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ABSTRACT

This study examines the integration of multivariate extreme analysis within
clustering techniques, specifically focusing on spherical k-means clustering and
spherical k-principal component clustering. We propose an approach to esti-
mate linear factor models using spherical clustering methods, enhancing order
selection through a novel penalized silhouette method for optimal cluster num-
ber determination. This penalized silhouette method addresses limitations in
traditional order selection by incorporating a penalty term, improving the ac-
curacy of cluster identification in high-dimensional data.

Furthermore, we demonstrate the utility of sparse spherical k-principal com-
ponent clustering in identifying groups of concomitant extremes, which is cru-
cial in contexts where extreme values play a dominant role, such as in risk man-
agement or environmental modeling. This sparse clustering approach allows for
efficient dimension reduction and identifies relevant factors while preserving
the interpretability of extreme groupings.

Our findings suggest that the proposed spherical clustering techniques pro-
vide robust solutions for analyzing and grouping multivariate extremes, offering
an effective framework for high-dimensional data where conventional cluster-
ing methods may fall short. By enhancing the interpretability and precision of
cluster detection, this research contributes valuable insights to fields requiring
accurate analysis of extreme values, supporting improved data-driven decision-

making.
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CHAPTER I

INTRODUCTION TO EXTREME
VALUE ANALYSIS

During the development of statistical models, there are situations where people
focus specifically on extreme events, such as floods, earthquakes, or financial
crises. In these cases, rather than analyzing all the available observations, extreme
value studies concentrate on the behavior of the most extreme values. This is
because these rare occurrences can have the greatest impact. For example, in
flood risk assessments, the maximum rainfall during a storm may serve as a
critical indicator for predicting and managing flood disasters.

Extreme value theory is particularly useful in such cases because it allows
us to model and understand the probabilities and magnitudes of these rare,
extreme events. By focusing on the extremes, we gain insights into the potential
severity of events that are not well-represented by average or typical observations,
helping to make informed decisions about risk management and preparedness.

Extreme value theory in statistics has been developed over many decades
and is now an important tool for understanding rare but significant events. It
started with studying single variables and has since grown to cover multiple
variables, with many practical applications across different fields.

In environmental science, extreme value analysis is used to predict the likeli-
hood of extreme weather events, such as hurricanes, heatwaves, or loods, which
are essential for risk assessment and disaster management. In finance, extreme
value analysis helps model extreme market fluctuations, guiding risk manage-
ment strategies and regulatory compliance. Engineering applications leverage
extreme value analysis to design structures capable of withstanding rare stresses,
such as those caused by earthquakes or high winds. Similarly, in public health,
extreme value analysis aids in studying the spread of rare diseases or extreme

exposure to hazardous substances. By focusing on the tails of distributions,



extreme value techniques provide valuable insights into the behavior of phe-
nomena that standard statistical models often overlook, enabling more robust

decision-making in the face of uncertainty.

L1 Univariate Extreme Value Theory Recap

Univariate extreme value theory (EVT) and the statistical tools are well-established
in dealing with rare events. The history of EVT dates back to the early 20th
century, Fréchet,[1927/and Von Mises, 1936|studied the properties of extreme val-
ues of independent and identically distributed (IID) random variables. In the
1950s, Rényi, 1963 extended these ideas to the case of non-IID random variables,
which provided the theoretical foundation for the development of multivariate
EVT.

One fundamental result from the EVT is the Fisher—Tippett—-Gnedenko
theorem developed by the work of Fréchet, 1927, Fisher and Tippett, 1928, Von
Mises, 1936} Falk and Marohn, 1993/and Gnedenko, 1943, Here, we provided a
short review of the results: Suppose X1, Xo, - - - , X, are IID random variables
with cumulative distribution function F. Suppose there exist two real number
sequences a,, > 0 and b, € R such that the following normalized sample

maximum converges in distribution to a non-degenerate distribution function

G:

X1, Xo, -, Xo) — b
limP(maX{ IR.CIRAER. ”§x>:G(x), reR. (1)

n—oo an

Then the limit distribution of G necessarily belongs to one of 3 possible families
of distributions, the Gumble, the Frechét, and the Weibull.

These three families can be combined into a single family known as the
generalized extreme value distribution family given by the following formula:

— )\ W _
G(x) = exp (— (1 —1—7%) ) , 1+ 7% > 0, (r2)

where ;1 € R is the location parameter, 0 > 0 is the scale parameterand v € R;
-1 _
when v = 0, the expression (1 + 7%) /7 is understood as exp (—%)
through the limit as v — 0. The parameter vy, known as the shape parameter,
or the extreme value index, plays a critical role in controlling the properties of

G. The Gumble, the Frechét, and the Weibull distributions correspond to the



parameter ranges ¥ < 0,y = 0and~y > 0 respectively, whose cumulative
distribution functions are displayed below:

* Type I or Gumbel extreme value distribution, case 7 = 0, for all
x € (—00,400):

F(a; 11, 0,0) = exp (—eXp <—I;’”‘>) .

* Type II or Fréchet extreme value distribution, case 7 > 0, for all
S (,u — %, —I—OO>:

1
Leta =— >0 and yzl—l—z(x—,u).
v o

0, y <0 orequivalentlyx < p — 2,
F(z;p,0,7) = eXp( | .

_y_a) , y>0 orequivalentlyx > p —

g

Z.
* Type Il or reversed Weibull extreme value distribution, casey < 0,

forallz € (—oo,,u + ﬁ)

1
Leta=—— >0 and yEl—m(x—,u).
Y o

exp (—y%), > (0 orequivalently z < pu + &,
F(x;M,U,’Y):{ Py ! o

1, y <0 orequivalently z > 11 + ﬁ

Similar to the central limit theorem which indicates sum-stability of Gaus-
sian, the Fisher-Tippett—-Gnedenko theorem also indicates the G/(x) distribu-
tion is max-stable, and the max-stable property a central role in extreme value
theory as they describe the possible limiting distributions for normalized max-
ima of random variables. They provide a theoretical basis for modeling and
understanding extreme events in a wide range of fields.

LLI Approaches to Identify and Model the Extrema

There are several methods for modeling extreme values, with the most com-
mon approaches being the Peaks Over Threshold (POT) and Block Maxima

(BM) methods. To illustrate these two methods, we use a simulated example.
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Figure 1.1: POT Example

A random sample of 1000 observations is generated from the standard normal

distribution, as shown in Figures|r.ijand

Peaks Over Threshold

In the POT approach, illustrated in Figure|r.1} extreme values are identified by
focusing on data points that exceed a specified high threshold (value = 1.5 in Fig-
ure . This method captures all values above the threshold, rather than only
the single maximum within a given period, allowing for more detailed modeling
of extreme events. The excesses above the threshold are typically modeled using
the Generalized Pareto Distribution (GPD), which ofters flexibility in charac-
terizing the tail behavior of the data. POT is particularly effective in scenarios
where data is sparse but the focus is on extreme deviations, such as in insurance

claims or financial losses.

Block Maxima

The Block Maxima approach divides the data into equally sized blocks (e.g.,
days, months, or years) and selects the maximum value from each block as
shown in Figure These maxima are then modeled using the Generalized Ex-
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Figure 1.2: BM Example

treme Value (GEV) distribution, which combines several distributions (Gum-
bel, Fréchet, and Weibull) to describe the behavior of extremes. This method is
suitable for long-term analysis, such as studying yearly maximum temperatures

or annual flood levels.

The Peaks Over Threshold (POT) and Block Maxima (BM) methods are
two fundamental approaches in extreme value theory, each with its distinct
advantages. Block Maxima divides data into blocks (e.g., years, months) and
models the maximum value within each block using the Generalized Extreme
Value (GEV) distribution, which simplifies analysis but may discard relevant
extreme data below the maximum. On the other hand, the POT method fo-
cuses on values exceeding a high threshold, capturing more extreme data points
and providing more efficient use of data through the Generalized Pareto Distri-
bution (GPD). While BM is simpler to implement, POT is often preferred for
more precise modeling of the tail behavior when more extreme data is available.

In addition to the frequentist approaches, Bayesian methods take the prior
information into consideration to model the structure of the extreme values;

for example, Bottolo et al., 2003 view exceedances over a given threshold as a



Poisson point process and used a Bayesian method to develop a hierarchical
mixture prior.

EVT hasbeen applied in a wide range of fields, including hydrology, finance,
engineering, and climate science, among others. In hydrology, EVT is used to
model the distribution of extreme rainfall and floods (Engeland et al., 2004)). In
finance, EVT is used to model the distribution of extreme stock market returns
and losses (Hussain and Li, 2o1s)). In engineering, EVT is used to model the

distribution of extreme loads on structures (Chen, 2014).

1.2 Multivariate Extreme Value Theory

Multivariate Extreme Value Theory (MEVT) extends the concepts of univari-
ate EVT to situations where multiple variables are involved. It focuses on un-
derstanding the joint behavior of extremes in multivariate datasets, which is
particularly important in applications where extreme events often occur simul-
taneously or are interconnected across different variables, such as in finance,
meteorology, or engineering.

In finance, MEV'T is critical for modeling the simultaneous occurrence of
extreme losses across multiple assets or markets, enabling better risk assessment
and portfolio management strategies. In meteorology, it is used to analyze the
joint behavior of extreme weather phenomena, such as the combined impact
of heavy rainfall and strong winds during storms, providing insights for disas-
ter preparedness and infrastructure planning. Engineering applications lever-
age MEVT to evaluate the combined extremes of load and stress on structures,
ensuring their resilience under rare but critical conditions. By capturing the
dependencies between extreme events across variables, MEVT offers a more
comprehensive framework for understanding and mitigating the risks associ-
ated with multivariate extremes in complex systems.

As a generalization of (1), Pickands—-Balkema-De Haan theoremBalkema
and De Haan, 1974|provides the theoretical foundation for modeling the joint
distribution of extreme events in multiple dimensions.

Let (X7}, -+, X!),i € NbellD copies of random vector X = (Xi,- -, Xy)
assumed to follow a continuous joint distribution for simplicity. Assume that
there exist sequences of constants a} > 0, 07 € R,1 < j < d,n € Nanda
joint distribution function G, such that



lim P <z, , < x4

n—o0 a’f ag

= G(xb e ,l'd), (13)
forall the continuity points (21, - - - , 4) of G. The analysis of multivariate

extremes typically consists of the modeling of marginal tails and the modeling
of extremal dependence.

Accordingly, the convergencein has two parts. First, all marginal G, 1 <
7 < d, of GG are of the form

—1/v;
T — [, T — [,
G;(z) = exp (— (1—1-7]. - J) )7 1+, - 2 >0, (14)

J

where 11; € R, 0 > 0and 7; € R, which means that each of the marginal
distribution is a univariate extreme distribution as in . Second, let F}; be
the (continuous) marginal distribution function of X;, j = 1,--- ,d. Then

the convergence holds iff the marginally standardized vector

1 1
Y =(Y1,....Y,) = R )
satisfies
lim P (—Y eB||Y| > y) S(B) (1.6)
e , I.
y=oo \ Y]

with a probability measure S on ST " := {x € [0,00)¢ : ||x|| = 1} and
any S-continuity-Borel set B C ST, In principle, the norm ||-|| can be chosen
as a fixed arbitrary norm. Throughout this thesis, we shall work with the L,
norm |[(xq, ..., zq)|| = (23 +... + mfl)l/Q, (71,...,24) € RY, due to its

mathematical convenience.
Definition 1 7he measure S in (1.6)) is called the spectral measure.

The spectral measure S describes the limit behavior of the extremal dependence
of X: a high concentration of the measure .S on certain region 5 C S meansa

high chance of observing an extremal concurrence of (Y7, . . . , ¥;), a marginally
normalized version of (X7, ..., Xy), to appear in the directions contained by
B.



With the standardization in (rs]), the distribution of the normalized component-
wise maxima also converges to an multivariate extreme value distribution with

a standard Fréchet margin (y = 1in (L.2)):

. MaxX;—1 ... n Y MaxX;—1 ... n Y
lim P(—l < gy, ——mTd < g

n—00 n n
:G()(xl)"' al‘d)v (17)

where (Y}, -+ ,Y}),i € NareIID copies of Y. The joint distribution G
in (1.7) can be expressed in the form:

Go(xl’... al'd)
=exp (—v{(u, -+ ,uq) € 0,000\ {0} : 3j: u; >x;})  (L8)

forall (z1,- -+ ,xq) € [0,00)%\ {0}, for some o-finite infinite measure  on

[0,00)*\ {0}

Definition 2 The measure v characterized by (1.8) is known as the exponent
measure.

On the other hand, the exponent measure v arises from the limit as follows

tlim tP(Y/te A) =v(A) (1.9)
—00

where Y is defined in and A is any v—continuous Borel set in [0, 00)¢ \
{0} away from the origin (see, e.g., Engelke and Ivanovs, 2021). The exponent
measure and the spectral measure are related through the following relation: for
any Borel B C ST,

v{ue[0,00)"\{0}: u/|[ull € B, [ul| >y} = ey 'S(B), y>0,
(r.10)
for some constant ¢ > 0.
To sum up, the study of multivariate extremal dependence is essentially a
study of the structure of the spectral measure S.

For the marginally standardized observations (cf. (r.5)), a non-parametric
estimator of the spectral measure .S arising from the empirical version of (r.6)
was proposed by Einmahl et al., 2001 Specifically, it is constructed by first



replacing all the marginal cumulative distributions £}, 1 < 7 < dof X in
by the empirical cumulative distribution functions

Fin(z) = %;H{x;@}a z€R.
Accordingly, the empirical version of transformed observation Y is
Vo= (W, Vi with Vo= (1= Fa(X)7L (on)
Thus, an estimator of spectral measure S is naturally given by

ST .
: =z pen)

Sn(B) == =
2

(r12)

where B is a Borel subset of Si_l, and the threshold /,, € N decides the number
of extremal observations used for the estimator.

The choice of [,, in is aissue has been discussed a lot. Itis a classic topic
in extreme value analysis which involves a bias-variance tradeoff. For instance,
Bader et al., 2018|developed an efficient technique for threshold selection based
on the Anderson-Darling test. Besides, Wan and Davis, 2019|proposed a proce-
dure for selecting the threshold in modeling multivariate heavy-tailed data by
testing the independence of the radial and angular components using distance
covariance. This approach aims to improve the estimation of tail dependence by
incorporating a subsampling scheme, reducing computational demands, and

demonstrating its effectiveness on both simulated and real data.

r.2.1 An Illustration of Extremal Spectral Sample

To be clear about the extremal spectral sample, we used the daily river discharge
data from two sites: "NEAR BELL" in Broad, GA and "CHESTER" in Missis-
sipi, IL. The river discharge data are related to the daily discharge rate of rivers in
North America sourced from the Global Runoff Data Center (German Federal
Institute of Hydrology, n.d.). Scatter plots are drawn to illustrate the extremal
spectral sample. The dataset comprises 16,386 daily records of discharge values
from the two stations spanning the period from December 1, 1976, to October
11, 2.021.

Figure displays scatter plots of daily discharge data from two sites, high-

lighting some large values that may be strongly associated with flood events.
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Figure 1.3: An Illustration of Extremal Spectral Sample

Detecting patterns in extreme values between the two sites is challenging, so we
apply a transformation —1/log F;, ¢ = 1, 2 where Fjis the empirical cumula-
tive distribution function (CDF) of site i (see Figure|r.3b)). To focus on extreme
behaviors, we identify the 10% of records with the largest L2 norms, shown as
red points in Figure By projecting the selected data onto the unit sphere, we vi-
sualize the extreme behaviors, or spectral measure, as seen in Figure Given
that one site is located in Georgia and the other in Illinois, the unit sphere pro-
jection shows mass near the endpoints, indicating that extreme daily discharge

events between these geographically separated sites are largely independent.

1.2.2 AnlIllustration of Convergence Towards Discrete Spec-
tral Measure

To clarify the convergence toward a discrete spectral measure, we provide a sim-
ulation example illustrated in Figure[r.4] The 10,000 data points are generated

10



using the max-linear model:

=1, _17" ’

X= <X17X27X3) = (lman bllZw R EH&X leZl) )

where by = (1,0,0), by = (0,1,0),and bg = (0,0, 1). Here, Z; are indepen-
dent standard Fréchet random variables. Details of the max-linear model will
be discussed in the following sections.

In Figure which displays all simulated data points on the unit sphere,
detecting patterns in the data is challenging. By examining only the top s0% of
data points based on the Ly norm, as shown in Figure we can see that rela-
tively large values are concentrated around the three vertices (1,0, 0), (0, 1, 0),
and (0,0, 1). When focusing on just the top 10% of data points (Figure[i.4c)
with the greatest Lo norm, it becomes even clearer that observations are clus-
tered around these three vertices. These plots demonstrate the convergence
of the spectral measure. As previously discussed, the choice of proportion for
extreme values—denoted by /,, in raises important considerations in ana-
lyzing spectral measures.

Studying the convergence toward a discrete spectral measure is essential in
understanding the asymptotic behavior of extreme values in multivariate mod-
els, especially in fields that rely on modeling extreme events, such as finance,
environmental science, and insurance. In max-linear models, as in our exam-
ple, the data tend to concentrate near specific vertices of the unit sphere. This
clustering behavior, as seen in the simulation, highlights a form of dependency
structure among the extreme values, which provides insight into the underlying
risk or interaction patterns between variables in high-dimensional spaces.

When convergence toward a discrete spectral measure occurs, it indicates
that a small subset of directions or patterns dominates the extreme behavior of
the system. This property enables simplification in modeling since it allows us
to represent complex dependencies through a discrete spectral measure, captur-
ing the essential behavior of extremes without the need to model every inter-
action in detail. For instance, in financial portfolios, it can reveal that only a
few assets might drive extreme risks, which is valuable for risk management and
mitigation.

Furthermore, understanding this convergence is critical when selecting ap-
propriate thresholds and determining the proportion of extreme values to ana-
lyze. Difterent choices of thresholds can impact the interpretation of the spec-
tral measure and, consequently, the understanding of the extremal dependence
structure. As discussed, the choice of this threshold, denoted as [, , directly in-

fluences how we assess convergence and measure stability. Hence, examining the

II



convergence properties enables researchers to make informed decisions regard-
ing threshold selection, thereby improving the robustness and interpretability

of the spectral measures in practical applications.

(a) All Simulated Data (b) s0% Simulated Data

10% with Largest L2 Norm

L]

(c) 10% Simulated Data

Figure 1.4: Example of Convergence Towards Discrete Spectral Measure

1.2.3 A Three-dimensional Extreme Value Model Example

Here, we address a three-dimensional real case study. This study explores the
joint occurrence of extreme daily river discharge recodes of three different lo-
cations. The data are obtained from the Global Runoff Data Centre German
Federal Institute of Hydrology, n.d. The dataset comprises 16,386 daily records
of discharge values from 13 stations spanning the period from October 1, 1976,
to October 11, 2021. These 3 stations, shown in Figure are positioned along
2 rivers in America: Willamette River, and Mississippi River.

combining generalized extreme value (GEV) distributions and a Gumbel
copula. Each location’s annual maximum wind speeds are modeled separately

12
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using GEV distributions, capturing the statistical properties of extreme values,
including their location, scale, and tail behavior. The GEV cumulative distri-
bution functions (CDFs) transform these wind speeds into a uniform scale,
facilitating the use of a Gumbel copula to capture the dependency structure
between them. The Gumbel copula, particularly suited for modeling joint oc-
currences of high values, emphasizes the relationship between extreme wind
events at the different sites, allowing for the estimation of joint probabilities of
simultaneous extreme occurrences. A 3D visualization of the joint distribution
illustrates these probabilities, revealing the likelihood of concurrent extreme
wind conditions at all three locations.

Figure displays the raw river discharge data from the three sites. The
data is dense, with some clustering that likely corresponds to the discharge val-
ues recorded at the three locations. Due to the proximity of two sites, "PORT-
LAND" and "SALEM," their data may exhibit significant overlap or similar
patterns, while the third site, "CHESTER," appears distinct, likely due to its ge-
ographic and hydrological differences. To better understand the data patterns,
a transformation is applied, as shown in Figure However, due to
scaling issues, it remains challenging to discern the empirical patterns of the
spectral measure.

To address this, the transformed data is normalized, as illustrated in Figures

and|1.6f] Normalization enhances the clarity of the data patterns,

making it easier to identify trends. Based on the normalized data, it becomes
evident that the "PORTLAND" and "SALEM" sites share a similar trend, while
the "CHESTER" site demonstrates distinct characteristics. By focusing on the
"large” values—specifically the top 0%, 10%, and 1% of the data with the great-
est Ly norm—the convergence of the spectral measure becomes increasingly
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clear. This approach highlights the dependence structure among the sites and
empbhasizes the divergence of "CHESTER" from the other two locations.

1.3 Extreme Value Statistics

The sparsity property in multidimensional extreme value statistics plays a criti-
cal role, as it reflects the rare and isolated occurrences of extreme events across
multiple dimensions. This sparsity often leads to intricate dependence struc-
tures, where the relationships between extreme values in different dimensions
are neither straightforward nor uniformly distributed, creating a complex web
of dependencies. To model these dependencies effectively, extreme value statis-
tics leverages sophisticated methods that are adaptable to high-dimensional data.
This adaptability has driven its applications across diverse domains, such as en-
vironmental sciences for assessing risks like floods or heatwaves, finance for ex-
treme market movements, and engineering for infrastructure reliability under
stress.

The integration of extreme value statistics with graphical models, machine
learning, and causality has enriched both the methodological and application
domains of this field. Graphical models, which represent variables as nodes and
dependencies as edges in a network structure, allow researchers to visualize and
quantify complex relationships among extremes in high-dimensional data. This
is particularly beneficial when exploring sparsity-driven structures, as graphical
models enable the simplification of complex dependency webs inherent in mul-
tivariate extremes. For example, in climate science, extremal graphical models
can help identify joint patterns in temperature or precipitation extremes across
spatially distributed locations, revealing interactions that inform regional risk
assessments.

In machine learning, extreme value statistics has found application in train-
ing algorithms that must handle rare events, such as in predictive maintenance
and anomaly detection. Neural networks and other machine learning models
can leverage extreme value theory to enhance their predictive power for rare
events, making it possible to forecast extremes with greater accuracy. For in-
stance, algorithms trained on historical financial market data can incorporate
extreme value distributions to better anticipate and prepare for market crashes
or sudden financial anomalies, enhancing risk management systems. Addition-
ally, generative models and other machine learning approaches facilitate data
augmentation in scenarios with limited extreme observations, broadening the

scope of potential applications.
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Causality analysis has also benefited from extreme value statistics, partic-
ularly in domains where understanding causal drivers of extremes is essential.
By combining causal inference techniques with extreme value modeling, re-
searchers can distinguish between mere correlations and potential causal links
in rare event occurrences. This approach is highly relevant in public health,
where identifying the causative factors behind disease outbreaks can improve
preventive measures. Similarly, in environmental sciences, determining causal
factors for extreme weather events, such as links between greenhouse gas emis-
sions and heatwaves, can aid in developing more effective climate policies.

Together, these interdisciplinary applications of extreme value statistics un-
derscore its versatility and impact across fields. By drawing on advancements in
graphical models, machine learning, and causality, extreme value statistics not
only enhances our understanding of dependencies in extreme events but also
provides robust tools for predicting and managing these events across various

sectors.
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CHAPTER 2

FAcCTOR MODELS AND
SPHERICAL CLUSTERING
TECHNIQUES

2.1 Linear Factor Models

Factor models are statistical tools designed to describe the relationships among
a large number of variables by summarizing them in terms of a smaller set of
unobserved latent variables, known as factors. These models provide a parsimo-
nious representation of the data, making them invaluable for understanding
underlying structures and simplifying complex systems.

In the context of extreme value theory (EVT), factor models are particularly
useful for reducing dimensionality in multivariate extremes. By identifying la-
tent factors that drive the dependence structure of extreme events, these models
facilitate the analysis of high-dimensional data where extreme observations are
rare and often spatially or temporally dependent. This makes them a powerful
tool for studying phenomena such as heatwaves, financial crashes, or widespread
insurance claims due to natural disasters.

Beyond EVT, factor models are widely applied in finance, where they are
used to model the relationships between asset returns and macroeconomic fac-
tors or market-specific factors (e.g., in portfolio optimization or risk modeling).
In economics, factor models help identify common trends or shocks affecting
multiple economic indicators, such as GDP, inflation, and unemployment rates.

In risk management, factor models play a central role in identifying and
quantifying risks associated with various factors, enabling firms to better man-

age exposure to market, credit, or operational risks. They are also utilized in
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climatology to study large-scale atmospheric and oceanic processes, such as iden-
tifying dominant patterns in global temperature changes or rainfall extremes.

Other fields where factor models are applied include psychometrics (to
measure latent traits such as intelligence or personality), bioinformatics (to un-
cover latent structures in genetic data), and marketing (to understand consumer
preferences and segment markets). Their versatility and ability to handle high-
dimensional data make factor models essential across numerous domains where
reducing complexity while retaining interpretability is a priority.

Two common approaches to factor models in extreme value theory are the
max-linear model and the sum-linear model. Both aim to represent the depen-
dence structure of extreme values in a multivariate setting but do so in different
ways.

The linear factor model has broad applications across fields due to its ability
to capture the influence of underlying factors on observable outcomes. In fi-
nance, it explains asset returns through models like the Fama-French model. In
econometrics, it assesses relationships among economic indicators. In machine
learning, it underlies dimensionality reduction techniques like PCA. Addi-
tionally, variants like the max-linear model are used in risk management and
engineering to analyze systems dominated by extreme factors. This flexibility
makes the linear factor model a powerful tool for analyzing both collective and
dominant factor impacts in diverse domains.

In our thesis, we examined two classical linear factor models: the max-linear
and sum-linear models. Both models exhibit similar extreme behaviors and
serve as foundational, straightforward tools for exploring the application of
clustering methods in the subsequent sections.

2.1.1 Max-linear Model

Over the past decades, the construction of statistical models of multivariate
extremes has been explored and discussed by researchers. One of the simplest
models is the max-linear model. It was first introduced by Coles and Tawn in a
series of papers in the 1990s (See. e.g., S. G. Coles and Tawn, 1991, S. G. Coles
and Tawn, 1994, and S. Coles et al., 1999)). Max-linear models are a class of
models used to analyze multivariate data in which each variable is modeled as a
max-linear combination of the values of some underlying latent variables. This
type of model has found applications in fields such as environmental science,

finance, and genetics, among others.
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Model Formulation

One form of the max-linear model (Janflen and Wan, 2020a)) can be represented
as:

i=1,m, i=1,,

X= (X1, ,Xq) = (‘maxkaiZi, e AmaxkaZi) (2.1)

where b; = (b}, ,b¢) € [0,00)%i = 1,---,k are k different factors
and Zy, - - - , Zj, are IID random variables with the same heavy-tailed distribu-
tion, for instance, with the standard Fréchet distribution being a most common

choice. We also impose an assumption that

k
Zb§:1forallj:1,'--,d, (2.2)
i=1

so that the marginal distributions of X have the same rate of tail decay, e.g., they
are each standard Fréchet if Z;’s are assumed so.

Application and challenages

Max-linear models have several advantages, including their flexibility in approxi-
mating complex extremal dependencies while maintaining simplicity and inter-
pretability. A notable recent development of the max-linear model includes the
studies on Bayesian networks, namely, directed acyclic graphical models, based
on max-linear structural equations (See. e.g., Gissibl and Kluppelberg, 2018}
Kliippelberg and Lauritzen, 2019)).

However, the parameter estimation problem of max-linear models has been
considered challenging mainly due to the fact that the likelihood is not available
because of the lack of density for the spectral measure, which sets its parameter
estimation problem for max-linear models apart from traditional likelihood-
based parameter estimation procedures.

There have been several explorations on parameter estimation of max-linear
models. Einmahl et al., o012/ and Einmahl et al., 2016/ proposed using an M-
estimator to minimize the distance between a vector of weighted integrals of
the tail dependence function and their empirical counterparts. Yuen and Stoev,
2014, also introduced an M-estimation framework for max-stable models by
utilizing the continuous ranked probability score (CRPS) of multivariate cu-
mulative distribution functions. Recently, Janflen and Wan, 2020a|discovered
a connection between max-linear model estimation and spherical k-means clus-
tering of extreme values.
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Although methods of parameter estimation for the max-linear model have
been considered as above, none of the methods have addressed model order
selection, namely, the selection of k in (2.1). In this thesis, we first follow the
work by Janflen and Wan, 20204/t relate the procedure of parameter estimation
for max-linear models to a clustering process. Then the modelselection problem

is converted to a problem of selection of the number of clusters.

2.1.2 Sum-linear Model

The sum-linear model has developed as a fundamental approach for analyzing
the additive effects of multiple factors on observable outcomes. It emerged from
statistical methods to decompose complex systems into simpler components,
allowing researchers to quantify how each factor contributes to the overall vari-
ability of a response variable. Over time, this model became integral in fields
like finance (e.g., asset pricing models such as the Fama-French model), econo-
metrics (to analyze economic indicators based on underlying factors), and psy-
chology (for factor analysis in survey data). In machine learning, sum-linear
models underpin dimensionality reduction techniques like Principal Compo-
nent Analysis (PCA), helping to uncover latent structures and reduce noise.
The model’s versatility in capturing additive relationships makes it applicable
across various domains, where it provides insights into how combined factors

drive observed outcomes.

Model Formulation

The sum-linear model is a classic linear factor model where each observable
variable is represented as a sum of weighted factors plus an error term. Mathe-

matically, it is expressed as:
X=Xy, Xg)=| > WZi. Y UiZi|+e  (23)
=1,k =1,k

where b, = (b}, ,b¥) € [0,00)% ¢ = 1,--- , k are k different factors,
Zy,- -+, Zy are IID random variables with the same heavy-tailed distribution,
for instance, with the standard Fréchet distribution being a most common
choice, and € is the d—dimensional random error. We also impose an assump-
tion that
k
D b =1forallj=1,--- d, (2.4)

i=1
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so that the marginal distributions of X have the same rate of tail decay, e.g., they
are each standard Fréchet if Z;’s are assumed so.

Application and Challenges

The sum-linear model serves as a cornerstone of statistical modeling due to
its straightforward structure and broad applicability across various fields. By
expressing an observable outcome as a linear combination of contributing fac-
tors, this model provides a simple yet powerful means of understanding how
multiple factors collectively influence a response variable. Developed initially
to decompose complex systems into manageable components, the sum-linear
model has proven invaluable in fields such as finance, econometrics, psychol-
ogy, and machine learning, where it underpins many widely-used analytical
methods. In finance, for example, asset pricing models like the Fama-French
model use sum-linear models to capture how market risk, firm size, and value
premiums impact asset returns. Similarly, in econometrics, sum-linear mod-
els enable policymakers to analyze macroeconomic indicators, allowing them
to break down complex economic phenomena into interpretable factors that
guide decision-making.

In the realm of data science and machine learning, the sum-linear model is
foundational to techniques such as Principal Component Analysis (PCA) and
factor analysis, which reduce data dimensionality and enhance interpretability.
These techniques leverage the sum-linear approach to identify latent structures
within data, removing noise and simplifying high-dimensional datasets. In psy-
chology and social sciences, the model aids in survey analysis by explaining psy-
chological constructs or behaviors as combinations of multiple latent factors,
facilitating a deeper understanding of complex social behaviors and interactions.

Despite its strengths, the sum-linear model faces several challenges, particu-
larly in applications involving complex, high-dimensional data. A fundamental
limitation is its assumption of a strictly linear relationship between factors and
the outcome, which can be overly simplistic when real-world relationships are
non-linear. Additionally, multicollinearity among factors—where factors are
highly correlated—can obscure individual factor contributions and lead to un-
reliable estimates, making interpretation challenging. Overfitting is another
concern, especially in high-dimensional datasets where the model may capture
noise rather than genuine patterns, compromising its predictive utility. Fur-
thermore, the model’s sensitivity to outliers can affect its robustness, as extreme
values may disproportionately impact the fit.

Addressing these limitations requires careful consideration of model se-

lection, validation procedures, and potentially robust estimation techniques.
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Nonetheless, the sum-linear model remains an essential tool in statistical mod-
eling, balancing interpretability and explanatory power. By providing a frame-
work to assess additive effects, it continues to play a vital role in diverse applica-
tions, offering insights into how combined factors drive observed outcomes in

complex datasets.

2.2 Spherical Clustering

To examine the behavior of extreme values, as previously discussed, it is essential
to define the spectral measures. Spectral measures reveal the extremal depen-
dence structure between variables, offering insights into how extreme values
relate to one another. Clustering methods on the sphere can then be applied to
capture and describe the distributional details of these dependencies.

Spherical clustering is a specialized form of clustering that organizes data
points distributed on a spherical surface, such as in high-dimensional data where
each point lies approximately on a hypersphere. This technique is especially
useful when dealing with data that naturally has directional properties or can be
represented using cosine similarity, like text data in natural language processing
(NLP) or user preference vectors in recommender systems. Unlike traditional
clustering methods, which rely on Euclidean distance, spherical clustering often
uses cosine distance to measure similarity, making it suitable for cases where only
the orientation of data vectors matters, not their magnitude. The spherical k-
means algorithm is a prominent example in this domain, where centroids are
updated to minimize cosine distance rather than Euclidean, leading to more
meaningful clusters in high-dimensional, sparse spaces.

Additionally, spherical clustering is computationally efficient for large-scale
text data and has been applied in topic modeling, document clustering, and
semantic analysis. In these cases, text data represented in vector form using
embeddings (e.g., Word2Vec or BERT)) benefit from spherical clustering as it
captures semantic relationships better than traditional methods. This method
is also used in genomic data analysis, where genes can be clustered based on
expression levels, which are often measured by similarity in direction rather
than magnitude. However, spherical clustering has limitations, such as diffi-
culty with non-spherical data distributions, as it assumes that clusters are evenly
spread across the spherical space, potentially leading to poor performance when
data clusters are dense or anisotropic. Recent advancements have focused on
improving spherical clustering algorithms through techniques like spherical
Gaussian mixtures and deep learning-based clustering, which can adaptively
handle complex data distributions while retaining computational efficiency.
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2.2.1 Relationship Between Model Estimation and Spheri-
cal Clustering

As defined previously, the spectral measure for the max-linear model and sum-
linear model provide information on the extremal dependence structure be-
tween the variables in and . From the structure of and , it is
known based on the single-big-jump principle of heavy-tailed distributions, the
largest observations of X are due to a large observation of a Z; and therefore the
factors b, determines the possible direction of extremal observations. In fact, it
can be shown that the spectral measure S of the max-linear model or sum-linear
model concentrates on the points a; = b;/ ||b; || with corresponding probabil-
ity pi = [[bill /(3 Ibu]l), 1 < i < k(JanBen and Wan, 20204).

Figure[o.]demonstrates simulations from a three-dimensional max-linear
model. The factor b;’s are b; = (0.8,0.1,0.1), b, = (0.1,0.8,0.1), and
bs; = (0.1,0.1,0.8). There are 10,000 data points simulated based on a stan-
dard Frechet distribution for each Z;. The plot on the left shows all 10,000 data
simulated, the plotin the center is 50% of the data set with the largest norm, and
the one on the right is 10% of the data set with the largest norm. Apparently, the
"extreme" points (points with the largest norm) are centered around the points
a; = by/||b1]| = (0.98,0.12,0.12), ay = by/ ||bs|| = (0.12,0.98,0.12),
and a3 = b/ ||bs|| = (0.12,0.12,0.98), labeled red in the plots. These
points are roughly centered around a;, ¢ = 1, - - - , 3, with the same probabil-
ity p; = 1/3. Selecting more extremal portion of the data will make the spectral

structure of the max-linear model more apparent.

Figure 2.1: Simulated Max-linear Data (left: 100% data; middle: 50% data; right:
10% data)

Hence, the parameter estimation for max-linear models or sum-linear model
can viewed as a clustering process. The points ay, - - - ,a, € ST are the cen-
ters where the spectral measure S concentrated with the corresponding proba-
bilities p, - - -, py. It was argued in Janfen and Wan, 20204 that the estimation
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ofa;,;i =1,---  kandp;,i =1, -, k obtained from a clustering procedure
can be viewed as an alternative to the estimation of the factorsb;, 2 = 1,--- | k.
Note that, however, knowledge of a; and p;, 7 = 1, - - - | k, (totally dk — 1 free
parameters) is overdetermining b;, 7 = 1, - - | k, with the constraint (to-
tally dk — k free parameters).

This thesis proposes two spherical clustering methods: spherical k-means
clustering and spherical k-principal component clustering. Both methods ofter
effective approaches for estimating linear factor models. However, their appli-
cations may differ, particularly beyond model estimation. Notably, chapter 4

explores how these methods can be applied to detect concomitant extremes.

2.2.2  Spherical K-means Clustering

In high-dimensional data analysis, particularly in text mining and document
clustering, traditional clustering algorithms such as k-means often face chal-
lenges due to the nature of the data. Specifically, textand other high-dimensional
data are typically sparse, and the magnitude of feature vectors often has less sig-
nificance compared to their directionality. To address this issue, a variant of the
k-means algorithm, known as Spherical K-means Clustering, has been devel-
oped, which adapts to the characteristics of such data.

Spherical K-means clustering differs from the conventional K-means algo-
rithm by using cosine similarity as the distance metric instead of Euclidean
distance. Cosine similarity measures the cosine of the angle between two vec-
tors, making it a more appropriate measure of similarity in high-dimensional
spaces where the direction of the data points (rather than their magnitude) is
of primary importance. This feature is particularly useful in domains like nat-
ural language processing (NLP), where documents or texts are represented as
high-dimensional vectors, such as term-frequency inverse document frequency
(TE-IDF) vectors or word embeddings.

As discussed in the previous sections, parameter estimation for linear fac-
tor models turns into a clustering problem. For such a problem, the spherical
k-means algorithm, the spherical variant of the classical k-means algorithm, is a
natural choice. More specifically, the spherical k-means clustering is a clustering
technique that is used to group data points based on their similarity. Unlike the
classical k-means clustering algorithm developed by Hartigan and Wong, 1979,
which operates on Euclidean distances between data points, spherical £-means
clustering works on the surface of a hypersphere (see Hornik et al., 2012b). The
algorithm works on the surface of a hypersphere, rather than in an Euclidean
space. The data points have been normalized to have unit distance to the origin,

so that they lie on the surface of the hypersphere. The algorithm then proceeds
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similarly to the traditional k-means algorithm, with some modifications to ac-
commodate the spherical geometry.

Algorithm Description

In general, the algorithm begins by randomly selecting k initial cluster centers
on the hypersphere, and then iteratively assigns each data point to its nearest
cluster center based on their cosine similarity (see (2.5)). The centroid of each
cluster is then updated based on the mean of the cosine dissimilarities between
the data points assigned to the cluster and the cluster center. This process is

repeated until convergence.

1. Initialization: The algorithm initializes by randomly selecting k initial
cluster centroids {c1, ¢a, . . ., ¢ }. Each centroid is normalized to have
unit length, ie., ||¢;|| = 1forallj € {1,...,k}, ensuring that the
centroids lie on the unit hypersphere.

2. Assignment Step: For each data point z;, the cosine dissimilarity be-
tween z; and each centroid ¢; is computed. The cosine dissimilarity is

defined as:
Z; Cj

llllel

(2:5)

cosine_dissimilarity(x;, ¢;) := d(x;,¢)y = 1 —

Since both z; and ¢; are normalized to unit length, this simplifies to:
cosine_dissimilarity(2;, ¢;) = 1 — z; - ¢;

Each data point is then assigned to the cluster corresponding to the cen-
troid with which it has the smallest cosine dissimilarity.

3. Update Step: After all data points have been assigned to clusters, the
centroids are updated by computing the mean of all data points in each
cluster. The new centroids are then normalized to lie on the unit hyper-

sphere.

4. Convergence: The algorithm iterates between the assignment and up-
date steps until the centroids stabilize or the change between consecutive
iterations falls below a predefined threshold.

Here we provide a mathematical description of the objectives of the classical
and the spherical k-means on the population level. The Let d : R? x R4 —
[0, 00) be a dissimilarity function in R?. For a probability measure P on R,
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the averaged distance from any observation to the closest element of A can be
represented as:

W(A,P):= | mind(z,a)P(dz) € [0,00), (2.6)

Rd (ZEA
where A = {ay,- - ,ax},a; € Rifori = 1,---  kand k € N. The k-
means cluster center is a set Ay, which minimizes W (A, P) amongall A. Spher-
ical k-means, on the other hand, replaces R? in by Sfl[l and P is now

understood as a probability measure on Si_l, and uses angular dissimilarity in

(2.5).
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Figure 2.2: Cosine Dissimilarity

The optimal spherical k-means center set Ay, is obtained similarly. In the
practice of a (spherical) k-means algorithm, the population probability mea-
sure P is replaced by the empirical version say P,, under which we denote the
optimal center set as A}. Proposition 3.3 in Janflen and Wan, 20204 provided a
consistency result for the spherical k-means, showing the convergence of A} to
Ay, as the sample size n — o0.

Advantages and Applications

One of the primary advantages of Spherical K-means is its effectiveness in han-
dling high-dimensional, sparse data, which is a common feature of document-
term matrices used in text mining. The normalization step and the use of cosine

similarity ensure that the clustering process focuses on the directional alignment
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of data points, making it more robust in cases where the magnitude of the vec-
tors is less meaningful. This makes Spherical K-means particularly well-suited
for applications such as document clustering, topic modeling, and information
retrieval, where the goal is to group similar texts or documents based on their
content.

For instance, in document clustering, a common approach is to represent
each document as a vector of word frequencies. These vectors tend to be highly
sparse, with many zero entries, and the differences in their magnitudes might
not reflect the actual content similarity between the documents. By focusing
on the angular distance between these vectors, Spherical K-means can more
effectively group documents discussing similar topics.

Spherical k-means clustering has found applications in various domains
where multi-dimensional data with angular relationships need to be clustered.
There are a lot of notable applications of spherical k-means clustering. In nat-
ural language processing, text data is often represented as high-dimensional
vectors, such as word embeddings or document-term matrices (See. e.g., Tunali
et al., 2016). Spherical k-means clustering can be applied to cluster documents
or words based on their semantic similarities, capturing the angular relation-
ships between them. In computer vision, spherical k-means clustering has been
used to cluster images based on visual features (See. e.g., Moriya et al., 2018).
High-dimensional image descriptors, such as histograms or deep features, can
be normalized and clustered on the hypersphere to capture the angular rela-
tionships between images. In genomics and bioinformatics, spherical k-means
clustering has been applied to analyze high-dimensional gene expression data
(See. e.g., Moussa and Mindoiu, 2018). By considering the angular relationships
between gene expression profiles, it can identify clusters of genes with similar
expression patterns, aiding in understanding biological processes and identify-
ing potential biomarkers. The technique can be adapted to various domains
where high-dimensional data with angular relationships need to be clustered,
providing valuable insights and facilitating data-driven decision-making.

Limitations

Despite its advantages, Spherical K-means is not withoutits limitations. One sig-
nificant assumption of the algorithm is that the data naturally lies on the surface
of a hypersphere, which might not hold for all types of high-dimensional data.
Additionally, like traditional K-means, Spherical K-means requires the number
of clusters k to be specified & priorz, which can be a challenge in unsupervised
learning tasks where the true number of clusters is unknown. Furthermore, the
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algorithm’s performance is sensitive to the initial choice of centroids, which

may result in suboptimal clustering in certain cases.

Summary

Spherical K-means is a powerful extension of the traditional K-means clustering
algorithm, tailored for high-dimensional, sparse data. By leveraging cosine simi-
larity and unit-length normalization, the algorithm provides a more meaningful
clustering of data where the direction of the feature vectors is more important
than their magnitude. This characteristic makes Spherical K-means particu-
larly useful in text mining, document clustering, and other domains where data
exhibits high dimensionality and sparsity. However, its assumptions and sensi-
tivity to initialization must be carefully considered in practical applications.

2.2.3 Spherical K-principle Component Clustering

Spherical K-principal Component Clustering (SK-PC) is a clustering approach
designed for high-dimensional data distributed on or near a spherical surface. It
utilizes the theoretical foundation of principal component analysis (PCA) and
leverages the properties of the first principal components, enhancing the cluster-
ing process. However, the primary focus of the method is on grouping similar
data points rather than performing PCA. Unlike traditional clustering, which
typically uses Euclidean distances, spherical clustering focuses on angular dis-
tances or cosine similarities, making it particularly suitable for data types where
the direction of data vectors is more informative than their magnitude, such as
in text data, genetic data, or other high-dimensional datasets with sparsity.

In Spherical K-Principal Component Clustering, principal component di-
rections are computed to capture the primary modes of variation within clus-
ters on the sphere. The clustering process is enhanced by projecting data points
onto these principal components, and the first principle component can be
seen as cluster centers or prototypes. This approach provides a more robust
framework for clustering when the data’s primary structure aligns with these
principal directions. As a result, it enables more accurate modeling of the data’s
inherent structure, helping to mitigate noise and improving the interpretabil-
ity of clustering results. Additionally, by emphasizing the orientation of data
points rather than their absolute distances, this method can identify clusters
that are more representative of the underlying data patterns, especially when ap-
plied to linear factor models or in detecting extreme events in high-dimensional

spaces.
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This clustering method is especially valuable in applications that require
an understanding of extremal dependence, as it can help detect and interpret
patterns among extreme values, such as identifying outliers or assessing risk in

financial and environmental data.

2.2.4 Algorithm Description

The logistic structure of the k-pc algorithm is similar to spherical k-mean clus-
tering. Instead of using means to find the optimal center in (2.6)), the first prin-
ciple direction calculated by a “covariance matrix” centered with respect to the

origin is used (see ¥; in Algorithm(4.2.2)). Algrithm|4.2.2]gives a single iteration
of spherical k-pc clustering.

1. Input: The algorithm initializes by randomly selecting £ initial clus-
ter centroids {c1, ¢a, . . ., ¢ }. Each centroid is normalized to have unit
length, ie., ||c;]| = 1forall j € {1,..., k}, ensuring that the centroids
lie on the unit hypersphere.

P

Step 1: Compute the n X k matrix of dot products

M = (9317 .. ’xk)(gl .. gn)T.

3. Step 2: Let v be the mean of row-wise maxima of M.

4. Step 3: For each row of M, find the index of the (first) maximal value
and store them in g.
5. Step 4:Fori = 1toi = k, caleulate ¥; = (1/n) 37 (0,0] 1(g,=1});

and find the principal eigenvector.

6. Output: new centroids 21, - - - T, € Sflfl and the old value v.

Similar to spherical K-means clustering, the mathematical objective function
remains the same as defined in Equation . However, instead of using co-
sine dissimilarity as defined in Equation (2.s)), dissimilarity is measured using
the first principal component.

29



Advantages and Applications

Spherical K-principal Component Clustering (SK-PC) represents an advanced
method for clustering high-dimensional data by combining the principles of
spherical clustering and principal component analysis (PCA). This technique
is particularly advantageous for data where the direction of data vectors holds
more significance than their magnitude, such as in sparse datasets commonly
encountered in natural language processing (NLP) and genomic studies. By
focusing on angular distances or cosine similarity, SK-PC emphasizes the rela-
tional orientation among data points, allowing for a meaningful reduction of
dimensionality while preserving critical angular relationships. This approach
also enhances interpretability by projecting data onto principal component di-
rections that represent the primary modes of variation within each cluster, pro-
viding insights that may be obscured in traditional clustering methods relying
on Euclidean distances.

The applications of SK-PC are broad, spanning fields that require cluster-
ing of complex, high-dimensional datasets with distinct directional patterns. In
NLP, for instance, clustering word or document embeddings based on their
principal components allows for more nuanced semantic groupings, improv-
ing tasks like topic modeling and document categorization. In finance and
environmental sciences, SK-PC is particularly valuable for identifying extremal
dependencies among variables, such as clustered patterns of extreme values that
indicate correlated risk events. Additionally, in genomics, this method enables
the clustering of gene expression profiles to reveal functional or regulatory rela-
tionships, which is crucial in identifying biomarkers and understanding biolog-
ical networks. Thus, the integration of spherical clustering with PCA facilitates
applications that require detailed analysis of data’s directional structure, making
it a versatile tool for extracting meaningful patterns in diverse high-dimensional

contexts.

Limitations

Despite its advantages, SK-PC has certain limitations that must be considered.
The method assumes that data points are distributed in a spherical or near-
spherical manner, which may not hold across all types of datasets, potentially
limiting clustering effectiveness when data structures deviate from this assump-
tion. Moreover, SK-PC is sensitive to initial centroid selection, similar to other
clustering algorithms, meaning results may vary depending on initializations.
This sensitivity often requires multiple iterations to ensure robust clustering

outcomes, increasing computational demand. Lastly, the computational com-
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plexity of projecting data onto principal components and iteratively clustering
can make SK-PC resource-intensive, particularly for very large datasets. Never-
theless, with careful tuning and application to suitable datasets, SK-PC remains

a robust and insightful tool for understanding complex data structures.

Summary

Spherical K-Principal Component Clustering is a powerful tool for clustering
high-dimensional, sparse, or directional data. By integrating principal compo-
nent analysis with spherical clustering, it provides a more interpretable, direc-
tionally focused analysis that excels in applications such as NLP, financial risk
modeling, and genomic studies. However, its effectiveness relies on assump-
tions about data distribution, and it can be computationally intensive. Despite
these limitations, SK-PC ofters significant value in applications where under-

standing extremal dependence and directionality is essential.

2.2.5 Comparison Between Spherical K Means Clustering
and Spherical K Principle Component Clustering

Both Spherical K-means Clustering and Spherical K-Principal Component Clus-
tering fall under the category of spherical clustering algorithms and can be sum-
marized as follows.

The spherical clustering algorithms that have been considered so far are
performed exclusively on the unit sphere S‘i_l with respect to the 2-norm (Eu-

clidean norm), that s, take || - || (5) in as || - [|o-
St = {x € [0,00): |x]|(s) = 1}, (2.7)

We do not make this assumption for generality unless discussing specific exam-
ples. We equip S% ! with the subspace topology inherited from R?. Next, we

introduce a dissimilarity measure D that follows the assumption below.

Assumption 1 Suppose D : ST x ST — [0, 1] és continuous, and satisfies
the following properties: forw; € ST i € 1,2, (i) D(w1, wq) = 0 fand
only if Wi = Wy; (i) D(W1, W) = D(Wq, W1).

Remark x Without loss of generality, we shall assume that D is properly nor-
malized so that D is surjective over |0, 1]. A nonnegative function D satisfying ()
and (it) is often referred to as a semimetric, which lacks the triangular inequality
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axiom of a metric. With the assumptions imposed, we have w,, — W on if and
only if D(w,,, w) — 0asn — 00, and the D-neighborhoods

B(w,r):={ue€: D(w,u) <r},

w €,7 > 0, form a topological basis of ; see, e.g., Wilson, 1931, Galvin and Shore,
1984} Note that due to the compactness of and the continuity of D, the function

D(w1,w,) := sup [ D(w, w1) — D(w, wy)] (2.8)

wEe

is also a semimetric that is continuous on X and maps surjectively ro 0, 1], which
we refer to as the dual of D. Following from its definition, we have Dt > D, and
a triangular-like inequality holds:

D(Wl,Wg> S D(Wl,Wg) + DT(WQ,WS). (29)

Some common dissimilarity measures are only semimetrics but not metrics.
Below, we consider || - |(s) = || - ||2 so that is the 2-norm sphere. The cosine
dissimilarity adopted in the spherical k-means of Dhillon and Modha, 2001;
Janflen and Wan, 2020b)is given by

Deos(W1,Wa) =1 — W1TW2> (2.10)

where wi, wy €C R?. The dissimilarity measure corresponding to the k-pc
algorithm of Fomichov and Ivanovs, 2023|is given by

Dpc(Wh W2) =1- W1TW22. (Z.II)

These two dissimilarity measures enjoy computational advantages, although

neither of them is a metric. Note thatsince ‘wlTWQ2 - WlTWg,2 ’ < 2w wy—

w]ws| < 2||lwy — wslla, w; €C RY one obtains a bound for the dual

semimetricas Diwy, wy < c||wg —w3]|a for D = Do or Dy, with constant
= 1 or 2 respectively.

To simplify the mathematical description of clustering of sample data, it
is convenient to use the notion of multiset. Recall that a multiset W on is
a set that allows repetition of its elements, whose support, denoted as W, is
a subset of in the usual sense that eliminates repetitions in W. For instance,
with two distinct points 1 and 5 on , one can have W = {wy, wy, wo} with
W = {1,2 }. A multiset W can be characterized by the multiplicity function
my — {0,1,2,...}, where my (W) equals the number of repetitions of
elementw € (my (w) = 0if w ¢ W). A subset of in the usual sense can
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be understood as a multiset with the multiplicity taking value either O or 1,
with the empty set corresponding to a multiplicity function that is identically
0. When the notation w € W is used for a multiset W, it means that w is an
element in W. For multisets W, W5 with multiplicity functions m; and my
respectively, their union Wy U W5 is given by the multiset characterized by the
multiplicity function m; V meg, and their intersection Wy N Wy is given by
the multiset characterized by m; A ms. The relation W, C W is understood
as m; < my. Furthermore, if W is a finite set, a summation ) |, f() for
a suitable function f is understood as ), .y, f()mw (W). For example, the
cardinality of W is defined as

W= mw(w).

Also we write D(w, W) = infsey D(w,s).

Now suppose W is a multiset on S% ! with cardinality [W| < oo. Suppose
k€ Zyandk < |W|. Let Ay = aj, ..., aj; beamultiset on with cardinality
k, which satisfies

Y Dw, A; = inf { > D(w,A): ACS{! |Al = k} (2.12)

wew wew

The existence of A} is guaranteed by the continuity of D and the compactness of
S, although it may not be unique. Notice that when |W| > k, the infimum
in must be achieved with a distinct set of a}’s. Below when multisets
(4, ..., Oy with multiplicity functions my, . . . , my, are said to form a partition
of amultiset W with multiplicity function m, it means thatm = my+. . .4+my,

and m; # Oforalli € {1,---  k}.

Definition 3 A k-clustering of a multiset W, 1 < k < |W|, with respect to the
dissimilarity measure D refers to a pair (Ay, €). Here A}, is as described above,
and €, = {C4, ..., Cy} is a partition of W into a collection of multisets C;’s
such that Dw, A}, = Dw, a; forallw € Cy,1 € 1,... k. Wereferto A}, as
the set of centers and each C; as a cluster.

Remark 2 A k-clustering of W always exists, although it may not be unique even
when Aj, is unique: there may be points in W with the same D-dissimilarity to
multiple centers. On the other hand, it is always possible to ensure non-emptiness

of each cluster C; when k < |W|.

With the choices D = Do and D in and (2.11), respectively, a k-

clustering corresponds to the spherical k-means and k-pc clustering of Dhillon
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and Modha, 2001/and Fomichov and Ivanovs, 2023, respectively. Solving a k-
clustering problem can be computationally hard, and typically, the solution
can only be approximated by a heuristic algorithm such as a Lloyd-type itera-
tive algorithm as in Dhillon and Modha, 2001and Fomichov and Ivanovs, 2023,
In the theoretical analysis of this paper, we assume that a k-clustering can be
found accurately. In addition, when W is later given by a random subsample
W, of the total sample (X;);—1,... ,, we assume that the elements in A} and the
labels X; € Cj,i € {1,...,n},j € {1,..., k}, are measurable.

In summary, spherical k-means clustering and spherical k-principal compo-
nent clustering can be categorized as spherical clustering methods, as described
in (2.6)), distinguished by their choice of dissimilarity functions: cosine dissimi-
larity ((2.10)) for the spherical k-means method and principal component dis-
similarity ((2.11)) for the spherical k-principal component method.

In Figure an example comparing the spherical K-means clustering center
(dark blue point) and the spherical k-principal component clustering center
(red point) on the unit sphere illustrates the similarities and subtle differences
between these two methods. The data are randomly generated on the unit
sphere, and both methods are applied, with the spherical k-principal component
method (SK-PC) using the first principal component to identify the center.
Notably, the two centers are very close, indicating that the methods can be
expected to exhibit similar behavior in many scenarios.

This similarity suggests that, in terms of practical applications, both meth-
ods may perform comparably when applied to tasks such as clustering or esti-
mating linear factor models. However, the computational approaches differ:
the spherical K-means method directly minimizes cosine dissimilarity, while the
SK-PC method relies on the properties of the first principal component to de-
termine the center. As a result, their computational efficiency and performance
can vary slightly depending on the dataset and context.

In practical applications, both spherical K-means and spherical k-principal
component clustering rely on approximation techniques for estimating the clus-
ter centers. The spherical K-means method uses iterative updates to minimize
cosine dissimilarity, providing an efficient but approximate solution to the clus-
tering problem. Similarly, the spherical k-principal component method lever-
ages the first principal component as a proxy for the direction of maximum
variance, using this as an approximation for determining the cluster center.

While the proximity of the centers suggests similar performance in many
cases, the methods’ underlying approximations can lead to slight differences in
computational efficiency and clustering results. The spherical K-means method
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focuses solely on minimizing angular dissimilarity, while the SK-PC method
may introduce variations depending on the data structure. These differences
highlight the trade-offs inherentin both approaches, as neither provides an exact
solution but instead offers computationally practical approximations tailored
to different contexts.

Figure 2.3: Spherical K-means Center (Dark blue) and Spherical K-principle
Component Center (Red)
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CHAPTER 3

ON ESTIMATION AND ORDER
SELECTION FOR
MULTIVARIATE EXTREMES
VIA CLUSTERING

3.1 Model Estimation for Linear Factor Models

Back to the linear factor models, as observed by Einmahl et al., 2012/and Janfen
and Wan, |2020b, one may relate a spherical k-clustering algorithm to the esti-
mation of certain factor-like models that are often considered in the analysis of

multivariate extremes. We summarize the linear factor models in the following

content.
Suppose B = (bi;),_; . djt1...x = P1s..., by, whereb; = (bijy .o ba) s
j € {1,...,k}, are k distinct d-dimensional vectors, b;; > 0, and that each

column and row vector of B is nonzero (otherwise, the dimension d or the
factor order k can be reduced).

Assume that Z = (Zy,..., Z;,)" is a vector of i.i.d. positive continuous
random variables satisfying Pr(Z; > 2z) ~ 27 ®asz — 00, € (0,00). Then

the sum-linear model is given as

k k
X=X,....Xa' =) by;Z,....) byZ] = BZ. (3.1)
i=1 i=1
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On the other hand, we also have the max-linear model as

k k T
X=X,... . Xs' =\/b;Z,...\/bsZ; =BOZ (2)
j=1 j=1

where © is interpreted as the matrix product with the sum operation replaced by
the maximum operation. Note that due to the exchangeability of Z1, . . . , Zj,
either model is identifiable only up to a permutation of the vectors b;, j €
{1,...,k},ie. the distribution of X is unchanged if B is replaced by B, :=
br(1), - .., br) for any permutation 7 : {1,...,k} — {1,...,k}. The
models of types and have recently attracted considerable interest in
connection with causal structural equations for extremes; see, e.g., Gissibl and
Klippelberg, 2018; Gnecco et al., 2021

It is known that both models have a discrete spectral measure as in () and
the spectral measure of linear factor models has the form:

k
H = sz‘éaia (3~3)
=1

where a;’s are distinct points on S4=1 andp; > 0,p1 + ...+ pr = 1. Here

byl b, .
Dj 212:1 ||be||’ a, o, 7€1,... k. (3-4)
This can be derived based on the well-known “single large jump” heuris-
tic: when || X|| ) is large, it is only due to a single large Z; with overwhelming
probability. See, e.g., Medina et al., 2021 and Einmahl et al., 2012; we mention
that these works usually assume the same norm || - ||;) = || - [|(5) and o = 1,
although an extension is straightforward. In addition, the marginal standard-

ization condition imposes the following restriction on B:

Zbij:]-a iEl,...,d. (35)

We also mention that one may relax the models and by adding a
noise term, e.g, X = BZ+eorX = (BOZ)V e, wheree = (g1, .. ., gq)"
is a vector of i.i.d. positive noise terms, and the maximum V is performed
coordinate-wise. As long as each €; has a tail lighter than that of Zj, the conclu-
sions made above still hold (see, e.g., Einmahl et al., 2012). The discussion also
applies to the transformed-linear model of Cooley and Thibaud, |2o19. Finally,
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we mention that in the context of multivariate extremes, one typically only
considers fitting these models to an extremal subsample instead of the whole
sample.

Due to the discrete nature of the spectral measure, the likelihood functions
of these models are inaccessible (see, e.g., Einmahl et al., 2012} |2018; Yuen and
Stoev, 2014). Even without taking a perspective of extremes, the max-linear
model does not admit a smooth density.

Suppose from now on the order k is assumed to be known. Another note-
worthy issue deserving discussion is whether we can translate the estimation of
the spectral measure through a k-clustering algorithm into an estimation of the
coefficient matrix B = bq,...,b; in or (3.2)). Note that the constraint
(3.5) also needs to be taken into account. Combining and (3.5), to solve the
kd coeflicients in B from p;’s and a;’s, we have totally kd + d — 1 free equa-
tions (k — 1 from the equations for p;’s, (d — 1)k from the equations for a;’s
and d from (3.5))). When p,’s and a,’s are estimated via k-clustering, the over-
determined system may not admit a solution, although this over-determined
relation holds asymptotically.

In the following, we describe a simple method to convert spectral estimation
to an estimation of B that satisfies the constraint . Observe that the expo-
nent measure A\ for the models and concentrates on the rays {tb; :
t>0},5 €1,..., k. Henceaspectral mass pointa; = b;/||b;|| on the || -

norm sphere corresponds to a spectral mass point b;/||b;|l» = a;/||a;|| on

the ly-norm sphere, j € 1,..., k. The advantage of considering the l-norm
sphere is that
k d k
2 Ibill =3 by =d
j=1 i=1 j=1
due to relation (3.5). Therefore, under the choice || - ||y = || - || in (.4), we
have p;d = ||bj||, and hence
_ 12 4y :
by = (pyd) jel .k (5.6)

la]l”
Note that one can plug in estimated a; and p; via k-clustering on the a-norm
sphere into (3.6), obtaining, say, b;, j € {1,...,k}. However, the condi-
tion (3.5) may not be satisfied. We propose the following simple correction:
first, form the preliminary estimated coeflicient matrix B := by,..., by =:
ry,...,rq , where riT,Z' € 1,...,d,arerow vectors of B. Then we obtain the
finalestimate B = by, ..., by, of B through replacing eachrow r; by r; /[|r; | o,
which ensures (3.5)). It follows from a continuous mapping argument that the
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thus obtained estimate of B is consistent (up to a permutation of b;’s). Corol-
lary 2.6. from Deng et al., 2024, we provided the proof of consistency.

3.2 Order Selection for Linear Factor Models

Order selection is critical in factor models because it determines the number
of factors that best represent the underlying structure of the data, directly im-
pacting model accuracy, interpretability, and computational efficiency. Choos-
ing the optimal number of factors ensures that the model captures essential
patterns without overfitting, which can introduce noise and reduce predictive
power. Proper order selection enhances the model’s ability to explain variability
in the data effectively, aiding in robust factor analysis, dimensionality reduction,
and clustering applications. Techniques like penalized criteria (e.g., penalized
silhouette methods in clustering) have become essential for achieving reliable

order selection, particularly in high-dimensional and complex datasets.

3.3 Heuristic Approaches

Clustering is often an exploratory data analysis technique, and the true underly-
ing structure of the data may be unknown. Without a ground truth, it becomes
subjective to determine the optimal number of clusters. Many methods are
proposed; however, it is important to be aware that clustering is not a definitive
solution, and the results should be interpreted and validated carefully. In this
proposal, we shall first discuss two heuristic approaches: the elbow method and
silhouette analysis, to compare with the cross-validation method applied in next
section with solid theoretical background.

Elbow Method

The elbow method (Bholowalia and Kumar, 2014)) is a graphical technique that
plots the number of clusters against a clustering evaluation metric (e.g., the
minimized mean distance ) and looks for a point where the decrease in the
metric slows down significantly. This point is referred to as the “elbow” and
can indicate the optimal number of clusters.

3.3.1 Gap Statistics

The Gap Statistic Tibshirani et al., 2001/ evaluates clustering performance by
comparing the total within-cluster variation of the observed data to that of
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reference datasets, aiming to maximize the difference, or "gap,” between them.
While this method offers an objective criterion, it often necessitates visual plot
interpretation, making the selection process semi-quantitative. However, in the
context of factor models, the complexity of expressing the likelihood function
and the need for a suitable reference distribution make applying the Gap Statis-
tic challenging. Consequently, obtaining reliable gap statistics for the linear
factor models discussed in this chapter is not straightforward.

Silhouette Analysis

Silhouette analysis (Rousseeuw, [1987)) measures the compactness and separa-
tion of clusters. It computes a silhouette coefficient for each data point, which
indicates how well it belongs to its assigned cluster compared to neighboring
clusters. The average silhouette score across different numbers of clusters can
help identify the optimal number with the highest overall cohesion and sepa-
ration. The silhouette analysis provides a quantitative measure of the cluster-
ing quality for different numbers of clusters. Higher silhouette scores indicate
better-defined clusters, while lower scores suggest that samples may be assigned
to incorrect or ambiguous clusters.

The silhouette method calculates two main values for each point: the aver-
age distance to points in the same cluster a(7) and the average distance to points
in the nearest neighboring cluster (7). The silhouette scores s(2) for each point
is defined as:

o\ b() —a(d)
) = Sax(a(®) o)) 7)

This metric is computationally intensive, especially for large datasets, as it

requires distance calculations between each point and all other points in both
the same and neighboring clusters.

To address the computational challenges of the silhouette method, researchers
have developed the simplified silhouette method. This adaptation seeks to re-
duce the computational load while retaining the essential characteristics of the
original silhouette metric. The simplified approach approximates the distance
calculations, focusing on a representative subset of points or using efficient data
structures to estimate distances. While this method may sacrifice some preci-
sion, it enables faster evaluation of clustering quality in large-scale datasets, mak-
ing it particularly useful in big data scenarios where computational efhiciency is
crucial.

Both the silhouette and simplified silhouette methods provide valuable in-
sights into the clustering structure, offering a balance between accuracy and
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computational feasibility. Their use in a thesis on clustering highlights the im-
portance of evaluating clustering performance, especially when dealing with
complex or high-dimensional datasets. The choice between the classic silhou-
ette method and its simplified counterpart often depends on the dataset’s size
and the computational resources available, as well as the desired balance between

evaluation accuracy and processing time.

3.3.2 Silhouette Method with Penalty

The method we proposed are based on the silhouette method. We first address
the simplified silhouette method in our linear factor model and the spherical
clustering context.

Let A} = aj,...,a;, € = C,...,Ck be a k-clustering of W with re-
spect to a dissimilarity measure D as in Definition[s}

Define for w € W that

a(w) = D(w, 4;), and b(w) = \/ D(w, A} \ a}),

)
i=1

which are respectively the dissimilarities of w to the closest center (i.c., the center
of the cluster it belongs to) and to the second closest center. When £ = 1. we
understand b(w) = 1.

The (simplified) average silhouette width (ASW) Hruschka et al., 2004, of
this k-clustering is then defined as

S=SWiA) = 3 b(wé@?(w) =1- ﬁ%% (:8)

A well-clustered dataset is expected to have small a(w) values relative to
b(w) across the majority of w points.

Hence, one often uses S to guide the selection of the number of clusters,
that is, to choose k& which maximizes S. However, when experimenting ap-
plying the ASW to multivariate extremes with a discrete spectral measure as
described previously, the performance is unsatisfactory: it tends to respond in-
sensitively when the number of clusters exceeds the true £, i.e., the number of
atoms of the spectral measure. In particular, we observe two behaviors of ASW
that lead to the issue: 1) it tends to treat a tiny fraction of isolated points as a
cluster; 2) it sometimes splits a single cluster center into multiple centers that
are close to each other.
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To improve the method and aviod the issues addressed, the penalized ASW

is given by
St =8—pr=
min, |\ * , | a(w)
W/ D * * - . .
( WI/k ) (1gr?<1§1gk (a,,a])> Wl 2 aw) 9

choose k which maximizes s;.

Theorem 3.1in Dengetal.,[2024/implies that as long as the tuning parameter
is in an appropriate range, with probability tending to 1 as n — o0, the true
order m = k uniquely maximizes the penalized ASW.

In practice, we suggest plotting the penalized ASW S; as a function of m =
1,2, ..., forarange of small ¢ values. The idea is to start with ¢ near 0, gradually
increase it, and see how the penalized ASW curve responds. If some obvious
spurious clusters (i.c., those with tiny size or centers that are too close together)
are present, the curve tends to respond sensitively and bends at the appropriate
order. We then identify the turning point m as the choice of the order £.

As a quick illustration, we follow a simulation setup of (d = 6, k = 6) be-
low to simulate a max-linear factor model. Penalized Average Silhouette Width
(ASW) S (vertical axis) for spherical k-means clustering is plotted as a function
of test order m (horizontal axis). The true discrete spectral measure are given

as the following:

((0.29,0.21,0.50, 0.45, 0.43,0.49) T, 0.22),

* (a1,p1)

= ((0.74,0.00,0.59,0.00,0.32,0.00) ", 0.10),

(
* (a3, ps) = ((0.00,0.27,0.00,0.47,0.00,0.84)7,0.13),
( = ((0.33,0.70, 0.63,0.00, 0.00, 0.00) T, 0.14),

)= (( )',0.10)
)= (( ) ,0.13)
)= (( ) ,0.14)
* (a5, ps) = ((0.00,0.00,0.00,0.81,0.47,0.34) T, 0.09),
* (ag, ps) = ((0.48,0.49,0.25,0.33,0.53,0.29) T, 0.32).

See Figure. Increasing ¢ to a very large value is not informative and is not
recommended in practice. On the other hand, it would be desirable to develop a
data-driven method for choosing ¢, which we leave for a future work to explore.
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Penalized ASW Curves for Simulated Data

0.9
Penalty Value
0.8 t=0
t=0.01

o t=0.025
—e- t=0.05
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o
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2 3 4 5 6 7 8 9 10 1 12 13 14
Number of Clusters Selected

Figure 3.1: A simulation instance taken from d = 6, k = 6 setup.

3.4 Simulation and real data studies

3.4.1 Simulation Studies

In this section, we present some simulation studies to illustrate the performance
of the penalized ASW method introduced. We follow the setup in Janflen and
Wan, 2020bl, Section 4 to simulate the max-linear factor model with ran-
domly generated coefhicient matrix B. In particular, we let the factors Z;’s
each follow a standard Fréchet (&« = 1) distribution. We consider 4 different
combinations of dimensionality d and true order k. Under each (d, k) com-
bination, we describe in the list below the way the coefficient vector b;’s are
generated. Note that due to the standardization , only by, ..., by need
to be specified. Let U;’s stand for i.i.d. uniform random variables on [0, 1].

*d= 4,/€ =2 b1 = (Ul,UQ,Ug, U4)T/2

cd= 47k = G: bl = (U17U27U37U4)T/33 b2 = (U5707 UG’O)T/?)J
b3 = (Oa U770a U8)T/39 b4 - (U97 Ul()u O)O)T/S;
b5 - (Oa 07 U117U12)T/3-

o d= 6, k = 6: bl = (Ula T 7U6)T/3’ b2 = (U7707 U8707 U970>T/3’
bs = (0,U10,0,U11,0,U12)" /3, by = (Uys, U14,U5,0,0,0)" /3,
bs = (0,0,0, Uys, Urg, Uys) T /3.

e d = 10,k = 6: First s factorsare by = (Uy,--- ,Ujg)" /2, by =
(Ur1,U12,0,--+,0)" /2, b3 = (0,0, U3, Up4,0,---,0)7/2,
b, = (0,0,0,0,Uss, Usg,0,0,0,0)" /2,
bs = (0,---,0,Us7, Uig, Uy, Uso) " /2.
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For each of the 4 simulation setups described above, we randomly generate 100
models (i.e, 100 coefficient B matrices). From each of these generated models,
we simulate a dataset of size 1000, extract a subsample of size 100 with the largest
2-norms, and project the subsample on the 2-norm sphere, namely, we work
with || - [y = || - |5y = || - [|2- Subsequently, a spherical clustering algorithm
(spherical k-means or k-pc) and the computation of the penalized ASW score is
carried out on this projected subsample. Throughout the paper, for the spheri-
cal k-means algorithm, we use the implementation in the R package skmeans
Hornik et al., 20124} and for the k-pc algorithm, we use the R implementation
provided in the supplementary material of Fomichov and Ivanovs, 2023,

In Figures3.2]~ 3.5} we demonstrate the simulation results through some
graphical representations. Specifically, each colored matrix plot is associated
with a (d, k) setup as described above. In each plot, a column corresponds to
a simulated dataset, and there are 100 columns. The upper half of the plot cor-
responds to spherical £-means and the lower half corresponds to k-pc. Within
each of these halves, a row corresponds to a ¢ penalty parameter specification.
The color of a cell in the matrix signifies the order m chosen by maximizing the
penalized ASW. We use a white color to indicate a coincidence of m with the
true order k, with a deeper shade of red indicating that the greater m falls below
the true £, and a deeper shade of blue indicating the greater it exceeds the true
k. The bar graph to the right of the matrix indicates the success rate of order
identification (that is, m = k) in all 100 instances.

In all these simulation setups, we can observe a tendency for the non-penalized
(t = 0) ASW to overestimate (sometimes greatly) the order. As the penalty pa-
rameter ¢ is tuned up from 0, we observe a significant bias correction effect,
and the order identification success rate is noticeably improved over a range
of t > 0. Note that this success rate is calculated with respect to the same ¢
for different simulated data sets. We expect the success rate to improve if ¢ is
adaptively tuned for each dataset following the visual method described. It is
also worth mentioning that the order identification based on k-pc tends to be

more accurate than that based on k-means in most of these simulations.

3.4.2 Real data demonstrations

In this section, we use real data examples to demonstrate order selection through
penalized ASW as introduced, as well as conversion of clustering-based spectral
estimation to a factor coefficient matrix as mentioned. We present only the
analysis based on the spherical k-pc algorithm, that s, the dissimilarity measure
D is as in (2.11). The reason for doing so is two-fold. Firstly, the simulation

study seems to suggest a better empirical performance for order selection based
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Figure 3.2: Simulation result visualization for the setup d = 4, k = 2.

on the k-pc algorithm. Secondly, as pointed out in Fomichov and Ivanovs, 2023,
the k-pc algorithm is more suitable for the detection of groups of concomitant
extremes, namely, subsets of variables that tend to be simultaneously large. The
second property facilitates the comparison of the order k& selected with some
“ground truth” from the background information of the datasets.

In each of these studies, suppose that the observed data is (x;) = (x; =
Tity .-, Tig' € [0,00)%, i € {1,...,n}). We follow a conventional ap-
proach to marginally standardize a dataset, so that the assumption with o = 2
is roughly met. In particular, setting F(z) = n~! Yoy o < x (under this
choice of empirical CDF we ensure Fj(z;;)) < 1), j € {1,...,d}, the
transformed data is given by (x;) = (x; = z1,..., 2 € [0,00)%, i €
{1,...,n}), where z;; := —log ﬁ’j(:pij)il/z; if F; were the true CDF for
the data in dimension 7, then z;; would follow a standard 2-Fréchet distribu-
tion. Next, to prepare for the clustering of multivariate extremes, as in the
simulation study, we select the extremal subsample of (x;) with 10% largest
2-norms and project the subsample onto the 2-norm sphere, namely, we work

with || - [y = || - [[s) = || - []2-
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Figure 3.3: Simulation result visualization for the setup d = 4, k = 6.

Air Pollution Data

The air pollution dataset is found in the R package texmex, orginated from an
online supplementary material of Heffernan and Tawn, 2004 It concerns air
quality recordings in Leeds, U.K., specifically in the city center. The data span
from 1994 to 1998, divided into summer and winter sets. The summer dataset
comprises 578 observations, covering the months from April to July inclusively,
while the winter dataset consists of 532 observations, encompassing the months
from November to February inclusively. Each observation records the daily
maximum values of five pollutants: Ozone, NOz2, NO, SO2 and PMio. These
datasets were also used in Janflen and Wan, 2020b|to demonstrate the applica-
tion of the spherical k-means clustering method to multivariate extremes.

In Figures and 3.9} the penalized ASW is plotted against the
number of clusters, where different curves correspond to different values of the
tuning parameter ¢. With the visual method described, we can identify orders
as 5 for the summer data and 3 for the winter data respectively.

These orders are similar to the choices 5 for the summer data and 4 for
the winter data made in Janflen and Wan, 2020b|under the guidance of certain
elbow plots (see Janflen and Wan, 2020b, Figure 1). The authors did not provide
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Figure 3.4: Simulation result visualization for the setup d = 6,k = 6.

a precise explanation of their choices. From the elblow plot in Janf8en and Wan,
2020b), Figure 1, it seems that & = 3 for the winter data is also plausible. Recall
also that here we use the spherical k-pc algorithm of Fomichov and Ivanovs,
2023 while Janflen and Wan, 2020b|used the spherical k-means.

Furthermore, Figures andinclude visualizations of cluster centers
computed based on the k-pc algorithm of Fomichov and Ivanovs, 2023/for the
two datasets when we choose the numbers of clusters as above, respectively.
Each row in either of the plots corresponds to the coordinate vector of a cluster
center: a deeper shade of color indicates a higher value of the squared coordi-
nate. Note that since we work with the 2-norm sphere, the squared coordinates
for each cluster center sum up to 1, forming a probability distribution row-wise.
For the summer data in Figure whose order has been chosen as 5, the clus-
ter centers concentrate sharply near coordinate directions, which to an extent
indicates an asymptotic (or say extremal) independence (see, e.g., Beirlant et al.,
2006, chapter8) of the pollutants.

In contrast, for the winter data in Figure whose order has been chosen
as 3, a cluster center indicates a group of concomitant extremes consisting of
NO, NOz2 and PMro. The asymptotic dependence between these 3 variables
has been observed in Heffernan and Tawn, 2004. This serves as a support for

our order choice which has placed these 3 variables in the same concomitant

group.
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Figure 3.5: Simulation result visualization for the setup d = 10, k = 6.

Following the method introduced with || - ||y = || - ||y = || - [|2 and

a = 2, we compute the factor coefficient matrix B for the two datasets; see

Tablesp.1land 3.2}

Table 3.1: Estimated BT for Summer Pollution Data

Factor | O3 | NO2 | NO | SO2 | PMio

0.88 | 0.22 | 0.10 | 0.20 | 0.24

0.20 | 033 | 0.20 | 0.90 | 0.32
0.35 | 0.79 | 0.30 | 0.21 | 0.32
0.5 | 0.16 | 0.16 | 0.19 | 0.80

[ S N O R N

0.21 | 0.44 | 0.91 | 0.25 | 0.31

River Discharge Data

The river discharge data concerns the daily discharge rate of rivers in North
America sourced from the Global Runoff Data Centre German Federal Insti-
tute of Hydrology, In.d. The dataset comprises 16,386 daily records of discharge
values from 13 stations spanning the period from December 1, 1976, to October
11, 2021. These 13 stations, shown in Table|3.3|and Figure are positioned
along s rivers in America: Willamette River, Mississippi River, Williamson

River, Hudson River, and Broad River.
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Summer Data SKMeans Clustering Results
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Figure 3.6: Air Pollution Example Summer-Spherical K Means Clustering

Table 3.2: Estimated B " for Winter Pollution Data

Factor | O3 | NO2 | NO | SO2 | PMIo

I 0.19 | 0.98 | 0.99 | 0.44 | 0.98
2, 0.07 | 013 | o0.12 | 0.89 | o0.14

0.98 | o012 | 010 | 0.07 | oO.I§

As in the previous example, Figure ?? and presents the penalized ASW
curves, from which we found that 6 seems to be an appropriate choice of order.
Figure3.1s]illustrates the squared cluster centers obtained from the k-pc algo-
rithm when the order is chosen as 6. In Table we convert the spectral estima-
tion to the factor matrix B following the method with || - || ) = |||y = || - ||2
and o = 2. In addition, for each row of the matrix B, we find to which factor
index (the same as the cluster index in Figure[3.1s)) the largest value (in bold) cor-
responds. We include these factor indices in the last column of Table which
can be viewed roughly as markings of groups of concomitant extremes. These
6 groups are in good accordance with the geographical context: most of the
stations located along the same river are found in the same group, with the only
exception of the 4 stations along the Mississippi River. The further division of
these 4 stations into 2 groups may be easily justified by the large geographical
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Summer Data SKPC Clustering Results
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Figure 3.7: Air Pollution Example Summer-SK-PC Clustering

Table 3.3: River Discharge Stations

Station Name River Name Factor (Cluster) Index
SALEM, OR WILLAMETTE RIVER 4
PORTLAND, OR WILLAMETTE RIVER 4
HARRISBURG, OR WILLAMETTE RIVER 4

BELOW SPRAGUE RIVER

NEAR CHILOQUIN, OR  WILLIAMSON RIVER 2
ST.PAUL, MN MISSISSIPPI RIVER I
AITKIN, MN MISSISSIPPI RIVER I
THEBES, IL MISSISSIPPI RIVER 6
CHESTER, IL MISSISSIPPI RIVER 6
GREEN ISLAND, NY HUDSON RIVER 5
FORT EDWARD, NY HUDSON RIVER 5
NORTH CREEK, NY HUDSON RIVER 5
NEAR CARLISLE, SC BROAD RIVER 3
NEAR BELL, GA BROAD RIVER 3

distance between the 2 groups: one group located in MN and the other located
in IL.
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Winter Data SKMeans Clustering Results
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Figure 3.8: Air Pollution Example Winter-Spherical K Means Clustering

Winter Data SKPC Clustering Results
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Figure 3.9: Air Pollution Example Winter-SK-PC Clustering



Squared Cluster Center for Summer Pollution Data
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Figure 3.10: Air Pollution Example Winter-SK-PC Clustering
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Figure 3.11: Air Pollution Example Winter-SK-PC Clustering

Figure 3.12: 13 River Discharge Stations
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Figure 3.13: Water Discharge Example Spherical K Means Clustering

Spherical K-principle Component Clustering with Penalty on River Discharge Data
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Figure 3.14: River Discharge Example SK-PC Clustering
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Figure 3.15: River Discharge Squared Cluster Center k = 6

Table 3.4: Estimated B for River Discharge Data

Factor I 2 3 4 5 6

SALEM o5 026 o1 091 0.9 0.8
PORTLAND o016 o0.27 oa1 0.91 019 0.8
HARRISBURG 0.6 0.26 0.2 0.91 019 0.I7
STPAUL 0.88 0.5 0.28 o000 031 042

AITKIN o0.91 o0.2 023 003 0.29 0.2

THEBES o0.28 o0.a5 0.88 oar o031 0.6
CHESTER o0.29 o045 0.88 o0.10 0.30 0.6
BELOW_SPRAGUE o0.22 0.87 o015 0.25 0.28 0.5
GREEN_ISLAND o0.41 026 o0.28 032 0.69 0.35
FORT_EDWARD o031 o002 018 o016 0.89 o.17
NORTH_CREEK o030 o002 o0a7 016 0.90 0.8
NEAR_CARLISLE o0.as o007 o045 019 0.22 0.92
NEAR_BELL 0.6 016 o014 019 0.23 0.92
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3.4.3 Discussion of Choice of Data Scale

Selecting an appropriate threshold based on extreme values in real-world data
is a challenging problem, particularly as it can influence the optimal order se-
lection when applying spherical clustering techniques to estimate linear factor
models. To illustrate this, we use a summer air pollution dataset and explore
different thresholds set at the 10%, 15%, and 20% largest [o-norm values. For
each threshold, we plot the range of Penalized ASW (Average Silhouette Width)
scores for k values ranging from 1 to 12 and we use the SK-PC method. The op-
timal & is determined by analyzing the bending behavior of the corresponding
Penalized ASW curves, and the resulting B T matrix is computed based on this
optimal k. This approach demonstrates how the choice of threshold affects the
clustering and estimation outcomes.

The results in Figure andshowing that the proposed penal-
ization has a significant bias correction effect on the selection of the optimal
k. Furthermore, the results across different proportions as shown in Figure
andreveals that using a larger subset of data tends to yield smaller
optimal k values, whereas using a smaller proportion leads to larger optimal k
values.

In summary, the proportion of data selected based on the greatest norm
can significantly influence the determination of the optimal order number k
when employing spherical clustering techniques. A smaller proportion tends
to result in larger optimal % values, whereas including too many observations
in the analysis may obscure convergence and hinder clear clustering outcomes.

Overall, selecting 10% of the data appears to be a reasonable choice in most cases.
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Figure 3.16: Penalized ASW Curves
for Summer Air Pollution Data Figure 3.17: Estimated B (10%)

(10%)

N
NO2
03
PM10

55



silhouette Score

50 75
Number of Clusters

Figure 3.18: Penalized ASW Curves
for Summer Air Pollution Data

(15%)

Silhouette Score

50 75
Number of Clusters
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CHAPTER 4

DETECTION OF GROUPS OF
CONCOMITANT EXTREMES
VIA CLUSTERING

4.1 Introduction of Detection of Groups of Con-

comitant Extremes

The detection and analysis of concomitant extremes, where multiple extreme
events occur together within the same period or in interconnected regions, are
increasingly important in a world facing complex and interdependent risks.
Concomitant extremes, such as simultaneous heatwaves and droughts, extreme
rainfall with flooding, or concurrent market crashes, present unique challenges
that traditional risk models often overlook. These events amplify risks and strain
response mechanisms across critical sectors, including climate science, finance,
public health, and infrastructure. Understanding and identifying these concur-
rent extreme events not only help in assessing their immediate impacts but also
in developing strategies to mitigate cascading effects on ecosystems, economies,
and communities.

A range of advanced methods have been developed to detect and analyze
concomitant extremes. Threshold-based techniques, where variables are ana-
lyzed for simultaneous exceedance of defined critical levels, provide a straight-
forward way to identify occurrences of extremes. Copula models offer a so-
phisticated statistical approach for analyzing dependencies between variables,
allowing researchers to quantify the probability of multiple extremes occurring
together. Additionally, joint probability distributions for continuous data help
evaluate the likelihood of multivariable extremes, while Multivariate Extreme
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Value Theory (MEVT) extends traditional extreme value analysis to multiple
variables, focusing on the tails of joint distributions where these extremes are
more likely to co-occur. Each method provides unique insights into the nature
and frequency of concomitant extremes, laying the groundwork for understand-
ing their broader impacts.

Beyond detection, analyzing the development and evolution of concomi-
tant extremes provides crucial insights into their underlying drivers and patterns.
By employing trend analysis, time series methods, and machine learning mod-
els, researchers can uncover temporal patterns, cycles, and even emerging risks
associated with these extreme events. Machine learning methods, in particular,
excel at handling high-dimensional data and can reveal complex dependencies
that may not be immediately apparent in traditional analysis. Event attribu-
tion techniques further enable scientists to link these extremes to specific causal
mechanisms, such as atmospheric conditions, socioeconomic stressors, or even
climate change, providing a comprehensive understanding of both the origins
and potential future trajectories of these events.

The applications of detecting and analyzing concomitant extremes are far-
reaching and essential for effective risk management and policy planning. In the
insurance and finance sectors, quantifying the likelihood and potential impact
of simultaneous extreme events aids in creating robust risk assessment mod-
els that more accurately reflect real-world conditions. For policymakers and
urban planners, insights into the development of concomitant extremes sup-
port the creation of targeted adaptation strategies to increase resilience against
climate change impacts and other risks. Moreover, understanding the com-
pounded effects of concurrent extremes allows for more effective preparedness
and response strategies across public health, infrastructure, and environmen-
tal management. By advancing our knowledge of concomitant extremes, we
can make informed decisions to safeguard vital systems and improve resilience

against multifaceted and interdependent risks in an increasingly complex world.

4.2 Spherical Sparse K Principle Component Clus-

tering

4.2.1  Settings and definitions for Concomitant Extremes

In this chapter, follow the multivariate extreme setting. After standardizing the
marginals, assume the random vector Y defined in (r.s|) has spectral measure S
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as defined in (1.6). Suppose (Z1, - - - Z;) follows the distribution S embedded

in R%, The marginal standardization ensures that:

B(Z)) =+ = B(Zg) =t > 0. (41)

To describe the dependence structure of Y, the pairwise dependence co-
efficient is commonly used and it is defined as follows: the tail dependence
coeflicient of ¥; and Y is

1
— 00 M

Here 1 € [1/d,1/+/d], and the necessary and sufficient conditions of
the x;; attains its boundary are clearly stated in Lemma 1 from Fomichov and
Ivanovs, 2023,

In high dimensional scenarios where d is large, let I € {1,--- ,d} be a
nonempty setof indices such that P(X; > 0, foralli € I,X; =0 forallj ¢
I) > 0, the corresponding faces are defined as:

Definition 4
Fr={zeR%:z;=0forj¢I} (4.2)

In this proposal, there is a universal assumption for the faces: There exists
2 < k < dandapartition (I1, - - - , I);) of the index set {1, - - - , d} satisfying
pr(xz € Fr, U---U Fj, ) = 1. Without loss of generality, assume that for all
1 <1 < j <k, theindices in J; are smaller than the indices in I;.

Figure4.1shows a 3-dimensional case satisfying assumption The data
is generated from a mixture of two spherical Dirichlet distributions with a mean
approximately equal to 0.4 in each of the three directions. It is clear from the
figure that there exist two faces I; = {1} and I, = {2, 3} with corresponding
dimensions d; = 1 and dy = 2. The two centers are ¢; = (0.7,0.7,0) and
c2 = (0,0,1), and the proportions of the data around the centers are about
pl = 57.6% and p, = 42.4%. Figure[4.1]visualizes a three-dimensional exam-
ple, and the detection of concomitant extremes is to propose faces /; and /5
based on data which hopefully coincide with I; = {1} and I, = {2, 3}.

Under the assumption and (4.1), the cross-moment matrices could be
defined as:

Definition s Ler X € S'ﬂ_l with | = p/pr, the cross-moment matrices are
given by

Y= EB(X;X}), ¥ =% = B(XX") = diag(pr,X1,, - , 01,21,
(4.3)
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Figure 4.1: Mixture of Two Dirichlet Distribution

Every 31 is a nonnegative definite matrix with trace 1, since || X;||, = 1. In
the Supplementary Material of Fomichov and Ivanovs, 2023} it mentioned that

Y can be used to check sufficient conditions in the result.

4.2.2  Spherical Sparse K Principle Component Clustering
Method

On the grounds of spherical k-pc clustering, we proposed an improved spheri-
cal sparse k-pc clustering by introducing the sparse principal component Zou
et al., 2006, The algorithm gives a single iteration similar to algorithm

(422

Algorithm

* Input: thesample6; - - - 0,, € Sfl[l and current centroids 1, - - - , Ty €
Sdfl
+

6o



* Same as Step 1- Step 3 in Algorithm

* Step 4:Fori = 1toi = k, calculate ¥; = (1/n) 37 (0,0 1(g,=1});
and find the sparse principal eigenvector Z; € Si_l of X; with penalty
parameter \,, defined in[6 (See Zou et al., 006

* Output: new centroids Z1, - - - T, € Sflfl and the old value v.

Definition 6 Suppose X is a random vector in S©" and ¥ = E(XTX). The
sparse principle eigen vector (See Zou et al., 2006) X of ¥ is defined as:

% = argminx’ $x + A [|x]| + Ay [|x1]] (4-4)

where \; is the penalty parameter and A is chosen to be a small positive
number to overcome potential collinearity problems from Zou et al., 2006,

By introducing the first sparse principle component as a substitute of the
center in the algorithm, it tends to shrink the prototype coordinate into a lower-
dimension face (cf. (4.2.1)). In other words, in detecting concomitant faces,
through encouraging sparsity, we have more decisive results in disassembling

dimensions into lower-dimension components.

4.3 Data Example

4.3.1  Simulate Data

Data From Max-linear Model

In this section, a three-dimensional dataset is generated from the max-linear
model in (2.1). We first generated 1000 data points with the greatest norm from
10000 simulations. The simulated data are from a max-linear model with cen-
tersa; = (0,1,0),as = (0,0,1),and ag = (1,0, 0).

In the analysis, three clustering methods—spherical k-means, spherical &-
pc, and spherical sparse k-pc—are utilized with the number of clusters set to
k = 3. The prototypes of these clusters are presented in table It is evi-
dent from the table that the spherical sparse k-pc method effectively pushes
the cluster centers towards the boundaries. In contrast, the Spherical k-means
and spherical k-pc methods do not achieve the same level of separation. This
property of spherical sparse k-pc suggests that it can better detect faces in a high-

dimensional scenario where some faces are in close proximity to each other.
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Figure 4.2: Simulated 3-dimensional data

Table 4.1: Optimal Centers

S k-means S k-pc S Sparse k-pc
Centert  (0.055,0.997,0.058)  (0.053,0.997,0.055) (0,1, 0)
Centerz  (0.057, 0.060,0.997) (0.055, 0.058,0.997) (0, 0,1)
Center3 (0.996, 0.062, 0.068) (0.996, 0.059, 0.064) (1, 0, 0)

The enhanced ability of spherical sparse k-pc to distribute cluster centers
near the boundaries indicates its potential to discern finer distinctions and cap-
ture more complex patterns in high-dimensional data, making it a promising

choice for face detection and related tasks.

Data from a mixture of two Dirichlet Distribution

The following describes the process of generating a dataset from a two-mixture
Dirichlet model. The generated data is normalized and has the same expectation

in all dimensions. Given parameters:
* n: Number of samples to generate.

* [y, I5: The number of dimensions in the first and second Dirichlet dis-
tributions, respectively.

* o, ap: Total concentration parameters for the two Dirichlet distribu-

tions.

The process involves the following steps:
1. Compute Per-Dimension a: The per-dimension concentration parame-
ters for the two Dirichlet distributions are calculated as:

aq (8%

7, Q2 = 4.
L’ Iy

Q1 =
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2. Calculate Mixture Probabilities (¢1 and ¢2): Mixture probabilities are de-
rived using the gamma function:

F(Oéh' -+ 05) F(Oél) (Oégi -+ 05) F(Oég)

1= I(o;)  D(ap+0.5) b2 = [(og)  I(as+0.5)

3. Solve for Mixture Probabilities (P, P): Using a linear system defined by:

¢1 —@2| |1 _ 0
1 1 P 1’
the probabilities P, and P, are determined. 4. Generate Samples: For each

sample:

1. Perform a Bernoulli trial with probability P; to decide between the two
Dirichlet distributions.

2. If the first Dirichlet is chosen:
Sample from Dirichlet with parameter & = [avy;, . . ., o] (length I4),

and normalize to fit the dimensional requirements.

3. If the second Dirichlet is chosen:
Sample from Dirichlet with parameter 3 = [av;, . . . , a9;] (length I5),

and normalize similarly.

4. Add small Gaussian noise to the unused dimensions to preserve consis-
tency.

s. Normalize and Return Data: The resulting data matrix d is returned,
where each row corresponds to a sample from the mixture distribution.

The generated data has the following properties:

* Normalization: Each sample is normalized, ensuring that the sum of val-
ues across all dimensions equals 1. This is a characteristic of the Dirichlet
distribution.

* Equal Expectations: The expectation of each dimension is the same, re-
flecting the uniform concentration of the Dirichlet distributions in the
mixture.
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* Mixture Structure: The data exhibits properties of both components of
the mixture, with overlap or distinctiveness depending on the parameters
Il? 127 Qg, Qg.

This algorithm generates data that is particularly useful for modeling phe-
nomena with normalized proportions and symmetric expectations across di-
mensions.

Here, we generated 1000 data with dimension equals 100 where I; = 15
and I, = 20, vy = 40 and oy = 70.
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Figure 4.3: Simulated mixture of Dirichlet Sparse K-PC Clustering

Table and Figure together demonstrate the effectiveness of incorpo-
rating a LASSO penalty into the Spherical K-PC Clustering Method for ana-
lyzing a simulated mixture of Dirichlet data. The table provides quantitative
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Table 4.2: Comparison of Prototypes from Spherical K-PC Clustering and
Sparse Spherical K-PC Clustering

SKPC-centerx

SKPC-center2

S-SKPC-center1

S-SKPC-center2

o O N QNN AN W

L e L e T e T e T o e T o e
SRV EES I &R FE B R G

0.20045209
0.21998864
0.27814564
0.17449421
0.19767500
0.21572340
0.23838061
0.32160602
0.25214388
0.46679981
0.25248716
0.19270288
0.20036509
0.25101390

0.26874840
0.00016871
0.00021999
0.00016383
0.00013747
0.00026310
0.00017207
0.00021140
0.00017502
0.00020595
0.00018639

0.01196792
0.01236777
0.01108584
0.01296781
0.01268790
0.01237430
0.01190837
0.01126395
0.01224915
0.01019717
0.01088808
0.01198484
0.01213581
0.01146864
0.01093459
0.31897016
0.32098217
0.32946725
0.29215165
0.32087971
0.31334197
0.31917314
0.32270064
0.32053280
0.29890995

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.3195822
0.3218231
0.3311275
0.2896996
0.32I7140
0.3131613
0.3203272
0.3234584
0.3214657
0.2976255

0.2535923
0.2665177

0.2473707
0.2724081
0.2699303
0.2661480
0.2595561
0.2597794
0.2698147
0.2621016
0.2384005
0.2525055
0.2577425
0.2519010
0.2423480
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

insights into how feature weights are distributed across clusters, while the figure

offers a visual representation of the feature importance before and after apply-

ing regularization. Without the LASSO penalty, the feature contributions in

both clusters appear more evenly distributed, as seen in the table’s entries for

A = 0, where many feature values are non-zero. Similarly, in the top panel of

the figure, the bars for both clusters are dense and uniformly intense across most

dimensions. This lack of sparsity makes it difficult to identify which features

are most relevant for distinguishing the clusters, potentially leading to noise

and overfitting in the clustering results.

6s



By introducing the LASSO penalty (A = 0.001), the method enhances
sparsity by shrinking less significant features toward zero. This effect is evident
in the table, where many entries for A = 0.001 are close to zero, particularly in
less relevant dimensions. The corresponding bottom panel of Figurevisually
confirms this, showing lighter bars in irrelevant dimensions and darker bars
in dimensions with significant contributions. This regularization effectively
reduces the complexity of the parameter space, enabling the method to focus
on the most critical features for clustering. The sparsity achieved through the
LASSO penalty ensures that irrelevant features do not influence the clustering
results, improving the robustness and interpretability of the model.

The combined results from the table and figure demonstrate the ability of
the LASSO-regularized Spherical K-PC Clustering Method to identify the dis-
tinct characteristics of the two clusters more clearly. The sparsity induced by
the penalty allows the method to emphasize the most important dimensions,
isolating the unique features of each cluster. This leads to a clearer separation
between the two clusters, as the method can better capture their underlying
structure. Overall, the addition of the LASSO penalty enhances both the clus-
tering performance and the interpretability of the results, providing a more
effective tool for analyzing high-dimensional data with sparse and structured
patterns.

4.3.2 Real Data Example

4.3.3 Air Pollution Data

From Figure the results for summer air pollution data show the clustering
structure before and after applying the sparse penalty (A = 0.015). Without
the sparse penalty (A = 0), the top heatmap illustrates that all five clusters
rely on multiple pollutants (O,, NO,, NO, SO,, PM,,) to varying degrees, as
indicated by the spread of red and orange shades across all dimensions. This
lack of sparsity makes it harder to pinpoint which pollutants dominate specific
clusters, leading to less interpretable results.

When the sparse penalty is applied (A = 0.015), the bottom heatmap
demonstrates a clear reduction in the number of dominant pollutants for each
cluster. For example, PM,, becomes the primary driver of Cluster 5, while NO,
and NO dominate other clusters. This sparsity simplifies the interpretation,
as each cluster’s defining characteristics become clearer. The summer results
indicate that pollutant concentrations are distributed across more dimensions
under the non-sparse case, but the sparsity-enforced structure emphasizes criti-

cal pollutants associated with each cluster.
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Similarly, the winter air pollution data shows clustering results in Figure
with and without sparsity (A = 0.025). Without regularization (A = 0), the
top heatmap reveals that pollutants such as NO, SO,, and PM,, have substantial
contributions across clusters. However, the widespread presence of non-zero
values across dimensions again makes it challenging to isolate the pollutants
most relevant to specific clusters.

With the sparse penalty (A = 0.025), the bottom heatmap reveals a more
structured and interpretable clustering pattern. Clusters are now associated
with fewer dominant pollutants, such as O, driving Cluster 1 and PM,, domi-
nating another. This resultindicates that sparsity aids in highlighting seasonally
relevant pollutants, particularly during winter, where different weather and at-
mospheric conditions may alter the significance of specific pollutants.

4.3.4 Air Pollution Data

The application of the Sparse Spherical K-PC Clustering method demonstrates
clear seasonal differences in the clustering structure. In summer, pollutants
like NO, and PM,, appear to have broader significance across clusters, while
in winter, O, and PM,, emerge as more dominant pollutants for specific clus-
ters under sparse conditions. The difference in clustering patterns reflects the
seasonal variability in pollution sources and atmospheric conditions, such as
increased photochemical reactions in summer and the prominence of heating
emissions in winter.

Additionally, the sparsity-enforced structure enhances interpretability in
both cases, reducing dimensional noise and focusing on the key pollutants asso-
ciated with each season. These results highlight the utility of sparse clustering
for uncovering meaningful seasonal patterns in complex, high-dimensional en-

vironmental datasets.

4.3.5 Daily River Discharge Data

Figure4.6|demonstrates the effect of introducing a sparse penalty (A = 0.007)
in the Spherical K-PC Clustering Method compared to the case without reg-
ularization (A = 0.0). The sparse penalty pushes many feature contributions
to zero, as seen in the top heatmap, where most cells are light-colored. This
sparsity structure allows the method to focus on the most relevant features for
clustering, highlighting the sites with significant contributions in each cluster
while filtering out less important ones. In contrast, the clustering without the
sparse penalty (A = 0.0) results in broader, more uniformly distributed feature
contributions, making it harder to interpret the key drivers of each cluster.
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Figure 4.4: Sparse Spherical K-Principle Component Clustering on Summer
Air Pollution Data

The sparsity induced by the LASSO penalty not only simplifies the cluster-
ing structure but also helps identify distinct "faces” or dominant groups within
the dataset. These faces represent combinations of river sites that have simi-
lar patterns and behaviors, forming meaningful groupings. For instance, cer-
tain clusters in the sparse penalty case are dominated by a few key sites like
"CHESTER" or "BELOW_SPRAGUE," making it easier to distinguish be-

tween groups based on their unique characteristics.
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Cluster Center for Winter Data lambda=0.00
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Figure 4.5: Sparse Spherical K-Principle Component Clustering on Winter Air
Pollution Data

Importantly, these faces are meaningful in real-world scenarios as they corre-
spond to geographical locations with similar hydrological behaviors. The iden-
tified clusters reflect the physical proximity or shared characteristics of the river
sites, such as their response to extreme weather events or seasonal patterns. This
alignment between the sparse clustering results and real-world locations un-
derscores the practical utility of incorporating sparsity, enabling the model to
provide insights that are both interpretable and actionable.
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Cluster Center for River Data lambda=0.007
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Figure 4.6: Sparse Spherical K-Principle Component Clustering on Daily River
Discharge Data

In summary, the introduction of a sparse penalty in the Sparse K-PC Clus-
tering Method significantly enhances the sparsity of the clustering structure. By
applying the LASSO regularization, the method effectively pushes less signifi-
cant site contributions toward zero, reducing noise and emphasizing the most
important features. This sparsity not only simplifies the parameter space but
also allows the method to isolate the dominant patterns in the data, making the
clusters more distinct and interpretable.
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The sparse penalty plays a crucial role in identifying the key "faces” of the
clustering solution. These faces represent the most influential river sites that
define each cluster. The sparsity induced by the penalty ensures that only a
subset of the features contributes meaningfully to the clustering process, high-
lighting the primary sites that differentiate one cluster from another. Without
this regularization, the clustering structure would remain more complex, with
non-essential features masking the true underlying patterns.

Importantly, these identified faces are meaningful in real-world contexts, as
they correspond to the geographic locations of the river sites. The clusters reveal
patterns in river discharge data that align with the physical and environmental
characteristics of the locations. This correspondence ensures that the cluster-
ing results are not only mathematically robust but also relevant for practical
applications, such as hydrological modeling and water resource management.
The sparse penalty thus provides a powerful tool for uncovering interpretable
and actionable insights in complex datasets.
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CHAPTER 5

CONCLUSION

In this thesis, we explored the application of linear factor models and spheri-
cal clustering techniques to analyze multivariate extremes, with a particular fo-
cus on enhancing estimation and order selection methods. Beginning with an
overview of extreme value analysis, we provided a foundational understanding
of univariate and multivariate extreme value theory, which guided our approach
to clustering methods in extreme datasets.

We introduced and evaluated the use of spherical k-means and spherical
k-principal component clustering in estimating linear factor models, showing
their effectiveness in identifying patterns among extreme values. Additionally,
we proposed a penalized silhouette method for order selection, addressing the
need for optimal cluster determination in high-dimensional data. This method
proved valuable in enhancing the robustness of clustering outcomes by balanc-
ing precision and computational efficiency.

Furthermore, we extended our analysis to sparse spherical clustering meth-
ods, demonstrating their utility in detecting groups of concomitant extremes.
This approach was particularly effective for identifying relevant clusters in sce-
narios where extreme values are highly interdependent, providing a practical
solution for clustering in complex, high-dimensional datasets.

Opverall, this research contributes to the field of multivariate extreme value
analysis by developing and refining clustering techniques suitable for extreme
data scenarios. Our findings underscore the importance of thoughtful model
estimation, order selection, and the integration of sparse clustering approaches,
providing a framework that can be applied in various fields such as risk manage-
ment, environmental science, and finance. Future work may explore additional
refinements to the proposed methods and consider their applications in real-

time, large-scale data environments.

72



APPENDIX A

The R codes that implement the simulation and real data studies can be found
at https://github.com/SyuanD/SphCluster.git.
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