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ABSTRACT 

This dissertation follows a manuscript-style format, beginning with an introduction and 

literature review, followed by three distinct studies and a concluding section. All three studies 

use "Lucky Codes," an educational board game designed to foster computational thinking skills 

in elementary students, as the intervention. The first article details the development process of 

the board game with findings from addressing the challenges of balancing learning objectives 

with enjoyable gameplay and engaging students with higher-level programming concepts. The 

second article investigates the game’s efficacy through a qualitative pilot study with four 

elementary students. The study demonstrates how the game facilitated student engagement and 

their understanding of programming concepts. The third article provides a more in-depth analysis 

of the game through an exploratory case study, using a mixed methods approach to gain a more 

nuanced understanding of students’ game-based learning experiences. The study examines 

gameplay trends, changes in CT knowledge, and attitude patterns while also looking at gender 

differences.  

Together, these articles offer a comprehensive understanding of how educational board 

games can be designed, developed, and utilized to support CT education in K-12 classrooms. The 

collective findings underscore the potential of unplugged games as engaging and effective tools 



 

 

for teaching CT skills, providing practical recommendations for educators and game designers. 

This dissertation aims to provide deeper insights into the role of board games in CT education, 

address student needs in game-based learning environments, inform instructional strategies, and 

guide the development of more effective educational games. 

INDEX WORDS:  Computational thinking, K-12 education, Educational games, Game-based 
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CHAPTER 1  

INTRODUCTION AND LITERATURE REVIEW 

Background 

The project began in 2019 with a simple question: "How can a board game be created to 

foster computational thinking (CT) in a more fun and accessible way for K-12 classrooms?" 

While the emphasis on CT education was growing, accounts from teachers and literature reviews 

highlighted numerous challenges that educators frequently encounter when teaching the subject; 

these challenges will be detailed in the following studies. Based on these ideas, the journey to 

develop a board game began—a game that would be engaging, effective for learning, and easy to 

integrate into classrooms, ultimately serving as a practical tool for teachers. 

Using available materials in the office—such as pieces of paper, sticky notes, and 

various items lying around—the initial prototype of the game was created from scratch through 

multiple brainstorming sessions. These early prototypes underwent several rounds of 

experimentation and refinement while simultaneously establishing a solid theoretical foundation 

for the board game. However, rounds of literature review revealed that although there was ample 

research on digital game-based learning and unplugged CT learning, studies specifically 

addressing CT board games were relatively scarce. This lack of research provided limited 

resources and guidance for the development process, making the game development process 

more challenging than anticipated. 

This discovery sparked my passion for contributing to CT board game studies and 

sharing findings that could provide practical support to educators, researchers, and game 

developers. Drawing on existing theories and available findings, a fully functional board game, 
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Lucky Codes, was developed for the project; the details of the game will be explained in the 

following studies. This game was used as an intervention in the studies for this dissertation, with 

the ultimate goal of deepening academic understanding of board games as educational tools.  

Introduction  

Computational thinking (CT) has emerged as a vital skill in K-12 education, recognized 

for its role in equipping students with problem-solving abilities and system design skills relevant 

across various disciplines. Wing (2006) defined CT as using core computer science concepts to 

solve problems, create systems, and understand human behavior by applying core computer 

science concepts. Key components of CT include abstraction, sequencing, conditionals, 

algorithms, loops, parallelism, and debugging (Ezeamuzie & Leung, 2022). Over the past two 

decades, educators worldwide have increasingly integrated CT into K-12 curricula, reflecting its 

growing importance in preparing students for a technology-driven world (Lindberg et al., 2019; 

Nambiar, 2020). 

Programming education has been widely adopted as an effective way to introduce CT to 

young learners, particularly through visual block-based tools like Scratch and Code.org (Lye & 

Koh, 2014; Resnick et al., 2009). These tools help simplify the programming process, making 

programming more accessible to students without requiring them to learn complex syntax. 

Implementing computer-based programming education in K-12 classrooms often faces 

challenges, including limited teacher expertise in the subject, technological issues with the 

computers, and the inherently abstract nature of coding concepts, which can be especially 

challenging for classrooms with younger students (Bell & Vahrenhold, 2018; Boz & Allexsaht-

Snider, 2022). This highlights the need to explore alternative methods that engage learners in CT 

skills beyond traditional computer-based approaches. 
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One promising approach to teaching CT is the use of board games, which provide an 

unplugged, hands-on learning experience that makes CT concepts accessible to all students, 

independent of their access to technology (Bell & Vahrenhold, 2018; Gibson & Bell, 2013). By 

using tangible pieces, board games help students build concrete understandings of abstract CT 

concepts, making complex ideas more approachable. This tactile interaction not only enhances 

individual learning but also fosters peer discussion and collaborative problem-solving, as 

students can share strategies and learn from one another in a shared, interactive environment 

(Barsalou & Wiemer-Hastings, 2005; 2018). 

Despite these potentials, however, there are still gaps in their design and research that 

need to be addressed. Many existing CT-focused board games, such as Robot Turtles and 

CodeMonkey Island, often lack comprehensive programming concepts or rely on simplified, 

sequential card-stacking mechanics, which creates a significant gap between the gameplay and 

the actual programming environment (Scirea & Valente, 2020; Wu, 2018). Additionally, current 

research on educational board games often emphasizes self-reported data, focusing on motivation 

and user experience rather than examining how specific game mechanics influence the 

development of CT skills (Apostolellis et al., 2014; Gresse von Wangenheim et al., 2019). These 

limits leave questions about how game mechanics can effectively support the learning of 

different CT concepts. Understanding how students engage with CT board games based on 

varied levels of interest and learning preferences can provide valuable insights for creating more 

inclusive and effective educational tools. 

This dissertation study aims to address these gaps by exploring how specific game 

mechanics in educational board games affect CT skill development among boys and girls. By 

examining the learning processes and engagement patterns across genders, this collection of 
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studies aims to contribute to the understanding of educational board games for CT, supporting 

their effective use in enhancing students’ learning experiences and outcomes. 

The Terms: Computational Thinking, Computer Science, Programming, and Coding 

Since computational thinking has become popular in K-12 schools, the terms 

computational thinking, computer science, programming, and coding have been frequently used 

in educational settings such as school curricula, workshops, or after-school programs. However, 

these terms have often been used interchangeably without a clear distinction of what they mean, 

and numerous scholars have voiced the need to clarify their meaning (e.g., (Czerkawski & 

Lyman, 2015; Grover & Pea, 2013; Lu & Fletcher, 2009; Shute et al., 2017). While each term 

will need its own set of paragraphs to fully explain its origin and how they are being used in 

different fields, this section will briefly summarize each meaning and their relationship with each 

other, specifically in the K-12 education context. (See Figure 1.1 for the simplified visual 

representation of the relationship between the terms.)  

Computer science is a field of study that includes learning about programming. 

Computer science education, therefore, consists of not just learning how to program but also 

learning other skills, such as software engineering or information management. Computational 

thinking is a broader term than computer science because it is a way of thinking that applies to 

everyday problem-solving, not just to using computers or programming (Shute et al., 2017). 

Programming is a comprehensive process of creating a program that includes coding as well as 

planning, designing, testing, and deploying. In short, computational thinking includes many parts 

of computer science, and computer science includes learning about programming; programming 

is just one way of learning computational skills. 

Another frequently used buzzword in recent K-12 education is coding. While 
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programming and coding are not the same, practitioners often have used the two words as 

synonyms (Armoni, 2016; Duncan et al., 2014). By technical definition, coding is only a part of 

programming; it is the act of writing code the computer can translate. Recently, however, the 

word coding has been used more as jargon, especially in K-12 schools, to refer to a "much more 

playful and non-intimidating description of programming for beginners… to convey the 

beginning steps of programming, or programming with a tool intended for beginners" 

(Prottsman, 2017, para. 6). 

Using the word coding to represent programming could carry the risk of confusing 

students and educators, leading them to be overconfident about believing that they know all there 

is to programming when it, in fact, involves much more discipline (Tedre & Denning, 2016). 

However, there is also an advantage to using the word coding for young students in that it carries 

a hint of mystery (as in having a secret code that could be cracked), which could capture more 

students' interest (Duncan et al., 2014). Another significant advantage is that it is already used by 

so many people in K-12 education and has become a common concept that often does not require 

much explaining (Duncan et al., 2014). Recognizing these benefits and for more accessible 

communication of the meanings, this dissertation will also use the word coding as a synonym for 

programming, particularly since the focus of the study is on novice learners within the younger 

K-12 student population.
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Figure 1.1: Visual representation of the relationships between computational thinking, computer 

science, computer programming, and coding in K-12 education. 

Literature Review 

History of Computational Thinking 

In the last few decades in the field of K-12 education, computational thinking (CT) has 

become an essential topic, recognized for its importance in problem-solving and designing 

systems. In 2006, Jeanette Wing’s seminal essay entitled Computational Thinking launched a 

new wave of interest toward the term computational thinking. It spurred the movement to 

provide computer science courses for all students in K-12 schools. Computational thinking, until 

that time, was often only viewed as skills required for software development or mathematics and 

sciences. Wing (2006), however, redefined computational thinking as "a fundamental skill for 

everyone, not just for computer scientists" (p. 33) that teaches students problem-solving skills 

that are necessary for everyday life. Wing also believed that computer science education was not 

an objective but a tool that helped students understand computational thinking; CT was the result 
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of learning computer science. 

Following Wing’s definition of CT in the K-12 context, scholars have extensively 

worked to refine and broaden this evolving concept. Early definitions often emphasized technical 

skills tied closely to computer science, such as solving problems, designing systems, and 

formulating algorithms (Aho, 2012; Denning, 2009; Wing, 2006). These perspectives typically 

linked CT with specific programming tasks and the use of computers as problem-solving tools 

(Barr & Stephenson, 2011; Cuny et al., 2010). As research progressed, the focus shifted toward 

more generalized problem-solving skills, with less emphasis on technical specifics and computer 

reliance (Wing, 2006; Yadav et al., 2014). Recent definitions have further expanded the concept 

to highlight its broad applicability across various domains, emphasizing that computational 

thinking can be used "with or without the assistance of computers" (Shute et al., 2017, p. 151) 

and is valuable for "explaining and interpreting the world" (Denning & Tedre, 2021, p. 365). 

This evolution reflects a growing recognition of computational thinking as a versatile and 

fundamental skill relevant to diverse educational and real-world contexts beyond its original ties 

to computer science. 

Education in CT has now been widely accepted as a necessity for all students, regardless 

of age and background. Numerous scholars have called for integrating computational thinking 

into K-12 education (e.g., Barr & Stephenson, 2011; Grover & Pea, 2013; Lye & Koh, 2014). 

Educators and administrators worldwide have integrated CT-related subjects into K-12 curricula 

(Lindberg et al., 2019; Nambiar, 2020). In 2014, England led the way in adding programming as 

the mandated subject in the K-12 curriculum to nurture students’ digital literacy (Wong et al., 

2015). Finland soon joined to add computer programming as part of their country’s national 

curriculum, with the belief that the “future will be built by those who know how to code” 
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(Haaramo, 2014). In 2016, the United States initiated Computer Science for All to equip all 

American students with computer science skills, including coding (Smith, 2016). In subsequent 

years, more countries around the world, like Australia, Estonia, France, Israel, South Korea, 

China, Singapore, Taiwan, and Canada, have also started including coding as part of their core 

national school curricula (Lindberg et al., 2019; Nambiar, 2020; Wu et al., 2020). 

As these global efforts illustrate, programming has been widely recognized as an 

effective way to develop CT skills, including problem-solving, analytical thinking, algorithmic 

thinking, and critical thinking (Bocconi et al., 2016; Grover et al., 2015; Kafai & Burke, 2014; 

Lye & Koh, 2014; Resnick et al., 2009; Wong et al., 2015). Moreover, programming also fosters 

creative thinking, expression, and communication, which are vital for students' overall cognitive 

and creative development (Strawhacker & Bers, 2019). As the demand for coding skills 

continues to grow in the job market, learning to code also prepares students for future career 

opportunities (Nambiar, 2020; World Economic Forum, 2016). Given these advantages, scholars 

have advocated for introducing coding education at an early age, arguing that early exposure to 

programming concepts enables students to more readily grasp and apply these skills throughout 

their academic and professional journeys (Forquesato & Borin, 2018). 

Techniques and Strategies 

The techniques and strategies for teaching coding have evolved significantly over the 

years. Traditionally, coding instruction relied heavily on textbooks, where students followed pre-

written code examples and made minor modifications, or instructors presented the syntax and 

features of a specific programming language. However, these methods often left students with a 

basic familiarity with programming concepts but without the problem-solving skills needed to 

apply them effectively (Gaspar & Langevin, 2007). Robin et al. (2003) argued that teaching 
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should focus more on the cognitive processes involved in programming rather than solely on 

conceptual knowledge. 

To improve coding instruction, researchers have explored various non-traditional 

methods. Ali (2005) suggested three strategies for introductory computer science education: 

scaffolding, concept mapping, and constructivism. Scaffolding provides support during the 

problem-solving process, gradually leading students to independent learning. This can be 

facilitated through intelligent tutoring systems that offer customized guidance and feedback. 

Concept mapping involves the use of visual symbols or diagrams to represent knowledge, 

helping students understand complex relationships. Constructivism encourages students to 

actively construct new knowledge by integrating it with what they already know, emphasizing 

the importance of understanding prior knowledge, refining learning activities, and developing 

problem-solving skills and assessment methods. 

Another widely recognized strategy is live coding, which involves "the process of 

designing and implementing a [coding project] in front of the class during the lecture period" 

(Paxton, 2002, p. 52). Studies have supported the benefits of using this approach. For example, 

Paxton's (2002) and Gaspar and Langevin's (2007) studies found that students preferred live 

coding more than static lectures, yielding better learning outcomes. Bennedsen and Caspersen 

(2005) reported that recorded live coding sessions also led to high learning outcomes in online 

courses. Similarly, Rubin (2013) found that live coding helped students perform better in final 

projects by modeling good programming habits like iterative testing. They concluded that live 

coding is as effective, if not better, than traditional teaching, particularly in helping students 

manage larger assignments. 

Specific techniques have also been developed for teaching coding to younger children. A 
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popular way to introduce coding to children is through visual block-based programming tools 

such as Scratch and Blockly. These tools allow children to learn basic coding skills and then 

apply them creatively in projects such as stories, games, and quizzes (Bottino et al., 2020; Pinto 

& Escudeiro, 2014). Kaplancali and Demirkol (2017) identified a structured approach for 

teaching these fundamental coding concepts, suggesting a two-tiered sequence: first-tier concepts 

include algorithms, loops, and if-conditionals, followed by second-tier concepts like functions, 

graphics, variables, and lists. 

Another effective approach for teaching young learners is the use of unplugged 

activities, which teach coding concepts without computers or digital devices. Examples include 

coding board games like Robot Turtles and Code Master, physical demonstrations of coding 

actions (e.g., repeating dance moves to illustrate loops), or hands-on activities using physical 

objects to represent coding concepts (e.g., using envelopes to teach variables). These unplugged 

activities make coding more accessible to all students, including those without access to 

technology and help concretize abstract concepts using tangible objects (Bell & Vahrenhold, 

2018; Gibson & Bell, 2013). Additionally, unplugged activities foster collaborative learning, as 

they allow students to work in teams, observe and learn from one another, and actively 

participate without the distraction of personal devices.  

Challenges of Coding Education 

Teaching programming is difficult (Grover et al., 2015). Despite the continuing research 

into effective instructional strategies for coding education, many challenges remain. One major 

issue is the overall lack of appropriate teaching resources. The available instructional materials 

for teaching computer programming do not always consider the audience's varying levels of prior 

knowledge or developmental capabilities (Shanley et al., 2022; Strawhacker & Bers, 2019). 
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Additionally, there is a shortage of teachers with the necessary background in computer science, 

leaving many educators unsure about what content to teach or how to integrate coding into other 

subjects (Boz & Allexsaht-Snider, 2022; Mason & Rich, 2019; Yadav et al., 2014). The scarcity 

of professional development programs further compounds this problem, as teachers lack 

opportunities to learn how to incorporate coding into the existing curriculum effectively (Bower 

& Falkner, 2015; Boz & Allexsaht-Snider, 2022; Mills et al., 2024). As a result, many teachers 

report feeling unprepared and lack confidence in teaching coding to young students (Bower & 

Falkner, 2015; Boz & Allexsaht-Snider, 2022; Mason & Rich, 2019). For instance, Sentance and 

Csizmadia's (2016) survey of 1100 teachers in the UK found that despite spending over 100 

hours on self-study and workshops, they still felt inadequately prepared to teach programming, 

which often led to decreased motivation and negative attitudes toward the subject. 

Teachers also face systemic challenges in coding education, including inadequate 

infrastructure and limited support. Bećirović (2023) and Ntorukiri et al. (2022) identified limited 

access to technology, insufficient administrative and policy support, and inadequate 

infrastructure as major barriers to effective technology integration in education, emphasizing the 

need for professional development and supportive policies. Similarly, Kim et al.'s (2019) 

investigative report on coding education in schools in South Korea identified several major 

challenges, including a lack of understanding of coding's importance among teachers and 

administrators, insufficient access to essential equipment such as tablet PCs or computers, and 

unreliable network connections, which can lead to overall low-quality instructional support and 

educational disparities. In Hong Kong, Wong et al. (2015) found that primary teachers struggled 

with student disinterest, limited lesson planning time, and lack of support from parents and 

curriculum guidelines, while secondary teachers faced additional challenges related to 



11 

programming syntax, abstract concepts, and managing diverse skill levels in the classroom. 

These challenges highlight the need for comprehensive support systems and targeted professional 

development to help teachers effectively implement coding education. 

The Potential of Games in Coding Education 

Games offer a promising solution to some of the challenges faced in programming 

education. They act as flexible instructional materials that support students with diverse abilities 

by providing built-in scaffolding, such as levels and hints, which allows students to learn at their 

own pace. Providing such scaffolding effectively supports students with varying abilities within 

the same learning environment (Pea, 2004; Revelle, 2013). Digital games, especially, often 

include sequences of levels that gradually increase in difficulty as players become more 

proficient (Revelle, 2013). They also offer hints or clues to help students who need extra support 

with solving problems. Beginner students can choose to use these aids and stay at lower levels 

longer, while advanced students can proceed more quickly to higher levels.  

These scaffoldings can also reduce the burden on teachers who may lack sufficient 

knowledge or strategies, often saving their valuable planning time. Games are dynamic, adaptive, 

and autonomous, fostering self-regulated learning that allows students to manage their own 

learning experiences (Neitfeld & Shores, 2011; Nietfeld et al., 2014). Although teachers also 

need to become familiar with the game in advance to be able to assist students, the built-in 

support within games often reduces the need for extensive teacher intervention compared to 

traditional methods. 

Another major challenge in programming education is that students often lack the 

motivation to learn to code. The concepts in coding often require a high level of abstraction, 

which can be difficult for young learners. Games are well-known for their potential to enhance 
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student motivation and engagement (Mayer, 2014; Kapp, 2012; Plass et al., 2015). Games 

include features such as incentive systems, competition, instant feedback, and challenges, all of 

which are known to promote motivation and engagement that are strongly linked to student 

achievement (Shute et al., 2009). Additionally, games promote motivation through "graceful 

failure," allowing players to learn through repeated attempts without severe consequences (Plass 

et al., 2015, p. 261). When playing games, players expect to have failures in the first few 

attempts. These failures create the necessary challenges to make the tasks more interesting, 

giving players a higher sense of achievement when they succeed. The low consequences of 

failures encourage risk-taking, exploration, and trying new strategies (Hoffman & Nadelson, 

2010). This makes games particularly effective in coding education, as they stimulate curiosity 

and challenge, keeping students engaged with abstract programming concepts that might 

otherwise seem unappealing. As Mladenović et al. (2016) noted, “students are not even aware 

they learn problem-solving, debugging, and making scenarios; instead, they think they are 

simply [playing]" (p. 523). 

Lastly, games also allow programming to be learned in an unplugged environment, 

which addresses the challenges related to inadequate technological infrastructure and difficulties 

in grasping abstract programming concepts. Unplugged games, such as board games or card 

games, do not require digital devices or internet connection, making them accessible for 

classrooms without adequate technology. Several unplugged coding games for kids are available 

in the market, such as Robot Turtles, Code Master, and CodeMonkey Island. There are also 

numerous online resources, such as Teach Your Kids Code (teachyourkidscode.com), CS 

Unplugged (https://www.csunplugged.org/), or Hour of Code (https://hourofcode.com/) that 

provide ideas for using everyday items to create fun unplugged game-based activities for 

https://teachyourkidscode.com/
https://www.csunplugged.org/
https://hourofcode.com/


13 

children to learn fundamental programming concepts. Such activities not only make coding 

education more accessible to classrooms but also allow students to interact with tangible objects, 

helping to make abstract concepts more concrete (Barsalou & Wiemer-Hastings, 2005). For 

example, understanding the concepts of variables and values in programming can be particularly 

challenging for young students due to their abstract nature (Piteira & Costa, 2013). In the 

Nursery Rhyme Coding Game (Siu, 2021), jars and scrap pieces of paper are used to represent 

variables and values. Each jar is labeled with different variable names like nouns, verbs, and 

adjectives. Students are to write values on pieces of paper that would go inside the corresponding 

jars. This physical representation helps young learners understand abstract ideas more easily, 

demonstrating how tangible objects can enhance the comprehension of programming concepts. 

Purpose Statement 

The purpose of this dissertation is to explore the design, implementation, and impact of a 

board game developed for K-12 classrooms to enhance computational thinking (CT) skills. By 

combining three distinct but related studies, this work aims to contribute to understanding how 

unplugged educational games can be effectively integrated into classroom settings to support CT 

learning, focusing on student engagement and interest, with consideration of gender differences.  

Dissertation Structure 

This dissertation employs a multiple-article structure that follows the University of 

Georgia Graduate School guidelines (2024) for a manuscript-style dissertation. Based on the 

guidelines, this style of dissertation includes an introduction and literature review chapter, three 

chapters formatted as articles intended for publication in peer-reviewed scholarly journals, and a 

concluding chapter that brings together the significant findings and implications of the overall 

study. The primary reason for the multiple-article structure is that it allows for a comprehensive 
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exploration of the different facets of the research topic, each addressed through distinct but 

interconnected studies. This format provides the flexibility to delve deeply into the design, 

implementation, and impact of the educational board game while also enabling the inclusion of 

detailed analyses on specific aspects, such as practical application in classroom settings and the 

consideration of gender differences in computer science education. 

Table 1.1 illustrates the connection between the three studies discussed in Chapters 2 to 

4 and how each article contributed to the development of the next article. Article 1 (Chapter 2), 

entitled Designing a Board Game for Beginning Block-Based Programmers, presents the design 

story of the board game, detailing the concepts, theories, and iterative processes behind the 

creation of earlier prototypes, along with initial playtesting to gather feedback. This foundational 

study established the educational rationale and design principles that guided the refinement of 

the game and shaped the research questions for the second article.  

Article 2 (Chapter 3), entitled Using a Board Game for Computer Programming 

Education, presents the final version of the game’s development and centers on its initial efficacy 

evaluation. The study includes a pilot study with four students, video recordings, transcriptions, 

and analyses of student engagement and their understanding of programming concepts. Building 

on the design principles established in Article 1, this study offered preliminary evidence of the 

game’s impact on learning, informing further evaluation and refinement for the next article. 

Article 3 (Chapter 4) expands on these insights through a comprehensive case study with 

17 students across three days of gameplay sessions. The study involved multiple data sources, 

including pre- and posttests, surveys, observations, and interviews. The focus was on identifying 

gameplay trends, changes in knowledge, and gender differences. Drawing on insights from the 

game's initial design and testing stages detailed in the previous articles, this study aimed to 
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deepen the understanding of students’ interaction and experiences with the board game with 

additional consideration of gender differences. 

 

Table 1.1: Overview of three studies. 

Article Study Overview Role 

1 

Designing a 
Board Game for 
Beginning 
Block-Based 
Programmers 
 
(Published; see 
Yang & Kopcha, 
2022) 

A design case of a 
board game for 
block-based 
programming; 
methods include 
conceptualization, 
initial playtesting, 
and feedback 
collection.  

This article laid the foundation for 
the board game’s design and 
development, detailing the 
iterative process of balancing 
gameplay, learning, and player 
engagement. It focused on 
refining game mechanics to 
effectively teach advanced 
programming concepts like 
conditionals and loops. The 
design insights from the findings 
shaped the research questions of 
the second article, which 
examined how these mechanics 
support and enhance children's 
programming skills during 
gameplay. 

2 

Using A Board 
Game for 
Computer 
Programming 
Education: A 
Qualitative 
Exploratory 
Study 
 
(Under review) 

Evaluation of initial 
efficacy of the game 
and its learning 
effects; methods 
include a pilot study 
with four students, 
video recording and 
transcription. 

This article evaluates how the 
design principles from Article 1 
impacted students’ CT skill 
development through gameplay. 
Key findings reveal that the 
game's mechanics, particularly 
incentivizing the use of 
conditionals and loops, increased 
student engagement with these 
advanced programming concepts.  
These insights laid the 
groundwork for Article 3, which 
further examines the impact of 
extended gameplay and gender 
differences. 
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3 

How Do Boys 
and Girls Learn 
Computational 
Thinking 
Through a Board 
Game? A Case 
Study of  

A case study of Lucky 
Codes with 17 
students across three 
days; methods 
include multiple data 
sources, pre- and 
posttests, surveys, 
observations, and 
interviews. The 
analysis focuses on 
gameplay trends, 
knowledge changes, 
and gender 
differences.  

This article expands on Article 2’s 
findings by conducting a more 
detailed examination of how 
extended gameplay affects 
students' engagement and 
learning, with a particular focus 
on gender differences. The main 
finding indicates that boys and 
girls showed distinct patterns in 
their engagement and CT skill 
development, highlighting how 
specific game mechanics 
influence learning and gameplay 
experience differently across 
genders. 
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CHAPTER 2  

DESIGNING A BOARD GAME FOR BEGINNING BLOCK-BASED PROGRAMMERS1 

 

 

1 Yang, D. and Kopcha, T. 2022. International Journal of Designs for Learning. 13(1): 35-45.  
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Abstract 

Computer programming has become an essential part of K-12 education, promoted as a 

way for students to engage in computational thinking that helps develop students’ ability to 

analyze and solve problems and prepare them for future careers. Tabletop board games are seen 

as an effective means to help students learn computer programming. Several board games have 

been developed for teaching computer science to novice students. Still, many are dominated by 

simple pathfinding movements lacking comprehensive use of various computer programming 

concepts or have a considerable gap between the game dynamics and the actual coding that takes 

place on the computer. This paper presents a design case in which we used Kalmpourtzis’ (2018) 

elements of educational game design (game elements, learning, and players) to develop a board 

game that engages players who are learning block-based computer programming. We present the 

four major prototypes and the challenges for each step. Then, we highlight three main areas in 

which our design process offers implications for the design of educational board games.  

Introduction 

Computer programming has become an important part of K-12 education, promoted as a 

way for students to engage in computational thinking that helps develop students’ ability to 

analyze and solve problems effectively and efficiently (Shute et al., 2017; Wing, 2006) and to 

prepare them for future careers (Gresse Von Wangenheim et al., 2019). Research suggests that 

learning computer programming skills early at a young age can improve both their skill 

development and interest in computer science in the future (Bers et al., 2014; Sharma et al., 

2019; Tsan et al., 2018). However, learning computer science and programming can be a 

daunting process for novice learners; it requires multiple higher-level thinking skills and an 

understanding of abstract concepts (Mcgettrick et al., 2005; Piteira & Costa, 2012; Robins et al., 
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2003). Students must learn the language of the computer, conceptualizing how different 

commands and codes will manifest when a program is running. 

Adding to the challenge of introducing computer science to younger students is an 

overall lack of materials and teacher training. The available instructional materials for teaching 

computer programming do not always take into account the developmental needs and capabilities 

of the audience (Walton-Hadlock, 2008), resulting in resources and activities that are too difficult 

for students to accomplish without intervention. In addition, teachers often lack the background 

knowledge and skills needed to teach children to program a computer (Bell et al., 2009). This is 

due, in part, to a lack of teacher-preparation programs that help novice teachers learn and teach 

computer programming (Yadav et al., 2016). Although several block-based programming 

languages for kids have been developed (e.g., Scratch or Blockly), many teachers continue to 

express a lack of confidence and concerns with having to teach such an abstract language on the 

computer to young students (Ericson et al., 2016; Thompson et al., 2013).  

Tabletop board games are seen as an effective way to help young children learn 

computer programming. The use of games in learning, in general, has been shown to enhance 

students’ interest, engagement, and motivation (Apostolelliset al., 2014; Barab et al., 2010; 

Barata et al., 2013; Nah et al., 2014). Games also provide learners with an opportunity to focus 

on a small set of essential skills that can be mastered in a friendly, engaging manner (Barab et al., 

2010). In the context of computer science, board games not only make learning accessible for 

anyone with or without the digital infrastructure (Bell & Vahrenhold, 2018; Gibson & Bell, 

2013) but also are especially effective in helping younger players develop concrete 

representations of abstract concepts (Hinebaugh, 2009). This is particularly important when deal-

ing with complex concepts such as algorithms, conditionals, and loops that tend to be 
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overwhelming not only for young children to understand but also for adults to teach children 

(Fotaris et al., 2016, Olsson et al., 2015).  

Several board games have been developed for teaching CT and computer science to 

children - commercial games such as Robot Turtles and Codemaster, and a few that were de-

veloped for research purposes (e.g., Apostolellis et al., 2014; Gresse von Wangenheim et al., 

2019; Tsarava et al., 2018). These games support computer programming in that they require 

players to use a combination of codes (e.g., move forward, left, right) or patterns to manipulate 

objects on the game board and achieve game goals. However, current challenges with such 

games are that they are generally often dominated by path movement as the primary game 

dynamic – that is, through simple sequencing of directions rather than a comprehensive use of 

various computer programming concepts. This dynamic presents a considerable gap between the 

game and the actual coding that takes place on the computer (Wu, 2018). Despite the popular 

demand for such games, little attention has been spent in the literature on the process of 

designing and developing educational games (Gresse von Wangenheim et al., 2019), still leaving 

many questions about how a board game that teaches computer programming skills should be 

designed.  

This paper presents a design case in which we used Kalmpourtzis’ (2018) elements of 

educational game design (game elements, learning, and players) to develop a board game to 

teach young children basic computer programming concepts and skills. The impetus for the 

project came from a practical issue repeatedly noted by the authors. The online programming 

environments, Scratch and Scratch Jr., are promoted as essential tools for teaching computer 

programming skills. However, in our work with local schools, we noticed that both teachers and 

students often needed an introduction to block-based programming before they could be 
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successful with the available online tools. This gave us the idea for the board game – our 

thinking was that we could address this practical issue by creating a safe environment in which 

children and their teachers could learn to use a limited set of block-based codes before moving to 

an online programming environment. We hoped that the game would help children transition to 

more sophisticated programming in the future.  

With that context in mind, the main goal of the board game was to introduce beginning 

programmers to the block-based language and basic programming concepts used in Scratch. We 

had two target audiences in mind for the game. The first was children from grades three to five; 

the game was designed to help players practice the concepts found in the Computer Science 

Teachers Association (2017) standards for grades three to five, such as sequencing movements, 

looping or repeating subroutines, and if-then conditionals. We also thought that the game and 

game elements would be useful for adults who were just learning about block-based 

programming. Thus, our second audience was adults interested in learning block-based 

programming basics so they could support young children in learning CS skills (e.g., novice 

teachers). Table 2.1 describes how various programming concepts were incorporated into the 

game.  

 

Table 2.1: Basic programming concepts that were incorporated in the game. 

CS CONCEPTS IMPLEMENTATION IN THE GAME 
Sequences Players will create and follow codes in a sequence to make their 

character move in favor of the player’s strategy (e.g., deciding to 
turn right first, then move three steps forward to avoid an obstacle 
and move towards a reward). 

Algorithms With limited access to code tiles, players will consider and 
compare different ways to solve a task and decide which would be 
the best solution for them. 

Loops With a limited number of code tiles in their hands, players will use 
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“repeat __ times” to repeat a sequence of codes multiple times 
rather than listing the same commands repeatedly. 

Conditionals Players will use “if __ then” statements to move across obstacles 
or collect more rewards when the condition is met. 

 

The design process involved four iterations of playtesting. The first three playtests were 

conducted with graduate students in the field of Learning, Design, and Technology; for the fourth 

playtest, both graduate students and a 5th-grade student at a local school played the game. We 

intentionally began our playtesting with graduate students because we were concerned that 

children might not tolerate the flaws in the gameplay and learning dynamics inherent in our 

initial design. The graduate students had little to no prior experience with Scratch programming. 

Our goal was to work first with adults with an underlying background in learning design to refine 

the game and learning dynamics. This would, in turn, help us make better use of our time when 

prototyping with young children.  

In the first playtest, the players identified critical issues with the initial game core, 

gameplay, and learner dynamics. The second playtest occurred after making a major change in 

the game mechanics. Once the game mechanics were working, the third playtest focused on 

improving the aesthetics of the game and the learning dynamics. The fourth playtest, which took 

place most recently, focused on making the game enjoyable while also engaging players in 

higher-level computer programming concepts.  

In the sections that follow, we present our initial design and detail the development 

process across the four prototypes, highlighting the important challenges that were faced during 

an educational game design process. We then suggest implications for future designers. 

The Game Core 

The “game core” is a term used by George Kalmpourtzis in his book Educational Game 
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Design Fundamentals (2018). The game core represents the essential intent and purpose for the 

game being designed. According to Kalmpourtzis, establishing the game core before the creation 

process is fundamental:  

By figuring out their game core, game designers establish a concrete starting point that 

will help them avoid future issues like technical restrictions, communication problems, finding 

materials that will affect deadlines, budget, member motivation, and the final impact of the 

designed game (p. 117).  

We chose Kalmpourtzis’ (2018) perspectives to guide our design process. Kalmpourtzis 

suggested that the game core be established by focusing on three essential aspects of educational 

game design: (1) the players, (2) the game elements and mechanics, and (3) the learning that will 

take place. He stated that these three aspects are important because a successful educational 

game designer must consider who the players will be as well as their preferences and learning 

goal. These factors would ultimately influence what game elements will be included and how the 

game mechanics will address the desired learning objectives. Based on this idea, our goal as 

designers was to balance these essential aspects so that the game is fun while ensuring that the 

players learn from the game. 

  

Figure 2.1: The goals for our board game in the context of Kalmpourtzis’ (2018) Game Core. 
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With Kalmpourtzis’ perspectives in mind, our game design process began by identifying 

the general objectives within each of the three core aspects (see Figure 2.1). First, we wanted to 

create a board game that would be appealing to both adults and children (players) who were 

learning basic and advanced programming concepts, including conditionals and loops (learning), 

in a way that was fun and resembled the Scratch programming environment (game). Note that 

the three elements are interrelated, so it is not always easy to make a clear distinction between 

each perspective during game design (Kalmpourtzis, 2018). It is important that the designers 

keep the framework in mind during the initial stages of educational game design; they serve as 

guidelines that help designers attend to each of the critical aspects of game design, considering 

how each major design decision affected each aspect, and consciously finding the optimal 

balance between game, player, and the content to be learned. 

In the following sections, we present a design case associated with creating an 

educational board game that achieved our goal of supporting beginning programmers in learning 

computer science. The case focuses on how we, as designers, engaged in the process of 

prototyping that attempted to balance our goals for the game, players, and learning. Below, we 

present each of the four main prototyping sessions, including the problems that arose from each 

prototype and our design decisions that helped resolve those problems in each subsequent 

version. (See Appendix for the summary of challenges in each prototype.) 

Prototype 1: Brainstorming 

The overall focus of the first prototype was on developing and testing game mechanics. 

Playtesting our initial design revealed issues with the complexity of the game mechanics and a 

need to make gameplay more engaging for players. These issues are described in detail below in 

terms of the focal point of our design and the results of the prototyping session. 
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Design Focus 

Development of the first prototype began by brainstorming the gameplay mechanics. 

The prototype was constructed simply using markers, crayons, sticky notes, and readily available 

objects. Because our target audience was players who were new to programming, the concepts 

used in the game were intended to be intuitive and easy to understand without any prior 

knowledge.  

The earliest idea for gameplay was to move robots on a grid (see Figure 2.2). Although 

we wanted the game to incorporate more advanced programming concepts, we began with 

movement as it allows novice players to mimic how characters are programmed to move in 

digital settings and sequence a computer program in a way that makes intuitive sense. Since one 

of our objectives was to help such players become familiar with the Scratch programming 

environment, we used words and functions typically associated with Scratch, such as moving a 

specific quantity and turning to face the desired direction.  

The game board was constructed on a grid so that players could assemble code cards 

(i.e., the sticky notes in Figure 2.2) to program their robots (round toys) to move and avoid 

obstacles (crayons) while collecting rewards (blocks) and points (colored spaces). We also 

included placeholders for constructing blocks of commands. These include spaces for: taking 

direct action, constructing variables, and constructing repeatable functions. Our thinking was that 

these would support the learning aspect of the game core. The spaces on the gameboard invited 

players to apply basic concepts (i.e., movement) while offering space for more advanced 

programming concepts (i.e., loops, conditionals). 
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Figure 2.2: The first prototype of our game used readily found objects (i.e., crayons, sticky notes) 

to draw game board layouts and represent game objects. 

 

Results 

Two major issues were found. The first dealt with the balance between the players and 

the learning: it was difficult for the players to understand what each placeholder meant. We 

anticipated that this difficulty would create a high entry barrier for beginning players to fully 

understand the game and find the game fun to play. The second issue dealt with the game: there 

was not enough space for the robots to move around and the players to assemble block codes on 

a single game board. Both of these issues became the focus of our improvements in our second 

prototype. 

Prototype 2: From One to Two Game Boards 

Our work on the second prototype (Figure 2.3) began with a focus on the game and the 

players. Our goal was to improve the game board design so that game mechanics were more 

intuitive for players and that there was more room for gameplay. A major design decision in the 
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second prototype was to distribute the game mechanics across two separate game boards - one 

for computer programming and one for the movement of the robot. Playtesting revealed that the 

gameplay significantly improved for the players but did not address the learning of computer 

programming in a substantial way. Detailed issues are described below in terms of the focal point 

of our design and the results of the prototyping session.  

 

Figure 2.3: Design sketches of our ideas for having two game boards at once, where one board 

was for coding and the other for the robot to move around. 

 

Design Focus 

Our first prototyping session revealed that players felt constrained by the physical 

aspects of the game board -- there was not enough room on the board for players to construct 

blocks of code and simulate the movement of the robot. To address this issue, we ultimately 

separated the construction of code from the actions of the robot. As shown in Figure 2.3, 

gameplay would now take place across two game boards: (1) an “action board” where the 

players would move the robot, and (2) a “coding board” where players would construct blocks of 

code. We were inspired by Scrabble and Rummikub in that we used tiles on a grid that could be 

modified by all participating players. Each tile would become part of a code block, and the 

players could combine the tiles to build statements to make their characters move toward a goal.  
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We anticipated that our design decision about the game (i.e., use two game boards) 

would address the two other components of the game core: the player’s experience and the 

learning components of the game. Having two game boards would help reduce the confusion 

created in the first prototype from having multiple areas on a single board for different types of 

programming skills (e.g., variables, functions). In turn, this would make it easier for players to 

develop effective blocks of code from their first move in the game (i.e., learning). It also added 

more space for characters to move the robot around while more closely resembling the Scratch 

programming environment, which provides users a separate space for building codes. 

Results 

The second prototype was playtested with three graduate students who had no or little 

experience with Scratch. The participants agreed that using tiles to make codes was a unique and 

fun experience. However, the players’ use of tiles was limited to basic moving and turning 

movements. Rather than engage in higher-level programming concepts such as conditionals, they 

were primarily focused on collecting immediate rewards using simple movements. The players 

also were unclear of the game rules during the play, which significantly slowed down the game. 

The challenge of finding the balance between the game elements (finding a good game 

mechanic) that can include the necessary learning objectives (advanced programming concepts) 

while making the game still appealing for the targeted players (fun and easy to understand) 

remained. 

However, we were not sure at this point whether such a challenge was due to the game 

design itself or its loose structure and lack of an appealing story or visual design. Such missing 

parts seemed to limit the motivation of players to play the game long enough to move on from 

using simple movements to making more complex strategies using advanced statements. Hence, 
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it was necessary to add in the aesthetic elements for our next step to find out if the game did have 

the potential to prompt players to use advanced statements or if there was a fundamental flaw 

with the overall game design. 

Prototype 3: Making The Game Appealing 

The main focus of the third prototype, shown in Figure 2.4, was twofold. First, we 

sought to make the game more playable and appealing through improved structure and 

aesthetics. In addition, we sought to improve players’ use of higher-level computer programming 

concepts; this was a recurring issue from previous prototypes. The playtesting of this prototype 

eventually revealed important information about two aspects of the game core: the players and 

the learning. Specifically, the players were much more engaged with the game as we introduced 

a gender-neutral aesthetic, but the learning was still limited to sequencing simple movements 

rather than more advanced programming concepts (e.g., conditionals). Detailed issues are 

described below in terms of the focal point of our design and the results of the prototyping 

session. 

Design Focus 

Several research studies have asserted the need for gender equity in designing 

instructional materials for computer science education (Barab et al., 2005; Grover & Pea, 2013; 

Justice & Markus, 2010). With this need in mind, we considered several gender-neutral themes to 

improve the appeal and aesthetics of the game. Our final selection was “bears on an adventure.” 

In line with the theme, colored areas in the previous prototypes were replaced with water, grass, 

and pit holes. Rewards (honeycombs, berries, fish) and obstacles (rocks and trees) were put on 

the board with physical objects made of playdough and small toys to provide a more interactive 

and tangible experience for the players.  
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With regard to the game, the primary goal was for players to randomly collect tiles of 

codes and assemble them on the coding board to move their characters on the action board. On 

the action board, players could earn points by collecting rewards, where each reward type had a 

different point value. The player with the most points in total would win the round.  

On the coding board, the tiles were categorized and color-coded by words and non-

words. To encourage learning, the block of code at the center was usable to both players; each 

round, a player could add to it or modify it to their liking. For example, in Figure 2.4, the first 

player constructed a block of code, “Turn [diagonal]” then “Move 2 [squares].” Building on 

existing blocks of code encouraged players to actively make strategies that could build into more 

advanced programming. Also, the player that used up their tiles first would end the round and 

receive bonus points. The goal of this reward was to encourage players to build more advanced 

codes so that they could use up their tiles more quickly. 

 

Figure 2.4: Graduate students playtesting prototype 3, with the tiles categorized and color-coded 

into two types: words and non-words/symbols. 
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Results 

The prototype was playtested with five graduate students, including three novice players 

and two returning players. It was clear that the added aesthetics and story attracted the players’ 

attention and increased their motivation to be more engaged in the game. The participants 

reported that the game was fun to play and that having physical objects on the board to collect or 

avoid made the game much more interactive. 

However, now that the game had more solid rules and content, several significant 

limitations were more evident:  

The players were confused over the different tile types. For example, the tile “move” 

was to be used with numbers to mean ‘move [number] steps forward.’ Similarly, the “turn” was 

to be used with an arrow to indicate ‘turn to face [direction of the arrow].’ The variation made 

gameplay confusing for the players, who needed repeated reminders about how to use the tiles on 

the coding board to move their character on the action board. 

There was still an issue with encouraging players to engage in higher-level computer 

programming concepts such as conditionals and loops. One primary reason for this issue was that 

the gameplay required players to wait until they collected all the tiles needed to complete a 

complex command. This was frustrating and tedious. For example, it might take multiple rounds 

of gameplay before an if-then statement could be constructed to completion. Often, the need for 

the statement passed before the tiles could be played. As a result, players found it easier to rely 

on simple movements rather than attempt more advanced gameplay. 

Prototype 4: Adding Scaffolds 

Design Focus 

Prototype 4 (see Figure 2.5) addressed the two issues that were revealed in the previous 
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prototype. First, we added structure that reduced player confusion over the meaning of each tile. 

Second, we continued improving the gameplay to encourage players to engage in higher-level 

computer programming concepts. Playtesting revealed that both the graduate and the 5th-grade 

students found the game intuitive and were more motivated to use advanced codes than in 

previous versions of the game. One challenge arose regarding the retention of players’ 

engagement and motivation. Detailed issues are described below in terms of the focal point of 

our design and the results of the prototyping session.  

 

Figure 2.5: The final prototype. Numbers were added to the tiles and coding board to guide the 

placement of each tile. 

 

Results 

The prototype was played with two groups of playtesters: (1) a group of three adult 

players, including two novices and one expert in computer programming, and (2) one with a 

fifth-grade student who was familiar with working with Scratch. After one round of gameplay 

(20 minutes) for each group, all players agreed that they were motivated to use the advanced 
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programming concepts. When the novice players played the game, they began by using simple 

movement codes. As the game progressed, they soon began creating more complex codes that 

involved conditionals and loops. Although returning players began using advanced codes sooner 

than novices, both groups created a similar level of statements by the end of each round. All 

playtesters explained that they used thinking processes similar to those needed to program on the 

computer. It was clear that the added scaffoldings and the revised reward system helped make the 

game more intuitive while achieving the learning goal. 

One common issue experienced by both the graduate and 5th-grade learners was that 

interest in the game diminished over time. For both audiences, the first 10 minutes of gameplay 

were exciting and intriguing. They enjoyed thinking through different possible moves to earn 

rewards and points. The 5th-grade learner intentionally used an if-then conditional early in the 

game that allowed him to collect points more easily as the game progressed. However, once 

those points were earned after several rounds, he slowly began to lose interest in the game. The 

adult players similarly lost interest in gameplay once they began accumulating points, mainly 

because they were repeating the same gameplay pattern, and it was unclear what it would take to 

end the game and win it.  

Both sets of playtesters recommended placing a time limit on the game so that there was 

pressure to earn the most points in a short period of time. This would make the win-state of the 

game more achievable for players and encourage them to continue finding ways to earn the most 

points possible, potentially sustaining interest as the game progressed. Another suggestion for 

improving and sustaining interest in the game was to add cards that would introduce fun but 

unpredictable challenges or rewards. Examples included allowing players to lose a turn, move to 

a random space on the game board, steal points from one another, or interfere with an opponent’s 
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current strategy. 

Reflection 

The purpose of this paper was to present our process of prototyping an educational game 

that sought to teach novice programmers the fundamental components of block-based 

programming in a Scratch environment. After four rounds of prototyping with both adults and a 

young learner, we were able to improve the various elements of the game core (Kalmpourtzis, 

2018), including the gameplay, the learning, and the appeal of the game to the players. Each 

prototype resulted in new challenges that not only required design decisions but also helped 

balance the core elements while meeting our goals for the game. In the following sections, we 

reflect on our design process, highlighting three main areas in which our design process offers 

implications for the design of educational board games. The first focuses on the importance of 

having clear learning objectives when making decisions about the game. The second focuses on 

balancing learning with the goal of making the game fun for the players. The third focuses on 

developing in-game support that encourages players to engage in higher levels of computer 

programming concepts. Detailed explanations are presented below. 

GAME: Making Design Decisions: Having clearly stated goals and objectives to help make 

critical decisions about the design of the game 

Our game design originated with a clear learning objective; we wanted our players to 

construct and understand both basic and advanced computer programming skills through 

gameplay. This clarity proved to be an essential component of our decision-making throughout 

the game development process. To begin, it helped us decide which language and concepts to 

include for our target audience. We had several coding languages and tools to choose from, such 

as Java, Python, Scratch, and C++, as well as an option to make up our own language that taught 
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coding concepts. Although those languages included similar programming concepts, the terms 

used in each language were distinct from one another. We ultimately chose to mirror Scratch’s 

block-based programming environment because Scratch is widely used by K-5 teachers as an 

introductory platform for computer programming. By focusing on block-based programming as 

our primary learning objective, we were able to refine gameplay and mechanics with confidence. 

It helped us determine which programming terms to include on game tiles and which 

programming concepts to focus on in our game. 

Having a clear objective also helped us make decisions about how to improve the game 

from one prototype to the next. In some cases, this led to improvements in the game design. Our 

use of two game boards closely mirrors the Scratch environment in which the coding space is 

kept separate from the animation area where those codes are executed. In other cases, our clear 

objective helped us to determine what not to include in our design. For example, playtesters 

repeatedly suggested that we make the game more exciting by allowing players to attack their 

opponents. In response, we prototyped a game dynamic that would allow players to attack one 

another. While we were able to make the attack function work to some extent, it ultimately 

resulted in gameplay that de-emphasized our learning goal. Rather than attending to the coding 

component of the game, players instead focused on finding tiles for attacking. We ultimately had 

to limit the attack function and create other mechanisms that improved gameplay while also 

achieving our learning goal. 

Goal and Design Reflection. Having a clear learning objective helps designers make 

critical design decisions about what elements and mechanisms to include in the game and to 

which extent they should accept the various feedback from players. 
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PLAYERS: What Do Players Want? Using low-fidelity prototypes to receive honest 

feedback 

Educational game designers are challenged to find the balance between making the 

game effective for learning while also appealing to the learners who play the game (Acosta & 

Denham, 2018; Greeff et al., 2017; Hopkins & Roberts, 2015; Kalmpourtzis, 2018). In fact, one 

of the most critical internal motivations for students to play educational games is to have fun 

(Long, 2007). This implies the importance of knowing the players’ gameplay experience and 

what they want in a game to have fun, rather than solely focusing on the educators’ goals. Early 

and frequent prototyping is essential in getting honest feedback from the players (Kelley & 

Kelley, 2013; Moggridge & Atkinson, 2007).  

Our low-fidelity approach during initial prototyping helped us learn more about what 

players wanted without expending valuable resources. Our earliest prototypes were made using 

scraps of paper, small toys, and post-it notes that we could find in the room. This approach made 

it clear to playtesters that our prototype was in very initial draft form and need of tremendous 

improvement. As a result, they could easily understand the concept and intent of the game while 

being less hesitant to provide straightforward comments when asked to help us improve the 

prototype. Such feedback immensely helped in learning the players’ preferences without 

expending our own resources needlessly. It also helped us, the designers, remain emotionally 

removed from the feedback we were receiving. We intentionally limited the time and effort we 

invested in creating the prototype. As a result, it was much easier to hear critical yet necessary 

feedback that helped us quickly improve and test new game components in the next prototype.  

Goal and Design Reflection. Using low fidelity prototypes during earlier stages of 

game development can help designers more easily and quickly determine what the players want 
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to do in the game environment. 

LEARNING: Engaging learners in higher levels of concepts: Use of immediate feedback 

and exclusive rewards 

One persistent design challenge had to do with creating opportunities for players to 

engage in higher levels of programming such as conditionals and loops, rather than being limited 

to just simple movements. We wanted to encourage players to use such advanced functions but at 

the same time make the game accessible to both novice and returning players. As revealed in our 

earlier prototypes, this was difficult to achieve. Most players focused on simpler movements 

because these were easier to employ and often guaranteed small but immediate rewards. Even 

when players could earn the largest points at the end of the game for using advanced concepts, 

the effect was minimal.  

One of the major reasons for this challenge was a lack of immediate rewards for using 

advanced programming concepts. The timing of feedback is a design focus in video game 

settings. Delayed feedback can be motivating for players who are winning but at the same time 

discouraging for players who are losing (Turkay et al., 2014). The same idea can be applied to 

the board game setting. Even though the players in our game could receive the largest points at 

the end of each round for using advanced concepts, many players were more motivated to use 

simpler codes instead. This was especially true for players who were not in the lead; simpler 

codes allowed them to collect immediate rewards more quickly than waiting until the end. Thus, 

the solution we integrated into Prototype 4 was to provide instant rewards exclusively earned by 

using conditionals. This additional game mechanic was highly effective in encouraging players 

to be more actively engaged with using higher-level programming concepts as part of their 

gameplay. 
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Goal and Design Reflection. Providing immediate and exclusive rewards in a game can 

motivate players to engage with higher-level thinking. 

Conclusion 

Games are an increasingly popular mechanism for learning. In the context of computer 

science, they can help beginning programmers engage in computational thinking and acquire 

computer programming skills prior to working on a computer. This paper, then, provides greater 

insight into game development and the mechanics that can support learning computer science 

through gameplay. It is our hope that this design case serves as a foundation for educators and 

scholars to build upon as we move closer to the goal of improving computer science in K-12 

settings. 
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APPENDIX 

Appendix A 

Summary of Challenges by Prototype 

Phase 
Game core 

Game Players Learning 

Initial 
Goal 

Make the game 
fun to play 

Create the game 
core that 
appeals to 
players 

Teach block-
based 
programming 
(i.e. Scratch) 

Engage in 
concepts be- 
yond movement-
based gameplay 

1 

Game mechanics 
(tiles) were too 
complex; also, 
more space was 
needed to 
assemble codes 
on the game 
board. 

The 
placeholders in 
the game were 
difficult to 
understand for 
novice players. 
The game was 
playable but not 
exciting or 
appealing. 

The coding 
mechanics used 
in the game 
were 
significantly 
different from 
Scratch, 

The advanced 
programming 
concepts in the 
game were too 
confusing. 

2 

Added a second 
game board and 
simplified tiles/ 
codes, but the 
game was not 
very exciting. 

The 
placeholders 
were removed, 
and the 
gameplay 
mechanic 
simplified. 

Tiles simulated 
how blocks 
function in 
Scratch, and the 
concepts used 
in the game 
aligned with 
those in Scratch 

The simplified 
mechanic made 
the game more 
fun but did not 
encourage more 
than simple 
movements. 

3 

Game mechanics 
supported the 
assembling of 
codes in blocks, 
Aesthetics made 
the game more 
interesting. 

The game 
became more 
appealing, but 
the language 
and use of tiles 
with advanced 
concepts was 
still confusing. 

Gameplay 
improved but 
focused on 
simple 
movements due 
to the mechanics 
around using tiles 
with advanced 
concepts. 
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4 

Rewards were 
added to promote 
engagement, but 
the game still 
needed more fun 
elements. 

Scaffolds were 
added to make 
the game more 
intuitive and 
easier to 
understand, but 
the players' 
interest 
diminished over 
time. 

Bigger and 
exclusive 
rewards were 
added that 
encouraged 
conditionals; this 
motivated the 
players to use 
more complex 
codes. 

Next 
Steps 

Limit the duration of a single round; 
increase random elements to make 
gameplay more exciting and 
challenging. 

Improve ways to engage players in 
advanced concepts such as loops and 
variables. 
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USING A BOARD GAME FOR COMPUTER PROGRAMMING EDUCATION: A 

QUALITATIVE EXPLORATORY STUDY2
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Abstract 

Background and Context: Computer programming is increasingly essential in K-12 

education for developing problem-solving skills. This exploratory study explores the efficacy of 

the board game Lucky Codes in teaching programming concepts to elementary students through 

unplugged learning methods. 

Objective: To evaluate how Lucky Codes supports the development of programming 

skills, such as sequencing and conditionals, among elementary school students during gameplay. 

Method: A qualitative approach was used, involving video recordings and multimodal 

transcription of gameplay sessions with four elementary students. This allowed for a detailed 

analysis of interactions and strategies. 

Findings: The game effectively facilitated the learning of programming skills. Students 

demonstrated meaningful engagement with key programming concepts like sequencing and the 

use of conditionals to progress through the game levels. 

Implications: Lucky Codes showcases the potential of board games as effective 

pedagogical tools for foundational programming education. The findings support integrating 

such unplugged activities into the curriculum to make programming accessible and engaging for 

young learners and enhance their computational thinking skills. 

Introduction 

Computer programming has become increasingly important in K-12 education. 

Programming is largely viewed as a way to teach essential problem-solving skills and build 

foundational computing concepts like decomposition, abstraction, sequencing, conditionals, 

algorithms, and loops (Cuny et al., 2010; Ezeamuzie & Leung, 2022; Grover & Pea, 2018; Wing, 

2006). Whereas programming was once seen as a domain for computer scientists, it is now 
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recognized for the way it encourages students to develop analytical abilities; as such, leading 

educators around the world now advocate for programming to be included in the K-12 

curriculum (Lindberg et al., 2019; Nambiar, 2020; Wu et al., 2020). A variety of teaching 

strategies have been introduced to convey these programming concepts. For example, visual 

block-based programming tools such as Scratch, Alice, Code.org, and Kodu were developed to 

help novice students learn to program more easily using everyday language without having to 

learn complex programming syntax. While these tools have been shown to help enhance 

children’s computer programming skills, scholars have found that hands-on experiences can offer 

invaluable insights before moving into screen-based programming. For example, Sun et al. 

(2021) suggested employing instructional techniques like hands-on programming practice (e.g., 

card sorting activity), which can help students understand the difficult terminology in 

programming and enhance students' interest in computer education. Other scholars have reported 

that hands-on, unplugged learning activities can provide a much deeper level of engagement 

(Bell et al., 2012) and effectively improve learners’ perceptions and interest in computer science 

(Taub et al., 2012).  

To that end, unplugged activities have gained traction as a pedagogical approach to 

introduce computer programming skills to children because they eliminate the need for computer 

or digital devices and provide tangible and physical objects to develop more concrete ideas about 

abstract programming concepts (e.g., variables, conditionals) (Kotsopoulos et al., 2017; Pecher 

& Zwaan, 2005). Such activities can be beneficial in K-12 contexts in that they make learning 

more accessible to a broader audience because they do not require the technological resources 

that come with programming on a computer (Bell & Vahrenhold, 2018; Gibson & Bell, 2013). 

Board games have emerged as a compelling avenue for introducing children to computer 
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programming through a tangible, hands-on approach. They offer a playful and interactive 

environment that is conducive to the exploration of core programming skills, including problem-

solving, algorithmic thinking, sequencing, and debugging (Berland & Duncan, 2016; Tsarava et 

al., 2018).  

While several board games exist to teach programming skills to children, such as Robot 

Turtles, Code Master, and CodeMonkey Island, many primarily emphasize basic path-finding 

mechanisms, neglecting more advanced programming concepts like conditionals and loops 

(Poole et al., 2022; Wu et al., 2020). Moreover, some games overly prioritize mechanics 

involving card stacking, where players stack cards with specific instructions or actions to achieve 

a particular outcome within the game; such game mechanics can create a disconnect between the 

game's mechanics and the actual programming environment (Wu et al., 2020). Research in this 

domain has predominantly relied on quantitatively measured self-reported data or user 

experience evaluations within the game, overlooking the crucial aspect of how learning unfolds 

during gameplay (Gresse von Wangenheim et al., 2019; Kuo & Hsu, 2020; Lee et al., 2020). 

Fewer studies have explored the relationship between student interactions and game mechanics 

that facilitate learning (Poole et al., 2022). 

Addressing these observed gaps, our team developed Lucky Codes, a board game 

devised to enrich students' programming skills while reflecting the Scratch programming 

environment (Yang & Kopcha, 2022). Lucky Codes challenges students to employ programming 

skills such as decomposition, sequencing, and conditional thinking to guide a game character 

through a board scattered with coins, where the goal is to collect a certain number of coins before 

your opponent. This study explores how different board game mechanics in Lucky Codes 

supported the programming skills of four elementary school children during gameplay. Using 
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qualitative methods, we video-recorded the children as they played the game in pairs over two 

10-minute rounds of gameplay. We then used a multimodal approach to develop and analyze 

transcripts that contained their game moves paired with their conversations during gameplay. 

Our analysis focused on the way different game mechanics were associated with programming 

skills as they related to specific moves, as well as how different concepts of computer 

programming developed over multiple rounds of gameplay. The research questions guiding this 

study were: (1) How did the game mechanics support children’s programming skills during each 

turn of the gameplay? and (2) How did the presence of the children’s programming skills 

develop or change over time? In addressing these questions, this paper sheds light on the 

educational potential of board games like Lucky Codes in enhancing children’s programming 

skills, laying a foundation for subsequent research prospects. 

Game Description: Lucky Codes 

Lucky Codes is an educational coding board game designed for elementary school 

students in grades 3 to 6. It was developed by the authors as part of a design-based research 

project (Yang & Kopcha, 2022) with the aim of blending fundamental programming concepts 

with advanced ones, making it an engaging and educational experience. Figure 3.1 illustrates the 

components of Lucky Codes, and Figure 3.2 displays the photo of students playing the game with 

descriptions of the gameplay. 

The game was designed to resemble the block-based programming environment Scratch, 

which appeals to both novice and experienced players. It uses two game boards to support 

gameplay, consisting of one board where the students assemble tiles into a sequence of codes and 

another where the game character performs the actions reflected in the code, as one would do in 

Scratch. This two-board system was implemented to help bridge the gap between the physical 
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and digital realms of computer programming education (Wu, 2018).  

 

Figure 3.1: The components of Lucky Codes. (From left) action board, coding board, code tiles, 

clover cards, coins, and characters. 

 

Figure 3.2: Screenshot of students playing Lucky Codes with descriptions of gameplay. 

 

The intent of this design was to help students understand and engage with the similar 

cognitive processes they would use in a digital programming environment, such as planning, 
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executing, and revising code based on visual feedback. This could potentially promote an easier 

transition between physical board gameplay and block-based digital programming environments 

(Hajian, 2019). The game also mirrors Scratch’s terminology, including actions like “move _ 

steps,” “turn [direction] _ degrees,” and “repeat,” and code assembly approach. Players connect 

the code tiles horizontally to establish the sequence of actions. Loops are introduced at the start 

of the corresponding sequence, mirroring the mechanic of Scratch. In Lucky Code's code tiles, 

however, modifiers have been added to the verbs (e.g., “move 1 step ‘forward,’” “repeat ‘below’ 

2 ‘times'”) to help players more easily understand what each code tile means. Figure 3.3 provides 

a comparison between the code blocks in Scratch and the code tiles in Lucky Codes for executing 

the same sequence of actions. 

 

Figure 3.3: A comparison: scratch code blocks (left) vs. Lucky Codes code tiles (right) for 

executing the same sequence of actions. 
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To play the game, students are paired up to form teams, with each team competing 

against another. Each team places an equal number of coins on the board as they see fit and picks 

seven random code tiles. These tiles encompass basic movements, conditionals, and loops, with 

instructions like “Move 3 steps forward,” “Turn 90 degrees in any direction,” “If on green, pick a 

Clover Card,” and “Repeat below 2 times.” "Clover Cards" introduce an element of 

unpredictability: they are cards that players can acquire by using color-conditionals, such as “If 

on red, pick a Clover Card.” These cards can either assist or challenge players, presenting 

commands like "Follow the code made by the other team" or "Move two steps in any direction." 

This feature, adding a layer of chance, was incorporated to boost both the educational aspect of 

the game and its entertainment value, as unpredictable elements can heighten engagement and 

motivation in educational games (Kalmpourtzis, 2018).  

The goal of the game is to collect more coins than the opponent team within a given time 

by reaching the pot of gold at the end of the rainbow (where players can get five coins at once) or 

quickly moving around the board to collect five of the scattered coins. During each turn, teams 

can either formulate a code to move their characters or draw one to two new code tiles from the 

bank. They also have the option to incorporate any portion of their opponent's previously used 

codes into their own sequence. Players assemble their code sequences in the designated Coding 

Zone. To execute their move, they tap the “Go!” button located at the Coding Zone's bottom, 

which finalizes their codes. The players then move their characters on the main game board 

according to the formulated code. 

Lucky Codes' game mechanics have been refined through iterative design-based 

research, blending fundamental programming concepts like sequencing and goal decomposition 

with more advanced concepts like conditionals and loops (refer to Yang & Kopcha (2022) for a 
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detailed design story on the game). These concepts were selected because they represent the 

foundational concepts associated with teaching elementary-aged children about computer 

programming (Bers, 2019). Table 3.1 showcases the various mechanics in Lucky Codes, their 

theoretical underpinnings, and examples of their enactment in the game. For example, central to 

the gameplay is the task of assembling code tiles in the Coding Zone to create a sequence of 

movements that the game character will execute on the game board. This dynamic supports the 

essence of algorithmic thinking in programming in that children can see what happens when they 

create "precise step-by-step plans or procedures to meet an end goal or to solve a problem" 

(Grover & Pea, 2018, p. 24).  

The game was improved from its previous version (see Yang & Kopcha, 2022) in an 

effort to reward players for using the underlying concept of a conditional to advance gameplay. 

This was accomplished by introducing colored elements on the board that invite players to use a 

color-conditional tile to attain a Clover Card. For example, players can use a tile like, "If on red, 

pick a clover card," to draw a random chance card that can potentially benefit their gameplay. 

This design choice serves two purposes. First, it encourages players to use conditionals more 

frequently, discouraging an over-reliance on basic movement commands. Second, it introduces 

randomness to the type of benefit they might receive. Each Clover Card has a different purpose; 

some allow the player to move further, while others allow them to steal coins from the opponent 

or even change the opponent’s position on the game board. This randomness meant that players 

could not fully anticipate the nature of the Clover Card ahead of time, which can heighten 

engagement and motivation in educational games (Kalmpourtzis, 2018). Instead, they had to 

keep gathering them until they found one that benefited them most. Another way that the use of 

conditionals was incentivized was the introduction of a cloud-based teleportation feature. With 
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the conditional, "If on a cloud, transport to another cloud," players have the strategic advantage 

of moving a larger distance swiftly, further promoting the use of conditionals during gameplay. 

 

Table 3.1: Key game mechanics, corresponding theoretical foundations, and gameplay 

excerpts (next page). 
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Game Mechanic Theoretical Foundation Gameplay Excerpts 
Assembling code 
tiles to create a 
sequence of 
characters' 
movements on the 
board 

Sequencing is a precise, 
step-by-step procedure to 
solve a problem (Grover 
& Pea, 2018). 

 
Students place code tiles sequentially in the 
Coding Zone while their characters perform 
corresponding movements on the game board.  
The Coding Zone was designed so that 
students could observe the moves of the other 
team and re-use tiles that were helpful to their 
own strategy. 
Student: “Should we do what they are doing? 
Just put all the cards in [one shared] pile? So, 
like, the [tiles] are just, there?” 

Shared coding 
space 

Social learning suggests 
that human behavior is 
acquired through 
observation and modeling, 
which provides insight 
into how new behaviors 
are carried out; this serves 
as a reference for their 
own actions in the future 
(Bandura & Walters, 
1977). 

Breaking down a 
problem into a 
smaller number of 
steps 

Decomposition is breaking 
a problem into smaller 
subproblems to make the 
problem more 
approachable and 
manageable (Grover & 
Pea, 2018). 

 
Student: “I'm gonna try to get to that cloud 
and then use this [cloud-conditional card] to 
get all the way up [to the upper cloud]. All 
right. So, move forward one step. Then two 
steps would be here, and then three steps. 
Then, ‘If on a cloud, then transfer to another 
cloud.’ I would get that [coin], and we'd be 
[on the upper cloud].” 
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“If-then” 
statement tiles 

Conditionals involve the 
use of if-then constructs 
and are fundamental to 
both computational 
thinking (Grover & Pea, 
2013, 2018) and basic 
programming (Shute et al., 
2017). 

 
 
Codes:  Repeat below 2 times 

 Move 2 steps forward 

 If on blue, pick a Clover Card 

 Move 3 steps forward 

 Turn 90 degrees 
 

Student: “... Alright, so one, two [steps]. If 
on blue. So, we'd get a clover card and then 
1, 2, 3, and then one, two. And then, uh, if 
on a blue, which we aren’t [on blue]. [Move] 
1, 2, 3… and then turn.”  

 

Literature Review 

Computer Programming Education in K-12 

In 1980, Papert first championed the idea that learning computer programming could 

empower students with critical thinking skills transferable to other subjects like mathematics and 

physics. This notion laid the groundwork for emphasizing the pivotal role of computer 

programming education. Wing (2006) similarly argued that individual programming skills are 

valuable tools to help students grasp computational thinking. This perspective catalyzed the 

movement to provide computer programming courses to students at all levels in K-12 schools. 
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The global recognition of the significance of computer programming in education led to its 

inclusion in core curricula in many countries. England, for example, led the way in 2014 by 

mandating computer programming as a subject in the K-12 curriculum to nurture students' digital 

literacy (Wong et al., 2015). Finland soon followed suit, recognizing that the "future will be built 

by those who know how to code" (Haaramo, 2014). The United States launched "Computer 

Science for All" in 2016 to equip all American students with computer science skills, including 

coding (Vihavainen et al., 2011). Subsequently, several other countries, including Australia, 

Estonia, France, Israel, South Korea, China, Singapore, Taiwan, and Canada, integrated coding 

into their national school curricula (Linneberg & Korsgaard, 2019; Nambiar, 2020; Wu et al., 

2020). 

Computer programming is especially recognized in the K-12 context for teaching 

students important problem-solving skills used by computer scientists (Grover & Pea, 2018; Lye 

& Koh, 2014; Resnick et al., 2009; Selby, 2012; Wing, 2006, 2008). Computer programming 

challenges students to break down complex problems into manageable parts and foster a 

structured approach to finding solutions (Guzdial, 2008; Wing, 2006). It encourages logical 

reasoning and precision, which not only enhances their problem-solving skills but also has the 

potential to address other academic areas such as mathematics, science, social sciences, and 

language arts (Barr & Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea, 2013). As a 

result, students equipped with programming knowledge are better prepared for the increasingly 

digital world, where computational thinking is a valuable asset (Barr & Stephenson, 2011; 

Brennan & Resnick, 2012). 

In elementary computer programming classes, several core concepts are commonly 

taught to provide students with a strong foundation in computational thinking (Barr & 
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Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea, 2013; Guzdial, 2008; Wing, 2006). 

These concepts include variables, which allow students to store and manipulate data; loops, 

which enable them to perform repetitive tasks efficiently; conditional statements, which 

introduce the concept of decision-making in code; and functions, which encourage modular and 

reusable code design. Additionally, students learn about algorithms, which are step-by-step 

procedures for solving problems, and decomposition, which helps break down large problems 

into smaller and more manageable chunks. These fundamental concepts not only empower 

students to create simple programs but also lay the groundwork for more advanced programming 

skills as they progress in their education (Barr & Stephenson, 2011; Brennan & Resnick, 2012; 

Grover & Pea, 2013; Guzdial, 2008). 

Challenges of CT Education and the Role of Unplugged Games 

Despite the recognized importance of teaching computer programming to K-12 students, 

multiple challenges still remain. Firstly, many programming concepts require a high level of 

abstraction, which makes learning challenging for novice students (Piteira & Costa, 2013; Rijke 

et al., 2018; Wong et al., 2015). This level of abstraction can contribute to a lack of student 

interest in programming (Kadar et al., 2021; Rahmat et al., 2012). Furthermore, some students 

perceive programming as challenging or "nerdy," affecting their engagement and willingness to 

persist in learning to program (Andersen et al., 2003, p. 1). Moreover, the availability of 

adequate technology, software, and teaching resources for programming instruction is often 

limited in certain schools, further hindering effective programming instruction (Kim et al., 2019; 

Sentence & Csizmadia, 2017). These challenges emphasize the need for targeted interventions 

and additional instructional support that can promote successful programming education for K-

12 students. 
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To address these challenges, educators have turned to alternative instructional tools, with 

one of the most promising options being unplugged tabletop games. Game-based learning, in 

general, is well-known for its potential to promote the motivation and engagement of students 

(e.g., Kapp, 2012; Mayer, 2014; Plass et al., 2015; Plass et al., 2020). Games include features 

such as incentive systems, competition, instant feedback, and challenges, all of which promote 

motivation and engagement and are found to have a solid connection to student achievement 

(Shute et al., 2017). Another aspect of games that can encourage motivation is that they allow 

graceful failure (Plass et al., 2020). Players expect to have failures in the first few attempts when 

playing games. These failures create challenges that make gameplay more interesting, giving 

players a higher sense of achievement when they succeed. The low consequences of failure 

within a game environment encourage risk-taking, exploration, and experimentation (Hoffman & 

Nadelson, 2010). Mladenović et al. (2016) noted how games could effectively stimulate students' 

curiosity and appetite for challenge, making the learning of abstract programming concepts more 

appealing: "Students are not even aware they learn problem-solving, debugging, and making 

scenarios; instead, they think they are simply [playing]" (Mladenović et al., 2016, p. 523).  

Furthermore, unplugged games offer tangible objects that can help students develop 

more concrete ideas of abstract coding concepts (Pecher & Zwaan, 2005). Research by Jiang et 

al. (2023) suggests how the tangible nature of board games can positively affect children’s 

development of procedural knowledge for computer programming. The study's key finding 

emphasizes that children can master procedural knowledge more effectively in games that 

incorporate meta-gaming than in those that do not. For instance, the concept of "conditionals" is 

highly challenging for young children to grasp through formal definitions. A game environment 

can introduce the concept in a concrete, tangible manner in which children are guided to analyze, 
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represent, abstract, and select conditions to solve a specific problem. In doing so, the concept of 

a conditional is imparted through the game mechanic without requiring the semantic knowledge 

needed to construct or program a conditional on a computer. This example illustrates how meta-

gaming within unplugged games transcends language limitations and facilitates the 

understanding of complex programming concepts in a concrete way, providing valuable insights 

into the intricate connection between gaming experiences and skill development in programming 

education. 

Recently, scholars who used unplugged board games to cultivate students' programming 

skills reported improved learning motivation of the participating students (Berland & Lee, 2011; 

Harris, 2008), which could serve as evidence of the effectiveness of unplugged games in 

programming education. Poole et al. (2022) reviewed 24 tabletop games related to programming 

education and concluded that such tabletop games could potentially increase interest in the 

subject for young students. However, they also emphasized that it is essential to understand how 

the game's design supports which types of programming skills for more purposeful use of the 

game. However, they also emphasized that much more research is needed to understand the 

effects of these games, including how students executing codes within games support learning 

and understanding of the intended programming concepts. Scirea and Valente (2020) also agreed 

that more work is needed to evaluate these programming-relevant board games and identify 

which game supports which skills. 

Method 

Participants and Procedure 

Students from grades three to five were chosen for this study because several state 

standards began introducing more advanced programming concepts like conditionals and loops 
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at this age range (e.g., Georgia Department of Education, 2022; Indiana Department of 

Education, 2023). The game Lucky Codes was designed specifically with this age group in mind. 

Out of the 12 students who were solicited for the study, four were selected based on their 

willingness to play the game and join the research. The recruitment began with researchers 

clearly explaining the study's goals and tasks. Those who were interested were given both 

parental permission and minor assent forms, which went over the details of the study and 

highlighted that participation was completely voluntary. In the following week, only students 

who handed back both signed forms and showed genuine excitement were included, ensuring 

informed consent and voluntary participation in line with ethical guidelines. This process 

resulted in a balanced group of two male and two female students; of these, three had no 

previous exposure to coding. The fourth had limited introductory experience with Scratch but 

had not previously worked with higher-level concepts like loops and conditionals. 

The students played the game during their Makerspace class during the school day. The 

researcher explained the game rules, and the students played two rounds of the game, each 

lasting 10 minutes. In between the rounds, the players reset the game board layout to arrange the 

rewards differently. The session took about 30 minutes in total and was video recorded. 

Data Collection 

Data was collected by video-recording participants as they played two 10-minute rounds 

of the game. Video recording allowed us to set up the research environment such that both the 

gameboard and participants' thoughts about the gameplay could be captured simultaneously for 

transcription and analysis later. We selected this approach because our goal was to gain a fine-

grained understanding of the moment-by-moment thinking that took place during gameplay. We 

wanted to capture both images and dialogue related to each move that the participants made so 
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we could better understand how computational thinking emerged as part of their gameplay. The 

researchers were present during the gameplay sessions to provide guidance to the players, 

reminding them of game rules and ensuring they avoided major errors in coding or character 

movements. The students quickly grasped the game, requiring only minimal intervention, 

primarily at the start of the game. 

Analysis 

The analysis began with transcribing the video into a multimodal transcript. As 

described by Bezemer (2014), multimodal transcripts bring the visual and textual components of 

the participants' interactions together into a single account so that a researcher can infer the 

meaning behind those interactions. While there is no single way to generate a multimodal 

transcript, the overall goal is to capture both the verbal and non-verbal modes associated with 

how a phenomenon emerges over time among a group of people being observed (Bezemer, 2014; 

Cowan, 2014). In this study, we created a visual representation of the character's actions on the 

game board during each turn of each round of gameplay. The visual contained a miniature game 

board and arrows displaying the character's moves during each turn. Each visual was paired side-

by-side with the tiles each team used during each turn of gameplay. Each visual was also paired 

with a word-for-word transcription of the participants' spoken words so that we could understand 

the thinking behind each move. Figure 3.4 displays a sample of our multimodal transcription 

associated with the first two turns of the first round of gameplay. 
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Figure 3.4: A sample of the multimodal transcript. 

 

When the multimodal transcripts were complete, the researchers (the authors of this 

paper) began coding the data. Coding the data meant that we assigned labels to specific parts of 

our transcripts that reflected both the programming concepts that were at play and the strategies 

that the teams employed. In this way, we used a combination of deductive and inductive coding, 

which is the most commonly used coding approach (Linneberg & Korsgaard, 2019). During the 

coding process, the researchers carefully reviewed the transcripts and identified sections that 

reflected the initial codes, highlighting them for further analysis and discussion. This 

collaborative approach ensured that the coding was thorough and well-considered, with 

agreement reached through ongoing dialogue and consensus-building. The details of the coding 

process are presented more fully in the following paragraphs. 
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Deductive Coding 

We started with a deductive approach, which "ensure[s] structure and theoretical 

relevance from the start, while still enabling a closer inductive exploration of the deductive codes 

in later coding cycles" (Linneberg & Korsgaard, 2019, p. 264). Initial codes were drawn from the 

literature on computational thinking and computer programming, including algorithmic thinking, 

sequencing, decomposition, conditionals, and loops. The definitions of each code appear in Table 

3.1. For example, we used Grover and Pea's (2018) definition of decomposition, which involves 

"breaking a problem down into smaller sub-problems to make the problem more tractable and 

the problem-solving process more manageable" (p. 27). Algorithmic thinking was defined as 

using "precise step-by-step plans or procedures to meet an end goal or to solve a problem" 

(Grover & Pea, 2018, p. 24). We read through the transcripts and highlighted parts that reflected 

the initial codes.  

Inductive Coding 

After our deductive coding, we used an inductive approach to maintain fidelity to the 

data (Linneberg & Korgaard, 2019) and to explore any elements in the data that might suggest a 

need to reconsider the existing theoretical framework (Pierce, 1978). As a result, new codes 

emerged from the data, including “problem-solving,” “collaboration,” “borrowed strategy (from 

the other team),” and “sense of achievement.” While identifying the codes, we captured images 

that suggested how each mechanic would support the skills in a move and conversation and 

arranged them side by side. We repeatedly reviewed the transcript to examine the data within a 

move and compare the data across different moves. We then looked at the multimodal transcript 

to establish a broader theme under which the codes fell. We focused our attention on recurring 

patterns of codes rather than isolated instances. This approach allowed us to identify consistent 
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themes and patterns in the data across multiple moves and conversations. By using both 

deductive and inductive approaches to coding, we were able to stay true to the data while also 

incorporating established theoretical frameworks into our analysis. 

Results 

The game mechanics supported our participants' use of programming skills in three 

ways. First, the game required students to engage in both sequencing and decomposition. They 

analyzed the game board, broke down the goal of reaching the pot of coins into smaller sub-

goals, and used game tiles to create sequences of commands moving their game pieces closer. As 

these actions were intertwined in gameplay, we combined sequencing and decomposition into a 

single theme. Second, the game supported the use of conditionals. In this study, conditionals 

were reflected any time the students used a tile or game card containing a pre-constructed "if-

then" statement. There were two types of conditionals in Lucky Codes - a cloud-conditional that 

allowed players to jump from cloud to cloud and a color-conditional that awarded a clover card. 

Programming skills were also supported by the theme 'Learning from Each Other,' as teams 

adapted strategies observed from their opponents over time. These themes are described below as 

they unfolded over each round of gameplay. 

Sequencing and Decomposition 

The first programming skill that the game mechanics supported was sequencing and 

decomposition, which took place throughout both rounds of gameplay. Figure 3.5 displays the 

gameplay that took place in the first round of the game. Each team began by decomposing the 

larger goal of reaching the pot of coins at the far end of the game board. This process involved 

breaking the distance between the start and the end goal (i.e., the pot of coins on the far side) into 

smaller chunks, then sequencing a series of tiles that would move their game piece closer to their 
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immediate goal. For example, they first set a goal of moving closer to a single coin near the 

center of the board, which they achieved in two turns. In their first turn (Team 1 - Turn 1), they 

moved forward one square. In the next turn (Team 1 - Turn 2), they moved forward to the single 

coin. As such, both teams consistently broke down the main objective and planned steps to reach 

interim goals. 

 

Figure 3.5: Round 1 moves. All moves were limited to using singular goals (e.g., moving closer 

to the pot, moving to get a coin, reaching a cloud to transport). Each team used conditionals once 

throughout the round. 

Turn Team 1 Team 2 

Turn 1 

  

Codes: ● Move 1 step forward 
● If on green, pick a clover 

card: 
(Card: Stand next to the other 
team) 

● Move 1 step forward 
● Move 2 steps forward 
● Move 3 steps forward 
● If on a cloud, move to any 

other cloud 
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Turn 2 

  

Codes: ● Move 1 step forward 
● Move 2 steps forward 
● Move 3 steps forward 

● Move 4 steps forward 
● Rotate 90°  
● Move 2 steps forward 
● Rotate 90°  
● Move 3 steps forward 

Turn 3 

 

 

Codes: ● Used the clover card  
(Card: “Stand next to the other 
team”)  

● Move 4 steps forward 

 

In addition to the observable gameplay strategies, the students' engagement with 

sequencing and decomposition was also evident in their dialogues during the game. Table 3.2 



80 

provides a selection of transcript snippets that showcase these conversations. For instance, one 

excerpt captures a student breaking down the steps to reach a coin, while another illustrates a 

discussion about sequencing their moves for maximum efficiency. These conversations 

underscore the depth of the students' engagement with these programming concepts. 

 

Table 3.2: Transcript excerpts illustrating student engagement in sequencing and 

decomposition. 

Round / Team / Turn Conversation Description 

Examples of Sequencing 

Round 1 - Team 2 - 
Turn 1 

● “So, I'm going to try to, I'm 
going to try to get to that cloud 
and then use this (card) to get 
all the way up here. Oh, okay. 
All right. So, move forward 
one step. Then two steps would 
be (here), ... and then three 
steps. Then on a, if on a cloud, 
then transfer to another cloud.” 

A player is arranging 
actions in a specific 
sequence to achieve their 
goal of reaching a cloud. 

Round 1 - Team 2 - 
Turn 2 

● “We can go one step. Turn 90 
degrees.” 

● “Wait, wait. No, we turn 90 
degrees here. One, two.” 

The players are 
considering the order in 
which they should make 
moves and turns to 
navigate the board. 

Round 2 - Team 2 - 
Turn 1 

● “All right, so wait, one, two. If 
on a blue. So, we'd get a clover 
card and then 1, 2, 3 (steps), 
and then one, two. And then, 
uh, if on a blue, which we 
aren’t. 1, 2, 3 (steps).” 

The player is thinking 
about the sequence of 
their moves, considering 
the conditions and steps 
they have available. 

Examples of Decomposition 
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Round / Team / Turn Conversation Description 

Round 1 - Team 1 - 
Move 2 

● “So right now we're just going 
forward. Um, which would be 
good. 1, 2, 3, 1, 2, 1.” 

● “You’d be at 1, 1, 2, 1, 2, 3. 
You'd be at this (spot).” 

The players break down 
their journey into smaller 
steps, ensuring that each 
step is clear and logical 
in order to reach the 
desired position on the 
board. 

Round 2 - Team 2 - 
Move 1 

● “Wait, wait, let's just see. 
Alright, so wait, one, two. If on 
a blue. So, we'd get a clover 
card and then 1, 2, 3, and then 
one, two. And then, uh, if on a 
blue, which we aren’t. 1, 2, 3.” 

The player decomposes 
their main task into 
smaller subtasks, 
identifying the specific 
steps they need to take. 

Round 2 - Team 1 - 
Move 1 

● “So, I'm going to do move… 
move one step forward. This 
(spot). Move two steps forward? 
So that would be there. 1, 2, 1, 
2, 3, and then I'm going to turn 
that way so I can do that, and 
then move two steps forward 
and then, [taps] ‘go!’ That's 
actually all I need to do.” 

The player breaks down 
their main goal into 
smaller tasks, deciding 
on individual moves and 
turns that will help 
achieve their goal. 

 

Use of Conditionals 

The game mechanics also facilitated participants' use of conditionals in their sequencing 

and decomposition strategies. In Round 1, as illustrated in Figure 3.5, Team 1 moved forward 

one square so they could use a color-conditional (i.e., “if on green…”) to acquire a clover card 

(Team 1 - Turn 1). Team 2 followed by moving forward six squares so they could use a cloud-

conditional (“if on a cloud, move to any other cloud”) to move closer to the pot of coins at the far 

side of the game board (Team 2 - Turn 1). This strategy was followed by additional moves and 

rotates to move closer to the pot of coins (Team 2 - Turn 2). Nevertheless, Team 1 claimed 

victory in their third turn by utilizing their clover card to move next to their opponent and then 
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proceed to the pot of coins (Team 1 - Turn 3).  

In Round 2 participants exhibited an evolved use of programming skills. As depicted in 

Table 3.2 and Figure 3.6, teams began by decomposing the path to the pot of coins into smaller 

sub-goals. They then sequenced their tiles to achieve those sub-goals in a way that combined 

moving with higher-level programming concepts like conditionals. Team 2, for instance, started 

the round by using a ‘repeat’ function to move forward two squares, using a color-conditional to 

gain a clover card, and moving forward three squares twice. They then used the newly obtained 

Clover card to move to the nearest cloud (Team 2 - Turn 1).  

In the second turn of Round 2, both teams constructed sequences of tiles that enabled 

longer movements across the board compared to the prior round. A notable aspect of their 

strategy was combining multiple movement tiles with the cloud-conditional. Utilizing the cloud-

conditional in this way minimized the need for numerous 'move forward' tiles, making it a more 

resource-efficient strategy for moving around the board. Recognizing and leveraging this, Team 

1 secured a win. They initiated by moving one square to a cloud, took advantage of the cloud-

conditional to transition between clouds, and then moved forward nine squares, leading to them 

winning the round (Team 1 - Turn 2). 

In the gameplay, students actively strategized to find optimal solutions, especially under 

the constraints of competition and time. They frequently considered alternative methods to 

achieve their goals, showcasing their adaptability and problem-solving capabilities. 

 

Figure 3.6: Round 2 moves. Team 2 went first in the second round. There was increased use of 

conditionals to achieve multiple goals in one move. Conditionals were highlighted in bold. 
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 Team 2 Team 1 

Turn 1 

  

Codes: ● Repeat below 2 times 
● Move 2 steps forward 
● If on blue, pick a clover card: 

(Card: “Move to the nearest cloud”) 
● Move 3 steps forward 
● Rotate 90° 
● Use card: “Move to the nearest cloud” 

● Move 1 step forward 
● If on red, pick a clover card  
● Move 2 steps forward 
● Move 3 steps forward 
● Rotate 90° 
● Move 2 steps forward 

Turn 2 

  

Codes: ● Rotate 180° 
● Move 1 step forward 
● If on a cloud, move to any other 

cloud 
● Move 1 step forward 
● Move 3 steps forward 
● Move 2 steps forward 
● Move 2 steps forward 
● Rotate 90°  
● If on green, pick a clover card 
● Move 5 steps forward 

● Rotate 180°  
● Move 1 step forward 
● If on a cloud, move to any other 

cloud   
● Rotate 180°  
● Move 5 steps forward 
● Move 2 steps forward 
● Move 2 steps forward 
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Learning to Do More Per Turn 

Another programming skill that the game mechanics supported was learning to make use 

of a greater number of tiles per turn. The average number of tiles used per turn in the first round 

of gameplay was 3; of the tiles used, only two were conditionals (i.e., if-then). By the second 

round, the number of tiles used increased to an average of 6.75 per turn; this included five 

conditionals as well as the use of a loop (i.e., repeat). In terms of gameplay, the increase in tiles 

used per turn corresponded with each team establishing a greater number of goals per turn. For 

example, Team 1 was the only team to use a color-conditional to gain a clover card that 

ultimately won them the game in the first round. By the second round, both teams employed a 

color-conditional during their first turn as part of a longer sequence of moves (see Figure 3.6). 

Additionally, Team 2 embedded their color conditional in a repeat tile in order to gain a greater 

number of Clover Cards in a single turn. Team 2 also accomplished multiple goals in a single 

turn. They used a color-conditional in the first turn of the second round while also setting their 

position to use a cloud-conditional in their next turn. They were then able to win the game by 

combining the conditional with a sequence of moves that arrived at the pot of gold. 

Discussion 

The game mechanics of Lucky Codes allowed participants to practice essential 

programming concepts. Players were encouraged to actively engage in sequencing and 

decomposition, which are considered foundational in computer programming (Grover & Pea, 

2018; Shute et al., 2017). As gameplay progressed, participants developed extended sequences of 

movements, breaking down the overarching task of reaching the pot of coins into smaller, 

manageable sub-goals. To achieve this, they visualized possible movements of the game piece in 

relation to available tiles, creating an executable sequence of codes. In this manner, the game 
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piece became what Papert (1980) termed an "object-to-think-with" (p. 11), serving as a tangible 

representation that helped participants visualize how a computer program interacts with a 

programmable agent. This is particularly relevant for children's exploration of computer 

programming. 

Drawing on external studies, Lister et al.’s (2004) multi-national research affirmed that 

novice programmers needed to learn to predict the outcomes of a computer program before 

advancing to more complex challenges. Other scholars (Bers et al., 2014; Blancas et al., 2020; 

Brennan & Resnick, 2012) echoed this, highlighting the benefits children derive from predicting 

the outcome of a programming sequence before diving into advanced programming concepts. 

Reflecting these findings, our game’s dual-board system acts as a unique pedagogical design. 

One board is designated for programming, while the other board serves as a space where players 

can immediately enact the sequences they have coded on the first board. This two-board design 

mimics the experience of real-time feedback that digital platforms like Scratch integrate into the 

programming environment. Students can develop a section of code in the Coding Zone and then 

see the results play out in a tangible way on the game board. While there were instances where 

students made errors in enacting their codes, these mistakes were minimal due to the attentive 

oversight of other players, who were actively engaged in addressing any missteps.  

Furthermore, our findings hint at the potential of a coding board game to introduce 

children to advanced programming concepts like conditionals. We intentionally designed our 

game so that our players did not need to piece together conditionals from multiple tiles; instead, 

they identified uses for a ready-made conditional statement. This design choice facilitated 

children's engagement with the concept of conditionals within the game framework. By the 

second round of gameplay, participants actively sought opportunities to incorporate conditionals 
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into their strategy. This proactive approach likely stemmed from their realization of the benefits a 

conditional statement could offer in gaining a competitive edge. This finding is significant as it 

suggests that intentional game design can encourage gameplay extending beyond basic "move 

and rotate" mechanics found in many coding board games (Scirea & Valente, 2020; Wu, 2018). 

Focusing on using a concept like conditionals, rather than constructing a conditional statement, 

allowed us to engage participants in higher-level programming concepts in a meaningful and 

comprehensible way within the game context. 

The way that our participants increased their use of tiles per turn from the first to the 

second round is also worthy of note. An important concept in computer programming is 

efficiency, meaning that the computer programmer does more with the limited time and space 

that is available within the computing system (Chowdhury et al., 2018; Grover & Pea, 2018). 

Our participants exhibited greater efficiency with their use of tiles in the second round. They 

repeatedly used conditionals to move farther or gain an advantage over the other team. They also 

found ways to combine their use of color-conditionals with other tiles to gain an advantage. 

Team 1 used a repeat function in the first turn of the second round to gain more clover cards. 

Likewise, Team 2 combined conditionals with sequences of moves that positioned them to win 

the game in the second round. These results suggest that Lucky Codes encouraged our 

participants to be more efficient with each turn - that is, it encouraged them to do more in a 

single round so that they could gain an advantage over their opponents. This finding is 

encouraging for proponents of board games to teach basic computing concepts to young children. 

Introducing algorithmic efficiency to children at an early age is important for supporting their 

ability to analyze and plan computer programming algorithms in the future (Kjällander et al., 

2021). 
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Implications 

For educators, this research suggests that incorporating board games like Lucky Codes 

into the classroom can be a valuable approach. It helps foster essential programming skills 

among students, including sequencing, decomposition, and conditionals, while also offering an 

enjoyable and interactive learning experience. This holds significant significance as the 

development of programming skills has become increasingly important in the modern-day 

workforce, where proficiency in computer programming, problem-solving, and critical thinking 

are highly sought after (Amri et al., 2019; SITRA, 2014). By integrating board games like Lucky 

Codes, educators can effectively equip their students with the necessary competencies to succeed 

in the 21st-century workforce (Sun et al., 2021; Yoon & Khambari, 2021). 

For game designers, this study suggests it is possible to design games that teach 

programming skills while going beyond basic programming concepts like "move and rotate." 

Our game mechanics focused more on using a higher-level concept like conditionals than 

constructing the code associated with that concept. This may be one way to introduce children to 

higher-level programming concepts while reducing the abstract nature of those concepts. A 

shared game space may also help board games go beyond basic programming concepts. Our 

results suggest that each team learned the utility of conditionals by observing how the other team 

made use of them. In this way, our study helps address a noted gap in the literature about how 

specific components of educational board games relate to children’s learning of programming 

skills through those games (Poole et al., 2022). 

Limitations and Future Research 

While our study offers valuable insights into the intersection of board games and 

programming concepts, it is essential to acknowledge its limitations. First, the research focused 
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on a small group of four children, limiting the generalizability of findings to a broader 

population. Consequently, caution should be exercised when drawing conclusions about the 

wider demographic. Future studies with larger participant groups could yield a more 

comprehensive understanding of how Lucky Codes influences children’s engagement with 

coding. 

Furthermore, while our observations highlight the potential efficacy of board games in 

introducing children to programming concepts, the absence of explicit learning measures and 

pre-assessments restricts our ability to conclude on skill acquisition definitively. As an initial 

exploration, our gameplay duration was relatively brief, with our primary objective being to 

demonstrate how our game design exposed players to specific programming skills rather than 

conclusively proving skill improvement. Consequently, this paper lays the foundation for future 

investigations into the educational potential of the game. Subsequent research could delve into 

long-term changes in programming skills and attitudes. 

Additionally, there is a gap in understanding the practical application of the skills 

acquired through games like Lucky Codes in real-world scenarios, especially during the 

transition to digital programming platforms like Scratch. Despite these limitations, our research 

is encouraging in that specific elements of our game design, such as incentivizing conditionals 

and using two game boards, resulted in a gameplay experience that introduced participants to 

core programming concepts in a manner exceeding many existing educational games. This study 

provides a springboard for future research exploring how the game facilitates the transition from 

board games to digital programming platforms and the enduring retention of skills gained, as 

compared to more traditional programming education methods. 
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Conclusion 

Board games hold a unique potential to introduce children to foundational computer 

programming concepts. However, understanding the nuanced effects of specific game mechanics 

on children's learning remains essential (Poole et al., 2022). This study offers valuable insights 

into how specific game mechanics, like those in Lucky Codes, can encourage active engagement 

in essential programming practices. Through a detailed exploration of our game's design and its 

influence on children's application of programming skills, we seek to provide guidance to other 

game designers. Ultimately, we aspire to further establish board games as a potent tool for 

supporting elementary-level computer science education that is accessible to all children. 
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Abstract 

This study investigates the use of the educational board game Lucky Codes to teach 

computational thinking skills to boys and girls in grades four to seven, addressing the gap in 

understanding how unplugged games influence learning. The research aimed to explore (1) 

general gameplay trends, (2) changes in computational thinking knowledge over time, and (3) 

differences in attitudes and engagement by gender. An exploratory case study design was 

implemented using a mixed methods approach, engaging 17 students in three gameplay sessions. 

Quantitative data were collected through pre- and posttests and gameplay analysis, while 

qualitative data included observations, surveys, and interviews. Results indicated that students 

increasingly used advanced coding concepts such as loops and conditionals over time, suggesting 

improvements in their use of computational thinking skills. Both boys and girls preferred the 

strategic elements of the game, but boys were more drawn to the competitive aspects, while girls 

placed greater emphasis on social interactions and collaborative dynamics. The study concludes 

that unplugged games like Lucky Codes may effectively support learning, with the potential for 

even greater impact through adaptive challenges and reflective activities. While the small sample 

size was a primary limitation of the study, future research with more diverse participants could 

provide deeper insights into its broader applicability. 

Introduction 

Over the last twenty years, computer science (CS) has evolved from a niche subject for 

future engineers and programmers to an essential part of the K-12 curriculum for learning 

computational thinking (Grover & Pea, 2013; Wing, 2006). Computational thinking (CT) is a 

process that involves solving problems, designing systems, and understanding human behavior 

through the lens of computer science principles (Wing, 2006). One way that CT has been taught 
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to children is through computer programming. The act of learning to program introduces students 

to CT skills such as algorithmic thinking, debugging, and sequencing (Lye & Koh, 2014; 

Resnick et al., 2009; Shute et al., 2017). 

Educational games have become known as an effective means of teaching programming 

concepts. Using games for learning, in general, can increase students' interest, which often leads 

to improved performance (Abrantes et al., 2007; Harackiewicz et al., 2016; Lathifah et al., 2023; 

Tsarava et al., 2018). Unplugged games, which are hands-on activities that do not use computers, 

are especially beneficial for younger students as they can help build a more concrete 

understanding of abstract CT concepts using tangible materials (Barsalou & Wiemer-Hastings, 

2005). Multiple studies have measured the learning effects of various unplugged activities and 

found that they can enhance CT performance in K-12 classrooms (Chen et al., 2023; Chongo et 

al., 2021; Merino-Armero et al., 2022; Polat & Yilmaz, 2022; Zhang et al., 2024). 

However, there are still limitations to understanding how the learning happens as many 

studies predominantly rely on pre- and posttests, offering limited insight into how students' 

gameplay evolves and changes across multiple sessions (Chen et al., 2023; Tang et al., 2020; 

Zhang & Nouri, 2019). Pre- and posttests are often limited in their ability to measure the deeper, 

evolving development of students' understanding and application of CT skills, as they tend to 

focus on specific outcomes rather than the complex and nuanced processes of learning (Black & 

Wiliam, 1998; Hattie & Timperley, 2007). These assessments could miss the dynamic process of 

learning that occurs during gameplay, such as the development of problem-solving strategies, 

iterative thinking, and collaborative skills, which are crucial components of CT (Grover & Pea, 

2013; Shute et al., 2017). Moreover, using only pre- and posttests could fail to provide insights 

into how students adapt their thinking in response to challenges encountered during gameplay or 
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how their engagement and motivation influence their thought developments across multiple 

sessions (Kafai & Burke, 2015). 

Additionally, it is important to consider gender differences in game preferences, which 

can influence engagement and learning outcomes. Studies have found boys and girls often favor 

different types of games: boys typically preferred faster-paced action and strategic games, 

whereas girls were more inclined toward creative and social games (Aleksić & Ivanović, 2017; 

Hartmann & Klimmt, 2006; Kinzie & Joseph, 2008; Lange et al., 2021; Nguyen et al., 2023). 

However, it is unclear whether these preferences apply to unplugged gaming contexts and how 

each gender reacts to a game designed to be gender-neutral (e.g. games that include features such 

as using animal figurines instead of gendered characters and incorporate game dynamics that do 

not overly emphasize action, strategy, creativity, or social interaction).  

This study seeks to address these gaps by examining the engagement and learning 

experiences of boys and girls with Lucky Codes, a gender-neutral educational board game 

developed by the authors. The game encourages players to build codes using CT skills such as 

sequencing, loops, conditionals, and debugging. Using this game as the intervention, this study 

aims to explore how gameplay trends evolve over multiple sessions and how gender preferences 

influence engagement and learning outcomes. The findings will provide a deeper understanding 

of the dynamics and effectiveness of unplugged games in developing CT skills. 

The research questions guiding this study are: (1) What are the general trends in 

gameplay among students using Lucky Codes? (2) How does students’ CT knowledge evolve 

over time, and how do these changes vary by gender? (3) What are the patterns in students' 

attitudes during the gameplay of Lucky Codes, and how do these differ by gender? 
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Literature Review 

Programming Education and Computational Thinking 

Computer science (CS) education in K-12 classrooms has seen notable changes due to 

the increasing role of technology in our daily lives. What was once a specialized field for 

aspiring engineers and programmers has now become a crucial skill for all students to navigate 

and interact with today's digital world (Grover & Pea, 2013; Wing, 2006). A key part of this shift 

is the focus on computational thinking (CT), a concept highlighted by Jeanette Wing in the mid-

2000s. For Wing (2006), CT is about “thinking like a computer scientist.” (p. 34), which goes 

beyond the ability to program a computer. Wing defined CT as "solving problems, designing 

systems, and understanding human behavior by drawing on the concepts fundamental to 

computer science" (p. 33). This involves skills such as thinking abstractly, decomposing 

problems, working with algorithms, and effectively representing and solving computational 

problems using a computing machine. 

Since then, scholars have refined the definition and components of CT. While the details 

vary, common components include abstraction, sequence, conditional, algorithm, loop, 

parallelism, and debugging (Ezeamuzie & Leung, 2022). These skills are valuable not only for 

CS careers but also for improving problem-solving, critical thinking, and analytical abilities 

across disciplines (Wing, 2006). The growing emphasis on CT has prompted numerous scholars 

to advocate for its integration into K-12 education (Barr & Stephenson, 2011; Grover & Pea, 

2013; Lye & Koh, 2014). This call to action has gained global recognition, with countries like 

the United States, England, Australia, France, Israel, and South Korea integrating CT into their 

core curriculum (Lindberg et al., 2019; Nambiar, 2020; Wu et al., 2020). 

Incorporating programming education within CS classes serves as a powerful tool for 
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introducing students to CT concepts, as it introduces students to CT by developing problem-

solving skills, engaging them in hands-on applications of CT concepts like sequencing, 

conditional thinking, and debugging, and fostering systematic, transferable thinking (Lye & Koh, 

2014; Resnick et al., 2009; Selby, 2012; Shute et al., 2017; Wing, 2006). Block-based 

programming, such as Scratch, is known to be particularly beneficial because it simplifies the 

coding process, making it more accessible and engaging, especially for novice learners (Resnick 

et al., 2009). Multiple empirical studies advocate for these benefits. For example, Moreno-León 

et al. (2016) discovered that using Scratch coding led to substantial improvements in CT skills 

across multiple subjects. Similarly, Aksit and Wiebe (2019) and Bilgic and Dogusoy (2023) both 

found that block-based programming (such as Scratch) has positively impacted students’ CT 

scores. Some scholars, like Moors et al. (2018), have addressed concerns about block-based 

programming, noting that it can lead to reduced confidence when transitioning to text-based 

languages and may cause misconceptions due to reliance on visual cues. However, systematic 

reviews, such as by Zhang and Nouri (2019) and Jin and Cutumisu (2024), indicate that block-

based programming remains a highly popular and effective means of CT learning in K-12 

education. 

Unplugged Games for Programming 

As the emphasis on CT has grown in K-12 education, the need for effective and 

accessible learning methods has become increasingly important. Unplugged activities, such as 

board games, have emerged as a powerful tool for CT education. Chen et al. (2023), in their 

systematic review of 49 studies, found that unplugged activities significantly improve CT skills 

by providing hands-on, interactive learning experiences that make abstract concepts more 

concrete. Similar studies have found that the physical game pieces used in unplugged activities 



106 

provide a tangible way for students to interact with abstract CT concepts, fostering more 

profound understanding and long-term retention (Barsalou & Wiemer-Hastings, 2005). These 

visual aids help students bridge the gap between abstract ideas and real-world applications, 

making the learning experience more meaningful and relevant (Monga et al., 2018; Turchi et al., 

2019). 

The hands-on and tangible nature of unplugged activities also fosters a collaborative 

learning environment where all students can actively participate. They can observe each other's 

strategies, share insights, and work together to solve problems. This contrasts with digital 

learning environments, which often limit collaboration as only one student typically controls the 

mouse or keyboard at a time. The collaborative atmosphere in unplugged activities not only 

enhances focused behavior and teamwork but also plays a crucial role in developing 

communication and interpersonal skills, which are essential for both academic success and real-

world applications (Küçükkara & Aksüt, 2021; Marjanen et al., 2011; Rist et al., 2006). 

Finally, the accessibility of unplugged activities is a critical advantage, particularly in 

diverse educational settings. By removing the need for technology, unplugged activities ensure 

that all students, regardless of their access to digital devices, can engage with and develop 

essential CT skills (Bell & Vahrenhold, 2018; Gibson & Bell, 2013). This inclusivity is crucial 

for bridging educational gaps, especially in under-resourced schools where access to technology 

may be limited. By making CT education available to a broader range of students, unplugged 

activities play a vital role in promoting equity in education (Sun et al., 2021). 

Research on CT Board Games 

Multiple scholars have developed CT board games for K-12 students and studied their 

effects on learning. For instance, Kuo and Hsu’s (2020) Robot City was designed to help students 
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apply CT skills, develop problem-solving strategies, and collaborate on constructional tasks. 

Their research found that students' learning outcomes were better when they engaged in clear-

ended collaborative tasks rather than open-ended competitive tasks. Similarly, Tsarava et al.’s 

(2018) Crabs & Turtles and Yoon and Khambari’s (2022) Robobug were created to offer an 

accessible introduction to CT. These studies, which involved adult players and experts in testing 

the games, revealed their positive potential for fostering essential computational thinking skills, 

such as logical reasoning, algorithmic thinking, and problem-solving in children. Gresse von 

Wangenheim et al.’s (2019) SplashCode is a low-cost board game designed to reinforce basic 

algorithms and programming concepts. Their findings showed that the game significantly 

improved students' understanding of algorithms, enhanced their motivation and engagement, and 

promoted positive social interactions, making the learning process both effective and enjoyable. 

While studies on board games generally indicate that they can effectively teach CT 

skills, they often lack depth in exploring how these games influence students' learning processes. 

Most existing research predominantly relies on pre- and posttests and observational data, with 

few studies employing qualitative methods like interviews to delve into participants' in-depth 

thinking processes (Chen et al., 2023; Tang et al., 2020). Qualitative approaches are crucial for 

gaining a more nuanced and accurate understanding of how learning is experienced by players, 

especially when the participants are children. As Flewitt (2013) points out, relying solely on 

observational data can introduce researcher biases in interpreting participants' behaviors, whereas 

interviews allow participants to articulate their actions and perspectives, uncovering complexities 

and differences that might otherwise be overlooked. Understanding those complexities and 

differences is crucial for advancing CS education. As emphasized by scholars, there is a need for 

studies that not only determine which aspects of CT can be effectively taught through 
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educational board games but also explore how specific game elements can be designed to 

enhance the development of CT skills during gameplay (Brennan & Resnick, 2012; Poole et al., 

2022; Videnovik et al., 2023). Such in-depth research can inform the creation of more effective 

educational tools that align with the nuanced learning processes of students, ultimately 

advancing both practice and research in CS education. 

Gender and Games 

Gender disparities in CS education reveal both critical challenges and opportunities for 

promoting CT among all students. The gender gap in education is particularly pronounced in CS 

compared to other subjects like mathematics, biology, and chemistry (Jaccheri et al., 2020; 

Master et al., 2021). Studies have found that boys tend to show higher self-efficacy and 

confidence in programming-related subjects compared to girls, which leads to greater 

participation in related activities (Kallia & Sentance, 2018; Tuğtekin et al., 2018; Zdawczyk & 

Varma, 2022). Lower self-efficacy in girls can negatively impact their motivation, learning 

success, and interest in future engagement in CS courses (Srisupawong et al., 2018). Therefore, it 

is important to design educational experiences that intentionally promote interest and confidence 

in learning CT for both girls and boys, ensuring that all students have equal opportunities to 

succeed (Master et al., 2021). 

To design effective educational interventions, it is essential to recognize the different 

ways boys and girls engage with CT games. Given that girls generally express less interest in the 

subject compared to boys, multiple studies have shown that intentionally designed learning 

interventions can successfully promote girls' interest and confidence in learning CT (Barker & 

Aspray, 2006; Kuo & Kuo, 2023; Ma et al., 2021). Achieving this in the context of CT games 

requires a thorough understanding of how girls interact with the game and their preferences to 
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ensure it appeals to both genders. 

Research on gaming preferences in digital games provides insights that could inform the 

design of unplugged games. Research findings indicate that while both genders enjoy problem-

solving games (Kinzie & Joseph, 2008), boys generally prefer action-oriented and fast-paced 

games, such as sports, first-person shooters, and fighting games, along with active strategy and 

strategic play modes (Chang & Chen, 2023; Hamlen, 2011; Homer et al., 2012; Kinzie & Joseph, 

2008; Nguyen et al., 2023). In contrast, girls tend to favor simulations, educational games, 

puzzles, social interaction elements, and creative and exploratory games (Chang & Chen, 2023; 

Hamlen, 2011; Homer et al., 2012; Kinzie & Joseph, 2008; Nguyen et al., 2023). 

While these findings provide valuable insights into boys' and girls’ gaming preferences, 

there is little understanding regarding whether these preferences and engagement patterns apply 

to unplugged gaming contexts such as board games. Unplugged games, which involve physical 

interaction, face-to-face communication, and hands-on activities, offer unique engagement 

dynamics that differ from digital games (Bell & Vahrenhold, 2018). Understanding how boys and 

girls interact with unplugged games and whether the same gender-specific preferences are 

observed is crucial for designing effective educational tools in non-digital settings. This gap 

highlights the need for further research to explore the applicability of these findings in unplugged 

gaming contexts. 

Method 

Study Design 

This study employed an exploratory case study design. According to Creswell and Plano 

Clark (2017), a case study involves an in-depth investigation of a single unit or system within its 

real-life context, making it particularly beneficial for gaining a holistic understanding of specific 
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phenomena. Yin (2018) reinforces the value of case studies in exploring contemporary 

phenomena where the boundaries between the phenomena and their context are not clearly 

evident. This design is especially useful when existing research on the phenomenon is limited, as 

it allows researchers to investigate the phenomenon from multiple perspectives using various 

data sources, such as interviews, observations, and documents (Creswell & Plano Clark, 2017). 

The goal of an exploratory case study is not to test a specific hypothesis but to explore the 

phenomenon in depth and generate new insights or theories (Yin, 2018). This approach is 

particularly beneficial in the early stages of research when the aim is to identify key issues in 

depth, generate hypotheses, or develop a theoretical framework (Yin, 2018). The case explored in 

this study was the educational board game Lucky Codes.  

Data were collected and analyzed using an embedded mixed methods approach, which 

integrates both quantitative and qualitative methods within the case study design to allow each to 

complement the other (Creswell & Plano Clark, 2017). According to Creswell and Plano Clark 

(2017), embedded mixed methods involve incorporating one type of data within a larger 

framework driven by another primary method, enabling researchers to address complex research 

questions from multiple perspectives. In this study, quantitative data, such as pre- and post-test 

assessments and gameplay metrics, provided measurable insights into changes in students' 

computational thinking skills over time, helping to identify what areas required closer 

examination in the qualitative analyses. Meanwhile, qualitative data, including detailed 

gameplay observations and open-ended survey responses, captured the nuanced ways students 

engaged with the game and the reasoning behind their coding choices, offering the why behind 

the numbers from the quantitative analysis. A visual representation of this design is shown in 

Figure 4.1.  
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By embedding these qualitative insights within the quantitative framework, the study 

was able to cross-validate findings and explore the underlying reasons behind observed trends 

(Creswell & Plano Clark, 2017). Blending quantitative and qualitative data served to triangulate 

the findings between objective and subjective data sources, which is recognized as a way to 

increase the credibility of the results and the trustworthiness of the analysis (Creswell & 

Creswell, 2017). 

 

Figure 4.1: The embedded mixed methods study design of this study. 

 

The Game, Lucky Codes 

The intervention used for this study was called Lucky Codes, an educational board game 

designed to teach coding concepts to novice students, specifically targeting upper elementary 

school students. The game was developed through several rounds of prototyping, which is 

detailed in Yang and Kopcha (2022). The main purpose of the game’s development was to offer 

teachers and students a fun and gender-neutral game that encourages players to engage in higher-

level coding concepts, such as loops and conditionals, in addition to fundamental concepts like 

sequencing and debugging. In the game, students compete against one another in teams to 

acquire gold coins scattered about a game board. The winning condition is to collect five coins 

before the other team.  
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Figure 4.2: Screenshot of students playing Lucky Codes with descriptions of gameplay. The game 

consists of two game boards: Action Board (above) and Coding Zone (below). 

 

As displayed in Figure 4.2, there are two game boards: Coding Zone and Action Board. 

Players create a sequence of tiles on the Coding Zone that their game pieces (animal figurines) 

will execute on the Action Board. The two-board dynamic mirrors the way coding takes place in 

block-based programming environments such as Scratch. The tiles used in the Coding Zone 

include common coding commands, such as movements (“turn,” “move”), conditionals (“if …, 

then, …”), and loops (“repeat”). Players can use two types of conditionals in the game: cloud-

conditionals (i.e., “If on a cloud, transport to another cloud”), which allow players to jump 

around clouds across the Action Board, and color-conditionals (i.e., “If on [a specified color], 

pick a Clover Card”), which are necessary to obtain "Clover Cards." Clover Cards are random 

command cards (e.g., "Move two steps diagonally in any direction," "Exchange one code tile 

with the other team.") that add an element of chance to the gameplay. These cards are desirable 
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because they can be used at any time by the players like a wild card. Clover Cards can only be 

obtained when using conditionals, thereby incentivizing players to engage with more advanced 

coding concepts beyond basic pathfinding movements. 

A typical game turn begins with a team either creating a sequence using the code tiles in 

their hands to move their character to a desired spot or exchanging any unneeded tiles for new 

ones from the draw pile (also referred to as the “bank”). When a team chooses to create a code 

sequence on the Coding Zone, the players move their game piece on the Action Board according 

to the sequence they created. When players pass by or land on coins on the Action Board, they 

collect them, which serve as their points in the game. Once the code is executed, the opposing 

team gets a turn. The gameplay repeats until a team collects five coins, either by going around 

the game board or reaching the pot of gold at the end of the rainbow that is initially filled with 

five coins (players can transfer some gold coins from the pot to different locations during 

gameplay using certain Clover Cards). 

 

Participants 

An initial group of 23 students from grades four to seven was identified as potential 

participants in the study. These students attended a private STEAM (Science, Technology, 

Engineering, Arts, and Mathematics) school in Georgia, which had a total enrollment of 51 

students. The school curriculum regularly engaged students in hands-on STEM explorations, 

including basic CT concepts. However, no dedicated computer programming or coding classes 

were offered.  

The school used the IOWA Assessments to measure academic progress, which is a norm-

referenced test that compares a student's performance to a nationally representative sample of 
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their grade level, with scores between the 25th and 75th percentiles considered average 

(Riverside Insights, n.d.). At the time of this study, the participants’ scores in English/Language 

Arts (ELA) and Math indicated that most students performed at or slightly above the national 

average. Specifically, the average scores for grades 4, 5, 6, and 7 were as follows: Grade 4 (ELA 

= 76%, Math = 79%), Grade 5 (ELA = 78%, Math = 53%), Grade 6 (ELA = 75%, Math = 60%), 

and Grade 7 (ELA = 75%, Math = 75%). 

The final sample consisted of 17 students who met three key criteria: parental consent 

was granted, the student was willing to participate, and the student provided verbal assent to 

participate in the study. Most students (70%) had previous introductory exposure to coding 

through school clubs or one-time activities, mainly using Scratch, with some also having limited 

experience in platforms like Code.org, Lego Robotics, or Python. 

The recruitment process began with researchers explaining the study's goals and 

procedures. Interested students were given parental permission forms detailing the study, 

emphasizing voluntary participation and the ability to withdraw from the study at any time 

without any consequences. In the subsequent week, only the students who returned signed forms 

and agreed to participate were included in the study. This resulted in a group of 10 male and 7 

female students. All study procedures were approved by the University of Georgia’s Institutional 

Review Board on April 28, 2023. 

Procedures and Data Collection 

The game sessions for data collection took place over three days; these sessions were 

held during students' regular class time. Figure 4.3 shows the timeline of the data collection 

procedures. The first day consisted of a pretest, the first round of gameplay, and then an interest 

survey that examined students’ interests in playing the game and learning coding. Day 2 
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consisted of another round of gameplay and an interest survey. Day 3 consisted of the final round 

of gameplay, a final interest survey with a posttest, and interviews with selected participants. All 

gameplay sessions were video recorded with prior agreement from the participating students. 

 

Figure 4.3: Data collection timeline. 

 

Students were organized into groups of three or four, with each group divided into two 

teams. Groups were formed by taking into account the students' proximate grade levels to ensure 

balanced gameplay. This grouping strategy acknowledges that while cognitive development can 

vary among individuals, research suggests that cognitive skills, which are crucial for academic 

achievement, generally increase with age (Boman, 2023; Cleveland et al., 2022). Therefore, 

given the general correlation between age and cognitive development, grade-based grouping was 

deemed the most practical and effective approach for this study.  

Within each group, students were allowed to choose their own partners and had the 

option to switch partners between rounds. This decision was informed by studies suggesting that 

allowing students to select their partners promotes comfort and enhances their performance 

potential (Choi, 2015; Hartl et al., 2015; Zhong et al., 2016). When grouping students, the 

balance of gender within a group was not the highest priority than the grade level and students’ 

preference of partners. This approach was supported by Admiraal et al. (2014), who found that 

gender composition had no significant effect on learning experiences or outcomes. Additionally, 

Day 1 Day 2 Day 3 

Gameplay 1 
Observation 1 
Interest survey 1 
Pretest 

Gameplay 2 
Observation 2 
Interest survey 2 

 

Gameplay 3 
Observation 3 
Interest survey 3 
Posttest 
Interviews 
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the practical consideration of an unbalanced number of boys and girls participating in this study 

further justified the approach.  

Since the game sessions took place during regular class hours, some students in the 

classroom who were not participating in the study were included in the groups to maintain an 

inclusive environment. This arrangement ensured that all students had the opportunity to be a 

part of the gameplay sessions unless they personally chose not to participate. However, in groups 

with a mix of participating and non-participating students, their gameplay was not video-

recorded to respect the privacy of the non-participating students. Only the survey, tests, and 

interview data were collected from the participating students in those groups. As a result, video-

recorded observation data was collected from four groups with the following gender distribution: 

Groups 1 and 3 included three males, and Groups 2 and 4 had three females and one male. Two 

male and one female participant were in groups with non-participating students and were 

therefore not video recorded. The following sections detail each type of data collected.  

Gameplay Observation 

During the gameplay sessions, students’ gameplay actions and conversations were 

video-recorded during the gameplay sessions using tablets and smartphones on tripods. The 

recordings captured the codes that students constructed on the Coding Zone, the corresponding 

movements on the Action Board, and students’ verbal discussions.  

Pre- and Posttest 

The participants completed a pre- and posttest of their programming knowledge (see 

Appendix B). The pre-test was administered on the first day before playing the game and the 

posttest was administered on the third day after playing the last game. All students were given 20 

minutes to complete each of the tests. Before completing the tests, students were informed about 
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the purpose of the tests and assured that their results would be used only for research purposes.  

The pre- and posttests consisted of five items developed by the researcher, designed to 

evaluate students’ understanding of the programming skills addressed through gameplay. These 

items were based on the game’s main learning goals of the game: to read and create functional 

code sequences, to use loops and conditionals to enhance programming efficiency, and to 

identify and correct errors in codes.  

To enhance the relevance and familiarity of the test for the students, each item 

incorporated images from the game boards. These images helped situate the questions within the 

gameplay context, making the test items more intuitive and relatable for the students. A sprite 

image from Scratch was borrowed to represent the game piece in the test scenarios. The tasks for 

each test item were as follows: 

1. Sequencing: Assembling movement codes in a specific order. 

2. Conditionals and Loops: Interpreting a series of codes that incorporate conditionals 

within a loop. 

3. Loop Efficiency: Employing loops in assembling codes to achieve a specified goal 

efficiently. 

4. Advanced Efficiency: Resolving a more complex version of the problem presented in the 

previous item. 

5. Debugging: Identifying and correcting an error in a pre-written code. 

 The tests were scored using a rubric (Appendix C), with each item assigned up to 4 

points, for a total possible score of 20. To illustrate how a test item was scored, test item 3 

required students to collect five coins using the smallest number of code blocks possible. The 

ideal solution (4 points) involved using a loop to repeat the actions of moving forward, turning, 
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moving forward, collecting the coin, and turning, five times. However, some students managed 

to collect all five coins by manually repeating the movements multiple times without using 

loops. These responses were scored 3 points because, while the task was successfully completed, 

the solution lacked efficiency and could have been improved by utilizing loops. Students who 

omitted a part of the sequence, such as leaving out the final turning, received 2 points, as they 

demonstrated progress and partial understanding, but the errors prevented the students from fully 

achieving the goal. 

Survey 

Students completed an interest survey at the end of each game session to assess (1) the 

level of their enjoyment in playing the game and (2) their interest in learning coding (see 

Appendix D). Enjoyment level was measured by a 7-point visual analog scale with the question, 

“How much did you enjoy the game so far?” The scale consisted of a horizontal line with face 

emojis representing varying levels of enjoyment. The scale was anchored at one end with a 

frowning face to represent "Not Enjoyable at All" (scored as 1) and at the other end with a 

smiling face to represent "Extremely Enjoyable" (scored as 7). Participants were instructed to 

mark one of the faces on the line that best represented their level of enjoyment and interest. The 

survey also included two open-ended questions to allow participants to explain what they found 

the most and least enjoyable aspects of the game. 

Then, participants completed a five-item scale to measure students’ interest in coding 

after each game session. The scale was drawn from the Elementary Student Coding Attitudes 

Survey, which had previously been established and validated by Mason and Rich (2020). 

Specifically, the questions used in this study were from the “Coding Interest” category of their 

survey. Participants answered statements such as, “I would like to learn more about coding” or 
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“Solving coding problems seems fun,” indicating their level of interest on a five-point Likert 

scale that ranged from strongly disagree (1) disagree (2), somewhat agree (3), agree (4), to 

strongly agree (5). All five items were added to create a total interest in learning coding, where a 

higher value indicated a high level of interest. In the current study, this scale exhibited an 

acceptable level of internal consistency (ɑ = .718) (Nunnally & Bernstein, 1994). 

Interviews 

On the last day, semi-structured interviews were conducted with 12 students. Priority 

was given to students who demonstrated a noticeably high or low interest in the game or those 

whose survey responses could use additional explanations. These interviews served as 

complementary data to gain deeper insights into students’ gameplay experiences and responses to 

the interest surveys. The conversations specifically addressed students' reactions to the 

challenges of the coding tasks, their experiences with various elements of the game, and their 

overall enjoyment and frustration with coding activities. 

Data Analysis 

Gameplay Observation 

The video recordings of the participants’ gameplay were first transcribed in a document 

that included written records of the codes students used each turn, the corresponding visual 

representations of the gameplay, and transcripts of students’ conversations for each turn. This 

format provided a holistic view of students’ interaction with the game over time. Figure 4.4 

presents an example of a part of the transcript; the first team to move was called Team A (tracked 

with pink arrows), and the second was called Team B (tracked with light blue arrows). The 

triangular arrowheads indicate the direction in which each team’s game piece is facing during 

each turn. Note that some moves may appear disconnected between turns, as game pieces could 
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sometimes be moved by the opposing team’s use of Clover Cards. This method of visually 

representing the gameplay movements was chosen to enhance the observational data by offering 

a clear visual trajectory of each team's progress throughout the game. As Zallio (2021) suggests, 

such visual representation improves the clarity and impact of the presentation, making the 

information more accessible and engaging to a broader interdisciplinary audience. 

Using this transcript, students’ coding behaviors were analyzed and grouped into four 

emergent code patterns through a content analysis of their gameplay interactions. Content 

analysis is a systematic approach to examining communication artifacts (in this case, coding 

sequences used during gameplay) in which codes are assigned and categorized to help interpret 

meaningful data (Krippendorff, 2013). As a result, four distinct coding patterns were identified: 

1) Movements Only, involving only directional commands; 2) Conditional with Movements, 

which integrates conditions with movement commands; 3) Loops with Movements, combining 

loops with spatial navigation; and 4) Loops and Conditional with Movements, which merges 

loops, conditions, and movements. 

 

Figure 4.4: Example of the visual transcript. “A-1” represents player 1 in Team A, and “B-1” and 

“B-2” represent players 1 and 2 in Team B, respectively. 
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Initial analyses for these code patterns involved calculating descriptive statistics, 

including means and standard deviations, as well as displaying those statistics using a line graph 

to visually display the participants' overall use of different code patterns. To determine the 

suitability of subsequent statistical tests, normality tests were conducted for each pair of days 

(Days 1 to Day 3) using the Shapiro-Wilk test. Results indicated that the differences for Code 
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Pattern 3 between Day 2 and Day 3 were not normally distributed (p = .012), while all other code 

patterns showed normal distribution across the comparisons. Consequently, the analysis 

employed the Wilcoxon signed-rank test, a non-parametric test suitable for paired data regardless 

of normality (Gibbons & Chakraborti, 2014). All statistical calculations in this study were 

conducted using SPSS software. 

Pre- and Posttest 

Pre-test and posttest assessments were conducted to measure the impact of the 

intervention on students’ programming knowledge. The boys’ and girls’ pre- and posttest scores 

for all five items combined were normally distributed, which allowed for the use of paired 

sample t-tests for overall comparisons. However, the Shapiro-Wilk test revealed that several 

individual test items did not follow a normal distribution. Specifically, this was the case for items 

1, 2, 4, and 5 when considering both genders combined; items 1, 3, 4, and 5 for males; and item 2 

for females. Consequently, the Wilcoxon signed-rank test, a non-parametric method, was 

employed for these individual comparisons. 

In this exploratory study, strict adjustments for multiple comparisons were not 

implemented. While some may suggest performing such corrections to avoid false-positive 

results, this decision aligns with the argument that these adjustments, though crucial in 

confirmatory studies aimed at changing established practice, are less critical in exploratory 

research (Althouse, 2016; Rothman, 1990). As highlighted by Althouse (2016), enforcing 

stringent correction standards in exploratory studies may oversimplify the nuanced issue of 

multiple comparisons, potentially stifling valuable initial findings. Instead, the exploratory nature 

of this study is clearly stated, with an acknowledgment of the need for subsequent research with 

pre-planned hypotheses to confirm the results. 
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Survey 

Survey responses were analyzed using both quantitative and qualitative approaches. To 

investigate students’ gameplay experience scores by gender, descriptive statistics were calculated 

to examine levels of enjoyment and interest over three days. The open-ended responses were 

analyzed using thematic analysis, following Braun and Clarke's (2006) six-phase approach. This 

process involves a systematic method of identifying, analyzing, and reporting patterns or themes 

within the data. It begins with familiarization with the data, where the researcher thoroughly 

reads and re-reads the data to become immersed in it. The next step is generating initial codes, 

which involves systematically coding notable aspects of the data throughout the entire dataset. 

Following this, the codes are collated into potential themes. These themes are then repeatedly 

reviewed and refined to ensure they accurately represent the data. The final phase involves 

weaving together the narrative of the analysis, supported by data extracts, to present a coherent 

and persuasive account of the findings. 

Building on this approach, the data were systematically coded and then organized into 

broader themes that reflected the underlying patterns within the students' responses. For 

example, as visualized in Table 4.1, a response like "Having to work with what you have" was 

initially coded as "Optimizing Resources," while responses such as "Using strategy and my brain 

knowledge to achieve a goal" and "Having to problem-solve and be smart" were coded as 

"Strategizing" and "Problem-solving," respectively. During the thematic analysis process, these 

initial codes were reviewed and refined, ultimately being integrated into the broader theme of 

"Strategizing." This consolidation occurred because all these aspects—resource management, 

strategic planning, and problem-solving—were fundamental components of a broader strategic 

approach that students used during gameplay. By categorizing them under "Strategizing," the 
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coding captured the essence of the students' tactical thinking and decision-making processes as 

they interacted with the game. 

Similarly, responses such as "It helped me get better at coding," initially coded as 

"Learning Coding," and "I understand more," initially coded as "Gameplay Understanding," were 

reviewed and then consolidated into the broader theme of "Skill Improvement." This reflects the 

intertwined nature of coding and gameplay in the context of coding board games. Distinguishing 

between improving at coding and improving at the game itself became less meaningful, as the 

skills required for proficiency in the game were inherently related to coding proficiency. 

Therefore, both aspects were captured under the broader theme of "Skill Improvement," 

representing the students' overall growth and enhanced understanding through their interaction 

with the game. Following this process, Table 4.2 presents the final codes derived from the 

thematic analysis. 

In addition to the qualitative analysis, the frequency of each code was also counted to 

determine which categories were most mentioned by each gender. This quantitative analysis of 

coding frequency provided further insights into the predominant themes in the responses of boys 

and girls, shedding light on the different aspects of gameplay and interaction that were 

emphasized by each gender. 

 

 

Table 4.1: Examples of the coding process for student responses. 



125 

Student Response Initial Coding Final Coding 

“Having to work with what you have.” Optimizing Resources 

Strategizing 

“Strategy”; “Strategies” Strategizing 

“Using strategy and my brain 
knowledge to achieve a goal.” 

Strategizing 

“Having to problem-solve and be 
smart.” 

Problem-solving 

“Problem-solving” Problem-solving 

“It helped me get better at coding and 
helped me understand it more.” 

Learning Coding 

Skill Improvement “I got better.” Skill Improvement 

“I understand more.” Gameplay Understanding 
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Table 4.2: Coding scheme for qualitative analysis of student responses in gameplay. 

Code Definition 

Strategizing 
Responses where students explicitly mentioned "strategy" or 
"strategies" or described their approach to gameplay, including 
problem-solving and overcoming challenges. 

Entertaining Responses that emphasized the fun or entertaining aspects of the 
game; this often included words such as "fun" or "entertaining." 

Teamwork 
Responses focusing on the collaborative and social elements, 
including direct mentions of "teamwork" or enjoyment of 
playing with others. 

Skill Improvement Responses related to a deeper understanding of coding, learning 
new aspects, or feelings of increased competence. 

Game Mechanics Responses discussing the game's structure and rules, including 
its simplicity, pace, chance, characters, and overall mechanics. 

Clover Cards 
Responses specifically mentioning "Clover Cards," a distinct 
game feature that combines elements of chance with strategic 
play. 

Rewards Responses pertaining to the earning of in-game coins. 

Limited Control 
Responses expressing frustration over limited choices in 
selecting code tiles or feeling "unlucky" (e.g., other teams 
getting more favorable Clover Cards). 

Opponent Team Responses with complaints about interactions with the opponent 
team, such as arguing or rude comments. 

Hindrance Responses mentioning setbacks caused by the opponent team, 
like being forced to move on the board or giving away a coin. 

Waiting Responses noting having to wait for the other team or the game 
being “slow-paced.” 

Winning, Losing, 
Coding, Competition Direct mentions of these aspects were coded accordingly. 

Everything Assigned to a response explicitly stating "everything," 
indicating broad appreciation for all game aspects. 
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Interviews 

The interview data were analyzed using the same thematic analysis approach applied to 

the survey data, as outlined by Braun and Clarke (2006). The audio-recorded interviews were 

transcribed, with key segments highlighted and annotated to capture initial insights and 

observations. Then, the data were systematically coded to identify significant features across the 

dataset. The primary focus was on aligning these codes with those already generated from the 

survey data, allowing for a comparison that added depth and context to the survey findings. 

Meanwhile, a new theme emerged from the interview data. Several interviewees expressed 

concerns about transitioning to programming on the computer despite their increased confidence 

in coding within the game. These concerns were captured with codes such as “Technology 

Reliability Concerns,” “Paper-Based Preferred for Ease of Use,” and “Expected Confusion,” 

which were then categorized under the broader theme of “Technology-Related Anxiety.” This 

new theme provided additional insights into the participants' experiences. All themes, both 

existing and new, were carefully reviewed and refined to ensure they provided a coherent and 

comprehensive understanding of the participants' experiences. 

Ensuring Trustworthiness of Qualitative Data 

To ensure the trustworthiness of the qualitative data in this study, I employed data 

triangulation by integrating multiple sources of data, including gameplay observations, open-

ended survey responses, interviews, and quantitative data such as pre- and post-test scores and 

gameplay metrics. This triangulation allowed for cross-verification of findings, providing a 

comprehensive understanding of students’ engagement and learning processes (Lincoln & Guba, 

1985; Patton, 1999). Additionally, I incorporated rich, thick descriptions by offering detailed 

accounts of the gameplay sessions, such as how students’ use of coding strategies evolved and 
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their reflections on these activities. These in-depth descriptions allowed readers to gain a clear 

understanding of the study’s context and participants, enabling readers to evaluate the relevance 

of the research and its transferability to other contexts (Lincoln & Guba, 1985). 

Integration of Quantitative and Qualitative Data 

To integrate the quantitative and qualitative data, both types of data were collected 

concurrently, with qualitative data embedded within the quantitative framework. The quantitative 

component, which included paired sample t-tests and Wilcoxon Signed-Rank Tests, provided a 

comprehensive analysis of code pattern usage and changes in programming skills over time. 

Qualitative observations and interviews were conducted to gather contextual insights into 

students' gameplay strategies, engagement, and challenges. The qualitative data were analyzed to 

explain and illustrate the trends identified in the quantitative analysis. For example, qualitative 

observations provided detailed accounts of students' use of coding strategies during gameplay 

and interviews offered in-depth explanations of students' thought processes and experiences. 

Integrating quantitative and qualitative methods provided a well-rounded perspective on how the 

educational game influenced students' CT skills, merging analytical data with contextual 

observations. 

To analyze the quantitative and qualitative data, a joint display was constructed to 

synthesize the findings. The joint display was an electronic spreadsheet that contained each 

team's pre- and posttest results, open-ended survey responses, daily gameplay statistics, and key 

themes from interviews and surveys. The creation and use of the joint display enabled a detailed 

and comprehensive analysis, allowing for an examination of both individual and collective trends 

observed in the study (Creswell & Plano Clark, 2017). It facilitated an understanding of how 

quantitative and qualitative data together highlighted consistent patterns or revealed unique 
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aspects of the gameplay experience. Figure 4.5 shows a partially represented example of the joint 

display. 

Examples of the joint display's utility were seen in its ability to track changes in interest 

and enjoyment ratings alongside qualitative comments over the course of three days. For 

instance, Student 3 consistently rated both interest and enjoyment high, with positive comments 

such as "It's fun" and "Winning and the strategies," indicating a strong alignment between 

quantitative and qualitative data. Furthermore, the joint display facilitated an overall comparison 

between genders. For example, both genders often mentioned the opposite team as the least 

enjoyed aspect, but for different reasons. Boys expressed frustration with losing or feeling less 

“lucky,” while girls were more concerned with the aggressiveness or “mean comments” from the 

opposing team. 
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Figure 4.5: Example of the joint display of collected data. This figure displays the first 14 columns of the matrix. An additional 21 

columns contain the pre- and posttest scores for each test item, daily counts of each code pattern used, and key themes from interviews 

and surveys. Names have been changed to pseudonyms to ensure participant confidentiality. 
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Results 
In the following section, the results are organized and presented by research questions. 

RQ1: What were the general trends in gameplay? 

Trends in Code Pattern Usage 

Table 4.3 and Figure 4.6 display the average instances and trends of the four distinct 

code patterns (CP) used during gameplay by each team over a three-day period. CP 1 

(Movements Only) increased in usage from Day 1 to Day 2, followed by a decrease on Day 3. 

CP 2 (Conditional with Movements) consistently decreased over the three days. CP 3 (Loops 

with Movements) slightly increased from Day 1 to Day 3, and CP 4 (Loops and Conditional with 

Movements) showed an initial increase from Day 1 to Day 2, then a decrease on Day 3. 

 

Table 4.3: Descriptive statistics of code pattern usage over three days (n = 32). 

Code Pattern Days Mean SD 
 

1: Movements Only 

1 1.63 1.77  

2 2.75 1.28  

3 1.00 1.31  

2: Conditional with Movements 
1 3.25 1.49  

2 2.50 1.51  

3 2.13 0.99  

3: Loops with Movements 
1 0.63 0.74  

2 0.38 0.52  

3 0.50 0.54  

4: Loops and Conditional with Movements 
1 0.50 0.93  

2 1.13 0.84  

3 0.87 0.84  
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Figure 4.6: Trends in the average use of coding patterns over three days. 

 

To analyze the data further, the Wilcoxon signed-rank test was used to compare the three 

days. Significant differences were found in two cases: 

• CP 1 (Movements Only): A significant decrease was observed from Day 2 to Day 3 (Z = -

2.20, p = .028). 

• CP 2 (Conditional with Movements): A significant decrease was observed from Day 1 to 

Day 3 (Z = -2.26, p = .024). 

No other significant differences were observed in the comparisons. Detailed results are presented 

in Table 4.4. 

 

Table 4.4: Wilcoxon signed-rank test results for code pattern usage. 

Code Pattern Pair Mean 
Difference SD Z p 

1: Movements Only 

Day 2−Day 1 1.13 2.42 -1.42 .156 

Day 3−Day 1 -0.63 2.39 -0.74 .461 

Day 3−Day 2 -1.75 1.58 -2.20 .028* 
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2: Conditional with 
Movements 

Day 2−Day 1 -0.75 1.67 -1.19 .236 

Day 3−Day 1 -1.13 0.99 -2.26 .024* 

Day 3−Day 2 -0.38 1.41 -0.75 .453 

3: Loops with Movements 

Day 2−Day 1 -0.25 1.04 -0.71 .480 

Day 3−Day 1 -0.13 0.99 -0.38 .705 

Day 3−Day 2 0.13 0.64 -0.58 .564 

4: Loops and Conditional 
with Movements 

Day 2−Day 1 0.63 1.30 -1.39 .163 

Day 3−Day 1 0.38 1.41 -0.75 .453 

Day 3−Day 2 -0.25 0.71 -1.00 .317 

* p < .05 

 

Gameplay Observation Analysis 

Following the quantitative findings, a qualitative analysis of the observation data was 

performed to understand the factors contributing to the different trends in code pattern usage 

over the three days and to examine nuanced trends that were not evident in the quantitative data 

alone. 

The general trend identified in the quantitative analysis was reflected in students' 

movements on the gameboard across three days. Figure 4.7 illustrates the gameboard paths taken 

by Groups 1 and 3 as representative examples for each day. On Day 1, both groups primarily 

explored the gameboard through multiple horizontal movements, focusing on collecting nearby 

coins. Most of their movements occurred within the rainbow area, which explains the high 

frequency of CP 2 (Conditionals with Movements) used on Day 1 (see Figure 4.6), as they 

frequently used color-conditionals to try out what they could do with Clover Cards. 
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Group Day 1 Day 2 Day 3 

1 

   

3 

   

Figure 4.7: Comparative gameboard paths by Groups 3 and 1 across three days. Pink lines represent Team A, and light blue lines 

represent Team B. Numbers in circles indicate the turns taken by Team A, while numbers in squares indicate the turns taken by Team 

B. 
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On Day 2, Group 3 showed more active and varied movements across the board, 

including multiple cloud jumps, as indicated by the dotted lines in Figure 4.7. Meanwhile, Group 

1’s movements were more refined and purposeful, directing their path toward the gold pot while 

collecting coins along the way. However, their movements per turn remained relatively short 

compared to Day 3. Unlike on the first day, both groups moved beyond the rainbow area and 

used more cloud-conditionals. Notably, Figure 4.7 shows that a team in both groups (Team A in 

Group 1 and Team B in Group 3) used the cloud-conditional twice in a single turn, indicating 

their use of conditional combined with loops. This pattern aligns with the increased average 

number of CP 1 (Movements Only) and CP 4 (Loops and Conditionals with Movements), while 

CP 2 (Conditionals with Movements) decreased. 

On Day 3, both groups significantly reduced the total number of moves, with each turn 

involving longer and more efficient actions; both groups managed to collect five coins in fewer 

turns than previous days. This pattern reflects the overall decrease in the use of code patterns, 

with the usage of those involving loops (CP 3 and CP 4) remaining relatively unchanged. 

A closer look at the codes students created during the gameplay sessions revealed a 

progression consistent with the quantitative data. Overall, students began using CP 1 

(Movements Only) and CP 2 (Conditionals with Movements) less frequently while becoming 

more sophisticated with their use of loops (CP 3) over the three days. The patterns observed in 

Groups 4 and 1 illustrate this development (see Table 4.5). 

 

Table 4.5: A comparative illustration of using loops with movements in Group 4's gameplay 

over three days. Loops are highlighted in bold for easier identification.  
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 Day 1 Day 2 Day 3 

Group 4 

Codes Repeat below 2 times 

Move 1 forward 
 

Turn 180  

Repeat below 2 times 

Move 3 forward 
 

Repeat below 2 times  

Repeat below 3 times  

Move 1 forward 
 

Description A loop tile was used to 
repeat the actions of 
moving forward. 

A loop tile was used to 
repeat the actions of 
moving forward 
following the turn and 
move tiles in a specific 
sequence. 

A nested loop was used 
to repeat the actions of 
moving forward. 

Group 1 

Codes Repeat below 3 times 

Move 2 forward 

Move 1 forward 
 

Move 1 forward 

Turn 90 

Move 2 forward 

Repeat 2 times below 

Move 4 forward 
 

Repeat 2 times below 

Move 2 forward 

Turn 90 
 

Description A loop tile was used to 
repeat the actions of 
moving forward. 

A loop tile was used to 
repeat the actions of 
moving forward 
following the turn and 
move tiles in a specific 
sequence. 

A loop tile was used to 
repeat the combined 
actions of moving 
forward and turning. 

 

On Day 1, Group 4 used a loop to double their steps with no additional use of loops. On 

Day 2, they used a loop along with a turn tile, creating a longer sequence. On the final day, they 

employed a nested loop, generally considered a more advanced concept than a single loop 

(Yamashita et al., 2016), to multiply their movement from one to six steps.  

A similar advancement was observed in Group 1’s codes from Days 1 to 2. On the 
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second day, Group 1 extended the length of the action of moving forward and used it along with 

other code tiles (as did Group 4). On Day 3, Group 1 used the loop tile to repeat the combined 

actions of moving forward and turning. These patterns suggest that students’ skills developed 

progressively, where each day, more advanced looping skills were employed that were not seen 

in previous sessions. 

In addition to using more complex loops, students' use of loops in combination with 

conditionals evolved over the three days, leading to greater efficiency in collecting rewards with 

fewer moves. Figure 4.8 shows a representative example of the use of loops and conditionals by 

Team B in Group 2 (tracked by light blue lines) across three days. Specifically, it displays two 

consecutive game turns together to provide a clearer context for the team’s strategic movements, 

as they are often closely linked to form a unified approach.  

Team B of Group 2 demonstrated how the participants’ use of loops and conditionals 

became more sophisticated over three days. On the first day, Team B used a cloud-conditional 

tile to move to a new cloud and collect a coin. In the following turn, they navigated back towards 

the mine cart, aiming to secure another coin at its opposite end. This strategy, however, required 

an additional four turns to acquire the second coin. On the second day, the team sought to obtain 

multiple coins more efficiently. To do that, they employed a cloud-conditional tile to collect 

multiple coins while moving closer to the pot. This strategy ultimately enabled them to reach the 

pot of gold first, winning the round.  

On the third day, Team B used a cloud conditional from their first move to collect 

multiple coins and approach the gold pot. The recording of their conversation revealed that they 

had a specific plan to move towards the upper minecart (as they did on Day 2). However, the 

opposing team’s use of a Clover Card forced them to move backward one step, to which the team 



138 

vocally expressed their frustration with their original plan being disrupted. In the following turn, 

however, the team realized another opportunity. After a lengthy discussion, they used another 

cloud conditional to put themselves in a position to move towards a mine cart, resuming their 

original plan while securing an additional coin. 

 

Figure 4.8: An illustration of the use of loops and conditionals in Group 2’s gameplay over three 

days. The colors in the figure represent the respective teams—pink for Team A and light blue for 

Team B. The alphabet on the coins indicates the team that had gotten the coin. 

Day 1 

  

Repeat below 2 times 

Move 3 forward 

If on a cloud, transport to another cloud 
 

Turn 180 

Repeat below 2 times 

Move 2 forward 
 

A loop tile was used to repeat the action of 
moving forward. A cloud-conditional was used 

to collect a coin. 

On the following turn, a loop tile was used to 
repeat the actions of moving forward toward 
the mine cart with the aim of gaining another 

coin at the other end of the cart. 
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Day 2 

 

 

 

 

Move 3 forward 

Repeat below 2 times 

If on a cloud, transport to another cloud 
 

If on a cloud, transport to another cloud 

Turn 90 

Move 4 forward 
 

A loop tile was used to repeat the cloud-
conditional tile to collect 2 coins at once. 

Another cloud-conditional tile was used to 
collect another coin. 

Day 3 
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Move 3 forward 

Move 3 forward 

Repeat below 2 times 

If on a cloud, transport to another cloud 

 
Turn 90 

 

Move 1 forward 

If on a cloud, transport to another cloud 

Turn 90 

Turn 90 

Move 5 forward 
 

A loop tile was used to repeat the cloud-
conditional tile to collect two coins at once. 

Then, a turn was used to face toward the mine 
cart. 

On the following turn of the opponent team, 
this team was moved backward one step. 

Instead of reaching toward the upper mine cart, 
which was their original plan, they decided to 

use a cloud conditional again, along with 
movement and rotation tiles, to collect an 

additional coin before returning to their desired 
spot. 

 

RQ2: What were the changes in knowledge over time, and how did they differ by gender? 

Pre- and Posttest Results 

To assess pre- and posttest results, paired sample t-tests were conducted to compare 

students' overall test scores, and a Wilcoxon Signed-Rank Test was used to evaluate the scores 



141 

for each individual test item. Sixteen out of 17 students' scores (ten boys and six girls) were 

included, as one female student was absent for the posttest. When comparing the overall scores, a 

paired sample t-test revealed statistically significant improvements from pretest to posttest across 

all groups. For all genders, the mean pretest score was 7.06 (SD = 4.86), and the mean posttest 

score was 11.44 (SD = 5.02), t(15) = -5.36, p < .001. For boys, the pretest mean was 7.10 (SD = 

5.65), and the posttest mean was 11.60 (SD = 5.76), t(9) = -3.55, p = .006. For girls, the pretest 

mean was 7.00 (SD = 3.69) and the posttest mean was 11.17 (SD = 3.97), t(5) = -5.93, p = .002. 

These results are summarized in Table 4.6 and visually depicted in Figure 4.9, which compares 

the mean pretest and posttest scores by gender. 

 

Table 4.6: Paired sample t-test results for pretest and posttest scores by gender. 

 n M SD t p 

All genders 
Pretest 16 7.06 4.86 

-5.36 < .001*** 
Posttest 16 11.44 5.02 

Boys 
Pretest 10 7.10 5.65 

-3.55 .006** 
Posttest 10 11.60 5.76 

Girls 
Pretest 6 7.00 3.69 

-5.93 .002** 
Posttest 6 11.17 3.97 

** p < .01. *** p < .001 
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Figure 4.9: Comparison of mean pretest and posttest scores by gender. 

 

Next, the Wilcoxon Signed-Rank Test was conducted to evaluate whether there was a 

statistically significant difference in student performance on the five different test items (i.e., 

Sequencing, Loops and Conditionals, Loop Efficiency, Advanced Efficiency, and Debugging) 

before and after the gameplay sessions. Table 4.7 displays the results comparing overall 

differences in pre- and posttest mean scores and differences by gender. The Wilcoxon Signed-

Rank Test indicated statistically significant improvements in posttest scores in Loop Efficiency 

(Z = -2.36, p = .019), Advanced Efficiency (Z = -2.62, p = .009), and Debugging (Z = -2.43, p = 

.015). There were no significant changes in scores for Sequencing (Z = -1.81, p = .070) and 

Conditionals and Loops (Z = -0.88, p = .380).  

 

Table 4.7: Wilcoxon signed-rank test results for pretest and posttest scores by item. 

 
Overall (n = 16) Boys (n = 10) Girls (n = 6) 

M(SD) p M(SD) p M(SD) p 
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Item Pre Post Pre Post Pre Post 

1 Sequencing 1.94 
(1.39) 

2.50 
(1.46) .070 1.90 

(1.66) 
2.30 

(1.49) .257 2.00 
(0.89) 

2.83 
(1.47) .157 

2 Conditionals 
and Loops 

2.38 
(1.78) 

2.56 
(1.59) .380 2.60 

(1.58) 
2.80 

(1.32) .516 2.00 
(2.19) 

2.17 
(2.04) .317 

3 Loop 
Efficiency 

1.44 
(1.63) 

2.56 
(1.63) .019* 1.10 

(1.79) 
2.30 

(1.83) .071 2.00 
(1.26) 

3.00 
(1.26) .131 

4 Advanced 
Efficiency 

1.00 
(1.59) 

2.38 
(1.41) .009** 1.00 

(1.63) 
2.60 

(1.51) .041* 1.00 
(1.67) 

2.00 
(1.26) .131 

5 Debugging 0.31 
(1.01) 

1.44 
(1.55) .015* 0.50 

(1.27) 
1.60 

(1.71) .059 0.00 
(0.00) 

1.17 
(1.33) .102 

* p < .05. ** p < .01 

When examining the results by gender, the difference from the pre- to posttest for boys 

was statistically significant in Advanced Efficiency (Z = -2.04, p = .041). No significant changes 

were found for Sequencing (Z = -1.13, p = .257), Conditionals and Loops (Z = -0.65, p = .516), 

Loop Efficiency (Z = -1.81, p = .071), and Debugging (Z = -1.89, p = .059). For girls, no 

significant changes in scores were revealed in any items: Sequencing (Z = -1.41, p = .157), 

Conditionals and Loops (Z = -1.00, p = .317), Loop Efficiency (Z = -1.51, p = .131), Advanced 

Efficiency (Z = -1.51, p = .131), and Debugging (Z = -1.63, p = .102). 

 

RQ3: What were the patterns in attitude, and how did they differ by gender? 

Enjoyment and Interest Scores 

The survey asked students to indicate their level of enjoyment of the game and their 

interest level in learning coding, along with short written responses to explain their rankings. 

Figures 4.10 and 4.11 show the differing trends in enjoyment and interest between boys and girls. 

For boys (Figure 4.10), average enjoyment scores increased steadily over three days (Day 1: 

6.10, Day 2: 6.35, Day 3: 6.50), while their interest in learning coding declined (Day 1: 3.75, 
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Day 2: 3.00, Day 3: 2.70). For girls (Figure 4.11), both enjoyment and interest showed similar 

patterns: enjoyment scores rose from Day 1 (5.57) to Day 2 (5.83) but fell on Day 3 (5.00), 

mirroring their interest levels, which peaked on Day 2 but declined on the other days (Day 1: 

3.63, Day 2: 4.33, Day 3: 3.67). 

 

Figure 4.10: Boys’ comparison of daily enjoyment and interest mean scores over a three-day 

period. 

 

 

Figure 4.11: Girls’ comparison of daily enjoyment and interest mean scores over a three-day 

period. 
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Open-Ended Survey Responses 

The open-ended questions asked students to identify gameplay aspects they found most 

and least engaging. Each response was assigned a code based on the theme it represented, and 

the frequency of each code was counted separately by gender. The coded responses are detailed 

in Table 4.8. Boys showed a strong preference for “Strategizing,” which appeared in 8 responses, 

and also expressed notable interest in “Clover Cards” (5 responses), highlighting an inclination 

toward tangible strategic elements. Girls similarly preferred “Strategizing” (6 responses) and 

placed similar emphasis on “Teamwork” (5 responses). Boys predominantly disliked aspects of 

“Limited Control” (8 responses), followed by “Waiting” (4 responses) and “Hindrances” (4 

responses), indicating a preference for greater autonomy and a faster-paced gameplay 

experience. Girls, on the other hand, expressed greater frustration over conflicts with the 

“Opponent Team” (8 responses), followed by “Limited Control” (5 responses) and “Losing” (3 

responses), suggesting that they were relatively more sensitive to the social dynamics of the 

gameplay. 

 

Table 4.8: Most and least enjoyed gameplay aspects by gender. 

Most Enjoyed Least Enjoyed 

Boys Girls Boys Girls 

8 Strategizing 

5 Clover cards 
4 Entertaining 

4 Game Mechanics 
2 Winning 

1 Rewards 
1 Everything 

1 Teamwork 

6 Strategizing 

5 Teamwork 

3 Entertaining 

3 Winning 

2 Rewards 
2 Coding 

1 Skill 
Improvement 

8 Limited control 
4 Waiting 

4 Hindrance 
3 Coding 

2 Opponent team 

2 Losing 

1 Unchallenging 

8 Opponent team 

5 Limited control 
3 Losing  
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1 Competition 

 

Interviews 

The interviews offered a more nuanced understanding of the participants’ survey 

responses. Both boys and girls expressed excitement about the strategic elements of the game. 

They found the use of loops and conditionals to be particularly exciting due to the benefit of 

being able to achieve more in fewer turns. For instance, when students were asked about their 

most memorable moments in the game, a pair of boys shared how they were able to “[get] so 

many Clover Cards at once,” proudly elaborating that they were able to earn 12 Clover Cards at 

once using loops. Two girls in different groups similarly shared how their teams strategically 

used the repeat tiles in conjunction with movement and conditional tiles, which resulted in 

executing a large number of moves in a single turn. They enthusiastically described their 

approach as part of their “specific strategy” and an opportunity to “go crazy on” using the code 

tiles.  

When comparing genders, all the male interviewees expressed their enjoyment of the 

strategic aspect of the game and what they were able to achieve. When interviewing girls, while 

they agreed on enjoying the strategizing aspect, many also included mentions of their peers in 

both positive and negative ways. For example, when a group of boys were asked what they 

enjoyed the most about the game, they were most excited about betting on luck to get “good 

cards” and then creating the best strategy, although sometimes they were frustrated when the 
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luck was not in their favor. Other boys favored “Clover Cards and the clouds (cloud-

conditionals)” and the balancing of strategy and luck. This enthusiasm for strategizing aligned 

with the quantitative finding that strategizing was favored among boys across all days of 

gameplay. When girls were asked what they liked most about the game, they also emphasized the 

aspects of strategizing and problem-solving. One student shared her enjoyment with using the 

cloud conditionals, as it made her feel like having “a weapon from Stranger Things.” Another 

student shared: 

I thought it was fun because you really have to think outside the box and problem-solve 

because there may be a spot that you turn to reach where you think that you don’t have 

the right cards to move there – but you actually do. You just have to figure them out in a 

different way. 

However, the interviews also showed that girls were more sensitive to the social element 

of the game. A pair of girls shared how they enjoyed working as partners and emphasized the 

benefit of working in teams as the other person can offer a new perspective. Another girl 

mentioned, “It was really fun because I love teamwork and working with my friend Kim 

(pseudonym). It was really fun. Probably the thing that really kind of set me back was arguing 

about what to put down.” In contrast, no boys mentioned the social aspect unless they were 

specifically asked about their experience playing with their partners. When prompted, they 

mostly showed neutral preference, describing both the advantages and disadvantages, such as 

gaining new ideas but also being slowed down by having to discuss and explain strategies. 

When students were asked about their interest in learning coding, many, regardless of 

gender, described coding on a computer as “interesting” but looks challenging or confusing. 

However, a subtle difference was observed in each gender’s perception of the practice of coding. 
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Male students often highlighted the intellectual aspect: some mentioned enjoying “getting better” 

at the game in terms of strategizing and utilizing the codes. Many also liked “feeling smart” 

when making satisfactory moves in the game, as reflected in one student’s comment, “It made 

me feel smart. I’m not very smart.” 

When asked to imagine what coding on the computer would look like, boys described 

images such as “wearing cool glasses” while typing on a computer but showed reluctance to 

engage with it, seeing it as less enjoyable and different from playing the related game. For 

instance, one male student said, “To be honest, it seems really cool. But my friend says it sucks. 

He said it was too hard. He said that he thought it was too boring. But it sounds interesting.” 

Another student noted that while the game experience increased their confidence in learning 

coding, it still seemed very different from playing the game, mostly involving typing codes on 

the computer. 

On the other hand, when girls described the practice of coding on the computer, all the 

female interviewees highlighted the challenges of computer-based learning. For example, one 

student mentioned, “I usually like (coding on) paper a lot more because (on) computers, it could 

die, or it could accidentally get deleted or something like that, and that doesn't really happen with 

paper or anything.” Other girls agreed that coding on the computer was “riskier” due to factors 

such as “glitches” or the computer turning off unintentionally. One described computer coding as 

“a permanent thing you could mess up really bad.” Many expressed their preference for using 

paper-based coding as it was safer and “easier to keep up with.” 

Female students also reported frustration with receiving timely support when learning 

coding in a classroom setting: 

I might not take a class in [coding]. I might just do it at home because I feel like coding 
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classes seem really confusing … like having your computer always charged and always 

having so many people, so it's like [the instructors] can't just help you. If something 

doesn't work, you might not be able to do anything. 

Another student agreed: 

It's like you want to [learn to code], but you don't want to do that at the same time 

because there's going to be a lot of people (in the class). But if you do it, … I feel like it 

could be if you do it at your house.  

These data showcases the differing perceptions and preferences between male and female 

students regarding coding, revealing distinct challenges and experiences that each group 

encounters. 

Discussion 
The following section highlights how the study results address the research questions and 

discusses the broader impact of the findings on the understanding and teaching of CT through 

unplugged educational games. Through this exploration, the study provides insights and 

recommendations that may be valuable for future research and practice. 

Advancement in Gameplay 

Over the three days of gameplay, students increasingly utilized advanced concepts like 

loops and conditionals to achieve greater efficiency in their gameplay. From Day 1 to Day 2, 

students’ use of “Movements Only” (CP1) and “Loops and Conditional with Movements” (CP4) 

increased, while their use of "Conditional with Movements" (CP2) and “Loops with 

Movements” (CP3) decreased. This trend likely reflects how students initially explored the 

different functions of movement, loops, and conditional code tiles separately, then, by the second 

day, became familiar with the game's basic mechanics and gained the confidence to explore the 
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gameboard more actively, experimenting with different code patterns by combining loops and 

conditionals together with movements.  

When comparing Day 1 to Day 3, there was an overall decrease in the use of all code 

patterns, with only a slight increase observed in CP 3. This decrease might be explained by the 

observation and posttest data suggesting that students became more efficient in their gameplay 

over time. By Day 3, students appeared to use more advanced and purposeful moves, such as 

using nested loops and strategic combinations of conditionals, enabling them to reach their goals 

in fewer turns and reducing the need for additional code patterns. This advancement aligns with 

the changes in pre- and posttests, where students generally showed a statistically significant 

increase in scores related to loop efficiency, advanced efficiency, and debugging.  

This progression highlights the potential of educational games like Lucky Codes in 

providing students with an effective tool to develop CT skills. Through the gameplay of Lucky 

Codes, students had the opportunity to engage with CT concepts, such as sequencing, loops, 

conditionals, and debugging, in a manner that was both interactive and enjoyable. The positive 

impact of using board games to teach these concepts reflects many previous research findings, 

which have shown that such approaches can significantly enhance students' understanding of 

loops and conditionals, thus improving their computational thinking skills (Alamer et al., 2015; 

Ballard & Haroldson, 2021; Liu et al., 2022; Sun et al., 2021; Zhang et al., 2024). 

Moreover, the game encouraged iterative learning and experimentation, allowing 

students to make mistakes and learn from them without the pressure of falling behind their peers 

or the fear of “messing up,” as some students mentioned in their interviews. Such an 

environment fostered active problem-solving processes, enabling students to try different 

strategies and discover more efficient solutions on their own. This aligns with other research 
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studies that found similar benefits in game-based learning environments, where students 

exhibited improved problem-solving skills and a deeper understanding of CT concepts through 

iterative learning and trial-and-error approaches (Brennan & Resnick, 2012; Grover & Pea, 

2013). 

Additionally, the findings support the game’s design of incentivizing the use of 

conditionals and loops to be effective in encouraging students to actively utilize the targeted 

skills beyond simple pathfinding movements. For example, utilizing loops and conditionals was 

highly attractive in the game as they enabled large moves at once (by repeating moves or cloud 

jumps) and the acquisition of multiple Clover Cards at once (by repeating the color-conditional 

tiles) that could not be achieved otherwise and provided an easier way to earn rewards. The 

random draw aspect of Clover Cards added to the excitement of utilizing more color-conditionals 

combined with loops. These elements of the game encouraged players' deeper engagement with 

the targeted CT skills. This design approach addresses the limitations of some existing coding 

board games, which often feature limited programming elements, particularly regarding loops 

(Scirea & Valente, 2020; Wu, 2018). By integrating these incentives, the game appeared to make 

conditionals and loops more engaging and accessible, potentially reinforcing their importance in 

developing efficient problem-solving strategies. 

Gender Differences in Gameplay Preferences 

Further analysis of gender differences in knowledge gain and attitudes offered a deeper 

understanding of the general gameplay trends, revealing distinct patterns in how male and female 

students interacted with and benefited from the game. Boys showed a clear preference for the 

competitive and strategizing aspects, particularly enjoying the successful execution of strategies 

and engaging with multiple Clover Cards to win the game. Their dislike of "Limited Control," 
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"Waiting," and "Hindrances" emphasized their desire for gameplay that maximizes direct action 

and autonomy, which are key components of a competitive gaming experience (Przybylski et al., 

2010; Ryan et al., 2006). This aligns with broader educational research suggesting that male 

students often favor environments where they can test and improve their strategic thinking 

against peers (Kinzie & Joseph, 2008; López-Fernández et al., 2021). Boys demonstrated larger 

improvement on the posttest than girls, especially in their ability to use conditionals and loops 

for advanced efficiency. This result highlights the potential for competitive and strategic game 

elements to enhance boys' engagement and learning outcomes in CT. A similar result was also 

found in Admiraal et al.’s (2014) study of digital games, where boys’ competing with other teams 

was positively related to their performance than girls. 

In contrast, while girls also reported enjoying the strategic aspects of the game, they 

placed a greater emphasis on the social dynamics of gameplay than boys, valuing collaboration, 

teamwork, and communication. Interview and survey responses of this study supported these 

findings, as they frequently mentioned their peers and teamwork in both positive and challenging 

contexts that involved collaborative decision-making and problem-solving. This preference for 

social interaction aligns with existing studies that emphasize the significant role of social 

dynamics in girls' engagement in educational activities, suggesting that girls often find 

motivation and satisfaction through collaborative efforts and shared experiences (Crowe, 2003; 

Hartmann & Klimmt, 2006; Niederle & Vesterlund, 2010; Zachopoulou et al., 2004). 

Gender-Specific Trends in Interest and Enjoyment 

Gender-based differences in coding interest and enjoyment trends emerged during the 

gameplay sessions. In terms of interest in learning coding, boys initially exhibited a slightly 

higher interest compared to girls, which reflects findings from earlier studies that male students 
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generally had a higher interest in or positive attitudes toward CS-related subjects (Kong et al., 

2018; Sun et al., 2021; Witherspoon et al., 2016). As the game sessions progressed, boys' interest 

gradually decreased, whereas girls’ interest increased on Day 2 and decreased on Day 3. The 

overall decreased interest in coding observed in both genders was similar to the findings of Hong 

et al.'s (2016) study with a digital game, where there was a gradual decrease in students' interest 

in the learning activity despite improved performance. The reason for this general trend could be 

attributed to the game's task becoming less challenging as the students become better at it, which 

could be supported by Chen et al.’s (2023) finding that if the task can be completed quickly, the 

effectiveness of unplugged learning of CT may diminish, therefore suggesting the learning 

activity should increase task difficulty with extended duration.  

However, the patterns in enjoyment levels between boys and girls revealed notable 

gender differences. Boys’ enjoyment gradually increased despite their declining interest in 

coding. This could suggest that boys’ enjoyment level was related to their proficiency in the 

game, but they were more likely to separate the act of playing the educational game from 

learning. Their general preference for competitive and strategic elements in digital games 

appeared to carry over into the unplugged gaming context when similar features were present. In 

contrast, girls’ enjoyment level mirrored their interest in coding: both increased on Day 2 but 

dropped on Day 3. This could suggest that girls may have linked the educational game more 

closely with the learning process. However, the game’s appeal to strategizing and competition 

was insufficient to sustain their enjoyment. As boys became more competitive, girls’ lower 

preference for competition seemed to negatively impact their overall enjoyment of the game. 

This observation aligns with Hartmann and Klimmt's (2006) study, which found that female 

participants were less attracted to the competitive elements of digital games, indicating that 
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similar dynamics are present in both digital and unplugged gaming contexts. 

Implications 

The findings from this study offer valuable insights into how educational games can be 

designed and implemented to enhance students’ CT skills. By addressing gender-specific 

preferences and maintaining student engagement, these implications provide practical 

suggestions for educators and game designers to optimize the learning experience. 

Integrating unplugged educational games into the curriculum can provide an engaging, 

low-risk environment for students to explore CT concepts. By offering opportunities for both 

individual strategic thinking and teamwork, these games can accommodate the diverse learning 

preferences of male and female students. Furthermore, games that encourage iterative learning 

allow students to make and learn from mistakes without pressure, fostering active problem-

solving skills. Incorporating adjustable difficulty levels can also help to maintain engagement 

and provide appropriate challenges as students advance in their skills. 

While unplugged educational games offer many benefits, it's important to recognize that 

students' interest in the game may fluctuate over time. To maintain engagement, strategies such 

as gradually increasing task difficulty can help sustain both challenge and interest. Additionally, 

incorporating reflection sessions with the instructor can reinforce the connection between 

gameplay and the learning process, helping students to see the practical applications of the 

concepts they are exploring. This approach may be particularly beneficial for boys, who might 

otherwise separate the act of playing from the learning experience. By understanding the 

relevance and real-world applications of the skills acquired through gameplay, students are likely 

to find the learning process more engaging and meaningful, ultimately fostering a deeper interest 

in coding. 
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Limitations and Future Research 

This study has several limitations that should be considered when interpreting the 

findings. One significant limitation is the small sample size, consisting of 17 students, which 

may not provide a fully representative view of the broader student population. Additionally, the 

uneven number of male and female participants (10 boys and 7 girls) may have influenced the 

statistical results related to gender differences. Another limitation lies in the pre- and post-tests, 

which were developed by the researcher and did not go through a rigorous validation process. 

While these tests effectively assessed students’ skills in the context of the game, they did not 

specifically measure the transferability of those skills to broader programming scenarios. Finally, 

the lack of statistically significant results in some areas of the study suggests that it may not have 

had sufficient power to detect subtle differences or smaller effect sizes, which could be addressed 

in future research with larger and more balanced samples. 

To address these limitations and build upon the findings of this study, future research 

should focus on several key areas. First, conducting studies with larger and more diverse samples 

from different schools would offer a more comprehensive understanding of the impact of 

educational board games on CT skills across different student populations. Additionally, 

exploring how students apply the coding skills acquired through the board game in a computer-

based programming environment would offer valuable insights into the transferability of learning 

from unplugged to digital coding contexts. Subsequent studies could also incorporate pre-

planned hypotheses to rigorously test and confirm the findings observed in this exploratory 

study. Addressing these areas could help overcome the limitations of the current study and 

contribute to the development of more effective and inclusive game-based learning tools for CT 

education. 
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Conclusion 

This study sought to explore how boys and girls engage with CT skills through the 

educational board game Lucky Codes. The primary research questions focused on identifying 

general gameplay trends, assessing changes in CT knowledge over time, and examining patterns 

in students' attitudes, with attention to potential gender differences. The findings provide 

valuable insights into the dynamic learning processes that occur during gameplay and highlight 

the effectiveness of unplugged games in teaching CT concepts to young learners. 

The study revealed distinct trends in gameplay, with students progressively utilizing 

more complex coding skills, specifically loops and conditionals, over the three days of gameplay. 

This progression highlights how the game facilitated a deeper engagement with CT concepts, 

allowing students to experiment, iterate, and refine their strategies in a low-risk environment. 

The pre- and posttest results further validated these observations, showing overall improvements 

in students' CT skills. 

Gender differences emerged as an important aspect of the study. The boys were 

particularly drawn to the strategic elements of the game and expressed enjoyment in using 

competitive strategies, such as Clover Cards or cloud jumps, to win their opponents. Girls also 

enjoyed the strategic aspects of the game but were more sensitive than boys to the social 

dynamics, such as team interactions and the challenges of working with peers. Additionally, the 

differing patterns between boys and girls in interest levels over the three-day gameplay sessions 

reflect distinct motivational dynamics. These differences suggest the significance of gender-

specific factors in game design and educational applications. Understanding how boys and girls 

engage with the game differently can lead to more inclusive and effective learning experiences 

for all students. 
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Unplugged games can serve as powerful tools for teaching CT by providing hands-on, 

interactive experiences that demystify abstract concepts and make learning accessible to all 

students, regardless of their technological resources. However, to maximize the impact of such 

games, it is essential to design them with intentional learning goals and inclusivity in mind, 

addressing the gameplay mechanics that attract the use of targeted skills and appeal to both 

genders. Future research should continue to explore the nuanced ways in which unplugged game-

based learning environments can be optimized to support diverse learning needs and promote CT 

skills among all students. 
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Note. Scratch is a project of the Scratch Foundation, in collaboration with the Lifelong 
Kindergarten Group at the MIT Media Lab. It is available for free at https://scratch.mit.edu.  

https://www.google.com/url?q=https://scratch.mit.edu&sa=D&source=docs&ust=1728654716632901&usg=AOvVaw0yHbbqje7_EX6S8hGyvboQ
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Appendix C 

Scoring Rubric for Pre- and Posttest 

Points Description Criteria 

4 Excellent / Ideal 
Solution 

 The task is completed with no errors. The solution is 
clear, well-organized, and demonstrates full understanding. 

3 Good / Functional but 
Not Ideal 

The task is completed with 1-2 minor errors or could be 
improved in terms of clarity, efficiency, or organization. 

2 Satisfactory / Partial 
Success 

The task shows progress toward completion but contains 3-4 
notable errors or omissions that impact effectiveness. 

1 Needs Improvement / 
Major Gaps 

The task demonstrates limited understanding, with 5 or more 
significant errors or incomplete implementation. 

0 No Response / Off-
task 

 No response provided, or the submission is entirely 
unrelated to the task. 
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CHAPTER 5  

CONCLUSION 

This dissertation explores the design, implementation, and impact of a board game 

developed to enhance computational thinking (CT) skills in K-12 classrooms, with the aim to 

create a practical tool for classroom integration while advancing the theoretical understanding of 

game-based CT learning. The project addresses key challenges in CT education, particularly for 

younger students who struggle with abstract coding concepts and limited technology access 

(Grover & Pea, 2013; Lye & Koh, 2014). Computer-based methods can be intimidating for 

beginners and require extensive scaffolding (Kafai & Burke, 2015). Unplugged activities, such as 

board games, offer a tangible, hands-on alternative, making CT concepts more accessible and 

engaging (Bell & Vahrenhold, 2018). They also alleviate issues related to technology access, 

making them suitable for diverse educational contexts (Bell & Vahrenhold, 2018). 

By providing an unplugged, hands-on approach, this body of work contributes to both 

practical and theoretical knowledge in CT education, supporting the use of alternative methods to 

engage a broader range of learners (Shute et al., 2017; Yadav et al., 2014). The iterative 

development and classroom testing of the board game Lucky Codes demonstrate such games’ 

potential to enhance CT learning in a variety of settings, offering valuable insights for educators 

and game developers. 

Summary of Findings 

The first study focused on the initial design and development of the board game, with 

the goal of creating a tool that could effectively teach fundamental CT concepts such as 

sequencing, loops, and conditionals in an unplugged format (Yang & Kopcha, 2022). The 
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study highlighted the challenges in creating a game that is both educational and engaging, 

emphasizing the need for continuous and intentional refinement of game mechanics. Key 

insights included the importance of clearly defined goals for guiding design decisions, the use of 

immediate feedback and exclusive rewards to engage learners in more advanced concepts, and 

the benefit of low-fidelity prototypes for gathering honest feedback. This study provided insights 

into the design process of an educational game and set the foundation for subsequent studies by 

establishing a functional and theoretically grounded game prototype.  

Building on the insights gained from the initial study, the second study refined and 

implemented the final version of the game in K-12 classroom settings through a pilot study with 

four students. This phase aimed to provide an initial assessment of the game’s effectiveness in 

promoting CT skills. The findings demonstrated that the game effectively facilitated the use of 

core CT concepts, including sequencing, decomposition, conditionals, and loops. By the end of 

the intervention, students showed increased complexity and efficiency in applying these skills, 

highlighting the potential of such hands-on, unplugged tools to make abstract CT concepts more 

accessible to young learners. This study provided an initial understanding of the game’s 

educational impact and also informed the research questions for the subsequent study, guiding 

further exploration of its educational potential. 

The final study expanded upon the findings of the previous phases by conducting a 

comprehensive evaluation of the game’s impact on student learning and engagement. This phase 

explored not only how students’ CT skills developed over time but also how the game influenced 

their attitudes toward programming and problem-solving with the additional examination of 

gender differences. The results showed that sustained use of the board game led to continued 

improvement in CT skills, particularly in the enhanced efficiency in the use of conditionals and 
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loops. Additionally, the study noted fluctuations in student interest and engagement by gender, 

suggesting the need for ongoing adjustments to maintain motivation and learning efficacy. This 

study validated the effectiveness of the board game as a learning tool for CT and provided 

insights into the sustainability of engagement. It highlighted the potential of unplugged games to 

actively promote CT skill development while making the learning process appealing and 

accessible to both genders. 

Each of these studies informed and built upon the previous one. The testing of initial 

prototypes guided the design refinements for the classroom implementation, while the classroom 

findings informed the comprehensive evaluation of the game’s effectiveness in learning and 

engagement. This progression ensured that the board game evolved to meet the practical needs of 

educators and the educational requirements of students, ultimately contributing both to the 

development of a viable educational tool and advancing the theoretical understanding of how 

unplugged games can support CT learning in K-12 education. 

Implications 

For Educators and Teachers 

Educators can utilize board games like Lucky Codes as a practical tool to supplement CT 

instruction. The findings show that the game effectively supports the learning of complex CT 

concepts, such as loops and conditionals, through a tangible, hands-on approach. Teachers can 

incorporate the game into their lesson plans to provide an interactive and engaging way to 

reinforce these abstract concepts, making CT more accessible to students who may struggle with 

purely digital or text-based programming exercises. However, it is important to note that 

students’ overall interest in playing the game tended to decrease by the third session. To maintain 

interest, educators could introduce additional challenges or obstacles as students become more 
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proficient with the game, ensuring the activity remains stimulating and challenging. 

The dissertation also demonstrated that the game was appealing and effective for both 

boys and girls, helping to bridge the gender gap often seen in programming-related subjects. 

When implementing such games in the classroom, teachers should consider the varying levels of 

interest and preferences between boys and girls to ensure that all students are equally engaged. 

For example, while both boys and girls enjoyed strategizing, boys tended to be more 

competitive, whereas girls were more sensitive to the social aspects of gameplay. To address 

these differences, teachers might group students by gender or emphasize collaborative strategies 

and set rules to prevent excessive competition, creating an inclusive and supportive learning 

environment for all students. 

For Educational Game Developers 

The dissertation emphasized that having clearly defined educational goals is essential for 

guiding game design decisions, highlighting the need for developers to establish specific learning 

objectives early in the development process. This ensures that all game mechanics, narratives, 

and challenges are purposefully aligned with these goals, creating an educational experience that 

is both engaging and effective. Integrating features such as immediate feedback and exclusive 

rewards can further enhance this by maintaining student engagement and encouraging the 

exploration of advanced concepts. The findings suggest that these elements improve the 

educational value of games, making abstract CT concepts more approachable and motivating 

students to persist through challenges. Developers should also adopt an iterative approach by 

using low-fidelity prototypes to gather feedback during the design process, refining their games 

based on user input. This method helps ensure that the final product is well-tuned to the 

educational needs of its audience, effectively supporting learning outcomes and enhancing the 
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overall learning experience. 

By synthesizing these findings, educators and game developers can create more effective 

learning environments that actively engage diverse students in developing computational 

thinking skills. Whether through adapting gameplay to maintain student interest or fine-tuning 

design to align with specific educational goals, the implications of this study highlight the 

potential for board games like Lucky Codes to transform how CT is taught and learned. This 

work opens new avenues for future research and innovation in unplugged learning tools, offering 

practical and theoretical contributions to the field of computational thinking education. 
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