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Abstract

This dissertation examines interconnected aspects of greenhouse gas emissions, energy use,

and climate change impacts under the overarching theme of informing emissions mitigation policy

priorities in the United States. The first chapter explores causal relationships between economic

growth, disaggregated energy consumption across transportation, residential, commercial, and

industrial sectors, renewable energy use, and 𝐶𝑂2 emissions using state-level data from 1997-2020.

Applying panel vector error correction models and fully modified ordinary least squares estimation,

findings reveal complex short-run interactions and significant long-run impacts of all energy

sectors on emissions, with the transportation and industrial sectors exerting the largest effects.

Evidence supports the Environmental Kuznets Curve hypothesis, and renewable energy demonstrates

emissions reduction potential. The second chapter evaluates the causal impact of state-level net

metering policies on residential greenhouse gas emissions over 1990-2020 using the Callaway

and Sant’Anna (2021) estimator to address potential biases in staggered policy adoption. Results

indicate modest but statistically significant emissions reductions that intensify over time, with

substantial heterogeneity across policy designs, political contexts, and underlying mechanisms of

solar PV adoption and grid interaction. The final chapter leverages remote sensing data and machine

learning models to predict county-level rice yields and associated methane emissions across six



major U.S. rice-producing states from 2008-2022. XGBoost and Explainable Boosting Machines

accurately forecast yields as early as April-June, with soil properties emerging as key predictors.

Exploring yield-emissions trade-offs reveals a positive correlation between yield improvement and

methane reduction. Collectively, the studies advance integrated empirical assessments of historic

relationships between economic activity, energy systems, and greenhouse gas emissions across

scales. Findings directly inform prioritizing policy portfolios blending incentives, mandates, and

market reforms—from targeted strategies in high-impact sectors and net metering enhancements to

agricultural extension programs—to balance continued U.S. prosperity with climate resilience and

global leadership. Demonstrating interlinkages across sectoral systems, gas regulations, and regional

climate impacts cements the urgency and efficacy of coordinated federal action in partnership with

state and local initiatives.

Index words: [Greenhouse Gas Emissions, Energy Use, Net Metering, Yield Prediction,

Climate Change]
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Chapter 1

Introduction

The United States bears unique responsibilities and wields unrivaled capacity in the global fight

against climate change. As the world’s largest historical emitter accounting for over one-quarter of

cumulative 𝐶𝑂2 emissions (Ritchie, 2019), the nation faces mounting pressure to drastically curtail

its outsized carbon footprint. Failure to bend the emissions curve risks jeopardizing both the 1.5°C

pathway of the Paris Agreement goal and U.S. credibility in international climate diplomacy.1 With

per capita emissions triple the world average and GDP exceeding $25 trillion, the U.S. also possesses

the financial and technological means to pioneer a net-zero transition that decouples growth from

GHG emissions. Recent climate disasters across the country, from record California wildfires to

Gulf Coast hurricanes, not only expose the staggering human and economic costs of inaction but also

the potential for transformative climate leadership rooted in national self-interest. This dissertation

seeks to advance rigorous, policy-oriented analysis of U.S. emissions drivers, interdependencies, and

mitigation pathways across key sectors to accelerate economy-wide decarbonization commensurate

with the scale of the climate crisis.

Despite substantial cross-state variation in energy mixes, policies, and emissions profiles,

prior U.S. focused scholarship often remains confined to national-level, sectorally-aggregated

analyses of the emissions-energy-growth nexus. The first chapter addresses this gap by employing a

vector error correction model and fully modified OLS to uncover the dynamic causal relationships

between economic growth, energy consumption patterns disaggregatedacross residential, commercial,

industrial, transportation, and renewable sectors, and 𝐶𝑂2 emissions at the state level over

1997-2020. Granger causality and impulse response results demonstrate the outsized influence of

the transportation and industrial sectors on overall emissions, the mitigating impact of renewables,

1The 1.5°C pathway refers to the global goal set by the Paris Agreement in December 2015 to limit the increase in
average global temperatures to 1.5 degrees Celsius above pre-industrial levels.
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and an Environmental Kuznets Curve effect of income growth. The findings argue for differentiated

sector-specific emissions reduction policies attuned to heterogeneous energy demand drivers and

decarbonization pathways.

Clean energy resource deployment on the state and local scales remains integral to national

emissions reductions, given electricity and associated emissions are regulated primarily by state

policies. Consequently, Chapter 2 exploits state-level variation in net metering policies, foundational

to distributed solar adoption, to rigorously quantify the average impact on residential emissions

over 1990-2020. Leveraging a staggered difference-in-differences estimator robust to heterogeneous

treatment effects, together with Smith et al. (2021) database of 5 key net metering design traits,

the causal analysis reveals modest (0.3-0.6%) but progressively increasing emissions reductions in

the 3-5 year period post-implementation. The striking divergence across policy favorability levels,

spillovers, partisan orientation, and individual design features demonstrates the crucial importance

of incentive structures. Surprisingly, Republican-leaning states exhibit stronger effects, likely due

to lower solar baselines. The results illuminate the complex policy landscapes governing state clean

energy transitions and offer generalizable insights for optimizing net-metering frameworks.

Agriculture and associated methane emissions have remained a comparatively neglected

component of U.S. climate policy. Addressing this lacuna, Chapter 3 harnesses explainable

machine learning and remote sensing to jointly model and map rice yields and methane emissions

across 67 counties in six major rice-producing states over 2008-2022. Combining satellite-derived

vegetation indices, climate reanalysis, and soil variables in multiple black-box and glass-box

machine learning frameworks, the analysis reveals the complex agro-climatic and management

determinants of rice productivity. Model skill at early-season yield prediction holds promise for

guiding precision agriculture. Intriguingly, the multi-objective genetic algorithm identifies a positive

association between yield gains and methane mitigation, indicating synergies through sustainable

intensification. The findings demonstrate the untapped potential for data-driven optimization of

climate-smart practices.

2



Collectively, the essays present a thematically unified analysis of the entangled impacts of

energy, economic structures, and policies on U.S. GHG emissions across electricity, transportation,

andagricultural systems. Integrating methods spanning time-series econometrics, quasi-experimental

causal inference, and machine learning, the studies not only reveal the preeminence of fossil-oriented

infrastructure and policy regimes in driving emissions growth but also the manifold decarbonization

opportunities from renewable energy expansions, electricity market reforms, andprecision agriculture.

The recurring focus on heterogeneity—across states, economic sectors, policy attributes, and

agroecological regions—underscores the necessity of sectorally-differentiated, contextually-tailored

mitigation approaches in lieu of blunt, one-size-fits-all solutions.

Ultimately, this dissertation seeks to both deepen scholarly understanding of U.S. emissions

patterns and characteristics and directly inform policy strategies commensurate to achieving net-zero

emissions. Prioritizing sector-specific interventions, such as vehicle electrification, market-based

industrial carbon pricing, optimized net metering for distributed renewables, and financial and

technical assistance for lower-emission rice cultivation practices emerge as prime policy levers.

Equally crucially, the cross-cutting findings highlight the catalytic potential of integrated federal

climate policies, such as an economy-wide carbon price or national clean energy standard, to

harmonize state-level actions, prevent emissions leakage, and accelerate decarbonization through

aligned incentives and predictable investment signals. The transportation and industrial sectors

emissions predominance further reinforces the need for increased infrastructure spending, along

with Research, Development and Demonstration (RD&D) efforts to scale zero-carbon technological

solutions.

This dissertation arrives at a pivotal juncture for U.S. climate action, as cascading

extreme weather events, intensifying geopolitical tensions around fossil fuels, and landmark federal

investments converge to stimulate economy-wide transitions. While recent policies like the 2021

Infrastructure Investment and Jobs Act and the 2022 Inflation Reduction Act represent historic down

payments in clean energy tax credits, low-carbon technology incentives, and climate resilience,

3



they likely prove insufficient to achieve the halving of emissions by 2030 required for the 1.5°C

pathway of the Paris Agreement. As the world’s second-largest emitter grappling with existential

climate risks, the U.S. must drastically increase decarbonization across all sectors this decade

to secure a prosperous, equitable, and sustainable future. In elucidating policy-relevant insights

into energy-emissions-economy dynamics at subnational scales, this dissertation aspires to both

spur more granular, impacts-oriented scholarship and illuminate evidence-based strategies for bold,

immediate, and sustained federal climate leadership. With the window for limiting warming rapidly

closing, embracing comprehensive mitigation frameworks supported by rigorous integrated policy

assessments remains paramount. The U.S., and indeed the world, can scarcely afford to wait.

4



Chapter 2

Causal Links between Greenhouse Gas Emissions, Energy Consumption and Economic

Growth in the U.S. : A Sectoral Analysis 1

1J. Augustin & B. Karali. To be submitted to Energy Economics.
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2.1 Abstract

This study examines the dynamic causal relationships between sectoral energy consumption,

renewable energy use, economic growth, and carbon dioxide (𝐶𝑂2) emissions in the United States

from 1997 to 2020 using state-level data. We apply a panel vector error correction model (VECM)

and fully modified ordinary least squares (FMOLS) method to analyze both short-run and long-run

linkages among these variables. Our approach extends existing literature through the disaggregation

of energy consumption into residential, commercial, industrial, and transportation sectors, which

offers a more nuanced understanding of the emissions-energy-economy nexus. Short-run Granger

causality tests reveal complex interactions, with the residential and transportation sectors as key

influencers of other energy sectors, emissions, and economic activity. Long-run FMOLS estimates

show that all energy sectors significantly impact emissions, with the transportation sector exerting

the largest effect, followed by the industrial sector. We find evidence to support the environmental

Kuznets curve (EKC) hypothesis, which suggests that economic growth leads to decreased emissions

at higher income levels. Renewable energy use demonstrates a significant negative impact on

emissions, which highlights its importance in mitigation efforts. Impulse response functions further

elucidate the dynamic relationships among variables, and reveal sector-specific shocks and their

propagation through the system. Our findings highlight the need for targeted strategies in high-impact

sectors such as the transportation and industrial sectors, continued support for renewable energy

deployment, and consideration of sector-specific dynamics in the design of comprehensive climate

policies.
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2.2 Introduction

Global climate change poses one of the most significant threats to human civilization in the 21𝑠𝑡

century. The rapid rise in global temperatures, driven largely by increasing concentrations of

greenhouse gases (GHGs) like carbon dioxide (𝐶𝑂2) in the atmosphere, is already impacting

weather patterns, sea levels, ecosystems, and human communities around the world (Bishnoi et al.,

2022). In 2021, total U.S. GHG emissions were 6.34 billion metric tons of 𝐶𝑂2 equivalent, with

𝐶𝑂2 accounting for approximately 80% of this total. Over 70% of U.S. GHG emissions come from

burning fossil fuels across the energy, transportation, commercial, residential, and industrial sectors

(Environmental Protection Agency, 2023).

As the second-largest global emitter, accounting for at least 13% of cumulative global 𝐶𝑂2

emissions since 1751, the United States bears a significant responsibility for driving climate change

(Liu & Yuan, 2023). Achieving substantial, sustained emissions reductions in the United States

is critical to limiting global temperature rise and preventing the most catastrophic climate change

impacts. Understanding the key drivers of U.S. emissions growth across different economic sectors

is essential for policymakers to design effective tools and pathways to curb emissions.

Fundamentally, GHG emissions are linked to economic activity and energy consumption,

as carbon-intensive fossil fuels like coal, oil, and natural gas meet over 80% of U.S. energy

demand (Environmental Protection Agency, 2023). On the global level, rising affluence and energy

consumption, both resulting from and driving economic growth, accelerate GHG emissions (Zaman

& el Moemen, 2017). The same holds in the United States, where the sectors that form the

backbone of economic activity—transportation, electricity, industry, commercial enterprises, and

residences—also produce the vast majority of national emissions.

In the United States over the past half-century, bursts of economic growth have tended

to increase energy demand and boost emissions, while periods of stagnation and recession have

suppressed emissions. For example, U.S. GDP growth averaged over 7% annually between 1950
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and 1973 amid booming post-war industrial activity and consumption, coinciding with a steady

rise in energy use and 𝐶𝑂2 emissions (Dehdar et al., 2023). Conversely, the 2008 Global Financial

Crisis and the Great Recession brought a decline in the U.S. GDP, energy use, and emissions. In

2021, a 5.7% surge in U.S. GDP drove 𝐶𝑂2 emissions from fossil fuel combustion up 6.6% over

2020 levels, confirming the positive relationship between economic activity, energy, and emissions

(Environmental Protection Agency, 2023).

While the connections between energy, emissions, and growth are well established at the

national level, analyzing these relationships at the sectoral level reveals a more complex picture.

Previous studies have explored the emissions-energy-economy nexus through three interconnected

strands (Ozturk & Acaravci, 2010):

1. The environment-income relationship centered around tests of the environmental Kuznets

curve (EKC) hypothesis, which states that emissions initially rise but eventually fall with

income growth after some turning point.

2. The energy-growth linkage centered around the role of energy as a vital input to economic

production and growth.

3. The combined dynamic interactions between economic output, energy use, and environmental

pollutants.

The third integrated approach encapsulates and expands upon the first two by introducing

energy as a central mediator linking economic growth and emissions over time. However, most

studies utilizing this framework focus on national or cross-country analyses rather than disaggregated

sectoral analyses within the United States.

Understanding these sectoral relationships is crucial, as the main sources of U.S. emissions

differ widely in their intensities. Electricity and transportation together produced over half of

the national 𝐶𝑂2 emissions in 2021, reflecting their heavy reliance on fossil fuel combustion

(Environmental Protection Agency, 2023). Meanwhile, the industrial sector accounted for 23% of

8



emissions through direct fossil fuel use and electricity consumption in manufacturing processes,

edging out the combined commercial and residential sectors at 13% (Environmental Protection

Agency, 2023). Agricultural emissions comprised the remaining 10% share (Environmental

Protection Agency, 2023). These proportions shifted between 1990 and 2021, with transportation

emissions growing while the power sector’s share declined amid the transition from coal to natural

gas and renewables (Environmental Protection Agency, 2023).

Capturing these complex, evolving sectoral dynamics is necessary for targeted policy

interventions to curb emissions. If income growth drives energy consumption and emissions

uniformly across all sectors, economy-wide measures like carbon taxes or energy efficiency standards

may suffice to mitigate emissions. However, if relationships diverge between sectors, tailoring

policies to specific emissions-intensive activities may prove more effective. For example, the rapid

growth of zero-carbon renewable energy in the utility sector is decoupling electricity generation

from fossil fuel combustion and emissions, while electric vehicles (EVs) powered by low-carbon

electricity offer a pathway to reduce transportation emissions.

Despite the importance of sectoral analysis, studies examining the emissions-energy-income

nexus in the United States remain surprisingly scant. Existing research often focuses on national

aggregates or individual sectors in isolation (Marrero, 2010; Acaravci & Ozturk, 2010; Menyah &

Wolde-Rufael, 2010; Pao & Tsai, 2010; Hamit-Haggar, 2012; Paramati et al., 2017; Acheampong,

2018; Salari et al., 2021), lacking a connected sectoral analysis of how economic output induces

greater energy consumption and emissions across different sectors.

This paper bridges this research gap by analyzing dynamic causal relationships between

sectoral economic growth, energy consumption patterns, and 𝐶𝑂2 emissions in the United States

from 1997 to 2020. It provides a comprehensive sectoral analysis of the emissions-energy-economy

nexus in the United States, offering novel insights into both short-run and long-run dynamics among

these variables through time series econometric techniques, including panel vector error correction

modeling and fully modified ordinary least squares estimation.
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Our findings reveal intricate relationships among sectoral energy use, emissions, and

economic growth in the United States. Short-run Granger causality tests indicate that transportation

energy use strongly influences 𝐶𝑂2 emissions, other energy sectors, and economic growth, while

residential energy use impacts commercial and industrial sectors. The impulse response analysis

shows that 𝐶𝑂2 emissions are most sensitive to shocks in transportation and industrial energy

use. Our long-run FMOLS estimates confirm that all energy sectors positively impact emissions,

with transportation having the largest effect, followed by the industrial sector. Importantly, we

find evidence supporting the EKC hypothesis, suggesting that economic growth eventually leads to

decreased emissions at higher income levels. The use of renewable energy demonstrates a significant

negative impact on emissions, which highlights its importance in mitigation efforts.

The remainder of the paper is structured as follows: Section 3 reviews relevant literature on

emissions, energy consumption, and economic growth. Section 4 describes our data sources and

provides summary statistics. Section 5 outlines our econometric methods and presents results from

Granger causality tests, impulse response functions, and FMOLS estimation. Section 6 concludes

with an emphasis on policy implications.

2.3 Literature Review

Greenhouse gas emissions, energy consumption, and economic growth are intricately linked in

complex, multi-directional relationships often studied through the lens of the EKC hypothesis. This

hypothesis posits an inverted U-shaped relationship where economic development initially increases

environmental degradation and then decreases it after reaching a turning point (Acaravci & Ozturk,

2010; Apergis & Payne, 2010; Menyah & Wolde-Rufael, 2010; Ozturk & Acaravci, 2010; Marrero,

2010). However, empirical findings frequently contradict or fail to universally support the EKC

hypothesis across regions, pollution types, and time. More granular, sectoral analyses may clarify

inconsistencies found at the national aggregate level (Acaravci & Ozturk, 2010; Begum et al., 2015).

Causality testing helps determine lead-lag linkages between emissions, energy, and GDP as a step
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toward informed policy. For example, bidirectional Granger causality implies the ability of economic

and climate policies to restrict emissions without sacrificing growth (Apergis & Payne, 2010; Pao

& Tsai, 2010; Wang et al., 2011; Begum et al., 2015). Yet unidirectional causality from GDP to

emissions may suggest policy tradeoffs between economic development and environmental goals

(Menyah & Wolde-Rufael, 2010; Ozturk & Acaravci, 2010; Begum et al., 2015). Similarly, the

causation between energy and emissions highlights opportunities for mitigation through improved

efficiency, technological change, or shifts between renewable and fossil fuel sources (Menyah &

Wolde-Rufael, 2010; Wang et al., 2011).

Methodologically, previous literatures have utilized multivariate time series, panel data, or

quantile regressions to study these relationships within nations including China, Brazil, Russia,

Turkey, Malaysia, Canada, and the U.S. (Acaravci & Ozturk, 2010; Ozturk & Acaravci, 2010;

Marrero, 2010; Pao & Tsai, 2010; Pao et al., 2011a; Begum et al., 2015; Paramati et al., 2017;

Zaman & el Moemen, 2017; Salari et al., 2021; Liu & Yuan, 2023; Dehdar et al., 2023). Vector

autoregressive (VAR) model, vector error correction model (VECM), and Granger causality tests

determine short- and long-run dynamics (Apergis & Payne, 2010; Wang et al., 2011; Begum et

al., 2015; Jian et al., 2019; Liu & Yuan, 2023). Previous studies utilizing panel cointegration

techniques demonstrate the existence of a long-run equilibrium relationship between emissions,

energy consumption, and GDP across countries (Acaravci & Ozturk, 2010; Apergis & Payne, 2010;

Pao & Tsai, 2010; Wang et al., 2011; Begum et al., 2015). Estimated long-run elasticities demonstrate

the substantial influence of energy consumption on emissions and the potential mitigating impact

of GDP growth in some cases (Apergis & Payne, 2010; Begum et al., 2015). However, evidence

supporting the EKC hypothesis remains mixed regarding the existence of an inverted U-shaped

effect of income on pollution (Acaravci & Ozturk, 2010; Pao & Tsai, 2010, 2011b; Begum et al.,

2015).

Critically assessing causal directions proves useful for policy even amidst conflicting

empirical results across studies. Many studies find evidence of short- and long-run feedback
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from energy consumption to emissions, highlighting the continued relevance of energy efficiency

measures (Apergis & Payne, 2010; Wang et al., 2011; Pao et al., 2011a; Begum et al., 2015).

Meanwhile, linkages from economic growth demonstrate the necessity of sustainable technological

change and development policy to avoid restrictive tradeoffs on emissions (Menyah & Wolde-Rufael,

2010; Ozturk & Acaravci, 2010; Wang et al., 2011; Begum et al., 2015). Comparing developed

and developing countries also highlights differential policy needs and challenges (Paramati et al.,

2017). Advanced economies with service-oriented GDP may weaken energy-growth connections

and environmental pressures relative to industrialized nations (Zaman & el Moemen, 2017). This

suggests sector-specific examinations to illuminate policy opportunities within diverse economic

structures.

While broad trends emerge across studies that use aggregated sectors, tracing nuanced

causality for emissions, energy, and income often yields conflicting results between studies.

Disaggregated, dynamic analyses, therefore, offer analytical traction amidst ambiguity in macro

studies (Salari et al., 2021; Liu & Yuan, 2023; Dehdar et al., 2023). Data limitations may

explain discrepancies, as longer time series strengthen robustness and sector-specific metrics

enhance relevance over aggregated indices (Liu & Yuan, 2023). Quantile regressions also allow

the examination of changing effects across development levels akin to the EKC, corroborating

emblematic non-linear emissions patterns (Liu & Yuan, 2023; Dehdar et al., 2023). Recent

U.S. state-level studies apply these techniques to determine policy-relevant causal influences from

economic growth, fossil fuel, and renewable consumption on emissions across income distributions

(Salari et al., 2021; Liu & Yuan, 2023; Dehdar et al., 2023). Our sector-specific study for the

United States aims to provide illumination to the ambiguity resulting from aggregated analyses.

Comparing evidence across macro studies for China, Europe, Russia, and Canada suggests a lack

of definitive consensus regarding the direction of causality and the presence of non-linear inverted

U-shaped income dynamics (Marrero, 2010). However, examinations in Canada’s industrial sector

demonstrate differentiated short- and long-run impacts of income, energy consumption, and policy
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efforts (Hamit-Haggar, 2012). Previous state-level research in the U.S. corroborates heterogeneity

in emissions determinants and mitigation opportunities between renewable integration, efficiency

improvements, and fostering transitions to cleaner economic growth pathways (Salari et al., 2021;

Liu & Yuan, 2023; Dehdar et al., 2023).

Our study addresses key gaps in the literature by providing a comprehensive, sector-specific

analysis of the emissions-energy-economy nexus in the United States. By disaggregating energy

consumption across residential, commercial, industrial, and transportation sectors, we capture

heterogeneous impacts often overlooked in aggregate analyses. Our methodological approach,

combining panel VECM, Granger causality, impulse response functions (IRFs), and FMOLS

estimation, allows for a nuanced examination of both short-run and long-run dynamics. This

granular, state-level analysis offers timely insights into emissions drivers and mitigation strategies

across different economic sectors. By doing so, we contribute to the ongoing debate on the validity

of the EKC hypothesis and provide policymakers with targeted, sector-specific evidence to inform

climate change interventions while considering diverse economic dynamics.

2.4 Data

We use panel data from 48 U.S. states, Alaska, and Hawaii for the period 1997-2020. Table 2.1

presents data sources and descriptions of the variables. Total equivalent 𝐶𝑂2 emissions (in million

metric tons) are obtained from the U.S. Environmental Protection Agency (EPA), while all other

variables are sourced from the U.S. Energy Information Administration (EIA). The retail electricity

price, expressed in dollars per million BTU, serves as a proxy for energy prices.

Figure 2.1 presents average variations in energy use and total emissions across states over

the 24 years. Texas and California are the top 𝐶𝑂2 emitters and also the top energy consumers,

as expected. In general, states with higher emissions tend to consume more energy. On the

contrary, states with low emissions, such as Maine, are at the bottom of the spectrum for total energy

consumption.
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Table 2.1: Summary of Variables.

Variable Description Unit Data Source

RGDP Real GDP Millions of (2012) USD EIA
NONRENEW Total Nonrenewable Energy Use Million BTU EIA
POP Total Population Thousands EIA
HDD Heating Degree Days Degree Days EIA
CDD Cooling Degree Days Degree Days EIA
RENEW Total Renewable Energy Use Million BTU EIA
RESID Residential Energy Use Million BTU EIA
COMM Commercial Energy Use Million BTU EIA
INDUST Industrial Energy Use Million BTU EIA
TRANSP Transportation Energy Use Million BTU EIA
CO2 Total 𝐶𝑂2 Emissions Million Metric Tons (MMT) EPA
PRC Retail Electricity Price Dollars per Million BTU EIA

Notes: The terms Consumption and Use are interchangeably used in this document.

(a) Average Carbon Dioxide Emissions by State (b) Average Energy Consumption by State

Figure 2.1: Patterns of Emissions and Energy Consumption across States (1997-2020)

To facilitate comparison across states while accounting for size differences, all variables

except for HDD, CDD, and energy price, are divided by the state population to express them per

capita except for energy price and then logged (natural logarithm). The log transformation allows

for the interpretation of the estimated coefficients as elasticities2.

2Additionally, HDD is divided by a factor of 1,000 to facilitate its interpretation.
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Table 2.2 displays the descriptive statistics for the variables used in the analysis. The

sample consists of 1,200 state-year observations. Most variables show evidence of right-skewed

distributions, particularly in energy consumption and CO2 emissions per capita. This skewness

suggests that while most states have moderate levels of energy use and emissions, a few states

have significantly higher values, potentially due to differences in industrial composition or energy

policies. Real GDP per capita appears more symmetrically distributed, indicating more even

economic development across states. Sectoral energy use patterns vary, with industrial energy use

displaying the most skewed distribution, likely reflecting the uneven distribution of energy-intensive

industries across states.

Table 2.2: Descriptive Statistics Summary for Transformed Variables.

Variables Mean Std. Dev. Min Max

HDD 5.164 2.286 0.000 11.702
lnRGDPpc -3.036 0.194 -3.508 -2.520
lnNONRENEWpc -1.078 0.372 -1.831 0.179
lnRENEWpc -3.704 0.933 -6.419 -1.485
lnRESIDpc -2.638 0.222 -3.822 -2.244
lnCOMMpc -2.817 0.220 -3.608 -2.062
lnINDUSTpc -2.338 0.804 -4.258 -0.382
lnTRANSPpc -2.353 0.287 -3.095 -0.908
lnCO2pc -10.583 0.614 -11.694 -8.559
lnPRC 2.727 0.357 1.625 3.653

Observations 1,200

Table 2.3 presents the pairwise correlation coefficients between the key variables, along

with their statistical significance levels. Heating and cooling degree days exhibit a strong negative

correlation (-0.867), as expected, given their inverse relationship. For this reason, the latter

is dropped from the analysis. Real GDP per capita shows a positive and statistically significant

correlation with the overall energy price (0.358) and a negative correlation with the natural logarithm

of energy consumption per capita (-0.425). The correlation between the natural logarithm of real

GDP per capita and its squared term is 0.402, indicating a potential non-linear relationship between
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economic growth and energy consumption. The sectoral energy use variables display positive and

significant correlations with the natural logarithm of energy consumption per capita, ranging from

0.283 to 0.949. For this reason, in the further sections, we consider two models: one with the total

nonrenewable and renewable energy categories and another with the sectoral energy categories in

addition to renewable energy.

Table 2.3: Pairwise Correlation Coefficients with Significance Levels.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

HDD (a) 1.00 -0.87*** -0.08* 0.26*** -0.34*** 0.24*** 0.28*** 0.42*** 0.48*** 0.18*** 0.15***
(0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

CDD (b) 1.00 0.09** -0.21*** 0.16*** -0.07* -0.20*** -0.42*** -0.38*** -0.04 0.08*
(0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.15) (0.01)

PRC (c) 1.00 0.36*** 0.19*** -0.42*** 0.06* -0.31*** -0.25*** -0.47*** -0.29***
(0.00) (0.00) (0.00) (0.05) (0.00) (0.00) (0.00) (0.00)

RGDPpc (d) 1.00 0.40*** 0.02 -0.10** -0.16*** 0.24*** -0.10** 0.05
(0.00) (0.47) (0.00) (0.00) (0.00) (0.00) (0.08)

RGDP2pc (e) 1.00 -0.31*** -0.32*** -0.20*** -0.12** -0.31*** -0.38***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

NONRENEWpc (f) 1.00 0.28*** 0.49*** 0.62*** 0.95*** 0.86***
(0.00) (0.00) (0.00) (0.00) (0.00)

RENEWpc (g) 1.00 0.17*** 0.10** 0.32*** 0.24***
(0.00) (0.00) (0.00) (0.00)

RESIDpc (h) 1.00 0.70*** 0.42*** 0.20***
(0.00) (0.00) (0.00)

COMMpc (i) 1.00 0.46*** 0.49***
(0.00) (0.00)

INDUSTpc (j) 1.00 0.77***
(0.00)

TRANSPpc (k) 1.00
CO2pc (l) 0.29*** -0.10* -0.43*** -0.12** -0.44*** 0.87*** 0.22*** 0.48*** 0.62*** 0.84*** 0.75***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: *** p<0.01, ** p<0.05, * p<0.1. All variables, except for HDD, CDD, and PRC, are per capita.
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2.5 Econometric Methods and Results

2.5.1 Panel Unit Root Tests

Panel unit root tests have become increasingly common in econometric analysis, as they provide a

powerful framework for examining the stationarity properties of variables in a panel data framework.

These tests are crucial for understanding the dynamic behavior of economic variables and have

implications for model specification, estimation, and inference (Maddala & Wu, 1999; Hadri, 2000;

Breitung, 2001; Im et al., 2003; Levin et al., 2002).

One of the seminal contributions in this area is the work of Levin et al. (2002), who developed

a panel unit root test that accounts for cross-section-specific deterministic trends, heterogeneous

autoregressive structures, and serially correlated errors across cross-sectional units. However, their

test assumes a common autoregressive parameter across cross-sectional units under the alternative

hypothesis, which may be restrictive in practice. To overcome this limitation, Im et al. (2003)

proposed a more flexible panel unit root test that allows for heterogeneous autoregressive coefficients.

Their test statistic is constructed by averaging individual augmented Dickey-Fuller (ADF) test

statistics, which enables capturing a wider range of dynamic behaviors across cross-sectional units.

While these tests have been widely applied, they are not without limitations. In particular,

including cross-section-specific trends can lead to a significant loss of power due to the bias

correction employed in the testing procedures. To address this issue, Breitung (2001) developed

a panel unit root test that does not rely on bias correction factors and has been shown to exhibit

superior power and size properties compared to the tests of Levin et al. (2002) and Im et al. (2003).

An alternative approach to panel unit root testing is the Fisher-type test proposed by Maddala & Wu

(1999). This test combines p-values from individual unit root tests and offers several advantages,

such as the ability to handle unbalanced panels and varying lag lengths across cross-sectional

units. However, the p-values need to be obtained through simulation techniques, which can be

computationally intensive. Extending the well-known Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
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test (Kwiatkowski et al., 1992) from the time series domain to the panel data framework, Hadri

(2000) developed a residual-based Lagrange multiplier test for stationarity. This test provides a

complementary perspective to the aforementioned panel unit root tests, as it allows for testing the

null hypothesis of stationarity against the alternative of a unit root.

The results in Table 2.4 provide strong evidence, across at least half of the tests for each

series and regardless of including a trend, that all variables except for HDD are non-stationary in

levels but become stationary after taking the first differences. Thus, these variables are integrated

of order one, or I(1). Considering the real GDP per capita (lnRGDPpc) and its squared term

(lnRGDPpcSQ), the Levin, Lin, and Chu (LLC) test rejects the null hypothesis of a unit root in

levels at the 1% significance level, both with and without a trend. However, the Breitung test

fails to reject the null in levels. For the first differenced series, all tests strongly reject the null of

non-stationarity, confirming that the GDP variables are I(1). For nonrenewable energy consumption

(lnNONRENEWpc), renewable energy use (lnRENEWpc), and all sectoral energy use variables,

the tests generally fail to reject the null of a unit root in levels (with some exceptions when a trend is

included) but strongly reject the null in the first differences. This indicates that these variables are

also I(1). The CO2 emissions variable (lnCO2pc) and energy price (lnPRC) show similar patterns,

with most tests failing to reject the null of a unit root in levels but rejecting it in the first differences.

The heating degree days variable (HDD) appears stationary in both levels and first differences based

on most tests.

Contrary to the previous tests explained, the null hypothesis of the Hadri test is stationarity.

Table 2.4 shows that we reject its null hypothesis for most variables in levels but fail to reject it in

the first differences, further confirming the I(1) nature of the series. In sum, these extensive panel

unit root tests provide consistent evidence that the variables under consideration, except for heating

degree days, are non-stationary in levels but stationary in first differences. In the next section, we

investigate the existence of cointegration among the variables.
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Table 2.4: Panel unit root test results.

Levels First Differences Levels First Differences

No trend Trend No trend Trend No trend Trend No trend Trend

lnRDGDpc lnNONRENEWpc

Levin, Lin, and Chu -9.72∗∗∗ -4.27∗∗∗ -6.31∗∗∗ -3.69∗∗∗ 1.06 -4.32∗∗∗ -13.18∗∗∗ -9.71∗∗∗
Breitung 7.18 6.51 -10.21∗∗∗ -1.00 3.74 4.23 -17.66∗∗∗ -2.72∗∗
IPS -5.41∗∗∗ -2.64∗∗ -11.57∗∗∗ -13.12∗∗∗ 5.53 -6.76∗∗∗ -16.15∗∗∗ -16.51∗∗∗
Fisher-ADF 103.96 63.57 166.94∗∗∗ 122.41∗ 39.54 85.54 211.68∗∗∗ 128.19∗∗
Fisher-PP 248.30∗∗∗ 85.01 447.83∗∗∗ 429.94∗∗∗ 46.00 137.02∗∗ 932.33∗∗∗ 788.80∗∗∗
Hadri! 82.66∗∗∗ 41.38∗∗∗ 6.83∗∗∗ 4.40∗∗∗ 79.89∗∗∗ 24.89∗∗∗ -1.43 -2.38

lnRGDP2pc lnRENEWpc

Levin, Lin, and Chu -10.00∗∗∗ -4.32∗∗∗ -6.59∗∗∗ -4.36∗∗∗ -1.14 -4.07∗∗∗ -12.78∗∗∗ -10.89∗∗∗
Breitung 10.30 7.00 -9.59∗∗∗ -2.22∗∗ 3.21 -1.33∗ -14.02∗∗∗ -13.76∗∗∗
IPS -5.83∗∗∗ -2.16∗∗ -11.30∗∗∗ -13.17∗∗∗ 1.93 -7.30∗∗∗ -16.36∗∗∗ -16.70∗∗∗
Fisher-ADF 109.20 60.38 159.95∗∗∗ 133.36∗∗ 113.27 354.97∗∗∗ 431.41∗∗∗ 251.74∗∗∗
Fisher-PP 299.81∗∗∗ 84.33 434.52∗∗∗ 436.67∗∗∗ 117.39 167.43∗∗∗ 1066.57∗∗∗ 882.03∗∗∗
Hadri! 88.10∗∗∗ 43.96∗∗∗ 8.50∗∗∗ 5.58∗∗∗ 87.75∗∗∗ 32.38∗∗∗ 0.24 4.18∗∗∗

lnRESIDpc lnCOMMpc

Levin, Lin, and Chu -1.63∗ -7.44∗∗∗ -20.42∗∗∗ -16.87∗∗∗ 1.81 -4.29∗∗∗ -9.33∗∗∗ -8.76∗∗∗
Breitung -6.90∗∗∗ -4.91∗∗∗ -17.58∗∗∗ -13.47∗∗∗ -1.16 5.74 -14.53∗∗∗ -7.31∗∗∗
IPS -3.18∗∗∗ -9.91∗∗∗ -20.26∗∗∗ -20.44∗∗∗ 1.29 -5.42∗∗∗ -16.88∗∗∗ -18.24∗∗∗
Fisher-ADF 43.86 71.15 326.95∗∗∗ 353.40∗∗∗ 122.25∗ 120.55∗ 225.63∗∗∗ 208.06∗∗∗
Fisher-PP 137.75∗∗ 213.16∗∗∗ 1925.63∗∗∗ 1900.18∗∗∗ 125.64∗ 133.52∗∗ 1050.24∗∗∗ 1072.57∗∗∗
Hadri! 50.52∗∗∗ 25.60∗∗∗ -4.19 -5.82 53.07∗∗∗ 34.18∗∗∗ 0.49 -3.63

lnINDUSTpc lnTRANSPpc

Levin, Lin, and Chu -4.34∗∗∗ -4.89∗∗∗ -14.91∗∗∗ -11.75∗∗∗ 3.57 -1.06 -1.79∗ 2.52
Breitung 5.65 -2.48∗∗ -16.57∗∗∗ -13.35∗∗∗ -1.69∗ 9.76 -14.21∗∗∗ 5.38
IPS 0.92 -5.92∗∗∗ -17.81∗∗∗ -18.12∗∗∗ 3.28 -4.91∗∗∗ -13.59∗∗∗ -14.28∗∗∗
Fisher-ADF 102.95 134.30∗∗ 237.50∗∗∗ 156.63∗∗∗ 40.60 71.38 149.32∗∗∗ 90.32
Fisher-PP 86.80 110.09 1174.97∗∗∗ 1012.50∗∗∗ 75.83 95.17 722.72∗∗∗ 603.88∗∗∗
Hadri! 79.92∗∗∗ 31.92∗∗∗ -2.94 -1.88 57.08∗∗∗ 23.39∗∗∗ 1.51∗ -0.24

lnCO2pc HDD

Levin, Lin, and Chu 7.13 -2.88∗∗ -10.97∗∗∗ -9.29∗∗∗ -18.97∗∗∗ -16.10∗∗∗ -23.30∗∗∗ -18.39∗∗∗
Breitung 8.57 5.57 -15.82∗∗∗ -3.34∗∗ -14.32∗∗∗ -13.66∗∗∗ -13.03∗∗∗ -9.31∗∗∗
IPS 11.82 -5.54∗∗∗ -16.64∗∗∗ -17.42∗∗∗ -15.65∗∗∗ -16.49∗∗∗ -21.00∗∗∗ -20.71∗∗∗
Fisher-ADF 16.67 47.33 151.47∗∗∗ 128.46∗∗ 246.41∗∗∗ 204.55∗∗∗ 800.67∗∗∗ 658.07∗∗∗
Fisher-PP 42.41 112.88 1024.51∗∗∗ 963.79∗∗∗ 774.22∗∗∗ 615.06∗∗∗ 2674.33∗∗∗ 2334.11∗∗∗
Hadri! 88.21∗∗∗ 32.46∗∗∗ 0.58 -2.88 -0.72 -1.53 -6.44 -6.51

lnPRC

Levin, Lin, and Chu -10.14∗∗∗ 1.63 -11.92∗∗∗ -16.29∗∗∗
Breitung 1.13 5.63 -15.58∗∗∗ -11.32∗∗∗
IPS -1.89∗∗ 6.29 -14.61∗∗∗ -16.96∗∗∗
Fisher-ADF 97.59 2.46 92.16 173.29∗∗∗
Fisher-PP 85.08 2.52 631.05∗∗∗ 740.19∗∗∗
Hadri! 71.70∗∗∗ 66.91∗∗∗ 7.16∗∗∗ -0.29

Notes: ∗∗∗, ∗∗, and ∗ represent significance at 1%, 5%, and 10% respectively. (!) Null hypothesis,
the series is stationary. Akaike Information Criterion (AIC) is used for the choice of the lag length.
The highest allowed number of lags is restricted to three.
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2.5.2 Panel Cointegration Tests

The goal of cointegration tests is to assess whether the variables in a system exhibit a long-run

equilibrium relationship. Table 2.5 shows the cointegration results for the variables in the base

model in column (1) and those for the augmented model in column (2) across three specifications.

The base model includes all the control variables used in addition to total nonrenewable energy

use and renewable energy use, whereas the augmented model includes all the variables in the

base model, but with total nonrenewable energy use broken down into the four different sectors

(residential, commercial, industrial, and transportation).

The Kao test (1999), is an extension of the Dickey-Fuller test for cointegration in a panel

data framework. It tests the null hypothesis of no cointegration by considering the residuals from

a panel data regression, assuming homogeneity among the cross-sections and not allowing for

individual effects to vary across panel units. This test involves estimating a common autoregressive

parameter across different cross-sections, applying a residual-based approach to test for unit roots

in the residuals of the estimated long-run relationships. The results in Table 2.5 show that the

modified Dickey-Fuller t-statistic and the Dickey-Fuller t-statistic for both model specifications are

statistically significant (p-values < 0.01), suggesting strong evidence against the null hypothesis of

no cointegration among the panel units and therefore, implying a long-run equilibrium relationship

between the variables considered.

The Pedroni test (1999), extends the Kao test by allowing for heterogeneity across different

units in the panel. This test is particularly flexible in accounting for different dynamics and fixed

effects across individual units, thus providing a more robust framework for testing cointegration in

the presence of heterogeneity. The results from the Pedroni test, such as the modified Phillips-Perron

t-statistic and the Phillips-Perron t-statistic, are also significant at the 1% level. This strengthens the

evidence of a cointegrating relationship. The negative values in the Phillips-Perron t-statistic, which
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Table 2.5: Cointegration Test Results.

Test Name (1) (2)

Kao Test
Modified Dickey–Fuller t 3.245*** 3.886***

(0.001) (0.000)
Dickey–Fuller t 4.078*** 4.984***

(0.000) (0.000)
Pedroni Test
Modified Phillips–Perron t 5.511*** 4.175***

(0.000) (0.000)
Phillips–Perron t -7.695*** -7.087***

(0.000) (0.000)
Westerlund Test
Variance ratio -2.532** -1.917*

(0.006) (0.028)

Notes: Column (1) introduces total nonrenewable and renewable energy categories, while column (2) includes all
energy categories except for total nonrenewable energy use. The null hypotheses for the Kao and Pedroni tests is that
there is no cointegration across the panels, with the Kao test assuming homogeneity and the Pedroni test allowing for
panel-specific heterogeneity. The Westerlund test’s null hypothesis is no cointegration among some or all panels, with
a focus on error correction mechanisms. *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses.

are statistically significant, further confirm the presence of cointegration, suggesting that deviations

from the long-run equilibrium are stationary.3

Westerlund (2005) proposed a test that emphasizes error correction mechanisms in panel

data settings. This approach is distinct because it tests for the presence of a cointegrating relationship

by examining the error correction term in the panel regression framework. The test is designed to

detect the existence of cointegration without requiring pre-testing for unit roots, accommodating

individual effects and cross-sectional dependence. The Westerlund test’s variance ratio statistics,

although showing a lower level of significance (p-values < 0.05 and < 0.1), still provide evidence

supporting cointegration. The results suggest that short-run deviations from equilibrium are adjusted

towards the long-run equilibrium path, indicating the presence of error-correction dynamics.

3The standard Phillips-Perron test tends to produce a negative statistic due to its unit root testing design, where large
negative values suggest rejection of the null hypothesis. This sign difference, however, does not alter the interpretation
of the results.
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The significant results across all three tests provide robust evidence that a long-run

equilibrium relationship exists among the variables across the panels, accounting forbothhomogeneous

and heterogeneous effects. Despite their differences in approach and assumptions, all three tests

consistently support the presence of cointegration in the panel data. This finding proves that

the variables move together over time towards a common equilibrium state despite short-term

fluctuations and provides us with a strong foundation for implementing panel vector error correction

tests in the next section.

2.5.3 Panel VECM

Drawing from the existing literature on the relationship between𝐶𝑂2 emissions, energy consumption,

and economic growth (Pao et al., 2011a; Acaravci & Ozturk, 2010), the canonical model used to

investigate the determinants of total 𝐶𝑂2 emissions can be expressed as:

lnCO2pc𝑠,𝑡 = 𝜂1lnNONRENEWpc𝑠,𝑡 + 𝜂2lnRENEWpc𝑠,𝑡

+ 𝜂3HDD𝑠,𝑡 + 𝜂4lnPRC𝑠,𝑡 + 𝜂5lnRGDPpc𝑠,𝑡

+ 𝜂6lnRGDPpcSQ𝑠,𝑡 + 𝜆𝑠 + 𝜃𝑡 + 𝜖𝑠,𝑡 (2.1)

where the state index, denoted by 𝑠, ranges from 1 to 50, while the time period, denoted by 𝑡, spans

from 1 to 24. The dependent and explanatory variables are as described above. 𝑙𝑛𝑅𝐺𝐷𝑃𝑝𝑐𝑆𝑄 is

the squared form of 𝑙𝑛𝑅𝐺𝐷𝑃𝑝𝑐. State and year-specific fixed effects are denoted by 𝜆𝑠 and 𝜃𝑡 . The

error term is 𝜖𝑠,𝑡 . It is important to note that this canonical model is a part of the VECM framework

and is estimated together with other equations in the system.

The inclusion of both GDP and its squared term allows for the possibility of an inverted

U-shaped relationship between economic growth and 𝐶𝑂2 emissions, as suggested by the EKC
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hypothesis.4 By incorporating additional control variables such as heating degree day and energy

prices, often ignored in most previous studies, our model aims to provide a more comprehensive

analysis of the factors influencing 𝐶𝑂2 emissions across states and over time. In the second model,

we break down the nonrenewable energy use variable into four different sectors: commercial,

residential, industrial, and transportation. This extension allows us to analyze the specific impacts

of each sector’s energy use on total 𝐶𝑂2 emissions:

lnCO2pc𝑠,𝑡 = 𝜂1lnNONRENEWpc𝑠,𝑡 + 𝜂2lnRESIDpc𝑠,𝑡 + 𝜂3lnCOMMpc𝑠,𝑡 + 𝜂4lnINDUSTpc𝑠,𝑡

+ 𝜂5lnTRANSPpc𝑠,𝑡 + 𝜂6lnRENEWpc𝑠,𝑡 + 𝜂7HDD𝑠,𝑡 + 𝜂8lnPRC𝑠,𝑡

+ 𝜂9lnRGDPpc𝑠,𝑡 + 𝜂10lnRGDPpcSQ𝑠,𝑡 + 𝜆𝑠 + 𝜃𝑡 + 𝜖𝑠,𝑡 (2.2)

Even though Equations 2.1 and 2.2 are the main focus of our analysis, to capture the

dynamic short-run and long-run equilibrium relationships among these variables, we employ the

following panel VECM framework:



ΔlnCO2pc𝑠,𝑡

ΔlnNONRENEWpc𝑠,𝑡

ΔlnRENEWpc𝑠,𝑡

ΔHDD𝑠,𝑡

ΔlnPRC𝑠,𝑡

ΔlnRGDPpc𝑠,𝑡

ΔlnRGDPpcSQ𝑠,𝑡



=
∑𝑝

𝑗=1



𝜂11 𝑗 𝜂12 𝑗 𝜂13 𝑗 𝜂14 𝑗 𝜂15 𝑗 𝜂16 𝑗 𝜂17 𝑗

𝜂21 𝑗 𝜂22 𝑗 𝜂23 𝑗 𝜂24 𝑗 𝜂25 𝑗 𝜂26 𝑗 𝜂27 𝑗

𝜂31 𝑗 𝜂32 𝑗 𝜂33 𝑗 𝜂34 𝑗 𝜂35 𝑗 𝜂36 𝑗 𝜂37 𝑗

𝜂41 𝑗 𝜂42 𝑗 𝜂43 𝑗 𝜂44 𝑗 𝜂45 𝑗 𝜂46 𝑗 𝜂47 𝑗

𝜂51 𝑗 𝜂52 𝑗 𝜂53 𝑗 𝜂54 𝑗 𝜂55 𝑗 𝜂56 𝑗 𝜂57 𝑗

𝜂61 𝑗 𝜂62 𝑗 𝜂63 𝑗 𝜂64 𝑗 𝜂65 𝑗 𝜂66 𝑗 𝜂67 𝑗

𝜂71 𝑗 𝜂72 𝑗 𝜂73 𝑗 𝜂74 𝑗 𝜂75 𝑗 𝜂76 𝑗 𝜂77 𝑗





ΔlnCO2pc𝑠,𝑡− 𝑗

ΔlnNONRENEWpc𝑠,𝑡− 𝑗

ΔlnRENEWpc𝑠,𝑡− 𝑗

ΔHDD𝑠,𝑡− 𝑗

ΔlnPRC𝑠,𝑡− 𝑗

ΔlnRGDPpc𝑠,𝑡− 𝑗

ΔlnRGDPpcSQ𝑠,𝑡− 𝑗



+



𝜂81

𝜂82

𝜂83

𝜂84

𝜂85

𝜂86

𝜂87



𝐸𝐶𝑇𝑠,𝑡−1 +



𝜆𝑠

𝜆𝑠

𝜆𝑠

𝜆𝑠

𝜆𝑠

𝜆𝑠

𝜆𝑠



+



𝜃𝑡

𝜃𝑡

𝜃𝑡

𝜃𝑡

𝜃𝑡

𝜃𝑡

𝜃𝑡



+



𝜖1𝑠,𝑡

𝜖2𝑠,𝑡

𝜖3𝑠,𝑡

𝜖4𝑠,𝑡

𝜖5𝑠,𝑡

𝜖6𝑠,𝑡

𝜖7𝑠,𝑡



(2.3)

The vector on the left-hand side contains the first-differenced dependent variables. The first

vector on the right-hand side represents the state-specific intercepts for each equation in the system.

The second component on the right-hand side is a matrix that represents the short-run adjustment

dynamics, capturing the impact of lagged changes in each variable on the current changes in the

dependent variables. The optimal lag length, 𝑝, is determined by the Schwarz information criteria

4In this case, The RGDP variable is expected to have a positive coefficient, and its squared version is expected to
have a negative coefficient.
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(SIC). Each element in the coefficient matrix, denoted as 𝜂𝑖 𝑗 , represents the short-run coefficient

that measures the impact of the 𝑗-th lagged change in one variable on the current change in another

variable. For example, 𝜂12 represents the short-run impact of a change in energy use two periods

ago on the current change in total 𝐶𝑂2 emissions, while 𝜂21 represents the short-run impact of a

change in total 𝐶𝑂2 emissions in the previous period on the current change in energy use.

The 1x7 vector, ECT, contains the error correction terms and the associated parameter

vector captures the speed of adjustment of each variable to deviations from the long-run equilibrium

relationship. The last vector represents the idiosyncratic error terms for each equation in the system,

capturing the unexplained variations or shocks specific to each equation and state 𝑠 at time 𝑡.

Equation 2.2 can be represented similarly in a VECM framework which is not included for brevity.

Cointegration Rank Identification

To determine the number of cointegrating relations among the variables, we employ the Johansen

cointegration test (Johansen & Juselius, 1990), which is based on the trace and maximum eigenvalue

statistics. The results of the unrestricted cointegration rank tests are presented in Table 2.6.

The trace test evaluates the null hypothesis that there are at most 𝑟 cointegrating relations

against the alternative hypothesis that there are more than 𝑟 cointegrating relations, where 𝑟 is a

value between 0 and 𝑘 − 1, and 𝑘 is the number of endogenous variables in the system. The test is

performed sequentially, starting with 𝑟 = 0 and increasing 𝑟 by one until the null hypothesis cannot

be rejected. The trace test statistic is computed as 𝐿𝑅𝑡𝑟 (𝑟 |𝑘) = −𝑇 ∑𝑘
𝑖=𝑟+1 log(1 − 𝜆̂𝑖), where 𝑇

is the sample size, 𝜆̂𝑖 is the 𝑖-th largest estimated eigenvalue of the Π matrix, 𝑘 is the number of

endogenous variables, and 𝑟 is the hypothesized number of cointegrating relations. The Π matrix

is the matrix of long-run coefficients in the VECM representation of the VAR model. It can be

decomposed as Π = 𝛼𝛽′, where 𝛼 represents the speed of adjustment to equilibrium, and 𝛽 is the

matrix of cointegrating vectors. The trace test statistic follows a non-standard distribution, and

the critical values are obtained through simulation. If the test statistic exceeds the critical value at
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a given significance level, the null hypothesis is rejected, indicating the presence of more than 𝑟

cointegrating relations. The trace test results in Table 2.6 indicate the presence of three cointegrating

equations at the 5% significance level.

The maximum eigenvalue test assesses the null hypothesis of 𝑟 cointegrating relations

against the alternative of 𝑟 + 1 cointegrating relations. The test statistic is given by 𝐿𝑅𝑚𝑎𝑥 (𝑟 |𝑟 + 1) =

−𝑇 log(1−𝜆̂𝑟 + 1), where𝑇 is the sample size and 𝜆̂𝑟 + 1 is the (𝑟+1)-th largest estimated eigenvalue

of the Π matrix. Similar to the trace test, the maximum eigenvalue test is conducted sequentially,

starting with 𝑟 = 0 and increasing 𝑟 until the null hypothesis cannot be rejected. The test statistic

follows a non-standard distribution, and the critical values are obtained through simulation. If the

test statistic exceeds the critical value at a given significance level, the null hypothesis is rejected,

indicating the presence of 𝑟 + 1 cointegrating relations. The maximum eigenvalue test differs from

the trace test in terms of the alternative hypothesis. While the trace test evaluates the null hypothesis

against the alternative of more than 𝑟 cointegrating relations, the maximum eigenvalue test assesses

the null hypothesis against the specific alternative of 𝑟 + 1 cointegrating relations.

Table 2.6: Unrestricted Cointegration Rank Tests for the Base Model.

Hypothesized No. of CE(s) Eigenvalue Trace Test Statistic Max-Eigen Test Statistic

None 0.230 613.060∗∗∗ 287.257∗∗∗
At most 1 0.184 325.803∗∗∗ 223.206∗∗∗
At most 2 0.056 102.597∗∗∗ 63.040∗∗∗
At most 3 0.029 39.556∗ 32.915∗∗∗
At most 4 0.004 6.641 4.414
At most 5 0.002 2.227 1.796
At most 6 0.000 0.431 0.431

Notes: Probabilities are MacKinnon-Haug-Michelis (1999) p-values. Significance levels are indicated as ∗∗∗ p<0.01, ∗∗
p<0.05, ∗ p<0.1.

Considering the economic theory and the interpretability of the cointegrating equations, as

well as the strongest significance level (1%), we proceed with the assumption of three cointegrating

relations among the variables in our model (Table 2.6). We repeat the same analysis for the model
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proposed in Equation 2.2 in Table 2.7. Similarly, we find the existence of three cointegrating

relationships among the variables at the 1% significance level.

Table 2.7: Unrestricted Cointegration Rank Tests for the Augmented Model.

Hypothesized No. of CE(s) Eigenvalue Trace Test Statistic Max-Eigen Test Statistic

None 0.268 651.184∗∗∗ 343.174∗∗∗
At most 1 0.090 308.010∗∗∗ 103.966∗∗∗
At most 2 0.073 204.044∗∗∗ 83.869∗∗∗
At most 3 0.039 120.175∗ 43.849∗
At most 4 0.030 76.325 33.337
At most 5 0.020 42.989 22.701
At most 6 0.012 20.287 13.814
At most 7 0.004 6.474 4.050
At most 8 0.002 2.424 1.737
At most 9 0.001 0.687 0.687

Notes: Probabilities are MacKinnon-Haug-Michelis (1999) p-values. Significance levels are indicated as ∗∗∗ p<0.01, ∗∗
p<0.05, ∗ p<0.1.

Granger Causality Tests

From this section onward, we only report the results of the augmented model (Equation 2.2) in the

main paper. Readers may refer to the appendix section to find all the counterpart results for the base

model (Equation 2.1).

We use Granger causality tests in a panel VECM context to estimate the short-run causality

paths (Pesaran et al., 1999). Specifically, our Granger causality results are based on a post-estimation

approach from the panel VECM results, which is more suitable in this case given the presence of

cointegration. In contrast to traditional Granger causality tests performed in a VAR framework,5

the VECM-based Granger causality test accounts for both short-term dynamics and long-term

equilibrium relationships through the error correction term. This allows us to explore short-run

predictive causality while respecting the long-run cointegrating relationships.

5In a VAR model, Granger causality is typically assessed by testing whether past values of a variable improve the
prediction of another variable without accounting for any long-term equilibrium relationship.
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Table 2.8 presents the results of short-run Granger causality tests based on the panel VECM

for the extended model. Each row tests the null hypothesis that the variable in the row does not

Granger cause the variable in the column. Rejection of the null implies evidence of Granger causality.

Figure 2.2 visualizes the causal relationships.

Table 2.8: Short-run Granger Causality/Block Exogeneity Wald Tests Summary for the Augmented
Model.

To

From ΔlnCO2pc ΔlnRESIDpc ΔlnCOMMpc ΔlnINDUSTpc ΔlnTRANSPpc ΔlnRENEWpc ΔHDD ΔlnPRC ΔlnRGDPpc ΔlnRGDP2pc

ΔlnCO2pc - 4.426∗∗ 0.030 2.701 0.382 0.844 2.475 0.215 0.065 0.125
ΔlnRESIDpc 1.023 - 15.324∗∗∗ 5.172∗∗ 2.373 2.584 6.349∗∗ 0.370 8.309∗∗∗ 7.316∗∗∗
ΔlnCOMMpc 0.017 0.162 - 12.194∗∗∗ 0.580 4.283∗∗ 2.256 0.555 1.514 1.123
ΔlnINDUSTpc 1.129 1.473 1.338 - 0.383 0.089 4.185∗∗ 8.632∗∗∗ 0.324 0.353
ΔlnTRANSPpc 7.848∗∗∗ 6.936∗∗∗ 11.516∗∗∗ 1.304 - 1.578 3.633∗ 38.040∗∗∗ 21.436∗∗∗ 24.178∗∗∗
ΔlnRENEWpc 4.292∗∗ 0.692 0.086 3.523∗ 2.570 - 0.446 20.197∗∗∗ 1.588 1.836

ΔHDD 2.957∗ 6.263∗∗ 1.777 8.286∗∗∗ 5.632∗∗ 2.342 - 0.648 8.658∗∗∗ 7.828∗∗∗
ΔlnPRC 0.856 1.607 0.161 20.971∗∗∗ 0.717 8.853∗∗∗ 2.551 - 0.303 0.433

ΔlnRGDPpc 0.512 0.586 0.852 1.665 0.197 0.333 0.999 10.294∗∗ - 23.122∗∗∗
ΔlnRGDP2pc 0.500 0.856 0.607 1.691 0.151 0.164 0.518 7.912∗∗ 2.843∗ -

Notes: The values in the table report Chi-square statistics from VEC Granger causality/block exogeneity tests with one
degree of freedom for each analysis. These Chi-square statistics are from Wald-style exclusion tests on the lagged
difference terms. Significance levels are marked as 𝑝 < 0.1, 𝑝 < 0.05, and 𝑝 < 0.01.

The short-run Granger causality tests based on the panel VECM reveal intricate relationships

among sectoral energy use, renewable adoption, emissions, prices, weather, and economic growth.

We find that changes in residential energy use Granger cause changes in commercial and industrial

energy use, heating degree days, GDP, and GDP squared, suggesting that residential energy

consumption plays a key role in influencing other energy sectors, weather-related energy demand,

and economic activity. Similarly, transportation energy use changes strongly Granger cause changes

in 𝐶𝑂2 emissions, residential and commercial energy use, energy prices, GDP, and GDP squared,

highlighting the central role of the transportation sector in shaping emissions, energy dynamics,

prices, and economic growth. These findings are consistent with the work of Hamit-Haggar (2012),

who found unidirectional short-run causality from energy consumption and economic growth to

greenhouse gas emissions in Canadian industrial sectors.

Furthermore, our results indicate that changes in renewable energy use Granger cause

changes in 𝐶𝑂2 emissions, industrial energy use, and energy prices. This finding aligns with
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the work of Salari et al. (2021), who showed that renewable energy consumption has a negative

relationship with 𝐶𝑂2 emissions in the United States at the state level, and the work of Marrero

(2010), who found that shifting the energy mix from coal to renewable and nuclear sources has the

largest impact on reducing emissions in European Union countries.

ΔlnCO2pc

ΔlnRESIDpc

ΔlnCOMMpc

ΔlnINDUSTpc

ΔlnTRANSPpc

ΔlnRENEWpc

ΔHDD

ΔlnPRC ΔlnRGDPpc

ΔlnRGDP2pc→ 𝑝 < 0.01
→ 𝑝 < 0.05
→ 𝑝 < 0.1

Figure 2.2: Causal relationships based on VEC Granger causality tests for the augmented model.
Notes: The arrows represent the direction of causality, and the colors indicate the level of statistical significance: green
for 𝑝 < 0.01, yellow for 𝑝 < 0.05, and red for 𝑝 < 0.1.

Notably, we find that GDP growth Granger causes changes in energy prices but does not

directly drive changes in sectoral energy use, emissions, or renewable adoption in the short run,

suggesting that economic growth influences energy prices but is more of an outcome than a direct

driver of changes in energy use and emissions at the sectoral level. This result contrasts with the
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findings of Wang et al. (2011), who found bidirectional short-run causality between 𝐶𝑂2 emissions

and energy consumption, as well as between energy consumption and economic growth, in China,

and with the results of Pao & Tsai (2010), who found bidirectional causality between energy and

emissions, and unidirectional causality from emissions and energy to output in BRIC countries.

Generalized Impulse Response Functions

Generalized impulse response functions (GIRFs) examine the dynamic responses of variables in

a system to shocks in other variables. Unlike orthogonalized impulse responses, GIRFs do not

depend on the ordering of variables in the VAR model (Pesaran & Shin, 1998). Figure 2.3 presents

the GIRFs for the augmented model, tracing out the response paths of each variable to one standard

deviation shock in the other variables over a 10-year horizon.
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Figure 2.3: Generalized Impulse Response Functions for the Augmented Model.
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The impulse response analysis reveals several critical relationships in the energy-emissions-GDP

system. Most notably, 𝐶𝑂2 emissions show the strongest response to transportation and industrial

energy use shocks, which again highlights these sectors’ outsized influence on emission patterns.

Renewable energy shocks generate only modest negative responses in emissions. This suggests

limited immediate potential for emissions reduction through renewable adoption alone. In terms

of sectoral dynamics, transportation energy use emerges as particularly influential and generates

significant positive responses across residential and commercial energy consumption while also

strongly affecting GDP. This emphasizes the transportation sector’s central role in both energy

systems and economic activity. Weather shocks, measured by heating degree days, trigger substantial

responses in residential and commercial energy use as the climate tends to be sensitive to these

sectors.

The economic growth responses reveal important policy implications—while GDP shows

persistent positive responses to transportation and industrial energy shocks, it demonstrates relatively

weak responses to renewable energy adoption. Energy price shocks generally induce responses

that shift from positive to negative over time across multiple variables, which suggests that price

mechanisms may have complex dynamic effects that evolve differently in the short versus long run.

2.5.4 Fully Modified Ordinary Least Squares (FMOLS)

The FMOLS is a cointegration technique developed by Pedroni (2001) for estimating long-run

relationships in heterogeneous panels. The key advantage of this approach is that it allows researchers

to pool the long-run information across panel units while permitting short-run dynamics and fixed

effects to vary across these panel units. This is particularly useful when working with macroeconomic

panels, where, in our case, states may exhibit similar long-run behavior but differ in their short-term

responses and characteristics. FMOLS produces asymptotically unbiased estimators and standard

normal distributions, enabling inference on common long-run relationships that are robust to

short-run heterogeneity.

30



Table 2.9 presents the FMOLS estimates for the long-run determinants of total𝐶𝑂2 emissions.

The results indicate that energy use in all sectors considered has a significant positive effect on

emissions. A 1% increase in energy use in the residential, commercial, industrial, and transportation

sectors is associated with a 0.138%, 0.105%, 0.249%, and 0.328% increase in emissions, respectively,

holding other factors constant. The transportation sector appears to have the largest impact on

emissions, followed by the industrial sector. This finding is consistent with the work of Hamit-Haggar

(2012), who founda strong positive long-run relationship between energy consumption andemissions

for Canadian industries in the aggregate, and the work of Marrero (2010), who found that the industry

and transport sectors have reduced emissions in the most developed EU countries, likely due to

efficiency improvements.

To put our findings into perspective, using the average state-by-year population of 6.07

million residents over the study period and the average state-by-year emissions of 138.1 million

metric tons (MMT), the per capita emissions amount to approximately 22.75 metric tons per

person per year.6 A 1% increase in emissions per capita per state per year would represent an

additional 0.2275 metric tons of 𝐶𝑂2 per person per year, totaling approximately 1.382 MMT of

𝐶𝑂2 emissions annually on average per state.7 This means a 1% increase in industrial energy use

per capita, given the estimated elasticity of 0.249, would lead to a 0.249% increase in emissions per

capita. This corresponds to an increase of approximately 0.0567 metric tons of 𝐶𝑂2 per person per

year, totaling about 0.344 MMT of additional emissions annually on average per state.8 Similarly,

a 1% increase in transportation energy use per capita, with an estimated elasticity of 0.328, would

result in a 0.328% increase in emissions per capita. This equates to an increase of approximately

0.0746 metric tons of 𝐶𝑂2 per person per year, totaling about 0.453 MMT of additional emissions

annually on average per state.9

6Calculated as 138.1 MMT
6.07 million people ≈ 22.75 metric tons per person per year.

7Calculated as 0.01 × 22.75 metric tons per person × 6.07 million people = 1.382 MMT.
8Calculated as 0.00249 × 22.75 metric tons per person × 6.07 million people = 0.344 MMT.
9Calculated as 0.00328 × 22.75 metric tons per person × 6.07 million people = 0.453 MMT.
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Table 2.9: FMOLS Results for augmented model.

Variable Estimate

lnRESIDpc 0.1375**
(0.0544)

lnCOMMpc 0.1051**
(0.0419)

lnINDUSTpc 0.2494***
(0.0171)

lnTRANSPpc 0.3284***
(0.0351)

lnRENEWpc -0.0456***
(0.0078)

lnPRC -0.0157
(0.0127)

HDD 0.0280***
(0.0080)

lnRGDPpc 0.8213***
(0.1429)

lnRGDP2pc -0.4502***
(0.0621)

Notes: The table presents the estimates and standard errors for the variables impacting 𝑙𝑛𝐶𝑂2𝑝𝑐, derived from panel
FMOLS regression. *** p<0.01, ** p<0.05, * p<0.1.
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In contrast, the use of renewable energy has a significant negative effect, implying that a

transition to renewables can help mitigate emissions in the long run. A 1% increase in renewable

share is associated with a 0.046% decrease in emissions. The effect of energy prices is negative

but not statistically significant, suggesting that price changes may have limited long-run effects on

emissions after accounting for sectoral energy use and renewable share. Heating degree days have a

small but significant positive effect on emissions. This indicates that colder temperatures, requiring

more heating, tend to increase emissions in the long run.

Importantly, the results confirm the presence of an inverted U-shaped relationship between

GDP per capita and emissions. The positive coefficient on 𝑙𝑛𝑅𝐺𝐷𝑃𝑝𝑐 (0.821) and negative

coefficient on 𝑙𝑛𝑅𝐺𝑃𝐷2𝑝𝑐 (-0.450) imply that emissions initially rise with economic growth but

eventually peak and decline at higher income levels, consistent with the EKC hypothesis. This finding

suggests that emissions initially rise with economic growth but eventually peak and decline at higher

income levels. This result aligns with the work of Apergis & Payne (2010), who found evidence

of an inverted U-shaped relationship between emissions and GDP for a panel of Commonwealth

of Independent States countries, and Pao & Tsai (2010), who found a similar relationship for

BRIC countries. However, it contrasts with the findings of Marrero (2010), who rejected the

EKC hypothesis for a panel of European Union countries after controlling for energy factors and

convergence, and Wang et al. (2011), who found a U-shaped relationship between economic growth

and 𝐶𝑂2 emissions in China.

Comparing our base and augmented models reveals the importance of disaggregating energy

consumption into sectoral components. While the base model, which includes total nonrenewable

and renewable energy use, provides a broad understanding of the relationships among the selected

variables, the augmented model offers a more detailed picture by capturing the heterogeneous

impacts of different energy sectors. The FMOLS estimates for the base model (Table A.2) show

that total energy use has a positive and significant effect on emissions, while renewable energy use

has a negative and significant effect, consistent with the augmented model results. However, the
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augmented model allows us to identify the relative magnitudes of the impacts of different energy

sectors on emissions, with the transportation and industrial sectors having the largest effects. This

sectoral disaggregation provides valuable insights for policymakers in designing targeted emissions

reduction strategies, as emphasized by Hamit-Haggar (2012) and Marrero (2010).

2.6 Conclusions

This study investigates the dynamic causal relationships between sectoral energy consumption,

renewable energy use, economic growth, and 𝐶𝑂2 emissions in the United States from 1997 to

2020. By employing VECM and FMOLS estimation, we uncover both short-run and long-run

linkages among these variables. Our approach extends the existing literature by disaggregating

energy consumption into residential, commercial, industrial, and transportation sectors, providing

a more nuanced understanding of the emissions-energy-economy nexus.

Our findings have significant policy implications for practitioners and policymakers in the

United States. First, the long-run FMOLS estimates reveal that the transportation sector has the

largest impact on emissions, followed by the industrial sector. This is further supported by the

impulse response analysis, which shows that 𝐶𝑂2 emissions respond most strongly to shocks

in transportation and industrial energy use. Policymakers could prioritize emissions reduction

strategies in these sectors, such as promoting electric vehicles, improving fuel efficiency standards,

and encouraging the adoption of cleaner technologies in industry. Investing in public transportation

infrastructure and incentivizing using low-carbon transportation modes can also help curb emissions

growth in the long run.

Second, our results highlight the importance of renewable energy in mitigating emissions.

The FMOLS estimates show that an increase in the share of renewable energy leads to a significant

decrease in emissions. The impulse response functions also indicate that renewable energy shocks

result in a slight negative response in 𝐶𝑂2 emissions, suggesting the potential for emissions

reduction. Policymakers could continue to support deploying renewable energy technologies
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through tax incentives, subsidies, and regulations. Encouraging the integration of renewables into

the grid and removing barriers to their adoption can help accelerate the transition to a low-carbon

energy system.

Third, the short-run Granger causality tests indicate that the residential sector is key in

influencing other energy sectors, weather-related energy demand, and economic activity. The

impulse response analysis further reveals that residential energy use responds strongly to its own

shocks, heating degree day shocks, and commercial energy use shocks. This suggests that policies

targeting energy efficiency improvements in the residential sector, such as building codes, appliance

standards, and weatherization programs, can have spillover effects on other sectors and contribute

to emissions reductions.

Fourth, the evidence for the EKC hypothesis in our long-run estimates implies that economic

growth can eventually lead to decreased emissions, but this turning point may occur at higher

income levels. The impulse response functions show that economic growth responds positively to

shocks in transportation, industrial, commercial, and residential energy use, as well as emissions.

Policymakers may focus on decoupling economic growth from emissions by promoting sustainable

development practices, such as green infrastructure investment, resource efficiency, and adopting

circular economy principles.

Finally, our study emphasizes the importance of considering the heterogeneous impacts

of different energy sectors on emissions and economic growth when designing climate policies.

While the transportation and industrial sectors are the largest contributors to emissions, the short-run

Granger causality tests and impulse response analysis reveal that the residential and renewable energy

sectors also play significant roles in shaping emissions and economic dynamics. Policymakers

could consider adopting a comprehensive and balanced approach that targets multiple sectors

simultaneously, while considering their specific characteristics and potential trade-offs.
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Chapter 3

Measuring the Impact of Net Metering Policy on Residential GHG Emissions in the U.S. :

A Difference-in-Difference Analysis 1

1J. Augustin, B. Karali, S. Ferreira & M. Filipski. To be submitted to the American Economic Review.
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3.1 Abstract

This study investigates the effects of net metering policies on residential greenhouse gas emissions

across U.S. states from 1990 to 2020. Leveraging the staggered implementation of these policies,

we employ the Callaway and Sant’Anna (2021) estimator to address potential biases in traditional

two-way fixed effects models with heterogeneous treatment effects. Our findings reveal that net

metering policies lead to modest but statistically significant reductions in residential GHG emissions,

with effects intensifying over time to reach a 0.6% decrease five years post-adoption compared to the

adoption year baseline. These results hold even when accounting for policy spillovers to neighboring

states. We observe substantial heterogeneity in policy impacts across various dimensions. Contrary

to expectations, states with less favorable policies (i.e., those with a below-average score) —from

electricity consumers’ perspectives— show significant emissions reductions, while those with

more favorable policies exhibit insignificant effects. We argue that this is likely due to each trait

having a different weight in different states. Analysis of specific policy traits indicates that generous

compensation schemes, higher system size caps, and customer ownership of renewable energy credits

drive larger emissions reductions. Republican-leaning states demonstrate more consistent emissions

reductions compared to Democratic-leaning states. Our examination of cumulative effects reveals

persistent, albeit small, reductions in emissions across years of policy implementation. Exploration

of underlying mechanisms indicates that increased residential solar PV adoption and enhanced grid

interaction drive these reductions.
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3.2 Introduction

Recent extreme weather events, from devastating wildfires in California (Legislative Analyst Office,

2022) to hurricanes Helene and Milton, provide alarming evidence of intensifying climate impacts.

Decarbonizing the power sector, which contributes almost a quarter of economy-wide emissions, is

central to achieving a significant overall reduction in emissions. Renewables like solar photovoltaic

distributed generation present viable technological pathways to mitigate residential carbon emissions

while ensuring affordable and equitable clean energy access (Chang et al., 2022). But realizing

their emissions reduction potential requires optimized policy mechanisms and market frameworks,

aspects which remain understudied.

Distributed solar photovoltaics have surged in adoption over recent years as an avenue for

households to advance sustainability objectives while benefiting through self-generation. Rooftop

solar also presents a technological pathway for unlocking demand flexibility and grid services

through smart integration with storage and load controls. By 2022, cumulative small-scale solar

deployment in the United States reached over 3 million installations with 22 GW capacity, up from

405 MW in 2010, demonstrating substantial progress (REN21 Secretariat, 2020). Yet realizing

the emissions reduction and grid modernization potential requires policy mechanisms optimizing

integration and returns. With high upfront capital costs (Feldman et al., 2015), net metering

policy financial feasibility relies on grant subsidies and revenue uplifts from interstate energy trade,

which depends on net metering credit and compensation structures specified by state programs.

Additionally, the emissions offset also follows directly from the solar energy displacing marginal

fossil generation. Therefore, state net metering policy design variations can constrain emission

mitigation by impacting solar adoption rates and self-consumption incentives.

First adopted in the United States in the late 1970s, net metering enables distributed solar

owners to receive credit for excess generation fed into the grid, typically valued at the retail

volumetric electricity rate ($/kWh) (Smith et al., 2021). System owners offset their net consumption
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from the grid each billing cycle, incentivizing self-supply for resilience and bill management

(Poullikkas et al., 2013). By facilitating renewable energy self-consumption and sale at prevailing

rates (Schelly et al., 2017), net metering serves as a crucial incentive for adopting renewable energy.

Despite its preeminence within state policy portfolios, the interlinkages between net metering policy

design, solar adoption and emissions remain empirically underexplored, especially amidst ongoing

state-level policy updates. The purpose of this study is to evaluate the causal impact of net metering

policy adoption across U.S. states on residential 𝐶𝑂2 emissions.

Quantitative evaluations of distributed solar and net metering efficacy have followed several

strands. Optimization studies employ cost-benefit analysis and multi-objective programming to

ascertain system configurations and policy structures minimizing expenses or emissions, often in

specific contexts like the Netherlands or Canada (Delgado et al., 2018; Hashemi et al., 2023). Such

work provides techno-economic guidance but lacks generalizability. Recent empirical assessments

have leveraged state-level solar capacity and electricity data to study impacts of net metering policy

design on net metering policy outcomes such as electricity sold back to the grid, but limitations

around identification assumptions persist (Smith et al., 2021). For instance, unobserved factors

like pro-environmental preferences simultaneously influence policy adoption and outcomes. Still

no studies have established causality using quasi-experimental techniques measuring emissions

changes attributable to net metering policy enactment. Furthermore, much scholarship focuses

solely on solar adoption rather than emissions, or sidesteps net metering policy heterogeneity to

consider binary adoption status. Addressing these gaps through national-level causal analysis while

accounting for policy detail can offer replicable insights.

To the best of our knowledge, this study is the first one to analyze the impact of net

metering on residential greenhouse gas (GHG) emissions in the United States. It contributes to

the interdisciplinary scholarship and policy discourse on distributed solar support mechanisms

by evaluating the causal impact of net metering policy adoption across U.S. states on residential

𝐶𝑂2 emissions over 1990-2020. It also assembles a novel panel dataset tracking net metering
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policy enactment dates, credit rates, system size caps, and program size caps across states over

time, juxtaposed against state-level residential emissions. Leveraging temporal and cross-state

policy variation, the analysis deploys a staggered difference-in-differences approach to isolate the

emissions mitigation attributable to net metering policies. The research design compares emissions

trajectories across early and late adopting states before and after policy implementation, netting out

time-invariant differences.

Our analysis reveals several key insights into the impact of net metering policies on residential

GHG emissions. We find that these policies contribute to a gradual but significant decrease

in emissions, with the effect strengthening over a five-year time window (up to 0.6%). Our

results indicate complex patterns of policy effectiveness across different state characteristics. We

uncover that certain policy design elements, such as compensation rates, system size limits, and

consumer ownership of renewable energy credits play crucial roles in the magnitude of emissions

reductions. Republican-leaning states demonstrate more consistent emissions reductions compared

to Democratic-leaning states, likely due to lower baseline of emissions. Moreover, we identify

positive spillover effects, which suggest that the benefits of net metering policies extend beyond state

borders, likely due to shared electrical transmission lines. Our examination of cumulative effects

(i.e., stacked over time) and underlying mechanisms demonstrates that these policies drive emissions

reductions primarily through increased adoption of residential solar PV systems and greater energy

sold back to the grid.

The remainder of the paper is organized as follows: Section 3 provides a comprehensive

overview of U.S. net metering policy. Section 4 presents the literature review, synthesizing existing

research on net metering policies and their impacts. Section 5 outlines our econometric methods,

including our difference-in-differences approach and empirical strategy. Section 6 describes our

data sources, variable descriptions, and summary statistics. Section 7 presents the results of our

analysis. Section 8 discusses the implications of our findings, contextualizing them within the
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broader landscape of climate policy. Finally, Section 9 concludes by summarizing key insights and

suggesting directions for future research.

3.3 U.S. Net Metering Policy Overview

Within the United States, state and local governments shoulder much of the regulatory authority over

energy policy and electricity markets despite lacking an integrated federal strategy (Hashemi et al.,

2023). Consequently, clean energy transitions have followed a fragmented approach, with Renewable

Portfolio Standards in over half of states catalyzing utility-scale renewable procurement but variable

action on distributed energy resources (Kramarz et al., 2021). Retail electricity rate-setting falls under

the jurisdiction of public utility commissions, subject to emerging pressures from declining costs

of distributed technologies, changing peak demand patterns and calls for equitable rate structures

(Sioshansi & Pfaffenberger, 2006). This complex multi-layered governance poses challenges for

coordinated policy action towards energy affordability, reliability, and sustainability goals. It also

creates opportunities for states to experiment with innovative policy subcomponents that can be

evaluated and potentially adopted across different states. Our study seizes upon such regulatory

heterogeneity in net metering policy design among states to elicit new evidence on the levers for

emissions mitigation.

Net metering is a billing mechanism that credits utility customers with rooftop solar or

other distributed renewable generation for any excess electricity they feed into the grid that offsets

their own electricity consumption (Rehman et al., 2020). It functions through a bidirectional meter

that can spin forwards to record electricity drawn from the grid and spin backwards when solar or

other customer-sited renewable generation is exporting power back into the grid (Poullikkas et al.,

2013). Customers are thus only billed for their “net” energy usage from the utility based on the net

directional flow recorded by the meter over the monthly billing period (Rehman et al., 2020). Net

metering provides renewable system owners an economic return for on-site generation that reduces

their utility-supplied electricity needs. It is a key incentive driving substantial growth of distributed
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solar photovoltaics (PV) in particular (Smith et al., 2021). As of 2020, 38 states, Washington

D.C. and Puerto Rico have implemented some form of net metering policy (Mitova & Kahsar,

2022). The federal Energy Policy Act of 2005 required all public utilities to make net metering

available and for states to consider implementing net metering standards (Smith et al., 2021). While

it spurred wider net metering policy adoption, states differed markedly in their eventual policies.

As Smith et al. (2021) document in their review, state net metering programs vary across a number

of key design elements like system size limits, aggregate enrollment caps, compensation rates, and

renewable energy credit treatment. System size limits constrain the generation capacity eligible

for net metering incentives on a per customer basis, ranging from just 10 kW in Utah to 5 MW in

Massachusetts. Program caps limit total net metered distributed generation as a percentage of peak

utility demand, from 0.5% in Oklahoma to 20% in Utah. Compensation for excess generation also

varies widely from avoided cost to the full retail electricity rate (Smith et al., 2021).

Notonly do policies differgreatly across states, Schelly et al. (2017) found that interconnection

requirements and net metering incentives for distributed renewable generation are implemented

inconsistently across utilities even within states. Clear, accurate information for customers on utility

net metering programs was sometimes lacking. And consistent with Smith et al. (2021)’s findings

on state policy variability, they determined compensation rates under utility net metering programs

were frequently opaque or difficult to discern from publicly available policy documents. Their review

reveals the convoluted policy implementation resulting from the absence of unified federal standards

for regulating customer renewable energy interconnections. States and utilities opted to interpret

broad federal net metering mandates differently based on local priorities and conditions (Schelly et

al., 2017). Although the vast majority of states had established net metering standards as of 2015

based on federal law, 7 states were still lacking a statewide net metering policy (Schelly et al., 2017).

Forsyth et al. (2002) similarly highlight wide variability even among early state adopters of net

metering on factors like system capacity limits, aggregate capacity limits, ownership of renewable

energy credits for generation, types of eligible customer generators, interconnection charges, and the
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permitted length and terms of contracts. As Rehman et al. (2020) discuss, some states have adopted

more advanced “smart” grid and metering infrastructure to enable time-of-use and dynamic pricing

under net metering that better aligns compensation for excess distributed renewable generation with

its time-varying value to the grid. However, the general nationwide policy trend they note is for

traditional volumetric, non-time-differentiated net energy metering.

Rehman et al. (2020) emphasize additional complexities that cloud the net metering landscape

in the U.S. For one, policies sometimes differ for customer-generators depending on whether their

utility provider is privately or publicly owned. Requirements around interconnection processes and

disputes as well as any charges levied on distributed generators for applications or upgrades can

also vary (Rehman et al., 2020). On top of this, a major source of uncertainty in the future of net

metering stems from controversial ongoing policy changes targeting the compensation incentives

at the heart of net metering in many states. For instance, Mitova & Kahsar (2022) discuss a

number of states that have recently moved to cap, reform, or eliminate retail rate compensation

for excess distributed renewable generation. This trend towards reducing net metering incentives

threatens the financial proposition behind further customer adoption of rooftop solar and other

on-site generation. However, Mitova & Kahsar (2022) suggest time-of-use rate design reforms

could motivate increased self-consumption behavior to help preserve solar value even absent the

stronger economic subsidies traditionally provided under retail rate net metering. While federal law

prompted a surge of net metering policy adoption across nearly all U.S. states, a range of factors

have led to highly inconsistent implementation within and across states. The level of incentives

provided under utility and state net metering standards depends on size limits, caps, ownership

rights for renewable attributes, types of technologies eligible, connection terms, contract lengths,

compensation rates, billing cycles, and more.2 On top of inherently variable policy design, changes

targeting key incentive parameters like retail rate compensation further undermine uniformity and

stability of net metering’s economic signals. This complex and shifting landscape of net metering

2We provide a detailed explanation about the policy traits in the Methodology section.
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policy in the United States poses significant modeling challenges but also useful heterogeneity to

leverage in empirically evaluating the causal impacts of net metering design decisions on distributed

renewable technology adoption and emissions outcomes.

3.4 Literature Review

Net metering policies have faced challenges from utility companies who view distributed generation

as a threat to their traditional business model (Rehman et al., 2020; Szmolyan, 2020). There is

ongoing debate about whether it leads to uneconomic bypass of utility-provided electricity (Ros &

Sai, 2023). Ros & Sai (2023) empirically estimate an elastic demand for rooftop solar with respect to

system costs, household income, retail electricity rates, and compensation rates under net metering.

Their analysis finds that full retail rate compensation results in substantial uneconomic bypass,

supporting reforms that better reflect avoided utility costs. Brown & Sappington (2017) develop an

economic optimization model to characterize factors determining optimal distributed generation

compensation under net metering or feed-in tariff policies.3 They demonstrate that efficiency impacts

depend heavily on utility system parameters, while distributional effects vary based on interaction

between policy-induced retail rate and compensation rate changes.

Studies outside the United States provide additional insights into net metering policy design.

Iliopoulos et al. (2020) examine European Union policies, comparing implementation across

Belgium, Italy, Cyprus and Greece through case studies that reveal variations in generator limits,

grid requirements, and compensation mechanisms. Delgado et al. (2018) model prosumer buildings

that generate excess electricity for conversion into heat, analyzing cost and emissions performance

under different economic and climactic conditions in Netherlands and Finland. Hashemi et al. (2023)

estimate that the marginal cost of GHG abatement through residential solar net metering is more

than five times Canada’s scheduled economy-wide carbon price for 2030, suggesting current retail

3Feed-in Tariff (FIT) policies are regulatory mechanisms that provide long-term contracts to renewable energy
producers, typically offering a guaranteed price for the electricity they supply to the grid, often at rates higher than
retail electricity prices to encourage renewable energy adoption.
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rate structures yield costly and inefficient emissions reductions. However, Brown & Sappington

(2017) demonstrate that factors like grid management and emissions externality costs can shift

optimal compensation rates. More stringent decarbonization goals may require greater distributed

renewable penetration beyond centralized capacity expansions (Trevino-Martinez et al., 2022),

which necessitates careful attention to these design elements that shape net metering’s emissions

and economic impacts.

3.5 Methodology and Empirical Strategy

3.5.1 Identification Strategy

To identify the causal effect of net metering policies on residential 𝐶𝑂2 emissions, we leverage

the staggered adoption of these policies across U.S. states. Our empirical approach is based on a

difference-in-differences (DiD) framework that compares changes in emissions between states that

implemented net metering (treated states) and states that have not yet adopted such policies (control

states), before and after policy adoption, while controlling for potential confounding factors.

The key identifying assumption is that, conditional on covariates and fixed effects, residential

𝐶𝑂2 emissions in treated states would have evolved in parallel to emissions in control states in the

absence of net metering policies. In other words, we assume that the adoption of net metering is not

correlated with other time-varying state-specific factors that also affect emissions. The plausibility

of this parallel trends assumption is assessed through visual inspection of pre-treatment trends and

event study specifications in subsequent sections.

3.5.2 Two-Way Fixed Effects (TWFE) Specifications

Static Version.

As a baseline empirical specification, we estimate a TWFE DiD model, which is commonly employed

in policy evaluation studies with staggered treatment timing:
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log(𝐶𝑂2𝑠𝑡) = 𝛽𝐷𝑠𝑡 + 𝛾X𝑠𝑡 + 𝛿𝑠 + 𝜆𝑡 + 𝜀𝑠𝑡 (3.1)

where log(𝐶𝑂2𝑠𝑡) denotes the logarithm of per capita residential 𝐶𝑂2 emissions in state 𝑠 in year 𝑡,

𝐷𝑠𝑡 is a binary indicator equal to 1 if state 𝑠 has implemented a net metering policy by year 𝑡 and 0

otherwise, X𝑠𝑡 is a vector of time-varying state-level control variables, 𝛿𝑠 and 𝜆𝑡 represent state and

year fixed effects, respectively, and 𝜀𝑠𝑡 is the idiosyncratic error term. The coefficient of interest,

𝛽, captures the average treatment effect (ATT) of net metering policy adoption on residential 𝐶𝑂2

emissions.

The state fixed effects, 𝛿𝑠, control for any time-invariant differences across states that may

be correlated with both the adoption of net metering policies and 𝐶𝑂2 emissions. For instance,

some states may have more environmentally conscious populations or a history of progressive

energy policies, which could influence both the likelihood of adopting net metering and the level

of emissions. Moreover, this also controls for different geographies and solar generation potential.

The inclusion of state fixed effects ensures that we are not attributing these pre-existing differences

to the causal effect of net metering.

Year fixed effects, 𝜆𝑡 , account for common shocks and trends that affect all states uniformly

over time. Examples include federal policies such as tax credits for renewable energy, changes in

the price of natural gas or other fuels, and macro-economic conditions that impact energy demand.

By including year fixed effects, we control for these time-varying factors and isolate the impact of

net metering policies.

The vector of time-varying controls, X𝑠𝑡 , includes relevant state-level variables that could

influence residential 𝐶𝑂2 emissions. We control for per capita residential energy use, as states with

higher energy consumption are expected to have higher emissions, all else equal. The total renewable

energy per capita is included to capture the level of clean energy utilization in the state, with the

expectation that a higher amount of renewable energy consumption is associated with lower 𝐶𝑂2

emissions due to the lower carbon intensity of clean energy sources. Residential electricity prices are
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incorporated to account for the potential impact of energy costs on consumption and emissions, as

higher prices may encourage conservation and the adoption of more efficient technologies. Median

income per capita is included to control for economic factors that may influence energy use and

emissions, with the hypothesis that higher-income states may have lower per capita emissions due

to the adoption of cleaner technologies and more energy-efficient buildings. Finally, we control for

heating degree days, which measure the energy demand for heating based on outdoor temperatures,

as states with higher heating needs are expected to have higher residential 𝐶𝑂2 emissions. To

account for potential serial correlation in emissions within states over time, we cluster the standard

errors at the state level, following the common practice in the DiD literature with state-level policies

(Bertrand et al., 2004).

Event Studies.

To investigate the temporal patterns of policy impacts and validate our identification strategy, we

extend our baseline model to incorporate dynamic treatment effects. This approach allows us to

examine pre-policy trends and assess the evolution of net metering’s impact on 𝐶𝑂2 emissions over

time. We estimate the following event study specification:

log(𝐶𝑂2𝑠𝑡) =
𝐿∑︁

𝑘=−𝐾,𝑘≠−1
𝛽𝑘𝐷

𝑘
𝑠,𝑡 + 𝛾X𝑠𝑡 + 𝛿𝑠 + 𝜆𝑡 + 𝜀𝑠𝑡 (3.2)

In this equation, 𝐷𝑘
𝑠,𝑡 represents a series of binary indicators denoting the time relative to policy

implementation in state 𝑠. Specifically, 𝑘 indicates the number of years before or after the adoption

of net metering, with 𝑘 = 0 representing the year of policy enactment. For the TWFE OLS case, we

exclude the indicator for 𝑘 = −1 to serve as the reference period, against which all other coefficients

are compared.

47



3.5.3 Staggered Difference-in-Differences with Heterogeneous Treatment

Effects

Although the TWFE specification is a natural starting point, recent econometric literature has

highlighted its limitations in settings with staggered treatment adoption and heterogeneous treatment

effects (Goodman-Bacon, 2021; Callaway & Sant’Anna, 2021; L. Sun & Abraham, 2021). In

particular, the TWFE estimator uses already-treated states as controls for later-treated states, which

can lead to biased estimates of the ATT if the treatment effects vary across states or over time.4

To address the concerns with the TWFE estimator in settings with staggered treatment

adoption and heterogeneous treatment effects, we employ the estimator proposed by Callaway &

Sant’Anna (2021). This estimator compares the outcomes of treated states to those of not-yet-treated

states, in our case, avoiding the problematic comparisons between already-treated and newly-treated

states that can bias the TWFE estimates. The Callaway and Sant’Anna (2021) estimator is based

on the concept of group-time average treatment effects, denoted as 𝐴𝑇𝑇 (𝑔, 𝑡), which represent the

average treatment effect for the group of states (i.e., G) first treated in period 𝑔 (𝐺𝑔 = 1), measured

in period 𝑡:

𝐴𝑇𝑇 (𝑔, 𝑡) = E[𝑌𝑡 (𝑔) − 𝑌𝑡 (0) |𝐺𝑔 = 1], for 𝑡 ≥ 𝑔 (3.3)

where 𝑌𝑡 (𝑔) and 𝑌𝑡 (0) are the outcomes with and without treatment, respectively.

To estimate the 𝐴𝑇𝑇 (𝑔, 𝑡) parameters using not-yet-treated states as the comparison group,

the preferred setting of this estimator employs a doubly robust approach that combines inverse

probability weighting (IPW) and outcome regression. The doubly robust (DR) estimand for

𝐴𝑇𝑇 (𝑔, 𝑡) when using not-yet-treated states as the comparison group is given by:

4Note that the control group consists of “not yet treated” states, which are states that have not yet received the
treatment at a given point in time, but will receive it later. The critique of TWFE refers to instances where “already
treated” states—those that have received the treatment earlier—are used as controls for later-treated states. This can
lead to biased estimates when treatment effects are heterogeneous over time or across units. Our approach avoids this
issue by using only “not yet treated” states as controls at each time point.
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𝐴𝑇𝑇
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𝑑𝑟
(𝑔, 𝑡) = E


©­­«

𝐺𝑔

E
[
𝐺𝑔

] −
𝑝𝑔,𝑡 (𝑋) (1−𝐷𝑡 )

1−𝑝𝑔,𝑡 (𝑋)

E
[
𝑝𝑔,𝑡 (𝑋) (1−𝐷𝑡 )

1−𝑝𝑔,𝑡 (𝑋)

] ª®®¬
(
𝑌𝑡 − 𝑌𝑔−1 − 𝑚𝑛𝑦𝑔,𝑡 (𝑋)

) (3.4)

where 𝑚𝑛𝑦𝑔,𝑡 (𝑋) = E
[
𝑌𝑡 − 𝑌𝑔−1 | 𝑋, 𝐷𝑡 = 0, 𝐺𝑔 = 0

]
is the expected change in the outcome between

periods 𝑔 − 1 and 𝑡 for states with covariates 𝑋 that are not yet treated by time 𝑡. More explicitly,

the DR estimator for 𝐴𝑇𝑇 (𝑔, 𝑡) is given by:

�𝐴𝑇𝑇𝑛𝑦𝑑𝑟 (𝑔, 𝑡) = 1
𝑛𝑔

∑︁
𝑖:𝐺𝑖=𝑔

(
𝑌𝑖𝑡 − 𝑌𝑖,𝑔−1 − 𝑚̂𝑛𝑦𝑔𝑡 (𝑋𝑖)

𝑝𝑔,𝑡 (𝑋𝑖)
−

(1 − 𝐷𝑖𝑡) (1 − 𝐺𝑖𝑔)
𝑝𝑔,𝑡 (𝑋𝑖)

(
𝑌𝑖𝑡 − 𝑌𝑖,𝑔−1 − 𝑚̂𝑛𝑦𝑔𝑡 (𝑋𝑖)

))
(3.5)

where 𝑛𝑔 is the number of states in group 𝑔, 𝑚̂𝑛𝑦𝑔𝑡 (𝑋𝑖) is an estimate of the expected change in the

outcome between periods 𝑔 − 1 and 𝑡 for state 𝑖 with covariates 𝑋𝑖, conditional on not being treated

up to time 𝑡, and 𝑝𝑔,𝑡 (𝑋𝑖) is an estimate of the generalized propensity score (i.e., the probability of

being treated at time 𝑔 conditional on covariates 𝑋𝑖 and not being treated up to time 𝑡).

The DR estimator combines the IPW and outcome regression approaches to achieve

robustness to misspecification of either the propensity score model or the outcome regression

model. By using the not-yet-treated states as the comparison group and properly adjusting for

covariates, this estimator provides a consistent estimate of the group-time average treatment effects

under the assumption of parallel trends conditional on covariates.

The group-time average treatment effects, 𝐴𝑇𝑇 (𝑔, 𝑡), can be aggregated in various ways to

obtain more interpretable summary measures of the impact of net metering policies. For instance,

we can estimate event study parameters that capture the dynamic effects of the policy relative to the

time of adoption:

𝜃𝑒 =
∑︁
𝑔

𝜔𝑔,𝑒𝐴𝑇𝑇 (𝑔, 𝑔 + 𝑒) (3.6)
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where 𝑒 indexes the periods relative to the policy adoption date (e.g., 𝑒 = 0 represents the year of

adoption, 𝑒 = 1 represents one year after adoption, etc.), and 𝜔𝑔,𝑒 are weights that sum to one across

groups for each event time 𝑒.

We can also compute an overall ATT parameter that combines all post-treatment periods:

𝜃𝑝𝑜𝑠𝑡 =
∑︁
𝑔

𝜔𝑔

∑︁
𝑡≥𝑔

𝐴𝑇𝑇 (𝑔, 𝑡) (3.7)

where 𝜔𝑔 are weights that sum to one across groups. In addition to these aggregate measures, we

examine the 𝐴𝑇𝑇 (𝑔, 𝑡) parameters for each group and time period separately to uncover potential

heterogeneity in the effects of net metering across states and over time.

3.5.4 Investigating Heterogeneity

In order to gain a deeper understanding of how policy design features influence the effectiveness

of net metering in reducing emissions, we explore potential heterogeneity in the policy impacts

across states with different net metering regulations. Specifically, we estimate separate models for

subsamples of states based on the following policy characteristics identified by Smith et al. (2021)

and summarized in Table 3.1. Smith et al. (2021) used the following approach to create dummy

variables for the following policy features:

The system size caps (kW) values were divided into tertiles across all states. States with

values in the first tertile (1000 kW and larger) were assigned a score of one, while states in the

second or third tertiles received a score of zero. Similarly, program size caps (% peak of utility)

were divided into tertiles. States with values in the first tertile (100% or unspecified cap) were given

a score of one, while those in the second or third tertiles were assigned zero. Excess electricity

compensation was coded as a binary measure. States that compensated excess generation at the

retail rate received a score of one, while all other compensation rates (e.g., avoided cost, market

rate) were scored zero. Ownership of Renewable Energy Credits (RECs) was also coded as a binary

measure. States that assigned REC ownership to the consumer received a score of one. States where
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RECs were owned by the utility or shared between customers and utilities were scored zero. The

number of eligible technologies eligible for net metering was divided into tertiles. States with values

in the first tertile (9 technologies or more) were assigned a score of one, while those in the second

or third tertiles received a zero.

Table 3.1: Net Metering Policy Characteristics Summary.

Characteristic Definition Criteria for Score of 1 State Count

System Size Caps
(kW)

Maximum size of individual systems
allowed for net metering policies

System size values in first
tertile (1000 kW and larger)

17

Program Size Caps
(% peak)

Limit on sum of net metering systems
allowed in state, calculated as percent
of peak utility demand

Program size values in
first tertile (100% or
unspecified cap)

22

Excess Electricity
Compensation

Compensation rate awarded to
customers for net excess electricity
generation

Retail rate compensation
(vs. avoided cost, market
rate, or other)

27

Ownership of RECs Person or entity to which Renewable
Energy Credits (RECs) are awarded by
net metering policies

Customer ownership
of RECs (vs. utility
ownership or shared)

21

Number of Eligible
Technologies

Number of renewable energy
technologies eligible for net metering
policies (e.g., solar PV, wind,
biomass)

Number of technologies in
first tertile (9 or more
technologies)

15

Notes: The state count represents the sum of states where the dummies are one.

This heterogeneity analysis based on policy design features allows us to identify which

specific aspects of net metering regulations are most critical for achieving residential𝐶𝑂2 emissions

reductions. This information is valuable for policymakers seeking to optimize the design of net

metering programs and maximize their environmental benefits.

Furthermore, we investigate whether the impacts of net metering vary depending on states’

political leanings. Specifically, we examine if the effect of net metering policies on residential 𝐶𝑂2

emissions differs between states that lean Democratic versus those that lean Republican, based on the

state election outcomes closest to but before the adoption year.5 Political ideology could influence

the uptake of net metering and the extent to which the policy displaces fossil fuel generation, as it

5In this case, we create two subsets from the original data where each state belongs to a particular subset given their
political leanings.
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may be correlated with state-level attitudes towards renewable energy, environmental regulations,

and climate change mitigation efforts.

3.5.5 Inference and Robustness Checks

To ensure the robustness of our findings, we conduct several sensitivity analyses. First, we estimate

models with alternative sets of control variables and fixed effects, such as region-by-year fixed

effects to flexibly account for time-varying regional shocks.6 Second, we test for cross-state spillover

effects by including indicators for the presence of net metering policies in neighboring states.7 Third,

we conduct placebo tests that push back adoption time by five years for a random set of states and

re-estimate our models, which helps to assess whether our results could be driven by chance or by

underlying trends unrelated to net metering.

3.5.6 Examining Potential Mechanisms

To investigate the mechanisms through which net metering policies influence residential 𝐶𝑂2

emissions, we focus on three key metrics of renewable energy integration: energy sold back to

the grid, installed capacity, and customer count. These metrics, primarily driven by rooftop solar

installations, serve as intermediate outcomes. By examining the impact of net metering policies on

these measures, we can assess whether these policies achieve emissions reductions by encouraging

the deployment and utilization of clean distributed energy resources. Significant increases in these

metrics following the implementation of net metering would suggest that the policy effectively

promotes the transition to cleaner energy sources, thereby contributing to lower residential 𝐶𝑂2

emissions.
6The results for this part are included in the Baseline section.
7Our approach accounts for both potential policy diffusion and policy spillover effects. The diffusion of net metering

policies refers to how states learn from and adopt similar policies implemented by their neighbors. Spillover effects, in
contrast, occur through regional market mechanisms: when one state adopts net metering, the expanded market attracts
more solar companies to the region, potentially reducing installation costs through economies of scale even in states
without such policies. Additionally, given the interconnected nature of electricity grids, increased renewable generation
in one state can displace fossil fuel generation across state lines, leading to emissions reductions beyond state borders.
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3.6 Data

3.6.1 Variable Descriptions and Descriptive Analysis

We use a dataset compiled from various sources, including the Environmental Protection Agency

(EPA), Energy Information Administration (EIA), NationalOceanic andAtmospheric Administration

(NOAA), Census Bureau, and Bureau of Labor Statistics (BLS). The dataset spans from 1990

to 2020 and covers all 50 U.S. states. Table 3.2 provides the list of the variables collected to

estimate the impact of net metering policy adoption on residential GHG emissions. The last four

columns of the table also presents summary statistics for each variable across states and years. On

average, states have annual residential greenhouse gas emissions of 7.44 million metric tons (MMT)

and residential energy use of 409,130 million British thermal units (MBTU).8 The average state

population is approximately 6 million, with a median income of $66,488 (adjusted to 2022 dollars).

Heating degree days (HDD) and cooling degree days (CDD) vary substantially across states, with

mean values of 5,099 and 1,159, respectively.9 Renewable energy consumption averages 37.23

thousand BTU per state, while the average residential electricity price is $18.68 per MBTU.

Due to the high correlation between heating degree days (HDD) and cooling degree days

(CDD), we only include HDD in our analysis. We divide it by 1,000 to interpret the associated

coefficient as the effect of a 1,000-unit increase in HDD on residential GHG emissions later on.10

Furthermore, we use the total population variable to create per capita measures for residential energy

use, median income, and renewable energy consumption. By expressing these variables in per

capita terms, we account for differences in state sizes and population levels. Finally, we take the

8An overview of how residential GHG emissions are calculated and how they differ from other sectors, as well as
its relevance for our study, is provided in the appendix.

9Heating and cooling degree days measure how much the daily mean temperature falls below (HDD) or exceeds
(CDD) 65°F, which indicate heating or cooling needs.

10This variable is originally expressed in thousands because yearly data is obtained by summing daily degree days
across a given year.
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natural logarithm of the per capita variables (except for HDD) to standardize the scale of the data

and facilitate the interpretation of the estimates as percentage changes in residential GHG emissions.

Table 3.2: Variable Description and Summary Statistics.

Variable Unit Data Source Mean Std. Dev. Min Max

𝐶𝑂2 Residential Emissions∗ Metric Tons EPA 1.38 0.64 0.01 3.89
Residential Energy Use∗ Thousand BTU EIA 72.98 12.70 21.89 106.07
Heating Degree Days Thousand Degree Days NOAA 5.21 2.30 0.00 11.70
Cooling Degree Days Thousand Degree Days NOAA 1.14 0.96 0.00 5.21
Median Income∗ USD (2022) Census 66,164.80 11,338.84 38,600.00 108,900.00
Renewable Energy Use∗ Thousand BTU EIA 37.23 40.51 1.63 226.61
Retail Electricity Price USD per Thousand BTU EIA 18.68 9.11 8.04 99.63

Notes: ∗: expressed at the per capita level. The averages reported here are calculated using state-year-level data. These
data are obtained for all 48 states, in addition to Washington D.C. and Hawaii for the period 1990-2020.

Figure 3.1 illustrates the year of net metering policy adoption for each state, as obtained from

Smith et al. (2021). The earliest adopters were Idaho (1980), Arizona (1981), Massachusetts (1982),

and Wisconsin (1982). As of 2020, only three states – Alabama, South Dakota, and Tennessee

– had not implemented net metering policies. We focus on the post-1990 period since there’s no

state-level emissions data available before 1990. Hence, states that adopted net metering before

1990 are dropped from the analysis, resulting in a sample of 38 states and 1,178 observations.

Figure 3.1: Net Metering Policy Adoption Year by State
Source: Smith et al. (2021)
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Figure 3.2 reveals substantial variation in per capita residential GHG emissions across U.S.

states from 1990 to 2020. Alaska leads with the highest per capita emissions at 2.58 MT, followed by

Maine (2.55 MT), Vermont (2.38 MT), Michigan (2.30 MT), and Connecticut (2.23 MT). In contrast,

Hawaii has the lowest per capita emissions (0.08 MT), followed by Florida (0.15 MT), Arizona

(0.43 MT), South Carolina (0.57 MT), and Texas (0.63 MT). Notably, some populous states with

high total emissions, such as California and New York, do not appear among the highest per capita

emitters. This suggests that urbanization and population density may enable more energy-efficient

living arrangements.

Figure 3.2: Average Residential GHG Emissions per Capita by State (MT; 1990-2020).

Figure 3.3 shows the average residential GHG emissions across all states for each year

from 1990 to 2020. Emissions fluctuate over time, with notable peaks in 1996 (7.96 MMT), 2003

(7.85 MMT), and 2019 (7.66 MMT), and low points in 2012 (6.12 MMT) and 2016 (6.54 MMT).

These fluctuations were driven by three main factors: energy price volatility marked by sharp

increases in the early 2000s, extreme weather events such as severe winters in 1996 and 2003 and

an unusually warm winter in 2012, and broader energy transition trends including the gradual shift

from coal to natural gas and renewables post-2005. We also plot a dynamic map of residential
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GHG emissions by state for each year from 1990 to 2020.11 This dynamic map provides a visual

representation of the temporal and spatial variation in emissions across the United States. This

substantial variation in residential GHG emissions across states and time stems from several key

factors. Regional differences in electricity generation sources significantly influence emission levels.

States in the Midwest and Appalachia traditionally rely more heavily on coal-fired power plants,

while coastal states often utilize more natural gas and renewables. Climate patterns also play a

crucial role, as states with extreme temperatures experience higher energy demands for heating

(Northeast) or cooling (South). Additionally, variations arise from differences in population density

and urbanization, with urban areas potentially benefiting from shared infrastructure and energy

efficiency, while rural areas may depend more on individual heating systems. Economic factors

further contribute to this variation, as higher-income regions may have larger homes with more

appliances, yet simultaneously possess greater capacity to invest in energy-efficient technologies.

Figure 3.3: Average Residential GHG Emissions across Years (MMT; 1990-2020).

Figure 3.4 presents the average residential energy use per capita by state from 1990 to 2020.

North Dakota leads with the highest per capita consumption at 93,890 BTU, followed by Missouri

(87,020 BTU), Nebraska (86,260 BTU), Kentucky (85,070 BTU), and Tennessee (84,720 BTU).

These high consumption levels reflect primarily cold weather demands in North Dakota and the

central states, combined with substantial cooling needs in states like Tennessee and Kentucky. At

11The following is the link to the YouTube video: https://youtu.be/wCMsXkvCimU
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the other end of the spectrum, Hawaii shows the lowest per capita consumption at 25,030 BTU,

followed by California (40,470 BTU), New Mexico (55,680 BTU), Utah (58,540 BTU), and New

York (58,610 BTU). Hawaii’s low consumption stems from its mild climate requiring minimal

heating or cooling, while California and New York’s relatively low per capita usage suggests the

efficiency benefits of their stringent energy policies.

Figure 3.4: Average Residential Energy Use per Capita by State (Thousands BTU; 1990-2020).

3.6.2 Balancing Checks

To determine whether states that have not yet adopted net metering policies (i.e., not yet treated

group) are a suitable comparison group for states that have implemented such policies (i.e., treated

group), we conduct balancing tests on key state-level characteristics. These tests assess whether,

prior to adopting net metering, the states that eventually implement the policy are comparable to

those that have not. Any systematic difference could potentially confound the estimated treatment

effect.

As in Bielen (2024), the balancing tests involve regressing the treatment indicator on each

control variable while controlling for state and year fixed effects. The treatment indicator equals one
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for states that have adopted net metering policies and zero for states that have not yet adopted such

policies at a given point in time. The coefficients from these regressions are presented in Table 3.3.

Table 3.3: Balancing checks.

Variable Policy Adoption Coef. 𝑅2

Heating Degree Days -0.000 0.668
(0.989)
[1.000]

log (Residential Energy Use) pc 0.260 0.669
(0.415)
[1.000]

log (Adjusted Median Income) pc 0.339 0.671
(0.140)
[0.837]

log (Renewable Energy Use) pc -0.063 0.670
(0.378)
[1.000]

log (Retail Electricity Price) -0.011 0.668
(0.972)
[1.000]

Observations 1178
Notes: The second column shows the result from a separate simple linear regression with the response
shown in the column label. Coefficients are followed by their normal p-values in parentheses and Bonferroni
corrected p-values in square brackets, each on separate lines. The control group is “Not yet treated”. All
regressions include state and year fixed effects. Standard errors (not reported here) are clustered at the state
level in the regressions. *** p < 0.01, ** p < 0.05, * p < 0.10.

The results of the balancing tests show no statistically significant differences between the

treated and not yet treated states for any of the examined state-level characteristics. Moreover, when

adjusting for multiple hypothesis testing using the Bonferroni correction, the p-values remain far

from any meaningful significance level.

The absence of systematic differences between the treated and not yet treated states suggests

that the not yet treated states are indeed a suitable comparison group. This comparability between

the treated and not yet treated states strengthens the credibility of the identification strategy. It

suggests that any observed differences in residential 𝐶𝑂2 emissions between the two groups after
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the policy adoption can be more confidently attributed to the causal effect of net metering policies

rather than preexisting differences in state-level characteristics.

3.7 Results

3.7.1 Overall ATTs and Event Studies

Overall Estimates.

Table 3.4 presents the impact of net metering adoption on residential GHG emissions under different

model specifications based on Equation 3.1. Across all the TWFE specifications (columns 1-4),

the estimates are biased towards zero and not statistically significant. Our preferred specification

(column 5), however, reveals a statistically significant reduction in residential GHG emissions per

capita of approximately 0.823%, on average, following net metering policy adoption (p < 0.01).

The notable contrast between the CS estimate (-0.823%) and the TWFE estimates (ranging from

0.010% to 0.026%) stems from the CS estimator’s ability to account for heterogeneous treatment

effects across states and time, as well as its avoidance of using already-treated states as controls for

later-treated states. Unlike the TWFE estimator, which can dilute treatment effects by including states

at different stages of net metering policy adoption, the CS estimator uses untreated or not-yet-treated

states as controls and employs propensity score matching to ensure comparability, yielding a clearer,

more accurate estimate of net metering policy’s impact on residential GHG emissions.

It is important to note that these estimates represent the average treatment effect of net

metering adoption on residential emissions across all states in our sample. This includes both states

that experienced high uptake of net metering and those with lower participation rates. As such, this

may mask potential heterogeneity in the impact of net metering policies across states with different

levels of policy effectiveness or solar penetration. We explore this heterogeneity in subsequent

analyses.
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Table 3.4: Impact of Net Metering on Residential GHG Emissions.

Log Residential GHG Emissions pc

(1) (2) (3) (4) (CS)

Net Metering Indicator 0.023 0.026 0.010 0.017 -0.823***
(0.029) (0.032) (0.030) (0.029) (0.214)

Observations 1,178 1,178 1,147 1,147 1,178
Year fixed effects ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓
Region fixed effects ✓ ✓
Controls ✓ ✓ ✓
Linear time trends * Region ✓

Notes: Columns (1) to (4) present different specifications for the TWFE estimator. Column (1) reports results without
covariates. Column (2) includes the covariates mentioned in the data section. Column (3) adds region fixed-effects
based on NOAA-defined climate regions. Column (4) incorporates region fixed-effects and linear time trends to allow
for the possibility that states in different regions might be on different emissions trajectories. Column (5) displays the
results for the CS estimator. Standard errors are clustered at the state level and are reported in parentheses. *** p <
0.01, ** p < 0.05, * p < 0.10.

Event Studies.

Figure 3.5 displays the event study results for the impact of net metering policies on residential

GHG emissions. This plot reveals several key insights about the effects of net metering policy and

the validity of our identification strategy. First, looking at the pre-treatment periods (𝑘 < 0), we

see that the coefficients are close to zero and statistically indistinguishable from the baseline. This

lack of a significant pre-trend in the differences supports our parallel trends assumption, giving

us confidence that our estimates capture the causal effect of net metering policies. In the case of

the post-treatment periods, we observe an interesting dynamic pattern. Immediately after policy

adoption (𝑘 = 0), there is a small but statistically insignificant decrease in emissions. However, for

both TWFE OLS and our preferred estimator, Callaway-Sant’Anna (CS), the effect becomes more

pronounced and statistically significant by the second year post-adoption, with emissions decreasing

by about 0.029% with the TWFE OLS estimator and by approximately 0.34% with the CS estimator.

60



The discrepancy between these two estimators is due to the fact that TWFE OLS is biased —as

explained in the methodology section— towards zero in this case.

Figure 3.5: Impact of Net Metering Adoption on Residential GHG Emissions Relative to Adoption
Year.

Notes: This figure presents event-study plots constructed using two different estimators: a dynamic version
of the TWFE model (in blue with square markers) and Callaway & Sant’Anna (2021) (in green with triangle
markers). The outcome variable is residential GHG emissions. The horizontal axis represents the periods
relative to the net metering policy implementation, with 𝑘 = −1 as the reference period excluded from the
plot for the case of TWFE OLS. Each point denotes the average treatment effect (ATT) for the specified
period, and the bars represent 95% confidence intervals with standard errors clustered at the state level.

This delayed impact makes sense given the nature of net metering policies. It likely takes

time for households to learn about the new incentives, decide to install solar panels, and complete

the installation process. The two-year lag we observe aligns with what we might expect given these

practical constraints. Interestingly, the effect remains significant in year 5 with a reduction of about

0.6% in the case of the CS estimator. This sustained negative impact suggests that the net metering

policy has a lasting effect on reducing emissions. The pattern indicates a robust and enduring

response to the policy implementation, which warrants further investigation into its compound effect

on residential emissions over time.
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3.7.2 Examining Heterogeneity

Policy Favorability.

We start with estimating separate models for states with more favorable and less favorable net

metering regulations.12 As shown in Figure 3.6, the overall ATT for states with more favorable

policies is positive at 2.49, but statistically insignificant (p = 0.182). In contrast, the overall ATT

for states with less favorable policies is negative and significant at the 5% level, with a magnitude

of -0.295 (p = 0.039).13

This stark difference suggests that the design and implementation of net metering policies

play a crucial role in determining their effectiveness at reducing emissions. States with more

favorable policies, such as higher capacity limits, more generous compensation rates, and fewer

restrictions on eligible technologies, may create stronger incentives for households to adopt rooftop

solar and other distributed renewable energy systems. However, the insignificant overall ATT for

this group indicates that these incentives may not be sufficient to drive substantial reductions in

residential emissions on average. On the other hand, the negative and significant ATT for states

with less favorable policies is somewhat counterintuitive. One might expect that states with more

restrictive net metering regulations would see smaller or no reductions in emissions. The scoring

system used for determining favorability is likely the culprit, we provide a deeper explanation for

this in the discussion section.

Examining the ATTs by adoption cohort provides insights into how the timing of the net

metering policy adoption may influence its effectiveness. Looking at the ATTs by cohort (i.e., group

of states that adopted the policy in the same year), we see that for states with more favorable policies,

the treatment effects are positive and significant for the 1994 and 1997 cohorts, but negative and

significant for the 2005 cohort. The large, positive, and highly significant ATT for the 1997 cohort

12Note that the dummy assignment was designed such that a score of one reflects a better outcome from the energy
consumer standpoint. States with a score of at least 3 out of 5 (based on dummy variables for the five policy traits
previously mentioned) are considered to have more favorable policies, while states with a score of 2 or less are considered
to have less favorable policies. Never-treated states are included in all subsets.

13We discuss the intuition or counterintuition behind all the results in the discussion section.
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Figure 3.6: Heterogeneity between States of More versus Less Favorable Net Metering Policies.

Notes: The plots display the ATT for the different categories and time periods. The bar plots represent the
overall ATT for each category. The cohort and calendar year plots show the ATT by cohort groups and
calendar years, respectively. The event study plot illustrates the dynamic effects of treatment over time. The
legends in the top quadrants apply to all the sub-quadrants. Significance levels are indicated by different
markers: squares for p < 0.01, triangles for p < 0.05, circles for p < 0.10, and crosses for p >= 0.10.
Estimates greater than the absolute value of 2.0 are cropped out of the graph because they mask relevant
patterns. These are, however, mentioned in the description of the plot if found statistically significant.

(20.68, p < 0.001) is particularly noteworthy and warrants further investigation. For states with less

favorable policies, the ATTs are negative and significant across most cohorts.

Breaking down the ATTs by calendar year allows us to identify whether certain years were

more conducive to the net metering policy success, regardless of when individual states adopted the

policy. For states with more favorable policies, the treatment effects are negative and significant in

the early years (1994-1995), but become positive and significant in later years (2002-2003), albeit
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with large standard errors. For states with less favorable policies, the ATTs are consistently negative

and often significant across most years, with some variation in magnitude over time.

Finally, in the case of the event study plots, for states with more favorable policies, the

pre-treatment effects are generally insignificant, providing further support for the parallel trends

assumption. The post-treatment effects are positive and significant in the third and fourth years after

adoption which suggests a delayed impact on emissions. For states with less favorable policies, the

pre-treatment effects are also insignificant, but the post-treatment effects are negative and become

larger in magnitude over time, although not always statistically significant. These unexpected results

here are likely due to the fact that, even when a group of states has the same favorability score, the

composition of what policy traits drive their individual scores may be entirely different.

Policy Traits.

The heterogeneous effects of net metering policies on residential GHG emissions vary substantially

across different policy design features. As shown in Figure 3.7, the overall ATTs are negative

and significant for excess electricity compensation, system size caps, and REC ownership, but

insignificant for the number of eligible technologies and program size caps. This suggests that more

favorable compensation schemes, higher system size limits, and customer ownership of RECs are

key drivers of the policy’s effectiveness in reducing emissions.

The cohort-specific ATTs reveal some interesting patterns, with consistently negative and

significant effects for excess electricity compensation, system size caps, and REC ownership, but

more mixed results for the other policy categories. The calendar year ATTs show similar trends,

with the most pronounced and consistent effects for excess electricity compensation, system size

caps, and REC ownership.

The event study plots generally support the parallel trends assumption for these three policy

features, with insignificant pre-treatment effects and negative, significant post-treatment effects that

increase in magnitude over time. The number of eligible technologies and program size caps exhibit

less clear patterns in the event study.
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Figure 3.7: Heterogeneity by Policy Traits.

Notes: The plots display the ATT for the different categories and time periods. The bar plots represent the
overall ATT for each category. The cohort and calendar year plots show the ATT by cohort groups and
calendar years, respectively. The event study plot illustrates the dynamic effects of treatment over time. The
legends in the top quadrants apply to all the sub-quadrants. Significance levels are indicated by different
markers: squares for p < 0.01, triangles for p < 0.05, circles for p < 0.10, and crosses for p >= 0.10.
Estimates greater than the absolute value of 2.0 are cropped out of the graph because they mask relevant
patterns. These are, however, mentioned in the description of the plot if found statistically significant.

Political Leanings.

The heterogeneous effects of net metering policies on residential GHG emissions differ markedly

between Democratic and Republican states, as shown in Figure 3.8. As mentioned previously,

this classification is based on the election results closest to but before the adoption date in each

state. It is important to note that a state’s political leaning can change over time, and the binary

classification may not fully capture the nuances of a state’s political environment. Moreover, the

65



political affiliation of a state’s governor and legislature may not always align, leading to potential

differences in policy implementation and effectiveness.14 The overall ATT for Democratic states is

negative but not statistically significant, with a magnitude of -0.31. In contrast, the overall ATT for

Republican states is about the same (-0.30) but highly significant (p < 0.01). This suggests that net

metering policies have been more effective at reducing emissions in Republican-leaning states.

Figure 3.8: Heterogeneity between Democratic versus Republican States.

Notes: The plots display the ATT for the different categories and time periods. The bar plots represent the
overall ATT for each category. The cohort and calendar year plots show the ATT by cohort groups and
calendar years, respectively. The event study plot illustrates the dynamic effects of treatment over time. The
legends in the top quadrants apply to all the sub-quadrants. Significance levels are indicated by different
markers: squares for p < 0.01, triangles for p < 0.05, circles for p < 0.10, and crosses for p >= 0.10.
Estimates greater than the absolute value of 2.0 are cropped out of the graph because they mask relevant
patterns. These are, however, mentioned in the description of the plot if found statistically significant.

14Future research could explore more granular measures of political context and how shifts in political power within
states influence the impact of net metering policies.
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Examining the group-specific ATTs reveals that Republican states show significant emissions

reductions for the 1997, 1998, and 2006 adoption cohorts (ranging from -0.25 to -0.57). For

Democratic states, the ATTs are more mixed, with only the 1999 cohort showing a significant effect

(0.23), though in the opposite direction than expected. The calendar year ATTs show that Republican

states experienced significant emissions reductions particularly during 2010-2014 (ranging from

-0.72 to -0.98). In Democratic states, the effects vary over time, with some significant reductions in

the late 1990s but positive and significant effects during 2001-2006.

In the case of the event study plots, the pre-treatment effects are insignificant for Republican

states, supporting the parallel trends assumption. The post-treatment effects are negative and not

statistically significant over the specified window. For Democratic states, the pre-treatment effects

are also insignificant, but the post-treatment effects are more mixed, with significant negative

impacts in the third year after adoption. These results suggest that the political context plays a

crucial role in shaping the environmental effectiveness of net metering policies. Given the high

level of statistical significance for Republican states, we argue that this is likely due to having more

potential for GHG emissions reductions, given their typically higher baseline emissions levels.

Cumulative Effects.

While our primary analysis examines the impact of net metering policies at the state-year level, our

dataset allows for a more granular investigation of cumulative effects over time. Specifically, we

can exploit variation in the duration of exposure to net metering policies across states to understand

how the impact of these policies evolves with longer implementation periods. To analyze these

cumulative effects, we modify our baseline specification to incorporate a measure of policy exposure

duration. We estimate the following equation:

log(𝐶𝑂2𝑠𝑡) = 𝛼𝑠 + 𝛾𝑡 +
𝐷=5∑︁
𝑑=0

𝛽𝑑 · Duration𝑑 (𝑠,𝑡) + X𝑠,𝑡 · 𝛿 + 𝜖𝑠,𝑡 (3.8)

Here, everything else is as before. Duration𝑑 (𝑠,𝑡) is a set of indicator variables equal to 1 if

state 𝑠 at time 𝑡 has had a net metering policy in place for 𝑑 years. The duration of policy exposure
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is calculated as 𝑑 = 𝑁𝑀𝑠,𝑡 · (𝑡 − max{𝑇 𝑖𝑚𝑝𝑙𝑠 , 𝑇 𝑠𝑡𝑎𝑟𝑡𝑠 }), where 𝑡 represents the current year, 𝑇 𝑖𝑚𝑝𝑙𝑠 is

the year net metering was implemented in state 𝑠, 𝑇 𝑠𝑡𝑎𝑟𝑡𝑠 is the first year of our study period for state

𝑠, and 𝑁𝑀𝑠,𝑡 is an indicator for whether state 𝑠 has a net metering policy in place by year 𝑡. We cap

𝑑 at a maximum of 5 years to ensure sufficient sample size in each duration bin.15 This specification

allows us to trace out the cumulative effects of net metering policies over time, providing insights

into whether the impact of these policies strengthens, stabilizes, or potentially diminishes with

longer exposure.16

As we can see in Figure 3.9, the net metering policy demonstrates a relatively stable pattern

of small negative effects on residential GHG emissions per capita across all years of implementation.

The effect is evident from the year of implementation, with a reduction of about 0.069% in

emissions, though this initial effect is only marginally significant (p < 0.10). The impact becomes

more pronounced and statistically significant in subsequent years, peaking at a 0.077% reduction

two years after implementation.

While the effect strengthens and becomes highly significant (p < 0.01) in years 2 and 3, with

reductions of 0.077 and 0.071% respectively, we observe a slight tapering and reduced significance

(p < 0.05) in year 4, with a reduction of 0.052%. This pattern suggests that net metering policies

lead to persistent, albeit small, reductions in residential GHG emissions, with the strongest and most

significant effects observed in the middle years post-implementation.

The valleys in years 2-3, with reductions of 0.077 and 0.071% respectively (both significant at

p < 0.01), represent the cumulative effect of early adopters fully integrating rooftop solar, combined

with increasing participation from additional households over time. The slight decrease in the

15To illustrate the calculation of the Duration variable, consider the following example: Suppose State A implemented
a net metering policy in 2010, and our study period begins in 2008. In 2012, the Duration for State A would be calculated
as follows: 𝑑 = 𝑁𝑀𝐴,2012 · (2012 − max{2010, 2008}) = 1 · (2012 − 2010) = 2. This indicates that in 2012, State
A had been exposed to the net metering policy for 2 years. In contrast, for a State B that implemented net metering
in 2014, the Duration in 2012 would be: 𝑑 = 𝑁𝑀𝐵,2012 · (2012 − max{2014, 2008}) = 0 · (2012 − 2014) = 0. This
reflects that State B had not yet implemented net metering by 2012.

16Other than for practical reasons, we cap 𝑑 at 5 years because it is reasonable to assume that that the most substantial
uptake of net metering occurs within the first 3-5 years after policy implementation, as households respond to new
financial incentives and installation costs decline.
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Figure 3.9: Cumulative Effects of the Net Metering Policy.

Notes: This figure displays the cumulative effects of the net metering policy on log(Residential GHG per
capita) over time. The x-axis represents the number of years since the policy implementation, ranging
from 0 (adoption year) to 4 years (the results did not converge for year 5). Each point shows the estimated
effect for that year, with error bars indicating 95% confidence intervals. The colors of the points represent
different levels of statistical significance: green for p < 0.01, yellow for p < 0.05, gray for p < 0.10, and red
for p >= 0.10. The dashed red horizontal line at y = 0 represents no effect, while the dashed red vertical
line at x = -0.5 separates the pre-implementation period from the post-implementation period. The navy
line connecting the points helps visualize the trend of the cumulative effects over time.

cumulative effect in year 4 (0.052%, p < 0.05) may not necessarily indicate a reduction in the

policy’s impact, but rather a potential slowdown in the rate of additional benefits. This could be

due to a gradual approach towards market saturation, where the most enthusiastic adopters have

already participated, or it might reflect a stabilization of the cumulative effects as the market matures.

Importantly, the persistent negative coefficients across all years highlights the enduring cumulative

climate benefits of the policy, even as the rate of additional impact may fluctuate over time.
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3.7.3 Robustness Checks

Policy Diffusion/Spillover.

To account for potential policy spillovers across states, we extend our baseline model to include

a measure of net metering policy adoption in neighboring states. This approach allows us to test

whether a state’s outcomes are influenced not only by its own policy but also by the policies of its

neighbors. We modify our baseline difference-in-differences model as follows:

log(𝐶𝑂2𝑠𝑡) = 𝛼𝑠 + 𝛿𝑡 + 𝛽𝐷𝑠𝑡 + 𝛾𝑁𝑠𝑡 + X′
𝑠𝑡𝜃 + 𝜖𝑠𝑡 (3.9)

where the new term, 𝑁𝑠𝑡 , represents the count of neighboring states with active net metering policies.

We construct 𝑁𝑠𝑡 as follows:

𝑁𝑠𝑡 =
∑︁
𝑗∈𝐽𝑠

1(𝑇𝑗 ≤ 𝑡) (3.10)

where 𝐽𝑠 is the set of neighboring (i.e., sharing a border) states 𝑠, 𝑇𝑗 is the first year of treatment for

state 𝑗 , and 1(·) is the indicator function. This measure counts the number of neighboring states that

have adopted net metering policies by year 𝑡.17 The coefficient 𝛾 captures the spillover effect from

neighboring states’ policies. A negative and significant coefficient would indicate positive policy

spillovers, suggesting that a state’s residential GHG emissions decrease when its neighbors adopt

net metering policies. Conversely, a positive coefficient would suggest that neighboring policies

have an adverse impact on a state’s emissions.

The results from our policy diffusion analysis, presented in Table 3.5 and Figure 3.10, offer

interesting insights when compared to our baseline findings. In the baseline fixed-effects model

(Column 1 of Table 3.5), we observe that the coefficient on the net metering indicator (𝐷𝑠𝑡) is positive

17For example, suppose neighboring state 𝑗 adopts the net metering policy in 2003 (𝑇𝑗 = 2003). In years before
adoption (𝑡 = 2000, 2001, 2002), the indicator function 1(𝑇𝑗 ≤ 𝑡) equals 0 because 𝑇𝑗 ≤ 𝑡 is false. Starting from the
adoption year onward (𝑡 = 2003, 2004, 2005), the indicator equals 1 since 𝑇𝑗 ≤ 𝑡 holds true. This means 𝑁𝑠𝑡 correctly
counts the policy as active in neighboring state 𝑗 from 2003 onward.
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(0.033) but statistically insignificant. This is consistent with our previous baseline results, where we

found small positive but insignificant effects of net metering policies on residential GHG emissions.

However, the introduction of the neighboring policy variable reveals a negative and marginally

significant effect (-0.043, p < 0.10), suggesting potential positive spillovers from neighboring states’

policies.

Table 3.5: Overall ATTs and Signs of the Diffusion Variable across Specifications.

Log Residential GHG Emissions

Baseline Model CS Estimator

Net Metering Indicator (𝐷𝑠𝑡) 0.033 -0.153
(0.036) (0.370)

Number of Neighboring Policies -0.043*
(0.025)

Observations 1,178 956
State fixed-effects ✓ ✓
Year fixed-effects ✓ ✓

Notes: Column (1) presents results from the baseline fixed-effects model. Column (2) shows results from the CS
estimator. The coefficients of covariates are not provided in the CS output which is why we have a blank space in the
bottom right cell of the table. Standard errors are clustered at the state level and are reported in parentheses. *** p <
0.01, ** p < 0.05, * p < 0.10.

The event study results in Figure 3.10 provide a more nuanced view of these effects over

time. Comparing these to our previous event study results, we notice some key differences. The

TWFE OLS estimates now show a slightly more pronounced negative trend in the post-treatment

periods, with larger negative point estimates in periods 2 and 3 after treatment. This suggests that

accounting for policy diffusion may reveal stronger emissions reduction effects of net metering

policies over time.

Importantly, the pre-treatment trends in both estimators remain relatively flat and close to

zero, supporting the parallel trends assumption and the validity of our difference-in-differences

approach. These findings suggest that accounting for policy diffusion may be crucial in understanding

the full impact of net metering policies on residential GHG emissions. The negative coefficient on

the neighboring policy variable in the static model and the more pronounced negative trends in the
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event study analyses indicate that the effects of these policies may extend beyond state borders. It is

important to note, however, that while these results suggest potentially larger emission reduction

effects when accounting for spillovers, the estimates from the CS estimator in particular show wide

confidence intervals, indicating considerable uncertainty.

Figure 3.10: Event Study Results Accounting for Policy Diffusion.

Notes: This figure presents event-study plots constructed using two different estimators: a dynamic version
of the TWFE model (in blue with square markers) and Callaway & Sant’Anna (2021) (in green with triangle
markers). The outcome variable is residential GHG emissions. The horizontal axis represents the periods
relative to the net metering policy implementation, with 𝑘 = −1 as the reference period excluded from the
plot for the case of TWFE OLS. Each point denotes the average treatment effect (ATT) for the specified
period, and the bars represent 95% confidence intervals with standard errors clustered at the state level.

The spillover effect can be attributed to several mechanisms specific to the renewable energy

sector and electricity markets, as evidenced by tangible examples across the United States. The

adoption of net metering policies in neighboring states creates larger, more integrated markets

for solar energy systems and services, as demonstrated in the Northeastern United States where

companies like SolarCity and Sunrun expanded their operations across multiple states due to

favorable policy environments. This expanded market attracts more firms to the region, particularly

larger, more efficient operators. For instance, when Iowa enhanced its net metering policies,

solar companies began offering services in neighboring Illinois and Missouri, which created
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competitive pressure that improved efficiency and reduced prices. The resulting increase in market

participants and competition leads to improved economies of scale, as seen in the Northeast

where the concentration of solar companies has enabled bulk purchasing of equipment and shared

infrastructure, driving down costs region-wide. Furthermore, successful implementation in adjacent

states reduces perceived regulatory risks and thus lower financing costs for renewable energy projects.

This is exemplified by New Jersey’s successful net metering implementation, which has increased

investor confidence and led financial institutions to offer more favorable loan terms for renewable

projects in neighboring states like Pennsylvania, despite their less progressive policies. The

interconnected nature of electricity grids also facilitates efficient distribution of excess renewable

energy, as evidenced by California’s exports of excess solar generation to Arizona and Nevada

through the Western Interconnection grid. Additionally, regional initiatives like New England’s grid

modernization efforts demonstrate how states can collaborate to handle increased renewable energy

inputs more efficiently. These combined effects enhance the overall effectiveness of net metering

policies in reducing residential GHG emissions across state boundaries by stimulating higher

adoption rates of residential solar systems and improving regional renewable energy integration.

Placebo Tests.

Another critical technique employed by econometricians to validate the parallel trends assumption is

the implementation of placebo tests. These tests serve to bolster the credibility of our DiD estimates

by demonstrating that our results are not driven by spurious correlations or pre-existing trends. We

focus on placebo period tests, as our use of not-yet-treated states as the control group rule out the

possibility to use of placebo group tests.

The placebo period approach involves artificially shifting the treatment period to a time

before the actual policy implementation.18 If our identification strategy is valid, we should observe

no significant “treatment effect” during this placebo period. This absence of effect would support

the notion that the changes we observe post-treatment are indeed causally related to the net metering

18Placebo group tests apply the treatment effect to a group that was not actually treated to see if any spurious effects
emerge.
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policies and not due to pre-existing differential trends between treated and control states. To

implement this test, we modify our baseline equation as follows:

log(𝐶𝑂2𝑠𝑡) = 𝛼𝑠 + 𝛿𝑡 + 𝛽𝐷 𝑝
𝑠𝑡 + X′

𝑠𝑡𝜃 + 𝜖𝑠𝑡 (3.11)

where 𝐷 𝑝
𝑠𝑡 is a placebo treatment indicator that equals 1 for treated states in each of the five years

preceding their actual treatment year, and 0 otherwise.19 Formally:

𝐷
𝑝
𝑠𝑡 = 1(𝑇𝑠 − 5 ≤ 𝑡 < 𝑇𝑠) (3.12)

where 𝑡 is the current year, 𝑇𝑠 is the actual year of net metering policy implementation in state 𝑠,

and 1(·) is the indicator function.20 We estimate this model using both our baseline fixed-effects

approach and the CS estimator. If the parallel trends assumption holds, we expect the coefficient 𝛽

to be statistically indistinguishable from zero.

These placebo tests serve multiple purposes. First, they provide a direct test of the parallel

trends assumption in the pre-treatment period. Second, they allow us to assess whether our results

are robust to potential anticipation effects or policy endogeneity. Finally, they help rule out the

possibility that our estimated treatment effects are driven by other unobserved factors that might be

correlated with the timing of net metering policy adoption.

Based on the placebo test results presented in Table 3.6 and Figure 3.11, we can draw the

following conclusions. The placebo tests largely support the validity of our main findings. In

Table 3.6, we can see that all the placebo treatment indicators are statistically insignificant.

Figure 3.11 provides a more detailed view of the placebo effects over time. Across all

specifications - TWFE and CS estimators, with and without policy diffusion - we observe no clear

pre-trends. The event study coefficients are predominantly insignificant across all periods and

19To avoid a constant five-year shift, we do so for a random subset of states that implemented the policy.
20The condition 1(𝑇𝑠 − 5 ≤ 𝑡 < 𝑇𝑠) ensures that the indicator captures the pre-treatment period up to the actual

treatment year, without including any post-treatment effects. For example, if 𝑇𝑠 = 2010, the indicator will be 1 for the
years 2005 to 2009, and 0 for all other years.
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Table 3.6: Placebo Tests: Overall ATTs across Specifications.

Log Residential GHG Emissions

Without Policy Diffusion With Policy Diffusion

Baseline Model CS Estimator Baseline Model CS Estimator

Placebo Treatment Indicator (𝐷 𝑝
𝑠𝑡) 0.011 0.040 -0.005 -0.084

(0.021) (0.184) (0.018) (0.174)
Number of Neighboring Policies -.047*

(0.026)

Observations 1,054 818 1,054 801
State fixed-effects ✓ ✓ ✓ ✓
Year fixed-effects ✓ ✓ ✓ ✓

Notes: Column (1) and (2) present results from the baseline fixed-effects model and the CS estimator, respectively,
without accounting for policy diffusion. Columns (3) and (4) present results with accounting for policy diffusion. The
coefficients of covariates are not provided in the CS output which is why we have a blank space in the bottom right cell
of the table. After applying the time shifter, States with resulting treatment years outside of the study range are dropped
from the analysis. Standard errors are clustered at the state level and are reported in parentheses. *** p < 0.01, ** p <
0.05, * p < 0.10.

specifications. This lack of significant effects in the pre-treatment periods reinforces the parallel

trends assumption underlying our difference-in-differences approach. The consistency of these

insignificant results across different model specifications and estimators adds robustness to our main

findings. It suggests that the significant effects we observe in our primary analysis are likely due to

the actual impact of net metering policies rather than spurious correlations or pre-existing trends.

3.7.4 Potential Mechanisms

To investigate the mechanisms through which net metering policies influence residential 𝐶𝑂2

emissions, we analyze detailed state-level net metering statistics obtained from the EIA for the

years 2011-2020.21 It is important to note that these data, not available for years prior to 2011,

unfortunately overlap with only a few states that adopted the policy after 2011, preventing us from

including more states in the DiD analysis. Our analysis focuses on South Carolina as the treated

21The data can be downloaded from the EIA website here: https://www.eia.gov/electricity/data/eia861m/
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Figure 3.11: Placebo Tests: Event Studies across Specifications.

Notes: This figure presents event-study plots constructed using two different estimators: a dynamic version
of the TWFE model (in blue with square markers) and Callaway & Sant’Anna (2021) (in green with triangle
markers). The outcome variable is residential GHG emissions. The horizontal axis represents the periods
relative to the net metering policy implementation, with 𝑘 = −1 as the reference period excluded from the
plot for the case of TWFE OLS. Each point denotes the average treatment effect (ATT) for the specified
period, and the bars represent 95% confidence intervals with standard errors clustered at the state level.
The negatively jittered markers show cases without policy diffusion, while the positively jittered markers
show cases with policy diffusion.

state, which implemented net metering policies during this period, and uses Alabama, South Dakota,

and Tennessee as the control group, representing states that did not adopt such policies.22

We estimate the causal effect of net metering policies on several key intermediate outcomes

related to residential renewable energy adoption and utilization. Our specification remains similar

to the main analysis, with state and year fixed effects, a treatment indicator, and time-varying state

22There are barely data available for Mississippi, which adopted the policy in 2015.
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characteristics as controls. However, instead of residential GHG emissions, we now use various

measures of renewable energy adoption and utilization as outcome variables.

The outcome variables we consider include residential photovoltaic net metering customer

count, installed capacity (MW), and energy sold back to the grid (MWh). We also examine similar

metrics for wind energy, as well as aggregate measures across all renewable technologies. These

outcomes allow us to assess whether net metering policies effectively stimulate the adoption of

distributed renewable energy resources and increase grid interaction, which are crucial mechanisms

for reducing residential 𝐶𝑂2 emissions. Note that, since we only have one treated state, our control

group becomes the never treated group.

Given the structure of our data, with South Carolina as the sole treated state, our analysis

reduces to a classical DiD framework. This setup allows us to estimate the causal effect of net

metering policies on various intermediate outcomes related to renewable energy adoption and

utilization. Our empirical specification takes the following form:

𝑌𝑠𝑡 = 𝛼𝑠 + 𝛿𝑡 + 𝛽1Treat𝑠 + 𝛽2After𝑡 + 𝛽3(Treat𝑠 × After𝑡) + X′
𝑠𝑡𝜃 + 𝜖𝑠𝑡 (3.13)

where 𝑌𝑠𝑡 represents the log per capita value of our outcome variables for state 𝑠 in year 𝑡, 𝛼𝑠 are

state fixed effects, 𝛿𝑡 are year fixed effects, Treat𝑠 is an indicator for South Carolina, After𝑡 is an

indicator for the post-treatment period, 𝑋𝑠𝑡 is a vector of time-varying covariates, and 𝜖𝑠𝑡 is the error

term. The coefficient of interest, 𝛽3, captures the average treatment effect of net metering policy

implementation on the intermediate outcomes.

The results in Table 3.7 illuminate the key mechanisms driving the reduction in residential

𝐶𝑂2 emissions observed in our main analysis under both unconditional (excluding the covariates)

and conditional cases. The intermediate outcomes, particularly those related to solar PV adoption

(first three rows), serve as the primary channels through which net metering policies influence

residential emissions. It’s noteworthy that the results for all technologies closely mirror those of

solar PV, which is unsurprising given that solar accounts for over 95% of residential renewable
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energy systems across all categories. This dominance of solar PV underscores its pivotal role in

shaping the overall impact of net metering policies on residential energy landscapes. The significant

increases in solar capacity and energy sold back to the grid indicate that net metering effectively

incentivizes residential solar installations and promotes greater grid interaction. These changes in

energy production and consumption patterns directly contribute to the reduction in residential 𝐶𝑂2

emissions by displacing fossil fuel-based electricity. The slight discrepancy between unconditional

and conditional DiD estimates suggests that while net metering policies are influential, in some

cases, the effects become insignificant after adding covariates, which indicates that other factors

beyond the policy itself may also play a crucial role in driving adoption and emissions reductions.

The stark contrast between solar and wind results, particularly the large increase in wind

energy sold back without corresponding increases in capacity or customers, likely reflects the

concentrated nature of wind energy adoption. Unlike solar installations, which are more accessible

to average homeowners, wind turbines require significant upfront investment and suitable land,

which limits the customer base. However, existing wind energy customers appear to be expanding

their operations within their current capacity. This could explain why we observe increased energy

sold back to the grid without seeing proportional increases in new capacity installations or customer

counts. The pattern suggests that wind energy growth is driven by existing wind energy companies

producing more rather than new wind energy firms entering the market.

3.8 Discussions

Our analysis reveals that net metering policies lead to modest but statistically significant reductions

in residential GHG emissions. The cumulative effect reaches approximately 0.6% five years after

policy adoption, which translates to an average reduction of about 44,640 metric tons of residential

𝐶𝑂2 emissions per state per year by the fifth year.23 To put this into perspective, this reduction

is roughly 1/15th of the energy-related residential emissions for the District of Columbia in 2021,

23This calculation is based on the means provided in Table 3.2.
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Table 3.7: Understanding Mechanisms: DiD Estimates.

Dependent Variable Unconditional DiD Conditional DiD

ln (Solar Energy Sold Back) pc 1.957** 0.486
(0.512) (0.646)

[33] [33]
ln (Solar Installed Capacity) pc 2.280** 1.409*

(0.629) (0.447)
[34] [34]

ln (Solar Customers) pc 1.991* 1.041
(0.643) (0.419)

[34] [34]
ln (Wind Energy Sold Back) pc 5.199*** 4.521*

(0.030) (0.907)
[22] [22]

ln (Wind Installed Capacity) pc 0.185 0.454
(0.199) (0.366)

[23] [23]
ln (Wind Customers) pc 0.248 0.486

(0.308) (0.375)
[23] [23]

ln (Renewable Energy Sold Back) pc 2.622** 1.584
(0.483) (0.955)

[33] [33]
ln (Renewable Installed Capacity) pc 2.732** 2.395*

(0.489) (0.790)
[34] [34]

ln (Renewable Customers) pc 2.560** 2.136*
(0.437) (0.759)

[34] [34]
Notes: This table presents the DiD estimates for various models. All variables represent the residential
sector. The estimates represent the coefficient for the interaction term (after_treat). The standard errors
are reported in parentheses below the estimates, with the number of observations (N) reported in square
brackets. *** p < 0.01, ** p < 0.05, * p < 0.10.

which totaled 0.67 million metric tons.24 This is also equivalent to removing around 9,700 cars off

the road in each state, every single year.25 While these reductions may appear small in percentage

terms, their aggregate impact across multiple states over time represents a substantial contribution

to climate mitigation efforts.

24According to EIA data which can be obtained from: https://www.eia.gov/environment/emissions/state/
25According to the EIA, an average passenger car produces approximately 4.6 metric tons of 𝐶𝑂2 annually.
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The effectiveness of net metering policies varies considerably across states, highlighting the

importance of policy design and local context. States with more favorable policy features based on

our scoring system did not necessarily experience larger emissions reductions. This is likely due to the

fact that each policy feature has a different weight on potential residential emissions reductions. For

instance, a state implementing net metering policies with the two most impactful traits might achieve

greater emissions reductions than a state adopting three less influential features. Specific policy

elements, including favorable excess electricity compensation, higher system size caps, and customer

ownership of renewable energy credits, emerged as primary drivers of these reductions. Surprisingly,

we found that Republican-leaning states experienced about the same but statistically significant

emissions reductions compared to Democratic-leaning states. This seemingly counterintuitive result

likely stems from the higher baseline adoption of renewable energy for electricity generation in

Democratic states prior to net metering implementation. With a larger share of their energy mix

already coming from clean sources, Democratic states experienced minimal additional reductions

in GHG emissions from net metering policies. In contrast, Republican-leaning states, starting

from a lower baseline of renewable energy adoption, were able to reduce their GHG emissions at

a slightly faster rate through net metering policies, as they had more opportunities for immediate

emissions reductions that Democratic states had already captured through earlier policies. Moreover,

our evidence of positive spillover effects, where emissions decreased in states neighboring those

that adopted net metering policies, underscores the potential for regional policy coordination to

amplify benefits. This finding implies that the impact of net metering extends beyond state borders,

possibly through mechanisms such as expanded markets for solar energy systems or knowledge

sharing across jurisdictions.

Despite these insights, our study has limitations that warrant discussion. Particularly, our

reliance on state-level aggregate data may obscure important local or household-level variations.

Nonetheless, we believe our results provide valuable insights for understanding the role of net

metering policies in reducing residential GHG emissions. The core mechanisms through which
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these policies affect emissions – primarily by incentivizing the adoption of residential solar PV

systems – are likely to remain relevant in the foreseeable future. Furthermore, technological

advancements in solar PV systems and smart grid technologies over the past two decades may have

enhanced rather than diminished the impact of net metering policies. Improvements in solar panel

efficiency, reductions in installation costs, and the integration of energy storage solutions could

potentially make net metering even more effective in reducing residential GHG emissions.

3.9 Conclusions

Our study breaks new ground in the literature on renewable energy policies as the first empirical

evaluation of net metering’s impact on residential greenhouse gas emissions in the World. We

hope this pioneering work will pave the way for further research into the effectiveness of such

policies in combating climate change. Our findings demonstrate that these policies have played

a modest but meaningful role in reducing emissions, with effects intensifying over time. The

heterogeneity in policy effectiveness across states emphasizes the importance of tailored policy

design. Policymakers may focus on enhancing specific features that have demonstrated efficacy, such

as generous compensation rates and higher system size caps, while considering the unique contexts

of their states, including existing electricity market structures and renewable energy initiatives, when

crafting or refining net metering policies. Our analysis also highlights the potential for regional

cooperation to amplify the benefits of net metering policies. The observed spillover effects suggest

that coordinated approaches across neighboring states could lead to more substantial emissions

reductions.

While our study focuses on residential GHG emissions, the implications extend to broader

discussions on sustainable energy transitions and climate policy. The evidence that net metering

policies facilitate increased adoption of distributed renewable energy resources supports their role

in national and state-level strategies to reduce carbon emissions. As states and nations strive

to meet ambitious climate goals, understanding the effectiveness of policies like net metering
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becomes increasingly critical. Future research could expand on this work by exploring longer-term

effects, examining impacts on other sectors, or assessing the dynamics between net metering and

other renewable energy incentives. In summary, net metering policies represent a viable tool for

reducing residential GHG emissions, but their effectiveness is contingent upon thoughtful design

and consideration of local contexts. As the energy landscape continues to evolve, policymakers

and researchers must remain attentive to emerging technologies and changing market dynamics to

ensure that such policies continue to contribute meaningfully to climate mitigation efforts.
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Chapter 4

Leveraging Remote Sensing and Machine Learning to Predict U.S. County-level Rice

Yield: The Role of GHG Emissions 1

1J. Augustin, G. Munisamy, B. Karali & Y. Rao. To be submitted to IEEE.
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4.1 Abstract

This study leverages remote sensing and machine learning techniques to predict U.S. county-level

rice yields from 2008 to 2022 across 67 counties in six major rice-producing states. The

comprehensive dataset integrates satellite-derived vegetation indices and climate variables from

NOAA, soil properties from Google Earth Engine, methane emissions data from the Environmental

Protection Agency, and rice production statistics from USDA. We leverage various machine learning

models, including Explainable Boosting Machines, XGBoost, Ridge Linear Regression, Decision

Trees, LASSO, Random Forest, Support Vector Machines, and Convolutional Neural Networks for

predictions. XGBoost and EBM emerge as top performers, accurately predicting yields without

overfitting. A key finding reveals that while models struggle with out-of-time predictions, they

excel at out-of-season forecasts, accurately predicting yields as early as April-June of the growing

season. Feature importance analysis highlights soil properties, particularly pH and texture at various

depths, as critical predictors for both yield and emissions. This study also uniquely explores

yield-emissions trade-offs using the Non-dominated Sorting Genetic Algorithm II (NSGA-II),

revealing an unexpected positive correlation between yield improvement and methane emissions

reduction.
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4.2 Introduction

Rice is arguably the most important staple food crop globally, providing essential calories and

nutrition for more than 3 billion people, equivalent to over half of the world’s population (Hossain

& Fischer, 1995; Fageria, 2007). In Asia alone, rice comprises over 70% of total calorie intake

(Bishwajit et al., 2013), highlighting deep connections between rice yields and broader food security

challenges, particularly in developing nations (Bandumula, 2018; Maraseni et al., 2018; Bishwajit

et al., 2013). For example, Asia accounts for over 87% of total global rice production and 35% of

rice exports, dominated by major producers like China, India, Thailand, and Vietnam (Bandumula,

2018). However, efforts to expand rice cultivation are constrained by a combination of threats,

including land degradation, urban expansion on agricultural areas, and the mounting pressures of

global climate change manifested through shifts in temperature, rainfall, and extreme weather events

(Maraseni et al., 2018). Sustainably predicting and maintaining stable rice yields in the face of these

challenges remains an urgent priority with implications spanning from household food security to

global commodity markets.

At the same time, flooded rice paddies are also a major source of greenhouse gas (GHG)

emissions, accounting for upwards of 11% of total emissions from the agricultural sector (Maraseni

et al., 2018). This predominantly reflects substantial methane generation under the anaerobic soil

conditions associated with continuous flooding (Qian et al., 2023). For example, Chinese rice

paddies alone are estimated to contribute nearly 40% of the nation’s total agricultural methane

emissions (Li et al., 2006). While offering certain agronomic advantages, paddy flooding therefore

represents a tradeoff between production levels and environmental impact. As such, optimized water

management practices like mid-season drainage or intermittent flooding have potential to reduce

methane emissions from rice cultivation by over 50% (Qian et al., 2023; Li et al., 2006). However,

realizing these kinds of mitigation opportunities requires developing accurate models, calibrated to

85



regional or county-level scales, that can predict fluctuations in both rice yield and associated GHG

dynamics under different climate and management scenarios moving forward.

The U.S. rice industry is concentrated primarily across six rice-producing states—Arkansas,

California, Louisiana, Mississippi, Missouri, and Texas—which collectively harvested nearly 10.73

million tons of rice in 2021 (USDA Economic Research Service, 2024). This was cultivated over

2.8 million acres, mostly on small family farms that each contribute around $1 million to local

economies annually (USARice, 2024). In total, the U.S. rice industry generates over $34 billion

for the national economy and directly supports over 125,000 jobs across farming, processing, and

distribution activities (USARice, 2024). The United States is uniquely positioned as the world’s

fifth largest rice exporter, shipping 5% of global trade, despite accounting for less than 2% of total

production (USDA Economic Research Service, 2024). Domestically, Arkansas leads production

of long grain varieties while California specializes in medium and short grain rice. Moreover, the

United States achieves some of the highest rice yields globally through intensive irrigation and

advanced genetics (USDA Economic Research Service, 2024).

The importance of accurate rice yield forecasting extends beyond simple production estimates.

It plays a crucial role in informing agricultural policies, guiding resource allocation, and ensuring

food security. However, current forecasting methods often struggle to capture the complex interaction

of factors affecting rice yields, particularly in the face of changing climate conditions and the need

for sustainable farming practices. This study proposes a novel approach to address these challenges

by combining three key elements: comprehensive analysis of environmental data over space and

time, interpretable machine learning techniques, and methods to quantify prediction uncertainty. By

integrating these components, we aim to enhance our ability to forecast rice yields accurately while

also considering the environmental impact of rice production, particularly methane emissions.

This study focuses on the U.S. rice industry for several key reasons. First, the concentrated

nature of production across six states provides a manageable yet diverse study area which allows

for the analysis of varying climatic and soil conditions. Second, the U.S. rice industry’s high
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yields and advanced production techniques offer an opportunity to study best practices that could

potentially be applied globally. Third, as the fith major rice-exporting country in the world as of

2024 (Statista, 2024), understanding U.S. rice production dynamics has implications for global food

security and trade. Lastly, the availability of detailed, county-level data on rice production, climate,

and soil characteristics in the U.S. enables a robust analysis of the factors influencing rice yields

and associated greenhouse gas emissions.

According to the Environmental Protection Agency, the agriculture sector accounted for

10% of total U.S. GHG emissions in 2021 (Environmental Protection Agency, 2023). Major

sources from agriculture include nitrous oxide emissions from soil management activities like

fertilizer application, methane from enteric fermentation in livestock, and methane and nitrous oxide

emissions from manure management. While not broken out separately, rice cultivation contributes

to agriculture emissions through methane released from flooded paddies. Overall, emissions from

agriculture increased 7% from 1990 to 2021, highlighting the need for optimized management

practices to enhance productivity while mitigating climate impacts.

Current approaches to crop yield prediction often rely on traditional statistical methods or

complex machine learning models. Statistical methods, such as multiple linear regression or time

series analysis, offer simplicity and interpretability but may fail to capture complex, non-linear

relationships in agricultural systems. On the other hand, advanced machine learning techniques

like neural networks or random forests can model intricate patterns in data, potentially improving

prediction accuracy. However, these “black-box” models often lack transparency, making it difficult

for agricultural practitioners to understand and trust the underlying decision-making process (Hu

et al., 2023).The limitations of these existing methods have led to a growing interest in more

interpretable machine learning approaches.

In this context, the so-called “glass-box” machine learning methods, such as explainable

boosting machines (EBMs), have potential to elucidate the hidden relationships learned between

various environmental predictors and target crop yield outcomes (Celik et al., 2023). Rather than
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functioning as black boxes, techniques such as EBMs can identify and highlight the relative influence

of different variables, from rainfall to soil moisture, in determining yield estimates. Such model

interpretability and transparency is critical for generating actionable insights to guide breeding

efforts and optimized management strategies related to both rice production levels and associated

GHG emissions mitigation. However, transparent glass box methods have not yet been extensively

applied or validated in agricultural modeling contexts. Developing reliable approaches to predict

county-level rice yields, while accounting for spatiotemporal fluctuations in climate and advocating

for model explicability, is therefore an essential innovation to support regional food security planning

and greenhouse gas regulation.

While remote sensing and machine learning methods show promise for rice yield modeling,

major knowledge gaps persist in applying these techniques across different rice growing regions of

the United States. For example, the majority of previous efforts developing advanced yield prediction

models have focused on major cereal crops like maize and soybeans grown across the Midwest Corn

Belt (Huntington et al., 2020). Comparatively fewer studies have explored integration of climate,

soil, and remote sensing data specifically for rice yield forecasting concentrated in production areas

like California, Arkansas, Louisiana, and Mississippi (Espe et al., 2016).

Additionally, while mid-season drainage presents a promising avenue for mitigating methane

emissions from flooded paddies, broad scale implementation constraints exist due to limited

water control infrastructure, variability in farmer access to actionable information, and lack

of technical guidance on optimized drainage timing and duration (Qian et al., 2023). Most

prior assessments of drainage practices for methane regulation have occurred at relatively small

experimental scales. Therefore generating generalized insights into balancing county-level rice

yields and methane mitigation requires spatially extensive modeling, validated across heterogeneous

cultivated landscapes (Li et al., 2006). Furthermore, drainage and other water management decisions

cannot occur in isolation—rather they intersect closely with cultivar selection, planting schedules,

fertilizer application, and overall intensification strategies which collectively determine yields
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(Fageria, 2007; Qian et al., 2023). Disentangling these complex agro-environmental relationships

places a premium on interpretable machine learning which illuminates the relative influence of

different variables.

Rice agriculture in the United States is deeply intertwined with economic policies, market

dynamics, and the livelihoods of farming communities concentrated across Southern and Central

California, Arkansas, Louisiana, Mississippi, and Missouri (Espe et al., 2016). While biophysical

crop-climate modeling helps characterize yield potentials and constraints, translating these insights

into tangible production outcomes requires integrating social dimensions like agricultural policies,

commodity prices, consumerdemand, and farmerdecision-making (Baker, 2004). This encompasses

factors ranging from crop insurance subsidies, to efficiency of extension services, to strength of

market incentives rewarding sustainable intensification over extensification (Espe et al., 2016).

This research aims to advance the field of data-driven rice yield modeling in the United

States, with a particular focus on integrating environmental factors and emissions. The primary

goals are: (1) to develop and validate machine learning models for predicting county-level rice

yields across major U.S. rice-growing regions using a combination of remote sensing, climate, and

soil data; (2) to assess the spatial and temporal robustness of these predictive models; (3) to identify

and quantify the key environmental drivers influencing rice yields through interpretable machine

learning techniques; and (4) to explore the potential trade-offs between maximizing rice yields and

minimizing rice-derived methane emissions.

This study makes multiple key contributions to the literature. First, to the best of our

knowledge, it is the first application focusing on U.S. county-level rice yield prediction by

harnessing remote sensing and machine learning methods. While extensive research has explored

these techniques for major cereal crops across the Midwest, rice has received comparatively little

attention despite strong linkages to domestic agricultural policies and global food security through

export markets. Second, the methodology blends state-of-the-art spatiotemporal analytics with

transparent, interpretable machine learning techniques to not only forecast yields but also elucidate
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the environmental drivers and quantify predictive uncertainties. The integration of satellite

mapping of crop health proxies with auxiliary climate and soil datasets is demonstrated across

the main rice-growing states. Finally, the analysis uniquely assesses tradeoffs around maximizing

production versus minimizing greenhouse gas emissions, especially methane, which comprises a

disproportionate share of the rice agricultural footprint. While studies have appraised aspects like

water management practices for emissions control in Asian contexts, this study is the first targeting

a major exporter in the Western hemisphere.

Our findings reveal several key insights. Explainable Boosting Machine emerged as a

powerful glass-box model for rice yield prediction. The models demonstrate strong spatial robustness

and accurately capture yield patterns across different counties. Temporal analysis indicates that

while the models perform well within growing seasons, their ability to generalize to future years

remains limited, which emphasizes the need for regular model updates. Feature importance

analysis highlights soil properties, particularly pH and texture at various depths, as critical factors

that influence rice yields. Water-related variables, vegetation indices, and climate factors also

play significant roles. Importantly, our models can provide accurate yield predictions as early

as the beginning of the growing season (April-June), which offers valuable insights for farmers’

decision-making. Finally, we uncovered a positive correlation between yield improvement and

emissions reduction, which suggests that practices that enhance productivity also contribute to lower

methane emissions.

The rest of the paper is structured as follows: Section 3 provides a comprehensive literature

review, Section 4 details the data used in the study, Section 5 outlines the methods employed,

Section 6 presents the results in depth, Section 7 discusses the implications of our findings, and

Section 8 concludes with policy implications.
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4.3 Literature Review

A rapidly accelerating body of literature has explored integration of satellite remote sensing and

machine learning techniques for crop yield modeling and forecasting. This review synthesizes

recent research in this interdisciplinary domain, with particular emphasis on efforts targeting rice

yield prediction across different geographical contexts spanning major production regions from

Asia to the United States. A seminal study by Sun et al. (2019) proposed a combined convolutional

and recurrent neural network architecture for soybean yield forecasting at the U.S. county level.

Their model takes as input time series of gridded climate data, Moderate Resolution Imaging

Spectroradiometer (MODIS) land surface temperature, and MODIS surface reflectance converted to

histogram-based tensors. These remote sensing and meteorological datasets are synthesized using

the cloud-based Google Earth Engine platform to demonstrate scalable analytics. When evaluated

against standalone Long-Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN)

benchmarks, the CNN-LSTM hybrid demonstrated superior accuracy for both end-of-season and

crucially within-season predictions. The authors note the potential to extend their deep learning

fusion approach to other major crops like maize and wheat as well as finer spatial scales given

sufficient training data. One limitation is the reliance on black-box neural networks which fail to

provide intrinsic explanations.

In a related analysis focused on winter wheat in the United States, Feng et al. (2021) employed

a spatiotemporally weighted neural network (GTWNN) to explicitly account for non-stationarity

in yield response across both space and time. Their GTWNN integrates satellite indices and

meteorological data similar to Sun et al. (2019) but uses an explicit geotemporal weighting kernel

in place of the generic deep network architecture. Side-by-side comparisons against support vector

regression, time-series neural networks, and geotemporal regression verified the advantages of the

proposed special-purpose architecture for this crop. However, a lack of model transparency persists
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as a limitation, motivating future work to open the black box through methods like SHAP (SHapley

Additive exPlanations) value analysis or representative feature extraction from inner layers.

Beyond the U.S. context, multiple recent studies have tailored machine learning models

specifically for rice yield prediction spanning top production zones in Asia. For instance, Cao

et al. (2021) developed county-level random forest, LSTM, and LASSO regression models to

forecast yields across all rice growing regions of China using vegetation indices, climate, and soil

datasets synthesized within the Google Earth Engine cloud platform. The LSTM convincingly

outperformed the alternate machine learning approaches, demonstrating potential for national scale

yield monitoring leveraging only publicly available remote sensing resources. However, the role

of notorious methane emissions stemming from Chinese rice paddies was not directly assessed,

representing an area for further integration with climate and agricultural emissions modeling.

In analogous efforts demonstrating the portability of integrated yield forecasting pipelines,

Park et al. (2018) combined satellite-derived NDVI measures from the Moderate Resolution

Imaging Spectroradiometer (MODIS) with an artificial neural network model incorporating spatial

interpolation of climate inputs to predict rice yields and climate impacts in South Korea at high

resolution. Meanwhile Ji et al. (2007) demonstrated the superiority of neural networks over linear

regression alternatives for forecasting yields specifically in mountainous terrain across numerous

sites in China’s Fujian province. However, both studies were limited to demonstration over regional

analysis domains.

Beyond Asia, remote sensing and crop modeling have also been combined for yield prediction

and benchmarking in major rice exporters like the United States. As an example, Espe et al. (2016)

employed the ORYZA model to estimate rice yield potential across environments encompassing

the majority of total U.S. rice area. The significance of elevated nighttime temperatures and cold

shock events for simulating yields in California rice systems emerged as a key insight, underscoring

the value of process-based approaches effective in new geographical areas. However, such crop
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models require extensive parameterization and calibration. Meanwhile statistical methods offer

greater flexibility but faced limitations extrapolating locally derived relationships.

In terms of underlying methodology for yield prediction, while deep neural networks and

tree-ensembles have shown immense promise, they are often criticized as opaque “black box”

systems. Very recently, glass box methods like EBM have been proposed as an interpretable

alternative (Celik et al., 2023). Transparent and trustworthy modeling approaches like EBM, which

have shown promise in cotton yield prediction using multisource data, are prime candidates for

application in rice forecasting and other agricultural contexts, offering the potential to unpack

complex relationships and provide interpretable insights.

Finally, zooming to the global scale, multiple analyses point to rice agriculture as a pivotal

nexus balancing productivity gains, emissions mitigation imperatives, and food security for hundreds

of millions of vulnerable smallholder producers and consumers across monsoon Asia (Maraseni

et al., 2018; Qian et al., 2023).2 For instance, Qian et al. (2023) estimate that optimized water

management via intermittent flooding could reduce methane emissions from Chinese rice paddies

by over 50% while largely maintaining yields and output. However, uncertainties and assumptions

remain regarding both in situ emissions baselines as well as ideal optimized implementation schemes.

How findings would translate to alternate nations in the region further compounds the challenges.

Therefore improved quantification using data resources like satellite mapping could prove invaluable.

While advancements have been made in forecasting accuracy and spatiotemporal modeling,

challenges remain in model interpretability, emissions considerations, andcross-regional applicability.

We address these gaps by combining interpretable machine learning techniques with comprehensive

spatiotemporal data to predict both rice yields and associated methane emissions in the U.S. context.

Our approach aims to balance productivity, environmental sustainability, and food security concerns

2Monsoon Asia encompasses Asian countries that experience substantial seasonal rainfall and dry periods due to the
monsoon winds. This climatic pattern is essential for agricultural practices, especially rice farming, and significantly
influences the socioeconomic conditions of the region.
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and thus contributes to the development of more comprehensive and actionable rice yield prediction

models.

4.4 Data

4.4.1 Study Area

In the United States, rice cultivation is concentrated in several key regions, each with unique

agro-ecological conditions and management practices that influence productivity and sustainability

outcomes. The study focuses on six main rice-growing states: Arkansas (AR), Louisiana (LA),

Missouri (MO), Mississippi (MS), Texas (TX), and California (CA). As shown in Figure 4.1,

these states encompass the four primary rice-producing regions in the country: the Arkansas Grand

Prairie, the Mississippi Delta (parts of Arkansas, Mississippi, Missouri, and Louisiana), the Gulf

Coast (Texas and Southwest Louisiana), and the Sacramento Valley of California.

Figure 4.1: States and Counties (Darker Areas) where Rice is Grown.
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Each of these regions specializes in specific rice variety, generally categorized by grain

length (long, medium, or short).3 Long-grain rice accounts for approximately 75% of U.S. rice

production and is primarily grown in the southern states. Medium-grain rice makes up about 24%

of the total production and is mainly cultivated in California and Arkansas. Short-grain rice, almost

exclusively grown in California, represents the remaining 1% of U.S. rice production (USDA

Economic Research Service, 2024).

In 2021, the United States produced 10.73 million tons of rough rice, slightly above the

2019 crop but down 16% from 2020. The 2022 rice crop further declined to 8.98 million tons,

largely due to drought conditions in California (USDA Economic Research Service, 2024). These

fluctuations in production highlight the importance of understanding the spatiotemporal drivers of

rice yields and developing robust prediction models to support sustainable production efforts. The

darker areas in Figure 4.1 represent the specific counties involved in rice cultivation within each

state. Initially, 94 counties were considered for the study; however, 27 were dropped due to lack of

data across variables, resulting in a final set of 67 counties.

4.4.2 Data Collection and Processing

The dataset spans from 2008 to 2022 and includes climate variables, soil properties, rice production

data, satellite-derived vegetation indices, and rice-derived methane emissions. We collect data from

various sources and process them to align with the county-level spatial resolution and monthly

temporal resolution. Table 4.1 provides an overview of the data sources and variables used in this

study.

The climate variables are obtained from the NationalOceanic andAtmospheric Administration

(NOAA).4 These include average temperature (tavg), maximum temperature (tmax), minimum

temperature (tmin), precipitation (pcp), cooling degree days (cdd), heating degree days (hdd),

3In our models, we do not include rice type because most of the yield data reports published by USDA do not specify
the type of rice.

4NOAA climate data link: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/time-series
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Table 4.1: Summary of Data Sources and Variables.

Variable Source Content

Climate Variables NOAA average temperature, maximum
temperature, minimum temperature,
precipitation, cooling degree days,
heating degree days, palmer drought
severity index, palmer hydrological
drought index, palmer modified drought
index, palmer z-index

Soil Properties GEE carbon content, water content,
pH, texture

Rice Data USDA yield, production, area planted,
area harvested

Satellite Data NOAA normalized difference vegetation index,
leaf area index, fraction of absorbed
photosynthetically active radiation

Emissions Data (Maasakkers et al., 2023) 𝐶𝐻4

Notes: NOAA: National Oceanic and Atmospheric Administration; GEE: Google Earth Engine; USDA: United States
Department of Agriculture.

Palmer Drought Severity Index (pdsi), Palmer Hydrological Drought Index (phdi), Palmer Modified

Drought Index (pmdi), and Palmer Z-Index (zndx). The data are programmatically downloaded at

the county and monthly level through the NOAA Application Programming Interface (API).

Soil properties, including carbon content,5 water content, pH, and texture, are obtained from

the Google Earth Engine (GEE) platform6 using the GEE API. The soil pH data (Hengl, 2018a),

soil water content data (Hengl & Gupta, 2019), and soil texture classes data (Hengl, 2018b) are

collected at 250 m resolution for six standard depths (0, 10, 30, 60, 100, and 200 cm). As these soil

properties do not change significantly in the short term, the data is reported at the yearly level.

Rice production data, including yield, production, area planted, and area harvested, are

acquired from the United States Department of Agriculture (USDA) through their API.7 These

data are available at the yearly level. Satellite-derived vegetation indices, namely NDVI (Vermote,

5This variable is later dropped due to data sparsity.
6Google Earth Engine data link: https://developers.google.com/earth-engine/datasets/catalog
7USDA QuickStats data link: https://quickstats.nass.usda.gov/
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2019b), Leaf Area Index (LAI), and Fraction of Absorbed Photosynthetically Active Radiation

(FAPAR) (Vermote, 2019a), are obtained from the NOAA Terrestrial Climate Data Records.8 The

data are available at the daily level, but we calculate and use the mean at the monthly level given that

there are many days throughout a particular month with poor data quality due to adverse weather

conditions. The satellite data are stored on Amazon S3 and was accessed using the S3 API.

Methane emissions data, specifically rice-related methane emissions, are obtained from

the gridded EPA U.S. methane greenhouse gas inventory (Maasakkers et al., 2023).9 The dataset,

available from 2012 to 2018, includes annual methane emission maps with 0.1° x 0.1° spatial

resolution (approximately 10 x 10 km) and monthly temporal resolution for the contiguous United

States (CONUS). To calculate the monthly emissions for rice cultivation, we utilize the conversion

factor provided by Maasakkers et al. (2023).10 The conversion factor transforms the monthly scale

factors into total emissions, taking into account the spatial resolution, number of days in each month,

and the molar mass of methane.

To obtain county-level rice emissions, we first scale the methane emissions data to match

the spatial resolution of the rice grid cells derived from the USDA Cropland Data Layers (USDA

National Agricultural Statistics Service, 2024). We then perform a spatial intersection between the

scaled methane emissions data and the rice grid cells to identify the emissions specifically associated

with rice cultivation areas. Finally, we aggregate the emissions of rice fields within each county

to obtain total county-level rice emissions. Figure 4.2 shows the distribution of average yield and

rice-derived methane emissions by county. Counties in California seem to have the lowest rice-related

emissions despite having the highest rice yields. This decoupling of high productivity from high

emissions can be attributed to several factors, including strict environmental regulations, adoption

8NOAA terrestrial climate data records: https://www.ncei.noaa.gov/products/climate-data-records/terrestrial
9Gridded EPA U.S. Methane Greenhouse Gas Inventory: https://zenodo.org/records/8367082
10The conversion factor was calculated using the following constants: Avogadro’s number (6.022 × 1023 molecules

per mole), molar mass of methane (16.04 × 10−12 Tg per mole), and the number of seconds in a day (86400). The grid
cell area was determined based on the latitude and the 0.1° x 0.1° spatial resolution. For each grid cell and time point,
the number of days in the month was considered to account for leap years. The resulting emissions in Tg were obtained
by multiplying the monthly scale factors by the calculated conversion factor and the grid cell area.
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of water-efficient farming techniques such as alternate wetting and drying, and implementation of

methane-reducing practices like dry seeding and residue (i.e., rice straw) management. While this

pattern isn’t universal across all counties, it provides evidence that improving yields while reducing

environmental impact is achievable with appropriate agricultural practices and policy frameworks.

(a) Average Rice Yield by County.

(b) Average Methane Emissions by County.

Figure 4.2: Comparison of Average Yield and Rice-based Methane Emissions by County.
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To ensure spatial consistency and accuracy, the satellite and soil property data are also

processed using the USDA Cropland Data Layers shapefiles to identify the specific pixel-level

grids where rice is grown in each county. The average values of these grids are then calculated to

represent the county-level averages. Additionally, the methane emissions data are available for a

shorter period (2012-2018) compared to the other variables (2008-2022). Consequently, models

that include emissions data have eight fewer years of data available for analysis. This results in

3,555 observations for the longer dataset and 1,710 observations for the shorter dataset, both across

67 counties.

This sample size and time span are comparable to those used in similar studies predicting

crop yields in the U.S. context. For instance, Feng et al. (2021) employed data from 2008 to 2019

for winter wheat yield prediction at the county level, while Celik et al. (2023) utilized data from

2017 to 2021 for cotton yield estimation across 214 counties. Furthermore, it is common in crop

yield prediction studies to use variables at different temporal frequencies. For example, our study

incorporates daily, monthly, and yearly data, similar to the approach taken by Sun et al. (2019), Celik

et al. (2023), and Feng et al. (2021), who also integrated data at various temporal resolutions.11

Table 4.2 presents the summary statistics for the variables used in this study, along with their

respective units and spatial resolutions. The satellite-derived vegetation indices, NDVI, LAI, and

FAPAR, have mean values of 0.38, 1.23, and 0.43, respectively, and are measured at a 0.05° spatial

resolution. Climate variables such as average temperature, maximum temperature, and minimum

temperature are measured in degrees Fahrenheit (°F), with mean values of 74.99, 85.77, and 64.18,

respectively. Precipitation has a mean value of 4.13 inches, while cooling degree days and heating

degree days have mean values of 332.41 and 25.79 degree days, respectively. The drought indices

have mean values close to zero, indicating relatively normal conditions on average.

11For the variables with daily and monthly frequencies, we only include data for the months of the
growing season (from planting until harvest) for a particular state. This information can be found here:
https://www.ers.usda.gov/topics/crops/rice/rice-sector-at-a-glance/
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Rice production variables, including area harvested, area planted, production, and yield,

exhibit substantial variability across the counties. The mean area harvested and area planted are

38,243.84 and 40,984.75 acres, respectively. The mean production is 158,683.784 tons, while the

mean yield is 7,228.99 pounds per acre (lb/acre). We report summary statistics of soil properties

are reported only at 30 cm depth for the sake of space. The spatial resolution for the soil properties

is 250 meters. The table shows considerable variation for the levels of pH and water content across

the study area. The mean soil pH in water is 60.40, and the mean soil water content is 24.23%.

Table 4.2: Summary Statistics of Variables with Units and Resolution.

Variable Mean Std Min Max Units

NDVI 0.38 0.13 0.13 0.82 index: 0.05◦
Average temperature 74.99 7.27 49.90 88.10 ◦F
Maximum temperature 85.77 7.15 62.00 99.90 ◦F
Minimum temperature 64.18 8.05 37.90 78.70 ◦F
Precipitation 4.13 2.87 0.00 17.29 inches
Cooling degree days 332.41 179.59 0.00 715.00 degree days
Heating degree days 25.79 54.68 0.00 467.00 degree days
Palmer drought severity index 0.07 2.43 -8.97 6.04 index
Palmer hydrological drought index 0.24 2.53 -8.97 6.12 index
Z-index 0.20 2.06 -6.16 8.82 index
Area harvested 38243.84 33881.12 232.00 163000.00 acres
Area planted 40984.75 34357.68 600.00 164000.00 acres
Production 158683.78 148193.64 663.82 778400 tons
Yield 7228.99 884.89 3620.00 10600.00 lb/acre
Soil pH in water (30cm) 60.40 6.65 50.00 78.40 pHw : 250 meters
Soil water Content (30cm) 24.23 1.92 19.33 32.53 %: 250 meters
LAI 1.23 0.60 0.00 3.55 index: 0.05◦
FAPAR 0.43 0.14 0.00 0.75 index: 0.05◦

Notes: We use crop layers to compute averages at the county for the climate, soil, and satellite variables. Rice-related
variables are at the county level.

4.5 Methods

Prior to conducting the primary analysis, we perform a series of diagnostic tests on the dataset to

assess data quality, identify potential anomalies, and make necessary adjustments. In the following
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subsection, we delineate the diagnostic tests performed. Readers may refer to the appendix for the

complete interpretation of the results of these diagnostic tests. We leverage the PiML Python library

(Sudjianto et al., 2023) to conduct some of these analyses.

4.5.1 Diagnostic Tests

For each feature, we visualize the distribution using appropriate graph-based techniques such as

histograms for numerical variables and frequency-based bar plots for categorical variables. For

the bivariate analysis, we compute the Pearson’s correlation coefficient to quantify pairwise linear

relationships.

Outliers can have a substantial impact on the analysis and performance of ML models. To

identify potential outliers in the numeric features, we employ a boxplot-based approach. Each

boxplot provides a visual representation of the median, interquartile range (IQR), and whiskers

extending to the most extreme data points within 1.5 times the IQR from the box edges. Data points

falling outside the whiskers are considered potential outliers.

Data drift refers to the phenomenon where the statistical properties of the data change over

time. Assessing data drift is crucial to ensure that the distributions of the features in the testing

dataset are not fundamentally different than those of the training dataset. We focus on marginal

distribution drift, which assesses the distance between the marginal distributions of each feature in

the training and testing sets. The Population Stability Index (PSI) is used to quantify the difference

between two probability distributions. A feature with a significantly higher PSI value compared to

other features indicates a greater degree of data drift for that specific feature. This implies that the

marginal distribution of the feature has changed substantially between the training and testing sets,

potentially leading to reduced model performance and generalization ability.

To perform the data drift test, we conduct 100 random 5-fold splits of the dataset using the

K-Fold cross-validation technique. For each split, we calculate the PSI between the training and

testing sets for each feature. The PSI between two distributions 𝑃 and 𝑄 is defined as:
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PSI(𝑃,𝑄) =
𝐵∑︁
𝑖=1

(𝑝𝑖 − 𝑞𝑖) ln
𝑝𝑖

𝑞𝑖
(4.1)

where 𝐵 represents the number of bins, and 𝑝𝑖 and 𝑞𝑖 denote the proportions of the two samples in

each bin. After completing all the splits and repeats, we calculate the average PSI for each feature

across all instances.

4.5.2 Spatiotemporal Analysis

The spatiotemporal analysis aims to disentangle complex relationships between rice yields and

various environmental factors, including climate variables, soil properties, and satellite-derived

indices over space and time. To investigate the spatial correlations between rice yields and

environmental factors, we calculate Pearson’s correlation coefficient for each county. Let 𝑌𝑐 denote

the rice yield for county 𝑐, and 𝑋𝑐,𝑣 represent the 𝑣-th environmental factor for county 𝑐. The

correlation coefficient for county 𝑐’s rice yield and environmental factor 𝑣, 𝜌𝑐,𝑣 , is calculated as:

𝜌𝑐,𝑣 =

∑𝑇
𝑡=1(𝑌𝑐,𝑡 − 𝑌𝑐) (𝑋𝑐,𝑡,𝑣 − 𝑋̄𝑐,𝑣)√︃∑𝑇

𝑡=1(𝑌𝑐,𝑡 − 𝑌𝑐)2
√︃∑𝑇

𝑡=1(𝑋𝑐,𝑡,𝑣 − 𝑋̄𝑐,𝑣)2
(4.2)

where 𝑌𝑐,𝑡 and 𝑋𝑐,𝑡,𝑣 are the rice yield and the 𝑣-th environmental factor for county 𝑐 at year 𝑡, and

𝑌𝑐 and 𝑋̄𝑐,𝑣 are their mean values over the study period 𝑇 , respectively.

To investigate the temporal trends of the interaction of each feature with rice yields, we

calculate Pearson’s correlation coefficient between rice yields and environmental factors for each

county and each month. We then average these across all counties to obtain the overall correlation

between rice yields and each environmental factor for each month of the growing season. This

allows us to capture the temporal patterns of correlation. The correlation coefficient for rice yields

in county 𝑐, environmental factor 𝑣 for month 𝑚 is denoted as 𝜌𝑐,𝑣,𝑚 and is calculated as:
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𝜌𝑐,𝑣,𝑚 =

∑𝑇
𝑡=1(𝑌𝑐,𝑡 − 𝑌𝑐) (𝑋𝑐,𝑡,𝑣,𝑚 − 𝑋̄𝑐,𝑣,𝑚)√︃∑𝑇

𝑡=1(𝑌𝑐,𝑡 − 𝑌𝑐)2
√︃∑𝑇

𝑡=1(𝑋𝑐,𝑡,𝑣,𝑚 − 𝑋̄𝑐,𝑣,𝑚)2
(4.3)

where 𝑌𝑐,𝑡 and 𝑋𝑐,𝑡,𝑣,𝑚 are the rice yields and the 𝑣-th environmental factor for county 𝑐 in month 𝑚

at year 𝑡, and 𝑌𝑐 and 𝑋̄𝑐,𝑣,𝑚 are the mean values of rice yields and the 𝑣-th environmental factor for

county 𝑐 in month 𝑚 over the study period 𝑇 , respectively.

The spatiotemporal correlations between rice yields and environmental factors are visualized

using maps for spatial correlations and time series boxplots for temporal correlations. The spatial

correlation maps show the average correlation for each county, while the temporal boxplots display

the distribution of correlations across different months to highlight the variability and trends over

time.

4.5.3 Yield Analysis

The yield analysis focuses on developing and comparing various machine learning models for

predicting rice yields at the county level. Let X𝑐 = [𝑋𝑐,1, 𝑋𝑐,2, ..., 𝑋𝑐,𝑝] denote the input features for

county 𝑐, where 𝑝 is the number of features, and let 𝑌𝑐 represent the corresponding rice yield. The

goal of the yield analysis is to learn a function 𝑓 that maps the input features X𝑐 to the yield 𝑌𝑐, i.e.,

𝑓 (X𝑐) = 𝑌𝑐. As presented in the data section, our dataset has a temporal mismatch: 𝑌𝑐 is at the annual

level, while X𝑐 contains monthly and yearly data.12 In the context of agricultural yield prediction

studies, it is common to use higher-frequency input data to predict lower-frequency outcomes, as

machine learning models can handle high-dimensional data and identify complex relationships. For

instance, Sun et al. (2019) and Feng et al. (2021) also utilized monthly environmental data to predict

annual crop yields in their studies on soybean and winter wheat, respectively. One of the drawbacks

of this is the introduction of noise which can lead to overfitting. To assess the performance of the

12We aggregate the three variables that are at the daily level (NDVI, LAI, and FAPAR) to the monthly level to avoid
data redundancy since the majority of the features are at the monthly level.
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models used and ensure the robustness of our results, we employ a 5-fold cross-validation approach

as mentioned earlier.13

Feature Engineering

To capture the complex relationships between environmental factors and rice yields, we perform

feature engineering by creating interaction terms. We include interactions between the variable

month and the climate variables, as well as the satellite and soil variables. Additionally, we create

interaction terms between the maximum temperature and all other features except for the county

code.14 These interaction terms allow the models to capture the time-varying (seasonality) and

temperature-dependent effects of these factors on rice yields.

From an agronomic perspective, including these interaction terms is crucial for capturing the

stage-specific effects of environmental factors on rice growth and yield formation. Rice plants have

specific growth stages, each with different requirements for water, temperature, and solar radiation.

The impact of these factors on rice yields can vary significantly depending on the growth stage at

which they occur. For example, during the vegetative phase, rice plants require adequate water and

nutrients for proper growth and development, while during the reproductive phase, they are more

sensitive to temperature extremes. By including interactions with month and maximum temperature,

the models can capture these stage-specific effects and provide a more accurate representation of

the complex relationships between environmental conditions, crop growth, and yield formation

throughout the growing season.

To handle the wide ranges of feature values, we also apply min-max scaling to all numeric

variables. Min-max scaling transforms the features to a common scale between 0 and 1, which can

improve the convergence and performance of many machine learning algorithms. The min-max

scaling formula is given by:

13We report cross-validated metrics throughout the results to ensure that our results are not due to random luck.
14We create a unique identifier for each county by concatenating the two-digit state FIPS code to the respective

three-letter county FIPS code. This is important to ensure that counties in different states with the same name are not
treated as one.
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𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(4.4)

where 𝑋 is the original feature value, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum values of the

feature, respectively, and 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 is the scaled feature value.

Model Development and Evaluation

For glass-box models, we employ EBM, Ridge Linear Regression, Decision Trees, and LASSO. The

EBM model (Nori et al., 2019), an additive model that learns feature contributions while maintaining

interpretability, is compared to other glass-box models such as Ridge Linear Regression, which

mitigates overfitting through L2 regularization, Decision Trees that recursively partition the feature

space based on the most informative features, and LASSO, which performs feature selection via L1

regularization.

Among the black-box models, CNN are employed to capture spatial dependencies in the input

features, while ensemble methods like Random Forest and Extreme Gradient Boosting (XGBoost)

are used to combine multiple decision trees and sequentially add weak learners to minimize residual

errors, respectively. Support Vector Machines (SVM), a kernel-based method that finds the optimal

hyperplane to separate the feature space into different classes, is also included in the comparison.

Hyperparameter tuning is performed using GridSearch to find the best combination of

hyperparameters for each model. The models are evaluated using various metrics, including mean

absolute error (MAE), root mean squared error (RMSE), and R-squared (𝑅2), which are calculated

using cross-validation. These metrics are defined as follows:
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𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑐=1

|𝑌𝑐 − 𝑌𝑐 | (4.5)

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑐=1

(𝑌𝑐 − 𝑌𝑐)2 (4.6)

𝑅2 = 1 −
∑𝑛
𝑐=1(𝑌𝑐 − 𝑌𝑐)2∑𝑛
𝑐=1(𝑌𝑐 − 𝑌 )2 (4.7)

where 𝑌𝑐 is the predicted yield for county 𝑐, and 𝑌 is the mean yield of the training set.

Feature importance is assessed using SHAP (SHapley Additive exPlanations) values

(Lundberg & Lee, 2017), which provide a unified framework for interpreting the output of any

machine learning model by computing the contribution of each feature to the final prediction. The

SHAP value for feature 𝑣 and county (i.e., observation) 𝑐 is given by:

𝜙𝑐,𝑣 =
∑︁

𝑆⊆𝐹\{𝑣}

|𝑆 |!(𝑝 − |𝑆 | − 1)!
𝑝!

[ 𝑓𝑆 (X𝑐,𝑆∪{𝑣}) − 𝑓𝑆 (X𝑐,𝑆)] (4.8)

where 𝐹 is the set of all features, 𝑆 is a subset of features, and 𝑓𝑆 is the model trained on the subset

𝑆.15

Robustness Analyses

Spatial robustness is evaluated using maps that compare actual and predicted rice yields across

different counties or regions. Any substantial discrepancies between the predicted and actual yield

values would be evident in these maps. We expect the models to perform well for a majority of the

spatial units, with similar patterns emerging between the actual and predicted yield maps. However,

some variability is anticipated, particularly in regions with unique micro-climates, soil conditions,

or management practices that may not be fully captured by the input features.

15For ML algorithms such as EBM that do not support SHAP, we use their respective built-in functions to obtain
feature importance.
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Temporal robustness is evaluated using an out-of-time validation approach, where the models

are trained using data from earlier years (e.g., 2008-2018) and tested on later years (e.g., 2019-2022).

The performance metrics are computed for each year to assess the model’s ability to generalize

over time. Finally, the optimal timing for yield prediction is determined by comparing the model

performance when using data from the beginning of the season (e.g., April-June) versus the late

season (e.g., July-September). The earliest point in the growing season when yield predictions can

be made with acceptable accuracy is identified.

4.5.4 Yield-Emissions Trade-off Analysis

While maximizing rice yields is a primary goal for rice farmers, it is increasingly important to

consider the environmental impact of rice cultivation practices, particularly methane emissions. We

explore the trade-offs between rice yields and rice-derived methane emissions using multi-objective

optimization techniques. By understanding these trade-offs, we aim to identify strategies that enable

rice farmers to maintain high yields while minimizing the methane footprint of their rice production

systems. We use the EBM model developed in the previous section for yield and emissions prediction.

These models serve as the foundation for our multi-objective optimization approach. As mentioned

before, we have fewer years for this analysis. As a result, we retrain the models using the same

set of features for predicting yield and emissions.16 The multi-objective optimization problem is

formulated as follows:

max
𝑥

[ 𝑓𝑦 (𝑥),− 𝑓𝑒 (𝑥)] (4.9)

where 𝑓𝑦 (𝑥) represents the predicted yield 𝑦̂ and 𝑓𝑒 (𝑥) represents the predicted emissions 𝑒, both

obtained from the EBM models. The goal is to maximize yield while minimizing emissions, subject

to constraints on the input variables 𝑥, defined by their feasible ranges in the dataset.

16Since we need data alignment for the multi-objective function, the yield model needs to be retrained given that we
have emissions data for a shorter timeframe. We report the performance metrics for both models in the results section,
along with the sorted important features.
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We utilize the Non-dominated Sorting Genetic Algorithm II (NSGA-II) of Deb et al. (2002)

to solve this multi-objective optimization problem. NSGA-II is an evolutionary algorithm that

efficiently generates a set of Pareto-optimal solutions, representing the trade-offs between objectives.

The algorithm operates on a population of candidate solutions, evolving them over generations

using genetic operators such as selection, crossover, and mutation.17

In our implementation, we configure NSGA-II with the following settings: a population

size of 100 solutions, 100 new solutions created in each generation, random sampling for the initial

population, simulated binary crossover with a probability of 0.9 and a distribution index of 15,

polynomial mutation with a distribution index of 20, and duplicate elimination enabled to ensure

diversity in the population.18 This configuration allows NSGA-II to explore a wide range of potential

solutions while maintaining diversity and efficiently converging towards the Pareto-optimal front.

To explore a wide range of trade-off scenarios, we vary the weights assigned to the yield and

emissions objectives using a linear space from 0 to 1 with 100 evenly spaced points. For each weight

combination, the objectives are combined into a weighted sum as follows:

𝑓𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 (𝑥) = 𝑤𝑦 · (− 𝑓𝑦 (𝑥)) + 𝑤𝑒 · 𝑓𝑒 (𝑥) (4.10)

where𝑤𝑦 represents the weight for yield and𝑤𝑒 represents the weight for emissions, with𝑤𝑦+𝑤𝑒 = 1.

The Pareto-optimal solutions obtained from the multi-objective optimization are visualized

using a comprehensive trade-off plot. We then look at the trade-off plot to identify the “sweet spot”

that balances the objectives of maximizing rice yield and minimizing methane emissions. Once the

optimal trade-off point is determined, we extract the corresponding values for each input variable

17This algorithm was initially developed in the biology field but has been widely used in otherfields such as engineering,
economics, and computer science, given its ability to efficiently solve complex multi-objective optimization problems
and find a set of Pareto-optimal solutions that represent the best trade-offs between conflicting objectives.

18These NSGA-II settings balance exploration (searching widely in the solution space) and exploitation (refining
promising solutions): (1) Population size of 100 balances diversity and computational cost. (2) 100 new solutions
per generation ensures full population replacement. (3) Random initial sampling promotes diversity. (4) Simulated
binary crossover (probability 0.9, distribution index 15) encourages exploration while focusing on local exploitation. (5)
Polynomial mutation (distribution index 20) allows for fine-tuning (i.e, small adjustments to gene values). (6) Duplicate
elimination maintains population diversity.
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from the associated Pareto-optimal solution. This optimal trade-off point represents a specific

combination of yield and emissions weights that provides the most desirable outcome in terms of

both agricultural productivity and environmental sustainability.

4.6 Results

4.6.1 Diagnostic Tests

The extended results of the diagnostic tests are presented in the appendix. Climate variables

show relatively symmetric distributions, with temperature-related variables approximating normal

distributions. Soil pH variables display positively skewed distributions, indicating a prevalence of

lower pH values across the study area. Rice production and area-related variables exhibit positive

skewness, suggesting the presence of a few large-scale production sites among predominantly

smaller cultivation areas. Strong positive correlations exist among temperature-related variables

and cooling degree days, while precipitation shows moderate negative correlations with these

variables. Soil texture strongly correlates with water content and moderately with soil pH, reflecting

the influence of soil composition on water retention and chemical properties. Satellite-derived

vegetation indices show positive correlations with each other and moderate positive correlations

with temperature-related variables. Outlier detection reveals some extreme values, particularly in

the heating degree days variable, which we subsequently remove from the analysis. Data drift tests

identify significant changes in the distributions of average temperature, precipitation, and production

variables over time, while soil texture features remain relatively stable. These diagnostic results

inform subsequent data preprocessing steps and model selection.

4.6.2 Spatiotemporal Analysis

Spatial Analysis.
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For brevity, we focus on a subset of key variables representing different categories: NDVI, maximum

temperature, precipitation, palmer drought severity index, production, soil pH, soil water content

and soil texture class at 60 cm depth. Figure 4.3 shows the spatiotemporal subplot for each of the

aforementioned variables. At the spatial level, NDVI shows a fairly consistent positive association

with yields across most counties, indicating that healthier vegetation tends to support higher

productivity. However, the strength of this relationship does vary, with the strongest correlations

found in certain counties of California, Texas, and Arkansas, while a few counties in Arkansas and

Mississippi show little to no correlation.

Temperature effects on yields are less spatially consistent but are negative overall, suggesting

that higher maximum temperatures tend to slightly reduce rice yields in most counties. The strongest

negative effects are seen in parts of Louisiana and Texas, while some counties in Mississippi and

California show neutral to slightly positive temperature impacts. Precipitation and yield correlations

vary a lot geographically, spanning from moderately negative to moderately positive across the

study region. The most beneficial precipitation effects are found in some counties in Texas, northern

Louisiana and southeast Arkansas, while most counties in California and Arkansas see the most

negative impacts of increasing rainfall.

The palmer drought severity index shows generally positive associations with yields,

confirming the importance of moisture availability. Correlations are strongest in counties across

Louisiana, Arkansas, and Mississippi. It is interesting to see that drought has a particularly damaging

effect on rice yield across all the counties in California. The relationship between production and

yield varies dramatically between counties, from very strongly negative to very strongly positive.

Most counties in Texas and Louisiana exhibit the closest coupling of yields and production, while

most counties across Arkansas and Mississippi show strongly opposing trends.

Soil characteristics also show highly variable effects on yields. Soil pH correlations span from

strongly negative to strongly positive, with the most positive associations in counties in California.

The strongest negative pH-yield correlations are found in parts of Arkansas and Mississippi. Soil
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Figure 4.3: Panel of Spatiotemporal Plots.
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water content also shows a wide range of yield relationships, from moderately negative to moderately

positive. The most favorable soil moisture conditions for yields are found in a handful counties

in Arkansas and Texas, while the strongest negative associations occur in some counties across

Arkansas, Louisiana, and Mississippi.

The soil texture variable exhibits generally negative correlations with yield. The correlation

coefficients for this variable are undefined in counties where there is limited variation in either soil

texture class or yield values over the study period. This occurs when a county has the same soil

texture class across all years, resulting in a standard deviation of zero for the texture variable. When

converting this feature into numbers, higher numbers are assigned to better soils.19 The best soil

types for rice are generally those that can retain water well, such as loam, clay loam, and silty clay

loam. A negative correlation between yield and soil texture class at 60 cm depth in this context

indicates that rice yields are lower in counties with better soil textures for rice cultivation. This

could be due to factors such as improper water management, soil nutrient imbalances, or other

environmental constraints that prevent the realization of potential yield benefits of these soils for

rice.

Temporal Analysis.

At the temporal level, the correlations between rice yields and environmental factors show distinctive

patterns and transitions from the early to late growing season (April-August). For NDVI, most

counties exhibit a trend of increasing positive correlations with yields as the season progresses from

April to July/August. For example, in Arkansas, correlations in counties switch from negative in

April to moderately positive by July. Similar patterns are observed in Louisiana and Mississippi.

This suggests that higher vegetation vigor becomes increasingly crucial for determining yields in the

later stages of the season. Maximum temperature correlations show a contrasting temporal pattern

in many counties. In Arkansas, Louisiana, and Mississippi, correlations are often more negative in

19The mapping used for soil texture classes is as follows: Sandy Clay (SaCl) is assigned the lowest value, followed
by Silty Clay (SiCl), Silty Loam (SiLo), Sandy Clay Loam (SaClLo), Silty Clay Loam (SiClLo), Clay Loam (ClLo),
and Loam (Lo) being assigned the highest value.
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the early months (April-May) but become less negative or even slightly positive in the later months

(June-August). This could indicate that higher temperatures are more detrimental to yields in the

sensitive early growth stages, while the crop may develop some tolerance later in the season.

Precipitation-yield correlations also display a temporal shift in some counties. In Arkansas

and Louisiana, correlations are positive in April but turn negative in the later months, suggesting

that while early season rainfall is beneficial, excessive precipitation during the later stages could

adversely affect yields. However, this pattern is not consistent across all counties. PDSI-yield

correlations generally remain positive throughout the season in most counties, indicating the

persistent importance of adequate moisture supply. However, the strength of the relationship varies,

with some counties showing higher correlations in the middle of the season in Louisiana and

Mississippi.

Production-yield correlations appear to be relatively stable throughout the season for most

counties. This suggests that the overall seasonal production is more strongly related to yields

than monthly variations. Soil pH and yield correlations do not show a clear temporal pattern

across counties. The influence of pH on yields likely depends more on local soil conditions and

management practices. Soil water content and yield correlations are generally consistent in sign

throughout the season for most counties, reflecting the importance of soil moisture. However, some

counties in Arkansas show more negative correlations later in the season, possibly due to the adverse

effects of water saturation. Soil texture and yield correlations also do not display a strong temporal

trend. The impact of soil texture on yields is likely more spatially dependent and related to the

inherent properties of the soil.

This temporal analysis reveals that the influence of environmental factors on rice yields can

vary throughout the growing season. Factors like NDVI and temperature show the most pronounced

temporal patterns, with the direction and strength of correlations shifting from the early to late

season months in many counties. Other variables, such as PDSI, production, and soil characteristics,

exhibit more temporally consistent relationships with yields.
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4.6.3 Yield Analysis

Model Results

In this subsection, we compare the performance of various machine learning models for predicting

rice yields at the county level under different interaction settings.20 Table 4.3 presents the five-fold

cross-validated scores across the glass-box and black-box models for both training and testing sets.

This way, we can detect potential overfitting or underfitting in the models. A significant discrepancy

between the training and testing performance is a sign of overfitting, where the model fits the

training data too closely and fails to generalize well to unseen data. On the other hand, if both the

training and testing performances are poor, it indicates underfitting, where the model is unable to

capture the underlying patterns in the data.

Overall, the black-box models outperform the glass-box models in terms of both training and

testing metrics, regardless of the interaction settings. Among the black-box models, XGBoost and

Random Forest consistently achieve the highest performance, with XGBoost slightly outperforming

Random Forest in most cases. The CNN and SVM, despite being powerful black-box models,

do not perform as well as XGBoost and Random Forest in this study. Interestingly, the inclusion

of interaction terms does not lead to a consistent improvement in model performance across all

models. In fact, for many models, including XGBoost and EBM, the best performance is achieved

without any interaction terms. This suggests that the base features alone are sufficient to capture

the underlying patterns in the data, and the additional complexity introduced by the interaction

terms may not be necessary for these models. Among the glass-box models, EBM exhibits the

best performance, particularly when no interaction terms are included. The EBM model strikes a

balance between interpretability and predictive power, making it a valuable tool for understanding

the factors influencing rice yields. Notably, LASSO performs quite poorly in contrast with the other

20To handle the computational complexity of training the ML models across all the different settings and GridSearch
parameter space, we leverage Tensor Processing Units (TPUs) available on Google Colab. This significantly reduces
the time for model processing.
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Table 4.3: Comparison of Model Performance Across Different Settings.

Model Interactions MAE RMSE R2

Training Testing Training Testing Training Testing

Panel A: glass-box models

EBM No 0.037 0.050 0.049 0.066 0.885 0.789
Ridge Linear Regression No 0.079 0.080 0.105 0.106 0.463 0.451
Decision Tree No 0.035 0.051 0.053 0.083 0.862 0.662
LASSO No 0.097 0.097 0.128 0.128 0.211 0.211

EBM Just tmax 0.036 0.057 0.047 0.075 0.893 0.724
Ridge Linear Regression Just tmax 0.077 0.079 0.103 0.105 0.483 0.463
Decision Tree Just tmax 0.034 0.053 0.053 0.086 0.865 0.645
LASSO Just tmax 0.097 0.097 0.128 0.128 0.211 0.211

EBM Just month 0.038 0.057 0.049 0.075 0.881 0.723
Ridge Linear Regression Just month 0.078 0.079 0.104 0.106 0.481 0.459
Decision Tree Just month 0.002 0.041 0.008 0.084 0.995 0.657
LASSO Just month 0.097 0.097 0.128 0.128 0.211 0.211

EBM Both 0.030 0.054 0.039 0.072 0.925 0.748
Ridge Linear Regression Both 0.059 0.061 0.083 0.086 0.663 0.641
Decision Tree Both 0.036 0.058 0.053 0.089 0.862 0.616
LASSO Both 0.097 0.097 0.128 0.128 0.211 0.211

Panel B: black-box models

Random Forest No 0.013 0.034 0.019 0.051 0.982 0.874
Extreme Gradient Boosting No 0.001 0.029 0.002 0.044 1.000 0.906
Support Vector Machines No 0.046 0.060 0.071 0.085 0.755 0.647
Convolutional Neural Network No 0.070 0.073 0.093 0.098 0.582 0.535

Random Forest Just tmax 0.015 0.039 0.022 0.058 0.977 0.834
Extreme Gradient Boosting Just tmax 0.011 0.035 0.015 0.049 0.989 0.883
Support Vector Machines Just tmax 0.046 0.061 0.072 0.087 0.752 0.632
Convolutional Neural Network Just tmax 0.072 0.075 0.096 0.101 0.554 0.509

Random Forest Just month 0.014 0.039 0.021 0.057 0.978 0.840
Extreme Gradient Boosting Just month 0.012 0.034 0.016 0.048 0.988 0.887
Support Vector Machines Just month 0.065 0.071 0.083 0.093 0.670 0.579
Convolutional Neural Network Just month 0.073 0.077 0.097 0.103 0.543 0.489

Random Forest Both 0.015 0.041 0.022 0.059 0.976 0.829
Extreme Gradient Boosting Both 0.008 0.034 0.011 0.048 0.994 0.887
Support Vector Machines Both 0.018 0.039 0.036 0.062 0.938 0.815
Convolutional Neural Network Both 0.061 0.066 0.083 0.090 0.664 0.603

Notes: Five-fold cross-validated scores are reported for all metrics. Panel A contains glass-box models, while Panel B
contains black-box models. The GridSearch function was used for hyperparameter tuning, and the models were trained
on the best subset of hyperparameters.
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glass-box models, indicating that the L1 regularization may be too aggressive in this case, leading

to underfitting.

We select two candidate models for subsequent analysis based on their strong performance

and consistency across training and testing sets, as well as their interpretability and predictive

power. We consider one glass-box model and one black-box model to provide a balance between

interpretability and accuracy. For the glass-box model, we select EBM without any interaction terms.

This model achieves good performance on both the training set (MAE = 0.037, RMSE = 0.049,

𝑅2 = 0.885) and the testing set (MAE = 0.050, RMSE = 0.066, 𝑅2 = 0.789). The relatively small

difference between the training and testing scores indicates that the model generalizes well to unseen

data without severe overfitting. Moreover, the EBM model offers the advantage of interpretability,

as it provides insights into the individual feature contributions and their relationships with the target

variable.

For the black-box model, we choose XGBoost without any interaction terms, which

consistently outperforms other models across different interaction settings, demonstrating its

robustness and predictive power. Without interactions, XGBoost achieves impressive performance

on both the training set (MAE = 0.001, RMSE = 0.002, 𝑅2 = 1.000) and the testing set (MAE = 0.029,

RMSE = 0.044, 𝑅2 = 0.906). The relatively small difference between the training and testing scores

indicates that the model effectively captures the underlying patterns in the data without overfitting.

Although XGBoost is a black-box model and lacks the interpretability of glass-box models, it offers

superior predictive performance, making it a valuable tool for accurate yield predictions.

Feature Importance

Figure 4.4 presents the feature importance for both the EBM and XGBoost models. This analysis

provides valuable insights into the key factors influencing rice yields and offers guidance for

optimizing agricultural practices.
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Soil properties emerge as the most critical factors for rice yield prediction in both models.

Soil pH at various depths (0-200cm) consistently ranks among the top features, indicating the

crucial role of soil acidity in rice production. This suggests that maintaining optimal soil pH levels

throughout the soil profile through appropriate liming or acidification practices could significantly

impact yield outcomes. Additionally, soil texture categories show high importance, particularly

at deeper layers (200cm), highlighting the relevance of subsoil characteristics in determining rice

yields, possibly due to their influence on water retention and nutrient availability. Farmers and

agronomists should consider deep soil properties when making management decisions or selecting

suitable rice varieties.

Figure 4.4: Feature Importance for the EBM and XGBoost Models.

Notes: tavg: average temperature; tmax: maximum temperature; tmin: minimum temperature; pcp:
precipitation; cdd: cooling degree days; hdd: heating degree days; pdsi: Palmer Drought Severity Index;
phdi: Palmer Hydrological Drought Index; pmdi: Palmer Modified Drought Index; zndx: Z-index.

Water-related factors, including soil water content at different depths and precipitation (pcp),

are also prominent in both models. This highlights the importance of water management in rice

cultivation, emphasizing the need for efficient irrigation strategies and water conservation practices

to ensure optimal moisture availability for crop growth. Vegetation indices derived from satellite
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data, such as NDVI, LAI, and FAPAR, play significant roles in yield prediction. These indices

reflect crop health and photosynthetic activity, suggesting that monitoring and maintaining optimal

crop growth throughout the season is crucial for maximizing yields.

Climate variables, including temperature metrics (tmax, tmin, tavg) and drought indices

(pdsi, phdi, zndx), show moderate to low importance in both models. While these factors influence

rice yields, their impact may be less direct or more complex than soil and water-related variables.

Nonetheless, considering these factors in crop management and variety selection decisions remains

important for optimizing yields. Interestingly, the county identifier and area harvested variables also

appear as important features, particularly in the XGBoost model. This suggests that location-specific

factors and the scale of cultivation play roles in determining yields, highlighting the potential benefits

of tailoring management practices to specific geographic contexts and considering economies of

scale in rice production. Lastly, the month variable shows relatively low importance in both models,

indicating that the timing within the growing season may be less critical than other factors in

determining overall yield outcomes.

Robustness Checks

Spatial Robustness

To assess the spatial robustness of the EBM and XGBoost models, we compare the predicted yields

with the actual yields at the county level. Figure 4.5 presents a visual comparison of the actual

yields and the predicted yields from both models across the study area. The maps reveal a high

degree of spatial consistency between the actual and predicted yields for both models. The EBM

and XGBoost predictions closely match the spatial patterns observed in the actual yield map, with

higher yields predominantly concentrated in the northern counties of California and Arkansas, as

well as the eastern counties of Texas. Lower yields are generally predicted and observed in the

southern counties of Louisiana and Mississippi.
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Figure 4.5: Comparison of Actual vs Predicted Yield over Space by Model.
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However, some discrepancies between the actual and predicted yields can be observed in

certain counties. For example, the EBM model appears to slightly underestimate yields in a few

Arkansas counties compared to the actual values. These differences may be attributed to local

variations in management practices, soil conditions, or microclimatic factors that are not fully

captured by the input features. Conversely, there is no noticeable differences in the performance

of the XGBoost across space compared to the actual yield values. Despite minor discrepancies in

the case of the EMB model, both models demonstrate a strong ability to capture the overall spatial

variability in rice yields across the study area. The high spatial consistency between the actual and

predicted yields suggests that the models are robust to spatial variations and can effectively predict

yields at the county level.

Temporal Robustness

To assess the temporal robustness of the EBM and XGBoost models, we employ an out-of-time

validation approach. The models are trained using data from earlier years and tested on later years,

with the training and testing periods progressively shifted forward in time. Table 4.4 presents the

performance metrics (RMSE, MAE, and R2) for both models under different training and testing

splits. To ensure the best possible performance, GridSearch was again used for hyperparameter

tuning of both models in all cases. The results demonstrate that both models exhibit strong

performance on the training data across all time splits, with high R2 values and low RMSE and

MAE scores. This indicates that the models effectively capture the relationships between the input

features and rice yields within the training periods.

However, when the models are tested on future years, a decrease in performance is observed.

The R2 values drop, while the RMSE and MAE scores increase, suggesting that the models’ ability

to generalize to new, unseen data is limited. This is a common challenge in machine learning,

known as concept drift, where the relationships between the input features and the target variable

change over time.
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Table 4.4: Model Performance with Out-of-Time Validation.

Model Years RMSE MAE R2

Train Test Train Test Train Test

EBM

2008-2017 / 2018-2022 0.019 0.116 0.014 0.090 0.983 0.170
2008-2018 / 2019-2022 0.019 0.118 0.015 0.089 0.982 0.149
2008-2019 / 2020-2022 0.022 0.115 0.017 0.083 0.977 0.193
2008-2020 / 2021-2022 0.024 0.110 0.018 0.082 0.972 0.193
2008-2021 / 2022 0.026 0.099 0.019 0.076 0.969 0.189

XGBoost

2008-2017 / 2018-2022 0.006 0.111 0.005 0.085 0.998 0.244
2008-2018 / 2019-2022 0.007 0.102 0.005 0.078 0.998 0.366
2008-2019 / 2020-2022 0.022 0.098 0.017 0.073 0.977 0.414
2008-2020 / 2021-2022 0.008 0.095 0.006 0.072 0.997 0.399
2008-2021 / 2022 0.003 0.087 0.002 0.063 1.000 0.386

Despite the performance drop, it is important to note that the XGBoost model generally

outperforms the EBM model in terms of temporal robustness. The XGBoost model maintains

higher R2 values and lower RMSE and MAE scores on the testing data compared to the EBM

model across all time splits. This suggests that the XGBoost model is better able to capture the

temporal patterns and adapt to the changing relationships between the input features and rice yields

over time. Furthermore, it is observed that the performance of both models tends to improve as

more recent years are included in the training data. For instance, in the last three time splits, the

R2 values are higher, and the RMSE and MAE scores are lower compared to the earlier time splits.

This indicates that incorporating more recent data in the training process helps the models to better

capture the current relationships and improve their temporal robustness. These results highlight the

importance of regularly updating and retraining machine learning models for rice yield prediction.

As new data becomes available, it is crucial to incorporate it into the training process to capture the

evolving relationships between the input features and rice yields. This allows the models to adapt

to changing environmental conditions, management practices, and technological advancements,

thereby improving their temporal robustness and predictive accuracy.
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To further investigate the temporal robustness of our models, we implement a rolling window

approach for out-of-time prediction. This method involves training the models on a fixed-width

window of recent years and testing on the subsequent years, progressively moving the window

forward. We hypothesize that this approach will provide insights into how well the models adapt to

more recent changes in agricultural conditions and environmental factors and whether they maintain

predictive power when trained on a smaller, more temporally focused dataset. Table 4.5 presents

the results of this analysis for both the EBM and XGBoost models.

Table 4.5: Out-of-Time Prediction with Rolling Window Approach.

Model Years RMSE MAE R2

Train Test Train Test Train Test

EBM

2013-2017 / 2018-2022 0.018 0.099 0.014 0.075 0.980 0.401
2014-2018 / 2019-2022 0.016 0.106 0.012 0.080 0.986 0.312
2015-2019 / 2020-2022 0.015 0.112 0.012 0.085 0.988 0.238
2016-2020 / 2021-2022 0.017 0.112 0.013 0.078 0.985 0.162
2017-2021 / 2022 0.014 0.113 0.011 0.072 0.989 -0.056

XGBoost

2013-2017 / 2018-2022 0.002 0.091 0.001 0.067 0.999 0.486
2014-2018 / 2019-2022 0.001 0.091 0.001 0.066 0.999 0.495
2015-2019 / 2020-2022 0.001 0.096 0.001 0.071 0.999 0.443
2016-2020 / 2021-2022 0.002 0.104 0.001 0.069 0.999 0.284
2017-2021 / 2022 0.001 0.107 0.001 0.059 0.999 0.065

The rolling window approach reveals an interesting pattern. For both EBM and XGBoost

models, we observe an improvement in test performance for the first three prediction windows

compared to the cumulative approach in Table 4.4. For instance, the EBM model’s test R2

values increase from 0.170 to 0.401 for the 2018-2022 prediction period, while XGBoost’s R2

improves from 0.244 to 0.486. This suggests that training on the most recent five years allows

the models to capture more relevant and up-to-date relationships between the predictors and rice

yields. However, this improvement doesn’t hold for the last two prediction windows. We observe a

decline in performance for both models, with R2 values dropping significantly. The EBM model’s

performance deteriorates more drastically, reaching a negative R2 value for the 2022 prediction.
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This indicates that for very recent years, even the rolling window approach struggles to maintain

predictive power.

Out-of-Season Prediction

To determine the optimal timing for yield prediction, we compare the model performance when

using data from the beginning of the season (April-June) versus the late season (July-September).

Additionally, we investigate the model performance when using data from April-July for training

and August-September for testing. Table 4.6 presents the performance metrics for both the EBM

and XGBoost models under these different scenarios.

Table 4.6: Model Performance for Early vs Late Season.

Model Period RMSE MAE R2

Train Test Train Test Train Test

EBM April-June / July-September 0.040 0.055 0.030 0.041 0.921 0.852
April-July / August-September 0.038 0.053 0.028 0.039 0.930 0.861

XGBoost April-June / July-September 0.007 0.030 0.005 0.018 0.998 0.955
April-July / August-September 0.007 0.029 0.005 0.018 0.998 0.958

The results show that both models perform well when using data from the beginning of the

season (April-June) for training and the late season (July-September) for testing. The XGBoost

model achieves an impressive R2 value of 0.955 on the test set, with low RMSE and MAE scores

of 0.030 and 0.018, respectively. The EBM model also performs well, with an R2 value of 0.852

and relatively low RMSE and MAE scores of 0.055 and 0.041, respectively.

When the training period is extended to include data from April-July and the testing period

is limited to August-September, both models show a slight improvement in performance. The

XGBoost model achieves an R2 value of 0.958 on the test set, with RMSE and MAE scores of 0.029

and 0.018, respectively. Similarly, the EBM model’s R2 value increases to 0.861, and the RMSE

and MAE scores decrease to 0.053 and 0.039, respectively.

These results indicate that accurate yield predictions can be made as early as the beginning

of the growing season (April-June) using the XGBoost and EBM models. This is a significant
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finding for rice farmers, as it allows them to make informed decisions regarding crop management,

resource allocation, and marketing strategies well in advance of the harvest. By having reliable

yield predictions early in the season, farmers can optimize their farming practices, such as irrigation,

fertilization, and pest control, to maximize their yields and profitability. Furthermore, the ability

to make accurate yield predictions early in the season can help farmers to better plan their labor

requirements, storage facilities, and transportation arrangements. This can lead to more efficient

use of resources and reduce the risk of post-harvest losses.

It is important to note that the strong performance of the models in the early vs late season

analysis contrasts with the relatively poor results obtained from the out-of-time forecasting exercise.

This suggests that while the models are able to capture the relationships between the input features

and rice yields within a given growing season, their ability to generalize to future years is limited.

This again emphasizes the importance of regularly updating and retraining the models as new data

becomes available to maintain their predictive power over time.

4.6.4 Yield-Emissions Trade-off

The results of the EBM models developed for yield and emissions prediction are shown in Table 4.7.

The models were able to accurately predict both yield and emissions, with high R2 values and low

RMSE and MAE scores on the test set. The strong performance of the EBM models in capturing

the complex relationship between input features and the target variables (yield and emissions) lays

a solid foundation for the subsequent trade-off analysis.

Table 4.7: Model Performance for Yield and Emission Models.

Model RMSE MAE R2

Train Test Train Test Train Test

Yield Model 0.024 0.044 0.018 0.032 0.965 0.893
Emission Model 0.030 0.060 0.023 0.044 0.981 0.932
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The feature importance rankings derived from the EBM models, presented in Table 4.8,

provide valuable insights into the key factors influencing yield and emissions. For the yield prediction

model, the top-ranking features are consistent with those identified in the previous yield analysis

section, with harvested area, soil texture, water content, and soil pH at various depths being the

most influential variables.

Table 4.8: EBM-based Feature Importance: Yield vs. Emissions Models.

Yield Feature Importance Emissions Feature Importance

AREA HARVESTED 0.016 GEOID 0.043
SoilTextureCat_b200 0.014 WaterContent_b200 0.027
WaterContent_b10 0.013 SoilTextureCat_b30 0.024
GEOID 0.011 SoilTextureCat_b100 0.022
SoilPh_b60 0.011 SoilPh_b0 0.021
SoilPh_b0 0.010 WaterContent_b0 0.019
SoilPh_b30 0.010 SoilPh_b10 0.019
SoilPh_b200 0.009 SoilTextureCat_b10 0.018
WaterContent_b30 0.009 AREA HARVESTED 0.018
WaterContent_b0 0.009 SoilPh_b200 0.018
SoilPh_b10 0.008 WaterContent_b10 0.017
SoilPh_b100 0.008 SoilPh_b100 0.017
SoilTextureCat_b60 0.008 SoilPh_b60 0.016
SoilTextureCat_b100 0.007 WaterContent_b30 0.016
WaterContent_b200 0.007 SoilTextureCat_b200 0.016
WaterContent_b60 0.007 SoilTextureCat_b0 0.014
WaterContent_b100 0.007 WaterContent_b100 0.014
SoilTextureCat_b10 0.006 SoilPh_b30 0.013
mean_FAPAR 0.006 WaterContent_b60 0.012
zndx 0.005 SoilTextureCat_b60 0.010
pcp 0.005 pdsi 0.009
SoilTextureCat_b0 0.005 pcp 0.009
SoilTextureCat_b30 0.005 pmdi 0.009
tmin 0.005 Month 0.009
cdd 0.004 mean_FAPAR 0.008
NDVI 0.004 tmax 0.008
mean_LAI 0.004 NDVI 0.008
phdi 0.004 tmin 0.008
pmdi 0.004 tavg 0.007
Month 0.004 phdi 0.007
tavg 0.004 zndx 0.006
pdsi 0.003 cdd 0.005
tmax 0.003 mean_LAI 0.005
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In the case of the emissions prediction model, we observe that the most important features

differ from those driving yield variability. The county identifyer variable (GEOID) emerges as the

top-ranking feature, suggesting that spatial variability and regional characteristics play a significant

role in determining methane emissions from rice cultivation. This finding highlights the need

for region-specific mitigation strategies and the importance of considering local conditions when

developing emissions reduction policies.

Other key features influencing emissions include water content and soil texture at different

depths, particularly at the 200 cm and 30 cm layers. The prominence of these variables indicates

that water management and soil properties are crucial factors in regulating methane emissions from

rice fields. This aligns with the understanding that methane is produced under anaerobic conditions,

which are typically associated with flooded rice paddies. The results suggest that optimizing water

management practices, such as alternate wetting and drying or midseason drainage, could be effective

strategies for mitigating methane emissions.

Interestingly, soil pH also appears among the top features for emissions prediction, albeit at

different depths compared to the yield model. This finding suggests that soil pH influences not only

rice growth and productivity but also the microbial processes responsible for methane production.

Managing soil pH through liming or other amendments may offer opportunities to reduce methane

emissions while maintaining optimal conditions for rice cultivation.

The presence of harvested area as an important feature in both the yield and emissions models

highlights the trade-offs inherent in rice production. Increasing the area under rice cultivation may

boost total production and very likely yield due to economies of scale, but it also has the potential

to increase overall methane emissions. This emphasizes the need for a balanced approach that

considers both productivity and environmental sustainability.

The trade-off plot in Figure 4.6 reveals a surprising and encouraging relationship between

rice yields and methane emissions. Instead of the traditional trade-off where higher yields come at

the cost of higher emissions, the graph shows a positive correlation between yield improvement and
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emissions reduction. As we move along the Pareto front towards higher yield weights, we observe

an increase in predicted yields (blue line) alongside a decrease in predicted emissions (red line),

particularly when yield reaches at least 10,000 kg/ha. This unexpected pattern suggests that the

farming practices and technologies used to boost rice yields are also contributing to lower methane

emissions. Inefficient agricultural practices, such as excess fertilizer use, poor water management in

rice fields, and inefficient livestock management, are known to increase greenhouse gas emissions,

particularly methane. However, the trade-off plot indicates that the methods employed to enhance

rice productivity are simultaneously mitigating these emissions.

This pattern can be explained by examining the feature importance rankings from our EBM

models, as shown in Table 4.8. The county identifier variable is a top feature for both yield and

emissions, which indicates that local conditions and region-specific practices significantly influence

both productivity and environmental impact. Soil characteristics, including texture and pH at various

depths, are important for both models. Optimal soil conditions can enhance nutrient retention and

water management, potentially increasing yields while reducing methane production. Water content

at various soil depths is also crucial, which suggests that efficient water management practices

contribute to both higher yields and lower emissions. The area harvested is an important feature for

both models. This indicates that larger, more efficiently managed farms may be better equipped to

implement advanced technologies that simultaneously boost yields and mitigate emissions.

To better understand the relationship between key features and the model outputs, we analyze

partial dependence plots (PDPs) for the common features among the top 10 most important predictors

in both the yield and emissions models. These common features are: area harvested, soilph_b0,

watercontent_b0, and soilph_b200. We exclude geoid from this analysis as it’s a categorical,

non-ordinal variable unsuitable for this method. PDPs help visualize the marginal effect of a feature

on the predicted outcome (Friedman, 2001).

For a fitted model 𝑓 (X), where X represents the complete set of features, let X1 =

{𝑥1, 𝑥2, . . . , 𝑥𝑘 } represent a subset of features of interest and X2 = {𝑥𝑘+1, 𝑥𝑘+2, . . . , 𝑥𝑝} represent
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Figure 4.6: Yield-Emissions Trade-off Plot.

Notes: The upper x-axis shows the weight assigned to emissions, while the lower x-axis shows the weight
assigned to rice yield. For instance, the farthest left combination represents the case where the full weight
is placed on reducing methane emissions, and no weight is placed on yield maximization (the (1,0) pair). In
other words, as we move from left to right, we care more about maximizing yield and less about polluting
the environment. The next combination represents the (0.99, 0.1) pair, and this pattern continues, changing
by 0.1 increments, until we reach the (0,1) combination. We impose a constraint of achieving at least the
median value for yield prediction. The blue line represents predicted yield, while the red line represents
predicted rice-derived methane emissions.

the remaining features (i.e., the complement of X1). The partial dependence function for X1 is

defined as:

PD1(X1) = E[ 𝑓 (X1,X2)] =
∫

𝑓 (X1,X2)𝑝(X2)𝑑X2

where 𝑝(X2) is the marginal probability density of X2. The integral is taken over the possible values

of X2, averaging out its influence on the model while keeping X1 fixed. Given the difficulty to

obtain the exact computation for this integral, it is typically approximated using the training data in

the following manner:
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PD1(X1) ≈
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (X1,X(𝑖)
2 )

where X(𝑖)
2 represents the values of the complement features X2 for the 𝑖-th training instance. In our

context, when plotting the partial dependence of soilph_b0, X1 represents the feature soilph_b0 itself,

while X2 comprises all the other features in the model—including area harvested, watercontent_b0,

soilph_b200, and any additional predictors. This means that we are examining how changes in

soilph_b0 affect the model’s predictions while averaging out the influence of all other variables.

Figure 4.7 displays the PDPs for our selected features. For area harvested, we observe a

general upward trend in yield predictions as the harvested area increases, particularly pronounced

in the lower range. This suggests economies of scale in rice production. Interestingly, emissions

also tend to increase with area, but the relationship is non-linear and shows a sharp decline at higher

values. This could indicate that larger operations may implement more efficient practices that reduce

the intensity of emissions.

When looking at surface soil pH, yield shows a sharp increase around the mid-range of pH

values, suggesting an optimal pH zone for rice productivity. Emissions, conversely, exhibit a slight

downward trend as pH increases, with more variability at lower pH levels. This inverse relationship

suggests that managing soil pH could potentially offer a win-win scenario for increasing yield while

reducing emissions. The PDP for surface soil water content reveals that yield appears relatively

stable across different water content levels, with slight increases at certain points. Emissions show

more variability, with a notable peak in the mid-range. This complex relationship highlights the

delicate balance in water management for rice cultivation, where optimal water levels for yield may

not align with minimal emission levels. For subsoil pH at 200 cm depth, the yield curve is flatter

compared to surface pH, indicating a more stable but still positive relationship. Emissions show

more variability with subsoil pH, which suggests that deeper soil characteristics play a complex role

in methane production and release.

129



Figure 4.7: PDPs for Common Important Features across Yield and Emission Models.

Notes: The values of both the features reported and the response variable are standardized to be between
zero and one. The y-axis range is set between 0.2 and 0.5 to facilitate visual comparison within subplots
and between subplots.

The underlying models suggest that practices targeting optimal soil pH levels, especially at

the surface, could be particularly effective in simultaneously boosting yields and reducing emissions.

The varying impacts of surface versus subsoil pH further emphasize the importance of considering

soil properties at different depths. Water management emerges as a critical factor, with its non-linear

effects on both yield and emissions highlighting the need for precision in irrigation practices. The

relationship between harvested area and outcomes points to potential benefits of scale, possibly due

to the adoption of more advanced management techniques in larger operations.

Several factors could explain the positive correlation between yield improvement and

emissions reduction. Precision agriculture techniques optimize resource use, ensuring that inputs
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like water and fertilizers are applied efficiently, minimizing waste and reducing the potential for

emissions. Better soil management practices can enhance carbon sequestration, while optimized

fertilizer use reduces excess nitrogen that leads to emissions. Interestingly, this synergy between

yield enhancement and emissions mitigation aligns with the observation in Figure 4.2 where counties

with higher rice yields, particularly those in California, appeared to have lower rice-related methane

emissions.

The implications of this finding are significant. It suggests that investing in efficient,

sustainable agricultural practices can lead to a win-win scenario, where improvements in rice

productivity go hand in hand with reduced environmental impact. By adopting precision agriculture

techniques and optimizing resource use, rice farmers can maximize yields while minimizing methane

emissions.

However, it is important to note that the relationship between yield and emissions along the

Pareto front is not perfectly linear, as evident from the variability in the trade-off plot. This indicates

that not all yield-improving methods may have an equal impact on emissions reduction. Therefore,

careful evaluation and selection of sustainable practices are necessary to achieve the desired balance

between productivity and environmental sustainability.

4.7 Discussions

Through the use of advanced machine learning techniques and a comprehensive dataset including

remote sensing, climate variables, and soil properties, we identify key determinants of rice

productivity and environmental impact. Our analysis reveals that soil properties, especially soil pH

and texture across various depths, play a pivotal role in both rice yields and methane emissions.

This finding corroborates previous research on the importance of soil acidity for water availability

and nutrient uptake (Espe et al., 2016), and extends the understanding to greenhouse gas emissions.

The dual impact of soil characteristics on productivity (i.e., rice yield) and environmental outcomes

(i.e., methane emissions) suggests that targeted soil management practices could simultaneously
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enhance yields and reduce methane emissions. This aligns with the observations of Qian et al.

(2023), who identified diminishing returns to yield as cultivated area expands, which emphasizes

the need for improved soil quality and management practices alongside area expansion to prevent

productivity losses.

The pronounced spatiotemporal variability in the relationships between environmental

factors and rice yields emphasizes the complexity of agricultural systems. Our findings support the

observations of Park et al. (2018), who noted that rice yield is highly sensitive to temperature

variability, particularly during the reproductive phase of the crop. The correlation between

precipitation and rice yield also exhibits high spatial variability, with some regions benefiting

from increased rainfall while others suffer from waterlogging and associated yield declines. This

variability necessitates models that incorporate spatial heterogeneity and temporal dynamics to

enhance the precision of yield forecasts. Our results demonstrate the effectiveness of satellite-derived

vegetation indices, including NDVI, LAI, and FAPAR, as predictors of rice yields. This aligns

with the findings of Cao et al. (2021), who suggested that crop yields can be predicted 1-2 months

before maturity with satellite vegetation indices, which has important implications for establishing

food security early warning systems. Notably, the predictive power of these indices increases as the

growing season advances, which suggests that remote sensing data are particularly valuable during

the later stages of crop development.

The application of advanced machine learning models, especially ensemble methods such

as XGBoost and EBM, proves highly effective in the capture of complex, non-linear relationships

between environmental variables and rice yields. This corroborates the findings of You et al. (2023),

who demonstrated that deep learning models, particularly CNNs, excel at capturing complex,

non-linear relationships in high-dimensional, multi-source datasets that include satellite imagery

and ground-truth data like soil and weather variables. The observed data drift over time highlights

the dynamic nature of agricultural systems and the challenges associated with model accuracy

maintenance amidst changing environmental conditions. This aligns with the concerns raised by
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Cao et al. (2021), whose data drift analysis showed that the marginal distribution of climate variables

changes significantly over time, necessitating regular model updates to maintain predictive accuracy.

The shifting distributions of climate variables indicate that static models may quickly become

outdated, which compromises their predictive capabilities. The unexpected positive correlation

between yield improvement and emissions reduction challenges the conventional notion of an

inherent trade-off between agricultural productivity and environmental sustainability. Our findings

suggest that the adoption of efficiency-enhancing practices, including precision agriculture and

optimized resource management, can lead to simultaneous gains in yield and reductions in methane

emissions. This synergy supports the paradigm of sustainable intensification, where the goal is to

increase agricultural output without exacerbation of environmental pressures.

4.8 Conclusions and Policy Implications

This study provides a comprehensive analysis of rice yield prediction and methane emissions in U.S.

rice production through the leverage of advanced machine learning techniques and integration of

diverse data sources. The findings have significant implications for agricultural economics, policy,

and practice in the context of climate change and food security. The strong predictive capabilities of

machine learning models, especially when enriched with high-resolution satellite data and detailed

soil information, highlight the significant potential of precision agriculture approaches. Policymakers

and agricultural stakeholders should consider investment in and promotion of technologies that

facilitate data-driven decision-making at the farm level. Implementation of practices such as

variable-rate fertilizer application and optimized irrigation scheduling based on real-time monitoring

can improve resource use efficiency, increase yields, and minimize environmental impacts.

The significant influence of climate variables on rice yields indicates the urgent need for

climate-smart agricultural policies. Strategies such as promotion of drought-resistant rice varieties,

investment in advanced water management infrastructure, and development of early warning systems

for extreme weather events are essential to enhance the resilience of rice production systems. Support
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for research into adaptive farming practices that mitigate the adverse effects of climate change will

further strengthen the sector’s capacity to cope with environmental uncertainties. Recognition of the

pivotal role of soil properties in both yields and emissions should lead to policies that emphasize soil

conservation and enhancement practices. Provision of incentives for methods such as cover cropping,

reduced tillage, and other soil health-promotion techniques can significantly improve soil quality.

Moreover, implementation of targeted soil amendment programs informed by spatially explicit

soil data can optimize soil pH and texture for rice cultivation while concurrently reduce methane

emissions. Such practices are fundamental to the achievement of sustainable soil management,

which underpins long-term agricultural productivity and environmental stewardship.

The observed synergy between yield improvement and emissions reduction indicates that

policies promoting sustainable yield intensification could lead to mutually beneficial outcomes.

Policymakers might consider the design of incentive programs or carbon credit schemes that reward

farmers for implementation of practices like alternate wetting and drying irrigation, which enhances

yields while reducing methane emissions. Such initiatives can accelerate the adoption of sustainable

practices and facilitate the transition towards more environmentally friendly agricultural systems.

The importance of diverse, high-quality data sources in this study points to the necessity of robust

agricultural data infrastructures. Support for the creation of standardized data collection protocols,

promotion of open data initiatives, and establishment of platforms for data sharing among researchers,

farmers, and policymakers can significantly enhance the accuracy and timeliness of yield forecasts.

Improved data accessibility and integration will facilitate better-informed decision-making and

contribute to more effective food security planning at both regional and national scales.

The data drift and temporal shifts in yield-environment relationships observed in this study

highlight the need for adaptive and flexible policymaking. Agricultural policies should accommodate

evolving environmental conditions and integrate emerging scientific knowledge. Regular policy

evaluations informed by the latest modeling and empirical data can ensure that interventions remain

effective under changing climatic scenarios, thus protect agricultural productivity and promote
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sustainability. The significant spatial heterogeneity in yield-environment relationships indicates that

uniform, blanket policies may not be effective across diverse agricultural landscapes. Policymakers

should consider the adoption of integrated landscape management approaches that are sensitive

to local environmental conditions, farming practices, and socio-economic contexts. Crafting of

region-specific best practice guidelines and tailoring of support programs to meet local needs can

improve the efficacy of interventions and promote equitable agricultural development across different

regions. Overall, this study demonstrates the power of advanced analytics combined with diverse

data sources to gain actionable insights for sustainable rice production. The embrace of data-driven,

climate-smart, and locally adapted approaches by policymakers and agricultural stakeholders can

enhance the resilience and sustainability of U.S. rice production in the face of environmental

challenges. This not only contributes to national food security but also supports global efforts in

climate change mitigation and sustainable development.
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Chapter 5

Conclusions

This dissertation presents a rigorous, multifaceted analysis of the complex relationships between

greenhouse gas emissions, energy systems, economic activity, and climate change impacts in the

United States. By employing advanced econometric techniques, quasi-experimental methods, and

machine learning algorithms, we uncover crucial insights into the sectoral and regional heterogeneity

of emissions drivers, the effectiveness of subnational renewable energy policies, and the dynamics

between agricultural productivity and methane emissions. The findings highlight the urgent need

for nuanced, context-specific climate policies that account for the diverse economic, technological,

and ecological factors shaping emissions patterns across the U.S.

In the first chapter, we explored the causal relationships between economic growth, sectoral

energy consumption, and 𝐶𝑂2 emissions. One notable takeaway is the outsized influence of the

transportation and industrial sectors on overall emissions. This suggests a clear need for focused

interventions—whether through stricter fuel efficiency standards, low-carbon fuel mandates, or

carbon pricing—to accelerate decarbonization within these high-emission sectors. At the same

time, the role of renewable energy in mitigating emissions highlights the importance of continued

investment in clean energy initiatives. Expanding renewable portfolio standards, streamlining grid

interconnection, and strengthening transmission infrastructure are crucial to advancing the shift

toward a low-carbon economy.

In Chapter Two, the causal analysis of state net metering programs revealed a gradual but

significant reduction in residential emissions. This highlights the potential for reforming electricity

markets to maximize the benefits of distributed solar energy. Redesigning retail rates to better

reflect the true value of distributed generation, for example, could help. Additionally, policies

like minimum bill requirements would ensure fair distribution of grid maintenance costs. More
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transformative changes, such as adopting uniform interconnection standards or removing capacity

restrictions, could further democratize access to clean energy. Combined with federal incentives,

these reforms could significantly boost the deployment of distributed renewables.

The third chapter used explainable machine learning to predict rice yields and methane

emissions, offering insights for climate-smart agriculture. The strong performance of the predictive

models demonstrates the potential for advanced algorithms and remote sensing data in sustainable

land management. Notably, this research revealed surprising synergies between yield optimization

and methane mitigation. This suggests that practices like precision nutrient application or

conservation tillage could simultaneously increase food security and reduce emissions. Scaling up

these techniques through extension services and policy support could provide farmers with the tools

they need to adopt more climate-resilient practices.

Together, these three studies emphasize the need for context-specific nuanced climate

mitigation strategies. The stark variations in emissions profiles, renewable energy potential,

and policy contexts across the U.S. mean that a one-size-fits-all approach won’t work. Federal

policies—such as carbon pricing or clean energy standards—must be designed with enough flexibility

to support regional diversity. By setting ambitious national goals while providing targeted resources

and incentives, the federal government can drive bottom-up action and ensure an equitable transition

to a low-carbon future.

More broadly, this dissertation highlights the value of data-driven decision-making in climate

policy. With increasing access to geospatial data, sensor networks, and powerful computational

tools, policymakers can create more precise, adaptable, and impactful strategies. Interdisciplinary

collaboration, drawing insights from fields as varied as atmospheric science and political economy,

will deepen our understanding of the forces driving emissions. In turn, this will enable more holistic

and effective responses. Partnerships between researchers, policymakers, and local communities

can further help translate scientific findings into actionable, on-the-ground solutions that reflect

local needs and priorities.
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As the U.S. faces the mounting threats posed by climate change—ranging from extreme

weatherevents to worsening public health impacts—the urgency forambitious emissions reductions is

undeniable. Recent legislative milestones, such as the Inflation Reduction Act and the Infrastructure

Investment and Jobs Act, represent a significant step forward. However, to limit global warming

to 1.5°C, much more needs to be done. The recommendations presented in this dissertation can

guide the development of effective, evidence-based climate policies that are both equitable and

transformative.

Ultimately, achieving a net-zero future will involve difficult trade-offs, unexpectedconsequences,

and complex distributional impacts. Navigating these challenges requires an ongoing commitment

to learning, adaptation, and inclusive dialogue. Climate policies must be grounded in rigorous data

and analysis, but they must also center the voices of vulnerable populations. If the United States

can harness its innovation and collective will, it has the potential to lead the global effort in forging

a future that is not only sustainable but also equitable and resilient. While the climate crisis poses

immense challenges, it also offers a unique opportunity to to rebuild our infrastructure, revitalize

industries, and reimagine how we live and work, all while respecting the planet’s natural limits.

This research is just one small contribution to that greater, intergenerational effort.
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Appendix A

CHAPTER 2

Table A.1: Short-run Granger Causality/Block Exogeneity Wald Tests Summary for the Base Model.

To

From ΔTOT_CO2 ΔENER_USE ΔGDP ΔGDP_SQ ΔENER_PRICE ΔH_DD ΔRENER_USE

ΔTOT_CO2 - 16.368∗∗∗ 1.910 1.823 12.977∗∗∗ 27.649∗∗∗ 2.089
ΔENER_USE 7.243∗∗ - 14.443∗∗∗ 15.343∗∗∗ 36.528∗∗∗ 5.260∗ 7.023∗∗

ΔGDP 4.247 3.485 - 27.329∗∗∗ 13.396∗∗∗ 16.639∗∗∗ 5.665∗
ΔGDP_SQ 3.634 2.858 13.921∗∗∗ - 14.953∗∗∗ 17.740∗∗∗ 4.717∗

ΔENER_PRICE 3.068 11.844∗∗∗ 0.250 0.435 - 150.494∗∗∗ 10.582∗∗∗
ΔH_DD 18.295∗∗∗ 39.496∗∗∗ 3.439 3.445 29.011∗∗∗ - 10.208∗∗∗

ΔRENER_USE 5.786∗ 11.322∗∗∗ 8.451∗∗ 8.358∗∗ 37.147∗∗∗ 10.676∗∗∗ -
The values in the table report Chi-square statistics from VEC Granger causality/block exogeneity tests with two
degrees of freedom for each analysis. These Chi-square statistics are from Wald-style exclusion tests on the lagged
difference terms. Significance levels are marked as ∗𝑝 < 0.1, ∗∗𝑝 < 0.05, and ∗∗∗𝑝 < 0.01.

ΔTOT_CO2

ΔENER_USE

ΔGDP

ΔGDP_SQ

ΔENER_PRICE

ΔH_DD
ΔRENER_USE→ 𝑝 < 0.01

→ 𝑝 < 0.05
→ 𝑝 < 0.1

Figure A.1: Causal relationships based on VEC Granger causality tests for the Base Model.
Note: The arrows represent the direction of causality, and the colors indicate the level of statistical significance: green
for 𝑝 < 0.01, yellow for 𝑝 < 0.05, and red for 𝑝 < 0.1.
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Figure A.2: Generalized Impulse Response Functions for the Base Model.
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Table A.2: FMOLS Results for the Base Model.

Variable Estimate

lnNONRENEWpc 0.885***
(0.043)

lnRENEWpc -0.051***
(0.008)

lnPRC -0.011
(0.013)

HDD 0.022***
(0.007)

lnRGDPpc 0.624***
(0.148)

lnGDP2pc -0.393***
(0.063)

Note: The table presents the estimates and standard errors for the variables impacting 𝑙𝑛𝐶𝑂2𝑝𝑐, derived from panel
FMOLS regression. *** p<0.01, ** p<0.05, * p<0.1.
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Appendix B

CHAPTER 3

B.1 A Note on Residential GHG Emissions

Residential GHG emissions represent a distinct category from other sectoral emissions and include

both direct emissions from on-site fuel combustion (e.g., natural gas for heating and cooking)

and indirect emissions from electricity consumption generated off-site. These emissions differ

fundamentally from those in the transportation, industrial, commercial, and agricultural sectors,

each with unique energy usage patterns and emission intensities. This study focuses on residential

emissions because net metering policies primarily target household-level renewable energy adoption.

The calculation of residential GHG emissions comes from comprehensive data collection by the

EIA (U.S. Energy Information Administration, 2020). This process combines household surveys

conducted every four years, which gather detailed information about housing characteristics and

energy usage patterns, with actual energy supplier billing data. This dual-source approach is

then enhanced through engineering-based modeling of various household energy end-uses, such

as heating, cooling, and appliances. The EIA then calibrates the model outputs against actual

billing records to ensure the modeled estimates align with real-world data. The final step involves

calculating residential GHG emissions by combining residential energy consumption data with

related emission factors. Direct emissions are determined by multiplying on-site fuel consumption

by the U.S. EPA emission factors for specific fuels (U.S. Environmental Protection Agency, 2024).

Indirect emissions, resulting from electricity consumption, are calculated by applying regional grid

emission factors to the amount of electricity used.
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Appendix C

CHAPTER 4

C.0.1 Extended Diagnostic Tests

Univariate and Bivariate Analysis

Figure C.1 shows the subplots for the univariate analysis. In the climate variables group, most

features exhibit relatively symmetric distributions, with some variables showing slight skewness.

The temperature-related variables appear to be approximately normally distributed, which suggests

a balanced range of temperature conditions across counties. The heating degree day variable has

an astronomical number of zeros since rice is grown in the southern part of the U.S. where it tends

to be warmer the vast majority of the time. We exclude this feature from the models due to lack of

variation.

In the soil properties group, the soil pH variables at different depth levels display positively

skewed distributions, with a higher concentration of values on the lower end of the pH scale. This

suggests that the majority of the soil has relatively low pH values, with fewer instances of high pH

levels. The water content variables also exhibit a slight positive skewness, indicating that most

soil samples have lower water content, with a smaller proportion of samples having higher water

retention capacities. The soil texture variables show an uneven distribution across different texture

classes, with classes such as Silt Loam (SiLo) being more prevalent up to 10 cm depth, Loam (Lo)

at 30 cm depth, Sand Clay Loam (SaClLo) between 60 and 100 cm depth and Loam around 200

cm depth. In the rice data group, the production and area-related variables are positively skewed,

with a long right tail. This suggests the presence of a few large-area rice production sites, while the

majority of the locations have lower production and smaller cultivation areas.
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Figure C.1: Matrix of Plots for Univariate Analysis.

Notes: The x-axis for numeric variables represents the range of values observed for each variable, while the
y-axis represents the frequency of occurrences of these values in the dataset. For categorical variables, the
x-axis corresponds to the number of observations or counts for each category, while the y-axis represents
the different categories or classes.
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Lastly, in the satellite data group, the NDVI variable exhibits a relatively symmetric

distribution, indicating a balanced range of vegetation greenness across the study area. The LAI

variable shows a slight positive skewness, suggesting that most locations have lower vegetation

density, with fewer instances of high LAI values. On the other hand, the FAPAR variable exhibits

a slight negative skewness, indicating that a higher proportion of locations have relatively high

canopy absorption, with fewer instances of low FAPAR values. This difference in skewness between

LAI and FAPAR highlights the complex relationship between vegetation structure and its ability

to absorb photosynthetically active radiation, emphasizing the importance of considering both

variables in understanding the dynamics of rice growth and yield formation. The drought indices

are fairly normally distributed, except for phdi, which is bimodal, likely reflecting predominantly

either dry or wet seasons.

Figure C.2 shows the correlation heatmap, which provides a visual representation of the

pairwise correlations between the variables. As expected, within the climate variables group,

there are strong positive correlations among temperature-related variables and cooling degree days.

Precipitation exhibits moderate negative correlations with temperature variables and cooling degree

days, while showing positive correlations with drought indices. Heating degree days have negative

correlations with temperature variables and cooling degree days.

The soil properties group shows a moderately strong correlation between soil texture and

soil pH, and a relatively weak correlation between water content and soil pH. The strong positive

correlation between soil texture and water content can be attributed to the fact that soil texture

significantly influences the soil’s ability to retain water. Intuitively, soils with a higher clay content

should exhibit increased water retention due to the smaller particle sizes and greater surface area,

while sandy soils should facilitate rapid drainage. The moderately strong correlation between soil

texture and soil pH may be due to varying mineral compositions and buffering capacities inherent

in different soil textures. For instance, clay-rich soils often have higher cation exchange capacities,

156



Figure C.2: Correlation Heatmap.

which can influence pH levels.1 Conversely, the relatively weak correlation between water content

and soil pH suggests that while water retention is influenced by soil texture, pH levels are more

significantly affected by other factors such as organic matter content.

In the rice data group, the area-related variables and production exhibit very strong positive

correlations with each other. Yield, however, has a surprisingly weak positive correlation with

the area and production variables, indicating that increases in area harvested and planted do

1Cation exchange capacity is the soil’s ability to hold and exchange positively charged ions. Higher CEC indicates
greater nutrient retention and pH buffering capacity, typically found in clay-rich soils due to their larger surface area
compared to sandy soils.
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not proportionately translate to higher yields, possibly due to variations in farming practices or

environmental conditions. We drop the variables area planted and production from the analysis

to prevent potential model leaking since these two are used to calculate yield. There is a positive

correlation between the satellite-derived variables. NDVI has a moderate positive correlation

with LAI and a weaker positive correlation with FAPAR. LAI and FAPAR have a strong positive

correlation, suggesting they capture similar aspects of vegetation growth and productivity.

Across the different feature groups, climate variables, particularly temperature-related

variables and cooling degree days, have moderate positive correlations with NDVI, LAI, and

FAPAR. This implies that favorable temperature conditions are associated with increased vegetation

greenness and productivity. Soil pH variables show weak to moderate positive correlations with

yield, indicating that higher soil pH levels might be associated with better crop yields, potentially

due to optimal nutrient availability. Lastly, water content variables have weak positive correlations

with NDVI, LAI, and FAPAR, suggesting that, although higher soil moisture content supports

vegetation growth, other factors likely play more significant roles.

Outlier Detection and Handling

The boxplots in Figure C.3 highlight several significant outliers across various groups. In the

climate variables group, the heating degree days variable contains a lot of zeros that could distort

the analysis results. Consequently, we drop it as previously mentioned.

For the remaining variables, a few outliers are present but are not overly concerning given the

number of observations in the dataset and the values of these outliers relative to their interquartile

ranges. To address these outliers and avoid magnitude issues (such as differences between Yield and

NDVI values), all features are rescaled to standardize their magnitudes. This normalization ensures

that outliers do not disproportionately affect the analysis. Additionally, tree-based ML methods,

such as XGBoost, robustly handle outliers due to their regularization and inherent resistance to the

influence of extreme values.

158



Figure C.3: Boxplot-based Outlier Detection.
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Data Drift Test

The results of the data drift test, as illustrated in Figure C.4, reveal varying degrees of marginal

distribution drift across the features. The PSI is used to quantify these differences, with higher

values indicating greater data drift.

(a) Data Drift Tests - All Features

(b) Data Drift Tests - By Category

Figure C.4: Data Drift Tests.

The feature tavg exhibits the highest PSI value of 0.024, followed by pcp (0.023) and hdd

(0.022). These relatively higher PSI values suggest significant changes in their marginal distributions
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between the training and testing datasets. As mentioned before, such drifts can impact the model’s

performance and its ability to generalize effectively.

Notably, climate-related variables are among those with higher PSI values, indicating

substantial changes in weather patterns or measurement conditions over time. The production

variable also shows a notable drift (0.019), which might reflect changes in agricultural practices,

yield improvements, or external factors affecting production levels. Conversely, soil texture features

show the least drift, implying stable distributions over time. Soil texture categories generally remain

consistent, which could be due to the inherent stability of soil characteristics compared to more

dynamic environmental or climatic factors.
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