
 

 

REDEFINING MULTIDRUG RESISTANCE IN CANCER 

by 

ASHLEY ELIZABETH RAY 

(Under the Direction of Eugene Douglass) 

ABSTRACT 

 Multidrug resistance (MDR) is a primary barrier to successful cancer treatment with 

small molecule drugs. One mechanism of resistance is through transporters which pump drug out 

of cancer cells before they exert any therapeutic effect. The most studied transporter is P-

glycoprotein (Pgp), a member of the ATP Binding Cassette (ABC) superfamily of drug pumps. 

Prior research has focused on determining whether drugs are substrates of Pgp. Pgp specificity 

for FDA approved drugs is currently unclear due to technical variability in assays that quantify 

enzyme kinetics using non-cellular experimental models. Other approaches for overcoming 

MDR yielded selective Pgp inhibitors to increase intracellular drug accumulation. However, 

these selective inhibitors failed clinically. A quantitative, multifaceted approach is needed to 

characterize the MDR phenotype in cancer and optimize drug selection. Studying Pgp in the 

context of MDR, we improved Pgp specificity scores by leveraging new Pgp expression (cell 

lines, tissues) and function (drug screening) datasets. We experimentally and computationally 

integrated functional dataset information to better understand Pgp specificity using an approach 

based on underlying Michaelis-Menten enzyme kinetics. We obtained consensus scores for Pgp 

specificity across ~150 FDA approved oncology drugs and validated them experimentally in a 

subset of 76 substrates selected to represent the spectrum of drugs for Pgp specificity. These 



scores can be used to calibrate clinical diagnostics (Pgp expression), and our experimental 

platform can be used to quantify Pgp function in clinical samples. Overall, we have developed a 

parallel computational and experimental procedure to estimate Pgp selectivity in live cells. This 

procedure can be expanded to other drug transporters which contribute to MDR to further 

characterize this phenotype quantitatively.  
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CHAPTER 1 

MULTIDRUG RESISTANCE 

Subsection 1: Cancer Multidrug Resistance (MDR)   

MDR is the ability of cancer cells to withstand a variety of chemotherapeutic drugs that 

differ in structure and mechanism (1). This resistance is a significant cause of treatment failure in 

cancer therapy, especially in metastatic and recurrent cancers. MDR contributes to poor 

prognosis in many cancers, such as leukemia, breast cancer, and lung cancer. It involves 

multiple, adaptable cellular mechanisms which make it challenging to manage clinically.  

In the 1960s, resistance was a known phenomenon in the context of individual oncology 

drugs but not its mechanisms (2-4). A 1968 study was conducted to assess Daunomycin in mouse 

leukemic cells through uptake and retention. This study sought to determine correlations between 

the drug response and drug administered in-vitro or in-vivo. Ultimately, researchers concluded 

that drug response was more correlated to loss of drug from previously loaded in-vivo cells than 

uptake. Additionally, Kessel et. al. stated, “the amount of drug initially accumulated in-vivo was 

not a predictive index of drug response”. This indicates the presence of some mechanism that 

alters the amount of drug available for therapeutic effect (5). Another study was performed in 

1970 to determine cross-resistance to Vincristine and Daunomycin with Actinomycin D using 

parent and drug-resistant cell lines. The discovery of cross-resistance suggested a common 

mechanism of resistance to all three drugs. Researchers postulated that alterations in the cell 

membrane made it less permeable to drug entry (6).  

In 1973, a study was undertaken to follow up results showing decreased uptake of  
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Daunomycin in resistant vs wildtype ascites 

tumor cells (7). Researchers already knew of 

cross-resistance between Daunomycin, other 

anthracyclines and vinca alkaloids. They co-

administered Daunomycin with each of the 

cross-resistant drugs in the resistant lines. For 

most drugs, they increased Daunomycin 

uptake in the resistant lines which indicated 

competitive inhibition. Additional 

experiments were performed to study effects 

of metabolism on Daunomycin uptake and intracellular localization. Taken together, Danø 

provided “higher efficiency of the active…extrusion, a decreased influx (in presence of active 

extrusion), or both” as explanations for Daunomycin resistance. Thus, resistance was linked to 

decreased drug accumulation in cells, suggesting the presence of a drug efflux mechanism as 

shown in Figure 1 (7). 

In 1974, researchers used Colchicine-resistant Chinese Hamster cell clones to test 

alterations to Colchicine binding to its intracellular target and prior theories on membrane 

permeability (8). Interestingly, they did not find any changes to Colchicine-intracellular target 

binding between wildtype and resistant lines. Their research showed reductions in Colchicine 

uptake in the resistant lines which supports a permeability resistance mechanism. Additional 

findings demonstrated a positive correlation between Colchicine resistance and cross-resistance. 

It also elucidated a negative correlation between Colchicine resistance and uptake. This work set 

Figure 1. Drug Efflux Mechanism. (A) 
Normal cells accumulate drug which 
targets the cells and causes cell killing. 
(B) Efflux decreases drug accumulation 
in multidrug resistant cells.  
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the stage for more in-vitro work using cell lines with variations of the drug-resistant phenotype 

(8).  

Prior studies (5-8) pointed conclusively to membrane permeability as the source of drug 

resistance. Thus, a 1974 study expanded on this theory by studying the exact mechanism of 

Colchicine uptake in Chinese Hamster Ovary cells. Experiments supported a diffusion mediated 

mechanism including nonsaturation kinetics of Colchicine uptake and no change in uptake with 

inclusion of structural analogs. Additionally, the use of membrane detergents stimulated 

Colchicine uptake along with co-administration of other drugs. This work introduced kinetics 

and energy dependence on ATP into discussions on drug resistance. Lastly, Carlsen et. al. 

mentioned the observation of “a glycoprotein of approximately 170,000 daltons…exposed at the 

surface of colchicine resistant mutants and is absent or in greatly decreased amounts in the wild-

type cells”. This first posited glycoproteins as the membrane proteins responsible for reducing 

intracellular drug accumulation (9). 

Subsection 2: MDR Transporters 

 In 1976, researchers again identified a cell surface glycoprotein measuring 170,000 

Daltons in resistant clones of Chinese Hamster Ovary cells (10). From cell surface labelling 

studies, this glycoprotein was largely absent from the parent line but present in the resistant lines. 

Researchers discovered a strong, positive correlation between the expression of this glycoprotein 

and drug resistance. Since the presence of this glycoprotein altered membrane permeability, they 

named it the Permeability or P-glycoprotein (Pgp). To determine Pgp amounts in other cells, an 

Actinomycin D and cross-resistant Syrian hamster line, SV40, and its parent line were examined. 

Compared to its parent line, the SV40 cells had increased amounts of membrane glycoproteins. 

This demonstrated the presence of Pgp in MDR cell lines. Researchers theorized that Pgp and 
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other glycoproteins were reducing plasma membrane permeability to drugs. They also noted that 

these glycoproteins were influenced by ATP levels (10). 

 To follow up previous studies, researchers made their first attempt at purifying Pgp from 

Chinese Hamster Ovary cells in 1979 (11). Plasma membrane vesicles were isolated through cell 

disruption and a series of centrifugation and washing steps. Membrane proteins were extracted 

through centrifugation, dialysis, detergents and lectin-agarose chromatography. Although the 

purification process was not 100% pure, this was a starting point for isolating Pgp for additional 

study. To that extent, this work presented the purification of Pgp and suggested future avenues 

for reconstituting it using in-vitro systems (11).  

These studies are among others in the 1970s-1980s (12-15) that demonstrated Pgp could 

actively transport drugs out of cells, leading to reduced cytotoxicity and resistance to multiple 

drugs. In 1986, researchers used KB cells, a subline of HeLa cervical adenocarcinoma cells, to 

study genetic changes associated with MDR. Specifically, they noticed amplification of DNA 

sequences on the MDR gene locus, MDR1. Further examination demonstrated a 4.5 kilobase 

increased expression of MDR1 messenger RNA (mRNA) followed by amplification of MDR1 

DNA. This research established Pgp as the first ATP Binding Cassette (ABC) transporter 

associated with MDR with characterization of its gene and protein (16).  

Pgp is a 170 kDa (9-10) membrane protein with two nucleotide binding domains (NBDs) 

and two transmembrane domains (TMDs) that utilize ATP hydrolysis to efflux substrates across 

the cell membrane. Pgp was shown to export a wide range of drugs, including chemotherapeutics 

like Doxorubicin, Vincristine and Paclitaxel, contributing to MDR in various cancers. Other 

transporters were soon discovered after Pgp such as Multidrug Resistance Protein 1 (MRP1) 

encoded by ABCC1. MRP1 was identified in the 1990s (17) as another key player in MDR. It  
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mediates resistance through the export of glutathione, glucuronide and sulfate conjugates. Unlike 

Pgp, MRP1 transports organic anions and conjugates, providing a different spectrum of 

resistance and indicating the diversity of the ABC transporter family (18). Another ABC 

transporter is Breast Cancer Resistance Protein (BCRP) encoded by ABCG2 and discovered in 

the late 1990s by a few independent research groups (19-21). BCRP plays a role in resistance to 

drugs such as Mitoxantrone, Topotecan and Irinotecan. Unlike Pgp and MRP1, BCRP has just 

one NBD and one TMD. Its expression in tissues such as the placenta, liver and intestines 

indicate its role in both drug resistance and normal physiology (22). Figure 2 displays the 

structural differences between Pgp, MRP1 and BCRP in their TMDs and NBDs (23-29).  

Although ABCB1, ABCC1 and ABCG2 are best known within the context of MDR, ABC 

transporters comprise seven subfamilies (ABCA to ABCG) which use ATP hydrolysis to 

transport various endogenous and exogenous substrates across cellular membranes. Beyond 

MDR, ABC transporters are involved in lipid transport, antigen presentation and the protection 

Figure 2. Structure of Drug Transporters. (A) Pgp has 12 transmembrane (TM) alpha-helices 
separated into 2 homologous halves with 2 nuclear binding domains (NBDs). (B) MRP1 has 
17 TM alpha-helices separated into 3 TM domain sections of 5 and 6 TM alpha-helices with 2 
NBDs. (C) BCRP has 6 TM alpha-helices and 1 NBD. 
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of tissues such as the blood-brain barrier from toxins (30). As a transporter, Pgp functions 

primarily by exporting hydrophobic drugs and exhibits broad substrate specificity due to its large 

binding pocket. MRP1 specializes in the efflux of glutathione and glucuronide conjugates which 

contributes to resistance against drugs like Methotrexate and anthracyclines. BCRP is known for 

its ability to protect tissues from xenobiotics and plays a role in placental drug transport and 

intestinal absorption (31). Figure 3 demonstrates the functional differences between Pgp, MRP1 

and BCRP with endogenous and exogenous substrates (32-40). 

 

Subsection 3: Overcoming MDR 

With the involvement of transporters in MDR, research moved toward development of 

Pgp inhibitors to reverse resistance. Drugs that act as Pgp inhibitors typically work through 

competitive or noncompetitive inhibition. Competitive inhibitors work by directly competing 

with drug for binding sites within Pgp. Noncompetitive inhibitors work by binding to ATP- 

Figure 3. Function of Drug Transporters. Pgp, MRP1 and BCRP efflux various oncology and 
non-oncology drugs. (A) Pgp effluxes bile acids, bilirubin, steroids, and lipids. (B) MRP1 
effluxes sulfate, glutathione and glucuronide conjugates, bilirubin, lipids, and steroids. (C) 
BCRP effluxes uric acid, flavonoids, bile, and steroids. 
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binding sites on the NBDs, so ATP cannot be hydrolyzed. Other noncompetitive inhibitors work 

by binding to allosteric sties changing Pgp’s conformation (41-42).  

To determine whether drugs acted as Pgp inhibitors, various assays have been employed 

over the years to test the inhibitory effects on Pgp function. These assays examined any changes 

in ATPase activity, efflux, intracellular accumulation and transport. For the assays, different 

techniques were used including photoaffinity labeling, monolayers, Pgp-specific antibodies and 

fluorescent probes among others (43). 

Early inhibitors were drugs tested as Pgp inhibitors but faced challenges due to their lack 

of specificity and high toxicity. First generation inhibitors typically demonstrated some level of 

Pgp modulation whether as a competitive substrate or inhibitor. These first-generation inhibitors 

covered several classes including cardiac drugs, immunosuppressants, antibiotics, antifungals, 

antimalarials, antiprotozoals, antivirals, central nervous system depressants, anesthetics, 

antihistamines, oncology drugs and anti-inflammatory drugs. Some of the well-known first 

generation Pgp inhibitors are Verapamil, Nicardipine and Cyclosporine A. Second generation 

inhibitors were mainly derivatives of first-generation inhibitors such as stereoisomers. These 

derivatives include Dexverapamil, from Verapamil, and Valspodar, from Cyclosporine A (43-

48).  

Next generation inhibitors were more specific and showed initial promise in preclinical 

studies. But they largely failed in clinical trials due to adverse side effects or limited efficacy. 

Third generation inhibitors were designed for Pgp inhibition to maximize specificity over first- 

and second-generation inhibitors. The prevailing thought was co-administering a Pgp inhibitor 

with a small molecule drug would reverse MDR. These third-generation inhibitors include 

Zosuquidar, Elacridar, Tariquidar, ONT-093 and PGP-4008. Although more potent than previous 
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inhibitors, they did not yield any measurable clinical improvement in Phase I trials. Around 

2010, the field pivoted away from development of Pgp inhibitors due to their failure in clinical 

trials (43,49-54).  

Alternative approaches for overcoming MDR involved developing noncompetitive 

inhibitors and using combinatorial strategies. Combination treatments usually included immune 

checkpoint inhibitors. Unfortunately, competitive inhibitors directly compete with drug for Pgp 

binding and efflux which led to side effects. They can interfere with Pgp’s normal physiological 

function or cause toxicity from intracellular overaccumulation of drug or endogenous substrate. 

Noncompetitive inhibitors modulate Pgp activity by interfering with ATP hydrolysis but not 

directly with drug binding (42,55).  

In more recent years, research has focused on immune checkpoints and the interaction of 

immune cells with Pgp. Specifically, Pgp is differentially expressed in macrophages in tumors 

which can have different activities depending on phenotype. M1 macrophages inhibit cell 

proliferation and damage tissue whereas M2 macrophages stimulate cell proliferation and repair 

tissue (56). This opposing dichotomy has been studied in the context of drug transporter 

expression and Pgp. Interestingly, Pgp expression is upregulated in M2 and downregulated in 

M1 macrophages which contributes to cancer resistance. Thus, more research has centered on 

use of immune checkpoint monoclonal antibodies to target cytotoxic T-lymphocyte antigen 4 

(CTLA-4), programmed cell-death protein 1 (PD-1) and PD-1 ligand 1 protein (PD-L1) in MDR. 

These monoclonal antibodies are not susceptible to efflux and can resensitize the antitumor 

response of cells (57).  

The challenges in targeting ABC transporters stem from their complex role in 

physiology. They are essential for normal cellular functions and inhibiting them can lead to off-
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target effects and toxicity. ABC 

transporters move endogenous substrates 

such as lipids, steroids and bile in addition 

to exogenous compounds out of cells. 

Physiologically, they are involved in 

pharmacokinetics roles including 

absorption (intestines, colon), distribution, 

metabolism (liver) and excretion (kidneys) 

of drugs from the body. They have 

additional functionality in barrier tissues 

such as the brain, lungs and testes (58-59). 

In these tissues, ABC transporters prevent 

toxic accumulation and maintain exchange 

of substrates between the tissues and 

bloodstream. 

 Thus, identifying reliable biomarkers for patient selection is crucial for the successful 

application of transporter targeted therapies (Figure 4). ABC genes in MDR are differentially 

expressed in patients depending on the cancer and tissues involved. Patient tumors can express 

combinations of MDR genes which can be up or downregulated from normal expression. Since 

transporters efflux different substrates, these drug pumps can be used as biomarkers to select the 

right therapy. For therapies that target transporters such as inhibitors and drugs which are known 

substrates, surveilling for biomarkers is critical. For instance, tumors high in Pgp only would be 

ideal candidates for a combination approach using a selective Pgp inhibitor and drug (60-61). 

Figure 4. Patient Selection for Therapies. 
Different patients express different MDR 
genes in their cancer cells. ABC transporters 
can be used as biomarkers for optimizing 
drug selection in the clinic.  
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 In the future, there must be an emphasis on understanding the tumor microenvironment, 

exploring immune cell interactions and developing targeted delivery systems. MDR is a complex 

phenomenon with multiple pathways that contribute to protective measures taken by cancer cells 

to ensure their survival. Further research into the tumor microenvironment encompasses studying 

tumor cell types, cell-cell communications, immune system involvement, metastasis etc. The 

immune system is complex as is its interactions with cancer cells and ways in which it promotes 

or suppresses the antitumor response. Targeted delivery systems include nanoparticles with drug, 

microRNA (miRNA) or other cargo which can be directed to specific tissues. All these 

approaches are currently being studied as options to treat cancer (62-64). 

 Other researchers are investigating genetic and epigenetic factors influencing transporter 

expression to identify new therapeutic targets (65). This research has moved toward studying 

regulation of MDR genes through small interfering RNA (siRNA) and miRNA including 

delivery of these RNAs through nanoparticles. Other epigenetic changes in cancer have been 

examined like alterations in transcription factors, DNA methylation, chromatin and regulation 

through bulk and single cell RNA sequencing. Specifically, research has focused on histone 

modifications which have been closely linked to cancer development and progression. These 

covalent histone modifications are accomplished through processes such as acetylation, 

methylation, phosphorylation and ubiquitination (66-67). 

 Over the past five decades, substantial progress has been made in understanding MDR 

transporters and their roles in drug resistance. Research expanded to ‘omics’ with genomics, 

transcriptomics, epigenomics, proteomics and metabolomics to better enable a holistic approach 

to studying MDR (68-69). Since MDR is a complex phenotype, it makes sense to study genes, 

transcription, translation, proteins, metabolites and epigenetic factors that contribute to our 
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knowledge base. In addition, resources such as the Protein Data Bank (PDB) have reported the 

3D structures of several transporters which has significantly aided drug discovery and 

development (https://www.rcsb.org/). 

 Despite challenges, advancements in the structural biology of ABC transporters and 

novel therapeutic strategies hold promise for overcoming MDR. Methods to determine or predict 

the structure of these ABC transporters can include X-ray crystallography, nuclear magnetic 

resonance (NMR), cryogenic electron microscopy (cryo-EM) and AlphaFold. Data from these 

studies have resulted in drug design that attempts to circumvent MDR through more potent 

inhibitors and drugs which are poor substrates of ABC transporters (24,27,70-73).  

 Future therapies may combine drug transporter inhibitors with other modalities such as 

immunotherapy, to enhance their efficacy while minimizing side effects. Overall, the outlook in 

cancer research is moving in a positive direction. With the emergence of more comprehensive 

datasets, there is lots of ground for new discoveries on MDR. Drugs are no longer limited to 

small molecules with the availability of monoclonal antibodies. Immunotherapies can enhance 

the efficacy of small molecule drugs. In addition, small molecule drugs can be given together in 

therapeutic regimens as combination chemotherapy. Chapter 2 will describe these big datasets in 

more detail focusing particularly on RNA sequencing and drug screening. 
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CHAPTER 2 

COMPUTATIONAL DATABASES 

Subsection 1: DrugBank  

 DrugBank is a comprehensive online resource that integrates detailed drug data with 

extensive information on drug targets and actions (74). DrugBank supports multiple applications, 

including in-silico drug discovery, drug design, drug docking and screening, drug metabolism 

prediction, drug interaction prediction and pharmaceutical education.  

 In 2006, the first version of DrugBank was released (74). Originally, DrugBank was 

developed to bridge the gap between clinically oriented drug resources and chemically oriented 

drug databases. It combines clinical information (drug action, absorption, distribution, 

metabolism, excretion, toxicity (ADMET)) with chemical information (structures, properties) in 

a single platform. 

 Given its focus on clinical and chemical information, DrugBank has a multi-audience 

focus. It was designed for pharmacists, clinicians, researchers and educators. Specifically, 

DrugBank provides detailed information on nomenclature, chemistry, structure, drug actions, 

pharmacology, pharmacokinetics, metabolism and drug-target interactions for each drug entry. 

Tables 1-3 display DrugBank retrieved information for the taxanes, anthracyclines, and vinca 

alkaloids. These drug classes are commonly used in cancer treatment, and most of them are well 

characterized through DrugBank.  

As a database, DrugBank contains links to other databases. These include but are not 

limited to GenBank (NIH genetic sequence database) (75), UniProt (protein sequence and  
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functional information database) (76), Protein Data Bank (3D structural data of large biological 

molecules) (70), ChEMBl (bioactive molecules with drug-like properties) (77), KEGG 

(bioinformatics resource) (78) and PubChem (79). This facilitates cross-referencing and 

extended research applications. 

DrugBank has broad applicability and usefulness for a wide range of scientific fields, 

including pharmacogenomics, pharmacoproteomics, pharmacometabolomics and 

pharmacoeconomics. DrugBank is frequently used by the research community, has been cited in 

numerous studies and is integrated into many international databases (80-83). 

 DrugBank continually evolves over time as evidenced by six versions of the database 

(74,84-88). Currently, DrugBank is at Version 6.0 with every update including more data fields, 

enhanced search tools and improved visualization capabilities. Additionally, these regular  

 

 Paclitaxel Docetaxel Cabazitaxel 
Brand Names Abraxane 

Taxol 
Docivyx 
Taxotere 

Jevtana 

Type Small molecule Small molecule Small molecule 
Average Weight 853.9061 807.8792 835.9324 
Chemical Formula C47H51NO14 C43H53NO14 C45H57NO14 
Indication(s) Sarcoma 

Lung cancer 
Ovarian cancer 
Breast cancer 

Breast cancer 
Lung cancer 
Protstate cancer 
Gastric cancer 
Head and neck cancer 

Prostate cancer 

Mechanism of 
Action 

Microtubule 
polymerization 

Microtubule 
polymerization 

Microtubule 
polymerization 

Metabolism CYP2C8 
CYP3A4 

CYP3A4 
CYP3A5 

CYP3A4 
CYP3A5 
CYP2C8 

P-glycoprotein Substrate Substrate Substrate 

Table 1. Taxane DrugBank Data. Physicochemical properties, ADMET 
parameters and clinical information. 
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DrugBank updates are based on user feedback and advances in drug research and development 

(88). 

DrugBank is designed to serve multiple audiences, including pharmacists, clinicians, 

researchers and educators. For drug nomenclature, chemistry and structure, DrugBank has 

information on drug names, synonyms, chemical structures and molecular formulas. For drug 

function and action, it includes data on mechanism of action, pharmacology, pharmacokinetics 

and metabolic properties. Additionally, DrugBank has extensive data on diseases targeted by  

 Doxorubicin Daunorubicin Epirubicin Idarubicin 
Brand Names Adriamycin 

Doxil 
Myocet 

Cerubidine 
Vyxeos 

Ellence 
Pharmorubicin 
PFS 

Idamycin 

Type Small molecule Small molecule Small molecule Small molecule 
Average 
Weight 

543.5193 527.5199 543.5193 497.4939 

Chemical 
Formula 

C27H29NO11 C27H29NO10 C27H29NO11 C26H27NO9 

Indication(s) Leukemia 
Breast cancer 
Wilms tumor 
Neuroblastoma 
Soft tissue 
sarcoma 
Bone sarcoma 

Leukemia Breast cancer Leukemia 

Mechanism of 
Action 

DNA 
intercalation  
ROS 
accumulation 
 

DNA 
intercalation 
ROS 
accumulation 

DNA 
intercalation 
DNA-TOP II 
complex 
stabilization 
DNA replication 
and transcription 
inhibition 

DNA 
intercalation 
DNA-TOP II 
complex 
stabilization 

Metabolism NAPD(+) 
NADPH3 
NADPH1 

   

P-glycoprotein Substrate Substrate Substrate Substrate 

Table 2. Anthracycline DrugBank Data. Physicochemical properties, ADMET 
parameters and clinical information.  
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drug and the proteins, genes and organisms involved. DrugBank has information on 

pharmacogenomics, metabolism and interactions by incorporating data on drug interactions 

(drug-drug, food-drug), ADMET properties (Absorption, Distribution, Metabolism, Excretion, 

Toxicity), pharmacogenomic data and pathways related to drug actions. Lastly, DrugBank is 

completely integrated with other databases on genetic sequencing (GenBank) (75), protein 

sequencing (UniProt) (76), large molecule 3D structures (Protein Data Bank) (70), drug-like 

properties (ChEMBl) (77), bioinformatics (KEGG) (78) and PubChem (79) among others (74). 

 The first version of DrugBank was published in 2006. DrugBank 1.0 contained nearly 90 

data fields per drug entry. It provided detailed information on small molecule drugs (841 entries) 

and biotech drugs (113 entries). In general, DrugBank 1.0 focused on integrating data from 

multiple sources and making it searchable for various applications in drug discovery and 

education. DrugBank 1.0’s main contribution was the database itself and the drugs within it  

 Vinblastine Vincristine Vindesine Vinorelbine 
Brand Names  Marqibo 

Vincasar 
  

Type Small molecule Small molecule Small molecule Small molecule 
Average Weight 810.9741 824.972 753.941 778.947 
Chemical 
Formula 

C46H58N4O9 C46H56N4O10 C43H55N5O7 C45H54N4O8 

Indication(s) Breast cancer 
Testicular cancer 
Lymphoma 
Neuroblastoma 
Sarcoma 

Leukemia 
Lymphoma 
Wilm’s tumor 
Neuroblastoma 
Sarcoma 

Leukemia 
Lymphoma 

Lung cancer 
Lymphoma 
Head and neck 
cancer 
Ovarian cancer 
Breast cancer 

Mechanism of 
Action 

Microtubule 
depolymerization 

Microtubule 
depolymerization 

Microtubule 
depolymerization 

Microtubule 
depolymerization 

Metabolism CYP3A family CYP3A family  CYP3A family 
P-glycoprotein Substrate Substrate Substrate Substrate 

Table 3. Vinca Alkaloid DrugBank Data. Physicochemical properties, ADMET 
parameters and clinical information. 
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Number of  1.0 2.0 3.0 4.0 5.0 6.0 
Data fields per DrugCard 88 108 148 208 215  
Search types 8 12 16 18 20 23 
Illustrated drug-action pathways 0 0 168 232 319 404 
Illustrated drug metabolism pathways 0 0 0 53 64 2,721 
Drugs with metabolizing enzyme data 0 0 762 1,037 3,859  
Drug metabolites with structures 0 0 0 1,239 1,360 3,037 
Drug-metabolism reactions 0 0 0 1,308 1,530 3,703 
Drugs with drug transporter data 0 0 516 623 1,954 3,408 
Drugs with taxonomic classification 
information 

0 0 0 6,713 7,387 12,723 

Inferred SNP-associated drug effects 0 0 0 0 5,993  
Directly studied SNP-associated drug 
effects 

0 0 114 201 324  

Drugs with 
patent/pricing/manufacturer data 

0 0 1,208 1,450 1,820  

Food-drug interactions 0 714 1,039 1,180 1,195 2,475 
Drug-drug interactions 0 13,242 13,795 14,150 365,984 1,413,413 
ADMET parameters 0 276 890 6,667 6,700  
QSAR parameters per drug 5 6 14 23 23  
Drugs with drug-target binding 
constant data 

0 0 0 791 1,563  

Drugs with experimental NMR data 0 0 0 306 922 1,822 
Drugs with experimental MS spectra 0 0 0 384 2,521 2,888 
Drugs with chemical synthesis 
information 

0 38 38 1,285 1,584  

Approved small molecule drugs 841 1,344 1,424 1,552 2,110 2,751 
Approved drugs with product 
ingredient structures 

0 0 0 474 1,551 4,030 

Biotech drugs 113 123 132 284 555 1,601 
Nutraceutical drugs 61 69 82 87 97 134 
Withdrawn drugs 0 57 68 78 209 317 
Illicit drugs 0 188 189 190 202 205 
Experimental drugs 2,894 3,116 5,210 6,009 4,964 6,722 
Investigational drugs  0 0 0 1,219 4,501 6,231 
All drug targets 2,133 3,037 4,326 4,115 4,563 4,939 
Approved-drug enzymes/carriers 0 0 164 245 479 526 
All drug enzymes/carriers 0 0 169 253 497 556 
External database links 12 18 31 33 35  
Total drug product pill images 0 0 0 0 3,600  
Linked drug indications 0 0 0 0 3,024 3,820 
Clinical trials 0 0 0 0 245,356 464,870 

Table 4. DrugBank Data Entries. Expansion of DrugBank data through versions 1.0, 2.0, 
3.0, 4.0, 5.0 and 6.0. 



 

17 

(small molecule, biotech, nutraceutical, experimental). Table 4 details the addition of new data 

types and expansion of current data types from DrugBank Version 1.0 to 6.0 (74,84-88).  

 The second version of DrugBank was published in 2008 (84). DrugBank 2.0 was 

expanded to include 60% more FDA approved drugs and a significant increase in experimental 

drug data. It introduced new data fields such as food-drug interactions, drug-drug interactions 

and experimental ADMET data. This reflects DrugBank’s widespread appeal to clinicians, 

patients and the public. In addition, new entries were added on chemical synthesis information, 

withdrawn drugs and illicit drugs. Lastly, DrugBank 2.0 had improved search capabilities and 

added new tools for data querying and viewing (84). 

The third version of DrugBank was published in 2011 (85). DrugBank 3.0 added more 

than 40 new data fields per drug entry, including data on drug pathways, transporters, 

metabolites, pharmacogenomics and adverse drug responses. It also introduced new tools for 

querying and viewing drug pathways and interactions. This update emphasized ‘omics’ 

applications which makes the database more useful for pharmacy-related fields such as 

pharmacogenomics, pharmacoproteomics, pharmacometabolomics and pharmacoeconomics 

research. In addition, DrugBank 3.0 expanded the number of entries for established data fields 

and incorporated new data fields such as drug enzymes and carriers, and single nucleotide 

polymorphism (SNP) associated drug effects. It focused on expanding data related to drug 

metabolism, ADMET and Quantitative Structure-Activity Relationship (QSAR). DrugBank 3.0 

enhanced capabilities for predicting and characterizing xenobiotic metabolism, pharmacokinetics 

and pharmacodynamics (85).  

The fourth version of DrugBank was published in 2014 (86). DrugBank 4.0 included 

>1,200 drug metabolites which further supports research in drug metabolism and 
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pharmacokinetics. Additionally, it introduced illustrated drug metabolism pathways, drug 

metabolite structures, drug metabolism reactions, drug-target binding constant data, experimental 

NMR data and MS spectra and investigational drugs. DrugBank 4.0 increased the number of data 

entries for drug metabolizing enzyme data, drug transporter data, food-drug and drug-drug 

interactions, ADMET parameters, chemical synthesis information, approved small molecule 

drugs and drug enzymes/carriers (86).  

 The fifth version of DrugBank was published in 2018 (87). DrugBank 5.0 introduced 

more sophisticated search tools and enhanced data integration with other databases. It also added 

new data entries for drug information on drug metabolites, drug interactions and 

pharmacogenomics. DrugBank 5.0 further improved the database’s user interface and usability 

which makes it more accessible to a broader audience. It increased the drugs with metabolizing 

enzyme data and drug transporter data. Lastly, DrugBank 5.0 added categories on drug 

indications (3,024 entries), clinical trials (245,356 entries) and drug product pill images (3,600 

entries) (87). 

 The sixth version of DrugBank was published in 2024 (88). DrugBank 6.0 further 

expanded the scope of the database with more data fields and improved data accuracy. It 

enhanced data visualization tools, including new features for exploring drug pathways, 

interactions and targets. In general, most data fields had increased entries for illustrated 

pathways, metabolizing enzyme data, drug transporter data, drug interactions (food-food, drug-

food), approved drugs (small molecule, biotech, nutraceutical), non-approved drugs (withdrawn, 

illicit, experimental, investigational), drug enzymes and carriers, clinical trials and drug 

indications. Overall, DrugBank 6.0 has a continued focus on supporting a wide range of 

scientific and clinical applications from drug discovery to personalized medicine (88).  
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 Since its initial release nearly 20 years ago, DrugBank has progressively increased its 

data coverage and depth by adding more drug entries, data fields and integration with other 

databases. The database has continuously enhanced its querying capabilities and data 

visualization tools which make it a powerful resource for researchers and clinicians. With each 

new version, DrugBank has expanded its application to more fields including ‘omics’ research, 

personalized medicine and drug safety. The development of DrugBank has been heavily 

influenced by user feedback which led to numerous updates that align with the needs of its user 

base. DrugBank’s regular updates ensure it evolves with major clinical and chemical 

developments and remains a valuable resource.  

Subsection 2: CTRP, GDSC and PRISM 

 The Cancer Therapeutics Response Portal (CTRP) was developed to systematically link 

genetic and lineage features of cancer cell lines (CCLs) with small molecule sensitivities to 

identify novel cancer dependencies and potential therapeutic targets (89). CTRP profiles the 

sensitivity of 242 CCLs to an ‘Informer Set’ of 354 small molecules including FDA approved 

drugs, clinical candidates and probes targeting diverse cellular processes. Specifically, CTRP 

focuses on identifying drug dependencies which can be targeted, including dependencies induced 

by specific genomic alterations. Lastly, CTRP aims to be a dynamic, evolving resource that 

integrates additional data and analyses over time (89). 

 The Genomics of Drug Sensitivity in Cancer (GDSC) database was developed to 

facilitate the discovery of molecular biomarkers of drug response by linking cancer cell line drug 

sensitivity data with extensive genomic data (90). GDSC contains drug sensitivity data for 

~75,000 experiments which covers responses to 138 oncology drugs across ~700 cancer cell 

lines. It integrates this cell line drug sensitivity data with large genomic datasets, including 
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somatic mutations, gene amplifications and deletions, tissue types and transcriptional data from 

the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Overall, GDSC was 

designed to identify molecular markers that can predict cancer response to various therapies (90). 

 The Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) database was 

generated to improve the throughput and accuracy of drug sensitivity screening by using a 

pooled cell line approach (91). PRISM utilizes DNA barcoding and next-generation sequencing 

to screen thousands of compounds against large, diverse cell line pools at the same time. It 

focuses on discovering cancer vulnerabilities and potential drug combinations by noting the 

effects of treatments across multiple cancer cell lines in parallel. In general, PRISM’s goal is to 

increase the scalability of drug screening and facilitate the identification of biomarkers linked to 

drug response (91).  

 

 

 

 

 

 

 

Table 5 outlines the major similarities and differences between these drug screening 

databases. CTRP, GDSC and PRISM aim to identify molecular biomarkers and cancer 

vulnerabilities that can predict drug sensitivity and guide targeted therapy development while 

taking different approaches. All three databases utilize high-throughput screening techniques to 

assess drug responses in cancer cell lines by integrating these data with extensive genomic 

 CTRP GDSC PRISM 
Cancer cell lines 242 700 578 
Approved or clinical trial drugs 89 138 3,350 
Probes 265 0 0 
Tool compounds 0 0 1,168 
Drug sensitivity assay CellTiter-Glo CellTiter-Glo Cell barcoding 
Drug sensitivity metric AUC AUC AUC 
Drug concentrations 8 9 8 

Table 5. Drug Screening Databases. Comparison of CTRP, GDSC and 
PRISM drug screening platforms (original releases). 
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profiling. In addition, CTRP, GDSC and PRISM integrate this drug sensitivity data with genomic 

features such as mutations, copy number variations and gene expression profiles to identify 

correlations and potential therapeutic targets (92). The emphasis on linking specific genetic 

alterations to drug sensitivity can facilitate the discovery of novel cancer dependencies and 

subsequent therapeutics.  

 Lastly, the data from these projects is made public and available free to researchers with 

user friendly interfaces and tools to query, visualize and analyze the information. CTRP, GDSC 

and PRISM platforms offer downloadable datasets and tools for analyzing drug response data 

and the associated genomic features (89-91).  

 Although CTRP, GDSC and PRISM share similar goals, each database takes a slightly 

different approach. CTRP uses a more extensive set of small molecules (354) including FDA 

approved drugs, clinical candidates and probes to model a broader range of cellular processes. 

Data on drug sensitivity is collected using a traditional format by assessing responses in 242 

CCLs to generate dose-response curves and compute metrics like area under the curve (AUC). 

Lastly, CTRP focuses on identifying known and novel oncogene-induced dependencies by 

integrating genetic and lineage features (89). 

 Alternatively, GDSC conducts drug sensitivity screening on a smaller subset of 138 

oncology drugs across ~700 cancer cell lines. This database utilizes comprehensive genomic 

datasets from the COSMIC database and applies statistical approaches like multivariate analysis 

variance (MANOVA) and elastic net regression to identify genomic markers of drug response. In 

contrast to CTRP, GDSC focuses more on therapeutic biomarker discovery and integrating large 

datasets for preclinical validation (90).  
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 Finally, PRISM uses a unique pooled cell line approach where cancer cell lines are 

barcoded and pooled together for drug screening. It employs next-generation sequencing to 

measure relative cell survival in response to treatments which enables simultaneous screening of 

thousands of compounds against large cell line panels. PRISM also attempts to improve 

throughput and scalability which reduces the cost and time needed for drug sensitivity testing 

(91).  

 The datasets vary widely in the number of compounds tested, compound classification 

and cancer cell lines covered. CTRP offers a smaller, more focused dataset targeting specific 

cancer dependencies and was designed to be a “living resource” which is updated continually 

with new data and analyses. GDSC encompasses a larger dataset (75,000 experiments) with a 

focus on integrating detailed genomic data to facilitate therapeutic biomarker discovery with an 

ongoing expansion. Lastly, PRISM is centered on high throughput drug screening using pooled 

cell lines for improved efficiency and scalability in identifying drug responses across diverse 

cancer types (89-91). 

 Each dataset contributes in the way of technological innovation. CTRP leverages 

traditional high-throughput screening techniques but focuses on integrating diverse datasets for 

comprehensive analysis of drug sensitivity and genomic dependencies. Instead, GDSC 

emphasizes the use of sophisticated statistical modeling and genomic data integration to uncover 

biomarkers. Notably, PRISM innovates by using DNA barcoding and sequencing technology to 

achieve simultaneous drug screening across multiple cancer cell lines which increases 

throughput and decreases cost (89-91).  

 To summarize, CTRP, GDSC and PRISM have common goals of understanding cancer 

drug sensitivities and identifying biomarkers for therapy. However, they have different 
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technological approaches, methodologies and general scope. CTRP offers a flexible, evolving 

platform for analyzing small molecule dependencies linked to cancer genomics. GDSC has the 

most extensive dataset for genomic correlations with drug sensitivity which is focused on 

therapeutic biomarker discovery. PRISM enhances the efficiency and scalability of drug 

screening. This facilitates a faster identification of potential therapies and drug combinations 

(89-91). 

Subsection 3: CCLE 

 The Cancer Cell Line Encyclopedia (CCLE) was created as a comprehensive resource 

which connects the genomic features of ~1,000 cancer cell lines with drug sensitivity data (92). 

It facilitates the identification of genetic, lineage and gene expression-based predictions of drug 

sensitivity which facilitates the development of personalized cancer therapies. CCLE supports 

predictive modeling of oncology drug sensitivity which advances the field of precision oncology.  

 In its original version, CCLE encompassed the characterization of 947 human cancer cell 

lines which cover 36 tumor types (93). Data includes gene expression, chromosomal copy 

number variations and mutational status of >1,600 genes determined by targeted massively 

parallel sequencing. In addition, CCLE profiled 24 oncology drugs across 479 cell lines which 

yielded eight-point dose-response curves. CCLE uses machine learning models, including elastic 

net regression, to correlate the genomic features with drug sensitivity to identify potential 

biomarkers (93).  

 In its updated version, CCLE expanded its database to include additional genomic 

characterizations such as RNA sequencing, whole exome and whole genome sequencing, DNA 

methylation, histone modification, microRNA expression and reverse-phase protein array data 

for >1,000 cell lines. It also incorporated data from short hairpin RNA (shRNA) knockdowns, 
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CRISPR-Cas9 knockouts and metabolite abundance to identify potential therapeutic targets and 

biomarkers (92).  

 Overall, CCLE’s goal is to provide a preclinical framework to predict drug responses in 

cancer by leveraging the molecular and genetic data of a broad range of cancer cell lines. It 

supports the discovery of novel genetic markers and dependencies that can inform therapeutic 

strategies. In addition, CCLE offers an extensive repository for cancer research that can be used 

to study genetic variants, candidate targets and effects of small molecule and biological 

therapeutics. It integrates several datasets to facilitate research into gene function, cancer 

progression and therapeutic intervention. As a database, CCLE is publicly, globally accessible 

for researchers which promotes collaboration and data sharing. Thus, it contributes to global 

cancer research efforts by providing data that is easily available and continuously updated (92-

93). 

Table 6 lays out the current 

data in CCLE and genetic 

characterization of cancer cell 

lines. Currently, CCLE offers 

comprehensive genomic data, 

including single nucleotide 

polymorphism (SNP) arrays, whole 

genome sequencing (WGS), whole exome sequencing (WES), RNA sequencing, DNA 

methylation and chromatin profiling. It also encompasses analyses of structural variants, gene 

fusions and mutational signatures linked to cancer progression. It contains drug sensitivity data 

for 24 oncology drugs including dose-response curves and machine learning-based predictive 

Analysis CCLE CCLs 
Total Cancer cell lines (CCLs) 1,072 
RNA sequencing (RNA-seq) 1,019 
Whole exome sequencing (WES) 326 
Whole genome sequencing (WGS) 329 
Reverse-phase protein array (RPPA) 899 
Reduced representation bisulfite sequencing 
(RRBS) 

843 

MicroRNA expression profiling 954 
Global histone modification profiling 897 

Table 6. Cancer Cell Line Database. CCLE cancer cell 
line sequencing, profiling and arrays.  
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models. Lastly, it has data on shRNA knockdowns and CRISPR-Cas9 knockouts to correlate 

gene dependencies with drug responses (92).  

As a database, CCLE is well integrated across multiple omics layers through microRNA 

expression, histone modification and protein expression profiles. Finally, CCLE is a user-

friendly online portal for researchers to query, download and visualize data. CCLE is linked with 

the Cancer Dependency Map Portal (DepMap Portal) for easy access to gene dependency and 

compound profiling data (92-94).  

In addition to CCLE, The Cancer Genome Atlas (TCGA) is another large-scale genomic 

dataset. Specifically, TCGA contains the molecular characterization of >20,000 primary cancer 

samples across 33 cancer types (95). Since it focuses exclusively on primary tumors, TCGA is a 

parallel resource to CCLE for studying cancer genomics. The combination of these genomic and 

drug screening databases facilitates work toward quantifying MDR in cancer. 
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CHAPTER 3 

QUANTITATIVE METRICS 

Subsection 1: Multidrug Resistance Overview 

 Drug response in cells is complex. Back in the 1800s, Paul Ehrlich worked on the 

chemical composition of drugs and their mechanism of action (96). He worked on anti-toxins 

and wanted to figure out how to make anti-toxins 100% neutralizing to the toxins but not to other 

cells. Ehrlich studied the idea of complementarity where an anti-toxin binds to the target toxin 

but not to anything else. This led Ehrlich to study enzyme-substrate affinity and gave way to his 

work on receptors. He then proposed the ‘lock and key’ model for receptors which linked the 

chemical structure of compounds to pharmacological activity. Essentially, the lock is the 

enzyme, and its substrate is the key which fits into a specific binding pocket within the enzyme. 

This fit enables the compound’s pharmacological activity (97).  

 Ehrlich proposed the concept of receptor theory, but Archibald Hill made it quantitative. 

In the early 1900s, Archibald Hill introduced the Hill equation to describe the interaction 

between hemoglobin and oxygen (98). After one oxygen binds to hemoglobin, it becomes easier 

for more oxygen molecules to bind other sites on the hemoglobin as the active sites change 

conformation to increase the likelihood of additional binding. This is depicted by the Hill 

equation and describes how drugs bind to their targets: % binding = [Drug] / ([Drug] + Kd). As 

the intracellular binding site becomes saturated with substrate, the curve for binding produces a 

sigmoidal shape (99).  
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The Hill equation models a drug binding directly to its target protein with the dissociation 

rate constant, Kd, as a measure of binding affinity. Once an enzyme is saturated, it leads to dose 

response curves where the excess substrate is bound to all available enzymes. In cells, the % 

binding can be approximated to the effective concentration 50 (EC50) which measures the 

concentration of drug needed to achieve 50% cell death (Figure 5A and 5B). In the Hill equation, 

this assumes that all drug inside the cell becomes bound to the intracellular target.  

While 

the Hill 

equation works 

well for 

protein-based 

binding assays, 

it is incomplete 

for cells. When 

the Hill 

equation is 

applied to cells, there are several implicit assumptions made which can be inaccurate. One key 

assumption is that the drug concentration inside the cell equals the drug concentration outside the 

cell ([drug]in = [drug]out), so the EC50 can be approximated to the Kd meaning all substrates 

bound to the target are linked to its effect. In most cases, this is true, but enzymes such as drug 

pumps change the equilibrium, so the [drug]in << [drug]out.  

 Xenobiotic enzymes defend the body from diverse toxins and therefore, do not fit the 

‘lock and key’ concept of substrate specificity. They help the human body eliminate, detoxify 

Figure 5. Mathematics of Drug Dose Response. The EC50 can be 
approximated to the Kd in normal tissues. (A) Drug diffuses into cells where 
the [drug]in equals the [drug]out. Drug binds to the intracellular target 
measured through the Kd. Bound drug causes cell death measured through 
the kdeath. (B) The % binding to the intracellular target can be approximated 
to the % cell killing in a dose response curve. 
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and metabolize drugs. Thus, most xenobiotic enzymes are expressed in the liver, intestines, 

kidneys, lungs, blood and brain. The largest class of xenobiotic enzymes is the Cytochrome P450 

(CYP450) family which are mainly involved in the first phase of metabolism (100). The goal of 

Phase I drug metabolism is to create a polar, water soluble metabolite through oxidation, 

reduction or hydrolysis. The product of Phase I leads to Phase II drug metabolism in which 

metabolites are conjugated to charged species through glucuronidation, sulfation, glutathione 

conjugation, methylation and acetylation. The addition of these ionized groups makes the 

metabolites more water soluble and higher molecular weight, so they are more easily excreted 

from the body (101-102).  

However, CYP450 enzymes have been 

implicated for their role in multidrug resistance 

(MDR). CYP450 enzymes are not only expressed 

in tissues but within individual cells. In cells, they 

metabolize a fraction of drug when it enters the 

cell. This is a protection mechanism to prevent 

high levels of drug from accumulating and 

causing toxicity (103-105). 

Additionally, a third group of xenobiotic 

enzymes are the drug transporters. These enzymes 

also protect the tissues and cells by pumping out 

drug. Drug transporters have an important physiological role and are highly expressed in barrier 

tissues and tissues involved in drug pharmacokinetics in the body (Figure 6). Tissues with high 

Figure 6. Pgp Normal Expression in 
Tissues. Pgp is typically expressed in 
tissues with pharmacokinetics and barrier 
functions such as the brain, intestines, 
liver and kidneys. 
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amounts of drug transporters include the brain, intestines, colon, liver, kidneys and testes (105-

110).  

The most notable group of drug transporters are the ATPase Binding Cassette (ABC) 

transporters (30). ABC transporters encompass subfamilies of which ABC subfamilies B, C and 

G are best known for conferring drug resistance. ABCB1 is the gene for Permeable glycoprotein 

(Pgp), an extensively studied drug transporter in the context of cancer MDR (111). 

Pgp defies standard pharmacologic theory because it pumps out various substrates (112). 

This is from Pgp’s globular binding pocket which can accommodate many different chemical 

structures of drugs. MDR enzymes typically follow pseudo-first order reaction kinetics (113). 

Since Pgp can pump out many different substrates, it has a large Km because its affinity is not 

very high for any one substrate. Thus, we can assume that the [drug]in is much lower than the 

Km which means we can approximate the EC50 to the Km in the linear regime of the reaction.  

As a promiscuous enzyme, Pgp has been described as a vacuum cleaner by “sucking up” 

drug from the cell membrane and pumping it out (114). Pgp is the first ABC transporter 

discovered and accordingly, the drug pump most studied in the scientific literature (85). As a 

family, ABC transporters are promiscuous and accommodate many drugs though they have 

preference for different substrates which underlies their physiological role. The description of 

drug pumps as “vacuum cleaners” is perhaps a more accurate depiction as they pump out a 

variety of drugs and biochemical molecules (114). This contrasts with Ehrlich’s description of 

enzyme receptors through a ‘lock and key’ model where one substrate fits into one enzyme (96). 

 In the 1900s, Michaelis-Menten enzyme kinetics came from the study of a reaction 

yielding fructose and glucose from sucrose catalyzed by invertase (115). For this reaction, 

Michaelis and Menten discovered the formation of an enzyme-substrate complex by measuring 
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the velocity of the reaction as a function of sucrose concentration. Michaelis-Menten enzyme 

kinetics are different from the Hill equation in that they incorporate reaction velocity as a 

function of enzyme concentration and substrate turnover (116). 

The output of the Hill equation is a measure of binding affinity of a substrate for an 

enzyme (Equation 1). The Michaelis-Menten equation expands on the Hill equation by changing 

the Kd to Km (Equation 2). The Km is the substrate concentration at which the enzyme reaction is 

half-maximal, so a smaller Km indicates greater binding affinity. The Michaelis-Menten equation 

defines the maximum velocity, Vmax of the enzyme-catalyzed reaction as a function of enzyme 

concentration, [E] and rate of substrate turnover, kcat (Equation 3). Since a greater enzyme 

concentration and substrate turnover increases the maximum reaction velocity, these factors 

contribute to an overall greater reaction velocity (Equation 4).  

Equation 1: % binding = [Drug] / ([Drug] + Kd) 

Equation 2: velocity = [Drug] / ([Drug] + Km)  

Equation 3: Vmax = [E] * kcat  

Equation 4: velocity = (Vmax * [Drug]) / ([Drug] + Km) 

As with the Hill equation, there are some key assumptions made in the context of 

modeling MDR with drug transporters. First, the contribution of enzymes to MDR is additive 

with each enzyme contributing independently to flux. Second, Pgp is a promiscuous enzyme 

with a high Km for multiple drugs, so the Km is much larger than the [drug]in. Third, drug influx 

is impacted by diffusion only, so [drug]in = [drug]out at steady state (115).  

Under first order conditions ([substrate] < Km), the membrane transport rate (kefflux) is 

expected to be the kcat * [Transporter] / Km (117-118). This assumption is commonly used for 

membrane transporters and is consistent with clinical pharmacokinetics where xenobiotic 
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enzymes are assumed to act under first order conditions clinically (113). Thus, Michaelis-Menten 

enzyme kinetics can be thought of as a linear relationship where y = slope * x. In this linear 

relationship, y is the efflux rate (kefflux), slope is (kcat / Km) / kdiff and x is MDR expression ([E]). 

This corresponds to the change in drug EC50. If we assume pseudo-first order conditions, then 

EC50 and [E] are expected to be linear (Figure 7) (119). 

 

 

This decreased drug potency and resulting EC50 shift is an indication of the MDR 

phenotype. Fortunately, we have data on this phenotype from new databases such as DrugBank, 

CTRP, GDSC, PRISM and CCLE which were described extensively in Chapter 2. To bridge 

these in-vitro databases with clinical data, we examined 34 most FDA-indicated chemotherapies 

and in-vitro data from the Cancer Dependency Map Portal (https://depmap.org/portal,94). Our 

analysis demonstrated a correlation between biomarkers (direct binding, metabolism, transport, 

DNA repair) and drug sensitivity (results are shown in more detail below). Further analysis 

Figure 7. Drug Dose Response in MDR. Multidrug resistant cancer cells 
increase the EC50. (A) Multidrug resistant cancer cells have increased Pgp 
expression. Pgp increases drug efflux, so [drug]out >> [drug]in measured 
through the kefflux. Less drug is available to bind to the intracellular target and 
cause cancer cell death. (B) Pgp expression shifts the EC50 right because a 
larger drug dose is required to achieve 50% binding and cell killing.  
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showed that biomarker RNA expression is directly correlated with drug EC50. Thus, a drug’s 

EC50 change can be modeled by a kinetic ratio in MDR cancers.  

There are increasing efforts to digitize raw data from primary literature references which 

give us the opportunity to compare MDR phenotypes and kinetic parameters across primary 

literature for the first time. Relevant examples for our quantitative analysis include BRENDA, 

ChEMBL and DrugBank (77,85,120). Specifically, BRENDA is an enzyme repository for 

information on enzyme biochemistry, structure, kinetics, function etc. (brenda-enzymes.org/). 

ChEMBL is a database for information on bioactive molecules with information on bioactivity 

and chemical properties (ebi.ac.uk/chembl/). DrugBank is a database with information on 

approved drugs including indication, mechanism, pharmacokinetics and pharmacodynamics 

(go.drugbank.com/). For BRENDA and ChEMBL, their goal is to bridge genomics with enzymes 

and drug-like molecules. DrugBank provides information on enzymes and chemistry for already 

approved drugs through the FDA and foreign regulatory agencies. 

BRENDA is useful for MDR kinetic parameters such as kcat and Km. The BRaunschweig 

ENzyme DAtabase (BRENDA) was founded in 1987 at the German National Research Centre 

for Biotechnology as an enzyme information data system (120). The need for a systematic 

collection of enzyme information for genomic interpretation and field application underlies 

BRENDA. BRENDA was developed to provide more information on gene products and 

enzymes to match the increasing projects on genome sequencing. When BRENDA was 

originally published, it contained data from >46,000 primary literature references with data from 

>40,000 different enzymes. Specifically, BRENDA includes information on enzyme 

nomenclature, enzyme structure, enzyme-ligand interactions, functional parameters, molecular 

properties, organism-related information and bibliographic data (120). 



 

33 

In the 2020s, BRENDA has evolved to include >5 million data from 90,000 enzymes 

across 13,000 organisms from 157,000 primary literature references (121). Additionally, 

BRENDA now offers enzyme pathway maps covering metabolic pathways and biochemical 

processes. Viewers can see chemical reactions and enzyme-ligand information within the 

pathway maps. Currently, each enzyme has its own Enzyme Summary Page which gives an 

overview of all available information for it within BRENDA. It also incorporated a new tool 

which predicts the intracellular localization of each enzyme given its function (121).  

 To better understand BRENDA, we extracted kcat and Km values from this database and 

augmented this source with manual curation of additional literature. We wanted to use BRENDA 

to better understand Pgp as a “vacuum cleaner” model more quantitatively (114). So, we 

searched for primary literature references with data on Km and kcat values for Pgp. This analysis 

produced 137 entries including 47 different compounds with publications from 1995 to 2022. 

The average kcat was 1.29 seconds-1 and Km was 154.88 µM. Our data ranged from 0.0139 to 

1040 µM for the Km and 0.7 to 3.3 seconds-1 for the kcat. There was significantly more data on 

Km than kcat which reflects more scientific focus on Km as a metric for studying enzyme kinetics.  

By overlaying the Pgp manual curation dataset with BRENDA for Km and kcat, the wide 

variability for these enzyme kinetics values is apparent. Even for the same substrate, there can be 

wide variety in the Km and kcat which can be traced to different experimental platforms and 

conditions (Figure 8). Figure 8A shows literature reported kcat and Km values for Pgp (pink) vs 

enzymes in BRENDA (gray). There is no agreement in the scientific literature on a single value 

for these enzyme kinetics parameters although there is major overlap among the reported values.  

Figure 8B displays the organisms within the Pgp manual curation dataset and average 

values for ABCB1 kcat and Km. As shown, Homo sapiens (humans) have highest average kcat and 
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Candida albicans (yeast) have the highest average Km. Among the various experimental 

platforms used to study Pgp in-vitro, membrane vesicles yielded the highest average kcat and Km 

Figure 8. BRENDA Enzyme Kinetics Data. The BRENDA database offers enzyme 
information across organism, platform and compound. (A) Literature on Pgp reflects 
variability in reported enzyme kinetics values for kcat and Km (Pink: Pgp manual curation, 
Gray: BRENDA all enzymes). (B-D) Inconsistencies in enzyme information can be 
attributed to intrinsic differences in experimental conditions with organisms, platforms and 
compounds used. (E-F) BRENDA has current gaps in enzyme information across 
organism and compound. 
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(Figure 8C). This is likely due to differences in Pgp functionality once purified and reconstituted 

whether in membrane vesicles, liposomes or nanodiscs. In addition, there are many choices for 

substrates to study Pgp including inhibitors (Verapamil, Tariquidar, Zosuquidar), fluorescent 

dyes (Hoechst, Calcein, Rhodamine123), oncology drugs (Doxorubicin, Vinblastine), and 

nucleotides (ATP, GTP) among others. Thus, the reported kcat and Km values by compound is 

widespread since Pgp can bind vastly differently to a spectrum of compounds based on 

molecular weight, chemical structure etc. (Figure 8D).  

Even though BRENDA is a comprehensive database, it still has gaps in studies. To 

illustrate this, the top ten organisms (Figure 8E) and top ten compounds (Figure 8F) in BRENDA 

were compared to the top 200 BRENDA enzymes by Km values. For each organism-enzyme 

pairing and compound-enzyme pairing, if there are any reported Km values within BRENDA, the 

pairing is black. But if there are no reported Km values within BRENDA, the pairing is white. As 

demonstrated, there are gaps in our understanding of kinetics for specific enzymes in organisms 

and in compounds. But the knowledge gap is much more pronounced in our understanding of 

enzyme kinetics regarding compounds. This indicates that variation in enzyme kinetics is more 

widely thought about in terms of the organism. Overall, the widespread variability in organism, 

experimental platform and compound contributes to the disagreement on enzyme kinetics values 

in the scientific literature. As a drug transporter, there are many avenues for studying Pgp 

functionality and substrates. 

With this raw Km and kcat data in hand, we next examined the current largest database 

documenting MDR-substrates available. BRENDA focuses on enzymes generally, but we 

wanted to narrow our focus to enzymes involved in MDR. Thus, we turned to DrugBank, a 

database developed to bridge gaps between clinically oriented drug resources and chemically 
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oriented drug databases. Originally, DrugBank combined clinical information (drug actions, 

pharmacology) with chemical information (structures, properties) in a single platform. It was 

tailored to pharmacologists, medicinal chemists and pharmacists. It was first released in 2006 

and since then, has released five updated versions with enhanced data compilation, visualization, 

application etc. (74,84-88).  

The 2011 version (DrugBank 3.0) added data on drug pathways, transporters, 

metabolizing enzymes, pharmacogenomics and adverse drug reactions (85). The data on 

transporters and metabolizing enzymes stems from scientific literature curation which introduces 

experimental variability. So, for transporters and metabolizing enzymes, DrugBank defines 

substrates in a binary way by assigning 1’s to substrates and 0’s to non-substrates (85). This 

variability is like BRENDA, so DrugBank probably used this classification method as a 

compromise because DrugBank curators could not find a consensus for Km or kcat values. 

DrugBank has information on 63 xenobiotic enzymes. Since we are most interested in 

oncology drugs, we created a binary heatmap for MDR enzyme-drug pairings (Figure 9). In the 

binary heatmap, black indicates a substrate and white indicates a non-substrate according to 

DrugBank definitions. From the data, most current knowledge of MDR genes is centered on 

ABCB1 which is the gene for Pgp. Thus, we focused our efforts on Pgp in the broader context of 

understanding MDR quantitatively (https://go.drugbank.com/). 

Subsection 2: Potential for Functional Scoring  

Clearly, DrugBank is a solid start to consolidating our knowledge on MDR but still has 

major gaps. Due to inconsistencies with MDR studies, a new metric is needed that has the 

potential for functionally scoring drugs by substrate specificity. Since substrate specificity is 

determined by gene expression and enzyme kinetics, we focused on the Cancer Cell Line 
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Encyclopedia (CCLE) and Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) 

databases which encompass both datasets across 479 cancer lines (91-92).  

Figure 9. DrugBank MDR Genes and Drugs. DrugBank data on 63 MDR genes and 138 
drugs. (A) DrugBank data is derived from the scientific literature. Sixty-three MDR 
genes representing ABC and SLC transporters and CYP450 metabolism were paired 
with 138 FDA approved oncology drugs. (B) Most current knowledge of MDR genes 
from the scientific literature is on ABCB1, the gene for Pgp.  
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CCLE was generated from a collaboration between the Broad Institute out of MIT and 

Harvard and Novartis Institutes for Biomedical Research (93). CCLE covers the genetic 

characterization of ~1,000 cancer lines and has a plethora of data types including DNA, mRNA, 

protein, metabolites etc. We are interested in mRNA data specifically because Pgp and other 

xenobiotic enzymes are regulated at the RNA level by transcription factors (122).  

We chose to use mRNA because it is generally accepted that xenobiotic enzyme 

expression is regulated at the transcriptional level (123). For example, the Pregnane X Receptor 

(PXR) is one transcription factor which is activated after drug binding and localized in the 

nucleus. PXR increases transcription of ABCB1 and is activated after initial exposure to 

chemotherapies indicating its role in MDR. PXR activation corresponds to Pgp protein 

expression and is critical to the induction of Pgp expression and efflux (124-125).  

Although it provides critical information, the current form of CCLE does not have much 

data on drugs, so we need to supplement our research with other resources. We turned to drug 

screening platforms and chose PRISM because of the overlap with CCLE in cell line screening. 

Originally, PRISM was generated from a collaboration between the Broad Institute and Sanger 

Institute of the United Kingdom to screen drugs across ~500 genomically characterized cell 

lines. PRISM cancer lines are barcoded then pooled and drugs tested via high throughput screens 

that measure efficacy (91).  

PRISM screened 1,448 compounds against 499 cell lines. We chose PRISM over other 

drug screening datasets such as the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer 

Therapeutics Response Portal (CTRP) because PRISM had more FDA approved drugs (89-91). 

Since one of our goals is to optimize clinical drug selection, it was critical for our chosen dataset 

to incorporate FDA approved oncology drugs. 
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Combining data from CCLE and PRISM can give a functional score of MDR using 

strategy described in Figure 10. The Cancer Dependency Map Portal (DepMap Portal) provides a 

graphic use interface (https://depmap.org/portal,94) to perform the correlations between CCLE 

mRNA expression data and PRISM drug AUC data. Pearson coefficients from these CCLE and 

PRISM correlations offer a functional score of drug resistance. Specifically, we can use our 

knowledge of drug pharmacodynamics (how drugs interact with cells) and Michaelis-Menten 

enzyme kinetics for drug transporters to mathematically model EC50 change as a linear 

relationship.  

The assumption of first order Michaelis-Menten conditions (consistent with clinical 

pharmacokinetics assumptions) make the EC50 proportional to Pgp expression. The enzyme 

substrate turnover rate (kcat), enzyme-substrate affinity (Km), and diffusion rate (kdiff) comprise 

Figure 10. Mathematically Modeling MDR. The EC50 shift, ABCB1 expression and 
enzyme kinetics can be represented through the linear equation, y = m * x. (A) Enzymes 
kinetics, kcat / (kdiff * Km), represent the slope (m) as it determines how y, the EC50, 
changes with x, ABCB1 expression. As a phenotype, MDR is represented by the 
independent contributions of several drug efflux genes. (B) CCLE has ABCB1 mRNA 
expression data across 1,000 cancer cell lines. PRISM has oncology drug EC50 data 
across 479 of 1,000 cancer cell lines. (C) A correlation analysis compares CCLE 
ABCB1 mRNA expression with PRISM oncology drug EC50 where single data points 
are individual cancer cell lines. 
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the slope. A higher kcat means Pgp is pumping out more drug and thus increases the EC50. 

Similarly, a lower Km indicates greater binding affinity and increases the EC50. A higher kdiff 

means that more drug is getting into the cell which would decrease the EC50. As explained 

previously, we can approximate the EC50 to the Kd. For the MDR phenotype, a drug’s EC50 is 

determined by multiple MDR genes of which ABCB1 contributes. So, in a linear regression 

model, the slopes * expression for each drug efflux gene are additive (Figure 10A). For my 

research, we wanted to use ABCB1 as a proof of concept for quantifying MDR as a multigene 

phenotype. 

The Cancer Dependency Map Portal combines CCLE mRNA expression data with 

PRISM drug EC50 data across 479 cancer cell lines. Specifically, CCLE profiles 20,000 genes 

and 1,000 cancer cell lines, and PRISM encompasses 1,500 drugs across 1,000 cancer cell lines 

(Figure 10B). Since drug EC50 correlates linearly with ABCB1 expression, the correlation 

coefficient (r) explains the % variance attributed to ABCB1 expression. In our analysis, each data 

point is a single cancer cell line (Figure 10C). In DepMap Portal, we used the Data Explorer tool 

to compare ABCB1 expression (log2(TPM+)) with individual oncology drug EC50 (log2 fold 

change) across 479 cancer cell lines. Under the Linear Regression section, we extracted data 

from the correlation including the Pearson coefficient, Spearman coefficient, Slope, Intercept and 

p-value for the FDA approved library of oncology drugs (94).  

Figure 11A shows a general model of Michaelis-Menten enzyme kinetics for all known 

xenobiotic enzymes for the anthracyclines and taxanes. These xenobiotic enzymes include drug 

transporters and metabolism enzymes. We examined a subset of DrugBank data for the 

anthracyclines and taxanes (Figure 11B). We chose the anthracyclines and taxanes specifically 

because they are oncology drugs and frequently studied in the context of MDR. An analysis of  
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BRENDA demonstrates no consensus Km for the parent compounds, Doxorubicin (17 µM) or 

Paclitaxel (0.5 µM) (Figure 11C). For each drug class, we analyzed MDR genes focusing on 

ABC and Solute Carrier (SLC) drug transporters and CYP450 metabolizing enzymes with drug 

target genes as negative controls. The anthracyclines and taxanes have different mechanisms of 

action and intracellular targets. The anthracyclines target topoisomerase II and reduction-

oxidation enzymes because they work through DNA disruption and reactive oxygen species 

accumulation. The taxanes target tubulin by interfering with microtubule depolymerization 

Figure 11. Correlation Analysis to Fill Gaps. Our correlation analysis fills in literature gaps 
and inconsistencies. (A) A fraction of drug (black) causes cytotoxicity after efflux (red) and 
metabolism (red). (B) DrugBank literature assigns binary definitions to Pgp substrates. (C) 
Literature values for Km of Doxorubicin (17 µM) and Paclitaxel (0.5 µM) are inconsistent. 
(D) MDR gene-drug pairs for the anthracyclines and taxanes using DrugBank definitions. 
(E) MDR gene-drug pairs for the anthracyclines and taxanes using our correlation analysis. 
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during the cell cycle (DrugBank). A heatmap of binary DrugBank definitions (black = substrate, 

white = non-substrate) shows that most knowledge on the anthracyclines and taxanes is 

concentrated on the parent compounds, Doxorubicin and Paclitaxel (Figure 11D).  

But many gaps exist in understanding most oncology drugs and MDR genes. A pilot 

study of our correlation analysis fills in these gaps and gives a quantitative ranking of xenobiotic 

enzymes with ABCB1 at the top where a higher ranking indicates greater substrate specificity 

(Figure 11E). Our correlation analysis fills those gaps by bridging gene expression and drug 

EC50 through CCLE and PRISM datasets. Regenerating functional heatmaps for the same MDR 

genes and drugs gives a continuum of substrate specificity. For the anthracyclines and taxanes, 

the top three genes with the highest Pearson coefficient include ABCB1. Therefore, my project 

focuses on ABCB1 because of its wide application in understanding MDR and oncology drugs. 

To investigate the function of Pgp, we analyzed twenty oncology drugs in the FDA 

approved library across 479 cancer cell lines. These cell lines were chosen because they 

overlapped in CCLE and PRISM datasets. Both CCLE and PRISM datasets were downloaded 

and analyzed using the R-statistical language and new matrices created with the 479 overlapping 

lines for ABCB1 and each drug. Linear regression analysis compared CCLE ABCB1 expression 

with PRISM drug EC50 for the top twenty oncology drugs. Most drugs had a positive correlation 

with ABCB1 which is consistent with Pgp as an enzyme that causes some resistance. 

We expanded this analysis to all 138 oncology drugs in the FDA approved library and to 

other ABC genes such as ABCC2 and ABCG2. Since MDR is a multigene phenotype, we expect 

different drugs to be resisted by different genes (Figure 12A). Each MDR gene acts like “armor” 

to shield the cancer cell from oncology drugs. However, each MDR “armor” is best equipped to 

“shield” cancer cells from a subset of drugs. Our quantitative rankings help identify which  
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oncology drugs are most and least likely to pierce the MDR “armor worn” by cancer cells. Our 

analysis generated waterfall plots which rank 138 FDA approved oncology drugs by their 

Pearson coefficients which were determined from correlation analyses between ABC gene 

expression and drug EC50 across 479 cancer cell lines. Thus, the Pearson coefficient is a measure 

of substrate specificity for each drug-gene pair. A greater Pearson coefficient indicates greater 

substrate specificity and a higher probability of drug resistance.  

Since our focus is on taxanes, vinca alkaloids and anthracyclines, we highlighted these 

drugs in the waterfall plots (Figure 12B). For ABCB1 and ABCC2, most of these drugs are highly 

ranked except for Idarubicin which may be less of a Pgp substrate than other anthracycline drugs 

(126-127). Though similar, there is some variation in the rankings between ABCB1 and ABCC2 

Figure 12. Quantitative Rankings of Drugs. Waterfall plots rank the FDA approved library of 
138 oncology drugs by Pearson coefficient. (A) Different drugs are resisted by different 
“armors” such as transporters the cancer expresses to protect itself. (B) Higher (red) to lower 
(blue) ranked drugs are more to less likely to be resisted by the cancer where Pearson 
coefficients indicate the strength of MDR substrate specificity. 
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which represents differences in preferred substrates for each enzyme. Many factors contribute to 

substrate preferences such as the drug molecular weight and chemical structure, binding affinity 

and enzyme binding pocket. The enzyme for ABCG2, Breast Cancer Resistant Protein (BCRP), 

is much different than Pgp which is reflected in its quantitative rankings of oncology drugs (31). 

ABCG2 has a much narrower binding pocket, so drugs which are strong substrates of ABCB1 are 

only moderate or weak substrates of ABCG2. With this analysis between gene expression and 

drug potency, EC50 is not always measurable, so we used drug area under the curve (AUC) as a 

surrogate which is more common (89-91). The AUC has limits which are described more in 

Figure 15. 

Since most drugs had a positive correlation with ABCB1 expression, we wanted to 

determine if quantitatively defining Pgp substrates agreed with the scientific literature. So, we 

used CCLE and PRISM which has Pgp expression and drug AUC data across 479 cancer lines 

(Figure 13C). Then, we separated 138 drugs which were listed in DrugBank and the FDA 

approved oncology library based on their binary definitions. Once we grouped the drugs into 

‘Pgp Known’ (70 drugs) or ‘Pgp Undefined’ (68 drugs) by DrugBank definitions (85), we input 

their Pearson coefficients from correlations between ABCB1 expression and drug AUC. Then, 

we took the average Pearson coefficient from each group and conducted a one-tailed Student’s 

T-test to determine if DrugBank binary definitions aligned with quantitative Pearson coefficients 

(Figure 13D). The T-test confirmed that Pearson coefficients correctly identified Pgp substrates 

in agreement with DrugBank (p-value = 0.0129). Critically, the Pgp Known drugs had a higher 

average Pearson coefficient than the Pgp Undefined drugs (Figure 13D). 
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Figure 13. Quantitative Metrics for Substrate Specificity. (A) MDR is modeled through 
diffusion rate (kdiff), enzyme kinetics (kcat/Km) and MDR expression. (B) Increased 
MDR expression shifts the EC50 right. (C) Our correlation analysis covers 479 cancer 
lines with natural Pgp expression. (D) DrugBank and Pearson coefficients agree on 
Pgp substrate definitions. The top ten ranked oncology drugs by Pearson coefficient 
include taxanes, vinca alkaloids and anthracyclines. (E) Lee et. al. conducted a drug 
screen of 10,804 compounds using two cervical cancer lines with induced Pgp 
expression. (F) DrugBank and log EC50 shift agree on Pgp substrate definitions. 
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 We then ranked the FDA approved library of 138 oncology drugs in descending order by 

their Pearson coefficients. Since Pearson coefficients are a measure of Pgp substrate specificity, 

the drugs to which Pgp confers the most resistance should be the highest ranked. Our general 

analysis yielded >85% drugs with a positive correlation. We focused on the top ten oncology 

drugs which are enriched in the taxanes (Paclitaxel, Docetaxel), vinca alkaloids (Vincristine, 

Vinflunine, Vinblastine) and anthracyclines (Daunorubicin, Doxorubicin). The other top ten 

drugs were Carfilzomib, a proteasome inhibitor, Romidepsin, a histone deacetylase inhibitor and 

Ixabepilone, an epothilone (Figure 13D). There is some variety in the top ten drugs in class and 

mechanism of action supporting Pgp conferring resistance to several oncology drugs. 

Our computational analysis linked ABCB1 expression to drug AUC, but not all cell lines 

and drugs yielded data. In the PRISM drug screen, some drugs were not cytotoxic. Therefore, we 

wanted to look at EC50 specifically as a quantitative metric. Additionally, we wanted to study 

how changes in Pgp expression changes the drug EC50. Compared to our approach, Lee et. al. 

utilized two cell lines with induced Pgp expression which simplifies the study of Pgp expression 

on drug potency but might not accurately represent a model of acquired multidrug resistance 

through increased Pgp expression (126). 

In this study, a high throughput screen (HTS) was conducted using compound libraries to 

determine cytotoxicity with differential Pgp expression (Figure 13E). These researchers used a 

parent KB-3-1 human cervical adenocarcinoma and Pgp overexpression subline KB-8-5-11 

which they induced through incremental dosing with Colchicine (100 ng/ml) and verified 

through flow cytometry. For the HTS, compounds were screened against the parent line and Pgp 

overexpression line – and + Pgp inhibitor Tariquidar to measure the reversibility of drug 

resistance to compounds which were classified as Pgp drug substrates (126).  
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Compounds were taken from the Mechanism Interrogation Plate (MIPE) library (1,912), 

National Center for Advancing Translational Science pharmaceutical collection (NPC) (2,816), 

NCATS Pharmacologically Active Chemical Toolbox (NPACT) (5,099) and kinase inhibitor 

library (977). The MIPE library includes oncology compounds at preclinical, investigational and 

FDA approved stages. The NPC library contains compounds approved by the FDA and some 

drugs approved by agencies in other countries. The NPACT library has compounds with an 

emphasis on novel phenotypes, biological pathways and cellular processes 

(ncats.nih.gov/research/research-activities/compound-management).  

 For the HTS, cells were plated at 500 cells/well in 1536 well plates in 5	µl of media and 

incubated at 37 °C and 5% CO2 with compound for 72 hours. After 72 hours, Cell Titer-Glo 

reagent was added to all wells, incubated for 5 minutes and luminescence read. The drug screen 

yielded 90 of 10,804 compounds which were Pgp substrates and 55 of the 90 Pgp substrates 

which were novel. For the KB-3-1 parent line, 1,362 of the 10,804 compounds were cytotoxic. 

Thirty percent of the kinase, 21% of the MIPE, 10% of the NPACT and 5% of the NPC 

compound libraries exhibited cytotoxicity in the HTS (126).  

Lee et. al. induced Pgp to study the effect of expression on drug EC50 or [drug] required 

to kill 50% of cells which is a measure of cytotoxicity. The difference between dose response 

curves in the parent KB-3-1 and Pgp overexpression KB-8-5-11 lines is the AUC. The ΔAUC is 

correlated to the ΔPgp expression and drug efflux between the cell lines. In the HTS, they 

gathered dose response data for the KB-3-1 parent line, KB-8-5-11 Pgp overexpression line and 

KB-8-5-11 line + 1 µM Tariquidar to measure reversibility of drug resistance.  

Dose response curves were plotted by the log drug (M) on the x-axis and % Activity on 

the y-axis. The % Activity corresponds to cell viability where -50 means 50% cell death. 
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Additionally, they measured the ΔAUC between the KB-3-1 parent line and KB-8-5-11 Pgp 

overexpression line as ΔAUC1. The ΔAUC between the KB-8-5-11 line and + 1 µM Tariquidar 

is ΔAUC2. For the 90 compounds identified as Pgp substrates, a rank order analysis was 

conducted which plotted ΔAUC1 against ΔAUC2 for the 90 Pgp substrates with a positive 

correlation (R2 = 0.69) (126). 

For the HTS, our lab created an online app to visualize dose response curve data in KB-3-

1 and KB-8-5-11 lines for 10,804 compounds. Our online app calculates the ΔEC50 (fold change) 

in the drug-resistant vs parent lines. A greater fold change indicates stronger Pgp substrate 

specificity (https://douglasslab.shinyapps.io/mdr_screen/). 

 Since the data from Lee et. al. links drug ΔEC50 to Pgp expression, we wanted to 

determine if ΔEC50 agreed with Pgp substrates as defined by the scientific literature. So, we 

grouped the FDA approved oncology drug library into ‘Pgp Known’ if DrugBank classified them 

as Pgp substrates (70 drugs) and ‘Pgp Undefined’ if DrugBank classified them as Pgp non-

substrates (68 drugs). Then, we listed the log ΔEC50 from Lee et. al. for the 138 oncology drugs 

and calculated the average log ΔEC50 for each group (Figure 13F).  

We conducted a one-tailed Student’s T-test comparing DrugBank vs log ΔEC50 substrate 

definitions for each group. The T-test yielded a p-value of 0.0349 which demonstrated that log 

ΔEC50 can be used as a quantitative metric for assessing Pgp substrate specificity (Figure 13F). 

As with the Pearson coefficient, the Pgp Known drugs had a higher log ΔEC50 than the Pgp 

Undefined drugs. As quantitative metrics, both Pearson coefficients and log ΔEC50 incorporate 

Pgp expression which is critical for assessing MDR. Since tissues have differential expression of 

MDR genes, incorporating expression into quantitative metrics of substrate specificity is more 

accurate and predictive of drug resistance. 
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Figure 14. Approaches for Substrate Specificity Metrics. Quantitative metrics for Pgp 
substrate specificity are obtained through two approaches. (A) CCLE and PRISM 
databases characterize 479 cancer lines through mRNA expression and drug EC50. 
(B) CCLE RNAseq analysis of 63 MDR genes and PRISM EC50 analysis of 138 
oncology drugs across 479 cancer lines. (C) KB-3-1 parent and KB-8-5-11 Pgp-high 
cancer lines characterized through protein expression and drug EC50. (D) Flow 
cytometry analysis to quantify Pgp-mediated transport in MDR-19 cells (0.5 µg/ml 
Rhodamine 123 +/- 3 µg/ml Valspodar) with 25 µM compound identified in the drug 
screen of 10,804 compounds to assess Pgp substrate specificity. 
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Although both metrics incorporate Pgp expression, the difference is Pearson coefficients 

come from natural Pgp expression vs log ΔEC50 coming from induced Pgp expression. 

Additionally, Pearson coefficients were generated from an analysis of 479 cancer lines vs log 

ΔEC50 from an analysis of two cancer lines (Figure 14A and 14C). So, we then wanted to assess 

agreement between Pearson coefficients and log ΔEC50 as quantitative metrics of Pgp substrate 

specificity. We generated a scatter plot to study the correlation between Pearson coefficients and 

log ΔEC50 with 138 FDA approved oncology drugs (Figure 13F). 

 For the scatter plot, 138 drugs were plotted by their log ΔEC50 on the x-axis and Pearson 

coefficient on the y-axis. Our analysis includes a cluster of data points (drugs) with low log 

ΔEC50 and Pearson coefficients indicating these are likely weak or non-Pgp substrates. The rest 

of the drugs had higher log ΔEC50 and Pearson coefficients meaning they are likely stronger or 

moderate Pgp substrates. In general, there is a positive correlation between both quantitative 

metrics (Figure 13F). Some drugs exhibit stronger substrate specificity as measured by log 

ΔEC50 or Pearson coefficient which could be due to differences in cell lines. Lee et. al. used two 

ovarian cancer lines for their HTS vs 479 cancer lines for the PRISM screen (Figure 14A and 

14C). This is evidence supporting the use of multiple quantitative metrics for the most 

comprehensive understanding of MDR. 

Even though the PRISM screen covers more cell lines, obtaining dose response data only 

works when the drug is cytotoxic. If the drug is not cytotoxic, there will not be a dose response 

curve or EC50. Once a drug enters a cell, it must bind to the intracellular target and cause cell 

death within the range of drug concentrations tested (Figure 15A).  

Earlier, we conducted a linear regression analysis of the top twenty oncology drugs 

comparing CCLE ABCB1 expression on the x-axis with drug AUC on the y-axis. We can use  
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Paclitaxel as an example of the limitations of the PRISM screen in some cell lines. In the linear 

regression analysis, there are vertical (black box) and horizontal (red box) clusters of cancer 

lines. In the vertical cluster, these cell lines have low to no ABCB1 expression and a range of 

AUCs for Paclitaxel. These cell lines likely have higher drug sensitivity to Paclitaxel. In the  

horizontal cluster, these cell lines have low to high ABCB1 expression and an AUC = 1 for 

Paclitaxel. Paclitaxel resistance in the low ABCB1 expression cell lines is not due to ABCB1 but 

other drug transporters or metabolizing enzymes. Paclitaxel resistance in the high ABCB1 

expression cell lines is due to ABCB1 (Figure 15B).  

 As shown, AUC is a surrogate measurement of drug EC50. For an AUC = 1, there is no 

dose response curve within the drug concentration range. This phenomenon can represent a few 

different scenarios. The first scenario is that a higher drug concentration is needed for 

cytotoxicity which is outside the drug screen concentrations as shown by the dotted line 

Figure 15. Limitations of AUC in Drug Screening. The AUC does not yield a measurable 
EC50 without cytotoxicity. (A) For cytotoxicity to occur, drug must bind the intracellular 
target and cause cell death over time. (B) In our correlation analysis, there are vertical and 
horizontal clusters of cell lines (single data points). The vertical cluster includes drug 
sensitive cell lines which have low to no ABCB1 expression. The horizontal cluster includes 
drug resistant cell lines which do not exhibit cytotoxicity regardless of ABCB1 expression. 
(C) An AUC = 1 means that the drug does not cause cytotoxicity at the drug concentrations 
tested or the drug is not cytotoxic to the cell line regardless of concentration. 
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extrapolation (Figure 15C). In drug screens, a standard range is typically used, and less potent 

drugs require a higher concentration to be cytotoxic. The second scenario is that a drug is non-

toxic to the cell line regardless of concentration. This would be a likely explanation for drugs 

whose mechanisms of action do not cause cytotoxicity. However, we limited our analysis to 

oncology drugs which are cytotoxic, so the first scenario is the most plausible.  

 Since PRISM has potential false negatives because of dose range limitations, we 

investigated studies which use fluorescent probes and Pgp inhibitors to assess substrate 

specificity. We found a study which looked at MDR in multiple myeloma with anthracycline 

drugs and a Pgp modulator. Anthracyclines are oncology drugs and of great interest to us given 

our computational analysis classifying them as strong Pgp substrates. Thus, this paper is 

particularly relevant for a direct comparison with our results. Roovers et. al. studied a newer 

anthracycline, Idarubicin, in the context of multiple myeloma to see if its higher lipophilicity 

could increase cytotoxicity compared to Doxorubicin and Daunorubicin (127). With a higher 

lipophilicity, Idarubicin has the potential for better efficacy and potency in multiple myeloma 

treatment.  

 A parent multiple myeloma cell line 8226-S and two Pgp overexpression cell lines were 

chosen to assess cytotoxicity and uptake kinetics and Doxorubicin, Daunorubicin and Idarubicin. 

Pgp overexpression was induced in 8226-R7 cells with a single dose of Daunorubicin and 8226-

Dox40 cells with multiple doses of Doxorubicin. This strategy is analogous to the strategy used 

in Lee et. al. to induce Pgp expression in the Pgp overexpression cancer lines (126-127). 

Dose response and cytotoxicity were assessed after a 3-day incubation + drug + or - Pgp 

modulator, Verapamil, through the MTT colorimetric assay. The MTT assay is based on the 

reduction of the yellow tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
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bromide (MTT), to a purple formazan crystal by live cells. Optical density (OD) was measured at 

750 nm where a higher OD corresponds to more live cells (less transparent) and a lower OD 

indicates more cell death (more transparent). Dose response curves were plotted as drug 

concentration (µM) on the x-axis and OD750 on the y-axis. Data was gathered for Doxorubicin, 

Daunorubicin and Idarubicin across the three cell lines (127). 

The 8226-S parent line exhibited the greatest cytotoxicity with Idarubicin having the 

most potency and Doxorubicin having the least potency. The 8226-R7 Pgp overexpression line 

demonstrated more resistance to all three drugs, decreasing their potency (127). Idarubicin still 

had the best potency and Doxorubicin the least potency. Lastly, the 8226-Dox40 Pgp 

overexpression line had even more resistance to all three drugs, with no drug achieving 100% 

cell death at the highest drug concentration (4 µM) (127). However, Idarubicin still had the 

greatest potency of the three drugs. Since drug potency decreased with increasing Pgp 

expression, it follows that Idarubicin could be a weak Pgp substrate. The ΔEC50 for Idarubicin 

was much less than for Doxorubicin and Daunorubicin across the three cell lines (127-128).  

The same experiment was conducted with the addition of 50 µM Verapamil, a first 

generation Pgp inhibitor. In theory, the stronger Pgp substrates, Doxorubicin and Daunorubicin, 

will exhibit more potency with Verapamil in the Pgp overexpression cell lines. As expected, the 

addition of Verapamil did not significantly change the dose response curves in the 8226-S parent 

line. In the 8226-R7 line, Doxorubicin and Daunorubicin were slightly more potent than without 

Verapamil. In the 8226-Dox40 line, the difference was more pronounced where the addition of 

Verapamil achieved 100% cell death with Doxorubicin, Daunorubicin and Idarubicin at 2 µM 

and 4 µM of drug (127). These results emphasize optimal drug selection for cancer treatment. 

Pgp inhibitors such as Verapamil are best used in Pgp-high cell lines, and drugs which are 
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resisted by Pgp need to be given in cancers with low or no Pgp for optimal clinical results. 

 To measure Pgp expression, Roovers et. al. used the anthracyclines as fluorescent probes 

and flow cytometry across 8226-S, 8226-R7 and 8226-Dox40 lines (Figure 16A). Essentially, the 

anthracyclines’ fluorescence is an indirect measure of drug accumulation inside cells. As Pgp 

expression increases, more anthracycline can be pumped out and the fluorescence decreases. So, 

the Δ[E] is directly proportional to the Δ[Probe] (Figure 16A).   

They used flow cytometry to quantify Pgp protein expression across all three multiple 

myeloma cell lines (Figure 16C left). For this analysis, 4 * 105 cells were incubated with 10 µl of 

50 µg/ml mouse Pgp monoclonal antibody MRK16 for 60 minutes at room temperature. Cells 

were then washed with a phosphate buffered saline-fetal calf serum (PBS-FCS) buffer and 

incubated for 15 minutes at room temperature with 0.5 µg of goat anti-mouse IgG2a-FITC.  

Results confirmed the highest Pgp expression in 8226-Dox40 cells followed by slightly 

less expression in 8226-R7 cells and basal expression in the 8226-S cells (127). Since flow 

cytometry measures Pgp expression, it confirms the quantity of Pgp protein at the cell surface but 

does not assess functionality of the enzyme as a drug transporter (Figure 16C left).  

To determine Pgp functionality, Rhodamine123 was used as a fluorescent probe to 

measure efflux. Rhodamine123 is a cell permeable, green, fluorescent dye that is also a known 

Pgp substrate. In these studies, the Rhodamine123 efflux ratio (Rho123 fluorescence – 

Verapamil / Rho123 fluorescence + Verapamil) was determined where a smaller efflux ratio 

indicates greater Pgp functionality (Figure 16B left). The cells were washed, resuspended in 

culture medium at 8 * 105 cells/ml with 125 nM Rho123 and incubated at 37 °C for 10 minutes. 

The cells were washed twice, resuspended in culture medium and plated in 24 well plates at 0.5 

ml/well. After a 20-minute CO2 incubation, the cells were pelleted, washed and resuspended 
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Figure 16. Fluorescent Probes for Drug Screening. (A) Probe 
fluorescence inversely changes with MDR expression where lower 
fluorescence indicates higher expression. (B) Pgp substrate specificity 
is measured through intracellular accumulation of drug (Roovers et. 
al.) or fluorescent dye (Ashley) +/- addition of Pgp inhibitor. (C) Flow 
cytometry quantifies Pgp expression in multiple myeloma (Roovers et. 
al.) or breast cancer (Ashley) cell lines through antibody staining. (D) 
Fluorescent microscopy tracks uptake of Idarubicin (Roovers et. al.) or 
Zosuquidar (Ashley) into cells over time. The kinetics of uptake are 
modeled through kdiff and kefflux. 
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in 500 µl of PBS-FCS and run through flow cytometry (127). Using 8226-S cells as a control 

(efflux ratio = 1), the Pgp overexpression lines had lower efflux ratios (30% in 8226-R7, 10% in 

8226-Dox40) which corresponded with Pgp function (Figure 16B left).  

 Given its higher lipophilicity and better potency, uptake kinetics were measured for 

Daunorubicin and Idarubicin (Figure 16D left). Chemically, Daunorubicin is more similar in 

structure to Idarubicin than Doxorubicin, so Daunorubicin was included for comparison. In this 

experiment, 1 µM of anthracycline was added to 8226-S, 8226-R7 and 8226-Dox40 cells and 

drug uptake monitored with fluorescent microscopy. Drug uptake measurements were taken 

periodically over 120 minutes. Data was plotted as time (minutes) on the x-axis vs mean 

fluorescence intensity (MFI) on the y-axis (127). After 60 minutes, the MFI had peaked in the 

three cell lines indicating the maximum rate of drug uptake (Figure 16D left).  

This curve can be used to calculate the t1/2 or time taken for half-maximal drug 

accumulation. Since the t1/2 is determined by both diffusion and efflux, it can be represented as 1 

/ (kdiff + kefflux) where greater rates indicate less time for maximum accumulation of drug. 

However, if little to no drug is accumulated as with Pgp-high cells, the maximum fluorescence 

will be relatively low. As expected, the 8226-S parent line had the greatest fluorescence 

indicating the most intracellular accumulation. The 8226-R7 cells had the next greatest 

fluorescence followed by the 8226-Dox40 cells (Figure 16D left). Relative to Daunorubicin, 

Idarubicin accumulation occurred seven times faster which could be attributed to Idarubicin’s 

higher lipophilicity (127). 

Subsection 3: Experimental Work to Quantify MDR 

Roovers et. al. studied intracellular concentration and MDR simultaneously because the 

anthracyclines are naturally fluorescent Pgp substrates (Figure 16B left). But the MTT assay 
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does not work for non-toxic compounds, and most oncology drugs are not naturally fluorescent. 

So, we wanted to develop a competitive assay with a known fluorophore and Pgp substrate to 

estimate intracellular concentrations of drug for non-toxic and non-fluorescent compounds 

(Figure 16A). 

With the AUC limitation of PRISM, we chose Calcein acetomethylester (AM) as a 

fluorescent probe to assess Pgp substrate specificity in-vitro (Figure 17). Calcein AM is a known 

Pgp substrate, cell permeable, fluorescent green dye (129). Calcein AM easily diffuses into cells 

where the AM is cleaved by esterase enzymes in live cells. Once the AM is cleaved, Calcein 

fluoresces green inside cells. Without the acetomethylester component, Calcein cannot leave the 

cell without being pumped out by Pgp (129).  

For our work, we chose DU4475 as a Pgp-high cancer line. DU4475 is a ductal 

adenocarcinoma with the highest Pgp expression of 71 breast cancer lines and fourth highest Pgp 

expression of 1,000 cancer lines. DU4475 was used as our cell line model because of its high 

ABCB1 expression and low expression of other ABC genes including ABCC1 and ABCG2 which 

could be confounding variables (depmap.org/portal/,94). 

 We chose drugs for the screen based on Pgp substrate specificity rankings from their 

Pearson coefficients, so the screen included 76 strong, moderate, weak and non-Pgp substrates. 

The premise of the screen is a competitive binding assay where Calcein competes with drug for 

binding to Pgp (Figure 17C, Figure 18A). The intracellular accumulation of Calcein and 

resulting fluorescence is a measure of Pgp substrate specificity. The higher fluorescence will be 

achieved with drugs that are stronger Pgp substrates as they will outcompete Calcein for binding 

to Pgp (Figure 18A). We began this work with fluorescent microscopy (Figure 17A) to optimize 
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cell culture conditions and Calcein concentration, then transitioned to a 96 well plate assay 

(Figure 17B) and converted it into a drug screen (Figure 17C). 

For the assay, first to third generation Pgp inhibitors were used as positive controls for 

Calcein accumulation and fluorescence. These included first generation Pgp inhibitors 

Cyclosporine, Nicardipine and Verapamil and third generation Pgp inhibitors Dofequidar, 

Elacridar, Encequidar, ONT-093, PGP-4008, Tariquidar and Zosuquidar (Figure 18B). For both 

the inhibitor and drug screens, DU4475 cells were trypsinized, incubated at 37 °C and 5% CO2 

for 5 minutes, resuspended in sterile PBS and counted with a hemocytometer and trypan blue 

(Appendix A, Protocol 1).  

For the competitive binding assay, 100,000 cells/well were used and 100 µl of cells/PBS 

plated in a 96 well plate (Figure 18A). We tested ten Pgp inhibitor concentrations from 5 µM to 

0.5 pM (Figure 18B) and added 100 µl of each inhibitor concentration to the 96 well plate. Then, 

100 µl of a 1% DMSO in PBS solution was added to a subset of wells in the 96 well plate to 

serve as negative controls. Lastly, a staining solution was prepared of 0.36 µM Calcein AM in 

sterile PBS and 100 µl added to all wells in the 96 well plate. After addition, the fluorescence 

Figure 17. Experimental Pipeline for Assay Development. (A) Fluorescent microscopy to 
optimize cell culture and Calcein AM concentration. (B) Plate-based assay with Calcein AM 
to optimize competition with Pgp inhibitors. (C) Plate-based screen with Calcein AM to test 
76 drugs from the FDA approved oncology drug library. 
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(Calcein AM excitation = 485 nm, emission = 526 nm) was measured every 10 minutes for 6 

hours at 5% CO2 and 37 °C (Appendix A, Protocol 1). Results showed that the best signal to 

noise was achieved with 5 µM Pgp inhibitor. As expected in a Pgp-high line, the third generation 

Pgp inhibitors demonstrated the best efficacy measured as maximum fluorescence with 

Dofequidar demonstrating the best potency (Figure 18B).  

For the drug screen, 100,000 cells/well were used and 100 µl of cells/PBS plated in a 96 

well plate (Figure 19A). As before, 100 µl of a 1% DMSO in PBS solution was added to a subset 

of wells in the 96 well plate to serve as negative controls. Thirty µl of each drug and 70 µl of  

Figure 18. Drug Screen Measures Potency. Our Calcein AM plate-based screen 
measures drug potency. (A) The assay works by measuring substrate specificity 
through Pgp competitive binding between Calcein and drug. Potency is assessed 
by the drug dose at which fluorescence (Calcein intracellular accumulation) is 
half-maximal. (B) Our drug screen measured fluorescence dose response for ten 
first and third generation Pgp inhibitors from 0.0005 to 5000 nM. 
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PBS were added to each well in the 96 well plate (Figure 19B). Lastly, a staining solution was 

prepared of 0.36 µM Calcein AM in sterile PBS and 100 µl added to all wells in the 96 well 

plate. After addition, the fluorescence (Calcein AM excitation = 485 nm, emission = 526 nm) 

was measured every 10 minutes for 6 hours at 5% CO2 and 37 °C (Appendix A, Protocol 2). 

Figure 19. Drug Screen Measures Efficacy. Our Calcein AM plate-based screen 
measures drug efficacy. (A) The assay works by measuring substrate specificity 
through Pgp competitive binding between Calcein and drug. Efficacy is assessed 
by the maximum fluorescence (Calcein intracellular accumulation, 100% 
competition). (B) Our drug screen measured fluorescence for 76 oncology drugs 
across 360.5 min with readings taken every 10 min. Cells were incubated at 37 
°C and 5% CO2 for the drug screen. Pearson coefficients positively correlate 
with drug efficacy from the Calcein assay, especially for strong Pgp substrates. 
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Results identified many top Pgp substrates in agreement with our correlation analysis such as 

Carfilzomib and Vinblastine. It also identified some kinase inhibitors such as Cobimetinib and 

Tivozanib as Pgp substrates (Figure 19B).  

Using beads and ~10,000 single cells, flow cytometry analysis quantified ~50,000 Pgp 

per cell in the DU4475 line (Appendix A, Protocol 3). Briefly, DU4475 cells were centrifuged, 

counted with a hemocytometer and trypan blue then diluted to 1 million/ml. DU4475 cells were 

washed in MACS buffer (500 ml pH 7.4 PBS, 0.5 mM EDTA, 1% BSA) and resuspended in 

MACS buffer at 1 million/ml. Then, 4 µl of block was added for 3 µM IgG antibody and 

incubated for 5 minutes at room temperature. A 3x, 10x, 30x and 100x dilution of IgG antibody 

was added to Pgp-specific phycoerythrin antibody and incubated on ice for 30 minutes. Then, the 

samples were run through a flow cytometer to stain the cells for Pgp (Appendix A, Protocol 3). 

Results of Pgp isotype control and Pgp-stained with phycoerythrin antibody indicates two 

distinct populations which verify a much higher expression of Pgp in DU4475 cells (Figure 16C 

right). 

 To measure Calcein AM uptake, 100,000 cells/well DU4475 cells were plated in a 96 

well plate with 1 µM Calcein AM + and - 5 µM of Pgp inhibitor Zosuquidar. After addition, 

fluorescence (Calcein AM excitation = 485 nm, emission = 526 nm) was measured every 10 

minutes for 3 hours at 5% CO2 and 37 °C (Appendix A, Protocol 4). Data was plotted as time 

(minutes) on the x-axis vs fluorescence on the y-axis (Figure 16B right). For this assay, 

Zosuquidar was chosen as a selective Pgp inhibitor because it has been well characterized in the 

scientific literature. At endpoint, there was a 2.2X difference in Calcein uptake within DU4475 

cells based on fluorescence + and - Zosuquidar. Additionally, this analysis measures the time 

needed for uptake to occur which was ~60 minutes for DU4475 cells + Zosuquidar (Figure 16D 
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right). This analysis mirrors Roovers et. al. data for the 8226-S and 8226-Dox40 cell lines where 

the higher fluorescence in the 8226-S parent line indicates lower rates of diffusion and efflux 

from less Pgp expression. In our study, the higher fluorescence in the + Zosuquidar group 

indicates lower rates of diffusion and efflux from selective Pgp inhibition.  

Lee et. al. and our analysis both used quantitative metrics (log EC50 shift or Pearson 

coefficient) to assess Pgp substrate specificity (Figure 13F). Both quantitative metrics 

statistically agree with DrugBank binary definitions of Pgp substrates (Figure 13D and 13F). 

Additionally, the measurability of these quantitative metrics is dependent on cytotoxicity. 

In contrast, Lee et. al. induced Pgp expression vs our use of cancer lines with natural Pgp 

expression. Lee et. al. used two cell lines (Figure 14C) whereas we used a combination of 

databases which covered 479 cell lines (Figure 14A). Lee et. al. investigated oncology and non-

oncology drugs in their 10,804-compound screen (Figure 14D). We focused exclusively on 

oncology drugs in our 76-drug screening assay (Figure 19B).  

Natural Pgp expression more accurately reflects actual cellular physiology with multiple 

drug transporters. But for studying Pgp, two cell lines is easier to manage and directly compare 

Pgp expression. For assessing MDR more generally, 479 cell lines offers a more comprehensive 

analysis and is widely applicable to multiple cancers. For the drug screen, including non-

oncology drugs allowed for the identification of novel Pgp substrates which is critical to 

extending our understanding of Pgp as a drug pump. 

Roovers et. al. and our analysis used flow cytometry to quantify Pgp expression in the 

cell lines using antibody (Figure 16C). Additionally, both studies used Pgp inhibitors to assess 

the functionality of Pgp protein at the cell membrane surface (Figure 16B). Both measured 

uptake kinetics of fluorescent drug or Calcein as fluorescent probes over time (Figure 16D).  
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 In contrast, Roovers et. al. induced Pgp expression vs our analysis which used a cell line 

with naturally high Pgp expression. Although both studies used Pgp inhibitors, Roovers et. al. 

used the first generation Pgp modulator, Verapamil, and we used a third generation selective Pgp 

inhibitor, Zosuquidar (Figure 16B). Roovers et. al. obtained three cell lines of various Pgp 

expression to study efflux. Alternatively, we used one cell line of high Pgp expression (Figure 

16D). Since their work focused on the anthracyclines, Roovers et. al. could use these drugs as 

fluorescent probes. Most of our work includes non-fluorescent drugs, so we used Calcein AM as 

a surrogate fluorescent probe.  

 Natural Pgp expression more accurately reflects cellular physiology but could introduce 

complexities for studying Pgp. As a selective Pgp inhibitor, Zosuquidar is better for assessing 

Pgp specifically whereas Verapamil is better for assessing MDR from multiple drug pumps as a 

Pgp modulator. Having three cell lines of incrementally higher Pgp expression is better 

correlated to dose response curves than a single cell line. Lastly, using drug as a fluorescent 

probe is simpler, but Calcein AM allows for the study of non-fluorescent drugs which comprise 

most of the FDA approved library.  

 To conclude, we can revisit the metrics presented in this work by reconciling 

computational and experimental definitions to more comprehensively define MDR. As a 

database, DrugBank is naturally tailored to clinicians with information but has expanded to 

include more data on pharmacokinetics and enzyme substrate specificity (85). Unfortunately, due 

to its reliance on the scientific literature, DrugBank is limited to binary definitions of MDR 

substrates to create a consistent metric across experimental platforms.  

CCLE offers mRNA expression data on ~1,000 cancer lines. PRISM offers drug 

screening data on 479 of the CCLE cancer lines through the DepMap Portal web interface (90-
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91). Combining CCLE and PRISM data offers a linear correlation between gene expression and 

drug AUC within the context of MDR. This linear correlation yields Pearson coefficients which 

are a quantitative metric of enzyme substrate specificity. Pearson coefficients enable continuous 

drug classification where larger coefficients indicate stronger substrate specificity for MDR 

enzymes.  

As a cancer phenotype, MDR depends on multiple factors including gene expression, 

enzyme kinetics and diffusion. For each cell and tissue, these factors have wide variability due to 

natural physiological roles, cellular phenotypes and function. These databases help reconcile 

these differences and contribute to a more complete picture of MDR in general. Bridging gene 

expression with enzyme kinetics is critical to redefining MDR quantitatively for optimizing drug 

selection in the clinic. 

 Prior scientific literature provided the foundation for EC50 (potency) and fluorescence 

(efficacy) as experimental metrics for assessing MDR substrate specificity. A combination of in-

vitro approaches including flow cytometry, fluorescent microscopy and drug screens is necessary 

for studying Pgp substrate specificity. Pgp substrate specificity cannot be quantified by a single 

metric, but our analysis incorporates diffusion and enzyme kinetics into our EC50 experimental 

metric. By taking drug EC50 and dividing it by gene expression, we can standardize drug EC50 to 

any tissue or cancer.  

The current research provides the foundation for measuring MDR quantitatively as a 

proof-of-concept through Pgp. In the future, this work can be expanded to elucidate the 

quantitative contributions of other non-ABCB1 ABC genes to the MDR phenotype in cancer. 
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APPENDIX A: PROTOCOLS 

Protocol 1: Calcein AM Inhibitor Screen with DU4475 Cells 

Materials to Prepare: 

1. 500 ml Phosphate Buffered Saline (PBS): sterile filter 500 ml PBS 

2. ~1 ml 47 µM Calcein AM in dimethyl sulfoxide (DMSO)/PBS 

a. Take up 50 µg/vial in 50 µl DMSO for a 1 mM stock 

b. Add 1 ml PBS to be sure to take up all Calcein AM 

3. T75 flasks of 13 ml cells/media for cells 

4. Plasticware: 1 96 well black plate, multi-inhibitor reference plate, 3 15 ml conical tubes 

(Stain/Cells/Calcein AM), 2 50 ml conical tubes (Cells/Waste), 2 pipette basins, 2 

Eppendorf tubes (count Cells) 

Buffer Exchange Cells: remove FBS esterase enzymes and phenol-red 

5. Remove 13 ml cells/media from 4 T75 flasks of cells 

6. Centrifuge cells/media at 130 RCF for 7 min 

7. Resuspend cells in 10 ml trypsin 

8. Leave cells in 37 °C incubator for ~5 min 

9. Add 10 ml media to cells/trypsin 

10. Centrifuge 20 ml cells/trypsin at 130 RCF for 7 min 

11. Resuspend cells in 20 ml sterile PBS 

12. Take sample of cells of counting 

13. Count cells with hemocytometer and trypan blue 
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14. Add sterile PBS to cells for 100,000 cells/well and pour into pipette basin 

a. µl of Cells 

100,000 cells/well x 12,000 Total µl of Needed / (_____cells/ml x 0.1) =  

µl of Cells 

b. µl of PBS 

_____Total µl Needed - _____µl of Cells = _____µl of PBS Needed 

15. Plate 100 µl of cells/PBS to ALL wells of 96 well plate (moving left to right) 

Make Pgp Inhibitor Solutions: already in multi-inhibitor reference plate 

16. Add 100 µl of multi-inhibitor reference plate wells to wells of 96 well plate (same layout, 

moving left to right) 

17. Add 100 µl of 1% DMSO in PBS solution to wells A11 to H12 of 96 well plate 

Make Staining Solution: conduct during centrifugation above 

18. Make 12 ml staining solution: 

a. 11,910 µl sterile PBS 

b. 90 µl 47 µM Calcein AM stock (0.36 µM, 0.12 µM in 1:1:1 with Calcein AM, 

inhibitor and cells) 

19. Pour staining solution into pipette basin 

20. Add 100 µl of Stain to 100 µl cells/PBS (all wells of 96 well plate, moving left to right) 

Stain Cells: 

21. Measure fluorescence using plate reader (Fluorescence kinetic assay, measure every 10 

minutes for 6 hours at 5% CO2 and 37 °C with lid on) 

22. Save the data on OneDrive 

23. Export the data to Excel 
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Protocol 2: Calcein AM Drug Screen with DU4475 Cells 

Materials to Prepare: 

1. 500 ml Phosphate Buffered Saline (PBS): sterile filter 500 ml PBS 

2. ~1 ml 47 µM Calcein AM in dimethyl sulfoxide (DMSO)/PBS 

a. Take up 50 µg/vial in 50 µl DMSO for a 1 mM stock 

b. Add 1 ml PBS to be sure to take up all Calcein 

3. 4 T75 flasks of 13 ml cells/media 

4. Plasticware: multi-experiment reference plate, 1 96 well black plate, 3 15 ml conical 

tubes (Stain/Cells/Calcein AM), 2 50 ml conical tubes (Cells/Waste), 3 pipette basins, 2 

Eppendorf tubes (count Cells) 

Buffer Exchange Cells: remove FBS esterase enzymes and phenol-red 

5. Remove 13 ml cells/media from 4 T75 flasks of cells 

6. Centrifuge cells/media at 130 RCF for 7 min 

7. Resuspend cells in 10 ml trypsin 

8. Leave cells in 37 °C incubator for ~5 min 

9. Add 10 ml media to cells/trypsin 

10. Centrifuge 20 ml cells/trypsin at 130 RCF for 7 min 

11. Resuspend cells in 20 ml sterile PBS 

12. Take sample of cells for counting 

13. Count cells with hemocytometer and trypan blue 

14. Add sterile PBS to cells for 100,000 cells/well and pour into pipette basin 

a. µl of Cells 

100,000 cells/well x 12,000 Total µl of Needed / (_____cells/ml x 0.1) =  
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µl of Cells 

b. µl of PBS 

_____Total µl Needed - _____µl of Cells = _____µl of PBS Needed 

15. Plate 100 µl of cells/PBS to all wells of 96 well plate (moving right to left) 

Make Pgp Inhibitor Solutions: already in multi-experiment plate 

16. Pour sterile PBS into pipette basin 

17. Add 70 µl sterile PBS to all wells of 96 well plate (moving right to left) 

18. Add 30 µl of multi-experiment plate wells to all wells of 96 well plate (same layout, 

moving right to left) 

Make Staining Solution: conduct during centrifugation above 

19. Make 12 ml staining solution: 

a. 11,910 µl sterile PBS 

b. 90 µl 47 µM new Calcein AM stock (0.36 µM, 0.12 µM in 1:1:1 with Calcein 

AM, drug and cells) 

20. Pour staining solution into pipette basin 

21. Add 100 µl of Stain to all wells of 96 well plate (moving right to left) 

Stain Cells: 

22. Measure fluorescence using plate reader (Fluorescence kinetic assay, measure every 10 

minutes for 6 hours at 5% CO2 and 37 °C with lid on) 

23. Save the data on OneDrive 

24. Export the data to Excel 
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Protocol 3: Pgp Quantification using Flow Cytometry 

Make Solutions: 

“MACS” Buffer (filter) = Ab-Ice-Stain 

§ 500 ml pH 7.4 Phosphate Buffered Saline (PBS) 

§ 0.5 mM Ethylenediaminetetraacetic acid (EDTA) (1:1000 dilution) (molecular grade) 

§ 1% Bovine Serum Albumin (BSA) (1 g/100 ml) 

PBS Buffer (filter) = FACS 

§ 500 ml pH 7.4 PBS 

Buffer Exchange/Concentrate Cells: 

1. Buffer exchange 1 T75 flask for each cell line to approximately 1 million/ml density 

a. NOTE 1: 1 confluent T75 flask = 20 million cells 

i.     1 confluent 9 cm petridish = 10 million cells 

b. NOTE 2: trypsinize adherent cell lines (Caco-2, DU4475) 

2. Spin down cells in conical tube (130 g 7 min) 

3. Wash cells 1x 10-15 ml in MACS Buffer 

4. Take up each pellet in MACS Buffer with pre-determined volume 

Antibody Staining: 

5. Add 4x 100 µl aliquots into Eppendorf tubes 

6. Add 4 µl of Block for 3 µM IgG and incubate for 5 min at room temperature 

a. NOTE: 4 µl x 6 lines x 4 replicates = 96 µl total 

7. Add 2x 10 µl (10x dilution) of Isotype Control to Control Rows 

8. Add 2x 10 µl (10x dilution) of anti-Pgp to Pgp-Stain rows 

a. NOTE: 10 µl x 6 lines x 2 replicates = 0.120 ml total 
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i. STOCK: 0.1 mg/200 µl = 0.5 mg/ml = 333 nM 

9. Incubate on ice for 30 min 

Flow Cytometry Preparation: 

10. Set centrifuge temperature to 4 ºC and 130 RCF 

11. Add 1 ml MACS Buffer, spin down and pour out (5 min 130 RCF) 

12. Add 1 ml MACS Buffer, spin down and pour out (5 min 130 RCF) 

13. Add 100 µl PBS + put on ice (5 min 130 RCF) 

Flow Cytometry on Antibody-Stained Cells: 

14. Check SIP to make sure it has DI water on it 

15. Check Fluid Tank levels: 

a. Sheath (blue), bleach (yellow) and detergent (green) 

16. Check Waste Tank (red) level 

17. Turn on Instrument (takes ~15 minutes to start up) 

18. Check settings of instrument: 

a. Run limited to 10,000 events 

b. Speed: medium 

19. Run DI water for ~ 2 minutes until the # of events is ~0-2 

20. Run Unlabeled sample (no antibody) to establish FSC/SSC gating 

21. Make a new histogram plot that is gated on the interior of the FSC/SSC gate 

22. Change the histogram x-axis to your fluorophore of interest (Phycoerythrin-Ab) by 

clicking on the x-axis labeled 

23. Proceed to take all samples 

Beads Calibration Procedure: 
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24. SET UP BLANK 

a. Add one drop of the reference blank “B” to 400 µl suspending solution (PBS) 

b. Analyze the microspheres on the flow cytometer 

c. Adjust flow rate to 100 beads/second is recommended 

d. Gate FSC vs SSC around the singlet population of the microspheres 

e. Create a fluorescence histogram for phycoerythrin, including only gate above 

f. Verify that the reference blank population appears near the origin of the histogram 

25. SETUP CALIBRATION PLOT 

a. Combine 1 drop of each bottle (not blank) to 400 µl of the same type of buffer for 

analysis 

b. Analyze the microspheres on the flow cytometer 

c. Discernable fluorescence peaks should be observed  

Flow Cytometry Cleanup: 

26. Run SIP clean 

27. Turn off instrument 
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Protocol 4: Plate-based Assay with Pgp Inhibitor 

Materials to Prepare: 

1. 500 ml Phosphate Buffered Saline (PBS): Sterile filter 500 ml PBS 

2. ~1 ml 80 µM Calcein AM in dimethyl sulfoxide (DMSO)/PBS: 

a. Take up 50 µg/vial in 50 µl DMSO for a 1 mM stock 

b. Add 1 ml PBS to be sure to take up all Calcein  

3. 2 T75 flasks of 13 ml cells/media 

4. Plasticware: 96 well black plate, 24 well clear plate, 3 15 ml conical tubes (Stain/Cells), 

50 ml conical tube (Cells), 2 pipette basins, 2 Eppendorf tubes (count Cells) 

Buffer Exchanged Cells: remove FBS esterase enzymes and phenol-red 

5. Remove 13 ml cells/media from 2 T75 flasks 

6. Centrifuge cells/media at 130 RCF for 7 min 

7. Resuspend cells in 6 ml trypsin 

8. Leave cells in 37 °C incubator for 3 min 

9. Add 6 ml media to cells/trypsin 

10. Centrifuge 12 ml cells/trypsin at 130 RCF for 7 min 

11. Resuspend cells in 6 ml sterile PBS 

12. Take sample of cells for counting 

13. Count cells with hemocytometer and trypan blue 

14. Add sterile PBS to cells for 100,000 cells/well and pour into pipette basin 

µl of Cells 

100,000 cells/well x 7,000 Total µl of Needed / (_____cells/ml x 0.1) = _____µl 

of Cells 
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µl of PBS 

_____Total µl Needed - _____µl of Cells = _____µl of PBS Needed 

15. Plate 100 µl of cells/PBS to wells A1-C1, F1-H1 to A9-C9, F9-H9 of 96 well plate 

16. Add 100 µl of PBS only to wells A9-C9, F9-H9 of 96 well plate 

Make Oncology Drug Solutions: serial dilutions 

17. Make Paclitaxel and Zosuquidar serial dilutions in 24 well clear plate  

a. Paclitaxel 5X dilutions 

i. 10,000,000 nM * 30 µl = 150,000 nM * 2,000 µl (well A1) 

ii. 150,000 nM * 400 µl = 30,000 nM * 2,000 µl (well A2) 

iii. 30,000 nM * 400 µl = 6,000 nM * 2,000 µl (well A3) 

iv. 6,000 nM * 400 µl = 1,200 nM * 2,000 µl (well A4) 

v. 1,200 nM * 400 µl = 240 nM * 2,000 µl (well A5) 

vi. 240 nM * 400 µl = 48 nM * 2,000 µl (well A6) 

vii. 48 nM * 400 µl = 9.6 nM * 2,000 µl (well B1) 

viii. 9.6 nM * 400 µl = 1.92 nM * 2,000 µl (well B2) 

ix. Control 1,000 µl PBS (well B3) 

b. Zosuquidar 10X dilutions 

i. 10,000,000 nM * 3 µl = 150,000 nM * 2,000 µl (well C1) 

ii. 15,000 nM * 200 µl = 1,500 nM * 2,000 µl (well C2) 

iii. 1,500 nM * 200 µl = 150 nM * 2,000 µl (well C3) 

iv. 150 nM * 200 µl = 15 nM * 2,000 µl (well C4) 

v. 15 nM * 200 µl = 1.5 nM * 2,000 µl (well C5) 

vi. 1.5 nM * 200 µl = 0.15 nM * 2,000 µl (well C6) 
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vii. 0.15 nM * 200 µl = 0.015 nM * 2,000 µl (well D1) 

viii. 0.015 nM * 200 µl = 0.0015 nM * 2,000 µl (well D2) 

ix. Control 1,000 µl PBS (well D3) 

18. Add 100 µl of Paclitaxel and Zosuquidar serial dilutions to 100 µl cells/PBS (wells A1-

C1, F1-H1 to A8-C8, F8-H8 96 well plate), in 1:1:1 with cells in stain: 

a. Paclitaxel 5X dilutions 

i. 150,000 nM * 100 µl = 50,000 nM * 300 µl (A1-C1) 

ii. 30,000 nM * 100 µl = 10,000 nM * 300 µl (A2-C2) 

iii. 6,000 nM * 100 µl = 2,000 nM * 300 µl (A3-C3) 

iv. 1,200 nM * 100 µl = 400 nM * 300 µl (A4-C4) 

v. 240 nM * 100 µl = 80 nM * 300 µl (A5-C5) 

vi. 48 nM * 100 µl = 16 nM * 300 µl (A6-C6) 

vii. 9.6 nM * 100 µl = 3.2 nM * 300 µl (A7-C7) 

viii. 1.92 nM * 100 µl = 0.64 nM * 300 µl (A8-C8) 

ix. 0 nM (A9-C9) 

b. Zosuquidar 10X dilutions 

i. 15,000 nM * 100 µl = 5,000 nM * 300 µl (F1-H1) 

ii. 1,500 nM * 100 µl = 500 nM * 300 µl (F2-H2) 

iii. 150 nM * 100 µl = 50 nM * 300 µl (F3-H3) 

iv. 15 nM * 100 µl = 5 nM * 300 µl (F4-H4) 

v. 1.5 nM * 100 µl = 0.5 nM * 300 µl (F5-H5) 

vi. 0.15 nM * 100 µl = 0.05 nM * 300 µl (F6-H6) 

vii. 0.015 nM * 100 µl = 0.005 nM * 300 µl (F7-H7) 
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viii. 0.0015 nM * 100 µl = 0.0005 nM * 300 µl (F8-H8) 

ix. 0 nM (F9-H9) 

Make Staining Solution: conduct during centrifugation above 

19. Make 10 ml staining solution: 

a. 9,925 µl sterile PBS 

b. 75 µl 80 µM Calcein AM stock (0.6 µM, 0.2 µM in 1:1:1 with Calcein AM, 

oncology drug or PBS and cells) 

20. Pour staining solution into pipette basin 

21. Add 100 µl of Stain to 100 µl cells/PBS (wells A1-C1, F1-H1 through A9-C9, F9-H9 of 

96 well plate) 

Stain Cells: 

22. Measure fluorescence using plate reader (Fluorescence kinetic assay, measure every 10 

minutes for 3 hours at 5% CO2 and 37 °C with lid on) 

23. Save the data on OneDrive 

24. Export the data to Excel  
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Protocol 5: Calcein AM with or without Pgp Inhibitor 

Materials to Prepare: 

1. 500 ml Phosphate Buffered Saline (PBS): sterile filter 500 ml PBS 

2. ~1 ml 80 µM Calcein in dimethyl sulfoxide (DMSO)/PBS 

a. Take up 50 µg/vial in 50 µl DMSO for a 1 mM stock 

b. Add 1 ml PBS to be sure to take up all Calcein  

3. 1.5 ml Propidium iodide (PI) in water  

4. 2 T75 flasks of 13 ml cells/media incubated ~24 hours with 5 µM Zosuquidar or 0.05% 

DMSO 

5. Plasticware: 24 well plate, 3 15 ml conical tubes 

Buffer Exchange Cells: remove FBS esterase enzymes and phenol-red 

6. Transfer 2 T75 flasks of DU4475 cells to 15 ml conical tubes 

a. ~13 ml cells/media 

7. Centrifuge cells at 130 RCF for 7 min 

8. MAKE STAIN SOLUTION (see below) 

9. Wash 1x with 13 ml sterile PBS 

10. Take up cells in 13 ml sterile PBS 

11. Plate 0.5 ml of cells/PBS to wells C1-C6, D1-D6 of 24 well plate 

Make Staining Titration: conduct during centrifugation above 

12. Make 10 ml staining solution 

a. 10 ml sterile PBS 

b. 0.4 ml 80 µM Calcein stock (25x dilution for 3.2 µM) 

i. 134 µl 1.5 mM PI stock (75x dilution for 20 µM) 
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ii. 5 µM Zosuquidar (10 mM * V = 10.534 ml * 5 µM), V = 5.27 µl (only for 

+ inhibitor) 

13. Add 2 ml staining solution to wells A6, B6 of 24 well plate 

14. Add 1.5 ml PBS to wells A1-A5, B1-B5 of 24 well plate 

15. Serially dilute staining solution 4x (0.5 ml stain + 1.5 ml PBS) across A1-A5, B1-B5 of 

24 well plate 

Stain Cells: 

16. Add 0.5 ml of Serial Diluted Stain (wells A1-A6, B1-B6) to 0.5 ml cells (wells C1-C6, 

D1-D6) and mix 

17. Image GFP, TxRed on EVOS M5000 fluorescent microscope 

18. Incubate at 37 °C (incubator) for 30 min 

Visualize: 

19. EVOS M5000 fluorescent microscope 

a. Remove 24 well plate and place on EVOS stage 

b. Adjust 2 lamp intensities to optimal for largest concentration of stain (C6, D6) 

c. Image GFP, TxRed for wells C1-C6, D1-D6 

i. NOTE: increase lamp intensity when cells disappear  
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Protocol 6: Pgp Inhibitor Optimization with Calcein AM 

Materials to Prepare: 

1. 500 ml Phosphate Buffered Saline (PBS): sterile filter 500 ml PBS 

2. ~1 ml 80 µM Calcein in dimethyl sulfoxide (DMSO)/PBS: 

a. Take up 50 µg/vial in 50 µl DMSO for a 1 mM stock 

b. Add 1 ml PBS to be sure to take up all Calcein 

3. 1.5 mM propidium iodide (PI) in water 

4. 1 T75 flask of 13 ml cells/media 

5. Plasticware: 48 flat well clear plate, 3 15 ml conical tubes, 7 Eppendorf tubes, pipette 

basin 

Buffer Exchange Cells: remove FBS esterase enzymes and phenol-red 

6. Transfer 1 T75 flask of DU4475 cells to 15 ml conical tube 

a. ~13 ml cells/media 

7. Centrifuge cells at 130 RCF for 7 min 

8. MAKE STAIN SOLUTION (see below) 

9. Wash 1x with 13 ml sterile PBS 

10. Take up cells in 13 ml sterile PBS, pour into pipette basin 

11. Plate 300 µl of cells/PBS to wells C2-C7 of 48 well plate 

Make Staining Titration: conduct during centrifugation above 

12. Make 5 ml staining solution 

a. 5 ml sterile PBS 

b. 18.75 µl 80 µM Calcein stock (~267x dilution for 0.3 µM) 

c. 6.25 µl 1.5 mM PI stock (800x dilution for 1.875 µM) 
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13. Add 500 µl staining solution to wells A2-A7 of 48 well plate 

Zosuquidar Serial Dilutions: 

14. Make DMSO PBS (dPBS) with 150 µl into 15 ml PBS 

15. Add 10 µl of 10 mM stock into 990 µl dPBS (Vial A—100 µM) 

16. Add 250 µl of Vial A into 750 µl dPBS (Vial B—25 µM) 

17. Add 250 µl of Vial B into 750 µl dPBS (Vial C—6.25 µM) 

18. Add 250 µl of Vial C into 750 µl dPBS (Vial D—1.56 µM) 

19. Add 250 µl of Vial D into 750 µl dPBS (Vial E—0.39 µM) 

20. Add 250 µl of Vial E into 750 µl dPBS (Vial F—0.1 µM) 

21. Add 300 µl of Vial A into well C2 

22. Add 300 µl of Vial B into well C3 

23. Add 300 µl of Vial C into well C4 

24. Add 300 µl of Vial D into well C5 

25. Add 300 µl of Vial E into well C6 

26. Add 300 µl of Vial F into well C7 

Stain Cells: 

27. Add 300 µl of Stain (wells A2-A7) to 600 µl cells/PBS/Zosuquidar (wells C2-C7) and 

mix 

28. Image GFP, TxRed on EVOS M5000 fluorescent microscope 

29. Incubate at 37 °C (incubator) for 30 min 

Visualize: 

30. EVOS M5000 fluorescent microscope 

a. Remove 48 well plate and place on EVOS stage 
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b. Adjust 3 lamp intensities to optimal for largest concentration of Zosuquidar (well 

C2) 

c. Image GFP, TxRed for wells C2-C7 

i. NOTE: increase lamp intensity when cells disappear  

 

 


