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ABSTRACT 

 Insectivorous bats in temperate zones have evolved strategies, such as migration or hibernation, to 

face challenges of reduced resource availability and increased energy demand during winter. In the 

southeastern United States Coastal Plain, many bats are year-round residents and remain active during the 

winter or migrate from colder areas seeking milder conditions. Southeastern Coastal Plain forests may 

represent important areas for remnant populations of bat species impacted by White-Nose Syndrome 

(WNS). Working forests represent a large proportion of the forests of the southeastern Coastal Plain, yet 

winter habitat use by bats in this region and how forest management practices affect habitat use remains 

understudied. From 2020 to 2022, my study used passive acoustic monitoring to assess winter bat activity 

across six forest sites, evaluating how habitat features and environmental variables shape bat foraging and 

occupancy patterns. In addition, I conducted DNA metabarcoding analysis of fecal samples to identify prey 

species and assess dietary diversity among bat species and applied structural equation modeling to 

disentangle the effects of forest management, temperature, and insect availability on bat activity. My study 

detected eleven bat species, with species-specific responses to habitat features, temperature, and prey 

availability. Results indicated that higher species richness was associated with areas of contiguous forest 

and lower basal area, suggesting that certain forest stand characteristics support overwintering bat 

populations. Temperature emerged as a significant predictor of bat detectability, increasing activity in 

warmer conditions. DNA metabarcoding revealed a diverse winter diet that included economically relevant 



pest species, such as Rhyacionia frustrana, underscoring bats’ role in pest control within these ecosystems. 

The findings suggest that maintaining specific forest structural features, such as lower basal area and habitat 

connectivity, can positively impact overwintering bats and enhance their ecosystem services. By providing 

insights into bat foraging ecology and habitat use, this study offers valuable recommendations for forest 

management practices aimed at bat conservation and supports the development of sustainable forestry 

practices that benefit both biodiversity and forest health in the southeastern United States Coastal Plain. 
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CHAPTER 1 

 INTRODUCTION AND LITERATURE REVIEW 

INTRODUCTION 

Forests are common across the eastern United States (U.S. hereafter) and, more specifically, 86% 

of forests in the southeastern U.S. are privately owned (Oswalt et al., 2019). Forest management, primarily 

driven by economic incentives, plays a crucial role in conserving these landscapes by reducing the risk of 

forestland conversion to urban or agricultural uses (Zobrist et al., 2005; Wickham et al., 2023). One key 

conservation benefit of forest management is that it allows landowners to meet their objectives (e.g., timber 

production, recreation, wildlife management) while maintaining forested landscapes. This flexibility 

supports both the retention of forests and biodiversity. 

In the southeastern U.S., private landowners manage a variety of forest types, conditions, and goals, 

with 79% of these private forests naturally regenerated (Oswalt et al., 2019). Although only 21% of private 

forests are planted, they cover a vast 45 million acres in the southeastern U.S., accounting for 71% of all 

planted forests nationwide (Oswalt et al., 2019). Pine (Pinus spp.) management is particularly common, 

with pine forests undergoing typical rotations of 20-25 years involving site preparation, seedling planting, 

and various management practices like herbicide application, fertilization, prescribed fire, thinning, and 

clearcutting. These forest practices help create and maintain structural conditions across the landscape that 

support wildlife species, including game and nongame species. 

Historically, large-scale clearing of forests for agriculture shaped the southeastern U.S., particularly 

in the Coastal Plain and Piedmont regions, from the colonial period until the Civil War (Williams, 1989). 

Poor agricultural practices caused widespread soil erosion, leading to significant abandonment of 

agricultural lands between the Civil War and World War II (Fox et al., 2007). The effects of these legacy 

practices are still evident, as lands with agricultural histories exhibit different understory species 

compositions compared to historically forested areas (Hedman et al., 2000; Dupouey et al., 2002; Vellend 
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et al., 2007; Brudvig et al., 2013). However, despite the decline in agricultural land use since the 1940s due 

to abandonment and intensified management of remaining fields, forest cover in the southeastern U.S. has 

increased since the early 1900s. Today, private landowners and forest managers increasingly recognize the 

importance of biodiversity, with forest certification programs promoting sustainable management practices. 

Certification provides long-term assurances that forests will be managed sustainably, helping to maintain 

habitats for forest-dependent species. Retaining key structural features after harvesting further benefits 

species, although some may require more targeted management on a site-specific basis. 

Order Chiroptera is the second largest mammalian order including over 1,465 species distributed 

throughout most of the planet (Simmons & Cirranello, 2023). Bats are the only mammals capable of 

powered flight (Altringham, 2011) and have important roles in ecosystems as they contribute to biological 

pest control, seed dispersal, and plant genetic diversity, among others (Kunz et al., 2011). Bats are important 

targets for conservation because they are increasingly threatened by habitat loss and modification, alteration 

of roosting areas, pesticides, diseases, and wind energy development (Mickleburgh et al., 2002; Voigt & 

Kingston, 2016). Compared to other mammals and birds, significantly less is known about the population 

status of most bat species, which makes prioritizing and planning conservation actions challenging. Over a 

third of bat species assessed by the International Union for Conservation of Nature (IUCN) are considered 

threatened or data deficient, with more than half exhibiting unknown or decreasing population trends (Frick 

et al., 2020).  

 In the U.S., 42 of the 45 bat species feed on insects or other arthropods. Bats contribute 

significantly to ecosystem services in forests, including control of phytophagous insects (Böhm et al., 2011; 

Charbonnier et al., 2014; Ancilotto et al., 2022). For example, a single little brown bat (Myotis lucifugus) 

can consume 4 to 8 g of insects each night during the active season (Anthony & Kunz, 1977; Kurta et al., 

1989), while a colony of 150 big brown bats (Eptesicus fuscus) has been estimated to eat nearly 1.3 million 

pest insects each year, possibly contributing to the disruption of population cycles of agricultural pests 

(Whitaker, 1995). Given these ecological benefits, integrating bat conservation into forest management not 

only helps maintain biodiversity but also promotes sustainable forest management practices. 

https://link.springer.com/article/10.1007/s10342-019-01174-6#ref-CR8


 

3 

LITERATURE REVIEW 

Winter Bat Ecology 

In temperate zones of North America, insectivorous bats have evolved strategies such as migration 

(Cryan, 2003) or hibernation (Humphries et al., 2003) to cope with reduced resource availability and 

increased energy demand during winter. North American bats face significant risks during these months, 

such as collisions with wind turbines during migrations or the fungal disease white-nose syndrome (WNS). 

Bat fatalities from wind turbines occur predominantly in migratory species such as hoary (Lasiurus 

cinereus), eastern red (L. borealis), and silver-haired (Lasionycteris noctivagans) bats in late summer and 

early autumn (Fleming et al., 2003; Kunz et al., 2007; Cryan et al., 2014; Wieringa et al., 2021). In addition, 

WNS has caused extensive mortalities in cave-dwelling species, leading to widespread alterations in bat 

communities in the eastern U.S. (Blehert et al., 2009; Frick et al., 2015). For example, winter counts in 

WNS-positive regions show that populations of the most susceptible species, such as northern long-eared 

myotis (Myotis septentrionalis), little brown myotis (M. lucifugus), and tricolored bats (Perimyotis 

subflavus), have declined by more than 90% since WNS detection (Cheng et al., 2021). Unlike other regions 

of the eastern U.S., many bats in the southeastern Coastal Plain are year-round residents and remain active 

throughout the year or migrate from colder areas seeking milder winter conditions (Grider et al. 2016). 

Additionally, southeastern Coastal Plain forests may represent important areas for remnant populations of 

bat species impacted by WNS, such as tricolored and northern long-eared bats (Jordan, 2020; De la Cruz et 

al., 2022; Perea et al., 2022). Yet most studies in this region have been conducted during the growing season 

or focused on roosting ecology (e.g., Loeb & O’Keefe, 2006; Hein et al., 2008; Bender et al., 2015, 2021; 

Gallagher et al., 2021). Winter bat foraging activity and habitat use remain understudied (e.g., Grider et al., 

2016; Kunbergen & Long, 2022).  

Previous studies across North America point to temperature as a critical factor dictating winter bat 

activity (Schwab & Mabee, 2014; White et al., 2014; Grider et al., 2016; Johnson et al., 2016; Lemen et 

al., 2016; Bernard & McCracken, 2017; Parker et al., 2020; Jorge et al., 2021; Anderson et al., 2024). In 

the Coastal Plain of Texas and Louisiana, Andersen et al. (2022) found temperature as the most important 
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predictor of bat activity in winter, but no evidence that landscape factors influence the distribution of any 

species. At a local microhabitat scale, they only detected habitat association in eastern red / Seminole bats 

(Lasiurus seminolus) for reduced clutter, large and deciduous forest microhabitats, and Brazilian free-tailed 

bats (Tadarida brasiliensis) for deciduous forest microhabitats. In contrast, Shute et al. (2021) 

demonstrated differences in bat habitat use between summer and winter in the Coastal Plain of South 

Carolina. During summer, habitat use by tricolored, northern yellow (Dasypterus intermedius), and myotis 

bats (genus Myotis) were related to characteristics that would be expected based on how bats of different 

morphology interact with their environment. They observed that the larger, fast-flying northern yellow bats 

used open areas, the more maneuverable myotis bats were associated with forests, and the edge-feeding 

tricolored bats used both open and closed cover types across the landscape. When resource availability, 

forest structure, and temperature changed during winter, they observed both northern yellow bats and 

tricolored bats used interior forests which provided water sources and higher temperatures than open areas, 

and, consequently, a potentially greater abundance of insects (Janzen & Schoener, 1968; Li et al., 2015). 

For myotis bats, although habitat use was not associated with any site characteristics, the landscape 

surrounding the sites was important in determining habitat use in both summer and winter.  

All North American bat species are associated with forests to some extent (e.g., for roosting and/or 

foraging), therefore it is important to understand how bats use forests and how forest management may 

affect their use (Brigham, 2007; Bender et al., 2015; Taylor et al., 2020; Gallagher et al., 2021). A lack of 

understanding of how bats and other animals interact with their environment throughout the year may 

obscure the full scope of habitat associations and needs. This becomes especially important in regions such 

as the southeastern U.S., where many forests are privately owned and actively managed as working forests 

(Oswalt et al., 2019). Thus, forested landscapes provide essential habitat features that support bat diversity, 

including roosting sites (e.g., trees) and foraging areas (e.g., riparian zones, wetlands, or gaps in forests) 

(Brigham, 2007; Vindigni et al., 2009; Carr et al., 2020; Tena et al., 2020). Ultimately, sustainable 

management has the dual benefit of supporting year-round bat activity and playing a crucial role in helping 

remnant populations impacted by diseases such as WNS and ensuring a favorable wintering fate for 
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migratory species, thereby improving the resilience of bat populations in the face of increasing ecological 

challenges. These forests will also benefit from ecological services in terms of controlling potential 

populations of forest pests and phytophagous insects consumed by overwintering bats (Böhm et al., 2011; 

Charbonnier et al., 2014; Ancilotto et al., 2022; Maslo et al., 2022). 

Bat Acoustic Monitoring 

The study of bat ecology is rapidly evolving due to the increasing availability of advanced 

techniques and analytical approaches. Currently, the development of passive acoustic recorders (PARs) and 

the advancement of computing infrastructure that helps researchers store and analyze large quantities of 

data offer a variety of cost-efficient methods (Pijanowski et al., 2011; Teixeira et al., 2024). Acoustic 

monitoring is a common, non-invasive technique to examine multiple facets of bat ecology (Collins & 

Jones, 2009), including community composition (Flaquer et al., 2007), habitat use (Vaughan et al., 1997), 

and activity (Russo & Jones, 2003). Bats use echolocation for navigation and foraging (Dietz & Kiefer, 

2016), and different sound parameters like frequency, duration, and inter-pulse intervals can characterize 

those echolocation calls. Acoustic detection makes the study of individual bat species possible without 

handling (Russo & Jones, 2002; Loeb et al., 2015). Therefore, acoustic monitoring has become a proven 

way to explore bat richness and activity patterns in different environmental settings during the last two 

decades (Flaquer et al., 2007; Reichert et al., 2018).  

Despite its utility, effective ecological monitoring using acoustic technology is more than just 

recording sound. Without proper planning and experimental design, acoustic monitoring can generate huge 

volumes of data that are difficult to analyze and may not be informative for conservation or management. 

Thus, methods and processes for implementation should align with a priori objectives and questions 

(Bayraktarov et al., 2019; Teixeira et al., 2024). Additionally, acoustic monitoring has other limitations that 

must be considered in monitoring efforts. For example, the determination of species presence can vary 

depending on the detector type and identification algorithms used (Adams et al., 2012; Russo et al., 2018; 

Perea & Tena, 2020). Echolocation calls of individual bats can vary based on habitat, presence of 

conspecifics, or environmental noise (Walters et al., 2012; Russo et al., 2018), influencing species detection 
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and identification efficacy (Adams et al., 2012; Russo & Voigt, 2016). To overcome these limitations, 

studies suggest combining acoustic techniques with capture and roost search (Flaquer et al., 2007; Comer 

et al., 2014) and accepting the fact that not all call sequences can, or should, be definitively identified to a 

species using diagnostic features measurable in sound visualization/analysis software (Reichert et al., 2018; 

Russo et al., 2018).  

Techniques are also being developed to discern specific animal species from soundscape recordings 

(Müller et al., 2012). Assisted identification software and, more recently, artificial intelligence deep 

learning models (e.g., convolutional neural networks) have brought about a major change in acoustic 

identification (e.g., Huang et al., 2009; Ferreira et al., 2020; Shivaprakash et al., 2022). Standard software 

for species identification typically require less data, are computationally simpler in design (e.g., based on 

MCMC vocal separators), but rely on human-guided feature engineering (i.e., “supervised machine 

learning”), which introduces potential subjectivity that could hinder performance, especially with diverse 

or noisy datasets. On the other hand, artificial intelligence deep learning models tend to be more flexible 

and may require fewer man-hours to generate well-performing models. However, they require large training 

datasets and have not yet been sufficiently investigated to date (Müller et al., 2023). Moreover, particularly 

with bats, all these methods face deviations from the expected call structure due to approach calls, cluttered 

environments, and call quality issues, among others. To address these limitations, researchers suggest a 

combination of assisted identification systems and noise filtering software with subsequent manual 

identification to identify calls with a minimum number of pulses and/or with good quality (e.g., Russo & 

Voigt, 2016; Reichert et al., 2018; Lopez-Baucells et al., 2019; Perea & Tena, 2020). Furthermore, for 

those species for which species-level identification is not possible by acoustics, researchers address that 

limitation by grouping them by genus (e.g., genera Myotis or Plecotus), or by species pairs (e.g., Lasiurus 

borealis / L. seminolus), and separated only when possible (e.g., Grider et al., 2016; Tena et al., 2019). 

Foraging Ecology 

The study of trophic resources used by species and their habitats are key aspects of addressing 

foraging ecology, which provides a basic understanding of relationships among consumers, resources, and 
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the environment (Stephens & Krebs, 1986). Multiple ecologically informed management decisions rely on 

dietary studies, such as species trophic position and demographic regulation, based on the importance of 

feeding resources or species interactions (e.g., predation) on populations and communities (e.g., Alonso et 

al., 2014). In temperate zones of North America, most bats use forests at some point in their life cycle 

(Brigham, 2007), which provides them with foraging and roosting resources. In turn, bats provide 

significant ecosystem services to forests, including control of phytophagous insects (Böhm et al., 2011, 

Garin et al., 2019, Maslo et al., 2022). Therefore, knowledge about local feeding habits is also needed to 

make informed conservation decisions. 

Previous studies of diet composition in the southeastern United States have been conducted during 

the bat active season (Dodd et al., 2014; Wilson, 2017; Weinkauf et al., 2018; Hughes et al., 2021); 

however, questions related to winter prey selection in relation to prey availability remain understudied 

(Bernard et al., 2021). The importance of bats in crops and working forests has already been proven in 

summer (Kunz et al., 1995; Baroja et al., 2019; Braun de Torrez et al., 2019; Garín et al., 2019). In North 

America, several studies have revealed bat predation of important pests for multiple agricultural 

commodities (Brown et al., 2015, Whitby et al., 2020, Hughes et al., 2021). For example, Boyles et al. 

(2011) valued the ecosystem services that insectivorous bats provide at $22.9 billion per year on 

agroecosystems across the U.S. Yet questions related to the role of winter bat communities as pest 

controllers in working forests of the eastern U.S. have not been explored. 

Molecular techniques offer a rapid, non-invasive, cost-efficient alternative to morphological fecal 

analysis for the identification of predators and prey (Harper et al., 2020). In the last decade, DNA 

metabarcoding has contributed enormously to our understanding of predator-prey relationships. Even small 

amounts of highly degraded food residues can be effectively sequenced and often assigned to individual 

species (Tiede et al., 2016). Most studies focus only on diet and do not consider prey selection in relation 

to prey availability or resource limitation (Salinas-Ramos et al., 2020), but these molecular techniques can 

complement prey availability studies by providing a more complete picture of consumers' trophic 

preferences (Rytkönen et al., 2018). DNA metabarcoding has been used to reconstruct the diet of several 
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bat species in the United States (e.g., Clare et al., 2014; Wilson, 2017; Weinkauf et al., 2018; Braun de 

Torrez et al., 2019) showing regional and temporal variations in diet for both specialist and generalist 

species. For example, while studies show a diet of big brown bats (Eptesicus fuscus) based mainly on 

Coleoptera, Clare et al. (2014) also highlighted that other orders such as Lepidoptera and Ephemeroptera 

are stable components of the diet and can be an important buffer in times of resource limitation. Similar 

temporal and regional variations have been observed for other species of both generalist and specialist bats 

in temperate regions (e.g., Dodd et al., 2014; Shively et al., 2018; Weinkauf et al., 2018; Braun de Torrez 

et al., 2019; O’Rourke et al., 2022). However, winter bat diet studies in regions with mild temperate 

climates have been largely overlooked (Bernard et al., 2021). Previous studies with European bats observed 

considerable differences in diet both between study sites in winter and at other times of the year (Williams 

et al., 2011; Hope et al., 2014).  

OBJECTIVES AND GUIDE TO THE DISSERTATION 

Insectivorous bats in temperate zones have evolved strategies, such as migration or hibernation, to 

face the challenges of reduced resource availability and increased energy demand during winter. In the 

southeastern U.S. Coastal Plain, many bats are year-round residents and remain active during the winter or 

migrate from colder areas seeking milder conditions. Southeastern Coastal Plain forests may represent 

important areas for migratory bats and remnant populations of species impacted by WNS. Working forests 

represent a large proportion of the forests of the southeastern Coastal Plain, yet winter habitat use by bats 

in this region and how forest management practices affect habitat use remains understudied.  

Bats are elusive and challenging to study. However, the development of passive acoustic recorders 

(PARs) and the advancement of computing infrastructure now allow researchers to efficiently store and 

analyze large volumes of data, offering a cost-efficient method to explore bat richness and activity patterns 

in different environmental settings to aid bat conservation. By analyzing echolocation calls emitted by bats 

to navigate and detect prey, my first goal was to assess factors influencing winter activity and foraging 

habitat of bats on working forests in the southeastern U.S. Coastal Plain from late January to mid-March 

2020-2022. To do so, I examined the influence of site- and landscape-level habitat characteristics on species 
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richness, aiming to study their effects on winter bat community composition and determine species-specific 

winter foraging habitat occupancy responses. Additionally, I sought to enhance our understanding of bat 

foraging ecology in winter by identifying the diet composition of overwintering bats using DNA 

metabarcoding techniques. I compared the composition of prey consumed among different bat species and 

determined the potential role of forest bats as pest controllers. As the saying goes, “we are what we eat”. 

Lastly, I explored the relationships among bat activity, temperature, forest structure, and nocturnal flying 

insect assemblages to investigate the underlying ecological dynamics.  

Past research has documented diverse bat communities in working forests of the southeastern U.S. 

Coastal Plain, but there is limited information on how forest management practices affect bat and insect 

communities, particularly in winter. By providing baseline information on overwintering bat communities 

and foraging habitat associations, as well as answering questions about winter foraging ecology from 

different angles, my results will inform managers of habitat characteristics important to overwintering bats. 

An understanding of overwintering habitat use will help in planning forest management activities and 

thereby increase bat conservation opportunities within working forests. Furthermore, my results provide 

important information on the winter diet of bats in the southeastern U.S. Coastal Plain and their potential 

role in the control of economically relevant pest species and disease vectors. 

This dissertation is organized into a series of manuscript-style chapters addressing questions on the 

winter foraging ecology of bats and the effects of forest management and landscape characteristics on 

working forests of the southeastern U.S. Coastal Plain.  

In Chapter 2, I applied a multispecies spatial occupancy modeling approach that explicitly 

accounts for imperfect detection, spatial autocorrelation, and species correlations to examine winter bat 

associations on working forest lands across the southeastern United States Coastal Plain. Previous studies 

have observed that bat communities are shaped by landscape features at different spatial scales (Loeb & 

O'Keefe, 2006; Bender et al., 2015; Rodríguez-San Pedro & Simonetti, 2015). I focused on how site- and 

landscape-level habitat characteristics shape species richness and community composition, as well as 

species-specific foraging habitat occupancy at site- and landscape-levels.  

https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-bib-0063
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-bib-0010
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-bib-0092
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In Chapter 3, recognizing the importance of bats in forest vertebrate diversity, their underexplored 

winter dietary preferences, and their role as controllers of arthropods (including pests of economic and 

health concern), I analyzed the winter diet composition of bats in private, working forests using DNA 

metabarcoding from fecal samples collected during winter. My objectives were to (1) identify the diet 

composition of overwintering bats, (2) compare prey composition among species, and (3) assess the 

potential role of bats as pest controllers during winter. 

In Chapter 4, I explored the dynamics of bat and flying insect communities and how forest 

management practices influence bat ecology during winter. Specifically, I examined direct and indirect 

relationships among stand structure characteristics, temperature, insect community metrics, and winter bat 

activity in working forests in the southeastern U.S. Coastal Plain. My approach allowed me to disentangle 

the direct and indirect effects of forest management practices on bat communities, providing a holistic 

understanding of ecological interactions occurring within working forest landscapes to inform forest 

management decisions. 

Finally, in Chapter 5, I synthesize the findings from Chapters 2, 3, and 4 to offer practical 

management recommendations aimed at supporting overwintering bat communities in working forest 

landscapes. As all bats rely on forests for roosting and/or foraging, effective forest management practices 

are crucial for sustaining healthy overwintering bat populations and enhancing conservation efforts across 

the southeastern U.S. Coastal Plain. 
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ABSTRACT 

Insectivorous bats in temperate zones have evolved strategies such as migration or hibernation to 

overcome challenges of reduced resource availability and increased energy demand during winter. In the 

southeastern United States Coastal Plain, bats are either year-round residents and remain active during 

winter or are migrants from colder areas seeking milder temperatures. Southeastern Coastal Plain forests 

also may represent important areas for remnant populations of species impacted by white-nose syndrome. 

Working pine (Pinus spp.) forests comprise a large proportion of southeastern Coastal Plain forests, yet 

winter bat habitat associations and how forest management affects bat use remain understudied. Hence, we 

used hierarchical multispecies spatial occupancy models to evaluate factors influencing winter bat 

occupancy and foraging habitat associations in working forests of the southeastern Coastal Plain. From 

January to March 2020–2022, we deployed Anabat Swift acoustic detectors and measured site- and 

landscape-level covariates on six working landscapes. We detected five species of bats and three species 

groups at 93% (224/240) of sites. We observed higher species richness at sites with high proportions of 

contiguous forest and low levels of basal area. At the species level, occupancy patterns were influenced by 

site and landscape covariates, which had varying effects on species with distinct foraging strategies. 

Temperature was an important predictor of detectability. Our findings offer new insights into the ecology 

of bats in working forest landscapes during winter, where we highlight positive responses in occupancy 

with contiguous forests and lower levels of basal area, as in previous summer work. By providing valuable 

information on winter community composition and foraging habitat associations, we hope to guide 

management decisions for forest attributes important to these species, thus increasing conservation 

opportunities within working forests. 

INTRODUCTION 

Understanding how environmental variables drive species-level patterns and shape community 

structure is fundamental to ecology and conservation. In temperate regions, some species, including bats, 

have evolved thermoregulatory adaptations (e.g., torpor) to overcome winter challenges of reduced resource 

availability and increased energy demand by seasonally altering their active state (Humphries & Thomas, 
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2003; Humphries et al., 2017; de Bruyn et al., 2021). Alternatively, some bat species cope with cold 

winters by migrating to warmer regions for overwintering (Cryan, 2003; Grider et al., 2016; Frazer et al., 

2017). Winter activity patterns are directly related to climate conditions, particularly temperature, which 

influences both thermoregulatory behaviors and hibernation traits (Stawski & Geiser, 2011; Barros et al., 

2021), as well as whether their insect prey remain active (Grider et al., 2016; Welti et al., 2022). In 

temperate regions at lower latitudes, coinciding with winter destinations of migratory species, torpor breaks 

are frequent, allowing bats to be year-round residents and rely on a combination of activity and short periods 

of torpor (Boyles et al., 2006; Barros et al., 2017; Mas et al., 2022). These species, however, are subject 

to changing environmental conditions and shifting insect availability, resulting in a diversity of winter 

activity patterns (Czenze & Willis, 2015). 

Unlike regions farther north, warmer temperatures of the southeastern United States Coastal Plain 

favor resident bats that remain active year-round, and migratory bats that overwinter (Grider et al., 2016). 

This region is characterized by its large expanse of working pine (Pinus spp.) forest landscapes 

(approximately 15.8 million ha), about 90% of which are privately owned (Oswalt et al., 2019). In 

temperate regions, most bats are associated with forests for roosting or foraging, creating a need to 

understand how bat communities use forests and how forest management influences bat use (Brigham, 

2007; Gallagher et al., 2021). Forest management practices such as thinning, clearcutting, prescribed 

burning, and other activities can affect habitat use by bats (Wigley et al., 2007; Bender et al., 2015; Cox 

et al., 2016; Węgiel et al., 2019; Taylor et al., 2020) by modifying forest structure, affecting distribution 

and abundance of living and dead trees used for roosting, and affecting the number of forest openings and 

edges used for foraging (Morris et al., 2010; Tena et al., 2020). 

Understanding bat community- and species-level habitat use is reliant upon the ability to effectively 

detect bat roost and/or foraging presence. The probability of detecting bats depends on several factors, such 

as species behavior and physical traits, forest structure, or survey-related characteristics, making some 
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species more detectable than others (Devarajan et al., 2020). Additionally, for elusive species such as bats, 

imperfect detection is an essential source of bias when assessing species richness among communities (Kéry 

& Schmidt, 2008; Dorazio et al., 2011). Recently, hierarchical multispecies detection/non-detection 

modeling was developed to address questions about habitat associations, including both community-level 

and species-specific responses, while addressing important complexities such as imperfect detection 

(MacKenzie et al., 2002; Dorazio & Royle, 2005; Guillera-Arroita et al., 2010), spatial autocorrelation 

(Finley et al., 2009; Banerjee et al., 2014), and residual species correlations (Ovaskainen et al., 2010). 

Controlling for other sources of bias, such as spatial autocorrelation, is key to identifying underlying 

processes or factors that influence observed patterns. Thus, spatially explicit models are fundamental for 

conservation and management decisions (Bateman et al., 2020). 

Working forest owners and managers are increasingly committed to conserving biodiversity, as 

evidenced by voluntary enrollment in sustainable forestry certification programs that include biodiversity 

principles (Wigley et al., 2007). Given the geographic scale and economic and social importance of 

privately owned working forests (Oswalt et al., 2019), understanding how biodiversity can be conserved 

in managed landscapes is imperative (Demarais et al., 2017; Yeiser et al., 2018). However, limited data 

on foraging ecology and selection of foraging areas by bats in working forest landscapes, especially outside 

the growing season, hinders our ability to evaluate management decisions. Currently, management 

decisions are based largely on knowledge of bat habitat relationships during summer. If and how these 

relationships are consistent with relationships in other seasons is poorly understood. Thus, investigations 

into winter habitat use are needed to ensure that management actions provide suitable habitat conditions 

year-round. Hence, we used a multispecies spatial occupancy modeling approach that explicitly accounts 

for imperfect detection, spatial autocorrelation, and species correlations to examine winter bat associations 

on working forest lands across the southeastern United States Coastal Plain. Previous studies have observed 

that bat communities are shaped by landscape features at different spatial scales (Loeb & O'Keefe, 2006; 

Bender et al., 2015; Rodríguez-San Pedro & Simonetti, 2015). Therefore, we examined the influence of 
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site- and landscape-level habitat characteristics on species richness to study the effect on winter bat 

community composition. We also determined species-specific winter foraging habitat occupancy at site- 

and landscape-levels. 

MATERIALS AND METHODS 

Study area 

We conducted our study on six working forest landscapes across six states (Florida, Georgia, 

Louisiana, Mississippi, North Carolina, and South Carolina) of the southeastern United States Coastal Plain 

during 2020–2022 (Figure 1). All study areas consisted primarily of planted loblolly pine (P. taeda) stands 

interspersed with streamside management zones (predominantly mature hardwood trees), roads, and 

wildlife openings, with other non-forest areas accounting for the remaining land area. We selected study 

areas >3 000 ha and comprised primarily of upland planted pine with <15% in forested wetlands. 

Management activities were typical of commercial forestry operations in the region, including clear-cutting 

at 20–35 years, mechanical and/or chemical site preparation, and planting 182–283 pine trees ha−1 

(Gresham, 2002). Competing vegetation was temporarily suppressed through herbicide applications, 

prescribed fire, or mechanically, with most stands being thinned at least once. 

Bat acoustic sampling 

On each study area, we created a 900 × 900 m grid and used ArcGIS Pro 2.8.0 (ESRI, Redlands, 

California, U.S.) to randomly select grid intersections as sampling points. The grid spacing was selected to 

ensure that the distance between sampling points encompassed a core area that constituted much of an 

individual bat's foraging movements (Morris et al., 2011; Bender et al., 2015). We surveyed 40 sampling 

points randomly selected from the grid on each study area to ensure enough samples to adequately represent 

variation in stand age, stand size, and management history. We sampled all points at each study area within 

a 1-month period. We defined January–March as the winter sampling season as mean nightly temperatures 

are lowest (typically <10°C) during this time throughout most of the Coastal Plain region (NOAA 
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Climate.gov. https://www.climate.gov/maps-data/data-snapshots/averagetemp-monthly-1981-2010-cmb-

0000-02-00?theme=Temperature). 

At each sampling point, we deployed Anabat Swift acoustic detectors with omnidirectional 

ultrasonic microphones US-OV2 and US-OV3 (Titley Electronics, Ballina, New South Wales, Australia; 

Appendix S2.1. Table 1) for three consecutive nights, recording from 30 min before sunset to 30 min after 

sunrise (Reichert et al., 2018). If rain occurred during the sampling period, we left detectors out for 

additional nights to ensure three nights of rain-free sampling. We placed detectors on poles with 

microphones 3 m above the forest floor pointed in the direction of the least vegetation clutter (Weller & 

Zabel, 2002). We coupled each detector with a temperature logger (HOBO Pendant G Acceleration Data 

Logger, Onset Computer Corp., Pocasset, Massachusetts, U.S.) programmed to record hourly temperature. 

Bat call analysis 

We used auto-ID software and subsequent visual vetting to identify calls to species, as 

recommended by the North American Bat Monitoring Program (NABat; Reichert et al., 2018). We first 

used Kaleidoscope Pro 5.4.1 software (Wildlife Acoustics Inc., Maynard, Massachusetts, U.S.) to filter 

noise files. We selected default filter setting parameters for bat analysis specifying a signal of interest 

between 8 and 120 kHz, 2 to 500 ms, and at least 2 pulses per sequence. We used the batch function in 

Kaleidoscope Pro to split each sequence to a maximum duration of 10 s for standardization. We selected 

the auto classifier of Kaleidoscope Pro with a balanced sensitivity level for classification to assist the visual 

vetting. Subsequently, we manually analyzed all remaining files using call structure, frequency of minimum 

and maximum energy, characteristic frequency, duration, inter-pulse interval, and slope (O'Farrell & 

Gannon, 1999; Szewczak et al., 2011). We grouped bat passes into species groups for Lasiurus borealis/L. 

seminolus, Eptesicus fuscus/Lasionycteris noctivagans, and Myotis austroriparius/M. septentrionalis due to 

overlap in acoustic call characteristics between these species (Grider et al., 2016; Johnson & Chambers, 

2017; Kunberger & Long, 2022). 

Habitat and landscape metrics 
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We measured three components of vegetation structure at each sampling point (Appendix 2.2. 

Table S2). First, we used a convex spherical densiometer (Forestry Suppliers Inc., Jackson, Mississippi, 

U.S.) to measure percent canopy openness, which can be managed via planting density, by averaging 

measurements taken at the acoustic point and four additional locations in each cardinal direction 5 m from 

the point. Second, we characterized vegetation clutter, which can relate to forest management through 

mechanical, chemical, and prescribed burning practices, using methods based on Nudds (1977) and 

modified by Bender et al. (2015). To do so, we estimated average percent coverage of a 1 m2 panel raised 

4.5 m above the ground and 5 m from the acoustic point in each cardinal direction and in the direction the 

microphone was oriented. Third, we used a 10-factor prism (Husch et al., 2003) centered at the acoustic 

detector point to estimate basal area (m2 ha−1) of overstory trees, which again can relate to planting density, 

thinning, and other forest management activities. 

We used ArcGIS Pro and Fragstats v4.2 (McGarigal et al., 2015) to calculate landscape metrics 

from landowner-provided and publicly available data (Appendix 2.2. Table S2). Although variables at this 

scale cannot be managed directly, they may be important for managers to consider when implementing 

landscape-scale planning. We measured proportions of forest and wetland cover types and determined total 

edge (m) as landscape composition metrics within a 450-m-radius circular buffer around sampling points. 

The 450-m buffer area represented the area that did not overlap with the buffers of neighboring sampling 

points. We defined edge as the boundary between any two of six cover types reclassified from the National 

Land Cover Database (Dewitz & U.S. Geological Survey, 2021). We grouped forest stands into growth 

stages (hereafter, stand age; 0–3 [early establishment], 4–7 [closing canopy], 8–13 [closed canopy, pre-

thinned], 14–20 years [mid-rotation thinned], or 21+ years old [mature forest, semi-closed canopy; 

including streamside management zones/bottomland hardwood forests]) as it can relate to forest 

management activities (e.g., thinning, final harvest) and is easily interpreted by forest managers (Marshall 

et al., 2022). Lastly, we measured distance (m) from sampling points to roads and permanent water using 

the Near tool in ArcGIS Pro. 
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Multi-species modeling 

We implemented the hierarchical multispecies spatial occupancy model developed by Doser et al. 

(2022). The hierarchical model, which consists of an ecological process model and an observation sub-

model, accounts for residual species correlation in a joint species distribution model framework while 

considering imperfect detection. The model quantifies the probability of occupancy for each species by 

accounting for factors influencing detection (MacKenzie et al., 2018). This hierarchical approach, in which 

species-specific effects are treated as random effects arising from a common community-level distribution, 

allows for inference of management effects on individual species and overall communities (Zipkin et al., 

2010). The ecological process model is zi,j, the true state of presence or absence of species i at sites j. 

Similar to Tikhonov et al. (2020), this model uses a spatial factor model along with Nearest Neighbor 

Gaussian Processes (NNGP; Datta et al., 2016) to ensure computational efficiency of species assemblages 

at different spatial locations. The observational sub-model (detection sub-model hereafter) separately 

models imperfect detection from the latent ecological process (see Doser et al., 2022 for the modeling 

framework). 

Occupancy covariates included a combination of site- (basal area, canopy openness, and vegetation 

clutter) and landscape-level (total forest, total wetland, total edge, distance to freshwater, distance to roads, 

and stand age). We expected the influence of covariates on bat species to differ depending on their foraging 

strategy (Appendix S1: Table S2). Detection covariates included basal area, temperature at sunset, 

vegetation clutter, and year. We standardized all continuous covariates for both ecological and survey 

processes to a mean of 0 and a standard deviation equal to 1 (Zipkin et al., 2009; Kéry & Royle, 2015). 

We tested for correlation among continuous predictor variables using Pearson's correlation coefficient to 

ensure that highly correlated (r ≥ |0.7|) variables were not included in the same model. 

We fit our models using Polya-Gamma data augmentation (Polson et al., 2013) for computational 

efficiency in R version 4.4.1 (R Core Team, 2020) via package spOccupancy (function sfMsPGOcc; Doser 

et al., 2022). Accommodating sources of spatial dependence among observations is key to obtaining valid 
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inferences about species occupancy (Doser et al., 2022), thus we fit a spatial factor model to control for 

spatial correlations and residual spatial variation in species occurrence. We implemented spatial models 

using three replicate Markov chain Monte Carlo (MCMC) iterations to generate 10,000 samples from the 

posterior distribution of each model after discarding a “burn-in” of 5,000 samples, with a thinning rate of 

50. We selected an exponential covariance to model spatial dependence structure among observations 

(Banerjee et al., 2014). We estimated model parameters and community summaries, setting default vague 

prior hyperparameter values: hypermeans to 0 and hypervariances to 2.72 (Banerjee et al., 2014) in Normal 

priors, and scale and shape parameters to 0.1 (Lunn et al., 2013) in inverse-Gamma priors. To control 

spatial autocorrelation, the spatial decay phi for each latent factor followed a uniform Unif (0, 10) 

distribution. We determined model convergence of Markov chains using R-hat statistic values (<1.1) for 

all parameters within the models (Brooks & Gelman, 1998). We used the Widely Applicable Information 

Criterion (WAIC; Watanabe, 2010) to compare our set of models and shortlist the best-performing models, 

with models with a ΔWAIC < 2 being biologically plausible and relevant. To evaluate detection covariates, 

we constructed models of single and all possible additive combinations of variables and compared them by 

including an occupancy sub-model with only the spatial structure, and no covariates. Temperature at sunset 

was the top-ranked detection model (Appendix S1: Table S3) and was subsequently included as the only 

covariate in the detection sub-model. We then developed 25 spatial models that included single and additive 

combinations of covariates, along with null and global models, in the occupancy sub-models and 

temperature at sunset in the detection sub-model (Appendix S1: Table S4). We calculated posterior mean 

and standard deviation of the model coefficients with 95% Bayesian credible intervals (BCI). Parameter 

estimates of covariates with BCI that did not cross 0 were considered important predictors of species 

occupancy, as this was reflective of a consistent relationship within model iterations. However, we also 

considered covariates as biologically meaningful if estimated 75% BCIs did not overlap zero, although the 

95% BCIs overlapped zero (Cumming & Finch, 2005; Nakagawa & Cuthill, 2007; Tilker et al., 2020). 

We computed Bayesian P-values with Freeman-Tukey statistic to assess model fit, where a model with a 
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good fit to the data had a value near 0.5, while values <0.1 or >0.9 suggested poor model fit (Gelman et al., 

1996; Hobbs & Hooten, 2015). 

RESULTS 

We identified 26,650 bat passes and detected bats at 93% (224/240) of sampling points across all 

study areas during 738 detector nights. We detected 5 species and 3 species groups: Dasypterus intermedius, 

L. cinereus, Nycticeius humeralis, Perimyotis subflavus, Tadarida brasiliensis, E. fuscus/L. noctivagans, L. 

borealis/L. seminolus, and M. austroriparius/M. septentrionalis. All species were detected at all study sites 

except T. brasiliensis, which was not detected in South Carolina. The most frequently detected species was 

L. cinereus (177/240), followed by L. borealis/L. seminolus (156/240) and E. fuscus/L. noctivagans 

(122/240). Dasypterus intermedius was detected at the fewest number of sampling sites (70/240) (Table 1). 

Our model selection supported a single model (Table 2). Under the supported model, basal area 

was an important site-level predictor of bat occupancy, with negative effects on the bat community (Figure 

2, Appendix S1: Table S5) and all species except for M. austroriparius/M. septentrionalis (Figure 3, 

Appendix S1: Table S6). Posterior probability distributions (95% BCIs) of L. borealis/L. seminolus, N. 

humeralis, and T. brasiliensis did not overlap zero. We observed biologically meaningful (75% BCIs that 

did not include 0) influences of basal area on occupancy of E. fuscus/L. noctivagans, L. cinereus, D. 

intermedius, and P. subflavus. At the landscape level, total forest and distance to roads were biologically 

meaningful, positively affecting the bat community (Figure 2). Total forest also positively influenced 

occupancy of several species, being an important predictor for E. fuscus/L. noctivagans and biologically 

meaningful for L. borealis/L. seminolus, N. humeralis, and P. subflavus (Figure 3). Distance to roads was 

a biologically meaningful predictor of occupancy with positive relationships for D. intermedius, L. cinereus, 

and M. austroriparius/M. septentrionalis. Three covariates that were not influential at the community level 

influenced occupancy of individual species/groups (Figure 3, Appendix S1: Table S6). Distance to water 

had a positive influence on occupancy of E. fuscus/L. noctivagans and was biologically meaningful for L. 

cinereus. Total wetlands were a biologically meaningful predictor of E. fuscus/L. noctivagans, negatively 

https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-bib-0043
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-bib-0050
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-tbl-0001
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-tbl-0002
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-fig-0002
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#support-information-section
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#support-information-section
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-fig-0003
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#support-information-section
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#support-information-section
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-fig-0002
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-fig-0003
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-fig-0003
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#support-information-section
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#support-information-section


 

32 

affecting occupancy. Lastly, total edge was biologically meaningful and negatively affected occupancy of 

M. austroriparius/M. septentrionalis. Temperature at sunset, the only covariate included in the detection 

sub-model, was an important predictor of detection at both the community (Appendix S1: Table S5) and 

species-specific levels (Appendix S1: Table S6), positively affecting both mean species detection and 

individual bat species. 

DISCUSSION 

Our results add to the sparse literature regarding winter habitat associations for bats in working 

forest landscapes in the southeastern U.S. Coastal Plain. Like previous work conducted during summer, we 

found winter bat community richness and occupancy for most individual species/groups were positively 

associated with forest management practices that promote open canopy conditions. Forest thinning is a 

common mid-rotation management practice during which trees are selectively removed (thereby reducing 

basal area) to allocate resources to remaining trees (Verschuyl et al., 2011). Consequently, thinning 

promotes bat activity in mid-rotation stands by creating open space below the canopy for foraging. 

Furthermore, we found areas surrounded by a greater proportion of forest increased community and species 

occupancy. The primary objective of most working forest owners and managers is to provide a continuous, 

sustainable supply of wood products (Miller et al., 2009). As a result, working landscapes are comprised 

of forests of various ages and structural conditions, but with contiguous forests as the predominant land 

cover. Thus, consistent with results from summer studies (Loeb & O'Keefe, 2006; Brigham, 2007; Bender 

et al., 2015), our results indicate that standard management practices in working forests also provide 

suitable forest conditions for bats during winter. 

Vegetation structure, specifically basal area, negatively influenced community richness and 

occupancy of most species. While information regarding the effects of vegetation structure on bat 

community richness in working Coastal Plain forests is limited, higher levels of basal area negatively 

influencing communities have previously been observed for phonic groups (i.e., categorization of species 

with similar ecomorphological characteristics based on similar call frequency; Beilke et al., 2021; 
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Gallagher et al., 2021). For example, summer occupancy probability was negatively related to increased 

basal area for all phonic groups on managed forest lands in the northeastern United States, regardless of 

their foraging strategies (Gallagher et al., 2021). Negative responses of bats to increased basal area 

typically are attributed to reduced flight ability and greater difficulty detecting insect prey (Meyer et al., 

2004; Bender et al., 2021). Although insect abundance, along with vegetation characteristics, is an 

important predictor of bat activity during summer in Coastal Plain regions (Moore & Best, 2018; Bender 

et al., 2021), in winter, when temperatures are lower, bats may restrict foraging to areas where insects are 

present (Shute et al., 2021). In addition to seasonal changes in foraging, bat activity in forests is mainly 

determined by the interaction between flight accessibility and prey availability, whereas in open spaces 

such as forest gaps, prey availability is the primary factor driving activity (Adams et al., 2009; Tiago 

Marques et al., 2016; Tena et al., 2020; Erasmy et al., 2021). In contrast, the M. austroriparius/M. 

septentrionalis species group was not affected by higher levels of basal area. The Myotis species we 

documented are clutter-adapted and thus likely exhibit flexibility in their foraging strategy inside of forests 

(Norberg & Rayner, 1987; Henderson & Broders, 2008; Beilke et al., 2021). 

The relationship between summer bat activity and forest composition (i.e., proportion of forest and 

wetlands) in the southeastern U.S. Coastal Plain is well established (Hein et al., 2009; Bender et al., 2015; 

Taylor et al., 2020). Importantly, our study demonstrated similar associations between occupancy and 

prevalence of forested landcover during winter, even for species in different foraging guilds. Greater species 

richness within larger forest patches is not surprising as all bat species in the region use forests for roosting 

and/or foraging (Brigham, 2007; Taylor et al., 2020). Consequently, we found occupancy of several 

species associated with higher forest cover. Positive occupancy probabilities for L. borealis/L. seminolus 

and P. subflavus at sites with higher proportions of forests were expected as these species typically forage 

along edges adjacent to forests or within forest gaps (Dixon, 2011; Schimpp et al., 2018; Beilke et al., 

2023). Although little is known about L. noctivagans foraging habitat selection, the positive relationship 
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between occupancy of N. humeralis and E. fuscus and proportion of forest we observed, supports previous 

studies which reported N. humeralis and E. fuscus using forested areas interspersed with edges and open 

areas (Duchamp et al., 2004; Johnson et al., 2008; Schimpp et al., 2018; Andersen et al., 2022). The lack 

of a relationship with wetlands observed for most species and lower occupancy of E. fuscus/L. noctivagans 

was surprising as most studies have demonstrated positive relationships (Mas et al., 2021). Our results may 

be related to the structural conditions of wetlands in our study areas, which were primarily forested wetlands 

as opposed to open-water wetlands. Similarly, Andersen et al. (2022) observed that bat activity was 

negatively related to forested wetlands in Coastal Plain working forests during winter. Although bats may 

forage along the edges, high basal area within forested wetlands likely decreases the probability of 

occupancy for open/edge space foragers like E. fuscus/L. noctivagans. 

Distance to freshwater is often important in bat habitat selection (e.g., Ford et al., 2005; Rainho & 

Palmeirim, 2011; Janzen & Fenton, 2013), but we found no relationship with bat occupancy at the 

community level and few at the species level. Where we did find species-level relationships (E. fuscus/L. 

noctivagans and L. cinereus), they were contrary to our expectations and from previous studies during 

summer that found higher bat activity closer to water (e.g., Kalcounis-Rüppell et al., 2005; Ford et al., 

2006; Ancillotto et al., 2019). Water availability is typically high in the southeastern Coastal Plain, due to 

high annual rainfall, especially during winter (Bosch et al., 1999), and therefore may not be a limiting 

factor for bats. Additionally, due to lower rates of evaporative water loss than in summer (Cryan & Wolf, 

2003), frequent access to water may be less important for bats during winter. Furthermore, bats commonly 

feed on emergent insects over water in summer, but insect availability typically is lower during winter 

(Corbet, 1964). Alternatively, due to the difficulty of mapping small and often ephemeral freshwater 

sources, our analysis only included water sources from available spatial data layers, which could have 

hindered our ability to detect relationships and gave us results contrary to those expected (Bender et al., 

2015; Perea et al., 2022). 
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Although distance to roads increased the probability of occupancy at the community level, the 

relationship was inconsistent among species. Unimproved roads like those in working forests likely do not 

represent fragmentation to bats, but often separate stands of different ages and structural characteristics. 

Thus, we contend that roads serve as an indicator of fragmentation despite there being continuous forest 

cover. Positive occupancy probabilities with distance to roads for M. austroriparius/M. septentrionalis is 

consistent with the well-documented preference for continuous mature stands for both foraging and roosting 

and avoidance of fragmented forests (M. septentrionalis: Henderson & Broders, 2008), typical of clutter-

adapted species (Denzinger & Schnitzler, 2013; Beilke et al., 2021). In contrast, the observed positive 

response for D. intermedius and L. cinereus, two of the largest bat species in North America, is not intuitive 

but may be associated with their ecomorphological characteristics as open-space foraging species (Norberg 

& Rayner, 1987; Denzinger & Schnitzler, 2013). As open-space foragers (Veilleux et al., 2009; Shute et 

al., 2021; Perea et al., 2022), D. intermedius and L. cinereus forage above the canopy and in large canopy 

openings across the landscape likely without regard to roads. Thus, the observed relationship may be merely 

a result of greater area in interior forest compared to roads increasing the likelihood of foraging in areas 

farther from roads. However, further studies are needed to investigate how forest gaps and openings in 

mature forests are used by open-space foraging species (Loeb & O'Keefe, 2011; Tena et al., 2020). 

Previous summer studies have generally found positive associations between bat activity and edge 

regardless of species' ecomorphological characteristics (Morris et al., 2010; Janzen & Fenton, 2013). 

However, in our winter study, occupancy of the community and all but one species/group was not associated 

with edge. Consistent with previous studies, we observed a negative relationship between occupancy 

probability and edge for M. austroriparius/M. septentrionalis, species that commonly forage within forest 

stands and avoid edges (Henderson & Broders, 2008; Morris et al., 2010). However, the varying and 

equivocal relationships between edge and other bat species were counter to our expectations. Based on wing 

morphology and echolocation call characteristics L. borealis/L. seminolus, N. humeralis, and P. subflavus 

are predicted to be edge foragers, which has been demonstrated in previous studies (Norberg & Rayner, 
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1987; Morris et al., 2010). Use of edges for foraging is typically attributed to avoidance of vegetation 

clutter and greater insect abundance (Morris et al., 2010). In one of the few studies that examined bat 

foraging habitat use in winter, Shute et al. (2021) observed that vegetation characteristics related to P. 

subflavus occupancy changed from summer to winter possibly in response to temporal and spatial changes 

in prey availability or environmental conditions. Because we also found these species/groups associated 

with higher forest cover, we suggest that species considered edge foragers in summer may restrict activity 

to areas with higher prey availability or more suitable environmental conditions during winter (Shute et al., 

2021). 

Based on results of previous summer studies, we expected canopy openness, vegetation clutter, and 

stand age to influence bat occupancy during winter, but none were included in our top model. Although 

basal area and canopy openness were not strongly correlated, we chose not to include them in the same 

models because forest management affects them simultaneously (e.g., thinning reduces basal area and 

increases canopy openness). Previous studies have demonstrated a negative relationship between bat 

activity and canopy cover (Ford et al., 2005; Froidevaux et al., 2016), but those studies were not in working 

forests and were conducted during summer. In one of the few studies conducted in working forests during 

winter, Andersen et al. (2022) found that canopy cover did not influence bat activity. Although the reason 

is uncertain, it appears that basal area has a greater influence on bat occupancy than canopy openness during 

winter. Stand age likely was not an important predictor of occupancy because bats can forage within or 

above all stand ages in working forests. Pre-thinned pine stands (≤13 years) are closed canopy with little 

uncluttered space for bats to forage. As a result, the bats we detected in those stands were foraging above 

the canopy. Once stands are thinned (~14 years), basal area is reduced allowing efficient foraging conditions 

within and below the canopy (Verschuyl et al., 2011). The reduction in basal area associated with thinning 

apparently outweighed the influence of stand age. The lack of influence of vegetation clutter was surprising 

as most studies have demonstrated a negative response (Loeb & O'Keefe, 2006; Loeb & Waldrop, 2008; 

Bender et al., 2015) but was likely due to management prescriptions in working forests. Following thinning, 
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stands typically are managed with herbicides and/or prescribed fire to reduce competing trees in the 

midstory (Greene et al., 2016), which consequently reduces vegetation clutter, allowing efficient foraging 

conditions for bats (Verschuyl et al., 2011). Thus, the reduced basal area and subsequent midstory 

vegetation control associated with thinning in working forests appeared to diminish the influence of clutter 

in our study. 

We found that temperature was an important factor in explaining detectability at the community 

and species levels, which should be considered when conducting winter bat studies. Our findings are 

consistent with previous studies assessing the influence of environmental conditions on bat activity 

(Brooks, 2009; Bender & Hartman, 2015; Parker et al., 2020; Barros et al., 2021). In temperate regions, 

winter temperatures can fluctuate weekly, or even daily, causing bats to enter short-term torpor bouts 

(Johnson et al., 2012; Meierhofer et al., 2019). Winter bat activity in the southeastern United States Coastal 

Plain is strongly influenced by temperature (Parker et al., 2020). Grider et al. (2016) observed that 

differences in mean nighttime temperature of ~1.5°C influenced winter bat activity in North Carolina. In 

addition, temperature also affects availability of insect prey (Welti et al., 2022), as it must be warm enough 

for insect prey to remain active. Thus, low temperatures negatively affect the probability of detecting bats 

during winter, which may limit our ability to obtain unbiased occupancy estimates if temperature is not 

considered. However, it is important to note that although our study confirms that temperature significantly 

influences bat detection, other possible environmental factors (e.g., humidity or atmospheric pressure) 

should be considered in future work. 

Our results provide new insights into bat ecology in working forest landscapes during winter, where 

we highlight similar responses to site and landscape covariates as previous summer work. Although bat 

species' richness generally does not change throughout the year, occupancy can change for some species. 

For example, we observed drastically higher occupancy for L. cinereus when compared to a similar study 

conducted in the Coastal Plain during summer (Bender et al., 2015). We consider these results of particular 

importance, as management decisions based on data collected during summer may positively support bat 
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communities during winter. As previously observed during summer, promoting forests with low levels of 

basal area will increase occupancy at both the community and species levels. While forest thinning reduces 

basal area in mid-rotation stands promoting efficient foraging, the influence of low basal area was also 

supported in young pine stands, as we frequently recorded bats foraging over the canopy. Our study is one 

of the few that considers imperfect detection while controlling for spatial autocorrelation and residual 

correlation among bat species (Browning et al., 2022), which provides robust estimates of occupancy and 

richness of wintering bats. Our results will inform managers of vegetation characteristics important to 

wintering bats, thereby increasing knowledge of wintering bat foraging ecology and conservation 

opportunities within working forests. 
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Table 2.1. Summary of bat species ecomorphological characteristics, foraging strategies, and number of sampling sites (out of 240 total) where bats 

were detected during winter acoustic surveys in working forest landscapes of the southeastern United States Coastal Plain, 2020–2022. 

Phonic group  Species  Total sites detected  Foraging strategy  

Low group  
Fc < 30 kHz  
Duration > 5 ms   

Dasypterus intermedius  70  Open-space aerial foragers  

Eptesicus fuscus / Lasionycteris noctivagans   122  Open and edge-space aerial foragers  

Lasiurus cinereus  177  Open-space aerial foragers  

Tadarida brasiliensis  110  Open-space aerial foragers  

        
Mid group  
Fc 30-45 kHz  
Duration > 5 ms  

Lasiurus borealis / L. seminolus  156  Edge-space aerial foragers  

Nycticeius humeralis  115  Edge-space aerial foragers  

Perimyotis subflavus  106  Edge-space aerial foragers  

        
Myotis group  
Fc > 40 kHz  

Duration < 5 ms   

Myotis austroriparius / M. septentrionalis   103  Narrow-space, aerial-gleaning forager  
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Table 2.2. Effective number of parameters (pD), Widely Applicable Information Criterion (WAIC), and difference in WAIC value between the 

model and the model with the lowest value (ΔWAIC) for the top 5 models of bat community occupancy (ψ) and detection probability (p) during 

winter 2020–2022 in working forest landscapes of the southeastern United States Coastal Plain. 

Model  pD  WAIC  ΔWAIC  

ψ (basal area + distance road + distance water + total edge + total forest + total wetland), p (temperature)  

243.34  5597.86  0.00  

ψ (basal area + clutter + distance road + distance water + total edge + total forest + total wetland), p 

(temperature)  

249.98  5606.01  8.15  

ψ (basal area + clutter + distance road + distance water + stand class + total edge + total forest + total 

wetland), p (temperature)  
259.32  5610.25  12.39  

ψ (distance water + total forest + total wetland), p (temperature)  242.76  5614.89  17.03  

ψ (total wetland), p (temperature)  237.79  5616.69  18.83  
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Figure 2.1. Locations of study sites in the southeastern United States Coastal Plain where bat acoustic 

sampling was conducted January–March 2020–2022. Sites sampled in 2020 are indicated by triangles, 2021 

by circles, and 2022 by squares. 
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Figure 2.2. Mean beta coefficients for bat community-level occupancy in working forest landscapes of the 

southeastern United States Coastal Plain winter 2020–22, estimated with a spatial community occupancy 

model fit to acoustic detector data. Gray bars show relationships in which the 75% Bayesian credible 

interval (BCI) overlaps zero, orange bars indicate that the 75% BCI does not overlap zero but the 95% BCI 

does overlap zero, and red bars indicate that the 95% BCI does not overlap zero. 

 

 



 

56 

 

Figure 2.3. Mean beta coefficients for bat species-level occupancy in working forest landscapes of the 

southeastern United States Coastal Plain winter 2020–22, estimated with a spatial community occupancy 

model fit to acoustic detector data. Gray bars show relationships in which the 75% Bayesian credible 

interval (BCI) overlaps zero, orange bars indicate that the 75% BCI does not overlap zero but the 95% BCI 

does overlap zero, and red bars indicate that the 95% BCI does not overlap zero. Species codes: Lasiurus 

cinereus (Laci), Dasypterus intermedius (Dain), Eptesicus fuscus/Lasionycteris noctivagans (Epfu/Lano), 

Lasiurus borealis/Lasiurus seminolus (Labo/Lase), Myotis austroriparius/Myotis septentrionalis 

(Myau/Myse), Nycticeius humeralis (Nyhu), Perimyotis subflavus (Pesu), and Tadarida brasiliensis (Tabr). 
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ABSTRACT  

Working forests comprise a large proportion of forested landscapes in the southeastern United 

States and are important to the conservation of bats, which rely on forests for roosting and foraging. While 

relationships between bat ecology and forest management are well studied during summer, winter bat 

ecology remains understudied. Hence, we aimed to identify the diet composition of overwintering bats, 

compare the composition of prey consumed by bat species, and determine the potential role of forest bats 

as pest controllers in working forest landscapes of the southeastern U.S. Coastal Plain. During January to 

March 2021–2022, we captured 264 bats of eight species. We used DNA metabarcoding to obtain diet 

composition from 126 individuals of seven bat species identifying 22 orders and 174 families of arthropod 

prey. Although Coleoptera, Diptera, and Lepidoptera were the most consumed orders, we found that bats 

had a generalist diet but with significant differences among some species. We also documented the 

consumption of multiple insect pests (e.g., Rhyacionia frustrana) and disease vectors (e.g., Culex spp). Our 

results provide important information regarding the winter diet of bats in the southeastern U.S. Coastal 

Plain and their potential role in controlling economically relevant pest species and disease vectors. 

INTRODUCTION 

The study of trophic resources is a key aspect of foraging ecology, providing a basic understanding 

of the relationships between consumers, resources, and the environment (Stephens & Krebs, 1986; 

Arrizabalaga-Escudero et al., 2018). Insectivorous bats are important top-down regulators of arthropod 

populations (Böhm et al., 2011; Charbonnier et al., 2014; Beilke & O’Keefe, 2023). Many bat species are 

characterized by a wide range of dietary preferences and can adapt to various land cover types, which 

enables them to adjust to changes in food availability throughout the year (Mayne & Boyles, 2015; Alberdi 

et al., 2020). As highly mobile generalist consumers, insectivorous bats contribute to stabilizing and 

connecting local food webs in their ecosystem (Bartley et al., 2019; Brechtel et al., 2019). Additionally, 

they provide important ecosystem services by suppressing agricultural pests (Aizpurua et al., 2018; Kemp 

et al., 2019; Hughes et al., 2021; Maslo et al., 2022), forest pests (Charbonnier et al., 2014; Ancilotto et 

al., 2022), and vectors of parasites of humans (Puig-Monserrat et al., 2020; Hughes et al., 2022) and 
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livestock (Downs & Sanderson, 2010; Ancilloto et al., 2017). For example, based on DNA metabarcoding 

of guano collected from roosts, Maslo et al. (2022) found that bats consumed ≥ 160 known agricultural pest 

species or disease vectors. Dietary studies focused on significant food resources and the effects of species 

interactions and communities are key to informing wildlife management decisions regarding species trophic 

position and population regulation (Alonso et al., 2014). 

In most temperate zones, bats migrate or remain in torpor during winter (Cryan, 2003). However, 

milder climatic conditions of southern temperate latitudes, such as the Coastal Plain of the southeastern 

United States (U.S.), allow bats to remain active year-round or migrate from northern latitudes seeking 

warmer winter temperatures (Grider et al., 2016; Perea et al., 2023). This region is especially relevant 

because the ability of Coastal Plain populations to maintain higher activity throughout the winter could 

translate into lower mortality associated with white-nose syndrome (WNS), an epizootic, infectious fungal 

disease caused by Pseudogymnoascus destructans (Pd). WNS has become the most serious threat to North 

American cave-dwelling bats, affecting overwintering bats by disrupting their torpor cycles and leading to 

increased energy expenditure and mortality rates. The fact that these are potential areas for remnant 

populations of species impacted by WNS in northern regions, combined with anthropogenic factors, such 

as wind energy development (Kunz et al., 2007; Grider et al., 2016), underscores the importance of 

understanding the ecology of bats in the southeastern Coastal Plain. Forests account for an important 

component of the Coastal Plain landscape, with > 86% of forests being privately owned (Oswalt et al., 

2019). Managed or working forests refer to forests that are actively maintained to achieve specific goals, 

such as the production of timber products, provision of recreational activities, creation of wildlife habitat, 

and carbon sequestration and storage. These forests are supported by economic incentives for sustainable 

management, which reduces the likelihood of their conversion to urban or agricultural land uses (Zobrist et 

al., 2005). Working forests provide resources for a variety of wildlife species, including foraging and 

roosting resources for bats (Brigham, 2007) and, in turn, bats provide essential ecosystem services to 

forests, such as phytophagous insect control (Mass et al., 2016; Garin et al., 2019; Maslo et al., 2022). 
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The diet of North American bat species has traditionally been identified by morphological methods 

which involve identifying remains of prey in fecal samples (Whitaker Jr, 1988; Carter et al., 2003; 

Fedhamer et al., 2009; Moosman et al., 2012). However, identification of remains is difficult and biased 

toward hard-bodied insects, such as Coleoptera, which persist through digestion less degraded (Clare et al., 

2014). In recent years, DNA metabarcoding has contributed greatly to our understanding of predator–prey 

relationships, including the diet of bats in forests and agricultural systems. Metabarcoding enables 

elucidation of diet through simultaneous sequencing of a single DNA region from multiple constituent 

species of a complex sample34. Such studies have revealed predation of important pests for multiple 

agricultural commodities in North America (Brown et al., 2015; Whitby et al., 2020; Hughes et al., 2021). 

For example, Boyles et al. (2011) valued the ecosystem services that insectivorous bats provide at $22.9 

billion per year on agroecosystems across the United States. In addition, these advances in molecular 

techniques documented the consumption of insect vectors of human diseases (Wray et al., 2018; Hughes et 

al., 2022), including multiple arthropod-borne viruses (arboviruses). Overall, molecular techniques provide 

much information on the prey consumption preferences of bats. However, much remains to be understood 

in terms of diet overlap, resource distribution, and differences in availability across seasons (e.g., summer 

vs. winter). 

To date, with the exception of Bernard et al. (2021), who evaluated the diet of cave-dwelling bat 

species captured outside caves during winter in Tennessee, United States, most molecular studies in North 

America focused on summer diet (Clare et al., 2009; 2014; Wray et al., 2018; Hughes et al., 2021; O’Rourke 

et al., 2022). However, effective conservation decisions require a thorough understanding and assessment 

of trophic interactions among multiple species over time. Hence, it is imperative to understand the diet of 

bat communities throughout the year to obtain better estimates of ecological services (Boyles et al., 2011; 

Russo et al., 2018). Given the important representation of bats in forest vertebrate diversity, limited 

knowledge about dietary preferences during winter, and their roles as arthropod controllers (including pests 

of economic and health concern), we assessed the winter diet composition of bat communities on private, 

working forests of the southeastern U.S. Coastal Plain using DNA metabarcoding (Figure 1). To better 

https://www.nature.com/articles/s41598-024-63062-3#ref-CR34
https://www.nature.com/articles/s41598-024-63062-3#Fig1
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understand complex diet dynamics, our objectives were to (1) identify the diet composition of overwintering 

bats, (2) compare the composition of prey consumed by bat species, and (3) determine the potential role of 

forest bats as pest controllers in winter. 

MATERIALS AND METHODS 

Study area 

We conducted our study on private, working forest landscapes in late January through mid-March, 

2021–2022 in four states (Georgia, Louisiana, Mississippi, and North Carolina) (Figure 1). Our study areas 

were characterized by a mosaic of forested landscapes with crop fields and areas with varying degrees of 

development (Wickham et al., 2023). We selected study areas > 3,000 ha that consisted primarily of planted 

loblolly pine stands interspersed with riparian management areas (predominantly mature hardwood stands), 

roads, and wildlife openings. Management activities were typical of commercial forestry operations in the 

region, including clear-cutting at 20–35 years, mechanical and/or chemical site preparation, and planting 

182–283 pine trees ha − 1 (Gresham, 2002). Competing vegetation was temporarily suppressed through 

herbicide applications, prescribed fire, or mechanically, with most stands being thinned at least once. We 

defined January–March as the winter sampling season, as mean nighttime temperatures are lowest 

(typically < 10 °C) during this time in most of the Coastal Plain region (Perea et al., 2023). 

Sample collection 

We captured bats using a combination of single, double, and triple high net sets (Avinet Inc., 

Dryden, New York, U.S.; mesh diameter: 75/2, 2.6 m high, 4-shelves, 6–12 m wide) located along forest 

corridors, streams, under bridges, road ruts, and small ponds. We opened mist nets 30 min before sunset 

and left them open for 4–5 h, checking them every 10–15 min. We placed captured bats in individual clean 

paper bags and held them for 25–30 min to provide time for defecation28. After holding, we identified 

individuals to species, recorded sex, reproductive condition, forearm length (mm), and weight (g), and 

released them at the capture site. We collected 3–4 fecal samples from paper bags using sterile forceps, 

considering fecal samples from each individual bag as a single sample. We placed them into sterile 0.5 ml 

https://www.nature.com/articles/s41598-024-63062-3#Fig1
https://www.nature.com/articles/s41598-024-63062-3#ref-CR28
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Eppendorf tubes (Eppendorf Inc., Enfield, Connecticut, U.S.) with 70% ethanol and stored them in coolers 

in the field and during transport to the laboratory. We stored samples at − 80 °C prior to DNA extraction. 

Ethics statement 

Field research followed U.S. Fish and Wildlife Service’s (USFWS) WNS Decontamination 

Guidelines (WNS Team, 2018) and recommended strategies to reduce risk of transmission of SARS-CoV-

2 from humans to bats (Kingston et al., 2021). All capture and handling techniques were approved by the 

University of Georgia Animal Care and Use Committee #A2019 11-017-Y3- 168 A0), in compliance with 

the ARRIVE guidelines, and were consistent with guidelines published by the American Society of 

Mammalogists (Sikes, 2016). We obtained federal (#ES60238B) and state permit collections (Georgia 

Scientific Collection Permit #1000598963, Mississippi Scientific Collection Permit #0210211, Louisiana 

Scientific Collection Permit #WDP-22-002, and North Carolina Scientific Collection Permit numbers: 

Endangered Species Permit #21-ES00643 and NC Wildlife Collection License #22-SC01323). 

DNA extraction, library preparation, and sequencing 

We ground each fecal sample in a 1.5 mL microcentrifuge tube using a micropestle to homogenize 

feces and increase surface area, then centrifuged. We then aspirated and discarded the ethanol, and samples 

were allowed to dry briefly under sterile conditions. We extracted DNA from up to 250 mg of each sample 

using a Qiagen QIAmp DNA Stool Mini Kit following the manufacturer's protocol (Qiagen, Germantown, 

Maryland, U.S.) with minor modifications. We prepared at least one blank extraction from each extraction 

kit and used it as a negative control in downstream analyses. We assessed quality and concentration of DNA 

extracts using a NanoDrop™ One microvolume UV–Vis spectrophotomter (Thermo Fisher Scientific, 

Waltham, Massachusetts, U.S.) prior to library preparation. We stored all DNA extracts at − 20 °C until 

amplification. We selected the number of samples to be sequenced based on the quality and concentration 

of DNA and abundance of samples for each species, avoiding selecting multiple samples of a species from 

the same site and night when possible. 

A segment of the cytochrome c oxidase subunit I (COI) was amplified using the ANML primer 

pair, LCO1490 and CO1-CFMRa (Vrijenhoek, 1994; Jusino et al., 2019). The ANML primers demonstrate 
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preferential binding to arthropod COI and enhance the representation of arthropod taxa relative to 

mammalian and avian predator DNA (Jusino et al., 2019). We modified primers to contain 5′ overhang 

sequences required for Illumina library preparation and were synthesized by Integrated DNA Technologies 

(Coralville, Iowa, U.S.). The PCR reaction mixture consisted of 12.5 uL KAPA HiFi HotStart ReadyMix 

(Kapa Biosystems, Cape Town, South Africa), 2.5 uL of each primer (2.0 uM), 5 uL genomic DNA, and 

2.5 uL molecular-grade water, for a final volume of 25 uL. Amplification reactions began with an initial 

denaturation of 95 °C for 3 min, 25 cycles at 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, followed by 

a final extension at 72 °C for 5 min (Jusino et al. 2019). We checked all PCR products for successful 

amplification using gel electrophoresis, and we retained any samples that displayed at least a faint band at 

approximately 180 bp for further library preparation. We submitted sample amplicons to the Georgia 

Genomics and Bioinformatics Core (GGBC) for the remaining library preparation steps and sequencing on 

the Illumina NextSeq 2000 (Illumina, San Diego, California, U.S.). We generated paired-end reads (i.e., 

each amplicon was sequenced twice, once in each direction) at a length of 301 bp using the NextSeq 2000 

P3 reagent kit (300 cycles, Illumina). 

Bioinformatic analyses 

We demultiplexed reads by GGBC and received in FASTQ format. We performed all DNA 

sequence processing using the AMPtk pipeline (Palmer et al., 2018). We trimmed sequences to remove 

low-quality (< Q20) bases and primers and merged them. We then filtered reads for overall quality, 

dereplicated them to identify unique sequences, sorted each by abundance, and grouped each into OTUs at 

a 97% identity threshold using UPARSE (Edgar, 2013; Clare et al., 2016). We then applied the LULU 

algorithm to identify and correct errors (Frøslev et al., 2017). Finally, we assigned taxonomic identities to 

OTUs using USEARCH (Edgar, 2010). We based taxonomic identities on the consensus agreement among 

three independent comparisons of sequences to the Barcode of Life Database v3 (BOLD) using global 

alignment, SINTAX, and UTAX algorithms (Palmer et al., 2018). 

Statistical analyses 
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We conducted all analyses and visualizations in R 4.1.1 (R Core Team, 2020). We analyzed diet 

composition by bat species and overlap among species using OTUs with assigned taxonomy. We first 

identified and filtered out rare taxa, defined as those with fewer than 10 reads across all samples (Bernard 

et al., 2021), and samples with fewer than 1,000 reads using the Phyloseq package (version 1.38.0; 

McMurdie & Holmes, 2013). We examined diet composition using heat trees constructed with the 

Metacoder package, which display taxa that were identified in samples and their lineage (version 0.3.6; 

Foster et al., 2017). Specifically, we developed a single heat tree for each bat species, representing all insect 

families consumed by that species and individual heat trees for the three dominant insect orders consumed. 

Then, we used the vegan package (version 2.6.4; Oksanen, 2010) to test for variations in prey composition 

among bat species by Analysis of Similarity (ANOSIM) and Permutational Multivariate Analysis of 

Variance (PERMANOVA) tests with 999 permutations (Anderson & Walsh, 2013). Because 

PERMANOVA can sometimes be affected by non-homogeneity of dispersion for unbalanced sampling 

schemes, we also performed a permutational dispersion test (Anderson & Walsh, 2013). Lastly, we 

performed post-hoc pairwise multilevel comparisons using the pairwise Adonis package with Bonferroni 

adjustment (version 0.4.1; Martinez Arbizu, 2020) to determine differences among species. 

RESULTS 

We captured 264 individuals of eight bat species from late-January to mid-March 2021–2022, 

collecting fecal samples from 209 individuals, from which we selected samples from 195 individuals. After 

bioinformatics processing and quality filtering, we obtained diet composition from 126 individuals of seven 

species (Table 1). None of the fecal samples from the two captured Dasypterus intermedius passed quality 

control. We obtained 2703 unique Operational Taxonomic Units (OTUs), 2127 (78.69%) of which were 

matched to sequences in the Barcode of Life Database v3 (BOLD) reference collection after pruning. These 

matches belonged to 22 orders, 174 families, and 422 genera or species (Supplementary Material 1). Within 

analyzed fecal samples, Coleoptera (n = 610 OTUs), Diptera (n = 684 OTUs), and Lepidoptera (n = 551 

OTUs) were the most consumed orders (Supplementary Material 2). These three orders were the most 

consumed orders by all bat species except Lasiurus cinereus (Figure 2, Table 1), which had a scarce 

https://www.nature.com/articles/s41598-024-63062-3#Tab1
https://www.nature.com/articles/s41598-024-63062-3#MOESM2
https://www.nature.com/articles/s41598-024-63062-3#MOESM3
https://www.nature.com/articles/s41598-024-63062-3#Fig2
https://www.nature.com/articles/s41598-024-63062-3#Tab1
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representation of Coleoptera, although with a sample size of only three individual bats. For the remaining 

bat species, percentages varied among species such as L. borealis where 41.46% was based on Lepidoptera, 

to species such as Eptesicus fuscus, where 45.25% corresponded to Coleoptera, or Perimyotis subflavus 

with a preference for dipterans (49.21%) (Figure 2, Table 1). 

Diet composition was dissimilar among species (Bray–Curtis: R = 0.27, P < 0.001). Additionally, 

we detected significant differences both in the dispersion of diet composition among species (Bray–Curtis: 

F6,125 = 2.01, r2 = 0.09, p = 0.001), and when performing the permutational dispersion test (F6,125 = 4.04, 

Nperm = 999, p = 0.002). Lastly, post-hoc pairwise multilevel comparisons revealed significant differences 

(p adj. < 0.05) in diet composition among E. fuscus/Nycticeius humeralis (F = 2.60, p adj. = 0.02), L. 

borealis/N. humeralis (F = 2.61, p adj. = 0.02), L. cinereus/L. seminolus (F = 1.65, p adj. = 0.04), L. 

cinereus/N. humeralis (F = 2.21, p adj. = 0.02), L. seminolus/Myotis austroriparius (F = 1.80, p adj. = 0.04), 

L. seminolus/N. humeralis (F = 4.32, p adj. = 0.02), and M. austroriparius/N. humeralis (F = 3.14, p 

adj. = 0.02). All other post-hoc pairwise multilevel comparisons did not show significant differences (p 

adj. > 0.05). 

Bats consumed agricultural and forest pest species in five orders (Coleoptera [n = 12], Diptera 

[n = 2], Hemiptera [n = 5], Lepidoptera [n = 27], and Trombidiformes [n = 1]). Forest pests, including 

Argyrotaenia pinatubana, Clepsis peritana, Hylobius pales, and Rhyacionia frustrana were consumed by 

multiple bat species (Table 2). As for dipteran parasite vectors, we documented five genera of mosquitoes 

(Family Culicidae), highlighting mosquitoes of the genus Culex, including C. nigripalpus, C. salinarius, 

and C. territans, widely present in the diet of all bat species except for L. cinereus (Figure 2, Table 2). Other 

known parasite vectors included two genera of black flies (Family Simuliidae), three genera of sandflies 

(Family Ceratopogonidae), and one genus of drain or sewer fly (Family Psychodidae) (Supplementary 

Material 3). 

DISCUSSION 

Our results show a great variability (22 arthropod orders) in diet across bat species, highlighting 

the consumption mainly of Coleoptera, Diptera, and Lepidoptera. As expected, diet composition differed 

https://www.nature.com/articles/s41598-024-63062-3#Fig2
https://www.nature.com/articles/s41598-024-63062-3#Tab1
https://www.nature.com/articles/s41598-024-63062-3#Tab2
https://www.nature.com/articles/s41598-024-63062-3#Fig2
https://www.nature.com/articles/s41598-024-63062-3#Tab2
https://www.nature.com/articles/s41598-024-63062-3#MOESM4
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among bat species with different foraging strategies, but surprisingly also among species in similar foraging 

guilds. Our findings complement previous work conducted during summer indicating that bat diets vary 

seasonally (Clare et al., 2014; O’Rourke et al., 2022; Aihartza et al., 2023), which may depend on insect 

phenologies and weather conditions. Specifically in winter, seasonal prey limitations may lead to shifts 

towards more generalist behavior in several bat species, with changes in dietary composition and diversity 

compared to other times of the year and life stages of bats. Further, our results confirm the role of 

overwintering bat communities as consumers of agricultural and forest pests and potential arthropod vectors 

of human and animal diseases. 

Traditionally, dietary preferences of insectivorous bats have been explained based on differences 

in their ecomorphologies and morphometric characteristics, with larger species feeding on larger insects or 

insects with more resistant exoskeletons (Norberg & Rayner, 1987; Denzinger & Schnitzler, 2013). The 

energetic cost–benefit of feeding on smaller insects compared to larger insects or insects with more resistant 

exoskeletons would lead to dietary selection based on the morphological characteristics of each bat species 

(Freeman, 1981). For example, it is often questioned whether species, especially large-body bats, can meet 

energy demands consuming small soft-body insects such as flies and mosquitoes (Wetzler & Boyles, 2018). 

However, availability and temporal variation of prey may lead to shifts in preferences towards more 

generalist diets. Eptesicus fuscus, the second largest of the seven species captured, is considered a 

coleopteran specialist (e.g., Agosta, 2002; Feldhamer et al., 2009; Dodd et al., 2012). Recently, this 

assumption has been questioned, placing E. fuscus instead as generalist consumers in summer with 

preferences for Coleoptera when available (Clare et al., 2014; Wray et al., 2018; Whitby et al., 2020). In 

our study, a large portion of their diet was Coleoptera, but we found high dietary diversity, including many 

dipterans, possibly attributed to more dipterans in winter relative to other insect orders (Bernard et al., 

2021). Flexible hunting strategies may allow bat species to adapt to different food availabilities by 

consuming prey that is abundant at the time, although of non-optimal sizes or other characteristics (Divoll 

et al., 2022). In contrast, the diet of L. cinereus, the largest species in our study and one of the largest 

species in North America, was comprised primarily of Diptera and Lepidoptera. Although our results should 
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be interpreted with caution because of the small sample size (n = 3 individual bats), previous studies suggest 

that L. cinereus select large, soft-bodied insects (e.g., Lepidoptera and Neuroptera) and avoid small or hard-

bodied insects (e.g., Coleoptera, Diptera, and Hemiptera) (Valdez & Cryan, 2009; Reimer et al., 2010; 

Perlik et al., 2012). Most of the dipterans we documented in the diet were large crane fly species such as 

Nephrotoma ferruginea (Table 2), which supports a preference for large, soft-bodied prey. 

The remaining bat species in our study are smaller and adapted to foraging along forest edges or 

within forests (e.g., Loeb & O’Keefe, 2006; Bender et al., 2015; Perea et al., 2023). Lasiurus borealis and 

L. seminolus share similar ecomorphologies, to the point that it is difficult to separate them by the 

characteristics of their echolocation calls or external morphology (Laerm et al., 1999; Szewczak et al., 

2011). Both species have robust dentition like other Coleoptera specialists (Freeman, 1981). However, both 

ours and previous dietary analyses indicate that they consume a wide range of soft-bodied prey such as 

Diptera, Lepidoptera, and Neuroptera (e.g., Clare et al., 2009; Weinkauf et al., 2018; Hughes et al., 2021). 

The dietary differences identified between N. humeralis with L. borealis and L. seminolus could be due to 

the partitioning of selected prey within the same spaces and slight differences in ecomorphology and general 

external morphologies. The morphometrics and dentition of N. humeralis together with previous summer 

dietary analyses show flexibility in its diet, which allows it to eat a wide range of arthropods, from 

coleopterans to soft-bodied prey (Freeman, 1981; Feldhamer et al., 2009; Münzer et al., 2016). Our results 

confirm similar preferences in the diet during winter, where we observed high dietary diversity, 

distinguishing N. humeralis from other species. These findings are supported by the presence of OTUs from 

all 22 identified orders. 

Previous works indicate that M. austroriparius and P. subflavus consume primarily soft body prey 

(Feldhamer et al., 2009; Weinkauf et al., 2018). Using morphological dietary analyses, Feldhamer et al. 

(2009) found that both species consumed mainly trichopterans, suggesting a diet of soft-bodied species 

found predominantly above water. However, we observed numerous Coleoptera OTUs present in the diet 

of M. austroriparius, which highlights its dietary plasticity, consuming hard-bodied insects in winter. 

Differences between M. austroriparius with diets of L. seminolus and N. humeralis suggest a tendency 

https://www.nature.com/articles/s41598-024-63062-3#Tab2
https://www.nature.com/articles/s41598-024-63062-3#ref-CR55
https://www.nature.com/articles/s41598-024-63062-3#ref-CR30
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towards a more specialized diet likely influenced by its forest-interior foraging strategies (Perea et al., 

2023). Perimyotis subflavus is among the smallest bats in North America (Brigham, 1991). Previous studies 

have noted that P. subflavus shows an opportunistic approach when foraging, exhibiting one of the most 

diverse diets in eastern North American bat species (Dodd et al., 2014; Weinkauf et al., 2018). However, 

we found that P. subflavus consumed the second lowest number of orders, but a large proportion of 

dipterans, which concurs with previous research that documented frequent consumption of dipterans by P. 

subflavus in winter (Bernard et al., 2021). Disproportionate consumption of dipterans in winter compared 

to other seasons could be a consequence of a selection for small soft-bodied prey and a higher abundance 

of Diptera relative to other orders. 

To our knowledge, our study is the first to document the consumption of agricultural and forest 

pests by winter bat communities in the southeastern U.S. Coastal Plain where intensive pine management 

and agriculture dominate the landscape. Among the most common forest pest species we documented in 

bat diets, R. frustrana, is an economically important pest of young pines, especially for loblolly pine (Pinus 

taeda), the preferred host species (Asaro et al., 2003). Our study coincided with the time period when R. 

frustrana typically emerges (Yates, 1981), highlighting the importance of this moth to most bat species 

when availability is high. Additionally, H. pales was also widely consumed by most bat species in our 

study. Hylobius pales causes damage to young pine seedlings and is a vector of commercially damaging 

Ophiostomatalean “blue-stain” fungi such as Leptographium spp., which discolor and degrade the value of 

colonized wood (Nevill & Alexander, 1992; Zanzot et al., 2010). Our research also reveals the consumption 

of various agricultural pests by bats, such as the moths C. peritana and H. scabra, which likely inhabit 

agricultural areas embedded within the working forest landscapes. While H. scabra was not the most 

frequently consumed pest nor found in large numbers, it was present in the winter diet of five bat species, 

including migratory species like L. borealis and L. cinereus (Cryan, 2003). Hypena scabra is a migratory 

moth, with most populations overwintering south of the midwestern U.S. Corn Belt (McCarville et al., 

2010, Whitby et al., 2020). Although it is generally of minor economic importance, this moth is one of the 

most common defoliating insects in alfalfa and soybean fields (Higley & Boethel, 1994). Consumption of 

https://www.nature.com/articles/s41598-024-63062-3#ref-CR59
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overwintering populations of H. scabra in this ecoregion may provide a yet undocumented ecosystem 

service in controlling populations outside of the growing season and outside the major crop-producing areas 

of the Corn Belt. Overall, our findings suggest that consumption of agricultural and forest pests by bats in 

late winter and early spring could play a crucial role in minimizing damage during the subsequent growing 

season, highlighting the potential significance of bats as natural pest controllers in agricultural and forested 

landscapes. 

Finally, we identified several species of flies and mosquitoes (Diptera) in winter diets that are 

recognized as threats to human health. Global concern about mosquitoes (Family Culicidae) stems from 

their significant impact on public health, attributed to their role as disease vectors. This impact extends to 

the transmission of multiple diseases [e.g., West Nile virus (Hoover & Barker, 2016), malaria (Rogers & 

Randolph, 2000), dengue (Vicente-Santos et al., 2017), dog (Canis lupus familiaris), heartworm (Cancrini 

et al., 2003), myxomatosis (Flowerdew et al., 1992), or avian malaria (Atkinson et al., 2000)] with far-

reaching consequences for human societies, wildlife, and ecosystems. Our results reveal a diverse array of 

mosquito vectors, including species of the genera Aedes and Culex, common vectors of diseases such as 

West Nile virus. In addition, we identified malaria vectors, such as Anopheles mosquitoes, and specific 

cases of non-native mosquitoes, such as Aedes japonicus, implicated in the transmission and/or maintenance 

of arboviruses, both endemic to the region (e.g., West Nile virus) and exotic (e.g., Zika, dengue, and 

chikungunya; Gutiérrez-López et al., 2022). Although little known to date (Russo et al., 2018), our results 

also demonstrated consumption of other dipterans that may pose a threat to wildlife, livestock, and poultry. 

For example, we confirmed consumption of Diptera such as black flies (Family Simuliidae), which are 

capable of transmitting pathogens, including protozoa and nematode worms to vertebrates, and are thus a 

veterinary concern, even if none of them cause disease in humans in North America (Adler et al., 2010). 

Identifying diet composition in overwintering bats and recognizing differences in prey 

consumption among species contribute valuable insights into the ecological role of bats in working forest 

landscapes. As these forests are crucial for remnant populations affected by WNS and migratory species 

affected by wind energy development, understanding winter bat foraging ecology becomes paramount. The 
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potential role of forest bats as pest controllers during winter underscores the importance of managing 

working forests in ways that support the diverse dietary needs of the bat community. Our findings have a 

direct connection to economics and timber quality; for example, R. frustrana is known to have a drastic 

impact on pine growth, both in tree height and diameter (Asaro et al., 2003). Hence, proactive forest 

management practices that improve bat habitat conditions (Taylor et al., 2020), such as retention of 

hardwoods, trees with exfoliating bark, and cavity trees (live and dead) also increase their economic 

benefits. Additionally, our results show the role of bat communities outside forest boundaries consuming 

agricultural pests and other potential arthropod vectors of disease. Conservation efforts thus may consider 

ecological services provided by bats, including their ability to contribute to control of agricultural and forest 

pests and potentially limit the spread of disease vectors. We also emphasize the role of private lands 

conservation in promoting bat habitat and their consequent ecosystem services. 
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Table 3.1. Bats captured, number of fecal samples collected, number of samples analyzed, number of Operational Taxonomic Units (OTUs) for each 

bat species within insect orders, and bat species foraging strategies in private, working forest landscapes across four states (Georgia, Louisiana, 

Mississippi, and North Carolina) of the southeastern U.S. Coastal Plain from late-January to mid-March 2021–2022. 

Species  
Total bats 

captured  

Total fecal 

samples  

Number 

samples 

analyzed  

Coleoptera  Diptera  Lepidoptera  Other  Orders  Foraging strategy   

Lasiurus seminolus  79  60  44  158  314  383  155  19  Edge-space aerial foragers  

Nycticeius humeralis  75  54  32  281  371  132  216  22  Edge-space aerial foragers  

Myotis austroriparius  41  37  14  202  186  132  68  17  
Narrow-space, aerial-

gleaning forager  

Perimyotis subflavus  25  20  12  61  218  75  89  13  Edge-space aerial foragers  

Lasiurus borealis  25  21  11  65  72  153  79  16  Edge-space aerial foragers  

Eptesicus fuscus  14  12  10  200  77  92  73  16  
Open and edge-space aerial 

foragers  

Lasiurus cinereus  3  3  3  3  15  13  13  10  Open-space aerial foragers  

Dasypterus 

intermedius  
2  2  0  -  -  -  -  -  Open-space aerial foragers  

Total  264  209  126  610  684  551  282  22    
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Table 3.2. Prey items Operational Taxonomic Units (OTUs) consumed by seven bat species captured in 

private, working forest landscapes across four states (Georgia, Louisiana, Mississippi, and North Carolina) 

of the southeastern U.S. Coastal Plain from late-January to mid-March 2021–2022. Top ten items consumed 

by each bat species are highlighted in bold. Bat species codes: Eptesicus fuscus (EPFU), Lasiurus borealis 

(LABO), Lasiurus cinereus (LACI), Lasiurus seminolus (LASE), Myotis austroriparius (MYAU), 

Nycticeius humeralis (NYHU), and Perimyotis subflavus (PESU). The asterisk (*) denotes pest species. 

Prey OTUs  Bat species  

Order  Family  Species  EPFU  LABO  LACI  LASE  MYAU  NYHU  PESU  

Araneae  Salticidae  
Pelegrina 

montana  
2      5  4  7  

1  

  Theridiidae  Robertus crosbyi  2  1    5    12    

Coleoptera  Cantharidae  
Podabrus 

nothoides  
3  2    8  2  22  

4  

  Carabidae  Oodes amaroides  4      2  1  1    

  Carabidae  
Platynus 

cincticollis  
5      1  1  4  

  

  Carabidae  
Stenolophus 

ochropezus  
1          10  

  

  Curculionidae  Hylobius pales*  5    2  3  1  1    

  Curculionidae  
Xylosandrus 

crassiusculus*  
  2    4  1  5  

3  

  Hydrophilidae  
Helocombus 

bifidus  
5  1    19  3  10  

5  

  Scarabaeidae  
Dyscinetus 

morator  
  3  1  4    2  

  

  Scirtidae  
Contacyphon 

ochreatus  
      6    10  

2  

Diptera  Chironomidae  
Chironomus df 

decorus  
4  1  1  8  9  16  

2  

  Chironomidae  Chironomus harpi  2  2  3  16  4  18  2  

  Chironomidae  
Orthocladius 

oliveri  
    1  1  7    

  

  Culicidae  Culex nigripalpus    1    14  4  15  2  

  Culicidae  Culex territans  1  1    13  3  10  4  

  Culicidae  Culex salinarius    1    16  2  11  3  

  Limoniidae  
Erioptera 

caliptera  
4  1    6  1  9  

5  

  Psychodidae  
Psychoda 

alternata  
1      6    9  

5  

  Tipulidae  
Nephrotoma 

ferruginea  
3  1  3  5  1  4  

  

Hemiptera  Aphididae  Eulacachnus rileyi  2  3    1    1    

Hymenoptera  Apidae  Nomada subrutila  3  1    11  2  8  3  
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  Xyelidae  Xyela spp.  3  3  1  16    11  3  

Lepidoptera  Erebidae  Hypena scabra*  2  3  2  2    1    

  Erebidae  Schrankia macula    3  1  2        

  Geometridae  
Eupithecia 

miserulata*  
  4    4      

  

  Geometridae  
Orthonama 

obstipata*  
    1  1      

1  

  Geometridae  
Thysanopyga 

intractata  
  4    15      

  

  Noctuidae  Eupsilia vinulenta  4  2    2  1  1  1  

  Noctuidae  Orthosia hibisci    3  2  4        

  Noctuidae  
Sericaglaea 

signata  
2  4    5  2  2  

2  

  Plutellidae  
Plutella 

xylostella*  
    1        

  

  Tineidae  
Nemapogon 

interstitiella  
1      1  5  1  

2  

  Tortricidae  
Argyrotaenia 

pinatubana*  
7  7  1  15  9  8  

2  

  Tortricidae  
Chimoptesis 

gerulae  
5  6    7  3  2  

3  

  Tortricidae  Clepsis peritana*  3  2    24  1  9  3  

  Tortricidae  
Rhyacionia 

frustrana*  
4  6    21  4  10  

5  

Neuroptera  Chrysopidae  
Chrysoperla 

rufilabris  
2  9  2  18  3  1  

1  

  Hemerobiidae  
Hemerobius 

stigma  
4  2    2  5  1  

  

  Hemerobiidae  Micromus posticus  4  1  2  20  9  8  3  

  Hemerobiidae  
Micromus 

subanticus  
2    2    1  1  

1  

Psocodea  Amphipsocidae  
Polypsocus 

corruptus  
  1  1  6  5  4  

5  

Odonata  Libellullidae  Trithemis dubia  8              
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Figure 3.1. Location of study sites (circles) in the southeastern United States Coastal Plain where bat 

sampling was conducted from late January to mid-March 2021–2022. Landscape cover types derived from 

a reclassification of The National Land Cover Database 2021. 
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Figure 3.2. Winter diet including order, family, and genus of seven bat species in private, working forests 

of the southeastern U.S. Coastal Plain from late-January to mid-March 2021–2022. Colors represent 

number of samples and width of nodes represent number of Operational Taxonomic Unit (OTU) counts for 

each taxonomic level. 
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CHAPTER 4 

 DISENTANGLING WINTER RELATIONSHIPS: BAT RESPONSES TO FOREST STAND 

STRUCTURE, ENVIRONMENTAL CONDITIONS, AND PREY COMPOSITION3 
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ABSTRACT 

Private, working forests are a significant component of the landscape in the southeastern United 

States. Past research has documented diverse bat communities in these areas, but there is limited 

information on how forest management practices affect bat and insect communities, particularly in winter. 

To address this gap, we applied structural equation modeling to examine relationships among bat activity, 

temperature, forest structure, and nocturnal insect assemblages across four working pine (Pinus spp.) forest 

landscapes in the southeastern U.S. Coastal Plain during mid-January to mid-March 2021-2022. As 

expected, temperature directly influenced both bat activity and insect metrics. Additionally, sites with 

higher insect ordinal richness positively affected activity for all bat taxa except Myotis austroriparius / M. 

septentrionalis. Activity of most bat taxa was also directly influenced by forest structure, generally 

indicating preference for mid-rotation thinned and late-rotation semi-open canopied stands and a negative 

response to pre-thinned, closed-canopy stands. Further, forest stand structure affected several insect 

attributes including catches of Coleoptera, Diptera, Lepidoptera, and large-sized insects, indicating 

potential indirect cascading effects on bat taxa associated with specific forest insect assemblages. For 

instance, early establishment forest stands (0-3 years) negatively influenced lepidopteran catches, 

potentially indicating an indirect effect on L. borealis / L. seminolus activity. Maintaining a heterogenous 

forest landscape with a range of stand age and structure from early establishment to thinned and mature 

stands will benefit winter bat communities. Our research provides insight into overwintering bat community 

dynamics, offering practical guidance to forest managers to optimize conservation efforts. 

INTRODUCTION 

In the southeastern U.S., approximately 29.7 million ha (~86%) of forests are privately owned, with 

working forests accounting for much of the land area (Oswalt et al., 2019). Working forests are actively 

managed for production of forest products while also maintaining recreational opportunities, wildlife 

habitat, water quality and quantity, and carbon storage and sequestration. Economic incentives for forest 

management help maintain forests while reducing the risk of forest land conversion to urban and 

agricultural uses (Siry et al., 2005). Hence, working forests benefit biodiversity conservation by allowing 
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landowners to achieve their objectives while conserving forest features on the landscape necessary to 

maintain wildlife communities (e.g., Demarais et al., 2017). 

 Forests provide foraging and roosting resources for bats while bats provide essential ecosystem 

services, including control of phytophagous insects (Maas et al., 2016, Beilke & O’Keefe, 2023). Forest 

management practices, such as harvest and herbicide use, affect how bats use forested landscapes by 

modifying structure (Bender et al., 2015; Carr et al., 2020). However, forest structure alone cannot fully 

explain bat species’ relationships with their environment (Morrison, 2001). For insectivorous bats, habitat 

use predictions based on wing morphology and echolocation call characteristics may be modified by prey 

availability (Ford et al., 2005). Therefore, fully understanding how bats respond to forest management 

requires determining links between foraging bats and prey availability (Bender et al., 2021; Froidevaux et 

al., 2021). 

Insects contribute significantly to forest biodiversity, biomass, and overall ecosystem functioning 

(Santos et al., 2021). In addition to serving as an important vertebrate food source (Rosenberg et al., 1986), 

many insect species influence ecosystem processes (Asquith et al., 1990; Westman, 1990). Forest structure 

and composition are among the main drivers for maintaining specific insect communities (Gossner et al., 

2014; Leidinger et al., 2019). In temperate forests, there may be notable vertical stratification of insect 

communities with variations in abundance and species richness among feeding guilds and forest strata 

(Leidinger et al., 2019). Thus, changes in canopy cover or understory vegetation can affect insect 

communities (Favorito et al., 2023).  Surrounding land use (e.g., agriculture or urbanization), can also 

influence insect communities, sometimes masking or altering expected relationships (Veres et al., 2013; 

Uhler et al., 2021). Overall, alterations in insect communities can, in turn, trigger changes in insect-

dependent vertebrate populations, such as bats. 

The Coastal Plain of the southeastern U.S. is characterized by mild temperatures, allowing bats to 

remain active year-round (Grider et al., 2016; Perea et al., 2023). Previous summer studies in working 

forest lands have provided valuable insights into bat responses to forest structure and insect communities. 

Generally, insect abundance has little influence on bat activity or presence in summer (Ford et al., 2006, 
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Brooks et al., 2017), or where relationships with insect abundance have been detected, vegetation structure 

has a stronger influence (Bender et al., 2021). Bat prey response is also a critical question when evaluating 

forest management practices (Carr et al., 2020; Bender et al., 2021; Froidevaux et al., 2021), but there 

remains a gap in our understanding of how forest structure and insect community composition influence 

bat communities during winter. To address this information need, we aimed to better understand dynamics 

of bat and insect communities and how forest management practices influence bat ecology during winter. 

Specifically, we examined direct and indirect relationships among stand structure characteristics, 

temperature, insect community metrics, and bat activity in working forests in the southeastern U.S. Coastal 

Plain. Our approach allowed us to disentangle direct and indirect effects of forest management practices on 

bat communities, thus providing a holistic understanding of ecological interactions occurring within 

working forest landscapes to inform forest management decisions. 

MATERIALS AND METHODS 

Study area 

We conducted our study during 2021-2022 in private, working forest landscapes (> 3,000 ha) across 

four states (Florida, Mississippi, North Carolina, and South Carolina) (Figure 1). Forests were composed 

primarily of upland planted loblolly pine (Pinus taeda) stands interspersed with riparian areas, roads, 

wildlife clearings, and other non-forested areas (< 15% of each area). Management activities were typical 

of commercial forestry operations in the region (Gresham, 2002), including clearcutting at 20-25 years, 

mechanical and/or chemical site preparation, and planting at 182-283 trees/ha. Competing vegetation was 

temporarily suppressed by selective herbicide applications, prescribed fire, or mechanical removal. 

Herbicide applications typically occurred during site preparation of clearcut stands, 1–4 years following 

stand establishment, and after thinning (Shepard et al. 2004). Most stands were thinned at 13-15 years. 

Mean area of managed stands across all study areas was 35.6 ha (SE = 0.60).   

Bat acoustic sampling 

In each working forest landscape, we created a 900 x 900 m acoustic sampling grid covering an 

area with stand types and ages representative of working forest landscapes in the region. Mean area of 
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sampling grids was 9,894.3 ha (range 8,767.5–11,989.5 ha). We chose 900 m between grid points as a 

compromise among foraging areas of common bat species found on the study areas (Walters et al., 2007; 

Veilleux et al., 2009; Morris et al., 2011) and logistical considerations to minimize dependence among 

points (Bender et al., 2015).  We used ArcGIS Pro 2.8.0 (ESRI, Redlands, California, U.S.) to randomly 

select grid intersections as sampling points. We surveyed 35 sampling points in each study area to represent 

variation in growth stage, stand size, and management history. We sampled all points in each study area 

within a one-month period. We defined mid-January to mid-March as the winter sampling season as mean 

nightly temperatures are lowest (typically < 10⁰ C) during this time in the region. 

At each sampling point, we deployed Anabat Swift acoustic detectors with omnidirectional 

ultrasonic microphones US-OV2 and US-OV3 (Titley Electronics, Ballina, New South Wales, Australia) 

for three consecutive nights, recording during the first four hours after sunset. If rain occurred during the 

sampling period, we left detectors out for additional nights to ensure three nights of rain-free sampling. We 

placed detectors on poles with microphones 3 m above the forest floor pointed in the direction of least 

vegetation clutter (Weller & Zabel, 2002). We coupled each detector with a temperature logger (HOBO 

Pendant G Acceleration Data Logger, Onset Computer Corp., Pocasset, Massachusetts, USA) programmed 

to record hourly temperature (ºC).  

Bat call analyses 

We used automated identification software and subsequent manual vetting to identify bat calls to 

species, as recommended by the North American Bat Monitoring Program (NABat; Reichert et al., 2018). 

We first filtered out noise files using Kaleidoscope Pro 5.4.1 software (Wildlife Acoustics Inc., Maynard, 

Massachusetts, U.S.). The default filter setting parameters for bat analysis were selected, specifying a signal 

of interest between 8 and 120 kHz, 2 to 500 ms, and at least three pulses per sequence (Loeb et al., 2015). 

We used the Batch function in Kaleidoscope Pro to split each sequence to a maximum duration of 10 s for 

standardization and the auto classifier of Kaleidoscope Pro with a balanced sensitivity level for 

classification to assist manual vetting. Subsequently, all non-noise files were manually analyzed using call 

structure, minimum and maximum energy frequency, characteristic frequency, duration, inter-pulse 
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interval, and slope (O’Farrell et al., 1999; Russo & Jones, 2002). Due to overlap in acoustic characteristics 

of some species [i.e., eastern red bat / Seminole bat (Lasiurus borealis / L. seminolus), big brown bat / 

silver-haired bat (Eptesicus fuscus / Lasionycteris noctivagans), and southeastern myotis / northern long-

eared bat (Myotis austroriparius / M. septentrionalis)], we grouped bat passes by these pairs (i.e., Russo & 

Jones, 2002; Loeb et al., 2015). 

Insect sampling 

At each sampling point, we sampled insects using light traps consisting of 12-watt, 352 nm, black 

fluorescent "U" tubes hung on poles 1.5 m above the ground powered by 12-volt batteries. We placed light 

traps 50 m from detectors within the same stand to avoid bias in bat activity resulting from insect attraction 

to traps (Froidevaux et al., 2018). We programmed light traps to turn on during the first four hours after 

sunset each night to coincide with bat acoustic data collection. After three days, we collected insects and 

froze them until identification. We identified all captured insects to taxonomic order. We measured length 

(mm) from the anterior of the head to the last abdominal segment and classified them into one of the 

following three size classes: <3 mm (small), 3-10 mm (medium), and >10 mm (large) (adapted from Bender 

et al., 2021). 

Forest stand metrics 

Based on landowner-provided and publicly available data, we used ArcGIS Pro to classify forest 

stands into growth stages (i.e., approximately 0–3 years [early establishment], 4–7 years [closing canopy], 

8–13 years [closed canopy, pre-thinned], 14–20 years [mid-rotation thinned], or >20 years [semi-closed 

canopy]). We created a 100-m buffer around each acoustic sampling point and calculated the area (ha) in 

each forest stand class. We chose a 100-m buffer size as a compromise in the scale of responses to tree 

cover by among bat species found on the study area based on Moretto et al. (2019). Growth stages were 

revised as needed from data provided by landowners as the exact thinning year varied. 

Data analyses 

We used structural equation modeling (SEM; Grace, 2006) to compare relationships among winter 

bat activity, nocturnal insect composition metrics, temperature, and stand structure characteristics. We 
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quantified bat activity for each species/group by calculating mean (across three nights) number of bat passes 

recorded at each sampling point. We calculated overall number of insects, number within size classes 

(small, medium, and large), and number within the most abundant orders (mean of ≥15 adult individuals; 

Coleoptera, Diptera, and Lepidoptera) at each sampling point. To determine nocturnal insect richness at the 

order level, we summed number of orders observed at each sampling point. Insect metrics were included 

as predictor variables along with forest stand stages and temperature. 

All analyses were conducted in R 4.4.0 (R Core Team, 2024). Based on existing theory and 

evidence, we developed a conceptual model to guide our analyses, including all bat species/groups, insect 

metrics, temperature, and forest stand characteristics (Figure 2). We then developed generalized linear 

models (GLM) for each response variable testing null, global, single covariate, and models with biologically 

meaningful combinations of covariates. Shapiro-Wilks tests revealed that all response variables except 

insect ordinal richness were not normally distributed (p < 0.01) and were over-dispersed, and thus were 

fitted with negative binomial distributions. For richness of insect orders, we fitted our models with a 

Gaussian distribution. We tested for correlation between continuous predictor variables using Pearson's 

correlation coefficient to ensure that highly correlated variables (r ≥ |0.7|) were not included in the same 

model (Supplemental Figure 1). With that information, we constructed SEMs using the most plausible 

GLMs for each response variable, including biologically relevant covariates. To do so, we evaluated GLMs 

using Akaike's Information Criterion corrected for small sample sizes and selected models with ΔAICc ≤ 1 

(Supplemental Table 1). 

We used the PiecewiseSEM package (Lefcheck et al., 2016) for structural equation modeling. We 

tested the hypothesized model (Fig. 2), including combinations of the most plausible models for each 

response variable using SEMs to determine effects of variables on bat activity. We used Shipley’s test of 

directed separation (Fisher’s C) to evaluate global SEM fit, where a p-value > 0.05 indicated that the model 

was supported by the observed data (Shipley, 2009; Lefcheck et al., 2016). Among models that were 

deemed valid (p > 0.05), we selected the model with the highest Fisher's C statistic as the final model. We 
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summarized models by providing the R2 value for each endogenous variable, standardized path coefficients, 

standard errors, and p-values. 

To enhance clarity and visualization, we divided SEM results into open space and edge/interior 

foraging bat species. Northern yellow bat (Dasypterus intermedius), E. fuscus / L. noctivagans, hoary bat 

(L. cinereus), and Mexican free-tailed bat (Tadarida brasiliensis) are considered open-foraging species that 

emit echolocation calls with characteristic frequencies (Fc) < 30 kHz. Bats including L. borealis / L. 

seminolus, M. austroriparius / M. septentrionalis, evening bat (Nycticeius humeralis), and tricolored bat 

(Perimyotis subflavus), are adapted to foraging within forest stands or edges with calls at Fc > 30 kHz 

(Norberg & Rayner, 1987; Denzinger & Schnitzler, 2013). 

RESULTS 

We recorded 5,338 bat passes on 423 recording nights (n = 140 sites). We documented eight 

individual or species pairs, including D. intermedius (n = 87 passes), E. fuscus / L. noctivagans (n = 400 

passes), L. borealis / L. seminolus (n = 1,218 passes), L. cinereus (n = 1,716 passes), M. austroriparius / 

M. septentrionalis (n = 583 passes), N. humeralis (n = 383 passes), P. subflavus (n = 336 passes), and T. 

brasiliensis (n = 615 passes). For the insect assemblage, we identified 18,882 insects in eight orders during 

423 trapping nights. 

Our best SEM adequately explained proposed relationships among forest stand structure 

characteristics, temperature, bat activity, and insect community metrics (Fisher’s C = 129.14, df = 168, p-

value = 0.99). Marginal R2 values ranged from 0.89 and 0.81 for T. brasiliensis and M. austroriparius / M. 

septentrionalis, respectively, to 0.53 and 0.58 for D. intermedius and P. subflavus, respectively. Marginal 

R2 for insect metrics also indicated that predictors explained a significant amount of variance in dependent 

variables ranging from 0.23 and 0.34 for richness of insect orders and Diptera, respectively, to 0.97 and 

0.96 for Coleoptera and Lepidoptera, respectively (Supplemental Table 2). 

Open space foragers 

Temperature at sunset and richness of insects orders positively affected activity of all open-space 

foragers (Fig. 3, Supplemental Table 2). Additionally, D. intermedius was influenced by higher catches of 

https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-bib-0081
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-bib-0028
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Diptera (estimate = 0.02, p-value = 0.01) and E. fuscus / L. noctivagans by higher and lower catches of 

medium-size insects (estimate = 0.04, p-value = 0.01) and Coleoptera (estimate = -0.06, p-value = 0.04), 

respectively. E. fuscus / L. noctivagans activity was also negatively influenced by closing canopy stands 

(estimate = -0.07, p-value = 0.02) and closed canopy, pre-thinned stands (estimate = -0.10, p-value = p < 

0.01). Conversely, semi-closed canopy stands were an important variable positively influencing D. 

intermedius (estimate = 0.02, p-value = 0.03) and T. brasiliensis (estimate = 0.11, p-value = 0.02) activity. 

Tadarida brasiliensis activity was also positively influenced by mid-rotation thinned stands (estimate = 

0.17, p-value < 0.01).  

Edge/interior forest foragers 

As observed in open-space foraging bats, activity of all edge/interior forest foragers increased on 

warmer nights (Figure 4, Supplemental Table 2). In addition, higher levels of richness of insect orders 

richness positively influenced activity of L. borealis / L. seminolus (estimate = 0.42, p-value < 0.01), N. 

humeralis (estimate = 0.23, p-value = 0.01) and P. sublavus (estimate = 0.19, p-value < 0.01). L. borealis / 

L. seminolus activity was positively associated with Lepidoptera catches (estimate = 0.10, p-value = 0.05) 

and negatively associated with Coleoptera (estimate = -0.18, p-value = 0.03) and Diptera (estimate = -0.16, 

p-value = 0.04) catches. N. humeralis activity was positively associated with Diptera catches (estimate = 

0.16, p-value = 0.01). The only significant relationship with forest growth stage was between M. 

austroriparius / M. septentrionalis activity and semi-closed canopy stands (estimate = 0.10, p-value = p < 

0.01). 

Nocturnal insect metrics 

High levels of coleopteran catches were associated with closed canopy, pre-thinned (estimate = 

0.07, p-value = 0.04), and mid-rotation thinned stands (estimate = 0.09, p-value = 0.01). We observed lower 

catches of dipterans in closing canopy (estimate = -0.19, p-value = 0.03) and mid-rotation thinned stands 

(estimate = -0.25, p-value = 0.01). Early establishment stands negatively influenced lepidopteran catches 

(estimate = -0.14, p-value = 0.01). Although large-sized insect catches were not included in the top models 

for any bat species, they were highly correlated with other insect metrics such as Lepidoptera (Supplemental 
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Figure 1). Large-sized insect catches were negatively associated with early establishment stands (estimate 

= -0.09, p-value = 0.02) (Supplemental Table 2). 

DISCUSSION 

Our results underscore the complexity of factors affecting winter bat communities in private, 

working forests, revealing a wide range of responses among bat taxa, nocturnal flying insect metrics, and 

forest stand structure. We found that bat responses were distinctly species-specific, influenced either by 

insect metrics, forest characteristics, or a combination (Bender et al., 2021). Metrics related to forest stand 

structure emerged as informative indicators explaining activity for several bat taxa and nocturnal flying 

insect metrics. Furthermore, our results emphasized interconnected relationships between nocturnal flying 

insect catches and richness with stand structure, suggesting that vegetation structure plays an important role 

in shaping nocturnal insect composition and, consequently, bat foraging activity in winter. Previous 

research conducted in summer found little evidence of relationships between bats and insect abundance 

(Ford et al., 2006; Brooks et al., 2017; Bender et al., 2021). The contrast between our results and those 

from summer that bat-insect linkages may be more evident during the dormant season. 

Our findings are consistent with previous winter studies assessing effects of temperature on bat 

activity (Parker et al., 2020; Barros et al., 2021). In temperate regions where bats remain active throughout 

the year, weekly or even daily temperature fluctuations can cause bats to experience short periods of torpor 

which influences activity (Grider et al., 2016; Parker et al., 2020; Perea et al., 2023). Thus, a direct 

relationship in which lower temperatures during winter reduced bat activity was expected (Grider et al., 

2016; Jorge et al., 2021). Likewise, our results revealed an association between temperature and nocturnal 

flying insect abundance and diversity, consistent with existing literature (Taylor, 1963; Liu et al., 1995). 

Ectotherm behavior and ecological performance are dependent on body temperature (Huey & Kingsolver, 

1989), which depends mainly on environmental conditions (Bots et al., 2008). For flying insects, 

temperatures must reach a certain threshold to maintain flight activity (Bots et al., 2008; Welti et al., 2022). 

Observed relationships among temperature, bat activity, and nocturnal flying insect metrics highlight the 

important role of temperature as a factor influencing both bat behavior and insect availability in winter. 
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All bat taxa detected in our study, except M. austroriparius / M. septentrionalis, displayed positive 

associations with nocturnal insect richness, suggesting generalist diets during winter (Bernard et al., 2021; 

Perea et al., 2024). Dipterans are widely consumed by bats in winter in the southeastern U.S. (Bernard et 

al., 2021; Perea et al., 2024), which may be a consequence of higher abundance relative to other orders. 

Our analyses showed positive associations of Diptera with D. intermedius and N. humeralis. Whereas N. 

humeralis exhibits great flexibility in its diet including a high abundance of dipterans (Perea et al., 2024), 

a positive association between D. intermedius and Diptera was unexpected. Although the diet of D. 

intermedius is poorly known, the association with dipterans may be due to a selection of large, soft-bodied 

insects or higher abundance of dipterans in areas with vegetation characteristics suitable for foraging (Perea 

et al., 2022). Lasiurus borealis / L. seminolus activity was positively associated with Lepidoptera and 

negatively associated with Coleoptera and Diptera. Although negative associations with Coleoptera and 

Diptera were not expected, effect sizes were small, and our results may be a consequence of combining 

species into a phonic group. In contrast, positive association with lepidopterans was expected considering 

both species consume large quantities of Lepidoptera, and L. borealis exhibiting a predominantly 

Lepidoptera-based diet (Carter et al., 2004; Clare et al., 2009; Perea et al., 2024). Finally, we found that E. 

fuscus / L. noctivagans activity was positively associated with medium-sized insects and negatively 

associated with Coleoptera. While positive associations between E. fuscus / L. noctivagans activity and 

medium-sized insects were to be expected from an ecomorphological perspective (Reimer et al., 2010; 

Denzinger & Schnitzler 2013; Clare et al., 2014), the negative effect with Coleoptera catches was 

contradictory to our expectations, especially given that E. fuscus that has been documented consuming large 

numbers of Coleoptera (Clare et al., 2014; Wray et al., 2018). However, L. noctivagans preys more 

commonly on small, soft-bodied insects such as Lepidoptera, Diptera, and Homoptera (Reimer et al., 2010). 

Thus, the negative relationship may be an artifact of combining the species in a single phonic group. 

Alternatively, we found that E. fuscus / L. noctivagans activity was negatively influenced by closed canopy 

pre-thinned stands and was not influenced by mid-rotation thinned stands, both of which were associated 

with high Coleoptera catches. Therefore, the unexpected relationship could also be related to how the 
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structure of growth stages in managed pine forests differentially affect E. fuscus / L. noctivagans foraging 

ability and Coleoptera abundance. Although unlikely based on the species seasonal distribution (Cryan, 

2003), it is also possible that L. noctivagans was more prevalent on the study areas than expected and had 

a greater influence on the relationship with insect metrics. 

Management practices used by forest managers result in different stand structural features that can 

affect bat activity (e.g., Bender et al., 2015; Kunberger & Long 2022; Perea et al., 2023) and insect 

community structure (e.g., Joelsson et al., 2017; Leidinger et al., 2019). Our analyses identified a variety 

of responses to growth stages, and consequently forest stand structure, in bat activity and nocturnal flying 

insect metrics. Clearcutting, the predominant final harvest management method in pine stands in the 

southeastern U.S., is followed by reforested, early establishment stands. Although previous studies found 

early establishment and young, open-canopy pine stands had higher diurnal family-level insect abundance 

and richness (Lee et al., 2018), our results demonstrated lower nocturnal lepidopteran and large-sized insect 

catches in early establishment stands during winter. These early establishment stands allow greater light 

into the understory, which supports more plant resources, resulting in a positive effect on diurnal insect 

diversity (Taki et al., 2010; Favorito et al., 2023). However, in winter, temperature fluctuations in open 

stands, which may experience colder nighttime conditions, could reduce insect activity, as certain species 

are less active or abundant during winter. Although we found no direct associations between bat activity 

and early establishment stands, negative effects on nocturnal lepidopteran catches suggest indirect effects 

on lepidopteran-associated bat activity. In turn, the direct relationship between Lepidoptera and L. borealis 

/ L. seminolus we observed could indicate an indirect negative effect on activity for these bats resulting 

from lower lepidopteran catches at sites with greater areas of early establishment stands. 

In contrast, sites surrounded by closing canopy stands were negatively associated with activity of 

open-space foragers E. fuscus / L. noctivagans and dipteran catches. Although E. fuscus / L. noctivagans 

can forage above the canopy, a reduction in activity in these closing canopy stands may be explained by 

the fact that these sites are not particularly conducive to insect communities. The reason for a negative 

association between this growth stage and Diptera is unknown but may be related to a lack of important 
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shelter and foraging resources in winter (van Hoesel et al., 2019). Likewise, as observed in early established 

stands with Lepidoptera, the negative effects on nocturnal captures of dipterans could indirectly affect 

activity of bats associated with dipterans, such as D. intermedius or N. humeralis. 

Previous research indicates that closed canopy, pre-thinned stands are the least conducive to 

vertebrate biodiversity (Greene et al., 2019). Specifically, bats show reduced activity in such forest 

conditions (Bender et al., 2015; Blakey et al., 2016). Our results support previous observations of lower 

bat activity in closed canopy, pre-thinned forest stands for E. fuscus / L. noctivagans, large bats typically 

associated with foraging in open spaces (Norberg & Rayner, 1987; Beilke et al., 2021). Closed canopy, pre-

thinned stands are characterized by greater tree densities, including more competing vegetation in the under- 

and mid-story, along with a closed canopy that hinders bat flight and foraging ability. As for nocturnal 

insect communities, previous research found species richness and abundance of multiple orders were lower 

in unthinned forest stands compared to thinned stands (e.g., Maleque et al., 2007a, b; Taki et al., 2010; 

Taniwaki et al., 2024). However, we found a positive association between closed canopy pre-thinned stands 

and catches of Coleoptera. This positive association may be attributed to a combination of more stable 

winter temperatures and availability of food resources compared to younger (0-7 years) and thinned stands. 

Although Coleoptera is widely found in the diet of most bat taxa (e.g., Clare et al., 2014; Bernard et al., 

2021; Perea et al., 2024), structure characteristics of pre-thinned stands likely restrict bat foraging, 

indicating a complex interaction between habitat structure, coleopteran catches, and foraging behavior. 

Thinning is commonly employed in mid-rotation pine stands (> approximately 14 years) to regulate 

tree density and understory structure (e.g., Thomas et al., 1999). In general, thinning effects on flying insect 

assemblages (Maleque et al., 2007a, b; Taki et al., 2010; Taniwaki et al., 2024) and vertebrate communities 

(Verschuyl et al., 2011; Demarais et al., 2017) are positive or neutral. We found a significant positive 

association between T. brasiliensis and mid-rotation thinned and semi-closed canopy stands. As an open-

space forager, T. brasiliensis likely concentrates foraging activity within or above older forest stands with 

semi-closed canopies. We also observed a positive association with D. intermedius and M. austroriparius 

/ M. septentrionalis activity at sites surrounded by greater areas of semi-closed canopy stands. Positive 
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associations of D. intermedius with large patches of semi-closed canopy forest are supported by previous 

work showing preferences for bottomland forests during winter (Shute et al., 2021). Our older growth stage 

category contained bottomland forests in the form of streamside management zones. Conversely, as an 

interior forest species, high activity of M. austroriparius / M. septentrionalis in semi-closed canopy stands 

is consistent with preferences for contiguous older-aged stands for foraging and roosting (Shute et al., 2021; 

Perea et al., 2023). For nocturnal flying insects, we found positive and negative associations with 

Coleoptera and Diptera catches, respectively, at sites with large areas of thinned stands in mid-rotation. 

Associated changes in vegetation during thinning may affect insect community structure (Taki et al., 2010). 

Coleopteran diversity increases with forest structural complexity, increasing tree species diversity, and dead 

wood diversity (e.g., Gossner et al., 2016; Seibold et al., 2016; Joelsson et al., 2017). Negative association 

with nocturnal dipteran catches may be due to a modification of important under- and mid-story vegetation 

for dipterans present during winter or to preferences for areas with other characteristics such as higher 

availability of water sources (Allgood et al., 2009; van Hoesel et al., 2019). 

Although herbicides were not a focus of our study, we recognize their influence in shaping insect 

communities, which in turn could affect bat communities. The relationships between conditions created by 

herbicides and insects are highly variable (i.e., negative, neutral, or positive), particularly regarding insect 

species abundance, richness, and diversity (Briggs et al., 2024a,b). Furthermore, insects are highly mobile. 

Thus, given the overall small size (<48.6 ha) and irregular shapes of stands (Sustainable Forestry Initiative, 

2022), and heterogeneity in cover types (e.g., embedded streamside management zones) in working forests, 

insect communities are not likely influenced solely by the stands where they are detected. Moreover, effects 

from herbicides applied to a forest stand are typically short in duration, as herbaceous plant species 

composition can recover within a few years (Miller et al., 1999; Miller & Miller, 2004; Shepard et al., 

2004). Consequently, insect communities, and consequently bat populations, in working forest landscapes 

are influenced more by the broader landscape matrix rather than by any single forest stand. Future research 

should examine the complex role of herbicides in shaping bat communities in working forests. 
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Our study provides an integrative view of overwintering bat communities, nocturnal flying insect 

assemblages, and factors influencing their activity in private, working forests of the southeastern U.S. 

Coastal Plain. Our findings highlight complex interactions and diverse responses among bat species, 

nocturnal flying insect metrics, and forest stand characteristics. In particular, our research reveals bat 

species-specific responses, as forest stand characteristics directly influence some species, while others are 

linked to nocturnal insect metrics. Each stage of typical pine management provides structural features 

necessary for the bat community. Some species depend on stands characterized by early succession and 

diverse understory vegetation, whereas others are generalists or show preferences for interior forest 

conditions. Bats in the southeastern Coastal Plain evolved in a dynamic system characterized by frequent 

fires and periodic disturbance from wind (e.g., hurricanes and tornados) that created a variety of stand 

conditions. Although forest management does not mimic natural disturbance in every way, management in 

southeastern Coastal Plain working forests provides a mosaic of stand conditions that provide conditions 

suitable foraging and roosting conditions for the bat community (Taylor et al., 2020). Our research provides 

valuable insights for bat conservation and sustainable forest management strategies, emphasizing the need 

for adaptive approaches that integrate bat ecology and dynamics of overwintering nocturnal insects in 

private, working forests. 
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Figure 4.1. Locations of study sites in the southeastern United States Coastal Plain (green-shaded region) 

where we conducted bat acoustic and nocturnal insect sampling during January–March 2021–2022. 

Sampled sites are indicated by circles. Insets are examples of a closed canopy stand with a light trap (top 

right) and a young early establishment stand (bottom right). 
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Figure 4.2. A priori hypothesized conceptual model based on previous research for winter bat communities 

examining relationships among winter bat activity, insect assemblage metrics, temperature, and forest stand 

structure characteristics in working pine forest landscapes of the southeastern U.S. Coastal Plain, mid-

January to mid-March 2021-2022. Continuous arrows represent positive (solid black), negative (dashed 

red), or neutral (solid gray) unidirectional effects.  
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Figure 4.3. Path analysis results examining relationships among winter activity of open-edge space adapted 

bat species, insect assemblage metrics, temperature, forest stand structure characteristics in working pine 

forest landscapes of the southeastern U.S. Coastal Plain, mid-January to mid-March 2021-2022. Arrows 

represent significant paths, which were positive (solid black) or negative (dashed red). Arrow width 

represents estimate values; with stronger effects represented by wider arrows. Estimates are shown next to 

the arrows. All coefficients, p-values, marginal R2, and correlated errors are provided in Appendix 1: Table 

2. 
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Figure 4.4. Path analysis results examining relationships among winter activity of edge and interior adapted 

bat species, insect assemblage metrics, temperature, forest stand structure characteristics in working pine 

forest landscapes of the southeastern U.S. Coastal Plain, mid-January to mid-March 2021-2022. Arrows 

represent significant paths, which were positive (solid black) or negative (dashed red). Arrow width 

represents estimate values; with stronger effects represented by wider arrows. Estimates are shown next to 

the arrows. All coefficients, p-values, marginal R2, and correlated errors are provided in Appendix 4.1. 

Table 2. 

 

 

 

 

 

 



 

116 

 

 

CHAPTER 5 

SUMMARY AND RESEARCH IMPLICATIONS 

 

All North American bats are associated with forests to some extent, relying on them for essential 

resources such as for roosting, foraging, and drinking. The relationship between bats and forests is 

particularly important in regions such as the Coastal Plain of the southeastern U.S., where almost 90% of 

forests are privately owned and a large portion is also actively managed as working forests (Oswalt et al., 

2019). In this region, many bats remain active during winter, either as year-round residents or as migratory 

species (e.g., Grider et al., 2016; Perea et al. 2023, 2024). Understanding how forest management practices, 

typically studied during the summer, affect bats during winter is essential for their conservation. This need 

is amplified by the presence of remnant populations decimated by White-Nose Syndrome (WNS) and 

migratory species impacted by wind energy development. Consequently, studying winter bat foraging 

ecology and effects of forest management is crucial to bat conservation. 

Forest managers employ various strategies, such as site preparation, planting, thinning, mid-

rotation management, and final harvesting, to manage pine stands sustainably. These practices influence 

forest structure, roost availability, and foraging habitat, with both positive and negative effects on bats (e.g., 

Kalcounis-Rüppell et al., 2005; Loeb & O’Keefe, 2006; Jung et al., 2012; Bender et al., 2015). For instance, 

the distribution and abundance of live and dead trees, forest clearings, and edges can either enhance or 

reduce availability of critical resources for different bat species. However, as previous studies have shown 

during summer, no single set of management recommendations benefits all species uniformly. The 

complexity of forest management impacts requires a multi-scale approach, as preferences often vary among 

site, stand, and landscape levels (Lee et al., 2002; Miller et al., 2009). My research highlights these species-

specific responses, showing that overwintering bats in working forests of the southeastern U.S. Coastal 

Plain exhibit varied responses to management practices and forest structure across multiple scales. 
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Furthermore, although species richness composition does not generally change throughout the year, we 

observed differences in bat occupancy and activity levels and factors that influence certain species. 

Migratory species like the hoary bat (Lasiurus cinereus), highly vulnerable to wind turbines, show notably 

higher occupancy during winter than summer (Bender et al., 2015). These findings underscore the 

importance of considering bat conservation throughout the year, as forest management decisions made with 

summer data also influence bats in winter. 

Foraging strategies among forest-dwelling bats are diverse, with some species foraging along forest 

edges, others in riparian zones, under or above the canopy forest, or in forest gaps and open stands. My 

research highlighted that bat occupancy is closely linked to forest heterogeneity, including features such as 

riparian zones, mature and late successional forest gaps, stands of various ages, edges, and corridors that 

facilitate movement, foraging, and roosting. Specifically, I highlight similar responses to site and landscape 

covariates as previous summer work (e.g., Loeb & O’Keefe, 2006, Bender et al. 2015, Kunberger & Long, 

2022). I observed that winter bat community richness and species-specific occupancy were positively 

associated with management practices promoting lower basal area conditions and large contiguous forest 

patches. In addition, I found landscape characteristics for particular species according to their 

ecomorphologies such as a negative relationship between occupancy probability and edge for southeastern 

myotis / northern long eared myotis (Myotis austroriparius / M. septentrionalis), species that commonly 

forage within forest stands and avoid edges (Henderson & Broders, 2008; Morris et al., 2010, Perea et al., 

2023).  

Water availability is a key resource for many bat species for drinking and foraging (e.g., Ford et 

al., 2005; Rainho & Palmeirim, 2011; Janzen & Fenton, 2013). However, I found no significant 

relationships between water sources and bat occupancy at the community level and only a few at the species 

level, including some contrary results to our expectations and from previous studies during summer that 

found higher bat activity closer to water (e.g., Kalcounis-Rüppell et al., 2005; Ford et al., 2006; Ancillotto 

et al., 2019). One possible explanation is that water availability is typically abundant in the southeastern 

Coastal Plain, due to high annual rainfall, especially during winter (Bosch et al., 1999), and therefore may 

https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-bib-0049
https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12924#acv12924-bib-0079
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not be a limiting factor for bats. Alternatively, due to the difficulty of mapping small and often ephemeral 

freshwater sources, my analysis only included water sources from available spatial data layers, which could 

have hindered my ability to detect relationships and gave results contrary to those expected (Bender et al., 

2015; Perea et al., 2022). Nonetheless, I acknowledge that water availability is crucial for bat conservation.  

Thus forest-management practices that eliminate or limit access to water or degrade water quality can 

negatively affect bats. For instance, it is well-known that several species will also arouse from torpor to 

drink during winter; some roost near or forage over water [e.g., southeastern myotis or tricolored bat 

(Perimyotis subflavus)] and others such as eastern red (Lasiurus borealis), hoary and big brown (Eptesicus 

fuscus) bats are known to use waterways for travel and foraging.  

Working pine forests, characterized by a wide range of stand conditions, affect bat species 

differently. Practices such as clear-cutting, thinning, prescribed burning, herbicide use, and land preparation 

shape forest structure, influencing availability of roosting and foraging habitats. My site- and landscape-

level occupancy results suggest that heterogeneous forests composed of different stand age classes promote 

occupancy for all bat species, with certain species-specific responses to other landscape-specific 

characteristics. Forest management activities alter the overall forest structure, affect the distribution and 

abundance of live and dead trees used for roosting, influence the vertical structure of vegetation, the number 

of forest clearings and edges used for foraging, and connectivity among more mature forest patches. In this 

context, my results evaluating bat activity among stands of different stages show effects of stand 

characteristics specific to different ecomorphological groups. For example, as observed in summer, activity 

levels of several species were generally higher in thinned stands, which have a reduced vegetation clutter 

that favors efficient foraging. However, I observed a gradient of responses in species adapted to open areas, 

such as hoary and Mexican free-tailed (Tadarida brasiliensis) bats, which responded to foraging 

characteristics above the forest canopy and in large clearings. In contrast, interior forest bats such as 

southeastern myotis / northern long eared myotis and smaller, more maneuverable bats such as tricolored 

bats tended to forage in cluttered understory vegetation and gaps in mature forests, avoiding areas composed 

mostly of early-stage stands. 
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Although my dissertation focuses primarily on the winter foraging ecology of bats, roosting is 

equally important for their conservation. Forest management plays a key role in ensuring a continuous 

supply of potential roosting trees, such as trees in various stages of decay (especially early decay), hollow 

trees, live trees with exfoliated bark, and old trees that may become roosting trees due to disturbances or 

natural processes. These roosting options benefit not only bats but also dozens of other wildlife species that 

depend on dead and dying trees. In working forests, late-rotational stands and hardwoods often provide 

more roosting opportunities for bats that roost in foliage and offer larger and more numerous roosting trees. 

The need for mature trees makes it essential to maintain well-distributed patches of older forests of varying 

size. However, even during final clearcuts, green trees, and snags can be retained, particularly in streamside 

management zones (SMZs), providing roosting opportunities in younger stands and resting sites between 

mature forest stands (Parrish et al. 2017, 2018). Different forest bat species show varying roosting 

preferences. Some roost exclusively in the foliage of living trees, while others prefer loose bark or crevices 

of living trees and snags. For example, bats that roost in foliage (i.e., Lasiurus and Dasypterus) typically 

select trees with large canopies, which offer suitable temperatures, moisture, and protection from weather 

and predators. Roost trees are usually located at associated hardwoods, forest edges, or in open late 

rotational forest stands and clearings, where they receive more solar heat and offer less obstructed flight 

approaches. In general, although specific roosting needs vary by species, region, and climate, many bats 

roosting under bark or in tree cavities, such as big brown, silver haired (Lasionycteris noctivagans) or 

evening (Nycticeius humeralis) bats, prefer larger snags that extend above the forest canopy, especially in 

early stages of decay, when the bark is loose and flaking. These preferences underscore the importance of 

integrative forest management strategies that support a diversity of stand ages, ensuring that enough dead 

and dying trees are left for the species that depend on cavities or shedding bark across the landscape.  

Effective forest management must also consider arthropod communities, as all bats in the region 

are insectivorous. My research reveals that winter bat communities in private working forests are influenced 

by both forest structure and availability of nocturnal insects. Stand characteristics directly affect some bat 

species, while others respond more strongly to changes in prey abundance. For example, I observed that 
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early establishment stands support lower levels of nocturnal Lepidoptera during winter, potentially reducing 

foraging opportunities for species such as eastern red and Seminole (Lasiurus seminolus) bats, which show 

preferences for this prey group (Carter et al., 2004; Clare et al. 2009, Hughes et al. 2021, Perea et al., 2024). 

Therefore, adaptive forest management strategies that integrate an understanding of bat ecology and 

nocturnal insect dynamics are essential to conserve overwintering bat populations. Maintaining a mosaic 

of stand ages that provides high availability of snags and decaying wood, applying selective thinning to 

increase structural complexity, thus preserving areas with high insect diversity will help ensure resilience 

of bat populations. By aligning bat conservation with sustainable forestry practices, land managers can 

provide critical winter habitats for both resident and migratory bats, even when resources are limited. 

Finally, I note that sustainable practices that improve habitat quality of bat communities can benefit 

the economics of working pine forests. My dissertation itself integrates an extra component by discerning 

the diet of bats to better understand their food preferences. This led me to demonstrate that bats play an 

important role as pest controllers, with important economic benefits. For example, The Nantucket pine tip 

moths (Rhyacionia frustrana) and the pales weevil (Hylobius pales) - common forest pests that affect pine 

growth - are consumed by all bat species examined (Perea et al. 2024). Thus, managing forests to improve 

bat habitat can improve natural pest control and timber quality (Asaro et al., 2003), increasing economic 

incentive in these forests. In addition, we observed that bats provide ecosystem services outside forest 

boundaries, such as control of agricultural pests [e.g., the green clover worm (Hypena scabra)] and disease 

vectors (e.g., Culex mosquitoes). Private land conservation efforts that promote bat habitats can thus 

contribute to both biodiversity conservation and economic sustainability. 
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APPENDICES 

Appendix 2.1. Table S1. Anabat Swift acoustic detectors with omnidirectional ultrasonic microphones US-

OV2 and US-OV3 (Titley Electronics, Ballina, New South Wales, Australia) settings. 

Schedule Nightly 

File type Full spectrum 

Sample rate 500 k 

Sensitivity 16 

Minimum frequency trip 15 kHz 

Maximum frequency trip 100 kHz 

Minimum even time 2 ms 

Recording window 2 s 

Maximum file length 10 s 

Analog HP filter Off 
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Appendix 2.1. Table S2. Variable names, descriptions, and hypotheses (including predicted effect for each phonic group) for site- and landscape-

scale habitat variables used as covariates in bat occupancy analysis during winter 2020-2022 in working forest landscapes of the southeastern United 

States Coastal Plain. Site variables can be directly managed via planting density, thinning, harvesting, mechanical disturbance, chemical use, and 

prescribed burning, while landscape variables often cannot be directly managed but can be informative for landscape-scale management planning. 

Fc is the characteristic frequency, i.e., the frequency (kHz) of the call at its lowest slope toward the end of the call or the lowest frequency for 

consistent FM sweeps. Duration is the call duration (ms) from the beginning to the end of the call. The table shows the expected positive (+), negative 

(-), and neutral (•) effects of each covariate for each phonic group. 

Scale/Variable Description 

Low group 

Fc < 30 kHz 

Duration > 5 ms 

Medium group 

Fc 30-45 kHz 

Duration > 5 ms 

Myotis group 

Fc > 40 kHz 

Duration < 5 ms 

Site     

Basal area Basal area (m2/ha) at sampling point Foraging (-) Foraging (-) Foraging (+) 

Vegetation clutter Vegetation clutter (%) at sampling point Foraging (-) Foraging (-) Foraging (+) 

Canopy openness Overstory canopy openness (%) at sampling point Foraging (+) Foraging (+) Foraging (-) 

Landscape     

Distance road Euclidean distance (m) to the nearest road Foraging (•), navigation (•) Foraging (-), navigation (-) Foraging (+), navigation (+) 

Distance water Euclidean distance (m) to the nearest permanent water Foraging/drinking (-) Foraging/drinking (-) Foraging/drinking (-) 

Edge Total edge (m) within 450 m buffer Foraging (•), navigation (+) Foraging (+), navigation (+) Foraging (-), navigation (•) 

Forest Total forest (m) within 450 m buffer Roosting (+) Roosting (+) Foraging (+), roosting (+) 

Wetland Total wetland (m) within 450 m buffer Roosting (+) Roosting (+) Foraging (+), roosting (+) 

Stand ages     

0-3 years Clearcut/early establishment stand Foraging (+), roosting (-) Foraging (+), roosting (-) Foraging (-), roosting (-) 

4-7 years Closing canopy stand Foraging (+), roosting (-) Foraging (+), roosting (-) Foraging (-), roosting (-) 

8-13 years Closed canopy, pre-thinned stand Foraging (+), roosting (-) Foraging (+), roosting (-) Foraging (-), roosting (-) 

14-20 years Mid-rotation thinned stand Foraging (•), roosting (-) Foraging (+), roosting (•) Foraging (+), roosting (-) 

+21 years Mature, semi-closed canopy stand Foraging (-), roosting (+) Foraging (+), roosting (+) Foraging (+), roosting (+) 
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Appendix 2.1. Table S3. Confidence set of 5 best-preselected detection sub-models (p) with a null 

occupancy (ψ) term, including the effective number of parameters (pD), WAIC, and ΔWAIC during winter 

2020-2022 in working forest landscapes of the southeastern United States Coastal Plain. 

Model 
pD WAIC ΔWAIC 

ψ (.), p (temperature) 229.08 5626.22 0.00 

ψ (.), p (basal area + temperature) 227.27 5631.62 5.40 

ψ (.), p (basal area + clutter + temperature) 244.11 5640.08 13.86 

ψ (.), p (temperature + clutter) 241.49 5666.87 40.65 

ψ (.), p (year) 237.28 5684.91 58.69 
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Appendix 1: Table S4. Models evaluated to examine bat community occupancy (ψ) and detection probability (p) during winter 2020-2022 in working forest landscapes 

of the southeastern United States Coastal Plain. Models are ranked by WAIC value. 

Model pD WAIC ΔWAIC 

ψ (basal area + distance road + distance water + total edge + total forest + total wetland), p (temperature) 243.34 5597.86 0.00 

ψ (basal area + clutter + distance road + distance water + total edge + total forest + total wetland), p (temperature) 249.98 5606.01 8.15 

ψ (basal area + clutter + distance road + distance water + stand class + total edge + total forest + total wetland),                        

p (temperature) 
259.32 5610.25 12.39 

ψ (distance water + total forest + total wetland), p (temperature) 242.76 5614.89 17.03 

ψ (total wetland), p (temperature) 237.79 5616.69 18.83 

ψ (basal area + distance road + total forest + total wetland), p (temperature) 246.86 5618.45 20.59 

ψ (canopy openness + clutter + distance road + distance water + total edge + total forest + total wetland),  p (temperature) 249.87 5618.92 21.06 

ψ (distance water), p (temperature) 239.02 5620.20 22.34 

ψ (total edge), p (temperature) 230.28 5620.31 22.45 

ψ (basal area), p (temperature) 236.43 5621.54 23.68 

ψ (basal area + clutter + distance road + total edge + total forest + total wetland), p (temperature) 249.98 5621.87 24.01 

ψ (distance water + total edge + total forest + total wetland), p (temperature) 247.77 5622.20 24.34 

ψ (.), p (temperature) 229.08 5622.22 24.36 

ψ (canopy openness), p (temperature) 236.08 5622.51 24.65 

ψ (distance road + total edge), p (temperature) 237.13 5623.18 25.32 

ψ (basal area + distance road + total edge + total forest + total wetland), p (temperature) 247.24 5624.46 26.60 

ψ (basal area + total forest + total wetland), p (temperature) 248.39 5626.39 28.53 

ψ (total forest + total wetland), p (temperature) 237.31 5627.14 29.31 

ψ (basal area + clutter + distance road + total forest + total wetland), p (temperature) 248.43 5630.72 32.86 

ψ (total forest), p (temperature) 237.14 5633.52 35.66 

ψ (canopy openness + distance road + distance water + total edge + total forest + total wetland), p (temperature) 249.65 5633.84 35.98 

ψ (stand class), p (temperature) 245.57 5645.50 47.64 

ψ (distance road + distance water + total edge + total forest + total wetland), p (temperature) 244.88 5647.79 49.93 

ψ (distance road), p (temperature) 238.38 5652.38 54.52 

ψ (clutter), p (temperature) 235.10 5660.91 63.05 
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Appendix 2.1. Table S5. Community mean coefficient estimates (posterior means with standard deviation 

(SD) and 95% Bayesian credible intervals (BCI)) of the best-supported model used to predict bat occupancy 

(ψ) and detectability (p) in working forest landscapes of the southeastern United States Coastal Plain winter 

2020-22. 

Parameter Mean SD 
95% BCI 

lower  

95% BCI 

upper 

Detection     

Intercept -0.46 0.21 -0.84 -0.04 

Temperature* 0.62 0.13 0.36 0.87 

Occupancy     

Intercept 1.15 0.54 0.13 2.13 

Basal area* -0.52 0.22 -0.93 -0.12 

Edge -0.15 0.23 -0.55 0.33 

Forest 0.36 0.23 -0.08 0.83 

Wetland -0.02 0.23 -0.47 0.39 

Distance to water 0.24 0.29 -0.35 0.74 

Distance to road 0.29 0.23 -0.13 0.73 

*Indicates 95% BCIs do not include zero 
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Appendix 2.1. Table S6. Summary of species-specific parameter coefficients for occupancy (ψ) and detection (p) covariates for eight bat species / 

species groups detected during winter acoustic surveys in working forest landscapes of the southeastern United States Coastal Plain, 2020-2022. 

Parameter coefficients were extracted from the top model. Estimates include mean, standard deviation (SD) and 95% Bayesian credible intervals 

(BCI). 

Species Species-specific parameter Mean SD 95% BCI lower 95% BCI upper 

Eptesicus fuscus /               

Lasionycteris noctivagans 
Detection (p)     

 Intercept -0.58 0.13 -0.84 -0.33 

 Temperature*  0.92 0.15  0.61  1.16 

 Occupancy (ψ)     

 Intercept  1.27 0.36  0.57 1.96 

 Basal area -0.34 0.24 -0.79 0.19 

 Edge  0.07 0.24 -0.36 0.56 

 Forest*  0.50 0.25  0.04 1.02 

 Wetland -0.32 0.27 -0.79 0.22 

 Distance to water*  0.85 0.36  0.23 1.60 

 Distance to road   0.26 0.26 -0.19 0.75 

Lasiurus borealis / L. seminolus Detection (p)     

 Intercept -0.18 0.10 -0.41 0.00 

 Temperature* 0.66 0.12  0.46 0.91 

 Occupancy (ψ)     

 Intercept 2.06 0.61  0.78  3.16 

 Basal area* -0.60       0.28 -1.21 -0.07 

 Edge -0.05       0.28 -0.57  0.49 

 Forest  0.41       0.30 -0.17  0.99 

 Wetland  0.21 0.32 -0.36  0.83 
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 Distance to water -0.16 0.32 -0.83  0.45 

 Distance to road  0.12 0.29 -0.44  0.67 

Lasiurus cinereus Detection (p)     

 Intercept  0.40 0.09  0.22 0.56 

 Temperature*  0.58 0.12  0.35 0.82 

 Occupancy (ψ)     

 Intercept  2.07 0.66  0.79 3.42 

 Basal area -0.34 0.27 -0.88 0.12 

 Edge -0.28 0.27 -0.78 0.22 

 Forest 0.30 0.27 -0.25 0.82 

 Wetland -0.24 0.3 -0.74 0.44 

 Distance to water 0.49 0.36 -0.19 1.21 

 Distance to road 0.55 0.32 -0.06 1.22 

Dasypterus intermedius Detection (p)     

 Intercept -1.21 0.20 -1.56 -0.78 

 Temperature* 0.54 0.16  0.25 0.88 

 Occupancy (ψ)     

 Intercept 0.35 0.73 -0.94 1.61 

 Basal area -0.42 0.35 -1.23 0.18 

 Edge -0.08 0.36 -0.88 0.52 

 Forest 0.20 0.36 -0.58 0.91 

 Wetland -0.04 0.40 -0.81 0.68 

 Distance to water 0.24 0.42 -0.52 1.04 

 Distance to road 0.46 0.33 -0.18 1.05 

Myotis austroriparius /                      

M. septentrionalis 
Detection (p)     

 Intercept -0.47 0.16 -0.74 -0.14 

 Temperature* 0.77 0.17  0.46 1.07 
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 Occupancy (ψ)     

 Intercept 0.71 0.60 -0.40 1.76 

 Basal area -0.23 0.33 -0.81 0.47 

 Edge -0.45 0.29 -1.00 0.09 

 Forest 0.29 0.28 -0.34 0.79 

 Wetland 0.07 0.32 -0.49 0.79 

 Distance to water 0.38 0.35 -0.30 1.04 

 Distance to road 0.53 0.33 -0.14 1.12 

Nycticeius humeralis Detection (p)     

 Intercept -0.62 0.13 -0.85 -0.36 

 Temperature* 0.53 0.13 0.29 0.78 

 Occupancy (ψ)     

 Intercept 1.27 0.69 0.05 2.44 

 Basal area* -0.84 0.37 -1.61 -0.14 

 Edge 0.10 0.33 -0.58 0.61 

 Forest 0.54 0.33 -0.05 1.25 

 Wetland 0.27 0.36 -0.39 1.12 

 Distance to water 0.03 0.41 -0.76 0.83 

 Distance to road 0.02 0.39 -0.78 0.78 

Perimyotis subflavus Detection (p)     

 Intercept -0.46 0.15 -0.73 -0.16 

 Temperature 0.22 0.12 -0.03 0.41 

 Occupancy (ψ)     

 Intercept 0.76 0.57 -0.27 1.86 

 Basal area -0.54 0.31 -1.13 0.08 

 Edge -0.31 0.32 -1.01 0.18 

 Forest 0.38 0.34 -0.35 1.06 

 Wetland -0.30 0.34 -0.99 0.33 
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 Distance to water 0.23 0.37 -0.52 0.97 

 Distance to road 0.13 0.33 -0.47 0.77 

Tadarida brasiliensis Detection (p)     

 Intercept -0.62 0.17 -0.93 -0.32 

 Temperature* 0.73 0.17 0.41 1.06 

 Occupancy (ψ)     

 Intercept 1.04 0.81 -0.55 2.73 

 Basal area* -0.85 0.36 -1.53 -0.14 

 Edge -0.12 0.32 -0.74 0.50 

 Forest 0.29 0.33 -0.33 0.96 

 Wetland 0.11 0.37 -0.60 0.87 

 Distance to water -0.04 0.47 -0.94 0.83 

 Distance to road 0.23 0.35 -0.50 0.87 

*Indicates 95% BCIs do not include zero 
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Appendix 3.1. Database 1. Arthropods consumed by winter bat communities, listed by order, in private, 

working forests of the southeastern United States from late-January to mid-March 2021-2022. 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-63062-

3/MediaObjects/41598_2024_63062_MOESM2_ESM.xlsx 

 

Appendix 3.2. Figure 1. Family, genus, and species diversity for the three insect orders (Coleoptera, 

Diptera, and Lepidoptera) most abundant in the diet of wintering bat communities in private, working 

forests of the southeastern United States from late-January to mid-March 2021-22. Colors represent number 

of samples and width of the nodes represents the number of reads for each taxonomic level. 

 

 

Appendix 3.3. Database 2. List of agricultural and forest pests and arthropod disease vectors consumed 

by overwintering bat communities on private, working forests in the southeastern United States from late-

January to mid-March 2021-2022. https://static-

content.springer.com/esm/art%3A10.1038%2Fs41598-024-63062-

3/MediaObjects/41598_2024_63062_MOESM4_ESM.xlsx 

 

 

 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-63062-3/MediaObjects/41598_2024_63062_MOESM2_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-63062-3/MediaObjects/41598_2024_63062_MOESM2_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-63062-3/MediaObjects/41598_2024_63062_MOESM4_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-63062-3/MediaObjects/41598_2024_63062_MOESM4_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-63062-3/MediaObjects/41598_2024_63062_MOESM4_ESM.xlsx
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Appendix 3.4. Table 1. Total nights sampled, dates, and total number of bat species captured in private, 

working forest landscapes across four states (Georgia, Louisiana, Mississippi, and North Carolina) of the 

southeastern U.S. Coastal Plain from late-January to mid-March 2021-2022. Bat species codes: Dasypterus 

intermedius (DAIN), Eptesicus fuscus (EPFU), Lasiurus borealis (LABO), Lasiurus cinereus (LACI), 

Lasiurus seminolus (LASE), Myotis austroriparius (MYAU), Nycticeius humeralis (NYHU), and 

Perimyotis subflavus (PESU).    

State Nights Dates DAIN EPFU LABO LACI LASE MYAU NYHU PESU Total 

Georgia 18 15 Feb 2024 / 07 Mar 2024 2 7 4 0 51 10 26 20 120 

Louisiana 14 25 Jan 2024 / 11 Feb 2024 0 0 3 0 7 2 0 0 12 

Mississippi 13 19 Feb 2023 / 13 Mar 2023 0 1 2 0 15 0 36 0 54 

North 

Carolina 
11 16 Feb 2024 / 07 Mar 2024 0 6 16 3 6 29 13 5 78 
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Appendix 4.1. Figure 1. Correlation matrix among insect metrics and forest stand characteristics in 

private forest landscapes of the southeastern U.S. Coastal Plain during mid-January to mid-March 

2021-2022. Red shows negative correlations, while blue shows positive correlations. The numbers 

indicate the correlation score. 

 



 

136 

Appendix 4.1. Table 1. Top generalized linear model (GLM) sets with ΔAICc ≤ 1 including number of parameters (K), corrected Akaike’s 

Information Criterion (AICc), difference between a GLM and the GLM with the lowest AICc value (ΔAICc), and model weight (ωi) for each 

response variable. Models relate to bat captures and insect metrics in private forest landscapes of the southeastern U.S. Coastal Plain during mid-

January to mid-March 2021-2022.  

Models K AICc ∆AICc Wi 

Ordinal richness     

Temperature + 0-3 years 3 499.17 0.00 0.16 

Temperature + 0-3 years + 8-13 years 4 499.80 0.63 0.12 

Temperature + 8-13 years 3 499.90 0.73 0.11 

Coleoptera     

Temperature + 4-7 years + 8-13 years + 14-20 years 6 1061.48 0.00 0.50 

Diptera     

Temperature + 4-7 years + 14-20 years 5 1248.61 0.00 0.42 

Temperature + 4-7 years + 8-13 years + 14-20 years 6 1249.47 0.85 0.28 

Lepidoptera     

Temperature + 0-3 years + 8-13 years 5 1371.39 0.00 0.61 

Small size insects     

Temperature + 14-20 years + >20 years 5 1238.85 0.00 0.14 

Temperature + 0-4 years 4 1239.67 0.82 0.09 

Temperature + 8-13 years + 14-20 years + >20 years 6 1239.81 0.96 0.08 

Medium size insects     

Temperature + 0-3 years + 8-13 years 5 1534.14 0.00 0.23 

Temperature + 8-13 years 4 1534.19 0.05 0.23 

Temperature + 8-13 years + >20 years 5 1535.02 0.88 0.15 

Large size insects     
Temperature + 0-3 years 4 1074.50 0.00 0.24 
Temperature + 0-3 years + 4-7 years 5 1075.25 0.75 0.16 
Dasypterus intermedius     

Temperature + 14-20 years + >20 years + Ordinal richness + Coleoptera + Diptera 8 124.46 0.00 0.17 

Temperature + >20 years  + Ordinal richness + Coleoptera + Diptera 7 125.46 1.00 0.10 

Eptesicus fuscus / Lasyonicteris noctivagans     

Temperature + 4-7 years + 8-13 years + Ordinal richness + Coleoptera + Lepidoptera 8 299.45 0.00 0.53 
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Temperature + 4-7 years  + 8-13 years  + Ordinal richness + Coleoptera + Medium insects 8 299.84 0.39 0.44 

Lasiurus borealis / Lasiurus seminolus     

Temperature + 14-20 years + >20 years + Ordinal richness + Coleoptera + Diptera + 

Lepidoptera 

9 558.41 0.00 0.37 

Temperature + >20 years + Ordinal richness + Coleoptera + Diptera + Lepidoptera 8 559.30 0.89 0.24 

Lasiurus cinereus     

Temperature + 14-20 years + >20 years + Ordinal richness + Medium insects 7 637.98 0.00 0.20 

Temperature + 14-20 years + >20 years + Ordinal richness + Lepidoptera 7 638.35 0.37 0.17 

Myotis austroriparius / Myotis septentrionalis     

Temperature + 0-3 years + >20 years + Ordinal richness + Coleoptera + Lepidoptera 8  364.57 0.00 0.52 

Nycticeius humeralis     

Temperature + >20 years + Ordinal richness + Diptera 6 297.05 0.00 0.26 

Perimyotis subflavus     

Temperature + 0-3 years + 4-7 years + Ordinal richness + Coleoptera + Diptera 8 305.69 0.00 0.60 

Tadarida brasiliensis      

Temperature + 14-20 years + >20 years Ordinal richness + Lepidoptera 7 312.36 0.00 0.56 
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Appendix 4.1. Table 2. The full path model statistics including unstandardized and standardized estimated 

pathway coefficients, standard errors (SE), and corresponding p-values. R2 is shown for each response 

variable. Last rows are correlated errors. Significant pathway p-values are bolded. Path model is visualized 

in Figure 2. Species code: Dasypterus intermedius (DAIN), Eptesicus fuscus / Lasionycteris noctivagans 

(EPFU / LANO), Lasiurus borealis / Lasiurus seminolus (LABO / LASE), Lasiurus cinereus (LACI), 

Myotis austroriparius / Myotis septentrionalis (MYAU / MYSE), Nycticeius humeralis (NYHU), 

Perimyotis subflavus (PESU), and Tadarida brasiliensis (TABR). 

Response 

variable 
Predictor 

Standardized 

estimate 
Estimate SE p-value R2 

Insect Richness 

 

Temperature 0.401 0.034 0.011 0.001 0.23 

8-13 years 0.200 0.063 0.037 0.088  

       

Coleoptera Temperature 0.278 0.343 0.042 0.000 0.97 

 4-7 years 0.038 0.224 0.205 0.277  

 8-13 years 0.071 0.321 0.154 0.039  

 14-20 years 0.094 0.416 0.153 0.008  

       

Diptera Temperature 0.252 0.074 0.025 0.003 0.34 

 4-7 years -0.191 -0.269 0.125 0.033  

 14-20 years -0.249 -0.260 0.092 0.006  

       

Lepidoptera Temperature 0.464 0.281 0.028 0.000 0.96 

 0-3 years -0.136 -0.344 0.119 0.005  

 8-13 years 0.078 0.174 0.099 0.080  

       

Small Insects Temperature 0.361 0.200 0.034 0.000 0.77 

 14-20 years 0.064 0.126 0.117 0.286  

 > 20 years 0.061 0.151 0.146 0.303  

       

Medium Insects Temperature 0.477 0.178 0.035 0.000 0.81 

 8-13 years 0.177 0.243 0.128 0.060  

       

Large Insects Temperature 0.401 0.244 0.022 0.000 0.86 

 0-3 years -0.090 -0.227 0.093 0.016  

       

DAIN Temperature 0.051 0.239 0.056 0.000 0.53 

 > 20 years 0.015 0.324 0.144 0.027  

 Richness 0.028 0.423 0.176 0.018  
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 Coleoptera -0.010 -0.002 0.002 0.350  

 Diptera 0.016 0.008 0.003 0.011  

       

EPFU / LANO Temperature 0.069 0.145 0.052 0.001 0.73 

 4-7 years -0.067 -0.672 0.285 0.020  

 8-13 years -0.100 -0.732 0.204 0.001  

 Richness 0.120 0.800 0.160 0.000  

 Coleoptera -0.055 -0.001 0.002 0.016  

 Medium insects 0.036 0.002 0.001 0.013  

       

LABO/LASE Temperature 0.195 0.128 0.052 0.015 0.80 

 > 20 years 0.086 0.254 0.183 0.168  

 Richness 0.423 0.883 0.179 0.000  

 Coleoptera -0.178 -0.006 0.003 0.034  

 Diptera -0.158 -0.012 0.001 0.035  

 Lepidoptera 0.100 0.001 0.005 0.054  

       

LACI Temperature 0.176 0.194 0.049 0.000 0.79 

 4-7 years -0.036 -0.190 0.212 0.372  

 8-13 years -0.067 -0.270 0.162 0.097  

 Richness 0.141 0.494 0.144 0.000  

 Medium insects -0.028 -0.001 0.001 0.471  

       

MYAU / MYSE Temperature 0.138 0.254 0.067 0.000 0.81 

 0-3 years -0.070 -0.538 0.382 0.161  

 > 20 years 0.091 0.747 0.202 0.000  

 Richness -0.043 -0.249 0.233 0.288  

 Coleoptera -0.191 -0.018 0.014 0.197  

 Lepidoptera 0.042 0.002 0.001 0.178  

       

NYHU Temperature 0.187 0.100 0.044 0.026 0.69 

 > 20 years 0.119 0.285 0.152 0.062  

 Richness 0.231 0.393 0.143 0.007  

 Diptera 0.161 0.009 0.003 0.005  

       

PESU Temperature 0.150 0.164 0.064 0.012 0.58 

 0-3 years -0.092 -0.421 0.326 0.199  

 4-7 years -0.154 -0.811 0.438 0.067  

 Richness 0.191 0.667 0.221 0.003  

 Coleoptera -0.069 -0.004 0.003 0.146  

 Diptera -0.039 -0.004 0.005 0.369  

       

TABR Temperature 0.375 0.360 0.062 0.000 0.89 
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 14-20 years 0.174 0.596 0.166 0.005  

 > 20 years 0.112 0.481 0.200 0.018  

 Richness 0.177 0.541 0.169 0.002  

 Lepidoptera -0.133 -0.003 0.002 0.133  

       

Coleoptera Richness 0.562 0.562 - 0.000  

Diptera Richness 0.456 0.456 - 0.000  

Lepidoptera Richness 0.501 0.501 - 0.000  

Small Richness 0.373 0.373 - 0.000  

Medium Richness 0.526 0.526 - 0.000  

Large Richness 0.510 0.510 - 0.000  

Coleoptera Lepidoptera 0.512 0.512 - 0.000  

Diptera Coleoptera 0.340 0.340 - 0.000  

Small Coleoptera 0.546 0.546 - 0.000  

Medium Coleoptera 0.514 0.514 - 0.000  

Large Coleoptera 0.563 0.563 - 0.000  

Lepidoptera Diptera 0.346 0.346 - 0.000  

Small Diptera 0.704 0.704 - 0.000  

Medium Diptera 0.581 0.581 - 0.000  

Large Diptera 0.324 0.324 - 0.000  

Small Lepidoptera 0.242 0.242 - 0.000  

Medium Lepidoptera 0.856 0.856 - 0.000  

Large Lepidoptera 0.754 0.754 - 0.000  

Medium Small 0.319 0.319 - 0.000  

Large Small 0.330 0.330 - 0.000  

Medium Large 0.546 0.546 - 0.000  

EPFU LANO LABO LASE 0.241 0.241 - 0.003  

EPFU LANO LACI 0.169 0.169 - 0.020  

EPFU LANO DAIN 0.400 0.400 - 0.000  

EPFU LANO MYAU MYSE 0.055 0.055 - 0.115  

EPFU LANO NYHU 0.123 0.123 - 0.029  

EPFU LANO PESU 0.157 0.157 - 0.134  

EPFU LANO TABR 0.307 0.307 - 0.000  

LABO LASE LACI 0.103 0.103 - 0.126  

LABO LASE DAIN 0.018 0.018 - 0.359  

LABO LASE MYAU MYSE 0.224 0.224 - 0.002  

LABO LASE NYHU 0.366 0.366 - 0.000  

LABO LASE PESU 0.566 0.566 - 0.000  

LABO LASE TABR 0.112 0.112 - 0.050  

LACI DAIN 0.167 0.167 - 0.029  

LACI MYAU MYSE 0.212 0.212 - 0.029  

LACI NYHU 0.080 0.080 - 0.057  

LACI PESU 0.060 0.060 - 0.197  



 

141 

LACI TABR 0.356 0.356 - 0.000  

DAIN MYAU MYSE 0.007 0.007 - 0.361  

DAIN NYHU -0.050 -0.050 - 0.476  

DAIN PESU -0.078 -0.078 - 0.259  

DAIN TABR 0.278 0.278 - 0.001  

MYAU MYSE NYHU 0.007 0.007 - 0.485  

MYAU MYSE PESU 0.272 0.272 - 0.003  

MYAU MYSE TABR 0.026 0.026 - 0.120  

NYHU PESU 0.261 0.261 - 0.001  

NYHU TABR 0.197 0.197 - 0.006  

PESU TABR 0.097 0.097 - 0.274  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


