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ABSTRACT

Over the past decades, 3D optical measurement techniques, including passive and active ap-

proaches, have been extensively studied across diverse fields. Among these, fringe projection

profilometry (FPP), an active triangulation-based 3D measurement technique, is widely recognized

for its speed, accuracy, and adaptability. This dissertation aims to improve FPP’s measurement

accuracy and completeness further and expand the data modality to broaden its applicability.

To improve accuracy on objects with sharp depth changes, a circular fringe projection technique

is introduced, along with system calibration and 3D reconstruction. Its performance is compared

to traditional linear FPP using both standard spheres and complex electronic samples, with results

showing superior reconstruction accuracy. Factors affecting the calibration method’s accuracy are

also explored through sensitivity and phase error analyses.

To mitigate the influence of occlusion, where abrupt geometric changes prevent projector

illumination and result in incomplete 3D reconstructions, this dissertation proposes texture-guided

phase-to-depth networks that integrate texture maps with phase information, reducing shadow-

induced errors. Experimental results from simulations and real-world scans validate the networks’

effectiveness.

Expanding FPP’s applicability, this dissertation introduces a 4D line-scan hyperspectral imaging

system that captures both 3D spatial data and spectral information in the visible and near-infrared

(VNIR) range, eliminating post-processing registration. Additionally, the work extends to a 4D

Vis-SWIR line-scan hyperspectral imaging system, capturing 3D data and spectral images across the

visible to shortwave infrared (Vis-SWIR) range. This dissertation proposes a line-scan homography



method to align VNIR and SWIR hyperspectral images and a geometric transformation technique to

register hyperspectral images with 3D data. Results confirm registration accuracy and demonstrate

applicability in food quality evaluation.

In conclusion, this dissertation contributes to the field of 3D optical measurement by addressing

critical challenges in FPP and introducing innovative techniques that enhance accuracy and expand

the dimensionality of data acquisition. These advancements hold considerable potential for both

academic research and industrial applications, providing deeper insights into a range of 3D optical

measurement technologies.

INDEX WORDS: 3D optical sensing, Fringe projection profilometry, Circular fringe

projection profilometry, Occlusion mitigation, 4D hyperspectral imaging,

Deep learning
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CHAPTER 1

INTRODUCTION

In recent years, 3D optical technologies, especially 3D structured light techniques, have made signifi-

cant strides, reshaping numerous industries with their innovative applications, such as manufacturing,

entertainment, robotics, etc. Among these techniques, fringe projection profilometry has stood out

due to its accuracy, flexibility, and robustness. It is widely used to obtain an object’s 3D geometry,

notably in reverse engineering applications. Despite its advantages, fringe projection profilometry

still faces several challenges, including accuracy in complex scenarios with sharp depth change and

occlusion. This dissertation focuses on addressing three critical issues: enhancing measurement

accuracy through circular fringe patterns; solving occlusion-induced shadow problems, which cause

errors and voids in objects with complex geometries; and expanding data modalities by integrating

3D spatial data with hyperspectral images to provide a more comprehensive understanding of

objects. This chapter provides a background of the dissertation research. Section 1.1 delves into the

motivations behind this study, highlighting the need for enhanced 3D imaging techniques. Section

1.2 presents a review of related work, offering context and insights into the current state of the field.

Section 1.3 outlines the specific objectives of this research. Finally, Section 1.4 introduces the

structure of the dissertation.

1.1 Motivations

This chapter discusses the motivations behind the dissertation research, andwe take three applications

as examples: entertainment, biometric authentication, and precision agriculture.
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1.1.1 Entertainment

3D optical measurement technology is employed to enhance interactions, making them more natural,

intuitive, and immersive between users, entertainment devices, and the physical environment. Apple

Vision Pro, Apple’s first spatial computer, is an example of the advantages of 3D optical measurement

in bridging the gap between users and the digital and physical realms. Equipped with twelve advanced

cameras, a LiDAR sensor, and a depth projector, this device excels in various tracking functionalities,

including precise headset positional tracking, user hand tracking, and eye tracking. Users can interact

with the device effortlessly by natural gestures and movements without controllers. Additionally,

the device’s capability to track facial expressions in real-time significantly enhances applications

like FaceTime, allowing for creating dynamic, persona-driven experiences. The implementation of

3D optical measurement in Apple Vision Pro fundamentally alters the user interaction experience,

blurring the line between the digital and the physical world.

1.1.2 Biometric Authentication

Biometric characteristics, such as face and iris, captured by 3D optical technology are increasingly

utilized for authentication and security purposes in train stations, airports, banks, homes, etc. This

is attributed to the inherent stability and uniqueness of biometrics. For example, facial recognition

based on 3D face data has gained popularity in applications like vending machines and iPhone

Face ID. Compared to traditional 2D face imaging, 3D facial recognition is more reliable and

effective due to the comprehensive representation of facial geometry (Abate et al., 2007). Besides,

as a contactless method, facial recognition is more acceptable, particularly during events like the

COVID-19 pandemic, where non-contact procedures are preferred over contact-based methods like

fingerprint verification for hygiene and safety reasons.

Iris recognition is another form of contactless biometric authentication that has been applied

in many fields, producing no false matches in several million comparison tests (Daugman, 2009).

However, traditional 2D iris recognition scanners can be fooled by customized contact lenses, which

threatens the safety of the authentication system. To address this, research has focused on 3D

iris recognition employing optical technology. Connell et al. (Connell et al., 2013) introduced a

structured light scanning system to capture the 3D geometry of human eyes, differentiating between
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eyes with and without contact lenses. Daniel P et al. (Benalcazar et al., 2019) designed a 3D iris

scanner from multiple 2D visible images and reconstructed dense 3D point clouds of iris. In addition

to these developments, researchers are exploring multimodal biometric systems that combine facial

and iris recognition, offering enhanced security compared to unimodal systems (De Marsico et al.,

2014; Y. Wang et al., 2003; Z. Wang et al., 2011).

1.1.3 Precision agriculture

Precision agriculture is increasingly critical for efficiently and sustainably producing a diverse range

of high-quality products to meet the needs of a growing population and their rising living standards.

To achieve precision agriculture, various sensors, including 3D optical sensors, are utilized to obtain

spatial variability within fields (Lee et al., 2010). For instance, the structured light sensor Kinect for

Windows version 1 was utilized with other sensors for 3D plant modeling, plant organ classification,

and weed detection and classification (Rosell-Polo et al., 2015). Nguyen et al. developed a structured

light-based 3D reconstruction system to obtain accurate 3D models of plants (T. T. Nguyen et al.,

2015). Chéné et al. utilized Kinect sensors to capture depth maps of plants and analyzed plant

phenotyping with 3D measurements (Chéné et al., 2012). In addition to 3D optical sensors, other

types of sensors, such as ultrasound, thermal cameras, and spectral and hyperspectral cameras, are

also employed (Narvaez et al., 2017). These sensors not only capture 3D spatial geometry but also

other important information like temperature, water stress, nitrogen deficiencies, etc. However, it’s

challenging to collect, organize, and integrate multiple data modalities from different sensors. In

response, researchers are exploring the potential of high-dimensional optical sensors, hoping to

capture extensive data more efficiently and simply with advanced devices. Based on structured

light, Heist et al. (Heist et al., 2018a) developed a 5D hyperspectral imaging system to measure the

shape (coordinates 𝑥, 𝑦, 𝑧) and spectral characteristics (𝑅(𝜆𝑖)) over time (𝑡), and applied the system

to determine leaf water content, demonstrating its potential in precision agriculture. Similarly,

Luo et al. (Luo, Lin, et al., 2022) designed a portable 4D snapshot hyperspectral imager for

fast-spectral and surface morphology measurement and tested the proposed system on broccolis to

show the promising application in plant growth monitoring. Overall, current research demonstrates

that 3D optical sensors, especially those with high-dimensional capabilities, have the potential to

revolutionize precision agriculture.
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1.2 Related works

Generally, 3D optical techniques can be grouped into two main categories: active and passive

metrology, based on whether controlled energy is emitted to benefit measurement (Mada et al.,

2003). Active optical metrology involves the emission of controlled energy, such as a scanning laser

or a projected pattern of light, which actively interacts with the object using the emitted energy. The

emitted energy is critical for precise and accurate measurements, especially in environments where

natural lighting conditions are not ideal for measurement. In contrast, passive optical metrology only

relies on ambient or natural light sources to capture information about an object, which typically

captures images from multiple perspectives and uses algorithms to reconstruct a 3D object model.

This section will introduce commonly used passive and active optical 3D techniques, as well as

hyperspectral imaging related to this dissertation.

1.2.1 Passive optical 3D imaging techniques

Over the past decades, passive optical 3D techniques have been extensively studied. Essentially, a

passive 3D imaging system can recover 3D scene information without extra light projected onto

the scene, but visible object features are necessary for passive metrologies. Passive 3D vision

techniques can be categorized as single-view and multiple-view approaches (Se & Pears, 2020).

Several single-view approaches, including shape from shading, shape from texture, and shape from

focus, are briefly introduced in the following section. For multiple-view approaches, we focus on

stereo vision.

Single-view approaches

Single-view approaches, also known as shape from X methods (Se & Pears, 2020), infer three-

dimensional structures from a single viewpoint using cues like shading, texture, and focus (Se &

Pears, 2020). Shape from shading (R. Zhang et al., 1999) infers surface shape from grayscale image

shades by linking image intensity to surface orientation, leading to depth map creation through

surface normal integration and regularized fitting. Shape from texture (Gårding, 1992) analyzes

texture distortion caused by the imaging process to estimate surface shape. Meanwhile, shape

from focus (Nayar & Nakagawa, 1994) utilizes blur in images taken from the same viewpoint but
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at different depths of field to gauge object depth, constructing relative depth from the degree of

defocus quantified through squared gradient values. Moreover, deep learning is increasingly applied

to estimate depth maps from single-view images, which is also termed monocular depth estimation

(Ming et al., 2021). Despite their potential, these single-view methods often face challenges and

limitations in robustness and speed for 3D reconstruction, which leaves a gap for multiple-view

approaches.

Stereo vision

As the most widely used multiple-view approach, stereo vision is a fascinating and flourishing

technology that has been widely applied in various fields, such as robotics, autonomous vehicles,

virtual reality (VR), augmented Reality (AR), etc. Inspired by the human vision system, a typical

stereo-vision system consists of a pair of cameras to capture the scene from different perspectives.

By matching the correspondence pixels in the captured images, disparity maps can be determined,

and 3D geometry can be reconstructed (S. Zhang, 2013). The main tasks in stereo vision include

system calibration, rectification, matching, depth map generation, and 3D reconstruction.

Fig. 1.1 presents the epipolar geometry of a typical stereo vision system, which provides

geometry constraints to search stereo correspondence. In Fig. 1.1, an object point 𝑊 in the world

coordinate system 𝑂𝑤𝑥𝑤𝑦𝑤𝑧𝑤 is imaged in two image planes, 𝑝1 at the left camera image plane 𝜋1

and 𝑝2 at the right camera image plane 𝜋2. In other words, 𝑝1 and 𝑝2 are the intersections of the light

ray 𝑂1𝑊 and 𝑂2𝑊 with their corresponding image planes, respectively. 𝑂1 and 𝑂2 are the optical

centers of the left and right camera, and the line between 𝑂1 and 𝑂2 is the baseline. 𝑊 , 𝑂1, and 𝑂2

form the epipolar plane containing the baseline. 𝑒1 and 𝑒2 are the intersections of the baseline with

image planes, which are named epipoles and are also the vanishing points of the baseline direction.

Suppose we only have images from the left camera. As illustrated in Fig. 1.1, it’s challenging to

back-project 2D point 𝑝1 to 3D point 𝑊 , as the points on the light ray 𝑂1𝑊 (i.e., 𝑊1 and 𝑊2) are

all candidates. Similar to the human vision system, depth ambiguity can be avoided by pairs of 2D

image points. However, searching for matching points usually brings a high computational cost.

Epipolar lines significantly simplify the searching process and reduce computational complexity by

constraining the search to the epipolar lines.
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Figure 1.1: Epipolar geometry of a stereo vision system (adapted from (Hartley & Zisserman, 2003;
S. Zhang, 2013)).

Stereo vision systems require calibration to establish the geometrical relationship between their

two cameras. One of the widely used camera models in stereo calibration is the pinhole camera

model. As presented in Fig. 1.1, the pinhole cameras (i.e., the left and right camera) are modeled

by their optical centers and image planes, which can be calibrated using the widely acknowledged

method proposed by Zhang et al.(Z. Zhang, 2000) to obtain its intrinsic parameters. After calibrating

the individual cameras, stereo calibration can be treated as a general camera calibration with respect

to a fixed reference coordinate system. This process ultimately determines the transformation

between the two camera coordinate systems.

After establishing the geometrical relationship between the two cameras, the next step is to align

the captured images to a common image plane, which is known as stereo rectification. The primary

goal of stereo rectification is to align the corresponding points in each image to lie on the same

epipolar lines, and it simplifies the following task of finding matching points between images. Based

on the rectified image pairs, stereo-matching methods can be applied to find correspondence points

in the same horizontal lines. Generally, the matching methods are categorized into global and local

methods according to how they assign disparities to pixel(Lazaros et al., 2008a). Global methods,
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like the scan-line optimization method (Mattoccia et al., 2007), assign disparities according to

the information perceived from the whole image, while local methods (i.e., the sum of absolute

differences method (Mühlmann et al., 2002)) only rely on each pixel’s neighbors to determine

disparities. Compared to global methods, local methods are usually faster. When the stereo system

is calibrated, and correspondence pairs are determined, disparities can be obtained based on the

triangulation relationship between the cameras and object.

In conclusion, despite inherent challenges and limitations associated with the complexity of

processing and interpreting visual data from dual viewpoints, stereo vision is one of the most

used 3D optical techniques and is applied in many fields, from robotics to virtual reality. And

the development of high-performance graphic processing units is progressively mitigating its

computational challenges, futher broadening its application scope.

1.2.2 Active optical 3D techniques

This subsection will introduce three widely used active optical 3D techniques: interferometry-based,

time-of-flight-based, and triangulation-based metrology. Fig. 1.2 summarizes the typical accuracy

of the widely used active optical 3D imaging technology. It can be observed that each optical

technique is only suited for a specific range of accuracies and object sizes. Therefore, the selection

of optical sensors should be tailored to the intended application environments.

Figure 1.2: Performance of typical active optical 3D techniques (adapted from (Beraldin et al.,
2012; Drouin & Beraldin, 2020)).
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Interferometry-based metrology

Interferometry is the most accurate 3D optical metrology method, which can achieve nanometer,

subnanometer, and even finer resolutions (S. Yang & Zhang, 2018). Due to high precision and

non-contact advantages, it is widely used for micro-scale measurements, such as measuring cell

structure and dynamics. Given interference patterns, there are primarily two types of interferometry

to perform 3D surface measurement: phase-shifting interferometry (PSI) and coherence scanning

interferometry (CSI).

Phase-shifting interferometry. Since temporal phase-shift measurement technology was

brought into interferometry (Bruning et al., 1974; Carré, 1966; J. Wyant, 1973), phase-shifting

interferometry has been widely studied in the past decades. Due to the high accuracy, PSI has been

adapted to a variety of interferometer types, including Twyman–Green, Fizeau, Mach–Zehnder, and

common path configurations like point diffraction and lateral shearing interferometers (Medecki

et al., 1996; Schreiber & Bruning, 2007; S. Yang & Zhang, 2018). Fig.1.3 depicts a schematic of

a phase-shifting interferometer. In PSI, the laser usually acts as the light source. The phase shift

interferograms are controlled through the mechanical motion of a piezoelectric ceramic transducer

(PZT). When the PZT translates the reference surface, the optical distance difference (OPD) between

the target light and the reference light will change, bringing in phase shifting. In addition to the

motion of a PZT, phase shifting can also be achieved by the modulation of the light frequency. For

an N-step phase-shifting algorithm, the phase can be retrieved by((Marrugo et al., 2020a))

Figure 1.3: A schematic of a phase-shifting interferometer (S. Yang & Zhang, 2018). (a). Setup.
(b) Phase shift interferogram.
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𝜙(𝑥, 𝑦) = − tan−1

[ ∑𝑁
𝑘−1 𝐼𝑘 (𝑥, 𝑦) sin 2𝜋𝑘/𝑁∑𝑁
𝑘−1 𝐼𝑘 (𝑥, 𝑦) cos 2𝜋𝑘/𝑁

]
, (1.1)

where

𝐼𝑘 (𝑥, 𝑦) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦) cos [𝜙(𝑥, 𝑦) + 2𝜋𝑘/𝑁] . (1.2)

In the above two equations, 𝐼′(𝑥, 𝑦) and 𝐼′′(𝑥, 𝑦) denote the average intensity and the intensity

modulation, respectively. 𝑘 is the k-th interference pattern of the N-step. Due to the inverse tangent

function, wrapped phase 𝜙(𝑥, 𝑦) has 2𝜋 discontinuities, which makes phase unwrapping necessary.

Once the unwrapped phase Φ(𝑥, 𝑦) is obtained, the height ℎ(𝑥, 𝑦) can be calculated as follows

(J. C. Wyant, 2013),

ℎ(𝑥, 𝑦) = 𝜆

4𝜋
Φ(𝑥, 𝑦) (1.3)

Here, 𝜆 denotes the wavelength. PSI is usually used to analyze very smooth surfaces due to its

subnanometer resolution (Hutter et al., 2013), which limits its range of application.

Coherence scanning interferometry. Different from PSI, white light or broadband light acts as

the light source to illuminate the object and reference surfaces in coherence scanning interferometry

(Schmit et al., 2007). CSI interference fringes can only be observed over a narrow surface height

range due to the limited coherence length of the white light source (de Groot, 2011; Marrugo et al.,

2020a). Fig. 1.4 illustrates a schematic of a typical coherence scanning interferometer. When the

Mirau interference objective is scanned vertically in the figure along its optical axis, the interference

fringes will change, and the camera will record the set of changing interferograms. For this reason,

CSI is also known as vertical scanning interferometry, coherence radar, or white-light scanning

interferometry. In Fig.1.4, the Mirau interference objective is translated up. In other configurations,

the object, the reference mirror, or the interferometer beam splitter can be moved up (de Groot,

2011). Generally, the scan motion is along the optical axis of the objective and perpendicular

to the object’s surface. When each point on the surface being measured is focused, the fringe

contrast at that point will reach its peak. By noting the peak contrast location, the relationship

between the height and the maximal fringe contrast will be established, yielding a highly sensitive

surface topography image with subnanometer vertical resolution. However, CSI is also sensitive
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to vibrations and environmental disturbances, which is challenging for some applications, such as

in-situ or in-line measurement. The high precision and limitations make it typically utilized in fields

like material science, semiconductor inspection, and precision engineering with a decent controlled

environment.

Figure 1.4: A schematic of a typical coherence scanning interferometer

Time-of-flight-based metrology

As a ranging technique with macro accuracy, time of flight (ToF) is applied in many fields, such as

robotics (Alenyà et al., 2014), autonomous driving (Niskanen et al., 2021), agriculture (Vázquez-

Arellano et al., 2016), etc. ToF works on the principle of measuring the time taken for an emitted

signal, usually light or a laser, to reflect back to the sensor after hitting an object. The accurate

measurement of the round-trip time 𝜏 can usually obtained in two methods: direct methods that either

measure the time delay 𝜏 by pulsed light or phase change Δ𝜑 by continuous-wave (CW) modulation,

and indirect methods that derive time delay or phase change from time-gated measurements of the

signal at the receiver (Marrugo et al., 2020a).

Fig. 1.5 illustrates the principles of ToF based on pulse time delay and phase change. In

Fig. 1.5(a), the pulse light signal is emitted from the emitter and then returns back to the receiver

after the object surface reflects it with a short time delay. Thus, the distance can be determined by
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Figure 1.5: ToF depth measurement(adapted from (Foix et al., 2011)). (a) ToF based on pulse time
delay. (b) ToF based on phase change.

𝑑 =
𝑐 · 𝜏

2
. (1.4)

Here, 𝑐 is the speed of light. Though the above equation is quite simple, detecting a short time delay

is challenging due to the extremely fast speed of light, which influences the measurement accuracy

of pulse-based ToF and limits its application. Different from directly measuring the time delay in

pulse-based ToF, phase-based ToF relies on the phase change of the emitted signal to determine the

distance. As shown in Fig. 1.5(b), continuous waves like sinusoidal or other periodic signals are

utilized to analyze the phase change between the emitted light and the detected reflected light. Every

sensor pixel samples the reflected light four times at equal intervals in each period 𝑚0, · · · , 𝑚3, and

the phase change Δ𝜑 can be given by (Foix et al., 2011)

Δ𝜑 = arctan
(
𝑚3 − 𝑚1
𝑚0 − 𝑚2

)
. (1.5)

Based on the obtained phase change, the target distance can easily be determined by (Foix et al.,

2011)

𝑑 =
𝑐 · Δ𝜑
4𝜋 · 𝑓𝑚

, (1.6)

where 𝑓𝑚 is the modulation frequency.

ToF technology is typically employed in large scenarios ranging from 1 m to 100 m (Beraldin

et al., 2012). Besides, its sensors are often compact and portable, leading to widespread use in
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commercial products, such as Microsoft Kinect. However, ToF has its limitations. It has lower

measurement accuracy compared with other 3D optical methodologies like interferometry and

triangulation-based metrology. Furthermore, ToF suffers both non-systematic errors, including

multipath interference and boundary ambiguity, and systematic errors like motion error (Hansard

et al., 2012).

Triangulation-based metrology

The active triangulation-based 3D imaging system is similar to the stereo vision system, which

replaces one camera with a projection device like a digital video projector or a laser. Based on

the scanning manner, active triangulation-based 3D scanners can be categorized into spot scanners,

stripe scanners, and area-based scanners (Drouin & Beraldin, 2020). The following section will

briefly introduce spot scanners and stripe scanners and then focus on area-based scanners, especially

fringe projection profilometry systems.

Spot scanner. The spot scanner is also known as the point-based scanner, including a linear

spot detector and a laser projector. The laser beam illuminates a very small spot part of the scene for

each image frame (Drouin & Beraldin, 2020). To capture a whole image of the scene, the detector

usually moves with the mounted 2D translation stage, or the laser rotates around two axes, which

increases hardware complexity. Besides, As it takes extra time to move the camera or rotate the

laser, it is unsuitable for dynamic scenes.

Strip scanner. Fig. 1.6 presents a typical stripe scanner, which consists of a camera, a laser

line projector, and a controlled turntable. The illuminated 3D point 𝑝 is projected to the 2D point 𝑞,

which means the back-projected light ray intersects with the light plane at 3D point 𝑝 and with the

camera image plane at 2D point 𝑞. For each captured frame, the stripe scanner only recovers a line

of points. Thus, the object rotates with the turntable to incrementally reconstruct the 3D geometry

of the scene. In other setups, the object may move with a linear translation stage or a conveyer belt.

The stripe scanner shares similar limitations with the spot scanner, as they both require the object

to be rotated or moved incrementally, which increases additional hardware complexity and time

consumption for scanning.

Fringe projection profilometry. As an area-based 3D scanning technique, the translation stage

or the turntable is not necessary for fringe projection profilometry. Fig. 1.7 presents a typical fringe
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Figure 1.6: A typical stripe scanner

projection profilometry (FPP) system, which is composed of a camera and a digital video projector.

The projector projects fringe pattern images that are distorted by the object’s surface. The camera

simultaneously captures the distorted fringe pattern images. Therefore, the distortion of fringe

patterns is related to the object profile, and phase information of the distorted fringe patterns builds

the correspondence relationship between the camera and projector.

There are many coding strategies for fringe patterns to build a one-to-one mapping between the

camera and the projector, and two of the most widely used strategies are sinusoidal phase coding

and binary coding. For binary coding, each horizontal or vertical line is assigned a unique value,

which refers to a unique codeword. Binary coding includes simple coding and Gray coding. Fig.

1.8 presents an example of simple binary coding and Gray coding to present eight stripes with three

fringe pattern images. In this figure, three fringe pattern images are utilized to present 3-bit coding,

and each stripe in the fringe pattern images has a unique codeword. Compared to simple binary code,

only one stripe changes in adjacent stripes in Gray coding, which makes Gray coding more robust

to sampling errors (S. Zhang, 2018). Sampling errors are more likely to occur on fringe transitions,

where the pixel changes from white to black or black to white. As fewer fringe transitions are on

the Gray code images, there is a lower possibility of bringing sampling errors. However, the width

of the stripe limits the smallest resolution, which makes it challenging to achieve pixel-level spatial

resolution at a very high speed. Besides, as binary coding relies on the image intensity affected
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Figure 1.7: A schematic diagram of a fringe projection profilometry system (adapted from (B. Li &
Zhang, 2015)).

by surface texture, the measurement accuracy varies for objects with different textures (S. Zhang,

2018).

Figure 1.8: An example of simple binary coding and Gray coding (adapted from (S. Zhang, 2018)).
(a) Simple binary coding. (b) Gray coding.
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Compared with binary coding, sinusoidal fringe pattern images contain smooth and periodic

variations in grayscale. Namely, the intensity of the image follows a sinusoidal function of the phase

information and changes continuously and periodically from 0 to 255. The sinusoidal fringe pattern

can be determined by

𝐼 (𝑥, 𝑦) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦) cos [𝜙(𝑥, 𝑦)] , (1.7)

where 𝐼 (𝑥, 𝑦), 𝐼′(𝑥, 𝑦) and 𝐼′′(𝑥, 𝑦) are the intensity, the average intensity and intensity modulation

at the pixel point (𝑥, 𝑦), and 𝜙(𝑥, 𝑦) is the phase. Generally, there are two main methods to recover

the phase: the Fourier transform and derived methods and phase-shifting methods.

The 3D measurement technique based on the Fourier transform is named Fourier transform

profilometry (FTP) (Takeda & Mutoh, 1983). For FTP, a single fringe pattern image is sufficient to

recover the phase. The above equation can also be rewritten as

𝐼 (𝑥, 𝑦) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦)
2

[
𝑒 𝑗𝜙(𝑥,𝑦) + 𝑒− 𝑗𝜙(𝑥,𝑦)] , (1.8)

where 𝑒 𝑗𝜙(𝑥,𝑦) and 𝑒− 𝑗𝜙(𝑥,𝑦) are two conjugate components. Usually, we can utilize a band-pass filter

such as a Hanning window in the frequency domain to remove 𝐼′(𝑥, 𝑦). After filtering, the image

will be

𝐼̃ (𝑥, 𝑦) = 𝐼′′(𝑥, 𝑦)
2

[
𝑒 𝑗𝜙(𝑥,𝑦) + 𝑒− 𝑗𝜙(𝑥,𝑦)] . (1.9)

Then, the phase can be recovered from

𝜙(𝑥, 𝑦) = tan−1

{
𝐼𝑚

[
𝐼̃ (𝑥, 𝑦)

]
𝑅𝑒

[
𝐼̃ (𝑥, 𝑦)

] } (1.10)

Here, 𝐼𝑚
[
𝐼̃ (𝑥, 𝑦)

]
and 𝑅𝑒

[
𝐼̃ (𝑥, 𝑦)

]
are the imaginary and real part of the filtered image 𝐼̃ (𝑥, 𝑦).

As a single shot of the fringe image is sufficient to recover the phase, FTP is widely applied in

high-speed 3D measurement. However, conventional FTP methods face three significant challenges:

sensitivity to noise, strict requirements for surface optical properties, such as minimal texture, and

difficulties in accurately measuring complex surface geometries (S. Zhang, 2018).

Another widely used method to recover the phase is the phase-shifting method (Malacara, 2007a).

Unlike FTP, which only requires a single fringe pattern image, the conventional phase-shifting
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method needs a set of phase-shifted sinusoidal fringe pattern images to recover the phase. The

standard N-step phase shifting method can be described by (Zuo et al., 2018)

𝐼 (𝑥, 𝑦) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦) cos [𝜙(𝑥, 𝑦) + 2𝜋𝑛/𝑁] , (1.11)

where 𝑛 is the phase-shifting index 𝑛 = 0, 1, 2, · · · , 𝑁 − 1. Then, the phase can be calculated by

𝜙(𝑥, 𝑦) = tan−1

[ ∑𝑁−1
𝑛=0 𝐼𝑛 (𝑥, 𝑦) sin 2𝜋𝑛/𝑁∑𝑁−1
𝑛=0 𝐼𝑛 (𝑥, 𝑦) cos 2𝜋𝑛/𝑁

]
, (1.12)

The standard phase-shifting method requires at least three fringe pattern images for implementa-

tion, as illustrated in Fig. 1.9 with an example of a cube illuminated by a three-step phase-shifting

sequence. Generally, the more steps used in the phase shifting, the higher measurement accuracy

it can achieve. This method, compared to Fourier Transform Profilometry (FTP), requires more

fringe patterns, adversely affecting measurement speed, particularly in high-speed measurement

applications. To enhance measurement speed, accuracy, and range, various adaptations of FTP

and phase-shifting techniques have been developed, such as trapezoidal phase shifting, triangular

phase shifting, 𝜋-shift Fourier transform profilometry, background-normalized Fourier transform

profilometry, etc.(Zuo et al., 2018).

Figure 1.9: An example of the three-step phase-shifting method. (a)-(c) Sinusoidal fringe patterns
used in the three-step phase-shifting method. (d)-(f) An illuminated cube.
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Phase in Eq. 1.10 and Eq. 5.12 is at the range of [−𝜋, 𝜋), which is not continuous. Thus, the

phase is also regarded as the wrapped phase that needs phase unwrapping to remove the phase jumps.

After unwrapping, the phase without 2𝜋 discontinuity is named the unwrapped phase. Various

unwrapping strategies have been invested, and one of the straightforward ideas is to utilize Gray

coding images (D. Zheng et al., 2017) to denote the fringe order. A set of Gray coding images is

generated within the same period of the sinusoidal fringe patterns, and then both the sinusoidal

fringe pattern and Gray coding pattern are projected onto the object. Fig. 1.10 illustrates an example

of phase unwrapping using Gray coding. The fringe order can be identified by analyzing the intensity

transitions of the captured Gray coding images. As the period of the wrapped phase is the same as

that of the fringe order, the phase jump points are where the fringe order changes, as illustrated in

Fig. 1.10 (e). Thus, the unwrapped phase can be recovered by increasingly adding times of 2𝜋 at

the locations where the fringe order changes, which is mathematically described as

Φ(𝑥, 𝑦) = 𝜙(𝑥, 𝑦) + 2𝜋𝑘 (𝑥, 𝑦), (1.13)

where 𝑘 (𝑥, 𝑦) is the fringe order. Besides Gray coding, other phase unwrapping methods, including

multi-frequency phase unwrapping (Cheng & Wyant, 1985), spatial phase unwrapping (M. Zhao

et al., 2011), geometric-constraint-based phase unwrapping (An et al., 2016), deep-learning-based

unwrapping (W. Li et al., 2021) and so forth, have been explored to retrieve the unwrapped phase.

Figure 1.10: An example of phase unwrapping. (a) One of the 18-step sinusoidal fringe images. (b)
Wrapped phase. (c) Unwrapped phase. (d). Cross section of wrapped phase, unwrapped phase, and
fringe order to show phase unwrapping using the fringe order.

After obtaining the phase, system calibration is necessary to build the relationship between the

phase and height. Generally, most of the widely used system calibration methods can be categorized

into two groups: phase-height models and triangular stereo models (S. Feng et al., 2021). The

17



phase-height models directly build the relationship through linear fitting, linear inverse fitting,

polynomial fitting, etc. In these methods, it is unnecessary to obtain the intrinsic and extrinsic

parameters of the camera and the projector. Triangular stereo models are similar to conventional

stereo vision models, which treat the projector as an inverse camera. Therefore, the camera and

projector need calibration, and the pinhole camera model is widely used to depict them. For the

camera, it can be described as
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. (1.14)

In the above equation, rotation matrix 𝑅𝑐 = [𝑟𝑐
𝑖 𝑗
]3×3 and translation vector ®𝑡𝑐 =

(
𝑡𝑐1, 𝑡

𝑐
2, 𝑡

𝑐
3

)⊤
transform a point 𝑝𝑤 (𝑥𝑤, 𝑦𝑤, 𝑧𝑤) in the world coordinate system to the point 𝑝1(𝑥𝑐, 𝑦𝑐, 𝑧𝑐) in

the camera coordinate system. The translation vector and rotation matrix consist of the extrinsic

parameters. To simplify the calibration process, we usually align the world coordinate system with

the camera coordinate system. Thus, the camera’s rotation matrix is an identity matrix, and the

translation vector is ®𝑡𝑐 = (0, 0, 0)⊤. Following the transformation, the point 𝑝1 is projected to 2D

points (𝑢𝑐, 𝑣𝑐) on the camera image plane through the intrinsic parameters, 𝑓 𝑐𝑢 , 𝑓 𝑐𝑣 , 𝛾𝑐, and
(
𝑢𝑐0, 𝑣

𝑐
0

)
.

𝑓 𝑐𝑢 and 𝑓 𝑐𝑣 are the focal lengths of the camera along 𝑢 and 𝑣 directions, 𝛾𝑐 is the skew factor, and(
𝑢𝑐0, 𝑣

𝑐
0

)
is the principal point on the 2D pixel coordinate. As the projector is regarded as an inverse

camera, it can be similarly defined as
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. (1.15)

The camera calibration utilizes the widely recognized method by Zhang et al. (Z. Zhang, 2000).

Unlike the camera, the projector cannot directly capture calibration features due to its different

nature. The key to the system calibration using triangular stereo models hinges on making the
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projector detect features like the camera. One widely used method is mapping the detected features in

captured fringe images to the projected fringe patterns through one-to-one phase mapping (S. Zhang

& Huang, 2006). Fig. 1.11 presents how the projector detects feature points using the phase cue.

The calibrated camera detects the feature point 𝑝(𝑢𝑐, 𝑣𝑐), and the feature point’s phase Φ𝑣 (𝑢𝑐, 𝑣𝑐)
and Φℎ (𝑢𝑐, 𝑣𝑐) can also be obtained through phase analysis. Normally, in the calibration process,

we assume that the phase of the feature point 𝑝(𝑢𝑐, 𝑣𝑐) is equal to the phase of the correspondence

feature point in the projected fringe patterns. The phase associated with the pixel index in fringe

pattern images allows for the inference of the pixel index on the projector’s fringe image plane.

Consequently, this enables the projector to detect feature points, effectively calibrating the FPP

system akin to a conventional stereo vision system. After acquiring the phase information and

calibrating the FPP system, the object’s 3D profile can be reconstructed.

Figure 1.11: Schematic of how the projector detects feature points using the phase cue (adapted
from (S. Feng et al., 2021)).

Generally, interference-based methods are primarily used for high-precision and microscale

measurements, while Time-of-Flight techniques suit low-accuracy and large-scale measurements.

FPP systems bridge these approaches, offering a balanced solution. However, FPP techniques are

not off limitations and challenges. As an active measurement technique, occlusion by complex

object surfaces brings shadows in captured fringe images, which causes the reconstruction to be

incomplete and reduces measurement accuracy. The design of the fringe pattern also influences its

measurement speed and accuracy. In addition, integrating 3D geometry with other data modalities

can better reveal an object’s characterization and broaden the application range. The subsequent
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section introduces the principle of hyperspectral imaging, showcasing its potential integration with

FPP to unveil the intrinsic properties of objects.

1.2.3 Hyperspectral imaging

Hyperspectral imaging (HSI) is a technique that generates a spatial map of spectral variation, making

it widely applied in many fields, such as biomedical engineering (Fei, 2019), food quality assessment

and control (ElMasry & Sun, 2010), agriculture (B. Lu et al., 2020), conservation of cultural relics

(Pei et al., 2023), etc. In the wavelength domain, HSI is related to RGB imaging and multispectral

imaging. Fig. 1.12 compares RGB, multispectral and hyperspectral features. Conventional RGB

color imaging rarely reveals the physical and chemical properties. Multispectral imaging generally

collects data in limited and relatively noncontiguous wide spectral bands, typically measured in

micrometers or tens of micrometers. While HSI can capture images in hundreds of contiguous

spectral bands with high spectral resolution, usually 10 nm or less. Besides, HSI techniques can

acquire reflectance, absorption, or fluorescence spectrum for each pixel in the image (Q. Li et al.,

2013). The hyperspectral images are usually presented in the form of a 3D data cube, where the

cube faces show spatial information (spatial coordinates 𝑥 and 𝑦), and the depth presents spectral

information (wavelength 𝜆).

Figure 1.12: Comparison of RGB, multispectral, and hyperspectral features. (a) RGB imaging
feature. (b) Multispectral imaging feature. (c) Hyperspectral imaging feature.

Fig.1.13 illustrates four typical hyperspectral approaches: the point scan, line scan, spectral scan,

and snapshot. In point scan mode, a single spot of the object surface is scanned in each frame, and the

reflected light is dispersed by a prism and captured by a linear detector to obtain spectral information

of this spot. To scan the whole object and obtain the image data cube (𝑥, 𝑦, 𝜆), the object or the
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detector moves along the two spatial dimensions (𝑥 and 𝑦). Therefore, additional optomechanical

devices are necessary, increasing the complexity of hardware configuration. Besides, the motion of

the object or the detector makes the scanning time-consuming.

Fig. 1.13 (b) shows how the line-scan hyperspectral imaging works. Different from the point-

scan mode, this method captures a 2D spectral image of an object’s surface slit using a 2D matrix

detector. During scanning, the detector or sample simultaneously moves perpendicular to the slit

direction to collect the data cube. To ensure no distortion on the captured image, the synchronization

between the object’s or detector’s motion and the detector’s frame rate is crucial, increasing the

complexity of implementation. Compared to the point-scan mode, the line-scan hyperspectral

imager can capture more light, providing a longer exposure to the detector (Q. Li et al., 2013).

The point-scan and the line-scan HSI only capture a point or a slit of the object’s surface. Unlike

the mentioned point-scan and line-scan approaches, the spectral-scan HSI acquires a 2D image of

the full object surface at a single spectral band using filters in each frame, as illustrated in Fig. 1.13

(c). By adjusting the filters, this technique can collect the hyperspectral data cube. Therefore, the

spectral measurement range can be dynamic in the spectral-scan HSI, depending on how the filters

are adjusted.

Fig. 1.13 (d) presents a schematic of the snapshot HSI, which is also named single-shot HSI. As

indicated by the name, it can record both spatial and spectral information with one shot. Unlike the

other three approaches that need to scan either in the spatial or spectral dimensions, the snapshot

mode is an imaging technique without scanning. It can acquire a complete hyperspectral data cube

by directly imaging the remapped and dispersed image zones onto a detector simultaneously, which

enables direct data acquisition with minimal postprocessing for constructing a 3-D data cube (Q. Li

et al., 2013). However, its spatial and spectral resolutions are constrained because the maximum

voxels it can capture are limited by the CCD camera’s pixel count. Consequently, increasing spatial

sampling reduces spectral sampling and vice versa, depending on the CCD’s capacity (L. Gao et al.,

2009).

The richness and high dimensionality of spectral information obtained from hyperspectral

imaging make it widely used in many applications (Boldrini et al., 2012). However, hyperspectral

imagers are typically more costly and require more time to capture a sample’s complete spectral

and spatial data than conventional imaging systems.
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Figure 1.13: Typical hyperspectral imaging approaches (Lucasbosch, 2021).

1.3 Challenges and objectives

In the preceding sections, we have delineated the principal methodology of 3D reconstruction

via fringe projection profilometry while also providing an overview of associated techniques for

acquiring the 3D geometry of a sample. As an active triangulation-based method, fringe projection

profilometry (FPP) exhibits robustness against noise, offering accuracy levels from millimeters to

micrometers, and is apt for medium-scale applications (ranging from 0.01 m to 1 m). Despite its

advantages, the technique faces numerous challenges. This dissertation is dedicated to addressing

these challenges with the aim of enhancing the method’s robustness and broadening its applications.

Fringe pattern direction and system calibration influence FPP’s accuracy. The fringe

pattern direction and system calibration are critical factors influencing the accuracy of FPP. The

orientation of the fringe pattern directly affects the sensitivity of the 3D reconstruction process,

as it determines the distribution and density of the fringes over the object’s surface. On the other

hand, system calibration ensures the accurate mapping of phase to height, which is a prerequisite for

precise 3D reconstruction. Circular fringe patterns, as a new type of pattern design, have started to

show some promise in FPP systems, as opposed to conventional linear horizontal or vertical patterns,

particularly coaxial FPP systems. This dissertation introduces a novel circular fringe projection

profilometry, including system calibration and 3D reconstruction techniques. It also evaluates the

22



performance of the proposed method against traditional linear FPP approaches. Details on the

metrology will be discussed in Chapter 2.

Occlusion by complex object’s surface brings shadow-induced errors. In a typcial FPP

system, the optical axes of the projector and camera intersect, leading to unavoidable occlusions

and shadows, especially in scenes with sharp objects’s surface changes. Phase information, the only

cue for 3D reconstruction, cannot be recovered in the shadow areas, which leaves holes and failures

in the final reconstructed 3D geometry. However, in the shadow area, texture images extracted from

the captured fringe pattern images can still depict an object’s 3D shape, as demonstrated by the

shape from the texture technique. Thus, texture images offer a potential avenue for enhancing 3D

reconstructions in shadow areas. Recent advancements in deep learning have sparked interest in

its application to FPP challenges, yielding considerable successes. This dissertation proposes a

novel texture-guided phase-to-depth network designed to repair shadow-related errors in FPP by

integrating texture and phase information to recover object depth accurately. The methodology of

this research is elaborated in Chapter 2.

The integration of 3D and spectral imaging techniques better reveals an object’s charac-

teristics. 3D spatial data and spectral images are two modalities that offer complementary insights

into an object’s characteristics across different domains. 3D imaging depicts an object’s spatial

attributes, including position, shape, size, surface texture, and roughness, while spectral imaging

provides detailed information on the object’s physical and chemical properties, such as reflectance,

absorption, and fluorescence. The integration of 3D and hyperspectral imaging techniques enhances

the overall understanding of an object’s characteristics, thereby expanding their applicability in

various fields. This dissertation introduces a novel 4D line-scan hyperspectral imaging system that

captures spatial and spectral data simultaneously without data registration. The methodology of this

research is further discussed in Chapter 4.

Decoupled system design enhances flexibility and performance in 4D hyperspectral imaging.

Chapter 4 develops a 4D line-scan hyperspectral imaging system where 3D spatial data and

hyperspectral images are captured simultaneously by a single camera. However, this coupled

system design imposes limitations on the spectral range, restricting it to visible and near-infrared

wavelengths, and constrains the scanning speed to 3 mm/min. By adopting a decoupled system design,

where hyperspectral imaging and 3D scanning are conducted independently, we can significantly
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improve system flexibility. This approach not only increases scanning speeds but also broadens the

spectral range to visible-to-shortwave infrared (Vis-SWIR), which enhances the overall capabilities

and applicability of 4D hyperspectral imaging systems. The methodology of the decoupled 4D

Vis-SWIR line-scan hyperspectral imaging is introduced in Chapter 5.

1.4 Dissertation organization

Chapter 2 introduces a comparative analysis between circular and linear fringe projection profilom-

etry. This chapter proposes a novel approach to circular fringe projection profilometry, providing

an in-depth exploration of its performance compared to the conventional linear fringe projection

profilometry (FPP). Chapter 3 delves into developing an innovative texture-guided phase-to-depth

network to rectify shadow-induced errors commonly encountered in FPP. Chapter 4 explores 4D

line-scan hyperspectral imaging covering the visible and near-infrared wavelength range. This

chapter outlines the proposed system to obtain 3D geometry and hyperspectral images without data

registration. Based on Chapter 4, Chapter 5 further develops a 4D visible-to-shortwave infrared

line-scan hyperspectral imaging system, which has the ability to capture 3D spatial data and hy-

perspectral images with wavelength spinning from visible to shortwave infrared wavelength range.

Chapter 6 summarizes the research contributions of this dissertation and simply introduces some

valuable research directions to be investigated in the future.
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CHAPTER 2

COMPARATIVE ANALYSIS OF CIRCULAR AND LINEAR FRINGE PROJECTION

PROFILOMETRY: FROM CALIBRATION TO 3D RECONSTRUCTION1

1Li, Jiaqiong, and Beiwen Li. 2024. Optics Continuum, 3.3 (2024): 468-483.

Reprinted here with permission of the publisher.
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2.1 Abstract

This study compares the accuracy of circular and linear fringe projection profilometry in the aspects

of system calibration and 3D reconstruction. We introduce a novel calibration method and 3D

reconstruction technique using circular and radial fringe patterns. Our approach is compared with the

traditional linear phase-shifting method through several 2 × 2 experimental setups. Results indicate

that our 3D reconstruction method surpasses the linear phase-shifting approach in performance,

although calibration efficiency does not present a superior performance. Further analysis reveals that

sensitivity and estimated phase error contribute to the relative underperformance in calibration. This

paper offers insights into the potentials and limitations of circular fringe projection profilometry.

2.2 Introduction

Fringe projection profilometry (FPP), recognized for its high resolution, high accuracy, and ro-

bustness, has been widely applied in various fields for 3D measurement, including entertainment,

manufacturing, robotics, and so on (X. Su & Zhang, 2010; J. Xu & Zhang, 2020b; S. Zhang, 2018;

Zuo et al., 2018). The measurement accuracy of FPP is largely influenced by system calibration

(S. Feng et al., 2021) and fringe pattern direction (Yu et al., 2020; R. Zhang et al., 2016).

The calibration methods for a typical fringe projection system consisting of a single camera

and projector generally fall into phase-height mapping (Z. Zhang et al., 2011, 2013; W.-S. Zhou

& Su, 1994), least-squares approach (L. Huang et al., 2010; Vo et al., 2012), and triangular stereo

models (Z. Li et al., 2008; S. Zhang & Huang, 2006). This research primarily concentrates on

triangular stereo models. A critical step of these models is enabling the projector to identify feature

points like a camera. A prevalent approach is to map feature points detected by the camera to

the projector with the assistance of phase. Up to now, many triangular stereo calibration methods

(Z. Huang et al., 2015; S. Zhang & Huang, 2006; W. Zhang et al., 2017) have been investigated

to obtain more precise calibration parameters. However, most of these methods rely on horizontal

and vertical fringe patterns for phase acquisition and mapping of camera feature points onto the

projector. Different from conventional horizontal and vertical fringe patterns for calibration, Li. et

al. (B. Li & Zhang, 2014) recommended calibrating the system using the optimal fringe angle to
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increase measurement accuracy. Given this, our research hypothesizes that calibrations employing

circular and radial fringe patterns in circular FPP could yield superior outcomes.

Additionally, fringe pattern direction is another factor that impacts the measurement accuracy

of FPP. Building upon epipolar geometry, Zhang. et al. (R. Zhang et al., 2016) formulated phase

sensitivity as a function of the angle between the fringe direction and the epipolar line. They

suggested orienting fringe patterns perpendicular to epipolar lines to maximize phase sensitivity

and achieve better measurement accuracy. Further advancing this field, Zhang et al. (G. Zhang

et al., 2023), utilizing extended epipolar geometry, introduced a novel approach of circular fringe

projection profilometry and analyzed its 3D sensitivity. This method effectively circumvents the

need to double pattern numbers while enabling real-time operations. However, it requires the

generation of four distinct look-up tables and does not account for the effects of projector calibration.

Mandapalli et al. (Mandapalli et al., 2021) introduced a radially symmetric circular fringe pattern

for accurate unambiguous surface profiling of sudden height-discontinuous objects. This approach

offered the capability to profile objects with a fourfold increase in dynamic range and at considerably

lower fringe frequencies. The existing research demonstrates that circular fringe patterns have

their advantages in phase sensitivity and suitability for profiling objects with abrupt depth changes,

compared to conventional linear fringe patterns.

Furthermore, circular fringe patterns have been applied in uniaxial or parallel structured light

systems using telecentric lenses. Zhao et al. (H. Zhao, Zhang, et al., 2016) proposed a CFPP method

to determine the height of a point by calculating its distance from the optical center of a projector

along the optical axis. However, this approach struggles with reconstructing the height at the nominal

zero-phase point and has lower accuracy near this point. Addressing this challenge, Zhang et al.

(C. Zhang et al., 2019) enhanced CFPP by employing a 2D ruler-based or plane constraint-based

method to detect the zero-phase point, though this increases the method’s complexity. Subsequently,

Zhang et al. (J. Zhang et al., 2021) proposed a simpler approach that mitigates the zero-phase point

issue and does not require calibrating the camera and projector in the system.

Given the advantages and flexibility of circular fringe patterns, this paper aims to develop and

evaluate a novel CFPP method incorporating system calibration. First, we calibrate a structured light

system using circular and radial fringe patterns, then formulate a corresponding 3D reconstruction

method using circular fringe patterns. We compare our method’s performance with Zhang and
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Huang’s method (S. Zhang & Huang, 2006) and the linear phase-shifting method, conducting

several 2 × 2 experiments on diverse samples for visual assessment. Our findings indicate that

circular FPP outperforms traditional linear FPP, while our proposed calibration method exhibits

slightly inferior performance compared to Zhang and Huang’s. In the discussion section, we

delve into an in-depth analysis to understand the factors leading to this reduced accuracy in our

calibration method. Through this analysis, we identify and elaborate upon the increasing trends in

both sensitivity and estimated phase error. These factors are recognized as the key contributors to

the diminished accuracy of our calibration method, providing vital insights for future enhancements

in CFPP calibration techniques.

2.3 Principle of the method

This section will first explain how to calibrate an FPP system using circular and radial fringe patterns.

Then, we will introduce the proposed circular fringe projection profilometry for 3D reconstruction.

2.3.1 System calibration

Pinhole imaging model

In a structured light system, both the camera and projector can be effectively characterized using a

conventional pinhole imaging model, as depicted in Fig.2.1. The mathematical model of the pinhole

imaging model can be explained as:

Figure 2.1: Pinhole imaging model. The figure is reprinted from (B. Li et al., 2014).
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𝑠


𝑢

𝑣

1


=


𝑓𝑢 𝛾 𝑢0

0 𝑓𝑣 𝑣0

0 0 1



𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3




𝑥𝑤

𝑦𝑤

𝑧𝑤

1


. (2.1)

In the model, rotation matrix R = [𝑟𝑖 𝑗 ]3𝑥3 and translation vector ®𝑡 = (𝑡1, 𝑡2, 𝑡3)⊤ transform a point

𝑝𝑤 (𝑥𝑤, 𝑦𝑤, 𝑧𝑤) in the world coordinate system to a point 𝑝𝑐 (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) in the camera coordinate

system, which constitutes the extrinsic parameters of the system. Following the transformation,

the point 𝑝𝑐 (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) is projected to a 2D point (𝑢, 𝑣) on the image plane within the intrinsic

parameters, 𝑓𝑢, 𝑓𝑣, 𝛾, and (𝑢0, 𝑣0). 𝑓𝑢 and 𝑓𝑣 are the focal lengths of the camera along 𝑢 and 𝑣

directions, 𝛾 is the skew factor, and (𝑢0, 𝑣0) is the principal point on the 2D pixel coordinate. The

intrinsic and extrinsic parameters can be further represented with a projection matrix M,

M =


𝑓𝑢 𝛾 𝑢0

0 𝑓𝑣 𝑣0

0 0 1



𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3


=


𝑚11 𝑚12 𝑚13 𝑚1

𝑚21 𝑚22 𝑚23 𝑚2

𝑚31 𝑚32 𝑚33 𝑚3


. (2.2)

The model of the camera can be described as

𝑠𝑐


𝑢𝑐

𝑣𝑐

1


=


𝑚𝑐

11 𝑚𝑐
12 𝑚𝑐

13 𝑚𝑐
14

𝑚𝑐
21 𝑚𝑐

22 𝑚𝑐
23 𝑚𝑐

24

𝑚𝑐
31 𝑚𝑐

32 𝑚𝑐
33 𝑚𝑐

34




𝑥𝑤

𝑦𝑤

𝑧𝑤

1


. (2.3)

Similarly, we consider the projector in a structured light system as an inverse-imaging camera(S.

Zhang & Huang, 2006), whose mathematical formulation is described as

𝑠𝑝


𝑢𝑝

𝑣𝑝

1


=


𝑚

𝑝

11 𝑚
𝑝

12 𝑚
𝑝

13 𝑚
𝑝

14

𝑚
𝑝

21 𝑚
𝑝

22 𝑚
𝑝

23 𝑚
𝑝

24

𝑚
𝑝

31 𝑚
𝑝

32 𝑚
𝑝

33 𝑚
𝑝

34




𝑥𝑤

𝑦𝑤

𝑧𝑤

1


. (2.4)
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Camera calibration

In this research, we employed Zhang’s renowned calibration method (Z. Zhang, 2000) in conjunction

with the OpenCV camera calibration software toolbox (Bradski, 2000) to calibrate the camera.

Fig.2.2(a) illustrates the design of our calibration target, where the centers of the circles act as

the feature points. Camera calibration involves two primary components: intrinsic and extrinsic

calibrations. The intrinsic calibration of the camera aims to estimate its internal parameters, 𝑓𝑢, 𝑓𝑣 ,

𝛾, and (𝑢0, 𝑣0). This process involves capturing images of the calibration target in various poses

(an example is depicted in Fig.2.2(b)). For each image, feature points (the centers of circles) are

extracted and then used in an iterative optimization process to refine the estimation of the camera’s

intrinsic parameters, utilizing the OpenCV camera calibration toolbox.

Figure 2.2: Camera calibration and target 3D estimation. (a) asymmetric circle grid calibration
target, whose size is (5(𝑟𝑜𝑤) × 9(𝑐𝑜𝑙𝑢𝑚𝑛) with 20 mm center-to-center distance); (b) an image of
the target at a pose with extracted circle centers; (c) the estimated 3D target orientations.

Extrinsic calibration primarily estimates the rotation (𝑟 𝑡𝑔
𝑖 𝑗

) and translation (𝑡𝑡𝑔
𝑖

) parameters, which

transform points from the planar target coordinate (𝑥𝑡𝑔, 𝑦𝑡𝑔, 0) to the camera coordinate (𝑥𝑐, 𝑦𝑐, 𝑧𝑐).

Fig.2.2(a) defines the planar target coordinate, with the principal point being at the bottom left

circle center. Having aligned the world coordinate with the camera coordinate, the rotation (𝑟 𝑡𝑔
𝑖 𝑗

) and

translation (𝑡𝑡𝑔
𝑖

) parameters convert the planar target points (𝑥𝑡𝑔, 𝑦𝑡𝑔, 0) into three-dimensional points

(𝑥𝑤𝑡𝑔, 𝑦𝑤𝑡𝑔, 𝑧𝑤𝑡𝑔) within the world coordinate system, as detailed in Equation 2.5. Additionally,

Figure 2.2(c) illustrates the estimated 3D orientations of the target in various poses.
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
𝑥𝑤𝑡𝑔

𝑦𝑤𝑡𝑔

𝑧𝑤𝑡𝑔


=


𝑟
𝑡𝑔

11 𝑟
𝑡𝑔

12 𝑟
𝑡𝑔

13 𝑡
𝑡𝑔

1

𝑟
𝑡𝑔

21 𝑟
𝑡𝑔

22 𝑡
𝑡𝑔

23 𝑡
𝑡𝑔

2

𝑟
𝑡𝑔

31 𝑟
𝑡𝑔

32 𝑡
𝑡𝑔

33 𝑡
𝑡𝑔

3




𝑥𝑡𝑔

𝑦𝑡𝑔

0

1


. (2.5)

Circular and radial fringe patterns for projector calibration

In calibrating a structured light system, which consists of a camera and a projector, the latter can

be treated as an inverse camera. Thus, system calibration hinges on enabling the projector to

capture feature points in a manner like a camera. To this end, phase is employed to establish a

correspondence between feature points captured by the camera and those projected (S. Feng et al.,

2021). Zhang and Huang’s method (S. Zhang & Huang, 2006) utilized horizontal and vertical

fringe patterns for correspondence mapping. Different from this method, we utilized circular and

radial fringe patterns with their center coordinated at the specific point 𝑂𝑠 (𝑢𝑠, 𝑣𝑠) to build the

correspondence. An example of circular and radial fringe patterns is illuminated in Fig.2.3. The

circular and radial fringe patterns can be generated based on Eq.2.6 and Eq.2.8.

Figure 2.3: An example of fringe patterns for system calibration. (a)-(b). A circular and radial
fringe pattern centered at (𝑢𝑠, 𝑣𝑠). 𝑟

(
𝑢𝑝, 𝑣𝑝

)
is the distance between the point𝑝

(
𝑢𝑝, 𝑣𝑝

)
and the

center 𝑂𝑠 (𝑢𝑠, 𝑣𝑠), and 𝜃
(
𝑢𝑝, 𝑣𝑝

)
is the pixel angle. (c)-(d). A horizontal and vertical fringe pattern

employed in Zhang and Huang’s method(S. Zhang & Huang, 2006).

𝐼𝑐𝑖
(
𝑢𝑝, 𝑣𝑝

)
= 𝐴 + 𝐵 cos

(
2𝜋
𝑇
𝑟
(
𝑢𝑝, 𝑣𝑝

)
+ 2𝜋

𝑖 − 1
𝑁

)
, (2.6)

31



where 𝐼𝑐
𝑖

is the grayscale intensity of the pixel in 𝑖𝑡ℎ circular fringe patterns at a coordinate
(
𝑢𝑝, 𝑣𝑝

)
in the projector image plane,𝐴 and 𝐵 are two constants set to 127.5 for 8-bit gray depth, 𝑇 is the

spatial period in the unit of pixel, 𝑖 and 𝑁 are the index and total number of the phase shifts, and

𝑟
(
𝑢𝑝, 𝑣𝑝

)
is the radial distance between pixel

(
𝑢𝑝, 𝑣𝑝

)
and center (𝑢𝑠, 𝑣𝑠), as illuminated in Eq.2.7,

𝑟
(
𝑢𝑝, 𝑣𝑝

)
=

√︃(
𝑢𝑝 − 𝑢𝑠

)2 + (
𝑣𝑝 − 𝑣𝑠

)2
. (2.7)

Similarly, we generated radial fringe patterns as described in Eq.2.8,

𝐼𝑟𝑖
(
𝑢𝑝, 𝑣𝑝

)
= 𝐴 + 𝐵 cos

(
2𝜋
Δ𝜃

𝜃
(
𝑢𝑝, 𝑣𝑝

)
+ 2𝜋

𝑖 − 1
𝑁

)
, (2.8)

where Δ𝜃 is the angle change per spatial period in the unit of rad, and 𝜃
(
𝑢𝑝, 𝑣𝑝

)
is the pixel angle

between pixel
(
𝑢𝑝, 𝑣𝑝

)
and center (𝑢𝑠, 𝑣𝑠), as given by

𝜃 (𝑢𝑝, 𝑣𝑝) =


arctan

(
𝑣𝑝−𝑣𝑠
𝑢𝑝−𝑢𝑠

)
if 𝑢𝑝 < 𝑢𝑠,

𝜋
2 if 𝑢𝑝 = 𝑢𝑠,

𝜋 − arctan
(
𝑣𝑝−𝑣𝑠
𝑢𝑝−𝑢𝑠

)
otherwise.

(2.9)

Besides, we binarized the circular and radial fringe patterns based on the threshold of average

grayscale intensity, as shown in Eq.2.10,

𝐼𝑏𝑖 (𝑢𝑝, 𝑣𝑝) =


255 if 𝐼𝑖 (𝑢𝑝, 𝑣𝑝) > 𝐼𝑎𝑣𝑔,

0 otherwise.
(2.10)

For circular and radial fringe patterns, the relationship of the circular phase Φ𝑐 and radial phase Φ𝑟

with radial distance 𝑟
(
𝑢𝑝, 𝑣𝑝

)
and pixel angle 𝜃

(
𝑢𝑝, 𝑣𝑝

)
can be described as


𝑟 (𝑢𝑝, 𝑣𝑝) =

𝑇

2𝜋
Φ𝑐,

𝜃 (𝑢𝑝, 𝑣𝑝) =
Δ𝜃

2𝜋
Φ𝑟 .

(2.11)
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The phase of circular and radial fringe patterns Φ𝑐 and Φ𝑟 can be obtained using the phase-shift

method(Malacara, 2007a) and Gray coding unwrapping technique (Y. Wang et al., 2011a) based on

the captured fringe images from the camera. Thus, we can identify the corresponding feature points

on the projector’s image plane through Eq.2.12,


𝑢𝑝 = − 𝑇

2𝜋
Φ𝑐 cos

(
Δ𝜃

2𝜋
Φ𝑟

)
+ 𝑢𝑠,

𝑣𝑝 = − 𝑇

2𝜋
Φ𝑐 sin

(
Δ𝜃

2𝜋
Φ𝑟

)
+ 𝑣𝑠 .

(2.12)

Once we identify the projector feature points, we will build the correspondence between feature

points on the projector image plane and the camera plane. Then, we utilize OpenCV library(Bradski,

2000) for stereo calibration to obtain intrinsic parameters of the camera and projector and the

rotation matrix and translation vector of the projector to the camera.

2.3.2 Circular FPP for 3D reconstruction

In reconstructing the 3D geometry of samples, we only utilized binarized circular fringe patterns.

Combing Eq.2.4, Eq.2.11 and Eq.2.12, we get the relationship between phase Φ𝑐 and projection

parameters M = [𝑚𝑖 𝑗 ]3𝑥4,


𝑢𝑝 = − 𝑇

2𝜋
Φ𝑐 cos 𝜃 + 𝑢𝑠 =

𝑚
𝑝

11𝑥
𝑤 + 𝑚

𝑝

12𝑦
𝑤 + 𝑚

𝑝

13𝑧
𝑤 + 𝑚

𝑝

14

𝑚
𝑝

31𝑥
𝑤 + 𝑚

𝑝

32𝑦
𝑤 + 𝑚

𝑝

33𝑧
𝑤 + 𝑚

𝑝

34
,

𝑣𝑝 = − 𝑇

2𝜋
Φ𝑐 sin 𝜃 + 𝑣𝑠 =

𝑚
𝑝

21𝑥
𝑤 + 𝑚

𝑝

22𝑦
𝑤 + 𝑚

𝑝

23𝑧
𝑤 + 𝑚

𝑝

24

𝑚
𝑝

31𝑥
𝑤 + 𝑚

𝑝

32𝑦
𝑤 + 𝑚

𝑝

33𝑧
𝑤 + 𝑚

𝑝

34
,

(2.13)

We simplify the above equation and rewrite it as

(
𝑇

2𝜋

)2
Φ2

𝑐

(
𝑚

𝑝

31𝑥
𝑤 + 𝑚

𝑝

32𝑦
𝑤 + 𝑚

𝑝

33𝑧
𝑤 + 𝑚

𝑝

34

)2
= 𝑘1𝑥

𝑤2 + 𝑘2𝑦
𝑤2 + 𝑘3𝑧

𝑤2

+ 𝑘4 + 𝑘5𝑥
𝑤𝑦𝑤 + 𝑘6𝑥

𝑤𝑧𝑤

+ 𝑘7𝑦
𝑤𝑧𝑤 + 𝑘8𝑥

𝑤 + 𝑘9𝑦
𝑤 + 𝑘10𝑧

𝑤, (2.14)
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where parameters 𝑘1, . . . , 𝑘10 are listed below that can be directly obtained based on the projector’s

calibration parameters. Though the expressions of parameters 𝑘𝑖 are complex, they are actually

constants once the projector is calibrated and the center of the circular fringe patterns is fixed.



𝑘1 = (𝑚𝑝

11 − 𝑢𝑠𝑚
𝑝

31)
2 + (𝑚𝑝

21 − 𝑣𝑠𝑚
𝑝

31)
2,

𝑘2 = (𝑚𝑝

12 − 𝑢𝑠𝑚
𝑝

32)
2 + (𝑚𝑝

22 − 𝑣𝑠𝑚
𝑝

32)
2,

𝑘3 = (𝑚𝑝

13 − 𝑢𝑠𝑚
𝑝

33)
2 + (𝑚𝑝

23 − 𝑣𝑠𝑚
𝑝

33)
2,

𝑘4 = (𝑚𝑝

14 − 𝑢𝑠𝑚
𝑝

34)
2 + (𝑚𝑝

24 − 𝑣𝑠𝑚
𝑝

34)
2,

𝑘5 = 2(𝑚𝑝

11 − 𝑢𝑠𝑚
𝑝

31) (𝑚
𝑝

12 − 𝑢𝑠𝑚
𝑝

32) + 2(𝑚𝑝

21 − 𝑣𝑠𝑚
𝑝

31) (𝑚
𝑝

22 − 𝑣𝑠𝑚
𝑝

32),
𝑘6 = 2(𝑚𝑝

11 − 𝑢𝑠𝑚
𝑝

31) (𝑚
𝑝

13 − 𝑢𝑠𝑚
𝑝

33) + 2(𝑚𝑝

21 − 𝑣𝑠𝑚
𝑝

31) (𝑚
𝑝

23 − 𝑣𝑠𝑚
𝑝

33),
𝑘7 = 2(𝑚𝑝

12 − 𝑢𝑠𝑚
𝑝

32) (𝑚
𝑝

13 − 𝑢𝑠𝑚
𝑝

33) + 2(𝑚𝑝

22 − 𝑣𝑠𝑚
𝑝

32) (𝑚
𝑝

23 − 𝑣𝑠𝑚
𝑝

33),
𝑘8 = 2(𝑚𝑝

11 − 𝑢𝑠𝑚
𝑝

31) (𝑚
𝑝

14 − 𝑢𝑠𝑚
𝑝

34) + 2(𝑚𝑝

21 − 𝑣𝑠𝑚
𝑝

31) (𝑚
𝑝

24 − 𝑣𝑠𝑚
𝑝

34),
𝑘9 = 2(𝑚𝑝

12 − 𝑢𝑠𝑚
𝑝

32) (𝑚
𝑝

14 − 𝑢𝑠𝑚
𝑝

34) + 2(𝑚𝑝

22 − 𝑣𝑠𝑚
𝑝

32) (𝑚
𝑝

24 − 𝑣𝑠𝑚
𝑝

34),
𝑘10 = 2(𝑚𝑝

13 − 𝑢𝑠𝑚
𝑝

33) (𝑚
𝑝

14 − 𝑢𝑠𝑚
𝑝

34) + 2(𝑚𝑝

23 − 𝑣𝑠𝑚
𝑝

33) (𝑚
𝑝

24 − 𝑣𝑠𝑚
𝑝

34).

(2.15)

Eq.2.14 can be further rewritten as,
®𝑙®𝑥 = 1, (2.16)

where ®𝑥 is

®𝑥 = [Φ2
𝑐𝑥

2,Φ2
𝑐𝑦

2,Φ2
𝑐𝑧

2,Φ2
𝑐,Φ

2
𝑐𝑥𝑦,Φ

2
𝑐𝑥𝑧,Φ

2
𝑐𝑦𝑧,Φ

2
𝑐𝑥,Φ

2
𝑐𝑦,Φ

2
𝑐𝑧, 𝑥

2, 𝑦2, 𝑧2, 𝑥𝑦, 𝑥𝑧, 𝑦𝑧, 𝑥, 𝑦, 𝑧]T
,

(2.17)

and ®𝑙 is
®𝑙 = [𝑙1, 𝑙2, 𝑙3, . . . , 𝑙19], (2.18)
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

𝑙1 =
(
𝑇
2𝜋
)2 𝑚

𝑝

31
2

𝑘4
𝑙2 =

(
𝑇
2𝜋
)2 𝑚

𝑝

32
2

𝑘4
𝑙3 =

(
𝑇
2𝜋
)2 𝑚

𝑝

33
2

𝑘4
𝑙4 =

(
𝑇
2𝜋
)2 𝑚

𝑝

34
2

𝑘4
,

𝑙5 = 2
(
𝑇
2𝜋
)2 𝑚

𝑝

31𝑚
𝑝

32
𝑘4

𝑙6 = 2
(
𝑇
2𝜋
)2 𝑚

𝑝

31𝑚
𝑝

33
𝑘4

𝑙7 = 2
(
𝑇
2𝜋
)2 𝑚

𝑝

32𝑚
𝑝

33
𝑘4

,

𝑙8 = 2
(
𝑇
2𝜋
)2 𝑚

𝑝

31𝑚
𝑝

34
𝑘4

𝑙9 = 2
(
𝑇
2𝜋
)2 𝑚

𝑝

32𝑚
𝑝

34
𝑘4

𝑙10 = 2
(
𝑇
2𝜋
)2 𝑚

𝑝

33𝑚
𝑝

34
𝑘4

,

𝑙11 = − 𝑘1
𝑘4

𝑙12 = − 𝑘2
𝑘4

𝑙13 = − 𝑘3
𝑘4
,

𝑙14 = − 𝑘5
𝑘4

𝑙15 = − 𝑘6
𝑘4

𝑙16 = − 𝑘7
𝑘4
,

𝑙17 = − 𝑘8
𝑘4

𝑙18 = − 𝑘9
𝑘4

𝑙19 = − 𝑘10
𝑘4
.

(2.19)

One point to stress is that the parameters 𝑙1, . . . , 𝑙19 are all constants once we calibrate the projector,

though their expressions are complicated. After calculating the vector ®𝑙 = [𝑙1, . . . , 𝑙19], we can

formulate the 3D reconstruction by combing Eq.2.3 as

A®𝑥′
= ®𝑏, (2.20)

where the reconstruction matrix A consists of

A = [ ®𝑎1, ®𝑎2, ®𝑎3], (2.21)

®𝑎1 =
[
𝑚𝑐

11 − 𝑢𝑐𝑚𝑐
31, 𝑚

𝑐
12 − 𝑢𝑐𝑚𝑐

32, 𝑚
𝑐
13 − 𝑢𝑐𝑚𝑐

33, 0, . . . , 0
]
, (2.22)

®𝑎2 =
[
𝑚𝑐

21 − 𝑣𝑐𝑚𝑐
31, 𝑚

𝑐
22 − 𝑣𝑐𝑚𝑐

32, 𝑚
𝑐
23 − 𝑣𝑐𝑚𝑐

33, 0, . . . , 0
]
, (2.23)

®𝑎3 =

[
𝑙8Φ

2
𝑐 + 𝑙17, 𝑙9Φ

2
𝑐 + 𝑙18, 𝑙10Φ

2
𝑐 + 𝑙19,

𝑙1Φ
2
𝑐 + 𝑙11, 𝑙2Φ

2
𝑐 + 𝑙12, 𝑙3Φ

2
𝑐 + 𝑙13,

𝑙5Φ
2
𝑐 + 𝑙14, 𝑙6Φ

2
𝑐 + 𝑙15, 𝑙7Φ

2
𝑐 + 𝑙16

]
, (2.24)

The target ®𝑥′ is rewritten as
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®𝑥′
=

[
𝑥𝑤, 𝑦𝑤, 𝑧𝑤, 𝑥𝑤

2
, 𝑦𝑤

2
, 𝑧𝑤

2
, 𝑥𝑤𝑦𝑤, 𝑥𝑤𝑧𝑤, 𝑦𝑤𝑧𝑤

]T
, (2.25)

and
®𝑏 =

[
𝑢𝑐𝑚𝑐

34 − 𝑚𝑐
14, 𝑣

𝑐𝑚𝑐
34 − 𝑚𝑐

24, 1 − 𝑙4Φ
2
𝑐

]T
. (2.26)

To solve Eq. 2.20 and obtain [𝑥𝑤, 𝑦𝑤, 𝑧𝑤], we first utilize MATLAB Symbolic Toolbox(The

MathWorks, 2019) to get the symbolic expression and then calculate the numeric solution based on

the obtained phase Φ𝑐, vector ®𝑙, and projection parameters.

2.4 Experimental results

2.4.1 Experimental setup

We set up a structured light system as illuminated in Fig.2.4. A digital complementary-metal-

oxide-semiconductor (CMOS) camera (model: FLIR, Grasshopper3 GS3-U3-41C6C-C) and a

digital-light-processing (DLP) projector (model: Texas Instruments, DLP Lightcrafter 4500) are

employed to capture and project fringe images. The projector resolution is set as 1140 × 912 pixels,

while the camera resolution is 960 × 1280 pixels. The camera is attached with a lens of 8 mm focal

length (model: Computar M0814-MP2).

Sample object

DLP projector

CMOS camera

Figure 2.4: Experiment setup.
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2.4.2 Comparison of measurement accuracy

To compare the performance of the proposed method with Zhang and Huang’s calibration, we

calibrate the structured light system by employing conventional horizontal and vertical fringe

patterns. Fig.2.3 has already depicted fringe patterns employed in our calibration process: circular,

radial, horizontal, and vertical fringe patterns. We both utilize 18-step phase-shifting with seven

gray-coding for the two calibration methods to get phase information, and the spatial period

of circular, horizontal, and vertical fringe patterns are 32, 36, and 18, respectively. Δ𝜃 of the

radial fringe pattern is set at 2𝜋/500. The triangulation errors are estimated by comparing the

target points
(
𝑥𝑤𝑡𝑔, 𝑦𝑤𝑡𝑔, 𝑧𝑤𝑡𝑔

)
and the triangulation points using Zhang and Huang’s method

and the proposed method, and we also overlay the target points and triangulation points. The

details of the results are illuminated in Fig.2.5. The root-mean-square (RMS) error for X, Y,

and Z are 0.0024𝑚𝑚, 0.0016𝑚𝑚 and 0.2413𝑚𝑚 for Zhang and Huang’s method, and 0.0033𝑚𝑚,

0.0019𝑚𝑚 and 0.3401𝑚𝑚 for our proposed method. Considering the overall calibration volumes

(100𝑚𝑚(𝑋) × 100𝑚𝑚(𝑌 ) × 40𝑚𝑚(𝑍)), the triangulation errors of the two methods are less than

1%, though the triangulation errors of our proposed method are a little bit larger than that of

Zhang and Huang’s method. The result of the proposed method being a little bit worse than Zhang

and Huang’s method will be discussed in the later discussion section. In this research, we also

evaluate the measurement accuracies of our proposed calibration and 3D reconstruction method

using a standard sphere with a radius of 49.975 mm. To compare these accuracies with Zhang

and Huang’s calibration method and linear FPP, we conducted a 2 × 2 experimental setup. This

involved reconstructing the 3D profile of the standard sphere using either the proposed circular FPP

or linear FPP, combined with calibration parameters derived from either our proposed calibration

method or Zhang and Huang’s method. Fig.2.6(a)-(d) displays the overlays of the standard sphere

with the 3D reconstructions. Specifically, (a) represents the results using our proposed calibration

and circular FPP; (b) shows the results when the proposed circular FPP method is paired with

calibration parameters from Zhang and Huang’s method; (c) illustrates the results of linear FPP

combined with calibration parameters from our proposed method; and (d) depicts the results of

linear FPP with calibration parameters from Zhang and Huang’s method. Error maps corresponding

to Fig.2.6 (a)-(e) are presented in Fig.2.6 (e)-(f), showing the absolute difference between the

standard sphere and 3D reconstructions. The mean-absolute error (MAE) of the error maps are
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Figure 2.5: Evaluation of triangulation error. (a) Overlay of the target points
(
𝑥𝑤𝑡𝑔, 𝑦𝑤𝑡𝑔, 𝑧𝑤𝑡𝑔

)
(red

points) and triangulation points (𝑥𝑤, 𝑦𝑤, 𝑧𝑤) (corners of mesh) using Zhang and Huang’s method;
(b) Similar overlay of target points and triangulation points using the proposed method; (c) Error
between the target points and triangulation points using Zhang and Huang’s method, and RMS error
for X, Y and Z are 0.0024 mm, 0.0016 mm and 0.2413 mm; (d) Similar error using the proposed
method, and RMS error for X, Y, and Z are 0.0033 mm, 0.0019 mm and 0.3401 mm.

0.2056𝑚𝑚, 0.1562𝑚𝑚, 0.2646𝑚𝑚, and 0.2402𝑚𝑚, respectively, with RMS errors of 0.2965𝑚𝑚,

0.2158𝑚𝑚, 0.6663𝑚𝑚, and 0.6525𝑚𝑚. Notably, when the proposed 3D reconstruction method

is used with Zhang and Huang’s calibration parameters, the MAE and RMS errors are the lowest

among the results. Comparisons between Fig.2.6(e)-(h) reveal that when the calibration method is

fixed, the proposed circular FPP yields lower RMS errors and MAEs than linear FPP. Conversely,

using the same 3D reconstruction method with different calibration parameters shows that Zhang

and Huang’s method results in smaller RMS errors and MAEs compared to our proposed method, as

evidenced by Fig.2.6(c), (f), (g), and (h). The reasons for Zhang and Huang’s method outperforming

the proposed calibration method will be discussed in the discussion section.

2.4.3 Test cases

We initially applied a similar 2×2 experimental design to a sample of a GPU board with a fan, with

the 3D reconstruction results shown in Figure 2.7. The subfigures Fig.2.7(c)-(d) and (f)-(g) represent

the outcomes obtained using various combinations of calibration and reconstruction methods: (c)
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Figure 2.6: Evaluating measurement accuracy of a standard sphere (radius: 49.975 mm): com-
parative overlays and error analysis. (a)-(d) comparative overlays of the standard sphere and 3D
reconstructions: (a) with our proposed calibration and circular FPP; (b) Zhang and Huang’s calibra-
tion method with our proposed circular FPP; (c) our proposed calibration method and linear FPP;
(d) Zhang and Huang’s calibration method and linear FPP. (e)-(h) error maps corresponding to
(a)-(e), showcasing the deviation from the standard sphere. Mean absolute errors are (e) 0.2056𝑚𝑚,
(f) 0.1562𝑚𝑚, (g) 0.2646𝑚𝑚, and (h) 0.2402𝑚𝑚. RMS errors are (e) 0.2965𝑚𝑚, (f) 0.2158𝑚𝑚,
(g) 0.6663𝑚𝑚, and (h) 0.6525𝑚𝑚.

employs our proposed calibration and circular FPP; (d) combines the proposed circular FPP with

Zhang and Huang’s calibration; (e) uses linear FPP with our proposed calibration; and (f) applies

linear FPP with Zhang and Huang’s calibration. Visually, we observed no significant differences

among these 3D reconstruction results.

Additionally, we extended the 2 × 2 experimental setup to a sample of a GPU cooler with

abrupt depth changes in metal fins. The 3D reconstruction results are presented in Figure 2.8.

Similarly, Fig.2.8 (c)-(d) and (f)-(g) are results by utilizing the proposed calibration and circular

FPP, the proposed circular FPP with Zhang and Huang’s calibration, linear FPP with the proposed

calibration, and linear FPP with Zhang and Huang’s calibration, respectively. One to stress is that

same-size median filters are deployed to remove noises in the process of phase unwrapping. A

notable observation from Fig.2.8 (c)-(d) is that the results using our proposed circular FPP exhibit

fewer noises in the fin area compared to those obtained using linear FPP (Fig.2.8 (f)-(g)). The
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reconstruction outcomes of the GPU cooler sample demonstrate that our proposed method can

perform on par with or even surpass linear FPP in certain aspects.

Figure 2.7: 3D reconstruction results of a GPU board with the fan. (a) the GPU board with fan;
(b) a circular fringe image of the proposed circular FPP; (c)-(d) 3D reconstruction results using the
proposed circular FPP with either the proposed calibration or Zhang and Huang’s method; (e) a
horizontal fringe image of linear FPP; (f)-(g) 3D reconstruction results using linear FPP with either
the proposed calibration or Zhang and Huang’s method.

Figure 2.8: 3D reconstruction results of a GPU cooler. (a) the GPU cooler; (b) a circular fringe
image of the proposed circular FPP; (c)-(d) 3D reconstruction results using the proposed circular
FPP with either the proposed calibration or Zhang and Huang’s method; (e) a horizontal fringe
image of linear FPP; (f)-(g) 3D reconstruction results using linear FPP with either the proposed
calibration or Zhang and Huang’s method.
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2.5 Discussion

When comparing the triangular error and the standard sphere error, the performance of our proposed

calibration method slightly lags behind that of Zhang and Huang’s approach. We will explore the

underlying reasons for this, focusing on sensitivity and error analysis.

2.5.1 Sensitivity analysis of the projector calibration

The fringe pattern is the only difference between our proposed calibration method and Zhang and

Huang’s approach, bringing the difference in the mapping relationship between camera and projector

feature points. Based on the relationship of phase and projector feature points of circular and fringe

patterns (Eq.2.12), we define the sensitivity of the projector feature points relative to the phase. For

the sensitivity along the 𝑢 axis, denoted as Sp
u,proposed, we define it as:

Sp
u,proposed =

(
𝜕𝑢𝑝

𝜕Φ𝑐

,
𝜕𝑢𝑝

𝜕Φ𝑟

)
=

𝑇

2𝜋

(
− cos

(
Δ𝜃

2𝜋
Φ𝑟

)
,
Δ𝜃

2𝜋
Φ𝑐 sin

(
Δ𝜃

2𝜋
Φ𝑟

))
. (2.27)

where 𝜕𝑢𝑝

𝜕Φ𝑐
and 𝜕𝑢𝑝

𝜕Φ𝑟
represent the partial derivatives of the projector feature points in the 𝑢 direction

with respect to the circular (Φ𝑐) and radial (Φ𝑟) phases, respectively. Similarly, for the sensitivity

along the 𝑣 axis, denoted as Sp
v,proposed, it is given by:

Sp
v,proposed =

(
𝜕𝑣𝑝

𝜕Φ𝑐

,
𝜕𝑣𝑝

𝜕Φ𝑟

)
=

𝑇

2𝜋

(
− sin

(
Δ𝜃

2𝜋
Φ𝑟

)
,−Δ𝜃

2𝜋
Φ𝑐 cos

(
Δ𝜃

2𝜋
Φ𝑟

))
. (2.28)

Sp
u,proposed and Sp

v,proposed are vectors, and we can have:


∥Sp

u,proposed∥ =
𝑇

2𝜋

√︄
cos2

(
Δ𝜃

2𝜋
Φ𝑟

)
+
(
Δ𝜃

2𝜋
Φ𝑐 sin

(
Δ𝜃

2𝜋
Φ𝑟

))2
,

∥Sp
v,proposed∥ =

𝑇

2𝜋

√︄
sin2

(
Δ𝜃

2𝜋
Φ𝑟

)
+
(
Δ𝜃

2𝜋
Φ𝑐 cos

(
Δ𝜃

2𝜋
Φ𝑟

))2
.

(2.29)

In circular fringe patterns, the phaseΦ𝑐 increases progressively in the radial direction. Consequently,

this increase in Φ𝑐 directly influences the magnitudes of the sensitivity vectors ∥Sp
u,proposed∥ and

∥Sp
v,proposed∥ as a pixel moves outward from the center of the pattern. This radial increase in
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sensitivity reflects that deviations in projector feature points are more pronounced with increasing

distance from the central point.

For Zhang and Huang’s method, horizontal and vertical fringe patterns are employed for

calibration, so the phase is linear to pixel index (𝑢, 𝑣), and a similar definition of sensitivity in

relation to phase can be given by:


Sp

u,Zhang =
𝑑𝑢𝑝

𝑑Φ𝑣

=
𝑑

𝑑Φ𝑣

(
𝑇𝑣

2𝜋
Φ𝑣

)
=

𝑇𝑣

2𝜋
,

Sp
v,Zhang =

𝑑𝑣𝑝

𝑑Φℎ

=
𝑑

𝑑Φℎ

(
𝑇ℎ

2𝜋
Φℎ

)
=

𝑇ℎ

2𝜋
,

(2.30)

In Zhang and Huang’s method, it is observed that the sensitivities of projector feature points remain

constant, and the constancy is independent of both the phase and the pixel index. Consequently, it

implies that any deviation in the projector feature points remains consistent across different pixel

indices.

2.5.2 Error analysis of the projector calibration

When calibrating the projector in a structured light system, the crucial step is identifying the projector

feature points corresponding to the camera’s observed feature points. As depicted in Fig. 2.9, the

phases of circular and radial fringe patterns (Φ𝑐 and Φ𝑟) establish the mapping relationship between

camera and projector feature points, which is also illuminated in Eq. 2.12.

For a camera feature point 𝑝 (𝑢, 𝑣) (e.g., circle centers in this research), where 𝑢 and 𝑣 are

typically non-integer values, integration operation is needed to determine the phase from pixel

indices. To reduce the influence of integration operations, bilinear interpolation is utilized for phase

estimation around a point based on its four neighboring points (highlighted area in Fig. 2.12). These

neighbors are denoted as 𝑝11
(
𝑢𝑐1, 𝑣

𝑐
1
)
, 𝑝12

(
𝑢𝑐1, 𝑣

𝑐
2
)
, 𝑝21

(
𝑢𝑐2, 𝑣

𝑐
1
)
, and 𝑝22

(
𝑢𝑐2, 𝑣

𝑐
2
)
, respectively. Here,

𝑢𝑐1 and 𝑣𝑐1 represent floor values of 𝑢 and 𝑣, and 𝑢𝑐2 and 𝑣𝑐2 are their ceiling values. Then, the bilinear

interpolation of phases can be given by

Φ𝑐 (𝑢, 𝑣) =

𝑢𝑐2 − 𝑢

𝑢 − 𝑢𝑐1


𝑇 

Φ𝑐 (𝑢𝑐1, 𝑣
𝑐
1) Φ𝑐 (𝑢𝑐1, 𝑣

𝑐
2)

Φ𝑐 (𝑢𝑐2, 𝑣
𝑐
1) Φ𝑐 (𝑢𝑐2, 𝑣

𝑐
2)



𝑣𝑐2 − 𝑣

𝑣 − 𝑣𝑐1

 , (2.31)
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Figure 2.9: Feature point mapping schematic: camera to projector.

Φ𝑟 (𝑢, 𝑣) =

𝑢𝑐2 − 𝑢

𝑢 − 𝑢𝑐1


𝑇 

Φ𝑟 (𝑢𝑐1, 𝑣
𝑐
1) Φ𝑟 (𝑢𝑐1, 𝑣

𝑐
2)

Φ𝑟 (𝑢𝑐2, 𝑣
𝑐
1) Φ𝑟 (𝑢𝑐2, 𝑣

𝑐
2)



𝑣𝑐2 − 𝑣

𝑣 − 𝑣𝑐1

 . (2.32)

where Φ𝑐 (𝑢, 𝑣) and Φ𝑟 (𝑢, 𝑣) are estimated phases using bilinear interpolation. For bilinear interpo-

lation, the maximal phase estimation error is the phase difference caused by a mismatched pixel

index, which can be given by


ΔΦ𝑐 (𝑢, 𝑣) =

2𝜋
𝑇

(𝑟 (𝑢, 𝑣) − 𝑟 (𝑢 − 1, 𝑣 − 1)) ,

ΔΦ𝑟 (𝑢, 𝑣) =
2𝜋
Δ𝜃

(𝜃 (𝑢, 𝑣) − 𝜃 (𝑢 − 1, 𝑣 − 1)) ,
(2.33)

where 𝑟 (𝑢, 𝑣) is the distance between the center of circular and radial fringe patterns and the point

𝑝 (𝑢, 𝑣), 𝜃 (𝑢, 𝑣) is the point’s pixel angle. In this research, the center of circular and radial fringe

patterns is off the camera image plane and partial derivatives 𝜕
𝜕𝑢
ΔΦ𝑐 (𝑢, 𝑣) and 𝜕

𝜕𝑣
ΔΦ𝑐 (𝑢, 𝑣) are

greater than zero. Similarly, partial derivatives 𝜕
𝜕𝑢
ΔΦ𝑟 (𝑢, 𝑣) and 𝜕

𝜕𝑣
ΔΦ𝑟 (𝑢, 𝑣) also exceed zero.

Therefore, ΔΦ𝑐 (𝑢, 𝑣) and ΔΦ𝑟 (𝑢, 𝑣) increase with respect to 𝑢 and 𝑣, and maximal estimated phase
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errors are exhibited in the bottom right corner. The subsequent steps of the projector calibration,

which rely on the phase values, are thus influenced by the estimated phase errors. The accumulation

of estimated phase errors inherently compromises the accuracy of the calibration method.

For Zhang and Hunag’s calibration method, bilinear interpolation is also utilized when mapping

feature points from the camera to the projector, as depicted in Fig. 2.9. Horizontal and vertical

fringe patterns are employed in this method, and phases Φℎ (𝑢, 𝑣) and Φ𝑣 (𝑢𝑐, 𝑣𝑐) are linear to pixel

(𝑢𝑐, 𝑣𝑐). As a result of the linear relationship, the bilinear interpolation is free from the introduction

of estimated phase errors. The linear nature of the phase-to-pixel correspondence ensures a high

level of accuracy in the mapping, thereby enhancing the overall accuracy of the calibration method.

In the analysis of sensitivity and error in projector calibration, it has been observed that the

magnitudes of the sensitivity vectors ∥Sp
u,proposed∥ and ∥Sp

v,proposed∥ demonstrate an increasing trend

in relation to the distance from a point to the center of circular and radial fringe patterns. Additionally,

ΔΦ𝑐 (𝑢, 𝑣) and ΔΦ𝑟 (𝑢, 𝑣) also exhibit a rising tendency with respect to the pixel indices 𝑢 and 𝑣.

Given these findings, it is advisable to position the circle grid calibration target within the central

region of the camera and projector’s field of view to mitigate the impact of the growing sensitivity

and estimated phase errors. Furthermore, due to the increasing trend of both sensitivity and estimated

phase error, the proposed calibration method reveals limitations compared to Zhang and Huang’s

method. The latter approach, characterized by its linear phase-to-pixel relationship and absence of

estimated phase errors in the mapping process, demonstrates higher accuracy and reliability.

2.6 Conclusions

In this research, we introduced a novel method utilizing circular and radial fringe patterns for the

calibration and 3D reconstruction of structured light systems. Our approach was rigorously evaluated

through a series of 2× 2 experiments, allowing us to draw comprehensive comparisons between our

proposed method, Zhang and Huang’s calibration method, and linear FPP. Our findings indicate

that the proposed circular FPP surpasses that of linear FPP techniques. However, when it comes to

calibration performance, our method exhibits a slight disadvantage compared to Zhang and Huang’s

method. To reveal the reason for the inferior performance, we conducted a detailed analysis of the

sensitivity and error in projector calibration. This investigation revealed that the relatively lower

performance of our proposed calibration method is primarily attributed to the increased sensitivity
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and estimated phase errors. This research not only stresses the strengths of our circular FPP method

but also sheds light on its limitations, providing insights for future advancements in circular fringe

projection profilometry.
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CHAPTER 3

TPDNET: TEXTURE-GUIDED PHASE-TO-DEPTH NETWORKS TO REPAIR

SHADOW-INDUCED ERRORS FOR FRINGE PROJECTION PROFILOMETRY1

1Li Jiaqiong, and Beiwen Li. 2024. Photonics, Vol. 10. No. 3. MDPI, 2023.

Reprinted here with permission of the publisher.
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3.1 Abstract

This paper proposes a phase-to-depth deep learning model to repair shadow-induced errors for

fringe projection profilometry (FPP). The model comprises two hourglass branches that extract

information from texture images and phase maps and fuse the information from the two branches by

concatenation and weights. The input of the proposed model contains texture images, masks, and

unwrapped phase maps, and the ground truth is the depth map from CAD models. A loss function

was chosen to consider image details and structural similarity. The training data contains 1, 200

samples in the verified virtual FPP system. After training, we conducted experiments on the virtual

and real-world scanning data, and the results support the model’s effectiveness. The mean absolute

error and the root mean squared error are 1.0279𝑚𝑚 and 1.1898𝑚𝑚 on the validation dataset. In

addition, we analyze the influence of ambient light intensity on the model’s performance. Low

ambient light limits the model’s performance as the model cannot extract valid information from

the completely dark shadow regions in texture images. The contribution of each branch network is

also investigated. Features from the texture-dominant branch are leveraged as guidance to remedy

shadow-induced errors. Information from the phase-dominant branch network makes accurate

predictions for the whole object. Our model provides a good reference for repairing shadow-induced

errors in the FPP system.

3.2 Introduction

Fringe projection profilometry (FPP) has been widely applied in many fields, such as entertainment,

remote environment reconstruction, manufacturing, medicine, and biology, due to its high accuracy

and high-speed (J. Xu & Zhang, 2020b; Zuo et al., 2018). A typical FPP system comprises a

projector for fringe pattern projection and a camera for image acquisition. The projector projects

fringe pattern images onto the object surface, and the camera captures the fringe pattern images

encoded by the object surface from a different perspective. Due to the triangulation of the projector,

the camera, and the object, the light emitted from the projector is blocked by the adjacent surface

of the object, leaving shadows in the captured images. As shown in Fig.3.1, shadows exist in the

acquired fringe images, causing errors in the same areas of the wrapped phase map and unwrapped

phase map. As the phase information of shadow-covered areas is lost, 3D reconstructed geometry in
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shadow areas cannot be obtained based on phase maps, which reduces the accuracy of FPP methods.

Camera

Projector

Shadow

(a)                                                     (b)                                     (c)

Figure 3.1: Illustration of the formation of shadows and shadow-induced errors in FPP. (a) The
formation of shadows; (b) Shadow-induced errors in the wrapped phase map; (c) 3D reconstructed
geometry with holes.

The simplest idea to remove shadow-induced errors is to avoid shadow generation in fringe

pattern images. As shadow errors are due to triangulation of the camera, the projector, and the

object, some researchers proposed uniaxial techniques(Jing et al., 2017; Meng et al., 2022; Y.

Zheng & Li, 2020) to make the projector and the camera share the same optical axis and have

the same region of projection and imaging. In uniaxial techniques, the retrieved 3D geometry is

based on the relationship between depth and phase (or intensity or level of defocus), and beam

splitters are commonly used. The projector and camera’s optical axis and the beam splitter must be

fixed at a specific angle to ensure a coaxial configuration, which increases system complexity and

limits its application. Another method to reduce shadow errors is to use multiple devices. In the

work of Skydan et al.(Skydan et al., 2005), three video projectors were set up at different angles

and exclusively projected three different colored lighting patterns. Shadow areas that were not

illuminated by one projector would be covered by another projector with different colored lighting

patterns. And this method combined information from these two colored lighting patterns to reduce

shadows. However, potential errors were brought as extra masks had to be produced to separate the

valid areas and shadows. Meanwhile, the system complexity and cost increase with the number of

projectors. Weinmann et al.(Weinmann et al., 2011) proposed a super-resolution structured light
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system with multiple cameras and projectors to cover the full shape of objects with super-resolution.

Though the proposed system could get full 3D reconstruction with high accuracy, complicated

post-processing was needed. For the above methods, the hardware cost is higher than a typical FPP

system with one projector and one camera, and extra post-processing or pre-processing cannot be

avoided.

Besides avoiding shadow generation in fringe pattern images, researchers also tried to remove

shadow-induced errors at the phase retrieval stage. Different frameworks and methods (L. Huang &

Asundi, 2011; L. Lu et al., 2015; Shi et al., 2022) were used to identify and delete the invalid points

in phase maps. Though no extra errors were introduced, holes were left in the final 3D reconstruction

results. Based on phase monotonicity, Zhang (S. Zhang, 2009) identified and removed incorrect

unwrapped points from low-illuminated object surface areas and filled holes in the phase map.

Similarly, Chen et al. (F. Chen et al., 2010) used the standard deviation of the least-squares fitting

to detect and remove the invalid phase points and recalculated phase values with two-dimensional

linear interpolation. Interpolation or similar methods are inaccurate in estimating the lost phase

information, especially for objects with an abruptly changed surface profile. Apart from interpolation

methods, Sun et al. (Sun et al., 2020) proposed a discriminative approach, which classified the

shadows into valid and invalid shadow areas and discriminately smoothed the shadow-induced errors

with different methods. Though this method was resistant to large-scale shadows, its effectiveness

was affected by incorrect shadow classification, and its performance decreased when the unwrapped

phase map was obtained by the spatial phase unwrapping method.

Over the past few years, tremendous research has been developed in computer vision based

on deep learning, and a series of remarkable achievements have been made, which also attracted

researchers’ interests in applying deep learning to three main steps of optical metrology, including

pre-processing, phase analysis, and post-processing (Zuo et al., 2022). For example, Yan et al. (Yan

et al., 2019) proposed a deep convolutional neural network to reduce the noise of the fringe pattern

images, which obtained high-quality fringe pattern images at the pre-processing stage. In addition,

deep learning is also leveraged to solve the tasks of phase analysis, including phase demodulation

(Y. Li et al., 2020; T. Yang et al., 2020; Q. Zhang et al., 2020), phase unwrapping (Spoorthi et al.,

2018; K. Wang et al., 2019), phase map denoising (Montresor et al., 2020; Yan et al., 2020), and so

on. Meanwhile, Li et al. (Z.-w. Li et al., 2009) used a network to make an accurate phase-to-height
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mapping. Except for networks targeted at one or two stages of image processing in optical metrology,

end-to-end neural networks were developed to directly convert fringe pattern images to depth maps

or even 3D shapes (H. Nguyen et al., 2020; Van der Jeught & Dirckx, 2019; Y. Zheng, Wang, et al.,

2020).

Repairing shadow-induced holes in phase maps can be regarded as a type of image completion

problem, which has been the subject of much research (Elharrouss et al., 2020). But to our

knowledge, few neural networks have been developed to repair the shadow-induced errors in the

FPP system, likely due to the difficulty of generating sufficient training data. However, FPP systems

can be virtualized through 3D graphics to rapidly generate training data (Y. Zheng, Wang, et al.,

2020), laying the foundation for repairing shadow-induced errors based on deep learning. Utilizing

a virtual system built with the graphic software Blender(Team, 2018), Wang et al.(C. Wang & Pang,

2022) proposed a deep learning method to detect and repair shadow-induced errors. Their method

can be conducted by only one fringe image, which makes it flexible to many FPP systems. But the

effectiveness of their model is influenced by the reliability of shadow detection. Thus, methods that

can avoid shadow detection and segmentation are worth trying.

To complement these methods, we propose a phase-to-depth deep learning model to repair

shadow-induced errors. The proposed model contains two hourglass branch networks: a texture-

dominant branch network and a phase-dominant branch network. The two combined branch networks

extract information from texture images and phase maps, predict depth maps, and repair errors

caused by shadows. The proposed model fuses information from texture images and phase maps in

the following locations:

1. Each layer in the encoder stage of the phase-dominant branch is fused with a layer from the

decoder stage of the other branch via concatenation and addition

2. At the end of the decoder stage, depth maps from two branches are fused by multiplying the

respective weights.

To generate enough training data, we build and evaluate the virtual system of a real-world FPP

system based on computer graphics. After training the proposed model on the virtual scanning data,

the mean absolute error (MAE) and root mean squared error (RMSE) are 1.0279𝑚𝑚 and 1.1898𝑚𝑚,

respectively. Experimental results on the real-world scanning data support the model’s effectiveness.
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In addition, we analyzed the influence of ambient light on prediction and found that low ambient

light decreases the performance of our model as valid information in texture images decreases. And

properly increasing the ambient light will improve the performance of our model. We also tested

the functions of the texture-dominant branch and phase-dominant branch. The results show that

information from texture images contributes to remedying the holes in 3D geometry caused by

shadows, and the phase-dominant branch network makes accurate predictions for the major object

geometries.

3.3 Principles

This section will introduce the theoretical foundations of a real-world FPP system and the corre-

sponding virtual FPP system for generating training data.

3.3.1 FPP model

We adopted the three-step phase-shifting algorithm (Malacara, 2007a) to analyze fringe images,

and fringe images can be described as

𝐼𝑘 (𝑥, 𝑦) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦) cos[𝜙(𝑥, 𝑦) + 𝛿𝑘 ], (3.1)

𝛿𝑘 =
2𝑘𝜋
𝑁

; 𝑁 = 3, 𝑘 = 1, 2, 3, (3.2)

where 𝐼𝑘 (𝑥, 𝑦) denotes the image intensity at pixel (𝑥, 𝑦) for the 𝑘th fringe image, and 𝐼′(𝑥, 𝑦) and

𝐼′′(𝑥, 𝑦) presents the average intensity and the intensity modulation, respectively. In our work, we

treat the gray images with average intensity as texture images and input them into the proposed

model. Phase 𝜙(𝑥, 𝑦) can be calculated by,

𝜙(𝑥, 𝑦) = tan−1

[ √
3(𝐼1 − 𝐼3)

2𝐼2 − 𝐼1 − 𝐼3

]
. (3.3)
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Given the discontinuity of the arctangent function, phase 𝜙(𝑥, 𝑦) ranges in [−𝜋/2, 𝜋/2), which is

called as wrapped phase. The absolute phase (unwrapped phase) can be obtained by

Φ(𝑥, 𝑦) = 𝜙(𝑥, 𝑦) + 2𝜋𝑘 (𝑥, 𝑦). (3.4)

Here, Φ(𝑥, 𝑦) denotes the unwrapped absolute phase without phase jumps, and 𝑘 (𝑥, 𝑦) is the fringe

order. To remove the discontinuity in wrapped phase maps, we encoded the fringe order 𝑘 (𝑥, 𝑦) by

projecting additional binary images using a gray-coding technique (Y. Wang et al., 2011b). The

unwrapped phase maps are also part of the input for the proposed model.

3.3.2 Virtual FPP model

As deep learning is a data-driven method and generating a large training dataset in a real-world

FPP system is quite expensive, we replace the real-world FPP system with its virtual system for an

easier generation of training data. Based on computer graphics and the open-source 3D software

Blender(Team, 2018), we utilized the same virtual FPP system proposed by Zheng et al. (Y. Zheng,

Wang, et al., 2020). We fixed the virtual camera at the origin point to simplify the system and

adopted a spotlight to mimic a real projector. The power of the spotlight is set to 30𝑊 , and the

spot size was 180◦. The resolutions of the virtual camera and the virtual projector are 514 × 544

and 912 × 1140, respectively. The focal length of the virtual camera was 12.03𝑚𝑚, and (Shift X,

Shift Y) was (0.018,−0.021). Table 3.1 presents other parameters of the virtual camera and the

virtual projector. Ambient light intensity and exposure were set to ensure that no underexposure or

overexposure is present on the model in any captured fringe images. (The effects of ambient light

intensity on the model’s performance are discussed in Sec. 3.6.1.)

To verify the established virtual FPP system, we compared the scanning results of the real-

world FPP system and its corresponding virtual system. Utilizing the iterative closest point (ICP)

algorithm and K-nearest neighbor (KNN) search (Y. Zheng, Zhang, et al., 2020) to make point-to-

point registration of the two scanning results, the average and root-mean-square of the 3D Euclidean

differences are 0.083𝑚𝑚 and 0.088𝑚𝑚. Based on the similarity of the scanning results from the

virtual FPP system and the real-world FPP system, the captured images from the virtual FPP system

can be utilized as training data.
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Table 3.1: Parameters of the virtual FPP system

Parameters Virtual camera Virtual projector (spotlight)

Extrinsic matrix Location (0, 0, 0) (0.0227𝑚, 0.0885𝑚,−0.1692𝑚)
Rotation (0◦, 0◦, 180◦) (−14.07◦, 0.46◦, 1.44◦)
Scale (1.0, 1.0, 1.0) (0.2, 0.2, 1.0)

3.4 Proposed model

In this work, we propose an hourglass deep learning model to remove shadow-induced errors and

produce depth map predictions with texture images and phase maps, and combine the structural

similarity index and a Laplacian pyramid loss as the loss function to optimize the training process.

3.4.1 Network architecture

Inspired by the work of Hu et al.(Hu et al., 2021), we propose a model with a texture-dominant branch

and a phase-dominant branch to produce depth map predictions and then fuse depth predictions

from two branches by multiplying their weight maps. The network architecture is illustrated in Fig.

3.2.

The texture-dominant branch is similar to a typical Unet (Ronneberger et al., 2015), which is a

symmetric encoder-decoder network with skip connections to produce depth map predictions and

offer guidance to the phase-dominant branch. The difference is that we used the ResBlock (He

et al., 2016) rather than the normal 2D-convolution layer as the backbone. The downsample layer

contains a maxpool layer and a ResBlock layer. The upsample layer is similar to the downsample

layer, which replaces the maxpool layer with a ConvTranspose2d layer. Finally, the two-channel

output layer in the texture-dominant branch is split into a depth map and a weight map, which will

be utilized for depth map fusion.

The phase-dominant branchalso has a symmetric encoder-decodernetworkwith skip connections,

which is similar to the texture-dominant branch. The only difference is that the phase-dominant

branch fuses the feature from the texture-dominant branch at the encoder stage by concatenation

and a merging layer. The merging layer is composed of two 2D-convolution layers followed by a
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batch normalization layer and a ReLU activation. Thus, the lost phase information in the phase map

can be recovered through features from the texture-dominant branch.

The depth maps from the two branches are fused using the method proposed by Gansbeke et

al. (Van Gansbeke et al., 2019). Both branches produce a weight map, and the weight maps are

rescaled in the range of (0, 1) through a softmax layer. The weight map of each branch multiplies

its corresponding depth map to get the weighted depth map. And then, the weighted depth maps are

added together to get the final output. Higher values in weight maps mean the corresponding depth

map contributes more to the final prediction. Ideally, the model would place a higher weight on the

phase-dominant branch in areas where this data is available (in areas illuminated by the projector),

and the texture-dominant branch where that data is unavailable, i.e., in shadow areas. This behavior

would enable the model to fill the holes caused by shadows and make accurate predictions for

non-shadow regions simultaneously. The effectiveness of fusion is supported by the results in

Sec. 3.5.3, and we discuss the effects of the two branches in Sec. 3.6.2.

C C C C

Weights

Texture-dominant Branch

Phase-dominant Branch

Texture

Phase map

Depth
32 64 128 256 512 512 256 128 64 2

512x512

Mask

Depth

Weights

Depth 

Legend

ResBlock Maxpool Merging   Upsample Softmax

Addition     ConcatenationC+

Figure 3.2: Schematic of the proposed model

3.4.2 Loss function

One of the most commonly used loss functions in computer vision is the mean absolute error (𝑙1
loss) or the mean square error (𝑙2 loss). However, the limitations of 𝑙2 loss and 𝑙1 loss are obvious.

𝑙2 loss assumes that noise is independent of the local characteristics of the image, and the residuals
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between predictions and true values follow a Gaussian distribution(H. Zhao, Gallo, et al., 2016).

And 𝑙1 loss assumes that the residuals follow the Laplace distribution. These assumptions are not

valid in the current situation, as shadow-induced errors are related to local information of phase

maps. Furthermore, both 𝑙1 loss and 𝑙2 loss are the metrics for evaluating average errors, which blur

the edges of prediction images. Considering these limitations, our loss function contains two parts:

the structural similarity index (SSIM) and the Laplacian pyramid loss. SSIM was first introduced

by Wang et al.(Z. Wang et al., 2004), which is a metric to compare the differences between two

images from luminance, contrast, and structure, and it can be described as

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1) (2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1) (𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2)
. (3.5)

In Eq. 3.5, 𝜇𝑥 and 𝜇𝑦 defines the mean intensity of image 𝑥 and image 𝑦, 𝜎𝑥 and 𝜎𝑦 are the

standard deviations, 𝜎𝑥𝑦 is the corresponding covariance, and 𝐶1 and 𝐶2 are two constants. SSIM

ranges from 0 to 1. When a predicted image is more similar to the ground truth, SSIM value will be

closer to 1. Thus, SSIM loss can be written as

𝐿𝑆𝑆𝐼𝑀 = 1 − 𝑆𝑆𝐼𝑀 (𝑃, 𝐺𝑇), (3.6)

where 𝑃 is the prediction image and 𝐺𝑇 is the ground truth. As SSIM loss focuses on the overall

similarity based on the human visual system, we still need an extra metric to evaluate the details at

the edges. The Laplacian pyramid (𝐿𝑎𝑝1) loss (Bojanowski et al., 2017) can describe finer details,

and it is mathematically expressed as

𝐿𝑎𝑝1(𝑥, 𝑦) =
2∑︁
𝑗=0

22 𝑗 ∥𝐿 𝑗 (𝑥) − 𝐿 𝑗 (𝑦)∥1, (3.7)

where 𝐿 𝑗 (𝑥) defines the j-th level of the Laplacian pyramid representation of image 𝑥. We combine

SSIM loss and Laplacian pyramid loss to evaluate prediction from the overall structural similarity

and details at edges. The loss function for the predicted depth map is

𝐿 = 𝜆1𝐿𝑆𝑆𝐼𝑀 + 𝜆2𝐿𝑎𝑝1, (3.8)
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where 𝜆1 and 𝜆2 are hyper-parameters, given as 100 and 10 empirically in the following experiments.

When training the model, depth maps from the two branches and the final predicted depth map are

all considered. Thus, the training loss is

𝐿𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 𝑘1𝐿𝑜𝑢𝑡 + 𝑘2𝐿𝑇 + 𝑘3𝐿𝑃, (3.9)

where 𝐿𝑜𝑢𝑡 is the loss between the ground truth and the output depth map, 𝐿𝑇 is the loss between the

ground truth and the depth map from the texture-dominant branch, and 𝐿𝑃 is the loss between the

ground truth and the depth map from the phase-dominant branch. Here, 𝑘1, 𝑘2, and 𝑘3 are constants,

empirically given as 1, 0.1, and 0.1.

3.5 Experiments

In this section, we first introduce the process to generate the training data in the verified virtual FPP

system, followed by the training setup for the proposed model. Then, we implement experiments

on virtual scanning data and real-world scanning data to validate the effectiveness of our model.

3.5.1 Dataset preparation

Before scanning objects in the virtual FPP system, we collected 48 CAD models from public CAD

model resources, including Thingi10K(Q. Zhou & Jacobson, 2016) and Free3D(“Free 3D Models”,

n.d.), mostly animals and statues. Based on the bounding box of an object and the focal length and

resolution of the virtual camera, we calculate the coordinates of the object’s centroid and dimensions.

Then the object is imported into the virtual system and positioned to fit the virtual camera’s field

of view. To augment the dataset, we rotate each CAD model around the y-axis five times with 72◦

each time and then do the same thing around the z-axis. Thus, we scan each CAD model from 25

different perspectives, producing 1,200 3D scenes. For each 3D scene, three phase-shifting fringe

patterns and six gray code images are projected on the object and captured by the virtual camera

as shown in Fig.3.3(a)-(i). In addition, we directly export a depth map from the virtual system as

illustrated in Fig.3.3(n), which represents the distance between the plane (𝑍 = 0) and the object’s

surface. Note that the depth map is different from the height map of the object. As nine images

and one depth map are required for each 3D scene, 9 × 1, 200 + 1, 200 = 12, 000 images need to be
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rendered totally, which is computationally expensive for a personal computer. Therefore, we utilize

a workstation with an Intel Xeon processor and eight Quadro RTX 5000 graphics cards to render

images in parallel.

After obtaining the fringe images and gray code images, we get the corresponding texture images,

wrapped phase maps, and unwrapped phase maps based on the method mentioned in Sec.3.3.1,

which are presented in Fig.3.3(j)-(l). In the wrapped phase map, the shadow caused by occlusion

from the surrounding protrusion surface makes part of the phase information invalid and brings

plenty of noise. By setting light intensity threshold and modulation, we filter out noises and invalid

phase points and leave holes in the unwrapped phase map. Surfaces where the fringe patterns were

occluded are still visible in the texture image, so we combine the texture image and unwrapped

phase map as input data and the depth map as the ground truth to train the model. By setting a

suitable depth threshold, we generate the mask (Fig.3.3(m)) to remove unnecessary pixels in the

texture image. Note that the related shadow areas are kept in texture images as masks are obtained

by depth threshold, not light intensity threshold. Additionally, all the input images are cropped to

512 × 512 before being imported into the proposed model.

(a)                 (b)                  (c)                   (d)                  (e)                  (k)                 (m)

(f)                 (g)                   (h)                     (i)                 (j)                    (l)                  (n)

Figure 3.3: One sample in the dataset. (a)-(c) Three phase-shifting fringe patterns projected on an
object; (d)-(i) Six gray code images projected on an object; (j) The corresponding texture image;
(k)-(l) The corresponding wrapped phase map and unwrapped phase map; (m) The mask generated
by a depth threshold; (n) The corresponding ground truth (the depth map directly exported from the
virtual system).

3.5.2 Training

This subsection describes the setup for the model training process. We train the model on a

workstation with an Intel Xeon processor, 128 GB RAM, and a Quadro RTX 5000 graphics card
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using the PyTorch library(Paszke et al., 2019). The training data (1200 data samples) from the virtual

FPP system is split into 90% and 10% as a training dataset and validation dataset, respectively. The

batch size is six, and the maximum epoch is 1, 200. We use the SGD optimizer(Robbins & Monro,

1951) with 𝑙𝑟 = 0.0003, 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.9 and 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑐𝑎𝑦 = 0.0001. We reduce the learning

rate using the scheduler class ReduceLROnPlateau in PyTorch, and the related hyper-parameters

are 𝑚𝑜𝑑𝑒 = 𝑚𝑖𝑛, 𝑓 𝑎𝑐𝑡𝑜𝑟 = 0.9, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 2, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.01, 𝑚𝑖𝑛_𝑙𝑟 = 1𝑒 − 6.

3.5.3 Results with data from the virtual system

We train and evaluate our model after setting up hyper-parameters. The mean absolute error (MAE)

and root mean squared error (RMSE) are 1.0279𝑚𝑚 and 1.1898𝑚𝑚 for the validation dataset with

120 data samples. The results of one object are shown in Fig. 3.4. Shadow-induced errors cause

part of phase information to be lost, and related 3D geometry cannot be retrieved directly from the

phase map as presented in Fig. 3.4(d). Specifically, the whole left wing of the object is lost, and

there is an abrupt depth change between the lost wing and its surroundings. The predicted depth

map and retrieved 3D geometries are presented in Fig. 3.4(f) and (j), where the model repairs the

lost part of the object. Besides, the predicted result contains the details presented in the ground

truth. The rear wing of this gargoyle model represents a worst-case scenario, where the fringes have

been occluded, and there is an abrupt change in the depth map between this feature and the rest of

the 3D model. These combined factors increase the overall RMSE for this object above the average

for the validation set at 2.6485𝑚𝑚.

3.5.4 Results with data from the real-world system

We deployed the pre-trained model to the real-world scanning data to test the model’s effectiveness,

i.e. that the model can remedy the shadow-induced errors and make good predictions for the

non-shadow regions. We first scanned a single object which did not appear in the training data. The

texture image and unwrapped phase map were generated as illustrated in Fig.3.5(a) and Fig.3.5(b).

We manually labeled the texture image to get the mask. Importing the texture image, mask, and

phase map into the pre-trained model, we got the predicted depth map and obtained 3D geometry

as presented in Fig.3.5(f). For the non-shadow covered region, we calculated the absolute error

map as shown in Fig.3.5(e) by comparing the absolute difference between the predicted depth map
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Figure 3.4: Results of an object from the virtual scanning. (a)-(c) The input of the texture image,
the mask, and the phase map; (d)-(f) 3D geometry from FPP, the ground truth, and the prediction;
(g) The ground truth of the depth map; (h) The predicted depth map; (i) The absolute error map
with RMSE 2.6485𝑚𝑚.

and the depth map from FPP, and RMSE for the non-shadow covered region was 1.5031𝑚𝑚. All

holes on the predicted 3D geometry were filled except for a minor discontinuity that occurred in

the highlighted region. We assume that the low light intensity in the texture image’s shadow areas

causes the model to not extract enough valid information to fill the holes, and a detailed investigation

in this regard is conducted in Sec. 3.6.1.

Similarly, we scanned the two separate objects, as shown in Fig.3.6(a). The two-object scene

was not included in the training data. We also recovered the 3D geometry for the two objects, as
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presented in Fig.3.6(f). The RMSE of these two objects in the non-shadow region was 2.3579𝑚𝑚,

which kept the same level of accuracy as the prediction for a single object. Therefore, results from

real-world experiments validate the effectiveness of our model.

(a)                              (b)                             (c)                       

(d)                              (e)                             (f)                        

Figure 3.5: Effectiveness evaluation of the proposed model for scanning a single object in the real-
world FPP system. (a) Texture image; (b) Unwrapped phase map; (c) 3D reconstructed geometry
from FPP; (d) The depth map from FPP; (e) The error map for the non-shadow covered region with
RMSE 1.5031𝑚𝑚; (f) 3D reconstructed geometry from the predicted depth map.

3.6 Discussion

3.6.1 Influence of environment light on prediction

When we tested the model with data from the real-world FPP system, we found the filled surface

was not smooth, and we assumed the low ambient light makes the shadow area of the texture

image completely dark so that the contribution from the texture-dominant branch is limited. To
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(a)                                    (b)                                (c)                            

(d)                                    (e)                                  (f)

Figure 3.6: Effectiveness evaluation of the proposed model for scanning two objects in the real-world
FPP system. (a) Texture image; (b) Unwrapped phase map; (c) 3D reconstructed geometry from
FPP; (d) The depth map from FPP; (e) The error map for the non-shadow covered region with
RMSE 2.3579𝑚𝑚; (f) 3D reconstructed geometry from the predicted depth map.

test this idea, we deployed the same pre-trained model to the data captured at the same virtual FPP

system with different ambient light intensities. We set the ambient light strength of the virtual FPP

system at three different levels: without ambient light, the same ambient light strength utilized to

generate the training data, and the strong ambient light that nearly saturates the texture image. The

texture images at the three different ambient light intensities are shown in Fig.3.7(a)-(c). As shown

in Fig.3.7(a), the shadow area is dark, and little valid information exists, as almost all lights are

blocked. From Fig.3.7(a) to Fig.3.7(c), the shadow area becomes lighter, and global image intensity

increases with the increase of environment light. However, despite this variation, the phase maps

remain identical, and the 3D reconstructed geometries by using the FPP method are presented in

Fig.3.7(d)-(f)). Masks are generated based on the depth threshold, which is not influenced by the
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light intensity, so the mask and the phase map are unchanged among the input data, and the ambient

light strength change impacts only the texture image. The 3D reconstructed geometries from the

predicted phase maps are illustrated in Fig.3.7(j)-(l). Compared to the 3D geometry in Fig.3.7(d),

our model remedies the holes in the foot area but leaves the holes in the face area of the object, and

the filled surface is not smooth. When the ambient light strength increases and the texture image

can provide more information about the shadow area to our model, the holes in the face area are

filled, and the filled surface is smoother. The RMSEs of the predicted depth maps for the three cases

are 12.5076𝑚𝑚, 4.7793𝑚𝑚, and 5.2146𝑚𝑚, respectively, which also supports that appropriately

increasing ambient light strength can improve the model’s performance. The RMSE of the predicted

depth map in strong ambient light is higher than that in normal ambient light, indicating that high

ambient light intensity also limits the model’s performance.

(a)                                 (b)                               (c)                       (d)                 (e)                (f)                         

(g)                                (h)                                 (i)                       (j)                  (k)                (l)                            

Figure 3.7: Predictions under different intensity levels of ambient light strength. (a) The texture
image obtained without ambient light; (b) The texture image obtained with the same ambient light
strength as the training data; (c) The texture image obtained with strong ambient light to make it
close to saturation; (d)-(f) 3D reconstructed geometries by using the FPP method for the three cases;
(g)-(i) Absolute error maps for the three cases by comparing ground truths and the predicted depth
maps, with RMSE 12.5076𝑚𝑚, 4.7793𝑚𝑚, and 5.2146𝑚𝑚, respectively; (j)-(l) 3D reconstructed
geometries from the predicted depth maps for the three cases.

3.6.2 Function comparison of the two branch networks

As presented in experiments, our model can convert phase maps to depth maps and reduce shadow-

induced errors by combing the texture-dominant branch network and the phase-dominant branch
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network. We are curious about how each branch network contributes to the output predictions.

Thus, we compared the results from each branch as illustrated in Fig.3.8. Fig. 3.8(f) and (g)

depict the absolute error of the results from the texture-dominant branch and phase-dominant

branch, respectively. The texture-dominant branch network can produce detailed predictions for

the whole object, even for the shadow-covered area. The RMSE of the texture-dominant branch

is 4.7078𝑚𝑚, with most of the discrepancies concentrated on the gargoyle’s wings. Compared

to the texture-dominant branch network, the RMSE of the depth map from the phase-dominant

branch network is much lower at 2.4269𝑚𝑚, and the absolute error on the wings of the object in

Fig.3.8(g) is lower than in Fig.3.8(f). Thus, the phase-dominant branch network can make more

accurate predictions. Based on the investigation in Sec.3.6.1, the texture-dominant branch network

can extract features in shadow-covered areas to remedy the shadow-induced errors in predictions.

As we use two weights maps to combine the two depth maps and generate the final output prediction,

the RMSE of the final output is 𝑅𝑀𝑆𝐸 : 2.6485𝑚𝑚, which is higher than the result from the

phase-dominant branch network and much lower than the result from the texture-dominant branch

network. Therefore, the texture-dominant branch network can extract features from the texture

images to repair shadow-induced errors but make a lower-quality prediction of the object. The

phase-dominant branch can produce relatively accurate predictions, and it needs features from the

texture-dominant branch network to make predictions for the shadow-covered area.

3.7 Conclusion

Shadow-induced errors bring invalid information to phase maps and cause inaccurate 3D reconstruc-

tion in measurements taken with FPP. Existing solutions include adding extra devices or making

the camera and the projector uniaxial to avoid shadow generation, removing the shadow-induced

errors directly from phase maps and leaving holes in 3D reconstruction, and smoothing the errors

by interpolation or similar methods. Rather than implementing these methods, we proposed a deep

learning model to convert phase maps to depth maps and repair shadow-induced errors, and the

effectiveness of our model was verified on both the virtual scanning data and real-world experiments.

The contributions of this paper are:
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(a)                                  (b)                                 (c)                                  (d)                                      

Ground truth Texture-dominant branch  Phase-dominant branch      Output prediction                                                  

Depth map

Error map

3D 

geometry

(e)                                  (f)                                 (g)                                  (h)    

(i)                                  (j)                                 (k)                                  (l)              

Figure 3.8: Comparing functions of the texture-dominant branch and phase-dominant branch. (a)-
(d) Depth maps of the ground truth, texture-dominant branch, phase-dominant branch, and the
output prediction; (e) Texture image; (f)-(h) Absolute error maps of (b)-(d) with RMSE 4.7078𝑚𝑚,
2.4269𝑚𝑚 and 2.6485𝑚𝑚, respectively; (i)-(l) 3D geometries from the ground truth, the texture-
dominant branch’s prediction, the phase-dominant branch’s prediction, and the output prediction.

• Texture images are leveraged as guidance for shadow-induced error removal, and information

from phase maps and texture images are combined at two stages.

• A specified loss function that combines image edge details and structural similarity is designed

to better train the model.

The proposed model has several limitations. The model’s performance is influenced by the

ambient light strength. When the FPP system is without ambient light or with highly intense ambient

light, the model cannot extract valid information from the texture images. Proper exposure can

maximize the model’s accuracy. Another limitation is that the proposed model’s accuracy is lower

than FPP in the object’s non-shadow region, suggesting it does not directly use the information from
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the phase branch. Yet, an advantage of this proposed model is that it makes predictions for the whole

object rather than the only shadow-covered regions, meaning that the entire process does not require

any extra preprocessing, such as shadow detection or image semantic segmentation. Besides, limited

by time and resources, we focus on repairing shadow-induced errors and do not further consider the

generalization ability of the proposed model in the case that the virtual FPP system does not match

its real-world system. For future work, researchers can design end-to-end deep learning models

to get depth maps from captured images and repair shadow-induced errors. Researchers can also

combine the FPP and deep learning methods to repair shadow-induced errors without sacrificing

accuracy in non-shadow regions. To increase the network’s generalization ability, researchers can

utilize the data from diverse virtual systems (F. Wang et al., 2021) or take the camera-projector

system’s parameters into consideration when designing the network. Our model provides a good

reference for this and other related tasks for the FPP system.
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CHAPTER 4

4D LINE-SCAN HYPERSPECTRAL IMAGING1

1Li, Jiaqiong, et al. Optics Express 29, 34835-34849 (2021)

Reprinted here with permission of the publisher.

66



4.1 Abstract

This paper proposes a 4D line-scan hyperspectral imager that combines 3D geometrical measure-

ment and spectral detection with high spectral resolution and spatial accuracy. We investigated

the geometrical optical model of a camera attached to a spectrograph, theoretically explored the

mathematical model for line-scan fringe projection profilometry, and established the 3D reconstruc-

tion and calibration methods under this proposed line-scan high-dimensional imaging system. The

spectral resolution of the system is 2.8 nm, and the spatial root-mean-square error is 0.0895 mm

when measuring a standard sphere with a diameter of 40.234 mm. We measure a colored statue

to showcase the intensity change along the dimension of wavelength. In addition, the quality and

defect of spinach leaves are inspected based on spectral data and depth data, which demonstrates

the potential application of the system in the food industry.

4.2 Introduction

The advancement of optical sensing technology has greatly facilitated machine vision systems

in acquiring abundant and valuable information. Compared with an RGB camera that only has

three color channels, a hyperspectral imager can provide the optical information of the scene at

dozens to thousands of wavelength bands. With such high capacity, hyperspectral imaging has been

contributing significantly to various fields such as food quality inspections (Ariana & Lu, 2008;

Kim et al., 2001; Siripatrawan et al., 2011), geologic remote sensing (Ham et al., 2005; Pearlman

et al., 2003; Zhong et al., 2018), and plant phenotyping (Leucker et al., 2016; Wahabzada et al.,

2016). Geometrical three-dimensional (3D) machine vision is another imaging technique that can

provide depth information of the scene. Various 3D vision techniques are based on different optical

principles, including time of flight (Y. Cui et al., 2010), stereo vision (Lazaros et al., 2008b), depth

from defocus (Chaudhuri & Rajagopalan, 2012), laser triangulation (França et al., 2005), structured

light (J. Xu & Zhang, 2020a), etc. These techniques are advantageous at different resolution

and field-of-view levels, contributing to diverse applications such as robotics, manufacturing, and

entertainment (Marrugo et al., 2020b; S. Zhang, 2013).

Given that hyperspectral imaging and 3D imaging provide two unique sensing modalities that

are complementary to each other, researchers started to investigate and develop systems that can
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simultaneously retrieve the spectral and depth information, which is known as four-dimensional (4D)

imaging (𝑥, 𝑦, 𝑧, and spectrum). One straightforward idea is to directly integrate a hyperspectral

imager and a depth-sensing imager in one system and fuse the data during post-processing. For

the data fusion-based methods, identifying the reference information to match the hyperspectral

and depth data is critical for success. This reference information can be the geographical locations

in remote sensing, which can be directly identified in hyperspectral and depth data. Tolt et al.

(Tolt et al., 2011a) combined 24-band hyperspectral images with the corresponding LiDAR data

and managed to detect the shadows in the remote sensing images. Ghosh et al. (Ghosh et al.,

2014) also adopted the strategy of using hyperspectral image plus LiDAR data to map tree species.

However, geographical information is not a universal solution since it is not always available in all

measurement ranges. In close-range scanning, researchers added additional reference targets into

the scene, which can be recognized by both the hyperspectral imager and depth-sensing imager as

cues to merge the two sets of data. Huang et al. (P. Huang et al., 2018a) combined a line-scan

hyperspectral imager with Microsoft’s Kinect V2 for phenotyping. Using a line-scan hyperspectral

imager enables the system to reach a high spectral resolution of 7 nm with a wide spectral range

of 400 to 1000 nm. In this work, they utilized a reference gauge where 8 points at two depth levels

were selected for data registration. With a similar idea, Buckley et al. (Buckley, Kurz, Schneider,

& Sensing, 2012) integrated a laser scanning system with a hyperspectral imager, using several

retro-reflective targets placed in the scene.

Although additional reference targets can facilitate the registration of hyperspectral and depth

data, they increase the complexity and reduce the flexibility of the scanning process. On the other

hand, feature detection-based registration (Monteiro et al., 2013a; Nieto et al., 2010; Sima &

Buckley, 2013) can avoid using extra reference targets. However, its reliability and accuracy need

to be investigated and validated, which is not trivial since hyperspectral image and depth image

are distinct data modalities. To avoid reference target-based or feature detection-based matching,

co-calibration of the 3D imager and the hyperspectral imager is proposed (Rogelj et al., 2019a,

2019b). Once the 3D geometry is obtained, its projection on the hyperspectral imaging plane can

be retrieved according to the co-calibration information. However, since hyperspectral imaging

and 3D imaging are conducted on distinct imaging sensors with different modalities, their spatial

resolutions are typically different. Performing a co-calibration under such a scenario would be a

68



non-trivial problem given that additional data processing is typically required to avoid introducing

pixel mismatch between the dual-resolution imagers. Recently, Luo et al. (Luo et al., 2021) proposed

to integrate a line-scan hyperspectral imager with fringe projection profilometry, whose inputs came

from the same beamsplitter. Therefore, the data can be merged by a homographic transformation.

However, the line-scan hyperspectral imager is implemented by a galvanometer mirror, which may

result in limited spatial resolution (X. Liu et al., 2020) on the hyperspectral imaging plane. Also,

data fusion still cannot be avoided since the image for 3D reconstruction is collected on one imaging

plane, whereas the hyperspectral information is collected on another, which introduces additional

complexities and errors.

Unlike the aforementioned methods, integrated systems that use stereo vision as the depth-

sensing module can bypass the data fusion problem, as stereo vision inherently includes a pixel-

correspondence identification process. Thus it can find the corresponding pixels between the

hyperspectral imaging plane and the normal imaging plane (or only between hyperspectral imaging

planes) even before the 3D geometry is recovered. Wang et al. (L. Wang et al., 2016a) used a

coded aperture and dispersive prism-based hyperspectral imager in a stereo vision system, and Yao

et al. (Yao et al., 2019) placed a bandpass filter in front of one of the two cameras. Behmann

et al. (Behmann et al., 2015) replaced the two cameras with two line-scan hyperspectral imagers,

thus achieving higher spectral resolution and broader spectral range. However, as stereo vision

is essentially a passive method, 3D reconstruction largely depends on the scene’s texture. If the

scene’s texture is uniform (e.g., a pure whiteboard) or repetitive (e.g., a chessboard), the pixel

correspondence may not be found, and the method may fail. Also, Zia et al. (Liang et al., 2013)

suggested that depth reconstruction calculated from different spectral bands may differ. Thus a

post-process such as point-cloud registration must unify the reconstruction results, which further

increases the complexity. Unlike the stereo vision method using only cameras, Heist et al. (Heist

et al., 2018b) added a structured light source to provide the clue for solving the pixel correspondence

problem, which eliminates the dependence on scene texture. Also, the depth can be reconstructed

using the spectral band of the structured light source, which has the best illumination quality.

However, they used a snapshot hyperspectral camera in their proposed high-dimensional imaging

system, which is simple for calibration and depth reconstruction but limits the spatial accuracy,

spectral resolution, and spectral range. Besides stereo visions, modulating the spectrums of the
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projected patterns is another approach to avoid data fusion (Y. Xu et al., 2020a). However, such a

system requires an accurate diffraction and recombination process, which increases the complexity

of the optical configuration, and the dependence on the digital micromirror device (DMD) for

spectral modulation limits the spectral resolution and the number of channels.

Throughout the above discussion, we can notice that current active approaches (e.g., LiDAR,

fringe projection) suffer from the complexities and errors brought by data fusion. On the other

hand, stereo hyperspectral visions can bypass the data fusion process, but the success of the

3D reconstruction relies on the texture of the scene, given the nature of passive depth sensing.

Another observation is that line-scan hyperspectral imaging systems generally outperform snapshot

hyperspectral cameras in terms of accuracy and measuring range. Therefore, in this paper, we

propose an active 4D line-scan hyperspectral imaging system that simultaneously achieves high-

accuracy 3D geometry and hyperspectral imaging without data fusion. The data processing pipeline

is illustrated in Fig. 4.1. A sequence of fringe patterns is projected on the object by the projector.

As the object moves along the linear guide rail, the camera captures the raw slit images of the whole

object. After stitching all the slit images at specific pixel indexes, we get the illuminated fringe

images at different pixel indexes. Then we calculate the average intensity of these images and obtain

spectral data at different wavelengths. Besides, we calculate 3D geometry from illuminated fringe

images with the highest intensity contrast. Now, at all pixel indices, both 3D geometry information

and hyperspectral data are obtained, thus, 4D imaging is achieved. We can notice that since only one

camera imaging plane is utilized, there is no need to perform data fusion. To verify the geometrical

accuracy, we first measured a standard spherical object with a diameter of 40.234 mm, and the

experimental root-mean-square error (RMSE) is 0.0895 mm. Besides, the spectral resolution can

achieve 2.8 nm. Then a colored tortoise statue was measured to show that the intensity changed

along wavelength. Finally, we conducted a case study on quality inspections and defect detection of

spinach leaves, which demonstrated its potential application in nondestructive food and agriculture

evaluation.
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Figure 4.1: Data processing pipeline of the proposed system.

4.3 Methods

4.3.1 Modeling the line-scan hyperspectral structured light imager

Figure 4.2 shows the schematic diagram of the proposed 4D line-scan hyperspectral structured

light imager. A projector projects multiple fringe images to illuminate the object’s surface, and a

camera attached with a line-scan spectrograph observes the scene. Note that the imaging planes

of the projector and the camera are supposed to be set parallel, and they are not drawn parallel in

Fig.4.2 because of simplification and for the purpose of better visualization. The light can only

pass through a narrow slit inside the spectrograph. Therefore, the camera can only acquire a small

line of the scene at a time. To address this issue, we incorporated a linear translation stage to hold

samples, and it moves in a direction that is perpendicular to the slit of the spectrograph. In this

way, the camera can acquire the entire scene in a line-scanning manner. In each line scan, the light

passes through the slit and then gets scattered onto the camera imaging plane (Complementary

metal-oxide-semiconductor, CMOS), and each row of the CMOS can receive the intensity of the

light at a specific wavelength.

We adopted a three-step phase-shifting algorithm (Malacara, 2007b) which can facilitate 3D

geometric reconstruction. The fringe patterns are projected on objects by the projector, and the
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Figure 4.2: Schematic diagram of the 4D line-scan hyperspectral structured light imager combining
fringe patterns projection, stage moving, and slit images acquisition

camera captures these illuminated fringe images. As we use three temporal phase-shifted intensity

patterns, and phase shift between each pattern is equally set as 2𝜋/3, the camera captured image

intensities at pixel location (𝑢, 𝑣) can be described as

𝐼1(𝑢, 𝑣) = 𝐼′(𝑢, 𝑣) + 𝐼′′(𝑢, 𝑣) cos[𝜙(𝑢, 𝑣) − 2𝜋/3], (4.1)

𝐼2(𝑢, 𝑣) = 𝐼′(𝑢, 𝑣) + 𝐼′′(𝑢, 𝑣) cos[𝜙(𝑢, 𝑣)], (4.2)

𝐼3(𝑢, 𝑣) = 𝐼′(𝑢, 𝑣) + 𝐼′′(𝑢, 𝑣) cos[𝜙(𝑢, 𝑣) + 2𝜋/3], (4.3)

where 𝐼1(𝑢, 𝑣), 𝐼2(𝑢, 𝑣), and 𝐼3(𝑢, 𝑣) are the captured image intensities at pixel location (𝑢, 𝑣)
in three different illuminated fringe images, 𝐼′(𝑢, 𝑣) denotes the average intensity that represents

the ambient light, and 𝐼”(𝑢, 𝑣) represents the intensity modulation induced by sinusoidal fringe

projection. By simultaneously solving these three equations, the wrapped phase 𝜙(𝑢, 𝑣) which is
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determined by the profile of subjects can be calculated as

𝜙(𝑢, 𝑣) = tan−1

[ √
3(𝐼1 − 𝐼3)

2𝐼2 − 𝐼1 − 𝐼3

]
. (4.4)

Therefore, given the camera captured images 𝐼1(𝑢, 𝑣), 𝐼2(𝑢, 𝑣), and 𝐼3(𝑢, 𝑣), the wrapped phase

𝜙(𝑢, 𝑣) can be uniquely solved. The wrapped phase information essentially contains the information

regarding the distortion of phase lines by geometric variations. Retrieving such information is

crucial for 3D geometric reconstruction. However, due to the discontinuities of the arctangent

function, 𝜙(𝑢, 𝑣) can only range in [−𝜋, 𝜋), which can cause phase jumps in the phase map. Such

𝜙(𝑢, 𝑣) is known as wrapped phase. To unwrap the phase, we adopted a three-frequencies (including

low, middle, and high frequencies) phase-unwrapping algorithm (Towers et al., 2003), which can

remove the phase jumps:

Φ(𝑢, 𝑣) = 𝜙(𝑢, 𝑣) + 2𝜋𝑘 (𝑢, 𝑣). (4.5)

Here, Φ(𝑢, 𝑣) denotes the unwrapped absolute phase without phase jumps, and 𝑘 (𝑢, 𝑣) is the

fringe order. The absolute phase map can be easily translated to the column index of the DLP-

projector(digital micromirror device, DMD):

𝑢𝑝 = 𝑇Φ/2𝜋, (4.6)

where 𝑇 is the period of the high-frequency fringe pattern.

We investigated the model and calibration method of the line-scan structured light system.

Fig. 4.3(a) shows that the imaging planes of the projector and camera are parallel to each other, and

the phase direction (𝑢𝑝) of the projector is perpendicular to the spectrograph slit and is parallel to

the direction of the translation stage.

To calibrate the system, we first need to scan a horizontal reference plane and then calculate

its phase information. In order to better illustrate the geometrical relationships, we moved the

geometries to Fig.4.3(b) and added auxiliary lines. As shown in Fig.4.3(b), when a vertical line

(𝑂𝑃𝐵) passes through 𝑂𝑃, the intersection of the vertical line and the reference plane is defined as

the origin of the world coordinates, 𝑂𝑊 . Therefore, the reference plane is also the 𝑋𝑊𝑌𝑊 plane of

the world coordinate, meaning that all the points on this plane have 𝑍𝑊 as 0. 𝑃1(𝑋1, 𝑌1, 𝑍1) can be
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Figure 4.3: Model of the line-scan structured light system. (a) Projector illumination and camera
acquisition process; (b) Triangulations for obtaining the relationship between phase differences and
depth differences.

any point on the reference plane, and 𝑍1 = 0. 𝑃2(𝑋2, 𝑌2, 𝑍2) is another point at a different height,

and both 𝑃1 and 𝑃2 are projected onto the same point of column 𝑢𝐶12 on the camera imaging slit.

The projections of 𝑃1 and 𝑃2 on the projector imaging plane are 𝑈1 and 𝑈2, respectively and their

corresponding column indexes are 𝑢𝑝

1 and 𝑢
𝑝

2 , which can be calculated from Eq.4.6:

𝑢
𝑝

1 = 𝑇Φ1/2𝜋, 𝑢𝑝

2 = 𝑇Φ2/2𝜋, (4.7)

where Φ1 and Φ2 are the absolute phase values of 𝑃1 and 𝑃2, respectively. Now, the ultimate

question for depth reconstruction is: given (1) the phase values of Φ1 and Φ2 and (2) 𝑃1 is on the

reference plane (i.e., 𝑍1 = 0), what is the depth of 𝑍2? This question is also equivalent to how to

obtain the Δ𝑍 in Fig. 4.3(b).

In Fig. 4.3(b), Δ𝐷𝑃2𝑃1 is similar to Δ𝑃1𝐸𝑂
𝐶 , which gives us

Δ𝑍

𝑍𝐶
=

𝑋1 − 𝑋2

𝑋𝐶 − 𝑋1
. (4.8)
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Also, since Δ𝑂𝑃𝐴𝑈2 and Δ𝑂𝑃𝐴𝑈1 are similar to Δ𝑂𝑃𝐵𝑃2 and Δ𝑂𝑃𝑂𝑤𝑃1, respectively, we have

𝑋1

𝐴𝑈1
=

𝑍𝑃

𝑂𝑃𝐴
,
𝑋2

𝐴𝑈2
=

𝑍𝑃 + Δ𝑍

𝑂𝑃𝐴
. (4.9)

By simultaneously solving Eq. 4.8 and Eq. 4.9, we can obtain

Δ𝑍 = (𝐴𝑈1 − 𝐴𝑈2)
𝑍𝑃

𝑂𝑃𝐴
· [( 1

𝑍𝐶
+ 𝐴𝑈2

𝑂𝑃𝐴 · 𝑋𝐶 − 𝐴𝑈1 · 𝑍𝑃
) · (𝑋𝐶 − 𝐴𝑈1 · 𝑍𝑃

𝑂𝑃𝐴
)]−1 (4.10)

Since 𝐴𝑈1 and 𝐴𝑈2 are the line segments exists on DMD, they are much smaller than the other

values in Eq. 4.10, so Eq. 4.10 can be simplified as

Δ𝑍 = (𝐴𝑈1 − 𝐴𝑈2)
𝑍𝑃

𝑂𝑃𝐴
· 𝑍

𝐶

𝑋𝐶
. (4.11)

𝐴𝑈1 and 𝐴𝑈2 can be calculated as

𝐴𝑈1 = 𝑙 · 𝑢𝑝

1 = 𝑙 · 𝑇Φ1/2𝜋, 𝐴𝑈2 = 𝑙 · 𝑢𝑝

2 = 𝑙 · 𝑇Φ2/2𝜋, (4.12)

where 𝑙 is a scaling factor that transforms column index on DMD to real-world length, having a

dimension of mm/pixel. Finally, substituting Eq. 4.12 into Eq. 4.11, we have

Δ𝑍 = (Φ1 −Φ2)
𝑙𝑇

2𝜋
· 𝑍𝑃

𝑂𝑃𝐴
· 𝑍

𝐶

𝑋𝐶
. (4.13)

Clearly, for any given point 𝑃1 on the reference plane, 𝑙, 𝑇 , 𝑍𝑃, 𝑂𝑃𝐴, 𝑍𝐶 , and 𝑋𝐶 remain constants,

so Eq. 4.13 can be simplified as

Δ𝑍 = 𝑘𝑧 · (Φ1 −Φ2). (4.14)

As a result, we can measure at least two horizontal planes with two known depths and calculate the

corresponding phase maps, and then we can determine 𝑘𝑧. The two known horizontal planes can

also be used to calibrate 𝑋𝑊 and 𝑌𝑊 coordinates.

For the 𝑋𝑊 direction, as shown in Fig. 4.4, when we place the two calibration planes at depths

𝑍𝑊
1 and 𝑍𝑊

2 , the scaling factors of the camera at the corresponding depths, 𝑠1 and 𝑠2, can be
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Figure 4.4: At different depths, the system has different scaling factors in the 𝑋𝑊 direction. The
planes at 𝑍𝑊

1 and 𝑍𝑊
2 are the known planes for calibration. The scaling factor of any plane at

arbitrary depth, Δ𝑍 , is to be determined.

measured given known dimensions on the planes and the corresponding number of pixels on the

imaging plane. Also, the scaling factors equal to the depth ratios:

𝑠1 =
𝑓

𝑂𝐶𝑂𝑊 + 𝑍𝑊
1

, 𝑠2 =
𝑓

𝑂𝐶𝑂𝑊 + 𝑍𝑊
2

, (4.15)

where 𝑓 is the focal length of the camera. Similarly, at an arbitrary depth, Δ𝑍 , the scaling factor is

𝑠 =
𝑓

𝑂𝐶𝑂𝑊 + Δ𝑍
. (4.16)

Substituting Eq. 4.15 into Eq. 4.16, the scaling factor can be calculated as

𝑠 =
−𝑠1𝑠2(𝑍𝑊

1 − 𝑍𝑊
2 )

−𝑠1𝑍
𝑊
1 + 𝑠2𝑍

𝑊
2 + Δ𝑍 (𝑠1 − 𝑠2)

=
𝑘𝑥1

𝑘𝑥2 + 𝑘𝑥3Δ𝑍
. (4.17)

For the 𝑌𝑊 direction, the scaling factor, 𝑘𝑦, is determined by the camera frame rate and the speed

of the translation stage, and it is independent of Δ𝑍 (P. Zhang et al., 2015). Thus, at least one plane

needs to be scanned to determine it. As a summary of the model, given a fringe illuminated image,

its image center (𝑢𝑐𝑜, 𝑣𝑐𝑜) and phase differences map ΔΦ (corresponding to the reference plane), the
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3D geometrical information of any pixel (𝑢𝑐, 𝑣𝑐) can be recovered by:


𝑍 = 𝑘𝑧ΔΦ

𝑌 = 𝑘𝑦 (𝑣𝑐 − 𝑣𝑐𝑜)
𝑋 =

𝑘𝑥1
𝑘𝑥2+𝑘𝑥3𝑍

(𝑢𝑐 − 𝑢𝑐𝑜)

(4.18)

Note that this 3D reconstruction model ignores the lens distortion because the line scanning camera

sees through only the middle part of the lens, which has fewer geometric distortions (P. Zhang et al.,

2015).

4.3.2 Spectral Calibration

Before getting the spectral data, we should get the relationship pixel index 𝑝 and wavelength 𝜆 and

complete the spectral calibration. A Mercury Argon wavelength calibration light source (model:

Ocean Insight HG-2) is equipped with the spectrograph and gets the image shown in Fig.5.9(a). The

calibration light source emits strong and narrow spectral lines, where pixel index can be acquired

from Fig.5.9(b). The specifications of the calibration light source offer the wavelength at these pixel

indexes. The relationship between pixel index and wavelength is a third-order polynomial according

to the specifications.

𝜆 = 𝐼 + 𝐶1𝑝 + 𝐶2𝑝
2 + 𝐶3𝑝

3, (4.19)

where 𝜆 is the calibrated wavelength at pixel index 𝑝, 𝐼, 𝐶1, 𝐶2 and𝐶3 are coefficients. In Fig. 5.9(b),

Several spectral lines located at indexes 605, 646, 785, 823, 966, 1044, 1101, 1137, 1219, and

their corresponding wavelengths 404.656 nm, 435.833 nm, 546.074 nm, 579.066 nm, 696.543 nm,

763.511 nm, 811.531 nm, 842.465 nm, 912.297 nm, are used to calculate these parameters. The

results are [𝐼, 𝐶1, 𝐶2, 𝐶3] = [23.3303, 0.4581, 3.4464-04, -1.0027e-07] with RMSE 0.5249 nm.

According to the spectrograph specifications, the spectral resolution is 2.8 nm.

4.4 Experiments

In this section, a spherical object was first measured to verify the geometrical accuracy of the

system. Then we measured a colored tortoise statue to present the intensity change along with
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(a) (b) (c)

Figure 4.5: Process of spectral calibration. (a) Spectral image of Mercury Argon Calibration Source;
(b) Intensity of the spectral image (a); (c) Third-order polynomial relationship between wavelength
and pixel index.

the wavelengths. Lastly, we showed the potential application of our innovative high-dimensional

imaging system in the food industry by evaluating quality and detecting defects on spinach leaves.

4.4.1 System setup

Figure 4.6 presents the system that contains two parts, the moving part and the static part. In

the static part, a CMOS camera (model: FLIR Grasshopper3 GS3-U3-41C6C-C), a visible and

near-infrared (VNIR) spectrograph (model: Specim ImSpector V10H), and a 12 mm focal length

lens are connected end by the end to capture images. For the camera, the exposure time is 40 ms,

and the resolution is 1920 × 1200 pixels. The spectral range of the spectrograph is 400 - 1000 nm,

and the spectral resolution is 2.8 nm with a 30 um slit. Besides, a DLP developmental kit (model:

DLP Lightcrafter 4500) is used for pattern projection, whose resolution is 912 × 1140 pixels. The

projector period is 160 ms, 159.7 ms for pattern projection, and 0.3 ms for intervals. The projector

and camera start working simultaneously to ensure the camera can capture line-scan images with the

illumination of fringe patterns. In addition, a halogen lamp (model: Sunlite 41319-SU MR16 FXL)

acts as the light source. The moving part is composed of a stepper motor (model: NEMA 23), a

linear rail (model: TFCFL Linear Rail 100 mm ), and a stepper motor driver (model: MYSWEETY
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TB6600). The step angle of the stepper motor is 1.8◦, and the lead of the ballscrew in linear rail

is 4 mm. The motor period is set up as 400 ms. Thus, the uniform speed of the stepper motor is

3𝑚𝑚/𝑚𝑖𝑛. Besides the two parts, a microcontroller (model: Arduino Uno) controls the specimen

movement, pattern projection, and image acquisition to achieve automation.

① CMOS Camera

② VNIR Spectrograph

③ Object Lens

④ DLP  Projector

⑤ Halogen Lamp

⑥ Stepper Motor

⑦ Linear Rail

⑧ Stepper Motor Driver

⑨ Microcontroller  

①

②

③

④
⑤

⑥

⑧

⑦

⑨

Figure 4.6: Composition of 4D line-scan hyperspectral structured light imager

4.4.2 Geometrical accuracy verification

To perform accurate 3D geometric reconstruction, scaling factors in Eq. 4.18 should be calculated.

We firstly scanned two reference planes attached with a printed chessboard, and recorded the image

center 𝑢𝑐𝑜. The height difference between the two planes is known as Δ𝑍 . Based on Eq. 4.44.5,

The unwrapped phase of the two reference planes are Φ1 and Φ2, respectively. Then the phase

difference of these two planes is ΔΦ. Thus, the scaling factor 𝑘𝑧 is obtained by identifying the ratio

between Δ𝑍 and ΔΦ. The width of the square of the chessboard is known as 𝑤, and pixel numbers

of a square in X-axis and Y-axis direction are 𝑝𝑥 and 𝑝𝑦, respectively. Then scaling factors 𝑘𝑦 was
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computed by 𝑤/𝑝𝑦. Analogously, we also got the pixel-length scaling factors 𝑠1 and 𝑠2 for plane 𝑃1

and 𝑃2. The scaling factor in X-axis direction was calculated based on Eq. 4.18. Following these

procedures, all the key scaling factors for 3D spatial measurement were obtained.

A plastic spherical object was measured to verify the accuracy of the proposed method and

the system. The actual diameter of this sphere is 40.234 ± 0.012 mm which is obtained by six

consecutive measurements with a digital caliper. Then, we measured the spherical object again

using the proposed method. Fig.4.7(a) demonstrates the overlay of reconstructed 3D geometry

and an ideal sphere with a radius of 20.1170 mm. The radius of the reconstructed sphere is

20.0901 mm, whose measurement error is 0.1335%. Fig.4.7(b) presents the error map between the

reconstructed geometry and the standard sphere, and its RMSE is 0.0895 mm. To better visualize

the results of the error map, we made a cross-section at the X-axis shown as Fig.4.7(c). The overall

error of the reconstructed sphere is below 0.1 mm. However, the error at the edge is higher than

those in the middle area due to shadow. Therefore, this experiment demonstrates that the 4D

line-scan hyperspectral imaging system can achieve high spatial accuracy. Also, the reconstructed

3D geometry can be used for radiance correction. As shown in Fig.4.8(a), the image intensity of

the plastic ball is not uniform, and the outer regions that are not pointing to the irradiation direction

have a lower intensity. On the other hand, the regions that point to the irradiation direction have

higher intensity. This measurement is not correct, because the plastic ball has a diffuse surface with

uniform radiance. To correct the aberration, after we reconstructed 3D geometry, we estimated a

normal map 𝑁 (𝑢, 𝑣) which contains all the normal vectors of the plastic ball. Then, the angles of

the all the normal vectors, 𝜃 (𝑢, 𝑣), can be calculated given the irradiation direction. Finally, the

image intensity can be corrected as 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙/𝑐𝑜𝑠(𝜃), as shown in Fig.4.8(b). Now, we can observe

that the surface has a uniform radiance distribution. It should be noted that due to the estimation

errors of the normal vectors, the correction process can introduce image noises.

4.4.3 Measurement of a tortoise statue

We measured a colored tortoise statue to show intensity change along different wavelengths, and

the associated video of a sample data acquisition process is shown in Visualization 1. As shown

in Fig. 4.9(a), parts A, B, and C of the tortoise were printed with red, green, and blue colors. We

calculated the mean intensity of these parts and got the results as Fig.4.9(e). It shows that the
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(a) (b) (c)

Figure 4.7: A sample evaluation of geometrical accuracy using the proposed method. (a) Overlay
of the reconstructed sphere and the ideal sphere with a 20.1170 mm radius; (b) error maps (RMSE:
0.0895 mm); (c) Cross-section at X-axis middle position.

(a) (b)

Figure 4.8: Radiance correction using surface normal estimation. (a) and (b) are the image intensities
of the plastic ball before and after corrections, respectively.

intensity of a specific colored part is the highest at its corresponding wavelengths (red at 640 nm,

green at 528 nm, blue at 465 nm). For example, the intensity of the red part A achieves the highest

when the wavelength arrives at 640 nm (Fig.4.9(b)). Besides, the overall intensity at a wavelength of

465 nm is the highest, caused by nonhomogeneous light sources. Given this, we reconstructed the

object at the wavelength of 465 nm to get the highest signal-to-noise ratio and best results. Despite a

small hole at the rearfoot region caused by saturation, the overall 3D reconstruction quality is high,
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as shown in Fig.4.9(b) - (d) and its associated video (Visualization 2), which further demonstrates

the success of the proposed method.

(b)(a)

A
B

C

(c) (d)

(e)

Figure 4.9: Hyperspectral 3D measurement of a tortoise statue and associated video (Visualization
2). (a) RGB image of the tortoise statue; (b) Reconstructed tortoise statue at red light wavelength
640 nm; (c) the reconstructed tortoise statue at green light wavelength 528 nm; (d) Reconstructed
tortoise statue at blue light wavelength 465 nm; (e) Intensity change of three different colored parts.

4.4.4 Case study: evaluation of vegetation production quality

As a non-destructive detection tool, hyperspectral imaging has been widely explored for food quality

and safety evaluation and inspection in past years (Y. Lu et al., 2020). Basedon hyperspectral imaging,

various physicochemical properties (such as reflectance, transmittance, fluorescence, and chemical

composition) can be acquired to evaluate internal and external quality. As a complementary sensing

modality of hyperspectral imaging, 3D geometrical measurement can provide the 3D geometry

of products. Therefore, we present a case study of evaluating the quality and detecting defects of

spinach leaves using the proposed 4D line-scan hyperspectral imaging system to demonstrate its

potential applications in the food industry. In the system, a halogen lamp illuminated the system to

enhance image intensity and reduce the impact of noises. Besides, we set up the blue LED for fringe

patterns projection. Fig. 4.10(a) presents spinach leaves at the different fresh levels. The fresh level

of leaves decreases from leaves A to E. Leaves A and B are at optimal quality, while leaves C, D,
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and E are non-fresh and slightly yellow. Reflectance of leaves can be calculated as Eq.4.20 (H. Liu

et al., 2020).

𝑟𝑝 (𝜆, 𝑥, 𝑦) =
𝑖𝑝 (𝜆, 𝑥, 𝑦) − 𝑖𝑑 (𝜆, 𝑥, 𝑦)
𝑖𝑤 (𝜆, 𝑥, 𝑦) − 𝑖𝑑 (𝜆, 𝑥, 𝑦)

, (4.20)

where 𝑟𝑝 is the reflectance at the location (𝑥, 𝑦) and the wavelength 𝜆. 𝑖𝑝, 𝑖𝑑 and 𝑖𝑤 denote image

intensity values of the leaves, dark and white reference, respectively. Before calculating reflectance,

we built masks to remove background based on spectral images at 840 nm. Then, the average

reflectance value of whole leaves was calculated. In Fig. 4.10(b), the reflectance values present

a general increase from leaf A to leaf E, corresponding to leaf quality deteriorating gradually. In

addition, reflectance values of leaf D and E are higher than the values of other leaves in the range

from 470 nm to 700 nm. The increasing trend of reflectance value is due to the fact that leaves turn

yellow and chlorophyll content decreases. Merzlyak et al. (Merzlyak et al., 2003) found the same

relationship that reflectance value increases sharply with a decrease of chlorophyll content, which

supports our findings.

The normalized difference vegetation index (NDVI, (D. Cui et al., 2009) ) is a widely used

indicator in remote sensing to describe vegetation distribution. Leaf cells can absorb light in the red

region for photosynthesis and reflect near-infrared (NIR) light. Thus the more green leaves a plant

has, the more red light can be absorbed, and NIR light can be reflected. NDVI is defined in Eq.4.21.

𝑁𝐷𝑉𝐼 =
𝑟𝑁𝐼𝑅 − 𝑟𝑅𝑒𝑑

𝑟𝑁𝐼𝑅 + 𝑟𝑅𝑒𝑑
, (4.21)

where 𝑟𝑁𝐼𝑅 and 𝑟𝑅𝑒𝑑 represent reflectance values acquired in the NIR and red regions, respectively.

In detail, NDVI images are obtained based on reflectance values at wavelengths 800 nm and 660

nm. According to the definition, NDVI varies between -1 and 1, and a higher value stands for

higher chlorophyll content. Fig. 4.10(c) presents that NDVI value decreases gradually from leaf A

to leaf E, which indicates the decline of chlorophyll content. The declining trend of NDVI value is

corresponding to an increase of reflectance from leaf A to leaf E, as both of the two indicators are

related to chlorophyll content. As a result, we verified Cui’s claim (D. Cui et al., 2009) that NDVI

can be used as a chlorophyll content indicator, and the proposed system has the potential to acquire

NDVI data to assess chlorophyll content.
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Leaf A    Leaf B     Leaf C    Leaf D    Leaf E

(a)

(b)

Leaf A       Leaf B    Leaf C   Leaf D     Leaf E

(c)

Figure 4.10: Reflectance and NDVI of spinach leaves at different fresh levels. (a) RGB images; (b)
Reflectance; (c) NDVI images.

Besides spectral data for evaluating the average or overall leaves quality, spatial data might

benefit local defect detection on leaves. In Fig. 4.11(a), there is an obvious defect on leaf B. As

chlorophyll content in the defect region is less than the normal region, the defect region has a darker

presentation in the NDVI image (Fig. 4.11(e)). As presented in Fig. 4.11(f), we cannot simply

apply the NDVI image to detect the defect region, as the NDVI values at the vein and edge region

are at the same level as the defect region. Besides the NDVI image, we noticed that depth change

at the vein region and the edge is quite obvious in Fig. 4.11(b). Therefore, we can highlight the

defect, edge, and vein region based on the NDVI image. Then based on depth data, the edge and

vein region can be ruled out to leave only the defect on the highlighted image. In Fig. 4.11(g), we

employed the k-nearest neighbors (KNN) algorithm (Cover & Hart, 1967) to classify leaf B into

two groups, the dark parts for the healthy regions and the highlighted parts as potential candidates

for local defects. Then depth gradient of leaf B was calculated and shown in Fig. 4.11(c). By

setting up gradient threshold, image opening and closing operations, leaf vein and profile are shown

as Fig. 4.11(d). Lastly, the highlighted vein and edge region were masked out from Fig. 4.11(g)

by subtracting Fig. 4.11(d) and the defect region was finally identified as shown in Fig. 4.11(h).

Essentially, reflectance value and NDVI image based on spectral data support us to filter non-fresh

leaves, and 3D geometry is utilized to conduct regional analysis to distinguish defects from healthy

84



regions on leaves. As an initial exploration, only several spinach leaves were analyzed, but it shows

that the 4D imaging technique could be a potential defect detection method for the food industry.

In the future, we will investigate the generalization ability of the proposed method by testing on a

higher volume of samples.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.11: Defect detection on spinach leaves. (a) RGB image of leaf B with a defect; (b)
Reconstructed 3D geometry of leaf B; (c) Depth gradient of leaf B; (d) Profile and vein of leaf B;
(e) NDVI image (f) Reconstructed 3D geometry with NDVI value rendering; (g) Results of KNN
method; (h) Marked defect.

4.5 Conclusion

We presented a 4D line-scan hyperspectral imaging system to simultaneously acquire 3D geometrical

and spectral data of specimens with high spatial accuracy and spectral resolution. The system

contains two parts, the moving part for specimen shifting and the static part for pattern projection
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and image acquisition. Under the control of a microcontroller, the illuminated fringe images were

acquired automatically. Then by using the proposed methods, we obtained 3D geometry and spectral

information without data fusion. To verify 3D geometrical accuracy, we measured a standard sphere

with a diameter of 40.234 ± 0.012 mm. The radius of the reconstructed sphere was 20.0901 mm,

and its corresponding RMSE was 0.0895 mm compared with the actual radius. The measurement of

the standard spherical object demonstrated that the system achieved high 3D geometrical accuracy.

Besides, we measured a colored tortoise statue to present the intensity change along wavelength from

400 nm to 1000 nm. The intensity of a specific colored part achieved the highest at its corresponding

wavelength region. In addition, several leaves with diverse fresh levels were measured to demonstrate

the potential application of the system in the food industry. The average reflectance value and

NDVI image based on spectral data helped generically identify non-fresh leaves, and the spatial

data benefited local defect detection. Briefly, the system shows the potential to be employed in all

green vegetation products.

Compared with published research, hyperspectral-depth data fusion was circumvented in our

system, reducing computational complexities and avoiding fusion errors. Furthermore, precise 3D

geometry was acquired based on the proposed methods through a calibration procedure developed.

Except for these advantages, possible improvements can be made in the future to achieve higher

measurement speed and better illumination. The current measurement speed is 3 mm/min due to the

low-cost linear guide rail, which is much slower than the practical production line speed. If a more

advanced translation stage is available, the scanning rate will be enhanced. With a higher rate, more

specimens can be measured in a relatively short period of time. Thus, the system has the potential to

be employed in a production line. Besides, in some wavelengths, the intensity of illuminated pattern

images was relatively low, which decreased the signal-to-noise ratio of spectral images. With a

better illumination source, spectral images with higher image quality can be obtained.
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CHAPTER 5

4D VIS-SWIR LINE-SCAN HYPERSPECTRAL IMAGING1

1Li, Jiaqiong, et al. Accepted by Optics Express, October 11, 2024.

Reprinted here with permission of the publisher.
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5.1 Abstract

This paper proposes a four-dimensional (4D) line-scan hyperspectral imaging system to acquire

3D spatial data and hyperspectral images covering from visible to short-wave infrared (Vis-SWIR)

wavelength range. The system captures visible and near-infrared (VNIR) and SWIR hyperspectral

images using two line-scan sensors, while 3D spatial data is acquired via a fringe projection

profilometry subsystem. To align the VNIR and SWIR hyperspectral images, we utilize a line-

scan homography method and propose a transformation method to register 3D spatial data with

hyperspectral images. The mean reprojection error for hyperspectral image registration is 0.5396

pixels, and the registration of 3D spatial data with hyperspectral images achieves subpixel accuracy.

Spatial accuracy is demonstrated with a root mean squared error (RMSE) of 0.1321 mm and a mean

absolute error (MAE) of 0.1066 mm by measuring a standard sphere with a 20.0512 mm radius. The

spectral resolutions are 11.2 nm in the VNIR range and 5 nm in the SWIR range. Two case studies

were conducted: one involving a colorful object with rich features and colors, and another involving

a potato before and after sprouting. Results from the measurement of a colorful object demonstrate

the proposed system’s registration accuracy and image intensity variation across wavelengths, while

the potato study highlights the system’s potential applications in the food industry.

5.2 Introduction

Hyperspectral imaging (HSI) captures and processes hundreds of continuous spectral bands across

a wide electromagnetic spectrum, allowing it to acquire detailed information related to the material

composition and chemical properties of objects (Chang, 2007). This capability has led to its

application in various fields, including precision agriculture (Dale et al., 2013; B. Lu et al., 2020;

Sethy et al., 2022), food quality and safety control (Y.-Z. Feng & Sun, 2012), medical diagnostics

(Fei, 2019; G. Lu & Fei, 2014), and environmental monitoring (Stuart et al., 2019). In parallel, three-

dimensional (3D) measurement techniques provide detailed geometrical information, depicting an

object’s size, shape, and surface topography. Techniques such as time of flight (Horaud et al., 2016),

stereo vision (Hartley & Zisserman, 2003), laser triangulation (Dorsch et al., 1994), and structured

light (Malacara, 2007a) are commonly used for 3D measurements. In addition to conventional 3D

techniques, researchers have explored other approaches from spectral clues, such as a 3D camera
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based on active laser light absorption of atmospheric oxygen (Kääriäinen & Seppä, 2024) and

passive absorption-based hyperspectral thermal ranging (Dorken Gallastegi et al., 2023). However,

these approaches still face limitations in speed or accuracy compared to conventional techniques.

Combining HSI with3D shape measurements, referred to as 4D hyperspectral imaging (incorporating

spatial dimensions x, y, and z, along with the spectral dimension 𝜆), offers significant advantages

by integrating these complementary data modalities (H. Liu et al., 2020). This fusion allows for a

more comprehensive analysis, capturing both material properties and geometric characteristics, and

expands the potential for applications across a wide range of fields. Thus, this study will focus on

4D hyperspectral imaging.

Various 4D hyperspectral imaging systems have been developed to acquire both spectral images

and 3D spatial data. These systems can be categorized into independent or dependent designs based

on whether the sensors for the two data modalities interact or influence each other during data

acquisition. Basically, dependent systems, where two data modalities are acquired by a single sensor

or multiple sensors sharing the same optical path, feature a simple optical path. This configuration

ensures that spectral images and 3D spatial data are conjugated without registration errors. However,

dependent systems often use filters, prisms, or coded apertures to perform coupled acquisition of

both spectral images and 3D geometric imaging. Such optical mechanisms usually have limitations in

spectral resolution and range that are often restricted to the visible and near-infrared (VNIR) or short-

wave infrared (SWIR) wavelength ranges. For example, Heist et al. (Heist et al., 2018a) proposed

a 5D hyperspectral imaging system, capturing spatial coordinates (x, y, z), wavelength-dependent

reflectance (𝑅(𝜆𝑖)), and time (t). This system employs two hyperspectral snapshot cameras and a

broadband high-speed pattern projector to acquire hyperspectral images in the VNIR range and 3D

geometry over time. Due to the spectral resolution constraints of the hyperspectral snapshot cameras,

the system is limited to 25 spectral bands. Similarly, Zhao et al. (H. Zhao et al., 2018) proposed a

dual-path 4D hyperspectral imaging system based on an acousto-optical tunable filter (AOTF) and

laser triangulation ranging to capture spectral images, with the spectral range constrained to 440 -

760 nm. Additionally, a coded aperture and dispersive prisms were utilized in a cross-modal stereo

system to simultaneously capture spectral and spatial images (L. Wang et al., 2016b). Our research

group previously proposed a 4D hyperspectral imaging based on a spectrograph and fringe projection

profilometry without data registration error (J. Li et al., 2021). Though the spectral resolution is 2.8
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nm, the spectral range is still restricted to the VNIR range due to the spectrograph. Similar to our

previous system, Qi et al. (Qi et al., 2023) proposed 4D multiframe co-encoded spectral imaging

based on fringe projection profilometry and an Amici prism, with the spectral range constrained

to 420-660 nm. Luo et al.(Luo, Forsberg, & He, 2022) proposed a 5D-fusing imaging system

that can capture objects’ surface shape, spectral characteristics, and polarization states based on a

polarized camera and a fringe projection profilometry (FPP) system with a liquid-crystal tunable

filter. Limited by the liquid-crystal tunable filter, the proposed system can only achieve 10 nm

spectral resolution in the visible light range. Utilizing a commercial time-of-flight sensor and Amici

prism, Rueda et al. (Rueda et al., 2017) proposed a single aperture system that can acquire depth

and hyperspectral images with a limited number of 16 spectral bands. Different from conventional

methods that use filters and prisms within the optical path of spectral sensors, Xu et al. (Y. Xu et al.,

2020b) proposed a hyperspectral projector to simultaneously acquire 3D spatial and spectral images

by structural illumination based on a diffraction grating. However, their proposed method needs

complex spectral and spatial encoding and reconstruction, and structural illumination stripes limit

the spectral channels. In addition to limitations in spectral resolution and range, the scanning speed

may also be affected in some configurations, as the scanning speed of one modality can directly

influence the other. For example, in our previous work (J. Li et al., 2021), the scanning speed

was constrained to 3 mm/min, limiting its practicality. This restriction was due to a single camera

working in line-scan mode to capture hyperspectral images and 3D data. Besides, the application

of fringe projection profilometry required multiple fringe patterns captured in each movement. We

also had to limit the scanning speed to avoid motion blur in acquired 3D spatial data. Similar speed

constraints due to the need for multiple frames in 3D reconstruction have been observed in other

configurations, such as those described in (Qi et al., 2023) and (Luo, Forsberg, & He, 2022), where

multiple frames were required for accurate 3D reconstruction.

Unlike systems that use a single sensor or sensors sharing the same optical path, independent

systems typically acquire spectral images and spatial data using independent sensors, making data

registration necessary. Since the two data modalities come from different sources, the spectral

resolution, spectral range, and spatial accuracy depend on the respective sensors. Additionally, 3D

spatial data can be obtained from various sources, including LiDAR sensors, Microsoft’s Kinect,

stereo vision systems, and structured light, further adding to the flexibility of the system. For instance,
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Tolt et al. (Tolt et al., 2011b) combined 24-band hyperspectral images from a hyperspectral push-

broom sensor with corresponding LiDAR data by detecting shadows in remote sensing. Monteiro

et al. (Monteiro et al., 2013b) used SIFT and SURF feature descriptors to register hyperspectral

images with LiDAR point clouds. Terrestrial LiDAR has been used to register 3D point clouds with

hyperspectral images, aiding applications that require linked geometric and chemical information

(Buckley, Kurz, & Schneider, 2012). Microsoft’s Kinect V2 has also been utilized to capture 3D

spatial data and register it with hyperspectral images (P. Huang et al., 2018b; L. Zhang et al., 2020).

Additionally, Luo et al. (Luo, Forsberg, Fu, & He, 2022) employed a line structured light stereo

vision system, a line-scan hyperspectral imager, and a line laser to acquire 3D spatial data and

fluorescence spectral images. They also developed a 4D dual-mode staring hyperspectral-depth

imager that can acquire reflectance and fluorescence spectra in the VNIR range and 3D spatial data

by registering 3D spatial data from stereo vision with spectral images from a hyperspectral staring

scanner (Luo, Forsberg, Fu, Xing, et al., 2022). Beyond 3D sensors or stereo vision systems, Chen

et al. (X. Chen et al., 2023) designed a light-sheet profilometer based on the Scheimpflug principle

to estimate the distance between sensors and the object, registering spectral data and 3D point

clouds based on the mapping relationship between the two sensors. Generally, independent systems

require the registration of 3D spatial data with spectral images, which can introduce mismatching

errors. However, the independence of different sensors allows these systems to achieve a broader

spectral range, higher spectral resolution, and faster scanning speeds.

Adopting an independent design, we propose a 4D line-scan hyperspectral imaging system that

acquires 3D spatial data and hyperspectral images that can cover a wide spectrum range from visible

to short-wave infrared (Vis-SWIR) range. Raw slit images are captured by two separate line-scan

hyperspectral imagers as the object moves along a conveyor belt. After a fixed-distance movement,

the object stops, and a fringe projection profilometry system scans it for 3D data acquisition. The

data processing has been illustrated in Fig. 5.1. First, the raw slit images are stitched together. Using

the calibrated relationship between pixel index and wavelength, we separately obtain hyperspectral

images in the VNIR (400-1000 nm) and SWIR (1000-1700 nm) wavelength ranges. Then, to align

the VNIR and SWIR hyperspectral images, we employ a line-scan homography method. On the

other side, 3D spatial data is obtained through fringe projection profilometry. After acquiring both

the 3D spatial data and hyperspectral images, we apply the proposed transformation method to
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register them to obtain hyperspectral 3D data. To verify the registration accuracy, we scanned an

asymmetric circular grid at different poses, using the circular centers as feature points. The mean

reprojection error for mapping VNIR and SWIR hyperspectral image registration is 0.5396 pixels,

outperforming conventional homography with a mean reprojection error of 3.4975 pixels. The mean

absolute error (MAE) and root mean square error (RMSE) for the registration of 3D spatial data

with VNIR hyperspectral images are 0.6716 pixels and 0.4929 pixels, respectively. The registration

of 3D spatial data with SWIR hyperspectral images also achieves subpixel accuracy. Additionally,

the RMSE and MAE for the 3D reconstruction of a standard sphere with a 20.0512 mm radius are

0.1321 mm and 0.1066 mm, respectively. The spectral resolutions are 11.2 nm in the VNIR range

and 5 nm in the SWIR range. After evaluating the proposed system, we conducted an experiment

on a UNO box with rich features and colors to show the proposed system’s performance. We also

implemented the proposed system to detect sprouts in a potato, highlighting its potential in the food

industry.

Fringe images 3D geometry

Spectral images at 400 – 1000 nm

Spectral images at 1000 – 1700 nm

p1

pn

…

Stitch

p1

pn
…

at p1 …pn

Stitch

at p1 …pn

Registration

Wavelength 

calibration

Raw slit images Hyperspectral images in 400 – 1700 nm

3D reconstruction

3D data rendering 

with spectral images 

in 400 -1700 nm

Registration

Pixel 

index

Pixel 

index

Figure 5.1: Data processing pipeline of the proposed system to acquire hyperspectral 3D data.

The paper is organized as follows: Section 5.3 introduces the proposed method of 4D Vis-SWIR

line-scan hyperspectral imaging, covering the line-scan hyperspectral imaging model, registration

of VNIR and SWIR spectral images, 3D measurement using fringe projection profilometry, and

the registration of 3D data with hyperspectral images. In Section 5.4, we first assess the spatial

accuracy, and then quantitatively evaluate the accuracy of the proposed registration method. We

also conduct the spectral calibration. In Section 5.5, we conducted two study cases: a UNO box with
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multiple colors and rich features and a potato before and after scanning. Section 5.6 summarizes

the contributions and limitations of the proposed methods.

5.3 Methods

5.3.1 Line-scan hyperspectral imaging

Fig. 5.2 illustrates the schematic diagram of the proposed line-scan hyperspectral imaging (HSI)

subsystem. The subsystem comprises two synchronized line-scan HSI cameras covering the VNIR

and SWIR wavelength ranges, respectively. Each is positioned with the optical axis perpendicular

to the conveyor belt plane. As the conveyor belt moves at a constant velocity, perpendicular to the

direction of the slit inside the ImSpector attached to the cameras, the cameras capture complete

scenes of the samples passing through their fields of view. We set up the line-scan camera coordinate

system as depicted in Fig. 5.2 (a). A 3D point 𝑃(𝑋,𝑌, 𝑍)𝑇 in the camera coordinate system is

projected to 𝑝(𝑢, 𝑣)𝑇 in the image plane coordinate system. The line-scan camera follows perspective

projection(Draréni et al., 2011) along the slit direction, which can be depicted as

𝑢 =
𝑓 𝑋 + 𝑝𝑢𝑍

𝑍
, (5.1)

where 𝑓 and 𝑝𝑢 are the focal length and the principal point along the slit direction, respectively. As

the conveyor belt moves at a constant speed, the 𝑣 coordinate is related to 𝑌 by a scaling factor 𝑆𝑣
that depends on the conveyor belt’s speed and the camera’s acquisition frequency (Draréni et al.,

2011), illustrated as

𝑣 = 𝑆𝑣𝑌 . (5.2)

5.3.2 Registration of VNIR and SWIR hyperspectral images

We use two synchronized line-scan cameras to capture HSI in the VNIR (400-1000 nm) and SWIR

(900-1700 nm) wavelength ranges. As shown in Fig. 5.2 (b), the view planes of the two cameras

are not aligned perfectly that the 3D point 𝑃1(𝑋1, 𝑌1, 𝑍1)𝑇 captured by the SWIR line-scan camera

has to move to 𝑃2(𝑋2, 𝑌2, 𝑍2)𝑇 to be scanned by the other camera. Thus, the corresponding 2D

projection 𝑝1(𝑢1, 𝑣1)𝑇 and 𝑝2(𝑢2, 𝑣2)𝑇 in image plane will be different. To obtain hyperspectral
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Figure 5.2: Schematic diagram of the line-scan hyperspectral imaging (HSI) subsystem, including
two synchronized line-scan HSI cameras and a conveyor belt. (a). A typical line-scan HSI camera;
(b). Two line-scan HSI cameras are used in the proposed system; the left is for the VNIR wavelength
range (400 - 1000 nm), and the right is for the SWIR wavelength range (900 - 1700 nm). In practice,
the view planes of the two cameras are not aligned perfectly, and the 3D point 𝑃1 in the right
camera’s view plane will translate to 𝑃2 to be captured by the left camera.

images from 400 nm to 1700 nm, registration of HSI images from the two cameras is necessary, and

geometric transformation between the projections 𝑝1 and 𝑝2 needs to be explored. The relationship

between points 𝑃1 and 𝑃2 can be given by

P1 = R21P2 + t21, (5.3)

where R21 and t21 are the rotation matrix and translation vector from point 𝑃2 to 𝑃1. In the following

steps, we will align the world coordinate system with the VNIR line-scan camera’s coordinate

system to simplify analysis. By combining Eq. 5.1 and Eq. 5.2, we can represent the VNIR

line-scan camera using:

K2 =

©­­­­«
𝑓2 0 𝑝2 0

0 𝑆𝑣 0 0

0 0 1 0

ª®®®®¬
, (5.4)
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©­­­­«
𝑍2𝑢2

𝑣2

𝑍2

ª®®®®¬
= K2

©­­­­­­­«

𝑋2

𝑌2

𝑍2

1

ª®®®®®®®¬
, (5.5)

where K2 represents the intrinsic matrix of the VNIR line-scan camera. It is important to note that

the left side of Eq. (5.5) is not homogeneous because the coordinate 𝑣2 does not conform to the

projective projection, differing from a typical area-scan camera model. The above equation can also

be rewritten as ©­­­­­­­«

𝑋2

𝑌2

𝑍2

1

ª®®®®®®®¬
=

©­­­­­­­«

𝑍2
𝑓2

0 − 𝑍2𝑝2
𝑓2

0 1
𝑆𝑣

0

0 0 𝑍2

0 0 1

ª®®®®®®®¬
©­­­­«
𝑢2

𝑣2

1

ª®®®®¬
. (5.6)

Similarly, the SWIR line-scan camera can be depicted as

K1 =

©­­­­«
𝑓1 0 𝑝1 0

0 𝑆𝑣 0 0

0 0 1 0

ª®®®®¬
(5.7)

©­­­­«
𝑆𝑢1

𝑣1

𝑆

ª®®®®¬
= K1

©­«
R1 t1

0 1
ª®¬
©­­­­­­­«

𝑋1

𝑌1

𝑍1

1

ª®®®®®®®¬
. (5.8)

In the above equation, 𝑆 is a scale factor, and R1 and t1 are the rotation matrix and translation

vector from the world coordinate system (VNIR line-scan camera coordinate system) to the SWIR

line-scan camera coordinate system. As the two cameras are synchronized, the scaling factor of

𝑣 coordinate 𝑆𝑣 is the same for the two cameras. Combing Eq. 5.3 with the above equation, we

can get the relationship between the point 𝑃2 and the projection 𝑝1 in the SIWR line-scan camera
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image plane:

©­­­­«
𝑆𝑢1

𝑣1

𝑆

ª®®®®¬
= K1

©­«
R1 t1

0 1
ª®¬ ©­«

R21 t21

0 1
ª®¬
©­­­­­­­«

𝑋2

𝑌2

𝑍2

1

ª®®®®®®®¬
. (5.9)

Substituting Eq.5.6 into the above equation, we can obtain the relationship between the projections

(Fang et al., 2022): ©­­­­«
𝑆𝑢1

𝑣1

𝑆

ª®®®®¬
=

©­­­­«
ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 1

ª®®®®¬
©­­­­«
𝑢2

𝑣2

1

ª®®®®¬
(5.10)

Here, We emphasize that registering images captured by line-scan cameras differs from conventional

image registration using homography(Hartley & Zisserman, 2003) because the left side term in

the above equation is not homogeneous. The Matrix H = {ℎ𝑖} can also be treated as the line-scan

homography that registers VNIR hyperspectral images with SWIR hyperspectral images.

5.3.3 FPP for 3D data acquisition

To acquire 3D spatial data of samples, we build a fringe projection profilometry (FPP) subsystem

consisting of a digital projector and a camera. The eighteen-step phase-shifting algorithm (Malacara,

2007a) is utilized, and the captured image intensity at the pixel (𝑥, 𝑦) can be illustrated as

𝐼𝑖 (𝑥, 𝑦) = 𝐼𝑎𝑚𝑏 (𝑥, 𝑦) + 𝐼𝑚𝑜𝑑 (𝑥, 𝑦) cos [𝜙(𝑥, 𝑦) − 2𝜋𝑖/𝑁] , (5.11)

where 𝐼𝑖 (𝑥, 𝑦), 𝐼𝑎𝑚𝑏 (𝑥, 𝑦), and 𝐼𝑚𝑜𝑑 (𝑥, 𝑦) are image intensity, ambient light intensity, and intensity

modulation at the pixel (𝑥, 𝑦), respectively. Here, 𝑁 is the phase step, equal to 18, and 𝑖 notes the

𝑖-th step. 𝜙(𝑥, 𝑦) is the wrapped phase, which can be computed by

𝜙(𝑥, 𝑦) = tan−1

[ ∑𝑁−1
𝑖=0 𝐼𝑖 (𝑥, 𝑦) sin 2𝜋𝑖/𝑁∑𝑁−1
𝑖=0 𝐼𝑖 (𝑥, 𝑦) cos 2𝜋𝑖/𝑁

]
, (5.12)

The wrapped phase essentially depicts the object’s 3D geometry through phase distortion determined

by the object’s 3D profile. Therefore, phase is crucial to retrieve the object’s 3D geometry. However,
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the wrapped phase only ranges in [−𝜋, 𝜋), containing discontinuities due to the arctangent function.

To remove the discontinuities, we utilize the Gray-code unwrapping method (Sansoni et al., 1999)

to acquire the absolute phase:

Φ(𝑥, 𝑦) = 𝜙(𝑥, 𝑦) + 2𝜋𝑘 (𝑥, 𝑦). (5.13)

Here, Φ(𝑥, 𝑦) represents the continuous absolute phase, free from any discontinuities, while 𝑘 (𝑥, 𝑦)
denotes the fringe order. Once the absolute phase is determined, the 3D geometry of the object

(𝑋𝑤, 𝑌𝑤, 𝑍𝑤) can be reconstructed with the calibrated FPP system (S. Zhang & Huang, 2006).

5.3.4 Registration of 3D geometry and hyperspectral images

In the proposed system, an object translates at a constant velocity along the conveyor belt and stops

after a distance to be captured by the frame-scan camera in the FPP subsystem, as illustrated in Fig.

5.3. To obtain 4D (𝑥, 𝑦, 𝑧, 𝜆) data of an object, we need to register 3D spatial data with 2D HSI

images.
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Figure 5.3: Schematic diagram of the scanning process: the line-scan camera captures the object
along the X-direction as it moves in the Y-direction; after traveling a distance, the object stops, and
the frame-scan camera starts to scan it.

Following the above setup, we align the world coordinate system to the VNIR line-scan camera

coordinate. Combining Eq. 5.1 and Eq. 5.2, we can get the relationship between the homogenous

pixel point 𝑝(𝑢2, 𝑣2, 1)𝑇 and 3D point 𝑃2(𝑋2, 𝑌2, 𝑍2)𝑇 as
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©­­­­«
𝑢2

𝑣2

1

ª®®®®¬
=

1
𝑍2

©­­­­«
𝑓2𝑋2 + 𝑝2𝑍2

𝑠𝑌2𝑍2

𝑍2

ª®®®®¬
∼
©­­­­«
𝑓2 0 𝑝2

0 𝑠 0

0 0 1

ª®®®®¬
©­­­­«
𝑋2

𝑌2𝑍2

𝑍2

ª®®®®¬
. (5.14)

Here, we can notice that the above equation contains a quadratic cross term 𝑌2𝑍2 because the

𝑣 coordinate of a line-scan camera does not follow the perspective projection. The 3D point

𝑃2(𝑋2, 𝑌2, 𝑍2)𝑇 in the line-scan camera view plane translates to the point 𝑃3(𝑋3, 𝑌3, 𝑍3)𝑇 . Thus,

we can have: ©­­­­«
𝑋2

𝑌2

𝑍2

ª®®®®¬
= RFL

©­­­­«
𝑋3

𝑌3

𝑍3

ª®®®®¬
+ tFL =

©­­­­«
𝑟11𝑋3 + 𝑟12𝑌3 + 𝑟13𝑍3 + 𝑡𝑥

𝑟21𝑋3 + 𝑟22𝑌3 + 𝑟23𝑍3 + 𝑡𝑦

𝑟31𝑋3 + 𝑟32𝑌3 + 𝑟33𝑍3 + 𝑡𝑧

ª®®®®¬
. (5.15)

In the above equation, the 3D point 𝑃3(𝑋3, 𝑌3, 𝑍3)𝑇 is in the frame-scan camera image plane and

is captured for the 3D reconstruction. The rotation matrix RFL and translation vector tFL depict

the transformation from the frame-scan camera coordinate system to the VNIR line-scan camera

coordinate system. Substituting Eq. 5.14 to Eq. 5.15, we will get the relationship between the pixel

point (𝑢2, 𝑣2, 1)𝑇 in the hyperspectral images and 3D point (𝑋3, 𝑌3, 𝑍3)𝑇 as

©­­­­«
𝑢2

𝑣2

1

ª®®®®¬
∼
©­­­­«
𝑚1 𝑚2 𝑚3 𝑚4 0 . . . 0

𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 . . . 𝑚14

𝑚15 𝑚16 𝑚17 𝑚18 0 . . . 0

ª®®®®¬
M3×10

(
𝑋3, 𝑌3, 𝑍3, 1, 𝑋3

2, 𝑌3
2, 𝑍3

2, 𝑋3𝑌3, 𝑋3𝑍3, 𝑌3𝑍3

)𝑇
.

(5.16)

In the equation above, the geometric transformation matrix M establishes the relationship between

a 3D point and its projection in the hyperspectral image. This matrix is determined by the

VNIR line-scan camera’s intrinsic matrix K2, rotation matrix RFL, and translation vector tFL.

Unlike the homography described in (Z. Zhang, 2000), the transformation matrix here is 3 × 10

because the right side expression includes quadratic and cross-term components, represented as

(𝑋3, 𝑌3, 𝑍3, · · · , 𝑌3𝑍3)𝑇 . To register 3D data with hyperspectral images, we need to get the solution

of the transformation matrix M. By multiplying Eq. 5.16 with the cross-product skew matrix

(𝑢3, 𝑣3, 1)𝑇 , we will get:

A3×18m = 0, (5.17)
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where m𝑇 = (𝑚1, 𝑚2, · · · , 𝑚18) consists of eighteen non-zero elements of M, and A is a 3 × 18

matrix that can be defined by its submatrices A1, A2, and A3 as follows:

A1 =
©­«
0, 0, 0, 0,−𝑋3,−𝑌3,−𝑍3,−1,−𝑋2

3 ,−𝑌
2
3 ,−𝑍

2
3 ,

−𝑋3𝑌3,−𝑋3𝑍3,−𝑌3𝑍3, 𝑋3𝑣2, 𝑌3𝑣2, 𝑍3𝑣2, 𝑣2

ª®¬
𝑇

,

A2 =

(
𝑋3, 𝑌3, 𝑍3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−𝑋3𝑢2,−𝑌3𝑢2,−𝑍3𝑢2,−𝑢2

)𝑇
,

A3 =
©­«

−𝑋3𝑣2,−𝑌3𝑣2,−𝑍3𝑣2,−𝑣2, 𝑋3𝑢2, 𝑌3𝑢2, 𝑍3𝑢2, 𝑢2,

𝑋2
3𝑢2, 𝑌

2
3 𝑢2, 𝑍

2
3𝑢2, 𝑋3𝑌3𝑢2, 𝑋3𝑍3𝑢2, 𝑌3𝑍3𝑢2, 0, 0, 0, 0

ª®¬
𝑇

.

Based on the above equation, A can be directly computed based on 𝑃3(𝑋3, 𝑌3, 𝑍3)𝑇 and (𝑢2, 𝑣2, 1)𝑇 .

With the known matrix A, M can be estimated using the singular value decomposition (SVD)

algorithm. Affected by noises in 3D reconstruction and the projection in hyperspectral images, the

solution from SVD may not be accurate, and we utilize the Levenberg-Marquardt algorithm (Moré,

2006) to optimize it. Based on Eq. 5.16, the reprojected 2D pixel point 𝑝2 (𝑢2, 𝑣2) can be calculated

by 
𝑢2 =

𝑚1𝑋3 + 𝑚2𝑌3 + 𝑚3𝑍3 + 𝑚4
𝑚15𝑋3 + 𝑚16𝑌3 + 𝑚17𝑍3 + 𝑚18

,

𝑣2 =
𝑚5𝑋3 + 𝑚6𝑌3 + 𝑚7𝑍3 + · · · + 𝑚14𝑌3𝑍3

𝑚15𝑋3 + 𝑚16𝑌3 + 𝑚17𝑍3 + 𝑚18
.

(5.18)

The nonlinear optimization objective function to minimize the reprojection error is as follows:

𝑒(M) = min ©­«
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

Dist(𝑝2,𝑖 𝑗 , 𝑝2,𝑖 𝑗 )ª®¬ , (5.19)

where 𝑝2,𝑖 𝑗 is a feature point captured by the hyperspectral line-scan camera at (𝑖, 𝑗), 𝑝2,𝑖 𝑗 is the

corresponding reprojected feature point, and the operation 𝐷𝑖𝑠𝑡 (·) is to compute the Euclidean

distance. The Jacobian matrix for the implementation of the Levenberg-Marquardt algorithm is

described as

J2×18 =
©­«
𝜕𝑢2
𝜕𝑚𝑖

𝜕𝑣2
𝜕𝑚𝑖

ª®¬ . (5.20)
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Here, we present the complete method for the mentioned image registration. From 𝑛 scans of

an asymmetric circular calibration grid:

• Extract the feature points (circular centers) in the VNIR and SWIR hyperspectral images.

• Estimate the line-scan homography H and 𝑆 in Eq. 5.10 for all 𝑛 scans using the direct linear

transform algorithm (Hartley & Zisserman, 2003).

• Retrieve the 3D data of all scans and extract the feature points in the images captured by the

camera in the FPP subsystem.

• Estimate the transformation matrix M using SVD and optimize the solution using the

Levenberg-Marquardt algorithm.

5.4 Experimental Evaluation

5.4.1 system setup

The experimental setup, depicted in Fig. 5.4, consists of two separate subsystems: the HSI and the 3D

scanning subsystems. In the HSI subsystem, an indium gallium arsenide (InGaAs) camera (Xenics,

Xeva-1.7-320-TE1-USB-100) is synchronized with a complementary metal-oxide semiconductor

(CMOS) camera (FLIR, Grasshopper3 GS3-U3-41C6C-C), both operating at a scanning frequency

of 10𝐻𝑧. The InGaAs camera has an image resolution of 320 × 256 pixels, while the CMOS camera’s

resolution is set as 1920 × 1200 pixels. The InGaAs camera, equipped with an ImSpector N17E

(Specim, ImSpector N17E), captures hyperspectral images in the 900 - 1700 nm range. Meanwhile,

the CMOS camera, paired with an ImSpector V10 (Specim, ImSpector V10), captures hyperspectral

images in the 400 - 1000 nm range. Besides, a halogen lamp (model: Philips LED, Philips 415604)

is used to provide sufficient illumination. In the 3D scanning subsystem, a CMOS camera (model:

FLIR Grasshopper3 GS3-U3-41C6C-C) and a digital light processing (DLP) projector (model:

DLP Lightcrafter 4500) form the fringe projection profilometry system for 3D data acquisition.

Additionally, a conveyor belt (Dorner, 22EDM16-026320A010101), driven by a Nema 34 step

motor, moves objects from the HSI subsystem to the 3D scanning subsystem at a constant velocity,

stopping after a distance for 3D data acquisition.
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Figure 5.4: Experimental setup: The hyperspectral imaging subsystem consists of an InGaAs
camera paired with an ImSpector N17E and a CMOS camera paired with an ImSpector V10, both
synchronized; the 3D scanning subsystem includes a DLP projector and a CMOS camera (labeled
as 5); a conveyor belt is utilized to translate samples constantly, and a halogen lamp acts as an extra
light source. (a) Front view; (b) Side view.

5.4.2 Evaluation of hyperspectral image registration

The VNIR and SWIR hyperspectral images are acquired by two separate cameras, which makes it

necessary to register them. We scanned an asymmetric circular grid, and the circular centers were

detected using the toolbox OpenCV(Bradski, 2000) as feature points for this purpose. Fig. 5.5 (a)

and (e) show spectral images captured by the VNIR line-scan camera at a wavelength of 700 nm for

two different poses, while Fig. 5.5 (b) and (f) show spectral images captured by the SWIR line-scan

camera at a wavelength of 1,347 nm simultaneously. For better visualization, we increased the

overall image intensity of both spectral images. Using the proposed method, we aligned the SWIR

HSI images to the VNIR HSI images, with results presented in Fig. 5.5 (c) and (g). Here, we present

the registration results for spectral images at 700 nm and 1,347 nm as representative examples, as

the line-scan spectral image registration at other wavelengths is the same. The brighter areas in Fig.

5.5 (c)-(d) and (g)-(h) indicate the aligned spectral images at 1,347 nm. Red dots indicate the feature

points detected in the VNIR spectral images at 700 nm, while blue dots note feature points from the

aligned SWIR image at 1,347 nm. In Fig.5.5 (c) and (g), most of all feature points are well-aligned

without visible differences. The root mean square error (RMSE) and mean absolute error (MAE)
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metrics, which represent the pixel distance between the detected circular centers in the VNIR and

SWIR images, are used to quantitatively assess the registration performance. RMSE and MAE

for Fig. 5.5 (c) are 0.83323 and 0.4919 pixels, and 0.8258 and 0.5336 pixels for Fig.5.5 (g). For

comparison, we also registered the same spectral images using conventional homography (Hartley

& Zisserman, 2003), and results are shown in Fig. 5.5 (d) and (h) where mismatches between

feature points are visible, especially in Fig. 5.5 (h). RMSE and MAE are 1.3254 and 0.8414 pixels

for Fig. 5.5 (d), and 3.4614 and 2.2545 pixels for Fig. 5.5 (h). For three scans of the asymmetric

circular grid, the mean reprojection error is 0.5396 pixels using the proposed method, while 3.4975

pixels using conventional homography (Hartley & Zisserman, 2003). The results presented in Fig.

5.5 demonstrate that the proposed method can register hyperspectral images well and outperforms

conventional homography (Hartley & Zisserman, 2003). This improvement can be attributed to

the proposed method’s ability to account for the line-scan nature of the sensors used in this study,

whereas conventional homography is more suited for area-scan sensors.

(a) (b) (c) (d)

(e) (f) (g) (h)

The proposed homography Conventional homographySpectral image at 700 nm
Spectral image 

at 1347 nm

Pose 1

Pose 2

Figure 5.5: Registration results of spectral images of an asymmetric circular grid. (a) and (e) spectral
images at 700 nm. (b) and (f) Spectral images at 1347 nm. (c) Proposed method on (a) and (b) with
RMSE 0.8332 pixels, MAE 0.4919 pixels. (d) Conventional homography (Hartley & Zisserman,
2003) on (a) and (b) with RMSE 1.3254 pixels, MAE 0.8414 pixels. (g) Proposed method on (e)
and (f) with RMSE 0.8258 pixels, MAE 0.5336 pixels. (h) Conventional homography on (e) and
(f) with RMSE 3.4614 pixels, MAE 2.2545 pixels.
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5.4.3 Spatial accuracy

A plastic standard sphere was measured to verify the geometric accuracy of the proposed method. The

actual diameter of the sphere, measured using a digital caliper with eight consecutive measurements,

is 40.1025 ± 0.0900 mm. We then scanned the sphere and acquired its 3D data using FPP. Fig.

5.6(a) shows the overlay of the reconstructed 3D geometry and a standard sphere, represented in

yellow and blue, respectively. The reconstructed sphere’s radius is 20.0046𝑚𝑚, with a measurement

error of 0.2326%. Fig. 5.6(b) displays the error map between the reconstructed geometry and

the standard sphere, with an RMSE of 0.1321𝑚𝑚 and an MAE of 0.1066𝑚𝑚. To better visualize

the error map, a cross-section along the X-axis is shown in Fig. 5.6(c). This experiment results

demonstrate the proposed system’s high geometric accuracy, which is also essential for registering

3D spatial data with hyperspectral images.

(a) (b) (c)

Figure 5.6: Evaluation of geometric accuracy. (a) Overlay of the reconstructed sphere (shown in
yellow) and a standard sphere (shown in blue) with a 20.0512𝑚𝑚 radius. (b) Error map between the
reconstructed sphere and standard sphere (RMSE: 0.1321𝑚𝑚, MAE: 0.1066𝑚𝑚). (c) Cross-section
of the error map at the X-axis middle position.

5.4.4 Evaluation of the registration of 3D data and hyperspectral images

To obtain hyperspectral 3D data (spatial coordinates (𝑥, 𝑦, 𝑧) and spectral dimension 𝜆), we registered

3D spatial data with hyperspectral images. We used the same asymmetric circular grid as the scanned

target in this process. We scanned the grid at seven different poses with one scan per pose, and

VNIR hyperspectral images are registered with 3D data for each pose using the proposed method.

Our method achieved an average MAE and RMSE of 0.6716 pixels and 0.4929 pixels in this process.

Three registration results are presented in Fig. 5.7 to visualize the proposed method performance.
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(a)                           (b)                              (c)                               (d)

(e)                            (f)                              (g)                               (h)

(i)                            (j)                                (k)                               (l)

Figure 5.7: Registration results of 3D data and VNIR spectral images. (a), (e), and (i) Spectral
images at 700 nm of an asymmetric circular grid in different poses. (b), (f), and (j) Corresponding
3D data. (c), (g), and (k) 3D data rendered with aligned spectral images at 700 nm. (d), (h), and (l)
Differences between aligned spectral and FPP grayscale images, with RMSE and MAE values of
0.7566 and 0.6917 pixels, 0.5086 and 0.4304 pixels, and 0.7092 and 0.4132 pixels.

Similarly, we also registered 3D spatial data with SWIR hyperspectral images using the proposed

method. Limited by the InGaAs camera’s field view, we only scanned the same asymmetric circular

grid at three poses, and the registration results are illustrated in Fig. 5.8. The registration results

showed RMSE and MAE values of 0.6302 and 0.4529 pixels, 0.6714 and 0.5417 pixels, and 1.1951

and 1.035 pixels, respectively. Besides, we also increased the SWIR spectral image intensity here

to enhance feature point detection and visualization. Overall, the registration error for both 3D and

VNIR spectral images, as well as 3D and SWIR spectral images, was able to achieve a sub-pixel

level, demonstrating the method’s effectiveness.
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(a)                (b)                               (c)                               (d)

(e)               (f)                                 (g)                               (h)

(i)               (j)                                 (k)                               (l)

Figure 5.8: Registration results of 3D data and SWIR spectral images. (a), (e) and (i) Spectral
images at 1347 nm of an asymmetric circular grid in different poses. (b), (f), and (j): Corresponding
3D data. (c), (g), and (k) 3D data rendered with aligned spectral images at 1347 nm. (d) and (h)
Differences between aligned spectral and FPP grayscale images, with RMSE and MAE values of
0.6302 and 0.4529 pixels, 0.6714 and 0.5417 pixels, and 1.1951 and 1.035 pixels.

5.4.5 Spectral Calibration

We conduct the spectral calibration to determine the wavelength 𝜆 based on the pixel index 𝑝.

According to the specifications of ImSpector V10 and N17E, the relationship between pixel index

and wavelength is a third-order polynomial:

𝜆 = 𝐼 + 𝐶1𝑝 + 𝐶2𝑝
2 + 𝐶3𝑝

3. (5.21)
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To determine the constant parameters 𝐼, 𝐶1, 𝐶2, and 𝐶3 for the two ImSpectors, we utilize specific

wavelength calibration light sources. The ImSpector V10 is paired with a Mercury Argon light

source (model: Ocean Optics, HG-2) to acquire the spectral image shown in Fig. 5.9(a). Similarly,

the ImSpector N17E is paired with an Argon light source (model: Ocean Optics, AR-2) to acquire

the spectral image shown in Fig. 5.9 (b). These calibration sources emit strong, narrow spectral

lines, allowing us to determine the pixel index. Using the wavelength information provided in the

specifications, we estimated the constant parameters in the third-order polynomial, as shown in

the Table. 5.1. For the VNIR wavelength range, the root mean square error (RMSE) and mean

absolute error (MAE) of fitting are 1.9422 nm and 1.3211 nm, less than the ImSpector V10 spectral

resolution,11.2 nm. For the SWIR wavelength range, RMSE and MAE are 4.1439 nm and 3.2900

nm, which are also below the spectral resolution of 5 nm for the ImSpector N17E. Besides, the

𝑅2 values for both fits are over 0.9, indicating good fitness of the third-order polynomial. Because

the constant parameters 𝐶2 and 𝐶3 are much smaller than 𝐶1 and 𝐶2, the relationship between the

wavelength and pixel index is nearly linear in VNIR and SWIR wavelength ranges, as illustrated in

Fig. 5.9 (c).

Table 5.1: Fitness of the third-order polynomial relationship wavelength vs pixel index

I C1 C2 C3 RMSE
(nm)

MAE
(nm)

R2

VNIR 228.43410.7158 1.4895𝑒−
4

−5.2393𝑒−
8

1.9422 1.3211 0.9999

SWIR 903.56014.8128 −0.0043 4.9844𝑒 −
6

4.1439 3.2900 0.9996

5.5 Two study cases

5.5.1 Hyperspectral 3D scanning of a UNO box

We scanned a UNO box with multiple colors and rich features and obtained its hyperspectral 3D

data to show spectral image intensity change along wavelengths and registration accuracy. A, B,

C, and D areas on the UNO box are in red, yellow, green and blue. The mean image intensity of

these areas change along wavelengths in the VNIR and SWIR ranges are illustrated in Fig. 5.10

(f) and (k). Besides, the spectral image intensity in the SWIR range is much lower than that in
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Figure 5.9: Spectral calibration. (a) Spectral image of the Mercury Argon wavelength calibration
light source. (b) Spectral image of the Argon wavelength calibration light source. (c) Third-order
polynomial relationship between wavelength and pixel with 95% prediction interval. The blue line
indicates the nearly linear relationship for the VNIR wavelength range and the red line for the SWIR
wavelength range.

the VNIR range, and some vertical line noises exist in the SWIR images due to inhomogeneous

illumination and different image sensors and optical lenses. As presented in Fig. 5.10 (b) - (e) and

(g)-(j), features (letters, numbers, and lines) in spectral images are aligned well with corresponding

3D reconstructions without visible mismatches, which supports the registration accuracy of the

proposed method.

𝜆 = 436 𝑛𝑚

A
B

C
D

(a)                 (b)                         (c)                          (d)                         (e)           (f)

(g)                         (h)                          (i)                         (j)                                     (k)

𝜆 = 547 𝑛𝑚 𝜆 = 762 𝑛𝑚 𝜆 = 911 𝑛𝑚

𝜆 = 1125 𝑛𝑚 𝜆 = 1376 𝑛𝑚 𝜆 = 1476 𝑛𝑚 𝜆 = 1675 𝑛𝑚

Figure 5.10: Hyperspectral 3D scanning of a UNO box. (a) RGB image. (b)-(e) 3D renderings
with spectral images at 436 nm, 547 nm, 762 nm, and 911 nm in the VNIR range. (f) Spectral
image intensity changes in areas A, B, C, and D from 400-900 nm. (g)-(j) 3D renderings with
spectral images at 1125 nm, 1376 nm, 1476 nm, and 1675 nm in the SWIR range. (k) Spectral
image intensity changes in areas A, B, C, and D from 1000-1600 nm.
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5.5.2 Detecting potato sprouts

Hyperspectral imaging has been extensively explored in the food industry for measuring various

physicochemical properties, such as reflectance, transmittance, and fluorescence, to evaluate food

quality(Zhu et al., 2020). Complementary to HSI, 3D geometrical measurement can also enhance

food quality assessment with additional 3D data. This study presents a case of detecting potato

sprouts using the proposed 4D Vis-SWIR hyperspectral line-scan system, demonstrating its potential

in the food industry. We scanned a potato and acquired its hyperspectral 3D data before and after it

sprouted. Using the hyperspectral images, we computed the relative reflectance as follows:

𝐼𝑟𝑒 𝑓 =
𝐼𝑟𝑎𝑤 − 𝐼𝑑

𝐼𝑤 − 𝐼𝑑
, (5.22)

where 𝐼𝑟𝑒 𝑓 , 𝐼𝑟𝑎𝑤 , 𝐼𝑑 , and 𝐼𝑤 are reflectance, raw spectral image intensity, spectral image intensity of

a dark reference, and spectral image intensity of a white reference, respectively. The comparison

of reflectance change before and after the sprout is shown in Fig.5.11, where the first row and the

second row are the captured spectral data before and after sprouting, respectively. The red A, blue

B, and green C areas are the sprout, normal area, and sprout eye, respectively. Comparing the

reflectance before and after sprouting, the reflectance of area A has visible changes in the VNIR and

SWIR ranges, while the reflectance of areas B and C remains relatively unchanged. This observation

is further supported by the two plots of reflectance versus wavelength before and after sprouting

presented in Fig. 5.11 (i) and (j). These findings indicate that hyperspectral images are effective in

illustrating the reflectance change of potatoes before and after spouting.

Hyperspectral imaging (Y. Gao et al., 2018; Peraza-Alemán et al., 2024) and 3D imaging (Q. Su

et al., 2017, 2020) have each been employed independently to assess potato quality. In this work,

we present a case to support that the integration of hyperspectral imaging with 3D imaging provides

a more effective approach for detecting potato sprouts. Specifically, we used the combination of

reflectance at 580 nm and depth data as a representative example. As shown in Fig. 5.12 (b) and

(c), the reflectance map at 580 nm was classified into seven groups using the k-means algorithm

(Lloyd, 1982), with the eighth label representing the image background. Sprout candidates were

identified based on a threshold, which was set to 5 in this study, as shown in Fig. 5.12 (d). However,

directly detecting sprouts from the reflectance at 580 nm proves to be challenging, as the reflectance
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(a)                (b)                        (c)                        (d) (i)

A
B

C

(e)               (f)                        (g)                         (h) (j)

Figure 5.11: Reflectance changes of potato before and after sprouting. (a) RGB image of a potato
before sprout. (b) - (d) Reflectance at 580 nm, 772 nm, and 874 nm. (e) RGB image of the same
potato after sprout. The red A, blue B, and green C areas are the sprout, normal area, and sprout
eye. (f) - (h) Reflectance of the potato with sprouts at 580 nm, 772 nm, and 874 nm. (i) Comparison
of reflectance changes before and after sprout in the VNIR range. (j) Comparison of reflectances
before and after sprout in the SWIR range.

values of the sprouts are similar to those of surrounding areas. Given that sprouts cause local abrupt

depth changes, we computed depth derivatives along the x-axis and y-axis, as illustrated in Fig.

5.12 (e) and (f). In these figures, the depth derivatives in the sprouting area are distinguishable and

higher compared to neighboring areas. Significant depth changes are also observed at the potato

edges. Similarly, we classified the depth derivatives along the x-axis and y-axis into seven groups

and sorted the groups in descending order according to the derivative values, as depicted in Fig.

5.12 (h) and (i). Based on the prior knowledge that the depth of the sprout area varies dramatically,

we identified areas where the number of groups exceeds the threshold in both x-axis and y-axis

classifications as sprout candidates with depth, as shown in Fig. 5.12. These candidates are mainly

concentrated in the sprouting area and at the edges. By combining sprout candidates from the

reflectance and depth (using an "AND" operation between Fig. 5.12 (d) and (j)), we successfully

localized the potato sprouts while mitigating the impact of edges and regions with similar reflectance

values in the surrounding areas. In addition, we tested sprout detection using reflectance at 772

nm along with the depth map, which produced comparable results (shown in Fig. 5.13), further
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demonstrating the robustness of the integrated approach. Besides, the depth map is used to segment

the potato from the background. The sprout detection result is shown in Fig. 5.12 (k). Although

only one sprouted potato was analyzed and the basic K-means clustering method was utilized in this

initial exploration, the results indicate that the proposed system has the potential to be an effective

method for evaluating food quality. Future work will focus on testing the generalization ability

of the proposed method with a larger volume of samples. With the availability of high-volume

hyperspectral and 3D imaging data, we can develop specialized neural networks tailored for more

comprehensive and robust food quality assessments.

(k)(a)                              (b)                                     (c)                                (d)

(e)                              (f)                            (g)                                 (h)                      (i)                               (j)

Figure 5.12: Sprout detection based on reflectance at 580 nm and depth map. (a) A potato with
sprouts. (b) Reflectance at 580 nm. (c) classified reflectance using the K-means method. (d) Sprout
candidates with reflectance. (e) Depth map. (f) and (g) Depth derivatives along the x-axis and
y-axis. (h) and (i) classified derivatives along the x-axis and y-axis using the K-means method. (j)
Sprout candidates with depth. (k) Detected sprouts.

5.6 Conclusions

We presented a 4D Vis-SWIR line-scan hyperspectral imaging system designed to acquire 3D spatial

and spectral data of objects with high spatial accuracy and spectral resolution. Key innovations

include the line-scan homography method for registering VNIR and SWIR images and a transfor-

mation method for aligning 3D spatial data with hyperspectral images from line-scan sensors. Our

system registers hyperspectral images in a wide range of 400-1700 nm leveraging the spectral data

acquired from two separate cameras. The registration of 3D spatial data with hyperspectral images
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(k)(a)                              (b)                                  (c)                                (d)

(e)                              (f)                            (g)                                 (h)                      (i)                                (j)

Figure 5.13: Sprout detection based on reflectance at 772 nm and depth map, yielding similar
results. (a) The same potato with sprouts. (b) Reflectance at 772 nm. (c) classified reflectance using
the K-means method. (d) Sprout candidates with reflectance. (e) Depth map. (f) and (g) Depth
derivatives along the x-axis and y-axis. (h) and (i) classified derivatives along the x-axis and y-axis
using the K-means method. (j) Sprout candidates with depth. (k) Detected sprouts.

achieves subpixel accuracy. Additionally, the spectral resolution is 11.2 nm in the VNIR range and

5 nm in the SWIR range. The spatial accuracy for measuring a standard sphere with a 20.0512

mm radius is RMSE 0.1321 mm and MAE 0.1066 mm. Our experimental results demonstrate the

system’s performance on objects with rich features and colors and its potential in the food industry.

Compared with existing research, the proposed system covers a broader spectral range from 400

nm to 1700 nm, expanding its potential applications in fields such as agriculture and food quality

assessment. Additionally, the ability to adjust the scanning speed of each subsystem independently

enhances its flexibility for practical applications. However, the field of view is limited by the

overlap of the two line-scan cameras, and registration errors are unavoidable. Furthermore, at

certain wavelengths, the low intensity of spectral images reduces the signal-to-noise ratio. Improved

illumination could enhance the image quality of spectral images. In conclusion, the proposed

4D hyperspectral imaging system offers significant advancements in spectral range and resolution,

spatial accuracy, and practical applicability despite some limitations. Future work should focus on

enhancing illumination and reducing registration errors to further improve system performance.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary of research contributions

This dissertation focuses on robust 4D hyperspectral imaging and its applications, and the contribu-

tions include robust 3D measurement with fringe projection profilometry and the integration of 3D

spatial data with hyperspectral images.

• Developed circular fringe projection profilometry for the system calibration and 3D

reconstruction to enhance measurement accuracy: In fringe projection profilometry, fringe

pattern direction and system calibration play crucial roles in measurement accuracy. This

dissertation introduces a novel calibration method utilizing circular and radial fringe patterns

and a 3D reconstruction technique only with circular fringe patterns. The key contributions

include demonstrating that the proposed circular fringe projection profilometry (CFPP)

method enhances 3D reconstruction accuracy compared to traditional linear FPP, particularly

in capturing complex geometries with abrupt depth changes. Through a series of rigorous

2 × 2 experiments, we provided comprehensive comparisons that highlight the strengths of

our method. Additionally, the sensitivity and error analysis offers valuable insights into the

factors affecting calibration performance, specifically the roles of increased sensitivity and

estimated phase errors. This work has been published in the journal of Optics Continuum

(J. Li & Li, 2024), and the details have been discussed in Chapter 2.

• Investigated texture-guided phase-to-depth networks to repair shadow-induced errors

in FPP: Occlusions caused by complex object surfaces present a significant challenge in

fringe projection profilometry (FPP). The intrinsic triangular configuration between the

camera, projector, and object often results in shadow regions with invalid phase information,
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leading to holes in the reconstructed 3D geometry. Both the texture images and phase

information can provide critical clues that aid in estimating the 3D profile. Building on

this prior knowledge, this dissertation proposes texture-guided phase-to-depth networks to

address the shadow-induced errors in FPP. The proposed method integrates phase maps and

texture images at two stages to enhance depth prediction accuracy. A specified loss function

that considers image edge details and structural similarity is formulated to optimize model

training. Besides, the digital twin technique is utilized to generate sufficient simulated data

to train the proposed network. Unlike other approaches that employ multiple cameras or

projectors to alleviate shadow effects, this method utilizes only a single camera-projector setup,

minimizing additional hardware costs. Besides, by preserving the triangular configuration of

the camera and projector, the proposed method maintains the flexibility of the FPP system and

avoids geometric constraints associated with uniaxial configuration. The proposed method

enhances the robustness of 3D reconstruction in complex scenes, particularly in regions

affected by severe occlusions, by effectively utilizing texture cues to compensate for missing

phase information. This work has been published in the journal of Photonics (J. Li & Li,

2023), and the details have been elaborated further in Chapter 3.

• Proposed a 4D VNIR line-scan hyperspectral imaging system for simultaneous acqui-

sition of hyperspectral images and 3D spatial data without registration. 3D spatial

data and spectral images are two data modalities that provide complementary insights into

an object’s characteristics across different domains. 3D imaging shows an object’s spatial

attributes, including position, shape, size, surface texture, and roughness, while spectral

imaging furnishes detailed information on the object’s physical and chemical properties, such

as reflectance, absorption, and fluorescence. Extending the data representation from three

dimensions to four dimensions (𝑥, 𝑦, 𝑧, and wavelength 𝜆) enhances the capability of capturing

both spatial and spectral characteristics simultaneously, thereby broadening the applicability

in diverse fields, including quality assessment in the food industry, agricultural monitoring,

and environmental remote sensing. This dissertation proposes a novel 4D line-scan hyper-

spectral imaging system that can simultaneously capture 3D spatial data and hyperspectral

images in the visible-to-infrared (VNIR) wavelength range. By utilizing a single camera for

the acquisition of hyperspectral images and 3D scanning, the system inherently eliminates
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the need for complex data alignment. Therefore, it avoids potential mismatching errors and

preserves data integrity. The proposed system is rigorously evaluated and demonstrates high

spatial accuracy along with superior spectral resolution. Several case studies, such as the

detection of defects in spinach leaves, are conducted to illustrate the system’s potential for

practical applications, showcasing its versatility and effectiveness in real-world scenarios.

The proposed method has been published in the journal of Optics Express (J. Li et al., 2021),

and the details have been discussed in Chapter 4.

• Proposed a 4D Vis-SWIR line-scan hyperspectral imaging system with a decoupled

system architecture to extend the spectral range and enhance scanning speed: Shortwave

infrared (SWIR) hyperspectral imaging plays a critical role in numerous applications due to

its ability to capture valuable spectral information beyond the VNIR spectrum. In light of

this, this dissertation proposes a system that captures hyperspectral images over a broader

wavelength range. In Chapter 4, a 4D visible and near-infrared (VNIR) line-scan hyperspectral

imaging system is developed, which acquires both hyperspectral images and 3D spatial

data using a single camera. Although this configuration enables simultaneous capture and

avoids complex data registration, it limits the spectral range to the visible and near-infrared

(VNIR) wavelengths and the scanning speed to 3 mm/min. To overcome these limitations,

this dissertation introduces a 4D Vis-SWIR line-scan hyperspectral imaging system that

employs a decoupled system architecture, wherein hyperspectral imaging and 3D spatial

data acquisition are performed independently through two subsystems. The hyperspectral

imaging subsystem with two line-scan imagers can capture hyperspectral images covering

from visible to shortwave infrared wavelength range. Meanwhile, the 3D imaging subsystem

scans objects for 3D reconstruction. The key innovations of this method include a novel line-

scan homography method for precise registration of VNIR and SWIR hyperspectral images

and a transformation algorithm for accurate alignment of 3D spatial data with hyperspectral

images. The integration of 3D spatial data with hyperspectral images is achieved with subpixel

accuracy, ensuring high-quality data fusion. In addition, the decoupled system architecture

allows the system to cover a spectral range from 400 nm to 1700 nm, which provides a

broader scope than existing systems, and it enables the system to adjust the scanning speed

of each subsystem independently, further increasing the system’s practicality. This advanced
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methodology is already accepted by the journal of Optics Express and is elaborated upon in

Chapter 5.

6.2 Future work

Based on the proposed methods in this dissertation, we can further explore the applications of 4D

hyperspectral imaging in various fields. Besides, as the proposed 4D hyperspectral imaging systems

are aimed at indoor applications, there is a necessity to investigate a 4D hyperspectral imaging

system for outdoor scenarios.

6.2.1 Application of 4D hyperspectral imaging

In addition to the simple cases presented in this dissertation, the proposed 4D hyperspectral imaging

systems have potential applications in various other fields, such as cultural heritage preservation,

industrial quality control, and household waste classification.

In the field of cultural heritage, accurate documentation and analysis of artifacts such as colorful

statues and sculptures are crucial for preservation and restoration efforts. The 3D data acquired

by the system can capture the precise geometry details of these artifacts, providing valuable

information about their structural integrity and any physical damage they may have sustained.

Simultaneously, the hyperspectral images can be utilized to analyze the pigments and materials of

the artifacts, which allows us to identify the original pigments, detect overpainting, and understand

the degradation processes. Such detailed spatial and spectral information can assist conservators

in making informed decisions regarding restoration techniques and preservation strategies. In

industrial settings, hyperspectral imaging can be employed to classify the levels of metal corrosion

by detecting subtle spectral differences associated with different stages of oxidation and material

degradation. on the other side, the 3D data can be utilized to analyze the surface roughness and

topography of metal components. By integrating spatial and spectral data, manufacturers can achieve

a more thorough evaluation of product quality, leading to improved reliability and performance of

industrial components. In household waste classification, hyperspectral imaging can identify and

categorize different types of household waste based on their spectral uniqueness, distinguishing

materials such as plastics, metals, paper, organic matter, and glass. Additionally, the 3D spatial data

can be used to estimate the volume and shape of waste items, providing insights into the volume ratio
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of each waste type. Therefore, the integration of hyperspectral and 3D imaging is also beneficial in

this field.

Furthermore, the extensive spectral data acquired by 4D hyperspectral imaging systems enable

the application of deep learning-based methods. The abundance of spectral images provides a rich

dataset for developing and training specific deep-learning models tailored to various tasks. By

leveraging these models, it is possible to enhance the analysis and interpretation of both spatial

and spectral information, thereby advancing the capabilities of 4D hyperspectral imaging in diverse

applications.

6.2.2 4D hyperspectral imaging system for outdoor applications with enhanced robustness

and portability

Outdoor applications, such as intelligent crop monitoring and environmental surveillance, increas-

ingly demand 4D hyperspectral imaging systems that can capture both spatial and spectral data under

complex and dynamic field conditions. In outdoor environments, factors such as fluctuating weather,

varying illumination, and environmental noise bring significant challenges in acquiring robust and

accurate 4D hyperspectral data. Besides, in outdoor use, a 4D hyperspectral imaging system is

usually mounted on carrier platforms like drones or ground-based robots, which requires the system

design to be compact and portable. The previously proposed 4D hyperspectral imaging systems are

primarily designed for indoor applications, where experimental conditions are relatively controlled

and stable. The bulky system setup of these two systems also makes them unsuitable for mobile

outdoor applications. Furthermore, the fringe projection profilometry utilized in these systems is

inherently better suited for indoor environments due to its measurement range and sensitivity to

object surface reflectance conditions. Therefore, to meet the requirements of outdoor scenarios, a

novel 4D hyperspectral imaging system tailored for outdoor scenarios with enhanced robustness

and portability is necessary.

Several existing methods aim to generate 4D hyperspectral data in outdoor scenarios by com-

bining spatial and spectral imaging techniques. One common approach involves integrating 3D

spatial data from Time-of-Flight (ToF) cameras, stereo vision systems, LiDAR, or laser scanners

with spectral images captured by snapshot hyperspectral cameras or line-scan methods. For in-

stance, LiDAR provides high-precision depth information, which, when fused with spectral data,
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enhances the accuracy of scene reconstruction in outdoor environments (Kahraman & Bacher,

2021). Additionally, spectral information itself can be utilized for range measurement. For in-

stance, by modeling the wavelength-dependent thermal attenuation by the air, researchers developed

a passive, texture-independent depth measurement method with far range (Nagase et al., 2022).

Learning-based methods have also emerged as promising tools for generating 4D hyperspectral data.

Approaches like Neural Radiance Fields (G. Chen et al., 2024) and 3D Gaussian splatting (Di et al.,

2024; Sinha et al., 2024)can render complex scenarios utilizing spectral images. However, despite

these advancements, challenges remain. Data registration-based methods inherently suffer from

mismatches between 3D spatial data and hyperspectral images. The integration of multiple sensors

can lead to increased system complexity and reduced portability, making them less suitable for drone

or robot-mounted applications. Learning-based methods often require substantial computational

resources and extensive training data, which may not be practical in field conditions.

In the proposed 4D Vis-SWIR hyperspectral imaging system, we utilized two line-scan cameras

to capture hyperspectral images spanning wavelengths from 400 to 1700 nm. Actually, the two

line-scan cameras can consist of a stereo vision system to acquire 3D spatial data and hyperspectral

images at the same time. By utilizing the stereo vision method for 3D data acquisition, the

new system will become more suitable for outdoor applications, as it alleviates the depth range

limitations inherent in fringe projection profilometry. Besides, the elimination of the bulky 3D

imaging subsystem used in the previously proposed method reduces the system’s complexity and

enhances its compactness, making it more conducive to integration with carrier platforms. However,

implementing this method is challenging. Generating disparity maps and estimating accurate depth

from the two line-scan cameras are difficult due to the limited overlap of their fields of view. Besides,

system calibration is not straightforward, especially in outdoor scenarios where feature points with

known geometric information are scarce.
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