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ABSTRACT 

In today’s rapidly digitalizing world, the integration of diverse sensors has become 

increasingly prevalent. Within the transportation sector, state Departments of Transportation have 

extensively deployed traffic sensors to support a wide range of engineering applications. Accurate 

and reliable sensor data is crucial for efficiently monitoring and managing large-scale 

transportation networks. However, these sensors inevitably suffer from issues such as data loss, 

random noise, biases, and drift, often caused by sensor aging, defects, or environmental factors. 

Therefore, detecting these faults is imperative to maintain data integrity. This dissertation 

introduces two distinct deep learning frameworks designed to enhance traffic sensor data quality, 

with a focus on fault detection. The first framework evaluates data from individual sensor stations, 

while the second incorporates geospatial context by considering spatiotemporal correlations 

among neighboring stations, resulting in improved fault detection accuracy. In contrast, the first 

framework is context-insensitive, requiring less data as it analyzes data from individual sensors, 

whereas the second framework, which integrates contextual information, demands more data. 

Particularly the first framework leverages symmetric contrastive learning within a triplet network 

architecture, enhanced by a cross-attention loss function to improve fault detection. Continuous 



Wavelet Transformation (CWT) is first applied to convert traffic data into time-frequency wavelet 

images, which are used to pretrain a triplet encoder. A novel symmetric contrastive sampling 

strategy is employed to improve training efficiency by using a normal day’s data as an anchor, 

from which both positive and negative examples are generated based on domain knowledge. This 

approach strengthens contrastive signals, enabling faster and more stable training. The second 

framework leverages graph neural networks (GNNs) to capture spatial dependencies within 

clusters of sensor stations. These clusters are formed in a reduced-dimensional latent space, 

constructed using a dual-encoding attention graph auto-encoder (DAGAE) that embeds both node 

and edge features. A cluster-guided denoising graph auto-encoder (CG-DGAE) is then trained 

using subgraphs generated from these clusters to reconstruct traffic data from corrupted inputs. A 

fault score function is then applied to compare observed and reconstructed data sequences, 

identifying discrepancies indicative of sensor faults. Together, these frameworks provide 

intelligent and practical solutions for fault detection and data quality control. Their implementation 

has the potential to transform the maintenance and operation of transportation systems, 

contributing to more reliable and resilient infrastructure. 
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Triplet Network, Data Imputation and Reconstruction, Graph Auto-

Encoder, Graph Representation Learning, Intelligent Transportation 
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CHAPTER 1 

 INTRODUCTION 

 

Against the backdrop of escalating population growth, urbanization trends, and the pervasive 

influence of digitalization, the last few decades have witnessed a rapid proliferation of Intelligent 

Transportation Systems (ITS). These systems incorporate a plethora of technologies including 

fixed and mobile sensing, Internet of Things (IoT), and connected and autonomous vehicles 

(CAVs). Within the realm of transportation management, ITS stands as a formidable platform 

aimed at enhancing flow efficiency, alleviating congestion, proactively addressing incidents, and 

ameliorating environmental impacts. The voluminous data generated by ITS serves as the 

cornerstone for various system functionalities, heavily reliant on sophisticated data analytics.  

At the state level, high-quality traffic data plays a pivotal role in infrastructure-related 

decision making and serves as the foundation for various planning and engineering practices at the 

state Department of Transportation (DOT). Traffic count and classification data are continuously 

collected at permanent continuous count stations (CCS) using inductive loop technology. This data 

source has been used for multiple purposes, including generating annual Highway Performance 

Monitoring System (HPMS) report, providing data support for internal departments (e.g., Office 

of Planning, Office of Roadway Design, Office of Bridge Design, Office of Materials and Testing, 

and Office of Traffic Operations) as well as to a large variety of external customers, and supplying 
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critical traffic data to the Georgia Emergency Management Agency and surrounding states during 

emergency evacuations in inclement weather.  

However, collecting traffic sensor data in real world is prone to errors due to various 

factors, such as sensor malfunctions, harsh environmental conditions, inappropriate installation, 

and maintenance, among others [1]. Erroneous traffic data can result in misleading analytical 

outcomes, leading to significant socio-economic losses. To address this issue, many state 

Departments of Transportation (DOTs) have implemented automatic review systems with 

definitive quality control (QC) rules to eliminate obvious faulty data, such as nonreporting of 

particular classes of vehicles for an extended period. In case of uncertainty, manual review by a 

human is still necessary for further data screening. These QC rules typically rely on threshold-

based plausibility tests, which are not sensitive enough to detect all faulty signals and are applied 

to individual count stations rather than considering them collectively as a group. This could easily 

lead to false-positive or false-negative decisions as part of the QC process. In this context, this 

dissertation aims to develop a robust automatic quality control system, specifically deep learning 

frameworks, designed to filter out incoming faulty traffic sequences and identify and rectify any 

faults when necessary. 

 

1.1. Motivation  

Traffic sensor data is inherently temporal with patterns varying by time of day, day of the week, 

seasons, and around special events. AI models are adept at recognizing these temporal patterns 

and can discern anomalies that deviate from these patterns. Several studies have focused on 

learning time-series data representations using different neural network architectures, including 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), autoencoders (AE), 
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generative adversarial networks (GANs) and deep belief networks (DBNs). On the other hand, 

time series imaging is an advanced analytical approach that captures a sequence of images or data 

points at successive times. This technique is typically used to monitor and track changes that occur 

in a given subject or area over a period. Leveraging the frequent capture of data and the specific 

characteristics of the monitored phenomena, numerous specialists have harnessed time series 

imaging for the detection of faults or anomalies in sensor data, particularly due to the enhanced 

capabilities provided by deep learning models.  For instance, Xu et al. (2021) proposed a hybrid 

deep learning model that combines the feature extraction capabilities of CNNs and the superior 

performance of deep forest classifier. The model extracts feature from CWT images of bearing 

vibration signals using CNNs and trains the classifier with a cascade forest strategy [2]. Song et 

al. (2023) introduced an innovative technique for the detection of manufacturing faults by merging 

image-encoded time series data with advanced deep generative models. The study utilized three 

distinctive methods for converting time series into visual formats: the Gramian Angular Difference 

Field (GADF), the Markov Transition Field (MTF), and the Recurrence Plot (RP). To process and 

learn from this data, two types of neural network models were employed: the Variational 

Autoencoder-Reconstruction along Projection Pathway (VAE-RaPP) and the Fence Generative 

Adversarial Network (Fence GAN) [3]. Morris et al. (2022) introduced an approach based on 

variational autoencoder (VAE) and trained two VAEs to separately encode CWT images and 

recurrent plots derived from traffic sensor data. In the joint latent space, anomalies are identified 

when they deviate significantly from the constructed manifold [4]. In another study of achieving 

the sensor faults due to harsh operational conditions in the field of the internet of things (IoT), 

Hasan et al. (2023) presented an innovative digital twin (DT)-inspired fault detection methodology 

utilizing a generative adversarial network (GAN) trained on Gramian Angular Field (GAF)-
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encoded images to maintain the time series data’s temporal integrity, achieving an impressive 98.7% 

accuracy in identifying sensor anomalies [5]. Xin et al. (2022) utilized the training efficiency of 

Deep Belief Networks (DBNs) to create a modified Gaussian Convolutional Deep Belief Network 

(MGCDBN) for fault diagnosis in infrared thermal images. The network employs Gaussian units 

to model real-valued inputs using a Gaussian distribution in both its visible and hidden layers [6]. 

Employing time series imaging enhanced by deep learning techniques presents a promising avenue 

for the detection of faults within such data. 

In the realm of traffic management, the intricate interplay of spatial and temporal 

dimensions within sensor data holds paramount importance. The spatial-temporal correlation 

acknowledges that traffic dynamics at a given location are not isolated events but are significantly 

influenced by concurrent traffic flows in adjoining areas. Similarly, the temporal aspect underlines 

the evolution of traffic patterns over time, a key to predicting future conditions. As urban 

populations burgeon and road networks become increasingly congested, the need to comprehend 

and harness these correlations has never been more critical. Leveraging the spatial-temporal 

correlation and analyzing the traffic data collectively would greatly benefit capturing traffic data 

features and data mining for traffic data fault detection. Graph Neural Networks (GNNs), as a key 

branch of deep learning family, have emerged as a powerful deep learning approach for handling 

non-Euclidean data through graph analysis techniques. In the realm of traffic research, GNNs have 

found extensive applications, including traffic flow/speed forecasting, traffic prediction, and traffic 

accident prediction [7], [8], [9], [10]. These applications leverage GNNs’ ability to capture 

complex spatial-temporal relationships in traffic networks, which is crucial for tasks such as fault 

detection.  
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1.2. Purpose of the Study 

In this dissertation, the primary objective is to propose an optimal automatic data quality review 

framework with fault detection focus for traffic sensor networks. Specifically, the study introduces 

two distinct approaches: one that uses traffic time-series image-based deep learning techniques to 

analyze data from individual sensor stations without considering spatial context, and another that 

leverages spatiotemporal correlations among neighboring sensors using Graph Neural Networks 

(GNNs). These frameworks aim to enhance the accuracy and robustness of fault detection, reduce 

erroneous data, improve the quality control process, and ultimately support more effective 

transportation management and planning. The research questions in this study are as follow: 

1. How can deep learning models be utilized to detect and correct faults in traffic sensor data from 

individual stations without the need for spatial context? 

• What types of traffic data anomalies can be identified using this framework? 

• How does the proposed framework’s fault detection accuracy compare to traditional 

threshold-based plausibility tests? 

2. How can the integration of spatiotemporal correlations using GNNs improve fault detection in 

traffic sensor data across multiple stations? 

• To what extent does incorporating geospatial context enhance fault detection performance? 

• How effectively do GNN-based models detect faults in comparison to models that analyze 

sensors individually? 

3. What are the trade-offs between the two proposed frameworks in terms of fault detection 

accuracy, data requirements, and computational efficiency? 
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• Which framework performs better in scenarios where data is limited or noisy? 

• How do these frameworks perform across different traffic patterns, such as during special 

events or extreme weather conditions? 

 

1.3. Open Challenges 

Realizing a comprehensive automatic fault detection framework is laden with challenges that must 

be surmounted.  

First, establishing a framework capable of accurately identifying faulty traffic sequences 

involves the fundamental data quality control task akin to a binary classification problem, 

differentiating between faulty and normal data. However, the main challenge lies in proper 

construction of feature space for the classification task. While deep neural networks (DNNs) have 

shown impressive accuracy in detecting faults on time-series data, many of these methods either 

require labeled data or generate their own supervision signals to capture underlying patterns. 

Additionally, these methods often assume that the feature distribution of the training and testing 

data are similar, which is not always the case in real-world scenarios where variations in sensor 

operating conditions, degradation state, or environmental noise can affect the data. Consequently, 

the distribution discrepancy between the training and testing data can significantly impair the 

performance of deep learning models in detecting faults in sensor data. 

Second, refining a framework that not only pinpoints faults but also corrects them with 

valid replacements is further complicated by the intrinsic nature of road traffic and the voluminous 

aggregation of traffic data. The challenge is compounded by the following facts we outlined 

concerning the intrinsic characteristics of road traffic and massive accumulation of traffic flow 

data resources. 
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1) Random occurrence of faulty traffic data. Faulty in-road sensor data can be categorized into 

recurring and non-recurring types. Recurring faults, which may stem from external factors 

(e.g., connectivity issues, hardware malfunctions, low battery, environmental extremes, and 

clipping) depending on sensor types, exhibit short-term cyclic patterns. In contrast, non-

recuring faults may arise from unexpected events such as sudden changes in operating 

conditions or electrical interference, occurring randomly and infrequently at any time of the 

day. Detecting the latter type is particularly challenging. 

 

2) Lack of reported faulty traffic data. The faulty in-road sensor data is usually not fully 

documented or critical information is lacking when flagged due to the limitations of currently 

adopted QC rules. There is no reliable ground truth for measuring the accuracy and feasibility 

of these QC rules. 

 

3) Heterogeneity of traffic data. There could be thousands of in-road sensors spreading over the 

large roadway network within a state. Each sensor operates independently, and the occurrence 

of faulty data is less temporally dependent, unlike traffic anomalies. For example, a road 

section undergoing construction may gradually decrease traffic flow, resulting in anomalies 

in traffic volume data. These anomalies may persist over the extended construction period. 

However, a communication failure of a sensor may result in continuous non-responses, lasting 

for varying durations depending on how quickly the failure is detected and repaired. 

Additionally, traffic data characteristics recorded at different sensors may vary significantly 

by their locations and operating conditions. Consequently, a significant challenge associated 
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with in-road sensor networks is establishing consistent fault detection rules across the entire 

network [11]. 

 

4) Spatial-temporal dependency of traffic data. Given a specific roadway network topology, 

traffic flow data at adjacent sensors are inherently correlated and thus present unique spatial-

temporal patterns. Some examples of similar traffic patterns observed at neighboring 

continuous count station (CCS) sites are shown in Figure 1.1. Leveraging the spatial-temporal 

correlation and collectively analyzing the traffic data from the correlated sensors would help 

to capture comprehensive traffic patterns at the network level, leading to improved fault 

detection. However, obtaining sufficiently large common periods of traffic data from all 

sensors poses a challenge for real-world, large-scale road networks. 

 

1.4. Dissertation Overview 

In this chapter, the background of traffic sensor quality control, summarize existing technologies, 

and highlight the research gaps that motivate this study were introduced. At the same time, the 

open challenges were outlined. The remainder of this dissertation is structured as follows: Chapter 

2 reviewed key technologies and topics, discussing the limitations of current research. Chapters 3 

and 4 presented the design of the two proposed frameworks, along with related datasets, 

experiments, and an analysis of the results. Finally, Chapter 5 summarized the key findings, draws 

conclusions, and suggested potential future research directions. References were provided after 

Chapter 5. To have a better understanding of this dissertation path, an overview is presented to 

guide the reader into the main content of each chapter as shown in Table 1.1.  
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Figure 1.1:Similar traffic patterns observed at neighboring CCS sites. 

 

 

Table 1.1: Overview of the chapters in this dissertation 

Chapter Content description 

Chapter 1 Introduction to the background of traffic sensor data quality 

control, research motivation, purposes, research questions and 

open challenges of this dissertation. 

Chapter 2 Review of literature and discussion of the current research gaps. 

Chapter 3 Details of the symmetric contrastive learning-based framework 

for traffic sensor data fault detection at individual level, results, 

and conclusion. 

Chapter 4 Details of the framework of cluster-guided denoising graph 

auto-encoder for enhanced traffic data imputation and fault 

detection at a cluster level, results, and conclusion. 

Chapter 5 Summary of the findings and conclusions generated in this 

dissertation with a possible future direction related to this 

dissertation. 

Reference References that were used in this dissertation. 

Appendix Some algorithm and extensive experimental results. 
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CHAPTER 2 

 LITERATURE REVIEW 

 

In this chapter, the existing works closely related to this dissertation were reviewed. First, the 

continuous wavelet transform (CWT) and its application in detecting faults in time-series data 

were introduced. Next, the literature of deep learning models for fault detection through the 

approaches of reconstruction and prediction were reviewed. Finally, the application of graph 

neural networks (GNNs) was reviewed, which leverages spatio-temporal correlations in traffic 

data. 

 

2.1. CWT in Fault Detection 

Continuous wavelets transform (CWT) is well known for decomposing time-frequency 

information, particularly, constructive to obtain salient features from dynamic time series data. 

CWT-based traffic data transformation has been shown to reveal unobvious patterns of traffic data 

in an efficient way [12]. 

Traditionally, CWT has been used to capture local changes, which are noisy and aperiodic. 

For example, Zheng et al. [13] demonstrated the utility of wavelet transform in analyzing important 

features associated with abnormal traffic conditions, such as bottleneck effects and traffic 

oscillation arising from congestion. The case study of three different scenarios of vehicle 

trajectories showed that the origins of deceleration waves could be detected by wavelet-based 

energies of a single vehicle, and the detected origins help to pinpoint possible causes. In another 
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study, Jiang et al. [14] developed a two-stage fault detection method for anomalous network traffic. 

In their methodology, CWT was applied to decompose the incoming signals into multiple 

continuous scales, followed by principal component analysis to extract the features of anomalous 

network traffic. Then, a new mapping function is constructed to detect the abnormal traffic.  

Recently, CWT coupled with deep learning techniques offers a new approach for fault 

detection with time-series data. König et al. [15] proposed a deep learning-based method for 

anomaly detection and diagnosis on acoustic emission signals. With the acoustic emission signals 

being converted to CWT images, an autoencoder network was developed for anomaly detection in 

the latent space and GoogLeNet was adapted to the anomaly classification task. In another study, 

Jalayer et al. [16] developed a comprehensive deep learning-based fault detection and diagnosis 

model for rotating machinery by channeling up fast Fourier transform, CWT, and statistical 

features of raw signals. A convolutional long short-term memory was employed to classify the 

multi-channel input. Djaballah et al. [17] explored an innovative approach to bearing fault 

diagnosis by leveraging deep transfer learning methods. The study investigates various pre-trained 

convolutional neural networks (CNN), such as ResNet-50, GoogLeNet, and SqueezeNet, in 

combination with transfer learning to diagnose bearing faults from vibration signals transformed 

into time-frequency images using CWT. The methodology integrates fine-tuning strategies to 

optimize fault classification performance, achieving high accuracy, with their approach being 

validated on the CWRU dataset. 

Based on the review of previous studies, CWT has been commonly used for processing 

time-series data. Generally, the methodology of converting signals into CWT images 

representations and further processing these image representations by deep-learning-based 
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methods to encode multiscale features has shown a great potential and improved performance in 

fault detection of time-series data. 

 

2.2. Deep Learning-Based Anomaly Detection in Traffic Data 

In the field of traffic sensor data anomaly detection, significant advancements have been 

accomplished by utilizing deep learning techniques, particularly in the analysis of traffic flow data. 

The primary approaches to anomaly detection include prediction-driven and reconstruction-driven 

methodologies.  

The prediction-driven approach employs historical traffic data to train deep neural network 

models for forecasting future traffic states or conditions. Any significant deviation between the 

model’s predictions and the actual observations triggers an anomaly detection, signaling a potential 

fault in the system. Predicting traffic flow has historically been and continues to be a formidable 

challenge. Traditional algorithms like Autoregressive Integrated Moving Average (ARIMA)-

based method [18], probabilistic models, such as Bayesian Network [19], Markov Chain [20], and 

Markov Random Fields [21] and machine learning approaches like shallow Artificial Neural 

Networks, and Support Vector Regression (SVR) [22], have been studied for traffic flow 

estimation. However, these conventional methods can hardly capture the complex patterns 

underlying the data. Over the years, various approaches have been explored alongside the rapid 

development of various deep learning methods. Different deep learning models have been studied 

by researchers, such as Deep Belief Network (DBN) [23], Long short-term memory (LSTM) [24], 

Stacked Autoencoder (SAE) [25]. Nevertheless, the majority of these previous works treated 

traffic prediction as simple time series prediction problem focusing on isolated sensor data. 

Subsequently, some researchers have recognized the importance of leveraging the spatial-temporal 
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relationships inherent in multi-sensor data to enhance traffic prediction performance. This led to 

the development of techniques, such as Convolutional LSTM [26] and Graph Convolution Gated 

Recurrent Unit [27], which can naturally handle multi-sensor data and capture the spatial-temporal 

relationships among sensors [28]. One disadvantage of the prediction-driven approach is that it 

relies heavily on the accuracy of the forecasting model, which may struggle to capture sudden or 

rare events, leading to missed anomalies. Additionally, this method can be sensitive to changes in 

traffic patterns that do not necessarily indicate faults, resulting in false positives.  

Missing data, often caused by sensor or system failures, is a prevalent issue that can 

detrimentally affect various traffic-related tasks. To mitigate the challenges posed by missing data, 

data reconstruction or imputation assumes critical importance. The reconstruction-driven approach 

involves compressing traffic data into a lower-dimensional vector space using methods like 

autoencoders, and subsequently reconstructing it to its original form. Consequently, substantial 

differences between the reconstructed data and the actual data indicate anomalies, suggesting faults 

or disruptions in traffic patterns. Traditional imputation methods include: ARIMA, KNN, principal 

component analysis (PCA)-based methods [29] and Bayesian imputation model [30]. Other state-

of-the-art reconstruction methods include Recurrent Neural Networks (RNN)-based methods [31], 

deep sequential variational autoencoder based methods [25], generative adversarial networks 

(GAN)-based methods [32], and GNN-based methods [33].  

 On the other hand, researchers have pursued two primary approaches by examining 

individual sensors or collections of sensors. The distinction between these two approaches hinges 

on whether data from sensors exhibit any spatial and/or temporal dependence. Studies in the latter 

category often not only emphasize the temporal properties of isolated road sensor data but also 

underscore the importance of considering spatial correlations of data from different sensors. 
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Djenouri et al. (2019) classified existing anomaly detection techniques to three main categories: 

statistical, similarity-based, and pattern-based methods [34]. Many of these techniques are tailored 

for traffic anomaly analysis of individual sensors. Nevertheless, no matter is prediction-driven or 

reconstruction-driven approaches, a predominant trend in recent years is to leverage the spatial-

temporal correlations among sensors to enhance the robustness for traffic data modeling [35], [36], 

[37], [38], which is also the focus and motivation of this study. With recent advancements in graph 

neural networks, researchers have found that GNN-based methods have proved excellent ability 

in capturing the explicitly spatial-temporal correlations [39]. Notably, for GNN-based spatial-

temporal methods, dynamic subgraph-based GNN have recently been studied to empower the 

representation learning [28], which further improves the generalizability and performance of these 

models. Recently, Zhang et al. (2022) presented an automatic traffic anomaly detection method by 

leveraging spatial-temporal graph neural network for representation learning. They learned 

implicit graph features from multivariate time series of traffic flows and used a graph deviation 

score to detect traffic anomalies [40]. However, they do not consider the heterogeneity among 

multiple sensor data, which is crucial to consider especially in large sensor networks.  Since sensor 

data patterns vary across different regions in terms of trend and magnitude, in our proposed traffic 

data fault detection framework at a cluster level, the sensors are grouped into smaller clusters with 

strong spatio-temporal correlations. This clustering approach guides the reconstruction model 

training, enhances the homogeneity within the embeddings, and helps mitigate the losses caused 

by heterogeneity, ultimately leading to significant improvements in performance. 

2.3. Graph Neural Networks in Traffic Research   

Graph Neural Networks (GNN), serving as an innovative deep learning approach tailored for 

handling non-Euclidean data through graph analysis techniques, have found extensive utility in a 
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range of data-driven applications within the realm of traffic research. These applications include 

but not limited to traffic flow forecasting [7], traffic speed prediction [8], traffic signal control [9] 

and traffic accident prediction [10].  

Four groups of GNN have been widely applied in traffic research field, namely recurrent 

GNN (RecGNN), convolutional GNN (ConvGNN), graph autoencoders (GAE), and spatial-

temporal GNN (ST-GNN) [41]. In the practice of RecGNN and ConvGNN, researchers typically 

use GNN to capture network-level spatial relations, along with RNN or CNN to extract temporal 

dependencies. To address the lack of flexibility in the local-feature extraction process in GNN, 

Cui et al. (2020) proposed a graph wavelet gated recurrent (GWGR) neural network to realize 

network-wide traffic forecasting with no need to specify the neighboring area in the graph 

topology, where graph wavelet is incorporated as a key component for extracting spatial features 

and a gated recurrent structure is employed to learn temporal dependencies in the sequence data 

[42]. As a response to the limitations of recurrent neural networks (RNN) in effectively capturing 

periodic temporal correlations, particularly in the context of gradient vanishing, Chen et al. (2019) 

combined the capabilities of graph convolutional networks, recurrent networks, and residual neural 

networks to jointly extract spatial-temporal features while considering external factors. The 

proposed Multiple Gated Recurrent Graph Neural Networks (MRes-RGNN) delivered the state-

of-the-art results on traffic prediction at the time [43]. With a goal to forecast the origin-destination 

travel demand between regions, Wang et al. (2022) developed a GAE structured model that utilize 

the node representations in the latent space to capture the evolution of directed temporal networks. 

The innovative temporal graph autoencoder (TGAE) empowers the prediction of the link weight 

and direction based on the historical network snapshots [44].  
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In recent years, ST-GNN have garnered due attentions within traffic research area as they 

allow the concurrent modeling of spatial and temporal dependencies in dealing with a dynamic 

graph problem. In the realm of traffic data, these applications primarily tackle prediction and 

kriging challenges. For example, to address the limitations posed by incomplete adjacent 

connections that hinder the effective modeling of spatial-temporal dependencies in ST-GNN, Li 

and Zhu (2021) introduced a fusion graph module. This module operates on various temporal and 

spatial graphs concurrently for different time periods in parallel, allowing for the efficient learning 

of concealed spatial-temporal relationships for traffic flow prediction. The newly proposed spatial-

temporal fusion graph neural networks (STFGNN or SFTGNN) exhibit the capability to handle 

long traffic flow sequences by harnessing stacked layers to learn more intricate spatial-temporal 

dependencies [45]. Kriging techniques have found extensive application in addressing traffic data 

imputation challenges. For instance, when dealing with the task of filling in distinct types of 

missing entries in spatial-temporal traffic data, Liang et al. (2022) incorporate both extracted 

spatial and temporal features as node representations. These representations are used as input for 

an architecture based on diffusion graph convolutional neural networks (DGCN) with a mask 

mechanism, facilitating the reconstruction of temporal node features. The proposed kriging model 

effectively fulfills all imputation requirements without the need to retrain the entire model [46].  

Moreover, GNN training is renowned for encountering the neighbor explosion problem 

[47]. To alleviate this issue, subgraph-wise sampling has gained widespread acceptance in the field 

[48], [49], [50]. This approach aims to curtail the number of nodes involved in message passing, 

which, in turn, enhances computational efficiency, focuses on crucial nodes, addresses imbalanced 

data concerns, and mitigates noise. Nevertheless, hasty or ill-considered sampling can result in 

information loss or introduce biases during the training process. In previous works related to ST-
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GNN in traffic research, some attention has been given to the concept of sampling tactics. 

Nonetheless, there is typically a lack of comprehensive logical instruction for the generation of 

subgraphs. For example, randomly sampled subgraphs might not accurately represent the full 

graph's structure and feature distribution, leading to a potential loss in model performance. Also, 

random walk sampling can introduce bias towards nodes with higher connectivity or those that are 

more frequently visited in walks, potentially overlooking less connected nodes. In this dissertation, 

we take a different approach by constructing subgraphs based on semantic clusters of neighboring 

traffic sensors formed in a low-dimensional vector space. 

Additionally, the state-of-the-art graph generative models often use an auto-encoder 

framework where the encoder maps the input graph to a vector space, and the decoder reconstructs 

structures or node features from that space [51]. However, these models typically simply rebuild 

one modality, either the graph structure or node features, which limits the richness of the 

representation. The downstream task of spatial-temporal clustering thus often falls short in fully 

exploiting the graph structure or the interaction between the graph structure and node content. This 

limitation stems from their reliance on partial network information or superficial consideration of 

relationships between content and structure data, often applied directly to sparse original graphs 

[52]. Based on the review of existing literature, there are two primary hurdles: (1) the difficulty of 

simultaneously reconstructing both graph structures and node features, and (2) the limitations of 

current learning objectives, for example, using mean square error for node feature reconstruction 

and binary cross-entropy for link prediction [53]. To overcome these, in this study, we leverage 

both graph structure and node content and design a dual encoding scheme with a new loss function 

in graph representation learning task, attaining the optimal traffic sensor clusters. 
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CHAPTER 3 

 SYMMETRIC CONTRASTIVE LEARNING FOR TRAFFIC 

SENSOR FAULT DETECTION 

 

In this chapter, our first framework was introduced, centering on a symmetric contrastive learning 

approach for data fault detection at the individual traffic sensor level. It employs a triplet network 

with an efficient sampling strategy, coupled with a novel cross-attention-boosted loss function for 

network training.  

 

3.1. Research Overview 

Although deep learning models perform well in fault detection for time-series data, they often rely 

on labeled data or generate their own supervision signals. These methods typically assume similar 

feature distributions between training and testing data, which isn’t always true in real-world 

conditions where sensor variations, degradation, or environmental noise can alter the data. As a 

result, discrepancies between training and testing data can significantly reduce the models’ fault 

detection performance. Contrastive learning, a self-supervised learning scheme initially proposed 

by [54], could be leveraged to mitigate this issue. The basic idea of contrastive learning is to learn 

a latent space where the similarity between the views under different augmentations of the same 

input data is maximized while minimizing the similarity between dissimilar data samples [55], 

[56]. This contrastive representation learning focuses on relationships between constructed pairs 
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of data samples and does not require explicit labels. Several studies have evaluated the 

effectiveness of contrastive learning for fault detection. For instance, Hojjati and Armanfard 

(2022) employed audio-specific augmentations and a contrastive learning framework with a 

revised loss function for acoustic anomaly detection, yielding promising experimental results [57]. 

In another study, Zhang et al. (2022) proposed a supervised fault detection approach based on 

contrastive learning. To address the discrepancy between the source and target domains, a cross-

domain supervised contrastive loss is used with labeled information for domain adaptation [58].  

However, current contrastive learning models are primarily focused on images and videos, 

with little attention paid to fault detection in traffic sensor data. The main challenge in detecting 

faults in traffic sensor data is to learn proper time-series representations. This involves identifying 

an appropriate feature extraction mechanism for the classification problem, as well as finding a 

suitable transformation of raw traffic data that highlights multiscale temporal features. Normal and 

faulty time-series can sometimes be quite similar depending on temporal scales, adding to the 

difficulty of the task. Triplet networks (TripletNet) [59] have been shown as a successful paradigm 

of contrastive learning and are widely applied to challenging tasks such as face recognition and 

image retrieval.  In addition, TripletNet is effective in addressing the problem of distribution shift 

and can thus generalize well to new domains, as it is able to learn a distance metric that is 

insensitive to certain types of domain shifts. The triplet loss, which pulls similar instances closer 

and repels dissimilar ones, allows the network to target feature invariance with fine details by 

purposely constructing transformations. TripletNet has demonstrated tremendous potential in 

feature representation learning. 

In this chapter, we presented a sample-efficient, symmetric contrastive learning method 

with triplet encoding for detecting faulty traffic data. Based on the previous work [60], The CWT 
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is first applied to convert the original time-series traffic sensor data into two-dimensional images 

in the time-frequency space with a desirable resolution. Next, we design a CNN encoder and use 

self-attention layers for selective feature pooling. Unlike traditional triplet networks that take a 

tuple of three elements as input, our proposed triplet network processes a tuple of seven instances, 

including an anchor, three positive examples generated by adding three types of domain-informed 

noises, and three negative examples produced by injecting three types of faults observed in 

historical traffic data, as illustrated in Figure 3.1. To guide the metric learning process explicitly, 

we introduce two cross-attention layers during training before computing the loss. We refer to this 

as cross-attention-boosted triplet loss, which is computed based on the nine permutations of the 

triplet, i.e., {anchor, one of the three positives, one of the three negatives}. For comparison, we 

evaluate, as baselines, two widely applied contrastive learning methods: the traditional triplet 

network and Siamese network (SiameseNet) [61], demonstrating superiority of our proposed 

method. In comparison to traditional triplet and Siamese networks, as well as a classic threshold-

based method, our proposed approach shows superior performance in detecting faulty data 

sequences. The experimental results demonstrated an impressive accuracy of 97.6%, precision of 

97.5%, recall of 97.7%, and an F1 score of 97.6%. The key contributions of this research study are 

summarized below: 

(1) A sample-efficient symmetric contrastive sampling strategy was introduced 

to harness domain knowledge by perturbing the same normal traffic sequence to generate 

direct contrastive samples. This facilitates the learning of invariant features as well as 

contrastive signals. 
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(2) A novel cross-attention boosted loss function was introduced for training 

the triplet network, which significantly improved the cohesion within classes and the 

distinction between classes. 

(3) A CNN encoder was designed with self-attention layers for selective feature 

pooling. 

(4) Extensive experiments were conducted, demonstrating the effectiveness of 

the above-mentioned novel components. 

 

 

Figure 3.1: Domain-inspired triplet data generation. 

 

3.2. Contrastive learning 

Contrastive learning is a powerful technique within the field of metric learning that focuses on 

learning representations by contrasting positive and negative pairs of examples. Its similarity to 

human learning has led to its widespread recognition and adoption. In this section, we provide an 

overview of contrastive learning by highlighting two widely adopted networks: the Siamese 

network and the triplet network. These networks are trained in self-supervised learning settings to 
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acquire informative, meaningful embeddings, which can subsequently be employed for various 

downstream tasks, such as classification. 

 

3.2.1. Siamese Network  

SiameseNet [61] is a special type of neural network architectures that consists of two identical 

networks with shared parameters. During training, the parameters are updated by minimizing a 

contrastive loss function that is computed based on a distance metric in the latent embedding space 

[62]. In contrast to conventional learning systems where the loss function is a sum over sample 

batches, the contrastive loss for SiameseNet is computed over pairs of samples [63]. 

Let ℱ𝑠(𝑥) be the embeddings of an input 𝑥 and let 𝑥1 and 𝑥2 denote the two paired inputs, 

where 𝑥1 and 𝑥2 can be either similar or dissimilar. A binary label y is assigned to the input pair 

to indicate whether the pair is similar or dissimilar, where 𝑦 = 0 if 𝑥1 and 𝑥2 are similar and 𝑦 =

1 if they are dissimilar. The contrastive loss ℒ𝑠 is computed using Eq. 3.1, where 𝑚 is the margin 

between similar and dissimilar pairs, which is often treated as a hyperparameter. The distance 

metric, 𝐷(ℱ𝑠(𝑥1), ℱ𝑠(𝑥2)) is typically the Euclidean distance in the embedding space.  

ℒ𝑠 = (1 − 𝑦)
1

2
(𝐷(ℱ𝑠(𝑥1), ℱ𝑠(𝑥2)))

2 + (𝑦)
1

2
{𝑚𝑎𝑥(0,𝑚 − (𝐷(ℱ𝑠(𝑥1), ℱ𝑠(𝑥2)))}

2. (3.1) 

 

3.2.2. Triplet network 

One limitation of the SiameseNet is that the margin parameter 𝑚  only distinguishes between 

similar and dissimilar samples, without controlling the variability among samples within the same 

class. As a result, a large number of similar samples are required to effectively cluster intraclass 

samples in the feature space [64]. To address this limitation, the TripletNet [59] considers both 

positive and negative distances relative to an anchor in the loss function, resulting in improved 
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metric learning. The triplet loss is defined by Eq. 3.2, where minimizing the loss is equivalent to 

reducing the distance between the anchor and the positive (the first term in Eq. 3.2) while 

increasing the distance between the anchor and the negative (the second term in Eq. 3.2) such that 

the difference between the two distances is at least the margin value, which is a user-defined 

hyperparameter. This allows TripletNet to better handle outliers and varying levels of intraclass 

variance, offering more flexibility than SiameseNet in constructing the latent space.  

ℒ𝑇 = max{𝐷(ℱ𝑇(𝑎), ℱ𝑇(𝑝))
2 −𝐷(ℱ𝑇(𝑎), ℱ𝑇(𝑛))

2 +𝑚, 0}   (3.2) 

where, 𝑎 denotes an anchor input, 𝑝 and 𝑛 indicate positive and negative inputs, respectively; 𝑚 

is target margin; ℱ𝑇(∙) is the encoder network.  

 

3.3. Proposed method 

The traditional TripletNet framework has limitations due to its reliance on selection and quality of 

training triplets, which can lead to ineffective and unstable feature representation learning if the 

triplets are not properly chosen, as well as high computational cost with a large number of triplets 

that could be constructed from a training dataset. To address these issues, we propose an adapted 

TripletNet framework that uses a symmetric sampling strategy, where same number of positive 

and negative samples are generated from the same anchor.  Furthermore, we employ a cross-

attention mechanism between positive and negative examples to boost loss signals. Our proposed 

method consists of three major components: (1) CWT imaging of time-series traffic data, (2) 

customized triplet network training to induce a latent embedding space endowed with 

discriminative power, and (3) a classifier that leverages embeddings for detection of faulty traffic 

sensor data. Figure 3.2 illustrates the conceptional framework of the proposed method. The 
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symmetric sampling strategy and each of the major components are discussed in detail in the 

subsequent sections. 

 

 

Figure 3.2: The conceptional framework of the proposed method. 

 

3.3.1. Domain-Inspired Data Generation  

The process of contrastive learning involves transforming original data to create multiple instances 

of each sample, which enables the learning of target invariant features from unlabeled data. These 

transformations must preserve the essential information of the original samples to enable the 

network to identify its distinctive features [65]. In this paper, we used domain-inspired 

augmentation strategies to generate positive and negative examples from same original data 

sample, referred to as anchor in the triplet network setting. Specifically, we used healthy time-
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series traffic volumes in five-minute intervals over a day as the anchor, from which three positive 

and three negative instances are generated, leading to nine triplet pairings.   

To simulate natural traffic variation, we created positive signals by applying three types of 

perturbations: (1) Gaussian noise (random noise), (2) temporal shifting, and (3) magnitude scaling. 

Gaussian noise captures the natural randomness present in traffic counts on a daily basis, temporal 

shifting simulates traffic shock wave that could be induced by bottleneck locations with reduced 

capacities, and magnitude scaling reflects significant traffic volume changes that could arise from 

special events, work zones, or incidents. Figure 3.3 illustrates the effects of the three perturbation 

types, where the blue lines trace the original data trends, and the orange lines represent the 

perturbed data trends. 

 

 

Figure 3.3: Visualization of three types of natural noises. The top plot simulates natural traffic 

variation by small perturbation of traffic volumes (i.e., injecting Gaussian noises); the middle 

plot indicates potential temporal shift of traffic; and the bottom plot demonstrates magnitude 

scaling to reflect potential increase or decrease of overall traffic due to certain events. 
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Three prevalent categories of faults observed in historical traffic sensor data, namely, 

nonresponsive faults, block faults, and point faults, serve as a basis for creating negative examples, 

contrasting with the positive ones [4]. Environmental factors such as weather-related damage, 

technical issues like power anomalies, and inappropriate setup can result in nonresponsive faults 

where traffic sensors fail to react. On the other hand, block faults, manifesting as undercounting 

of vehicles, may arise from a variety of causes, such as physical obstructions, misalignment of 

sensors, and calibration discrepancies. Moreover, point faults are attributed to a range of sporadic 

problems, which may include hardware malfunctions that occur intermittently, variable power 

supply, and transient blockages. The nonresponsive fault is generated by randomly selecting short 

time segments (e.g., 5 consecutive time intervals) and suppressing the traffic volumes to zero. 

Block faults are replicated in a similar fashion to nonresponsive faults but instead cause a 

significant reduction in traffic volume, for instance, a 40% decrease. Point faults, akin to block 

faults, sporadically lower the traffic count at random time points. Figure 3.4 illustrates the effects 

of the three types of faulty signal injections, where the blue lines indicate normal data trends, and 

the orange lines indicate the contaminated signals.  

 



 

 

27 

 

 

Figure 3.4: Visualization of three types of faulty signals; top: nonresponsive fault, middle:  block 

fault, bottom: point fault. 

 

3.3.2. Continuous Wavelet Transformation  

CWT is employed as a preprocessing step in this study. Wavelets are formed by convoluting scaled 

and translated versions of the mother wavelet over time-sequence data. The mother function can 

be used to convert one dimensional data into scaled N-dimensional data. In this context, scaling 

refers to stretching or shrinking the signal in time by the scaling factor, which is inversely 

proportional to frequency. While shifting refers to moving the location of the wavelet imposed on 

the signal. Stretching a wavelet can help to capture slow changes in time series data, while 

shrinking improves the ability to detect abrupt changes. CWT results in a two-dimensional image 

that visually captures both slow and abrupt changes, inducing a powerful representation for time-

series data. The CWT can be written in Eq. 3.3. 
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 𝐶(𝑎, 𝑏; 𝑓(𝑡), 𝜓(𝑡)) = ∫ 𝑓(𝑡)
1

𝑎
𝜓 ∗ (

𝑡−𝑏

𝑎

∞

−∞
)𝑑𝑡      (3.3) 

where, the scale is represented by a, and the position by b. * denotes the complex 

conjugate.  𝜓 is the mother wavelet function.   

 

Figure 3. 5 displays some generated examples of the positive and negative instances, and 

their corresponding CWT images. The CWT image of the positive example appears nearly 

identical to that of the anchor example, while the negative example displays distinguishable 

characteristics in the higher frequency areas of the CWT image. 

 

 

Figure 3.5: Sample wavelet transformations of time-series traffic volume data; left: normal data, 

middle: normal data with noises, right: faulty data. The red rectangles on the negative CWT 

image (right) highlight the distinguishable fault signals in contrast to the normal and positive 

CWT images (left). 
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3.3.3. Proposed Triplet network 

The proposed TripletNet is composed of a CNN encoder and an MLP classifier. To train the 

encoder, we use a domain-inspired triplet loss function, which is based on an anchor and three 

positive, and three negative instances generated from the same anchor. This results in nine triplet 

pairings: 𝑋𝑘 = {𝑥𝑘
𝑎 , 𝑥𝑘

𝑝𝑖 , 𝑥𝑘
𝑛𝑗}, where 𝑖, 𝑗𝜖{1,2,3} and 𝑥𝑘

𝑎  is anchor instance, 𝑥𝑘
𝑝𝑖  denotes positive 

instance 𝑖 and  𝑥𝑘
𝑛𝑗

 is negative instance 𝑗. We treat the nine triplets as a “minibatch” and feed them 

to the CNN encoder for training. Once the encoder is trained, its weights are fixed, and it functions 

as a feature extractor for training an MLP classifier. The subsequent subsections outline the 

architecture of the convolutional TripletNet encoder, followed by the cross-attention boosted 

triplet loss function and the MLP classifier designed for fault detection.  

 

Architecture of the Encoder  

The encoder architecture consists of four convolution blocks, each of which contains two 2D 

convolutional layers and a max pooling layer, resulting in a flattened vector with 2048 dimensions. 

Batch normalization and Rectified Linear Unit (ReLU) activation are applied after each 

convolutional layer. The inputs to the TripletNet encoder are CWT images with dimensions of 

1×64×64.   

The convolution operation is recognized for its data efficiency but can introduce high bias 

due to its localized structure. In contrast, the attention mechanism offers greater flexibility and has 

gained popularity following the success of the transformer model [66], finding extensive 

application in image classification tasks [67] . Drawing inspiration from the human visual attention 

mechanism, the attention module aggregates information by assigning different weights to 

different inputs based on their importance. As not all features obtained from the convolutional 
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block contribute equally to the classification task, a self-attention module [68] is utilized to 

perform selective feature pooling on the features obtained from each convolutional block. The 

features from each of the self-attention layers are then projected to a common-length vector. These 

vectors are concatenated to obtain an output of size 4×1×2048. The architecture of the proposed 

TripletNet encoder is illustrated in Figure 3.6.  

 

 

Figure 3.6: The proposed TripletNet encoder with self-attention layers. 

 

Cross-Attention Boosted Loss Function 

The effectiveness of the traditional triplet network heavily relies on the careful selection and 

quality of example triplets, and the triplet loss function is designed specifically to learn 

embeddings that aid in comparing the similarity between data points. However, in the case of 

traffic sensor data, the differences between normal and faulty time-series are relatively minor, 

making it challenging to enhance intraclass aggregation and interclass separation. To address this, 
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we propose a cross attention-boosted triplet loss function. The attention mechanism is used to 

identify states within a network that closely resembles a given state, allowing for the extraction of 

relevant information, and emphasizing significant local regions for extracting more distinctive 

features [23]. In the conventional triplet loss function, positive and negative instance embeddings 

are not able to access each other’s information before being used in the calculation of the triplet 

loss. Considering this, we use two cross attention modules that connect and share information 

between positive and negative embeddings, highlighting relevant regions with distinctive features.  

Assuming a batch size of N, let 𝑋𝑎 = {𝑥1
𝑎 , 𝑥2

𝑎 , … , 𝑥𝑁
𝑎} represents the anchor instances, 

𝑋𝑝 = {𝑥1
𝑝𝑖 , 𝑥2

𝑝𝑖 , … , 𝑥𝑁
𝑝𝑖} represents corresponding positive instances, and 𝑋𝑛 = {𝑥1

𝑛𝑗 , 𝑥2
𝑛𝑗 , … , 𝑥𝑁

𝑛𝑗} 

represents corresponding negative instances. The embeddings obtained from the TripletNet 

encoder for the 𝑘th anchor, positive, and negative instances can be denoted as  ℱ𝑇(𝑥𝑘
𝑎), ℱ𝑇(𝑥𝑘

𝑝𝑖), 

and ℱ𝑇(𝑥𝑘
𝑛𝑗) , respectively, where ℱ𝑇(∙)  is feature encoder. Our proposed cross-attention 

mechanism is illustrated in Figure 3.7. which strictly implements multi-head self-attention 

mechanism, where “cross” refers to the fact that attention is applied across different groups of 

embeddings (i.e., anchor, positive, and negative). In other words, the queries come from one group 

of embeddings while the keys and values are from a different group of embeddings.  The scaled 

dot-product attention and multi-head attention are computed by Eqs. 3.4 and 3.5.  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉      (3.4) 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑜    (3.5) 

where, ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉); 𝑑𝑘 denotes the dimension of queries and keys 

and 𝑑𝑣  is the dimension of values; The parameter matrices are 𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈
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ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘, 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣  and 𝑊𝑜 ∈ ℝℎ𝑑𝑘×𝑑𝑚𝑜𝑑𝑒𝑙 . In our study, the 𝑑𝑚𝑜𝑑𝑒𝑙 is set to 2048 and 

ℎ = 8. 

 For each anchor in a batch, three positive and three negative examples are generated from 

it and their respective embeddings (denoted as Embeddings (1) in Figure 3.7) are obtained from 

the pretrained TripletNet encoder.  In the first cross-attention layer, cross-attention is applied 

between the anchor embeddings and the positive embeddings (Eq. 3.6) and between the anchor 

embeddings and the negative embeddings (Eq. 3.7). In the second cross-attention layer, cross-

attention is applied (Eqs. 3.8 and 3.9) between the positive and negative embeddings (denoted as 

Embeddings (2) in Figure 3.7) to obtain the final embeddings (denoted as Embeddings (3) in 

Figure 3.7) for loss computation.  

 

 

Figure 3.7: Cross-attention boosted contrastive loss. 
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 𝑇𝑝(𝑥𝑘
𝑝𝑖) = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑝 (ℱ𝑇(𝑥𝑘

𝑎), ℱ𝑇(𝑥𝑘
𝑝𝑖), ℱ𝑇(𝑥𝑘

𝑝𝑖))    (3.6) 

𝑇𝑛(𝑥𝑘
𝑛𝑗) = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑛 (ℱ𝑇(𝑥𝑘

𝑎), ℱ𝑇(𝑥𝑘
𝑛𝑗), ℱ𝑇(𝑥𝑘

𝑛𝑗))    (3.7) 

𝐺𝑝(𝑥𝑘
𝑝𝑖) = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑝 (𝑇𝑛(𝑥𝑘

𝑛𝑗), 𝑇𝑝(𝑥𝑘
𝑝𝑖), 𝑇𝑝(𝑥𝑘

𝑝𝑖))    (3.8) 

 𝐺𝑛(𝑥𝑘
𝑛𝑗) = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑛 (𝑇𝑝(𝑥𝑘

𝑝𝑖), 𝑇𝑛(𝑥𝑘
𝑛𝑗), 𝑇𝑛(𝑥𝑘

𝑛𝑗))    (3.9) 

The loss ℒ per batch is computed by Eq. 10: 

ℒ = ∑ ∑ max{𝐿2(ℱ𝑇(𝑥𝑘
𝑎), 𝐺𝑝(𝑥𝑘

𝑝𝑖)) − 𝐿2(ℱ𝑇(𝑥𝑘
𝑎), 𝐺𝑛(𝑥𝑘

𝑛𝑗)) + 𝑚, 0}𝑖,𝑗
𝑁
𝑘=1  (3.10) 

where 𝑖, 𝑗𝜖{1,2,3} and𝐿2 denotes Euclidean distance and 𝑚 is margin. 

 

Classifier 

In the classification task, the multi-scale features retrieved from each block of the pretrained 

TripletNet encoder, are firstly projected to an 8,192-long vector and then fed to a multi-layer 

perceptron (MLP) [69]. The proposed MLP consists of two linear layers with ReLU nonlinearity, 

which can be mathematically represented by Eq. 3.11.  

𝑀𝐿𝑃(𝑍) = 𝑊2 (𝐷 (𝜎(𝛽(𝑊1𝑍))))       (3.11) 

where 𝑊1, 𝑊2, are weight vectors for the first and the second layer of the MLP, 𝑍 is the input 

vector; 𝜎 denotes the ReLU activation function; 𝛽 represents batch normalization;  𝐷 indicates the 

dropout layer, with a drop rate of 0.5 being used in our experiments. Finally, softmax is applied to 

obtain the predicted class distribution. The classifier is trained using binary cross-entropy loss, 

denoted by Eq. 3.12.  

𝐿𝐵𝐶𝐸 = −
1

𝑀
∑ (𝑦𝑖𝑙𝑜𝑔(𝑝(𝑥𝑖)) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝(𝑥𝑖)))
𝑀
𝑖=1    (3.12) 
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3.4. Dataset 

Time series data of traffic volumes in 5-minute intervals are obtained from 254 active CCS sites 

across the state of Georgia over an 18-month period from August 2018 to July 2020. It should be 

noted that some sites have full-day missing records, which have been removed. The geospatial 

locations of the active CCS sites are depicted in Figure 3.8.  The data is partitioned into two 

datasets: one is used for training the Triplet encoder, referred to as triplet dataset, and the other is 

used for training the classifier, referred to as classification dataset, as shown in Table 3.1. 

 

Triplet dataset. The triplet dataset contains 81,443 normal daily time sequences of 5-minute traffic 

volumes, collected at 254 CCS sites from August 1, 2018, to July 31, 2019. Following the triplet 

network contrastive learning pathway, each normal daily time-series is used to generate three 

positive and three negative examples, as described previously.  

 

Classification dataset. This dataset is used to train the classifier. It contains 20,015 daily time 

sequences of 5-minute normal traffic volume data from February 1, 2020, to April 30, 2020, and 

20,599 daily time sequences of “faulty” data that were generated by injecting faulty signals to the 

normal traffic volume data collected in a different period from May 1, 2020, to July 31, 2020.  This 

is done to prevent information leakage for the classifier training. It should be noted that the goals 

of contrastive learning and classifier training are different, as the former aims to learn invariant 

features from nuisance noises while the latter is intended for the classification task. 
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Figure 3.8: Locations of CCS in Georgia, USA [60]. 

 

Table 3.1: Summary of Datasets 

Dataset Time Window # of CCS sites Size (# of daily sequences) 

Triplet dataset 8/1/2018-7/31/2019  254 81,443  

Classification dataset 2/1/2020-7/31/2020 254 40,614 * 

* Include 20,015 normal daily time sequences and 20,599 faulty daily time sequences generated 

from the 254 CCS sites. 

 

3.5. Experiments 

We present evidence that the TripletNet model sets a new benchmark for performance in 

contrastive learning applied to the detection of faults in daily traffic sequences, especially when 

dealing with images of time-series traffic data, utilizing a real-world continuous count station 

(CCS) dataset. The training process consists of two stages. In the first stage, the TripletNet and 

SiameseNet encoders are pretrained in self-supervised learning settings. In the second stage, these 
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pretrained encoders are used as backbones to train the classifiers in a supervised setting. We 

conducted various training scenarios to evaluate different encoder designs and loss functions, 

utilizing the dataset. This section also includes the pretraining of the TripletNet and SiameseNet 

encoders, the classifier training, the experimental settings, and results. 

 

3.5.1. Model Architecture Design and Comparison  

The TripletNet encoders are designed and trained in five different settings: (1) TripletNet A, where 

the encoder has no self-attention layers and the conventional triplet loss function is minimized 

based on nine triplet permutations, (2) TripletNet B, which adopts the same encoder as TripletNet 

A, but minimizes the cross-attention-boosted triplet loss, (3) TripletNet C, where self-attention 

layers are added in the encoder and the conventional triplet loss is minimized, (4) Proposed 

TripletNet, where the self-attention layers are added in the encoder and the cross-attention-boosted 

loss is minimized, and (5) TripletNet D, where only one triplet sample is processed per pass and 

there are no self-attention layers in the encoder, and the conventional triplet loss is minimized. 

On the other hand, SiameseNet, which is widely used as a benchmark model in contrastive 

learning, was employed as a baseline for comparison. The SiameseNet employs the same CNN 

encoder architecture as TripletNet D. For pretraining the SiameseNet encoder, the data pairs were 

derived from the same triplet samples, where the anchor and positive examples were grouped as 

the normal class while the negative examples were treated as the faulty class. Furthermore, a 

classic threshold-based method using Z-score is also evaluated for comparison purposes.  In this 

approach, faulty data points are identified based on the optimal threshold of Z score obtained 

experimentally.   
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3.5.2. Training of Classifiers  

In the second stage, the pretrained TripletNet and SiameseNet encoders are frozen and simply used 

as feature extractors for training the multi-layer perceptron (MLP) classifier using the 

classification dataset. The encoders are kept frozen during classifier training. A k-nearest neighbor 

(KNN) algorithm [70] is also used as a baseline classifier for evaluating embedding quality. KNN 

is a non-parametric, supervised learning algorithm. There are no parameters to learn.  It relies on 

majority vote of the k nearest neighbors to make class prediction. Since it does not impose any 

specific structures, the classification results reveal the quality of embeddings for class separation.  

Further details on the experimental settings and results are presented subsequently. 

 

3.5.3. Experiment Settings 

For traffic data imaging, the daily time-series traffic volume data is converted into CWT images 

(1×64×64) using the PyWavelets package [71]. In the stage of feature extractor pretraining, all 

models are trained using Adam [72] with initial learning rate of 0.0001 as optimizer. The batch 

size is set to 128. The triplet dataset is divided into a training set and a validation set with an 8:2 

ratio. Each network is trained for 50 epochs. Margin value in loss function is set at 0.5. For the 

training of the MLP classifier, cross-entropy loss is used. The classification dataset is split into 

three sub-datasets: training set (60%), validation set (20%) and testing set (20%). Each classifier 

is trained for 50 epochs using Adam with a learning rate of 0.00001 and a batch size of 128. 

 

3.5.4. Results and Discussions 

For classification tasks, the model performance is commonly measured by the average accuracy, 

precision, F1-score, recall, and the area under the receiver operating characteristic curve (AUC). 
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These classification metrics for test data are summarized in Table 3.2, where the check mark (ü) 

indicates the specific design component adopted for each model. To evaluate the quality of 

embeddings from different encoders, a KNN classifier is applied, where a k value of 6 is selected 

based on experiments. Since there is no extra learning structure or parameters imposed by the 

KNN, the cluster results imply the embedding quality. 

 

Table 3.2: Model Performance Evaluation 

Architecture Component 
TripletNet 

Siamese 

Network 

Z-score 

Threshol

d Method 

A B C D Proposed   

Number of 

samples 

processed per 

pass 

9 ✓ ✓ ✓   ✓    

1       ✓   ✓ 

Encoder 

CNN ✓ ✓   ✓     

CNN + Self-

Attn 
    ✓   ✓   

Loss Function 

Triplet Loss ✓   ✓ ✓     

Cross-Attn-

Boosted 

Triplet Loss 

  ✓     ✓   

Contrastive 

Loss 
          ✓ 

Classifier - 

MLP 

Avg. 

Accuracy 

(%) 

95.4 96.0 96.3 94.9 97.6 94.8 83.4 

Avg. 

Precision 

(%) 

94.4 95.2 95.8 94.2 97.5 94.4 82.5 

Avg. Recall 

(%) 
96.3 96.7 96.7 95.5 97.7 95.2 83.9 

Avg. F1-

score (%) 
95.4 95.9 96.3 94.9 97.6 94.8 83.2 

AUC 0.975 0.978 0.987 0.972 0.992 0.973 83.2 

Classifier -

KNN (k=6) 

Avg. 

Accuracy 

(%) 

92.4 92.9 93.3 91.6 93.9 91.9 83.4 

AUC  0.945 0.947 0.961 0.938 0.965 0.940 0.863 
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As is shown in Table 3.2, all deep-learning models have average accuracies in exceedance 

of 91%.  Our proposed TripletNet, endowed with (1) self-attention layers at each CNN block, (2) 

nine triplet samples per pass for training, and (3) cross-attention-boosted loss function, achieved 

the best classification accuracy of 97.6% and AUC of 0.992 on the test dataset.  All the TripletNet 

models outperformed the SiameseNet. Notably, all deep-learning models surpassed the 

conventional Z-score threshold-based method by a substantial margin of more than 10%.  This 

could be explained by the fact that the faulty signals in daily time sequences contain rich features 

that are better captured by deep-learning methods than simple threshold-based methods. The latter 

performs point-wise detection and disregards any temporal features. 

By comparison, the models (A, B, C, and Proposed) trained with nine triplet samples per 

pass have higher accuracies and AUCs than the one (D) trained with one triplet sample per pass.  

The superiority of model B over model A indicates the benefit of the cross-attention-boosted loss 

function. We argue that this is largely due to the enhanced contrast between positive and negative 

embeddings. Furthermore, upon comparing Model A and C, it became evident that the self-

attention layers, which selectively gather information from different scales of embeddings, 

significantly enhanced the encoder's performance. To better understand the impact of the two 

proposed architectural design elements, i.e., self-attention layers and cross-attention-boosted loss, 

we plotted the training progress of the related models in Figure 3.9. The results show that Model 

B and the Proposed Model, which were optimized using the cross-attention boosted loss, 

converged much faster with improved stability as compared to Model A and Model C, 

respectively. Additionally, Model C and the Proposed Model, which are equipped with self-

attention layers, also improved the training stability compared to Model A and Model B, which 

lack self-attention layers in their encoders. 
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Figure 3.9: Progression of scaled training and validation losses. 

 

To gain a better insight into the quality of the latent representation, t-SNE [73] is employed 

to embed 960 CCS CWT images, randomly sampled from the classification test dataset with equal 

numbers of faulty and normal samples. As shown in Figure 3.10, the pretrained proposed 

TripletNet encoder maps the faulty and normal data points to distinct clusters in the latent space.  

The KNN classification results in Table 3.2 show the clear advantage of our proposed TripletNet 

encoder over the other encoders for the downstream classification task.  
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Figure 3.10: Features visualization by T-SNE embeddings for 960 sample data (480 positive 

instances + 480 negative instances); (a) original CWT image; (b) the proposed Triplet encoder. 

 

3.6. Summary 

In this chapter, we presented a sample-efficient, anchor-centered TripletNet framework for 

detecting faulty sensor data based on their unique temporal patterns. Our proposed model pipeline 

consists of three major sequential components: (1) CWT transformation of time-series traffic data, 

(2) a pretrained TripletNet encoder for separating faulty data from normal data in a multiscale 

embedding space, and (3) an MLP classifier for detecting faulty traffic data in the resultant 
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embedding space. Notably, we devised an anchor-centered data generation process for training the 

TripletNet encoder, whereby each normal day of time-series data is used as an anchor, from which 

three positive and three negative examples are generated based on the domain knowledge. This 

leads to nine permutations of triplet samples around the anchor that enables direct contrastive 

learning of faulty patterns. In addition, a cross-attention module is introduced during the training 

to enable the learning of a more nuanced embedding space for the subsequent classification task. 

Our experiments demonstrated the superiority of the proposed design and training strategy. 

Nevertheless, this study can be extended to focus on the classification of different faults 

that may occur in time-series traffic data to provide valuable insights for sensor diagnosis. One 

limitation of our proposed method is the prerequisite of pre-training TripletNet. To facilitate 

continuous learning and adaptation to emerging features, it would be advantageous to explore 

meta-learning approaches and more suitable fine-tuning procedures. 

Furthermore, it is important to note that the current study primarily concentrates on one-

dimensional time-series data. To broaden the scope of applications, further research is needed to 

extend the existing framework to encompass high-dimensional correlated time-series data. For 

instance, our study focuses on individual traffic count stations, but the flow patterns of 

geographically proximate stations are inherently correlated and influenced by the network 

configuration. Therefore, adopting a more comprehensive approach that analyzes clusters and 

network topology of stations could enhance the reliability of anomaly detection and classification. 
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3.7. Publications 

The work presented in this chapter has led to the following publications [74], [75]:  

• Yongcan Huang, Jidong J. Yang. Symmetric contrastive learning for robust fault detection 

in time-series traffic sensor data[J]. International Journal of Data Science and 

Analytics (2024): 1-15. 

• Yongcan Huang, Jidong J. Yang. Semi-supervised multiscale dual-encoding method for 

faulty traffic data detection[J]. Applied Computing and Intelligence, 2022, 2(2): 99-114.  
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CHAPTER 4 

 CLUSTER-GUIDED DENOISING GRAPH AUTO-ENCODER 

FOR TRAFFIC DATA IMPUTATION AND FAULT 

DETECTION 

 

This chapter presented our second framework that leverages spatial contexts through clusters of 

sensors to improve fault detection. First, a traffic sensor clustering module was designed using a 

dual-encoding attention graph auto-encoder (DA-GAE) to identify clusters of traffic sensors. This 

module leverages a joint embedding of node and edge features in a low-dimensional vector space. 

Subsequently, utilizing the identified clusters, a cluster-guided denoising graph auto-encoder (CG-

DGAE) was devised and trained for data reconstruction. The CG-DGAE employs a diffusion graph 

convolutional network (DGCN) and is trained with a cluster-wise sampling strategy. Extensive 

experiments were conducted using traffic data obtained from a real-world large sensor network, 

demonstrating superior performance of the CG-DGAE model in data reconstruction compared to 

various baseline methods. For fault detection, a score function is devised to discern potential faults 

by contrasting the sensor data sequence and the reconstructed data sequence. 
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4.1. Research Overview 

Despite the advancements of deep learning models-based traffic data fault detection summarized 

in our literature review work, devising an optimal protocol for fault detection in traffic data remains 

a challenge, compounded by factors related to intrinsic characteristics of road traffic and the 

diversity of traffic data sources: These aforementioned factors collectively underscore the 

complexity and multifaceted nature of traffic data quality control, necessitating innovative 

approaches tailored to address the unique challenges posed by real-world traffic systems. In this 

chapter, we proposed a novel deep-learning-based approach consisting of three sequential phases: 

(1) traffic sensors clustering, (2) data reconstruction, and (3) fault detection.  

 

(1) Traffic sensors clustering: a dual-encoding attention graph auto-encoder (DA-GAE) is 

designed to aggregate neighboring traffic sensors into coherent groups or clusters. It jointly 

encodes node features and network topology into a low-dimensional vector space. The 

established clusters are later utilized to enable a cluster-wise sampling strategy for robust 

traffic data reconstruction. 

 

(2) Data reconstruction: a cluster-guided denoising graph auto-encoder (CG-DGAE) is proposed 

for traffic data reconstruction. The network employs a Diffusion Graph Convolutional 

Network (DGCN) to reconstruct healthy traffic data from contaminated one with faulty signals. 

Trained using subgraphs constructed from sensor clusters obtained previously, the CG-DGAE 

is able to recognize spatial-temporal dependency of sensors within each cluster and enhance 

the reconstruction and imputation accuracy. 
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(3) Fault detection: the pretrained CG-DGAE model is utilized to reconstruct sensor data 

sequences. By comparing the reconstructed data sequence with the input data sequence using 

a score function and a threshold, faults within the input data sequence can be identified. 

 

Extensive experiments are conducted for each phase above using traffic datasets sourced from 

statewide continuous count stations (CCS) in Georgia. The results reveal that dual encoding 

empowered by the attention mechanism (i.e., DA-GAE) facilitates superior graph representation 

learning, leading to improved clusters. Our proposed CG-DGAE surpasses all baseline models in 

reconstructing traffic sensor data. We further validate the performance of fault detection using a 

manually annotated faulty traffic dataset. The major contributions of this work could be 

highlighted as below: 

• A novel light framework for network level faulty detection is proposed. The framework 

features with the light dynamic cluster-guided subgraph sensor data, which is inherently 

well-suited not only for traffic faulty data but also for other domain data faulty detection 

problems. 

• We designed a dual encoding scheme for graph representation learning that leverages both 

graph structure and node content, incorporating a new loss function to achieve optimal 

traffic sensor clustering and data reconstruction results. 

• To optimize subgraph sampling in data reconstruction with GNNs, we developed a 

subgraph generation approach that clusters neighboring traffic sensors based on semantic 

similarity in a low-dimensional vector space.  



 

 

47 

 

• We developed a fault detection function based on a fault score derived from the cluster-

level reconstruction sequence and observed sensor data. Testing on real-world faulty traffic 

sensor data demonstrated the method's feasibility and reliability. 

 

4.2. Preliminaries 

In this section, we first introduced graph representation for highway traffic sensor networks, 

followed by the formulation of the problem. 

 

4.2.1. Graph Abstraction Representation of Highway Traffic Sensor Networks 

In this work, we defined a highway traffic sensor network as a weighted directed graph 𝐺 =

(𝑉, 𝐸, 𝐴) , where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}  is a set of 𝑁  nodes; 𝐸  a set of edges indicating the 

connectivity between nodes; 𝐴 ∈ ℝ𝑁×𝑁 denotes the adjacency matrix capturing the dependency 

between the nodes. A physical traffic sensor in the highway network typically records the 

bidirectional flow data. In our case, the node is defined by direction, where the node features 

include directional sensor data. Existing approaches often define the adjacency matrix as a function 

of connectivity or distance. To get the connectivity in the graph, we first derive the distance matrix 

𝐷 from the geographic proximity. Then, the adjacency matrix 𝐴 is derived based on the closest 𝑝 

nodes. For the highway traffic sensor network, the geographical proximity between two nodes or 

each element in 𝐷 is computed by Eq. 4.1. 

𝐷𝑖𝑗 = exp(−
𝑑𝑖𝑠𝑡𝑖𝑗

𝑚𝑎𝑥𝑖,𝑗(𝑑𝑖𝑠𝑡𝑖𝑗)
)        (4.1) 

where 𝐷𝑖𝑗 is the element value for geographical proximity between sensor 𝑖 and 𝑗, 𝑑𝑖𝑠𝑡𝑖𝑗 is travel 

distance between 𝑖 and 𝑗. The adjacency matrix 𝐴 is defined as: 
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𝐴𝑖𝑗 = {
𝑒
𝐷𝑖𝑗

∑ 𝑒
𝐷𝑖𝑗

𝑗∈𝑡𝑜𝑝𝑃(𝑖,𝑝)

,𝑗 ∈ 𝑡𝑜𝑝𝑃(𝑖, 𝑝),

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

      (4.2) 

 

where 𝑡𝑜𝑝𝑃(𝑖, 𝑝) represents a list of column indexes of the largest 𝑝 element values in each row 𝑖 

of 𝐷. 

 

4.2.2. Problem definition 

In our setting, the objective of traffic sensor data fault detection is to identify anomalies present 

within the sensor data sequence. We assume that the traffic sensors can be organized into 𝐿 distinct 

clusters, where the traffic data distribution within a cluster remains relatively stable and faults 

occur sporadically. For each node 𝑣  in a cluster ℊ , the sensor data at a given timestamp 𝑡  is 

denoted as 𝑥𝑡
𝑣 ∈ ℝ, and the sensor data recorded for the cluster ℊ is represented as a graph signal 

𝑋𝑡 = {𝑥𝑡
1, 𝑥𝑡

2, … , 𝑥𝑡
𝑍} , where 𝑋𝑡 ∈ ℝ𝑍  and 𝑍  represents the number of nodes in the cluster. 

Assuming a detection time frame of [𝑡 − 𝑇, 𝑡], the crux of sensor data reconstruction lies in 

devising a function 𝐹(. ) capable of generating the fault-free traffic sensor data of each cluster 

�̂�𝑡−𝑇:𝑡 = 𝐹(𝑋𝑡−𝑇:𝑡), where �̂�𝑡−𝑇:𝑡; 𝑋𝑡−𝑇:𝑡 ∈ ℝ
𝑍×𝑇 denoting the reconstructed data sequence and 

sensor data sequence, respectively, for the cluster.  

To achieve the objective of fault detection, our proposed approach employs three sequential 

phases: (1) identifying optimal 𝐿  clusters, (2) training cluster-wise traffic data reconstruction 

models, and (3) detecting faults by contrasting the reconstructed data with traffic sensor data. For 

clarity of presentation, a list of abbreviations is provided in Table 4.1, encompassing terms utilized 

in the methodology and experiments. 
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Table 4.1: Abbreviations 

Abbreviation Definition 

AC agglomerative clustering 

BCE binary cross entropy 

Bi-LSTM bi-directional LSTM 

CCS continuous count station 

CG-DGAE cluster-guided denoising graph auto-encoder 

CHI Calinski-Harabasz index 

CNN convolutional neural networks 

DA-GAE dual-encoding attention graph auto-encoder 

DBI Davies-Bouldin index 

DGCN diffusion graph convolutional neural networks 

GAT graph attention network 

GCN graph convolutional networks 

GNN graph neural networks 

LSTM long short-term memory 

MAE mean absolute error 

Okriging ordinary kriging 

RS random sampling 

RMSE root mean square error 

RNN recurrent neural network 

RW random walk sampling 

SC silhouette coefficient 

 

4.3. Dataset 

For this study, 5-minute traffic count data spanning six years from 2018 to 2023 were gathered 

from 221 active CCS sites embedded within Georgia’s highway network. CCS sites use magnetic 

induction loops to capture traffic volumes every 5-minute in both directions. The distribution of 

the CCS sites is shown in Figure 4.1. The 5-minute traffic count data is further partitioned into 

three datasets, the GC-dataset (2018-2019) for graph clustering, the GR-dataset (2020-2022) for 

graph reconstruction and the FD-dataset (2023) for fault detection testing. This data split is 

designed to prevent potential information leakage between the three phases. To capture directional 

traffic flow, the dataset contains directional traffic volumes from each CCS, resulting in a traffic 
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sensor-informed graph with an effective node count of 442, which is twice the number of CCS 

sites. 

Specifically, for the sensor clustering phase, we introduce a data aggregation trick (see 

section 4.4.3) to attain the median weekly traffic volume sequences as model input from GR-

dataset to address the issue of data incompatibility on temporality at the cluster level. For the 

reconstruction phase, we further divide the GR-dataset into training data (2020-2021) and testing 

data (2022). The training of the proposed CG-DGAE model is based on the subgraphs generated 

by Algorithm 1 (see Section 4.4.4.). To test the performance of the reconstruction models, a 

uniform seven-day time window covering Monday to Sunday, common to all 221 CCS sites in 

both directions, is extracted from 2022. This test set is used for the CG-DGAE model as well as 

various baseline models.   

For the FD-dataset, we selected five representative sequences containing actual faults to 

test our proposed CG-DGAE model in the fault detection phase. To better demonstrate the 

performance, we labeled every traffic count data point in these five faulty sequences with binary 

annotation, in which 0 denotes normal data points while 1 denotes faulty data points. The binary 

annotation is demonstrated in Figure 4.2. The binary annotation also allows efficient evaluation 

of our fault detection framework as a binary classification problem, which is detailed in the next 

subsection 4.4.4. The distribution of CCS sites where the selected faulty sequences are collected 

from is shown in Figure 4.1.  
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Figure 4.1: Locations of CCS in Georgia, USA. The black triangles denote the CCS sites where 

the five selected faulty sequences were collected. 
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Figure 4.2:  CCS sequence binary annotation (1 – faulty; 0 – normal). 

 

4.4. Methodology 

In this section, we presented our proposed GNN framework for traffic sensor data fault detection. 

For model development, as depicted in Figure 4.3, three sequential phases are undertaken: (1) 

Graph Clustering: traffic sensor clustering analysis is conducted in a joint node-edge embedding 

space, created by a dual encoding attention graph auto-encoder (DA-GAE), which takes into 

account the spatiotemporal dependency among adjacent sensors, (2) Graph Reconstruction: a 

cluster-guided denoising graph auto-encoder (CG-DGAE) is designed and trained to reconstruct 

the normal data from the corrupted ones, where faulty patterns are injected, and (3) Fault 

Detection: a score function is employed for fault detection by contrasting reconstructed data with 

input ones. In the following subsections, we first introduce two popular GNN architectures, GAT 

and DGCN, in Subsections 4.4.1 and 4.4.2, which serve as the building blocks for our proposed 

DA-GAE and CG-DGAE models. Subsection 4.4.3 covers the traffic sensors clustering task and 
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our proposed DA-GAE model. Subsection 4.4.4 present the traffic sensor data reconstruction task 

and our proposed CG-DGAE model. Finally, Subsection 4.4.5 discusses the fault detection task 

and the adopted score function.  

 

Figure 4.3:  Three phases of the proposed framework for traffic sensor data fault detection. 
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4.4.1. Graph Attention Neural Network 

The graph attention network (GAT) [51] is a specialized neural network tailored for processing 

graph-structured data. It harnesses attention mechanisms to facilitate the exchange of messages 

and aggregates information among neighboring nodes in the graph. However, traditional GAT 

considers only the 1-hop neighboring nodes for graph attention. To exploit the high-order 

neighbors, the revised GAT [52] is adopted in our paper. 

Given a graph 𝐺 = (𝑉, 𝐸, 𝐴) with 𝑛 nodes, i.e., {𝑣1, 𝑣2, … , 𝑣𝑛}, where 𝑣𝑖𝜖𝑉 is associated 

with a node feature vector 𝑥𝑣𝑖, and each edge 𝑒𝑖𝑗 ∈ 𝐸 connecting nodes 𝑣𝑖 and 𝑣𝑗  has a weight 𝐴𝑖𝑗. 

The key idea behind GAT is to compute attention coefficients that capture the importance of node’s 

state to another node. These coefficients are computed using a shared attentional mechanism for 

each pair of nodes. For nodes 𝑣𝑖 and 𝑣𝑗 , the attention score 𝑎𝑖𝑗 can be computed by the following 

Eqs. 4.3 and 4.4. 

𝑒′𝑖𝑗 = 𝛿𝐴𝑖𝑗(�⃗�
𝑇[𝑊𝑥𝑣𝑖  ∥ 𝑊𝑥𝑣𝑗]),       (4.3) 

𝑎𝑖𝑗 =
exp(𝑒′𝑖𝑗)

∑ exp(𝑒′𝑖𝑘)𝑘∈𝑁𝑖

,         (4.4) 

 

where, ∥ denotes concatenation, �⃗�  ∈ 𝑅2𝑚 is a weight vector of learnable parameters where 𝑚 is 

the dimension of the feature vector of each node, and 𝛿  is the nonlinear activation function, 

LeakyReLU. 𝑁𝑖 indicates the neighboring nodes of 𝑖 in 𝐴 and 𝑊 is a weight matrix. Consequently, 

a GAT layer computes the output of each node by Eq. 4.5.  

𝐺𝐴𝑇(𝑋, 𝐴) = ℎ𝑣𝑖
′ = 𝜎(∑ 𝑎𝑖𝑗𝑊𝑘∈𝑁𝑖

𝑥𝑣𝑗),      (4.5) 
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where ℎ𝑣𝑖
′  denotes the output representation of node 𝑖, 𝜎represents the sigmoid activation function; 

𝑎𝑖𝑗 is the attention score which measures the contribution of node 𝑗 to node 𝑖, where 𝑗 is one of the 

adjacent nodes for node 𝑖. 

4.4.2. Diffusion Graph Convolutional Network 

Graph convolutional networks (GCN) have made significant strides in graph-based representation 

learning. However, traditional GCN predominantly operates within local neighborhoods, often 

overlooking the multi-hop relational structures. The diffusion graph convolutional network 

(DGCN) overcomes the constraint by integrating diffusion mechanisms. This allows for the 

extraction of information from remote nodes, resulting in a more global representation of graph 

structures in node embeddings. Considering that highway traffic sensor networks are characterized 

by directed links with an asymmetric distance matrix, the DGCN is utilized in this study to 

effectively capture the characteristics of spatial and directional dependencies. 

For a directed graph 𝐺 = (𝑉, 𝐸, 𝐴) comprising 𝑛 nodes, denoted as {𝑣1, 𝑣2, … , 𝑣𝑛}, each 

node 𝑣𝑖𝜖𝑉 is associated with a node feature vector 𝑥𝑣𝑖. Additionally, any edge 𝑒𝑖𝑗 ∈ 𝐸 forms a 

connection between nodes 𝑣𝑖  and 𝑣𝑗 . Here, 𝐴  represents adjacency matrix. The layer-wise 

convolution in DGCN can be expressed by Eq. 4.6: 

𝐷𝐺𝐶𝑁(𝐻𝑙, 𝐴) = 𝐻𝑙+1 = ∑ 𝑇𝑟(�̅�𝑓)𝐻𝑙 ⊝𝑏,𝑙
𝑟 + 𝑇𝑟(�̅�𝑏)𝐻𝑙 ⊝𝑓,𝑙

𝑟𝑅
𝑟=1 ,   (4.6) 

where �̅�𝑓 = 𝐴/𝑟𝑜𝑤𝑠𝑢𝑚(𝐴) and �̅�𝑏 = 𝐴𝑇/𝑟𝑜𝑤𝑠𝑢𝑚(𝐴𝑇) are the forward and backward transition 

matrices, respectively. 𝑅 stands for the order (or steps) of diffusion convolution; The convolution 

process in DGCN  leverages the Chebyshev polynomial for approximation and 𝑇𝑟(𝐸) =

2𝐸𝑇𝑟−1(𝐸) − 𝑇𝑟−2(𝐸) , initialized with 𝑇0(𝐸) = 𝐼  and 𝑇1(𝐸) = 𝐸 ; ⊝𝑓,𝑙
𝑟  and ⊝𝑏,𝑙

𝑟  are the 

learnable parameters of the 𝑙th layer, dictating the information transformation among nodes; the 



 

 

56 

 

output from the 𝑙th layer is denoted as 𝐻𝑙+1  with 𝐻0 = 𝑋. Unlike conventional GNNs, which 

typically accept a fixed dimension of spatial inputs, DGCN exhibits versatility in accommodating 

diverse subgraph structures. 

4.4.3. DA-GAE Based Traffic Sensor Clustering 

The goal of cluster analysis is to identify traffic sensors with strong spatiotemporal correlations, 

thereby enhancing the accuracy of data fault detection in tightly knit groups within the broader 

graph structure. The outcomes of clustering serve as guidance for generating sampled subgraphs 

used in training GAE in the graph reconstruction and fault detection phases. To fully exploit the 

graph structure and node content, we adopt a novel self-supervised generative model, namely, 

dual-encoding attention graph auto-encoder (DA-GAE). This model innovatively maps both 

structure and node information to a joint latent space. Furthermore, a loss function that integrates 

the information loss from both modalities is devised, facilitating a more comprehensive and 

cohesive reconstruction of graphs. The proposed DA-GAE can inherently handle the spatial 

constraints of traffic data among neighboring traffic sensors, as depicted in Figure 4.4.  
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Figure 4.4:Architecture of graph autoencoder with dual encodings. 

 

Dual Encoding Attention GAE Encoder 

GNN-related tasks usually require temporal consistency for node features. However, a significant 

number of traffic sensors struggle to achieve a sufficiently long common time window to meet the 

model training requirements. To address the issue of data incompatibility on temporality at a 

cluster level, the median daily traffic volume sequences of a week are represented as the graph’s 

node features.  We use “median”, instead of “mean”, to mitigate the effect of outliers.  For a traffic 

sensor node 𝑣𝑖, the volume on day 𝑑 of week 𝑤 is given by 𝑉𝑎𝑙𝑢𝑒(𝑣𝑖 , 𝑑, 𝑤) of 288 datapoints, 
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where 𝑑  index 7 days of a week. The median value for node 𝑣𝑖  for day 𝑑  is represented by 

𝑀(𝑣𝑖, 𝑑) and computed as 

𝑀(𝑣𝑖, 𝑑) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑉𝑎𝑙𝑢𝑒(𝑣𝑖, 𝑑, 𝑤)|𝑤 = 1,2, … ,𝑁},    (4.7) 

where, 𝑁 denote the complete counts of weeks recorded. Therefore, the node content 𝑋(𝑣𝑖) that 

summarizes the typical weekly traffic behavior for node 𝑣𝑖 in the DA-GAE can be constructed as: 

𝑋(𝑣𝑖) = [𝑀(𝑣𝑖, 1),𝑀(𝑣𝑖, 2), … ,𝑀(𝑣𝑖, 7)].      (4.8) 

In vector 𝑋(𝑣𝑖)𝜖ℝ
288×7, each component corresponds to a median value of a particular day of 

the week, starting from Monday to Sunday.  

Simultaneously, topological features are represented by adjacency matrix 𝐴 , which is 

derived from the distance measurements between sensors as described in section 4.2. To ascertain 

the dual graph representation by passing graph features 𝑋, 𝐴, two stacks of DGCN in GAE encoder 

extract graph 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔1 and two layers of GAT generates graph 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔2. The process 

is described by Eqs. 4.9-12. 

𝐻1
𝐷 = 𝐷𝐺𝐶𝑁1(𝑋, 𝐴),         (4.9) 

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔1 = 𝐻2
𝐷 = 𝐷𝐺𝐶𝑁2(𝐻1

𝐷 , 𝐴),      (4.10) 

𝐻1
𝐺 = 𝐺𝐴𝑇1(𝑋, 𝐴),         (4.11) 

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔2 = 𝐺𝐴𝑇2(𝐻1
𝐺 , 𝐴),       (4.12) 

where 𝐻1
𝐷 is the intermediate output from the first layer of DGCN component and 𝐻1

𝐺 represents 

the output of the first layer of GAT component. In the proposed GAE, the DGCN-structured 

module is tasked with reconstructing node content, and its embeddings are considered the primary 

encoding of graph representation. To improve communication between nodes and edge 
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embedding, a cross-attention mechanism is used to generate 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3  by referencing 

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔2 and 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔1. The cross-attention [66] take queries from 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔2 and 

keys and values from 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔1, and compute 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3. The scaled dot-product attention 

and multi-head attention are adopted and computed by Eqs.4.13 and 14. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉,      (4.13) 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
0,    (4.14) 

where, ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉); 𝑑𝑘 denotes the dimension of queries and keys 

and 𝑑𝑣  is the dimension of values; The parameter matrices are 𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈

ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘, 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣  and 𝑊𝑜 ∈ ℝℎ𝑑𝑘×𝑑𝑚𝑜𝑑𝑒𝑙 .  

 

Dual Encoding Attention GAE Decoder 

The GAE decoder is responsible for reconstructing graph inputs from the latent representation. For 

node features, a DGCN layer transforms 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3 from the latent space to reconstructed node 

features, 𝑋′: 

𝑋′ = 𝐻3
𝐷 = 𝐷𝐺𝐶𝑁3(𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3, 𝐴),      (4.15) 

The loss item for node feature reconstruction is gauged using the mean squared error (MSE) loss: 

ℒ𝑛 =
1

𝑁
∑ (𝑋(𝑣𝑖) − 𝑋′(𝑣𝑖))

2𝑁
𝑖=1 ,        (4.16) 

where 𝑁 is the number of data points. For the structure feature reconstruction by the decoder, a 

simple inner product layer [76]  is adopted to reproduce the adjacency matrix 𝐴′ for link prediction: 

𝐴′𝑖𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3𝑖
Τ ∙ 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3𝑗),     (4.17) 
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the reconstruction loss for structure feature is computed as the binary cross entropy (BCE) loss: 

ℒ𝑠 = −
1

𝑁2
∑ ∑ [(𝐴𝑖,𝑗 log(𝐴

′
𝑖,𝑗) + (1 − 𝐴𝑖,𝑗)𝑙𝑜𝑔(1 − 𝐴′𝑖,𝑗)

𝑁
𝑗=1 ]𝑁

𝑖=1 .   (4.18) 

The weights of GAE module are optimized by minimizing a linear combination of the two 

reconstruction losses: 

ℒ𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝜀ℒ𝑠 +ℒ𝑛,         (4.19) 

where 𝜀  is a trade-off weight between the two losses. Additionally, a clustering evaluation is 

conducted using the dual-encoded embedding derived from passing the representative graph into 

the pre-trained GAE module.  

 

Clustering Assessment 

In the ablation experiments, our study compares the proposed DA-GAE model for graph 

representation learning with alternative methodologies that focus solely on node reconstruction or 

graph structure reconstruction. To demonstrate the advantages of using DGCN as a GNN base 

layer, a standard GCN is introduced as a comparison baseline for capturing node embedding. We 

investigate different clustering methods such as K-Means [77], agglomerative clustering [78], and 

OPTICS [79]. To evaluate the effectiveness of the embeddings, we apply three commonly used 

metrics, including the silhouette coefficient score, Calinski-Harabasz index, and Davies-Bouldin 

index.  

• The Silhouette Coefficient (SC) quantifies how well each data point fits into its assigned cluster 

compared to other clusters, with values ranging from -1 to 1. A high SC value indicates better 

separation between clusters.  
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• The Calinski-Harabasz Index (CHI), or variance ratio criterion, assesses the clustering quality 

by calculating the ratio of the sum of between-cluster dispersion to the intra-cluster dispersion 

for all clusters. Higher CHI values denote superior clustering, reflecting dense, well-separated 

clusters.  

• The Davies-Bouldin Index (DBI) evaluates clustering quality by measuring the average 

“similarity” between each cluster and its closest counterpart, with similarity defined as the ratio 

of within-cluster distances to between-cluster distances. Optimal clustering is indicated by 

lower DBI values, which suggest that clusters are compact and distinctly separated from each 

other. 

An overview of the baseline models is presented below, including three versions of GAE 

and Node2Vec.  Their differences are highlighted in contrast to our proposed method. The 

clustering results are presented in Section 4.5.2. 

 

GAE (DGCN): Follows the architecture of DGCN-layered graph auto-encoder in the 

proposed DA-GAE. However, it does not include the GAT-layered component and only focuses 

on node content reconstruction. 

 

GAE (GAT): Targets at the reconstruction of the graph structure using the architecture of 

the GAT-layered encoder and inner product decoder in our proposed DA-GAE. However, the 

embeddings in the latent space do not interact with DGCN-structured GAE. 
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GAE (GCN) [80]: The GCN model employs a layer-wise propagation technique that relies 

on a first-order approximation of spectral graph convolutions. This baseline is comparable to the 

proposed GAE except that it uses GCN instead of DGCN. 

 

Node2Vec [81]: The essence of Node2Vec revolves round the idea of random walks. This 

concept is pivotal for deriving node embeddings in graph data. The algorithm conducts random 

walks on the graph, ensuring nodes are aware of their neighbors in a balanced way. 

 

4.4.4. CG-DGAE based Traffic Sensor Data Reconstruction 

Spatial-temporal graph neural networks (STGNNs) have shown their feasibility and robustness in 

reconstructing traffic sensor data with spatio-temporal dependencies. However, detecting faults in 

traffic data require consistent temporal information. The results from sensor clustering allow for 

the optimal utilization of shared temporal data within smaller groups. Additionally, denoising 

graph autoencoders have demonstrated their effectiveness in managing missing data, enhancing 

resistance to noise, and focusing the autoencoder’s attention on specific nodes of a graph. This 

makes them well-suited for tasks that involve reconstructing data to detect faults. In this section, 

we present the CG-DGAE model, specifically designed and trained to reconstruct input traffic 

sequence data. Leveraging the nodes identified for each cluster in the previous section, subgraphs 

corrupted by artificial faults are generated for every cluster to facilitate DGAE training. By 

comparing the reconstructed sequence with the input sequence, data faults can be detected using a 

proper fault score function.  

 

 



 

 

63 

 

Fault Types 

To improve the generalization and stability of the CG-DGAE model, faults are inserted to the node 

content during the training phase. We draw from three commonly observed fault categories found 

in historical continuous count station (CCS) data, nonresponsive faults, block faults, and point 

faults, as previously defined in [4]. Environmental conditions like weather-induced damage, along 

with technical issues such as power disruptions and incorrect sensor configurations, can lead to 

nonresponsive faults, which are characterized by sensor inactivity. Block faults, indicated by 

diminished traffic readings, may stem from physical sensor blockages, misalignments, and 

calibration errors. Point faults are random and sporadic, caused by hardware issues, fluctuating 

power supplies, or temporary obstructions. To simulate a nonresponsive fault, traffic volumes were 

set to zero for randomly selected short periods, each lasting between 5 and 20 consecutive 5-minute 

intervals. Block faults were generated similarly, but instead of setting the traffic volumes to zero, 

they were reduced by 40% to 60%. Point faults were introduced by reducing traffic volumes by 

60% to 100% at randomly selected 5-minute intervals, with a sampling rate of 5 to 30 intervals per 

day. Figure 4.5 demonstrates the impact of these three types of faults on signal integrity, with blue 

lines representing normal data sequence and orange lines showing the faulty signals. 
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Figure 4.5: Visualization of three types of faulty signals; top: nonresponsive fault, middle: block 

fault, bottom: point fault. 

 

Cluster-Guided Denoising Graph Auto-Encoder 

Graph auto-encoder has been widely adopted for addressing traffic-related problems in spatial 

and/or temporal domains. In our setting, the GAE can leverage spatial dependency of neighboring 

nodes (i.e., continuous traffic count stations) and temporal traffic patterns at each node to identify 

potential data faults. Our methodology is established on the premise that data points that are 

spatially and temporally proximate tend to bear more resemblance to each other than those that are 

further apart. Different from traditional sampling strategies for GAE model training, we propose a 

cluster-guided sampling strategy, where all subgraphs are constructed from the clusters found in 

the previous section. To simulate faulty data scenarios, node contents are randomly selected for 
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contamination at batch level with three known fault types. The “contaminated” subgraphs are then 

passed to the GAE. The training objective is to reconstruct the original subgraphs from the 

contaminated subgraphs. The overall information flow of training CG-DGAE is illustrated in 

Figure 4.6. 

 

 

Figure 4.6: CG-DGAE training. 

 

Subgraph Signals and Random Fault Injection: Considering the entire highway traffic 

sensor network, ensuring the availability of complete temporal information from all sensors 

presents a challenge. A pragmatic approach to address this data scarcity involves focusing on a 

cluster-level analysis to identify a common time window of sufficient length. To equip the CG-

DGAE with the flexibility to adapt to varying patterns of sensor faults, three types of faults 
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identified in the CCS traffic data are introduced into the selected node signals, featuring random 

lengths and frequencies.  

To assess the impact of the contamination proportion on node content, faulty signals are 

injected into the training subgraphs randomly selected within each training batch at a specified 

ratio 𝛾. Within these selected subgraphs, a node is randomly chosen, and faults are introduced into 

its content. Algorithm 1 below is used for generating training subgraphs. 

 

Algorithm 1: Generating Subgraph Samples for Reconstruction Model Training 

Algorithm 1: Generating subgraph samples for training 

Input: Traffic data 𝑋 ∈ ℝ𝑁×𝑃 over period [0, 𝑃 − 1] 
            Number of clusters = 𝐿,     

            Fault insertion function: 𝜂(𝑋, 𝑜𝑝𝑡𝑖𝑜𝑛) , where 𝑜𝑝𝑡𝑖𝑜𝑛 ∈ {𝑛𝑜𝑛𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒, 𝑏𝑙𝑜𝑐𝑘, 𝑜𝑟𝑝𝑜𝑖𝑛𝑡}, 
            Reconstruction window size: ℎ, 

            Batch size: 𝐵, 

      Number of iterations: 𝐼, 
      Contamination ratio: 𝛾. 

1: for 𝑖 = 0 ∶ 𝐼 − 1 do 

2:       for ℊ = 0 ∶ 𝐿 − 1 do      

3:           Find the common time window 𝑋𝑇 ∈ ℝ𝑍×𝑇 shared by 𝑍 sites in cluster ℊ. 

4: for 𝑘 = 0 ∶ (𝑇 ∥ (ℎ × 𝐵)) − 1 do   

5:       Randomly sample distinct {𝑏0, … 𝑏𝐵×𝛾−1} indexes within range [0, 𝐵 − 1]. 
6: Randomly sample distinct starting points {𝑗0, … 𝑗𝐵−1} from [0, 𝑇 − ℎ]. 
7: for  𝑗𝑖𝑛{𝑗0, … , 𝑗𝐵−1} do 

8: Obtain submatrix 𝑋𝑠𝑎𝑚𝑝𝑙𝑒
𝑗

= 𝑋𝑇[: , ℎ × 𝑗: ℎ × (𝑗 + 1)]with the size of 𝑍 × ℎ. 

9: if  𝑗𝑖𝑛{𝑏0, … 𝑏𝐵×𝛾−1} do 

10: Inject faults to a randomly selected site 𝑚 from 𝑍: 𝜂(𝑋𝑠𝑎𝑚𝑝𝑙𝑒
𝑗 [𝑚, : ], 𝑜𝑝𝑡𝑖𝑜𝑛). 

11:      end if 

12: end for 

13: Return {𝑋𝑠𝑎𝑚𝑝𝑙𝑒
𝑗0:𝑗𝐵−1

} with size of 𝑍 × ℎ × 𝐵 as minibatch for CG-DGAE training. 

14: end for 

15: end for 

16: end for 

 

GAE Architecture A CG-DGAE model is trained to reconstruct the full matrix 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 

on a subgraph given the contaminated signals 𝑋𝑡𝑟𝑎𝑖𝑛 . In our work of reconstructing traffic 

sequences, we do not explicitly employ sequence-learning models to discern temporal 

dependencies. This approach is justified firstly by the relatively brief duration of the recovery 
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window ℎ , leading us to treat all instances within this window as interrelated, effectively 

considering a signal of length ℎ as having ℎ features. Secondly, given the variable sizes of the 

input matrices, representing subgraphs, a standardized sequence-learning model is not feasible. 

The DGCN, detailed in section 5.2, is employed as the GNN base layer of the GAE architecture 

to capture the random nature of spatial and directional dependencies. Figure 4.7 showcases the 

architecture of the GAE that includes an encoder of 3-DGCN base layers and a corresponding 

symmetrical 3-DGCN base layer decoder, where each layer of the encoder has a skip connection 

[82] to the corresponding layer of the decoder, enhancing the model’s ability to capture and 

reconstruct complex patterns.  

 

 

Figure 4.7: The graph autoencoder architecture in CG-DGAE. 
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Loss Function The goal of the CG-DGAE is to rebuild signals from sampled sensors 

within a cluster. Our loss function is simply the mean reconstruction error on all nodes within each 

cluster. 

 

Reconstruction Assessment 

To validate the efficacy of the proposed CG-DGAE, we compared it with different GNN or non-

GNN baselines. The details are presented in Table 4.2. 

GNN baselines include CG-DGAE, R-DGAE, and RW-DGAE, differing in the different 

sampling strategies, further tested with different base layer GCN or DGCN. The main purpose of 

GNN baselines is to demonstrate the superiority of our proposed CG-DGAE with DGCN base 

layer, in which cluster-guided information is crucial to the fault detection and better than other 

sampling strategies. 

The non-GNN baselines include BiLSTM (Bi-directional Long Short-Term Memory), 

CNN-BiLSTM (Convolution-BiLSTM), and Okriging (Ordinary Kriging). These methods simply 

leverage either spatial or temporal dependency to regress or extrapolate sensor data. Each of these 

aspects are discussed in detail below. 

GNN baselines: 

1) Sampling strategies: Sampling techniques are pivotal in enhancing the efficiency 

and the scalability of GNN training. Two prevalent node-wise sampling techniques 

including both random sampling (RS) and random walk sampling (RW) are used 

as benchmarks to compare with our proposed DA-GAE, which uses cluster guided 

sampling strategy. 
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a) Random sampling (RS): This RS sampling, proposed in GraphSAGE [83], 

relies on a random sampling of nodes to generate the subgraphs for training 

GNNs. 

 

b) Random walk sampling (RW): RW-sampling was initially employed in 

GraphSAINT [84]. It depends on a stochastic process that begins at a random 

node and explores its neighbors in a sequence of steps, forming a trajectory 

known as a random walk. The sampled subgraphs obtained through these walks 

are representative of the larger graph’s topology and are used to construct 

subgraphs for training GNN. 

 

2)  GNN base layer: To demonstrate the superiority of the DGCN in our proposed CG-

DGAE, we considered the original GCN [80] as a GNN structure baseline.  

 

Non-GNN baselines: 

1) Temporal method: The RNN has achieved notable success in capturing time-series 

features. Modules such as Long Short-Term Memory (LSTM) [85], and its 

derivative BiLSTM [86] are known for good performance with temporal modeling. 

In this study, we evaluated the efficacy of BiLSTM and CNN-BiLSTM [87] for 

comparison with GNNs regarding the temporal modeling, trained in an end-to-end 

manner at a sensor level. 
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2) Spatial method: To examine the effectiveness of reconstructing time series using 

only spatial correlations among traffic sensors, a kriging approach is chosen as a 

baseline: ordinary kriging (OKriging) [88]. OKriging applies a weighted average 

of observed values from nearby locations, where the weights are derived from the 

spatial autocorrelation function. In this experiment, we utilize the geographical 

locations of test CCS sites to determine the neighboring sensors for kriging 

purposes. 

 

Table 4.2: Our proposed CG-DGAE and baseline models for comparison 

Model GCN base layer Sampling strategy Spatial  Temporal 

CG-DGAE 
DGCN Cluster-guided ✓ ✓ 

GCN Cluster-guided  ✓ ✓ 

R-DGAE 
DGCN RS ✓ ✓ 

GCN RS ✓ ✓ 

RW-DGAE 
DGCN RW ✓ ✓ 

GCN RW ✓ ✓ 

BiLSTM - - - ✓ 

CNN-BiLSTM - - - ✓ 

OKriging - - ✓ - 

For the phase of graph reconstruction, the performance of CCS sequences is measured with 

two metrics: mean absolute error (MAE) and root mean square error (RMSE) using test data from 

GR-dataset. 

 

4.4.5. Traffic Sensor Data Fault Detection 

The goal of traffic fault detection is to identify faults within the sensor traffic data sequence. The 

pretrained CG-DGAE reconstruction model described in Subsection 4.4.4 is used to generate a 

reconstructed sequence, which is then compared with the input sequence to detect faults. A fault 
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score and a pre-defined threshold are employed for this purpose. The following subsections 

introduce the fault score and the assessment metrics for fault detection. 

 

Fault Score 

A fault score is employed to locate faults within a traffic sequence. This score is derived by 

computing the difference between the sensor data sequence and the sequence reconstructed by the 

pre-trained CG-DGAE. Through our analysis of difference distribution, anomalies indicative of 

faults exhibits a distinct pattern. While the Z-score is a standard measure for identifying outliers 

in one-dimensional data, a modified Z-score has been introduced for more accurate evaluation of 

anomalies in the difference of two sequences [89], [90]. Given a sensor data sequence 𝑋𝑡−𝑇:𝑡 =

{𝑋𝑡−𝑇 , 𝑋𝑡−𝑇+1, … , 𝑋𝑡} and the reconstructed sequence �̂�𝑡−𝑇:𝑡 = {�̂�𝑡−𝑇 , �̂�𝑡−𝑇+1, … , �̂�𝑡}, for a data 

point 𝑋𝑡, the fault score can be written as follows: 

𝑠𝑐𝑜𝑟𝑒(𝑡) =
𝛽×(𝑅𝐷𝑡−𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝐷))

𝑀𝐴𝐷(𝑅𝐷)
       (4.20) 

where 𝑅𝐷𝑡 =
𝑋𝑡−�̂�𝑡

�̂�𝑡
 is the relative difference at the timestamp 𝑡, and 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝐷) is the median 

of the relative difference sequence 𝑅𝐷 ; 𝑀𝐴𝐷(𝑅𝐷)  is the median absolute deviation of 𝑅𝐷 , 

defined as 𝑀𝐴𝐷(𝑅𝐷) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑅𝐷 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝐷)|); the value of consistency correction 𝛽 

depends on the underlying distribution of the data. In our work, 𝛽 = 0.6745 is adopted. The score 

threshold was determined experimentally by evaluating a range of values.  It is important to 

calibrate this threshold using local data to account for region-specific data distribution.  
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Fault Detection Assessment 

For the phase of fault detection, by referencing the selected natural faulty data from FD-dataset, 

each data point in a daily CCS sequence is assigned a binary label to indicate its faulty status. As 

such, the detection of faulty data points becomes a binary classification problem. The effectiveness 

of fault detection across all CCS sequences in the FD-dataset is then quantified using accuracy, 

recall, F1 score, precision, and AUC_ROC. The concept of CCS sequence binary annotation is 

illustrated in Figure 4.2. 

 

4.5. Experiments 

To assess the performance of our proposed approach for traffic sensor clustering, traffic data 

reconstruction, and fault detection, this section provides a comparative analysis for the graph 

clustering model DA-GAE and the graph reconstruction model CG-DGAE. The comparison 

involves different GNN base layers and non-graph baselines. Details on the experimental settings 

and results are presented subsequently. 

 

4.5.1. Experiment Settings 

All experimental comparisons are performed on a system equipped with an AMD Ryzen 

Threadripper PRO 5955WX 16-Core CPU operating at 1.794 GHz base and 4.0 GHz max 

frequencies, and 32 GB of L3 cache. To ensure the fairness of comparison, the comparative GNN 

models in clustering and reconstruction phases are trained and tested with the same 

hyperparameters depicted in Table 4.3 for DA-GAE and CG-DGAE, respectively. 
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Table 4.3: Hyperparameter settings for DA-GAE and CG-DGAE 

DA-GAE  CG-DGAE  

Hyperparameter Value Hyperparameter Value 

Input time window length 288 Input time window length 288 

Order of Chebyshev approximation 

𝑅 

2 Order of Chebyshev approximation 

𝑅 2 

DGCN hidden dimension 1 32 DGCN hidden dimension 1 144 

DGCN hidden dimension 2 16 DGCN hidden dimension 2 72 

GAT hidden dimension 16 DGCN hidden dimension 3 16 

Batch size  4 Batch size  64 

Learning rate 0.00001 Learning rate 0.0001 

Trade-off weight 𝜀 0.08 Optimizer ‘Adam’ 

Optimizer ‘Adam’ Maximum number of iterations 100 

Maximum number of iterations 1500 Fault score reference threshold 28 

 

4.5.2. Results 

Sensor Clustering 

In this section, we compared the proposed dual-encoding attention graph auto-encoder (DA-GAE) 

based embeddings with other embedding baselines. In terms of clustering results in the embedding 

space. Three different clustering algorithms, including K-Means, agglomerative clustering (AC), 

and OPTICS, are adopted from this assessment. The findings are summarized in Table 4.4. 

The results show that all graph embedding methods under K-Means and AC yield 

comparable cluster counts and cluster scores. Our DA-GAE, particularly when paired with K-

Means, achieved the highest SC value at 0.9786, the highest Calinski-Harabasz index (CHI) at 

5.0747e+11, and the lowest Davies-Bouldin index (DBI) at 0.0001, resulting in a total of 169 

clusters. DA-GAE consistently scores highest across the three chosen clustering algorithms, 

outperforming GAT-based GAE, DGCN-based GAE, GCN-based GAE, and Node2Vec. This 

superiority indicates that the fusion of graph embeddings through dual-encoding attention 
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mechanisms enhances graph representation as compared to the methods focusing solely on node 

reconstruction or graph structure reconstruction. 

The comparison between DGCN-based GAE and GCN-based GAE, suggests that DGCN 

is more effective at capturing graph features for node content reconstruction for our dataset as 

compared to GCN. However, GAT-based GAE shows marginally superior clustering metrics 

compared to DGCN-based GAE, indicating that within our experimental framework, embeddings 

derived from graph structure reconstruction offer a better representation than those from node 

content reconstruction. Node2Vec yields the lowest clustering scores, highlighting the benefits of 

GAE-based graph embedding methods over topology-based approaches. The cluster size 

distribution is presented in Figure 4.8, showing most clusters contain bi-directional nodes, 

typically corresponding to two directions of same CCS site, which is intuitively expected.  

 

Table 4.4: Clustering performance (SC/CHI/DBI) comparison of different embedding methods. 

 

Graph embedding  
GNN base 

layer 

Clustering 

algorithms 

# Of 

clusters 
SC CHI DBI 

DA-GAE GAT & DGCN 

K-Means 169 0.9786 5.0747e+11 0.0001 

AC 169 0.9776 5.0020e+11 0.0002 

OPTICS 41 0.3411 49.6106 0.8465 

GAE   

DGCN 

K-Means 210 0.8533 1.9270e+07 0.0078 

AC 210 0.8521 1.9249e+07 0.0078 

OPTICS 39 0.0928 25.4319 1.1748 

GAT 

K-Means 166 0.9387 3.2871e+07 0.0051 

AC 166 0.9397 3.2743e+07 0.0048 

OPTICS 41 0.3289 26.5911 1.1219 

GCN 

K-Means 213 0.6002 2272.9946 0.2848 

AC 213 0.6046 2420.7861 0.2880 

OPTICS 29 0.1828 14.6042 1.7310 

Node2Vec - 

K-Means 161 0.0714 3.5652 1.2428 

AC 161 0.1234 4.2118 1.2819 

OPTICS 4 0.0558 3.3534 2.3142 
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Figure 4.8: The distribution of clusters by size. 

 

Data Reconstruction 

In this section, the robustness of our proposed CG-DGAE with DGCN as a base layer is evaluated 

against baseline models under different batch-wise contamination ratios, ranging from 0.20 to 

0.80. The testing data from GR-dataset is firstly subjected to three summarized types of faults 

(nonresponsive, block, and point) as the input to the models. The original normal daily sequences 

serve as label for reconstruction. The comparative reconstruction performance of the different 

models is quantitatively evaluated and presented in Table 4.5 and Figure 4.9. This evaluation is 

based on the computation of mean MAE and RMSE across all site data. To account for variability, 

all results presented are the averages of three separate experimental runs. The findings reveal that 

the CG-DGAE model with DGCN as a base layer consistently outperforms other models across 

all contamination ratios in aspects such as sampling strategies, GCN base layers, and spatial or 

temporal dependencies, with the lowest mean MAE (6.00) and mean RMSE (16.28) values. Its 

performance peaks at a 50% contamination ratio, suggesting that the proposed model is robust to 

noise and can maintain accuracy even with relatively large data contamination.  
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Generally, GNN models exhibit superior performance over non-GNN models like 

BiLSTM, CNN-BiLSTM, and Okriging, which focus solely on either topology or temporality. 

Within GNN models, the base layer structured with DGCN consistently achieve lower MSE and 

RMSE across all contamination ratios, compared to GCN models, indicating DGCN’s enhanced 

ability to leverage spatial-temporal information. For GNN models using the same base layer, the 

cluster-guided sampling strategy consistently yields the best results, followed by random walk and 

random sampling for each contamination ratio. This highlights the effectiveness of our previously 

derived clustering results in guiding subgraph sampling, enabling the GNN model to better 

aggregate hidden correlations in traffic data with diverse spatial features than random or random-

walk sampling. Regarding the contamination ratio, for most models, as the contamination ratio 

increases, there is a noticeable deterioration in performance, as indicated by the rising MAE and 

RMSE values. This trend highlights that higher levels of noise in the data have a detrimental effect 

on the models’ ability to reconstruct the sequences. Nevertheless, a dynamic variation in 

performance was observed across noise ratios. The performance of most baseline models reaches 

their nadir at a 40% contamination ratio. In contrast, the CG-DGAE with DGCN base layer 

achieves its minimal values at a contamination ratio of 50% during training. Relative to other 

baseline models, the CG-DGAE exhibits enhanced resilience to noise or contamination.  

Moreover, the BiLSTM and CNN-BiLSTM models exhibit considerably higher MAE and 

RMSE values at all levels of contamination as compared to the CG-DGAE with a DGCN base 

layer revealing temporal models’ relative inefficiency in handling contaminated data for this 

specific task. In contrast, the Okriging model only leverage spatial information, resulting in much 

higher MAE and RMSE. Conclusively, the baseline models do not match the performance of CG-

DGAE with DGCN as a base layer for any contamination ratio in reconstruction of the CCS data 



 

 

77 

 

sequences. The experimental results underscore the success of the cluster-based sampling strategy 

during the graph training phase. The DGCN demonstrates its superiority over GCN as a base layer. 

This confirms the strength and effectiveness of our proposed CG-DGAE (DGCN) and training 

strategy in capturing the spatial-temporal relationships within network-level traffic data. 

 

Table 4.5: Reconstruction performance (MAE and RMSE) comparison of various models under 

different contamination ratios on test set. Results averaged over 3 independent runs. 

Model Base layer Metrics 
Contamination ratios 𝛾 

0.20 0.30 0.40  0.50 0.60 0.70 0.80 

CG-DGAE(DGCN) DGCN 
MAE 6.25 6.08 6.04 6.00 6.06 6.28 7.20 

RMSE 17.58 16.79 16.35 16.28 16.33 16.34 16.42 

R-DGAE(DGCN) DGCN 
MAE 21.45 21.01 20.23 24.58 23.77 24.28 25.69 

RMSE 58.76 55.32 52.98 54.16 55.10 55.38 57.18 

RW-DGAE(DGCN) DGCN 
MAE 20.99 20.89 23.48 22.63 22.72 24.75 22.47 

RMSE 51.87 51.12 54.49 52.56 53.00 57.85 52.04 

CG-DGAE(GCN) GCN 
MAE 15.14 15.24 15.09 15.30 15.22 15.30 15.23 

RMSE 21.82 22.00 21.77 22.16 21.99 22.12 21.96 

R-DGAE(GCN) GCN 
MAE 29.59 38.82 46.02 62.94 35.05 43.93 37.31 

RMSE 60.88 66.78 67.54 81.73 63.84 67.19 64.80 

RW-DGAE(GCN) GCN 
MAE 24.65 26.95 27.01 33.64 53.40 51.39 35.55 

RMSE 56.41 57.74 58.42 60.92 72.75 72.78 65.28 

BiLSTM - 
MAE 40.90 41.88 37.66 38.78 38.05 39.44 40.59 

RMSE 47.30 48.21 44.28 45.08 44.41 45.98 46.81 

CNN-BiLSTM - 
MAE 38.90 39.35 35.37 36.90 36.23 37.77 38.93 

RMSE 45.66 46.58 42.12 43.77 43.20 44.02 45.10 

 
*Okriging model enables the reconstruction of traffic sequences at a specific CCS site without requiring site specific 

data input, thereby eliminating the need for contamination. The approach yields a mean RMSE of 146.91 and a 

mean MAE of 126.82. 
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Figure 4.9: Left: mean MAE comparison for different contamination ratios on testing set of GR-

dataset; right: mean RMSE comparison for different contamination ratios on testing set of GR-

dataset. Results averaged over 3 independent runs. 

 

Fault Detection 

 To demonstrate the effectiveness of the fault detection results of the pretrained CG-DGCN with 

DGCN as the base layer, we compare the fault detection performances between GNN-based 

models utilizing two distinct base layers, DGCN and GCN, across three subgraph sampling 

strategies, namely cluster-guided, random, and random walk. We manually labeled five natural 

sequences containing faulty data points in the FD-dataset. These sequences were specifically 

annotated with point-wise binary labels. As a result, the faulty data point detection is evaluated in 

the form of binary classification. The results are presented in Table 4.6. 

The models with the DGCN base layer contain significantly more parameters, 243,000 

compared to 49,000 for those with the GCN base layer. Despite this disparity, both models are still 

considered lightweight and can be effectively deployed on edge computing devices. The CG-

DGAE model with DGCN base layer achieved an impressive overall accuracy of 99.09%, with a 

precision of 99.13%, a recall of 99.53%, and a F1 score of 99.53%, underscoring its superior fault 
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detection capability even being trained at a higher contamination ratio of 0.50.  The models 

employing the RS and RW sampling strategies with a DGCN base layer, namely RS-DGAE and 

RW-DGAE, showed a slightly decreased performance.  

In comparison to the DGCN, the GCN-based models, despite their impeccable Recall, 

underperformed in identifying faulty points, which is a critical aspect of the fault detection task. 

The diminished accuracies for the GCN models indicate that the DGCN offers a stronger 

discriminative capacity for time-series data. Furthermore, these results highlight the critical role 

that the base layer and sampling strategy play in a model’s competency to handle contaminated 

datasets and accurately reconstruct the intrinsic data structure for data imputation and fault 

detection. Figure 4.10 depicts the observed faulty sequences from various cluster sizes within FD-

dataset alongside their reconstructions by the pretrained CG-DGAE with DGCN base layer. The 

model’s robustness is evident in its reconstruction of time series data, particularly its adeptness at 

reflecting fine patterns as well as overarching trends.  

 

Table 4.6: Faulty detection performance of GNN-based models 

Model 
Base 

layer 

Number of 

Parameters (in 

1,000s) 

Contamination 

ratio* 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

CG-DGAE DGCN 243 0.50 99.09 99.13 99.92 99.53 

RS-DGAE DGCN 243 0.40 97.56 98.20 99.27 98.74 

RW-DGAE DGCN 243 0.30 97.57 98.06 99.41 98.73 

CG-DGAE GCN 49 0.40 95.69 95.68 100.00 97.80 

RS-DGAE GCN 49 0.20 95.63 95.62 100.00 97.76 

RW-DGAE GCN 49 0.20 95.63 95.62 100.00 97.96 

    * Data contamination ratios used for model training that result in the best reconstruction performance. 
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Figure 4.10: Reconstruction visualization of five natural faulty sequences from different-sized 

cluster by the pretrained CG-DGAE with DGCN base layer. 

 

4.6. Summary 

Traffic sensor data is crucial for transportation planning, design practices, and the development of 

modern intelligent transportation systems (ITS). Ensuring the quality of traffic sensor data is 

essential, yet current methods relying on simple heuristic rules are insufficient. This chapter 

introduces a novel approach to enhance the quality and reliability of traffic data through a dual-

encoding attention graph auto-encoder (DA-GAE) model for traffic sensor clustering and a cluster-

guided denoising graph auto-encoder (CG-DGAE) model for traffic data reconstruction. The DA-
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GAE model is designed for advanced graph representation learning, efficiently clustering traffic 

sensors and facilitating a reliable subgraph sampling strategy for GNN training. The robustness of 

CG-DGAE model is attributable to the strategic amalgamation of elements, including GNN base 

layer, training strategy, and contamination ratio. Our experimental evaluation, using real-world 

datasets, benchmarks the performance of the proposed models against baseline methods, focusing 

on clustering efficacy, data reconstruction fidelity, and fault detection accuracy. 

Based on the experimental results, several conclusions can be drawn: 

• The DA-GAE model demonstrates significant effectiveness in clustering traffic 

sensors. Our innovative approach of integrating joint embeddings into the graph’s 

latent space from both node and structure reconstruction advances graph representation 

learning. 

• The proposed CG-DGAE methodology, utilizing diffusion graph convolutional 

networks (DGCN), excels in capturing the hidden characteristics of traffic data and 

effectively distinguishes between normal and faulty data. This bolsters the performance 

of both data imputation and fault detection. 

• The implementation of a cluster-guided sampling strategy enhances the GNN’s ability 

to discern spatial-temporal dependencies among traffic sensors, which is largely due to 

the cluster-wise spatial-temporal context leveraged by the model. 

 

Beyond these areas mentioned above, future research could explore further architectural 

enhancements, such as transformer-based models, to improve performance. Additionally, 

enriching node features by incorporating a broader spectrum of traffic data types and sources could 

enhance model accuracy. While this study is based on fixed location sensors, future work should 
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consider dynamic graphs with probe sensors, particularly in light of emerging connected and 

autonomous vehicle technologies. These advancements are expected to further improve both data 

imputation and fault detection performance. 

 

4.7. Publications 

The work presented in this chapter has led to the following publications [91]:  

• Huang, Yongcan, Hao Zhen, and Jidong J. Yang. Cluster-guided denoising graph auto-

encoder for enhanced traffic data imputation and fault detection[J]. Expert Systems with 

Applications (2024): 125531. 
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CHAPTER 5 

 CONCLUSIONS AND FUTURE WORK 

 

Given the increasing need for quality control in handling the growing volume of traffic sensor data, 

this dissertation focuses on developing Artificial Intelligence (AI)-powered fault detection 

frameworks to ensure the integrity of traffic sensor data. The dissertation begins with a 

comprehensive review of existing studies, examining key technologies in the field, assessing their 

feasibility, and outlining current challenges. Two novel approaches are introduced subsequently 

for handling data from Continuous Count Stations (CCS). The first framework addresses fault 

detection at the individual sensor level using time-series data imaging, computer vision algorithms, 

and a contrastive learning scheme to analyze daily CCS sequences. In contrast, the second 

framework targets data fault detection at the cluster level, employing Graph Neural Networks 

(GNNs) to leverage the spatial-temporal correlations among traffic sensors within each cluster. 

Experimental results demonstrate the effectiveness of these proposed methodologies, highlighting 

their potential to enhance data quality and improve decision making in transportation management. 

The proposed frameworks are quite generic and can be extended to sensor data beyond the traffic 

domain. 
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5.1. Limitations and Outlook 

 

This dissertation fulfills the proposed research goal of automatic quality control system for traffic 

sensor network with the focus of fault detection. However, we recognize areas for potential 

improvement that can be addressed in future work: 

• Fault Type Evaluation: For both Framework 1 and 2, our approach currently frames fault 

detection as a binary classification task without evaluating performance across different 

fault types. Future work will focus on quantifying the system’s effectiveness in detecting 

specific types of faults in traffic sensor data. 

• Test Set Limitations: In the Framework 2, the current test set for fault detection includes 

only five daily CCS site sequences from clusters of varying sizes, all derived from real-

world data. Expanding the number of natural faulty sequences would further validate the 

effectiveness of our three-phase fault detection system. 

• Clustering Sensitivity: In Framework 2, while our study centers on a cluster-guided graph 

autoencoder reconstruction-based fault detection system that leverages spatio-temporal 

correlations in traffic sensor data, we have not yet explored the sensitivity of fault detection 

to the clustering results. Future research will assess how the quality of clustering impact’s 

fault detection performance. 

 

5.2. Future Work 

As outlined in Section 5.1.2, future work will build on the limitations discussed by further 

deepening and broadening the study of the data quality control system for traffic sensor networks. 

First, as more data becomes available to project traffic snapshots, we plan to expand our dataset to 
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further validate the feasibility of the proposed frameworks. Second, while the current data 

primarily relies on Continuous Count Stations (CCS) records, additional information such as 

roadway profiles, weather conditions, and crash data could be incorporated to enrich the model's 

understanding and improve its ability to capture variations in inputs and outputs. To illustrate some 

of the improvements, we conducted a preliminary experiment on sensor clustering by 

incorporating roadway and regional information, and distinguishing truck from non-truck traffic. 

With the updated clustering framework, based on the dual-encoding attention graph auto-encoder 

(DA-GAE), the results are presented in Table 5.1. By including urban/rural data, lane counts, 

functional classification, AADT, and separating truck and non-truck traffic series, along with 

reconstructing these two series, the clustering results have shown improvements compared to those 

in Section 4.5.2. Consequently, future work will focus on node feature sensitivity analysis and 

explore the use of multi-modal sensor data, alongside advanced deep learning models, to develop 

an optimal quality control system for multi-modal traffic sensor data. Third, we aim to collect more 

naturally occurring faulty data and classify each instance into specific fault types, which will 

enhance the model’s ability to reason about different types of faults. Most existing literature does 

not clearly differentiate between anomalies and faults in traffic data. Faults refer to unusable data 

that require detection and correction, while anomalies cover a broader range of issues, including 

special events and incidents that cause irregularities in the data. Future work will focus on 

identifying such types of anomalies by integrating additional data sources. This approach will not 

only improve detection accuracy but also offer valuable insights for incident detection and traffic 

management. 
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Table 5.1: Clustering performance (SC/CHI/DBI) comparison of different embedding methods 

under the updated DA-GAE 

Graph Embedding GNN Base Layer Clustering Algorithms # Of clusters SC CHI DBI 

DA-GAE GAT & DGCN K-Means 175 0.9872 5.7013E+11 0.0001 

  AC 175 0.9863 5.6013E+11 0.0001 

  OPTICS 35 0.3551 53.6296 0.8376 

 DGCN K-Means 212 0.8672 2.0201E+07 0.0075 

  AC 232 0.8612 2.0321E+07 0.0072 

  OPTICS 24 0.0954 33.1181 1.0324 

GAE GAT K-Means 166 0.9387 3.2902E+07 0.0051 

  AC 166 0.9397 3.2710E+07 0.0048 

  OPTICS 41 0.3289 26.5911 1.1219 

 GCN K-Means 231 0.8577 2.1256E+04 0.1223 

  AC 232 0.8581 2.6410E+04 0.1171 

  OPTICS 120 0.6744 634.3424 0.5388 

Node2Vec - K-Means 183 0.3807 67.7533 0.7377 

  AC 178 0.3912 69.5368 0.7459 

  OPTICS 25 0.0641 18.4239 1.2873 
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