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ABSTRACT 

Pantoea ananatis (PA) is a significant bacterial pathogen responsible for onion center rot 

(OCR) in bulb onions (Allium cepa). The pathogen’s virulence in onions is attributed to 

two major virulence factors: the chromosomal HiVir gene cluster that causes phosphonate 

toxin-mediated necrosis and the plasmid-borne allicin tolerance (alt) gene cluster, which 

allows the bacterium to overcome onion-derived antimicrobial thiosulfinates. However, 

the genetic factors involved in infecting non-bulb Allium species like leeks (A. porrum), 

Welsh onions (A. fistulosum), and chives (A. schoenoprasum) remain poorly understood, 

leading to an incomplete understanding of the PA-Allium pathosystem. In our initial 

objective, 92 PA strains were screened for pathogenicity on A. fistulosum × A. cepa and 

A. porrum. Our results revealed higher aggressiveness in the hybrid Allium species. At 

the same time, genome-wide association studies (GWAS) identified 835 genes linked to 

pathogenicity on A. fistulosum × A. cepa and 243 genes associated with infection on A. 

porrum. This suggests that PA may utilize a shared set of virulence genes for Allium 

infection but requires host-specific adaptations for non-bulb species. We further validated 

that the HiVir gene cluster is the primary pathogenicity factor across A. fistulosum x A. 



   
 

cepa and A. porrum. To explore the diversity of thiosulfinate tolerance gene clusters, we 

employed Natural Language Processing (NLP)-like deep learning techniques to identify 

alt-like gene clusters across 238,362 bacterial genomes. The model discovered 47 novel 

alt-like clusters, 15 of which we experimentally validated in PA strains. The results 

demonstrate the utility of deep learning and language-like processing in uncovering 

diverse, difficult-to-work-with gene clusters, enabling a greater capacity to investigate PA-

Allium interactions. Finally, we screened 982 Allium genotypes and identified a resistant 

A. cepa genotype, DPLD 19-39, consistently exhibiting reduced foliar necrosis and bulb 

rot. Transcriptomic analysis indicated that potential host resistance against PA is 

mediated by cell wall fortification, reactive oxygen species (ROS) regulation, and 

programmed cell death, potentially blocking PA from invading the tissues instead of an 

aggressive immune response. These defense mechanisms provide key targets for 

breeding programs to develop optimized PA-resistant onion genotypes.  

INDEX WORDS: Pantoea ananatis, Onion center rot, Alliums, Allicin tolerance, Genome-

wide association (GWAS), Natural Language Processing (NLP), Disease resistance, 

Transcriptomics 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Onion center rot (OCR) presents a significant economic threat to onion growers locally, 

nationally, and globally. In the U.S. state of Georgia, onions are a valuable vegetable 

commodity, with an average farm gate value of $145 million (USDA, 2020). Pantoea 

ananatis (PA)-induced OCR is a consistent and significant threat to onion production 

(Brannen et al., 2017). Despite the substantial economic impact of OCR, the breadth and 

depth of PA's pathogenicity and virulence mechanisms still need to be better understood 

(Stumpf et al., 2017; Asselin et al., 2018). Moreover, worldwide reports of both bacterial 

onion blights and bulb rots caused by the Pantoea complex suggest that other species 

like Pantoea agglomerans, Pantoea dispersa, and Pantoea stewartii contribute to similar 

issues across onion-growing regions (Brady et al., 2011; Edens et al., 2006; Stumpf et 

al., 2018; Chang et al., 2018). Previous research has identified the importance of some 

universal genetic factors in PA pathogenesis, yet host-specific virulence mechanisms 

remain elusive (Morohoshi et al., 2007; Asselin et al., 2018). By examining other Allium 

species, this research will improve our understanding of the impact of virulence factors 

across the genus, indirectly aiding the management of OCR in the economically 

significant Allium cepa. Additionally, the recent discovery of alt gene clusters across 

various bacterial genera demands investigation regarding their prevalence and genetic 

diversity (Stice et al., 2020). Typical sequence-based methodologies struggle to identify 

these gene clusters, and manual curation of bacterial genomes is inefficient and 

vulnerable to investigator bias. We aim to overcome these limitations by employing NLP-

like computational techniques to vectorize variables inherent to bacterial gene clusters 
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and enhance the detection and classification of alt, alt-like, and pseudo-alt clusters. 

Finally, addressing the long-overdue need for resistance screening in Allium species 

against PA is crucial. Genetic resistance is considered the ideal control strategy for this 

disease, as it would reduce the need for chemical inputs, which are costly and 

environmentally harmful (Rice et al., 2006; Stumpf et al., 2021). Identifying resistance 

traits will allow us to discover and characterize resistant onion genotypes. Incorporating 

these findings into onion breeding programs will provide a sustainable solution for crop 

protection and the future of the onion industry (Stumpf et al., 2017). 

Pantoea ananatis-center rot of onion: A Linguistic and Mathematical Framework 

for Plant Pathology 

PA is a Gram-negative, rod-shaped, facultative anaerobe like other members of the 

Enterobacteriaceae family (Gitaitis & Gay, 1997; Coutinho & Venter, 2009; De Maayer et 

al., 2014; Weller‐Stuart et al., 2017). Colonies are yellow-pigmented, and the cells utilize 

glucose in an oxidative and fermentative manner. The bacterium tests positive for the 

following biochemical assays: β-D-galactosidase and catalase, citrate utilization, and 

acetoin and indole production. PA tests negative for ornithine decarboxylase, lysine 

decarboxylase, urease, and oxidase (Gitaitis & Gay, 1997; De Maayer et al., 2014; 

Weller‐Stuart et al., 2017). This bacterium is motile due to peritrichous flagella (Coutinho 

& Venter, 2009; De Maayer et al., 2014) and is commonly found in soil, water, and plants 

and is noted for both its pathogenicity in plants and its biotechnological applications (Hara 

et al., 2012; De Maayer et al., 2014; Weller‐Stuart et al., 2017). 

We can also view the complex, intricate pathosystem interactions through a language 

framework, applying Natural Language Processing (NLP) techniques to analyze 
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biological systems (Oikonomou et al., 2024; Wagner et al., 2022). The pathosystem of 

PA-derived OCR can be likened to an anthology of languages, where cross-

communication between the pathogen PA and the host Allium cepa results in a biological 

reality (Stice et al., 2021; Wagner et al., 2022; Choi & Lee, 2023). Restructuring the 

simplified "string" of categorical variables as a genome allows more straightforward 

comparative calculations; however, maintaining the conceptual pairing between the 

categorical description and its string representation enhances the applicability for 

downstream analysis in much the same way English words represent conceptual intent, 

genes represent biological intent and are effectively analogous. The biological intent of 

PA's OCR is visually represented in symptoms that primarily affect the foliar tissues and 

internal scales of onions, resulting in internal bulb rot and significantly reducing 

marketability (Gitaitis & Gay, 1997; Agarwal et al., 2019).  

Multiple inoculum sources (seed, weeds, thrips) have been demonstrated to initiate 

OCR epidemics in fields, all extensions of biological intent as various phenotypes (Walcott 

et al., 2002; Gitaitis et al., 2002). Studies have detected P. ananatis in naturally infested 

onion seeds from symptomless mother plants, meaning visual inspection alone is 

insufficient to prevent seed contamination (Walcott et al., 2002). Seed infestation has 

been confirmed by immunomagnetic separation and polymerase chain reaction (IMS-

PCR) assays with species-specific primers (Walcott et al., 2002). The primary mode of 

transmission, however, involves insect vectors—specifically tobacco thrips (Frankliniella 

fusca) and onion thrips (Thrips tabaci), which are common in Georgia's Vidalia onion 

region (Gitaitis et al., 2013). These thrips acquire and transmit P. ananatis, which persists 

in their gut and is detected in their feces (Gitaitis et al., 2013). The actual infection of the 
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onion occurs through thrips defecation near feeding wounds, enabling the pathogen to 

spread into the plant through the wounds (Gitaitis et al., 2013; Santos et al., 2020). PA 

can survive epiphytically and endophytically on various host plants, including 25 weed 

species in Georgia; these alternative hosts serve as local inoculum sources (Gitaitis et 

al., 2002). Environmental factors such as optimal temperatures and leaf wetness 

influence bacterial persistence and spread in onion fields (Gitaitis et al., 2002). There are 

many points within this pathosystem where biological intent, genes, and their downstream 

phenotypes interact in complex ways, all of which must interact to make OCR the problem 

it is today. Effectively, OCR is a dramatic flashpoint that is just the extension of the 

biological language of PA, Alliums, and the anthropocentric/economic variables that drive 

human interest in the first place. This concept is not exactly new; it is just a rewording of 

genomics; however, reframing the mechanism through the lens of information flow, which 

language is, makes understanding and applying computational methods far easier.  

Genomics of Pantoea ananatis and Allium spp. 

The genomic landscape of PA offers a vast and complex repository, with genomes 

ranging from 4.3 Mb to 5.25 Mb, encoding over 4,000 genes (De Maayer et al., 2014; 

Weller-Stuart et al., 2017). The genomic architecture typically comprises a large circular 

chromosome, the large Pantoea plasmid (LPP-1), and variable accessory plasmids that 

provide genomic plasticity (De Maayer et al., 2014). The LPP-1 plasmid ranges from 

280.8 to 352.8 Kb and encodes 200-300 genes, some of which house mobile genetic 

elements, antibiotic resistance genes, and other determinants of host-microbe 

interactions (Weller-Stuart et al., 2017). The mobile accessory genome underpins the 

diversity and phenotypic variation across PA strains, particularly in pathogenicity and 
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environmental fitness (Shyntum et al., 2015; Weller-Stuart et al., 2017). Although it lacks 

Type III and Type II secretion systems, PA relies on its Type VI secretion system to 

compete with other bacteria and establish infection in onion leaves (Shyntum et al., 2015). 

Onion-pathogenic PA strains utilize a gene cluster known as "HiVir" to produce a 

phosphonate toxin, which has been linked to onion pathogenicity. Initially, the toxin was 

indirectly associated with the necrosis on onion leaf and bulb, but later studies confirmed 

its direct involvement by characterizing the purified toxin (Asselin et al., 2018; Polidore et 

al., 2021). The HiVir cluster contains core genes, such as pepM (hvrA), which are 

essential for phosphonate biosynthesis. This process mimics phosphonate and causes 

competitive inhibition of critical metabolic enzymes, leading to cell death and the hallmark 

symptoms of OCR (Asselin et al., 2018; Polidore et al., 2021). Deletion of hvrC results in 

the loss of PA's pathogenicity, whereas deletion of genes such as hvrK only leads to 

modulation of the severity of symptoms. In response to cell death Allium species, 

including onions, employ defense mechanisms based on thiosulfinate phytoanticipins, 

sulfur-containing compounds that disrupt microbial cell membranes and interfere with 

their metabolic processes, causing oxidative stress and microbial cell death (Curtis et al., 

2004; Barbu et al., 2023). This defense response introduces an additional layer of 

complexity for the pathogen, which must counteract the oxidative stress induced by 

thiosulfinates while simultaneously producing phosphonate toxins to infect host cells 

(Curtis et al., 2004; Barbu et al., 2023). Successful Allium pathogens possess 

mechanisms to reduce sensitivity to thiosulfinates. The alt gene cluster confers resistance 

to thiosulfinates produced by Allium species (Stice et al., 2020). In PA, the alt cluster 

contains 11 genes associated with sulfur metabolism, although the exact biochemical 
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mechanism remains unknown. Similar gene clusters, re-termed as thiosulfinate tolerance 

gene (TTG) clusters, have been detected in other pathogens, including Burkholderia spp. 

and Pseudomonas fluorescens (Borlinghaus et al., 2020; Paudel et al., 2024). However, 

TTG clusters between these groups are distinct and share little gene sequence similarity 

or synteny (Stice et al., 2020; Borlinghaus et al., 2020; Paudel et al., 2024). 

Additional factors such as quorum sensing and motility were reported to be associated 

with onion pathogenicity (Morohoshi et al., 2007; Weller-Stuart et al., 2017). In addition 

to its role in plant pathology, PA has been noted for producing valuable compounds such 

as exopolysaccharides, carotenoids, and a wide range of catabolic enzymes. PA also 

demonstrated the ability to degrade environmental pollutants and generate biohydrogen 

under anaerobic conditions, making it useful for bioremediation, sustainable agriculture, 

bioenergy production, and industrial applications (Choi et al., 2021; Usuda et al., 2022). 

The genomic architecture of Allium cepa stands out due to its large size, 

approximately 16 Gb, one of the largest among cultivated crops (Fu et al., 2019). Unlike 

PA, which relies on mobile elements and plasmids for genomic plasticity, the complexity 

of A. cepa's genome is driven by its size and a high proportion of repetitive sequences 

(Fu et al., 2019; Kuhl et al., 2004). Genes within A. cepa govern metabolic pathways 

involved in both the flavor profile and defense against pests and pathogens (Havey & 

Ghavami, 2018; Kuhl et al., 2004). Repetitive elements, such as long-terminal repeats 

(LTRs), contribute to the genome's plasticity, facilitating gene duplications that enhance 

flavor diversity and disease resistance mechanisms (Fu et al., 2019; Chalbi et al., 2023). 

This genetic variability is crucial for A. cepa's adaptation to various environments and the 

potential for breeding programs to improve traits like disease resistance and crop yield 
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(Shigyo et al., 2018). The Allium genus is a rich repository of biochemical compounds like 

and organosulfur compounds, which have been proposed as alternatives for antibiotics 

and pesticides (Bastaki et al., 2021; Iwar et al., 2024). These compounds also have 

antidiabetic, hepatoprotective, and antiplatelet activity (Bastaki et al., 2021; Iwar et al., 

2024). 

As mentioned previously, the mechanisms inherent in these systems that govern 

information flow in PA and Allium cepa open opportunities for a wide range of advanced 

computational analysis (Weller-Stuart et al., 2017; Shigyo et al., 2018).  

Genomic Self-Regulation in P. ananatis and Allium spp. 

Autopoiesis is an elegant, though debated, word that reinterprets biological principles 

through a systems and self-organizational framework, emphasizing how living systems 

maintain and regenerate themselves (Ruiz-Mirazo & Moreno, 2012). While "biological 

self-programming" is not a widely accepted term, the author of this thesis would argue 

that it provides a valuable alternative for conceptualizing these mechanisms through a 

computational perspective, where the information flow required to maintain and 

regenerate living systems can be analogous to adaptive programming (De la Fuente, 

2021; Bich & Moreno, 2015). This framing simplifies the exploration of how organisms 

like PA and members of the Allium genus manage and adapt their genetic information in 

response to environmental changes and, by extension, how to take advantage of their 

properties for downstream problem-solving (Ruiz-Mirazo & Moreno, 2012). Interestingly, 

the argument made here mirrors a common critique of autopoiesis, which is sometimes 

considered redundant as a term (Moreno, 1987). However, if we were to accept the 

definition of autopoiesis as "a network of processes, which produces all the components 
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whose internal production is necessary to maintain the network operating as a unit" then 

the author of this thesis would argue that biological self-programming refers more directly 

to "the mechanisms of information flow responsible for the actualization of biological 

intent" wherein biological intent refers to the genomic corpus of an organism and the fluid 

mechanisms that influence and express it; this framework does not rely on 

organizationally closed systems and may simplify cognitive processing for mechanisms 

under the umbrella of genetics (Bich & Moreno, 2015). This definition aligns more closely 

with the concepts of biological autonomy and information processing in biological systems 

but ideally conveys the problem-solving utility utilized by the author of the thesis (De la 

Fuente, 2021). 

Bacterial genomic adaptability is driven by horizontal gene transfer and high mutation 

rates (Soucy et al., 2015; Baltrus, 2013). Due to their limited storage capacity for genetic 

information, bacteria employ rigorous, selective retention and avoidance of specific gene 

pairings (Croucher & Didelot, 2015). Bacteria tend to evolve through dynamic, modular 

genomes, where the presence or absence of specific genes in proximity to one another 

can significantly affect their fitness and virulence (Soucy et al., 2015). This modularity 

within bacterial genomes creates an inherent vulnerability to methods that exploit gene 

co-occurrence or avoidance patterns or their presence and absence from a genome 

(Whelan et al., 2020). Synergistic genes are often co-retained because they optimize the 

bacterium's survival in specific environments, such as conferring an advantage in host-

pathogen interactions (Whelan et al., 2020). Redundant or deleterious gene pairs are 

consistently avoided and filtered out of the genome due to evolutionary pressures, as 

their combination reduces overall fitness and genetic efficiency (Whelan et al., 2020). 
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These are examples of how genomic patterns in bacterial systems self-regulate to 

balance adaptability with stability (Baltrus, 2013). PA is no different from any other 

bacterium in this regard, as its genome is also highly plastic and constantly optimizing, 

making it easier for the analysis of coincidence patterns; by tracing which gene pairs are 

consistently preserved or avoided across different genomes, crucial genetic interactions 

are inferred that may underly pathogenicity, antimicrobial resistance or environmental 

fitness (Whelan et al., 2020; Alyssa & Stavrinides, 2015). This interplay of gene-pair 

dynamics reflects a form of "biological self-programming," where the bacterium fine-tunes 

its genomic architecture in what is effectively string redundancy filtering. 

In contrast, the various members of the far more genetically complex Allium genus, 

with their slower genomic evolution, exhibit a more stable, long-term form of programming 

(Van de Peer et al., 2021; Adams, 2007). Genetic traits in Allium species are less likely 

to shift rapidly in response to environmental pressures, with adaptation occurring over 

extended periods (Sattler et al., 2016). The slower evolution mechanisms of Alliums are 

underpinned by gene duplication, polyploidy, and epigenetic regulation, all of which 

contribute to the plant's genetic diversity and resilience (Qiao et al., 2019). Gene 

duplication expands gene families through the altered function of duplicated genes, 

allowing for functional redundancy in unaltered genes and potentially enhancing a plant's 

ability to adapt to environmental stresses through metabolic flexibility (Adams, 2007). 

Polyploidy duplicates entire sets of chromosomes, increasing the overall genetic content; 

polyploid plants are often more robust and capable of exhibiting greater variation in traits 

such as growth rates, stress tolerance, and nutrient uptake (Sattler et al., 2016). 

Epigenetic regulation allows Alliums to regulate gene expression without altering the 
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underlying DNA sequence through mechanisms such as DNA methylation and histone 

modification, which can be triggered by environmental stimuli and provide a flexible 

mechanism for the plant to adjust its physiological and biochemical responses (Lämke & 

Bäurle, 2017). Epigenetic changes are heritable, meaning they can contribute to longer-

term adaptation, yet they can also be reversible if environmental conditions change 

(Lämke & Bäurle, 2017).  

The dynamic flow of genetic information within Pantoea's genome offers 

computational opportunities to identify critical vulnerabilities in its genetic architecture; by 

mapping gene pairings that drive virulence or adaptation, bioinformatics tools can predict 

which regulatory nodes, if disrupted, would weaken the bacterium's ability to thrive 

(Whelan et al., 2020; Guevarra et al., 2021). Taking advantage of these mechanisms 

opens the door to targeted strategies that could interfere with Pantoea's pathogenic or 

virulence programming, reducing its potential; in contrast, computational approaches for 

Allium species can focus on mapping the slower, more stable flow of genetic information 

related to stress responses and defense pathways (Dahiya et al., 2024). Taking 

advantage of these slower but more stable genomic mechanisms allows genomic tools 

such as QTL mapping and marker-assisted selection to optimize resilience and stress 

tolerance traits without requiring direct genetic modification (Guevarra et al., 2021). 

Algorithmic Learning in Bioinformatics 

It is difficult to find patterns in large biological datasets (Ernst & Kellis, 2012; Domingos, 

2012; Alpaydin, 2020). Unfortunately, biology does not fit neatly into our anthropocentric 

organizational schemes, so recognition strategies based on human-designed rules can 

fall short (Domingos, 2012; Bishop, 2006). However, some algorithms can learn their own 
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rules (Hastie et al., 2009; Svetnik et al., 2004). Machine learning is a subset of artificial 

intelligence that focuses on developing algorithms to learn from and make predictions or 

decisions based on data (Bishop, 2006). There are three main phases when utilizing a 

machine learning model. The training phase occurs when the model learns from a 

dataset, usually with labeled examples (Alpaydin, 2020). The model will make predictions 

and adjust the weight parameters to minimize the difference between predicted and "true" 

output (Hastie et al., 2009). The validation step involves fine-tuning the model parameters 

to prevent overfitting, otherwise known as when a model trains too well and cannot be 

generalized (Domingos, 2012). Finally, the model is tested on the new dataset to evaluate 

its performance, which helps gauge how generalizable the model is to real-world 

scenarios (Shmueli, 2010). 

However, some datasets are too complex for a simple machine-learning architecture 

to handle (Haykin, 2009). For answers on handling such datasets, we turn to the most 

advanced computational hardware on the planet: the brain's structure. The human brain 

has the capacity to solve problems due in part to its compartmentalization and prodigious 

application of biological neural networks (Domingos, 2012; Hinton & Salakhutdinov, 

2006). Computational neural networks are a subclass of machine learning designed to 

mimic this biological blueprint, and much like neural associations, training, and exercise 

can strengthen or delete "synapses" (Haykin, 2009; Hinton & Salakhutdinov, 2006). A 

typical neural network comprises layers with interconnected "neurons" as nodes (LeCun 

et al., 2015). Each connection has an associated weight, adjusted during training (Hornik 

et al., 1989). The input layer receives data, the hidden layers are intermediate layers 

where different representations of the input data are formed, and the output layer 
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produces the final prediction (LeCun et al., 2015). Data flows from input to output, where 

each neuron will process the input via performing a weighted sum, followed by a non-

linear operation (Goodfellow et al., 2016). 

There are several kinds of neural networks. The simplest are feedforward neural 

networks (FNN) that do not form a cycle between nodes. FNNs are typically used for 

pattern recognition or classification (Bishop, 2006). Convolutional neural networks (CNN) 

tend to be used for processing grid-like data, such as images, and convolutional layers 

are applied to filter spatial hierarchies in data (He et al., 2015). Recurrent neural networks 

(RNN) are designed to work with sequence data such as text, gene sequences, or 

speech; for RNNs, connections between the nodes form a cycle, allowing a data memory 

of previous inputs that enables RNNs to be useful for tasks where context and sequential 

order are important (Hochreiter & Schmidhuber, 1997). Autoencoders are used for 

unsupervised learning tasks by compressing input into a latent-space representation and 

reconstructing the output from this representation (Trabelsi et al., 2018). Generative 

adversarial networks (GANs) comprise two neural networks: a generator and a 

discriminator (Goodfellow et al., 2014). These two networks compete against each other, 

where the generator learns how to create data resembling the training set while the 

discriminator learns to distinguish generated data from real data (Goodfellow et al., 2014). 

Despite the attempt to mimic our systems for thinking, AI and ML computers are 

only capable of formal thinking, where a set of rules and symbols must be used to 

generate statements and proofs (Turing, 1936; Gödel, 1931). Gödel proved that in any 

formal system with sufficient resources, there are statements that are true but cannot be 

proven within the system (Gödel, 1931). Turing further showed that it is impossible for a 
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general algorithm to determine whether any given program will run indefinitely or halt 

(Turing, 1936). With these results, formal systems have inherent limitations in self-

reflection and self-understanding and, by extension, are incapable of a true holistic 

understanding of a given problem (Bostrom, 2014). Humans, in contrast, can engage in 

non-formal thinking where logical reasoning, intuition, emotions, and previous 

experiences can cross-communicate to produce more holistic thinking (Damasio, 1994). 

Further, this non-formal thinking leads to self-reflection, or the ability to think about our 

thoughts and reflect on our mental processes to comprehensively understand limitations 

and capacity in a way that formal systems cannot replicate (Kahneman, 2011). As such, 

we can examine the routine strategies for formal thinking machines, including methods 

like pattern recognition, image processing, and feature extraction (Russell & Norvig, 

2009). These models can also use their predictive power on the rules of biology to make 

predictions for scientific hypotheses that we have not yet been able to test (Shmueli, 

2010). Conversely, bioinformatic analysis into our biological systems also informs 

machine learning systems, allowing them to utilize their structures that mimic biological 

systems in the first place (Auslander et al., 2021). Ultimately, this is where an 

understanding of "biological self-programming" would help determine the appropriate 

architecture and feature selection for a given problem, where a wide range of specialized 

genomics concepts may be generalized but still interrogated for downstream problem-

solving with a soft lens of formal thinking.  

Contemporary Management for OCR 

Contemporary management strategies for OCR rely on more established cultural 

methods. In Georgia, the climate creates an optimal environment for bacterial 
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proliferation, making early maturing, short-day onion varieties a recommended option for 

reducing the risk of infection (Agarwal et al., 2019; Penn State Extension, 2024). Early 

maturing varieties can escape the conditions that favor bacterial disease development 

and prevent PA from migrating into the bulb. Late-maturing onion genotypes provide an 

extended window for infection; this is due to high thrips pressure, warm and humid 

weather, and the absence of effective bactericides (Gitaitis et al., 2007; Dutta et al., 2014). 

Thrips, as the primary vectors for P. ananatis, necessitate consistent management 

throughout the growing season due to the bacterium's non-persistent nature; however, 

more than thrips management is required for comprehensive OCR management (Dutta 

et al., 2014). For example, cultural methods such as switching from overhead to drip 

irrigation minimize leaf wetness, reducing bacterial spread. Proper plant spacing 

improves air circulation and lowers humidity around the plants, which helps limit bacterial 

growth (Agarwal et al., 2019; University of Georgia, 2023). Further, the interaction 

between onion genotypes and growth stages significantly manages PA infections (Stumpf 

et al., 2017).  Sanitation measures through the destruction of plant debris and the timely 

removal of weeds are recommended to reduce alternate hosts for Pantoea spp. (Agarwal 

et al., 2019). Controlling weeds has successfully reduced the initial inoculum, as 

demonstrated by reducing the spread of Pseudomonas viridiflava in Georgia onion farms 

(Penn State Extension, 2024). Chemical control measures, particularly the preventive use 

of copper-based bactericides, are traditionally employed but have shown limited 

effectiveness due to the thrips' tendency to localize in hard-to-reach areas of the onion 

neck and the evidence of copper tolerance among P. ananatis (Gitaitis et al., 2007). 
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This tolerance could be mediated by efflux systems or mechanisms similar to or 

involving the "cop operon," observed in other bacteria, though these mechanisms remain 

unconfirmed in PA (Dutta et al., 2014). Currently, there are no commercially available 

onion genotypes resistant to Pantoea spp., making the use of certified disease-free seeds 

and transplants a core component of preventing the introduction of the bacterium into 

production fields (University of Georgia, 2023). An integrated approach targeting 

inoculum sources and vectors, combined with cultural, biological, and chemical 

strategies, is critical for effective OCR management. Recommendations from the 

University of Georgia Cooperative Extension provide growers with tailored 

recommendations for managing OCR (University of Georgia, 2023). 

Justification for Research 

OCR presents a significant economic threat to onion growers locally, nationally, and 

globally, and PA's virulence mechanisms remain not well understood. Leveraging the 

"biological self-programming" concept inherent in PA genetics, we aim to enhance data 

mining techniques by integrating two different association methodologies, genome-wide 

association studies with gene-pair coincidence analysis, to uncover genomic content 

responsible for disease phenotypes. We will examine other Allium species, improving our 

understanding of the impact of virulence factors across the genus and indirectly improving 

our overall management of OCR in A. cepa. Secondly, the recent discovery of alt gene 

clusters across various bacterial genera demands investigation regarding their 

prevalence and the diversity of their genetic content. Frustratingly, typical sequence-

based methodologies struggle to identify alt clusters, and manual curation of bacterial 

genomes is unacceptably inefficient. We aim to overcome these limitations by employing 
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NLP-like computational techniques to vectorize abstract categorical variables, such as 

the seemingly guilt-by-association "gene sentence structure" inherent to a bacterial gene 

cluster, which will enhance the detection and classification of alt, alt-like, and pseudo-alt 

clusters in a manageable format. Finally, we propose to address the long-overdue need 

for resistance screening in Allium species against PA. Identifying resistance traits will 

allow us to discover and characterize resistant onion genotypes; more importantly, 

incorporating these findings into onion breeding programs, providing a much-needed 

solution for sustainable crop protection and the future of the onion industry. 

Objectives 

1. Utilize a pan-genome genome-wide association study, with an additional layer of 

gene-pair coincidence, in various strains of PA in A. fistulosum x A. cepa and A. 

porrum to determine potential virulence factors. 

2. Utilize Natural Language Processing (NLP)-like deep learning to identify and validate 

thiosulfinate tolerance clusters in diverse bacteria.  

3. Determine host-resistance and their mechanism in Allium genotypes against PA.  
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Chapter 2 

Genome-wide association and dissociation studies in P. ananatis reveal potential 

virulence factors affecting Allium porrum and A. fistulosum x A. cepa hybrid1 
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Abstract 

Pantoea ananatis is a member of a Pantoea species complex that causes center rot of 

bulb onions (A. cepa) and also infects other Allium crops like leeks (Allium porrum), 

chives (Allium schoenoprasum), bunching onion or Welsh onion (Allium fistulosum), and 

garlic (Allium sativum). This pathogen relies on a chromosomal phosphonate biosynthetic 

gene cluster (HiVir) and a plasmid-borne thiosulfinate tolerance cluster (alt) for onion 

pathogenicity and virulence, respectively. However, pathogenicity and virulence factors 

associated with other Allium species remain unknown. We used phenotype-dependent 

genome-wide association (GWAS) and phenotype-independent gene-pair coincidence 

(GPC) analyses on a panel of diverse 92 P. ananatis strains, which were inoculated on A. 

porrum and A. fistulosum × A. cepa under greenhouse conditions. Phenotypic assays 

showed that, in general, these strains were more aggressive on A. fistulosum × A. 

cepa as opposed to A. porrum. Of the 92 strains, only six showed highly aggressive foliar 

lesions on A. porrum compared to A. fistulosum × A. cepa. Conversely, nine strains 

showed highly aggressive foliar lesions on A. fistulosum × A. cepa compared to A. 

porrum. These results indicate that there are underlying genetic components in P. 

ananatis that may drive pathogenicity in these two Allium spp. Based on GWAS for foliar 

pathogenicity, 835 genes were associated with P. ananatis’ pathogenicity on A. 

fistulosum × A. cepa whereas 243 genes were associated with bacterial pathogenicity 

on A. porrum. The Hivir as well as the alt gene clusters were identified among these 

genes. Besides the ‘HiVir’ and the alt gene clusters that are known to contribute to 

pathogenicity and virulence from previous studies, genes annotated with functions related 

to stress responses, a potential toxin-antitoxin system, flagellar-motility, quorum sensing, 



   
 

28 
 

and a previously described phosphonoglycan biosynthesis (pgb) cluster were identified. 

The GPC analysis resulted in the identification of 165 individual genes sorted into 39 

significant gene-pair association components and 255 genes sorted into 50 significant 

gene-pair dissociation components. Within the coincident gene clusters, several genes 

that occurred on the GWAS outputs were associated with each other but dissociated with 

genes that did not appear in their respective GWAS output. To focus on candidate genes 

that could explain the difference in virulence between hosts, a comparative genomics 

analysis was performed on five P. ananatis strains that were differentially pathogenic 

on A. porrum or A. fistulosum × A. cepa. Here, we found a putative type III secretion 

system, and several other genes that occurred on both GWAS outputs of 

both Allium hosts. Further, we also demonstrated utilizing mutational analysis that 

the pepM gene in the HiVir cluster is important than the pepM gene in the pgb cluster 

for P. ananatis pathogenicity in A. fistulosum × A. cepa and A. porrum. Overall, our 

results support that P. ananatis may utilize a common set of genes or gene clusters to 

induce symptoms on A. fistulosum × A. cepa foliar tissue as well as A. cepa but implicates 

additional genes for infection on A. porrum. 

Introduction 

Pantoea ananatis is one of the several species of bacteria within the Pantoea genus that 

causes onion center rot (OCR). The OCR can cause considerable losses in both yield 

and quality in Alliums, particularly in bulb onions (Allium cepa) in the southeastern United 

States (Stumpf et al., 2018; Gitaitis et al., 2003; Stice et al., 2018).  There is currently no 

known resistance to P. ananatis in commercial onion cultivars and resistance in other 

Allium spp. is yet to be evaluated. P. ananatis invades the plant through foliar wounds 
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leading to water-soaked lesions, blighting, and wilting of the leaf. Foliar colonization can 

lead to bulb invasion that often results in further post-harvest losses (Carr et al., 2013). 

While P. ananatis can be seedborne and seedling transmitted, thrips (Frankliniella fusca, 

Thrips tabaci) mediated transmission seems to be more common and epidemiologically 

important, particularly in Georgia, United States. Several published reports indicate that 

these thrips species can acquire epiphytic P. ananatis populations from various 

environmental host plants including weeds and can transmit the pathogen to healthy 

onion seedlings (Dutta et al., 2016; Dutta et al., 2014).  P. ananatis collectively has a 

broad reported host range as it can cause disease in a diverse range of crops including 

maize (Zea mays L.), pineapple (Ananas comosus), rice (Oryza sativa), and Sudan grass 

(Sorghum bicolor x S. bicolor var. sudanese) (De Maayer, et al., 2014).  

Based on observations made by Stice et al., (2018), P. ananatis is pathogenic on 

a variety of Allium spp.; however, the authors observed that the strains varied greatly in 

their pathogenic potential and aggressiveness on onion, shallot (A. cepa var. 

aggregatum), chives (A. schoenoprasum), and leeks (A. porrum). The bunching onion or 

Welsh onion (A. fistulosum) has been shown to be a pathogenic host for P. ananatis (Kido 

et al., 2010; Wang, Lin and Huang. 2018). Symptoms observed on these hosts were 

comparable to those observed on typical bulb-forming onion seedlings. P. ananatis is 

unusual when compared with other Gram-negative plant pathogenic bacteria in that it 

does not utilize either the type II secretion system (T2SS) or the type III secretion system 

(T3SS) to secrete cell-wall degrading enzymes and deliver virulence effectors into the 

target host cell, respectively (Chang, Desveaux and Creason (2014). Asselin et al. (2018) 

and Takikawa et al. (2018) independently identified a chromosomally located “HiVir,” or 
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High Virulence gene cluster.  This gene cluster has been demonstrated to be a critical 

pathogenicity factor for P. ananatis in onions (Asselin et al. 2018. Takikawa et al. 2018). 

The HiVir encodes for a phosphonate phytotoxin “Pantaphos” that was shown to be 

critical for bulb necrosis (Asselin et al. 2018. Polidore, et al. 2021.). Another cluster of 

importance was recently characterized by Stice, et al.  and is a plasmid-borne virulence 

gene cluster coined as “alt” or thiosulfinate (Allicin) tolerance (Stice et al., 2018. Stice et 

al., 2020). The alt cluster in P. ananatis imparts tolerance to thiosulfinates allowing P. 

ananatis to colonize the thiosulfinate-rich environment in necrotic onion bulbs (Stice et 

al., 2018. Stice et al., 2020.). Despite these advances in understanding pathogenicity and 

virulence mechanisms in P. ananatis-onion pathosystem, the mechanisms behind 

bacterial capacity to colonize other Allium spp. such as A. porrum and A. fistulosum x A. 

cepa remain unknown.  

Whole-genome sequencing (WGS) of bacteria is routinely performed in many 

laboratories for diagnostics, understanding host-pathogen interactions, and for ecological 

studies (Chewapreecha et al., 2014. Laabel et al., 2014. Sheppard et al., 2013. 

Desjardins et al., 2016. Farhat et al., 2013. Earie et al., 2016. Hall et al., 2014. Holt et al., 

2015. Lees et al., 2016.). Despite generation of large informatics data sets, the primary 

challenge when handling these methodologies is managing an appropriate strategy to go 

from raw data to detailed, biologically relevant information. One strategy commonly used 

to relate genotype to phenotype is the genome-wide association study (GWAS). This 

strategy was first adopted in human-based medicine, but soon after gained general 

popularity in analyzing bacterial genomes to answer various questions related to 

pathogenicity, antibiotic resistance, and bacterial survival (Chewapreecha et al., 2014. 
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Laabel et al., 2014. Sheppard et al., 2013. Desjardins et al., 2016. Farhat et al., 2013. 

Earie et al., 2016. Hall et al., 2014. Holt et al., 2015. Lees et al., 2016.). GWAS has proven 

to be an excellent tool in correlating genomic variations with observed phenotypes such 

as virulence factors, antibiotic resistance, and tolerance to abiotic and biotic stresses 

(Chewapreecha et al., 2014. Laabel et al., 2014. Sheppard et al., 2013. Desjardins et al., 

2016. Farhat et al., 2013. Earie et al., 2016. Hall et al., 2014. Holt et al., 2015. Lees et al., 

2016.). In this study we utilized the WGS strategy to build a “pan-genome” and compare 

the combined genomes of a bacterial population to pathogenicity phenotype on two Allium 

spp. (A. porrum and A. fistulosum x A. cepa). 

The complete complement of the total genes within a genomic set is termed as 

“pan-genome” (Medini et al., 2005. Tettelin, et al., 2005.). A pangenome consist of “core” 

genes that are common across all bacterial strains of a species and the “accessory” genes 

that are specific/present in only some strains (Tettelin, et al., 2005). Accessory genes are 

responsible for key differentiation among strains and have been associated with 

pathogenicity islands or with niche adaptation (Brockhurst et al., 2019). Ideally, pan-

GWAS can also be used to identify associations between genotypic traits and observed 

phenotype. This may aid in determining potential gene or gene clusters that are 

responsible for the observed phenotype with a pre-defined set of statistical criteria 

(Brynildsrud et al., 2016). In the current study, we utilized a pangenome-wide association 

study (pan-GWAS) to identify presence and absence variants in P. ananatis strains 

(n=92) that are associated with foliar symptoms in A. porrum and A. fistulosum x A. cepa. 

Using pangenome-GWAS, we report a set of potential P. ananatis virulence factors 

associated with these Allium hosts including the “HiVir” cluster. These include the 



   
 

32 
 

phosphonoglycan biosynthesis (pgb) cluster, a type III secretion system, a putative 

toxin/antitoxin region, and several other virulence-associated genes. Further, we also 

demonstrated that the pepM gene in the HiVir cluster is more important than the pepM 

gene in the “pgb” cluster for P. ananatis pathogenicity in A. fistulosum x A. cepa and A. 

porrum.   

A recent study tested the hypothesis that genes generally co-occur (associate) or 

avoid each other (dissociate) based on the fitness consequences in a particular set of 

genomes (Whelan, Rusilowicz and McInerney, 2019). For example, in our case, we 

presume that genes, which allow necrosis in Allium spp. and confer thiosulfate tolerance 

should associate as these traits are co-beneficial for survival in niche of an Allium host. 

However, genes that, in combination, result in the production of a toxic byproduct (as has 

been observed associated with siderophore biosynthesis in Salinispora spp.) (Bruns et 

al., 2018), perform some redundant function, or trigger an immune response, should 

dissociate with each other as co-expression may reduce strain fitness. Therefore, we 

analyzed genomic interactions of accessory genes in the pangenome derived from 92 P. 

ananatis genomes to determine genes associated with virulence, with a premise that 

virulence genes should associate with other virulence genes throughout the accessory 

pangenome and that redundant virulence genes should naturally dissociate. 

Materials and methods 

Bacterial strains, identification, culturing, and mutagenesis 

Pantoea ananatis strains (n=92) used in this study were isolated from diverse sources; 

weeds, thrips, and onion tissue (foliage, bulbs, and seeds) in Georgia from 1992-2019. 
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The metadata for each strain such as the source, year of isolation, and county of origin in 

Georgia for these strains and their distribution within each category are listed (Table 1).  

Among the strains used, 55 strains (59.8%) were isolated from onion foliage or bulb 

tissue, which constituted majority of the strains and remaining 38 strains (40.2%) were 

isolated from other diverse sources including weeds, and thrips. This is followed by the 

weeds; Richardia scabra L. (8.7%; 8/92), Digitaria spp. (6.5%; 6/92), and Verbena 

bonariensis (4.3% ;4/92). The strains from various plant sources constituted 8.7% (8/92) 

of the total strains studied (Table 1; Figure 1B). Strains from thrips (Frankliniella fusca 

and F. occidentalis) constituted the remaining 13% (12/92). These curated strains were 

initially identified as P. ananatis by their colony morphology and physiological 

characteristics such as being: Gram-negative, facultatively anaerobic, positive for indole 

production, and negative for nitrate reductase and phenylalanine deaminase. Further 

confirmation was done using P. ananatis-specific PCR assay as described earlier 

(Walcott et al., 2002). 

Inoculum was prepared by transferring single colonies of each bacterial strain from 

24 h-old cultures on nutrient agar (NA) medium to nutrient broth (NB). The broth was 

shaken overnight on a rotary shaker (Thermo Scientific, Gainesville, FL) at 180 rpm. After 

12 h of incubation, 1 ml of each bacterial suspension were centrifuged at 5,000 × g 

(Eppendorf, Westbury, NY) for 2 mins. The supernatant was discarded, and the pellet 

was re-suspended in deionized water. Inoculum concentration was adjusted using a 

spectrophotometer (Eppendorf, Westbury, NY) to an optical density of 0.3 at 600 nm [≈1 

× 108 colony forming unit (CFU)/ml].  
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Deletion of the P. ananatis PANS 02-18 pepMpgb pepMHiVir genes was conducted 

by two-step allelic exchange as described by Stice et al. (2020). In brief, approximately 

400-bp flanks to the targeted genes were directly synthesized as a single joined sequence 

by Twist bioscience and cloned via BP clonase II using primer-introduced attB1/2 

recombination sites into the pR6KT2G Gateway® compatible sacB-based allelic 

exchange vector. These deletion constructs were introduced into PANS 02-18 via 

biparental conjugation with the RHO5 E. coli strain and single crossover events were 

recovered via gentamicin selection. Second crossover events were recovered via liquid 

sucrose counter-selection and identified by screening for backbone eviction based on 

loss of gentamicin resistance and the formation of white colonies on X-gluc. Deletion 

mutants were identified and confirmed based on PCR and amplicon sequencing using 

independent primers designed to amplify from genomic regions adjacent to the 400-bp 

deletion flank regions.  

Phenotypic assessment of P. ananatis: red onion scale necrosis, foliar 

pathogenicity and aggressiveness assay of on A. porrum and A. fistulosum x A. 

cepa. 

Pathogenic potential of P. ananatis strains were initially phenotyped on onion scale using 

previously described red scale necrosis (RSN) assay (Stice et al., 2018). Red onions (cv. 

Red Burgundy) were surface sterilized with 70% ethanol and the outermost scale sliced 

to approximately 3 cm×4 cm.  The resulting scales were set on a sterile petri dish or on 

sterilized microtube trays, with the bottom covered with sterilized paper towels pre-

moistened with distilled water. Each onion scale was then wounded via direct penetration 

with a sterilized needle and inoculated with 10 µl of approximately 1x106 CFU/mL 
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inoculum of P. ananatis. A known onion-pathogenic strain (PNA 97-1) was used as a 

positive control. Sterile water was used as a negative control. The resulting petri dishes 

were then laid in an aluminum tray (46 cm × 25 cm × 10 cm) and covered with a plastic 

lid. These onion scales were then incubated for 5 days in the dark. The area of pigment 

clearing, and necrotic lesions were measured at 7 days post-inoculation. Strains that did 

not clear the red anthocyanin pigment or developed necrotic lesions, were declared non-

pathogenic. Strains that caused necrosis along with pitting, with a visible zone of pigment 

clearing were considered pathogenic. Three replications were performed for each strain 

and in total two experiments were conducted.  

Foliar pathogenicity and aggressiveness of P. ananatis strains (n=92) were 

determined on A. porrum (cv. King Richard) and A. fistulosum x A. cepa (cv. Guardsman) 

under controlled greenhouse conditions. P. ananatis strain (PNA 97-1) was used as a 

positive control for both Allium species (14,31). Seedlings were established in plastic pots 

(T.O. plastics, Clearwater, MN) with dimension of 9 cm × 9 cm × 9 cm (length × breadth 

× height) containing a commercial potting mix (Sta-green, Rome, GA). The seedlings 

were maintained under greenhouse condition at 25-28°C and 70-90% relative humidity 

with a light:dark cycle of 12h:12h. Osmocote smart release plant food (The Scotts 

Company, Marysville, Ohio) was used for periodic fertilization. Bacterial strains were 

maintained on NA plates and inoculum was generated as described above. Once the 

primary leaf of each Allium spp. reached 9 cm, seedlings were inoculated using a cut-tip 

method as described previously (Dutta et al., 2014).  Briefly, a wound was created by 

cutting the central leaf (2 cm from the apex) with a sterile pair of scissors. Using a 

micropipette, a 10 µl drop of a bacterial suspension containing 1×108 CFU/ml (1×106 
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CFU/leaf) was deposited at the cut-end. Seedlings inoculated with sterile water as 

described above were used as negative control. Three replications per strain per host 

were used for one experiment and a total of two independent experiments were 

conducted. 

The seedlings were observed daily for symptom development until 5 days post-

inoculation (DPI) and were compared with the foliar symptoms displayed by the positive 

control on each Allium species. The aggressiveness of P. ananatis strains was 

determined based on the lesion length on each Allium spp. For A. porrum, strains that 

caused a lesion length of 0.2-0.5 cm were considered less aggressive, 0.5-0.9 cm 

moderately aggressive, and >1 cm highly aggressive. For A. fistulosum x A. cepa, strains 

were considered highly aggressive when a lesion length of >1.4 cm was observed. Lesion 

lengths ranging from 0.7-1.4 cm were considered as moderately aggressive and strain 

with lesion length <0.7 cm was regarded as less aggressive. Bacterial strains that did not 

display any lesion were considered as non-pathogenic. To confirm if the symptoms were 

caused by P. ananatis, bacteria were isolated from the region adjoining the symptomatic 

and healthy tissue on PA-20 semi-selective medium and incubated for 5-7 days at 28°C 

(Goszczynska, Venter and Couthino. 2006). Presumptive colonies were further confirmed 

using P. ananatis-specific assay as mentioned above (Goszczynska, Venter and 

Couthino. 2006). Further, strain identity from randomly isolated colonies from A. porrum 

and A. fistulosum x A. cepa were confirmed by their DNA fingerprints using repetitive 

extragenic palindrome (rep)-PCR as previously described (Dutta et al., 2014).  

Genome sequencing: Data filtering, draft genome assembly and annotation 
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Genomic DNA was extracted utilizing the E.Z.N.A bacterial DNA kit Omega Bio-Tek 

(Norcross, GA). A 50 µl of DNA (50 ng/µl) per sample was used for library preparation as 

per the manufacturer’s instructions at Novogene Bioinformatics Technology Co. Ltd. 

(Beijing, China). Genomic DNA of each sample was randomly sheared into short 

fragments of about 200-400 base pairs (bp). The obtained fragments were subjected to 

library construction using the NEBNext® DNA Library Prep Kit. After end repairing, dA-

tailing, and further ligation with NEBNext adapter, the required fragments (in 200-400 bp 

size) were PCR enriched by P5 and indexed P7 oligos. The library was subsequently 

sequenced on Illumina NovaSeq 6000 platform (Illumina Inc., San Diego, CA, USA). Pair-

end sequencing were performed with the read length of PE150 bp at each end. The raw 

fastq reads obtained were quality filtered. FastQC was used to assess the raw fastq files. 

Reads were filtered utilizing Trimmomatic (v. 0.36). The read data were filtered to remove 

low quality reads/bases and trimmed for reads containing primer/adaptor sequences 

using Trimmomatic’s paired end mode (Bolger, Lohse and Usadel. 2014). Further, all 5’ 

and 3’ stretches of ambiguous ‘N’ nucleotides were clipped to ensure high quality reads. 

Trimmed data were re-assessed using FastQC and further used for genome assembly 

followed by pan-genome analyses. Further, all contigs ≤ 500bp were removed using 

Seqtk (1.3). The cleaned reads were assembled using SPAdes (v. 3.15.3) (Bankevich et 

al., 2012). Both the paired and unpaired data were used in assembly at default settings. 

The scaffolds of the respective 92 P. ananatis strains were annotated using Prokka (v. 

1.14.5) (Seemann, 2014). The resulting .gff files were used in the downstream pan-

genome analysis. Average nucleotide identity was determined using FastANI (Jain, et al., 

2018). KEGG gene ontology (GO) assignment was conducted using BioBam BLAST2GO 
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pipeline (BioBam 2022, Götz et al., 2008). A phylogenetic tree of single nucleotide 

polymorphisms (SNP’s) of core genome was generated utilizing PanSeq at default 

settings and RAxML alignment with 10,000 bootstrap replicates (Laing et al., 2010. 

Stamatakis, 2014). The RAxML Boostrap random number used was 9595, with parsimony 

random seed of 5959.For Coinfinder and Roary plots, a tree was generated using 

FastTree 2.1.11 at default settings utilizing Roary’s core gene alignment (Price, Dehal 

and Arkin. 2009).  

 Pan-Genome, genome-wide associate studies (GWAS), and gene coincidence of 

P. ananatis (N = 92 strains) 

The annotated genomes that passed quality control were used as inputs in ROARY (v. 

3.12.0) at default settings that aided in generating a pan-genome with core and accessory 

genes. The complete pan-genome matrix in the form of presence and absence variant 

was used as inputs in SCOARY (v. 1.6.16). The SCOARY program conducted GWAS 

analysis that determined association between genomes and observed phenotypes 

(Brynildsrud, et al., 2016. Page et al., 2015.). This program was operated twice separately 

on each host plant of interest, once at default parameters, and a second time with a forced 

maximum p-value 0.05 across all testing parameters. For the gene 

association/dissociation analysis, complete pangenome of 92 P. ananatis strains were 

used as inputs for Coinfinder (v. 1.0.1). This program generated both gene-pair 

associations and dissociations with modification to association significance increased to 

a p-value of 0.1, and default settings (p=0.05) for dissociation as previously described 

(Whelan, Rusilowicz and McInerney, 2019). Direct comparisons of genetic sequences 
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were performed using the Clustal Omega online server at default settings (Madeira et al. 

2022). 

Tobacco infiltration assay for P. ananatis strain (PNA 15-3) with putative Type III 

secretion system (T3SS) 

A single colony of P. ananatis strain PNA 15-3 (with putative T3SS) and a strain of 

Pantoea stewartii subsp. indologenes (20GA0713; positive control for T3SS) was 

suspended and grown overnight in modified Coplin medium (Asselin, Bonosera and Beer. 

2018). Approximately 100 µl of the overnight culture was syringe-infiltrated into the 

tobacco leaf and the resulting infiltrated area was marked with a black marker. A sterile 

Coplin lab medium was used as a negative control. The symptom was observed at 48-

hours post inoculation (hpi) when the image was taken. This experiment was repeated 

twice.  

Results 

Phenotypic assessment of P. ananatis: red onion scale necrosis, foliar 

pathogenicity and aggressiveness assay of on A. porrum and A. fistulosum x A. 

cepa. 

Phenotyping of 92 P. ananatis strains displayed variability in the level of aggressiveness 

on both Allium spp.  (Table 1.1). Variations in P. ananatis pathogenicity and 

aggressiveness on two Allium spp. were considerable (Figure 1.1 A and B and Table 1.1). 

Strains screened in this study belonged to different isolation sources (Figure 1.1 C and 

Table 1). Using the RSN disease phenotyping assay, we observed 61.3% (57/92) of P. 

ananatis strains displayed typical necrosis of red onion scale whereas 38.7%% (36/92) 

of strains did not cause necrosis (Figure 1.1 D).  
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When P. ananatis strains were screened on A. fistulosum x A. cepa, 20.4% (19/92) 

and 44.1% (41/92) were found to be non-pathogenic and mildly aggressive, whereas 

25.8% (24/92) and 9.7% (9/92) of the strains were identified as moderately aggressive 

and highly aggressive, respectively (Figure 1.1 E). In contrast, on A. porrum, 45.7% 

(42/92) and 37% (34/92) of the strains were non-pathogenic and mildly aggressive, 

respectively. Interestingly, a much lower proportion of the strains; 14.1% (13/92) and 

3.3% (3/92) identified as moderately aggressive and highly aggressive, respectively on 

A. porrum (Figure 1.1 F). The percentage of strains that were pathogenic on A. porrum 

but non-pathogenic on A. fistulosum x A. cepa was only 2.1% (2/92). In contrast, 27% 

(25/92) of the strains that were pathogenic on A. fistulosum x A. cepa were non-

pathogenic on A. porrum. Interestingly, 4.3% (4/92) of strains were highly aggressive on 

A. porrum but less aggressive on A. fistulosum x A. cepa whereas 9.7% (9/92) of strains 

were highly aggressive on A. fistulosum x A. cepa but less aggressive on A. porrum. 

Percentage of strains that were moderately to highly aggressive on both Allium sp. was 

4.3% (4/92) whereas 18.8% (17/92) of the strains were non-pathogenic on both hosts 

tested. All the strains isolated from symptomatic A. porrum or A. fistulosum x A. cepa 

were identified as P. ananatis by recovery on PA-20 semi-selective medium and a P. 

ananatis-specific PCR assay as described above. P. ananatis colonies were not 

recovered from any of the negative control seedlings on PA-20 medium indicating no 

potential cross-contamination among the inoculated strains.  

Interestingly, among the 57 RSN-positive strains, 63.2% (36/57) of strains were 

pathogenic on both A. porrum and A. fistulosum x A. cepa whereas 0% (0/57) and 26.3% 

(15/57) of strains were only pathogenic on A. porrum or A. fistulosum x A. cepa, 
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respectively. The remaining RSN-positive strains were non-pathogenic in the leaf tip 

necrosis assay on both hosts 10.5% (6/57). Among the RSN-negative strains, 41.6% 

(15/36) strains were non-pathogenic on both hosts, whereas 25% (9/36) were pathogenic 

on both hosts. Also, 5.5% (2/36) and 27.7% (10/36) of strains were pathogenic on only A. 

porrum and A. fistulosum x A. cepa, respectively.  

The P. ananatis pan-genome, architecture, and annotation  

Post-sequencing, 1,594,092,228 raw reads were obtained and after stringent quality-

filtering and trimming nearly 87% of the total reads (1,413,144,772 quality reads) were 

retained. The FastQC results indicated the sequence quality “passed,” as the majority of 

per-nucleotide and sequence qualities achieved high scores with no issues reported. For 

example: a good score can be ascertained with an average quality score of 30 to 40, with 

an exponentially increasing quality score distribution. Sequences that failed to incorporate 

into the final pangenome, or showed signs of contamination, were removed from the 

study. All P. ananatis sequences used in this study were submitted to NCBI (bio project 

PRJNA825576). Their corresponding accession numbers are listed in the supplementary 

table 1.1.  

An overview of the final pangenome shows a core genome (occurs in 99% or more 

genomes, N >= 91) of 2914 genes, a soft-core (occurs in 95% to 99% of genomes, N = 

87 to 91) of 687 genes, a shell genome of 1833 genes (occurs in 15% to 95% of the 

genomes, N = 14 to 87), and a cloud genome (occurs in 0% to 15% of genomes, N = 0 

to 14) of  9,196 genes for a total of 14,630 genes (Figure 1.2 A). Details of the number of 

core and accessory genes contributed by each strain are shown in Figure 1.2 B. A visual 

representation of the total presence and absence variants of the pangenome where 
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genomic differences in accessory components as well as the homogeneity of the core 

genome across the strains can be observed (Figure 2C). The phylogenetic tree produced 

that was used as input for both the gene-pair coincidence (GPC) analysis and the ROARY 

plots script is shown in supplementary figure 1.1.    

The assignment of GO terms resulted in 19,323 annotations (Figure 1.3, 

Supplementary figure 1.2). Among the genes annotated and assigned to biological 

processes (BP) within the  pangenome, 3,828 are dedicated to cellular processes, 3109 

to metabolic processes, 930 to localization, 761 to biological regulation, 726 to the 

regulation of biological processes, 514 to the response to stimulus, 191 for signaling, 152 

for the interspecies interaction between organisms, 101 for locomotion, 65 to viral 

processes, 46 for the negative regulation of biological processes, 43 for detoxification, 42 

to developmental processes, 35 for positive regulation of biological processes, 36 for 

reproduction, 12 for nitrogen utilization, 5 for carbon utilization, 4 for multicellular 

organismal process, and one for immune system process  (Figure 1.3 A).  

Among the genes that are assigned to molecular functions (MF), 3182 are for 

catalytic activity, 2713 for binding activity, 676 for transporter activity, 263 ATP-dependent 

activity, 252 with transcription regulator activity, 89 with molecular transductor activity, 82 

with structural molecule activity, 37 with small molecule sensor activity, 34 for antioxidant 

activity, 30 with toxin activity, 23 with translocation regulation activity, 15 with molecular 

function activity, 12 for cytoskeletal motor activity, 6 for molecular carrier activity, and 

finally one assigned with nutrient reservoir activity (Figure 13 B). Among the genes 

assigned to cellular components, 2,894 are assigned as a cellular anatomical entity, 210 
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are protein-containing complexes, and 2 are virion components (Figure 1.3 C). Further 

break downs of these groups are available in the supplementary figure 1.2. 

To determine the relationship between phylogeny of bacterial strains and their 

pathogenicity on Allium hosts, a phenotypic tree based on SNPs of core genes was 

constructed using RAxML and PanSeq (Figure 4) and is visually represented using the 

Interactive Tree of Life online tool (Letunic and Bork. 2016). When assessing the 

phylogenetic tree in its totality, it is difficult to determine a precise pattern except for strains 

from the same year of isolation tend to group together. This potentially indicates that these 

strains in the same group are genetically closely related. Despite this lack of obvious 

pattern in the overview of the phylogenetic tree, there are several clades where the 

terminal taxa are sorted based on their pathogenicity. Overall, these results provide 

support that changes in pathogenicity are not the result of strain lineage, but rather an 

expansive accessory genome.  

Genome wide association studies identify potential pathogenicity and virulence 

factors associated with P. ananatis affecting A. porrum and A. fistulosum x A. cepa. 

A pangenome utilizing ROARY was built, and the strength of gene association to the 

pathogenic phenotype on seedlings (A. porrum and A. fistulosum x A. cepa) was 

calculated using SCOARY. A total of 836 genes were found associated with RSN 

phenotype in A. fistulosum x A. cepa (p<=0.05). Further, to avoid false positive 

associations, Benjamini-Hochberg correction (BHC) and Bonferroni correction were relied 

upon (p<=0.05) and as a result only 50 genes were found significantly associated with 

the pathogenic phenotype. Within this set of 836 genes, we found two divergent copies 

of phosphoenolpyruvate mutase (pepM) genes, annotated as “phosphonopyruvate 
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hydrolase.” The first gene hvrA/pepM belongs to the previously described ‘HiVir’ cluster. 

Among the top twenty significantly associated genes in P. ananatis affecting A. cepa x A. 

fistulosum, the HiVir cluster genes were found to be prominent (Supplementary file 1.1).    

The second pepM gene belonged to a separate gene cluster (pgb) previously 

described by Polidore et al. (2021), which ranked at 451 based on naïve significance 

value. Five phosphatase genes, one gene related to chemotaxis, three related to 

virulence-region associated virB, and several genes in the previously described alt gene 

cluster (Stice et al. 2018. Stice et al., 2020. Jain et al., 2018). Two copies of the fliC gene, 

which encodes the flagellin monomer, were also found to be related with P. ananatis’ 

pathogenicity on A. fistulosum x A. cepa (He et al., 2012. Macnab, 2003). Flagellar motility 

has been previously observed to be important for onion leaf virulence (Weller-Stuart et al. 

2017). Among the associated genes, we also screened for genes (annotated or 

hypothetical) to assess if they occur in clusters. Within the top 50 significantly associated 

genes we found at least five hypothetical gene clusters (group_4714-4719, group_3715-

3726, group_5180-5182, group_5653-5660, group_5704-5778) as well as the HiVir gene 

cluster (Supplementary file 1.1).   

Using A. porrum pathogenic strains, a total of 243 genes were found associated 

(naïve significance of p <= 0.05) with the pathogenic phenotype. However, none of the 

predicted genes were associated with the phenotype when the Bonferroni correction, and 

BHC were applied. When selectively screened for previously described genes known for 

pathogenicity and virulence in onion (HiVir genes, alt), we observed the HiVir cluster to 

be significantly associated with the phenotype; however, it ranked lower (rank: 91-101) 

compared to other annotated or hypothetical genes.  
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We also found significantly associated genes (n=123), which were shared between 

the two hosts, with 48 of the top 50 associated genes in A. fistulosum x A. cepa occurred 

in both GWAS results (Supplementary file 1.1). Some of the known genes that were 

shared between the A. fistulosum x A. cepa and A. porrum include the entire HiVir gene 

cluster, pemK_2 (mRNA interferase), soj (sporulation initiation inhibitor protein), parM 

(Plasmid segregation protein), umuD (protein UmuD), tibC  (glycosyltransferase), ycaD 

(uncharacterized MFS transporter), dadA (D-amino acid dehydrogenase 1), frbC (2-

phosphonomethylmalate synthase), amiD (N-acetylmuramoyl-L-alanine amidase), and 

rfbB (dTDP-glucose 4,6-dehydratase). The genes that constitute the thiosulfinate 

tolerance cluster (alt) only appeared in A. fistulosum x A. cepa association with the 

phenotype with their annotations following annotations; xerC (tyrosine recombinase 

XerC), altA/nemA (N-ethylmaleimide reductase), gor (glutathione reductase), altJ/osmC 

(peroxiredoxin OsmC), and altD/trxA (thioredoxin) (Supplementary file 1.1). Genes that 

are members of the larger OVRA region, but not alt-specific genes were also associated 

with the pathogenicity phenotype, and they include rbsC (ribose import permease protein 

RbsC), rbsB (ribose import binding protein), rbsA (ribose import ATP-binding), and 

altD/trxA (thioredoxin) (Supplementary file 1.1). 

Use of gene-pair coincidence (GPC) for phenotype independent determination of 

pathogenicity and virulence factors 

Gene-pair association of the P. ananatis pan-genome resulted in a total of 165 genes 

separated into 39 individual groups (Table 1.2, Supplementary file 1.2). Of the 165 genes, 

45 genes are shared with the genes that are predicted based on GWAS for pathogenic 

phenotype on A. fistulosum x A. cepa and only two genes are shared with the genes that 
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are predicted via GWAS for A. porrum pathogenicity (Table 1.2, Supplementary file 1.2). 

An overview of the associative Coinfinder output can be seen in Figure 1.5. Of the groups 

that also occurred on the GWAS analysis, 9/10 are saturated with genes that only 

associate with the pathogenic phenotype for A. fistulosum x A. cepa, and only one group 

is saturated with genes that associate with the pathogenic phenotype on A. porrum. 

These results indicate that in our pangenome there is a stronger associative pressure on 

genes that are specific to one host or the other, and there is no evidence for gene 

association between genes that associate for both hosts.  

Gene-pair dissociation of the P. ananatis pangenome resulted in 255 genes 

separated into 50 groups of dissociated genes (Table 1.3, Supplementary file 1.2). Of the 

255 genes, twenty-two are shared with the genes associated with the pathogenic 

phenotype on A. fistulosum x A. cepa as predicted by GWAS, whereas only three genes 

are shared with the pathogenic phenotype on A. porrum. Components with dissociating 

gene-pairs that also occur on the GWAS output are summarized in table 3. A full summary 

of the genes, their coincidence values, and their groups can be found in supplementary 

file 2. An overview of the dissociative Coinfinder output can be seen in figure 1.6. Among 

these groups, 4/6 show a dissociative relationship between genes that associate with the 

A. fistulosum x A. cepa disease phenotype and genes that do not associate with the 

pathogenic phenotype on either host. There is one group of genes that with the A. porrum 

pathogenic phenotype and genes that do not associate with the disease phenotype on 

either host. Finally, there is one group where there is a dissociative relationship between 

genes associated with the pathogenic phenotype in A. fistulosum x A. cepa or A. porrum, 
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but not both (Table 1.3). These results indicate that there may be selective pressure for 

virulence factors that are host specific, rather than generally useful like the HiVir cluster.  

Comparative genomics of strains with Allium species-specific pathogenicity. 

Five strains were chosen based on their species-specific pathogenicity on Allium hosts. 

The strains PNA 15-3, PANS 99-14 are pathogenic on A. porrum, but non-pathogenic on 

A. fistulosum x A. cepa and are all RSN-negative. The strains PNA 07-10, PNA 07-1, and 

PNA 05-1 are all pathogenic on A. fistulosum x A. cepa and RSN-positive, but non-

pathogenic on A. porrum (Table 1.1). Gene presence and absence were compared 

manually among these strains. All strains possessed HiVir cluster except for the strain 

PNA 15-3. The absence of this cluster is the likely cause for the strain’s inability to cause 

foliar lesions on A. fistulosum x A. cepa, and necrosis on onion scale.  

The strain PNA 15-3, however, carries genes that indicate the presence of a type 

III secretion system, a virulence pathway that uncommon in P. ananatis (Supplementary 

table 1.2).  When comparing this type-III secretion system to those found in Kirzinger et 

al. (2015), it appears to show similarities with PSI-1b. Attempts to align this sequence to 

the type III secretion system found in P. stewartii subsp. indologenes indicated low 

sequence similarity. When PNA 15-3 was inoculated into tobacco leaf panels, no 

hypersensitive response was observed (Supplementary figure 1.3).  

We found 43 genes proximal to each other surrounding the stcC gene in PNA 15-

3. A total of 35 genes in the cluster were annotated as hypothetical proteins. The other 

eight genes were annotated as: oleC (olefin beta-lactone synthetase), gacA 

(response regulator GacA), mxiA (protein MxiA), hrcN (type III secretion ATP synthase 

HrcN), spaP (surface presentation of antigens protein SpaP), spaQ (surface 
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presentation of antigens protein SpaQ), yscU (yop proteins translocation protein U), sctC 

(type 3 secretion system secretin), and dctD (C4-dicarboxylate transport transcriptional 

regulatory protein DctD). Further, we utilized NCBI database nucleotide BLAST to query 

the type III secretion system sequence at default values for the P. anantis taxid in the 

WGS database. We observed an 88% similarity with over 98% query coverage for PANS 

99-23, PANS 99-26, PANS 200-1, PNA 86-1, UMFG54 (JACAFO010000015.1), NRRL 

B-14773 (JACEUA010000002.1), and DE0584 (VDNR01000019.1). Using NCBI 

database nucleotide blast at default values for the P. anantis taxid in the nr nucleotide 

collection, we observed an 88% identity with LCFJ-001 (CP066803.1) -and 

FDAARGOS_680 (CP054912.1) chromosomal sequences.  

The strains PNA 07-10, PNA 07-1, and PNA 05-1 shared several genes that do 

not occur in PNA 15-3, or PANS 99-14. Apparent gene clusters shared by these A. 

fistulosum x A. cepa pathogenic strains are described in the following paragraph. The first 

major gene cluster shared only by PNA 07-10, PNA 07-1, and PNA 05-1 strains is the alt 

cluster, followed by a hypothetical gene cluster consisting of 9 hypothetical genes, and 3 

annotated genes: argT_3 (lysine/arginine/ornithine-binding periplasmic protein), 

group_2282 (ureidoglycolate lyase), and dapL (LL-diaminopimelate aminotransferase). 

Then, there is a small gene cluster consisting of bepF (efflux pump periplasmic linker 

BepF), group_5443 (adaptive-response sensory-kinase SasA), phoP_3, (alkaline 

phosphatase synthesis transcriptional regulatory protein PhoP), and group_5445 

(hypothetical protein) and another small gene collection consisting of parA_2 (plasmid 

partition protein A), yedK_1 (SOS response-associated protein YedK), ppaC (putative 

manganese-dependent inorganic pyrophosphatase). Another small cluster with crcB_2 
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(putative fluoride ion transporter CrcB) and two hypothetical proteins. Finally, they share 

a moderate gene cluster of 10 hypothetical genes  and the annotated genes of:  virB_2 

(virulence regulon transcriptional activator VirB), uspA_2 (universal stress protein A), 

galE_2 (UDP-glucose 4-epimerase), ybjJ_2 (inner membrane protein YbjJ), nudK_3 

(GDP-mannose pyrophosphatase NudK), group_5271 (phosphorylated carbohydrates 

phosphatase), mtnP (S-methyl-5'-thioadenosine phosphorylase), gph_2 

(phosphoglycolate phosphatase), arnB_2 (UDP-4-amino-4-deoxy-L-arabinose--

oxoglutarate aminotransferase), arnB_3  (UDP-4-amino-4-deoxy-L-arabinose—

oxoglutarate aminotransferase), perA (GDP-perosamine synthase), iolG_5 (inositol 2-

dehydrogenase/D-chiro-inositol 3-dehydrogenase). Of these 60 genes, none of them are 

associated with the A. porrum disease phenotype and 58 genes are associated with the 

A. fistulosum x A. cepa disease phenotype. The two genes that are not associated with 

the A. fistulosum x A. cepa disease phenotype are annotated as hypothetical genes. Of 

these 60 genes, only one appears in the gene pair dissociation component 30 as the 

hypothetical gene “tar” dissociating with group_397 (Supplementary table 1.2).  

Apparent gene clusters shared by the A. porrum pathogenic PNA 15-3 and PANS 

99-14 are described in the following paragraph. The first moderate gene cluster has 7 

hypothetical genes and caf1M (chaperone protein Caf1M). The second gene cluster is 

composed of 7 hypothetical genes as well as amiD_3 (N-acetylmuramoyl-L-alanine 

amidase AmiD), yraI_2 (putative fimbrial chaperone YraI), htrE_2 (outer membrane 

usher protein HtrE), fimC (chaperone protein FimC). For the third gene cluster, only half 

is actually shared between the two strains, with 99-14 taking oatA_1 (O-acetyltransferase 

OatA), group_5288 (hypothetical protein), group_5289 (virulence regulon transcriptional 
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activator VirB) and group_5290 (hypothetical protein), with the remaining genes 

group_5494 (hypothetical protein), group_5495 (HTH-type transcriptional regulator 

PgrR), group_5496 (hypothetical protein), iolS_2 (aldo-keto reductase IolS), and ywrO_2 

(general stress protein 14) shared between the two strains. The following cluster is a 

completely hypothetical cluster of 7 genes, followed by a cluster of three genes and 

group_7087 (replicative DNA helicase). Of these 39 genes, none appeared in the A. 

porrum GWAS output whereas 28 genes did appear in the A. fistulosum x A. cepa GWAS 

output. Furthermore, of these genes, none appeared in any gene-pair dissociation output. 

However, 19 of these genes appeared in the gene-pair coincidence output within 

components 9 (N =1), 11 (N = 5), 31 (N = 3), 37 (N = 2), 38 (N = 3), and 39 (N = 4) 

(Supplementary table 1.2).  

The HiVir gene cluster found in the RSN-positive, A fistulosum x A. cepa 

pathogenic strains PNA 07-10, PNA 07-1, and PNA 05-1 contained no single nucleotide 

polymorphism (SNP) compared to that of the RSN-positive, wild type P. ananatis PNA 

97-1 (Figure 7). However, three unique SNPs that resulted in missense mutations were 

identified in the RSN-negative, A. porrum pathogenic strain PANS 99-14. These 

mutations included alanine (A) to valine (V) change in amino acid position 7 in hvrA 

(pepM) gene, glutamine (Q) to lysine (K) change in amino acid position 352 in hvrB gene 

and, lysine (K) to arginine (R) change in amino acid position 11 in hvrH gene. These 

variant SNPs could be associated with disruption of the Pantaphos pathway and loss of 

necrosis-associated phenotypes (Figure 1.7). 

 

 



   
 

51 
 

Description of a “pgb” gene cluster in P. ananatis  

Comparative genome analysis focusing on only strains that are pathogenic on A. porrum, 

but non-pathogenic on A. fistulosum x A. cepa (PNA 15-3, PANS 99-14) vs. strains (PANS 

99-11, PANS 99-12, PNA 06-4, PNA 99-9) that are pathogenic and highly aggressive on 

both hosts identified another pepM gene, which appeared to be a member of a secondary 

phosphonate biosynthetic cluster (Table 1.4). In 8/92 of P. ananatis strains (PANS 02-12, 

PANS 99-31, PANS 200-2, PANS 2-5, PANS 2-7, PANS 2-8, PANS 99-11, PANS 99-12) 

there was a putative phosphonate biosynthetic cluster with 14 genes and a total length of 

approximately 19,000 bp (Table 1.2 and Figure 1.8). This cluster shows high sequence 

similarity to the pgb-cluster mentioned in Polidore et al. (2021), which was not responsible 

for generating onion-bulb rot symptoms. In our annotations, the left-flank of the cluster 

begins with a prophage integrase intS and is followed by the pepM phosphoenolpyruvate 

mutase (5’ to 3’ 900bp long). The following cpdA is a 3',5'-cyclic adenosine 

monophosphate phosphodiesterase cpdA (3’ to 5’ 771bp). The third component of the 

cluster is fabG encoding 3-oxoacyl-[acyl-carrier-protein] reductase FabG3 (765 bp 3’ to 

5’). The fourth gene is a phosphonopyruvate decarboxylase, aepY (1176bp, 3’ to 5’). The 

fifth gene of the cluster is phnW encoding for 2-aminoethylphosphonate-pyruvate 

transaminase (1095, 5’ to 3’). The sixth component is asnB1 encoding putative 

asparagine synthetase [glutamine-hydrolyzing] (1,758bp, 3’ to 5’). Following asnB2 is 

spsI1, encoding for Bifunctional IPC transferase and DIPP synthase (771 bp 5’ to 3’). The 

gene asd1 follows spsl1 that encodes aspartate-semialdehyde dehydrogenase (1056 bp 

5’ to 3’). The ninth component of the cluster is the MFS 1 transporter (1227bp, 5’ to 3’). 

The tenth component is glyA1, a serine hydroxymethyltransferase (1359bp, 5’ to 3’). The 
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CDP-alcohol phosphatidyltransferase is the eleventh gene (600bp 5’ to 3’). The twelfth 

gene is spsI2, a glucose-1-phosphate adenylyl/thymidylyltransferase Bifunctional IPC 

transferase and DIPP synthase (720bp, 5’ to 3’). The thirteenth gene is aspC1, aspartate 

aminotransferase (1173 bp, 5’ to 3’). The fourteenth gene is UDP-2,3-diacylglucosamine 

diphosphatase (762bp, 3’ to 5’). Following the UDP-2,3-diacylglucosamine diphosphatase 

is another transposase. An interesting observation of this phosphonate cluster is the 

inclusion of phosphonopyruvate decarboxylase directly within the set of genes. This 

characteristic is unique when comparing it to the HiVir. The phosphonopyruvate 

decarboxylase has been described to play a critical role in the generation of 

phosphonates via the stabilization of the PEP mutase reaction (Supplementary table 1.3) 

(Kirzinger, Butz and Stavrinides. 2015).  

Presence and absence of alt, HiVir, pgb, gene clusters  

Of the 92 tested strains, thirty-five do not contain a complete alt gene cluster while the 

remaining fifty-seven do possess the entire gene cluster. Of the 92 tested strains, twenty-

two lacked a complete HiVir cluster and the remaining seventy-strains possessed the 

entire gene cluster. Forty-five strains that produced foliar lesions had both alt and HiVir 

clusters, whereas 20 strains had only the HiVir gene cluster. Three strains only had alt 

whereas seven strains lacked both gene clusters. Some foliar lesions were formed by the 

seven strains (PANS 99-22, PANS 99-26, PANS 200-1, PANS 99-36, PNA 98-3, PNA 

11-1, and PNA 15-3) that lacked both clusters, however the lesions varied in size and 

consistency between replicates. The strains that lacked both gene clusters were also 

RSN-negative. Six out of seven strains showed some degree of foliar lesions on A. cepa 

x A. fistulosum; however, PNA 15-3 showed moderately aggressive lesion length on A. 
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porrum but did not produce any foliar lesion on A. cepa x A. fistulosum. Of the 92 tested 

strains, only 8 strains contained the pgb cluster, while 84 strains lacked it (Figure 1.8). 

Comparison of phosphonate biosynthetic clusters, pgb vs. HiVir in P. ananatis 

When comparing the pgb cluster against the HiVir cluster, only the annotated pepM and 

MFS transporter are found to be common features (Table 1.4). In both clusters, the 

phosphoenolpyruvate mutase occurs first, with the MFS transporter being at the center 

of the cluster (5’ to 3’: 9th gene in pgb and 5’ to 3’: 9th in HiVir). There are no other shared 

annotated genes between the clusters. However, sequence alignment using Clustal 

Omega revealed 48.3% similarity between pepM from HiVir and pgb cluster. Similarly, 

the MFS transporters from HiVir and pgb clusters displayed 47.6% sequence similarity.  

Role of pepM gene in the pgb biosynthetic cluster 

Based on the RSN assay, wild-type strain (PANS 02-18) and the single pepM mutant 

strain in the pgb cluster (ΔpepMpgb) produced considerably large necrotic areas on red-

onion scale compared to the single pepM mutant strain in the HiVir cluster (ΔpepMHiVir) 

(Figure 1.9 A). Based on the seedling pathogenicity assay, the single pepM mutant strain 

in the HiVir cluster (ΔpepMHiVir) had significantly lower necrotic lesion length on both 

Allium hosts compared to the wild-type strain (PANS 02-18) and the single pepM mutant 

strain in the pgb cluster (ΔpepMpgb) (Figure 1.9 B and C). In both hosts, the deletion of 

pepM gene in the pgb cluster did not significantly affect the foliar lesion length compared 

to the wild-type strain (Figure 1.9 D and E). While the double mutant strain where pepM 

genes were deleted in both the HiVir and the pgb clusters (ΔpepMHiVirΔpepMpgb) appears 

to have a higher average lesion length than that of the single mutant strain (ΔpepMHiVir) 

on A. porrum (Figure 1.9 B and D). In A. fistulosum × A. cepa, the lesion lengths did not 
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differ significantly between the double mutant strain and the single mutant strain 

(ΔpepMHiVir).  

Discussion 

Pathogenicity and aggressiveness of P. ananatis phenotyping on A. porrum and A. 

fistulosum  

Phenotyping of 92 P. ananatis strains displayed variability in the level of aggressiveness 

in both Allium spp. A considerably higher percentage of strains were either non-

pathogenic or less aggressive on A. porrum (82.6%) than on A. fistulosum x A. cepa 

(65.1%). Also, a considerable percentage of strains were moderately or highly aggressive 

on A. fistulosum x A. cepa (34.9%) compared to A. porrum (17.4%). Interestingly, when 

a subset of less-aggressive strains (on both Allium spp.) was previously assayed on onion 

seedlings they were moderately-to-highly aggressive on onion (Stice et al., 2018. Agarwal 

et al., 2021). These observations potentially indicate that both A. porrum and A. fistulosum 

x A. cepa are inherently less susceptible to P. ananatis compared with the typical bulb 

onion. Also, when A. porrum and A. fistulosum x A. cepa were compared to each other, 

the former tends to show less severe symptoms compared to the later. However, we 

acknowledge that only one cultivar of each Allium spp. was evaluated, and it is possible 

that other cultivars or varieties of these hosts might show a range of susceptibility to P. 

ananatis. One aspect of these observations might be in part explained by the genetic 

nature of the A. fistulosum x A. cepa. cv. Guardsman itself.  Due to being a hybrid between 

bunching onions and the typical bulb onion, it may be reasonable to expect A. fistulosum 

x A. cepa to be more susceptible to P. ananatis strains that were collected from 

symptomatic A. cepa tissues. However, without deeper genetic investigation of this hybrid 
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we cannot predict for certain if any susceptibility-related genes or phenotypes were 

inherited. The P. ananatis culture collection used in this study also favors areas where 

onions are grown such as the Vidalia region and Tift County, which may provide a bias 

for aggressive P. ananatis strains on cultivars that are hybridized with A. cepa. Despite 

this, we recovered some strains that were more aggressive on A. porrum than A. 

fistulosum x A. cepa. Examples of these are PANS 99-11, PANS 99-12, and PNA 06-4 

(Table 1.1). 

HiVir gene cluster, previously identified as critical for red onion scale necrosis and 

A. cepa pathogenicity, is also important for foliar pathogenicity in A. porrum, A. 

fistulosum x A. cepa 

 Of the tested strains 56 showed a positive reaction to the RSN assay, while 36 did not.  

Most of the strains that were pathogenic on A. fistulosum × A. cepa were also able to 

cause necrosis on red onion scale. Based on the previous reports, HiVir is important for 

RSN-positive phenotype and foliar necrosis in onion and it is likely that foliar lesions on 

A. fistulosum × A. cepa is also governed by the same gene cluster. Similarly, in A. porrum, 

a trend between RSN-positive phenotype and foliar pathogenicity was observed with 

majority of the strains. Further mutational analysis also indicated that HiVir is important 

for foliar pathogenicity on both A. fistulosum × A. cepa and A. porrum. However, we 

identified several strains that did not follow this trend. For example, while having a 

complete HiVir cluster and being RSN-positive, the PANS 19-8, and PANS 19-10 strains 

were unable to inflict foliar lesions on A. porrum or A. fistulosum x A. cepa. This indicates 

that either mutation in their nucleotides/SNPs or other/alternative pathogenicity factors 

might be involved with this group of strains. Consistent with prior observations by Polidore 
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et al. [13], we also observed that the pgb cluster is not important for foliar pathogenicity 

in these Allium spp. The PANS 02-18 ΔpepMpgb and wild-type strains displayed similar 

foliar pathogenicity in A. porrum or A. fistulosum x A. cepa.  

Pan-Genome of P. ananatis 

In this study, we generated a pan-genome of 92 P. ananatis strains where we identified 

a conserved core genome of 2,914 genes, with a larger accessory genome of 9,196 

genes. Earlier pan-genome reports identified similar values of core genes, with varying 

numbers of P. ananatis strains used for the analysis (Stice et al., 2018. De Maayer et al., 

2014.  Agarwal et al., 2021. Sheibani-Tezerji et al., 2015). In this work, however, we have 

a larger set of accessory genes compared to previously observed pan-genome study by 

Agarwal et al., (2021). The authors observed 6,808 cloud genes compared to 9,196 cloud 

genes in our current study. This discrepancy is likely due to use of larger number of 

diverse strains in this study compared to Agarwal et al. (2021) and is a reasonable 

increase for an open pangenome (Costa et al., 2020). Due to the cosmopolitan nature of 

P. ananatis and the extensive host range, it is entirely plausible that the bacterium would 

have a sizable pangenome when comparing populations from diverse hosts (De Maayer 

et al., 2014). It may be prudent to utilize a larger collection of strains from non-Allium 

hosts for further pan-genomic assessment, where accessory genes may discriminate 

strains for sub-species delineation. Comparisons of these resulting sub-species may 

likely be more informative for the detection of novel virulence factors. In addition, it is also 

likely that there may be multiple copies of similar annotated genes (PPC, PPC_1) 

(Supplementary table 1.4), which may artificially inflate the true nature of the pangenome. 

Even if the pangenome was artificially inflated, the GWAS results found significant 
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association of genes that are known virulence factors (such as the HiVir cluster), as well 

as putative virulence factors that were found previously to be associated with foliar 

pathogenicity in A. cepa (Agarwal et al., 2021).  

We identified 244 genes that were significantly associated (naïve) with foliar 

pathogenicity in A. porrum whereas 836 total genes were associated with foliar 

pathogenicity in A. fistulosum x A. cepa, with 77 genes displaying significance agreement 

between naïve, Bonferroni, and BHC corrections. Among the genes associated for two 

hosts, 123 genes were shared. For both hosts, the HiVir cluster was found within the top-

100 significantly associated genes. The occurrence of this cluster grants some additional 

credibility to other genes that show stronger significance with phenotypic association. 

However, most of the genes that occurred in the GWAS output apart from the HiVir cluster 

are annotated as hypothetical and would require further characterization to determine 

their relevance. In addition to this, among these 123 genes, 48 of the top 50 strongly 

statistically significant genes associated with the pathogenic phenotype in A. fistulosum 

x A. cepa are also found to be associated with the pathogenic phenotype in A. porrum. 

While this alone is not enough to declare relevancy, it lends some credibility that these 

hypothetical genes may be useful as general virulence factors for the Alliums spp. and 

should undergo downstream mutational analysis to assess their functions.  

Some of the genes with non-hypothetical annotations that were shared between 

the A. fistulosum x A. cepa and A. porrum include the entire HiVir gene cluster (some 

listed as hypothetical), pemK_2 (mRNA interferase), soj (sporulation initiation inhibitor 

protein), parM (Plasmid segregation protein), umuD (UmuD, translesion DNA polymerase 

subunit), tibC  (glycosyltransferase), ycaD (uncharacterized MFS transporter), dadA (D-
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amino acid dehydrogenase 1),  frbC (2-phosphonomethylmalate synthase), amiD (N-

acetylmuramoyl-L-alanine amidase), and rfbB (dTDP-glucose 4,6-dehydratase). Upon 

manual investigation of the local pemK_2 region there seems to be a repeating pattern of 

seven genes, three flanking to the left, and four on the right. Utilizing BLAST for these 

gene sequences against the total gene sequences available for our P. ananatis strains 

shows that the pemK_2 region appears frequently throughout the entirety of the 

pangenome (Supplementary table 1.5). The pemK gene is a known factor in 

toxin/antitoxin systems that are vital for bacterial competition and function (Poluktova et 

al., 2017. Lee, Rogers and Stenger, 2012. Klimina, et al., 2013). Unfortunately, there is 

little information within the literature pertaining to the potential diversity and utility of P. 

ananatis’ toxin/antitoxin systems, including pemK. Without functional analysis, it is not 

possible to determine whether it is an Allium-specific virulence factor as opposed to a 

coincidental gene cluster, or if the annotation provided is correct. We also found an 

antitoxin gene, higB that was associated with A. fistulosum x A. cepa pathogenicity. 

Despite the lack of information, the region may be a valuable target for a toxin/antitoxin 

system within our P. ananatis strains from Georgia. Another annotated gene of interest 

includes tibA, an adhesin/invasion autotransporter. The sporulation initiation inhibitor 

protein, soj, is noted as having a “centromere-like function involved in forespore 

chromosome partitioning inhibition of Spo0A activation” in Bacillus subtilis (Kunst et al. 

1997). Pantoea ananatis is not a spore forming bacteria, however the gene’s inclusion 

with other genes that are similarly annotated for DNA manipulation and management may 

indicate that there is a requirement for maintaining genetic stability. The genes that 

constitute the alt thiosulfinate tolerance alt cluster, only appeared on the A. fistulosum x 
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A. cepa GWAS output with their old annotations of xerC (tyrosine recombinase XerC), 

altA/nemA (N-ethylmaleimide reductase), gor (glutathione reductase), altJ/osmC 

(peroxiredoxin OsmC), and altD/trxA (thioredoxin). Non-alt members of the OVRA region 

include rbsC (ribose import permease protein RbsC), rbsB (ribose import binding protein), 

rbsA (ribose import ATP-binding). 

Overall, GWAS was able to determine genes associated with foliar necrosis in A. 

fistulosum x A. cepa and A. porrum hosts. Follow-up experiments will test the validity of 

these hypothetical and annotated gene clusters for their relevance in pathogenicity and 

virulence in A. fistulosum x A. cepa and A. porrum hosts.  

Comparative genomics of strains pathogenic on A. porrum but non-pathogenic on 

A. fistulosum x A. cepa against strains that are pathogenic on A. fistulosum x A. 

cepa but non-pathogenic on A. porrum 

By comparing strains that were pathogenic on only A. fistulosum x A. cepa or A. porrum 

we hoped to significantly reduce the background noise (non-relevant genes from 

accessory) that may potentially result from the extensive P. ananatis pan-genome. Here 

we found several genes that belonged to strains that were only pathogenic to one host or 

the other, as well as a few interesting gene clusters.  

One of the gene clusters of interest appears to be saturated with genes that were 

annotated to have some role for a type III secretion system. When using NCBI’s 

nucleotide blast against the nr and whole genome sequence database, there were several 

other P. ananatis strains that shared a high consensus to the sequence (N = 11; in NCBI). 

Most of the strains in NCBI with an annotated type III secretion-system were isolated in 

GA (N = 7; in NCBI) with two strains from onions and five strains from weeds. The 
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remaining four strains with potential type III secretion-system were not isolated from GA. 

Further work is required to assess if the annotations are correct and investigate their role 

in onion pathogenicity.  

Among the clusters shared by the A. fistulosum x A. cepa pathogenic strains PNA 

07-10, PNA 07-1, and PNA 05-1, we found the alt cluster, two larger gene clusters (N=12 

genes, N=22 genes), and two small gene clusters (N=7 genes, N=3 genes). Of the total 

60 shared genes, none of them are on the A. porrum GWAS output, and 58 appeared on 

the A. fistulosum x A. cepa GWAS output. Only one gene appears in the gene pair 

dissociation component 30 as the hypothetical gene tar that dissociates with group_397 

(Supplementary file 1.4).  Among the clusters shared by the A. porrum pathogenic PNA 

15-3 and PANS 99-14 there are three gene clusters with 7, 8, and 11 genes, a small gene 

cluster (N=4 genes) and a third cluster that is only partially shared between the two strains 

(N=9 genes). Of these 39 genes, 28 were identified through GWAS as associated with 

the disease phenotype for A. fistulosum x A. cepa, but not associated with the disease 

phenotype for A. porrum (Supplementary table 1.2). None of these genes appeared in the 

gene-pair dissociation output. However, 19 of these genes were found within components 

9 (N =1), 11 (N = 5), 31 (N = 3 genes), 37 (N = 2 genes), 38 (N = 3 genes), and 39 (N = 

4 genes) in the gene-pair association analysis (Supplementary table 2).   

While the inclusion of the alt cluster in the A. fistulosum x A. cepa strains PNA 07-

10, PNA 07-1, and PNA 05-1 is unsurprising, as they were isolated from symptomatic 

onions, its absence from PNA 15-3 is unexpected. The strain PNA 15-3 was isolated from 

symptomatic onion bulbs, and we would expect the presence of alt cluster as it aids in 

colonization of the bulb (Stice et al., 2020). The strain PANS 99-14 was isolated from an 
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asymptomatic Digitaria spp. and may not need to rely on an alt cluster to survive in this 

environment. Despite this, both strains were able to generate a lesion on the A. porrum 

foliar tissue, and both strains failed to produce a positive result for red-onion scale 

necrosis assay. These results indicate that some of the shared genes between these 

strains may enable an increased fitness for the A. porrum foliar environment that is not 

present in the A. cepa bulb tissue, or the A. fiustulosum x A. cepa foliar tissue.  The large 

percentage of these shared genes (19/39) occur on the gene-pair association output, 

seems to suggest that these genes occur together at a higher frequency than others. 

Much like how the alt cluster provides protection to P. ananatis in the thiosulfinate-rich in 

bulb, it is possible that some of these clusters provide protection to bacteria in the diverse 

Allium foliar environments.   

We also aligned the HiVir gene clusters of A. fistulosum x A. cepa pathogenic (PNA 

05-1, PNA 07-1 and PNA 07-10) and A. porrum pathogenic strains (PNA 15-3, and PANS 

99-14) against each other and against the wild type P. ananatis strain PNA 97-1. No 

single nucleotide polymorphism (SNP) leading to missense mutation was identified in the 

RSN positive, A. fistulosum x A. cepa pathogenic PNA 05-1, PNA 07-1 and PNA 07-10 

strains. However, several missense mutations were present in the hvrA, hvrB and hvrH 

genes of the RSN negative, A. porrum pathogenic PANS 99-14 strain. These mutations 

were found only in PANS 99-14 hvr genes and not in the hvr genes of the RSN positive 

PNA 97-1. According to Polidore et al. (2021) hvrA and hvrB genes encode enzymes that 

are essential for the proposed phosphonate-toxin ‘Pantaphos’ biosynthesis pathway. It is 

thus possible that the production of phosphonate toxin is compromised by these 

mutations. However, functional analysis needs to be conducted to confirm the impact of 
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these mutations. In the case of RSN negative PNA 15-3, the strain lacks HiVir cluster but 

was still able to cause foliar lesions on A. porrum. It is possible that the pathogenicity of 

A. porrum in RSN negative PNA 15-3, and PANS 99-14 strains may be mediated by the 

genes other than of the HiVir cluster.  

Gene-Pair Coincidence 

In this work, we utilized gene-pair coincidence as a supporting methodology to predict 

genes in P. ananatis that are relevant for pathogenicity. Hypothetically, genes that are 

important for survival in pathogenic bacteria should associate throughout a pangenome 

as their co-occurrence is beneficial for survival. Likewise, gene combinations that 

compromise survival in specific environments should dissociate with each other as natural 

selection selects against non-optimized populations. Likewise, as bacteria have limited 

genomes this extends to redundant genes. In this work, we hypothesized that the 

utilization of gene-pair coincidence should provide a phenotype-independent method of 

validation for the predicted genes from the pangenome via the phenotype-dependent 

GWAS methodology.  

Our gene-pair association analysis generated 39 networks with a total of 165 

individual genes, where 2 common genes associated with the disease phenotype for A. 

porrum and 45 common genes associating with the disease phenotype for A. fistulosum 

x A. cepa. In gene networks with genes that associated with the disease phenotype 

(networks: 1, 3, 5, 11, 15, 16, 22, 24, 31, 32), the entire component is found on the GWAS 

result, indicating that these pathogenicity-associating genes are evolutionarily associating 

with each other in our pangenome. Of these associative gene pair networks, none of the 

genes are associated with the disease phenotype for both hosts, only one or the other. 
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Component 24 is unique in that only genes that with the disease phenotype for A. porrum 

were present. It is possible that these genes provide a unique advantage to overcome A. 

porrum host resistance. Unfortunately, both genes are annotated as hypothetical. The 

genes found in components 1, 3, 5, 11, 15, 16, 22, 24, 31, and 32 may be more useful 

survival in the A. fistulosum x A. cepa as opposed to being general virulence factors. 

Gene-pair association has provided support for further investigation of several potential 

gene groups that would have been harder to distinguish utilizing GWAS alone.  

Surprisingly, neither the HiVir gene cluster nor the alt cluster appear on the associative 

network. We would assume that they should co-occur as they have been shown to be 

relevant in A. cepa pathogenicity and are quite prevalent in this pangenome. It may be 

due to the small number of samples used in this study compared to number of 

strains/genomes needed to close the pan-genome. Another explanation may be due to 

how ROARY/Coinfinder organize gene information and these known virulence factors 

were omitted from pairwise analysis due to a lack of orthologous gene families.  To 

determine if the issue was caused by noise due to genes not present in gene clusters, we 

conducted the analysis after removing single genes from the ROARY csv file. However, 

this only strengthened resulting p-values, but not the overall result. As such a larger 

sample size of strains with a more comprehensive accessory genome could be included 

to better support GPC and GWAS results. 

Our gene-pair dissociation analysis generated 50 gene-pair networks with a total 

of 255 genes, where there are three genes associating with the pathogenic phenotype for 

A. porrum and 22 associating with the disease phenotype for A. fistulosum x A. cepa. 

Here, dissociation is dominated by networks where only a fraction of the dissociating 
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genes also associates with the disease phenotype for either host. Dissociation networks 

10, 17, 23, and 35 contain genes that associate with the pathogenic phenotype for A. 

fistulosum x A. cepa that dissociate with genes that do not associate with the disease 

phenotype for A. fistulosum x A. cepa. Dissociation network 37 is particularly interesting 

in that it shows dissociation between one hypothetical gene that associates with the 

pathogenic phenotype for A. porrum, and two genes that associate with the disease 

phenotype for A. fistulosum x A. cepa. Whether these hypothetical genes have 

antagonistic function with each other is unknown; however, it is worth investigating to 

understand their roles and mechanisms in host-pathogen-environment interactions. 

Dissociation network 21 is the only network where 2 genes that associate with the 

pathogenic phenotype in A. fistulosum x A. cepa dissociate with two genes that do not 

associate with the disease phenotype for either host. These results are expected as 

genes that associate with the foliar pathogenic phenotype should dissociate with genes 

that do not associate with the same phenotype. Here we do not find HiVir or alt 

dissociating with other genes, indicating that these clusters do not have a competitive 

interaction that may result in a loss of fitness within our pangenome.  

Again, these observations provide some level of confidence that the genes being 

predicted in the GWAS output are playing a role that enable them to be associated with 

the foliar pathogenicity phenotype on both Allium hosts. The diversity of GPC and their 

occurrence on the phenotype-dependent analysis enforce the assumption made 

previously that there could be several mechanisms of causing symptoms in Allium 

species other than phosphonate-based toxins.  
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Figure 1.1: Visual representation of spectrum of foliar symptoms caused by P. ananatis 

inoculation on Allium porrum (cv. King Richard) and A. fistulosum x A. cepa (cv. 

Guardsman) as well as source of isolation and results the red-onion scale necrosis (RSN) 

assay. 1A shows examples of foliar lesion severity and strain aggressiveness on A. 

fistulosum x A. cepa. The panels 1A (i-iv) indicate symptoms associated with increasing 

level of aggressiveness. 1B shows examples of foliar lesion severity and strain 

aggressiveness on A. porrum. The panels 1B (i-iv) indicate symptoms associated with 

increasing level of aggressiveness. 1C is the breakdown of the source of isolation of 

strains, where A. cepa (onions) contributes majority of the strains (59.1%) and strains 

from non-onion sources comprise of 40.9% (Richardia scabra: 8.6%, Digitaria spp. : 6.5%,  

Verbena bonariensis: 4.3%, Thrips: 12.9%, and other sources: 8.6%).  1D displays the 

percentage of strains that can cause red-onion scale necrosis (61.3%) and those that 

could not (38.7%). Panels 1E and 1F visualize the breakdown of strains that are either 

highly- or moderately- or less-aggressive or non-pathogenic on both hosts. 
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Figure 1.2: A heatmap of average nucleotide identity (ANI) comparisons between every 

Pantoea ananatis strain used in this study.  

The smallest ANI comparison was between PNA 18-6S and PANS 19-17 with an ANI 

score of 96.25.  

The highest ANI comparison non-self strain comparison was between PNA 99-6 and PNA 

99-7 with a score of 99.41. 
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Figure 1.3:  Pan-genome analysis of 92 Pantoea ananatis genomes. 

(A) Pie chart representation of pan-genome composition of P. ananatis. The core genome 

consists of 2914 genes, the soft core 687 genes, the shell 1833 genes, and the cloud 

9,196 genes for a total of 14,630 genes; (B) distribution of gene (cluster) sizes as a 

function of the number of genomes they contain displaying the partition of pan-genomic 

matrix into shell, cloud, soft-core and core compartments using ROARY outputs; and (C) 

pan-genome gene presence and absence matrix for 92 P. ananatis genomes and 

associated phylogeny. 
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Figure 1.4: Phylogenetic tree based on core single nucleotide polymorphism (SNP) 

variants of genes among the Pantoea ananatis strains. Strains color coded in green are 

non-pathogenic on Allium porrum (cv. King Richard) and A. fistulosum x A. cepa (cv. 
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Guardsman); strains that are color-coded in purple are pathogenic on both hosts; blue 

coded strains are pathogenic on A. porrum only; and pink coded strains are pathogenic 

on A. fistulosum x A. cepa only. Bootstrap values are shown on each branch after 

10,000 iterations. 
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Figure 1.5: Coinfinder derived association of gene pairs from Pantoea ananatis 

genomes (N = 92) displaying various networks (A). Gene-pair association networks for 

components 31 (B) and 11 (C) are extracted due to their association with foliar 

pathogenicity for A. fistulosum x. A. cepa. Gephi was used to apply the Fruchtermann 

Reingold layout to the network (https://gephi.org/). 
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Figure 1.6: Coinfinder derived dissociation of gene pairs from Pantoea ananatis 

genomes (N = 92) displaying various networks (A). Gene-pair dissociation networks for 

components 23 (B) and 37 (C) are extracted due to their with foliar pathogenicity for A. 

fistulosum x. A. cepa (green star) or association with foliar pathogenicity for A. porrum 

(blue star). Gephi was used to apply the Fruchtermann Reingold layout to the network 

(https://gephi.org/).For all node labels, “group_” was replaced by “HP_” (hypothetical 

protein) for legibility. 
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Figure 1.7: Graphical representation of the HiVir cluster with single nucleotide 

polymorphisms (SNPs) determined via direct comparison with the PNA 97-1 "wildtype." 

Unique missense SNPs are coded with a pink pin. A short table below shows SNP 

comparisons between the the A. fistulosum x A. cepa pathogenic strains (PNA 07-10, 

PNA 07-1 and PNA 05-1) against the A. porrum pathogenic strains (PNA 15-3 and 

PANS 99-14).   
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Figure 1.8: Presence and absence of the Alt (left), HiVir (middle), and the pgb cluster 

(right) genes within the genome of Pantoea ananatis based on their foliar pathogenicity 

on Allium porrum (cv. King Richard) and A. fistulosum x A. cepa (cv. Guardsman). 

Green and red represent presence and absence of gene, respectively for each gene 

cluster evaluated. The foliar pathogenicity phenotype and associated aggressiveness is 

represented as "++" if the strain is pathogenic on both hosts, "L+" if pathogenic only on 

A. porrum, "O+" if pathogenic only on A. cepa x A. fistulosum, and "-" if pathogenic on 

neither host. 
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Figure 1.9: Role of HiVir and pgb biosynthetic clusters in foliar pathogenicity on Allium 

species. (A) Red scale necrosis phenotype observed with the wild-type and mutant strains 

of P. ananatis. (B) Foliar pathogenicity assay on leek (Allium porrum cv. King Richard) 

seedlings with the wild-type and mutant strains of P. ananatis; and  (C) Foliar 

pathogenicity assay on Japanese bunching onion (A. fistulosum x A. cepa cv. 

Guardsman) seedlings with the wild-type and mutant strains of P. ananatis. Green and 

red circles indicate red scale necrosis and foliar necrosis, respectively. Panel D and E 

display the results of the mean lesion length with standard error in A. porrum and A. 

fistulosum x A. cepa upon inoculation with the wild-type and mutant strains of P. ananatis. 

The strains utilized in the experiments mentioned above include; positive control strain 

PNA 97-1, positive control PANS 99-11 (a known aggressive strain on leek), PANS 02-

18ΔpepMHiVir,  
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PANS 02-18ΔpepMpgb, and PANS 02-18ΔpepMΔpepMpgb. Seedlings and red-scale 

inoculated with sterile water comprised negative controls. Data presented here is the 

mean of two independent experiments. Letters on the bars indicate mean separation with 

LSD P<0.05. 

 

 



   
 

86 
 

Table 1.1: Pantoea ananatis strains, their source of isolation, and their associated 

Strain Source Location (county, state)  Leek (Allium porrum cv. King Richard)
a

Bunching onion (A. fistulosum cv. Guardsman)
b
Red onion scale assay

c

PNA_15_3
d

Onion Tattnall Co. GA ++* - -

PANS_99_14
d

Digitaria spp. Tift Co. GA + - -

PANS_99_11
e

Digitaria spp. Tift Co. GA +++ ++ +

PANS_99_12
e

Digitaria spp. Tift Co. GA +++* + +

PNA_06_4
e

Onion Wayne Co. GA +++ ++ +

PNA_97_1
e

Onion Tift Co. GA +++* ++ +

PNA_99_9
e

Onion seedlings Tattnall Co. GA ++ +++ +

PNA_99_7
e

Onion leaf Tattnall Co. GA + +++ +

PNA_99_2
e

Onion leaf Tattnall Co. GA + +++ +

PNA_99_14
e

Onion seedlings Toombs Co. GA +* +++ +

PNA_98_1
e

Onion Tattnall Co. GA + +++ +

PNA_97_11
e

Onion Toombs Co. GA + +++* +

PANS_02_7
e

Thrips from peanut blossoms Tift Co. GA + +++ +

PANS_02_6
e

Thrips from peanut blossoms Tift Co. GA +* +++ +

PNA_99_3
e

Onion seedlings Tift Co. GA + +++ +

PNA_07_10
f

Onion Toombs Co. GA - + +

PNA_07_1
f

Onion Tattnall Co. GA - + +

PNA_05_1
f

Onion Vidalia Region, GA - + +

PNA_03_2
f

Onion Tift Co. GA - +* -

PNA_03_1
f

Onion Tift Co. GA - + +

PNA_02_12
f

Onion Tift Co. GA - +* +

PANS_99_36
f

Richardia scabra L. Terrell Co. GA - +* -

PANS_99_31
f

Urochloa texana Tattnal Co. GA -* +* +

PANS_99_29
f

Digitaria spp. Tift Co. GA -* + +

PANS_99_27
f

Desmodium tortuosum Vidalia Region, GA - + +

PANS_99_25
f

Acanthospermum hispidum Vidalia Region, GA - +* +

PANS_200_1
f

Slender amaranth Reidsville, GA - +* -

PNA_18_8S
f

Onion Vidalia Region, GA - + -

PNA_18_7S
f

Onion Vidalia Region, GA - + +

PNA_97_3
f

Onion Toombs Co. GA - + +

PNA_98_7
f

Onion Tift Co. GA - + -

PNA_98_3
f

Onion Dougherty, GA -* + -

PNA_11_1
f

Onion Vidalia Region, GA - +* -

PNA_08_1
f

Onion Tattnall Co. GA -* ++ +

PNA_07_14
f

Onion Toombs Co. GA - +* -

PANS_02_1
f

Adult tobacco thrips from peanut Tift Co. GA - +* -

PANS_01_2
f

Thrips from Onion leaf Tift Co. GA - +* +

PANS_19_2
f

Digitaria spp. Tift Co. GA - + +

PANS_19_6
f

Richardia scabra L. Tift Co. GA - + +

PANS_19_17
f

Richardia scabra L. Tift Co. GA - +* -

PNA_18_2
g

Onion Vidalia Region, GA ++ + +

PNA_15_1
g

Onion Tattnall Co. GA ++ + +

PANS_200_2
g

Portulaca spp. Reidsville, GA ++* +* +

PANS_01_6
g

Adult tobacco thrips Tift Co. GA ++ + +

PANS_01_5
g

Adult tobacco thrips Tift Co. GA ++* +* +

PANS_19_12
g

Verbena bonariensis Tift Co. GA ++* + -

PANS_19_13
g

Verbena bonariensis Tift Co. GA ++ +* -

PANS_02_5
g

Thrips from peanut blossoms Tift Co. GA ++ ++ +

PNA_97_2 NA NA +* + -

PNA_99_8 Onion leaf Wheeler Co. GA +* ++ +

PNA_99_6 Onion leaf Toombs Co. GA + ++ +

PNA_99_1 Onion MT Vernon, GA + ++ +

PNA_98_8 Onion Vidalia Region GA + ++ +

PNA_98_2 Onion Tift Co. GA +* ++ +

PNA_98_12 Onion Toombs Co. GA + ++ +

PNA_98_11 Onion Evans Co. GA +* ++* -

PNA_92_7 Onion Vidalia Region GA +* + +

PNA_200_7 Onion Tift Co. GA +* + +

PNA_200_12 Onion Tift Co. GA +* + +

PNA_200_11 Onion Tift Co. GA + ++* +

PNA_200_10 Onion Tift Co. GA +* + +

PNA_18_9S Onion Vidalia Region, GA +* +* +

PNA_18_5S Onion Vidalia Region, GA + +* +

PNA_18_5 Onion Vidalia Region, GA +* + +

PNA_18_3S Onion Vidalia Region, GA +* +* +

PNA_18_1 Onion Vidalia Region, GA + + +

PNA_07_7 Onion Toombs Co. GA +* + +

PNA_07_13 Onion Toombs Co. GA +* + -

PANS_99_33 Richardia scabra L. Coffee Co. GA + ++* +

PANS_99_26 Euphorbia hyssopifolia Vidalia Region, GA + + -

PANS_99_22 Digitaria spp. Tift Co. GA + + -

PANS_02_8 Thrips from peanut leaf Tift Co. GA +* ++ +

PANS_99_18 Richardia scabra L. Tift Co. GA +* + +

PANS_02_12 Peanut Leaf Tift Co. GA + + -

PANS_19_11 Richardia scabra L. Tift Co. GA + + +

PNA_06_1 Onion Vidalia Region, GA + + -

PANS_04_1 Thrips Tift Co. GA - -* -

PANS_99_24 Onion Seedlings Vidalia region - -* -

PANS_19_8
h

Richardia scabra L. Tift Co. GA - - +

PANS_19_10
h

Richardia scabra L. Tift Co. GA - - +

PNA_200_8
h

Onion Tift Co. GA -* - -

PNA_200_3
h

Onion Tift Co. GA - - -

PNA_18_6S
h

Onion Vidalia Region, GA - - -

PNA_18_10S
h

Onion Vidalia Region, GA -* - -

PNA_18_10
h

Onion Vidalia Region, GA -* - -

PNA_14_2
h

Onion Lyons, GA - -* -

PNA_13_1
h

Onion Lyons, GA - -* -

PANS_99_23
h

Cyperus esculentus Vidalia Region, GA - - -

PANS_04_2
h

Adult tobacco thrips from peanut Tift Co. GA - - -

PANS_01_8
h

Adult tobacco thrips Tift Co. GA - -* -

PANS_01_10
h

Thrips feces from peanut leaf Tift Co. GA - -* -

PANS_99_10
h

Verbena bonariensis Tift Co. GA - -* -

PANS_19_20
h

Verbena bonariensis Tift Co. GA - - -

Table 1. Pantoea ananatis strains, their source of isolation, and their associated pathogenicity and aggressiveness on  leek (Allium porrum) and Japanese bunching onion (Allium fistulosum x Allium cepa).
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pathogenicity and aggressiveness on leek (Allium porrum) and Japanese bunching onion 

(Allium fistulosum x Allium cepa).  

a) Foliar lesion rating of P. ananatis strains on Leek (A. porrum cv. King Richard). Strains 

with a lesion length 0.2-0.5 cm, 0.5-0.96 cm and >1 cm were considered as less 

aggressive (+), moderately aggressive (++), and highly aggressive (+++), respectively.  

b) Foliar lesion rating of P. ananatis strains on bunching onion (A. fistulosum x A. cepa 

cv. Guardsman). Strains with lesion lengths of <0.7 cm, 0.7-1.4 cm and >1.4 cm were 

regarded as less aggressive (+), moderately aggressive (++), and highly aggressive 

(+++), respectively. 

c) Ability of strain to clear red anthocyanin pigment and cause pitting on onion scales. 

d) Strains that are highly aggressive on leeks but non-pathogenic on bunching onion. 

e) Strains that are highly aggressive on leeks and bunching onions and are able to cause 

necrosis on red-onion scale. 

f) Strains that are non-pathogenic on leeks and less-aggressive on bunching onion. 

g) Strains that are moderately aggressive on leeks, and are less-aggressive on bunching 

onions. 

h) Non-pathogenic strains. 

* Lesion phenotype was inconsistent among the six replicates. 
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Table 1.2: List of gene-pair association components that contain genes shared with the 

predicted genes from the genome wide association studies (GWAS) results. 
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Table 1.3 Part 1: List of gene-pair dissociation components that contain genes shared 

with the predicted genes from the genome wide association studies (GWAS) results (part 

1).  
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Table 1.3 Part 2 (continued): List of gene-pair dissociation components that contain 

genes shared with the predicted genes from the genome wide association studies 

(GWAS) results (part 2).  
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Table 1.4: Composition and annotation of the HiVir and the pgb gene clusters in Pantoea 

ananatis.  
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Supplementary Figure 1.1: Phylogenetic tree of gene-presence and absence across 

Pantoea ananatis genomes (n=92) derived from FastTree analysis. Strains with an 

asterisk (*) produced branch lengths of 0.  
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Supplementary Figure 1.2: Distribution of gene ontology (GO) terms: annotations of 

core, soft-core, shell and cloud genes of Pantoea ananatis pan-genome.  

Section A shows the distribution of GO terms related to biological processes (BP). 

Section B shows the distribution of GO terms related to molecular function (MF). 

Section C shows the distribution of GO terms related to cellular component (CC). 
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Supplementary Figure 1.3. Additional break down of GO distribution per term category 

of biological process (BP), molecular function (MF), and cellular components (CC). 

Results shown here are limited to top 20 categories. 
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Supplementary Figure 1.4. Results of tobacco infiltration assay after 48 hours with PNA 

15-3 (left), positive control 20GA0713 (center), and mCoplin negative control (right). 

Hypersensitive response is marked with black marker.  

PNA 15-3 putatative T3SS does not induce a hypersensitive response, whereas 

20GA713 does. 
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Chapter 3 

NLP-like Deep Learning Aided in Identification and Validation of Thiosulfinate 

Tolerance Clusters in Diverse Bacteria1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________ 

1 Myers, B. K., Lamichhane, A., Kvitko, B. H., & Dutta, B. (2024). NLP-like deep learning 

aided in identification and validation of thiosulfinate tolerance clusters in diverse bacteria. 

Submitted to mBio, 9/24/2024.  
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Abstract 

Allicin tolerance (alt) clusters in phytopathogenic bacteria, which provide resistance to 

thiosulfinates like allicin, are challenging to find using conventional approaches due to 

their varied architecture and the paradox of being vertically maintained within genera 

despite likely being horizontally transferred. This results in significant sequential diversity 

that further complicates their identification. Natural language processing (NLP) - like 

techniques, such as those used in DeepBGC, offers a promising solution by treating gene 

clusters like a language, allowing for identifying and collecting gene clusters based on 

patterns and relationships within the sequences. We curated and validated alt-like 

clusters in Pantoea ananatis 97-1R (PA), Burkholderia gladioli pv. gladioli FDAARGOS 

389 (BG), and Pseudomonas syringae pv. tomato DC3000 (PTO). Leveraging sequences 

from the RefSeq bacterial database, we conducted comparative analyses of gene 

synteny, gene/protein sequences, protein structures, and predicted protein interactions. 

This approach enabled the discovery of several novel alt-like clusters previously 

undetectable by other methods, which were further validated experimentally. Our work 

highlights the effectiveness of NLP-like techniques for identifying underrepresented gene 

clusters and expands our understanding of the diversity and utility of alt-like clusters in 

diverse bacterial genera. This work demonstrates the potential of these techniques to 

simplify the identification process and enhance the applicability of biological data in real-

world scenarios. 
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Introduction 

Plants deploy an impressive array of small molecules to defend themselves against 

herbivory and pathogen-mediated infection. Thiosulfinates such as allicin are charismatic 

small molecules known for their role as antifeedants and antimicrobials in Allium species 

(1, 2). These small molecules are reactive organosulfur compounds responsible for 

several Allium species' characteristically pungent flavor and smell (3, 4). Allicin is 

produced when the enzyme alliinase acts on alliin, transforming it into a thiol-reactive 

compound. It interacts with cellular thiols, leading to allyl-mercapto modifications in 

proteins that deactivate enzymes and cause protein aggregation (5). Additionally, allicin 

reacts with reduced glutathione, converting it to S-allylmercaptoglutathione and thus 

depleting the cellular glutathione pool (5, 6). Thiosulfinates have been demonstrated to 

be inhibitory to a wide range of microorganisms both in vitro and in vivo (7, 8, 9, 10). 

Recently, gene clusters associated with allicin tolerance were identified not only in the 

onion pathogens Pantoea ananatis (PA) and Burkholderia gladioli (BG) but also in the 

garlic saprophyte Pseudomonas fluorescens (10, 11, 12). These genes were named 

allicin tolerance (alt) genes and are enriched for genes involved in thiol redox reactions. 

The alt clusters increased onion virulence capacity in PA and BG strains and conferred 

increased allicin tolerance to E. coli (12, 13). The alt gene cohort appears to function 

additively for managing cellular thiol stresses, with multiple genes conferring partial 

tolerance phenotypes (10). In their 2018 study, Stice et al. (10) data mined the NCBI 

GenBank database to identify Pantoea spp. with alt clusters, using the altG gene as an 

indicator. In doing so, the authors observed that several strains isolated from Allium hosts 

and some Brassica species carry alt clusters. In contrast, strains isolated from non-
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thiosulfinate-producing hosts did not. Inspired by an intuitive understanding of the 

characteristics defining an alt cluster, manual curation led to discovering a unique cluster 

within BG and other Burkholderia spp. (12), supported by multigene BlastX analysis (12).  

Considering the importance of alt clusters in thiosulfinate tolerance and plant-microbe 

interactions, identifying the variety of alt clusters and their presence in bacterial species 

is crucial. The alt clusters that were characterized and validated share little sequence or 

gene synteny similarity. Typical gene-mining techniques, such as NCBI BLAST or 

multigene BLAST, do not translate well between alt clusters localized within different 

bacterial genera. Although the alt cluster is potentially horizontally transferred as it is 

localized on plasmids, it seems to be maintained vertically within individual bacterial 

genera. This makes identifying alt clusters within genera comparatively easier; however, 

their identification among distinct genera is quite challenging. Isolating thiosulfinate-

tolerant bacteria from a thiosulfinate-producing host and then manually curating the 

annotations list for a conspicuous gene cluster has been the modus operandi for alt gene 

cluster discovery to date. However, it is a time-consuming process that requires in-depth 

training and a reliable annotation pipeline. Even in optimal conditions, individual 

researchers might develop personal biases towards which annotations they deem more 

reliable or questionable, potentially resulting in misidentification of alt clusters. To 

formalize an alt-identification and recovery method independent of the issues caused by 

gene sequence and gene synteny, we used NLP-like techniques for mining putative alt-

like gene clusters.  

The methodology employed here is similar to those used with genome mining for 

secondary metabolite biosynthetic gene clusters. These pipelines must overcome a 
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challenging task that requires careful consideration of gene content. For example, 

bacteria tend to organize genes into localized clusters to make metabolite synthesis more 

efficient (14,15,16). While manual curation and BLAST are effective for similar 

biosynthetic gene clusters (BGCs) in closely related organisms, they fall short when 

sequence data alone is inadequate or manual efforts are impractical due to time or cost 

(17). In such cases, more rigid, 'hard-coded' algorithms are used, though they require 

predefined gene and protein data rules, limiting their use with less-defined gene clusters 

(18, 19). Machine learning is the natural next step in algorithmic complexity to solve these 

problems, autonomously allowing for a more generalizable "learning" of input content. 

This allows for discovering more novel BGC's as the algorithm generates its own rules 

during training for further downstream applications. An example of this is ClusterFinder 

(20). ClusterFinder utilizes a Hidden Markov Model (HMM) approach rather than 

sequence alignment, allowing for greater freedom of discovery. However, HMM does not 

preserve position dependency effects or any potential higher-order information that may 

be relevant for BGC discovery (21, 22, 23).  

To address the need for higher-order information in BGC discovery, a deep 

learning approach using Recurrent Neural Networks (RNNs) with the addition of vector 

representations of protein family tags (Pfam) was designed, which improved the capacity 

for algorithmically detecting novel BGCs (24). DeepBGC utilizes an NLP strategy for 

identifying and even extracting novel BGCs from bacterial genomes via a clever use of a 

Bidirectional Long Short-Term Memory (BiLSTM) RNN (25,26) and a word2vec-like word 

embedding skip-gram neural network that the authors named pfam2vec (24).  



   
 

104 
 

In this work, we trained DeepBGC on our small collection of validated alt clusters to 

determine the potential for more complex artificial intelligence methods to accelerate the 

discovery process. Although the alt cluster does not represent a typical BGC where each 

gene collaboratively synthesizes a molecule, the organization and perceived additive 

function of these genes for the alt phenotype renders the cluster amenable to 

methodologies like those used in BGC discovery. The new alt model was then utilized to 

data mine the entire RefSeq bacterial database for potential alt-like clusters. 

Representative clusters were selected and refined through manual curation and 

sequencing data analysis to produce representative sequences of alt-like gene clusters. 

The genes, proteins, and predicted binding potential for selected genes from each cluster 

were compared to identify potentially valuable methodologies for differentiating alt-like 

gene clusters. Finally, chosen alt-like gene clusters were validated by expression of 

synthesized gene pairs in alt-gene cluster defective strain of PA (PNA 97-1 Δalt) and 

screened for increased thiosulfinate tolerance based on the improved ability of strains to 

grow in thiosulfate-rich onion extract.  

Results 

alt Seed Cluster Gene and Protein Sequence Comparisons Show Low Sequence 

Similarity  

Onion-associated bacteria like PA and BG possess alt-clusters that impart the ability to 

survive and propagate in thiosulfinate-rich-environments (Figure 2.1 A). In some cases, 

this may lead to bulb rot symptoms (Figure 2.1 A). In the genomic comparison of PA, 

PTO, and BG, the total gene counts are 11, 16, and 7, respectively. Shared genes across 

these strains include altA, altB, altC, altE, altR, altJ, and altI. When evaluating synteny, 
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among PA, PTO, and BG there appears to be little in common between the three 

sequences. Between PA and BG, altA and altC do localize; however, their order is 

inverted. Further, the altR and altE are adjacent between both PA and BG. The altJ and 

altB are adjacent but inverted between BG and PTO. The altE and altA are also adjacent 

but inverted between BG and PTO (Figure 2.1 B).  

We observed high degrees of dissimilarity when comparing the total gene cluster 

sequence similarity among our original three validated alt clusters. Additionally, when 

analyzing individual genes with annotations shared across all three clusters, the similarity 

percentages exhibit a range between 21.9 and 74.1%. Specifically, altI sequences show 

similarities from 39.1 to 52.1%, altA from 66 to 69.9%, and altC from 47.3 to 50.6%. 

Sequences of altE vary from 62 to 69.4%, altR from 46.5 to 51.2%, and altJ from 41.1 to 

70.5%. The altB gene maintains high consistency around 74% across all comparisons. A 

second altR gene in the PTO cluster displays 47.5 to 54.5% similarity. For genes only 

shared between PA and PTO, the lowest similarity is noted in altJ at 21.9%, with other 

genes like altD, altH, and gor displaying up to 52.4% similarity (Figure 2.1, Table 2.1).   

A broad range of dissimilarities is observed in assessing protein sequence 

similarity across the three validated alt clusters, with percentages ranging from 18.1% to 

82.1%. Notably, altI shows significant variation, with 48.2% similarity between PA and 

BG, dropping to 18.1% when comparing BG vs. PTO. The protein sequences in altA range 

from 67.9 to 74.3% across comparisons, while altC varies from 38.5 to 43.8%. The altE 

sequences are relatively similar, ranging from 62.5 to 71.8%. The altR protein sequences 

vary from 35.4 to 43.9%, and altJ from 27.2 to 76.6%. The altB exhibits high consistency, 

with similarities ranging from 78.5 to 82.1%. A second altR in the PTO cluster shows 
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similarities between 36.5% to 47.3%. Similarities for proteins exclusively shared between 

PA and PTO are notably lower, with altJ at 25.5%, altD at 30.5%, altH at 45.5%, and gor 

at 43.9% (table 2.2).   

 

DeepBGC Data Mining of the NCBI RefSeq Database and Filtering for Autonomous 

Collection of alt-like Gene Clusters   

DeepBGC training on the three validated alt cluster sequences was repeated 15 times, 

and the reports were compared to assess model performance. The average loss across 

runs was minimal at 0.00, indicating steady performance. However, a maximum loss 

value of 0.40 suggests some performance variability. In assessing model performance 

for DeepBGC, accuracy was consistent across all tests, averaging 1.00 with a standard 

deviation of 0.00 and a minimum accuracy of 0.98, highlighting the model's reliability. 

Precision and recall were both low, averaging 0.01, indicating a challenge in accurately 

identifying and capturing true positives from the dataset. This variability was reflected in 

the AUC-ROC scores, which averaged 0.82, suggesting good discriminatory ability with 

room for improvement. Statistical analysis confirmed significant variability in precision (F-

value: 3.78, p-value: ~2×10−6), recall (F-value: 5.17, p-value: ~7.7×10−10), and AUC-ROC 

(F-value: 16.09, p-value: ~7.64×10−43). In contrast, differences in loss and accuracy were 

not statistically significant (F-values: 0.86 and 0.39, p-values: 0.60 and 0.98, 

respectively), indicating stable performance in these areas. The detailed statistical 

insights underscore the need for further refinement to enhance precision, recall, and 

overall model robustness. These results are expected with the small training dataset we 
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can access and are overcome with manual inspection of DeepBGC extractions for 

validity. 

Upon completion of the DeepBGC-enabled data mining of 238,362 bacterial 

genomes from RefSeq, we extracted 12,280 gene clusters. These were reduced to 1,777 

sequences post MMseqs2 redundancy filtering with an average GC% of 53.5% (median 

55.1%, max. 76.6% and min. 25.7%), an average sequence length of 8,800 (max 61,726, 

min 1,215, and median of 6,424), and finally an average file size of 23KB (max 114KB, 

min 9KB, and a median of 19KB). After further manual curation to remove all gene 

sequences that appear split by the end of contigs, only four genes in total length, or do 

not have at least 3 unique alt-like pfam tags, we chose 47 representative alt-like 

sequences. These 47 representative clusters contained an average GC% of 51.7% (max 

69.9%, min 32.4%, and median 53.5%), an average sequence length of 7,931 (max 

30,170, min 3,109, and median 6,316), and finally an average file size of 28 KB (max 114 

KB, min 12 KB, and median 23 KB). When screening for clusters that are representative 

of our initial three alt clusters, the Pantoea alt cluster is represented by an alt-like cluster 

from Duffyella gerundensis (NZ_LN907829.1) with 94% sequence identity and identical 

values of assigned Pfam domains, the Burkholderia alt cluster is represented by a 

truncated alt-like gene cluster from Paraburkholderia graminis (NZ_CP024936.1) with 

74% sequence similarity. The Pseudomonas alt cluster is represented by itself as PTO 

(NC_004578.1). For all downstream gene cluster comparisons, we used the PA and BG 

alt clusters for comparison as references (Figure 2.2).   

Gene sequence similarity among these 49 clusters is low for alignment-based 

comparison methods. To minimize this, we color-coded genes based on their known 
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relevance and converted the color code into strings for Levenshtein comparisons. These 

gene clusters are separated into 4 distinct groups (Figure 2). The total counts for alt-like 

genes among these representative clusters are as follows, altR (N=41), altC (N=38), altJ 

(N=36), altE (N=36), altA (N=33), altB (N=28), altG (N=11), altI (N=8), altD (N=8), 

PSPTO_4258 (N=7), altH (N=6), PSPTO_4257 (N =6), gor (N =2), kefC (N=2), 

PSPTO_5268 (N=1). Among these, altR has the highest count per gene cluster (figures 

2.2 and 2.3).  

BLAST of DeepBGC-Mined alt-like Clusters and NCBI GenBank for Representative 

Sequence-Species Diversity Shows Wide Diversity of alt-like Gene Clusters Among 

Bacterial Genera   

To compare the diversity of bacterial species represented by recovered alt-like 

gene clusters, we employed BLAST to retrieve clusters from both the sequences obtained 

through DeepBGC-enabled data mining of RefSeq and NCBI GenBank. Due to the 

varying selection of available sequences between NCBI’s RefSeq and GenBank, cross-

comparison between the two databases may offer a more comprehensive understanding 

of species diversity compared to solely re-screening NCBI RefSeq with BLAST. Notably, 

Klebsiella pneumoniae emerged as a predominant species, constituting 56% of the 

recovered sequences in one instance and demonstrating significant representation 

across multiple samples. Conversely, specific sequences lacked a single dominant 

species, particularly those associated with Stenotrophomonas maltophilia. Detailed 

analysis of biodiversity using Shannon-Wiener indices unveiled varying levels of diversity 

among samples. For instance, sequences attributed to S. maltophilia exhibited higher 

diversity, representing 63-84% of recovered sequences. In contrast, sequences linked to 
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Pseudomonas aeruginosa displayed lower diversity, comprising 77-82% of sequences. 

Additionally, GenBank BLAST analysis yielded taxonomic insights into the retrieved 

sequences. While Klebsiella pneumoniae was prevalent, other species, such as 

Pseudomonas fluorescens and Escherichia coli, were also prominently featured. Specific 

genera exhibited species-specific enrichment, with Pseudomonas and Paenibacillus 

showing pronounced representation in the sequences. These findings underscore the 

wide distribution of alt-like gene clusters across bacterial species and highlight their 

potential ecological importance (Figure 2.2). These results are summarized in the 

supplementary table (Supplementary table 2.1). 

3D Superimposition of Predicted Protein Models is Insufficient for Differentiating 

Between alt, and Unrelated Proteins 

Due to the complexity inherent in classifying alt clusters by sequence and gene 

synteny, we investigated potential discrepancies in predicted 3D structures. Our analysis 

began with altR, a tetR-family regulator within alt-like gene clusters, revealing high 

structural similarities between BG and PA and BG and PTO, with zeal scores of 0.93 and 

0.94, respectively. Further examination of secondary altR variants from PTO showed 

similar congruence, with scores ranging from 0.95 to 0.96. Extending our analysis to other 

genes such as altA, altB, altC, altE, and altI, we consistently observed high zeal scores 

(0.91 to 0.97) indicative of substantial structural similarity across different organisms. 

However, altI presented some structural discordance, with lower zeal scores down to 

0.67, suggesting potential functional diversity. We expanded our study to include multiple 

sequence alignments of the five most frequently identified alt-like genes post-DeepBGC 

detection, followed by ITASSER-based 3D structural predictions. These comparisons 
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involved a broad set of sequences, with resulting zeal scores ranging from 0.40 to 1.00, 

reflecting a wide diversity in structural similarity among the altC variants. Although the 

structural comparisons generally supported the structural resemblance across these 

genes, they did not provide a clear distinction between the datamined gene clusters. 

(Figures 4 and 5; Supplementary figures 1 and 2; Supplementary files 2.1 and 2.2).  

Crosstree Comparisons between Protein Sequence Similarity and Gene Synteny 

Indicate vertical transmission and divergence of alt and alt-like Genes    

To determine if there is any grouping of alt-like genes based on protein sequence 

similarity, we utilized RAxML to generate phylogenetic trees based on sequence 

similarity. Further, we used phytools to compare trees for pattern similarity. We utilized 

further R scripting to label the connecting lines with colors representing the terminal group 

these sequences belong to and their validation results. Bootstrap values for the trees 

appear low on several edges, indicating difficulty organizing groups effectively based on 

sequence. However, the comparison of the two trees together shows that the "core" alt 

proteins are primarily concordant with each other. While there are some potential notable 

exceptions, such as the altC from NZ_JACXQ010000006.1, the Rahnella aqualitis 

representative alt-like cluster, this appears to be due to the rotation of the tree as opposed 

to a biological reality. This opinion is further supported by both overlaying the validation 

data on these tree comparisons, where proteins with similar alt tolerance appear to be 

grouping together, and other comparison trees place the sequence much closer to the 

other gene synteny groups. These trees suggest that these collections of alt-like proteins 

appear to have independent evolutionary histories as vertically maintained genes despite 

being horizontally transferred. Further, the concordance of the validation data and these 
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proteins seem to suggest specialization is occurring with the more robust alt phenotypes 

consistently grouping (Supplementary folder 2.1).  

 

Phenotypic testing with Synthesized altC/altE Pairs Provides Evidence for 

Thiosulfinate Tolerance Functionality in Predicted alt-like Gene Clusters  

To evaluate whether predicted alt-like clusters were legitimate and capable of conferring 

increased thiosulfinate tolerance phenotypes, we heterologously expressed synthesized 

altC/altE gene pairs representing key phylogenetic nodes in PA strain PNA 97-1R ∆alt, 

which lacks the functioning alt cluster and has poor thiosulfinate tolerance. Strains were 

grown in 50:50 LB onion extract as in Stice et al., and the mean area under the growth 

curve (AUC) was determined. Growth was compared against a thiosulfinate-sensitized 

PNA 97-1R ∆alt GFP expressing strain as a control and the PA wild-type strain (PNA 97-

1R). Across all experiments, expression of GFP in PA PNA 97-1R ∆alt consistently 

showed the lowest growth of the inoculated OJ, indicating poor thiosulfinate tolerance.  

In contrast, our positive control, PA PNA 97-1R WT, showed robust growth. 

Irrespective of altC/altE pairs from different bacteria, heterologous expression in PA PNA 

97-1R ∆alt resulted in increased tolerance to thiosulfinate in our onion-juice (OJ) growth 

assay. The altC/altE pairs for bacteria that are closer to PA phylogenetically (Erwinia 

persicina CFBP8795, Rahnella aquatillis Ra9-2) tended to result in improved restoration 

of thiosulfinate tolerance to PNA 97-1R ∆alt compared with those that were 

phylogenetically distant (Paenibacillus nuruki TI45-13ar, Burkholderia gladioli BCC1802, 

and Novosphingobium sp. Chol11). However, an exception in this trend was observed 

with Gluconobacter kondonii (Dm-54). Despite its relative closedness with PA 
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phylogenetically, the altC/altE heterologous expression in PA PNA 97-1R ∆alt did not 

result in consistent growth in the OJ growth assay, indicating comparatively lower 

tolerance to thiosulfinates (Figure 2.6 A-C and E). In addition, Cronobacter dubliensis 

(cro910B3) showed weaker tolerance but more robust tolerance than that of 

Gluconobacter kondonii (Dm-54) despite its relative closeness with PA phylogenetically. 

Overall, while all altC/altE pairs conferred increased thiosulfinate tolerance, the 

quantitative performance of individual altC/altE pairs is not easily predicted based solely 

on their phylogenetic similarity (Figure 2.6 D). 

A hierarchical clustering analysis was conducted based on the Euclidean distance 

of the growth curves from the experiments to provide a comprehensive view of the growth 

response patterns across different bacterial strains. This analysis categorized the 

bacterial strains into clusters based on their growth response to thiosulfinate exposure. 

The hierarchical clustering dendrogram revealed distinct clusters, with each branch 

representing a similarity in growth responses among the strains. A distinct cluster formed 

by G. kondonii (Dm-54), C. dublinensis (cro910B3), and P. nuruki (TI45-13ar) indicates 

unique growth response profiles, which is supported by the unexpectedly poor 

performance of G. kondonii (Dm-54), and variability in responses from both C. dublinensis 

(cro910B3), and P. nuruki (TI45-13ar). A second significant cluster includes E. persicina 

(CFBP8795) and P. ananatis 97-1R WT, showing more similar growth curves when 

compared to the remaining strains. These results are supported by the consistently high 

performance of the E. persicina (CFBP8795) altC/altE pair. The next group consists of 

similarly performing strains with altC/altE pairs from Pseudomonas sp. (Root569), R. 

aquatilis (Ra9-2), Novosphingobium spp. (Chol11), P. aryabhattai (LAD), and S. 
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maltophilia (CV_2003_STM1) with P. ananatis (PNA 97-1R) placed in an intermediate 

rating with the previous group. These results are supported by the consistently high, but 

not as high, performance of P. ananatis (PNA 97-1R) when compared to E. persicina 

(CFBP8795), but not as variable as the remaining members of the group. V. coralliilyticus 

(09-121-3), and B. gladioli (BCC1802), P. syringae pv. tomato (DC3000), and P. 

fluorescens (PS838) are the final group.  As expected, the GFP strain is positioned near 

the negative control, reinforcing its minimal growth and low tolerance to thiosulfinates 

because it lacked alt genes. The hierarchical clustering analysis provides a 

comprehensive view of the growth response patterns across different bacterial strains. It 

aligns with the tolerance experiments and phylogenetic analysis findings, demonstrating 

their similar growth profiles and tolerance mechanisms independently of protein sequence 

content or lineage. 

Binding Affinity Prediction with AI-BIND of altR Demonstrates NLP-like Techniques 

Are Effective for Predicting and Classifying alt and alt-like Proteins 

To determine if NLP-like techniques for binding affinity prediction could be used to help 

differentiate between functional alt clusters and possible pseudo clusters, we utilized AI-

Bind to screen our altR protein sequences against a library of small molecules collected 

from PubChem focusing on sulfur compounds (Supplementary file 2.2). Due to the 

likelihood of noise among most of these binding predictions, rows within .001 similarity 

were extracted for individual assessment. Among the values extracted, several 

similarities among the columns can be seen, and these 28,481 predictions may be the 

primary drivers for the separations seen with the Levenshtein distance matrix. When the 

distance matrix is overlaid with the gene synteny plot and compared to the altR RAxML 
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tree, it appears that the results generated from AI-Bind are capable of sorting altR proteins 

into their appropriate gene synteny groups. In addition, when integrating the findings with 

those from the experimental validation experiments, there is a pronounced division 

between alt clusters with robust phenotypes and those exhibiting weaker phenotypes. 

These results indicate that the results from AI-Bind could also sort altR proteins into 

groups that reflect the thiosulfinate tolerance of their respective altC/altE pair. As such, 

the binding predictions that AI-Bind produced may be helpful in further methodologies to 

automate the detection and distinction of alt, alt-like, and pseudo-alt proteins. This pattern 

further supports the notion that most, if not all, of the DeepBGC-identified representative 

alt-like clusters in this study are capable of functioning similarly to alt, a conclusion 

reinforced by the experimental validation results (Figure 2.7). 

Discussion  

Identifying alt and alt-like clusters poses challenges concerning variable gene synteny 

and divergent sequence similarities across bacterial genera. Specifically, 'alt clusters' 

refer to gene clusters experimentally validated to exhibit the thiosulfinate tolerance 

phenotype. Meanwhile, 'alt-like clusters' resemble these gene clusters in genetic 

composition but lack experimental validation for the associated phenotype. 'Pseudo alt 

clusters,' on the other hand, have been experimentally shown to not possess the 

phenotype despite their similarity in appearance to alt clusters. The three gene clusters 

utilized in our training set show little gene and protein sequence similarity and do not 

share overall gene synteny. Our analysis found a limited set of seven genes shared 

among our lab-validated gene clusters, with notable variations in gene and protein 

sequence similarities—highlighting the altB reductase in the SDR family oxidoreductase 
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family as the most conserved element across these clusters. The observed sequence 

similarities range significantly, suggesting a nuanced spectrum of conservation and 

divergence within these gene clusters. Interestingly, despite the diversity in sequence 

similarity, the predicted protein structures demonstrated a surprising level of uniformity 

according to I-TASSER system evaluations. This uniformity, especially in the context of 

different pathogens from onion, underscores a potentially ancient divergence and 

pseudo-vertical transmissibility for this horizontally transferred region. 

Current alt clusters have been identified experimentally or predicted intuitively 

based on gene co-localization and annotation. However, this approach is difficult to 

rigorously codify and could lead to significant discrepancies between investigators. 

Further, we do not have a collection of pseudo-alt clusters to provide a comparison, 

exacerbating the difficulty in describing an actual alt cluster. Computational strategies, 

such as artificial intelligence methodologies like machine learning or deep learning, offer 

more sophisticated ways to "digitize" intuition for dissemination. In this work, we utilized 

an NLP-like method to generate a model capable of data mining these complex gene 

clusters with an unconventional training set of only 3 divergent validated gene clusters 

and, by extension, make a transition from bespoke manual curation of alt clusters into a 

streamlined process.  

NLP in biology is becoming a valuable tool in studying gene function. There is a 

significant volume of genes that have an unknown function. By extension, we cannot 

access these genes' full potential for biotechnology, agriculture, and medicine. In 

prokaryotes, for example, genes with a complementary function tend to group into 

biosynthetic gene clusters (14, 15, 16, 27). Relevant biosynthetic gene clusters can be 
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detected and datamined by focusing on higher-order information and gene proximity. In 

this work, we used DeepBGC to train a model of our three previously validated alt clusters 

to overcome the limitations with more traditional sequence-only methods for data mining 

gene clusters, as well as explore the utilization of these techniques for identifying patterns 

that can be useful for identifying these clusters more robustly. DeepBGC utilizes Pfam 

information rather than the amino acid sequence to classify BGCs, with the additional 

caveat of understanding the importance of gene localization in gene clusters (24).  

Utilizing vectorized Pfam domains and gene localization elegantly simulates our intuitive 

process to curate gene clusters and produces a tangible model that is more appropriate 

for rigorous scientific evaluation. Sequence-based methods, such as BLAST, had been 

insufficient for data mining these clusters across multiple genera due to low sequence 

similarity. However, the methodology utilized by DeepBGC produced a model that can 

successfully detect alt clusters reproducibly from diverse genera of bacteria. In an ideal 

scenario, a bioinformatician would have access to thousands of examples for their training 

set. In this study, we only had access to three validated examples of alt-clusters from PA, 

BG, and PTO. Despite this, we were able to successfully detect, retrieve, and validate 

several alt clusters that were previously undetectable. This methodology also alleviates 

the immense effort required to screen this expansive list of bacterial genomes. Utilizing 

NLP technologies in a biological context is a powerful tool for "standardizing" the intuitive 

extraction process.  

We acknowledge that using the model provided in the supplementary materials, 

with a training set of only three clusters, is too broad to filter out background noise 

effectively. For example, our analysis incorrectly identified several gene clusters simply 
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due to the presence of several tandem thioredoxin-related genes. Additionally, other 

clusters were mistakenly detected due to the presence of multiple copies of tetR-family 

repressor genes, leading to false classifications. Further, some datamined alt clusters 

would lose genes on the terminal ends of their gene cluster, but the same cluster from 

another genome would contain the entire expected sequence. This issue is resolved by 

running the model multiple times and determining the “average” cluster sequence. 

However, these types of errors are commented upon in the DeepBGC manuscript and 

are to be expected (24). As always, manual curation should be employed to ensure that 

AI models behave appropriately. Despite the occasional error in incredibly diverse 

genomes, when the model is run on the genome of an onion pathogen with a known alt 

cluster, deepBGC always performed the expected extraction.   

We utilized another text-comparison technique to compare gene synteny. The 

complexity of the alt clusters often overwhelmed traditional DNA-sequence-based 

methods, frequently leading to system failures in organizing the information. However, by 

converting from one language to another and calculating the Levenshtein distance matrix, 

we successfully organized gene clusters into gene synteny groups quickly and reliably. 

The Levenshtein distance matrix is the "edit distance" between two strings. These are 

insertions, deletions, and substitutions (28, 29). We cut down the computational time and 

simplified the visualization process by converting our gene clusters into a color code and 

then a string representing these color codes. The application of language processing 

techniques is not limited to complex AI modeling or requires expensive computational 

equipment to be helpful. By applying the Levenshtein distance matrix, we can initiate the 

classification of alt clusters based on higher-order information, such as guilt-by-
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association syntax, in a comprehensive manner. Although the alt cluster exhibits many 

characteristics typical of horizontally transferred gene clusters, it appears to be 

maintained vertically within several bacterial genera. Despite this, gene synteny is not 

unique across bacterial genera, as specific gene patterns recur across multiple genera 

even if their sequence content is different. 

When comparing the gene synteny to the experimental validation of altC/altE pairs, 

it appears that the altC/altE pairs from the first terminal group have more robust 

thiosulfinate tolerance restoration phenotypes than altC/altE pairs from other terminal 

groups. These alt clusters are also represented among many members of the 

enterobacteria; however, alt-like clusters from Erwinia/Pantoea displayed the strongest 

phenotype. A notable caveat with this methodology is that the strongest phenotype is 

observed when these clusters are expressed in Pantoea, potentially due to interactions 

and dependencies with other endogenous host factors. Based on the current information, 

gene cluster synteny alone is insufficient for comprehensively categorizing alt-like 

clusters. These results are unsurprising, as genes with distinct evolutionary histories can 

independently form gene clusters with similar synteny. However, repeating motifs among 

several gene clusters is a strong indication of collaboration for a phenotype, and we would 

argue that the guilt-by-association of these shared genes is still a substantial factor in 

identifying alt-like clusters, even if their motifs are not perfect indicators of alt-like 

phenotype performance in OJ.   

In drug discovery, the conformation and 3D structure of molecules are critical, as 

small molecules must fit into a binding pocket of a target protein with a favorable reaction. 

Similarly, proteins that yield similar phenotypic functions are expected to have 
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comparable shapes, regardless of their sequence similarity (30). This work explored the 

potential for predicted protein conformation to indicate the alt phenotype. The results of 

the altC/altE pair validation suggest that the 3D superimposition of our putative alt-like 

proteins to the alt-verified proteins may indicate qualitative but not quantitative phenotype. 

Perhaps proteomic profile to compare proper alt and pseudo-alt proteins are necessary, 

as our validation experiment showed all selected altC/altE pairs provided thiosulfinate 

tolerance, with some exception to the pair derived from Gluconobacter kondii (Dm-54).  

For example, when interpreting our phenotypic validation results in the context of our 3D 

superimposition, it is essential to note that the altC/altE pair from Priestia aryabhattai LAD 

(NZ_CP072478.1) exhibited a more robust thiosulfinate tolerance restoration phenotype 

compared to Pseudomonas sp. Root569 (NZ_LMGQ01000029.1), despite the latter with 

higher Zeal scores. This observation suggests that while structural similarities generally 

correlate with functional outcomes, exceptions highlight the complexity of phenotype-

genotype relationships. Furthermore, altC variants with Zeal scores greater than 0.98 

consistently supported more robust bacterial growth in our thiosulfinate tolerance growth 

assay, implying a potential threshold effect where high structural fidelity may enhance 

certain functional capabilities. Conversely, altE adds another layer of complexity; Priestia 

aryabhattai LAD (NZ_CP072478.1), with a lower Zeal score of only 0.69, showed a 

slightly stronger thiosulfinate tolerance restoration phenotype than Novosphingobium sp. 

Chol11 (NZ_OBMU01000004.1), which had a higher Zeal score of 0.94. 

Additionally, our comparison of the E. coli nemR repressor with the four altR 

sequences in the genomes used for our training dataset revealed high similarity in their 

3D protein structures. The nemR repressor in E. coli shows ranges from 0.88 to 0.94 
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similarity. In contrast, the other four exhibit similarities ranging from 0.92 to 0.98. This 

level of resemblance is expected, given that they all are annotated as tetR repressors. 

The nemR repressor in E. coli is assumed to be responsive to reactive chlorine (bleach) 

and nitrogen species [31]. As such, we find the protein shape to be helpful in providing a 

secondary opinion for the protein predictions, as apparent outliers can be screened 

independent of annotations but alone cannot be used to separate functional alt proteins 

from possible pseudo-alt proteins. These findings underscore the limitations of relying 

solely on structural predictions to infer functional characteristics, highlighting the need for 

more complex integrated approaches to classify alt and pseudo-alt proteins. This opinion 

is reinforced by the results of the AI-Bind screen, where we assessed if screening 

potential binding affinity of proteins to a set of organo-sulfur molecules could differentiate 

alt-like clusters. 

We utilized AI-Bind to evaluate the predicted binding affinity of altR sequences 

against a library of 381,350 small molecules. We then calculated the string differences 

from a concatenation of the resulting scores to determine if the output could be informative 

for classification. Initially, the matrix generated from the AI-Bind average scores seemed 

discordant compared to the trees derived from protein sequence similarity. However, 

overlaying the AI-Bind prediction matrix with the data from the gene synteny matrix, as 

well as the result of the experimental validation, shows that binding affinity predictions 

from AI-Bind are capable of sorting altR proteins into groups that are reflective of our 

other screening methods, independently. These findings suggest that using average 

binding predictions may be an effective tool for further classifying alt clusters and 

separating alt and pseudo-alt proteins. It is important to note that AI-Bind, however, is not 



   
 

121 
 

in and of itself utilized for the classification of proteins in this way and is only NLP-like in 

that it could classify based on sequence data rather than utilizing more traditional NLP-

like systems.  

Conclusions 

NLP-like technologies are powerful tools to assist in the discovery and classification of 

gene clusters. Here, we generated a model capable of detecting and extracting alt 

clusters, validating the phenotype in transformed bacteria that previously lacked it. 

Despite its limited training set, the NLP-like algorithm used here demonstrated its capacity 

to identify several biologically relevant gene clusters. A model that quickly and accurately 

discovers and extracts alt clusters proves beneficial for diagnostic plant pathology and 

environmental bacteriology, particularly as the alt cluster is crucial for effectively 

colonizing Allium species or other thiosulfinate-producing hosts. The distribution of alt 

clusters beyond plant pathogens aligns with these secondary metabolites, shaping their 

microbial communities, as observed with the benzoxazinoid tolerance of maize root 

colonizers. Employing sophisticated NLP-like tools may revolutionize our understanding 

of critical gene clusters that facilitate complex host-microbe interactions, potentially 

leading to breakthroughs in several multidisciplinary fields. In developing a more robust 

alt cluster detection system, integrating models that encompass Pfam domains, gene 

localization, and predicted binding affinity might be sufficient to distinguish between alt 

clusters—those experimentally validated to function—and pseudo alt clusters, which 

appear similar but are experimentally validated not to possess the phenotype. 
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Materials and Methods 

alt Gene Cluster Seed Sequences 

For this work, we used three validated alt clusters for DeepBGC training. Each cluster is 

distinct in both gene sequence and gene synteny. The 11-gene Pantoea alt cluster was 

used from Pantoea ananatis strain PNA 97-1R plasmid unamed2 (NCBI accession: 

PRJNA384061). The 7-gene Burkholderia alt cluster was used from Burkholderia gladioli 

pv. gladioli strain FDAARGOS_389, plasmid unnamed (NCBI accession: PRJNA231221). 

The Pseudomonas alt cluster was used from Pseudomonas syringae pv. tomato str. 

DC3000, complete genome (NCBI accession: PRJNA57967) (supplementary folder 2).  

Gene/Protein sequence comparisons for validated alt clusters 

To understand sequence similarity between validated alt genes, we performed multiple 

sequence alignments of protein and nucleic acid sequences at default settings using the 

Clustal Omega online server (32).  

DeepBGC training and RefSeq screening 

To determine if AI trained on higher-order information can assist in efficiently datamining 

alt-like clusters from a collection of genomes, we trained the DeepBGC model on our 

small sample size of 3 validated alt clusters. The alt detection model was trained using 

the author’s supplied negative dataset “GeneSwap_Negatives.pfam.tsv” and ran with the 

default provided “deepbgc.json” with DeepBGC version 0.1.27. DeepBGC training on the 

initial three alt sequences was repeated 15 times and the reports were compared to 

assess model performance. DeepBGC options on the database data mining included a 

minimum protein count of 4 and a minimum score of .9. RefSeq genomes were separated 
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into 48 sub-directories of 5,000 genomes, and DeepBGC jobs were submitted to the UGA 

GACRC via an array element on the batch partition. We scanned 238,362 genomes using 

this model from the NCBI bacterial refseq database. The genomes were downloaded via 

the NCBI FTP service, and the assembly list is provided (Supplementary files 3 and 4) 

(24).  

Filtering gene cluster representation via MMseqs2 

To compress the DeepBGC extractions into a smaller representation for analysis, we 

used MMseqs2 release 13-45111 to generate representative sequences. The options 

used were a query coverage of 90%, sequence homology of 75%, and connected 

component clustering. These options allow for a "core" representative sequence with 

leniency for small changes in gene presence or absence (33).  

BLAST of NCBI GenBank for Representative Sequence Diversity 

The final selection of 47 representative alt-like clusters was utilized as the query 

sequence for both the collection of putative alt-like gene clusters from DeepBGC and 

NCBI GenBank, following similar rules to the MMSEQ2 redundancy filtering. Recovered 

species were then counted and organized into a list for the calculation of the Shannon-

Wiener Index via our own Python script.  

Gene synteny comparisons 

During our manual curations of alt-like clusters we noticed a pattern where gene synteny 

was conserved among bacterial genera. For those clusters, we generated cluster 

comparisons with sequence data, as the method for data mining was determinate upon 

them. However, post-DeepBGC screening of RefSeq, we found many alt-like clusters that 

share low enough sequence similarity between genes of similar annotation that several 
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methods for cluster comparison would fail. To overcome this barrier, we assigned a color 

code to alt-like genes that received pfam tags like our test run of the original test 

sequences. To optimize the human capacity to read the information and remove 

unintended bias between colors, we assigned several shades of green to alt-like genes 

and grey color to genes that are not relevant. We then used an Excel script to convert 

these colors into color codes. These codes were then concatenated into strings and 

underwent a Levenstein distance matrix calculation using the Levenstein and Dendropy 

Python packages [34, 35]. After initial tree construction, further manual curation was 

applied to finalize alt-like representatives by selecting gene clusters with at least 3 unique 

alt-like pfam tags that match those applied to the seed clusters and the removal of clusters 

that were split into separate contigs. 

Generating 3D protein models and Zeal score comparisons 

While the previous methods make gene comparisons primarily on sequence or trained 

guilt-by-association with higher-order information, we wanted to compare alt-like proteins 

for potential structure diversity or abnormalities directly. Models for select alt-like proteins 

were generated using I-TASSER 5.2 with the -LBS option set to true. Predicted protein 

3D models were then compared using the Zeal GUI with global alignment.  

(36, 37). 

Protein-ligand binding prediction 

The alt, and alt-like mechanisms of action are currently unknown. However, it is 

reasonable to suspect that the binding interactions between chemicals and proteins would 

be essential in defining alt, alt-like, and pseudo-alt gene cluster classes. Due to the 

computationally expensive nature of drug-target binding predictions we turned to using 
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AI-Bind, a deep-neural network designed for a more generalizable prediction of binding 

between proteins and small molecules. A comprehensive list of small molecule SMILES 

and InChiKeys were downloaded from the PubChem database with the following search 

terms: “allyl, cysteine sulfoxide, disulfide, polysulfide, S-Nitrosothiol, sulfenic acid, 

sulfenic, Sulfimide, sulfinic acid, silfinic, sulfone, Sulfonic acid, Sulfonic, Sulfonium, 

sulfoxide, sulfoximide, Sulfurane, thiolaldehyde, thioamide, thiocarbonyl, thiocarboxylic 

acid, thioester, thio, thiosulfinate, 316263-glutamylcysteine, and s-

Allylmercaptoglutathione." The results were concatenated, and duplicate entries were 

removed for a final list size of 381,349 small molecules. In our final representative dataset, 

these were then screened against the 53 altR-like proteins that received Pfam tags from 

deepBGC. Binding results from the altR-like proteins were converted into strings and 

compared via the calculation of the Levenstein distance matrix above to produce a 

neighbor-joining tree for ease of comparison (38).  

altC/altE Validation  

To validate the representative alt-like clusters produced by DeepBGC, we conducted an 

onion-juice (OJ) growth assay. Previous research has demonstrated that the presence of 

altC alone is sufficient to determine an alt phenotype. As such, we selected 14 altC genes 

(supplementary table 2) for validation, along with their potential altE partner if present. 

These 14 gene pairs (altC/altE) were inserted into Twist Bioscience’s pENTR plasmid and 

inserted into P. ananatis PNA 97-1R Δalt [10] by the following method. 

Electroporation and Confirmation 

The recipient strain's electrocompetent (e-comp) cells (P. ananatis PNA 97-1R WT and 

Δalt) were prepared using standard methods. Plasmid constructs were electroporated 
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into the recipient cells at 1.8kV. Transformed cells were mixed in 1 ml LB and left for 

incubation at 28°C for an hour. Post-incubation, cells were pelleted, resuspended in LB, 

and plated onto LB+Km plates. Individual transformed recipient cell colonies were grown 

overnight in LB+Km broth. Plasmids were extracted and sequenced to confirm the 

insertion of the pENTR plasmid constructs into recipient cells. 

The plasmid pENTR::GFP served as an empty vector and was inserted into both PNA 

97-1R WT and Δalt strains, which acted as positive and negative controls for the onion-

juice growth assay. The remaining 14 plasmid inserts were transformed into PNA 97-1R 

Δalt strains. 

Preparation of Onion Juice Extract 

Onion juice was extracted using Juicer method (10). One yellow onion bulb (400-500 g) 

was processed through an industrial strength juicer, resulting in 300-400 mL of crude 

onion extract. The extract was then centrifuged at 10,000 g for 1.5 hours at 4°C. After 

centrifugation, the supernatant was carefully removed and filtered through a Nalgene 

disposable vacuum filter sterilization unit. The onion juice was then stored at -20oC for 

future use. 

Liquid Growth Assay 

The growth assay used 100-well honeycomb plates with the BioScreen C system (Lab 

Systems Helsinki, Finland). Seven-day-old OJ was utilized for the assay. 16 bacterial 

strains culture was started on LB+Km plates, and overnight cultures were prepared the 

following day in LB+Km broth from single colonies. On the third day, the growth assay 

was conducted for 48 hours with low agitation at 28°C. The growth media consisted of LB 

supplemented with an equal volume of onion juice. The experiment included 16 test 
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strains (figure 6), including PNA 97-1 WT pENTR::GFP  and Δalt pENTR::GFP strains,  

and a negative control (LB+OJ). Each well contained 400 µL of a mixture comprising 360 

µL of growth media (LB+OJ) and 40 µL of a bacterial suspension with an OD600 of 0.5 

in sterile dH2O, with a minimum of 5 well replicates. Absorbance values were measured 

every 30 minutes for 48 hours. Each experimental assay was repeated twice for biological 

replication.    

Euclidean Distance Comparison of Treatment Groups 

CSV files generated from three growth phases from our experiment, the lag, log, and 

stationary phases, were used to compare Euclidean distances between the growth curves 

of each treatment group via a Python script. For each phase, mean trendlines were 

calculated by averaging the sample data for each treatment group. If trendlines varied in 

length, shorter sequences were padded with NaN values to match the most extended 

sequence in each phase. Euclidean distance matrices were generated using the pdist 

function from the scipy.spatial.distance module, with NaN values imputed using the 

SimpleImputer with a mean strategy. For each phase, pairwise distances were calculated 

between all samples, and the resulting distance matrices were saved as CSV files. The 

average distances within and between treatment groups were computed to create 

symmetric group-level distance matrices that represented the average pairwise Euclidean 

distances for each treatment group in each phase. Hierarchical clustering was performed 

on these group-level matrices using the linkage method with 'average' linkage, and 

dendrograms were generated to visualize the clustering relationships between treatment 

groups. Dendrogram branches were color-coded according to predefined treatment 

groups to reflect their clustering pattern. The aggregated group average distances across 
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all phases were calculated to compare the treatment groups' growth patterns. A neighbor-

joining tree for the combined dataset was generated and saved for visualizing the 

clustering results (supplementary figure 3).  

Tree Comparisons  

Maximum likelihood trees were compared against each other using the phytools R 

package (39). For figure 7, edges between the nodes were organized based on their color 

code.  
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Figure 2.1: Overview of the importance of thiosulfinate tolerance with Pantoea ananatis 

as a model example.  

(A) Pictorial representation of the chemical arms race between an invading 

phytobacterium and its Allium host, depicted as Allium cepa. When the 

phytopathogen utilizes its necrotizing factors to kill the host cells, it, in turn, 

becomes challenged with toxic thiosulfinate stress (TTS) that is managed by the 

allicin tolerance (alt) cohort. In addition, an example of bulb-rot symptoms due to 

Pantoea ananatis compatible interactions in A. cepa in onion bulbs is included. 

The provided example is a longitudinal section of an infected bulb displaying 

rotten water-soaked center scales with visible bacterial growth.   

(B)  Gene cluster synteny comparisons of alt clusters used as the input sequences 

for DeepBGC training. These comparisons were generated with Clinker. The 

arrows represent coding sequences along with their directionality. Shaded lines 
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reflect the degree of similarity between the gene clusters, with darker shades 

indicating higher similarity. Arrows are colored based on their alt annotations. 
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Figure 2.2: Allicin tolerance (alt)-like representative clusters post-DeepBGC extraction of 

the RefSeq bacterial database.  

(A) A comprehensive insight into the distribution of alt-like clusters within the NCBI system 

using the Levenshtein distance matrix of color-coded Pfam domain tags. The resulting 

BLAST hits of representative alt-like clusters on all extracted alt-like gene clusters from 

the RefSeq database are shown in pink, while the resulting BLAST hits of representative 

alt-like clusters from the online GenBank bacterial database are shown in blue. Each line 

indicates 50 sequences. This tree compares the pattern of Pfam tags in gene clusters 

and should not be misconstrued as a phylogenetic tree. 

(B) Color-coded examples of selected representative alt-like Pfam domain tags in the 

deepBGC-extracted clusters; (I) represents the first terminal group between 



   
 

136 
 

Paraburkholderia graminis (PHS1) to Duffyella gerundensis (E_g_EM595); (II) represents 

the terminal group between Achromobacter insuavis (7393) to Novosphingobium sp. 

(Chol11); (III) represents the terminal group between Variovorax bejingensis (T529) to 

Pseudomonas sp. (Leaf98); (IV) represents the terminal group between Pseudomonas 

spp. (Root569) to Rhizobium sp. (Root274). These are unrooted neighbor-joining trees 

based on the Levenshtein differences between a color code conversion of Pfam tags into 

text strings using the Levenshtein python package. Gene clusters are numbered for ease 

of comparison. Gene clusters with similar Pfam annotation synteny, but different 

sequence content was listed as separate clusters (see clusters 17, 18).  

 



   
 

137 
 

Figure 2.3: Frequency of allicin tolerance (alt)-like genes in DeepBGC extracted gene 

clusters from bacterial RefSeq database. Here, alt-like gene frequency was calculated 

from each of the representative gene clusters and added input clusters to determine the 

number of copies of alt-like genes present in each gene cluster. The graph is organized 

based on total gene count, with altR being the highest and PSPTO_5268 the lowest. 

Green colors indicate the alt-like gene appeared only once in the extracted gene cluster. 

Yellow indicates the gene appeared twice in certain gene clusters. Pink indicates the gene 
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appeared three times in certain gene clusters. Red indicates the gene appeared four 

times in certain gene clusters. altC, altE, altA, altG, altH, and PSPTO_4258 appear once 

or twice in certain genomes. PSPTO_5268 appeared twice in one extracted genome. altI, 

altD, gor, and kefC all appeared only once in their extracted genomes.   
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Figure 4.4: Comparative 3D superimposition of I-TASSER predicted altR repressors 

between Burkholderia gladioli pv. gladioli FDAARGOS_389 (BG), Pantoea ananatis PNA 

97-1R (PA), Pseudomonas syringae pv. tomato DC3000 (PTO), and an unrelated 

repressor from Escherichia coli, nemR (ECN). The initial row (A-E) represents all 

predicted protein structures used for downstream comparisons. The predicted model 

proteins are displayed as BG altR (A), PTO altR (B), PTO out altR (C), ECN (D), and PA 

altR (E). The 3D superimposition comparisons are shown in panels F-O. Values below 

each comparison refer to the Zeal score as predicted by the Zeal GUI 

(https://andrelab.lu.se/) and are an indication of shape similarity. For example, a zeal 

score of "1" indicates the same 3D protein shape. The "F" compares the predicted altR 

protein from BG vs. PA, while panels G and H represent the comparison of altR between 

BG vs. PTO and PA vs. PTO, respectively. The panels I, J, and K compare altR between 

BG, PA, and PTO vs. the PTO out_altR as indicated in Figure 1, respectively. The panels 

L, M, N, and O compare BG altR, PTO altR, PTO out_altR, and PA altR against ECN, 

respectively. 
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Figure 2.5: Comparative 3D superimposition of I-TASSER predicted allicin tolerance (alt) 

proteins between Burkholderia gladioli pv. gladioli FDAARGOS_389 (BG), Pantoea 

ananatis PNA 97-1R (PA), and Pseudomonas syringae pv. tomato DC3000 (PTO). BG 

proteins are colored red, PA proteins are colored green, and PTO proteins are colored 

blue for ease of visualization. Values below each comparison refer to the Zeal score as 

predicted by the Zeal GUI (https://andrelab.lu.se/) and are an indication of shape 

similarity. For example, a zeal score of "1" indicates the same shape. Each alt protein 

prediction is organized into three groups. The A, B, and C are comparisons of altA 

between BG vs. PA, BG vs. PTO, and PA vs. PTO, respectively. The panels D, E, and F 

are comparisons of altB between BG vs. PA, BG vs. PTO, and PA vs. PTO, respectively. 

The panels G, H, and I are comparisons of altC between BG vs. PA, BG vs. PTO, and 

PA vs. PTO, respectively. The panels J, K, and L are comparisons of altE between BG 

vs. PA, BG vs. PTO, and PA vs. PTO, respectively. The panels M, N, and O are 

comparisons of altI BG vs. PA, BG vs. PTO, and PA vs. PTO, respectively. The panels 
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P, Q, and R are comparisons of altJ BG vs. PA, BG vs. PTO, and PA vs. PTO, 

respectively.  
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Figure 2.6: Thiosulfinate Tolerance was enhanced in Pantoea ananatis when 

transformed with altC/altE Pairs from diverse bacterial genera and their phylogenetic 

relationship among each other. Thiosulfinate tolerance of Pantoea ananatis PNA97-1 ∆alt 

was enhanced when transformed with altC/altE pairs representative of different bacterial 

genera and species conducted across three experiments, as well as their phylogenetic 

relationships. The top three bar charts in figure 6A, B, and C, represent three independent 
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experiments, I, II, and III, respectively, with mean and standard error bars. The x-axis 

represents P. ananatis PNA 97-1R ∆alt  transformed with altC/altE pairs from 

representative of different bacterial genera and species and controls (empty vector and 

water), while the y-axis shows the mean area under the curve (AUC) values. Statistical 

groupings are denoted by letters above the bars, with 'A' representing the group with the 

highest tolerance. Subsequent letters (B, C, D, E…) indicate progressively lower 

tolerance, based on Tukey's HSD test results, with differences considered statistically 

significant at P<0.05. The negative control and GFP consistently show the lowest 

tolerance (labeled "E"), whereas P. ananatis PNA 97-1R WT and its variants exhibit the 

highest tolerance (labeled "A"). Figure 6D depicts the phylogenetic relationships among 

the tested altC/altE pairs in transformed P. ananatis from diverse bacterial genera and 

species, with branch lengths representing gene sequence distances. The color coding of 

the transformed P. ananatis strains with different altC/altE pairs matches the bars in the 

bar charts displayed above, providing a visual correlation between genetic similarity and 

thiosulfinate tolerance. Strain names were truncated for ease of visualization. For an 

alternative analysis of growth curve patterns across all experiments, please refer to the 

Euclidian distance tree in supplementary figure 3. Figure 6E shows a visual comparison 

of bacterial growth (in terms of turbidity) P. ananatis PNA 97-1R ∆alt  transformed with 

altC/altE pairs from the following bacterial strains: 1: Priestia aryabhattai LAD; 2: 

Novosphingobium sp. Chol11; 3: GFP; 4: Pseudomonas spp. Root569; 5: 

Stenotrophomonas maltophilia CV_2003_STM1; 6: Burkholderia gladioli BCC1802; 7: 

Pseudomonas fluorescens PS838; 8: Rahnella aquatilis Ra9-2; 9: Vibrio coralliilyticus 09-

121-3; 10: P. ananatis PNA 97-1 (WT, non-transformed); 11: Pseudomonas syringae 
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DC3000; 12: Paenibacillus nuruki T145-13ar; 13: Gluconobacter kondonii Dm-54; 14: 

Erwinia persicina CFBP8795; 15: Cronobacter dublinensis cro91083, and NC: Negative 

control.  
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Figure 2.7: Comparison between gene synteny, protein similarity, and binding affinity 

prediction. Here are two schematic representations (A and B) that map the relationship 

between gene synteny alongside protein sequence similarity (Panel A) and between 

protein binding affinity predictions with corresponding protein sequences (Panel B). In 

Panel A, the branching lines are color-coded to distinguish between different gene 

synteny groups, which are identified as follows: pink for group I, green for group II, blue 

for group III, and purple for group IV, as previously defined in figure 2. Panel B contrasts 

the predicted binding affinities, as calculated by AI-Bind, of altR proteins against the 

similarity of the altR sequence. The coloration corresponds to the phenotypic data 

obtained from follow-up experimental validation, as described in figure 6, with the applied 

color serving as the "average" RGB value of the three colors.  
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Table 2.1: Multi-sequence alignment (MSA) comparison of allicin tolerance (alt) genes 

among shared genes in the alt clusters used as the inputs for training by DeepBGC. 

Sequences were retrieved from Burkholderia gladioli pv. gladioli FDAARGOS_389 (BG), 

Pantoea ananatis PNA 97-1R (PA), and Pseudomonas syringae pv. tomato DC3000 

(PTO). MSA was calculated using Clustal Omega in the default settings at 

https://www.ebi.ac.uk/Tools/msa/clustalo/. Comparisons were made between shared alt 

genes (altI, altA, altC, altE, altR, altJ, and altB) as well as an additional comparison 

between a secondary altR-like gene in P. syringae pv. tomato DC3000 (out_altR as in 

figure 1) between the three bacterial strains that were used as input data in DeepBGC.  
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Table 2.2: Multi-sequence alignment (MSA) comparison of allicin tolerance (alt) proteins 

among shared proteins in the alt clusters used as the inputs for training by DeepBGC. 

Sequences were retrieved from Burkholderia gladioli pv. gladioli FDAARGOS_389 (BG), 

Pantoea ananatis PNA 97-1R (PA), and Pseudomonas syringae pv. tomato DC3000 

(PTO). MSA was calculated using T-Coffee in the default settings at 

https://www.ebi.ac.uk/Tools/msa/tcoffee/. Comparisons were made between shared alt 

proteins (altI, altA, altC, altE, altR, altJ, and altB) as well as an additional comparison 

between a secondary altR-like protein in P. syringae pv. tomato DC3000 (out_altR as in 

figure 1) between the three bacterial strains that were used as input data in DeepBGC.  
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Supplementary Figure 2.3. Hierarchical clustering of bacterial strains based on phase-

specific growth curve data using Euclidean distance. To provide a comprehensive view 

of the growth response patterns across different bacterial strains, a hierarchical clustering 

analysis was conducted based on the Euclidean distance of the growth curves from the 

experiments. This analysis categorized the bacterial strains into clusters based on their 

growth response to thiosulfinate exposure. The hierarchical clustering dendrogram 

revealed distinct clusters, with each branch representing a similarity in growth responses 

among the strains. A distinct cluster formed by G. kondonii (Dm-54), C. dublinensis 

(cro910B3), and P. nuruki (TI45-13ar) unique growth response profiles, which is 

supported by the unexpectedly poor performance of G. kondonii (Dm-54), and variability 

in reponses from both C. dublinensis (cro910B3), and P. nuruki (TI45-13ar). A second 

significant cluster includes E. persicina (CFBP8795) and P. ananatis 97-1R WT showing 

more-similar growth curves when compared to the remaining strains. These results are 
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supported by the consistently high performance of the E. persicina (CFBP8795) altC/altE 

pair. The next group consists of similarly performing strains with altC/altE pairs from   

Pseudomonas sp. (Root569), R. aquatilis (Ra9-2), Novosphingobium spp. (Chol11), P. 

aryabhattai (LAD), and S. maltophilia (CV_2003_STM1) with P. ananatis (PNA 97-1R) 

placed in an intermediate rating with the previous group. These results are supported by 

the consistently high, but not as high, performance of P. ananatis (PNA 97-1R) when 

compared to E. persicina (CFBP8795), but not as variable as the remaining members of 

the group. V. coralliilyticus (09-121-3), and B. gladioli (BCC1802), P. syringae pv. tomato 

(DC3000), and P. fluorescens (PS838) are the final group.  The GFP strain is positioned 

near the negative control, reinforcing its minimal growth and low tolerance to 

thiosulfinates, as expected because they lacked alt genes. Overall, the hierarchical 

clustering analysis provides a comprehensive view of the growth response patterns 

across different bacterial strains, aligning with the findings from the tolerance experiments 

and phylogenetic analysis, demonstrating their similar growth profiles and tolerance 

mechanisms independently of protein sequence content or lineage.  
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Chapter 4 

Insights into host-resistance of Allium genotypes against Pantoea ananatis 
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Abstract 

Onion (Allium cepa L.) is a widely cultivated crop that suffers from substantial losses due 

to Pantoea ananatis (PA), a bacterial pathogen responsible for onion center rot (OCR). 

Severe outbreaks of OCR have been reported globally, leading to significant economic 

impacts, particularly in onion-producing regions like Georgia, USA. The pathogen's 

virulence is driven by the chromosomally located HiVir gene cluster, which produces the 

phytotoxin pantaphos, causing extensive necrosis in infected tissues. Despite its 

economic importance, Allium genotypes with resistance against PA are unknown. In this 

study, we conducted a comprehensive screening across 982 Allium genotypes to 

evaluate resistance against PA. Only one A. cepa genotype, DPLD 19-39, demonstrated 

a consistent resistant phenotype by exhibiting lower foliar necrosis and bulb rot. 

Transcriptomic analysis identified that resistance may be associated with enhanced cell 

wall reinforcement, oxidative stress regulation, and programmed cell death (PCD). Our 

findings indicate a mechanism for resistance against PA in A. cepa and suggest that 

future efforts should focus on these defense pathways to develop PA-resistant onion 

cultivars. 

 

Introduction 

Onion (Allium cepa L.) belongs to the family Amaryllidaceae and is a biennial plant 

primarily cultivated annually for its edible bulb (Rabinowitch & Brewster, 1989). Allium 

cepa genotypes are highly susceptible to Pantoea ananatis (PA), a bacterium that causes 

onion center rot (OCR). Severe infections of OCR in major onion-producing regions, like 

Vidalia onion fields in Georgia, have led to significant economic losses, sometimes 
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amounting to hundreds of thousands to millions of dollars in revenue (Gitaitis & Gay, 

1997; Schwartz & Mohan, 2008; Coutinho & Venter, 2009; University of Georgia, 2024, 

Penn State Extension, 2024). In addition to other members of the Allium genus, PA infects 

a wide range of economically important crops globally. It was first reported with fruitlet rot 

on pineapple in the Philippines in 1928 (Serrano, 1928), and since then, it has been 

identified as an epiphyte or endophyte on both dicots and monocots, distributed across 

regions such as Georgia, Colorado, Michigan, New York, and Pennsylvania in the United 

States (Wells et al., 1987; Gitaitis & Gay, 1997), as well as internationally on crops like 

honeydew melon, cantaloupe, onion, sudangrass, eucalyptus, rice, netted melon, maize, 

and sorghum in countries including Ecuador, Italy, Japan, Argentina, Poland, Brazil, and 

South Africa (Bruton et al., 1991; Coutinho & Venter, 2009; Kido et al., 2008; Alippi & 

López, 2010; Cota et al., 2010). PA can be seed-borne and seedling-transmitted, but 

Thrips tabaci-mediated transmission is more common and epidemiologically significant, 

particularly in regions like the southeastern United States (Gitaitis et al., 2002; Dutta et 

al., 2014). These thrips species can acquire epiphytic PA populations from various 

environmental host plants and transmit the pathogen to healthy onion seedlings. PA 

invades the plant through foliar wounds, leading to water-soaked lesions, blighting, and 

wilting of the leaves. Foliar colonization can eventually invade the bulb, causing post-

harvest losses (Schwartz & Mohan, 2008; Stice et al., 2018). The virulence of PA is 

attributed to the chromosomally located "HiVir" gene cluster, which encodes the 

phosphonate phytotoxin pantaphos (Asselin et al., 2018; Polidore et al., 2021). Pantaphos 

disrupts metabolic processes in the plant, resulting in cell death and necrosis (Asselin et 

al., 2018; Polidore et al., 2021). Cell death in Allium tissues leads to a significant 
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challenge, however, as the tissues are rich in thiosulfinate compounds, which serve as a 

natural antimicrobial; the plasmid-borne thiosulfinate tolerance (alt) gene cluster allows 

PA to thrive and proliferate in disrupted Allium tissues by reducing toxic thiol stress (Stice 

et al., 2020, 2021). There is no known mechanism or Allium genotype for host resistance 

against PA or its pantaphos toxin.  

In this study, we conducted a comprehensive genotype screen among various 

Allium genotypes for resistance against PA. In addition, through transcriptome analysis 

between PA susceptible (Sweet Harvest) vs. resistant genotype (DPLD 19-39), we 

identified differentially expressed transcripts potentially involved in pathogen resistance 

mechanisms.  

Materials and Methods 

Bacterial strain, identification, culturing 

PA PNA 97-1 used in this study was isolated from A. cepa in 1997 and is a well-

characterized pantaphos-producing aggressive bacterial strain (Gitaitis, R. D., & Gay, J. 

D. 1997). Inoculum was prepared by transferring single colonies from 24 h-old cultures 

on nutrient agar (NA) medium to nutrient broth (NB). The broth was shaken overnight on 

a rotary shaker (Thermo Scientific, Gainesville, FL) at 180 rpm. After 12 h of incubation, 

1 ml of each bacterial suspension was centrifuged at 5,000 × g (Eppendorf, Westbury, 

NY) for 2 mins. The supernatant was discarded, and the pellet was re-suspended in PBS. 

Inoculum concentration was adjusted using a spectrophotometer (Eppendorf, Westbury, 

NY) to an optical density of 0.3 at 600 nm [≈1 × 108 colony forming unit (CFU)/ml].  
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Phenotypic assessment of PA PNA 97-1 on Allium genotypes 

Foliar pathogenicity and aggressiveness of PA 97-1 were determined under field and 

controlled greenhouse conditions. Infested onion seeds of Allium genotypes were used 

in the field experiment. This was done to ensure maximum exposure of the pathogen to 

the Allium host, starting from the seed and seedling stages. Infested seeds were 

generated separately for each Allium genotype by exposing them to inoculum (at a 

concentration stated above) via vacuum infiltration per the manufacturer's instruction for 

1 minute. An additional cycle of vacuum infiltration for 1 minute was also conducted. Ten 

seeds in three replicates for each Allium genotype were planted in a row at a 10-cm 

spacing. These seeds were allowed to germinate and grow to at least the four true-leaf 

stage. The tallest leaf of each Allium genotype was inoculated using a cut-tip method as 

described previously (Dutta et al.,2014). Briefly, a wound was created by cutting the 

central leaf (2 cm from the apex) with a sterile pair of scissors. 10 µl drop of a bacterial 

suspension containing 1×108 CFU/ml was injected at the cut end. One plant at each end 

of the row was inoculated with sterile water as a negative control for foliar inoculation for 

each replicate/Allium genotype. The rest of the plants were inoculated in between for each 

plot.  A susceptible Allium genotype, Sweet Harvest, was used in this experiment. The 

field was left without management against weeds and thrips to further pathogen spread 

and disease development. Field plants were assessed for foliar symptoms at least 4 times 

(1-day post-inoculation, 1-week post-inoculation, 19 days post-inoculation, and one-

month post-inoculation). 

For the greenhouse studies, seedlings were established in plastic pots (TO 

plastics, Clearwater, MN) with dimensions of 9 cm × 9 cm × 9 cm (length × breadth × 



   
 

155 
 

height) containing a commercial potting mix (Sta-green, Rome, GA). The seedlings were 

maintained at 25-28°C and 70-90% relative humidity with a light:dark cycle of 12h:12h. 

Bacterial strain (PNA 97-1) was maintained on NA plates, and inoculum was generated 

as described above. Once the primary leaf of each Allium genotype reached 9 cm, 

seedlings were inoculated using a cut-tip method as described previously (Dutta et al., 

2014). Seedlings were inoculated with sterile water using the same methodology as 

above for negative control. A susceptible Allium genotype, Sweet Harvest, was also used 

in this experiment. One experiment used ten replications per genotype, and two 

independent experiments were conducted with selected genotypes.  

Based on the greenhouse experiments, one Allium genotype (DPLD 19-39) was 

selected for growth chamber assessment and was compared with a susceptible genotype 

(Sweet Harvest). Seedlings for these two genotypes were inoculated at a 4-true-leaf 

growth stage using a protocol described above. Disease assessments were done 

according to the protocol stated below. 

The pathogenicity and aggressiveness of PA 97-1 were determined based on the 

lesion length on each Allium genotype, measured with the ruler at different assessment 

periods. The lesion length was recorded weekly for three weeks after foliar inoculation for 

the field experiment. The lesion size was analyzed using the rating scale for the field 

evaluations for Allium fistulosum, where lesion size was categorized from 0 (no lesion) to 

6 (>20.1 cm or dead), and for Allium cepa, where the lesion size was categorized from 0 

(no lesion) to 10 (>40 cm or dead). 

For greenhouse and growth chamber evaluations, the percent lesion length 

relative to the average length of the leaf for that genotype was calculated at 12 days post-
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inoculation. The area under the lesion progress curve (AULPC) was calculated for each 

genotype and compared between each other and the controls. Analysis of variance 

(ANOVA) was determined for percent lesion length in R (R version 4.3.0), and Tukey's 

honest significant difference (HSD) test was used to determine the mean separation for 

different genotypes.  

Phenotypic assessment of bulb infection on selected Allium genotypes against PA 

PNA 97-1 invasion  

 Bulbs of DPLD 19-39 and Sweet Harvest were harvested after three months of growth 

under controlled conditions in a growth chamber. The seedlings were maintained at 25-

28°C and 70-90% relative humidity with a light:dark cycle of 12h:12h. The outer tunic 

layer was carefully removed, and the surface was sterilized by wiping the surface with a 

sterilized paper towel soaked with 70% ethanol. Bulbs were further kept for air drying. 

After air-drying, scales were carefully removed, and using a sterile inoculation loop, 

bacterial ooze was scooped, ten-fold serially diluted, and spread-plated onto a semi-

selective medium, PA-20 (Goszczynska et al.. 2006). After a period of incubation (7 days), 

small colonies were enumerated. Representative colonies were also assayed with PA 

HiVir-specific PCR assay (Shin et al., 2024).  

In addition to the evaluation of inter-scale bacterial colonization, remaining healthy 

appearing bulbs from both genotypes were surface sterilized with 70% ethanol after the 

removal of tunic layers. Each bulb was placed on a plate containing two layers of paper 

towel pre-moistened with sterile water. Onion bulbs were inoculated longitudinally at the 

shoulder with a syringe and a sterile needle containing a volume of 400 µl (1×108 CFU/ml) 

(Schroeder et al., 2010). Special attention was given to the uniformity of depth of 
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inoculation into each bulb, which was ascertained by placing a thin rubber stopper in the 

needle. Following inoculation, bulbs were incubated at 25°C in an aluminum tray. After a 

week of incubation, bulbs were sliced vertically alongside the inoculation site, and the 

weight of the whole bulb and symptomatic scales with necrotic lesions (and visual rot) 

were measured and recorded. 

Transcriptome Analysis of DPLD 19-39 vs Sweet Harvest 

Host plants were grown under greenhouse conditions, as previously described. Plants 

were inoculated with PA, with two treatments for each genotype: PA-positive and a PBS 

buffer (negative control). After 24 hours, foliar tips were excised 1 cm below a visible 

lesion and immediately frozen in liquid nitrogen for RNA extraction. According to the 

manufacturer's protocol, total RNA was extracted using the Qiagen RNeasy Plant Mini Kit 

(Qiagen). RNA sequencing was outsourced to Azenta Life Sciences, where library 

preparation was performed using the Illumina PolyA selection value package. Sequencing 

was carried out using Illumina's 2x150 bp paired-end (PE) technology, generating 

approximately 350 million PE reads per sample (Qiagen citation, Azenta citation). 

Differential Gene Expression Analysis 

The RNA-seq data was analyzed following a standard bioinformatics pipeline to perform 

quality control of raw sequencing initially reads using FastQC (Andrews, 2010), which 

assesses sequencing quality metrics related to per-base quality scores, GC content, 

sequence contaminants, and adapter presence. The low-quality reads are then removed 

using Cutadapt (Martin, 2014). Next, aligned reads are processed using the STAR aligner 

(Dobin et al., 2013) against the Allium cepa genome and corresponding gene models 

(Finkers et al., 2021). Mapped fragments contained in binary bam files were then 
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processed using featureCounts software (Liao et al., 2014) to create a file corresponding 

to a matrix of gene expression levels. 

The matrix of absolute read counts for each gene is then subjected to a normalized 

gene expression analysis with statistical significance using the Bioconductor (Gentleman 

et al., 2004) package DESeq2 (Love et al., 2014). In this step, the read counts data is 

transformed into a DESeq2 dataset for differential expression analysis, including pre-

filtering low-count genes to identify significant results based on adjusted p-values 

(Benjamini-Hochberg statistical method). Genes with adjusted p-values of less than 0.05 

are considered significant in this study. This threshold indicates less than a 5% chance 

that the observed results are due to random variation alone. 

Gene ontology and pathway analysis 

Gene ontology annotation and pathway investigation were performed using gene 

expression data with statistical significance (DGE) subjected to the software 

clusterProfiler (Xu et al., 2024). Briefly, clusterProfiler internally uses a biological 

knowledge database, including Gene Ontology and Kyoto Encyclopedia of Genes and 

Genomes (KEGG), by performing over-representation and gene set enrichment analyses. 

This analysis allows for the investigation of the association of specific gene lists or sets 

with biological functions, pathways, and classifications. 

This analysis of DGE data determines which functionalities or pathways appear at 

a higher frequency than expected in the entire reference transcriptome set of Allium cepa, 

making it most suitable for analyzing genes with substantial effects, including the ones 

related to host-pathogen interaction, plant defense, immune system, and others. 
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Primer design: Primers were designed using Geneious Prime based on the RNA-seq 

results, focusing on differentially expressed genes with statistical significance. Five genes 

that were either highly up- or down-regulated based on transcriptomic analysis were 

chosen. Specificity was confirmed through BLASTn against the A. cepa genome 

(ASM3076508v1, GCA_030765085.1). The list of genes, their primer sequences, and 

conditions are listed in supplementary table 3.7.  

cDNA synthesis  

To validate the differential gene expression results from RNA-seq, quantitative PCR 

(qPCR) was performed. According to the manufacturer's instructions, the first-strand 

cDNA was synthesized from total RNA using the Bio-Rad iScript cDNA Synthesis Kit (Bio-

Rad Laboratories).  

qPCR amplification 

The qPCR reactions were carried out using the Bio-Rad iTaq Universal SYBR Green 

Supermix according to the manufacturer's instructions. Reactions were conducted in 

triplicate, using methods per the manufacturer's instruction. The qPCR was performed 

using a 96-well 0.2mL block. Real-time PCR was conducted for five target genes in a 

QuantStudio 3 (Thermo Fisher Scientific, Waltham, MA) with an amplification program 

that included an initial denaturation at 95℃ for 10 min, followed by 40 cycles of 

denaturation at 95℃ for 10 sec, annealing at 55℃ for 30 sec and extension at 72℃ for 30 

sec. The amplification program used for the PR1 gene was the same. The cycle threshold 

(Ct) values thus obtained were converted into relative fold differences of marker genes in 

treated samples compared with the water-control samples (negative control) and relative 

to the endogenous control gene (PR1) using the 2-ΔΔCt method (Livak and Schmittgen, 
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2001; Schmittgen and Livak, 2008). This was done after verifying the stability of the 

endogenous control genes and that the primer pairs had high, comparable PCR 

efficiencies (Schmittgen and Livak, 2008). Relative fold changes of target genes were 

calculated and compared. 

Results 

Field evaluations confirm that resistance to Pantoea ananatis PNA 97-1 is rare in 

Allium genotypes 

A panel of 982 Allium genotypes were screened against PA PNA 97-1, an aggressive 

pantaphos-containing strain isolated in Georgia from symptomatic onion. Considerable 

variations in disease severity were observed across A. cepa, A. cepa var cepa, and A. 

fistulosum.  For the A. cepa that survived screening with enough replicates for our cut-

off, most genotypes were classified as susceptible, accounting for 92.5% of the total 

genotypes screened. Some genotypes that displayed considerably high foliar disease 

severity and corresponding high AULPC values include New Mexico Yellow Grano, Linea 

139, and Portuguesa Tardia. A smaller proportion, 3.2%, displayed significantly lower 

disease severity and AULPC values, including the following genotypes: DPLD 19-39, 

California Red, 1607 Super Sleeper F1, Red Bermuda, Glory, A5718, and Saturn. Only a 

tiny fraction of the genotypes displayed resistance to the pathogen. Thirty-one A. 

fistulosum genotypes were screened in two sets (Set 1: N=10 genotypes with 5 replicates 

per genotype; Set 2: N=21 genotypes with seven replicates per genotype) 

(supplementary table 3.1). The phenotypic screen revealed significant variation in disease 

severity across A. fistulosum genotypes, with the highest disease severity AULPC 

observed in Japanese Bunching Hikari and Hardy Long White (supplementary table 3.2, 
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3.3). Genotypes such as Feast, Kannon Hosonegi, and Winter Snow Foot, Aigarshu 

displayed considerably low disease severity and AULPC. Genotypes like Shounai 

Nebuka Negi, Yakko, Big Buncher, YatabeYaty:50, and Koshizu Nebuka displayed 

significantly lower disease severity and AULPC than other genotypes. In the A. cepa 

subsp. cepa genotypes, most genotypes displayed moderate to high levels of disease 

severity. In Set 1 (supplementary table 4), which included ten varieties with six replicates 

each, the highest AULPC values were observed for Sweet Spanish Los Animas Special, 

Yellow Ebenezer, and No. 8656 compared with Yellow Grano, which had significantly 

lower AULPC values. Similarly, in Set 2 (supplementary table 3.5, 3.6), which assessed 

eleven genotypes with three replicates each, significant differences in AULPC values 

among the screened genotypes were not observed (2935B, White Portugal, Stuttgarter, 

Yellow Sweet Spanish Utah Strain, 607 Ebenezer, Calred, Early Crystal 281, Giolla di 

Rovato da Scttaceto, Early Crystal, White Sweet Spanish, and White Lisbon).  

 

Greenhouse screening identifies consistently resistant Allium genotypes against 

Pantoea ananatis PNA 97-1 

In two independent greenhouse experiments (GH-1 and GH-2), four Allium genotypes, 

DPLD-19-39, Sweet Harvest, Zhang Qiu Da Cong, and Koshizu Nebuka, were evaluated 

for foliar disease severity. Since there was a significant interaction between the two 

experiments, both experiments were analyzed separately. The main effects, genotypes 

(P < 0.001), treatment (P < 0.001), and the interaction term (genotype x treatment), were 

significant (P < 0.001) (table 2). In greenhouse experiment 1 (GH-1), significant effects 

were observed for genotype (P < 0.001), treatment (P < 0.001), and their interactions (P 
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< 0.001) (Table 3.2). The comparison of foliar disease severity among four Allium 

genotypes (Table 3.3) showed that Sweet Harvest exhibited the highest mean AULPC 

value (60.5) compared to DPLD-19-39, Koshizu Nebuka and Zhang Qiu Da Cong. 

Regarding treatment effects, inoculated plants showed significantly higher AULPC values 

than the control plants (AULPC; inoculated=61.9 vs. control=17.2). The significant 

genotype x treatment interactions (P < 0.01) underscore the differential responses of the 

genotypes to inoculation with PA strain PNA 97-1. Specifically, Sweet Harvest had the 

highest mean AULPC value when inoculated (105.5), while Zhang Qiu Da Cong had the 

lowest (29.7). DPLD-19-39 (62.2) and Koshizu Nebuka (50.1) exhibited intermediate 

values but were not significantly different. In greenhouse experiment 2 (GH-2), similar 

trends were observed, with significant effects for genotype (P < 0.01), treatment (P < 

0.01), and their interactions (P < 0.01) (table 2). Again, Sweet Harvest had the highest 

mean AULPC value (130.7), compared with DPLD-19-39 (68.2), Koshizu Nebuka (36.2), 

and Zhang Qiu Da Cong (93.6). In terms of treatment effects, inoculated plants again 

showed significantly higher AULPC values than controls (AULPC; inoculated = 104.9 vs. 

control = 56.31) (Figure 3.1).  

Growth chamber evaluation continues to support higher disease severity in Sweet 

Harvest compared to DPLD 19-39 following Pantoea ananatis PNA 97-1 inoculation 

In a controlled growth chamber experiment, we evaluated the foliar disease severity of A. 

cepa genotypes, DPLD 19-39, and Sweet Harvest against PA PNA 97-1. Disease severity 

was assessed by measuring the AULPC over two weeks, with disease progression 

recorded every other day. Disease severity and AULPC values were significantly higher 

for bacterial inoculated Sweet Harvest than DPLD 19-39. Although inoculation with PBS 
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also resulted in some necrosis in seedlings of both genotypes, AULPC values were 

significantly lower than the AULPC observed for the inoculated seedlings of both 

genotypes (Figure 3.2).  

 

Evaluation of bulb rot symptoms in DPLD 19-39 confirms reduced severity against 

P. ananatis 

Further, we analyzed the ability of 97-1 to penetrate the onion bulb for both DPLD 19-39 

and Sweet Harvest. First, we examined the outer scale of each onion bulb once the foliar 

lesion experiment concluded. Sweet Harvest inoculated leaves consistently led to the 

rotting of the attached bulb scale. In contrast, their negative controls were consistently 

asymptomatic (Figure 3.3A). PA was isolated from the inner scales in 100% of the 

replicates/samples assayed, which were later confirmed using PA-HiVir specific PCR 

assay as mentioned above. Isolations made from the inner scales of asymptomatic DPLD 

19-39 resulted in bacterial recovery but were not P. ananatis, as confirmed by the above 

PCR assay. To assess if DPLD 19-39 or Sweet Harvest would develop further bulb-rot 

symptoms, we inoculated PNA 97-1 directly into the bulb and observed that Sweet 

Harvest consistently developed internal rot symptoms (Figure 3.3B). The Sweet Harvest 

negative control and DPLD 19-39 treatments did not result in internal bulb rot (Figure 

3.3B).  

 

Transcriptome analysis of DPLD 19-39 vs. Sweet Harvest genotypes 

To investigate whether DPLD 19-39 and Sweet Harvest genotypes present different 

transcriptional responses during the disease, the plants inoculated by PNA 97-1 were 
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subjected to RNA extraction and transcriptome analysis. Three biological replicates per 

treatment were used. The RNA-seq data generated an average of 20,394,265 million 

sequenced paired-end reads. After quality analysis and mapping to reference genome, 

sequenced libraries produced an average of approximately 90% of successfully mapped 

reads subjected to differential expression analysis with statistical significance (DEASS) 

genes.  

In the analysis of susceptible Sweet Harvest control (HC) compared to Sweet 

Harvest inoculated (HI), it was found that 998 DEASS genes, with 598 genes down-

regulated in HI and 400 genes up-regulated in HI when compared to respective HC 

controls. Between the top down-regulated genes in HI, there are genes associated with 

nucleic acid binding, membrane functions, catalytic activities, DNA binding, nucleotide 

binding, mitochondrial functions, protein binding, enzyme regulation, signal transduction, 

catabolic processes, energy generation, carbohydrate metabolic processes, and protein 

metabolic processes. Conversely, among the top-upregulated genes in HI, there are 

genes associated with DNA binding, nucleotide binding, signal transduction, DNA 

metabolic processes, energy generation, nuclear functions, transferase activity, structural 

molecule activity, response to endogenous stimuli, protein and RNA binding, secondary 

metabolic processes, plasma membrane functions, catalytic and hydrolase activities, 

nuclear envelope functions, lipid metabolic processes, nuclease activity, and multicellular 

organism development.  

Next, we also performed gene ontology (GO) enrichment analysis of the 998 

DEASS genes in HI. In the GO category of biological process, it identified ten terms with 

significant alteration, including response to the bacterium, defense response to the 
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bacterium, defense response to other organism, hormone metabolic process, response 

to water, response to acid chemical, response to water deprivation, lipid homeostasis, 

phytoesteroid biosynthetic process and brassinosteroid biosynthetic process (Figure 

3.4A). In the GO category of cellular component, it identified five terms with significant 

alterations, including secretory vesicle, cell wall, apoplast, plant-type cell wall and external 

encapsulating structure (Figure 3.4B). In the GO category of molecular function, it 

identified ten terms with significant alterations, including UDP−glucosyltransferase 

activity, glucosyltransferase activity, quercetin 3−O−glucosyltransferase activity, 

quercetin 7−O−glucosyltransferase activity, "oxidoreductase activity, acting on paired 

donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and 

incorporation of one atom of oxygen," monooxygenase activity, heme binding, 

tetrapyrrole binding, "oxidoreductase activity, acting on paired donors, with incorporation 

or reduction of molecular oxygen" and "iron ion binding" (Figure 3.4C). The KEGG-based 

biological pathway enrichment analysis of all DEASS genes also found two significantly 

altered pathways in HI compared to HC, galactose metabolism, and zeatin biosynthesis 

(Figure 3.4D).  

In the analysis of the resistant DPLD 19-39 control (DC) compared to DPLD-19-39 

inoculated (DI), it found 57 DEASS genes, with 27 down-regulated in DI and 30 up-

regulated genes in DI compared to respective controls DC. Between the top down-

regulated genes in DI, there are genes associated with nucleic acid binding, membrane 

functions, cytoplasmic activities, catalytic activities, DNA binding, nucleotide binding, 

mitochondrial functions, enzyme regulation, signal transduction, catabolic processes, 

energy generation, carbohydrate and protein metabolic processes. Conversely, among 
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the top-upregulated genes in DI, there are genes associated with cytoplasmic functions, 

DNA binding, cytoskeleton functions, nucleotide binding, signal transduction, biosynthetic 

processes, nuclear functions, lipid binding, protein and RNA binding, enzyme regulator 

activity, plasma membrane functions, nucleic acid binding, catalytic and hydrolase 

activities, protein metabolic processes, membrane functions, transport activities, 

translation factor activity with RNA binding, multicellular organism development, binding, 

plastid functions, and cellular homeostasis. Next, we also performed GO enrichment 

analysis of the 57 DEASS genes in DI and only found a significant alteration in the 

molecular function category (Figure 3.5) in the following GO terms: carbohydrate 

derivative binding, adenyl ribonucleotide binding, ribonucleotide binding, ATP binding, 

adenyl nucleotide binding. The KEGG-based biological pathway analysis also did not 

detect any significant alterations considering the DEASS genes of DI samples. 

In the analysis of DI compared to HI, the resistant and susceptible genotypes 

inoculated by PNA 97-1 found 1577 DEASS genes, with 879 downregulated and 698 up-

regulated genes in HI compared to the genotype DI. Between the top down-regulated 

genes in HI, there are genes associated with nucleic acid binding, membrane functions, 

catalytic activities, DNA binding, nucleotide binding, mitochondrial functions, enzyme 

regulation, signal transduction, catabolic processes, energy generation, and 

carbohydrate and protein metabolic processes. Between the top up-regulated genes in 

HI, there are genes associated with cytoplasmic functions, DNA binding, nucleotide 

binding, biosynthetic processes, nuclear functions, transferase activity, cellular 

processes, structural molecule activity, protein and RNA binding, secondary metabolic 

processes, plasma membrane functions, nucleic acid binding, vacuole functions, catalytic 
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activity, protein and lipid metabolic processes, membrane functions, transport activities, 

and multicellular organism development. Next, we also performed gene ontology (GO) 

enrichment analysis of the 1577 DEASS genes between DI and HI. In the GO category 

of cellular component, it was identified 4 terms with significant alteration, including 

apoplast, plant−type cell wall, cell wall, external encapsulating structure (Figure 3.6A). In 

the GO category of molecular function, it was identified 6 terms with significant alteration, 

including "tetrapyrrole binding", "heme binding", "protein dimerization activity", "structural 

constituent of chromatin", "oxidoreductase activity, acting on paired donors, with 

incorporation or reduction of molecular oxygen", "iron ion binding" (Figure 3.6 B). The 

KEGG-based biological pathway analysis did not detect any significant alterations 

considering the DEASS genes of HI samples compared to DI. 

In the last analysis of the transcriptome sequencing data, we compared both 

control genotypes, HC with DC, and found 1254 DEASS genes, with 597 downregulated 

genes and 657 up-regulated genes in DC compared to the HC genotype. Between the 

top down-regulated genes in DC, there are genes associated with nucleic acid binding, 

membrane functions, catalytic activities, DNA binding, nucleotide binding, mitochondrial 

functions, enzyme regulation, signal transduction, catabolic processes, energy 

generation, carbohydrate and protein metabolic processes. Between the top up-regulated 

genes in DC, there are genes associated with cytoplasmic functions, response to stress, 

DNA binding, nucleotide binding, nuclear functions, transferase activity, structural 

molecule activity, lipid binding, protein and RNA binding, catalytic and hydrolase activities, 

membrane functions, transport activities, and multicellular organism development. Next, 

we also performed GO enrichment analysis of the 1254 DEASS genes in DC, and it was 
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only found a significant alteration in the molecular function category (Figure 3.7) in the 

following GO terms: hydrolase activity, acting on glycosyl bonds, sodium:proton antiporter 

activity, transmembrane receptor protein serine/threonine kinase activity, 

monooxygenase activity, glucosyltransferase activity, iron ion binding, heme binding, 

tetrapyrrole binding, molecular transducer activity, UDP−glucosyltransferase activity. The 

KEGG-based biological pathway analysis also did not detect any significant alterations 

considering the DEASS genes of DC samples compared to HC. 

We used qPCR to calculate the average cycle threshold (CT) values and validate 

responses and expression observed in the above transcriptome analysis for the two 

genotypes under control and inoculated conditions. While the relative expression values 

show some variability among replicates, the trends of the direction of expression (up- or 

down-regulated) for five selected genes were exact (Supplementary figure 1). While none 

of the five of these transcripts are significantly different between the control and 

inoculated host when considering adjusted p-values, all but one are significantly different 

when comparing the two host genotypes. Ultimately, the trends seen here match the 

expected values from the DGE data. All transcriptome pathways are summarized via 

mapman analysis in figure 3.8.  

Discussion 

Our extensive phenotypic assessment of 982 Allium genotypes, including various species 

from the Allium genus, A. cepa, A. cepa var. cepa, and A. fistulosum, indicated substantial 

phenotypic differences in resistance to PA. Both field and greenhouse evaluations 

indicated that specific genotypes consistently displayed lower disease severity, as 

measured by the AULPC; notably, the A. fistulosum genotypes "Zhang Qiu Da Cong" and 
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A. cepa genotype "DPLD 19-39" demonstrated moderate to high levels of resistance, with 

significantly lower AULPC values compared to highly susceptible genotype (Sweet 

Harvest). These results align with previous studies indicating that Allium species' 

resistance is considerably variable; for instance, resistance to pathogens such as 

Fusarium oxysporum varies across species like onion (Allium cepa) and its wild relatives 

(A. roylei, A. fistulosum) (Khrustaleva et al., 2000; Havey et al., 2004). In our study, A. 

fistulosum had the largest number of resistant genotypes (n = 18) against PA, which is 

still a startlingly small value of the overall tested genotypes screened. 

These results were consistent with the various greenhouse and the growth 

chamber experiments, where P. ananatis did not cause systemic infection in DPLD 19-

39 but did in Sweet Harvest. The consistency in resistance phenotype in DPLD 19-39 is 

particularly exciting, as it indicates potential utility of this genotype in future breeding 

efforts. 

The transcriptomic analysis of two A. cepa genotypes, DPLD 19-39 (resistant) and 

Sweet Harvest (susceptible) revealed possible mechanisms responsible for the noted 

resistance to PA in Allium cepa. In the resistant DPLD 19-39, genes associated with cell-

wall structural molecule activity and nucleotide binding were significantly upregulated; 

these plants likely fortify their cell walls in pathogen-infected conditions. This upregulation 

suggests resistant genotype possesses stronger cell walls, which serve as a barrier 

against PA. Inoculated resistant plants also showed increased expression of genes linked 

to membrane functions and enzymatic activity, supporting the hypothesis that resistant 

plants actively reinforce their cell walls in response to pathogen-derived CWDEs like 

pectate lyase (Flors et al., 2008; Ponce de León & Montesano, 2013; Wang et al., 2021). 



   
 

170 
 

In addition to cell-wall mediated defense, however, there was upregulation of genes 

involved in oxidoreductase activity and ROS regulation in both control and inoculated 

conditions. ROS manipulation suggests that resistant plants are better equipped to 

regulate ROS production, possibly preventing the intended necrosis induced by pantoxin 

produced by PA. This modulation involves ROS-scavenging enzymes like catalases and 

peroxidases, which are necessary for signaling defense responses while minimizing 

oxidative damage (Torres et al., 2006).  

 Resistant genotype also showed upregulation of genes related to hormonal 

pathways, particularly those involved in developmental processes and enzyme 

regulation. This indicates that JA and ET signaling plays a crucial role in coordinating 

PCD and further reinforcing the cell wall to limit pathogen-induced necrosis, consistent 

with previous research on defense mechanisms against necrotrophic pathogens (Bolwell 

& Daudi, 2009; Ali et al., 2024).  

The transcriptome data also highlighted the significant upregulation of genes 

involved in extracellular matrix organization and PCD, a key mechanism for containing 

pathogen spread by localizing necrotic tissue. This may be particularly important in PA 

infections, where the pantaphos toxin causes extensive necrosis in susceptible plants 

(Asselin et al., 2018; Polidore et al., 2021). DPLD 19-39 exhibited upregulation of genes 

related to secondary metabolic processes, suggesting they may produce phenolic 

compounds or other metabolites that reinforce the cell wall and potentially neutralize 

toxins like pantaphos. While the direct role of secondary metabolites in detoxifying 

pantaphos remains speculative, their contribution to cell wall fortification is likely critical 

(Flors et al., 2008; Ponce de León & Montesano, 2013). Importantly, we were unable to 
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detect any significant upregulation of genes related to C-P lyase activity, which breaks 

down phosphonates, indicating that resistant plants do not degrade pantaphos through 

this pathway if they are degrading it, or at least the genes responsible for that activity are 

not annotated. Instead, resistance likely relies more on strengthening physical defenses, 

such as cell wall fortification, and managing the toxin's downstream effects, rather than 

directly neutralizing the phosphonate via metabolic breakdown (Coutinho & Venter, 2009; 

Polidore et al., 2021). 

Identifying the significantly different genes involved in cell wall reinforcement, ROS 

modulation, hormonal signaling, and PCD in resistant onion genotypes provides valuable 

targets for breeding programs to enhance resistance to PA by incorporating resistant 

traits from genotypes like "Zhang Qiu Da Cong" and "DPLD 19-39," it is possible to 

develop new onion genotypes with improved resistance to pantaphos and reduced 

susceptibility to PA-induced OCR. Future research must further characterize the genetic 

basis of resistance to PA, whether through immune responses to PA or insensitivity to 

pantaphos; continued transcriptomic analysis of resistant and susceptible genotypes will 

be crucial for identifying resistance. Such insights are essential for developing more 

durable and effective resistance strategies in Allium crops, allowing for more precise 

predictions of disease incidence and contributing to the long-term sustainability of onion 

production (Khandagale et al., 2022; Prajapati et al., 2023). 

Conclusions 

In this study, we attempted to find an A. cepa genotype that shows promising resistant 

phenotype (both in foliar and bulb assays) against PA (PNA 97-1). DPLD 19-39 did not 

show symptoms typical of PA inoculation in foliar or bulb tissue under field, greenhouse, 
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and growth chamber experiments. The transcriptome response of DPLD 19-39, especially 

compared to the susceptible genotype Sweet Harvest, indicates that the primary 

defensive strategy against PA may depend on cell-wall mediated fortification response.  
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Figure 3.1: Foliar lesion progression in Allium cepa and Allium fistulosum genotypes 

inoculated with Pantoea ananatis 97-1 under greenhouse conditions. 

Four genotypes were tested: Allium cepa (DPLD-19-39 and Sweet Harvest) and Allium 

fistulosum (Koshizu Nebuka and Zhang Qiu Da Cong). Plants were inoculated with 10 µL 

of a bacterial suspension (10⁸ CFU/mL) and incubated for 7 days, with phosphate-

buffered saline solution -treated plants served as controls. The area under the lesion 

progress curve (AULPC) was calculated from lesion measurements. Panels A and B: 

AULPC for experiments 1 and 2, respectively. 
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Figure 3.2: Area under lesion progression curve (AULPC) for DPLD-19-39 and Sweet 

Harvest in a growth chamber experiment. Onion seedlings were inoculated with 

Pantoea ananatis strain 97-1 with a bacterial suspension of 10µl containing 108 colony-

forming units/ml and incubated for 14 days. Seedlings inoculated with phosphate-

buffered saline (PBS) solution served as negative controls. The data for lesion length 

progression over time (every other day for 12 time points post inoculation), and AULPC 

was determined. Twenty replicates per genotype were used in this experiment. The 

bars followed by the same letters are not significantly different according to Tukey’s 

honestly significant difference (P<0.05) test. Panel B indicates the foliar lesion in both 

the negative control (PBS) and inoculated (Inoc (+)) treatments in DPLD-19-39 and 

Sweet Harvest, respectively. The green brackets in the image indicate the degree or 

severity of necrotic lesions observed during the experiment. 
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Figure 3.3: Comparison of onion bulb symptoms in Allium cepa genotypes “Sweet 

Harvest” and “DPLD 19-39” following inoculation with Pantoea ananatis PNA 97-1. Panel 

A: Outer scale images of two Allium cepa genotypes, “Sweet Harvest” and “DPLD 19-39”, 

taken after 3-months under growth-chamber conditions. Outer scales were removed and 

assessed for water-soaked bacterial lesion or associated slime. Greasy greenish-yellow 

indicates water soaked bacterial slime associated lesion. Panel B: Internal bulb rot 

symptoms in response to PA inoculation to Allium cepa genotypes “Sweet Harvest” and 

“DPLD 19-39.  After a week of incubation, bulbs were sliced vertically alongside the 

inoculation site and the weight of the whole bulb and symptomatic scales with necrotic 

lesions (and visual rot) was measured and recorded. The signs “+” and “-“ denote PA-

inoculated and PBS-inoculated onion tissues, respectively. Red dotted lines indicate 

water-soaked lesions. 
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Figure 3.4: Gene Ontology (GO) enrichment analysis for differentially expressed genes 

between Sweet Harvest control (HC) vs. Sweet Harvest inoculated (HI) plants. Inoculation 

was done with Pantoea ananatis (PNA 97-1). Panel A: GO enrichment analysis for 

Biological Processes (BP) shows significant upregulation of defense-related processes, 

including response to bacterium and defense against other organisms, alongside 

processes related to water and hormone metabolism. Panel B: GO enrichment for Cellular 

Components (CC) highlights the involvement of genes associated with the cell wall, 

apoplast, and external encapsulating structures, suggesting structural reinforcement 

during infection. Panel C: GO enrichment for Molecular Functions (MF) indicates 

upregulation of genes involved in iron ion binding, oxidoreductase activity, and 

transferase activities, reflecting oxidative stress responses. Panel D: KEGG pathway 

enrichment analysis reveals significant activation of zeatin biosynthesis and galactose 

metabolism, pointing to hormonal regulation and cell wall remodeling efforts.  
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Figure 3.5: Gene Ontology (GO) enrichment analysis for differentially expressed genes 

between DPLD-19-39 control (DC) and DPLD-19-39 inoculated (DI) plants, with a focus 

on the molecular functions (MF) that are enriched in response to inoculation with 

Pantoea ananatis (PNA 97-1). GO enrichment analysis for MF reveals significant 

enrichment in genes associated with binding activities, including adenyl nucleotide 

binding, ATP binding, ribonucleotide binding, and carbohydrate derivative binding; these 

molecular functions are essential in energy transfer, nucleotide metabolism, and 

carbohydrate interactions, all of which are crucial during the plant's response to 

pathogen stress.  
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Figure 3.6: Gene Ontology (GO) enrichment analysis for differentially expressed genes 

between DPLD 19-39 inoculated (DI) and Sweet Harvest inoculated (HI) plants with 

Pantoea ananatis (PNA 97-1), highlighting cellular components and molecular functions 

that differ between the resistant and susceptible genotypes. Panel A: GO enrichment 

analysis for Cellular Components (CC) shows significant upregulation in genes 

associated with the external encapsulating structure, cell wall, plant-type cell wall, and 

apoplast in DPLD-19-39 compared to Sweet Harvest. This suggests that the resistant 

genotype, DPLD-19-39, enhances structural defenses during infection, potentially 

limiting pathogen spread by reinforcing its cell walls and apoplastic barriers. Panel B: 

GO enrichment analysis for Molecular Functions (MF) indicates enrichment in genes 

related to iron ion binding, oxidoreductase activity, and chromatin structural 

constituents, alongside protein dimerization and heme binding.  
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Figure 3.7: Gene Ontology (GO) enrichment analysis for differentially expressed genes 

between DPLD 19-39 control (DC) and Sweet Harvest control (HC) plants, highlighting 

molecular functions enriched in the resistant and susceptible genotypes under non-

infected conditions. GO enrichment analysis for Molecular Functions (MF) shows 

significant upregulation in DPLD 19-39 of genes related to UDP-glucosyltransferase 

activity, molecular transducer activity, and iron ion binding.   
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Figure 3.8: Main biotic stress pathways identified in resistant Allium cepa using MapMan 

software (Thimm et al. 2004). This molecular pathway analysis compares differentially 

expressed genes with statistical significance (DEASS) between DPLD-19-39 (resistant) 

and Sweet Harvest (susceptible) in response to PNA 97-1 infection. Red boxes indicate 

up-regulated genes, while blue boxes indicate down-regulated genes. Light gray boxes 

indicate specific molecular pathways, with the total genes belonging to that specific 

pathway. 
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Allium genotypes AULPC* Groups** 

New Mexico Yellow Grano 149.2 a 

Linea 139 147.3 ab 

Portuguesa Tardia 144.7 abc 

Big Ben 142.0 abc 

Swat Selection 140.1 abc 

Poona Red 139.7 abc 

WHITE IMPERIAL SPANISH 139.3 abc 

ELSOMS DOMINATOR 138.1 abc 

Malakoff GRU 138.1 abc 

Brown Spanish Creamflesh 138.0 abc 

Violet De Galmi 137.2 abc 

Siohu 136.8 abc 

Stuttgart Giant 136.3 abc 

Kanda 135.6 abc 

Karacabey 135.6 abc 

No 9767 135.3 abc 

L 365 135.2 abc 

Brown Beauty 134.0 abc 

Kaba Maikopskaya 134.0 abc 

Markovskij Mestnyj 134.0 abc 

Odourless 134.0 abc 
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Pionier 134.0 abc 

Reliance GRU B 133.6 abc 

Senshyu 132.8 abc 

1620 Pedro 132.7 abc 

Utah Valencia 132.7 abc 

Kille 132.0 abc 

Porters Early Globe h 771U 132.0 abc 

Exhibition 131.5 abc 

Yellow Sweet Spanish Sumida 131.5 abc 

UDAIPUR 101 131.3 abc 

G 29178 131.3 abc 

RED SYNTHETIC 130.5 abc 

SAJOVAMOS 130.5 abc 

Scanion 130.1 abc 

Borrettana 130.0 abc 

Rawska 130.0 abc 

A7728 129.9 abc 

Golden Globe 129.8 abc 

Hiberna Vsetatska Ozima 129.2 abc 

Rijnsburger Augusta 128.7 abc 

Rijnsburger Robusta 128.4 abc 

No 10545 128.3 abc 

Rossa Di Firenze 128.3 abc 



   
 

188 
 

PUKEKOHE LONGKEEPER M+R EARLY 128.1 abc 

MAKOVSKI GRU 127.5 abc 

Rijnsburger 127.2 abc 

Henderson Early Golden 127.1 abc 

STAMME 4 126.9 abc 

Rijnsburger Wijbo 126.8 abc 

Brigham Yellow Globe 126.0 abc 

KAIZUKA 126.0 abc 

619 Southport White Bunching 125.8 abc 

Indian Queen 125.6 abc 

PUKEKOHE LONGKEEPER ULTRA 124.8 abc 

White Sweet Spanish Utah 124.3 abc 

B5718 124.3 abc 

Ideal 124.1 abc 

NUMEX BR 1 123.5 abc 

STURON 123.2 abc 

Gelbe Wiener 123.1 abc 

Emerald Isle 123.0 abc 

YALOVA 1 122.3 abc 

AGRIFOUND ROSE GRU 121.9 abc 

Bianca Pompei Italy 121.9 abc 

Early Yellow Globe 121.4 abc 

Sweet Spanish Valencia 121.3 abc 
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UDAIPUR 102 121.1 abc 

Imai Yellow 120.0 abc 

CANDY F1 119.0 abc 

Perfecto Blanco 118.7 abc 

Yellow Multiplier 117.2 abc 

Rijnsburger Envee 116.8 abc 

PATNA RED 116.6 abc 

Texas EARLY GRANO 502 GRU 116.6 abc 

Wellving 76522 71 116.5 abc 

Besszonovskij 116.3 abc 

Q75 116.0 abc 

Excel 986 115.9 abc 

Rossvale 115.8 abc 

Ptujska 115.3 abc 

HUNTER RIVER WHITE 115.2 abc 

Blanca Grande 114.9 abc 

DE LA REINE 114.9 abc 

No 8362 114.6 abc 

ZWIJNDRECHTSE 114.6 abc 

UDAIPUR 103 114.3 abc 

No 9491 114.0 abc 

Japanese Seketcan 113.9 abc 

TORRENS WHITE 113.9 abc 
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Early Yellow Grano Tex 502 113.7 abc 

ASHTON 113.0 abc 

617 Southport White Globe Onion 112.3 abc 

CEBOLE DE BARCELOS 112.3 abc 

L T Medicina 112.3 abc 

SENSHUU KOUDAKA 112.3 abc 

Dorata Di Palma 111.4 abc 

Japanese semi globe yellow 111.2 abc 

DOWNING’S YELLOW GLOBE TRAPP 

STRAIN 
110.8 abc 

KISHUU HIRAGATA KI 110.8 abc 

Ebenezer 110.3 abc 

No Kp 13 109.8 abc 

WHITE EBENEZER 109.5 abc 

Z025 108.7 abc 

620 Yellow Sweet Spanish 107.9 abc 

Porters Early Globe H 771N 107.4 abc 

Caledon Globe 106.6 abc 

Early Yellow Sweet Spanish 106.3 abc 

Presto 106.0 abc 

White Sweet Spanish 104.9 abc 

Shamrock 104.5 abc 

Rio Grande 103.9 abc 
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SerraNA 103.9 abc 

No Kp S 103.8 abc 

No Known Plant ID Mol 103.6 abc 

No 259 103.1 abc 

No 8543 103.0 abc 

White Creole 101.8 abc 

Extra Early Kaizuka 101.5 abc 

GOLDRUSH YELLOWGLOBE 101.5 abc 

Onion Red 2 101.3 abc 

376R Yet 101.0 abc 

Morada de Amposta 100.8 abc 

N 53 100.7 abc 

Borrettana_2 100.2 abc 

Portuguesa Amarilla Tardia 99.8 abc 

Lord Howe Island 97.8 abc 

LOWSHAN 97.8 abc 

GIANT ROCCA BROWN 97.4 abc 

Vertus 96.4 abc 

White Creole PRR PVP 96.4 abc 

Moravanka 96.3 abc 

Pungent 95.9 abc 

Yalova 9 95.3 abc 

Giant Zittau 95.3 abc 
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TREBONS 94.7 abc 

Kilsurski 93.7 abc 

Caldera 1028 92.7 abc 

Radar 92.7 abc 

Imperial 48 91.3 abc 

Hybrid Elite 90.5 abc 

HYDURO F1 90.5 abc 

Malakoff France 90.5 abc 

Early Texas Yellow Grano 89.4 abc 

Senshyu 234 89.2 abc 

No K1417 89.0 abc 

Pios 88.9 abc 

616 Southport Red Globe Onion 88.1 abc 

DOWNY MILDEW RES SELECTION 87.3 abc 

Red Wethersfield 86.7 abc 

LIASKOVSKI 58 86.6 abc 

Arpadzik 85.9 abc 

Shiraz A 85.6 abc 

TAK NO 747 84.4 abc 

White Portugal 83.3 abc 

Obrovska Zluta Germany 83.1 abc 

HYGRO F1 83.0 abc 

lowa Yellow Globe 51 82.8 abc 
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No 9526 81.8 abc 

Jaune Paille Des Vertus 81.8 abc 

G 29180 81.6 abc 

No 366 80.5 abc 

Cebola Valencia 79.5 abc 

Odourless Green Leaf 79.3 abc 

No Known Plant ID Aus 79.2 abc 

M8155A 78.2 abc 

Hunter River Brown 77.3 abc 

No K93 76.5 abc 

White Sweet Spanish Valencia 76.0 abc 

Yellow Sweet Spanish Utah Jumbo 76.0 abc 

Colorado De Amposta 74.7 abc 

Cardinal 74.6 abc 

No 6656 74.6 abc 

PYRAMID GRU 72.8 abc 

No 6819 72.0 abc 

Fruhi Blassrote 71.1 abc 

B 12132 B 70.3 bc 

ASIMER ADVANCE 70.2 bc 

Siohu PBR 3 66.9 bc 

303 R 66.8 bc 

Sogan 65.9 bc 
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Yellow Sweet Spanish UT Jumbo 65.5 bc 

California Red 65.3 c 

1607 Super Sleeper F1 61.8 c 

Red Bermuda 59.7 c 

Glory 58.4 c 

A5718 52.8 c 

Saturn 65.0 c 

*Data for lesion progression over time were taken and the area under lesion progress 

curve (AULPC) was determined. Seven replicates per genotypes were used in this 

experiment. AULPC was calculated from the lesion area of the foliar necrosis, which 

was recorded with a measuring scale at 1-, 7-, 19-, and 32-days post-inoculation. Day 1 

all lesions were effectively 0 in length. 

**Mean AULPC with same letters are not significantly different according to Tukey’s 

honest significant difference (P<0.05) test. 

Supplementary table 3.1. Foliar disease severity of Allium cepa genotypes under field 

conditions.  
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Allium fistulosum genotype Mean AULPC* Group** 

Koshizu Nebuka 36.6 b 

Feast 42.8 ab 

Kannon Hosonegi 53.8 ab 

Winter Snow Foot 57.5 ab 

Aigarsyu 72.9 ab 

Matsumoto ippon Futo 74.5 ab 

Crystal White Wax L303 77.2 ab 

JAPANESE BUNCHING 78.3 ab 

Japanese Bunching Asage 85.0 ab 

JAPANESE BUNCHING HIKARI 100.6 a 

      

 

*Data for lesion progression over time were taken and the area under lesion progress 

curve (AULPC) was determined. Five replicates per genotypes were used in this 

experiment. AULPC was calculated from the lesion area of the foliar necrosis, which 

was recorded with a measuring scale at 7 days post-inoculation.  

**Mean AULPC with same letters are not significantly different according to Tukey’s 

honest significant difference (P<0.05) test. 

Supplementary table 3.2: Foliar disease severity of Allium fistulosum genotypes under 

greenhouse conditions [Set-1 (10 genotypes with 5 replicates data)]. 
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Allium fistulosum 

genotypes 

Mean 

AULPC* 
Group** 

HARDY LONG 

WHITE 
120.0 a 

Wakamidori 114.7 ab 

Q9 99.2 abc 

Kuronobori 89.7 abcd 

Matsumoto 88.5 abcde 

Koshizu Nebuka 76.7 abcdef 

Shiobara-bansei 71.1 bcdefg 

Ciboule C8379 69.0 cdefg 

Kujyo-futo 60.8 cdefg 

Prolific Twin 60.8 cdefg 

Miya Negi 60.1 cdefg 

lwatsuki 52.8 cdefg 

Zhang Qiu Da 

Cong 
52.1 defg 

Prolific Buncher 51.7 defg 

Asagikei-kujyo 47.3 defg 

Kincho Long White 47.2 defg 

VIR3139 46.3 efg 

Shounai Nebuka 

Negi 
31.5 fg 
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Yakko 31.5 fg 

Big Buncher 27.1 g 

Yatabe Yaty:50 25.9 g 

*Data for lesion progression over time were taken and the area under lesion progress 

curve (AULPC) was determined. Seven replicates per genotypes were used in this 

experiment. AULPC was calculated from the lesion area of the foliar necrosis which was 

recorded with measuring scale every other day for 38 days post inoculation.  

**Mean AULPC with same letters are not significantly different according to Tukey’s 

honest significant difference (P<0.05) test. 

Supplementary table 3.3: Foliar disease severity of Allium fistulosum genotypes under 

greenhouse conditions [Set-2 (21 genotypes with 7 replicates data)] 
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Allium cepa subsp. cepa 

genotypes 

Mean 

AULPC* 
Group** 

Sweet Spanish Los Animas Special 130.8 a 

Yellow Ebenezer 127.3 a 

No 8656 123.0 a 

White Sweet Spanish Jumbo 110.8 ab 

Grano 502 101.4 ab 

White Sweet Spanish California 101.4 ab 

2935A 96.7 ab 

Early Texas White Grano 86.8 ab 

NM899 84.6 ab 

Yellow Grano 64.6 b 

*Data for lesion progression over time were taken and the area under lesion progress 

curve (AULPC) was determined. Six replicates per genotypes were used in this 

experiment. AULPC was calculated from the lesion area of the foliar necrosis which was 

recorded with measuring scale at 7 days post inoculation.  

**Mean AULPC with same letters are not significantly different according to Tukey’s 

honest significant difference (P<0.05) test. 

Supplementary table 3.4: Foliar disease severity of Allium cepa var. cepa genotypes 

under greenhouse conditions [Set-1 (10 genotypes with 6 replicates data)]. 
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Allium cepa subsp. cepa genotypes 
Mean 

AULPC* 
Group** 

2935B 118.0 a 

White Portugal 107.7 a 

Stuttgarter 97.2 a 

Yss Utah Str 97.2 a 

607  Ebeniezer 92.8 a 

Cal Red 80.5 a 

Early Crystal 281 73.8 a 

Cipolla di Rovato 65.8 a 

Early Crystal 65.7 a 

White Sweet Spanish 59.3 a 

White Lisbon 54.5 a 

*Data for lesion progression over time were taken and 

the area under lesion progress curve (AULPC) was 

determined. Three replicates per genotypes were used 

in this experiment. AULPC was calculated from the 

lesion area of the foliar necrosis which was recorded 

with measuring scale at 7 days post inoculation.  

**Mean AULPC with same letters are not significantly 

different according to Tukey’s honest significant 

difference (P<0.05) test. 
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Supplementary table 3.5: Foliar disease severity of Allium cepa var. cepa genotypes 

under greenhouse conditions [Set-2 (11 genotypes with 3 replicates data)]  
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Sequence 

Name Sequence 

Denaturation 

Temperature 

Annealing 

Temperature 

Extension 

Temperature 

g118777__

1,103 R 

GCAGATCTTTCA

GGCGCATG 95°C 57°C 72°C 

g118777__

456 F 

TGCTTGCGGATA

CATGGGTT 95°C 55°C 72°C 

g200799__

190 F 

GAGAACGTGATT

CGCGATGC 95°C 57°C 72°C 

g200799__

304 R 

CCAAAGGAGCCC

TGACACTT 95°C 57°C 72°C 

g433006__

1,121 R 

ATACAACGCAAA

CCCAACGC 95°C 55°C 72°C 

g433006__

145 F 

GGCAAGCCCATG

TCTCTCTT 95°C 57°C 72°C 

g464191__

1,170 R 

TTTCTCACCATCC

GGCGTAG 95°C 57°C 72°C 

g464191__

612 F 

GCCTAGTTTCCC

AGCCAGTT 95°C 57°C 72°C 

g90357__8

44 F 

CAAGCTGATATG

GCCGTTGC 95°C 57°C 72°C 

g90357__2,

779 R 

TGCTTCCTCCATT

GCGTGAT 95°C 55°C 72°C 



   
 

202 
 

PR1_Forwa

rd 

TTCTTCCCTCGAA

AGCTCAA 95°C 53°C 72°C 

PR1_Rever

se 

CGCTACCCCAGG

CTAAGTTT 95°C 57°C 72°C 

*This table lists the primer sequences and corresponding PCR conditions used to 

amplify specific genes in Allium genotypes. Each entry includes the sequence name, 

primer sequence, and the denaturation, annealing, and extension temperatures for the 

PCR reactions. All reactions were conducted with a denaturation temperature of 95°C, 

varying annealing temperatures between 53°C and 57°C, and an extension temperature 

of 72°C.  

Supplementary table 3.6: Primer sequences and PCR conditions for qPCR analysis*. 
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Supplementary figure 3.1: RNA-seq validated log2 fold changes for selected genes in 

DPLD 19-39 and Sweet Harvest genotypes, presented with standard error bars. Genes 

labeled on the x-axis correspond to differentially expressed genes validated through 

RNA-seq analysis. Green bars represent fold changes in DPLD 19-39, while purple bars 

represent those in Sweet Harvest. For gene g118777, no expression data was available 

for Sweet Harvest (*); this is due to the incredibly small number of reads and is not an 

unexpected result. Genes g200799, g433006, g464191, and g90357 display varying 

degrees of upregulation (↑) or downregulation (↓) across the two genotypes. All genes 

are significantly different when compared across genotypes except for g464191. These 

results highlight distinct transcriptional responses between the two genotypes 

responding to PA strain 97-1 infection, and all match the predicted log2 change 

comparisons predicted by the RNA seq analysis. 
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CHAPTER 5 

CONCLUSIONS 

 

The research outlined in this dissertation aimed to utilize a wide range of informatics 

approaches to explore the virulence factors of PA and the potential host resistance to 

center rot in Allium A. cepa. 

Our first objective aimed to identify potential virulence factors in PA strains 

contributing to pathogenicity in non-traditional Allium species, such as Allium porrum 

(leek) and A. fistulosum x A. cepa (bunching onion hybrid). We utilized pan-Ggenomic 

genome-wide association studies (GWAS) and gene-pair coincidence analyses to 

explore genetic variations and their correlation with pathogenic phenotypes. This 

approach emphasized the utility of combining phenotype-dependent and phenotype-

independent methodologies better to understand bacterial virulence mechanisms in 

diverse plant pathosystems, as previously demonstrated in similar studies, by leveraging 

the constant genomic filtering inherent to bacterial genomics (De Maayer et al., 2014; 

Agarwal et al., 2021). We observed significant variability in the pathogenicity of PA across 

A. porrum and A. fistulosum x A. cepa; notably, strains pathogenic on one host species 

were not necessarily pathogenic on another, suggesting the presence of host-specific 

virulence factors. Our pan-genomic analysis identified a core genome of approximately 

2,914 genes, consistent with findings from De Maayer et al. (2014) and Agarwal et al. 

(2021). The HiVir cluster, was responsible for virulence in bulb onions (Asselin et al., 

2018; Polidore et al., 2021), was also found to play a role in virulence across different 

Allium species, suggesting a conserved pathogenic mechanism. Additionally, our GWAS 
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analysis uncovered genes associated with thiosulfinate tolerance, specifically the alt gene 

cluster, which was correlated with infection in A. fistulosum x A. cepa and higher 

aggressiveness. This finding is supported by Stice et al. (2020), who demonstrated that 

the alt cluster is critical for thiosulfinate resistance, a key factor in allowing PA to colonize 

necrotic onion tissue. Interestingly, some strains that appeared pathogenic on A. porrum 

lacked the HiVir and alt clusters, indicating alternative virulence pathways that warrant 

further investigation. The co-occurrence and dissociation of virulence-related genes, as 

revealed by gene-pair association analyses, further emphasize the evolutionary 

pressures that shape the bacterial genome for host-specific pathogenicity and should be 

used in tandem with GWAS analysis to provide a deeper level of insight into the genomics 

at hand (Whelan et al., 2020). The results of this objective contribute significantly to 

understanding the genetic basis of PA virulence in non-traditional Allium species, laying 

the groundwork for developing targeted management strategies and leveraging genetic 

diversity for disease-resistance breeding. 

Data mining genomic variants in PA on Allium crops is difficult, even when using 

well-reviewed and accepted methods. The allicin tolerance (alt) gene cluster is a 

particularly irritating case study where traditional sequence-based, and potentially even 

gene-pair and GWAS methodologies, may fail you due to the inherent biology of the gene 

cluster itself.  The second objective of this research was to develop an autonomous 

method for identifying alt gene clusters in diverse bacterial genera, leveraging deep 

learning techniques. The alt gene cluster has been manually detected in several bacterial 

species, including P. ananatis (Stice et al., 2020), Pseudomonas syringae, and 

Burkholderia gladioli (Paudel et al., 2024). Building on the DeepBGC platform, we trained 
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a BiLSTM RNN to identify alt gene clusters based on gene proximity and protein domain 

details (Pfam domains). This approach enabled us to mine large bacterial datasets for alt-

like clusters effectively. Our model identified over 12,000 alt-like gene clusters across 

238,000 bacterial genomes, with 47 representative clusters selected post-further filtering 

and 15 of those validated experimentally. Interestingly, and yet another discrepancy with 

the alt cluster, the synteny of alt genes was not always predictive of level of tolerance, 

suggesting the involvement of additional factors like protein-protein interactions or some 

level of protein specialization. Naturally, it would be unsurprising for Allium pathogens to 

have specialized alt proteins, but in-depth comparisons between the datamined groups 

will be necessary to describe those differences.  

Advanced protein structure analyses using I-TASSER revealed striking structural 

similarities between alt-like gene products across bacterial genera, even in the absence 

of sequence conservation (Yang et al., 2015). This indicates that alt gene functionality is 

driven by conserved motifs rather than strict sequence similarity, which is ultimately 

unsurprising; the 3D structure of a protein is not the end-all-be-all of protein function. 

However, the 3D structure of a protein should logically be similar to proteins with the same 

function, though ultimately, this was unhelpful for differentiating alt clusters.  

AI-Bind analysis further demonstrated the potential of machine learning to predict 

the binding affinity of altR proteins to sulfur compounds, allowing us to, with some degree, 

cluster functional alt clusters based on the phenotypic data (Chatterjee, et al. 2023). 

These findings are helpful for exploring potential downstream classification techniques 

and, by extension, improve our ability to identify and validate complex gene clusters in 

bacterial genomes autonomously. This work contributes a robust framework for 
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accelerating gene discovery and understanding bacterial virulence in plant pathosystems, 

especially for abnormal, novel gene clusters. 

The third objective of this study was to identify an A. cepa genotype with resistance 

to PA. Through comprehensive phenotypic and transcriptomic analyses, we identified the 

genotype DPLD 19-39 as exhibiting significantly reduced disease symptoms compared 

to the susceptible genotype, Sweet Harvest. Across multiple experimental conditions: 

field, greenhouse, and growth chamber trials, DPLD 19-39 consistently demonstrated 

lower lesion severity and delayed pathogen progression to the PA strain PNA 97-1. 

Transcriptomic profiling of DPLD 19-39 revealed that genes involved in cell wall 

reinforcement, nucleotide binding, and reactive oxygen species (ROS) regulation were 

significantly upregulated in response to pathogen infection (Torres et al., 2006; Flors et 

al., 2008; Ponce de León & Montesano, 2013; Wang et al., 2021). These findings suggest 

that resistant plants strengthen their cell walls to limit pathogen entry and actively 

modulate ROS production to mitigate the stress caused by pantaphos, the primary 

phytotoxin produced by PA. The upregulation of genes associated with hormonal 

pathways, such as those for jasmonic acid (JA) and ethylene (ET), further supports the 

potential role of programmed cell death (PCD) and cell wall fortification in conferring 

resistance to PA, though these mechanisms need validation (Bolwell & Daudi, 2009; Ali 

et al., 2024). The lack of upregulation of genes annotated to be involved in any C-P lyase 

activity in DPLD 19-39 suggests that its resistance mechanism does not rely on the direct 

degradation of pantaphos but on managing its downstream effects through enhanced 

physical and biochemical defenses (Coutinho & Venter, 2009; Polidore et al., 2021). 
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Future research will have to further characterize the genetic basis of resistance in 

DPLD 19-39 and other genotypes, such as A. fistulosum (genotype: Zhang Qiu Da Cong). 

DPLD 19-39 holds significant potential as a genetic resource for breeding onion varieties 

with enhanced resistance to PA. By integrating the resistant traits of genotypes like DPLD 

19-39 and Zhang Qiu Da Cong, breeding programs could improve crop resilience, reduce 

economic losses from OCR, and promote the long-term sustainability of onion production. 
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