 strain resulted in ARV isolation from the liver from 1–12 dpi, with viral 

titer peak at 2 dpi (95). ARV antigen has been demonstrated via IF and IHC from 1–3 dpi until 

6–13 dpi within viable hepatocytes or with initial viral staining within the cytoplasm of Kupffer 

cells, followed by presence within degenerating hepatocytes, and finally within histiocytic 

infiltrate (91,141,183). In situ hybridization demonstrated presence of the R2 strain within the 

liver following subcutaneous inoculation of chicks (117). Ultrastructurally, viral particles form 

paracrystalline arrays within the cytoplasm of hepatocytes and polykaryocytes (125). 

In studies with oral inoculation, ARV presence in hepatocytes within 6 hpi likely 

represents a primary phase of replication rather than one following intestinal replication and 

subsequent systemic distribution (91). Macro-molecular transport, by bursal follicle-associated 
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epithelial (FAE) cells or gut-associated lymphoid tissue (GALT) M cells (15,83), may facilitate 

early extra-intestinal viral transport to the blood or lymph (91); however, this method of 

distribution has not been documented.  

Kidney. The kidney may represent primary and secondary sites of ARV replication. In 

chicks inoculated orally with the R2 strain, ARV was isolated from the kidney from 1–9 dpi in 

one study (91) and at 5–7 dpi in one study (100). Immunofluorescence demonstrated ARV in the 

kidney from 4–6 dpi following oral or footpad inoculation with the 176 strain (141). 

Blood. Viremia may occur from 1–14 dpi, allowing systemic ARV distribution from the 

initial site of inoculation. In chicks inoculated orally with the R2 strain, ARV was isolated from 

the erythrocyte fraction at 24 hours pi, with erythrocyte and plasma fraction viral titer peaks at 

30 hours pi, and persistence for 5 days. In contrast, isolation of ARV within the mononuclear 

fraction occurred at 7 and 10 dpi (100). In a similar study, the R2 strain was isolated from serum 

from 2 dpi until 5 dpi (91). In chicks inoculated intra-tracheally with the 1733 strain, ARV was 

isolated from the plasma at 1 week post inoculation (wpi) and from leukocytes at 1- and 2- wpi 

(155). 

ARV proliferates within cultured bone marrow and peripheral blood macrophages but not 

heterophils, thrombocytes, or thymus-derived lymphocytes (135,145). In chickens, viral isolation 

from the cellular fractions suggests cell-associated viral circulation, and immunofluorescent 

double staining indicates ARV infection of mononuclear phagocytes (27,100). Viral particles 

have been ultrastructurally visualized within phagosomes of histiocytes infiltrating CAM pocks 

of infected embryos and within macrophages in vasculature adjacent to lesions (10). Replication 

within mononuclear cells may impede neutralization from circulating antibodies and facilitate 

dissemination to secondary sites of infection, such as the spleen (27,100).   
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Heart. In chicks inoculated orally with the R2 strain, ARV was isolated from the heart at 

10 dpi in one study (100), and from 12–72 hours pi until 12 dpi in other studies (91,95). 

Similarly, intranasal inoculation of the TR1 strain resulted in ARV isolation from the heart from 

2–12 dpi, with viral titer peak at 4 dpi (95). In situ hybridization demonstrated presence of the 

R2 strain within the heart following subcutaneous inoculation of chicks (117). 

Immunofluorescence demonstrated ARV in the heart from 4–8 dpi following oral or footpad 

inoculation with the 176 strain (141).  

Spleen. In chicks inoculated orally with the R2 strain, ARV was isolated from the spleen 

at 5 dpi (100). Immunofluorescence demonstrated ARV in the spleen from 2–8 dpi following 

oral or footpad inoculation with the 176 strain (141). Immunohistochemistry targeting σNS 

demonstrated ARV replication within splenic periellipsoid lymphoid sheaths at 1.5 and 2.5 dpi 

following footpad inoculation with ARV strain 2408 (27).  

Bone marrow. In chicks inoculated orally with the arthrotropic R2 strain, ARV was 

isolated from the bone marrow at 4, 5, and 10 dpi (100). 

Thymus. In chicks inoculated intra-tracheally with the 1733 strain, ARV was isolated 

from the thymus at 1 and 2 weeks pi (155). 

Pancreas. In chicks inoculated orally with the R2 strain, ARV was isolated from the 

pancreas from 12–24 hpi until 8–12 dpi (91,95). In situ hybridization demonstrated presence of 

the R2 strain within the pancreas following subcutaneous inoculation of chicks (117). 

Respiratory tract. In chicks inoculated intranasally with the TR1 strain, ARV was 

isolated from the trachea and lung from 1 dpi until 10 dpi, with viral titer peak at 2 dpi (95). In 

hens inoculated via respiratory and enteric routes with the FDO-1 strain, ARV was isolated from 
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the nasal turbinates, larynx, trachea, lung, and airsacs at 4 dpi, but were negative at 14–15 dpi 

(133). Viral antigen was detected via FA within the nasal turbinate connective tissue, tracheal 

mucosa and submucosa, lung alveolar cells, and the air sacs (133). 

Reproductive tract. In hens inoculated via respiratory and enteric routes with the FDO-1 

strain, ARV was isolated from the ovary, infundibulum, magnum, isthmus, uterus, and vagina at 

4 dpi, and persisted within the isthmus, uterus, and vagina at 14–15 dpi. Viral antigen was 

detected via FA within the ovarian connective tissue and oviductal connective and glandular 

tissue (133).  

Central and peripheral nervous system. In chicks inoculated orally or intramuscularly 

with the ERS-2 strain, ARV was detected via IHC within choroid plexus epithelial cells and 

underlying connective tissue from 4–5 dpi until 7 dpi and within a thoracic spinal cord ganglion 

neuron at 7 dpi (224). Viral antigen was also detected in areas of inflammation within connective 

tissue surrounding the spinal cord and sciatic nerve (224). 

Joints and tendons. The hock joint, gastrocnemius tendon, and digital flexor tendons are 

important sites for primary or secondary ARV replication following footpad or enteric infection, 

respectively, as well as sites for long-term viral persistence. Despite likely underlying 

arthritogenic potential of most ARVs (90,159), expressed arthrotropism is highly variable in vivo 

(58,90,155). ARV isolation titers within the hock are similar between chicks with homologous 

maternal antibodies and chicks without maternal antibodies, despite a reduction in gross and 

microscopic lesions (93). In 1-day-old chicks inoculated orally with the R2 strain, ARV was 

isolated from the hock and tendons at 14 and 21 dpi in one study (100), and from 2 dpi until 12 

dpi in another study (91). Intranasal or footpad inoculation with the TR1 strain similarly resulted 

in ARV isolation from 2–12 dpi with viral titer peak at 8 dpi (95). Footpad inoculation of various 
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genotypes resulted in peak viral titers in the tendons at 3 dpi and reduced titers from 7–45 dpi 

(7). In chicks inoculated intratracheally with intermediately (2035) and highly (1733) pathogenic 

strains, ARV was isolated up to 7 wpi and 22 wpi, respectively, from gastrocnemius tendons 

(155). Viral antigen was detected via FA within the hock synovial stroma and peritendinous 

tissues at 4 dpi and 6 dpi following chick inoculation with the 176 strain via oral or footpad 

routes, respectively (141). In situ hybridization demonstrated presence of the R2 strain within the 

tendon synovial membrane following subcutaneous inoculation of chicks (117). In hens 

inoculated via respiratory and enteric routes with the FDO-1 strain, virus isolation and 

fluorescent antibody tests were positive for ARV within flexor and extensor tendons at 4 dpi and 

14–15 dpi, but were negative at 30 dpi (133).  

Chorioallantoic membrane (CAM). The CAM represents an important tissue for ARV 

isolation as well as a model for infection in hatched birds. On light microscopy, viral inclusions 

are visible within the cytoplasm of infected mesenchymal cells. On electron microscopy, viral 

particles are associated with fibrillar material and ribosome-lined structures within these cells 

(194). 

ARV-induced Cellular pathology 

ARV entry and replication involves numerous interdependent interactions between viral 

and host molecules that have been described in varying degrees. 

ARV virions attach to host cell surface receptors via outer-capsid protein σC (59,60), and 

enter the cell via caveolin-1-mediated and dynamin-2-dependent endocytosis (81,125). Although 

the host cell surface receptor for ARV is unidentified, β-adrenergic receptors are the suspected 

binding site for MDRV, which enters cells similarly to ARV via caveolae-mediated endocytosis 
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and may utilize similar receptors (108). Cholesterol-rich lipid rafts are not only necessary for 

ARV entry in the form of caveolae, but have been found to be essential components for ARV 

replication (199,200). ARV transport to the early endosome is regulated by cellular GTPase 

Rab5, facilitated by microtubules, and mediated via p38 MAPK and Src signaling pathways (81). 

Acidification of the endosome is required for productive infection (81), which presumably 

coincides with viral uncoating and subsequent release into the cytoplasm (44). In vitro, cell-

associated ARV growth has a lag phase of 6–15 hours, followed by a logarithmic phase that lasts 

8–21 hours (150,160).  

Viral uncoating is a necessary step to initiate numerous downstream signals within the 

cell (104,121), and ARV infection modulates cellular signal transduction proteins to upregulate 

those involved in apoptosis, DNA synthesis and energy production and downregulate those 

involved in RNA processing and the ubiquitin-proteasome pathway (25). Several key processes 

have been identified in vitro that result in successful viral propagation, including induction of 

autophagy, induction of apoptosis, formation of syncytia, and resistance to interferon (139). 

Growth arrest, Autophagy, and Anti-Apoptotic signals. 

Cell survival and an anti-apoptotic state occurs during early stages of ARV S1133 

infection in Vero cells, from 0.5 to 2 hpi (114), and autophagosome formation occurs in early to 

middle stages in Vero and CEF cells infected with various ARVs, between 3 to 48 hpi (30,134). 

Cell survival signaling via PI3K/Akt/NF-κB and STAT3 pathways occurs independent of 

cellular protein synthesis or virus replication (114). The PI3K pathway is activated by ARV σA 

via a PXXP motif and by σNS via an unknown PXXP or YXXXM/YXXM motif (114,210,211). 

ARV activation of class I PI3K/Akt/mTOR pathways and activation of the Beclin-1 promoter, 
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with formation of RhoA, ROCK1, and Beclin-1 complexes leads to induction of autophagy 

(134,230). 

ARV downregulates host protein synthesis by modulating the phosphorylation of cellular 

translation initiation and elongation factors, including decreased phosphorylation of eIF4G, 

eIF4E, 4E-BP1, and p70S6K, and increased phosphorylation of eEF2 (87). p17 suppresses 

cellular cycling and growth and promotes autophagosome formation via interaction with p53, 

p21, and numerous other cell signaling pathways as described in a previous section 

(30,32,33,78,79,106,119,182). σNS may also contribute to the induction of autophagy, as MDRV 

σNS, which shares up to 90% amino acid identity with ARV σNS, causes LC3-II to increase and 

mTOR phosphorylation to decrease in DF-1 cells (103,206). 

The autophagosome likely serves as a membranous platform for viral replication, as ARV 

replication has been shown to be dependent on lipid rafts, which are found within phospholipid 

membranes (114,199). While endoplasmic reticulum membranes have been shown to play a role 

in mammalian orthoreovirus viroplasm formation (38,186), the role of the ER is less defined for 

avian reoviruses. However, colocalization of autophagosome marker LC3-II and viral σA and 

σNS in MDRV infected DF-1 cells indicates viral replication within the autophagosome (108). 

ARV and MDRV infection each induce autophagosome formation, and viral yields are higher 

when autophagy is enhanced (108,134). ARV yields are lower when autophagosome and 

lysosome fusion are inhibited (30), and MDRV inhibits autophagolysosome degradation (108).  

Pro Apoptotic signals 

Apoptosis following ARV infection is a significant cause of tissue damage (109). 

Apoptosis induction occurs in middle to late stages of ARV infection and is both temporarily 
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inhibited by, and dependent upon the prior autophagic state, as induction of autophagy delays 

apoptosis, but the inhibition of autophagy inhibits apoptosis (30,43,112,134). The switch from 

ARV induced autophagy to apoptosis is regulated by RhoA/ROCK1 signaling (112) and occurs 

in mid to late stages of infection (104,172). ARV-induced apoptosis in cell culture varies in 

kinetics between CEF, DF1, and Vero cells and utilizes a variety of cell signaling pathways 

following viral uncoating which can occur independent of, or in conjunction with, viral gene 

expression (104,110,113,114).  

The mitochondrial pathway of apoptosis can be triggered in vitro by ARV activation of 

p53-dependent signaling via σC or by Src, Ras, p38, JNK/SAPK, MAPK, and PKCδ signaling 

pathways, leading to increased BAX and BAD expression, cytochrome C release, and caspase 

activation (37,110,112,113,172). ARV S1133 induced JNK phosphorylation also promotes 

BiP/GRP78-mediated Bim translocation to the endoplasmic reticulum, increasing ER stress, and 

triggering caspase 3 activation (112). Similarly, in MDRV, the Bip/IRE1/XBP1 pathway and ER 

stress are triggered by the p10.8 protein. ARV upregulates unfolded protein response proteins 

PERK, IRE1, and ATF6, followed by caspase-3 expression and apoptosis when cellular 

compensatory capacity to manage ER stress is overwhelmed (225).  

ARV σC can also induce apoptosis in vitro and in vivo by upregulating oxidative-stress-

mediated DNA damage signaling, as well as in vitro by interaction with eukaryotic elongation 

factor 1 alpha 1 (EEF1A1), presumably by triggering stress signaling (111,172,230).  ARV p10 

contributes to apoptosis in cell culture by increasing plasma membrane permeability, an effect 

that is curtailed, alongside syncytia formation and viral release, by rapid E3 Ubiquitin Ligase 

Siah-1 and LAMP-1-directed p10 degradation (26,161,205). ARV-induced apoptosis and viral 

replication are reliant on the cellular ubiquitin-proteasome system, as proteosome inhibition 
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leads to decreased p53 phosphorylation and caspase 3 activation, decreased viral RNA 

transcription, reduced σA, σC, and σNS expression, and decreased viral titer (28). 

Syncytogenesis 

Syncytia formation propensity between isolates in vitro has been associated with 

increased pathogenicity in ovo; however, differing rates of syncytiogenesis do not affect viral 

replication levels (45). ARVs have been shown to induce syncytium formation as early as 1 dpi 

in cell culture, including CEK, CEL, CEF, Vero (8,69,100,101,111,153), and between 2-5 dpi in 

infected tissues (109,125). In S1133-infected Vero and DF-1 cells, syncytium formation and 

viral production require Rac1 activation (81,120). Rac-1-directed syncytiogenesis may occur via 

p10-mediated RhoA GTPase activation or via ARV-induced, Ras-dependent p38 MAPK and Src 

signaling – pathways that concurrently mediate caveolin-1 phosphorylation and dynamin-2 

expression during viral entry and early infection (81,85). Cellular ubiquitylation and proteosomal 

degradation of p10 inhibits syncytia formation, apoptosis and ARV release (26,173,205). 

Early innate immune response to ARV  

Interferon and ARV interferon resistance 

Interferons (IFNs) are cytokines released from virus-infected cells that upregulate 

antiviral gene transcription levels (56). Type I IFNs, which include IFNα and IFNβ, are highly 

expressed in some viral infections (127,178), are induced by contact with double stranded RNA 

(162), and have the strongest antiviral activity of the three types of IFNs (56). The type II IFN 

IFN-γ induces antiviral activity, is a major macrophage-activating factor, and drives the Th1 

immune response via T helper type 1 cells (56,178). ARV has demonstrated higher resistance to 
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IFN antiviral effects during replication in vitro than other virus types, including Semliki Forest 

virus, vesicular stomatitis virus, and vaccinia virus (55,128).  

In CEK cells, several ARVs were unsuccessful at inducing IFN, in contrast to successful 

IFN induction by other viral genera (48). In plaque reduction assays utilizing CEK cells 

incubated with embryo-origin IFN, ARVs exhibited increased IFN resistance compared to other 

virus genera similarly evaluated (48).   

In CEF cells, several ARVs induced low levels of IFN production; however, pretreatment 

of CEF cells with IFN prior to ARV infection allowed enhanced subsequent IFN production 

(48,196). Further, ARV S1133, but not two other viral genera studied, induced expression of 

IFNα and IFNβ in CEF cells, with IFN expression occurring via a caspase-independent 

mechanism and unrelated to apoptosis, but coinciding with ARV uncoating, and subsequently 

inducing dsRNA-dependent protein kinase (PKR) expression (121). In one study utilizing rcIFN-

primed CEF cells, the induced antiviral state successful at inhibiting other virus genera was 

unable to impair ARV S1133 replication, and σA was purported to contribute to this interferon 

resistant state via binding PKR (128). In another study using IFNα- primed CEF cells, ARV 

S1133 infection induced expression levels of IFITM3 higher than levels in non-primed or 

negative control cell cultures, and higher IFITM3 expression correlated with inhibition of ARV 

replication (196). In CEF cells transfected with ARV σA, transcription of several genes 

associated with innate immunity were modulated, with downregulated IRF3/7 mRNA, and 

upregulated IFN-α, IFN-β, TRIF, and TLR3 expression peaks between 3–6 hpi; IL-6, MDA5, 

IFITM3, Mx1, and OASL peaks between 9–12 hpi; and IL-8, NF-κB, TLR7, MyD88, MAVS 

peaks between 24–36 hpi (75). In 6-day-old and 4-week-old chickens inoculated with various 

ARV isolates via various routes, older chickens expressed IFN earlier, at 12 hpi in the serum and 
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24 hpi in the lungs, and at higher viral titers than the younger chicks; whereas the younger chicks 

displayed a greater viral distribution and persistence within tissues (49). 

In joints, rising and falling viral copy number was mirrored between 1 and 7 dpi by 

markedly increased expression of IFN- β and mildly increased IFN-α and as well as upregulation 

of interferon-stimulated genes IFIT5, MX, OAS, VIPERIN, ISG12, IFI6, IFITM3, PKR, and 

CD47 (198). In the spleen, cloacal bursa, and thymus, ARV S1133 replication was accompanied 

by marked upregulation of interferon-stimulated genes IFIT5, MX, OAS, VIPERIN, ISG12, and 

IFI6, with follow-up IFIT5 overexpression in DF-1 cells exerting an inhibitory effect on ARV 

replication (197). In ARV S1133 footpad-inoculated chicks, thymic and bursal, but not splenic, 

IFN-α and IFN-β were upregulated, with significantly higher levels of IFN-α than IFN-β in the 

cloacal bursa (197). 

In DF-1 cells infected with an isolate from clinical tenosynovitis, ARV GX/2010/1 

modulated 168 differentially expressed genes within the transcriptome, representing both an 

overall induction of a prolonged antiviral response as well as an interference in cell growth and 

death pathways (139). In DF-1 cells, cellular microRNA gga-miR-29a-3p exerts an antiviral 

effect by inhibiting caspase-3, thereby reducing ARV replication and virally-induced apoptosis 

(231). 

Additional Cytokine Responses to ARV infection 

Pro-inflammatory cytokines: TNF-α, IL-1β, and IL-6. 

TNF-α was historically regarded as absent in chickens; however, recent characterization 

of this cytokine (156) may allow future investigation into its role in ARV pathogenesis. IL-1β 

and IL-6 increase expression in various cell types following ARV infection. In DF-1 and Vero 
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cells, ARV S1133 infection induced Akt and NF-κB signaling that resulted in upregulation of 

proinflammatory cytokines IL-1β and IL-6, but not IL-8, from 2 to 36 hpi, with peak cytokine 

expression between 8-16 hpi. Predominantly IL-1β, with minor contribution from IL-6, within 

media from these cell cultures promoted chemotaxis in cAMP-treated U937 monocytes from 4 to 

36 hours post exposure, with a peak at 8 hours post exposure (114). In CEF cells, IL-1β and IL-6 

expression and subsequent chemotactic effects were lower than that of DF1 and Vero cell 

cultures (114).  In one study using LMH cells, IL-1β mRNA expression did not differ between 

ARV-CU98 exposed and non-exposed cells at 6 and 8 hpi, but IL-1β mRNA expression 

decreased from this baseline at 8 and 10 hours in virus-exposed cells, correlating with the 

decreased metabolic levels and increased cell death also observed in that treatment group (64). In 

chicken macrophages, ARV S1133 induced IL-1β mRNA expression in a biphasic manner that 

likely relied on differing pathways, with viral disassembly initiating rapid, transient expression at 

30 minutes with peak at 2 hours and decrease by 6 hours pi; and viral RNA synthesis driving 

stable IL-1β mRNA expression at and beyond 6 hpi (207). Chicken macrophages exposed to 

ARV-CU98, a PEMS-associated virus, expressed high levels of IL-1β mRNA levels at 2 hpi that 

declined until 10 hpi (64). In ARV GX/2010/1 orally-infected chicks, IL-1β expression in 

various tissues correlated with the induction of autophagy during early stages of infection, with 

peaks of both at 72 hpi, and IL-1β expression decreased with autophagosome inhibition (140). In 

ARV S1133 or ARV 2408 footpad-inoculated chicks, both groups exhibited increased IL-1β 

expression in the spleens at 1.5 dpi, and increased IL-6 expression 1.5 dpi and 2.5 dpi (171). 

Th1 cytokines: IL-18 and IFN-γ.   

Interleukin-18 (IL-18), produced by many hematopoietic and non-hematopoietic cell 

types, enhances NK and CD8 T cell cytotoxic activity and induces the secretion of IFN-γ from 
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target cells (178,217). IFN-γ is a type II IFN that has weaker antiviral activity than the type I 

IFNs, but is a major macrophage-activating factor and drives the Th1 (cell-mediated) immune 

response via CD4+ T helper type 1 cells (56,178). In CEF cells, ARV S1133 induced both a 

monophasic mildly increased transcription of IL-18, with peak expression at 6 hpi and negative 

correlation to viral titer, as well as a biphasic, markedly increased transcription of IL-17 and 

IFN-γ, with expression peaks at both 6 and 48 hpi, and positive correlation to viral titer (227).  

In ARV S1133 or ARV 2408 footpad-inoculated chicks, both groups exhibited increased 

IL-18 expression in the spleens at 1.5, and increased IFN-γ expression at 1.5 dpi and 2.5 dpi 

(171). In footpad-inoculated chicks, ARV S1133 triggered the RIG-I-like receptor MDA5 

signaling pathway in peripheral blood lymphocytes and upregulation of IFN and IFN-stimulated 

genes, with peak IFN-γ, IL-6, IL-17, and IL-18 at 1 dpi; IFN-α, IFN-β, IL-12, IFITM1, IFITM2, 

IFITM5, Mx1, OASL, MDA5, MAVS, TRAF3, TRAF6, IRF7, IKKɛ, TBK1, and NF-κB at 3 

dpi; IL-8 at 5 dpi; and IL-1β and TNF-α at 7 dpi (212).  

Anti-inflammatory and Th2 cytokines: IL-10, IL-3, IL-4, IL-13, and GM-CSF. 

In ARV S1133 or ARV 2408 footpad-inoculated chicks, slightly increased IL-10 

expression in the spleens was seen in both groups at 1.5 and 2.5 dpi (171). IL-10 is an anti-

inflammatory cytokine secreted predominantly by monocytes that downregulates nitric oxide 

production, MHC class II expression, and the transcription of the proinflammatory cytokines IL-

1β and TNF-α, and enhances B cell survival, proliferation, and antibody production (158). The 

STAT3 signaling pathway mediates IL-10-related cytokine signaling (56). STAT3 signaling has 

been shown to be involved in delayed apoptosis during early ARV infection (114), and in human 

macrophages, constitutive STAT3 expression replicates IL-10 cytokine-suppressive activity 

(202).  
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The specific changes of the anti-inflammatory and Th2 cytokines IL-3, IL-4, IL-13, and 

GM-CSF have not been well characterized in relation to ARV infection.  IL-3, IL-4, IL-13, and 

granulocyte-macrophage colony-stimulating factor (GM-CSF) belong to a cluster of cytokines 

responsible for the Th2 inflammatory response and generation of humoral immunity. In 

mammals, activated T lymphocytes are the predominant source of these cytokines; however, in 

chickens, these cytokines are also expressed at similar levels in non-lymphoid tissues. In one 

study in chickens, in addition to expression in lymphoid organs, all 4 cytokines were expressed 

in the lung; IL-3, IL-4 and IL-13 were expressed in kidney and brain; IL-3 and IL-13 were 

expressed in liver; IL-3 and GM-CSF were expressed in the heart; and IL-3 was expressed in the 

muscle (5).  

Tissue Pathology 

Synovial tissues. Various ARVs are capable of inciting an inflammatory response in 

synovial tissues following footpad inoculation in chicks. At 1 dpi, paratendinea and tendon 

sheaths contained edema and mild infiltrate of heterophils and mononuclear cells (184). At 1.5 

dpi, mononuclear phagocytes contained viral antigen at a concentration of over 200 times greater 

than other cell types in the footpad (27). At 2.5 dpi, mononuclear phagocytes present within the 

footpad displayed evidence of ARV replication (27). At 3 dpi, the tendon lymphocytic 

population present consisted of predominantly γδ−(αβ+)CD3+ and CD8+ T lymphocytes (7). At 

6–8 dpi, lymphocytic infiltration developed lymphoid follicles within the synovial stroma, and 

synovial membranes became hyperplastic (141). At 8 dpi, the severity of lymphocytic 

inflammation in the tendon varied from mild to severe between three compared σC genotype I 

isolates (47). From 7 to 13 dpi, fibroplasia and infiltration by macrophages, lymphocytes, plasma 

cells, and heterophils thickened the paratendineum and external peritendineum and mildly 
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extended to the synovial membranes, synoviocytes were hypertrophic and hyperplastic, and 

fibrin, inflammatory cells, and sloughed synovial cells were present in the synovial space (184). 

At 9 dpi, the tendon lymphocytic population contained γδ+ CD3+ and CD4+ T lymphocytes in 

addition to the previously identified γδ−(αβ+) CD3+ and CD8+ T lymphocytes (7). At 20 dpi, 

fibrous synechia joined the paratendineum and external peritendineum, and fewer inflammatory 

cells were present (184).  At 45 dpi, γδ+ CD3+ T lymphocytes predominate, with fewer 

γδ−CD3+ T lymphocytes (7).   

In chicks infected via subcutaneous (SC), intra-abdominal (IA), or oral routes with a 

tenosynovitis-causing field agent, mononuclear infiltrate and fibrosis was present in the tendon 

sheaths at 5 wpi for SC and IA groups and at 7.5 wpi for the oral group (65). In intranasally 

inoculated chicks, ARV S1133 induced apoptosis within the tendon at 5 dpi (109). Intratracheal 

inoculation with ARV 1733 at various ages, between 1 day of age to 4 weeks of age, resulted in 

acute heterophilic and histiocytic tenosynovitis at 2 wpi both in chicks inoculated at 1 day of age 

and in those inoculated at 3 weeks of age, with more severe lesions seen in chicks inoculated at 1 

day of age (155). However, in the same study, chronic lymphoplasmacytic tenosynovitis with 

synovial hyperplasia and fibrosis was present with equal severity of lesions irrespective of age in 

groups inoculated at 1 day, 2 weeks, and 4 weeks of age (155). 

In bursectomized or thymectomized chickens, gross and microscopic ARV lesions in 

tendon sheaths following bursectomy were similar to those of intact birds; whereas thymectomy 

resulted in milder ARV lesions (101). In another study, tissue apoptosis, IFN-γ producing CD8+ 

T lymphocyte levels, and clinical signs were reduced when antigen-presenting cells were 

depleted and when T-cell proliferation and cytokine production was inhibited experimentally, 

which suggests that lesion severity is associated with the trafficking of IFN-γ producing CD8+ T 
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cells to the site of infection (7). Further, disease severity varied by ARV isolate, with higher 

morbidity seen with isolates that elicit increased levels of IFN-γ producing CD8+ T lymphocytes 

in tendons (7). 

Heart. In ARV GX/2010/1 orally infected chicks, cardiomyocytes contained increased 

numbers of autophagosomes on TEM at 48 hpi (140). In ARV 176 orally inoculated chicks, 

lymphocytes diffusely infiltrated the epicardium and adjacent myocardium at 6–8 dpi (141). In 

ARV S1133 intranasally inoculated chicks, the heart contained apoptotic cells, and lymphocytes 

with few heterophils and macrophages multifocally infiltrated the epicardium and myocardium at 

5 dpi (109). In footpad inoculated chicks, the severity of lymphocytic inflammation in the heart 

varied from mild to moderate at 8 dpi and from mild to severe at 28 dpi between three compared 

σC genotype I isolates (47). At 20 dpi in ARV CO8 footpad inoculated chicks, the epicardium 

contained edema and mild infiltrates of heterophils, macrophages, lymphocytes, and plasma cells 

(184). 

Liver. In intranasally inoculated chicks, ARV S1133 induced syncytium formation and 

apoptosis in the liver at 5 dpi (109). Cervical subcutaneous ARV 176 or ARV 81-5 inoculation in 

chicks induced scattered heterophilic and mononuclear infiltrate in the liver at 2 dpi and 

multifocal to coalescing hepatic necrosis with heterophilic and mononuclear infiltrate from 3–5 

dpi (184). In ARV 176-orally inoculated chicks, the liver contained scattered necrotic foci at 2–4 

dpi and widespread hepatocellular vacuolation at 6–8 dpi (141). Intratracheal inoculation with 

ARV 1733 resulted in hepatocellular swelling, sinusoidal dilation, and capsular fibrosis at 1–2 

wpi in chicks inoculated at 1 day and 1 week of age, but not in chicks inoculated from 2 to 4 

weeks of age (155). In UM 1-203 footpad-inoculated chicks, hepatic changes consisted of 

increasingly severe hepatocellular vacuolar degeneration and necrosis with formation of syncytia 
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from 2–5 dpi, which transitioned to some hepatocellular regeneration with macrophage influx 

and an absence of syncytia at 6 dpi (125). 

Spleen. At 2.5 dpi following footpad inoculation, ARV 2408-infected mononuclear 

phagocytes were present within the spleen, predominantly within the periellipsoid lymphoid 

sheath, suggesting viral transport from a primary site of infection to the spleen via infected 

monocytes (27). In ARV S1133 footpad inoculated chicks, splenic changes included edema and 

lymphocyte degeneration and necrosis(197). Cervical subcutaneous ARV 176 or ARV 81-5 

inoculation in chicks induced hyperplasia of splenic periarteriolar sheath stromal cells with 

intervening fibrin and rare necrosis as well as multifocal hyperplastic lymphoid aggregates from 

2–4 dpi (184). In ARV 176-orally inoculated chicks, the spleen contained numerous foci of 

necrosis with eosinophilic material at 406 dpi (141). Intratracheal inoculation with ARV 1733 

resulted in periarteriolar lymphocytic depletion and splenic edema with proteinaceous 

coagulation at 1 and 2 wpi in chicks inoculated at 1 day and 1 week of age, but not in chicks 

inoculated from 2 to 4 weeks of age (155). 

Thymus. In ARV S1133 footpad inoculated chicks, the thymus displayed reduced 

numbers of cortical lymphocytes (atrophy) (197). In footpad inoculated chicks comparing three 

σC genotype I isolates, all isolates caused moderate lymphoid depletion in the thymus at 8 dpi 

and mild lymphoid depletion at 28 dpi (47). Cervical subcutaneous ARV 176 or ARV 81-5 

inoculation in chicks resulted in mixed heterophil, macrophage, lymphocyte, and plasma cell 

infiltration of the thymic adventitia at 1 dpi, which invaded the thymic parenchyma at 3–4 dpi 

(184). Intratracheal inoculation with ARV 1733 resulted in thymic cortical and medullary 

lymphocytic depletion at 1 and 2 wpi in chicks inoculated at 1 day of age, but not in chicks 

inoculated from 1 to 4 weeks of age (155). 
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Cloacal Bursa. In ARV GX/2010/1 orally-infected chicks, the cloacal bursa contained 

increased numbers of autophagosomes on TEM at 48 hpi (140). In intranasally inoculated chicks, 

ARV S1133 induced apoptosis in the cloacal bursa at 5 dpi (109). Intratracheal inoculation with 

ARV 1733 resulted in lymphocytic depletion and cortical thinning with heterophilic infiltrate in 

bursal follicles at 1 and 2 wpi in chicks inoculated at 1 day of age, but not in chicks inoculated 

from 1 to 4 weeks of age (155). In ARV S1133 footpad inoculated chicks, bursal changes 

included follicular edema, lymphocyte degeneration and necrosis, and heterophilic infiltration 

and interstitial edema, fibrosis, and inflammatory cell infiltration (197). In footpad-inoculated 

chicks, an ARV isolated from wild birds caused hemorrhage, lymphocyte depletion, and 

heterophilic inflammation within the cortex and within the bursa at 5 dpi (36). In footpad 

inoculated chicks comparing three σC genotype I isolates, all isolates caused mild to marked 

lymphoid depletion in the cloacal bursa at 8 dpi and 28 dpi (47). Cervical subcutaneous ARV 

176 or ARV 81-5 inoculation in chicks induced cortical depletion of bursal follicles and 

increased interstitial fibrous connective tissue(184). In ARV 176 orally inoculated chicks, the 

interstitium contained hypertrophic connective tissues and heterophilic and lymphocytic 

infiltrates, and bursal follicles contained decreased, unevenly distributed lymphocytes at 2 dpi 

(141).   

In bursectomized chickens, gross and microscopic ARV lesions in tendon sheaths were 

similar to those of intact birds; however, the antibody response was delayed, and ARV could be 

recovered for a longer time period in bursectomized birds than intact birds, indicating a 

protective role of the B-cell system (101).  

Bone Marrow. In ARV 176 oral or footpad-inoculated chicks, the bone marrow 

contained necrotic bone marrow cells from 4–8 dpi (141).   
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Cecal Tonsils. In ARV WVU 1675 footpad-inoculated chickens, the cecal tonsil tunica 

propria contained lymphoid hyperplasia at 4 dpi, with lymphoid necrosis and mild heterophilic 

infiltration from 4 to 25 dpi (97).   

Gastrointestinal tract. In ARV GX/2010/1 orally-infected chicks, the cecal tonsil 

contained increased numbers of autophagosomes on TEM at 48 hpi (140). In orally-inoculated 

chicks with varying ARVs in genetic clusters 1, 4, and 5, with either malabsorptive or arthritic 

field presentations, all groups displayed intestinal epithelial vacuolar degeneration and sloughing 

along the tips of villi by 7 dpi (176). In intranasally inoculated chicks, ARV S1133 induced 

apoptosis in the intestines at 5 dpi (109). In chicks intramuscularly inoculated with a 

malabsorption syndrome (MAS) isolate of ARV, at 24 dpi, proventricular glands were dilated, 

and duodenal villi were atrophied, with cystic dilation of the crypts and heterophilic infiltration 

of the lamina propria (6). In chicks inoculated via oral or footpad routes with arthrotropic turkey 

reoviruses, mild lymphoplasmacytic duodenitis and jejunitis with villous blunting was present at 

28 dpi (9). In an RSS field case of 10 to 21-day old broilers with ARV isolation, the duodenum 

and jejunum displayed villous atrophy and dilated crypts(40). In ARV WVU 1675 footpad-

inoculated chickens, the proventricular tunica propria contained lymphoid hyperplasia at 4 dpi, 

with lymphoid necrosis from 4 to 25 dpi (97).  

Pancreas. In footpad-inoculated chicks, an ARV isolated from wild birds caused dilated 

acini, hemorrhage, and inflammation within the pancreas at 5 dpi (36). In an RSS field case of 

36-day old broilers with ARV isolation, the pancreas displayed atrophy, vacuolar degeneration,

and necrosis of acinar cells (40). 

Kidney. In intranasally inoculated chicks, ARV S1133 induced apoptosis in the kidney at 

5 dpi (109). In ARV 176 orally inoculated chicks, the kidney contained random foci of 
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heterophils and lymphocytes at 6 dpi (141). In chicks intramuscularly inoculated with a 

malabsorption syndrome (MAS) isolate of ARV, at 24 dpi, the renal tubular epithelium of some 

birds displayed multifocal desquamation and hemorrhage (6). 

Brain. In ARV WVU 1675 footpad-inoculated chickens, the meninges contained 

perivascular lymphoid accumulations 7 dpi (97).   

Embryos. In CAM-, CAS, or yolk sac-inoculated embryos, various ARVs induced 

chorioallantoic membrane pocks histologically composed of mesodermal edema, mesodermal 

and ectodermal histiocytic and lymphoid infiltration, ectodermal necrosis, and ectodermal and 

fibroblastic proliferation containing large basophilic, granular intracytoplasmic inclusions 

ultrastructurally composed of viral cores (10,69). Additional embryonic lesions include 

multifocal hemorrhage, proventricular epithelial hyperplasia, cardiac necrosis, and hepatic 

necrosis, giant cell formation, and fibroblastic proliferation (8,69). 
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INTRODUCTION AND LITERATURE REVIEW: 

FOWL ADENOVIRAL HEPATITIS IN CHICKENS 

INTRODUCTION 

Fowl adenoviruses (FAdVs) are the etiologic agents of inclusion body hepatitis (IBH) 

and hepatitis-hydropericardium syndrome (HHS) in chickens. IBH is distributed globally 

throughout poultry-producing countries, and HHS occurrence varies by country throughout Asia, 

Europe, and the Americas, with rare, non-commercial incidence in the United States (26,37). 

These diseases predominantly affect broilers up to 5 weeks of age, and high economic cost can 

result from flock mortality reaching 30% for IBH and 90% for HHS, with additional losses due 

to decreased body weights and immunosuppression (8,34). Presumptive diagnosis of acute IBH 

and HHS can be made based on gross pathology, but confirmatory diagnosis relies on 

histopathology, virus isolation, or molecular detection (16). Treatment is not available for IBH 

and HHS. Prevention strategies rely on vaccination of parent stock with commercial vaccines 

where available, and autogenous vaccine where permitted (16,37).   

LITERATURE REVIEW 

Taxonomy 

Adenoviridae contains six genera, of which Aviadenovirus, Barthadenovirus (formerly 

Atadenovirus), and Siadenovirus contain species infecting birds (7). Aviadenovirus contains five 

species (A–E), wherein the fowl adenoviruses account for twelve serotypes (1–8a,8b – 11) based 
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on serum cross-neutralization (16,20). Fowl adenovirus A (FAdV-A) contains serotype FAdV-1; 

FAdV-B contains serotype FAdV-5; FAdV-C contains FAdV-4 and FAdV-10; FAdV-D contains 

FAdV-2, FAdV-3, FAdV-9, and FAdV-11; and FAdV-E contains FAdV-6, FAdV -7, FAdV -8a, 

and FAdV -8b (16). Typically, IBH follows infection with an FAdV-D or FAdV-E serotype, and 

HHS most often involves FAdV-C4 infection; however there is overlap in disease presentations 

across these serotypes, and mixed infections are common (11,24,27–29).   

Structure, infection, and replication 

Aviadenoviruses consist of a linear, non-segmented dsDNA genome within a non-

enveloped, 90 nm icosahedral capsid (7). The capsid is formed by hexon and penton proteins, 

and single or paired fibers protrude from the penton bases (21,33). The hexon and fiber proteins 

represent the primary target of neutralizing antibodies and are major determinants of 

antigenicity, while the penton is a lesser antigenic target (40,45). The fibers are responsible for 

cell receptor interaction and attachment, with FAdV-2, FAdV-7, FAdV-8a, FAdV-8b, and 

FAdV-11 displaying single fibers, and FAdV-4 displaying paired fibers (21,33,40). The chicken 

homologue of the coxsackievirus and adenovirus receptor (CAR) has been demonstrated as a 

receptor for FAdV-4, but avian-specific receptors for the remaining IBH serotypes have been 

less characterized (33,41). Adenoviral protein functions during infection and replication are 

predominantly characterized in mastadenoviruses. These are briefly summarized, acknowledging 

that these interactions may not fully represent those of aviadenovirus. Entry via clathrin-coated 

endosome is followed by endosome acidification and protein VI-mediated lytic release into the 

cytoplasm (46). Viral hexon interaction with cytoplasmic dynein initiates transport along 

microtubules, and nuclear entry is facilitated by nuclear-pore complex proteins (9,43). The 

leucine-zipper region of minor capsid protein IX is responsible for inclusion body formation, and 
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virion core proteins V and VII, µ, terminal protein (TP), DNA-binding-protein (DBP), and 

adenovirus protease (ADP) responsible for unwinding the viral genome, initiating replication, 

and repackaging the genome (2,44). The adenovirus death protein (ADP) induces host cell lysis 

with viral release following cell membrane rupture (17).   

Transmission  

Horizontal and vertical transmission contribute to the spread of FAdVs. Horizontal 

transmission is predominantly the fecal-oral route, with lesser contribution by respiratory 

secretions (15). The highest fecal viral load occurs between 4–7 dpi, and shedding can continue 

for up to 6 weeks (15). Further, adenoviral persistence in the environment and personnel 

movement of contaminated materials between flocks can contribute to viral spread (3,4,35). 

Vertical transmission to progeny may occur between 1–5 wpi for naïve flocks, but transmission 

is unlikely in flocks with established antibody titers (18,36,42). Young chickens are most 

susceptible to FAdV infection, with age-related resistance seen at 10-days-of-age (13–15). 

However, increased susceptibility to and severity of adenoviral disease is seen during coinfection 

with immunosuppressive agents, such as chicken anemia virus, avian orthoreovirus, or infectious 

bursal disease virus among others (42,48,49).   

Clinical signs and pathology  

Adenoviral hepatitis is most commonly seen in meat-type birds between 3-5 weeks of 

age, but can be seen less commonly and with less severity in breeding and laying flocks 

(6,12,39). IBH and HHS display similar clinical signs with low morbidity, with sick birds 

exhibiting nonspecific signs of decreased feed intake, ruffled feathers, and crouched posture 
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(28,37). IBH and HHS differ in mortality rate, as IBH mortality generally ranges from 10-30% of 

an affected flock, but HHS mortality generally exceeds 50% (28,39).   

The predominant IBH lesion is a grossly swollen, friable, pale liver containing multifocal 

necrosis and hemorrhage (37). In severe IBH cases, the pancreas and kidneys may also be 

swollen and hemorrhagic (19,47). HHS is characterized by the presence of pericardial effusion 

and cardiac necrosis in addition to the hepatic, pancreatic, and renal changes encompassed by 

IBH (5,10,30). Ascites, pulmonary edema, splenic necrosis, thymic and bursal atrophy, and 

muscular hemorrhage may also be seen with HHS (10,22,30).  

Microscopically, the diagnostic feature of IBH and HHS is the presence of intranuclear 

inclusion bodies (INIBs) within hepatocytes, which are present between 4–9 dpi (1,25). In HHS 

or severe cases of IBH, INIBs may also be observed within pancreatic acinar cells, renal tubular 

epithelium and glomeruli, splenic lymphocytes, and proventricular glandular epithelium 

(22,25,30). HHS is characterized by myocardial necrosis, especially within the papillary muscles, 

and may also display arterial intimal vacuolation (10,30,31). Necrotic to degenerative lesions in 

other organs include pancreatic necrosis; glomerulonephritis and renal tubular necrosis; and 

thymic, bursal, and splenic lymphoid depletion (26,30,38,47).   

Diagnosis 

Because the lesions of IBH and HHS may overlap with features of other disease states in 

chickens, gross tentative diagnosis of these diseases should be confirmed by additional 

laboratory tests (50). As mentioned previously, histopathologic confirmation of adenoviral 

hepatitis is dependent on the presence of intranuclear inclusion bodies within hepatocytes. 

However, inclusion bodies may not be present for observation in later stages of disease (1,25). 
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Virus isolation is readily achieved in chicken embryos or various cell cultures, including primary 

chicken liver or kidney cells or hepatoma cell lines, among others (20,32). Electron microscopy 

may be utilized to confirm the presence of adenoviral particles (16). Historically, serotypes were 

established and isolates were differentiated via restriction enzyme analysis and serologic 

methods of cross neutralization and indirect enzyme-linked immunosorbent assay (ELISA) for 

group-specific antigen (20). Currently, molecular techniques are more often used, with 

quantitative PCR representing a readily accessible means of diagnosis in many laboratories, and 

genome sequencing offering further options for viral characterization (16). 

Immunocytochemistry and in situ hybridization have been employed as means of adenoviral 

detection in research settings, but these methods are not widely used for diagnostic purposes 

(Hess 2000, el-shall).  ELISA may also be used to monitor flock antibody titers, whether from 

natural exposure or to monitor vaccination efforts (23).  
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Table 1.1 Avian Reoviral genomic segments, protein, and protein locations 

Genome segment Protein Location 

L1 λA Inner core 

L2 λB Inner core 

L3 λC Turrets 

M1 μA Inner core 

M2 μB Outer capsid 

M2 (P-T 
cleavage) 

μBC Outer capsid 

M2 (P-T 
cleavage) 

μBC δ Outer capsid, 
presumed 

M2 (P-T 
cleavage) 

μBC δ’ Outer capsid, 
presumed 

M2 (P-T 
cleavage) 

μBN Outer capsid 

M3 μNS Nonstructural 

M3 (P-T 
cleavage) 

μNSC Nonstructural 

M3 (P-T 
cleavage) 

μNSN Nonstructural 

S1 (ORF 1) p10 Nonstructural 

S1 (ORF 2) p17 Nonstructural 

S1 (ORF 3) σC Outer capsid 

S2 σA Inner core 

S3 σB Outer capsid 

S4 σNS Nonstructural 
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CHAPTER 2 

PATHOGENESIS OF AVIAN REOVIRUS GENOTYPE 2 ISOLATE DISPLAYING 
ENTERIC AND ARTHRITIC TROPISMS1 
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SUMMARY  

Avian Reoviruses (ARVs) within genetic cluster (GC) II represent a large, heterologous 

group of currently circulating ARVs that have been isolated from clinical cases of tenosynovitis 

and malabsorption. In this study, the pathogenesis of an ARV GC II isolate was investigated via 

quantitative RT-PCR (RT-qPCR), in situ hybridization (ISH), and histopathology, following oral 

or footpad inoculation. RT-qPCR detected ARV within the digital flexor tendon, heart, lung, 

liver, spleen, kidney, duodenum, cecum, cloacal bursa, and thymus. The highest viral RNA load 

was observed within the intestinal tract between 36-72 hours post inoculation (hpi). ISH 

demonstrated ARV within villous enterocytes throughout the intestines, follicle-associated 

epithelial (FAE) cells of the bursa, and the synovial membrane of the tendon. Histopathology 

within the intestine consisted of rare syncytia with negligible inflammation, whereas marked 

inflammation was present within the synovial tissues. The identity of infected enterocytes as 

avian “M cells” or infected synovial lining cells as macrophage-like synoviocytes (MLS) could 

not be histologically determined. However, the susceptibility of these varied cell types to 

infection an ARV GC II virus demonstrates a simultaneous enteric and arthritic potential plays a 

role in the pathogenesis of these reoviruses.    

INTRODUCTION  

Avian Reovirus (ARV) is the causative agent of viral tenosynovitis in chickens and 

turkeys that results in lameness and welfare-related culling costs in excess of US$120 million 

annually (1). Additional production losses to ARV-related diseases are due to variable 

syndromes of enteritis, myocarditis/pericarditis, hepatitis, splenitis, respiratory disease, and 

immunosuppression (2). ARV is composed of segmented, double stranded RNA (dsRNA) within 

a non-enveloped, double concentric, turreted, icosahedral capsid, from which protrudes the 
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highly variable cell attachment protein Sigma C (σC) (3). Genetic characterization of the σC 

coding region of the S1 gene has grouped currently circulating viruses into seven genetic clusters 

(4). Historically, extensive research, vaccine development, and widespread disease control was 

achieved using antigenically similar genotype I ARVs such as the S1133, 1703, and 2177 strains 

(5–7). However, antigenically and genetically variant Avian Reoviruses (ARV) within genetic 

clusters (GCs) I – VII have arisen, against which commercial vaccines offer little protection (4), 

and for which research is more limited. Questions regarding ARV pathogenesis remain, 

including the identity of cellular attachment receptor and basis for tissue tropism (8,9), as well as 

any phylogenetic basis predictive of the varying manifestations of disease syndromes (10). ARV 

GC II’s represented the most prevalent reoviruses isolated at the Poultry Diagnostic and 

Research Center throughout 2020 and 2021, with isolations from both tendons and intestine from 

field cases of tenosynovitis and malabsorption, respectively (4). In this study, we utilize RT-

qPCR, in situ hybridization (ISH), and histopathology to characterize the pathogenesis of a 

genotype II ARV via viral tissue distribution, cellular tropisms, and tissue response to infection.  

MATERIALS AND METHODS  

Virus.  

ARV GC2 field isolate Ck/USA/147334/AL/Tendon/2022 (ARV 147334), was initially 

isolated from the tendons of 26-day old broilers exhibiting swollen tendons. The virus was 

propagated and titrated in a chicken hepatoma cell line (LMH, ATCC CRL-2117). The titer of 

the stock virus was 106.2 TCID50/mL. MinION nanopore whole genome sequencing of this 

isolate revealed a single population of reovirus.  
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Chickens.  

One hundred and nine, 1-day-old, specific pathogen free chickens (SPF) were divided 

into the following groups of (n): oral challenge (33), footpad challenge (33), and mock challenge 

(43). Oral challenge birds received 104.5 TCID50/0.1mL and footpad challenge birds received 

104.0 TCID50/0.5mL in the left footpad. Mock challenge birds received sterile phosphate 

buffered saline (PBS) via oral, intratracheal, or footpad. Birds were housed by group in Horsfall-

Bauer isolation units under forced air, negative pressure with access to unmedicated broiler 

starter feed and water ad libitum and monitored daily for well-being. At 12, 36, and72 hours post 

inoculation (hpi) and 7 days post inoculation (dpi), 3 birds per challenge group and 3 mock-

challenged birds were euthanized. All procedures and processes for the animal work were 

approved by the University of Georgia Institutional Animal Care and Use committee (AUP# 

A2023 01-036-A1).  

Footpad measurement.  

At 72 hpi and 7 dpi, digital calipers were used to measure the left footpad thickness of 

euthanized birds in mock challenge and footpad challenge groups.   

Sample collection and processing.  

Using aseptic technique, the following tissues were collected per bird and split into 

RNALater solution and 10% neutral buffered formalin: digital flexor tendon, thymus, trachea, 

heart, lung, liver, spleen, kidney, duodenum, jejunal-ileal junction, cecal tonsil, and cloacal 

bursa. Tissues in RNALater were held at 4°C overnight, then frozen at -80°C. Formalin-fixed 

tissues were embedded in paraffin blocks and serially sectioned. Per block, one section was 

stained with hematoxylin and eosin (H&E), and two sections underwent in situ hybridization 
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(ISH), wherein riboprobe was applied to one section but not applied to the other (negative 

control).   

RNA extraction and Quantitative RT-PCR.  

Total RNA was extracted from approximately 50 mg of thawed, blotted samples of 

duodenum, cecum, bursa, thymus, spleen, tendon, heart, liver, lung, and kidney using the 

RNeasy Plus Universal kit (Qiagen # 73404) and eluted in 50 ul of elution buffer per 

manufacturer’s recommendations. Quantitative RT-PCR primers and a hydrolysis probe were 

designed based on a 128 base pair region of the 147334 reovirus S3 gene sequence as follows: 

forward primer, 5'-CAGTGCTGTGGTGTACTCTATT-3', reverse primer, 5'-

GTTCTGCCGATCCTCACATATC-3’ and probe, 5'-/56-

FAM/CCATCACAA/ZEN/ATGCCACCAGCAACA/3IABkFQ/-3' (Integrated DNA 

Technologies, Coralville, IA, USA). Quantitative RT-PCR was performed using the Applied 

Biosystems AgPath-ID One-Step RT-PCR Kit (ABI, #4387391) per manufacturer’s 

recommendations. Briefly, 5ul of RNA was added to the quantitative RT-PCR cocktail 

containing 12.5ul of 2x RT-PCR Buffer, 2ul nuclease free water, 1ul 25X RT enzyme mix, 1ul 

each of 10µM forward and reverse primers and 1µM of probe in a 25ul reaction The RT-qPCR 

reaction cycle profile was as follows: reverse transcription at 50C for 30 min, 95C for 15 min, 

forty cycles at 94C for 10 sec, and 60C for 30 sec.   

Generation of riboprobes.   

An antisense DIG-labeled riboprobe was prepared by in vitro transcription of a region of 

the reovirus 147334 S3 gene (297 base pairs). RNA was extracted from 100ul of infected cell 

culture supernatant using the Applied Biosystem MagMax Pathogen RNA/DNA Kit 
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(ThermoFisher Scientific, Waltham, MA, USA) per manufacturer’s recommendations. RT-PCR 

amplification of a 297 basepair region of the 147334 reovirus S3 gene was performed using the 

Invitrogen SuperScript III RT Kit (#18080044, ThermoFisher Scientific, Waltham, MA, USA) 

for first strand synthesis per manufacturer’s recommendations. Briefly, 2.5ul of RNA, 0.5ul each 

of 20uM 147334 ARV S3 38 forward primer, 5’-AGACTCCTGCTTGTTGGAATG-3’ and 

147334 ARV S3 334 reverse primer, 5’-GTTGGCTGATCTCATCGTAGTG-3’ (Integrated 

DNA Technologies, Coralville, IA, USA) were denatured at 98C for 5 min, chilled on ice for 2-3 

min followed by the addition of 0.5ul 10mM dNTP mix and 2ul nuclease free water. The 

reaction was incubated at 70C for 10 min, then on ice for 2-3 min. The reverse transcription 

cocktail containing 2ul of 5X 1st strand buffer, 1ul 1M DTT, 0.5ul 100mM RnaseOut 

Ribonuclease Inhibitor, and 0.5ul SuperScriptIII Reverse Transcriptase (ThermoFisher 

Scientific, Waltham, MA, USA) was added to the RNA/primer/dNTPs then incubated at 42C for 

60 min, 70C for 15 min followed by a 10C holding stage. Second strand synthesis was performed 

using the Platinum Taq Polymerase Kit (#10966026, ThermoFisher Scientific, Waltham, MA, 

USA) per manufacturer’s recommendations. Briefly, 5ul of the first strand cDNA was added to 

14.75ul nuclease free water, 2.5ul 10X PCR buffer, 1ul 50mM Magnesium Chloride, 0.5ul 

10mM dNTP mix, 0.25ul Platinum Taq Polymerase (ThermoFisher Scientific, Waltham, MA, 

USA), and 0.5ul each of 20uM 147334 ARV S3 38 forward and 147334 ARV S3 334 reverse 

primers. The PCR reaction cycles consisted of 95C for 4 min; forty cycles at 95C for 30 sec, 55C 

for 1 min, 72C for 1 min 10 sec; 72C for 7 min; and a 10C holding stage. The RT-PCR product 

was electrophoresed on 1% agarose gel with Invitrogen SyBR Safe DNA Gel Stain (#S33102 

ThermoFisher Scientific, Waltham, MA, USA) and visualized under UV light. The 297 bp 

product was excised from the agarose gel and purified using the Qiagen QIAquick Gel 
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Extraction kit (#28706 Qiagen, Germantown, MD, USA) and eluted in 40ul of elution buffer. 

Two microliters of the purified product was then cloned into the Invitrogen pCRII TOPO 

plasmid vector and transformed into E. coli Top10 competent cells using the Invitrogen TOPO 

TA Cloning Kit with Dual Promoter (#450640 ThermoFisher Scientific, Waltham, MA, USA) 

per manufacturer’s recommendations. Plasmid DNA was purified using the QIAprep Spin 

Miniprep Kit (#27106 Qiagen, Germantown, MD, USA) per manufacturer’s recommendations. 

The orientation of the plasmid insert was determined by Sanger sequencing using M13 and the 

147334 ARV S3 38 forward and 334 reverse gene specific primers. The plasmid DNA was 

linearized with the restriction enzyme, XbaI (#R0145S New England Biolabs, Ipswich, MA, 

USA), then purified using the Qiagen QIAquick PCR Purification Kit (Qiagen, Germantown, 

MD, USA). In vitro transcription was performed using SP6 RNA polymerase and the Roche DIG 

RNA Labeling Kit containing digoxigenin-UTP (DIG) (#11175025910 Roche Diagnostics 

Corporation, Indianapolis, IN, USA). Concentration of the transcript was determined by 

Northern dot blot comparison with a standard DIG-labeled RNA (#11175025910 Roche 

Diagnostics Corporation, Indianapolis, IN, USA).   

 

In situ Hybridization.  

In situ hybridization was performed on paraffin sections from formalin fixed, paraffin 

embedded tissues placed on plus slides (#22230890 ThermoFisher Scientific, Waltham, MA, 

USA) as previously described (Kang 2012), with the following modifications: 5 ng RNA was 

applied per slide followed by denaturation at 98°C for 8 min then hybridized overnight at 41°C.  
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Microscopic evaluation.   

H&E and ISH slides were evaluated via light microscopy at 40x magnification and 

scored. On H&E, lesions were scored on a per-tissue basis across categories of necrosis, 

heterophilic infiltration, mononuclear infiltration, edema, atrophy, hyperplasia, and fibrosis. 

Each category was scored as 0 (normal), 1 (mild), 2 (moderate), and 3 (marked), and scores were 

summed to give the final score per tissue. On ISH, the presence of signal expression was scored 

on the most densely populated field as 0 (absent), 1 (1-10/4x field), 2 (>10/4x), 3 (>10/10x), 4 

(>10/20x), and 5 (>10/40x), with a 40x field equal to 0.3 mm2. Signal location was also 

evaluated.   

Statistical Analysis.  

Two-way ANOVA with Tukey’s multiple comparisons test and two-tailed Pearson 

correlation test with 95% confidence interval were performed using GraphPad Prism version 

10.0.0 for Windows (GraphPad Software, Boston, Massachusetts USA, www.graphpad.com).  

RESULTS  

Footpad thickness.  

Footpads of footpad challenged birds were significantly thicker than mock challenge 

birds at 72 hpi (p=0.015) but not at 7 dpi.   

Quantitative RT-PCR.  

In orally challenged birds, ARV RNA was detected in all tissues except tendon, with 

virus present at all timepoints within the intestines, bursa, and thymus and from 36 hpi onwards 

in remaining viscera (Fig 1A). The highest viral load was detected in the duodenum, cecum, and 
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bursa, with peaks between 36 hpi and 72 hpi (Fig 1A). In footpad challenged birds, ARV RNA 

was detected in all tissues, with the highest viral load in the tendon and spleen at 12 hpi and 36 

hpi. The viral load in the duodenum, cecum and bursa peaked at the 72 hpi sampling timepoint 

(Fig 1B). Tissues from mock inoculated birds were negative in all groups at all timepoints.  

In situ Hybridization.   

In both challenge groups, ARV infected cells were observed in the intestines and cloacal 

bursa at multiple timepoints, with peak viral staining occurring between 36 to 72 hpi (Fig 2). In 

both tissues, ISH staining was observed within differentiated enterocytes along the mid to apical 

villus (Figs 3A,B) of intestinal sections and within the follicle-associated epithelium (FAE) of 

the bursa (Figs 4A,B). In both challenge groups, rare hepatocytes contained ARV staining at 36 

hpi and 72 hpi, and the thymic cortex contained rare ARV staining at 7 dpi. In footpad 

challenged birds, ARV was detected within few synovial lining cells from 36 hpi to 7 dpi (Fig 

5A), and in rare splenocytes from 12 to 72 hpi. Tissues from mock inoculated birds were 

negative in all groups and at all timepoints.   

Histopathology.  

Total histopathology lesion scores differed amongst treatment groups for the cecum, 

cloacal bursa, thymus, and tendon at 72 hpi and the tendon and kidney at 7 dpi (Fig 6). 

Differences were not observed amongst these tissues at 12 hpi or 36 hpi. At 72 hpi, the 

epithelium of the ceca and cloacal bursa (Fig 4C) of orally inoculated birds contained few 

aggregates of heterophils and foci of epithelial necrosis with rare syncytia. Bursal follicles 

contained scattered apoptotic debris (Fig 4C) to a similar degree across all treatment groups. At 7 

dpi, the kidneys of orally inoculated birds contained fewer lymphoid centers than those of the 
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mock or footpad inoculated groups. At 72 hpi, the thymic cortices of footpad-inoculated birds 

were moderately thinned and contained increased numbers of apoptotic lymphocytes. At both 72 

hpi and 7 dpi, the tendons of footpad-inoculated birds contained marked mononuclear and 

heterophilic expansion of the subsynovial space with rare, multifocal loss and hypertrophy of the 

synovial membrane (Fig 5B). Total histopathology lesion scores did not differ amongst treatment 

groups for the duodenum, jejunum, spleen, heart, liver, lung, or trachea at any timepoints; 

however, rare syncytia, a feature not categorized within the scoring structure, were present 

within the jejunal epithelium at 36 hpi and within the duodenal epithelium at 72 hpi (Fig 3C), of 

oral- and footpad-inoculated birds, respectively. 

DISCUSSION  

The investigations into the pathogenesis of this ARV GC II isolate are consistent with 

historic research on GC I viruses from the 1970s-90s, documenting early systemic viral 

distribution (6,12–14). In this study, our ARV GC II isolate was detectable via PCR within the 

inoculated regions (tendon or gastrointestinal system, respectively) at 12 hpi, and with infection 

visualized via ISH within susceptible cells of those systems by 36 hpi. ARV was detected in 

distant tissues at the earliest timepoint of 12 hpi for parenteral administration, but not until 36-72 

hpi for most sites when mimicking natural, oral exposure. The mechanism of ARV translocation 

from the intestinal tract to systemic circulation remains to be determined. Historic pathogenesis 

studies posit macromolecular pinocytosis by avian microfold (M) cells or by FAE as a possible 

route of entry for ARV (6,15). Similar results here demonstrate ARV GC II specifically within 

the FAE tufts of the cloacal bursa and apically located, differentiated enterocytes throughout the 

intestine. As varying subsets of chicken M cells, differentiated by CSF1R and SOX8 expression, 

are located across the bursa, intestinal crypts, and higher along villi, it is possible that the ARV 
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GC II-infected enterocytes in this study represent apically migrated avian M cells (16,17). 

Another possibility is that these susceptible enterocytes represent residual, absorptive embryonic 

epithelium capable of higher macromolecule transport than the digestive epithelium that 

proliferates post-hatch (18). If so, the changing enterocyte demographics accompanying 

intestinal development may be a component of the age-related ARV resistance described in 

many studies(19,20). However, as histopathology alone is inadequate for differentiating these 

enterocyte subtypes, more work is necessary to fully characterize these susceptible cells.  

The question of cellular composition as a determining factor of ARV susceptibility is 

repeated when observing infected synoviocytes, observed here and historically (21). The 

synovial membrane is composed of histologically indistinguishable macrophage-like 

synoviocytes (MLS) and fibroblast-like synoviocytes (FLS) – cells of monocyte or mesenchymal 

lineage, respectively (22–24). As macrophages have been shown to be susceptible to ARV 

infection (25–27), it is worth investigating if macrophage-like synoviocytes display similar 

vulnerability to ARV infection and allow for viral localization within the synovial tissues. 

Further, ARV has been shown to be reliant on caveolin-1-mediated endocytosis in vitro (28,29), 

and, in mammals, increased caveolin-1 expression plays a role in macrophage differentiation and 

T-cell activation in some chronic inflammatory conditions (30,31). As T-cell response is a 

determinant of severity in ARV-induced tenosynovitis, both in vitro and in vivo investigation is 

warranted to define the cellular determinants of ARV susceptibility in the joint, and the resultant 

cell signals initiating the inflammatory response. The simultaneous enteric and arthritic tropisms 

of the ARVs in this study and in historic studies (6,32), combined with the disparate 

inflammatory response to infection between tendon and other tissue types, suggest that the 
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immune response or modulation thereof may play a role in the development of organ-specific 

ARV-related disease.   
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FIGURES   

Figure 2.1. Quantitative RT-PCR detection of ARV S3 genomic segment in various tissues 

following oral (A) or footpad (B) challenge. Timepoints are represented as bars, with 12 hpi 

(stippled grey), 36 hpi (hatched grey), 72 hpi (black), and 7 dpi (white). Tissue location is 

represented by the x-axis. Cycle threshold (Ct), inversely related to viral load, is represented by 

the y-axis, with the standard deviation denoted by capped line.   
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Figure 2.2. In situ hybridization (ISH) detection of ARV in various tissues following oral (A) or 

footpad (B) challenge. Timepoints are represented as bars, with 12 hpi (stippled grey), 36 hpi 

(hatched grey), 72 hpi (black), and 7 dpi (white). Tissue location is represented by the x-axis. 

Mean ISH score is represented by the y-axis, with the range denoted by capped line. ISH scores 

were assigned by the presence of signal in the most densely populated field as 0 (absent), 1 (1-

10/4x field), 2 (>10/4x), 3 (>10/10x), 4 (>10/20x), and 5 (>10/40x), with a 40x field equal to 0.3 

mm2.  
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Figure 2.3. Duodenum, ARV footpad challenge 72 hpi. A and its magnified view, B, demonstrate 

ISH. C represents a serial section of the same location stained with H&E. A: Apical villous 

enterocytes contain ARV signal (arrows). Boxed area is magnified in (B). ISH, Bar = 50 µm. B: 

Higher magnification of boxed area of (A). Enterocytes contain ARV signal (arrows). One area 

of viral staining (circled) corresponds to syncytia formation observed in (C) ISH, Bar = 20 µm. 
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C: Serial section of (B). Rare ARV-induced syncytia (circled) are present, which share 

localization with the circled ARV signal observed in (B). Histopathologic changes are otherwise 

minimal. H&E, Bar = 20 µm.   

 

Figure 2.4. Cloacal bursa, ARV oral challenge 36 hpi. A: Follicle-associated epithelial (FAE) 

cells contain ARV signal (arrows). ISH, Bar = 40 µm. B: Higher magnification of bursal follicle 
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with overlying, ARV-infected FAE cells (arrow). ISH, Bar = 20 µm. C: The epithelium contains 

rare ARV-induced syncytia (circle) and infiltrating heterophils. Follicular apoptotic debris and 

peripheral extramedullary hematopoiesis were features present in both challenge and mock 

challenge groups. H&E, Bar = 20 µm.  

 

  

Figure 2.5. Tendon, ARV footpad challenge 72 hpi. A: ISH, Synoviocytes contain ARV signal 

(arrows). Bar = 20 µm. B: Mononuclear and heterophilic inflammation separates the mildly 

hyperplastic synovial membrane from the underlying tendon. H&E, Bar = 20 µm.  

  



85 
 

 

Figure 2.6. Histopathology lesion scores in tissues at 72 hpi and 7 dpi. Treatment groups are 

denoted by bars, as mock challenge (black), oral challenge (stippled white), and footpad 

challenge (grey hatched). Tissue location is represented by the x-axis. Lesion scores are 

represented by the y-axis, with the median score denoted by the bar and range denoted by 

brackets. Lesion scores represent the sum of scores across categories of necrosis, heterophilic 

infiltration, mononuclear infiltration, edema, atrophy, hyperplasia, and fibrosis, with each 

category scored as 0 (normal), 1 (mild), 2 (moderate), and 3 (marked) per tissue.  
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CHAPTER 3 

DIAGNOSIS OF INCLUSION BODY HEPATITIS IN CHICKENS BY IMPRESSION 

SMEAR CYTOPATHOLOGY2 

 



87 
 

SUMMARY   

Numerous reports and epidemiologic investigations in recent years identify adenoviral 

infection as an ongoing to increasing, international disease in commercially raised chickens. 

Impression smear cytopathology was evaluated as a tool for the diagnosis of adenoviral inclusion 

body hepatitis (IBH). In this study, 92 paired, Romanowsky-stained cytopathologic preparations 

and hematoxylin- and eosin-stained histopathologic liver sections were evaluated from 54 

chickens with experimentally induced or naturally occurring IBH. Large intranuclear inclusion 

bodies typical of adenoviruses were visible within hepatocytes on both cytopathology and 

histopathology. Cytopathologic to histopathologic percent positive agreement and percent 

negative agreement were 94% and 90%, respectively, with ĸ = 0.81 (0.61–1.01, 95% confidence, 

p< 0.001). A subset of 20 cytopathologic samples evaluated by 8 veterinary professionals as 

consistent or inconsistent with IBH, yielded an average of 66% positive agreement and 98% 

negative agreement to the histopathologic diagnosis, across all observers, with ĸ = 0.61 (0.53–

0.68, 95% confidence, p< 0.001), resulting in a positive predictive value of 99% and a negative 

predictive value of 67%. Interobserver agreement was slightly higher (76% positive agreement, 

94% negative agreement, ĸ = 0.68 (0.65-0.71), 95% confidence, p< 0.001) within the 12 of these 

samples that originated from natural disease, with stable positive and negative predictive values. 

A rapid, cost-effective, tentative diagnosis of IBH via impression smear cytopathology at the 

time of necropsy can streamline further confirmatory laboratory testing and facilitate timely 

communication in the interim to affected parties, especially in locations with delayed access to a 

diagnostic laboratory.   
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INTRODUCTION  

Aviadenoviruses are the etiologic agent of inclusion body hepatitis (IBH) and hepatitis-

hydropericardium syndrome (HHS) in chickens. Emergence and re-emergence of these diseases 

internationally and recently within the United States pose an economic and health threat to 

commercial flocks due to rapid, moderate to high mortality rates; poor growth; and lack of 

treatment options (1–5). Diagnosis of adenoviral diseases in poultry flocks represents the 

necessary initial step to quantifying prevalence and economic impact within regions, 

investigating concurrent predisposing factors, guiding selection and implementation of specific 

control measures, and preventing further disease spread. Currently, presumptive diagnosis of 

IBH can be made based on clinical signs and gross lesions; however, histopathology, PCR, or 

virus isolation is necessary for confirmatory diagnosis (1). These laboratory methods can be 

costly, laborious, time consuming, and require equipment not available in all laboratories.    

Cytopathology is extensively used across veterinary and human medicine to diagnose 

viral, bacterial, fungal, parasitic, and other infectious and non-infectious diseases (6–13). 

Impression smear cytopathology utilizing Romanowsky staining techniques is cost-effective, 

technically simple, and can be performed at any size laboratory or in a field setting with minimal, 

commercially available reagents, contributing diagnostic data to a case within as little as 5 

minutes (14,15). Regarding poultry viral diseases specifically, cytopathology has been used to 

directly identify fowlpox and herpesvirus inclusions (16–18) as well as to characterize 

inflammatory patterns within feather pulp predictive of Marek’s Disease (19). Despite these 

broad applications, the use of cytopathology in the diagnosis of aviadenoviral diseases has not 

yet been described. Here, we evaluate the capability of Romanowsky stains to differentiate 
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aviadenoviral inclusions and describe the cytopathologic morphology of aviadenoviral inclusions 

in chicken hepatocytes.    

 

MATERIALS AND METHODS  

Experimental Infection.   

Virus.   

Fowl adenovirus group E/8b field isolate Ck/USA/AL/133805/LiverSpleen/2020 

(133805) was propagated and titrated in chicken hepatoma (LMH, ATCC CRL-2117) cells. The 

titer of the stock virus was 105.5 TCID50/mL.  

Chickens.   

Forty-one, 1-day-old, specific pathogen free chickens (SPF) were weighed, tagged, and 

divided into challenge (20 birds) and control (21 birds) groups of approximately equal average 

body weight. Birds were orally challenged or mock challenged with 105.2 TCID50/0.5 mL or 

sterile PBS, respectively. Birds were housed by group in Horsfall-Bauer isolation units with 

access to unmedicated broiler starter feed and water ad libitum and monitored daily for well-

being. Clinical morbidity was not observed during this study. At 4, 6, 10, and 14 days of age, 

five birds per group were euthanized. All procedures and processes for the animal work were 

approved by the University of Georgia Institutional Animal Care and Use committee (AUP# 

A2023 01-036-Y1-A0).  
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Natural Infection.   

Clinical cases.   

Between March and April 2023, 13 commercial broiler chickens from 6 diagnostic 

necropsy submissions to the University of Georgia Poultry Diagnostic and Research Center were 

enrolled in the study on the basis of clinical suspicion of IBH. Case histories provided by 

submitters included acutely increased flock mortality and uneven or reduced flock body weights 

in broiler flocks ranging from 25 to 36 days of age (Table 1). Birds received were dead-on-

arrival or euthanized via cervical dislocation at accessioning.   

Sample collection and processing.   

At necropsy, 2 pieces of ~1 cm3 liver were collected from each bird. Each piece of liver 

was gently blotted on a paper towel, impressed sequentially along a clean glass slide 

(Supplemental Figure 1), then placed within a histocassette in 10% neutral-buffered formalin. 

Glass slides were allowed to air dry for up to 5 minutes then transported in 95% ethanol for 

approximately 5 minutes. Impression smears were stained with a Romanosky stain (Epredia 

Shandon Kwik-Diff, Fisher Scientific) by dipping the slides through the three reagents wells of 

methanol, eosin-y, and methylene blue for approximately 10 seconds per well. Slides were gently 

rinsed with tap water, allowed to air dry, and sealed using a glass coverslip and nonaqueous 

mounting media (OpticMount1, Mercedes Scientific). Formalin-fixed tissues were processed 

routinely for histopathology, and sections were stained with hematoxylin and eosin.   

Pathologic evaluation.   

Per cytopathology slide and per histopathology section, 114, adequate, 400× fields (27 

mm2) were evaluated by an anatomic pathologist (KM) via light microscopy and designated as 
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“IBH-negative” or “IBH-positive" based on the absence or presence, respectively, of 1 or more 

structures compatible with an aviadenoviral inclusion body. An adequate field consisted of a 

single layer of at least 15 intact hepatocytes. Of 108 paired samples collected, 16 pairs were 

excluded due to an insufficient number of observable fields on either the cytopathologic or 

histopathologic component. Morphologic changes consistent with an aviadenoviral inclusion 

body consisted of a hepatocyte nucleus containing an 8–15-um-diameter, basophilic to 

amphophilic, globular material that disrupted to peripheralized the native chromatin and variably 

enlarged the nucleus by 10–100%. Experimentally produced samples from inoculated and mock-

inoculated groups were comingled, then evaluated in a blinded and randomized fashion. 

Clinically received samples were evaluated on a rolling basis with no blinding. Percent positive 

agreement and percent negative agreement between cytopathology and histopathology for all 

paired sample observations were determined via sensitivity and specificity calculations, 

respectively, with the measure of agreement determined by Fleiss Kappa analysis.   

Observers.   

Eight, non-pathologist, veterinary professionals were provided self-study images of 

histopathologic IBH inclusion bodies, cytopathologic putative IBH inclusions, and cytologic 

normal and artifactual structures (Supplemental Figure 2). Individuals then evaluated pre-

determined, randomized order, subset of 20 unknown impression smears and designated each as 

consistent with, or inconsistent with, IBH (Table 2). Veterinary expertise varied amongst 

individuals but included a familiarity with routine, point-of-care microscopic parasitology, with 

observers A, B, and C having > 10 years clinical DVM experience, observers D, E, F, and G 

having < 2 years clinical DVM experience, and observer H being a current DVM student. Two 

IBH-positive and two normal (as determined by paired histopathology) impression smear 
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reference slides were provided alongside unknown slides. Cytopathologic designations made by 

observers were compared to the previously determined, paired histopathologic diagnosis per 

sample. Percent positive agreement and percent negative agreement were determined via 

sensitivity and specificity calculations, respectively, for all cytopathologic designations relative 

to the final histopathologic diagnosis, with the measure of agreement determined by Fleiss 

Kappa analysis. Positive and negative predictive values of cytologic designations were similarly 

calculated relative to histopathology.   

RESULTS  

Gross pathology.   

The livers of experimentally infected birds rarely contained solitary to few 1–2-mm-

diameter, tan to dark red foci. The livers of clinically submitted birds were variably swollen and 

mottled pale yellow to dark red, with disseminated, pinpoint, tan or dark red foci of necrosis and 

hemorrhage (Figure 1).   

Histopathology and Cytopathology.   

Intranuclear inclusion bodies typical of aviadenoviruses (Figure 2) were present in 14 of 

35 liver histopathology sections from inoculated birds, and 0 of 34 sections from mock-

inoculated birds, and 19 of 23 sections from clinical birds. Putative inclusion bodies (Figure 3A-

D), based on morphologic similarity to histopathology, were observed in hepatocyte nuclei of 18 

of 35 liver impression smears from inoculated birds, and 0 of 34 impression smears from mock-

inoculated birds, and 19 of 23 impression smears from clinical birds. Cytopathologic to 

histopathologic percent positive agreement and percent negative agreement for all samples were 

94% and 90%, respectively, with ĸ = 0.81 (0.61–1.01, 95% confidence, p< 0.001) interpreted as 
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“almost perfect agreement” (20). The positive predictive value of cytopathology to 

histopathology across all samples was 84% and the negative predictive value was 96%. Within 

experimentally-derived samples, percent positive agreement and percent negative agreement for 

all samples were 86% and 89%, respectively, with ĸ = 0.60 (0.36–0.84, 95% confidence, p< 

0.001), with a positive predictive value of 67% and a negative predictive value of 96%. Within 

clinically-derived samples, percent positive and negative agreement and positive and negative 

predictive values were all 100%, and ĸ = 1 (0.59–1.41, 95% confidence, p< 0.001). When 

present, the total inclusion body count ranged from 2 to 50 (median = 8) histologically and 1 to 

46 (median = 4) cytologically per experimentally derived sample and from 58 to 6402 (median = 

201) histologically and 11 to 504 (median = 44) cytologically per clinically derived sample. 

Bacterial hepatitis was diagnosed histopathologically in 4/23 clinical liver sections that lacked 

inclusion bodies.   

Observer agreement.   

Observers collectively averaged 66% positive agreement and 98% negative agreement to 

the histopathologic diagnosis (Table 2), with ĸ = 0.61 (0.53–0.68, 95% confidence, p< 0.001) 

interpreted as “substantial agreement” (20) , yielding a positive predictive value of 99% and a 

negative predictive value of 67%. Interobserver agreement was higher (76% positive agreement, 

94% negative agreement, ĸ = 0.68 (0.65–0.71), 95% confidence, p< 0.001) within the 12 of these 

samples that originated from natural disease (Table 2).  

DISCUSSION  

Romanowsky-stained impression smear cytopathology of the liver is a useful technique 

for the diagnosis of inclusion body hepatitis in chickens. IBH is a prevalent disease within 
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commercial broilers that can cause moderate to high mortality within flocks. Using impression 

smear cytopathology, a tentative diagnosis of IBH can be made at the site of necropsy. This rapid 

and cost-effective diagnostic option increases the opportunity to identify and track positive cases, 

communicate to affected parties in a timely manner, and focus valuable time and monetary 

resources on specific confirmatory laboratory tests or response measures. In particular, 

impression smear cytopathology represents a highly accessible and portable means of tentative 

diagnosis of IBH for veterinarians in locations without immediate access to a diagnostic 

laboratory. High agreement was present in the diagnosis of IBH- positive or -negative 

cytopathologic specimens as compared to the paired histopathologic diagnosis for both 

pathologist and non-pathologist veterinary professionals. Notably, the high positive predictive 

value highlights the rarity of false positive calls made within the veterinary observations group, 

regardless of personal experience level. As such, a degree of diagnostic confidence can 

reasonably be held by a practicing veterinarian encountering a suspected cytopathologic IBH 

inclusion body in clinical cases. Further, the higher degree of positive agreement amongst 

observers for clinically derived samples is suspected to be due to the higher density of inclusion 

bodies present in these clinical samples, offering more opportunities to recognize the pathologic 

feature. However, in these clinical samples, disparity of inclusion body density was noted 

between cytopathology and histopathology, often observed as extensive areas of cellular and 

nuclear rupture on impression smear. This cell rupture was attributed to the increased fragility of 

diseased hepatocytes compared to their normal counterparts, emphasizing the importance of 

obtaining samples of high diagnostic quality using gentle impression technique during specimen 

preparation. In contrast, the rarity of inclusion bodies within experimentally derived samples, 

both cytologically and histologically, likely contributed to the lower agreement and predictive 
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values associated with pathologist evaluation. In several of these sample sets, IBH presence was 

determined by 1-2 inclusions total on either the cytopathology or histopathology component, 

resulting in discrepant diagnoses if no inclusions were also located within the paired sample. 

These results highlight a limitation of both cytopathology and histopathology in the definitive 

diagnosis of IBH, as both modalities are dependent on sample collection coinciding with a 

window of high viral replication with inclusion body formation. As these mismatched diagnoses 

occurred only within the experimentally inoculated group, and no incongruous designations 

occurred within the mock inoculated group or clinically submitted cases, these results support 

pathologist-evaluated cytopathology as comparable method to histopathology in cases of natural 

IBH infection exhibiting clinical morbidity. Further sensitivity and specificity characterizations 

of IBH-targeted cytopathology could be investigated using a larger sample set, sampling of 

inoculated birds exhibiting morbidity, blinded evaluation of clinically derived samples, and 

comparison of cytopathology to other laboratory tests, such as PCR or virus isolation.   

ACKNOWLEDGEMENTS  

Authors thank Susan M. Williams, Karen Grogan, Harlee Ingram, Llewelyn Sellers, 

Brittany Buckley, Will Byrum, Erich Linnemann, and Angel Olvera for their assistance in case 

management and sample processing.    

  



96 
 

REFERENCES 

1. Nahed A El-Shall, Hatem S Abd El-Hamid, Magdy F Elkady, Hany F Ellakany, Ahmed R 
Elbestawy, Ahmed R Gado, Amr M Geneedy, Mohamed E Hasan, Mariusz Jaremko, Samy 
Selim, et al. Epidemiology, pathology, prevention, and control strategies of inclusion body 
hepatitis and hepatitis-hydropericardium syndrome in poultry: A comprehensive review. 
Frontiers in Veterinary Science. 2022;9. doi:10.3389/fvets.2022.963199  

2. Chen L, Yin L, Zhou Q, Peng P, Du Y, Liu L, Zhang Y, Xue C, Cao Y. Epidemiological 
investigation of fowl adenovirus infections in poultry in China during 2015-2018. BMC 
Veterinary Research. 2019;15(1). doi:10.1186/s12917-019-1969-7  

3. Shah MS, Ashraf A, Khan MI, Rahman M, Habib M, Chughtai MI, Qureshi JA. Fowl 
adenovirus: history, emergence, biology and development of a vaccine against hydropericardium 
syndrome. Archives of Virology. 2017;162(7):1833–1843. doi:10.1007/s00705-017-3313-5  

 4. Zhang J, Xie Z, Pan Y, Chen Z, Huang Y, Li L, Dong J, Xiang Y, Zhai Q, Li X, et al. 
Prevalence, genomic characteristics, and pathogenicity of fowl adenovirus 2 in Southern China. 
Poultry Science. 2024;103(1). doi:10.1016/j.psj.2023.103177  

 5. Schachner A, Matos M, Grafl B, Hess M. Fowl adenovirus-induced diseases and strategies for 
their control–a review on the current global situation. Avian Pathol. 2018;47(2):111–126. 
doi:10.1080/03079457.2017.1385724  

 6. El-Shewy T, El-Morsi B, El-Bolkeiny N. Diagnostic cytology in some conjunctival diseases. 
Bulletin of the Ophthalmological Society of Egypt. 1976;69(73):27–37.  

 7. Thiel MA, Bossart W, Bernauer W, Thiel M. Improved impression cytology techniques for 
the immunopathological diagnosis of superficial viral infections. British Journal of 
Ophthalmology. 1997;81:984–988. doi:10.1136/bjo.81.11.984  

 8. Thiel MA, Bossart W, Bernauer W. Clinical evaluation of impression cytology in diagnosis of 
superficial viral infections. Klinische Monatsblätter für Augenheilkunde. 1998;212(5):388–391. 
doi:10.1055/s-2008-1034914  

 9. Latimer KS, Goodwin MA, Davis MK. Rapid Cytologic Diagnosis of Respiratory 
Cryptosporidiosis in Chickens. Avian Diseases. 1988;32(4):826–830. 
doi:https://doi.org/10.2307/1591006  

 10. Al-Noaimy ZAÂ, Al-Alhially AA. A cytopathological study of the role of liver impression 
as a diagnostic tool in pigeons. Iraqi Journal of Veterinary Sciences. 2021;35(3):555–560. 
doi:10.33899/ijvs.2020.127170.1477  

 11. Sousa J, Edwards E, Piccione J. What is your diagnosis: Liver nodules in a Turkey Poult. 
Veterinary Clinical Pathology. 2023;52(S2):146–148. doi:10.1111/vcp.13128  

 12. Khatun A, Begum JA, Naznin F, Parvin R, Rahman MM, Sayem SM, Chowdhury EH. 
Cytological evaluation of necropsy guided impression smears of chronic respiratory disease of 
chickens. SAARC Journal of Agriculture. 2012;10(2):95–105. doi:10.3329/sja.v10i2.18331  



97 
 

 13. Babu Prasath N, Selvaraj J, Ponnusamy P, Sasikala AM. An outbreak of pasteurellosis in 
Japanese quail chicks (Coturnix coturnix Japonica). Indian J. Anim. Hlth. 2018;57(2):189–194. 
doi:10.36062/ijah.57.2.2018.189-194  

 14. Kalinin V, Padnya P, Stoikov I. Romanowsky staining: history, recent advances and future 
prospects from a chemistry perspective. Biotechnic and Histochemistry. 2024;99(1):1–20. 
doi:10.1080/10520295.2023.2273860  

 15. Chantziantoniou N, Donnelly AD, Mukherjee M, Boon ME, Austin RM. Inception and 
development of the papanicolaou stain method. Acta Cytologica. 2017;61(4–5):266–280. 
doi:10.1159/000457827  

 16. Stilz CR, Fry MM, Craig LE. What is your diagnosis? Postmortem tracheal swab from a 
chicken. Veterinary Clinical Pathology. 2023;52(S2):149–151. doi:10.1111/vcp.13187  

 17. Sivaseelan S. Evaluation of efficacy of cytology for the prompt diagnosis of infectious 
Laryngotracheitis in commercial chicken. Indian Journal of Veterinary Pathology. 
2016;40(4):372. doi:10.5958/0973-970x.2016.00088.2  

 18. Tripathy DN, Hanson LE. A Smear Technique for Staining Elementary Bodies of Fowlpox. 
Avian Diseases. 1976;20(3):609–610. doi:https://doi.org/10.2307/1589398  

 19. Cho K-O, Park N-Y, Endoh D, Ohashi K, Sugimoto C, Itakura C, Onuma M. Cytology of 
Feather Pulp Lesions from Marek’s Disease (MD) Virus-Infected Chickens and Its Application 
for Diagnosis and Prediction of MD. J. Vet. Med. Sci. 1998;60(7):843–847. 
doi:10.1292/jvms.60.843  

 20. Viera AJ, Garrett JM. Understanding Interobserver Agreement: The Kappa Statistic. Family 
Medicine. 2005;37(5):360–363.  

  



98 
 

TABLES  

Table 3.1. Summarized clinical history and necropsy findings of chickens enrolled from 

diagnostic cases suspected of inclusion body hepatitis. 

Bird ID Age (d) Status Provided History Gross Pathology 
DX 01 27 Dead on 

Arrival 
Suspect IBH Hepatomegaly with pallor, petechia, 

and multifocal necrosis 
DX 02 27 Dead on 

Arrival 
Suspect IBH Hepatic pallor and mottled 

hemorrhage 
DX 03 27 Euthanized Suspect IBH Hepatomegaly with pallor, petechia, 

and multifocal necrosis 
DX 04 28 Dead on 

Arrival 
High mortality, 
loose droppings 

Hepatomegaly with pallor and 
petechia 

DX 05 28 Dead on 
Arrival 

High mortality, 
loose droppings 

Hepatomegaly with pallor, petechia, 
and multifocal necrosis 

DX 06 28 Dead on 
Arrival 

High mortality, 
loose droppings 

Hepatomegaly with pallor and 
mottled hemorrhage 

DX 07 28 Euthanized High mortality, 
loose droppings 

Hepatic pallor and petechia 

DX 08 29 Dead on 
Arrival 

High mortality, 
low growth rate 

Hepatomegaly with pallor and 
mottled hemorrhage 

DX 09 29 Dead on 
Arrival 

High mortality, 
low growth rate 

Multifocal hepatic necrosis, pallor, 
and mottled hemorrhage  

DX 10 33 Euthanized High mortality Multifocal, pinpoint hepatic necrosis 
DX 11 33 Euthanized High mortality Focal, pinpoint hepatic necrosis 

 
DX 12 36 Dead on 

Arrival 
High mortality, 
culls, and leg 
problems 

Hepatomegaly with pallor, petechia, 
and multifocal necrosis 

DX 13 36 Euthanized High mortality, 
culls, and leg 
problems 

Hepatic pallor and mottled 
hemorrhage 
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Table 3.2. Non-pathologist veterinary designations of twenty IBH-unknown liver impression 

smears. Each sample set (rows) origin is listed in the first column. Observers are identified as A-

H, each with independent designations of unknown cytopathologic samples as consistent (“Yes”) 

or not consistent (“No”) with inclusion body hepatitis (IBH). A cytopathologic designation is 

highlighted if in agreement with the final histopathologic diagnosis (last column) per sample set.   

Sample Observer Cytopathology IBH designation 

(agreement to histopathology) 

Paired 

Source A B C D E F G H Histopathology 

Diagnostic Yes No No No No No No No No 

Diagnostic No No No No No No No No No 

Experimental No No No No No No No No No 

Experimental No No No No No No No No No 

Experimental No No No No No No No No No 

Experimental No No No No No No No No No 

Experimental No No No No No No No No No 

Experimental No No No No No No No No No 

Diagnostic Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Diagnostic Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Diagnostic Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Diagnostic Yes Yes Yes Yes Yes Yes No Yes Yes 

Diagnostic No Yes Yes Yes Yes Yes Yes Yes Yes 

Diagnostic Yes Yes Yes No No Yes Yes Yes Yes 

Diagnostic No No Yes No Yes Yes Yes Yes Yes 

Diagnostic Yes No No No Yes Yes Yes Yes Yes 

Diagnostic Yes Yes No No Yes No Yes Yes Yes 

Diagnostic Yes No No No No No No Yes Yes 

Experimental No No No No No Yes No No Yes 

Experimental No No No No No No Yes No Yes 

 



100 
 

FIGURES 

 

Figure 3.1. Gross liver pathology of a naturally infected, clinically submitted chicken enrolled 

into the study at necropsy as bird “DX 05” for gross features typical of IBH infection. The liver 

is enlarged and has rounded margins, diffuse pallor, disseminated hemorrhage, and multifocal 

necrosis. 
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Figure 3.2. Histopathology of the liver, bird “DX 01”. An intranuclear inclusion body (arrow), 

typical of aviadenovirus infection, enlarges a hepatocyte nucleus. Hematoxylin and eosin. Scale 

bar = 5 μm. 
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Figure 3.3. Cytopathology of the liver, A–D. Birds DX 04 (A, C, D) and DX 01 (B). Intranuclear 

material (arrows), morphologically compatible with aviadenoviral inclusion bodies, enlarges 

hepatocyte nuclei. Romanowsky stain. Scale bar = 5 μm. 
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Supplemental Figure 3.1. Impression smear technique. A. Fresh liver is gently blotted until 

slightly tacky. B. Liver is gently impressed along a clean glass slide. C. Insufficient blotting 

results in areas that are too thick (arrow) to evaluate. D. Proper blotting allows a single layer of 

cells across the majority of the impression smear. 
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Supplemental Figure 3.2. Nondiagnostic structures that should not be interpreted as inclusion 

bodies. A. Large and small lymphocytes (asterisks) B. Monocytes (arrowheads). C. Overlapped 

nuclei (circled). D. Ruptured nuclei (brackets).    
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CHAPTER 4 

DISCUSSION AND CONCLUSION 

 

Avian reoviruses and fowl adenoviruses are responsible for diseases of economic importance in 

commercial broiler production, due to high morbidity or mortality, respectively. An 

understanding of disease pathogenesis can aid disease prevention measures, and rapid diagnosis 

at the time of an outbreak can facilitate disease containment.   

Localization of ARV GC2 in tissues by ISH. 

ARVs in chickens have been demonstrated as etiologic agents of tenosynovitis and have been 

associated with enteric disease, hepatitis, immunosuppression, myocarditis, and respiratory 

disease. Currently, the clinicopathologic manifestation of an ARV isolate cannot by predicted by 

genetic or antigenic features. The dual enteric and arthritic tropism demonstrated by the ARV 

GC 2 isolate studied here supports innate potential of the virus to infect multiple organ systems. 

As the inflammatory response to ARV infection differs greatly between tendon and other tissue 

types, the host immune response, or modulation thereof, may partially determine the 

development of organ-specific ARV-related disease. As such, investigation into early cell 

response following infection, via cytokines or other markers of cell distress, may further 

characterize the differing inflammatory responses and disease progressions between tissues. 

Further, ARV presence within differentiated cells in specific locations of the intestinal tract and 
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within the synovial membrane suggests a shared susceptibility of these cells to infection. As 

such, investigation into the identity and shared features of these cells may yield valuable 

information regarding unknown ARV cell receptors.  

Diagnosis of IBH by cytopathology. 

Adenoviral hepatitis in chickens is a concern globally, with IBH endemic to most poultry-

producing countries, and HHS endemic to epidemic in many others. As these diseases can 

present with sudden-onset, high mortality in field settings, rapid differentiation of these diseases 

from others of concern is imperative. Currently, IBH and HHS diagnoses depend on laborious 

and time-consuming laboratory techniques, which may add several days to a diagnostic 

investigation. This study demonstrates the utility of impression smear cytopathology for the 

rapid diagnosis of IBH. While results here are encouraging, future studies expanding the size and 

scope of work are needed. Comparison of cytopathology to other laboratory techniques such as 

PCR or virus isolation may allow for better establishment of sensitivity and specificity values, 

and investigations internationally may allow for study of, and applicability to, cases of HHS.   

In conclusion, despite decades of research dedicated to the characterization of viral diseases of 

poultry, a wealth of information may still be gleaned from classic methods of pathologic 

evaluation. However, the studies performed here point to additional avenues of investigation that 

warrant exploration. For avian reoviruses, determinants of cell susceptibility and the role of the 

host inflammatory response by tissue must be considered as key components of further 

pathogenesis studies. For fowl adenoviruses, as well as other viruses of economic importance, 

rapid, cost-effective, accurate testing modalities must continue to be developed for use in the 

field as front-line options for disease diagnosis and containment.  




