

AI-EMPOWERED FRAMEWORKS FOR FAULT DETECTION IN TRAFFIC SENSOR

NETWORKS

by

YONGCAN HUANG

(Under the Direction of Jidong J. Yang)

ABSTRACT

In today’s rapidly digitalizing world, the integration of diverse sensors has become

increasingly prevalent. Within the transportation sector, state Departments of Transportation have

extensively deployed traffic sensors to support a wide range of engineering applications. Accurate

and reliable sensor data is crucial for efficiently monitoring and managing large-scale

transportation networks. However, these sensors inevitably suffer from issues such as data loss,

random noise, biases, and drift, often caused by sensor aging, defects, or environmental factors.

Therefore, detecting these faults is imperative to maintain data integrity. This dissertation

introduces two distinct deep learning frameworks designed to enhance traffic sensor data quality,

with a focus on fault detection. The first framework evaluates data from individual sensor stations,

while the second incorporates geospatial context by considering spatiotemporal correlations

among neighboring stations, resulting in improved fault detection accuracy. In contrast, the first

framework is context-insensitive, requiring less data as it analyzes data from individual sensors,

whereas the second framework, which integrates contextual information, demands more data.

Particularly the first framework leverages symmetric contrastive learning within a triplet network

architecture, enhanced by a cross-attention loss function to improve fault detection. Continuous

Wavelet Transformation (CWT) is first applied to convert traffic data into time-frequency wavelet

images, which are used to pretrain a triplet encoder. A novel symmetric contrastive sampling

strategy is employed to improve training efficiency by using a normal day’s data as an anchor,

from which both positive and negative examples are generated based on domain knowledge. This

approach strengthens contrastive signals, enabling faster and more stable training. The second

framework leverages graph neural networks (GNNs) to capture spatial dependencies within

clusters of sensor stations. These clusters are formed in a reduced-dimensional latent space,

constructed using a dual-encoding attention graph auto-encoder (DAGAE) that embeds both node

and edge features. A cluster-guided denoising graph auto-encoder (CG-DGAE) is then trained

using subgraphs generated from these clusters to reconstruct traffic data from corrupted inputs. A

fault score function is then applied to compare observed and reconstructed data sequences,

identifying discrepancies indicative of sensor faults. Together, these frameworks provide

intelligent and practical solutions for fault detection and data quality control. Their implementation

has the potential to transform the maintenance and operation of transportation systems,

contributing to more reliable and resilient infrastructure.

INDEX WORDS: Sensor Data Quality Control, Sensor Fault Detection, Contrastive Learning,

Triplet Network, Data Imputation and Reconstruction, Graph Auto-

Encoder, Graph Representation Learning, Intelligent Transportation

Systems

AI-EMPOWERED FRAMEWORKS FOR FAULT DETECTION IN TRAFFIC SENSOR

NETWORKS

by

YONGCAN HUANG

B.S., Wuhan Institute of Technology, China, 2017

M.S., Changsha University of Science and Technology, China, 2019

A Dissertation Submitted to the Graduate Faculty of the University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2024

© 2024

Yongcan Huang

All Rights Reserved

AI-EMPOWERED FRAMEWORKS FOR FAULT DETECTION IN TRAFFIC SENSOR

NETWORKS

by

YONGCAN HUANG

 Major Professor: Jidong J. Yang

 Committee: Sung-Hee Kim

 Stephan Durham

 Mi Geum Chorzepa

Electronic Version Approved:

Ron Walcott

Vice Provost for Graduate Education and Dean of the Graduate School

The University of Georgia

December 2024

iv

DEDICATION

I dedicate this dissertation to the memory of my paternal grandmother, Mrs. Bangxiu Li, whose

teachings of kindness and integrity have profoundly shaped me.

With deep gratitude, I also dedicate this work to my mother, Rong Dai, and my father,

Debin Huang, who have been my unwavering support, no matter where in the world I’ve found

myself.

To my extended family and friends: over the past thirty years, I have embarked on a journey

of self-discovery, much like the protagonist in The Little Prince. Each of you has enriched my life,

helping me understand the beauty of connection and shared experiences.

A special acknowledgment goes to my childhood friends, Yue Ma and Banghua Du, for

their constant and steadfast spiritual support.

Lastly, I want to express my appreciation for JD Vance’s Hillbilly Elegy, a book and film

that planted a seed of the American dream within me when I first encountered it in Tokyo, Japan,

in 2018.

v

ACKNOWLEDGEMENTS

The past four years have flown by, and it is now time to express my deep gratitude to those who

have supported me throughout this journey toward earning a Doctor of Philosophy.

First and foremost, I would like to extend my heartfelt thanks to my advisor, Dr. Jidong

Yang. I couldn’t have asked for a better mentor. Thank you for making the decision four years ago

to accept me into your group. Your patience and passion have provided me with invaluable

guidance. Thanks to your advisement, I am now graduating with multiple job interviews lined up,

publications in top journals, and most importantly, the realization of my dream of becoming a

scholar. I will carry forward your spirit, qualities, and work ethic in my future endeavors as a part

of your lasting legacy. I am deeply grateful to you.

I would like to express my sincere gratitude to my committee members, Dr. Stephan

Durham, Dr. Sung-Hee Kim, and Dr. Mi Geum Chorzepa, for their invaluable advisement and

guidance throughout my doctoral journey. Thank you for agreeing to serve on my committee and

for your continuous support, insightful feedback, and encouragement. Your expertise has greatly

contributed to the development of my dissertation, and your mentorship has played an essential

role in shaping my academic growth. I truly appreciate the time and effort you have dedicated to

helping me succeed.

I would also like to extend my gratitude to Hao Zhen, who has been an exceptional research

partner. Our teamwork has been outstanding, and she has provided me with immense support both

vi

academically and personally. Additionally, I would like to thank my lab mates—Shihan, Yunxiang,

Jialun, and Penghao—for the great times and camaraderie we’ve shared.

A special thanks to my family, who have been my unwavering support, always there to

catch me when I faltered. I would also like to acknowledge my exes for their companionship during

this period, as well as my beloved pets: Bailey, the English Cream Golden Retriever, and Sandy,

the American Shorthair cat, who brightened my days. Lastly, I cannot hide my affection for the

University of Georgia, where I received the best education of my life. Go Dawgs!

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... V

LIST OF TABLES ...iX

LIST OF FIGURES .. X

CHAPTER 1: INTRODUCTION .. 1

1.1. Motivation .. 2

1.2. Purpose of the Study .. 5

1.3. Open Challenges .. 6

1.4. Dissertation Overview .. 8

CHAPTER 2: LITERATURE REVIEW ... 10

2.1. CWT in Fault Detection ... 10

2.2. Deep Learning-Based Anomaly Detection in Traffic Data .. 12

2.3. Graph Neural Networks in Traffic Research.. 14

CHAPTER 3: SYMMETRIC CONTRASTIVE LEARNING FOR TRAFFIC SENSOR

FAULT DETECTION .. 18

3.1. Research Overview .. 18

3.2. Contrastive learning ... 21

viii

3.2.1. Siamese Network .. 22

3.2.2. Triplet network.. 22

3.3. Proposed method .. 23

3.3.1. Domain-Inspired Data Generation .. 24

3.3.2. Continuous Wavelet Transformation .. 27

3.3.3. Proposed Triplet network .. 29

3.4. Dataset .. 34

3.5. Experiments .. 35

3.5.1. Model Architecture Design and Comparison ... 36

3.5.2. Training of Classifiers... 37

3.5.3. Experiment Settings .. 37

3.5.4. Results and Discussions .. 37

3.6. Summary .. 41

3.7. Publications .. 43

CHAPTER 4: CLUSTER-GUIDED DENOISING GRAPH AUTO-ENCODER FOR

TRAFFIC DATA IMPUTATION AND FAULT DETECTION .. 44

4.1. Research Overview .. 45

4.2. Preliminaries... 47

4.2.1. Graph Abstraction Representation of Highway Traffic Sensor Networks 47

4.2.2. Problem definition .. 48

ix

4.3. Dataset .. 49

4.4. Methodology .. 52

4.4.1. Graph Attention Neural Network.. 54

4.4.2. Diffusion Graph Convolutional Network ... 55

4.4.3. DA-GAE Based Traffic Sensor Clustering ... 56

4.4.4. CG-DGAE based Traffic Sensor Data Reconstruction ... 62

4.4.5. Traffic Sensor Data Fault Detection ... 70

4.5. Experiments .. 72

4.5.1. Experiment Settings .. 72

4.5.2. Results ... 73

4.6. Summary .. 80

4.7. Publications .. 82

CHAPTER 5: CONCLUSIONS AND FUTURE WORK ... 83

5.1. Limitations and Outlook... 84

5.2. Future Work ... 84

BIBLIOGRAPHY ... 87

x

LIST OF TABLES

Table 1.1: Overview of the chapters in this dissertation ... 9

Table 3.1: Summary of Datasets ... 35

Table 3.2: Model Performance Evaluation ... 38

Table 4.1: Abbreviations ... 49

Table 4.2: Our proposed CG-DGAE and baseline models for comparison 70

Table 4.3: Hyperparameter settings for DA-GAE and CG-DGAE .. 73

Table 4.4: Clustering performance (SC/CHI/DBI) comparison of different embedding methods.

…………………………………………………………………………………............................74

Table 4.5: Reconstruction performance (MAE and RMSE) comparison of various models under

different contamination ratios on test set. Results averaged over 3 independent runs. 77

Table 4.6: Faulty detection performance of GNN-based models ... 79

Table 5.1:Clustering performance (SC/CHI/DBI) comparison of different embedding methods

under the updated DA-GAE .. 86

xi

LIST OF FIGURES

Figure 1.1:Similar traffic patterns observed at neighboring CCS sites. ... 9

Figure 3.1: Domain-inspired triplet data generation. .. 21

Figure 3.2: The conceptional framework of the proposed method. .. 24

Figure 3.3: Visualization of three types of natural noises. The top plot simulates natural traffic

variation by small perturbation of traffic volumes (i.e., injecting Gaussian noises); the middle

plot indicates potential temporal shift of traffic; and the bottom plot demonstrates magnitude

scaling to reflect potential increase or decrease of overall traffic due to certain events. 25

Figure 3.4: Visualization of three types of faulty signals; top: nonresponsive fault, middle: block

fault, bottom: point fault. .. 27

Figure 3.5: Sample wavelet transformations of time-series traffic volume data; left: normal data,

middle: normal data with noises, right: faulty data. The red rectangles on the negative CWT

image (right) highlight the distinguishable fault signals in contrast to the normal and positive

CWT images (left). ... 28

Figure 3.6: The proposed TripletNet encoder with self-attention layers. 30

Figure 3.7: Cross-attention boosted contrastive loss. ... 32

Figure 3.8: Locations of CCS in Georgia, USA [60]. ... 35

Figure 3.9: Progression of scaled training and validation losses. ... 40

Figure 3.10: Features visualization by T-SNE embeddings for 960 sample data (480 positive

instances + 480 negative instances); (a) original CWT image; (b) the proposed Triplet encoder.41

xii

Figure 4.1: Locations of CCS in Georgia, USA. The black triangles denote the CCS sites where

the five selected faulty sequences were collected. .. 51

Figure 4.2: CCS sequence binary annotation (1 – faulty; 0 – normal). 52

Figure 4.3: Three phases of the proposed framework for traffic sensor data fault detection. 53

Figure 4.4:Architecture of graph autoencoder with dual encodings. .. 57

Figure 4.5: Visualization of three types of faulty signals; top: nonresponsive fault, middle: block

fault, bottom: point fault. .. 64

Figure 4.6: CG-DGAE training... 65

Figure 4.7: The graph autoencoder architecture in CG-DGAE. ... 67

Figure 4.8: The distribution of clusters by size... 75

Figure 4.9: Left: mean MAE comparison for different contamination ratios on testing set of GR-

dataset; right: mean RMSE comparison for different contamination ratios on testing set of GR-

dataset. Results averaged over 3 independent runs. .. 78

Figure 4.10: Reconstruction visualization of five natural faulty sequences from different-sized

cluster by the pretrained CG-DGAE with DGCN base layer. .. 80

1

CHAPTER 1

 INTRODUCTION

Against the backdrop of escalating population growth, urbanization trends, and the pervasive

influence of digitalization, the last few decades have witnessed a rapid proliferation of Intelligent

Transportation Systems (ITS). These systems incorporate a plethora of technologies including

fixed and mobile sensing, Internet of Things (IoT), and connected and autonomous vehicles

(CAVs). Within the realm of transportation management, ITS stands as a formidable platform

aimed at enhancing flow efficiency, alleviating congestion, proactively addressing incidents, and

ameliorating environmental impacts. The voluminous data generated by ITS serves as the

cornerstone for various system functionalities, heavily reliant on sophisticated data analytics.

At the state level, high-quality traffic data plays a pivotal role in infrastructure-related

decision making and serves as the foundation for various planning and engineering practices at the

state Department of Transportation (DOT). Traffic count and classification data are continuously

collected at permanent continuous count stations (CCS) using inductive loop technology. This data

source has been used for multiple purposes, including generating annual Highway Performance

Monitoring System (HPMS) report, providing data support for internal departments (e.g., Office

of Planning, Office of Roadway Design, Office of Bridge Design, Office of Materials and Testing,

and Office of Traffic Operations) as well as to a large variety of external customers, and supplying

2

critical traffic data to the Georgia Emergency Management Agency and surrounding states during

emergency evacuations in inclement weather.

However, collecting traffic sensor data in real world is prone to errors due to various

factors, such as sensor malfunctions, harsh environmental conditions, inappropriate installation,

and maintenance, among others [1]. Erroneous traffic data can result in misleading analytical

outcomes, leading to significant socio-economic losses. To address this issue, many state

Departments of Transportation (DOTs) have implemented automatic review systems with

definitive quality control (QC) rules to eliminate obvious faulty data, such as nonreporting of

particular classes of vehicles for an extended period. In case of uncertainty, manual review by a

human is still necessary for further data screening. These QC rules typically rely on threshold-

based plausibility tests, which are not sensitive enough to detect all faulty signals and are applied

to individual count stations rather than considering them collectively as a group. This could easily

lead to false-positive or false-negative decisions as part of the QC process. In this context, this

dissertation aims to develop a robust automatic quality control system, specifically deep learning

frameworks, designed to filter out incoming faulty traffic sequences and identify and rectify any

faults when necessary.

1.1. Motivation

Traffic sensor data is inherently temporal with patterns varying by time of day, day of the week,

seasons, and around special events. AI models are adept at recognizing these temporal patterns

and can discern anomalies that deviate from these patterns. Several studies have focused on

learning time-series data representations using different neural network architectures, including

convolutional neural networks (CNNs), recurrent neural networks (RNNs), autoencoders (AE),

3

generative adversarial networks (GANs) and deep belief networks (DBNs). On the other hand,

time series imaging is an advanced analytical approach that captures a sequence of images or data

points at successive times. This technique is typically used to monitor and track changes that occur

in a given subject or area over a period. Leveraging the frequent capture of data and the specific

characteristics of the monitored phenomena, numerous specialists have harnessed time series

imaging for the detection of faults or anomalies in sensor data, particularly due to the enhanced

capabilities provided by deep learning models. For instance, Xu et al. (2021) proposed a hybrid

deep learning model that combines the feature extraction capabilities of CNNs and the superior

performance of deep forest classifier. The model extracts feature from CWT images of bearing

vibration signals using CNNs and trains the classifier with a cascade forest strategy [2]. Song et

al. (2023) introduced an innovative technique for the detection of manufacturing faults by merging

image-encoded time series data with advanced deep generative models. The study utilized three

distinctive methods for converting time series into visual formats: the Gramian Angular Difference

Field (GADF), the Markov Transition Field (MTF), and the Recurrence Plot (RP). To process and

learn from this data, two types of neural network models were employed: the Variational

Autoencoder-Reconstruction along Projection Pathway (VAE-RaPP) and the Fence Generative

Adversarial Network (Fence GAN) [3]. Morris et al. (2022) introduced an approach based on

variational autoencoder (VAE) and trained two VAEs to separately encode CWT images and

recurrent plots derived from traffic sensor data. In the joint latent space, anomalies are identified

when they deviate significantly from the constructed manifold [4]. In another study of achieving

the sensor faults due to harsh operational conditions in the field of the internet of things (IoT),

Hasan et al. (2023) presented an innovative digital twin (DT)-inspired fault detection methodology

utilizing a generative adversarial network (GAN) trained on Gramian Angular Field (GAF)-

4

encoded images to maintain the time series data’s temporal integrity, achieving an impressive 98.7%

accuracy in identifying sensor anomalies [5]. Xin et al. (2022) utilized the training efficiency of

Deep Belief Networks (DBNs) to create a modified Gaussian Convolutional Deep Belief Network

(MGCDBN) for fault diagnosis in infrared thermal images. The network employs Gaussian units

to model real-valued inputs using a Gaussian distribution in both its visible and hidden layers [6].

Employing time series imaging enhanced by deep learning techniques presents a promising avenue

for the detection of faults within such data.

In the realm of traffic management, the intricate interplay of spatial and temporal

dimensions within sensor data holds paramount importance. The spatial-temporal correlation

acknowledges that traffic dynamics at a given location are not isolated events but are significantly

influenced by concurrent traffic flows in adjoining areas. Similarly, the temporal aspect underlines

the evolution of traffic patterns over time, a key to predicting future conditions. As urban

populations burgeon and road networks become increasingly congested, the need to comprehend

and harness these correlations has never been more critical. Leveraging the spatial-temporal

correlation and analyzing the traffic data collectively would greatly benefit capturing traffic data

features and data mining for traffic data fault detection. Graph Neural Networks (GNNs), as a key

branch of deep learning family, have emerged as a powerful deep learning approach for handling

non-Euclidean data through graph analysis techniques. In the realm of traffic research, GNNs have

found extensive applications, including traffic flow/speed forecasting, traffic prediction, and traffic

accident prediction [7], [8], [9], [10]. These applications leverage GNNs’ ability to capture

complex spatial-temporal relationships in traffic networks, which is crucial for tasks such as fault

detection.

5

1.2. Purpose of the Study

In this dissertation, the primary objective is to propose an optimal automatic data quality review

framework with fault detection focus for traffic sensor networks. Specifically, the study introduces

two distinct approaches: one that uses traffic time-series image-based deep learning techniques to

analyze data from individual sensor stations without considering spatial context, and another that

leverages spatiotemporal correlations among neighboring sensors using Graph Neural Networks

(GNNs). These frameworks aim to enhance the accuracy and robustness of fault detection, reduce

erroneous data, improve the quality control process, and ultimately support more effective

transportation management and planning. The research questions in this study are as follow:

1. How can deep learning models be utilized to detect and correct faults in traffic sensor data from

individual stations without the need for spatial context?

• What types of traffic data anomalies can be identified using this framework?

• How does the proposed framework’s fault detection accuracy compare to traditional

threshold-based plausibility tests?

2. How can the integration of spatiotemporal correlations using GNNs improve fault detection in

traffic sensor data across multiple stations?

• To what extent does incorporating geospatial context enhance fault detection performance?

• How effectively do GNN-based models detect faults in comparison to models that analyze

sensors individually?

3. What are the trade-offs between the two proposed frameworks in terms of fault detection

accuracy, data requirements, and computational efficiency?

6

• Which framework performs better in scenarios where data is limited or noisy?

• How do these frameworks perform across different traffic patterns, such as during special

events or extreme weather conditions?

1.3. Open Challenges

Realizing a comprehensive automatic fault detection framework is laden with challenges that must

be surmounted.

First, establishing a framework capable of accurately identifying faulty traffic sequences

involves the fundamental data quality control task akin to a binary classification problem,

differentiating between faulty and normal data. However, the main challenge lies in proper

construction of feature space for the classification task. While deep neural networks (DNNs) have

shown impressive accuracy in detecting faults on time-series data, many of these methods either

require labeled data or generate their own supervision signals to capture underlying patterns.

Additionally, these methods often assume that the feature distribution of the training and testing

data are similar, which is not always the case in real-world scenarios where variations in sensor

operating conditions, degradation state, or environmental noise can affect the data. Consequently,

the distribution discrepancy between the training and testing data can significantly impair the

performance of deep learning models in detecting faults in sensor data.

Second, refining a framework that not only pinpoints faults but also corrects them with

valid replacements is further complicated by the intrinsic nature of road traffic and the voluminous

aggregation of traffic data. The challenge is compounded by the following facts we outlined

concerning the intrinsic characteristics of road traffic and massive accumulation of traffic flow

data resources.

7

1) Random occurrence of faulty traffic data. Faulty in-road sensor data can be categorized into

recurring and non-recurring types. Recurring faults, which may stem from external factors

(e.g., connectivity issues, hardware malfunctions, low battery, environmental extremes, and

clipping) depending on sensor types, exhibit short-term cyclic patterns. In contrast, non-

recuring faults may arise from unexpected events such as sudden changes in operating

conditions or electrical interference, occurring randomly and infrequently at any time of the

day. Detecting the latter type is particularly challenging.

2) Lack of reported faulty traffic data. The faulty in-road sensor data is usually not fully

documented or critical information is lacking when flagged due to the limitations of currently

adopted QC rules. There is no reliable ground truth for measuring the accuracy and feasibility

of these QC rules.

3) Heterogeneity of traffic data. There could be thousands of in-road sensors spreading over the

large roadway network within a state. Each sensor operates independently, and the occurrence

of faulty data is less temporally dependent, unlike traffic anomalies. For example, a road

section undergoing construction may gradually decrease traffic flow, resulting in anomalies

in traffic volume data. These anomalies may persist over the extended construction period.

However, a communication failure of a sensor may result in continuous non-responses, lasting

for varying durations depending on how quickly the failure is detected and repaired.

Additionally, traffic data characteristics recorded at different sensors may vary significantly

by their locations and operating conditions. Consequently, a significant challenge associated

8

with in-road sensor networks is establishing consistent fault detection rules across the entire

network [11].

4) Spatial-temporal dependency of traffic data. Given a specific roadway network topology,

traffic flow data at adjacent sensors are inherently correlated and thus present unique spatial-

temporal patterns. Some examples of similar traffic patterns observed at neighboring

continuous count station (CCS) sites are shown in Figure 1.1. Leveraging the spatial-temporal

correlation and collectively analyzing the traffic data from the correlated sensors would help

to capture comprehensive traffic patterns at the network level, leading to improved fault

detection. However, obtaining sufficiently large common periods of traffic data from all

sensors poses a challenge for real-world, large-scale road networks.

1.4. Dissertation Overview

In this chapter, the background of traffic sensor quality control, summarize existing technologies,

and highlight the research gaps that motivate this study were introduced. At the same time, the

open challenges were outlined. The remainder of this dissertation is structured as follows: Chapter

2 reviewed key technologies and topics, discussing the limitations of current research. Chapters 3

and 4 presented the design of the two proposed frameworks, along with related datasets,

experiments, and an analysis of the results. Finally, Chapter 5 summarized the key findings, draws

conclusions, and suggested potential future research directions. References were provided after

Chapter 5. To have a better understanding of this dissertation path, an overview is presented to

guide the reader into the main content of each chapter as shown in Table 1.1.

9

Figure 1.1:Similar traffic patterns observed at neighboring CCS sites.

Table 1.1: Overview of the chapters in this dissertation

Chapter Content description

Chapter 1 Introduction to the background of traffic sensor data quality

control, research motivation, purposes, research questions and

open challenges of this dissertation.

Chapter 2 Review of literature and discussion of the current research gaps.

Chapter 3 Details of the symmetric contrastive learning-based framework

for traffic sensor data fault detection at individual level, results,

and conclusion.

Chapter 4 Details of the framework of cluster-guided denoising graph

auto-encoder for enhanced traffic data imputation and fault

detection at a cluster level, results, and conclusion.

Chapter 5 Summary of the findings and conclusions generated in this

dissertation with a possible future direction related to this

dissertation.

Reference References that were used in this dissertation.

Appendix Some algorithm and extensive experimental results.

10

CHAPTER 2

 LITERATURE REVIEW

In this chapter, the existing works closely related to this dissertation were reviewed. First, the

continuous wavelet transform (CWT) and its application in detecting faults in time-series data

were introduced. Next, the literature of deep learning models for fault detection through the

approaches of reconstruction and prediction were reviewed. Finally, the application of graph

neural networks (GNNs) was reviewed, which leverages spatio-temporal correlations in traffic

data.

2.1. CWT in Fault Detection

Continuous wavelets transform (CWT) is well known for decomposing time-frequency

information, particularly, constructive to obtain salient features from dynamic time series data.

CWT-based traffic data transformation has been shown to reveal unobvious patterns of traffic data

in an efficient way [12].

Traditionally, CWT has been used to capture local changes, which are noisy and aperiodic.

For example, Zheng et al. [13] demonstrated the utility of wavelet transform in analyzing important

features associated with abnormal traffic conditions, such as bottleneck effects and traffic

oscillation arising from congestion. The case study of three different scenarios of vehicle

trajectories showed that the origins of deceleration waves could be detected by wavelet-based

energies of a single vehicle, and the detected origins help to pinpoint possible causes. In another

11

study, Jiang et al. [14] developed a two-stage fault detection method for anomalous network traffic.

In their methodology, CWT was applied to decompose the incoming signals into multiple

continuous scales, followed by principal component analysis to extract the features of anomalous

network traffic. Then, a new mapping function is constructed to detect the abnormal traffic.

Recently, CWT coupled with deep learning techniques offers a new approach for fault

detection with time-series data. König et al. [15] proposed a deep learning-based method for

anomaly detection and diagnosis on acoustic emission signals. With the acoustic emission signals

being converted to CWT images, an autoencoder network was developed for anomaly detection in

the latent space and GoogLeNet was adapted to the anomaly classification task. In another study,

Jalayer et al. [16] developed a comprehensive deep learning-based fault detection and diagnosis

model for rotating machinery by channeling up fast Fourier transform, CWT, and statistical

features of raw signals. A convolutional long short-term memory was employed to classify the

multi-channel input. Djaballah et al. [17] explored an innovative approach to bearing fault

diagnosis by leveraging deep transfer learning methods. The study investigates various pre-trained

convolutional neural networks (CNN), such as ResNet-50, GoogLeNet, and SqueezeNet, in

combination with transfer learning to diagnose bearing faults from vibration signals transformed

into time-frequency images using CWT. The methodology integrates fine-tuning strategies to

optimize fault classification performance, achieving high accuracy, with their approach being

validated on the CWRU dataset.

Based on the review of previous studies, CWT has been commonly used for processing

time-series data. Generally, the methodology of converting signals into CWT images

representations and further processing these image representations by deep-learning-based

12

methods to encode multiscale features has shown a great potential and improved performance in

fault detection of time-series data.

2.2. Deep Learning-Based Anomaly Detection in Traffic Data

In the field of traffic sensor data anomaly detection, significant advancements have been

accomplished by utilizing deep learning techniques, particularly in the analysis of traffic flow data.

The primary approaches to anomaly detection include prediction-driven and reconstruction-driven

methodologies.

The prediction-driven approach employs historical traffic data to train deep neural network

models for forecasting future traffic states or conditions. Any significant deviation between the

model’s predictions and the actual observations triggers an anomaly detection, signaling a potential

fault in the system. Predicting traffic flow has historically been and continues to be a formidable

challenge. Traditional algorithms like Autoregressive Integrated Moving Average (ARIMA)-

based method [18], probabilistic models, such as Bayesian Network [19], Markov Chain [20], and

Markov Random Fields [21] and machine learning approaches like shallow Artificial Neural

Networks, and Support Vector Regression (SVR) [22], have been studied for traffic flow

estimation. However, these conventional methods can hardly capture the complex patterns

underlying the data. Over the years, various approaches have been explored alongside the rapid

development of various deep learning methods. Different deep learning models have been studied

by researchers, such as Deep Belief Network (DBN) [23], Long short-term memory (LSTM) [24],

Stacked Autoencoder (SAE) [25]. Nevertheless, the majority of these previous works treated

traffic prediction as simple time series prediction problem focusing on isolated sensor data.

Subsequently, some researchers have recognized the importance of leveraging the spatial-temporal

13

relationships inherent in multi-sensor data to enhance traffic prediction performance. This led to

the development of techniques, such as Convolutional LSTM [26] and Graph Convolution Gated

Recurrent Unit [27], which can naturally handle multi-sensor data and capture the spatial-temporal

relationships among sensors [28]. One disadvantage of the prediction-driven approach is that it

relies heavily on the accuracy of the forecasting model, which may struggle to capture sudden or

rare events, leading to missed anomalies. Additionally, this method can be sensitive to changes in

traffic patterns that do not necessarily indicate faults, resulting in false positives.

Missing data, often caused by sensor or system failures, is a prevalent issue that can

detrimentally affect various traffic-related tasks. To mitigate the challenges posed by missing data,

data reconstruction or imputation assumes critical importance. The reconstruction-driven approach

involves compressing traffic data into a lower-dimensional vector space using methods like

autoencoders, and subsequently reconstructing it to its original form. Consequently, substantial

differences between the reconstructed data and the actual data indicate anomalies, suggesting faults

or disruptions in traffic patterns. Traditional imputation methods include: ARIMA, KNN, principal

component analysis (PCA)-based methods [29] and Bayesian imputation model [30]. Other state-

of-the-art reconstruction methods include Recurrent Neural Networks (RNN)-based methods [31],

deep sequential variational autoencoder based methods [25], generative adversarial networks

(GAN)-based methods [32], and GNN-based methods [33].

 On the other hand, researchers have pursued two primary approaches by examining

individual sensors or collections of sensors. The distinction between these two approaches hinges

on whether data from sensors exhibit any spatial and/or temporal dependence. Studies in the latter

category often not only emphasize the temporal properties of isolated road sensor data but also

underscore the importance of considering spatial correlations of data from different sensors.

14

Djenouri et al. (2019) classified existing anomaly detection techniques to three main categories:

statistical, similarity-based, and pattern-based methods [34]. Many of these techniques are tailored

for traffic anomaly analysis of individual sensors. Nevertheless, no matter is prediction-driven or

reconstruction-driven approaches, a predominant trend in recent years is to leverage the spatial-

temporal correlations among sensors to enhance the robustness for traffic data modeling [35], [36],

[37], [38], which is also the focus and motivation of this study. With recent advancements in graph

neural networks, researchers have found that GNN-based methods have proved excellent ability

in capturing the explicitly spatial-temporal correlations [39]. Notably, for GNN-based spatial-

temporal methods, dynamic subgraph-based GNN have recently been studied to empower the

representation learning [28], which further improves the generalizability and performance of these

models. Recently, Zhang et al. (2022) presented an automatic traffic anomaly detection method by

leveraging spatial-temporal graph neural network for representation learning. They learned

implicit graph features from multivariate time series of traffic flows and used a graph deviation

score to detect traffic anomalies [40]. However, they do not consider the heterogeneity among

multiple sensor data, which is crucial to consider especially in large sensor networks. Since sensor

data patterns vary across different regions in terms of trend and magnitude, in our proposed traffic

data fault detection framework at a cluster level, the sensors are grouped into smaller clusters with

strong spatio-temporal correlations. This clustering approach guides the reconstruction model

training, enhances the homogeneity within the embeddings, and helps mitigate the losses caused

by heterogeneity, ultimately leading to significant improvements in performance.

2.3. Graph Neural Networks in Traffic Research

Graph Neural Networks (GNN), serving as an innovative deep learning approach tailored for

handling non-Euclidean data through graph analysis techniques, have found extensive utility in a

15

range of data-driven applications within the realm of traffic research. These applications include

but not limited to traffic flow forecasting [7], traffic speed prediction [8], traffic signal control [9]

and traffic accident prediction [10].

Four groups of GNN have been widely applied in traffic research field, namely recurrent

GNN (RecGNN), convolutional GNN (ConvGNN), graph autoencoders (GAE), and spatial-

temporal GNN (ST-GNN) [41]. In the practice of RecGNN and ConvGNN, researchers typically

use GNN to capture network-level spatial relations, along with RNN or CNN to extract temporal

dependencies. To address the lack of flexibility in the local-feature extraction process in GNN,

Cui et al. (2020) proposed a graph wavelet gated recurrent (GWGR) neural network to realize

network-wide traffic forecasting with no need to specify the neighboring area in the graph

topology, where graph wavelet is incorporated as a key component for extracting spatial features

and a gated recurrent structure is employed to learn temporal dependencies in the sequence data

[42]. As a response to the limitations of recurrent neural networks (RNN) in effectively capturing

periodic temporal correlations, particularly in the context of gradient vanishing, Chen et al. (2019)

combined the capabilities of graph convolutional networks, recurrent networks, and residual neural

networks to jointly extract spatial-temporal features while considering external factors. The

proposed Multiple Gated Recurrent Graph Neural Networks (MRes-RGNN) delivered the state-

of-the-art results on traffic prediction at the time [43]. With a goal to forecast the origin-destination

travel demand between regions, Wang et al. (2022) developed a GAE structured model that utilize

the node representations in the latent space to capture the evolution of directed temporal networks.

The innovative temporal graph autoencoder (TGAE) empowers the prediction of the link weight

and direction based on the historical network snapshots [44].

16

In recent years, ST-GNN have garnered due attentions within traffic research area as they

allow the concurrent modeling of spatial and temporal dependencies in dealing with a dynamic

graph problem. In the realm of traffic data, these applications primarily tackle prediction and

kriging challenges. For example, to address the limitations posed by incomplete adjacent

connections that hinder the effective modeling of spatial-temporal dependencies in ST-GNN, Li

and Zhu (2021) introduced a fusion graph module. This module operates on various temporal and

spatial graphs concurrently for different time periods in parallel, allowing for the efficient learning

of concealed spatial-temporal relationships for traffic flow prediction. The newly proposed spatial-

temporal fusion graph neural networks (STFGNN or SFTGNN) exhibit the capability to handle

long traffic flow sequences by harnessing stacked layers to learn more intricate spatial-temporal

dependencies [45]. Kriging techniques have found extensive application in addressing traffic data

imputation challenges. For instance, when dealing with the task of filling in distinct types of

missing entries in spatial-temporal traffic data, Liang et al. (2022) incorporate both extracted

spatial and temporal features as node representations. These representations are used as input for

an architecture based on diffusion graph convolutional neural networks (DGCN) with a mask

mechanism, facilitating the reconstruction of temporal node features. The proposed kriging model

effectively fulfills all imputation requirements without the need to retrain the entire model [46].

Moreover, GNN training is renowned for encountering the neighbor explosion problem

[47]. To alleviate this issue, subgraph-wise sampling has gained widespread acceptance in the field

[48], [49], [50]. This approach aims to curtail the number of nodes involved in message passing,

which, in turn, enhances computational efficiency, focuses on crucial nodes, addresses imbalanced

data concerns, and mitigates noise. Nevertheless, hasty or ill-considered sampling can result in

information loss or introduce biases during the training process. In previous works related to ST-

17

GNN in traffic research, some attention has been given to the concept of sampling tactics.

Nonetheless, there is typically a lack of comprehensive logical instruction for the generation of

subgraphs. For example, randomly sampled subgraphs might not accurately represent the full

graph's structure and feature distribution, leading to a potential loss in model performance. Also,

random walk sampling can introduce bias towards nodes with higher connectivity or those that are

more frequently visited in walks, potentially overlooking less connected nodes. In this dissertation,

we take a different approach by constructing subgraphs based on semantic clusters of neighboring

traffic sensors formed in a low-dimensional vector space.

Additionally, the state-of-the-art graph generative models often use an auto-encoder

framework where the encoder maps the input graph to a vector space, and the decoder reconstructs

structures or node features from that space [51]. However, these models typically simply rebuild

one modality, either the graph structure or node features, which limits the richness of the

representation. The downstream task of spatial-temporal clustering thus often falls short in fully

exploiting the graph structure or the interaction between the graph structure and node content. This

limitation stems from their reliance on partial network information or superficial consideration of

relationships between content and structure data, often applied directly to sparse original graphs

[52]. Based on the review of existing literature, there are two primary hurdles: (1) the difficulty of

simultaneously reconstructing both graph structures and node features, and (2) the limitations of

current learning objectives, for example, using mean square error for node feature reconstruction

and binary cross-entropy for link prediction [53]. To overcome these, in this study, we leverage

both graph structure and node content and design a dual encoding scheme with a new loss function

in graph representation learning task, attaining the optimal traffic sensor clusters.

18

CHAPTER 3

 SYMMETRIC CONTRASTIVE LEARNING FOR TRAFFIC

SENSOR FAULT DETECTION

In this chapter, our first framework was introduced, centering on a symmetric contrastive learning

approach for data fault detection at the individual traffic sensor level. It employs a triplet network

with an efficient sampling strategy, coupled with a novel cross-attention-boosted loss function for

network training.

3.1. Research Overview

Although deep learning models perform well in fault detection for time-series data, they often rely

on labeled data or generate their own supervision signals. These methods typically assume similar

feature distributions between training and testing data, which isn’t always true in real-world

conditions where sensor variations, degradation, or environmental noise can alter the data. As a

result, discrepancies between training and testing data can significantly reduce the models’ fault

detection performance. Contrastive learning, a self-supervised learning scheme initially proposed

by [54], could be leveraged to mitigate this issue. The basic idea of contrastive learning is to learn

a latent space where the similarity between the views under different augmentations of the same

input data is maximized while minimizing the similarity between dissimilar data samples [55],

[56]. This contrastive representation learning focuses on relationships between constructed pairs

19

of data samples and does not require explicit labels. Several studies have evaluated the

effectiveness of contrastive learning for fault detection. For instance, Hojjati and Armanfard

(2022) employed audio-specific augmentations and a contrastive learning framework with a

revised loss function for acoustic anomaly detection, yielding promising experimental results [57].

In another study, Zhang et al. (2022) proposed a supervised fault detection approach based on

contrastive learning. To address the discrepancy between the source and target domains, a cross-

domain supervised contrastive loss is used with labeled information for domain adaptation [58].

However, current contrastive learning models are primarily focused on images and videos,

with little attention paid to fault detection in traffic sensor data. The main challenge in detecting

faults in traffic sensor data is to learn proper time-series representations. This involves identifying

an appropriate feature extraction mechanism for the classification problem, as well as finding a

suitable transformation of raw traffic data that highlights multiscale temporal features. Normal and

faulty time-series can sometimes be quite similar depending on temporal scales, adding to the

difficulty of the task. Triplet networks (TripletNet) [59] have been shown as a successful paradigm

of contrastive learning and are widely applied to challenging tasks such as face recognition and

image retrieval. In addition, TripletNet is effective in addressing the problem of distribution shift

and can thus generalize well to new domains, as it is able to learn a distance metric that is

insensitive to certain types of domain shifts. The triplet loss, which pulls similar instances closer

and repels dissimilar ones, allows the network to target feature invariance with fine details by

purposely constructing transformations. TripletNet has demonstrated tremendous potential in

feature representation learning.

In this chapter, we presented a sample-efficient, symmetric contrastive learning method

with triplet encoding for detecting faulty traffic data. Based on the previous work [60], The CWT

20

is first applied to convert the original time-series traffic sensor data into two-dimensional images

in the time-frequency space with a desirable resolution. Next, we design a CNN encoder and use

self-attention layers for selective feature pooling. Unlike traditional triplet networks that take a

tuple of three elements as input, our proposed triplet network processes a tuple of seven instances,

including an anchor, three positive examples generated by adding three types of domain-informed

noises, and three negative examples produced by injecting three types of faults observed in

historical traffic data, as illustrated in Figure 3.1. To guide the metric learning process explicitly,

we introduce two cross-attention layers during training before computing the loss. We refer to this

as cross-attention-boosted triplet loss, which is computed based on the nine permutations of the

triplet, i.e., {anchor, one of the three positives, one of the three negatives}. For comparison, we

evaluate, as baselines, two widely applied contrastive learning methods: the traditional triplet

network and Siamese network (SiameseNet) [61], demonstrating superiority of our proposed

method. In comparison to traditional triplet and Siamese networks, as well as a classic threshold-

based method, our proposed approach shows superior performance in detecting faulty data

sequences. The experimental results demonstrated an impressive accuracy of 97.6%, precision of

97.5%, recall of 97.7%, and an F1 score of 97.6%. The key contributions of this research study are

summarized below:

(1) A sample-efficient symmetric contrastive sampling strategy was introduced

to harness domain knowledge by perturbing the same normal traffic sequence to generate

direct contrastive samples. This facilitates the learning of invariant features as well as

contrastive signals.

21

(2) A novel cross-attention boosted loss function was introduced for training

the triplet network, which significantly improved the cohesion within classes and the

distinction between classes.

(3) A CNN encoder was designed with self-attention layers for selective feature

pooling.

(4) Extensive experiments were conducted, demonstrating the effectiveness of

the above-mentioned novel components.

Figure 3.1: Domain-inspired triplet data generation.

3.2. Contrastive learning

Contrastive learning is a powerful technique within the field of metric learning that focuses on

learning representations by contrasting positive and negative pairs of examples. Its similarity to

human learning has led to its widespread recognition and adoption. In this section, we provide an

overview of contrastive learning by highlighting two widely adopted networks: the Siamese

network and the triplet network. These networks are trained in self-supervised learning settings to

22

acquire informative, meaningful embeddings, which can subsequently be employed for various

downstream tasks, such as classification.

3.2.1. Siamese Network

SiameseNet [61] is a special type of neural network architectures that consists of two identical

networks with shared parameters. During training, the parameters are updated by minimizing a

contrastive loss function that is computed based on a distance metric in the latent embedding space

[62]. In contrast to conventional learning systems where the loss function is a sum over sample

batches, the contrastive loss for SiameseNet is computed over pairs of samples [63].

Let ℱ𝑠(𝑥) be the embeddings of an input 𝑥 and let 𝑥1 and 𝑥2 denote the two paired inputs,

where 𝑥1 and 𝑥2 can be either similar or dissimilar. A binary label y is assigned to the input pair

to indicate whether the pair is similar or dissimilar, where 𝑦 = 0 if 𝑥1 and 𝑥2 are similar and 𝑦 =

1 if they are dissimilar. The contrastive loss ℒ𝑠 is computed using Eq. 3.1, where 𝑚 is the margin

between similar and dissimilar pairs, which is often treated as a hyperparameter. The distance

metric, 𝐷(ℱ𝑠(𝑥1), ℱ𝑠(𝑥2)) is typically the Euclidean distance in the embedding space.

ℒ𝑠 = (1 − 𝑦)
1

2
(𝐷(ℱ𝑠(𝑥1), ℱ𝑠(𝑥2)))

2 + (𝑦)
1

2
{𝑚𝑎𝑥(0,𝑚 − (𝐷(ℱ𝑠(𝑥1), ℱ𝑠(𝑥2)))}

2. (3.1)

3.2.2. Triplet network

One limitation of the SiameseNet is that the margin parameter 𝑚 only distinguishes between

similar and dissimilar samples, without controlling the variability among samples within the same

class. As a result, a large number of similar samples are required to effectively cluster intraclass

samples in the feature space [64]. To address this limitation, the TripletNet [59] considers both

positive and negative distances relative to an anchor in the loss function, resulting in improved

23

metric learning. The triplet loss is defined by Eq. 3.2, where minimizing the loss is equivalent to

reducing the distance between the anchor and the positive (the first term in Eq. 3.2) while

increasing the distance between the anchor and the negative (the second term in Eq. 3.2) such that

the difference between the two distances is at least the margin value, which is a user-defined

hyperparameter. This allows TripletNet to better handle outliers and varying levels of intraclass

variance, offering more flexibility than SiameseNet in constructing the latent space.

ℒ𝑇 = max{𝐷(ℱ𝑇(𝑎), ℱ𝑇(𝑝))
2 −𝐷(ℱ𝑇(𝑎), ℱ𝑇(𝑛))

2 +𝑚, 0} (3.2)

where, 𝑎 denotes an anchor input, 𝑝 and 𝑛 indicate positive and negative inputs, respectively; 𝑚

is target margin; ℱ𝑇(∙) is the encoder network.

3.3. Proposed method

The traditional TripletNet framework has limitations due to its reliance on selection and quality of

training triplets, which can lead to ineffective and unstable feature representation learning if the

triplets are not properly chosen, as well as high computational cost with a large number of triplets

that could be constructed from a training dataset. To address these issues, we propose an adapted

TripletNet framework that uses a symmetric sampling strategy, where same number of positive

and negative samples are generated from the same anchor. Furthermore, we employ a cross-

attention mechanism between positive and negative examples to boost loss signals. Our proposed

method consists of three major components: (1) CWT imaging of time-series traffic data, (2)

customized triplet network training to induce a latent embedding space endowed with

discriminative power, and (3) a classifier that leverages embeddings for detection of faulty traffic

sensor data. Figure 3.2 illustrates the conceptional framework of the proposed method. The

24

symmetric sampling strategy and each of the major components are discussed in detail in the

subsequent sections.

Figure 3.2: The conceptional framework of the proposed method.

3.3.1. Domain-Inspired Data Generation

The process of contrastive learning involves transforming original data to create multiple instances

of each sample, which enables the learning of target invariant features from unlabeled data. These

transformations must preserve the essential information of the original samples to enable the

network to identify its distinctive features [65]. In this paper, we used domain-inspired

augmentation strategies to generate positive and negative examples from same original data

sample, referred to as anchor in the triplet network setting. Specifically, we used healthy time-

25

series traffic volumes in five-minute intervals over a day as the anchor, from which three positive

and three negative instances are generated, leading to nine triplet pairings.

To simulate natural traffic variation, we created positive signals by applying three types of

perturbations: (1) Gaussian noise (random noise), (2) temporal shifting, and (3) magnitude scaling.

Gaussian noise captures the natural randomness present in traffic counts on a daily basis, temporal

shifting simulates traffic shock wave that could be induced by bottleneck locations with reduced

capacities, and magnitude scaling reflects significant traffic volume changes that could arise from

special events, work zones, or incidents. Figure 3.3 illustrates the effects of the three perturbation

types, where the blue lines trace the original data trends, and the orange lines represent the

perturbed data trends.

Figure 3.3: Visualization of three types of natural noises. The top plot simulates natural traffic

variation by small perturbation of traffic volumes (i.e., injecting Gaussian noises); the middle

plot indicates potential temporal shift of traffic; and the bottom plot demonstrates magnitude

scaling to reflect potential increase or decrease of overall traffic due to certain events.

26

Three prevalent categories of faults observed in historical traffic sensor data, namely,

nonresponsive faults, block faults, and point faults, serve as a basis for creating negative examples,

contrasting with the positive ones [4]. Environmental factors such as weather-related damage,

technical issues like power anomalies, and inappropriate setup can result in nonresponsive faults

where traffic sensors fail to react. On the other hand, block faults, manifesting as undercounting

of vehicles, may arise from a variety of causes, such as physical obstructions, misalignment of

sensors, and calibration discrepancies. Moreover, point faults are attributed to a range of sporadic

problems, which may include hardware malfunctions that occur intermittently, variable power

supply, and transient blockages. The nonresponsive fault is generated by randomly selecting short

time segments (e.g., 5 consecutive time intervals) and suppressing the traffic volumes to zero.

Block faults are replicated in a similar fashion to nonresponsive faults but instead cause a

significant reduction in traffic volume, for instance, a 40% decrease. Point faults, akin to block

faults, sporadically lower the traffic count at random time points. Figure 3.4 illustrates the effects

of the three types of faulty signal injections, where the blue lines indicate normal data trends, and

the orange lines indicate the contaminated signals.

27

Figure 3.4: Visualization of three types of faulty signals; top: nonresponsive fault, middle: block

fault, bottom: point fault.

3.3.2. Continuous Wavelet Transformation

CWT is employed as a preprocessing step in this study. Wavelets are formed by convoluting scaled

and translated versions of the mother wavelet over time-sequence data. The mother function can

be used to convert one dimensional data into scaled N-dimensional data. In this context, scaling

refers to stretching or shrinking the signal in time by the scaling factor, which is inversely

proportional to frequency. While shifting refers to moving the location of the wavelet imposed on

the signal. Stretching a wavelet can help to capture slow changes in time series data, while

shrinking improves the ability to detect abrupt changes. CWT results in a two-dimensional image

that visually captures both slow and abrupt changes, inducing a powerful representation for time-

series data. The CWT can be written in Eq. 3.3.

28

 𝐶(𝑎, 𝑏; 𝑓(𝑡), 𝜓(𝑡)) = ∫ 𝑓(𝑡)
1

𝑎
𝜓 ∗ (

𝑡−𝑏

𝑎

∞

−∞
)𝑑𝑡 (3.3)

where, the scale is represented by a, and the position by b. * denotes the complex

conjugate. 𝜓 is the mother wavelet function.

Figure 3. 5 displays some generated examples of the positive and negative instances, and

their corresponding CWT images. The CWT image of the positive example appears nearly

identical to that of the anchor example, while the negative example displays distinguishable

characteristics in the higher frequency areas of the CWT image.

Figure 3.5: Sample wavelet transformations of time-series traffic volume data; left: normal data,

middle: normal data with noises, right: faulty data. The red rectangles on the negative CWT

image (right) highlight the distinguishable fault signals in contrast to the normal and positive

CWT images (left).

29

3.3.3. Proposed Triplet network

The proposed TripletNet is composed of a CNN encoder and an MLP classifier. To train the

encoder, we use a domain-inspired triplet loss function, which is based on an anchor and three

positive, and three negative instances generated from the same anchor. This results in nine triplet

pairings: 𝑋𝑘 = {𝑥𝑘
𝑎 , 𝑥𝑘

𝑝𝑖 , 𝑥𝑘
𝑛𝑗}, where 𝑖, 𝑗𝜖{1,2,3} and 𝑥𝑘

𝑎 is anchor instance, 𝑥𝑘
𝑝𝑖 denotes positive

instance 𝑖 and 𝑥𝑘
𝑛𝑗

 is negative instance 𝑗. We treat the nine triplets as a “minibatch” and feed them

to the CNN encoder for training. Once the encoder is trained, its weights are fixed, and it functions

as a feature extractor for training an MLP classifier. The subsequent subsections outline the

architecture of the convolutional TripletNet encoder, followed by the cross-attention boosted

triplet loss function and the MLP classifier designed for fault detection.

Architecture of the Encoder

The encoder architecture consists of four convolution blocks, each of which contains two 2D

convolutional layers and a max pooling layer, resulting in a flattened vector with 2048 dimensions.

Batch normalization and Rectified Linear Unit (ReLU) activation are applied after each

convolutional layer. The inputs to the TripletNet encoder are CWT images with dimensions of

1×64×64.

The convolution operation is recognized for its data efficiency but can introduce high bias

due to its localized structure. In contrast, the attention mechanism offers greater flexibility and has

gained popularity following the success of the transformer model [66], finding extensive

application in image classification tasks [67] . Drawing inspiration from the human visual attention

mechanism, the attention module aggregates information by assigning different weights to

different inputs based on their importance. As not all features obtained from the convolutional

30

block contribute equally to the classification task, a self-attention module [68] is utilized to

perform selective feature pooling on the features obtained from each convolutional block. The

features from each of the self-attention layers are then projected to a common-length vector. These

vectors are concatenated to obtain an output of size 4×1×2048. The architecture of the proposed

TripletNet encoder is illustrated in Figure 3.6.

Figure 3.6: The proposed TripletNet encoder with self-attention layers.

Cross-Attention Boosted Loss Function

The effectiveness of the traditional triplet network heavily relies on the careful selection and

quality of example triplets, and the triplet loss function is designed specifically to learn

embeddings that aid in comparing the similarity between data points. However, in the case of

traffic sensor data, the differences between normal and faulty time-series are relatively minor,

making it challenging to enhance intraclass aggregation and interclass separation. To address this,

31

we propose a cross attention-boosted triplet loss function. The attention mechanism is used to

identify states within a network that closely resembles a given state, allowing for the extraction of

relevant information, and emphasizing significant local regions for extracting more distinctive

features [23]. In the conventional triplet loss function, positive and negative instance embeddings

are not able to access each other’s information before being used in the calculation of the triplet

loss. Considering this, we use two cross attention modules that connect and share information

between positive and negative embeddings, highlighting relevant regions with distinctive features.

Assuming a batch size of N, let 𝑋𝑎 = {𝑥1
𝑎 , 𝑥2

𝑎 , … , 𝑥𝑁
𝑎} represents the anchor instances,

𝑋𝑝 = {𝑥1
𝑝𝑖 , 𝑥2

𝑝𝑖 , … , 𝑥𝑁
𝑝𝑖} represents corresponding positive instances, and 𝑋𝑛 = {𝑥1

𝑛𝑗 , 𝑥2
𝑛𝑗 , … , 𝑥𝑁

𝑛𝑗}

represents corresponding negative instances. The embeddings obtained from the TripletNet

encoder for the 𝑘th anchor, positive, and negative instances can be denoted as ℱ𝑇(𝑥𝑘
𝑎), ℱ𝑇(𝑥𝑘

𝑝𝑖),

and ℱ𝑇(𝑥𝑘
𝑛𝑗) , respectively, where ℱ𝑇(∙) is feature encoder. Our proposed cross-attention

mechanism is illustrated in Figure 3.7. which strictly implements multi-head self-attention

mechanism, where “cross” refers to the fact that attention is applied across different groups of

embeddings (i.e., anchor, positive, and negative). In other words, the queries come from one group

of embeddings while the keys and values are from a different group of embeddings. The scaled

dot-product attention and multi-head attention are computed by Eqs. 3.4 and 3.5.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (3.4)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑜 (3.5)

where, ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉); 𝑑𝑘 denotes the dimension of queries and keys

and 𝑑𝑣 is the dimension of values; The parameter matrices are 𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈

32

ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘, 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 and 𝑊𝑜 ∈ ℝℎ𝑑𝑘×𝑑𝑚𝑜𝑑𝑒𝑙 . In our study, the 𝑑𝑚𝑜𝑑𝑒𝑙 is set to 2048 and

ℎ = 8.

 For each anchor in a batch, three positive and three negative examples are generated from

it and their respective embeddings (denoted as Embeddings (1) in Figure 3.7) are obtained from

the pretrained TripletNet encoder. In the first cross-attention layer, cross-attention is applied

between the anchor embeddings and the positive embeddings (Eq. 3.6) and between the anchor

embeddings and the negative embeddings (Eq. 3.7). In the second cross-attention layer, cross-

attention is applied (Eqs. 3.8 and 3.9) between the positive and negative embeddings (denoted as

Embeddings (2) in Figure 3.7) to obtain the final embeddings (denoted as Embeddings (3) in

Figure 3.7) for loss computation.

Figure 3.7: Cross-attention boosted contrastive loss.

33

 𝑇𝑝(𝑥𝑘
𝑝𝑖) = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑝 (ℱ𝑇(𝑥𝑘

𝑎), ℱ𝑇(𝑥𝑘
𝑝𝑖), ℱ𝑇(𝑥𝑘

𝑝𝑖)) (3.6)

𝑇𝑛(𝑥𝑘
𝑛𝑗) = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑛 (ℱ𝑇(𝑥𝑘

𝑎), ℱ𝑇(𝑥𝑘
𝑛𝑗), ℱ𝑇(𝑥𝑘

𝑛𝑗)) (3.7)

𝐺𝑝(𝑥𝑘
𝑝𝑖) = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑝 (𝑇𝑛(𝑥𝑘

𝑛𝑗), 𝑇𝑝(𝑥𝑘
𝑝𝑖), 𝑇𝑝(𝑥𝑘

𝑝𝑖)) (3.8)

 𝐺𝑛(𝑥𝑘
𝑛𝑗) = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑛 (𝑇𝑝(𝑥𝑘

𝑝𝑖), 𝑇𝑛(𝑥𝑘
𝑛𝑗), 𝑇𝑛(𝑥𝑘

𝑛𝑗)) (3.9)

The loss ℒ per batch is computed by Eq. 10:

ℒ = ∑ ∑ max{𝐿2(ℱ𝑇(𝑥𝑘
𝑎), 𝐺𝑝(𝑥𝑘

𝑝𝑖)) − 𝐿2(ℱ𝑇(𝑥𝑘
𝑎), 𝐺𝑛(𝑥𝑘

𝑛𝑗)) + 𝑚, 0}𝑖,𝑗
𝑁
𝑘=1 (3.10)

where 𝑖, 𝑗𝜖{1,2,3} and𝐿2 denotes Euclidean distance and 𝑚 is margin.

Classifier

In the classification task, the multi-scale features retrieved from each block of the pretrained

TripletNet encoder, are firstly projected to an 8,192-long vector and then fed to a multi-layer

perceptron (MLP) [69]. The proposed MLP consists of two linear layers with ReLU nonlinearity,

which can be mathematically represented by Eq. 3.11.

𝑀𝐿𝑃(𝑍) = 𝑊2 (𝐷 (𝜎(𝛽(𝑊1𝑍)))) (3.11)

where 𝑊1, 𝑊2, are weight vectors for the first and the second layer of the MLP, 𝑍 is the input

vector; 𝜎 denotes the ReLU activation function; 𝛽 represents batch normalization; 𝐷 indicates the

dropout layer, with a drop rate of 0.5 being used in our experiments. Finally, softmax is applied to

obtain the predicted class distribution. The classifier is trained using binary cross-entropy loss,

denoted by Eq. 3.12.

𝐿𝐵𝐶𝐸 = −
1

𝑀
∑ (𝑦𝑖𝑙𝑜𝑔(𝑝(𝑥𝑖)) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝(𝑥𝑖)))
𝑀
𝑖=1 (3.12)

34

3.4. Dataset

Time series data of traffic volumes in 5-minute intervals are obtained from 254 active CCS sites

across the state of Georgia over an 18-month period from August 2018 to July 2020. It should be

noted that some sites have full-day missing records, which have been removed. The geospatial

locations of the active CCS sites are depicted in Figure 3.8. The data is partitioned into two

datasets: one is used for training the Triplet encoder, referred to as triplet dataset, and the other is

used for training the classifier, referred to as classification dataset, as shown in Table 3.1.

Triplet dataset. The triplet dataset contains 81,443 normal daily time sequences of 5-minute traffic

volumes, collected at 254 CCS sites from August 1, 2018, to July 31, 2019. Following the triplet

network contrastive learning pathway, each normal daily time-series is used to generate three

positive and three negative examples, as described previously.

Classification dataset. This dataset is used to train the classifier. It contains 20,015 daily time

sequences of 5-minute normal traffic volume data from February 1, 2020, to April 30, 2020, and

20,599 daily time sequences of “faulty” data that were generated by injecting faulty signals to the

normal traffic volume data collected in a different period from May 1, 2020, to July 31, 2020. This

is done to prevent information leakage for the classifier training. It should be noted that the goals

of contrastive learning and classifier training are different, as the former aims to learn invariant

features from nuisance noises while the latter is intended for the classification task.

35

Figure 3.8: Locations of CCS in Georgia, USA [60].

Table 3.1: Summary of Datasets

Dataset Time Window # of CCS sites Size (# of daily sequences)

Triplet dataset 8/1/2018-7/31/2019 254 81,443

Classification dataset 2/1/2020-7/31/2020 254 40,614 *

* Include 20,015 normal daily time sequences and 20,599 faulty daily time sequences generated

from the 254 CCS sites.

3.5. Experiments

We present evidence that the TripletNet model sets a new benchmark for performance in

contrastive learning applied to the detection of faults in daily traffic sequences, especially when

dealing with images of time-series traffic data, utilizing a real-world continuous count station

(CCS) dataset. The training process consists of two stages. In the first stage, the TripletNet and

SiameseNet encoders are pretrained in self-supervised learning settings. In the second stage, these

36

pretrained encoders are used as backbones to train the classifiers in a supervised setting. We

conducted various training scenarios to evaluate different encoder designs and loss functions,

utilizing the dataset. This section also includes the pretraining of the TripletNet and SiameseNet

encoders, the classifier training, the experimental settings, and results.

3.5.1. Model Architecture Design and Comparison

The TripletNet encoders are designed and trained in five different settings: (1) TripletNet A, where

the encoder has no self-attention layers and the conventional triplet loss function is minimized

based on nine triplet permutations, (2) TripletNet B, which adopts the same encoder as TripletNet

A, but minimizes the cross-attention-boosted triplet loss, (3) TripletNet C, where self-attention

layers are added in the encoder and the conventional triplet loss is minimized, (4) Proposed

TripletNet, where the self-attention layers are added in the encoder and the cross-attention-boosted

loss is minimized, and (5) TripletNet D, where only one triplet sample is processed per pass and

there are no self-attention layers in the encoder, and the conventional triplet loss is minimized.

On the other hand, SiameseNet, which is widely used as a benchmark model in contrastive

learning, was employed as a baseline for comparison. The SiameseNet employs the same CNN

encoder architecture as TripletNet D. For pretraining the SiameseNet encoder, the data pairs were

derived from the same triplet samples, where the anchor and positive examples were grouped as

the normal class while the negative examples were treated as the faulty class. Furthermore, a

classic threshold-based method using Z-score is also evaluated for comparison purposes. In this

approach, faulty data points are identified based on the optimal threshold of Z score obtained

experimentally.

37

3.5.2. Training of Classifiers

In the second stage, the pretrained TripletNet and SiameseNet encoders are frozen and simply used

as feature extractors for training the multi-layer perceptron (MLP) classifier using the

classification dataset. The encoders are kept frozen during classifier training. A k-nearest neighbor

(KNN) algorithm [70] is also used as a baseline classifier for evaluating embedding quality. KNN

is a non-parametric, supervised learning algorithm. There are no parameters to learn. It relies on

majority vote of the k nearest neighbors to make class prediction. Since it does not impose any

specific structures, the classification results reveal the quality of embeddings for class separation.

Further details on the experimental settings and results are presented subsequently.

3.5.3. Experiment Settings

For traffic data imaging, the daily time-series traffic volume data is converted into CWT images

(1×64×64) using the PyWavelets package [71]. In the stage of feature extractor pretraining, all

models are trained using Adam [72] with initial learning rate of 0.0001 as optimizer. The batch

size is set to 128. The triplet dataset is divided into a training set and a validation set with an 8:2

ratio. Each network is trained for 50 epochs. Margin value in loss function is set at 0.5. For the

training of the MLP classifier, cross-entropy loss is used. The classification dataset is split into

three sub-datasets: training set (60%), validation set (20%) and testing set (20%). Each classifier

is trained for 50 epochs using Adam with a learning rate of 0.00001 and a batch size of 128.

3.5.4. Results and Discussions

For classification tasks, the model performance is commonly measured by the average accuracy,

precision, F1-score, recall, and the area under the receiver operating characteristic curve (AUC).

38

These classification metrics for test data are summarized in Table 3.2, where the check mark (ü)

indicates the specific design component adopted for each model. To evaluate the quality of

embeddings from different encoders, a KNN classifier is applied, where a k value of 6 is selected

based on experiments. Since there is no extra learning structure or parameters imposed by the

KNN, the cluster results imply the embedding quality.

Table 3.2: Model Performance Evaluation

Architecture Component
TripletNet

Siamese

Network

Z-score

Threshol

d Method

A B C D Proposed

Number of

samples

processed per

pass

9 ✓ ✓ ✓ ✓

1 ✓ ✓

Encoder

CNN ✓ ✓ ✓

CNN + Self-

Attn
 ✓ ✓

Loss Function

Triplet Loss ✓ ✓ ✓

Cross-Attn-

Boosted

Triplet Loss

 ✓ ✓

Contrastive

Loss
 ✓

Classifier -

MLP

Avg.

Accuracy

(%)

95.4 96.0 96.3 94.9 97.6 94.8 83.4

Avg.

Precision

(%)

94.4 95.2 95.8 94.2 97.5 94.4 82.5

Avg. Recall

(%)
96.3 96.7 96.7 95.5 97.7 95.2 83.9

Avg. F1-

score (%)
95.4 95.9 96.3 94.9 97.6 94.8 83.2

AUC 0.975 0.978 0.987 0.972 0.992 0.973 83.2

Classifier -

KNN (k=6)

Avg.

Accuracy

(%)

92.4 92.9 93.3 91.6 93.9 91.9 83.4

AUC 0.945 0.947 0.961 0.938 0.965 0.940 0.863

39

As is shown in Table 3.2, all deep-learning models have average accuracies in exceedance

of 91%. Our proposed TripletNet, endowed with (1) self-attention layers at each CNN block, (2)

nine triplet samples per pass for training, and (3) cross-attention-boosted loss function, achieved

the best classification accuracy of 97.6% and AUC of 0.992 on the test dataset. All the TripletNet

models outperformed the SiameseNet. Notably, all deep-learning models surpassed the

conventional Z-score threshold-based method by a substantial margin of more than 10%. This

could be explained by the fact that the faulty signals in daily time sequences contain rich features

that are better captured by deep-learning methods than simple threshold-based methods. The latter

performs point-wise detection and disregards any temporal features.

By comparison, the models (A, B, C, and Proposed) trained with nine triplet samples per

pass have higher accuracies and AUCs than the one (D) trained with one triplet sample per pass.

The superiority of model B over model A indicates the benefit of the cross-attention-boosted loss

function. We argue that this is largely due to the enhanced contrast between positive and negative

embeddings. Furthermore, upon comparing Model A and C, it became evident that the self-

attention layers, which selectively gather information from different scales of embeddings,

significantly enhanced the encoder's performance. To better understand the impact of the two

proposed architectural design elements, i.e., self-attention layers and cross-attention-boosted loss,

we plotted the training progress of the related models in Figure 3.9. The results show that Model

B and the Proposed Model, which were optimized using the cross-attention boosted loss,

converged much faster with improved stability as compared to Model A and Model C,

respectively. Additionally, Model C and the Proposed Model, which are equipped with self-

attention layers, also improved the training stability compared to Model A and Model B, which

lack self-attention layers in their encoders.

40

Figure 3.9: Progression of scaled training and validation losses.

To gain a better insight into the quality of the latent representation, t-SNE [73] is employed

to embed 960 CCS CWT images, randomly sampled from the classification test dataset with equal

numbers of faulty and normal samples. As shown in Figure 3.10, the pretrained proposed

TripletNet encoder maps the faulty and normal data points to distinct clusters in the latent space.

The KNN classification results in Table 3.2 show the clear advantage of our proposed TripletNet

encoder over the other encoders for the downstream classification task.

41

Figure 3.10: Features visualization by T-SNE embeddings for 960 sample data (480 positive

instances + 480 negative instances); (a) original CWT image; (b) the proposed Triplet encoder.

3.6. Summary

In this chapter, we presented a sample-efficient, anchor-centered TripletNet framework for

detecting faulty sensor data based on their unique temporal patterns. Our proposed model pipeline

consists of three major sequential components: (1) CWT transformation of time-series traffic data,

(2) a pretrained TripletNet encoder for separating faulty data from normal data in a multiscale

embedding space, and (3) an MLP classifier for detecting faulty traffic data in the resultant

42

embedding space. Notably, we devised an anchor-centered data generation process for training the

TripletNet encoder, whereby each normal day of time-series data is used as an anchor, from which

three positive and three negative examples are generated based on the domain knowledge. This

leads to nine permutations of triplet samples around the anchor that enables direct contrastive

learning of faulty patterns. In addition, a cross-attention module is introduced during the training

to enable the learning of a more nuanced embedding space for the subsequent classification task.

Our experiments demonstrated the superiority of the proposed design and training strategy.

Nevertheless, this study can be extended to focus on the classification of different faults

that may occur in time-series traffic data to provide valuable insights for sensor diagnosis. One

limitation of our proposed method is the prerequisite of pre-training TripletNet. To facilitate

continuous learning and adaptation to emerging features, it would be advantageous to explore

meta-learning approaches and more suitable fine-tuning procedures.

Furthermore, it is important to note that the current study primarily concentrates on one-

dimensional time-series data. To broaden the scope of applications, further research is needed to

extend the existing framework to encompass high-dimensional correlated time-series data. For

instance, our study focuses on individual traffic count stations, but the flow patterns of

geographically proximate stations are inherently correlated and influenced by the network

configuration. Therefore, adopting a more comprehensive approach that analyzes clusters and

network topology of stations could enhance the reliability of anomaly detection and classification.

43

3.7. Publications

The work presented in this chapter has led to the following publications [74], [75]:

• Yongcan Huang, Jidong J. Yang. Symmetric contrastive learning for robust fault detection

in time-series traffic sensor data[J]. International Journal of Data Science and

Analytics (2024): 1-15.

• Yongcan Huang, Jidong J. Yang. Semi-supervised multiscale dual-encoding method for

faulty traffic data detection[J]. Applied Computing and Intelligence, 2022, 2(2): 99-114.

44

CHAPTER 4

 CLUSTER-GUIDED DENOISING GRAPH AUTO-ENCODER

FOR TRAFFIC DATA IMPUTATION AND FAULT

DETECTION

This chapter presented our second framework that leverages spatial contexts through clusters of

sensors to improve fault detection. First, a traffic sensor clustering module was designed using a

dual-encoding attention graph auto-encoder (DA-GAE) to identify clusters of traffic sensors. This

module leverages a joint embedding of node and edge features in a low-dimensional vector space.

Subsequently, utilizing the identified clusters, a cluster-guided denoising graph auto-encoder (CG-

DGAE) was devised and trained for data reconstruction. The CG-DGAE employs a diffusion graph

convolutional network (DGCN) and is trained with a cluster-wise sampling strategy. Extensive

experiments were conducted using traffic data obtained from a real-world large sensor network,

demonstrating superior performance of the CG-DGAE model in data reconstruction compared to

various baseline methods. For fault detection, a score function is devised to discern potential faults

by contrasting the sensor data sequence and the reconstructed data sequence.

45

4.1. Research Overview

Despite the advancements of deep learning models-based traffic data fault detection summarized

in our literature review work, devising an optimal protocol for fault detection in traffic data remains

a challenge, compounded by factors related to intrinsic characteristics of road traffic and the

diversity of traffic data sources: These aforementioned factors collectively underscore the

complexity and multifaceted nature of traffic data quality control, necessitating innovative

approaches tailored to address the unique challenges posed by real-world traffic systems. In this

chapter, we proposed a novel deep-learning-based approach consisting of three sequential phases:

(1) traffic sensors clustering, (2) data reconstruction, and (3) fault detection.

(1) Traffic sensors clustering: a dual-encoding attention graph auto-encoder (DA-GAE) is

designed to aggregate neighboring traffic sensors into coherent groups or clusters. It jointly

encodes node features and network topology into a low-dimensional vector space. The

established clusters are later utilized to enable a cluster-wise sampling strategy for robust

traffic data reconstruction.

(2) Data reconstruction: a cluster-guided denoising graph auto-encoder (CG-DGAE) is proposed

for traffic data reconstruction. The network employs a Diffusion Graph Convolutional

Network (DGCN) to reconstruct healthy traffic data from contaminated one with faulty signals.

Trained using subgraphs constructed from sensor clusters obtained previously, the CG-DGAE

is able to recognize spatial-temporal dependency of sensors within each cluster and enhance

the reconstruction and imputation accuracy.

46

(3) Fault detection: the pretrained CG-DGAE model is utilized to reconstruct sensor data

sequences. By comparing the reconstructed data sequence with the input data sequence using

a score function and a threshold, faults within the input data sequence can be identified.

Extensive experiments are conducted for each phase above using traffic datasets sourced from

statewide continuous count stations (CCS) in Georgia. The results reveal that dual encoding

empowered by the attention mechanism (i.e., DA-GAE) facilitates superior graph representation

learning, leading to improved clusters. Our proposed CG-DGAE surpasses all baseline models in

reconstructing traffic sensor data. We further validate the performance of fault detection using a

manually annotated faulty traffic dataset. The major contributions of this work could be

highlighted as below:

• A novel light framework for network level faulty detection is proposed. The framework

features with the light dynamic cluster-guided subgraph sensor data, which is inherently

well-suited not only for traffic faulty data but also for other domain data faulty detection

problems.

• We designed a dual encoding scheme for graph representation learning that leverages both

graph structure and node content, incorporating a new loss function to achieve optimal

traffic sensor clustering and data reconstruction results.

• To optimize subgraph sampling in data reconstruction with GNNs, we developed a

subgraph generation approach that clusters neighboring traffic sensors based on semantic

similarity in a low-dimensional vector space.

47

• We developed a fault detection function based on a fault score derived from the cluster-

level reconstruction sequence and observed sensor data. Testing on real-world faulty traffic

sensor data demonstrated the method's feasibility and reliability.

4.2. Preliminaries

In this section, we first introduced graph representation for highway traffic sensor networks,

followed by the formulation of the problem.

4.2.1. Graph Abstraction Representation of Highway Traffic Sensor Networks

In this work, we defined a highway traffic sensor network as a weighted directed graph 𝐺 =

(𝑉, 𝐸, 𝐴) , where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a set of 𝑁 nodes; 𝐸 a set of edges indicating the

connectivity between nodes; 𝐴 ∈ ℝ𝑁×𝑁 denotes the adjacency matrix capturing the dependency

between the nodes. A physical traffic sensor in the highway network typically records the

bidirectional flow data. In our case, the node is defined by direction, where the node features

include directional sensor data. Existing approaches often define the adjacency matrix as a function

of connectivity or distance. To get the connectivity in the graph, we first derive the distance matrix

𝐷 from the geographic proximity. Then, the adjacency matrix 𝐴 is derived based on the closest 𝑝

nodes. For the highway traffic sensor network, the geographical proximity between two nodes or

each element in 𝐷 is computed by Eq. 4.1.

𝐷𝑖𝑗 = exp(−
𝑑𝑖𝑠𝑡𝑖𝑗

𝑚𝑎𝑥𝑖,𝑗(𝑑𝑖𝑠𝑡𝑖𝑗)
) (4.1)

where 𝐷𝑖𝑗 is the element value for geographical proximity between sensor 𝑖 and 𝑗, 𝑑𝑖𝑠𝑡𝑖𝑗 is travel

distance between 𝑖 and 𝑗. The adjacency matrix 𝐴 is defined as:

48

𝐴𝑖𝑗 = {
𝑒
𝐷𝑖𝑗

∑ 𝑒
𝐷𝑖𝑗

𝑗∈𝑡𝑜𝑝𝑃(𝑖,𝑝)

,𝑗 ∈ 𝑡𝑜𝑝𝑃(𝑖, 𝑝),

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (4.2)

where 𝑡𝑜𝑝𝑃(𝑖, 𝑝) represents a list of column indexes of the largest 𝑝 element values in each row 𝑖

of 𝐷.

4.2.2. Problem definition

In our setting, the objective of traffic sensor data fault detection is to identify anomalies present

within the sensor data sequence. We assume that the traffic sensors can be organized into 𝐿 distinct

clusters, where the traffic data distribution within a cluster remains relatively stable and faults

occur sporadically. For each node 𝑣 in a cluster ℊ , the sensor data at a given timestamp 𝑡 is

denoted as 𝑥𝑡
𝑣 ∈ ℝ, and the sensor data recorded for the cluster ℊ is represented as a graph signal

𝑋𝑡 = {𝑥𝑡
1, 𝑥𝑡

2, … , 𝑥𝑡
𝑍} , where 𝑋𝑡 ∈ ℝ𝑍 and 𝑍 represents the number of nodes in the cluster.

Assuming a detection time frame of [𝑡 − 𝑇, 𝑡], the crux of sensor data reconstruction lies in

devising a function 𝐹(.) capable of generating the fault-free traffic sensor data of each cluster

�̂�𝑡−𝑇:𝑡 = 𝐹(𝑋𝑡−𝑇:𝑡), where �̂�𝑡−𝑇:𝑡; 𝑋𝑡−𝑇:𝑡 ∈ ℝ
𝑍×𝑇 denoting the reconstructed data sequence and

sensor data sequence, respectively, for the cluster.

To achieve the objective of fault detection, our proposed approach employs three sequential

phases: (1) identifying optimal 𝐿 clusters, (2) training cluster-wise traffic data reconstruction

models, and (3) detecting faults by contrasting the reconstructed data with traffic sensor data. For

clarity of presentation, a list of abbreviations is provided in Table 4.1, encompassing terms utilized

in the methodology and experiments.

49

Table 4.1: Abbreviations

Abbreviation Definition

AC agglomerative clustering

BCE binary cross entropy

Bi-LSTM bi-directional LSTM

CCS continuous count station

CG-DGAE cluster-guided denoising graph auto-encoder

CHI Calinski-Harabasz index

CNN convolutional neural networks

DA-GAE dual-encoding attention graph auto-encoder

DBI Davies-Bouldin index

DGCN diffusion graph convolutional neural networks

GAT graph attention network

GCN graph convolutional networks

GNN graph neural networks

LSTM long short-term memory

MAE mean absolute error

Okriging ordinary kriging

RS random sampling

RMSE root mean square error

RNN recurrent neural network

RW random walk sampling

SC silhouette coefficient

4.3. Dataset

For this study, 5-minute traffic count data spanning six years from 2018 to 2023 were gathered

from 221 active CCS sites embedded within Georgia’s highway network. CCS sites use magnetic

induction loops to capture traffic volumes every 5-minute in both directions. The distribution of

the CCS sites is shown in Figure 4.1. The 5-minute traffic count data is further partitioned into

three datasets, the GC-dataset (2018-2019) for graph clustering, the GR-dataset (2020-2022) for

graph reconstruction and the FD-dataset (2023) for fault detection testing. This data split is

designed to prevent potential information leakage between the three phases. To capture directional

traffic flow, the dataset contains directional traffic volumes from each CCS, resulting in a traffic

50

sensor-informed graph with an effective node count of 442, which is twice the number of CCS

sites.

Specifically, for the sensor clustering phase, we introduce a data aggregation trick (see

section 4.4.3) to attain the median weekly traffic volume sequences as model input from GR-

dataset to address the issue of data incompatibility on temporality at the cluster level. For the

reconstruction phase, we further divide the GR-dataset into training data (2020-2021) and testing

data (2022). The training of the proposed CG-DGAE model is based on the subgraphs generated

by Algorithm 1 (see Section 4.4.4.). To test the performance of the reconstruction models, a

uniform seven-day time window covering Monday to Sunday, common to all 221 CCS sites in

both directions, is extracted from 2022. This test set is used for the CG-DGAE model as well as

various baseline models.

For the FD-dataset, we selected five representative sequences containing actual faults to

test our proposed CG-DGAE model in the fault detection phase. To better demonstrate the

performance, we labeled every traffic count data point in these five faulty sequences with binary

annotation, in which 0 denotes normal data points while 1 denotes faulty data points. The binary

annotation is demonstrated in Figure 4.2. The binary annotation also allows efficient evaluation

of our fault detection framework as a binary classification problem, which is detailed in the next

subsection 4.4.4. The distribution of CCS sites where the selected faulty sequences are collected

from is shown in Figure 4.1.

51

Figure 4.1: Locations of CCS in Georgia, USA. The black triangles denote the CCS sites where

the five selected faulty sequences were collected.

52

Figure 4.2: CCS sequence binary annotation (1 – faulty; 0 – normal).

4.4. Methodology

In this section, we presented our proposed GNN framework for traffic sensor data fault detection.

For model development, as depicted in Figure 4.3, three sequential phases are undertaken: (1)

Graph Clustering: traffic sensor clustering analysis is conducted in a joint node-edge embedding

space, created by a dual encoding attention graph auto-encoder (DA-GAE), which takes into

account the spatiotemporal dependency among adjacent sensors, (2) Graph Reconstruction: a

cluster-guided denoising graph auto-encoder (CG-DGAE) is designed and trained to reconstruct

the normal data from the corrupted ones, where faulty patterns are injected, and (3) Fault

Detection: a score function is employed for fault detection by contrasting reconstructed data with

input ones. In the following subsections, we first introduce two popular GNN architectures, GAT

and DGCN, in Subsections 4.4.1 and 4.4.2, which serve as the building blocks for our proposed

DA-GAE and CG-DGAE models. Subsection 4.4.3 covers the traffic sensors clustering task and

53

our proposed DA-GAE model. Subsection 4.4.4 present the traffic sensor data reconstruction task

and our proposed CG-DGAE model. Finally, Subsection 4.4.5 discusses the fault detection task

and the adopted score function.

Figure 4.3: Three phases of the proposed framework for traffic sensor data fault detection.

54

4.4.1. Graph Attention Neural Network

The graph attention network (GAT) [51] is a specialized neural network tailored for processing

graph-structured data. It harnesses attention mechanisms to facilitate the exchange of messages

and aggregates information among neighboring nodes in the graph. However, traditional GAT

considers only the 1-hop neighboring nodes for graph attention. To exploit the high-order

neighbors, the revised GAT [52] is adopted in our paper.

Given a graph 𝐺 = (𝑉, 𝐸, 𝐴) with 𝑛 nodes, i.e., {𝑣1, 𝑣2, … , 𝑣𝑛}, where 𝑣𝑖𝜖𝑉 is associated

with a node feature vector 𝑥𝑣𝑖, and each edge 𝑒𝑖𝑗 ∈ 𝐸 connecting nodes 𝑣𝑖 and 𝑣𝑗 has a weight 𝐴𝑖𝑗.

The key idea behind GAT is to compute attention coefficients that capture the importance of node’s

state to another node. These coefficients are computed using a shared attentional mechanism for

each pair of nodes. For nodes 𝑣𝑖 and 𝑣𝑗 , the attention score 𝑎𝑖𝑗 can be computed by the following

Eqs. 4.3 and 4.4.

𝑒′𝑖𝑗 = 𝛿𝐴𝑖𝑗(�⃗�
𝑇[𝑊𝑥𝑣𝑖 ∥ 𝑊𝑥𝑣𝑗]), (4.3)

𝑎𝑖𝑗 =
exp(𝑒′𝑖𝑗)

∑ exp(𝑒′𝑖𝑘)𝑘∈𝑁𝑖

, (4.4)

where, ∥ denotes concatenation, �⃗� ∈ 𝑅2𝑚 is a weight vector of learnable parameters where 𝑚 is

the dimension of the feature vector of each node, and 𝛿 is the nonlinear activation function,

LeakyReLU. 𝑁𝑖 indicates the neighboring nodes of 𝑖 in 𝐴 and 𝑊 is a weight matrix. Consequently,

a GAT layer computes the output of each node by Eq. 4.5.

𝐺𝐴𝑇(𝑋, 𝐴) = ℎ𝑣𝑖
′ = 𝜎(∑ 𝑎𝑖𝑗𝑊𝑘∈𝑁𝑖

𝑥𝑣𝑗), (4.5)

55

where ℎ𝑣𝑖
′ denotes the output representation of node 𝑖, 𝜎represents the sigmoid activation function;

𝑎𝑖𝑗 is the attention score which measures the contribution of node 𝑗 to node 𝑖, where 𝑗 is one of the

adjacent nodes for node 𝑖.

4.4.2. Diffusion Graph Convolutional Network

Graph convolutional networks (GCN) have made significant strides in graph-based representation

learning. However, traditional GCN predominantly operates within local neighborhoods, often

overlooking the multi-hop relational structures. The diffusion graph convolutional network

(DGCN) overcomes the constraint by integrating diffusion mechanisms. This allows for the

extraction of information from remote nodes, resulting in a more global representation of graph

structures in node embeddings. Considering that highway traffic sensor networks are characterized

by directed links with an asymmetric distance matrix, the DGCN is utilized in this study to

effectively capture the characteristics of spatial and directional dependencies.

For a directed graph 𝐺 = (𝑉, 𝐸, 𝐴) comprising 𝑛 nodes, denoted as {𝑣1, 𝑣2, … , 𝑣𝑛}, each

node 𝑣𝑖𝜖𝑉 is associated with a node feature vector 𝑥𝑣𝑖. Additionally, any edge 𝑒𝑖𝑗 ∈ 𝐸 forms a

connection between nodes 𝑣𝑖 and 𝑣𝑗 . Here, 𝐴 represents adjacency matrix. The layer-wise

convolution in DGCN can be expressed by Eq. 4.6:

𝐷𝐺𝐶𝑁(𝐻𝑙, 𝐴) = 𝐻𝑙+1 = ∑ 𝑇𝑟(�̅�𝑓)𝐻𝑙 ⊝𝑏,𝑙
𝑟 + 𝑇𝑟(�̅�𝑏)𝐻𝑙 ⊝𝑓,𝑙

𝑟𝑅
𝑟=1 , (4.6)

where �̅�𝑓 = 𝐴/𝑟𝑜𝑤𝑠𝑢𝑚(𝐴) and �̅�𝑏 = 𝐴𝑇/𝑟𝑜𝑤𝑠𝑢𝑚(𝐴𝑇) are the forward and backward transition

matrices, respectively. 𝑅 stands for the order (or steps) of diffusion convolution; The convolution

process in DGCN leverages the Chebyshev polynomial for approximation and 𝑇𝑟(𝐸) =

2𝐸𝑇𝑟−1(𝐸) − 𝑇𝑟−2(𝐸) , initialized with 𝑇0(𝐸) = 𝐼 and 𝑇1(𝐸) = 𝐸 ; ⊝𝑓,𝑙
𝑟 and ⊝𝑏,𝑙

𝑟 are the

learnable parameters of the 𝑙th layer, dictating the information transformation among nodes; the

56

output from the 𝑙th layer is denoted as 𝐻𝑙+1 with 𝐻0 = 𝑋. Unlike conventional GNNs, which

typically accept a fixed dimension of spatial inputs, DGCN exhibits versatility in accommodating

diverse subgraph structures.

4.4.3. DA-GAE Based Traffic Sensor Clustering

The goal of cluster analysis is to identify traffic sensors with strong spatiotemporal correlations,

thereby enhancing the accuracy of data fault detection in tightly knit groups within the broader

graph structure. The outcomes of clustering serve as guidance for generating sampled subgraphs

used in training GAE in the graph reconstruction and fault detection phases. To fully exploit the

graph structure and node content, we adopt a novel self-supervised generative model, namely,

dual-encoding attention graph auto-encoder (DA-GAE). This model innovatively maps both

structure and node information to a joint latent space. Furthermore, a loss function that integrates

the information loss from both modalities is devised, facilitating a more comprehensive and

cohesive reconstruction of graphs. The proposed DA-GAE can inherently handle the spatial

constraints of traffic data among neighboring traffic sensors, as depicted in Figure 4.4.

57

Figure 4.4:Architecture of graph autoencoder with dual encodings.

Dual Encoding Attention GAE Encoder

GNN-related tasks usually require temporal consistency for node features. However, a significant

number of traffic sensors struggle to achieve a sufficiently long common time window to meet the

model training requirements. To address the issue of data incompatibility on temporality at a

cluster level, the median daily traffic volume sequences of a week are represented as the graph’s

node features. We use “median”, instead of “mean”, to mitigate the effect of outliers. For a traffic

sensor node 𝑣𝑖, the volume on day 𝑑 of week 𝑤 is given by 𝑉𝑎𝑙𝑢𝑒(𝑣𝑖 , 𝑑, 𝑤) of 288 datapoints,

58

where 𝑑 index 7 days of a week. The median value for node 𝑣𝑖 for day 𝑑 is represented by

𝑀(𝑣𝑖, 𝑑) and computed as

𝑀(𝑣𝑖, 𝑑) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑉𝑎𝑙𝑢𝑒(𝑣𝑖, 𝑑, 𝑤)|𝑤 = 1,2, … ,𝑁}, (4.7)

where, 𝑁 denote the complete counts of weeks recorded. Therefore, the node content 𝑋(𝑣𝑖) that

summarizes the typical weekly traffic behavior for node 𝑣𝑖 in the DA-GAE can be constructed as:

𝑋(𝑣𝑖) = [𝑀(𝑣𝑖, 1),𝑀(𝑣𝑖, 2), … ,𝑀(𝑣𝑖, 7)]. (4.8)

In vector 𝑋(𝑣𝑖)𝜖ℝ
288×7, each component corresponds to a median value of a particular day of

the week, starting from Monday to Sunday.

Simultaneously, topological features are represented by adjacency matrix 𝐴 , which is

derived from the distance measurements between sensors as described in section 4.2. To ascertain

the dual graph representation by passing graph features 𝑋, 𝐴, two stacks of DGCN in GAE encoder

extract graph 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔1 and two layers of GAT generates graph 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔2. The process

is described by Eqs. 4.9-12.

𝐻1
𝐷 = 𝐷𝐺𝐶𝑁1(𝑋, 𝐴), (4.9)

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔1 = 𝐻2
𝐷 = 𝐷𝐺𝐶𝑁2(𝐻1

𝐷 , 𝐴), (4.10)

𝐻1
𝐺 = 𝐺𝐴𝑇1(𝑋, 𝐴), (4.11)

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔2 = 𝐺𝐴𝑇2(𝐻1
𝐺 , 𝐴), (4.12)

where 𝐻1
𝐷 is the intermediate output from the first layer of DGCN component and 𝐻1

𝐺 represents

the output of the first layer of GAT component. In the proposed GAE, the DGCN-structured

module is tasked with reconstructing node content, and its embeddings are considered the primary

encoding of graph representation. To improve communication between nodes and edge

59

embedding, a cross-attention mechanism is used to generate 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3 by referencing

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔2 and 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔1. The cross-attention [66] take queries from 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔2 and

keys and values from 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔1, and compute 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3. The scaled dot-product attention

and multi-head attention are adopted and computed by Eqs.4.13 and 14.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉, (4.13)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
0, (4.14)

where, ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉); 𝑑𝑘 denotes the dimension of queries and keys

and 𝑑𝑣 is the dimension of values; The parameter matrices are 𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈

ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘, 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 and 𝑊𝑜 ∈ ℝℎ𝑑𝑘×𝑑𝑚𝑜𝑑𝑒𝑙 .

Dual Encoding Attention GAE Decoder

The GAE decoder is responsible for reconstructing graph inputs from the latent representation. For

node features, a DGCN layer transforms 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3 from the latent space to reconstructed node

features, 𝑋′:

𝑋′ = 𝐻3
𝐷 = 𝐷𝐺𝐶𝑁3(𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3, 𝐴), (4.15)

The loss item for node feature reconstruction is gauged using the mean squared error (MSE) loss:

ℒ𝑛 =
1

𝑁
∑ (𝑋(𝑣𝑖) − 𝑋′(𝑣𝑖))

2𝑁
𝑖=1 , (4.16)

where 𝑁 is the number of data points. For the structure feature reconstruction by the decoder, a

simple inner product layer [76] is adopted to reproduce the adjacency matrix 𝐴′ for link prediction:

𝐴′𝑖𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3𝑖
Τ ∙ 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔3𝑗), (4.17)

60

the reconstruction loss for structure feature is computed as the binary cross entropy (BCE) loss:

ℒ𝑠 = −
1

𝑁2
∑ ∑ [(𝐴𝑖,𝑗 log(𝐴

′
𝑖,𝑗) + (1 − 𝐴𝑖,𝑗)𝑙𝑜𝑔(1 − 𝐴′𝑖,𝑗)

𝑁
𝑗=1]𝑁

𝑖=1 . (4.18)

The weights of GAE module are optimized by minimizing a linear combination of the two

reconstruction losses:

ℒ𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝜀ℒ𝑠 +ℒ𝑛, (4.19)

where 𝜀 is a trade-off weight between the two losses. Additionally, a clustering evaluation is

conducted using the dual-encoded embedding derived from passing the representative graph into

the pre-trained GAE module.

Clustering Assessment

In the ablation experiments, our study compares the proposed DA-GAE model for graph

representation learning with alternative methodologies that focus solely on node reconstruction or

graph structure reconstruction. To demonstrate the advantages of using DGCN as a GNN base

layer, a standard GCN is introduced as a comparison baseline for capturing node embedding. We

investigate different clustering methods such as K-Means [77], agglomerative clustering [78], and

OPTICS [79]. To evaluate the effectiveness of the embeddings, we apply three commonly used

metrics, including the silhouette coefficient score, Calinski-Harabasz index, and Davies-Bouldin

index.

• The Silhouette Coefficient (SC) quantifies how well each data point fits into its assigned cluster

compared to other clusters, with values ranging from -1 to 1. A high SC value indicates better

separation between clusters.

61

• The Calinski-Harabasz Index (CHI), or variance ratio criterion, assesses the clustering quality

by calculating the ratio of the sum of between-cluster dispersion to the intra-cluster dispersion

for all clusters. Higher CHI values denote superior clustering, reflecting dense, well-separated

clusters.

• The Davies-Bouldin Index (DBI) evaluates clustering quality by measuring the average

“similarity” between each cluster and its closest counterpart, with similarity defined as the ratio

of within-cluster distances to between-cluster distances. Optimal clustering is indicated by

lower DBI values, which suggest that clusters are compact and distinctly separated from each

other.

An overview of the baseline models is presented below, including three versions of GAE

and Node2Vec. Their differences are highlighted in contrast to our proposed method. The

clustering results are presented in Section 4.5.2.

GAE (DGCN): Follows the architecture of DGCN-layered graph auto-encoder in the

proposed DA-GAE. However, it does not include the GAT-layered component and only focuses

on node content reconstruction.

GAE (GAT): Targets at the reconstruction of the graph structure using the architecture of

the GAT-layered encoder and inner product decoder in our proposed DA-GAE. However, the

embeddings in the latent space do not interact with DGCN-structured GAE.

62

GAE (GCN) [80]: The GCN model employs a layer-wise propagation technique that relies

on a first-order approximation of spectral graph convolutions. This baseline is comparable to the

proposed GAE except that it uses GCN instead of DGCN.

Node2Vec [81]: The essence of Node2Vec revolves round the idea of random walks. This

concept is pivotal for deriving node embeddings in graph data. The algorithm conducts random

walks on the graph, ensuring nodes are aware of their neighbors in a balanced way.

4.4.4. CG-DGAE based Traffic Sensor Data Reconstruction

Spatial-temporal graph neural networks (STGNNs) have shown their feasibility and robustness in

reconstructing traffic sensor data with spatio-temporal dependencies. However, detecting faults in

traffic data require consistent temporal information. The results from sensor clustering allow for

the optimal utilization of shared temporal data within smaller groups. Additionally, denoising

graph autoencoders have demonstrated their effectiveness in managing missing data, enhancing

resistance to noise, and focusing the autoencoder’s attention on specific nodes of a graph. This

makes them well-suited for tasks that involve reconstructing data to detect faults. In this section,

we present the CG-DGAE model, specifically designed and trained to reconstruct input traffic

sequence data. Leveraging the nodes identified for each cluster in the previous section, subgraphs

corrupted by artificial faults are generated for every cluster to facilitate DGAE training. By

comparing the reconstructed sequence with the input sequence, data faults can be detected using a

proper fault score function.

63

Fault Types

To improve the generalization and stability of the CG-DGAE model, faults are inserted to the node

content during the training phase. We draw from three commonly observed fault categories found

in historical continuous count station (CCS) data, nonresponsive faults, block faults, and point

faults, as previously defined in [4]. Environmental conditions like weather-induced damage, along

with technical issues such as power disruptions and incorrect sensor configurations, can lead to

nonresponsive faults, which are characterized by sensor inactivity. Block faults, indicated by

diminished traffic readings, may stem from physical sensor blockages, misalignments, and

calibration errors. Point faults are random and sporadic, caused by hardware issues, fluctuating

power supplies, or temporary obstructions. To simulate a nonresponsive fault, traffic volumes were

set to zero for randomly selected short periods, each lasting between 5 and 20 consecutive 5-minute

intervals. Block faults were generated similarly, but instead of setting the traffic volumes to zero,

they were reduced by 40% to 60%. Point faults were introduced by reducing traffic volumes by

60% to 100% at randomly selected 5-minute intervals, with a sampling rate of 5 to 30 intervals per

day. Figure 4.5 demonstrates the impact of these three types of faults on signal integrity, with blue

lines representing normal data sequence and orange lines showing the faulty signals.

64

Figure 4.5: Visualization of three types of faulty signals; top: nonresponsive fault, middle: block

fault, bottom: point fault.

Cluster-Guided Denoising Graph Auto-Encoder

Graph auto-encoder has been widely adopted for addressing traffic-related problems in spatial

and/or temporal domains. In our setting, the GAE can leverage spatial dependency of neighboring

nodes (i.e., continuous traffic count stations) and temporal traffic patterns at each node to identify

potential data faults. Our methodology is established on the premise that data points that are

spatially and temporally proximate tend to bear more resemblance to each other than those that are

further apart. Different from traditional sampling strategies for GAE model training, we propose a

cluster-guided sampling strategy, where all subgraphs are constructed from the clusters found in

the previous section. To simulate faulty data scenarios, node contents are randomly selected for

65

contamination at batch level with three known fault types. The “contaminated” subgraphs are then

passed to the GAE. The training objective is to reconstruct the original subgraphs from the

contaminated subgraphs. The overall information flow of training CG-DGAE is illustrated in

Figure 4.6.

Figure 4.6: CG-DGAE training.

Subgraph Signals and Random Fault Injection: Considering the entire highway traffic

sensor network, ensuring the availability of complete temporal information from all sensors

presents a challenge. A pragmatic approach to address this data scarcity involves focusing on a

cluster-level analysis to identify a common time window of sufficient length. To equip the CG-

DGAE with the flexibility to adapt to varying patterns of sensor faults, three types of faults

66

identified in the CCS traffic data are introduced into the selected node signals, featuring random

lengths and frequencies.

To assess the impact of the contamination proportion on node content, faulty signals are

injected into the training subgraphs randomly selected within each training batch at a specified

ratio 𝛾. Within these selected subgraphs, a node is randomly chosen, and faults are introduced into

its content. Algorithm 1 below is used for generating training subgraphs.

Algorithm 1: Generating Subgraph Samples for Reconstruction Model Training

Algorithm 1: Generating subgraph samples for training

Input: Traffic data 𝑋 ∈ ℝ𝑁×𝑃 over period [0, 𝑃 − 1]
 Number of clusters = 𝐿,

 Fault insertion function: 𝜂(𝑋, 𝑜𝑝𝑡𝑖𝑜𝑛) , where 𝑜𝑝𝑡𝑖𝑜𝑛 ∈ {𝑛𝑜𝑛𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒, 𝑏𝑙𝑜𝑐𝑘, 𝑜𝑟𝑝𝑜𝑖𝑛𝑡},
 Reconstruction window size: ℎ,

 Batch size: 𝐵,

 Number of iterations: 𝐼,
 Contamination ratio: 𝛾.

1: for 𝑖 = 0 ∶ 𝐼 − 1 do

2: for ℊ = 0 ∶ 𝐿 − 1 do

3: Find the common time window 𝑋𝑇 ∈ ℝ𝑍×𝑇 shared by 𝑍 sites in cluster ℊ.

4: for 𝑘 = 0 ∶ (𝑇 ∥ (ℎ × 𝐵)) − 1 do

5: Randomly sample distinct {𝑏0, … 𝑏𝐵×𝛾−1} indexes within range [0, 𝐵 − 1].
6: Randomly sample distinct starting points {𝑗0, … 𝑗𝐵−1} from [0, 𝑇 − ℎ].
7: for 𝑗𝑖𝑛{𝑗0, … , 𝑗𝐵−1} do

8: Obtain submatrix 𝑋𝑠𝑎𝑚𝑝𝑙𝑒
𝑗

= 𝑋𝑇[: , ℎ × 𝑗: ℎ × (𝑗 + 1)]with the size of 𝑍 × ℎ.

9: if 𝑗𝑖𝑛{𝑏0, … 𝑏𝐵×𝛾−1} do

10: Inject faults to a randomly selected site 𝑚 from 𝑍: 𝜂(𝑋𝑠𝑎𝑚𝑝𝑙𝑒
𝑗 [𝑚, :], 𝑜𝑝𝑡𝑖𝑜𝑛).

11: end if

12: end for

13: Return {𝑋𝑠𝑎𝑚𝑝𝑙𝑒
𝑗0:𝑗𝐵−1

} with size of 𝑍 × ℎ × 𝐵 as minibatch for CG-DGAE training.

14: end for

15: end for

16: end for

GAE Architecture A CG-DGAE model is trained to reconstruct the full matrix 𝑋𝑠𝑎𝑚𝑝𝑙𝑒

on a subgraph given the contaminated signals 𝑋𝑡𝑟𝑎𝑖𝑛 . In our work of reconstructing traffic

sequences, we do not explicitly employ sequence-learning models to discern temporal

dependencies. This approach is justified firstly by the relatively brief duration of the recovery

67

window ℎ , leading us to treat all instances within this window as interrelated, effectively

considering a signal of length ℎ as having ℎ features. Secondly, given the variable sizes of the

input matrices, representing subgraphs, a standardized sequence-learning model is not feasible.

The DGCN, detailed in section 5.2, is employed as the GNN base layer of the GAE architecture

to capture the random nature of spatial and directional dependencies. Figure 4.7 showcases the

architecture of the GAE that includes an encoder of 3-DGCN base layers and a corresponding

symmetrical 3-DGCN base layer decoder, where each layer of the encoder has a skip connection

[82] to the corresponding layer of the decoder, enhancing the model’s ability to capture and

reconstruct complex patterns.

Figure 4.7: The graph autoencoder architecture in CG-DGAE.

68

Loss Function The goal of the CG-DGAE is to rebuild signals from sampled sensors

within a cluster. Our loss function is simply the mean reconstruction error on all nodes within each

cluster.

Reconstruction Assessment

To validate the efficacy of the proposed CG-DGAE, we compared it with different GNN or non-

GNN baselines. The details are presented in Table 4.2.

GNN baselines include CG-DGAE, R-DGAE, and RW-DGAE, differing in the different

sampling strategies, further tested with different base layer GCN or DGCN. The main purpose of

GNN baselines is to demonstrate the superiority of our proposed CG-DGAE with DGCN base

layer, in which cluster-guided information is crucial to the fault detection and better than other

sampling strategies.

The non-GNN baselines include BiLSTM (Bi-directional Long Short-Term Memory),

CNN-BiLSTM (Convolution-BiLSTM), and Okriging (Ordinary Kriging). These methods simply

leverage either spatial or temporal dependency to regress or extrapolate sensor data. Each of these

aspects are discussed in detail below.

GNN baselines:

1) Sampling strategies: Sampling techniques are pivotal in enhancing the efficiency

and the scalability of GNN training. Two prevalent node-wise sampling techniques

including both random sampling (RS) and random walk sampling (RW) are used

as benchmarks to compare with our proposed DA-GAE, which uses cluster guided

sampling strategy.

69

a) Random sampling (RS): This RS sampling, proposed in GraphSAGE [83],

relies on a random sampling of nodes to generate the subgraphs for training

GNNs.

b) Random walk sampling (RW): RW-sampling was initially employed in

GraphSAINT [84]. It depends on a stochastic process that begins at a random

node and explores its neighbors in a sequence of steps, forming a trajectory

known as a random walk. The sampled subgraphs obtained through these walks

are representative of the larger graph’s topology and are used to construct

subgraphs for training GNN.

2) GNN base layer: To demonstrate the superiority of the DGCN in our proposed CG-

DGAE, we considered the original GCN [80] as a GNN structure baseline.

Non-GNN baselines:

1) Temporal method: The RNN has achieved notable success in capturing time-series

features. Modules such as Long Short-Term Memory (LSTM) [85], and its

derivative BiLSTM [86] are known for good performance with temporal modeling.

In this study, we evaluated the efficacy of BiLSTM and CNN-BiLSTM [87] for

comparison with GNNs regarding the temporal modeling, trained in an end-to-end

manner at a sensor level.

70

2) Spatial method: To examine the effectiveness of reconstructing time series using

only spatial correlations among traffic sensors, a kriging approach is chosen as a

baseline: ordinary kriging (OKriging) [88]. OKriging applies a weighted average

of observed values from nearby locations, where the weights are derived from the

spatial autocorrelation function. In this experiment, we utilize the geographical

locations of test CCS sites to determine the neighboring sensors for kriging

purposes.

Table 4.2: Our proposed CG-DGAE and baseline models for comparison

Model GCN base layer Sampling strategy Spatial Temporal

CG-DGAE
DGCN Cluster-guided ✓ ✓

GCN Cluster-guided ✓ ✓

R-DGAE
DGCN RS ✓ ✓

GCN RS ✓ ✓

RW-DGAE
DGCN RW ✓ ✓

GCN RW ✓ ✓

BiLSTM - - - ✓

CNN-BiLSTM - - - ✓

OKriging - - ✓ -

For the phase of graph reconstruction, the performance of CCS sequences is measured with

two metrics: mean absolute error (MAE) and root mean square error (RMSE) using test data from

GR-dataset.

4.4.5. Traffic Sensor Data Fault Detection

The goal of traffic fault detection is to identify faults within the sensor traffic data sequence. The

pretrained CG-DGAE reconstruction model described in Subsection 4.4.4 is used to generate a

reconstructed sequence, which is then compared with the input sequence to detect faults. A fault

71

score and a pre-defined threshold are employed for this purpose. The following subsections

introduce the fault score and the assessment metrics for fault detection.

Fault Score

A fault score is employed to locate faults within a traffic sequence. This score is derived by

computing the difference between the sensor data sequence and the sequence reconstructed by the

pre-trained CG-DGAE. Through our analysis of difference distribution, anomalies indicative of

faults exhibits a distinct pattern. While the Z-score is a standard measure for identifying outliers

in one-dimensional data, a modified Z-score has been introduced for more accurate evaluation of

anomalies in the difference of two sequences [89], [90]. Given a sensor data sequence 𝑋𝑡−𝑇:𝑡 =

{𝑋𝑡−𝑇 , 𝑋𝑡−𝑇+1, … , 𝑋𝑡} and the reconstructed sequence �̂�𝑡−𝑇:𝑡 = {�̂�𝑡−𝑇 , �̂�𝑡−𝑇+1, … , �̂�𝑡}, for a data

point 𝑋𝑡, the fault score can be written as follows:

𝑠𝑐𝑜𝑟𝑒(𝑡) =
𝛽×(𝑅𝐷𝑡−𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝐷))

𝑀𝐴𝐷(𝑅𝐷)
 (4.20)

where 𝑅𝐷𝑡 =
𝑋𝑡−�̂�𝑡

�̂�𝑡
 is the relative difference at the timestamp 𝑡, and 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝐷) is the median

of the relative difference sequence 𝑅𝐷 ; 𝑀𝐴𝐷(𝑅𝐷) is the median absolute deviation of 𝑅𝐷 ,

defined as 𝑀𝐴𝐷(𝑅𝐷) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑅𝐷 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝐷)|); the value of consistency correction 𝛽

depends on the underlying distribution of the data. In our work, 𝛽 = 0.6745 is adopted. The score

threshold was determined experimentally by evaluating a range of values. It is important to

calibrate this threshold using local data to account for region-specific data distribution.

72

Fault Detection Assessment

For the phase of fault detection, by referencing the selected natural faulty data from FD-dataset,

each data point in a daily CCS sequence is assigned a binary label to indicate its faulty status. As

such, the detection of faulty data points becomes a binary classification problem. The effectiveness

of fault detection across all CCS sequences in the FD-dataset is then quantified using accuracy,

recall, F1 score, precision, and AUC_ROC. The concept of CCS sequence binary annotation is

illustrated in Figure 4.2.

4.5. Experiments

To assess the performance of our proposed approach for traffic sensor clustering, traffic data

reconstruction, and fault detection, this section provides a comparative analysis for the graph

clustering model DA-GAE and the graph reconstruction model CG-DGAE. The comparison

involves different GNN base layers and non-graph baselines. Details on the experimental settings

and results are presented subsequently.

4.5.1. Experiment Settings

All experimental comparisons are performed on a system equipped with an AMD Ryzen

Threadripper PRO 5955WX 16-Core CPU operating at 1.794 GHz base and 4.0 GHz max

frequencies, and 32 GB of L3 cache. To ensure the fairness of comparison, the comparative GNN

models in clustering and reconstruction phases are trained and tested with the same

hyperparameters depicted in Table 4.3 for DA-GAE and CG-DGAE, respectively.

73

Table 4.3: Hyperparameter settings for DA-GAE and CG-DGAE

DA-GAE CG-DGAE

Hyperparameter Value Hyperparameter Value

Input time window length 288 Input time window length 288

Order of Chebyshev approximation

𝑅

2 Order of Chebyshev approximation

𝑅 2

DGCN hidden dimension 1 32 DGCN hidden dimension 1 144

DGCN hidden dimension 2 16 DGCN hidden dimension 2 72

GAT hidden dimension 16 DGCN hidden dimension 3 16

Batch size 4 Batch size 64

Learning rate 0.00001 Learning rate 0.0001

Trade-off weight 𝜀 0.08 Optimizer ‘Adam’

Optimizer ‘Adam’ Maximum number of iterations 100

Maximum number of iterations 1500 Fault score reference threshold 28

4.5.2. Results

Sensor Clustering

In this section, we compared the proposed dual-encoding attention graph auto-encoder (DA-GAE)

based embeddings with other embedding baselines. In terms of clustering results in the embedding

space. Three different clustering algorithms, including K-Means, agglomerative clustering (AC),

and OPTICS, are adopted from this assessment. The findings are summarized in Table 4.4.

The results show that all graph embedding methods under K-Means and AC yield

comparable cluster counts and cluster scores. Our DA-GAE, particularly when paired with K-

Means, achieved the highest SC value at 0.9786, the highest Calinski-Harabasz index (CHI) at

5.0747e+11, and the lowest Davies-Bouldin index (DBI) at 0.0001, resulting in a total of 169

clusters. DA-GAE consistently scores highest across the three chosen clustering algorithms,

outperforming GAT-based GAE, DGCN-based GAE, GCN-based GAE, and Node2Vec. This

superiority indicates that the fusion of graph embeddings through dual-encoding attention

74

mechanisms enhances graph representation as compared to the methods focusing solely on node

reconstruction or graph structure reconstruction.

The comparison between DGCN-based GAE and GCN-based GAE, suggests that DGCN

is more effective at capturing graph features for node content reconstruction for our dataset as

compared to GCN. However, GAT-based GAE shows marginally superior clustering metrics

compared to DGCN-based GAE, indicating that within our experimental framework, embeddings

derived from graph structure reconstruction offer a better representation than those from node

content reconstruction. Node2Vec yields the lowest clustering scores, highlighting the benefits of

GAE-based graph embedding methods over topology-based approaches. The cluster size

distribution is presented in Figure 4.8, showing most clusters contain bi-directional nodes,

typically corresponding to two directions of same CCS site, which is intuitively expected.

Table 4.4: Clustering performance (SC/CHI/DBI) comparison of different embedding methods.

Graph embedding
GNN base

layer

Clustering

algorithms

Of

clusters
SC CHI DBI

DA-GAE GAT & DGCN

K-Means 169 0.9786 5.0747e+11 0.0001

AC 169 0.9776 5.0020e+11 0.0002

OPTICS 41 0.3411 49.6106 0.8465

GAE

DGCN

K-Means 210 0.8533 1.9270e+07 0.0078

AC 210 0.8521 1.9249e+07 0.0078

OPTICS 39 0.0928 25.4319 1.1748

GAT

K-Means 166 0.9387 3.2871e+07 0.0051

AC 166 0.9397 3.2743e+07 0.0048

OPTICS 41 0.3289 26.5911 1.1219

GCN

K-Means 213 0.6002 2272.9946 0.2848

AC 213 0.6046 2420.7861 0.2880

OPTICS 29 0.1828 14.6042 1.7310

Node2Vec -

K-Means 161 0.0714 3.5652 1.2428

AC 161 0.1234 4.2118 1.2819

OPTICS 4 0.0558 3.3534 2.3142

75

Figure 4.8: The distribution of clusters by size.

Data Reconstruction

In this section, the robustness of our proposed CG-DGAE with DGCN as a base layer is evaluated

against baseline models under different batch-wise contamination ratios, ranging from 0.20 to

0.80. The testing data from GR-dataset is firstly subjected to three summarized types of faults

(nonresponsive, block, and point) as the input to the models. The original normal daily sequences

serve as label for reconstruction. The comparative reconstruction performance of the different

models is quantitatively evaluated and presented in Table 4.5 and Figure 4.9. This evaluation is

based on the computation of mean MAE and RMSE across all site data. To account for variability,

all results presented are the averages of three separate experimental runs. The findings reveal that

the CG-DGAE model with DGCN as a base layer consistently outperforms other models across

all contamination ratios in aspects such as sampling strategies, GCN base layers, and spatial or

temporal dependencies, with the lowest mean MAE (6.00) and mean RMSE (16.28) values. Its

performance peaks at a 50% contamination ratio, suggesting that the proposed model is robust to

noise and can maintain accuracy even with relatively large data contamination.

76

Generally, GNN models exhibit superior performance over non-GNN models like

BiLSTM, CNN-BiLSTM, and Okriging, which focus solely on either topology or temporality.

Within GNN models, the base layer structured with DGCN consistently achieve lower MSE and

RMSE across all contamination ratios, compared to GCN models, indicating DGCN’s enhanced

ability to leverage spatial-temporal information. For GNN models using the same base layer, the

cluster-guided sampling strategy consistently yields the best results, followed by random walk and

random sampling for each contamination ratio. This highlights the effectiveness of our previously

derived clustering results in guiding subgraph sampling, enabling the GNN model to better

aggregate hidden correlations in traffic data with diverse spatial features than random or random-

walk sampling. Regarding the contamination ratio, for most models, as the contamination ratio

increases, there is a noticeable deterioration in performance, as indicated by the rising MAE and

RMSE values. This trend highlights that higher levels of noise in the data have a detrimental effect

on the models’ ability to reconstruct the sequences. Nevertheless, a dynamic variation in

performance was observed across noise ratios. The performance of most baseline models reaches

their nadir at a 40% contamination ratio. In contrast, the CG-DGAE with DGCN base layer

achieves its minimal values at a contamination ratio of 50% during training. Relative to other

baseline models, the CG-DGAE exhibits enhanced resilience to noise or contamination.

Moreover, the BiLSTM and CNN-BiLSTM models exhibit considerably higher MAE and

RMSE values at all levels of contamination as compared to the CG-DGAE with a DGCN base

layer revealing temporal models’ relative inefficiency in handling contaminated data for this

specific task. In contrast, the Okriging model only leverage spatial information, resulting in much

higher MAE and RMSE. Conclusively, the baseline models do not match the performance of CG-

DGAE with DGCN as a base layer for any contamination ratio in reconstruction of the CCS data

77

sequences. The experimental results underscore the success of the cluster-based sampling strategy

during the graph training phase. The DGCN demonstrates its superiority over GCN as a base layer.

This confirms the strength and effectiveness of our proposed CG-DGAE (DGCN) and training

strategy in capturing the spatial-temporal relationships within network-level traffic data.

Table 4.5: Reconstruction performance (MAE and RMSE) comparison of various models under

different contamination ratios on test set. Results averaged over 3 independent runs.

Model Base layer Metrics
Contamination ratios 𝛾

0.20 0.30 0.40 0.50 0.60 0.70 0.80

CG-DGAE(DGCN) DGCN
MAE 6.25 6.08 6.04 6.00 6.06 6.28 7.20

RMSE 17.58 16.79 16.35 16.28 16.33 16.34 16.42

R-DGAE(DGCN) DGCN
MAE 21.45 21.01 20.23 24.58 23.77 24.28 25.69

RMSE 58.76 55.32 52.98 54.16 55.10 55.38 57.18

RW-DGAE(DGCN) DGCN
MAE 20.99 20.89 23.48 22.63 22.72 24.75 22.47

RMSE 51.87 51.12 54.49 52.56 53.00 57.85 52.04

CG-DGAE(GCN) GCN
MAE 15.14 15.24 15.09 15.30 15.22 15.30 15.23

RMSE 21.82 22.00 21.77 22.16 21.99 22.12 21.96

R-DGAE(GCN) GCN
MAE 29.59 38.82 46.02 62.94 35.05 43.93 37.31

RMSE 60.88 66.78 67.54 81.73 63.84 67.19 64.80

RW-DGAE(GCN) GCN
MAE 24.65 26.95 27.01 33.64 53.40 51.39 35.55

RMSE 56.41 57.74 58.42 60.92 72.75 72.78 65.28

BiLSTM -
MAE 40.90 41.88 37.66 38.78 38.05 39.44 40.59

RMSE 47.30 48.21 44.28 45.08 44.41 45.98 46.81

CNN-BiLSTM -
MAE 38.90 39.35 35.37 36.90 36.23 37.77 38.93

RMSE 45.66 46.58 42.12 43.77 43.20 44.02 45.10

*Okriging model enables the reconstruction of traffic sequences at a specific CCS site without requiring site specific

data input, thereby eliminating the need for contamination. The approach yields a mean RMSE of 146.91 and a

mean MAE of 126.82.

78

Figure 4.9: Left: mean MAE comparison for different contamination ratios on testing set of GR-

dataset; right: mean RMSE comparison for different contamination ratios on testing set of GR-

dataset. Results averaged over 3 independent runs.

Fault Detection

 To demonstrate the effectiveness of the fault detection results of the pretrained CG-DGCN with

DGCN as the base layer, we compare the fault detection performances between GNN-based

models utilizing two distinct base layers, DGCN and GCN, across three subgraph sampling

strategies, namely cluster-guided, random, and random walk. We manually labeled five natural

sequences containing faulty data points in the FD-dataset. These sequences were specifically

annotated with point-wise binary labels. As a result, the faulty data point detection is evaluated in

the form of binary classification. The results are presented in Table 4.6.

The models with the DGCN base layer contain significantly more parameters, 243,000

compared to 49,000 for those with the GCN base layer. Despite this disparity, both models are still

considered lightweight and can be effectively deployed on edge computing devices. The CG-

DGAE model with DGCN base layer achieved an impressive overall accuracy of 99.09%, with a

precision of 99.13%, a recall of 99.53%, and a F1 score of 99.53%, underscoring its superior fault

79

detection capability even being trained at a higher contamination ratio of 0.50. The models

employing the RS and RW sampling strategies with a DGCN base layer, namely RS-DGAE and

RW-DGAE, showed a slightly decreased performance.

In comparison to the DGCN, the GCN-based models, despite their impeccable Recall,

underperformed in identifying faulty points, which is a critical aspect of the fault detection task.

The diminished accuracies for the GCN models indicate that the DGCN offers a stronger

discriminative capacity for time-series data. Furthermore, these results highlight the critical role

that the base layer and sampling strategy play in a model’s competency to handle contaminated

datasets and accurately reconstruct the intrinsic data structure for data imputation and fault

detection. Figure 4.10 depicts the observed faulty sequences from various cluster sizes within FD-

dataset alongside their reconstructions by the pretrained CG-DGAE with DGCN base layer. The

model’s robustness is evident in its reconstruction of time series data, particularly its adeptness at

reflecting fine patterns as well as overarching trends.

Table 4.6: Faulty detection performance of GNN-based models

Model
Base

layer

Number of

Parameters (in

1,000s)

Contamination

ratio*

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

CG-DGAE DGCN 243 0.50 99.09 99.13 99.92 99.53

RS-DGAE DGCN 243 0.40 97.56 98.20 99.27 98.74

RW-DGAE DGCN 243 0.30 97.57 98.06 99.41 98.73

CG-DGAE GCN 49 0.40 95.69 95.68 100.00 97.80

RS-DGAE GCN 49 0.20 95.63 95.62 100.00 97.76

RW-DGAE GCN 49 0.20 95.63 95.62 100.00 97.96

 * Data contamination ratios used for model training that result in the best reconstruction performance.

80

Figure 4.10: Reconstruction visualization of five natural faulty sequences from different-sized

cluster by the pretrained CG-DGAE with DGCN base layer.

4.6. Summary

Traffic sensor data is crucial for transportation planning, design practices, and the development of

modern intelligent transportation systems (ITS). Ensuring the quality of traffic sensor data is

essential, yet current methods relying on simple heuristic rules are insufficient. This chapter

introduces a novel approach to enhance the quality and reliability of traffic data through a dual-

encoding attention graph auto-encoder (DA-GAE) model for traffic sensor clustering and a cluster-

guided denoising graph auto-encoder (CG-DGAE) model for traffic data reconstruction. The DA-

81

GAE model is designed for advanced graph representation learning, efficiently clustering traffic

sensors and facilitating a reliable subgraph sampling strategy for GNN training. The robustness of

CG-DGAE model is attributable to the strategic amalgamation of elements, including GNN base

layer, training strategy, and contamination ratio. Our experimental evaluation, using real-world

datasets, benchmarks the performance of the proposed models against baseline methods, focusing

on clustering efficacy, data reconstruction fidelity, and fault detection accuracy.

Based on the experimental results, several conclusions can be drawn:

• The DA-GAE model demonstrates significant effectiveness in clustering traffic

sensors. Our innovative approach of integrating joint embeddings into the graph’s

latent space from both node and structure reconstruction advances graph representation

learning.

• The proposed CG-DGAE methodology, utilizing diffusion graph convolutional

networks (DGCN), excels in capturing the hidden characteristics of traffic data and

effectively distinguishes between normal and faulty data. This bolsters the performance

of both data imputation and fault detection.

• The implementation of a cluster-guided sampling strategy enhances the GNN’s ability

to discern spatial-temporal dependencies among traffic sensors, which is largely due to

the cluster-wise spatial-temporal context leveraged by the model.

Beyond these areas mentioned above, future research could explore further architectural

enhancements, such as transformer-based models, to improve performance. Additionally,

enriching node features by incorporating a broader spectrum of traffic data types and sources could

enhance model accuracy. While this study is based on fixed location sensors, future work should

82

consider dynamic graphs with probe sensors, particularly in light of emerging connected and

autonomous vehicle technologies. These advancements are expected to further improve both data

imputation and fault detection performance.

4.7. Publications

The work presented in this chapter has led to the following publications [91]:

• Huang, Yongcan, Hao Zhen, and Jidong J. Yang. Cluster-guided denoising graph auto-

encoder for enhanced traffic data imputation and fault detection[J]. Expert Systems with

Applications (2024): 125531.

83

CHAPTER 5

 CONCLUSIONS AND FUTURE WORK

Given the increasing need for quality control in handling the growing volume of traffic sensor data,

this dissertation focuses on developing Artificial Intelligence (AI)-powered fault detection

frameworks to ensure the integrity of traffic sensor data. The dissertation begins with a

comprehensive review of existing studies, examining key technologies in the field, assessing their

feasibility, and outlining current challenges. Two novel approaches are introduced subsequently

for handling data from Continuous Count Stations (CCS). The first framework addresses fault

detection at the individual sensor level using time-series data imaging, computer vision algorithms,

and a contrastive learning scheme to analyze daily CCS sequences. In contrast, the second

framework targets data fault detection at the cluster level, employing Graph Neural Networks

(GNNs) to leverage the spatial-temporal correlations among traffic sensors within each cluster.

Experimental results demonstrate the effectiveness of these proposed methodologies, highlighting

their potential to enhance data quality and improve decision making in transportation management.

The proposed frameworks are quite generic and can be extended to sensor data beyond the traffic

domain.

84

5.1. Limitations and Outlook

This dissertation fulfills the proposed research goal of automatic quality control system for traffic

sensor network with the focus of fault detection. However, we recognize areas for potential

improvement that can be addressed in future work:

• Fault Type Evaluation: For both Framework 1 and 2, our approach currently frames fault

detection as a binary classification task without evaluating performance across different

fault types. Future work will focus on quantifying the system’s effectiveness in detecting

specific types of faults in traffic sensor data.

• Test Set Limitations: In the Framework 2, the current test set for fault detection includes

only five daily CCS site sequences from clusters of varying sizes, all derived from real-

world data. Expanding the number of natural faulty sequences would further validate the

effectiveness of our three-phase fault detection system.

• Clustering Sensitivity: In Framework 2, while our study centers on a cluster-guided graph

autoencoder reconstruction-based fault detection system that leverages spatio-temporal

correlations in traffic sensor data, we have not yet explored the sensitivity of fault detection

to the clustering results. Future research will assess how the quality of clustering impact’s

fault detection performance.

5.2. Future Work

As outlined in Section 5.1.2, future work will build on the limitations discussed by further

deepening and broadening the study of the data quality control system for traffic sensor networks.

First, as more data becomes available to project traffic snapshots, we plan to expand our dataset to

85

further validate the feasibility of the proposed frameworks. Second, while the current data

primarily relies on Continuous Count Stations (CCS) records, additional information such as

roadway profiles, weather conditions, and crash data could be incorporated to enrich the model's

understanding and improve its ability to capture variations in inputs and outputs. To illustrate some

of the improvements, we conducted a preliminary experiment on sensor clustering by

incorporating roadway and regional information, and distinguishing truck from non-truck traffic.

With the updated clustering framework, based on the dual-encoding attention graph auto-encoder

(DA-GAE), the results are presented in Table 5.1. By including urban/rural data, lane counts,

functional classification, AADT, and separating truck and non-truck traffic series, along with

reconstructing these two series, the clustering results have shown improvements compared to those

in Section 4.5.2. Consequently, future work will focus on node feature sensitivity analysis and

explore the use of multi-modal sensor data, alongside advanced deep learning models, to develop

an optimal quality control system for multi-modal traffic sensor data. Third, we aim to collect more

naturally occurring faulty data and classify each instance into specific fault types, which will

enhance the model’s ability to reason about different types of faults. Most existing literature does

not clearly differentiate between anomalies and faults in traffic data. Faults refer to unusable data

that require detection and correction, while anomalies cover a broader range of issues, including

special events and incidents that cause irregularities in the data. Future work will focus on

identifying such types of anomalies by integrating additional data sources. This approach will not

only improve detection accuracy but also offer valuable insights for incident detection and traffic

management.

86

Table 5.1: Clustering performance (SC/CHI/DBI) comparison of different embedding methods

under the updated DA-GAE

Graph Embedding GNN Base Layer Clustering Algorithms # Of clusters SC CHI DBI

DA-GAE GAT & DGCN K-Means 175 0.9872 5.7013E+11 0.0001

 AC 175 0.9863 5.6013E+11 0.0001

 OPTICS 35 0.3551 53.6296 0.8376

 DGCN K-Means 212 0.8672 2.0201E+07 0.0075

 AC 232 0.8612 2.0321E+07 0.0072

 OPTICS 24 0.0954 33.1181 1.0324

GAE GAT K-Means 166 0.9387 3.2902E+07 0.0051

 AC 166 0.9397 3.2710E+07 0.0048

 OPTICS 41 0.3289 26.5911 1.1219

 GCN K-Means 231 0.8577 2.1256E+04 0.1223

 AC 232 0.8581 2.6410E+04 0.1171

 OPTICS 120 0.6744 634.3424 0.5388

Node2Vec - K-Means 183 0.3807 67.7533 0.7377

 AC 178 0.3912 69.5368 0.7459

 OPTICS 25 0.0641 18.4239 1.2873

87

BIBLIOGRAPHY

[1] K. Ni et al., “Sensor network data fault types,” ACM Transactions on Sensor Networks

(TOSN), vol. 5, no. 3, pp. 1–29, 2009.

[2] Y. Xu, Z. Li, S. Wang, W. Li, T. Sarkodie-Gyan, and S. Feng, “A hybrid deep-learning

model for fault diagnosis of rolling bearings,” Measurement, vol. 169, p. 108502, 2021.

[3] J. Song, Y. C. Lee, and J. Lee, “Deep generative model with time series-image encoding

for manufacturing fault detection in die casting process,” J Intell Manuf, vol. 34, no. 7, pp. 3001–

3014, 2023.

[4] C. Morris, J. J. Yang, M. G. Chorzepa, S. S. Kim, and S. A. Durham, “Self-Supervised

Deep Learning Framework for Anomaly Detection in Traffic Data,” J Transp Eng A Syst, vol.

148, no. 5, p. 04022020, 2022.

[5] M. N. Hasan, S. U. Jan, and I. Koo, “Wasserstein GAN-based Digital Twin Inspired Model

for Early Drift Fault Detection in Wireless Sensor Networks,” IEEE Sens J, 2023.

[6] L. Xin, S. Haidong, J. Hongkai, and X. Jiawei, “Modified Gaussian convolutional deep

belief network and infrared thermal imaging for intelligent fault diagnosis of rotor-bearing system

under time-varying speeds,” Struct Health Monit, vol. 21, no. 2, pp. 339–353, 2022.

[7] Z. Fang, Q. Long, G. Song, and K. Xie, “Spatial-temporal graph ode networks for traffic

flow forecasting,” in Proceedings of the 27th ACM SIGKDD conference on knowledge discovery

& data mining, 2021, pp. 364–373.

88

[8] Z. Lu et al., “Graph sequence neural network with an attention mechanism for traffic speed

prediction,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 13, no. 2, pp.

1–24, 2022.

[9] S. Yang and B. Yang, “An inductive heterogeneous graph attention-based multi-agent deep

graph infomax algorithm for adaptive traffic signal control,” Information fusion, vol. 88, pp. 249–

262, 2022.

[10] L. Yu, B. Du, X. Hu, L. Sun, L. Han, and W. Lv, “Deep spatio-temporal graph

convolutional network for traffic accident prediction,” Neurocomputing, vol. 423, pp. 135–147,

2021.

[11] J. R. Taylor and H. L. Loescher, “Automated quality control methods for sensor data: a

novel observatory approach,” Biogeosciences, vol. 10, no. 7, pp. 4957–4971, 2013.

[12] B. Gunay and G. Erdemir, “Using wavelet transforms for better interpretation of traffic

simulation,” Traffic Engineering and Control, vol. 50, no. 10, pp. 450–453, 2009.

[13] Z. Zheng, S. Ahn, D. Chen, and J. Laval, “Applications of wavelet transform for analysis

of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations,” Transportation Research

Part B: Methodological, vol. 45, no. 2, pp. 372–384, 2011.

[14] D. Jiang, C. Yao, Z. Xu, and W. Qin, “Multi‐scale anomaly detection for high‐speed

network traffic,” Transactions on Emerging Telecommunications Technologies, vol. 26, no. 3,

pp. 308–317, 2015.

[15] F. König, C. Sous, A. O. Chaib, and G. Jacobs, “Machine learning based anomaly detection

and classification of acoustic emission events for wear monitoring in sliding bearing systems,”

Tribol Int, vol. 155, p. 106811, 2021.

89

[16] M. Jalayer, C. Orsenigo, and C. Vercellis, “Fault detection and diagnosis for rotating

machinery: A model based on convolutional LSTM, Fast Fourier and continuous wavelet

transforms,” Comput Ind, vol. 125, p. 103378, 2021.

[17] S. Djaballah, K. Meftah, K. Khelil, and M. Sayadi, “Deep transfer learning for bearing fault

diagnosis using CWT time–frequency images and convolutional neural networks,” Journal of

Failure Analysis and Prevention, vol. 23, no. 3, pp. 1046–1058, 2023.

[18] C. Chen, J. Hu, Q. Meng, and Y. Zhang, “Short-time traffic flow prediction with ARIMA-

GARCH model,” in 2011 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2011, pp. 607–612.

[19] Z. Li, S. Jiang, L. Li, and Y. Li, “Building sparse models for traffic flow prediction: An

empirical comparison between statistical heuristics and geometric heuristics for Bayesian network

approaches,” Transportmetrica B: Transport Dynamics, 2017.

[20] D. Huang, Z. Deng, L. Zhao, and B. Mi, “A short-term traffic flow forecasting method

based on Markov chain and grey Verhulst model,” in 2017 6th Data Driven Control and Learning

Systems (DDCLS), IEEE, 2017, pp. 606–610.

[21] M. Lippi, M. Bertini, and P. Frasconi, “Collective traffic forecasting,” in Joint European

conference on machine learning and knowledge discovery in databases, Springer, 2010, pp. 259–

273.

[22] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. D. Han, “Online-SVR for short-term

traffic flow prediction under typical and atypical traffic conditions,” Expert Syst Appl, vol. 36, no.

3, pp. 6164–6173, 2009.

[23] H.-F. Yang, T. S. Dillon, and Y.-P. P. Chen, “Optimized structure of the traffic flow

forecasting model with a deep learning approach,” IEEE Trans Neural Netw Learn Syst, vol. 28,

no. 10, pp. 2371–2381, 2016.

90

[24] R. L. Abduljabbar, H. Dia, and P.-W. Tsai, “Unidirectional and bidirectional LSTM models

for short-term traffic prediction,” J Adv Transp, vol. 2021, pp. 1–16, 2021.

[25] V. Fortuin, G. Rätsch, and S. Mandt, “Multivariate time series imputation with variational

autoencoders,” arXiv preprint arXiv:1907.04155, vol. 67, 2019.

[26] X. Cheng, R. Zhang, J. Zhou, and W. Xu, “Deeptransport: Learning spatial-temporal

dependency for traffic condition forecasting,” in 2018 International Joint Conference on Neural

Networks (IJCNN), IEEE, 2018, pp. 1–8.

[27] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network:

Data-driven traffic forecasting,” arXiv preprint arXiv:1707.01926, 2017.

[28] Y. Wu, D. Zhuang, A. Labbe, and L. Sun, “Inductive graph neural networks for

spatiotemporal kriging,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2021,

pp. 4478–4485.

[29] Y. Li, Z. Li, and L. Li, “Missing traffic data: comparison of imputation methods,” IET

Intelligent Transport Systems, vol. 8, no. 1, pp. 51–57, 2014.

[30] X. Chen, Z. He, and L. Sun, “A Bayesian tensor decomposition approach for

spatiotemporal traffic data imputation,” Transp Res Part C Emerg Technol, vol. 98, pp. 73–84,

2019.

[31] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Brits: Bidirectional recurrent

imputation for time series,” Adv Neural Inf Process Syst, vol. 31, 2018.

[32] J. Yoon, J. Jordon, and M. Schaar, “Gain: Missing data imputation using generative

adversarial nets,” in International conference on machine learning, PMLR, 2018, pp. 5689–5698.

91

[33] X. Kong, W. Zhou, G. Shen, W. Zhang, N. Liu, and Y. Yang, “Dynamic graph

convolutional recurrent imputation network for spatiotemporal traffic missing data,” Knowl Based

Syst, vol. 261, p. 110188, 2023.

[34] Y. Djenouri, A. Belhadi, J. C.-W. Lin, D. Djenouri, and A. Cano, “A survey on urban traffic

anomalies detection algorithms,” IEEE Access, vol. 7, pp. 12192–12205, 2019.

[35] Y. Yuan, Y. Zhang, B. Wang, Y. Peng, Y. Hu, and B. Yin, “STGAN: Spatio-temporal

generative adversarial network for traffic data imputation,” IEEE Trans Big Data, vol. 9, no. 1, pp.

200–211, 2022.

[36] Y. Liang, Z. Zhao, and L. Sun, “Dynamic spatiotemporal graph convolutional neural

networks for traffic data imputation with complex missing patterns,” arXiv preprint

arXiv:2109.08357, 2021.

[37] Y. Wölker, C. Beth, M. Renz, and A. Biastoch, “SUSTeR: Sparse Unstructured Spatio

Temporal Reconstruction on Traffic Prediction,” in Proceedings of the 31st ACM International

Conference on Advances in Geographic Information Systems, 2023, pp. 1–10.

[38] M. Liu, T. Zhu, J. Ye, Q. Meng, L. Sun, and B. Du, “Spatio-temporal autoencoder for

traffic flow prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 5,

pp. 5516–5526, 2023.

[39] H. Kim, B. S. Lee, W.-Y. Shin, and S. Lim, “Graph anomaly detection with graph neural

networks: Current status and challenges,” IEEE Access, 2022.

[40] H. Zhang, S. Zhao, R. Liu, W. Wang, Y. Hong, and R. Hu, “Automatic traffic anomaly

detection on the road network with spatial-temporal graph neural network representation learning,”

Wirel Commun Mob Comput, vol. 2022, pp. 1–12, 2022.

92

[41] J. Zhou et al., “Graph neural networks: A review of methods and applications,” AI open,

vol. 1, pp. 57–81, 2020.

[42] Z. Cui, R. Ke, Z. Pu, X. Ma, and Y. Wang, “Learning traffic as a graph: A gated graph

wavelet recurrent neural network for network-scale traffic prediction,” Transp Res Part C Emerg

Technol, vol. 115, p. 102620, 2020.

[43] C. Chen et al., “Gated residual recurrent graph neural networks for traffic prediction,” in

Proceedings of the AAAI conference on artificial intelligence, 2019, pp. 485–492.

[44] Q. Wang, H. Jiang, M. Qiu, Y. Liu, and D. Ye, “TGAE: Temporal Graph Autoencoder for

Travel Forecasting,” IEEE Transactions on Intelligent Transportation Systems, 2022.

[45] M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for traffic flow

forecasting,” in Proceedings of the AAAI conference on artificial intelligence, 2021, pp. 4189–

4196.

[46] W. Liang et al., “Spatial-temporal aware inductive graph neural network for C-ITS data

recovery,” IEEE Transactions on Intelligent Transportation Systems, 2022.

[47] Z. Shi, X. Liang, and J. Wang, “LMC: Fast Training of GNNs via Subgraph Sampling with

Provable Convergence,” arXiv preprint arXiv:2302.00924, 2023.

[48] H. Zeng et al., “Decoupling the depth and scope of graph neural networks,” Adv Neural

Inf Process Syst, vol. 34, pp. 19665–19679, 2021.

[49] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE Trans Knowl

Data Eng, vol. 34, no. 1, pp. 249–270, 2020.

[50] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-gcn: An efficient

algorithm for training deep and large graph convolutional networks,” in Proceedings of the 25th

93

ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 257–

266.

[51] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph

attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[52] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed graph clustering: A

deep attentional embedding approach,” arXiv preprint arXiv:1906.06532, 2019.

[53] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are

scalable vision learners,” in Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, 2022, pp. 16000–16009.

[54] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using

a" siamese" time delay neural network,” Adv Neural Inf Process Syst, vol. 6, 1993.

[55] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive

learning of visual representations,” in International conference on machine learning, PMLR, 2020,

pp. 1597–1607.

[56] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised

visual representation learning,” in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, 2020, pp. 9729–9738.

[57] H. Hojjati and N. Armanfard, “Self-supervised acoustic anomaly detection via contrastive

learning,” in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), IEEE, 2022, pp. 3253–3257.

[58] Y. Zhang, Z. Ren, S. Zhou, K. Feng, K. Yu, and Z. Liu, “Supervised contrastive learning-

based domain adaptation network for intelligent unsupervised fault diagnosis of rolling bearing,”

IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 5371–5380, 2022.

94

[59] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in International

workshop on similarity-based pattern recognition, Springer, 2015, pp. 84–92.

[60] Y. Huang and J. J. Yang, “Semi-supervised multiscale dual-encoding method for faulty

traffic data detection,” Applied Computing and Intelligence, vol. 2, no. 2, pp. 99–114, 2022.

[61] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image

recognition,” in ICML deep learning workshop, Lille, 2015, p. 0.

[62] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively, with

application to face verification,” in 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05), IEEE, 2005, pp. 539–546.

[63] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant

mapping,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’06), IEEE, 2006, pp. 1735–1742.

[64] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling matters in deep

embedding learning,” in Proceedings of the IEEE international conference on computer vision,

2017, pp. 2840–2848.

[65] C.-Y. Chuang, J. Robinson, Y.-C. Lin, A. Torralba, and S. Jegelka, “Debiased contrastive

learning,” Adv Neural Inf Process Syst, vol. 33, pp. 8765–8775, 2020.

[66] A. Vaswani et al., “Attention is all you need,” Adv Neural Inf Process Syst, vol. 30, 2017.

[67] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image

recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[68] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative adversarial

networks,” in International conference on machine learning, PMLR, 2019, pp. 7354–7363.

95

[69] H. Ramchoun, Y. Ghanou, M. Ettaouil, and M. A. Janati Idrissi, “Multilayer perceptron:

Architecture optimization and training,” 2016.

[70] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor algorithm,” IEEE

Trans Syst Man Cybern, no. 4, pp. 580–585, 1985.

[71] G. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt, and A. O’Leary, “PyWavelets: A

Python package for wavelet analysis,” J Open Source Softw, vol. 4, no. 36, p. 1237, 2019.

[72] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[73] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE.,” Journal of machine

learning research, vol. 9, no. 11, 2008.

[74] Y. Huang and J. J. Yang, “Semi-supervised multiscale dual-encoding method for faulty

traffic data detection,” arXiv preprint arXiv:2212.13596, 2022.

[75] Y. Huang and J. J. Yang, “Symmetric contrastive learning for robust fault detection in time-

series traffic sensor data,” Int J Data Sci Anal, pp. 1–15, 2024.

[76] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint

arXiv:1611.07308, 2016.

[77] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive survey

and performance evaluation,” Electronics (Basel), vol. 9, no. 8, p. 1295, 2020.

[78] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,” arXiv preprint

arXiv:1109.2378, 2011.

[79] M. Ankerst, M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, “Ordering points to identify

the clustering structure,” in Proc. ACM SIGMOD, 2008.

96

[80] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” arXiv preprint arXiv:1609.02907, 2016.

[81] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and

data mining, 2016, pp. 855–864.

[82] D. Wu, Y. Wang, S.-T. Xia, J. Bailey, and X. Ma, “Skip connections matter: On the

transferability of adversarial examples generated with resnets,” arXiv preprint arXiv:2002.05990,

2020.

[83] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” Adv Neural Inf Process Syst, vol. 30, 2017.

[84] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graphsaint: Graph

sampling based inductive learning method,” arXiv preprint arXiv:1907.04931, 2019.

[85] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput, vol. 9, no.

8, pp. 1735–1780, 1997.

[86] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for sequence tagging,”

arXiv preprint arXiv:1508.01991, 2015.

[87] J. P. C. Chiu and E. Nichols, “Named entity recognition with bidirectional LSTM-CNNs,”

Trans Assoc Comput Linguist, vol. 4, pp. 357–370, 2016.

[88] H. Wackernagel and H. Wackernagel, “Ordinary kriging,” Multivariate geostatistics: an

introduction with applications, pp. 79–88, 2003.

[89] P. J. Rousseeuw and C. Croux, “Alternatives to the median absolute deviation,” J Am Stat

Assoc, vol. 88, no. 424, pp. 1273–1283, 1993.

97

[90] L. Chiaramonte, H. Liu, F. Poli, and M. Zhou, “How accurately can Z‐score predict

bank failure?,” Financial markets, institutions & instruments, vol. 25, no. 5, pp. 333–360, 2016.

[91] Y. Huang, H. Zhen, and J. J. Yang, “Cluster-guided denoising graph auto-encoder for

enhanced traffic data imputation and fault detection,” Expert Syst Appl, p. 125531, 2024.

