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Abstract

The computational methodology of Genome Wide Association Studies
(GWAS) currently has several limitations: 1) the number of observations (rows)
on a quantitative trait tends to be smaller than the number of single nucleotide
polymorphisms (SNPs) (columns) in the design matrix; 2) each SNP is usually
modeled separately, failing to acknowledge interaction between each other; 3)
there is implicit linkage disequilibrium (LD) between neighboring SNPs. To
overcome these issues, we developed a tool that uses ensemble methods to fit
mixed linear models into GWAS, and these ensemble methods include the de-
velopment of a new experimental design approach in GWAS which uses the
resultant models and data to select the next informative experiment over time.
This new adaptive approach for GWAS experimental design was developed and
tested in a 3 year adaptive model-guided discovery experiment.

Index words: [Bioinformatics, simulation, MCMC, sorghum,
GWAS]



MINE: Maximally Informative Next Experiment -
Genetics application and novel computational

methodology

by

Isaac Manuel Torres Bermeo

B.S., Escuela Superior Politecnica del Litoral, 2015

A Dissertation Submitted to the Graduate Faculty of the
University of Georgia in Partial Fulfillment of the Requirements for the

Degree.

Doctor of Philosophy

Athens, Georgia

2024



©2024
Isaac Manuel Torres Bermeo

All Rights Reserved



MINE: Maximally Informative Next Experiment -
Genetics application and novel computational

methodology

by

Isaac Manuel Torres Bermeo

Major Professor: Jonathan Arnold

Committee: Bernd Schuttler
Katrien Devos
Alexander Bucksch

Electronic Version Approved:

Ron Walcott
Dean of the Graduate School
The University of Georgia
December 2024



Dedication

To God, yours is the glory and honor.
To my parents, Dr. Isaac Torres and Dr. Ana Bermeo, for your unconditional
support along these years.
To uncle Freddy, Pablo and Antonio; aunt Gladys and Elena, for your help and
support during my studies in the United States.
To Dr. Jonathan Arnold and Dr. Bernd Schuttler for your amazing patience to
teach and guide me during this PhD program as well as for your support.
To my previous advisors, Dr. Frank Drews, Dr. Daniel Ochoa and Prof. Carlos
Jordan, for teaching the necessary skills to get to this PhD program.

iv



Acknowledgments

This bioinformatics journey started by chance in December 2012 at Prof. Carlos
Jordan office when I realized that my computer science skills could be applied to
help solving biology/medical problems; I wanted to come up with a significant
undergraduate thesis, and Prof. Jordan showed me an interesting systems biol-
ogy project. I am deeply grateful to Prof. Jordan for showing me this interesting
bioinformatics path, and his support during those early research years.
I cannot forget mentioning and being thankful to Dr. Daniel Ochoa, who
collaborated with Prof. Jordan, and offered me staying working in research
projects after graduation.
The beginning of my graduate studies was not easy, however, thanks to Dr.
Frank Drews everything stabilized, and I am profoundly grateful for his teach-
ing and recommendation.
My time at the Institute of Bioinformatics has been amazing from the first day
when I communicated with April and Sandra about onboarding details, I want
to thank all IOB staff and leadership, they play such an important role in stu-
dents well-being.
I am deeply grateful to my current advisors, Dr. Jonathan Arnold and Dr. Bernd
Schuttler, for their support, guidance, and all the time invested in checking my
work, giving me feedback and teaching; I hope to follow your steps wherever
my next professional chapter is.
Thanks to my PhD committee for all the feedback received during these years.

v



Contents

Acknowledgments v

List of Figures viii

List of Tables xiii

1 Introduction 1

2 MINE: a new way to design genetics experiments for discovery 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Ensemble methods . . . . . . . . . . . . . . . . . . . . . . 5
2.3 MINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Application of MINE to RNA profiling experiments coupled

to genetic networks . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Application of MINE to QTL mapping using RILs for AMF/Sorghum

project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Application of MINE to GWAS field studies for AMF/Sorghum

project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Application of MINE to population and systems ecology . . . 32
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 MINE: Maximally Informative Next Experiment – Towards a
new experimental design and methodology 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . 39
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Limitations of the Scope of Work in this thesis and future work 69
4.1 Random effects on the chromosomal regions . . . . . . . . . 69
4.2 Large field experiment comparison . . . . . . . . . . . . . . 69

vi



4.3 Projection method in mixed linear model . . . . . . . . . . . 70
4.4 GWAS on AMF colonization data . . . . . . . . . . . . . . . 70
4.5 Inclusion of field treatment in mixed linear model . . . . . . 70
4.6 Generation of synthetic data to validate this work . . . . . . . 70

Bibliography 71

vii



List of Figures

2.1 Convergence of an ensemble to the target distribution: (a) en-
semble after 20 moves; (b) ensemble after 100 moves; (c) ensem-
ble after 1000 moves; (d) true ensemble or "target distribution".
In panel (d) is shown the target distribution as the ensemble
converges to the true target distribution under a Monte Carlo
Experiment (a-c). The starting guess at to the parameter θ was
3. After each of 20, 100, and 1000 moves, 10,000 samples of
θ from the resulting distribution were drawn to characterize
the ensemble. The ancillary parameters were α = 0.1 and
β = 1.0. The plots were created in Matlab R2018B. . . . . . . 7

2.2 Two models can be better distinguished by their predictions
in the next experiment if their predictions are less correlated.
The predictions of model θ1 and θ2 under experimental con-
dition U1 are the expectations f1 = E(θ1|Y, U1) and f2 =

E(θ2|Y, U1), respectively. If the two models θ1 and θ2 are cho-
sen independently from the model ensemble Q(θ|Y, U), the
expectations are calculated with respect to the product density
Q(θ1|Y, U)Q(θ2|Y, U), where U = U1orU2 . . . . . . . . . 9

2.3 MINE is analogous in function to the optics on a microscope.
The data Y are the objects in the field of view. The models θ
are in the image. The MINE criterion with the predictions
F (θ, U) is the optics. The Uncertainty Volume in the image
is the magnification measured by the MINE criterion, V(u) =
det(E(U)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

viii



2.4 An ensemble method to identify the mixture experiment’s hy-
phal extension rates θ is carried out on simulated data from the
mixture experiment, and MINE is used to choose the next mix-
ture experiment with inoculation proportions u1 andu2. The
figure illustrates the ensemble method on simulated data for a
mixture experiment of AMF colonizers. The orange lines are
the true colonization rates θ. In the Monte Carlo experiment
the estimated rates are plotted as a function of sweep, a visit
on average once to each of the three rates θ. In the first 3000
sweeps the Monte Carlo experiment is equilibrated to get in
the neighborhood of parameters θ that fit the simulated data.
In the accumulation phase (last 1000 sweeps) the estimates of
θ are accumulated to form the ensemble estimate. . . . . . . . 18

2.5 An ensemble method to identify the mixture experiment’s hy-
phal extension rates θ is carried out on simulated data from
the mixture experiment, and MINE is used to choose the next
mixture experiment with inoculation proportions u1 and u2.
The figure presents the next MINE mixture experiment rec-
ommended. The contour plot is of the MINE criterion det(E)
as a function of the mixture inoculum proportions u1 and u2. 22

2.6 The MINE experiment is a 90 percent knockdown of the wc-1
gene. The MINE criterion displayed is the correlation ellip-
soid volume det(E(U)), which is graphed as a function of the
remaining activity of the three clock mechanism genes. The
predictions F are of the log base 10 concentrations over time of
frq, wc-1, and wc-2 mRNAs over time from the RNA profil-
ing experiments. The mRNA levels were measured at 14 time
points over an 8 hour window. The drawing is taken from [1]. 23

ix



2.7 A sequence of MINE experiments are to be used in a 5 year
GWAS experiment to examine the relation between biomass
and SNPs in Sorghum bicolor using the BAP accessions[2].
MINE is used to select the BAP accessions to be used in each
year in order to map AMF colonization and biomass to the
sorghum genetic map in a GWAS study. Multi-scale struc-
tural equation model (SEM) for the project (center boxes and
arrows). Lotka-Volterra community models are nested within
the SEM and predict associations that affect biomass. The de-
pendent variable is biomass, and the arrows in the diagram de-
note causal relationships between independent variables in the
SEM. The labels on each box index the subproject(s) involved
in characterizing the properties of the plant-AMF-microbiome-
abiotic environment interaction depicted in that box. In this
model, sorghum genotype is the primary independent variable
that correlates with the remaining variables. This conceptual
model will evolve continuously using the model guided discov-
ery process of maximally informative next experiment (MINE;
outer ring)[1]. . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 The MINE criterion log(det(E)) was used to select 80 acces-
sions for use in a GWAS experiment at Wellbrook Farm, GA
in 2022. The top 200 selected triples of accessions are ranked
by det(E). From these top 200 triples 80 distinct accessions
were selected. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 The MINE criterion based on the correlation ellipsoid allows
a choice of phosphate (or equivalently plant benefitγ) in a sim-
ple Lotka-Volterra model of competition between two AMF
species within a plant host[3]. . . . . . . . . . . . . . . . . . 36

3.1 Aerial photo of Sorghum plants at Wellbrook Farm. Courtesy
of Dr. Peng Qi. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Dry weight acceptance rate and stepwidth for Beta and Sigma
parameters using the stepwidth adjuster. The mixed linear
model was computed with all the data available. . . . . . . . 45

x



3.3 A visual explanation of the relation between parameter space
and phenotype space (Y). If we maximize the volume (green
square) of our phenotypic observations on the quantitative
trait, then the choice of parameters (brown square) will be
shrunk. If we set up various experiments, adding one more
experiment each time, then the next parameter choice will be
better and volume, tighter. . . . . . . . . . . . . . . . . . . 46

3.4 Optimization algorithms MINE score over 10 experiments.
Suboptimal is labeled "N choose 3", Suboptimal combination
is labeled "Nc3 + 2", MC Nc3 representing the Monte Carlo
algorithm initialized with the suboptimal algorithm results. . 50

3.5 Gene finder tool diagram . . . . . . . . . . . . . . . . . . . 52
3.6 Dry weight, height, disease linear model Hamiltonian using

Kresovich, year 1, year 2, year 3 data against sweep (a visit on
average to each model parameter once). . . . . . . . . . . . . 54

3.7 Dry weight, height, disease mixed linear model Hamiltonian
using Kresovich, year 1, year 2, year 3 data against sweep (a visit
on average to each model parameter once). . . . . . . . . . . 55

3.8 Ensembles separately fitted by year are overlapping with re-
spect to their Hamiltonians. Hamiltonian histograms from
ensembles of the mixed linear model for height were separately
fitted in each year and computed. . . . . . . . . . . . . . . . 56

3.9 Accessions selected by the MINE procedure for planting in
year 2 (2022) and year 3 (2023). The selected accessions are in
yellow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 MINE score for covariance criterion in equation 3.18 increases
over the 3 years. . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Significant markers (chromosomal regions) using all data avail-
able. LM are linear model results, and MLM mixed linear
model results. Computed with [4]. . . . . . . . . . . . . . . 58

3.12 Significant markers (chromosomal regions) using all data avail-
able. LM are linear model results, and MLM mixed linear
model results. Computed with [4]. . . . . . . . . . . . . . . 59

3.13 Significant markers (chromosomal regions) using all data avail-
able. LM are linear model results, and MLM mixed linear
model results. Computed with [4]. . . . . . . . . . . . . . . 60

3.14 Dry weight, height and disease correlations and histograms . . 64

xi



3.15 Selected chromosomal regions in the BAP original study [2]
and Arnold lab study for log dry weight under the mixed linear
model. Computed with [4]. . . . . . . . . . . . . . . . . . 65

xii



List of Tables

2.1 Mendelian model for quantitative trait with one QTL and two
adjacent markers M and N. . . . . . . . . . . . . . . . . . . 27

2.2 Estimated ensemble values. . . . . . . . . . . . . . . . . . . 35

xiii



Chapter 1

Introduction

Genome Wide Association Studies (GWAS) have been a means to obtain in-
sights about the relation between Single nucleotide polymorphisms (SNPs) and
phenotypes, such as height or certain diseases [5]; The ultimate goal of GWAS
is to identify genomic regions that control a trait. One important part is the
experiment design, which involves selecting the genotypes for the GWAS exper-
iment; this work presents an approach to select the most informative genotypes
in a series of annual adaptive GWAS on Sorghum bicolor; the method is called
MINE which stands for Maximally Informative Next Experiment, and it is spe-
cially useful when resources are limited and large amount of plants cannot be
considered. The MINE approach is also accompanied by novel GWAS compu-
tational methodology using ensemble methods [6] to fit mixed linear models.
This approach addresses a few limitations of regular regression models such as
having a number of observations lower than the number of SNPs, as well as the
selection of final genomic regions. The usual way to address the small n (obser-
vations), large p (SNPs) problem is by feature selection, thereby rendering the
statistical analysis addressable by standard approaches. The problem with do-
ing this is that most of the data are thrown away. An alternative approach is to
use ensemble methods to address this problem [7]. Ensemble approaches arise
from statistical physics to specifically address this problem and have only been
introduced recently into the biological domain [6]. Another feature presented
here is the incorporation of all SNPs into the mixed linear modeling phase by
forming new chromosomal regions of 50 KB to avoid linkage disequilibrium;
this represents an implicit interaction between SNPs instead of generating an
isolated model per SNP.

This work is illustrated with a field experiment done at the University of
Georgia’s Wellbrook Farm located in Watkinsville, Georgia; each year 81 geno-
types were selected, and seeds were ordered at GRIN website; plants were grown
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at the University of Georgia greenhouse for 2 weeks and then transplanted to
the farm; harvesting took place 3 months later, and the following traits were
collected: height, dry weight and disease. To obtain dry weight, the plants were
chopped and bagged, and put into ovens for around 1 week. The SNP data
used to explain various complext traits were taken from Morris work [8] and
generated in [2]. The genotypes were selected yearly using MINE in years 2 and
3 of the 3 year adaptive GWAS guided by MINE.
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Chapter 2

MINE: a new way to design
genetics experiments for

discovery

2.1 Introduction
The classic approach to experimental design was developed by R. A. Fisher for
linear models in 1935 and had a profound effect on all of science[9][10]. Growing
out of his work at the Rothamsted Experiment Station, he introduced widely
the notion of precision of an experiment, randomization, ways of controlling
heterogeneity through blocking and by the use of covariates, and the vast subject
of experimental design in the context of linear models. Now the subject of
design is permanently associated with the mathematics of Latin squares, Graeco-
Latin Squares, factorial designs, response surfaces, partial factorial designs, and
incomplete block designs[11].

The focus of all of these efforts was not on discovery per se. Rather, the end
goal was the precision of estimates and the power to test effects in a controlled
experiment with the proper randomization and blocking practices in place. The
number of replicates was such that the number of observations (n) was typically
much greater than the number of effects (p) being estimated in the model. Un-
fortunately this is no longer the typical situation of an omics experiment[12],
such as a Genome Wide Association Study (or GWAS) or quantitative trait
locus (QTL) mapping of plant biomass, height, photoperiod sensitivity, and
tillering as examples. Instead, there may be only n=1943 samples of sorghum
accessions but over p=400,000 potential effects of single nucleotide polymor-
phisms (or SNPs) on the complex trait of interest for an agronomic crop. The
problem has only grown more complicated as more variables are added to the
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mix, such as the microbiomes of plants[13] or the expression of quantitative
trait loci (eQTLs)[14]. The new variables in the mix add to the complexity be-
cause they are inter-related in unknown ways. Geneticists are faced with the
challenge of designing very costly omics experiments in which the number of
variables (p) measured on each sample, e.g., plant accession, vastly exceeds the
number of samples (n). Classical design is not well-equipped for this situation,
and new design approaches are needed to “find the needles in the haystack”, i.e.,
the few variables in potentially millions of variables measured that really matter
in systems biology[15].

The nature of experimental design has also fundamentally changed. While
the original goal was the precision of estimates[10], the new goal is discovery.
The reason that it is less important because the data in large omic studies are no
longer capable of precise measurements of individual parameters, but rather the
goal of such studies has shifted to the discovery of relationships in the data. The
focus on precision of effects can only be addressed in followup studies when the
relevant variables in the experiment have been identified and related. We wish to
discover the relation of plant functional traits to SNPs in the nuclear genome or
the assemblage of fungal symbionts in the microbiome most beneficial for plant
growth[16] - [17] using models drawn from systems and population ecology [18].
We desire to discover the appropriate nonlinear kinetic models that underly the
biological clock at the molecular level[1] as we carry out very expensive transcrip-
tomic experiments. How can the classic linear models[19] and newer models of
systems biology[1] guide a discovery process, in which as many as 232,303 SNPs
are available for triangulation in the nuclear genome but only a small number
have a profound effect on traits of interest, such as biomass[2]. Some GWAS ex-
periments have even millions of SNPS, such as in a human height study recently
[20].

Here a new approach to the design of large genomics experiments is intro-
duced, one in which model guided discovery is used to find the variables that
matter, considering a system in which the number of potential effects in the sys-
tem (p) far exceeds the number of observations (n) on the system. The method-
ological approach to solving such problems utilizes ensemble methods[6] drawn
from statistical physics[21] and, ultimately, Boltzmann’s 19nth Century work[22].
The particular ensemble method explored here for model-guided discovery is
called MINE, which stands for maximally informative next experiment[23].

This chapter is a review of MINE methods. In the next section 2.2 a sim-
ple example is used to illustrate ensemble methods that underly the design tool
MINE. The ensemble is a collection of models that are consistent with the avail-
able data, and an ensemble method is used to identify the relevant models and
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make predictions about future experiments[6]. In the third section the ensem-
ble is used to select the maximally informative next experiment (MINE)[1][19],
which is illustrated with a simple example drawn from mixture experiments as a
particular class of linear models[24]. The predictions made by each member of
the ensemble are used to guide the choice of the next experiment to discover as
much as we can about the biological system. In section IV some of the proper-
ties of MINE are described, providing the rationale for its use in model-guided
discovery, such as its consistency in finding the true model[23]. In sections VI.-
IX. the use of MINE is illustrated as a discovery tool in genetics experiments
and associated field trials. The review finishes with some concluding remarks.

2.2 Ensemble methods

Ensemble methods were developed in the 19th century by Boltzmann to de-
scribe the motion of an ideal gas[22]. In this situation there is an Avogadro
number (A) of particles in a one liter box, but only 3 measurements are made:
temperature, pressure, and volume. How is the motion of the particles in the
box described? How is the motion of A particles described with 6A degrees of
freedom each with only three measurements?

With so little data, the data did not strongly support just one model. Boltz-
mann’s solution was to give up on identifying one best model, but rather to
make predictions from an ensemble of models. Omics experiments face exactly
the same problem[6], but the paucity of data with respect to the complexity
of the model is not as severe as in the problem Boltzmann faced. The inter-
est may be in identifying the dynamics of genes and their products in carbon
metabolism[6] or the biological clock[25], but the genetics dictates that only
a limited number of samples at different time points can be made to identify
the system, while there are many parameters required to describe the system.
For example, the number of measurements at different time points on the bi-
ological clock may be on the order of 60,000 measurements (n), but there are
over 90,000 rate constants and initial conditions (p) in the model that must be
estimated[26][27]. Much as for an ideal gas, averaging over the ensemble allows
for detailed predictions about complex biological systems, such as the clock. A
simple example is used to illustrate the approach of ensemble methods. The first
step is writing down the model specification for the measurements. There are n
measurements Y = (y1, ..., yn) drawn from an unknown distribution param-
eterized by p parameters in θ = (θ1, ..., θp), and some of these parameters are
ancillary parameters, such as α, in which there is less interest. In addition, the
variables U = (u1, ..., un) describe the experimental conditions. For example,
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the list U might specify the SNPs used in a GWAS field trial. Then the model
specification would take the form:

P (Y |θ, U) = C(Y )e−H(Y |θ,U) (2.1)

where C is a normalization constant chosen to make the integral over the
data Y to equal 1. The quantity H(Y |θ, U) is known as the Hamiltonian. Ide-
ally the distribution would be observed directly, but in practice what is available
are sample moments of the data Y.

Since the goal is to identify a model θ supported by the data Y, a change of
viewpoint is needed. As in the method of maximum likelihood[28], the model
specification P (Y |θ, U) is viewed as a function of the model parameters θ, and
the data Y and experimental conditions U are taken as fixed:

Q(θ|Y, U) = Ω−1P (Y |θ, U) (2.2)

where Ω is a normalization constant chosen to make the integral over all
parameters θ in the parameter space equal to 1. This normalization constant is
only a function of the data Y. The magnitude of the ensemble Q(θ|Y, U), or
Q(θ) for short, is larger when the model θ is more supported by the data Y. It
may be useful to think of the ensemble Q(θ|Y, U) as a posterior distribution
to the model specification P (Y |θ, U) with the two functions, P (Y |θ, U) and
Q(θ|Y, U), connected by Bayes Theorem[29].

The ensemble Q(θ|Y, U), or Q(θ) for short, is the collection of models
θ consistent with the available data Y. Model-averaging with respect to the
model ensemble Q(θ) allows predictions about the system’s behavior. Instead
of identifying one model θ, a distribution of models Q(θ) is identified. With
the number of parameters p being vastly greater than the number of data points
n, predictions can still be made and tested with respect to averages computed
from the ensemble Q(θ).

Monte Carlo Methods are used to identify the ensemble Q(θ)[7] because
the model specifications are complicated[25][30]. A simple example will illus-
trate how this is done. Take the Hamiltonian viewed as a function of θ as having
the following simple form:

H(θ) = β[−θ2 + αθ4] (2.3)

The model parameter θ is the one we are truly interested in, and the remain-
ing parameters α and β are ancillary. A graph of the ensemble Q(θ) = e−H(θ)

is shown in Figure 2.1d. There are two maxima in the ensemble or equivalently,
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two minima in the Hamiltonian. The goal is to reconstruct the ensemble Q(θ)

by Monte Carlo for prediction.

Figure 2.1: Convergence of an ensemble to the target distribution: (a) ensemble
after 20 moves; (b) ensemble after 100 moves; (c) ensemble after 1000 moves;
(d) true ensemble or "target distribution". In panel (d) is shown the target distri-
bution as the ensemble converges to the true target distribution under a Monte
Carlo Experiment (a-c). The starting guess at to the parameter θ was 3. After
each of 20, 100, and 1000 moves, 10,000 samples of θ from the resulting distri-
bution were drawn to characterize the ensemble. The ancillary parameters were
α = 0.1 and β = 1.0. The plots were created in Matlab R2018B.

In this example, we are in the perfect world in which the ensemble, or equiv-
alently the Hamiltonian, is observed from 10,000 values after each move in the
Monte Carlo experiment. To reconstruct the ensemble Q(θ) by Monte Carlo
at each move a new model parameter θ′ is drawn from the ensembleQ(θ)when
the current proposal is the model parameter θ. The goal is to move into a re-
gion of the parameter space which is well supported by the ensemble Q(θ) in
the equilibration phase. Once equilibrated many 1,000s or 10,000s of models
are accumulated that are well supported to reconstruct the ensemble from the
sample histogram of these θ-values[25]. The question remains how to choose
the well-supported θ-values.

One greedy approach to moving in the parameter space is to draw a model
parameter θ′ and proceed up hill using some procedure like steepest ascent to
climb the hill(s) in the ensemble. As shown in Figure 2.1, this might lead to a
local maximum. In fact in Figure 2.1 there are 2 such maxima. To avoid local
maxima, a model parameter θ′ is drawn randomly from the ensemble Q(θ),
being greedy when there is an improvement in the ensemble probability, i.e.,
Q(theta

′
) > Q(θ) or equivalently H(θ

′
) < H(θ), but occasionally when
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Q(θ
′
) < Q(θ), move downhill anyway. The occasional downhill move may

allow escape from a local maximum. In practice in systems biology it may be
more appropriate to think of the ensemble surface as gently rolling hills as on a
golf course because they data are limited (n < p).

Metropolis and colleagues[31] developed a stochastic search procedure in
statistical physics for this and now many other optimization problems[7]. The
probability of a move is:

p = min(1,
Q(θ

′
)

Q(θ)
) (2.4)

The probability p of a move from θ → θ
′ occurs with probability 1 if the

proposed move takes us up hill, but if the proposed move takes us downhill,
then the probability of a move downhill decreases with the amount of drop
from Q(θ) → Q(θ

′
). The sequence of moves are made 10,000 or more times

to move into a region of the parameter space well supported by the data during
the equilibration phase. This sequence of moves is known as a Markov Chain.

In the equilibration phase the inferred ensemble converges to the true en-
semble known as the target distribution (Figure 2.1). The Monte Carlo search
for this simple model is successful in the reconstruction in less than a 1,000
moves. Once equilibration is achieved, another sequence of Monte Carlo moves
called the accumulation phase is used to build the target distribution. In this
simple example only a 1,000 moves are needed to carry the ensemble identifica-
tion into the accumulation phase.

In practice a sweep is introduced to describe the number of moves taken to
visit each model parameter on average once. If there were 10 parameters, then
a sweep would consist of 10 moves. The standard length of an equilibration
run is 40,000 sweeps, which will vary in practice with the complexity of the
model; likewise, the standard length of an accumulation run is also 40,000
sweeps[25][26].

2.3 MINE
Once an ensemble method produces a collection of models supported by the
data, then it is possible to make predictions from the ensemble distribution
about the next experiment. By averaging some variable of interest over the mod-
els in the ensemble distribution Q(θ|Y, U), a prediction can be made, given
the current data Y and the experimental conditions U. For example, Y might
be plant biomasses measured in year 1 of a 5 year GWAS experiment to identify
SNPs to predict biomass in sorghum with a certain collection of SNPs from
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the Bioenergy Accession Panel (BAP)[2]. The question is what SNPs are to be
used in year 2. The SNPs to be chosen in year 2 are specified by the design U.
In year 1, 79 accessions are measured in the GWAS and can be used to inform
the accession choice in year 2. What BAP accessions in year 2 should be selected
to give us the most new information about the underlying QTLs for biomass?

One way to make this choice is to select experimental conditions permitting
us to distinguish the models in the ensemble Q(θ|Y, U) identified from Year
1. The best way to distinguish experimentally two models randomly chosen
from the model ensemble is if the predictions F (θ, Y ) of each model (θ =

θ1orθ2) are orthogonal as shown in Figure 2.2. For experiment 1 on the left, the
predictions of the two selected models θ1 and θ2 are correlated and are harder
to distinguish under experimental conditions U1. The same two models under
experimental conditions U2 are easier to distinguish - model θ1 is easily tested
again model θ2. The goal of a MINE criterion is then to support making “the
angle” between the two predictions of a random pair in the ensemble as large
as possible on average in year 2 as a function of the experimental conditions U
and current ensemble Q(θ|Y, U) identified from the data in year 1.

Figure 2.2: Two models can be better distinguished by their predictions in
the next experiment if their predictions are less correlated. The predictions
of model θ1 and θ2 under experimental condition U1 are the expectations f1 =
E(θ1|Y, U1) and f2 = E(θ2|Y, U1), respectively. If the two models θ1 and θ2
are chosen independently from the model ensemble Q(θ|Y, U), the expecta-
tions are calculated with respect to the product densityQ(θ1|Y, U)Q(θ2|Y, U),
where U = U1orU2

There are two standard ways to measure the correlations between the predictions[1].
One is by the covariances between the components of the data Y (MINE by
Covariance Ellipsoid Volume); the other is by the correlations between the com-
ponents of the data Y (MINE by Correlation Ellipsoid Volume). There are
a variety of reasons for advocating the use of MINE by Correlation Ellipsoid
Volume[1]. One of the main reasons is that when there are a large number (p
»n) of almost linearly dependent observations as found in practice, it would
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be highly desirable to emphasize the new directions in the data Y as done by
Correlation Ellipsoid Volume. Denote by E the correlation matrix between the
components of Y. The MINE Correlation Ellipsoid Volume is then a determi-
nant (det):

V (U) = det(E(U)) (2.5)

When the predictions are on average highly correlated (Figure 2.2A), the
determinant is nearly zero. When the predictions are nearly orthogonal (going
in new directions) (Figure 2.2B), the determinant is nearly 1.

A microscope analogy[19] provides insights on how MINE works (Figure
2.3). MINE is highly analogous to a microscope and its optics. The object in
the microscope field described by the data Y is the observed system. MINE,
like the optics of the microscope, picks up each component of Y through the
prediction F (θ, Y ) about the system. For example, F (θ, Y ) could be the list
of predictions of plant biomasses in a GWAS study. The optics (F (θ, Y )) and
likewise, MINE, then magnify the predictions to create the image or model of
the system (Figure 2.3).
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Figure 2.3: MINE is analogous in function to the optics on a microscope. The
data Y are the objects in the field of view. The models θ are in the image. The
MINE criterion with the predictions F (θ, U) is the optics. The Uncertainty
Volume in the image is the magnification measured by the MINE criterion, V(u)
= det(E(U)).

The microscope has a field of view of the object, which we refer to as the Un-
certainty Volume of the new experiment Y. The uncertainty in the observations
on the field of view comes from our uncertainty about the optics controlled
by θ and in the measurements Y on the object. The optics (predictions) then
translate the Uncertainty Volume V(U) in the sample space into an image, the
Uncertainty Volume in the parameter space. The result is that an Uncertainty
Volume in the sample space (object) is mapped by the optics F (θ, Y ) to the
Uncertainty Volume in the parameter space (image).

The magnification applied to the object is adjusted to reduce the Uncer-
tainty Volume in the parameter space (image). Another interpretation of the
image quality is given by the determinant det(E(U)). The determinant is a mea-
sure of the volume of a parallelepiped defined by the Uncertainty Volume in the
Sample Space[32]. The determinant is also a measure of the Uncertainty vol-
ume in the parameter space (inside the ensemble). As the magnification knob
is twiddled, the clarity of the image (model parameters) is increased and uncer-
tainty, reduced (Figure 2.3). The choice of experiments under MINE is designed
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to yield maximum clarity about nature and our view of it through the models
in the ensemble. If the parallelepiped is squashed in the parameter space, less
detail from the observations Y in the sample space are being retained in imaging
(i.e., model fitting). MINE is doing the focusing and representing the object in
higher clarity in the image constructed by the observer using MINE.

A mixed linear model is used for predicting hyphal extension colonization
by arbuscular mycorrhizal fungi (AMF) in plant roots to illustrate MINE. In
mixture experiments the design matrix is used to specify the proportion of
different treatments, in this case of different AMF species; they are used in
population genetics[33] and science and engineering in general[34]. Mixture
experiments are examples of linear models that are the focus of experimental
design[10]. Mixture experiments can be used to study how AMF affect the
health of the plant through colonization of the root system. The assembly of
the AMF biome in plant roots is a product of choices imposed by the plant
genotype[35][36], competition between AMF, ecological drift[17], historical
contingency[37], abiotic factors such as Phosphorous (P) and Nitrogen (N)
in the soil[38][39], and other factors. Consider three AMF species, S1, S2 and
S3, competing for colonization area in the plant roots of sorghum[17] of ONE
plant genotype. These AMF are potential partners with the plant in one of the
oldest symbioses on the planet[40]. Potentially the plant provides carbon, and
in return potentially the AMF provide P and N. The success of this partnership
is measured in part by AMF hyphal extension in the roots and the resulting
biomass of the plant host. The AMF hyphal extension determines the access
to soil nitrogen and phosphorous for the plant. To study this symbiosis the
experimenter inoculates sorghum with a mixed population at least 10 percent
of the conidial cells being S1, at least 15 percent are S2 and at least 5 percent of
the conidial cells being S3. The inoculum is a co-culture in the plant root cells.
Denoting respective spore percentages by u1, u2 and u3, respectively, u1, u2

and u3, are thus constrained by lower limits,

u1 ≥ u
(lo)
1 = 0.10, u2 ≥ u

(lo)
2 = 0.15, u3 ≥ u

(lo)
3 = 0.05 (2.6)

and by the normalization condition

u1 + u2 + u3 = 1 (2.7)

Given eq. 2.7, only two of the three species fraction values can be freely
chosen. In the following, we will use proportions u1 and u2 as those two free
variables, with u3 then being determined via eq. 2.7. Furthermore, the propor-
tions u1 and u2 are then subject to upper and lower bounds, resulting from eq.
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2.6 and eq. 2.7. When referring, below, to experimenters freely choosing (u1, u2

, u3), it should be understood that these choices must be within the constraints
imposed by conditions eq. 2.6 and eq. 2.7.

Assume that, by setting appropriate experimental conditions, the experi-
menter can construct an inoculum with a constant total spore population size,
Nc, and constant species fractions, u1, u2 and u3. Assume also that, subject to
the foregoing constraints eq. 2.6 and eq. 2.7, the experimenter can precisely set
the values of u1, u2 , u3 and Nc.

Each of the three AMF taxa can increase its rate of occupancy of the root
space in the plant, denoted by θ1, θ2 and θ3, for species, S1, S2 and S3, respec-
tively. The experimenter wishes to determine, or at least impose constraints on,
the values of these rates in percent area increase, θ1, θ2 and θ3, by performing a
sequence of time series experiments wherein the linear filament extension in a
root image, denoted by y(t), is measured as a function of time, t, at certain time
points, t1, t2, . . . , tK . Here, K is the total number of experimental observation
time points. Each experiment thus produces a series of observed filament ex-
tension amounts, y(tk) for k = 1, 2, . . . , K , denoted by y1, y2, . . . , yK . That
is, yk is value of y(t) observed at time tk, with k = 1, 2, . . . , K labeling the
different observation time points. Each of these experiments is to be performed
on a conidial population begun with a different combination, (u1, u2, u3), of
AMF inoculation fractions. For simplicity assume, however, that the values
of the rates of hyphal extension, θ1, θ2 and θ3, remain the same throughout
all these experiments, i.e., assume that the hyphal extension rates, θ1, θ2 and
θ3, do not change when the experimenter changes the population composition
(u1, u2, u3) from one experiment to the next as in a race tube experiment[1][41].
For simplicity we will refer to θ1, θ2 and θ3 as the rates of colonization success.

The extraction of any information about the success rate in root coloniza-
tion, θ1, θ2 and θ3, from the experimental time series data, yk, requires, a math-
ematical model which treats the rates θ1, θ2 and θ3, as well as the known experi-
mental control parameters,u1,u2 andu3, as input parameters. The model must
then use these input parameters to provide a predicted value for each experi-
mental observation, yk, the hyphal extension colonized in a plant root. For a
given experimental data point, yk, we denote the corresponding value predicted
by the model by fk. Obviously, whatever the model predicts depends on the
model input parameters, θ1, θ2 , θ3, u1, u2, and u3, that were used to make the
prediction. We will therefore often write fk as a function of these input param-
eters, i.e., as fk(θ1, θ2, θ3, u1, u2, u3) , to make it explicit that fk is dependent
on the assumed values of the rate parameters θ1, θ2 and θ3, and on the given
values of the control parameters, u1, u2, and u3, set by the experimenter.
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For the scenario assumed here, i.e., for a mixed population of cells from three
AMF species jointly producing percent root colonization, X, at constant rates
per conidia cell type, a simple mathematical model for fk is easy to construct.
Assume that the mixed cell population is established, and starts producing col-
onization, at time t=0, with no initial colonization length X being present at
that time. Then the total percent colonization X produced by the entire AMF
population in the roots, by observation time tk, is given by:

X = fk(θ1, θ2, θ3, u1, u2, u3) = Ncu1θ1tk +Ncu2θ2tk +Ncu3θ3tk (2.8)

The percent colonization X can be measured in roots by bright field microscopy[42]
- [43]. To understand this linear model, which is linear in the model parameters
θ, recall here that Nc is the total number of AMF in the inoculum, and hence
Ncu1 is the number S1-cells in the inoculum. Hence, Ncu1θ1 is the rate of in-
crease by all S1-cells combined producing percentage root area X-contribution.
Each spore produces a hypopodium by which to colonize the root cortex. Recall
now that

(Rate of increase in colonization length) x (Time) = (total length colonized)
Hence, the length colonized, by all AMF S1-cells combined, by time tk, is

Ncu1θ1tk. Likewise, the length colonized of the roots produced by all AMF S2-
cells and by allS3-cells, by time tk, areNcu2θ2tk andNcu3θ3tk, respectively. We
then obtain fk , i.e., the predicted total amount of hyphal extension colonized
X produced by all cells until time tk, by simply adding up the foregoing three
X-contributions from all three AMF species. The result is eq. 2.8. The same
model structure would arise if X and θ are in terms of root area occupied instead
of hyphal extension.

Suppose we have performed multiple experiments, to be labeled by an “ex-
periment index” l = 1, 2, . . .L, where L is the total number of experiments. In
each experiment, a different AMF species composition (u1, u2, u3) was used.
To distinguish these u1, u2 and u3 , used in the different experiments, we there-
fore have to label them with the additional index l, as u(l)

1 , u
(l)
2 andu

(l)
3 , for

l=1,2,. . .L. Consequently, a different time series of X-data, y1, y2, . . . , yK , was
observed in each experiment, and we therefore also have to label the observed
data, y1, y2, . . . , yK with the additional index l, asy(l)1 , y

(l)
2 , . . . , y

(l)
K , for l=1,2,. . . L.

Also assume that each data point, y(l)k , has been measured with some experi-
mental uncertainty, quantified by an experimental standard deviation σ

(l)
k . The

χ2-function (or by another name, the Hamiltonian) is then given by:
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χ2(θ, U) =
L∑
l=1

K∑
k=1

1

(σ
(l)
k )2

[y
(l)
k − fk(θ, u

(l))]2 (2.9)

To simplify and compactify the notation, we have introduced here the fol-
lowing abbreviations:

θ := (θ1, θ2, θ3) (2.10)

u(l) := (u
(l)
1 , u

(l)
2 , u

(l)
3 ) for l = 1, 2, ...L (2.11)

U := (u(1), u(2), ...u(L)) = (u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(2)
1 , u

(2)
2 , u

(2)
3 , ...u

(L)
1 , u

(L)
2 , u

(L)
3 )

(2.12)
That is, θ (without subscript) is shorthand for a vector which comprises the

rates of colonization θ1, θ2 and θ3. The u(l) (without subscript) denotes the
vector of the three AMF species inoculation fractions used in experiment num-
ber l, and U is the vector comprising the species fractions from all experiments
combined. Note that θ does not have an (l)-superscript here because θ1, θ2 and
θ3 are assumed to have the same values in all experiments.

Note that fk(θ, u(l)) is the model prediction of hyphal extension, from eq.
2.8, for y(l)k , i.e., for the kth time series data point for percent root area colonized
observed in the lth experiment. The square of the so-called residual, on the
right-hand side of eq. 2.9,

r
(l)
k (θ, u(l)) := y

(l)
k − fk(θ, u

(l)) (2.13)

thus measures the deviation of the model prediction fk(θ, u
(l)) from the

experimental observation of hyphal extension y
(l)
k : The larger (r(l)k )2, the worse,

i.e., greater, is the deviation of the model prediction, fk(θ, u(l)), from the ob-
served data point, y(l)k . By taking the sum of all squared residuals, the χ2- func-
tion in eq. 2.9 thus provides a composite measure of the overall deviation
of the model predictions from the data, for all data points on hyphal length
colonized combined. In the least-squares fitting approach the "best possible"
choice of model parameters is then obtained by finding a parameter combina-
tion, (θ1, θ2, θ3), which minimizes this deviation, i.e., by minimizing χ2(θ, U)

with respect to θ1, θ2 and θ3. In the following, let θ(b) = (θ
(b)
1 , θ

(b)
2 , θ

(b)
3 ) denote

that best possible parameter combination which minimizes χ2(θ, U).
Note, in passing, that the squared residuals entering into χ2(θ, U) in eq.

2.9 are weighted by the reciprocals of the variances, (σ(l)
k )2. This means that
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experimental data points with larger experimental uncertainties carry less weight
and have less of an effect on the choice of the optimal, “best match” parameter
combination, θ(b), than data points with smaller experimental uncertainties. In
that sense, θ(b) can be regarded as a ‘weighted compromise” between all data
points, y(l)k : most likely, neither one of the y(l)k will be perfectly matched by
the model prediction fk(θ, u

(l)), but each data point will be matched as best as
possible, in such a way that the overall mismatch, i.e., χ2(θ, U), is minimized.
Each data point “gets a vote” in this compromise, but the vote from a very
uncertain data point, having a large (σ(l)

k )2, carries less weight than the vote
from a less uncertain data point, having a lower (σ(l)

k )2.
While there are, in principle, many different ways to define an ensemble

probability distribution function having these general characteristics, an obvi-
ous, simple choice, supported by statistical theory[19], is given by:

Q(θ|U) =
1

Ω
e−χ2(θ,U)/2 (2.14)

The 1
Ω

-factor in eq. 2.14 is a normalization factor, chosen to ensure that
the ensemble PDF integrates to a probability of 1. That is, for our model for a
mixture experiment with θ = (θ1, θ2, θ3), the Ω is chosen such that∫ θHi

θLo

∫ θHi

θLo

∫ θHi

θLo

Q(θ1, θ2, θ3|U)dθ1dθ2dθ3 = 1 (2.15)

Here, θLo and θHi denote, respectively, a reasonable lower and upper limit
imposed on θ1, θ2 and θ3. Eq. 2.14 is then to be understood to hold only when
theta1, θ2 and θ3 each falls within the interval between θLo and θHi; if θ1 or θ2
or θ3 lies outside of this interval we set Q(θ|U) = 0.

Notice that Q(θ|U) in eq. 2.14 has the desired general characteristics: For
very large values ofχ2(θ, U), the exponential function e(−χ2(θ,U)/2), and hence
Q(θ|U), becomes very small; for smaller values of χ2(θ, U), Q(θ|U) becomes
larger. Hence, θ-choices whose model predictions agree poorly with the ex-
perimental data, will have a low probability of being drawn from Q(θ|U); θ-
choices whose model predictions agree well with the experimental data, will
have a higher probability of being drawn from Q(θ|U).

Given Q(θ|U), we can now calculate, for example, expectation values, vari-
ances and histograms of any observable quantity, A(θ), which the model allows
us to predict as a function of θ. Specifically for the expectation value, E[. . . ],
and variance, σ2[. . . ], of such an “observable” A(θ), we need to calculate:

E[A(.)] =

∫ θHi

θLo

∫ θHi

θLo

∫ θHi

θLo

A(θ)Q(θ|U)d3θ (2.16)
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with θ = (θ1, θ2, θ3) and d3θ = dθ1dθ2dθ3 for short, and then

σ2[A(.)] = E[(A(.))2]− (E[A(.)])2 (2.17)

Here, E[(A(.))2] is obtained, analogous to E[A(.)], with A(θ) in eq.2.16
replaced by (A(θ))2.

Within the ensemble approach, E[A(.)] can serve as a prediction of a repre-
sentative value of A(θ), given the experimental control parameters U and prior
experimental data, y(l)k for all l and all k. However, the ensemble approach also
allows us to evaluate the uncertainty of that prediction, by way of σ[A(.)]. Fur-
thermore, with similar expectation value calculations, we can also analyze in
more detail the random distribution of A(θ) by way of histograms of all possi-
ble A-values. This would tell us, for example, if the values of A(θ) have a uni-
or a multi-modal distribution, for random θs drawn from the ensemble Q(θ).

These are just a few examples of what kinds of data analyses and model
predictions the ensemble approach itself allows us to implement. In the context
of the MINE approach of experiment design, we will have to evaluate certain
correlations between pairs of observables,A(θ) andB(θ), say. This will require
the calculation of expectation values of the general form E[A(.)B(.)], with
A(θ) in eq.2.16 replaced by the product A(θ)B(θ).

The evaluation of all the foregoing expectation values usually requires nu-
merical techniques to carry out the θ-integrations as in eq. 2.16. In general, the θ-
space is very high-dimensional, far greater than the θ-dimension of dim(θ) = 3

in our simple model here. Markov chain Monte Carlo methods are then the
only approach available to perform the required expectation value calculations
efficiently for omics experiments and field studies[21]. The basics of the Markov
chain Monte Carlo approach are illustrated in more detail in section II of this
article. In Figure 2.4 is a simulation of the mixture experiment with the appli-
cation of the ensemble method to the simulated data. The ensemble method
converges quite well to the true colonization rates θ.
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Figure 2.4: An ensemble method to identify the mixture experiment’s hyphal
extension rates θ is carried out on simulated data from the mixture experiment,
and MINE is used to choose the next mixture experiment with inoculation pro-
portions u1 and u2. The figure illustrates the ensemble method on simulated
data for a mixture experiment of AMF colonizers. The orange lines are the true
colonization rates θ. In the Monte Carlo experiment the estimated rates are
plotted as a function of sweep, a visit on average once to each of the three rates
θ. In the first 3000 sweeps the Monte Carlo experiment is equilibrated to get in
the neighborhood of parameters θ that fit the simulated data. In the accumu-
lation phase (last 1000 sweeps) the estimates of θ are accumulated to form the
ensemble estimate.

Assume L prior experiments have already been performed, with experimen-
tal control parameter vectors u(l), as defined in eq. 2.11, and observed values y(l)k ,
for l=1,2,. . .L and k=1,2,. . .K. The experimental data points, y(l)k , combined
with the corresponding model predictions, fk(θ, u(l)), from eq.2.8, define an
ensemble PDF, Q(θ|U), via eqs. 2.9 and 2.16. The Q(θ|U), in turn, will deter-
mine V(U), the predicted uncertain volume of the observables, to be measured
in the new experiment(s), as follows:

As a simplest case, assume that we want to design just one new experiment,
with a new experimental control parameter vector u = (u1, u2, u3). The
MINE objective is then to choose to input inoculation proportions u so as
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to maximize the information content of the new experiment about the rates
of production of colonization by hyphal extension (X), by maximizing the pre-
dicted uncertainty volume of the observables to be measured. In our simple
mixture experiment example, there are K such observables in any experiment:
the hyphal extension X-amounts to be measured at times tk, for k=1,2,. . . K. The
predicted values for these observed hyphal extensions X are then fk(θ, u), as
defined by the model eq. 2.8, for given θ and u. These predicted values for
these K observations can be thought of as the components of a vector in a K-
dimensional space, the so-called observation space (Figure 2.3). For a given θ and
u, this vector of predicted observations, is in the following denoted by f(θ, u),
and given by

f(θ, u) := (f1(θ, u), f2(θ, u), ..., fk(θ, u)) (2.18)

We can now use the ensemble PDF, Q(θ, U), to define, in some way, a vol-
ume of likely θs in θ-space. If we let θ sweep over that finite volume then, by
eq. 2.18, f(θ, u) will sweep over some corresponding finite volume (or hyper-
surface) in the observation space: the uncertainty volume of the predicted ob-
servation vector, to be denoted by V(u), for given u, and illustrated in Figure 3.
There is of course no precise prescription of how to define a volume of likely-θ
in θ-space, or a corresponding uncertainty volume, V(u), in observation space.
That definition is not unique: it requires some arbitrary, but reasonable choices
to be made. In the following, two specific possible choices for V(u) will be
discussed. In both of these choices, one actually defines V(u) directly in the
observation space, in terms of correlations and variances of the observable pre-
diction vector, f(θ, u),without first defining an underlying volume of likely θs
in θ-space.

2.3.1 MINE by Covariance Ellipsoid Volume
In the covariance matrix approach, we define V(u) in terms of the uncertainty
ellipsoid, constructed from the covariances of the K observable predictions,
f1(θ, u), f2(θ, u), . . .fK(θ, u), subject to the ensemble PDF Q(θ, U). Let
Dkj(u) denote those covariance matrix elements, i.e., for k,j=1,2,. . .K, let

Dkj(u) := E[fk(., u)fj(., u)]− E[fk(., u)]E[fj(., u)] (2.19)

with expectation values E[. . . ] defined as in eq.2.16. On general mathemati-
cal grounds, the corresponding K×K covariance matrix, D(u), is symmetric and
positive semi-definite. Therefore, D has K real, non-negative eigenvalues, λν ;
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and it has an orthonormal basis of corresponding K-dimensional eigenvectors,
e(ν), with ν = 1, 2, . . .K . That is, for k, j, ν, µ = 1, 2, . . .K , we have:

K∑
j=1

Dkj(u)e
(v)
j = λνe

(ν)
k (2.20)

λν ≥ 0 (2.21)

K∑
j=1

e
(ν)
j e

(µ)
j = δν,µ (2.22)

K∑
ν=1

e
(ν)
k e

(ν)
j = δk,j (2.23)

The eigenvalues and eigen vectors are of course dependent upon u, but
for notational simplicity we have suppressed that functional dependence, i.e.,
λν(u) and e

(ν)
j (u), in eqs. 2.19-2.23. By eq. 2.22, the eigenvectors, e(ν), are or-

thogonal, i.e., pairwise perpendicular to each other. The eigenvalues,λν , are the
variances of the predicted observation vector, f(θ, u), along the corresponding
eigenvector directions. That is, if we take the projection of the vector f(θ, u)
onto e(ν)(u), i.e., let p(ν)(θ, u) denote that projection, with

p(ν)(θ, u) := e(ν)(u)f(θ, u) =
K∑
k=1

e
(ν)
k (u)fk(θ, u) (2.24)

then λν is the variance of that projected f(θ, u)–vector:

σ2[p(ν)(., u)] = λν (2.25)

where σ2[. . . ] is defined as in eq.2.17. The eigenvalues and eigenvectors
of D(u) define the so-called “covariance ellipsoid” or “error ellipsoid” of the
predicted observation vector, f(θ, u), in the K-dimensional observation space:
The eigenvectors, e(ν), can be thought of as the orientations of the principal
axes of the ellipsoid; the standard deviations of the projections p(ν)(θ, u) , i.e.,
σ[p(ν)(., u)] =

√
λν , are the lengths of the principal semi-axes along the e(ν)-

direction. This ellipsoid serves as our uncertainty volume, and V(u) is given by
the product of the semi-axis lengths,

V (u) = CK

√
λ1(u)λ2(u)...λK(u) (2.26)

where CK is an unimportant geometrical prefactor,

20



CK =
2πn/2

nΓ(n
2
)

(2.27)

with Γ(x) denoting Euler’s gamma function. Eq. 2.26 can also be written
in terms of the determinant of the D-matrix:

V (u) = CK

√
det(D(u)) (2.28)

2.3.2 MINE by Correlation Ellipsoid Volume
In the correlation matrix approach, we define V(u) in terms of an uncertainty
ellipsoid constructed from the Pearson correlations of the K observable predic-
tions, f1(θ, u), f2(θ, u), . . .fK(θ, u), subject to the ensemble PDF Q(θ, U).
The Pearson correlation matrix elements, denoted by Ekj(u), are related to the
covariance matrix elements, Dkj(u), from eq.2.19, by

Ekj(u) :=
Dkj(u)√

Dkk(u)Djj(u)
(2.29)

Note that Ekj(u) can also be written as the covariance matrix of the pre-
dicted observations, fk(θ, u), normalized by their standard deviations:

Ekj(u) := E[gk(., u)gj(., u)]− E[gk(., u)]E[gj(., u)] (2.30)

where

gk(θ, u) :=
1

σ[fk(., u)]
fk(θ, u) (2.31)

Therefore, the correlation matrix E has the same mathematical properties of
symmetry and semi-positivity as the covariance matrix D. Analogous, to the co-
variance ellipsoid constructed from D, we can therefore construct a correlation
ellipsoid from the eigenvalues and orthonormal eigenvectors of the correlation
matrix E. Using the volume of the correlation ellipsoid as the uncertainty vol-
ume of the predicted observables, we then have, analogous to eq.2.26,

V (u) = CK

√
K1(u)K2(u)...KK(u) (2.32)

where K1(u), K2(u), . . .KK(u) are the eigenvalues of the correlation ma-
trix E. Analogous to eq.2.28 we can also write this as

V (u) = CK

√
det(E(u)) (2.33)
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The surface of the MINE criterion in a contour plot is shown for the next
mixture experiment (Figure 2.5). The MINE experiment involves using ∼ 0.25

of AMF1 in the inoculum and∼ 0.40 of AMF2 in the inoculum to characterize
the rates of hyphal extension in the next experiment. While this simple linear
model captures some features of the competition between AMF, more elaborate
nonlinear models will be considered in Section IX that describe the competition
between AMF. Also, these mixture experiments only reveal part of the story
– the success of plant root colonization depends on the genotype of the plant
colonized as considered in sections VII and VIII. As a final note some theorems
about properties of MINE have been established for the class of linear models,
such as the mixture experiments[19].

Figure 2.5: An ensemble method to identify the mixture experiment’s hyphal
extension rates θ is carried out on simulated data from the mixture experiment,
and MINE is used to choose the next mixture experiment with inoculation
proportionsu1 andu2. The figure presents the next MINE mixture experiment
recommended. The contour plot is of the MINE criterion det(E) as a function
of the mixture inoculum proportions u1 and u2.
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2.4 Application of MINE to RNA profiling ex-
periments coupled to genetic networks

One of the earliest developments in functional genomics was the use of RNA
profiling to characterize the response of yeast to a diauxic shift from anaerobic
to aerobic conditions, a process that has been of interest for 1,000s of years in the
production of fermented products[44]. MINE was developed specifically for
this kind of transcriptomics problem and used to close the loop in the comput-
ing life cycle (Figure 2.6) proposed by Hood and Abersold[15]. Transcriptomic
experiments have a limited number of time points n, but have many 1,000s of
genes (and hence parameters (p)) to be identified in the process[1]. While both
MINE criteria using the Covariance by Ellipsoid Volume and Correlation by
Ellipsoid Volume, only the Correlation by Ellipsoid Volume was reported in
the end in designing the experiments[1].

Figure 2.6: The MINE experiment is a 90 percent knockdown of the wc-1 gene.
The MINE criterion displayed is the correlation ellipsoid volume det(E(U)),
which is graphed as a function of the remaining activity of the three clock mech-
anism genes. The predictions F are of the log base 10 concentrations over time
of frq, wc-1, and wc-2 mRNAs over time from the RNA profiling experiments.
The mRNA levels were measured at 14 time points over an 8 hour window. The
drawing is taken from [1].
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The design problem was very simple. Transcriptomics was to be used to
explore the mechanism of the biological clock in one of the most well studied
model systems [45], the filamentous fungus, Neurospora crassa. Three major
components of the clock mechanism were: (1) frequency (frq), the gene en-
coding the oscillator of the system and a negative regulator; (2) white-collar-1
(wc-1), the gene encoding the light response element and a positive transcrip-
tional activator for the system; (3) and white-collar -2(wc-2), a second positive
transcriptional activator for the system. Together wc-1 and wc-2 encode WC-1
and WC-2 proteins that act as positive elements in the clock through the dimeric
complex WCC=WC-1/WC-2, while frq encodes a protein FRQ, which acts as
the negative regulator for the system. The FRQ protein provides negative feed-
back to wc-1 and wc-2. The beauty of this system is all three of these elements
appear in single copy in the Neurospora genome, but they have homologs in fly
and mammalian systems[46][47].

What genetic experiments could be done to discover the most new informa-
tion about the clock mechanism given that an ensemble of models had already
been successfully fitted to the data in the literature[25] Different experiments
provide more or less new information about a system. As an illustrative example,
suppose y = 1− (x− 1)2, but this relation is unknown to the experimenter.
For a given known experimental condition x, the measurement y might be taken.
If the experimenter only chose to make measurements y for conditions x from
0 to 1, the experimenter might conclude there is an increasing relation between
y and x. If the experimenter chose instead to measure y for x from 1 to 2, the
experimenter might conclude there is a decreasing relation between y and x.
Only when observations are taken over an interval from 0 to 2 would it become
clearer there is a quadratic relation. Each of these three experiments provide
different information about the system.

Exactly this problem has arisen in studying the quadratic relation between
AMF fungal biomass or equivalently benefit to plant (y) and the level of phos-
phorous (x) in the soil[48]. Most measurements of phosphorous were done on
the high end of phosphorous (high x) to the right of the bump in the unsus-
pected quadratic relation between fungal biomass (y) and phosphorous (x)[49].
The conventional wisdom in studies in the northern hemisphere was increasing
phosphorous would decrease fungal biomass because most measurements of
fungal biomass were done under high phosphorus conditions. The problem
was in the tropics scientists were seeing the opposite relation where increasing
phosphorous increased fungal biomass. Treseder and Allen[48] hypothesized
that in a low phosphorous environment adding phosphorous could help both
the plant and fungus and that there might be an optimum in phosphorous
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(x). Not until the work of Propster and Johnson on the Serengeti[49] was it
clarified what was happening at the low and high ends of phosphorous (x) to
fungal biomass (y). Thus, different experiments led to different amounts of
new information about an ecosystem.

Now consider a series of RNA profiling experiments which were conducted,
guided by MINE to choose an informative sequence of experiments. The last
in a series of three adaptive experiments guided by MINE involved a choice of
whether or not to do a knockdown or overexpression experiment on: (1) frq; (2)
wc-1; (3) or wc-2. The conventional wisdom was to mutate the oscillator gene
frq. Each of these three experiments cost about 250,000 dollars, thus the need
for a rational choice of design.

The first step in the MINE application is to make predictions for various
mutations in the clock mechanism genes using an available ensemble. The RNA
profiles of all 11,000 genes were measured at each of 14 timepoints. Unlike pre-
vious models so far considered, the clock model is a nonlinear model (in the
parameters describing the model), which specifies a genetic network of non-
linear ordinary differential equations describing the time course of the genes,
their cognate RNAs and proteins[25]. The model ensemble was used to predict
RNA profiles of frq, wc-1, and wc-2 under different possible experiments and
their correlations as shown in Figure 2.2.

With the correlation matrix in hand for the predictions, the MINE criterion
based on the correlation volume ellipsoid was calculated as a function of the
degree of knockdown of the three clock genes (Figure 2.6). Similar calculations
were done for mutants involving overexpression, but were not competitive rela-
tive to the experiments considered in the MINE calculations in Figure 2.6 with
respect to MINE score (and not shown). The result was surprising. A knock-
down of wc-1 was performed as the MINE experiment and used to identify
2,323 genes responding to the knockdown12. The second surprise from this
model-guided discovery process was that ribosome biogenesis was under clock
control. This was later confirmed in mammalian systems[50].

A better way to do this MINE calculation would have been to use all of
the transcriptomic data on 11,000 N. crassa genes instead of just the three
clock genes driving the system. The ensemble methods now exist for the whole
genome-scale network with all of its 1,000s of genes and ensembles now exist for
the entire clock network[26][27][51]. Using Graphical Processing Units (GPUs)
ensemble methods, such as MINE, can now be implemented on a genomic scale
with unknown network structure[26][51].
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2.5 Application of MINE to QTL mapping using
RILs for AMF/Sorghum project

A simple example of the use of MINE arises upon consideration of a hybrid
cross between Sorghum bicolor and Sorghum propinquum[52]. Several quantita-
tive traits are of interest including plant biomass. One of the main methods of
mapping Quantitative Trait Loci (QTLs) is interval mapping[53]. For simplic-
ity, consider a dihybrid cross between S. bicolor and S. propinquum. A QTL of
interest is heterozygous for alleles Q1 and Q2. There are neighboring markers
with alleles M1 and M2 and N1 and N2. The alleles Q1, M1, and N1 are character-
istic of S. bicolor parent (P1); the alleles Q2, M2, and N2 are characteristic of S.
propinquum parent (P2). Classical Mendelian genetics allows us to write down
a model for the inheritance of the loci in the F2 progeny of a dihybrid cross
(Table 2.1). In this table there are 3 possible orderings of the marker and QTL
locus represented by 3 separate columns in Table 2.1. While the QTL genotype
is unknown without a known position, the marker genotypes are observable at
their known positions in the genome. The markers sort the F2 offspring into
9 marker classes labeled 1-9 in Table 2.1. The recombination distance as mea-
sured by the recombination fraction between each of the three loci is denoted
by rMQ, rNQ, and rMN, the last of which are known by mapping. Once these
recombination distances are known, then the position and hence the identity
of the QTL is known. The map is assumed dense enough so that there is only
at most one recombination event between these loci. Within each marker class
there are three genotypic classes of the QTL mixed together. Knowing the QTL
genotype leads to a specification of the quantitative trait developed by R. A.
Fisher[54][55]. If the QTL genotype is Q1/Q1 characteristic of the S. bicolor
parent (P1), then the mean of biomass is µ1. If the QTL genotype is Q2/Q2

characterisitic of the S. propinquum parent (P2), then the mean of biomass is
µ2. If the QTL genotype is Q1/Q2 of the F1 hybrid, then the mean biomass
is µ12. The model assumptions are that each genotype produces a normally
distributed trait with appropriate genotypic mean and the same variance σ2.

The columns sum to one when multiplied by the factor in column 3, which
represents the chance of independent segregation of offspring of the selfing
F1 cross. The final model specification is then a product of a 3-component
normal mixture density for each marker class. The mixing distribution for each
marker class can also be computed from Table 2.1 by calculating the conditional
probability of a particular QTL genotype within a marker class given that the
individual is drawn from that marker class. As an example, for marker class 1,
the conditional probability of Q1/Q1 is:
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Table 2.1: Mendelian model for quantitative trait with one QTL and two adja-
cent markers M and N.

Marker Class Genotype Factor QMN MQN* MNQ
1 M1N1Q1/M1N1Q1 1/4 (1− rMQ)

2(1− rMN)
2 (1− rMQ)

2(1− rNQ)
2 (1− rMN)

2(1− rNQ)
2

M1M1N1N1 M1N1Q1/M1N1Q2 1/2 (1− rMQ)rMQ(1− rMN)
2 (1− rMQ)rMQ(1− rNQ)rNQ (1− rMN)

2(1− rNQ)rNQ

M1N1Q2/M1N1Q2 1/4 r2MQ(1− rMN)
2 r2MQr

2
NQ (1− rMN)

2r2NQ

2 M1N1Q1/M1N2Q1 1/2 (1− rMQ)
2(1− rMN)rMN (1− rMQ)

2(1− rNQ)rNQ (1− rMN)rMN(1− rNQ)rNQ

M1M1N1N2 M1N1Q1/M1N2Q2 1/2 (1− rMQ)rMQ(1− rMN)rMN (1− rMQ)rMQ(1− rNQ)
2 (1− rMN)rMN(1− rNQ)

2

M1N1Q2/M1N2Q1 1/2 (1− rMQ)rMQ(1− rMN)rMN (1− rMQ)rMQr
2
NQ (1− rMN)rMNr

2
NQ

M1N1Q2/M1N2Q2 1/2 r2MQ(1− rMN)rMN r2MQ(1− rNQ)rNQ (1− rMN)rMN(1− rNQ)rNQ

3 M1N2Q1/M1N2Q1 1/4 (1− rMQ)
2r2MN (1− rMQ)

2r2NQ r2MNr
2
NQ

M1M1N2N2 M1N2Q1/M1N2Q2 1/2 (1− rMQ)rMQr
2
MN (1− rMQ)rMQ(1− rNQ)rNQ r2MN(1− rNQ)rNQ

M1N2Q2/M1N2Q2 1/4 r2MQr
2
MN r2MQ(1− rNQ)

2 r2MN(1− rNQ)
2

4 M1N1Q1/M2N1Q1 1/2 (1− rMQ)rMQ(1− rMN)rMN (1− rMQ)rMQ(1− rNQ)
2 (1− rMN)rMN(1− rNQ)

2

M1M2N1N1 M1N1Q1/M2N1Q2 1/2 (1− rMQ)
2(1− rMN)rMN (1− rMQ)

2(1− rNQ)rNQ (1− rMN)rMN(1− rNQ)rNQ

M1N1Q2/M2N1Q1 1/2 r2MQ(1− rMN)rMN r2MQ(1− rNQ)rNQ (1− rMN)rMN(1− rNQ)rNQ

M1N1Q2/M2N1Q2 1/2 (1− rMQ)rMQ(1− rMN)rMN (1− rMQ)rMQr
2
NQ (1− rMN)rMNr

2
NQ

5 M1N1Q1/M2N2Q1 1/2 (1− rMQ)rMQ(1− rMN)
2 (1− rMQ)rMQ(1− rNQ)rNQ (1− rMN)

2(1− rNQ)rNQ

M1M2N1N2M1N2Q1/M2N1Q1 1/2 (1− rMQ)rMQr
2
MN (1− rMQ)rMQ(1− rNQ)rNQ r2MN(1− rNQ)rNQ

M1N1Q1/M2N2Q2 1/2 (1− rMQ)
2(1− rMN)

2 (1− rMQ)
2(1− rNQ)

2 (1− rMN)
2(1− rNQ)

2

M1N1Q2/M2N2Q1 1/2 r2MQ(1− rMN)
2 r2MQr

2
NQ (1− rMN)

2r2NQ

M1N2Q1/M2N1Q2 1/2 (1− rMQ)
2r2MN (1− rMQ)

2r2NQ r2MNr
2
NQ

M1N2Q2/M2N1Q1 1/2 r2MQr
2
MN r2MQ(1− rNQ)

2 r2MN(1− rNQ)
2

M1N1Q2/M2N2Q2 1/2 (1− rMQ)rMQ(1− rMN)
2 (1− rMQ)rMQ(1− rNQ)rNQ (1− rMN)

2(1− rNQ)rNQ

M1N2Q2/M2N1Q2 1/2 (1− rMQ)rMQr
2
MN (1− rMQ)rMQ(1− rNQ)rNQ r2MN(1− rNQ)rNQ

6 M1N2Q1/M2N2Q1 1/2 (1− rMQ)rMQ(1− rMN)rMN (1− rMQ)rMQr
2
NQ (1− rMN)rMNr

2
NQ

M1M2N2N2 M1N2Q1/M2N2Q2 1/2 r2MQ(1− rMN)rMN (1− rMQ)
2(1− rNQ)rNQ (1− rMN)rMN(1− rNQ)rNQ

M1N2Q2/M2N2Q1 1/2 (1− rMQ)
2(1− rMN)rMN r2MQ(1− rNQ)rNQ (1− rMN)rMN(1− rNQ)rNQ

M1N2Q2/M2N2Q2 1/2 (1− rMQ)rMQ(1− rMN)rMN (1− rMQ)rMQ(1− rNQ)
2 (1− rMN)rMN(1− rNQ)

2

7 M2N1Q1/M2N1Q1 1/4 r2MQr
2
MN r2MQ(1− rNQ)

2 r2MN(1− rNQ)
2

M2M2N1N1 M2N1Q1/M2N1Q2 1/2 (1− rMQ)rMQr
2
MN (1− rMQ)rMQ(1− rNQ)rNQ r2MN(1− rNQ)rNQ

M2N1Q2/M2N1Q2 1/4 (1− rMQ)
2r2MN (1− rMQ)

2r2NQ r2MNr
2
NQ

8 M2N2Q1/M2N1Q1 1/2 r2MQ(1− rMN)rMN r2MQ(1− rNQ)rNQ (1− rMN)rMN(1− rNQ)rNQ

M2M2N1N2 M2N2Q1/M2N1Q2 1/2 (1− rMQ)rMQ(1− rMN)rMN (1− rMQ)rMQr
2
NQ (1− rMN)rMNr

2
NQ

M2N2Q2/M2N1Q1 1/2 (1− rMQ)rMQ(1− rMN)rMN (1− rMQ)rMQ(1− rNQ)
2 (1− rMN)rMN(1− rNQ)

2

M2N2Q2/M2N1Q2 1/2 (1− rMQ)
2(1− rMN)rMN (1− rMQ)

2(1− rNQ)rNQ (1− rMN)rMN(1− rNQ)rNQ

9 M2N2Q1/M2N2Q1 1/4 r2MQ(1− rMN)
2 r2MQr

2
NQ (1− rMN)

2r2NQ

M2M2N2N2 M2N2Q1/M2N2Q2 1/2 (1− rMQ)rMQ(1− rMN)
2 (1− rMQ)rMQ(1− rNQ)rNQ (1− rMN)

2(1− rNQ)rNQ

M2N2Q2/M2N2Q2 1/4 (1− rMQ)
2(1− rMN)

2 (1− rMQ)
2(1− rNQ)

2 (1− rMN)
2(1− rNQ)

2

(1−rMQ)
2(1−rMN)

2/[(1−rMQ)
2(1−rMN)

2+(1−rMQ)rMQ(1−rMQ)rNQ+r2MQr
2
NQ]

(2.34)
This specifies the model for each marker interval. We then simply take the

product over all marker intervals to obtain the model specification and hence the
Hamiltonian for the problem. The MINE problem is to choose the accessions
to best inform how genes control a particular complex trait, such as height or
percent colonization by AMF.

2.6 Application of MINE to GWAS field studies
for AMF/Sorghum project

Consider a GWAS study composed by 343 plant accessions from Sorghum bi-
color BAP Panel[2]; its objective is to understand relevant genes for biomass
and AMF colonization. There was a previous study where S. bicolor genetic
information from different sources was compiled and put together into variant
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call files[8], and as a result there are 232,303 SNPs available. To characterize
biomass, dry weight was measured. Neural networks were used to measure
AMF colonization in roots [56]. Initial dry weight data was taken from the
panel to estimate a model.

The GWAS study is running for 5 years, and in each year MINE is used
to select the most informative 79 accessions; these accessions will be planted
in a randomized block design, 3 blocks will be set up, each block will have 12
replicates of each accession. The relation between AMF percent colonization
and AMF community composition will be addressed, as well as SNPs in the
plant host. The effect of AMF on plant health is also studied by the relation of
plant biomass and SNPs.

A few features will be measured during the MINE field experiment: plant
genotype, plant eQTLs, the microbiome, Phosphorus (P), Nitrogen (N), time
of harvest, and other variables relevant to plant health such as biomass (Figure
2.7). These variables are combined into a mixed linear model to predict biomass.
The resulting model is a special case of a structural equation model [57].; these
structural equation models have been successfully used in field studies of AMF
[17][30][58]. The difference between structural equation models and regression
models in Section 3 is that the independent variables, such as eQTLs and ac-
cessions, are random and not fixed, since accessions come from a worldwide
population of sorghum[12]. The standard model for GWAS is the mixed linear
model, representing a special case of the structural equation model, in which
some variables are random with mean zero [59]. A mixed linear model is pre-
sented below, and will be used in an adaptive GWAS experiment underway at
Wellbrook farm, Athens, GA.
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Figure 2.7: A sequence of MINE experiments are to be used in a 5 year GWAS
experiment to examine the relation between biomass and SNPs in Sorghum
bicolor using the BAP accessions[2]. MINE is used to select the BAP acces-
sions to be used in each year in order to map AMF colonization and biomass
to the sorghum genetic map in a GWAS study. Multi-scale structural equation
model (SEM) for the project (center boxes and arrows). Lotka-Volterra com-
munity models are nested within the SEM and predict associations that affect
biomass. The dependent variable is biomass, and the arrows in the diagram de-
note causal relationships between independent variables in the SEM. The labels
on each box index the subproject(s) involved in characterizing the properties of
the plant-AMF-microbiome-abiotic environment interaction depicted in that
box. In this model, sorghum genotype is the primary independent variable that
correlates with the remaining variables. This conceptual model will evolve con-
tinuously using the model guided discovery process of maximally informative
next experiment (MINE; outer ring)[1].

Two sets of inputs were collected in year 1 at Wellbrook Farm, Athens, GA:
1) fixed variables in the design matrix X, such as block number, harvest time
of each plant, N level, P level, and the fixed effect of each BAP accession; 2)
random effects Z for the genotype of each BAP accession. The additive genetic
variation in plant genotype was captured by binning the number of alleles in
a given genomic region different from the reference genome using the sum
method [60]. The number of SNPs in each chromosomal region was adjusted
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to ensure that at least each genomic regions was 50 kb in size. The result was
that the number of genomic regions was 2748 in the sorghum genome, each
containing an average of 10-12 genes. The number of such alleles in a region is
treated as a continuous random variable with mean 0 and variance component
σ2
i for the ith accession and summed over regions to obtain a random effect for

an accession. The fact that each random effect is the sum of 2748 small random
effects of chromosomal regions makes it plausible that the random effect of
accession is normally distributed. The fixed effects of block number and BAP
genotype are denoted by the vector β and the random effects, by u.

These fixed and random effects are used to predict some measure of biomass,
such as log dry weight. There are a total of n ∼ 606 plants in the field, which is
lower than p = 2748 fixed effects + 79 variance components. At harvest time it
was feasible to dig up at least 2 plants per row for measurement in a field setup
as a randomized block design with 3 blocks and 12 replicate plants in a plot (i.e.,
row). The measurements to be predicted are summarized in the n x 1 vector Y.

The error in biomass is also considered in the model, it is denoted by ϵi for
the ith plant in the experiment. The error measurements are summarized in a
n x 1 column vector Y.

In year 1 of the adaptive GWAS experiment, no block effect was found, and
N and P applied were not varied. A randomized block design was used to plant
the 79 BAP accessions selected; a total of three blocks were set up with 79 plots
in each block, 1 genotype per plot (i.e., a row), and 12 replicates per plot. The
mixed linear model for the experiment was the following:

Y = Xβ + Zu+ ϵ (2.35)

where Y is a n x 1 vector of observations on biomass. The X variable is the
design matrix of size n x p, p represents the number of bins representing the
chromosomal regions. β represents the parameters to be estimated, its size is p x
1, each parameter is a fixed effect of the corresponding chromosomal region in X.
The matrix Z of size n x r represents the number of alleles in each accession on n
plants in the field, for this experiment r = 79. u is a vector of size r x 1 representing
the random effects of each accession on biomass. The errors in the dependent
variable Y are compiled in the vector ϵ of size n x 1. Three assumptions of this
model are: 1) the random effects u are independent of the biomass errors ϵ ; 2)
the errors ϵ are normally distributed with mean 0 and varianceσ2; 3) the random
effects u are normally distributed with mean 0 and variance σ2

j(i) plant I with
accession j(i). That is, the assumptions are that the random effects u and errors ϵ
are independent and normally distributed with mean 0 and variance-covariance
matrix Iσ2

i and Iσ2, respectively.

30



Under this model the prediction of biomass is:

E(Y ) = Xβ (2.36)

The variance components and heritability are used to calculate the variance-
covariance matrix V of the biomass measurements Y:

V = V AR(Y ) =
n∑

i=1

Z
′

iZiσ
2
j(i) + σ2I =

n∑
i=1

X
′

iXiσ
2
j(i) + σ2I (2.37)

where Zi and Xi are the ith row vectors of Z and X, respectively. Each
observation Yi describes a corresponding Xi row vector. Each term X

′
iXiσ

2
i is

an n x n block. The variance-covariance matrix is diagonal with p blocks each
with the same diagonal elementsσ2

j(i). The index j(i) is a lookup that returns the
variance component of the ith observation as determined by accession j. Plant i
has an assigned accession j.

For the mixed linear model, the ensemble Q can be written down as a multi-
variate normal with the θ-vector consisting of the fixed effectsβ and the variance
components:

Q(β) =
e−1/2(Y−Xβ)

′
V −1(Y−Xβ)

(2π)n/2|V |1/2
(2.38)

No fertilizers were used in the first year of MINE field experiment in 2021
at Wellbrook Farm, Athens, GA. The model only considered fixed effects with
the number of alleles in a bin (chromosomal region) as the set of independent
variables using the sum method[60]. The problem is different from the classical
design[19] because of the “big p, little n” problem characteristic of genomic
experiments[19]. The variance components were estimated from the replicates
on each accession.

The ensemble method was used to estimate the models from the published
dry weight data in 3 years from 2013-2015 collected in Florence, South Carolina[2]
to make predictions in the use of MINE. Typically in a omics experiment there
is prior published data available, and this should be used when available [1] to
initialize the MINE sequence.

A total of 100,000 equilibration sweeps were done, and then 1000 sets of
model parameters were accumulated, each model parameter was separated by
100 decorrelation sweeps. The chi-squared per data point was 6.12 with n = 606
dry weight measurements. As a control the ensemble run was repeated with the
only change being 1000 decorrelation sweeps.
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MINE was then applied to the model estimated from the data from Flo-
rence, South Carolina to select 80 accessions for use in 2022 for planting at
Wellbrook Farm. The result is shown graphically (Figure 2.8). The MINE cri-
terion was optimized by evaluating det(D) on all

(
300
80

)
tuples drawn from 300

BAP accessions at USDA GRIN in Griffin, GA. Details of calculating det(D)
follow the directions in the introduction to MINE in section III.

Figure 2.8: The MINE criterion log(det(E)) was used to select 80 accessions
for use in a GWAS experiment at Wellbrook Farm, GA in 2022. The top 200
selected triples of accessions are ranked by det(E). From these top 200 triples
80 distinct accessions were selected.

2.7 Application of MINE to population and sys-
tems ecology

One of the fundamental aspects to the partnership between AMF and plants is
the assembly of an AMF biome in the roots of plants. Part of this community
assembly is driven by the competition between AMF in the roots. Understand-
ing competition is a central problem for population ecology[61], but is also key
to understanding the partnership between AMF and plants. The development
of an understanding of competition led to the notion of an ecological niche.
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The root space occupied by AMF and other fungi is part of their ecological
niche. One of the earliest experimental studies of competition was by Gause
and Witt[62] and involved examination of competition between fungal yeasts, a
work that led to the development of the Competitive Exclusion Principle. This
work still retains a high degree of relevance to understanding the symbiosis of
AMF and land plants. AMF differ in their ability to capture N and P and to
share this with their plant host. The N and P available to AMF are additional
dimensions to the niche of each AMF species in addition to their root space. A
final major dimension is the carbon shared by the plant host. The relationship
of the AMF to the plant depends on an economic exchange between the plant
and host, which can vary on a continuum from parasitism to mutualism[63].

A simple model has been proposed for how the plant mediates the compe-
tition between AMF and their relation to plant host[3]. The model is used to
illustrate MINE. The density of the plant host population is denoted by H,
and the density of the AMF taxa by S1 and S2. The population ecology model
is:

dH

dt
= rH(1− H

K + γS1

)− a1HS1 − a2HS2 (2.39)

dS1

dt
= b1HS1 − d1S1(1 + e1S1 + c1S2) (2.40)

dS2

dt
= b2HS2 − d2S2(1 + e2S2 + c2S1) (2.41)

In this model of Neuhauser and Fargione[3] the plant host (H) has logistic
growth at rate r to carrying capacity K in the absence of AMF. The AMFS1 can
have both positive and negative effects on the host – positive effects occur di-
rectly on host carrying capacity throughγ , but negative effects happen through
an increased death rate a1. The other species S2 is strictly parasitic on the plant
through the death rate a2 and competes under the Lotka-Volterra formalism of
Gause and Witt[62] with the mutualist species S1.

The interaction between plant and AMFS1 is parasitic when γ is small, but
can be mutualistic for intermediate values of γ. Species S1 becomes parasitic
again for high γ. This interaction can be thought of as reflecting the amount
of phosphorous in the soil[49]. To make this explicit one further assumption
to the model is added, namely that the interaction is linear in Phosphorous (P)
applied to the field:

γ = fP (2.42)
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where the level U = P defines the experimental condition and f is a scaling
constant. For low P, the benefit to the host γ is low, and parasitism occurs. If
P is sufficiently high, then the host benefit γ is intermediate, and mutualism
occurs. If P is extremely high, then the host γ can lead to parasitism again[3].

Growth of each AMF benefits by the plant through b1 or b2, but also there
is a self-inhibition through e1 and e2 and a competitive interaction between
AMF through c1 and c2.

The measurements in this system are the densities (or possibly hyphal exten-
sion) of AMF in roots over time, S1, 1, S1, 2, . . .S1,n and S2, 1, S2, 2, . . .S2,n

and of the plant host, H1, H2, . . . , Hn. Ensemble methods have been proposed
to fit these kinds of models[64].

To implement MINE the problem begins by identifying the predictions
of the model in a formulation very similar to that of the biological clock[1] in
section VI. There are predictions about the plant host and AMF density:

fH
i , i = 1, . . . , n, fS1

i , i = 1, . . . , n, and fS2
i = i = 1, . . . , n.

These predictions are derived by solving the three ODEs above. The pre-
diction components are then compared to the measured values of the densities
under a normality assumption for errors between the predictions and measure-
ments as in [36]:

Pd(δ|σ2
δ ) =

n∏
i=1

(
1

2πσ2
δ

)1/2e
(− 1

2σ2
δ

δ2i ) (2.43)

Pe(ϵ|σ2
ϵ ) =

n∏
i=1

(
1

2πσ2
ϵ

)1/2e
(− 1

2σ2
ϵ
ϵ2i ) (2.44)

Pf (ζ|σ2
ζ ) =

n∏
i=1

(
1

2πσ2
ζ

)1/2e
(− 1

2ζ2
ζ

ζ2i ) (2.45)

The errors are: δi = Hi − fH
i and ϵi = S1,i − fS1

i and ζi = S2,i − fS2
i .

The data in the model are Y = (H1, . . . , Hn, S1, . . . , Sn) with parameters
θ = (r,K, γ, a1, a2, b1, b2, c1, c2d1, d2, e1, e2, σ

2
δ , σ

2
ϵ , σ

2
ζ ) and experimental

condition U=(P). The measurements on host and symbionts are done indepen-
dently so that the model specification is:

P (Y |θ, U) = Pd(δ|σ2
δ )Pe(ϵ|σ2

ϵ )Pf (ζ|σ2
ζ ) (2.46)

Considering the model specification as a function of the parameters yields
the ensemble Q(θ|Y, U).

In this example, as in the first example of a mixture experiment, the initial
densities of the plant, AMF Species 1, and AMF Species 2 are treated as known
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and measured. The limitations of this competition experiment is that only one
AMF species, namely Species 1, is measured over time in each of 8 years in an
agricultural plot so that the number of time points n was 8. In this hypothetical
example the values of the parameters were taken from Table 263 with the two
further specifications that the plant carrying capacity K was 2, the benefit γ
was allowed to play the role of the experimental condition U, and the error
σ2
ϵ = 0.02.

A Markov Chain Monte Carlo (MCMC) experiment is used to identify the
ensemble Q(θ|Y, U) using the Metropolis-Hastings updating rule described in
the first example using 40,000 equilibration moves and 40,000 accumulation
moves. The chi-squared statistic,

χ2 =
n∑

i=1

(− 1

2σ2
ϵ

ϵ2i ) (2.47)

only involves minimizing the errors in the predictions about AMF Species
1 since that is all that was measured in this hypothetical example. With the
ensemble in hand, the correlation matrix E(U) between the predictionsfS1

i , i =

1, . . . , 8 was computed from the identified ensemble for several experimental
conditions captured as U = phosphorous level is varied. In that the phosphorous
level was linearly related to the benefit of AMF 1 to the plant host, in the MINE
calculation the benefit γ was simply varied from 0 up to 10.0. For example, the
8 x 8 correlation matrix E(U) in [7] for a benefit γ = 2.67 was estimated from
the ensemble:

Table 2.2: Estimated ensemble values.

1.0000 0.9467 0.9548 0.9525 0.9500 0.9487 0.9477 0.9472
0.9467 1.0000 0.9922 0.9928 0.9921 0.9909 0.9903 0.9898
0.9548 0.9922 1.0000 0.9985 0.9981 0.9977 0.9970 0.9967
0.9525 0.9928 0.9985 1.0000 0.9977 0.9992 0.9988 0.9987
0.9500 0.9921 0.9981 0.9970 1.0000 0.9998 0.9994 0.9993
0.9487 0.9909 0.9977 0.9993 0.9998 1.0000 0.9999 0.9998
0.9477 0.9903 0.9970 0.9988 0.9994 0.9999 1.0000 1.0000
0.9472 0.9967 0.9898 0.9987 0.9993 0.9998 1.0000 1.0000

This value of the benefit is a very interesting value because its value is right at
a bifurcation point for the competition model, and at this point the qualitative
behavior of the ODEs changes. Below a benefit of 2.67 for the host, only one
competing AMF species survives, and at or above this benefit value 2.67 both
AMF species stably coexist. In other words, when the benefit is sufficiently large,
both the mutualist and pathogen AMF species are maintained in the plant roots.
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The expectation for the determinant of this correlation matrix between the
8 prediction components det(E(U)) can then be used to calculate the MINE
experiment (Figure 2.9) from the fitted ensemble. One of the challenges is that
this correlation matrix E(U) is nearly singular and hence the det(E(U)) is a very
small number. Particular care must be taken in evaluating the correlation matrix
used in MINE by the correlation ellipsoid method.

Figure 2.9: The MINE criterion based on the correlation ellipsoid allows a
choice of phosphate (or equivalently plant benefit γ) in a simple Lotka-Volterra
model of competition between two AMF species within a plant host[3].

The resulting MINE experiment for AMF competition in a plant host al-
lows a choice of plant benefit or equivalently phosphorous level (Figure 2.9).
There are particular phosphorous levels that yield more information in the
next experiment about AMF competition in the plant. There appear to be
two values, one at lower phosphate with the plant benefit varying between
γ = 1.5− 1.84 and one at a high phosphate value with the plant benefit being
around γ = 10.0. The emphasis is on a range of phosphorous levels as carried
out by Propster and Johnson[49]. It would be very interesting to know how
this MINE experiment would change if the ensemble were identified under a
very different phosphorous level.
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2.8 Conclusion
Ensemble methods[6] address the developments in the analysis of large genetic
studies made possible in Genomics, Transcriptomics, and other related omics
and originated in statistical physics[21]. In most omics experiments to character-
ize genes, genetic networks, and genomes the number of parameters or effects
(p) greatly exceeds the number of data points (n). In any network only a few
of the species (RNAs or proteins) are measured, but the behavior of a network
underlying a complex trait involves many genes and their products. In carrying
our experiments on RIL or GWAS populations the problem is similar. Again
there are many more SNP or gene effects on a trait than there are measurements
on individuals. The same situation arises in the study of microbiomes in host
species. R. A. Fisher and colleagues have built the main framework of experi-
mental design in an agricultural setting with methods that require n » p1. How
do we design current genetic experiments in this context when classical design
requires n > p, but modern day genetics lives in the world of n « p?

The problem is to design and analyze these kinds of genetic experiments
and field studies when n « p. We have developed a new model-guided discovery
approach to experimental design called the Maximally Informative Next Exper-
iment or MINE for designing such experiments[23]. This approach is distinct
from the criteria of experimental design in the case of linear models[19]. MINE
focuses on discovery while classic experimental design focuses on the precision
of effects in the design. MINE is adaptive and uses a sequence of experiments or
field studies to identify the parameters in the model, whether they be rate con-
stants in a genetic network or SNP effects in a GWAS on a complex trait. The
focus is not on the precision of the parameter estimates, but on the exploration
of the parameter space for the purposes of discovery. The discovery may be new
regulatory components of the model in a genetic network or the discovery of
SNPs that underly a complex trait in a GWAS. This was demonstrated in the
use of MINE with the study of clock in Neurospora crassa.

MINE is a discovery tool designed specifically for very large genetic data
sets and is illustrated in a variety of problems within genetics here. MINE is
built upon other ensemble methods[25] that have been developed for fitting
models with n « p. These ensemble methods of model identification coupled
with MINE complete a discovery cycle (Figure 2.7) for exploring problems in
genetics. This discovery cycle has been called computing life[15]. MINE as a
discovery tool completes the cycle in both analyzing and designing future costly
omics experiments arising in genetics and allows an adaptive approach to solving
problems in genetics.
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Chapter 3

MINE: Maximally
Informative Next

Experiment – Towards a
new experimental design

and methodology

3.1 Introduction
Genome Wide Association Studies (GWAS) have become a standard approach
to gain insights about genes that control a complex trait. As far as we know
there is no literature addressing GWAS experimental design (genotypes selec-
tion) adaptively; in this work we propose a method to select the annual most
informative genotypes in a sequence of GWAS experiments for discovering chro-
mosomal regions related to a quantitative trait. The advantage of this approach
is to deconstruct a GWAS into a smaller series of more tractable field experi-
ments that may be more informative than one large classical design. This ap-
proach is called MINE: Maximally Informative Next Experiment, and max-
imizes the prediction uncertainty volume in a complex trait from linear and
mixed linear models; it was originally presented for analysis of Neurospora crassa
genetic networks[1][23], and it represents an alternative to classic experimental
design[10].

The modeling part of GWAS also allows us to rethink classic methodology
in experimental design. In fact, linear regression is the technique used to fit
linear models[5] to GWAS data, where researchers generally have fewer phe-
notypic observations (rows) than SNPs or chromosomal regions (columns) in
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the design matrix. The solution proposed here for this problem is ensemble
methods for fitting [65]. Geneticists regularly take one SNP at a time to create
a model (one model per SNP); therefore, a single model encapsulating avail-
able SNP interaction is not possible, and linkage disequilibrium(LD) is present
implicitly due to the low number of bases separating SNPs. To overcome this
problem a tool was created that puts together available SNPs forming wider
chromosomal regions so that distinct regions are free of linkage disequilibrium.
The result was one matrix accounting for all SNPs, and in order to identify
a model ensemble methods are used and computed by Markov Chain Monte
Carlo (MCMC). Specifically, the Metropolis algorithm[31] was used to fit both
linear models with fixed effects and mixed linear models to data on complex
traits from a GWAS. When we refer to linear models herein, it will be under-
stood it is linear models with fixed effects throughout. To select the most signif-
icant chromosomal regions the Bayesian interval[66] method and Benjamini
Hochberg criteria[67] are used for feature selection. A tool was also developed
to extract the currently known genes within these chromosomal regions from
the Phytozome database[68]. Finally, the last issue is the choice of columns (i.e.,
accessions) to include in the design matrix for succeeding years of a GWAS. This
design question was addressed by a particular MCMC method called MINE
[1] [23]

In order to illustrate this new design methodology for GWAS, an adap-
tive GWAS was implemented on a Bioenergy Association Panel (BAP) [2] for
Sorghum bicolor on Wellbrook Farm, Watkinsville, GA, over three years. Roughly
80 accessions each year were arranged in a randomized complete block design
with three blocks over three years to examine a variety of quantitative traits
measuring plant health: log dry weight, tiller number, fungal disease burden,
and height. There are over 10,000 genotypes worldwide that have been charac-
terized in this tractable diploid genetic system for potential use in the GWAS
[8].

3.2 Materials and Methods

3.2.1 Field experimental design
The location for the field experiment was Wellbrook Farm at Watkinsville, Geor-
gia, USA; 81 accessions were planted for 3 years randomly in 3 blocks, each acces-
sion appearing 6 times in a block. Accessions were randomized within a block
by plot (i.e., row). The blocks were uniform in soil composition.
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Figure 3.1: Aerial photo of Sorghum plants at Wellbrook Farm. Cour-
tesy of Dr. Peng Qi.

The accessions were taken from the Bioenergy Accession Panel (BAP)[2],
which means these accessions have already been sequenced to determine their
SNP genotype; this BAP collected is maintained by the USDA in Griffin, GA.
Initially the seed were ordered through USDA and germinated in pots at UGA
greenhouse; watering was done daily, and after a period of 2 weeks small sorghum
seedlings were transplanted to Wellbrook Farm. Once in the soil at the farm,
a weeding regime was established twice per week, and harvesting took place
3 months later. During harvesting disease and height were determined and
recorded; canopies were chopped and put into bags to be taken to ovens for
drying and weighing. Foliar fungal disease (and referred to as disease hereafter)
was scored for Leaf Blight, Target Leaf Spot, Zonate Leaf Spot, Gray Leaf Spot,
and Anthracnose. Disease and height data were put directly in the database;
however, dry weight canopies spent one week in the oven and were weighed
immediately after. The dry weight was recorded in grams, height in meters,
and disease with a number from 1-10 representing its severity on the leaves of
the plant. All software developed and used in this work can be found at the
following link: https://github.com/JArnoldLab/MINE

3.2.2 Modeling
GWAS modeling has traditionally used linear regression [5]; however, the first
challenge to be addressed is to increase the number of observations so they super-
sede the number of columns in the design matrix for classic methods. MCMC
methods for implementing ensemble methods are a good alternative when the
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number of observations is less than the number of parameters [65], and the
Metropolis algorithm was used as a backbone for solving the optimization prob-
lem for finding the parameters fitting the GWAS data ; its description is the
following:

Algorithm 1 Customized Metropolis algorithm
Set a stepwidth
Set N number of equilibration sweeps
Set K number of parameters in the β vector
Set P number of decorrelation sweeps
Set M number of β vectors to accumulate
Set a random initial β vector
for N do

for K do
Choose an element βk from β randomly
Propose an update βk = βk + (stepwidth ∗ U(−1, 1))

Accept the change with probability min(1, Q(β
′
,X)

Q(β,X)
)

for M times do
for P times do

for K times do
Choose an element βk from β randomly
Propose an update βk = βk + (stepwidth ∗ U(−1, 1))

Accept the change with probability min(1, Q(β
′
,X)

Q(β,X)
)

Store the β vector
return Accumulated β vectors

In order to use all the data in the fitting procedure, a design matrix was
introduced (Regular GWAS methodology considers one SNP at a time, and
consequently SNP interactions and carries LD implicitly). A tool was imple-
mented that puts all available SNPs together to form chromosomal regions, a
method known as the sum method [60]. The size of each chromosomal region
was increased to cover an adjacent SNP until the size of the region was at least 50
kb. SNPs from different chromosomal regions are unlikely to be in linkage dis-
equilibrium; this yields a design matrix that covers the entire genome if desired
and sidesteps the issue of linkage disequilibrium [69].

The tool is designed to work individually with each chromosome, so if the
user wanted to cover all the genome, an additional tool would be implemented
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to join the small matrices coming from each chromosome into one large design
matrix.

Linear Model

The Metropolis algorithm is based on a particular model, which is then used to
setup a minimization problem characterizing model fit; the first model chosen
was a linear model with fixed effects using the previously defined design matrix.
The model is defined as follows:

Y = Xβ + ε (3.1)

The Greek letter β represents the parameters describing the effects of par-
ticular chromosomal regions formed from SNPs (design matrix columns). In
total there were 2748 regions in the Sorghum bicolor genome. The rows of the
X matrix (design matrix) represent the genotype of each accession. The ϵ are the
error in each observation on each accession. The minimization method chosen
is that of least squares. In the Metropolis algorithm the objective function is
called the Hamiltonian [7], and defined as:

H(β,X) =
1

2
(Y −Xβ)

′
V −1(Y −Xβ) (3.2)

This formula represents a distance metric of how far the model prediction
is from the observed value of the quantitative trait. The V matrix is diagonal
and fixed at the sample variance in the complex trait for each accession. The
Metropolis Algorithm carries out a random walk in the parameter space to
minimize the Hamiltonian. In order to determine if the proposed random step
is good or not, the Metropolis algorithm utilizes a probability function. The
Boltzmann distribution was chosen and is very well-known in statistical physics.
Its definition is the following:

Q(β,X) =
1

Ω(X)
ϵ−H(β,X) (3.3)

The Metropolis algorithm implementation has two phases; the first phase
is to equilibrate the system at a minimum in the Hamiltonian, which means
that toward the end of the equilibration stage the parameters being estimated
change very little. We say that they reached an equilibrium in the Monte Carlo
experiment. The second accumulation phase comprises collecting the n almost
best solutions. In our case 1000 sets of parameters were collected.
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Mixed Linear Model

The mixed linear model is an elaboration of the linear model and a standard now
for GWAS [59]. We included variance components into the effects of different
chromosomal regions, and it is defined as follows:

Y = Xβ + Zu+ ε (3.4)

The first term (XB) represents the trait prediction, such as biomass; the
second term (ZU) represents the variance components and heritability, and it
is defined as:

V =
n∑

i=1

X
′

iXiσ
2
j(i) + σ2I (3.5)

The index i runs over samples. Some samples share the same variance com-
ponent. The index j(i) returns the variance component of the ith observation
for the jth accession. The Hamiltonian will be represented by the negative nat-
ural logarithm of the following likelihood function:

L =
ϵ−

1
2
(Y−Xβ)

′
V −1(Y−Xβ)

(2π)n/2|V |1/2
(3.6)

H =
1

2
(Y −Xβ)

′
V −1(Y −Xβ) +

1

2
n ln(2π) +

1

2
ln(|V |) (3.7)

The Boltzmann distribution was also chosen for the mixed linear model.
The resulting Hamiltonian has two more terms than the linear model with fixed
effects.

3.2.3 Stepwidth adjuster feature in the Metropolis algo-
rithm

In the Metropolis algorithm model parameters are sampled in random steps
from the current position in the parameter space around a region defined by
the local minimum in the Hamiltonian; however, the random step depends on
a number selected by the user, the stepwidth; later, the random step is accepted
or rejected. It is recommended that the rate of accepted steps is between 30
and 70 percent during the equilibration phase; this acceptance rate range is not
always achieved, and may be an effect of being stuck in a small subregion during
the Monte Carlo experiment. Consequently, the parameters collected in the
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accumulation phase (MC sample) may include models that represent a bad fit
mixed in with the almost best solutions.

To overcome this issue, a dynamic stepwidth adjuster was designed and
implemented within the Metropolis equilibration phase; its mathematical defi-
nition is the following [70]:

Sn = fn ∗ Sn−1 (3.8)

fn =



1 if (rmin ≤ rn ≤ rmax) | (Sn−1 < Smin) | (Sn−1 > Smax)

fn−1 if (rn−1 < rmin & rn < rmin) | (rn−1 > rmax& rn > rmax)
1√
fn−1

if (rn−1 < rmin & rn > rmax) | (rn−1 > rmax& rn < rmin)

2/3 if (rmin ≤ rn−1 ≤ rmax& rn < rmin) | (n = 1& r1 < rmin)

3/2 if (rmin ≤ rn−1 ≤ rmax& rn > rmax) | (n = 1& r1 > rmax)

(3.9)
The values rmin and rmax are the low and high acceptance rate limits set by

the user, and rn is the current acceptance rate

Smin = EsS̄ (3.10)

Smax = (
1

Es

)S̄ (3.11)

S̄n =
1

n

n−1∑
n′=0

Sn′ (3.12)

Es = 10−4 . . . 10−6 (3.13)
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Figure 3.2: Dry weight acceptance rate and stepwidth for Beta and
Sigma parameters using the stepwidth adjuster. The mixed linear model
was computed with all the data available.

Reasonable results were obtained with the stepwith adjuster in our Metropo-
lis algorithm implementation as shown in Figure 3.2. The stepwidth adjustor
takes the acceptance rate to the range we desired during the equilibration phase.
The step width adjuster stabilized for the chromosomal effects but increased for
the variance components to achieve the desired acceptance rate range. Some-
times it was necessary to use an acceptance rate above 70 percent to achieve
system equilibration. The dry weight target acceptance rate was set between 0.3
and 0.7 for the mixed linear model.

3.2.4 MINE
The MINE approach, a model-guided discovery tool, is an experimental design
tool to obtain the genotypes that yield the most trait information and its rela-
tion to chromosomal regions by maximizing the model prediction uncertainty
volume about a complex trait (see review [23]). This is done by two different
criteria: covariance and Pearson correlation between predictions of the quanti-
tative trait in the next GWAS experiment one year later.
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Figure 3.3: A visual explanation of the relation between parameter
space and phenotype space (Y). If we maximize the volume (green
square) of our phenotypic observations on the quantitative trait, then
the choice of parameters (brown square) will be shrunk. If we set up
various experiments, adding one more experiment each time, then the
next parameter choice will be better and volume, tighter.

The covariance approach defines a volume (in the trait observation space)
based on the uncertainty ellipsoid from the covariances of K observable pre-
dictions to reduce the volume in the parameter space. On the other hand, the
correlation approach uses the Pearson correlation of K observable predictions
for the ellipsoid. The MINE approach then uses the estimated parameters for
the model by ensemble methods to calculate expected values in the next year.

Emc[Gk(., X)] =
N∑

n=1

Gk(β
(n), X) (3.14)

Emc[Gk(., X)Gj(., X)] =
N∑

n=1

Gk(β
(n), X)Gj(β

(n), X) (3.15)

where k = 1,2,3...K; j = 1,2,3...K. The constant K represents the number of
genotypes to be chosen in a given year to obtain the maximum amount of in-
formation about the model parameters. The covariance and correlation criteria
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between predictions in the next experiment are based on a matrix of covariances
or correlations, respectively. Each element of the covariance matrix is defined
as follows:

Dkj(X) = Emc[Gk(., X)Gj(., X)]−Emc[Gk(., X)]Emc[Gj(., X)] (3.16)

Each element of the correlation matrix can be obtained from the covari-
ances.

Ckj(X) =
Dkj(X)√
Dkk

√
Djj

(3.17)

The matrix determinant represents the ellipsoid uncertainty volume, and
since both matrices are square and positive semi-definite, then the determinant
is computed in the following way from the eigenvalues of the covariance or
correlation matrix:

Det(D) =
K∏
k=1

λk (3.18)

Det(C) =
K∏
k=1

χk (3.19)

The λ and χ represent an eigenvalue from the covariance and correlation
matrices, respectively calculated from the model predictions.

3.2.5 Optimization algorithms
Imagine there are 350 genotypes (accessions), but resources are only available
to plant 80 genotypes per year; using the MINE procedure, it will be necessary
to analyze each subset of 80 genotypes; therefore consideration will need to
be given to analyzing 350 choose 80 subsets. This number alone is 2.59x1080,
which is not feasible to examine each subset on the fastest computers. In order
to have a result in reasonable time, 4 optimization algorithms were designed to
have a result in a matter of hours.

Suboptimal algorithms

The objective of this algorithm is to reduce the size of each subset to be analyzed;
the size should be a number that divides the total number of accessions to be
planted. In the case here, every subset was chosen to be of size 3 because 81
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accessions were planted (81 is divisible by 3). When all subsets are analyzed
the top n are chosen until completing the number of accessions to plant. Its
description is as follows:

Algorithm 2 Suboptimal algorithm
Set n number of elements in a tuple
Set p number of accessions to be selected
Generate all combinations of n elements from the accessions
Score all tuples
Sort the tuples based on the score
Select the top p individual accessions from the tuples
return List of top p accessions

Monte Carlo

This MINE computation algorithm intends to select a subset of size equal to
the number of accessions to plant, and the rest of the accessions to go into a pool
as candidates for later choices (but currently categorized as not for use). After
n steps, one accession in the subset and one accession in the pool are swapped,
and the MINE score is calculated to decide if the change is an improvement by
the MINE criterion. The algorithm is described as follows:

Algorithm 3 Monte Carlo algorithm
Set p number of accessions to be selected
Set m number of swapping steps
Generate an initial random sample of p accessions
for m times do

Swap one accession from the sample with one from the accessions pool
Score the sample
Accept or reject the change using Boltzmann probability and the score

as a Hamiltonian
return Sample of p accessions

Suboptimal combination algorithm (Nc3+2)

This MINE computing algorithm combines two suboptimal search approaches;
the length of subsets in both must be small. A suboptimal search is performed
first. The top subset is taken, and from that point the search with the smaller
subset length suboptimal search is performed successively until having the total
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number of accessions to be planted. In our case, the first suboptimal search was
length 3, and the second one length 2. This algorithm is the following:

Algorithm 4 Suboptimal combination algorithm
Set p number of accessions to be selected
Set n number of elements per tuple in the first suboptimal algorithm
Set m number of elements per tuple in the second suboptimal algorithm
Get the top tuple of length n from the first suboptimal algorithm
Remove the accessions in the tuple from the pool
Create a list initializing the accessions in the tuple
while number of accessions in the list < p do

Run the second suboptimal algorithm for the accessions in the pool
Get the top tuple of length m
Add the top tuple to the accessions list
Remove the accessions in the tuple from the pool

return List of p accessions

Greedy algorithm

This algorithm starts by taking as reference the top subset of the suboptimal
search. It adds one accession at a time from the pool of other accessions, scores
the subset, removes the previously added accession and goes on to the next one;
after all accessions are passed, the highest score subset remains. The process is
repeated until the remaining subset size equals to the number of accessions to
be planted. Its description is the following:
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Algorithm 5 Greedy algorithm
Set p number of accessions to be selected
Set n number of accessions per tuple in the suboptimal algorithm
Get the top tuple of length n from the suboptimal algorithm
Remove the accessions in the tuple from the pool
Create a list initializing the accessions in the tuple
while number of accessions in the list < p do

for each accession in the pool do
add the accession to the list
Score the list
Store the list and score
Remove the accession from the list

Sort the stored lists based on their score
Select the top list
Make the selected list the main list

return List of p accessions

Figure 3.4: Optimization algorithms MINE score over 10 experiments.
Suboptimal is labeled "N choose 3", Suboptimal combination is labeled
"Nc3 + 2", MC Nc3 representing the Monte Carlo algorithm initialized
with the suboptimal algorithm results.
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To compare the performance of the 5 MINE computational algorithms
over ten different MCMC simulations were computed using the same data,
but different random seed. The results show that the greedy and suboptimal
combination algorithm are the best (Figure 3.4).

3.2.6 Marker selection
It is the norm that GWAS selects the most significant chromosomal regions
(markers) by means of a t-test applied to an individual marker modeling [5].
Since all markers here were encapsulated into a large design matrix and have only
one model, a linear projection, Bayesian interval, and Benjamini-Hochberg cri-
teria were used to filter out the most significant markers. The linear projection
method is intended to remove noise due to the parameters not constrained by
the observations on the quantitative trait. The procedure is as follows:

Algorithm 6 Linear projection algorithm
Create a diagonal matrix from the data variance V
From design matrix X, create a matrix: XTV −1X

Create a rotation matrix rot by extracting and sorting the eigenvectors from
XTV −1X

Rotate the β vector β∗ = βT rotT

Remove the values that wandered around −∞ to +∞ during estimation
Get the projected β by rotating back β∗: βp = β∗rot

Once the linear projection method is applied, the Bayesian interval proce-
dure is then applied. It consists of retaining those parameters outside of a 95
percent Bayesian confidence interval of about zero. The Bayesian Confidence
Interval is computed from the ensemble.

Algorithm 7 Bayesian interval algorithm
Sort each β parameter sample
for each β parameter sample do

if first 2.5% < 0 and last 2.5% > 0 then
Remove β parameter

In parallel with the Bayesian interval Method [66], parameters were also
filtered by the Benjamini-Hochberg criterion [67] using a false discovery rate
threshold, in our case 0.05, and z-scores from the MC sample.
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Algorithm 8 Benjamini-Hochberg algorithm
Get z-scores and p-values across all β parameters
Sort the p-values
Set a threshold α for false discovery rate
Set the Benjamini Hochberg critical value BH = rank

length
∗ α

if p-value < BH then
Keep the β that corresponds to the p-value

We keep the markers that passed all filters.

3.2.7 Gene finder tool
Having the final chromosomal regions (markers) is only part of the results. A
tool was implemented that allows the retrieval of the known genes through
Biomart in Phytozome within each chromosomal region. This functionality
can be expanded to sequences or other entities. This tool takes the filtered chro-
mosomal regions and its limits in the genome, and connects to the Phytozome
database [68] (maintained by the DOE) to retrieve the genes within each region.

Figure 3.5: Gene finder tool diagram

3.3 Results

Modeling

A 3 year adaptive GWAS experiment using MINE was performed on Sorghum
data. Our initial data (year 0) came from the Kresovich laboratory[2], and for
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3 consecutive years selected Sorghum genotypes (accessions) were planted, cre-
ating an expanding database for dry weight, height and disease. Most omic
studies will have prior data to initialize a MINE experiment (see, for example,
[1]); however, if this were not the case, an alternative is to choose a diversity of
accessions with different phenotypes to initialize the MINE procedure. MINE
is a discovery tool, and such a choice in a diversity of accessions would tend to
reflect its discovery purpose of MINE. In year 1 our accessions were selected
from the study made by Kresovich. A total of 3 blocks of accessions were used
for planting, and 81 genotypes were planted in each block using a randomized
block design with 3 blocks having 6-9 replicates per row. The parameters es-
timation procedure (computed with the Metropolis algorithm) performance
was reasonable (Figure 3.6), and a set of 1000 sets of parameters were collected
in the ensemble (MC sample) for each trait in the accumulation phase. The
equilibration phase appeared successful (Figure 3.6).

In the second year the MINE procedure was used to select the genotypes
to plant for year 3. 81 genotypes were selected with MINE; 3 blocks were set up,
each of them containing the 81 genotypes randomly arranged into rows with 9
replicates. Data collected from the previous year were merged with the Kreso-
vich data (year 0) to run the parameters estimation and the MINE procedure
for year 3.

For the third year, data from years 2, 1, and Kresovich were combined to run
the parameter estimation by the ensemble method and the MINE procedure
was computed for year 4. Again 3 blocks were used in the same location to plant
the 81 new genotypes.

In order to obtain the most significant chromosomal regions and the genes
within each region, a GWAS analysis was performed with the ensemble method
using all of the data from Kresovich, year 1, year 2 and year 3.
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Figure 3.6: Dry weight, height, disease linear model Hamiltonian using
Kresovich, year 1, year 2, year 3 data against sweep (a visit on average
to each model parameter once).
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Figure 3.7: Dry weight, height, disease mixed linear model Hamiltonian
using Kresovich, year 1, year 2, year 3 data against sweep (a visit on
average to each model parameter once).

As a control on the Monte Carlo experiment, the Hamiltonians on both
linear model (Figure 3.6) and mixed linear model (Figure 3.7) were computed
(a visit on average to each model parameter once) to demonstrate equilibra-
tion. The number of collected parameter vectors was 1000 for the accumula-
tion phase, and the number of decorrelation sweeps were 1000 between each
member of the ensemble in the accumulation phase. That is why Figures 3.6
and 3.7 show an equilibrium during at least one million sweeps.
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Figure 3.8: Ensembles separately fitted by year are overlapping with
respect to their Hamiltonians. Hamiltonian histograms from ensembles
of the mixed linear model for height were separately fitted in each year
and computed.

An assumption of the MINE approach to GWAS is that there is no year
effect on the complex trait, and as can be seen in Figure 3.8 the Hamiltonians for
year 1, 2, and 3 are overlapping, suggesting no year effect. When there is a year
effect, two approaches are available. One approach is to introduce a year effect
into the mixed linear model. A second approach is to recognize that when there
are small yearly effects, this environmental noise provides an additional filter for
significant features in the genome. Researchers are only going to be interested
in chromosomal regions or SNP effects that survive the yearly environmental
effects of planting, such as those due to variation in rainfall.

MINE

The MINE procedure was run to select the most informative genotypes for the
second year. The data used were from Kresovich and year 1. The data for the
third year was from Kresovich, year 1, year 2.

56



Figure 3.9: Accessions selected by the MINE procedure for planting in
year 2 (2022) and year 3 (2023). The selected accessions are in yellow

The MINE approach kept 22 percent of the accessions from year 2 to year
3.

Figure 3.10: MINE score for covariance criterion in equation 3.18 in-
creases over the 3 years.

The MINE criterion (D), used to select the most informative accessions,
increased in the experiment over years (Figure 3.10), which shows that the MINE
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procedure was improving on our knowledge about the relation of a complex
trait and its relation to the effects on the complex trait.

Marker selection

Markers were selected only using the final cumulative data in year 3, and both
linear and mixed linear models were utilized in feature selection. The results
of the feature selection of significant chromosomal regions with each class of
models for each trait are summarized in Venn Diagrams [4]. (Figures 3.11 - 3.13):

Figure 3.11: Significant markers (chromosomal regions) using all data
available. LM are linear model results, and MLM mixed linear model
results. Computed with [4].
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Figure 3.12: Significant markers (chromosomal regions) using all data
available. LM are linear model results, and MLM mixed linear model
results. Computed with [4].

59



Figure 3.13: Significant markers (chromosomal regions) using all data
available. LM are linear model results, and MLM mixed linear model
results. Computed with [4].

Comparison of mixed linear model with fixed effects vs. linear model in
GWAS analysis

As seen in Figures 3.11 , 3.12, and 3.13, the mixed linear model generally shows a
higher filtering capacity for the effects of chromosomal region than the linear
model. Only for height was the filtering of features comparable for the linear
and mixed linear models. This means our approach of attributing a variance
component to each accession as a model parameter and also considering the
fixed variance across observations translates into fewer selected features.

Marker analysis

To understand what genes underly each complex trait, we retrieved all of the
genes within each selected chromosomal region from the Phytozome database
[68] using our “gene finding” tool previously described, an average of 12 genes
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per chromosomal region were retrieved. The markers from the mixed linear
model were chosen because the filters showed a higher capacity as shown in the
previous figures. The genes identified arise from an adaptive GWAS performed
over 3 years. Data were collected for 3 traits: dry weight, height, and disease;
however, the construction of the design matrix selection (of genotypes) was
guided by the dry weight observations. Then, an exhaustive search of the GWAS
literature on each gene was carried out in sorghum, and all relevant sorghum
GWAS papers were downloaded from Google Scholar. A script was created to
take a gene found here in our GWAS and located in each paper. The results
of this search are summarized in Table S1-S3. The script was run on gene lists
found in our GWAS from three traits. Disease had 241 genes in the GWAS here
associated with significant chromosomal regions. Dry weight had 1807 genes
identified in 155 chromosomal regions, and height had 3603 genes identified in
287 chromosomal regions.

Dry weight genes

Any gene listed in this section was found to have a significant effect on dry
weight in our GWAS analysis. Its heritability score was 0.998996. This heri-
tability score obtained here is consistent with the ranges reported [71]. Gene
Sobic.001G112500 has been found to be important for biomass previously and
is the closest gene to a significant marker, explaining 16.2 percent of the vari-
ation and making it the major one [72]. Gene Sobic.004G044200 and So-
bic.004G273900 were related to tannin and starch content. Sobic.004G044200
was found 1010 base pairs away from a selected marker, and Sobic.004G273900
was 33720 base pairs[73] from a marker. Gene Sobic.002G116000 was down-
regulated in mucilage-secreting aerial roots, and Sobic.010G120200 was deter-
mined to be a candidate by a previous GWAS and transcriptome analysis[74].
Yield per panicle was related to gene Sobic.005G064900, which was found in
linkage disequilibrium with a significant SNP [75]. Gene Sobic.006G122200
was associated to biomass composition [76]. Tiller number was found to be
associated with gene Sobic.007G151400 (and found here in its effect on dry
weight) in a GWAS for forage yield [77], and gene Sobic.008G186400 in a
GWAS for plant architecture and bioenergy [78]. Our GWAS approach on
dry weight also recovered significant chromosomal regions containing genes
from closely related traits such as height or disease, as supported by additional
literature. So, genes below were pulled in our GWAS as affecting dry weight, but
in other GWAS studies affected other traits, such as disease or height. Amino
acid traits affecting grain quality were related to genes Sobic.001G241200 and
Sobic.001G405500, which are 21770 and 4080 base pairs away from an impor-
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tant marker[73]. Sobic.004G273600 was a direct hit for tannin content and So-
bic.004G273800 was 28900 base pairs away from a significant marker [73]. Seed
width was found to be related to gene Sobic.001G271500 (as well as dry weight
here), its distance to a selected SNP being 22206 base pairs[79]; on the other
hand, gene Sobic.007G093100 was related to seed perimeter and was located
37632 base pairs away from a significant SNP[79]. Gene Sobic.001G328500 was
found near a significant QTL in a GWAS for grain color and tannin content[80].
For parasitic plant (Striga) resistance GWAS found genes Sobic.002G021700,
Sobic.009G056400, and Sobic.010G032000 that were close to significant markers[81].
Nodal root length was associated with gene Sobic.002G188800 in a previous
GWAS as well as Sobic.002G188600[82]. Genes Sobic.002G280400, Sobic.002G280600,
Sobic.002G280700, Sobic.002G280300, and Sobic.002G280800 showed re-
sistance to anthracnose, downy mildew, grain mold, and heat smut[83]. So-
bic.002G416400 and Sobic.005G165632 were found to be a determinant for
plant color[84]. Leaf senescence was determined to be related to gene Sobic.003G052200
in a GWAS[85]. Epi-cuticular wax genes were also discovered in our GWAS anal-
ysis. For example, Sobic.004G154200 was found 2880 base pairs away from a
significant marker, and Sobic.004G154300 5771 base pairs away from another
SNP [86]. A dwarf locus encodes a protein kinase, Sobic.006G067600, which
was related to height [87]. Gene Sobic.006G067700 was found in 3 GWAS
papers, and it was found in a dwarf locus [88] [89] [76]. An important marker
representing 1 percent of the variance on a days to flowering GWAS was found
in gene Sobic.006G120000 [87]. A circadian rhythm gene was identified in a
GWAS for forage yield Sobic.010G045100 [77].

Disease genes

All genes listed in this section were identified as candidates in the GWAS anal-
ysis of Disease here and tied to previous GWAS results. Its heritability score
was 0.648086 [90]. For disease genes, we found Sobic.004G002200 related
to starch content, which is an important factor in plant fitness under abiotic
stress[91]. Gene Sobic.004G002300 was associated with grain mold resistance
in a GWAS performed by [92] locating it 0 base pairs away from a significant
SNP. Resistance to parasitic plant (Striga) was also associated with gene So-
bic.004G158901, where it was found in a significant association with a SNP [81].
A GWAS on seed morphology mentioned gene Sobic.004G340100 being 2091
base pairs away from a selected marker, as well as gene Sobic.007G093100 being
37632 base pairs away. Both genes were associated with the seed perimeter[79].
Genes Sobic.006G149650 and Sobic.006G149700 were found associated with
plant color [84].
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Height genes

All genes in this section were found to be associated with height in the GWAS
analysis of this paper. Its heritability score was0.273398 [71]. Gene Sobic.003G202000
is associated with plant height and was found 40100 base pairs away from a sig-
nificant SNP [78]. Gene Sobic.007G161700 was found close to a dwarf locus,
specifically 2000 base pairs away, and Sobic.007G161800 and Sobic.009G024600
were close to significant markers [93]. Another gene found close to a dwarf lo-
cus is Sobic.007G160400, 94100 base pairs away [94]. Height is also associated
with gene Sobic.009G223500, which was found within two significant SNPs
[87]. Similar to dry weight, the height GWAS here also picked up significant
chromosomal regions containing genes cited by other traits in previous GWAS
literature, such as biomass or disease. Gene Sobic.001G270200 was related to
grain mold resistance, and was found 27000 base pairs away from a significant
SNP. Gene Sobic.001G270301 was also related to grain mold resistance and was
found 166000 base pairs away from another significant marker [95]. Anthrac-
nose resistance was found related to gene Sobic.001G377200, which contains
two significant markers [96]. Gene Sobic.001G405500, Sobic.002G113600, So-
bic.003G033900, Sobic.004G156000, Sobic.006G187900, Sobic.010G080300
were found related to grain quality variation [73]. Gene Sobic.002G113900 was
related to head smut resistance [83]. Gene Sobic.002G208200 was related to
grain yield, and gene Sobic.010G216600 was related to grain number and weight
[75]. Tiller number was associated to gene Sobic.002G253000, which was found
3700 base pairs away from a significant SNP [78]. Genes Sobic.003G052200, So-
bic.004G299500, Sobic.004G299600, Sobic.004G299700, and Sobic.006G261100
were associated to leaf senescence [85]. Grain carotenoids were associated with
gene Sobic.003G197500 and Sobic.007G156300, which were found 150000 and
40000 base pairs away from different significant SNPs [97]. Response to an-
thracnose was related to gene Sobic.003G203500 [98]. Concentrations of iron
and zinc were studied and we found gene Sobic.003G350800 highly expressed in
a GWAS [99]. Epi-cuticular wax was associated to genes Sobic.004G154200, So-
bic.004G154300, Sobic.004G156000, Sobic.005G222000, and Sobic.010G065300,
which were found 2880, 5771, 3821, 7607, 14138 base pairs away from different sig-
nificant SNPs, respectively [86]. Gene Sobic.004G163700 and Sobic.007G004500
were found to be associated with parasitic plant striga resistance [81]. Grain
color and tannin content were associated to gene Sobic.004G230000 [80]. So-
bic.005G033801 and Sobic.006G248300 were related to resistance to sorghum
aphid and were found within 200000 base pairs of different significant SNPs.
Gene Sobic.010G091100 was found within 408000 base pairs away from a sig-
nificant SNP [100]. Glume cover was found to be associated with genes So-
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bic.006G095550 and Sobic.006G095400 [93]. Panicle exsertion was associated
with gene Sobic.006G094600 and Sobic.006G094800 [93]. Biomass accumu-
lation under cold stress was related to gene Sobic.007G033300, which was found
within a significant SNP [101]. The number of nodes in aerial roots was asso-
ciated with gene Sobic.007G155900, which contained a significant SNP [102].
Panicle length was found associated with gene Sobic.008G120200 [103]. An-
thracnose response was associated with gene Sobic.009G162500 [104]. Biomass
related traits were associated to several genes, plant maturity with Sobic.009G250500,
Sobic.009G250600 and Sobic.009G250700; however, gene Sobic.009G250800
was the closest to a significant SNP, 55 base pairs away [72]. Biomass composi-
tion was found associated with gene Sobic.009G250600 [76]. Number of nodal
roots had significant SNP found within gene Sobic.010G198000 in a GWAS
for root system architecture [82].

Figure 3.14: Dry weight, height and disease correlations and his-
tograms

In Figure 3.14, there is a correlation displayed between dry weight, height,
and disease; therefore, these correlations are consistent with some candidate
genes appearing in the analysis of other traits.
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Markers in the BAP original study vs. our study

The following figure shows the number of selected chromosomal regions in the
BAP original study and our study, using the same tools presented in this work.

Figure 3.15: Selected chromosomal regions in the BAP original study
[2] and Arnold lab study for log dry weight under the mixed linear model.
Computed with [4].

The original BAP study had 244 different accessions in its analysis [2]. The
total number of accessions in the BAP collection is ∼ 343. In the MINE pro-
cedure in the current GWAS, a total of 155 novel chromosomal regions were
selected for follow up validation studies. The MINE procedure took a subset of
these 343 accessions each year; therefore, the MINE procedure ended up adding
more observations for some accessions and utilizing others in exploration, and
that is what we see in the previous Venn diagram (Figure 3.15). We validated
the chromosomal regions for both our and BAP data alone. There were 31 con-
firmed chromosomal regions contributing to dry weight in our study, resulting
in 20 percent contribution; on the other hand, there were 65 confirmed chro-
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mosomal regions contributing to dry weight in the BAP study, resulting in 15
percent contribution. The ultimate validation of these chromosomal regions
are further experiments examining the effects of genes through knockouts and
expression studies within the chromosomal region.

3.4 Discussion
In this work we have presented a new GWAS experimental design approach
supported by non-traditional methodology for adaptive (in time) GWAS. The
MINE procedure was proposed by Bernd Schuttler [1] and has been previously
used to identify the dynamics of cellular processes[23] as well as to choose taxa
in phylogenetic problems [105] [106], both sets of prior work focusing on exper-
imental design. In this work we have applied it to GWAS, in order to discover
what genotypes are the most informative for an adaptive sequence of exper-
iments over consecutive years. The ensemble method including the MINE
design tool were specifically designed for precision agriculture in which the
number of effects (p) greatly exceeds the number of observations (n). Tradi-
tional approaches in experimental design cannot accommodate this situation
[10]. The second novelty of MINE is its focus on discovery rather than the
precision of effects of genes or chromosomal regions on the complex trait of
interest. In the situation where there are potentially 105 effects but only 103

observations (plants) in the field experiment, the focus must be on discovery of
the important effects rather than the precision of the estimates of effects. The
results here shows us that MINE performs reasonably well (Figure 3.10); there
are limitations and benefits to using ensemble methods including MINE. One
of the main benefits is being able to perform an analysis having less observations
than markers. Rather than utilizing a single SNP modeling procedure, all of the
data are considered together. The approach taken here differs from methods
using LD directly to hunt down QTLs by sidestepping the LD problem with
the use of chromosomal regions [60]. The main limitation is accommodating
changes in the model over time. If the effects are stable in time, then smaller
yearly experiments can be carried out to identify the effects and satisfy resource
constraints (see Figure 3.8). For example, our laboratory was only capable of
planting 80 genotypes/accession per year, while still taking into account statisti-
cal design requirements, such as 3 randomized blocks containing 6 replicates of
each genotype. The resulting field experiment still had 1440 plants to manage,
and only 720 (3 replicates per block) were harvested. Results show that around
20 percent of the genotypes were kept from one year to the next one, achieving
a good degree of diversity across the selected genotypes. Finally, we filtered out
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the most significant chromosomal regions and examined all of the genes within
each region; our literature review reveals that our GWAS was able to accurately
identify markers containing genes related specifically to a particular trait in pre-
vious studies, such as height. Among the genes we found directly related to
height, Sobic.007G161700 and Sobic.007G160400 were previously described
by other GWAS to be associated to dwarfism, and genes Sobic.003G202000,
Sobic.007G161800, Sobic.009G024600, and Sobic.009G223500 were found
directly influencing height. Genes found directly related to dry weight were So-
bic.001G112500, Sobic.004G044200, Sobic.004G273900, Sobic.004G044200,
Sobic.004G273900, Sobic.002G116000, Sobic.010G120200, Sobic.005G064900,
Sobic.006G122200, Sobic.007G151400, and Sobic.008G186400. For disease,
the genes directly related were Sobic.004G002200, Sobic.004G002300, and So-
bic.004G158901. We also showed that height, dry weight and disease traits have a
degree of correlation (Figure 3.14); therefore, our GWAS on height picked genes
previously associated to dry weight and disease; similarly the GWAS on dry
weight picked genes related to height and disease, and the same observation was
made for the GWAS on disease. Interestingly dry weight genes found on height
GWAS were Sobic.002G208200, related to grain yield, Sobic.010G216600, re-
lated to grain number and weight, and Sobic.007G033300, related to biomass
accumulation under cold stress. There were many disease genes found in dry
weight and height GWAS, the most interesting being Sobic.002G021700, So-
bic.009G056400, and Sobic.010G032000, related to parasitic plant Striga resis-
tance; Sobic.002G280400, Sobic.002G280600, Sobic.002G280700, Sobic.002G280300,
and Sobic.002G280800, related to fungal resistance; Sobic.003G203500, re-
lated to response to Anthracnose; Sobic.005G033801, and Sobic.006G248300,
related to resistance to sorghum aphid. Height genes found in dry weight
GWAS were Sobic.006G067600, and Sobic.006G067700, related to dwarf loci.
In this work we used two different models, a linear model with fixed effects and
a mixed linear model. Both of them utilized the same chromosomal regions as
explanatory variables; however, for the mixed linear model we added two terms
to the Hamiltonian that allowed us to free the accession variances and convert
them into additional parameters to represent genetic variance components. The
result was a better filter for important chromosomal regions affecting the com-
plex trait (refer to Venn diagrams in Figure 3.11 - 3.13) The mixed linear model
showed a higher filtering capacity, achieving a reduction of 90 percent in the
final number of chromosomal regions for dry weight, and 99 percent for disease.

The use of MINE challenges the way experiments are done in precision agri-
culture on the home turf of the subject of experimental design [10]. The focus
of the MINE approach is on discovery of relationships in large data sets rather
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than the precision of effects in the experimental design. The parameter space
is large and potentially could involves 105 effects where there are only on the
order of 103 observations. This is a common problem in systems biology. The
solution to this problem is not only using ensemble methods to address the p >
n problem, but also having an adaptive approach that combines both intelligent
data collection and the use of the model to guide future experiments. Model-
guided discovery then leads to relationships with the underlying genes that can
be tested in the context of classical experimental design, once the relationships
between the complex trait and genes are found. The solution proposed here for
GWAS is only one example of where ensemble methods and MINE are critical
for the new omics experiments in genetics.
ACKNOWLEDGEMENTS. This work was supported by DOE DE-SC0021386
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Chapter 4

Limitations of the Scope
of Work in this thesis and

future work

4.1 Random effects on the chromosomal regions
The mixed linear model described in this work considers the random effects by
accessions on various plant health indicators, such as log dry weight, however,
the random effects by chromosomal regions are not considered . A future work
may involve generating mixed linear models that consider both types of ran-
dom effects or only the one over the chromosomal regions. This change implies
updating the implementation of the customized Metropolis algorithm by con-
sidering more variables to estimate as well as modifying the Hamiltonian, there
is also a possibility that the Boltzmann probability function needs an update as
well.

4.2 Large field experiment comparison
This work addresses an adaptive GWAS over 3 years, with a purpose of overcom-
ing the lack of resources to process a large amount of plants without a decrease
in accuracy. Part of a future work is to compare the adaptive GWAS approach
(using the MINE) with a large GWAS experiment using all of the BAP panel in
the same field. To do the comparison the data from the large experiment will
have to be processed using the tools developed in this work. It will be of interest
to know whether the MINE guided procedure outperforms the classical design
using the entire BAP panel.
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4.3 Projection method in mixed linear model
In this work a data projection was implemented to remove noise from the result-
ing set of parameters not well specified by the data on the complex trait. This
method was only implemented for the linear model with fixed effects because
the mixed linear model is nonlinear in form for the variance components in the
Hamiltonian used to guide estimation of model parameters. Therefore, a fu-
ture work would be to come up with a method to remove noise on parameters
from the mixed linear model, or avoid high fluctuations during modeling.

4.4 GWAS on AMF colonization data
Arnold lab has an ongoing project that measures AMF colonization in Sorghum
roots. Plants from this work are part of that project as well. A future work would
examine the AMF colonization data in a GWAS using the tools developed in
this work as well as the MINE approach.

4.5 Inclusion of field treatment in mixed linear
model

This work didn’t consider field treatment with phosphorus and nitrogen in the
adaptive experiment over three years;. Future work might consider treatment as
a new variable of the mixed linear model; this would imply to include additional
parameters in the modeling phase, and update the customized Metropolis algo-
rithm. The Bennetzen lab has a project involving field treatment; this data can
be considered in the proposal.

4.6 Generation of synthetic data to validate this
work

The lack of workforce to plant and harvest is a main constraint in this work. A
way to further compare the approaches presented here is to generate synthetic
data on the computer and run the tools to evaluate the procedures developed
here. Future work might consider both generating synthetic data to evaluate
the new methodologies developed here.
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