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ABSTRACT

The epidemiology of seasonal influenza is shaped by mechanisms across
ecological scales, from molecular interactions to global climate patterns. Misaligned data
may greatly impact analytical inference, but spatial constructs characterizing larger
scales, e.g., regions, lack concrete, standard definitions and, consequently, are often
overlooked in influenza research.

In this dissertation, I analyze patterns in human mobility, disease incidence, and
viral genetic evolution to holistically characterize spatial structuring within the United
States related to seasonal influenza. In Chapter 2, I model commuting flows and
influenza-like illness (ILI). Using an estimated critical distance of ~150km or ~93mi, I
show that simple summary metrics of local mobility from county-level commutes
informs some variation in state-level ILI epidemic intensity. In Chapter 3, I evaluate
numerous regional delineations of the US for their ability to capture important patterns of
worker commutes, ILI incidence, and viral population structure. From this network

science community analysis, I find evidence suggesting that the US may be best



represented with ~8 subnational regions which are not precisely captured by existing
administrative regional delineations. In Chapter 4, I systematically describe local
outbreaks of four seasonal influenza viruses across a decade of flu seasons in the US. I
show that the average isolate diversities of local outbreaks exhibit weak spatial
autocorrelation, and marginally, local outbreaks in more populous states tended to have
less diverse viral isolates which may suggest either impactful differences in transmission
patterns or isolate sampling.

Taken together, these analyses suggest that there is inherent structuring of local
and regional scales within the US. Given these findings, I speculate that much of the
observed variation in seasonal influenza epidemiology at the regional level could be
explained by the underlying spatial organization of local populations. Additionally, this
work shows that even with simple methodologies and crude conceptualizations of scale,
we can abstract information from data at higher resolutions which is salient to patterns at
larger scales and coarser resolutions. With continued effort, we may be able to identify
systematic sources of variation in outbreak dynamics and viral evolution which would be

invaluable when modeling an otherwise largely chaotic infectious disease system.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

OVERVIEW

The epidemiology of infectious diseases, such as seasonal influenza, is shaped by
mechanisms across ecological scales, from the molecule, cell, and organism to the
population and metapopulation (1). However, spatial constructs characterizing larger
scales lack concrete definitions and, consequently, are often overlooked in influenza
research (2). To explain briefly, a metapopulation is defined as a collection of local
populations separated by space but connected by migration (3); while distinctions of the
metapopulation patches housing local populations may be clear at some scales, e.g., host
cells or organisms as patches for parasites, what constitutes a “local” population is less
well-defined at larger scales, e.g., host populations as patches. This dearth of knowledge
in spatial structuring may both bias inference (4) and inhibit accurate modeling (5), cf.,
the ecological fallacy and cross-level bias (6) or gerrymandering (7).

In this dissertation, I attempt to address this problem in part by characterizing sub-
national spatial structuring in the United States (US) and its impact on epidemiological
patterns of seasonal influenza. To achieve this goal, I set forth three specific aims:
characterize regional patterns in human mobility and their associations with the epidemic
intensity of influenza-like illness; identify specific influenza transmission zones (ITZs)

within the US; and describe the spatial variation in the phylogenetic signal of local



influenza outbreaks. Altogether, this work constitutes a holistic characterization of the
spatial epidemiology of seasonal influenza on a subnational, metapopulation scales in the
US.

This introduction gives background on seasonal influenza and observed
epidemiological patterns, particularly focusing on transmission across scales and the

importance of researching this topic.

INFLUENZA VIRUS & DISEASE CHARACTERIZATION

Influenza Illness

Influenza is a respiratory illness caused by influenza virus infection (8). Influenza
infections and the illness they cause are acute in nature, i.e., quickly onset and relatively
short-lived. The natural history of an illness describes the progression of disease from
exposure to resolution in the absence of medical intervention; for influenza, this typically
spans 4-7 days for the average, uncomplicated case (8). Following transmission of
influenza virus particles, an infected person can begin feeling sick after an average of 2
days and can shed virus and become contagious, up to 1 day before or without ever
feeling i1l (9). Once symptoms begin to show, an infected person will typically feel worst
over the next 1-2 days and be sick for 3-7 days total (9).

Influenza illness presents in a range of disease severity. Some may experience an
asymptomatic, subclinical infection, while, for others, influenza infection may be a
primary cause of death. Clinical presentation in uncomplicated cases may include fever,
cough, sore throat, chills, or malaise (8). More severe cases may have more numerous or

debilitating symptoms and additional complications may develop not limited to the upper



respiratory system, such as encephalitis (brain inflammation), pneumonia, or even sepsis
(10); these complications may be the result of the influenza virus infection alone or

related to influenza-associated secondary bacterial co-infections (10,11).

Virology

Influenza viruses are orthomyxoviruses, a family of negative-sense RNA viruses
with segmented genomes and host-derived envelopes (17). There are two genera of
influenza viruses that cause significant disease in humans, influenzavirus A and
influenzavirus B, more colloquially referred to as type A and type B. Influenza B viruses
(IBV) are solely human pathogens, while influenza A viruses (IAV) have a broad range
of hosts and, relatedly, similarly broad genomic diversity (18). Further narrowing it
down, there are two IAV subtypes, H3 and H1, and two IBV lineages, Victoria and
Yamagata, that circulate widely causing seasonal outbreaks in the US; these four viruses
are referred to collectively as seasonal influenza viruses.

IAV and IBV share similarities in their viral structure, genomic composition, and
viral protein functions. Both types of influenza viruses have genomes composed of
single-stranded RNA and consist of eight homologous gene segments. The genomes
encode similar proteins essential for the virus’s structure and replication, including two
surface antigens, hemagglutinin (HA) and neuraminidase (NA). HA is responsible for
binding the virus to host cells and is the primary target of human adaptive immunity (19).
Opposing the binding function of HA, NA cleaves the binding between HA and sialic
acid residues which helps the virus escape from infected cells as well as avoid

mucociliary clearance (20,21).



Box 1. Clinical Case Management of Influenza

The acute nature of influenza infection, illness, and the risk of
complications makes an accurate and timely diagnosis paramount in clinical case
management. Chief complaints and clinical presentation are not uniquely
characterized for / specific to influenza. For example, influenza-like illness
syndrome (ILI), often used in surveillance based on triaged signs, is defined as a
fever (temperature 100F/37.8C or higher) and a cough and/or a sore throat (12).
These criteria are non-specific, and, consequently, patients with ILI are not
necessarily influenza cases. Many other seasonal, respiratory infectious agents
cause similarly characterized respiratory illness which may be captured in
syndromic surveillance programs. Even so, aggregate analysis of signs and
symptoms can help to identify influenza cases via clinical decision/prediction rules,
though algorithm performance and accuracy can vary in practical settings, e.g.,
using patient reported signs and symptoms in telemedicine contexts (13), and,
ultimately, these approaches still need to be validated (14). Influenza diagnosis can
be confirmed using one of many available diagnostic tests. These tests identify
influenza by detection of viral antigens (e.g., rapid diagnostic tests), viral genetic
material (e.g., polymerase chain reaction assays), or viable virus (cultures) in
samples collected from suspected cases (15). Testing for influenza is recommended
for clinicians if the results may influence clinical management of disease (16).
Diagnostic testing does not preclude influenza treatment using antivirals, though,
but it can still be otherwise useful for understanding prognostic risk profiles and

recommending non-pharmaceutical interventions for outbreak control (16).



DESCRIPTIVE EPIDEMIOLOGY

Person

Each year in the United States, approximately 8% of people experience influenza
illness; this amounts to estimates of 9.3 million — 41 million incident cases annually since
2010 (22,23). Most infections are self-limiting, resolving without medical intervention,
and some may even be subclinical with no or very mild symptoms. Still, many influenza
infections cause significant disease; surveillance figures indicate as much, with annual
estimates of 100,000 — 710,000 hospitalizations and 4,900 — 51,000 deaths (23).

Everyone is susceptible to influenza virus infection, but the risks of infection,
symptomatic illness, and more severe illness with complications are influenced by
characteristics specific to the individual person as well as characteristics of the infecting
viral strain. Typical host-related risk factors include age (being young or elderly), having
a compromised immune system, and having numerous other comorbid conditions which
may all influence an individual’s probability of developing more severe illness and/or
complications (10). These risk factors are all closely interrelated and may ultimately
underlie factors of the immune system and its ability to react effectively (quickly and
efficiently) to the influenza viruses (24). For example, younger children and the elderly
may have less effective immune responses to influenza challenges, though for differing
reasons, i.e., naiveté versus senescence, respectively. Conversely, a well-adapted immune
system may be considered a protective factor, potentially even to the extent of sterilizing
immunity, i.e., infection-preventing immunity. As it is thoroughly ingrained into human
ecology, most people have repeated influenza infections over the course of their lives

with adaptive immunity developing early in childhood (24,25).



Place & Time

The incidence of influenza illness is not consistent throughout the year. Rather,
the burden felt during influenza outbreaks is concentrated over several months. In the US,
influenza outbreaks align with the winter season, usually beginning around October,
peaking sometime between December and February, and dissipating around May (26).
This routine occurrence, or seasonality, in influenza incidence is not limited to the US,
but common among other regions with temperate climates. Although coinciding with
behavioral shifts during the winter holidays, the pattern of seasonal outbreaks is largely
attributed to changing climatic conditions which directly impact the transmissibility of
influenza viruses (27,28).

Influenza outbreaks happen at different times in different places. These
heterogeneities in the regularity and relative timing of influenza outbreaks around the
world may combine to facilitate the spread and persistence of influenza virus lineages
(29). For example, on the global scale, the northern and southern hemispheres experience
winter at different points in time in a calendar year. In fact, these seasons are
complementary over the course of a year; winter in the northern hemisphere corresponds
to summer in the southern hemisphere, as does northern summers and southern winters.
As more ideal climatic conditions oscillate back and forth between northern and southern
hemispheres over the course of a year, influenza virus lineages can follow these suitable
environmental conditions by hopping between (or causing) asynchronous outbreaks (29).
This conveniently timed range expansion offers opportunities for influenza virus lineages

to avoid seasonal transmission bottlenecks (25,29).



Variable Disease & Outbreak Dynamics

Although clearly important to influenza epidemiology, these observed patterns
and aspects of person, place, and time are moderated by features more directly related to
the virus itself. Generally, IAV, particularly H3N2, are more notorious, contributing to
both higher rates of infection and severe disease; IBV also cause significant disease, but
overall incidence is less than IAV (3 TAV to every 1 IBV confirmed case) and
demographic profiles of incidence and mortality skew relatively younger for IBV (30,31).

IAV and IBV co-circulate in human populations causing seasonal outbreaks in the
US. Viruses from either influenza type may be the predominant cause of influenza illness
within an outbreak or aggregate season, but identifying which strain will dominate in an
upcoming season is not so trivial. Further compounding uncertainty, the dynamics and
epidemiological profiles of outbreaks caused can vary considerably among populations
and seasons, even when caused by closely related strains. For example, consider that
there is a four-fold discrepancy in the range of point estimates for single season burdens
of symptomatic illness, i.e., 9.3 million versus 41 million symptomatic illnesses estimated
for the 2011-2012 and 2017-2018 influenza seasons, respectively (23). These aspects
directly impact public health preparedness, particularly in strain selection for seasonal
influenza vaccine design as mismatches between strains included in vaccines and those

circulating can contribute to reduced vaccine effectiveness (32).



Box 2. Reproduction Numbers

The basic reproductive number, Ry (R-naught), is an estimated figure of the average
number of secondary cases generated by a single infectious case (of any communicable
disease) in a completely susceptible population. Influenza is thoroughly ingrained in human
ecology making it difficult to calculate Ro. The effective reproductive number, R, is a
similar metric without the stipulation of a population being completely susceptible, a more
immediate and practical measure of transmission. For seasonal influenza, R. is estimated to
be around 1.19-1.37 (33,34); this means that seasonal influenza cases generally transmit to 1-
2 others. This measure of transmission has shown to vary among influenza strains; Re
estimates are around 1.47-2.27 for the 1918 influenza pandemic and 1.3-1.7 for the 2009
influenza pandemic (33). More recently, Parino et al (2024) estimates of the maximum value
of R. within a seasonal outbreak to be ~2.25 for [AV and ~1.5 for IBV (35). Additionally,
while reproduction numbers vary among influenza strains, they also can vary among the

specific populations which harbor influenza outbreaks (36).

TRANSMISSION ACROSS SCALES

Molecular Basis

Antigenic novelty significantly impacts the fitness of influenza viruses through a
complex interplay of immune escape and functional constraints. Antigenic drift allows
viruses to evade host immunity, driving the continuous replacement of circulating strains
(37,38). Viral HA is robust to mutation (39), and seemingly minor differences in protein

sequences can correspond to distinct antigen profiles (37,40). As the immunodominant



antigen, specific mutations encoding changes in HA antigenicity can confer an advantage
to novel variants as the ability to evade adaptive immunity may correspond to an
increased viral fitness. However robust and efficient, evolutionary trajectories are limited
as viral function must be maintained. Aside from mutations impeding specific protein
viability or function, evolution is further constrained by the need to balance complex
relationships and interactions among viral components, e.g., opposing mechanisms of
binding and release between HA and NA (41). Additionally, the fitness landscape is
complex and dynamic, with some mutations only becoming deleterious in later strains,
and molecular evolution does not always follow locally optimal pathways (41,42).

IAV and IBV differ in their potential to generate diversity. Similar influenza
viruses can trade whole genome segments, but IAV and IBV have diverged extensively
and reassortment across types is no longer possible (43,44). This mechanism of genomic
change, referred to as antigenic shift, contributes to pandemic IAV, but more subtle
genomic change based on the accumulation of mutations, called antigenic drift,
contributes to the ability of seasonal influenza viruses to repeatedly invade human
populations (40). IAV and IBV differ in their mutation rates, which is suggested to be
rooted in RNA polymerase differences (25); H3N2 strains tend to drift more than HIN1
and IBV, which have more stable antigenic profiles (25,40). Although seemingly subtle,
these molecular scale differences are the basis for substantial differences observed at

larger scales in influenza epidemiology.



Spatial Heterogeneity

Global patterns of circulation differ among strains of influenza viruses. H3N2
circulates globally, while HIN1 and both IBV have more limited geographic ranges and
may even persist locally during the off season (40). Southeast Asia, China, and India
have been shown to act as important sources of influenza viral diversity (45). Global
circulation patterns do not strictly adhere to a source-sink model of viral gene flow.
Rather, influenza viruses will sometimes exhibit dynamic metapopulation structuring
with lineages traversing the globe along geographic pathways outside of those expected
from source-sink dynamics (46). Further supporting this notion and reinforcing the
concept of dynamic metapopulation, evidence suggests that no influenza virus strains
persist in the local contexts of outbreaks (45); instead, influenza viruses may persist by
jumping from outbreak to outbreak within or across regions (29,45), reinforcing the
concept of dynamic metapopulation and the importance of spatial epidemiology .
However, much of what contributes to a region’s ability to incubate variant lineages and
act as a global transmission corridor remains only speculated.

Human mobility is a well-characterized driver of spatial spread across scales.
Modes of transport and other factors underlying mobility patterns, e.g., motivating reason
and distance, seem to have differential importance depending on the focal scale.
Passenger air travel significantly influences the global spread of influenza, especially that
related to HIN1 and H3N2 (47,48), and domestic airline travel volume, particularly
around Thanksgiving, can help to predict the rate of influenza spread in the US (49).
However, at increasingly local levels, more geographically limited mechanisms of

mobility, e.g., work commutes and non-routine travel, are stronger predictors of influenza

10



spread than air traffic (50-52). Simulation modeling efforts recapitulate the impact of
scale on the dynamics showing that population interconnectivity via passenger air travel
alone is insufficient to reproduce observed patterns of spatial spread within regions
(53,54). Continuing down the scale, the patterns of spread between cities in the US
exhibit even more local patterns with stronger relationships with geographic distance than
already locally biased work commutes (52).

At the regional level and below, other factors in addition to mobility have been
shown to impact spatial patterns in seasonal influenza epidemiology. Beyond mobility,
spatial hierarchies in epidemic spread, first described in the context of measles epidemics
(55), may be related to differences in populations’ abilities to host outbreaks, e.g.,
population size and density or gradients of seasonal forcing (27,28,50,56). Along the
lines of host-density-dependent transmission (57), it is intuitive that influenza outbreaks
in more populous locations would be larger and more extensive. However, Dalziel et al
(2018) showed that seasonal influenza epidemics tend to be more diffuse, or spread out
over time, in cities with larger populations and more crowding, suggested to result from
increased off season transmission (58).

In addition to aspects more directly related to host population organization and
mixing, ecological interactions can shape disease and outbreak dynamics. Seasonal
influenza viruses exhibit complex ecological interactions, including competition and
cooperation among different types and subtypes. Studies have found evidence suggesting
interference between influenza strains (59-61) and between influenza strains and other
respiratory pathogens, such as respiratory syncytial virus (RSV) (62,63). Interactions as

these impact population dynamics potentially through immune-mediated interference
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(63,64). Though potentially less impactful to transmission dynamics, coinfections with
bacterial pathogens, such as Streptococcus pneumoniae, are an inherent risk of influenza

and can impact an individual’s disease severity and outcomes (65).

DEFINING SCALE WITHIN THE US FOR SEASONAL INFLUENZA

Necessary Scale Considerations

Much of the variation in patterns of seasonal influenza epidemiology has a
molecular basis, but there are also numerous larger-scale, ecological factors that
influence influenza epidemiology and viral population biology; that is, influenza disease
dynamics are shaped by mechanisms across scales from either direction. Seasonal
influenza epidemiology is complex and dynamic, coupled with viral evolution and
dependent on scale. This nature of the infectious disease system (1) has continually
frustrated public health efforts towards prevention and control, e.g., vaccine
effectiveness, and, relatedly, (2) necessitates cross-scaling perspectives and study.
However, cross-scaling studies are inherently challenging, owing partly to difficulties in
compiling fragmented, disparate data and the need for multi-disciplinary approaches
(66,67). An additional part of the challenge in cross-scaling approaches is that the
concept of scale is somewhat abstract and lacks a concrete definition, an aspect that is
needed for practical applications, e.g., units of observation or analysis. Individual hosts
are well-defined units [of infection], but distinctions become less clear at larger scales,
e.g., individual populations or regions. There is an additional challenge when theoretical
constructs do not align well with the practical constructs or units of aggregation found in

data. For example, cities have been referred to as “the natural unit of an outbreak™ (50),
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but their administrative/geopolitical boundaries may poorly represent the local population

organization and intermixing (53), cf., core-based statistical areas (68).

Regionalizing the United States

The US is the third largest country in the world with respect to both land area and
population, with substantial spatial heterogeneity in geography and demography (69).
Regional delineations of the US are plentiful. This topic has received much attention in
the field of economics research in the descriptions of labor markets (70,71) as well as
from the Office of Management and Budget in the characterizations of core-based
statistical areas (CBSAs) (72). Rosensteel et al (2021) found similar issues and used a
complex network approach to identify an epidemiological geography of the US, and
suggested 3-5 epidemiologically distinct regions per flu season (2). Largely, these efforts
towards regional delineations work to identify agglomerations of county or county-
equivalent areas, irrespective of state borders. However, we recognize the tendency for
data on seasonal influenza to be less spatially resolved.

Publicly available surveillance data on seasonal influenza, e.g., reported case
counts and location metadata of sampled viral isolates, are reported at the state-level,
rather than for smaller geographic units. Regional delineations respective of state borders
are still plentiful. However, none are directly related to nor derived with respect to
influenza. For example, the US Census Regional Divisions first arose to describe
geographical groupings of the colonies (73) and the Department of Human and Health
Services Regions function to facilitate governance and communication between federal

and local administrations (74). These two examples of regional schema are found in
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influenza surveillance and research, e.g., Centers for Disease Control and Prevention
FluView (75), but their definitions of regions conflict with each other, i.e., group states
differently. So, while many regional delineations are conveniently available, the choice of
which to use for influenza research is not trivial. Without due consideration of spatial
units of analysis, researchers may open their inferences to unforeseen bias (70); for
example, misrepresented spatial heterogeneity could obscure effect size estimates in
epidemiological association studies, and improper population partitioning could influence

gene flow estimates from phylogeographic studies.

APPROACH & DISSERTATION ORGANIZATION

In this dissertation, I work to address this problem of defining scale within the
US. To characterize scale within the US related to seasonal influenza, I set forth three
specific aims.

In Aim 1, I characterize regional patterns of human mobility within the US and
quantify their associations between mobility and influenza-like illness (ILI) epidemic
intensity. Human mobility has been the topic of modeling studies from a variety of
disciplines. Recently, Alessandretti et al (2020) described scales of human mobility
relating them to hierarchical containers; this represents a paradigm shift away from the
scale-free properties of human mobility, a characteristic suggested by the authors to be
the result of data aggregation (76). Mobility models have been often used in influenza
research, though they tend to be comparatively simple, e.g., gravity-based formulations.
Researchers use mobility models to generate synthetic networks which both capture

essential but minimal characteristics of human mobility and are able to capture
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relationships important to outbreak patterns. Independent studies have found a disjointed
relationship relating mobility to distance, particularly in the US, and that models are
improved by explicitly modeling short- and long-distance commutes (50,77). As
Alessandretti et al (2020) suggest that data aggregation may obscure scale, I believe that
this disjointed nature of distance distributions in the US reflects an inherent scale.
Furthermore, I hypothesize that mobility patterns summarized according to scale may
relate to patterns in influenza outbreaks. To test this, I first identify a critical distance
threshold using gravity models fit to county-level commuting flows. Next, I use the
identified distance threshold to summarize the commuting data to the state level, the
resolution of ILI data. Finally, I explore the association between nested mobility patterns
and ILI epidemic intensity using linear regression models.

In Aim 2, I generate data-driven regional delineations of the US and, along with
other existing delineations, evaluate their suitability and validity in characterizing
influenza transmission zones (ITZs). Geopolitical borders and boundaries, or other
administrative geographical units, may not be suitable for describing epidemiologically
relevant partitions between populations (2,53). Conversely, treating the US as a single
entity or data point effectively ignores substantial spatial heterogeneity, cf., the World
Health Organization’s North American Influenza Transmission Zone (78). To address
this issue, I take a similar approach to Rosensteel et al (2021). However, I expand upon
this methodology in several key ways, including a holistic assessment of alternative
schemes. I begin by conducting a specific spatial clustering analysis incorporating both
ILI incidence data and human mobility to enumerate specific groupings of states that

exhibit similar incidence patterns, i.e., weekly rates of change in ILI cases. Next, |

15



compile clustering results into a pairwise adjacency matrix creating a network
representation of incidence patterns. Along with commuting networks, I analyze these
networks for community structuring using several iterations of community detection
algorithms. The resulting regional delineations are then compared to one another and to
other existing delineations by quantifying their ability to capture elements of (1) the
commuting networks, (2) ILI clustering, and (3) phylogenetic grouping of H3N2. By
incorporating aspects of mobility, disease incidence, and pathogen ancestry in this way, |
assess and evaluate the validity of regional delineations to represent influenza
transmission zones.

In Aim 3, I investigate spatial variation in the phylogenetic signal of local
outbreaks caused by co-circulating seasonal influenza viruses. Seasonal influenza
exhibits considerable spatial variation in outbreak dynamics, e.g., epidemic intensity (58).
However, it is unclear whether this corresponds to variation in the underlying
transmission. Molecular surveillance and genomic epidemiology have become important
tools in public health practice and infectious disease research, and, consequently,
molecular sequence data have accumulated to a considerable degree. As artifacts of
transmission are imprinted into the genomic sequences of pathogens (79,80), this means
that systematic characterizations of transmission may now be possible. Furthermore,
ecological interactions among and between influenza viruses, and other pathogens exist
and shape outbreak dynamics (60,62—64), but the spatial extent of these interactions, or
scale, has not been described. To explore these gaps, I take a phylogenetic approach to
identify local transmission clusters. The phylogenetic trees of these local transmission

clusters are then summarized to quantify the mean pairwise patristic distance, a measure
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of phylogenetic diversity. I then correlate the realized diversity among local transmission
clusters at various spatial, temporal, and spatiotemporal extents, as well as across
influenza subtypes/lineages. In doing so, I characterize implicit relationships and
statistical dependence in the evolutionary patterns, or more simply, the transmission
chains of local outbreaks.

This dissertation is organized accordingly with the next three chapters
corresponding to these three aims. Finally, I conclude with a discussion of the overall
thesis in a final chapter, drawing conclusions from the aggregate work and suggesting

promising future directions of this work.
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ABSTRACT

Human mobility shapes the spread of communicable diseases such as seasonal
influenza. Although mobility has often been described as scale-free, several studies
modeling commuting patterns have found it necessary to include scale-dependent
components, e.g., piece-wise distance functions, to more accurately simulate influenza
spread. Whether mobility is scale-free in nature or not, spatial scales are an inherent part
of observation and data, e.g., spatial resolution, and spatial misalignment challenges
analyses integrating disparate data. However, it remains unclear how to best address
spatial misalignment of data, and analytical solutions are often unique for every given
application. This challenge is exemplified in commuting and influenza incidence data
which are available at the US-county- and US-state-levels, respectively. I hypothesized
that by more explicitly considering spatial scale, it may be possible to translate
information across the differing spatial resolutions. To investigate this, I first estimate a
critical distance threshold distinguishing local and long-distance commutes. Then, I
explore the associations between regional summaries of these local commuting patterns
and regional influenza-like illness epidemic dynamics. I identified a fairly consistent
distance threshold, ~150km, across US Census Regions from separate gravity model fits.
Distance-based commuting summaries, e.g., proportions of total commutes that were
local, showed a curvilinear relationship with ILI epidemic intensity, with intermediate
values of commuting summaries often corresponding to more intense seasonal epidemics.

These results suggest that there is an inherent local scale in commuting flows which may
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be useful for characterizations of local population mixing and its impact on regional

outbreak dynamics.

INTRODUCTION

Patterns in human mobility shape the spatial spread of communicable infectious
disease, including seasonal influenza. Traditionally, human mobility has been
characterized by scale-free properties, suggesting that movement patterns do not adhere
to a specific scale and may be well described with power-law distributions (1-3). More
recently, inherent scales of human mobility have been described, and observed scale-free
properties are an artifact of data aggregation (4,5).

As a result, mobility models have been extensively used in influenza research.
Studies have incorporated mobility in various ways and across scales (3,6—8). Many
mechanisms of mobility contribute to influenza epidemics, but the importance of any one
is determined by the spatial scale. Influenza viruses spread quite effectively around the
globe along complex and dynamic networks of geographic pathways (9—11) well-
characterized by passenger air travel (7,11,12). At smaller, subnational spatial scales, the
population interconnectivity, and therefore influenza spread, is governed by smaller scale
yet more frequent mobility mechanisms such as those related to work and school
commutes (6,7,13). Mobility models fit to worker commutes in the US have revealed a
somewhat disjointed relationship across space. For example, both Viboud et al (2006)
and Truscott et al (2012) fit gravity models to US data using separate terms for short and

long distances represented in the data; the gravity model of Viboud et al (2006) fit
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commutes at distances less than and greater than 119 km separately (6), and Truscott et al
(2012) estimated critical distances of ~150 km and ~300 km for separate model
formulations (8).

Here, we posit that this disjointed relationship may be suggestive of an important
regional scale within the US and, furthermore, hypothesize that mobility patterns at this
scale may impact influenza epidemic dynamics. To test this hypothesis, we take a two-
stage approach. First, we estimate a distance threshold distinguishing between short- and
long-distance commuting flows. Then, we use this distance threshold to summarize state-
level commuting flows into several metrics which are then assessed for their associations

with state-level influenza-like illness (ILI) epidemic intensity.

METHODS

Data

All data included in this analysis are publicly available. Data on worker
commutes (14), county and state population sizes (15), county and state spatial
coordinates (16) and boundaries (17), and regional classifications (18) come from the US
Census Bureau. Data on influenza-like illness incidence are from Centers for Disease
Control and Prevention (CDC) FluView and the Florida Department of Public Health
(19). All data management and analyses were conducted using R (version 4.3.0) and
RStudio (20). Scripts are compiled in a reproducible format on GitHub

(daileyco/Mobility-Models & daileyco/Influenza-like-Illness).
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Mobility Model Fitting

Data Management

Commuting data from two time periods, 2011-2015 and 2016-2020, were
combined with population and spatial data all at the county-level. Population size
estimates for midpoint years were used to align with the commuting data; population size
estimates for 2013 and 2018 were joined with commuting data for 2011-2015 and 2016-
2020, respectively. Additional aspects of data alignment are described in further detail in
the supplemental methods. Population center coordinates were used to calculate pairwise
distances between locations, using Haversine or Great Circle distances.

Altogether, this dataset contains observations of commuting flows (i.e., the
number of workers estimated to commute) between pairs of counties or county-
equivalent areas, population estimates and coordinates of population centers for both
origin/resident and destination/work locations, and the distances for each commuting

flow.

Gravity Models

Commuting flows between two locations were modeled using a series of gravity
models. The basic formulation of the gravity model characterizes the number of workers,

T, commuting from origin/resident location i to destination/work location j as

B1pB
pPipP2
B
di]?

T11=C

)
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where T'ij is the commuter flux (number of people) between locations i and j, the origin
and destination, respectively, C is a constant / intercept, Pi the origin population size, Pj
the destination population size, dij the distance between origin and destination, and £ ; 3
are power parameters.

We extend this basic gravity model four-fold by including three-way interaction
terms using indicators of long-distance commutes and commutes between two large
populations, similar to Truscott and Ferguson (2012) (8). The indicator term
distinguishing short- and long-distances is set by an additional distance threshold
hyperparameter which we estimate as the focal point of this analysis. County population
size tertiles were calculated, and commuting flows between counties whose population
sizes were both in the upper tertile range were categorized as “commutes between two
large populations.” Altogether, the base gravity model is estimated separately for four
subgroups: (1) short-distance commutes between two large populations, (2) long-distance
commutes between two large populations, (3) short-distance commutes between all other
population pairs, and (4) long-distance commutes between all other population pairs.

The intercept and power parameters of the gravity model were estimated in
tandem with the distance threshold hyperparameter. The gravity model was fit using log-
linear regression models. The distance threshold parameter was optimized against the
root mean square error (RMSE) of the gravity model predictions; the RMSE is calculated
on the log scale comparing model predictions with observed commutes. We estimate
these parameters for the aggregate US and for subsets of the data corresponding to the US

census region of the origin locations to explore potential regional variation.
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Epidemic Intensity Regression

Data Management

In the next stage of our analysis, we investigate patterns in the epidemic intensity
of ILI at the state-level. Epidemic intensity was calculated similar to Dalziel et al (2018)
(21). Briefly, we calculate the relative distribution of ILI cases over the course of an
influenza season and summarize this distribution using Shannon’s entropy. The
reciprocal of entropy is scaled to a unit interval using the observed minimum and
maximum; epidemic intensities closer to zero correspond to more diffuse outbreaks with
cases more evenly distributed among weeks, and epidemic intensities closer to one
correspond to intense outbreaks with cases more concentrated / distributed among fewer
weeks.

We combine data on epidemic intensities with data on population sizes and
several spatial area descriptors, e.g., average county size and total state size. We calculate
several metrics summarizing the commuting patterns observed at the county-level within
each state. Using the distance thresholds characterized in our previous analyses, we
categorize county-level commutes based on their distances, referred to as extents.
Commuting extents are either internal / intracounty, short-distance, or long-distance, and
we summarize the county-level commutes accordingly in counts, proportions, and ratios.

Univariate and bivariate distributions of data were inspected using histograms and
scatter plots. Some variables were transformed to mitigate the effects of skewing and
extreme values on model fit. Chiefly, the transformations include a square root

transformation of epidemic intensity, quarter root transformations of ratios of commuting
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extents, and natural logarithm transformations for most others. Additionally, prior to

model fitting, each of the covariates were centered and scaled.

Regression

To analyze the variation in epidemic intensity, linear mixed effects regression
models were fit to the data. The seasonal ILI epidemic intensity for each state served as
the outcome of interest, or response variable, for this analysis. Independent variables
included population size and various metrics summarizing spatial organization and
mobility. We include two independent random effects for states (space) and influenza
season (time).

We first fit a base model including only the random effects for location and
season and a single fixed effect for population size. From this base model, we investigate
the variation explained by a single additional predictor. That is, each covariate is assessed
independently from the others but controlling for location, season, and population size.
Point and 95% confidence interval estimates were calculated for each covariate term. As
covariate terms were standardized, save those for peak week and county counts, the
magnitudes of parameter coefficients are directly comparable and can be interpreted as
changes to epidemic intensity values estimated for one standard deviation increases in

covariate value.
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RESULTS

Three-hundred thirty million twenty-three thousand two-hundred forty-eight
people are estimated to have lived in the US in 2018, with over 68 million, 59 million,
124 million, and 77 million people in the Midwest (MW), Northeast (NE), South (S), and
West (W), respectively (Supplementary Table A.1). The population is distributed among
3222 (3220 in 2013) county or county-equivalent areas, with 1055 (32.8%), 296 (9.2%),
1422 (44.1%), and 449 (13.9%) counties in the MW, NE, S, and W census regions,
respectively. The slight imbalance of both population and spatial units suggests that
models fit to the aggregate data would be biased towards the S region.

The commuting data are extensive with over 258 840 observations total
accounting for nearly 300 million workers’ trips over the ten-year period (Supplementary
Table 1). Most workers in the data reported working in their resident county (72.5%); we
refer to these as internal / intracounty / zero-distance commutes. The relative frequencies
of internal commutes varied slightly across regions with a larger share of workers in the
W (83%) and a slightly lower share of workers in the NE (65%) working in their resident
county, compared with 71% in both the MW and S. Commuting distances ranged from
zero to over 9400 kilometers; the median distances of commutes were 155 km for the
MW, 190 km for the NE, 172 km for the S, and 519 km for the W. These marginal
distributions suggest some differences with respect to the extent of commutes across
regions.

Gravity model fit improved when successively stratified by a distance indicator

(i.e., short- vs long-distance), an assortative population size indicator (i.e., between two
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large populations or not), the census region of the origin/residence location, and the time
period of data (all p<0.001, Supplemental Table A.2).

Trips longer than 120 km, 138 km, 136 km, and 189 km were identified as long-
distance commutes in the MW, NE, S, and W regions, respectively (Figure 2.1). The
estimated distance thresholds seem to be relatively consistent across the two time periods
of data for all regions, save the NE region whose estimated distance threshold is <100 km
for commutes from 2016-2020. This finding is sensitive to changes in the objective
function used in the optimization procedure, particularly in whether the error between
observed and predicted values is calculated for the data on a log scale or as counts
(Supplementary Figure A.1). This suggests that there may be some regional heterogeneity
as to a threshold distinguishing short- and long-distances in commuting flows.
Comparing estimates of the gravity model power parameters, we find some slight
differences among modeled subgroups, including regions. Power parameter estimates
seem most heterogeneous across short-distance and long-distance commutes
(Supplemental Figure A.2).

Using these distance thresholds, we summarize the commuting data by categorizing
commuting flows as internal, short-distance, or long-distance. Across all locations, short-
distance commutes accounted for an average of 25% (SD=11.3%) of all commutes and
long-distance commutes accounted for an average of 1.33% (SD=0.54%) (Supplemental
Table A.4). Comparing commuting extent within each state, the average ratio of short-
distance to internal commutes is 0.37 (SD=0.23), the average ratio of long-distance to

short-distance commutes is 0.13 (SD=0.34), and the average ratio of long-distance to
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Figure 2.1. Estimated Distance Thresholds used in Gravity Models (A) and Select Examples of Commuting Flows near the
Distance Threshold in the mainland US (B), Alaska (C), Hawaii (D), and Puerto Rico (E). Distance thresholds represent a
hyperparameter distinguishing the piece-wise components of the distance decay terms in a gravity model. The selected examples of
commuting flows are at distances similar to the estimated distance thresholds, highlighting the relative differences in scale between
local mobility, US counties, and US Census Regions. Note that the size of county-equivalent areas in Alaska and the selected
commuting flow distance are much larger than found elsewhere.
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internal commutes is 0.02 (SD=0.007). This suggests that the commuting patterns within
each state could be heterogeneous.

ILI data were mostly complete, save for Puerto Rico in the 2011-2012 and 2012-
2013 influenza seasons (Supplemental Figure A.3). The average epidemic intensity for all
locations across all seasons was 0.227 (Supplemental Table A.3); season averages ranged
from 0.152 for the 2011-2012 season to 0.288 for the 2017-2018 season. On average,
Delaware experienced the most intense epidemics, 0.59 averaged across all seasons, and
the District of Columbia experienced the most diffuse epidemics, 0.053 averaged across
all seasons. Season specific trends in epidemic intensity are seen somewhat universally
across all locations; similarly, but to a lesser extent, many states seem to exhibit
consistent patterns of epidemic intensity across all seasons (Supplementary Figure A.4).
Taken together, this suggests that autocorrelation is substantial within seasons and within
locations.

These commuting extent summary metrics, along with various others, were
included as fixed effects in mixed-effects linear regression models of epidemic intensity
(main variables depicted in Figure 2.2). Upon noticing potentially non-monotonic,
curvilinear relationships during data exploration, we decided to include polynomial
terms, through third-order/cubic terms, for the assessed independent variables. When
compared to a baseline model including random effects for season and location
(Supplementary Figures A.5 & A.6) and a fixed effect for population size, we observe
significant (p<<0.05) model fit improvements from analyses of variance when including
terms for the proportion of internal commutes (p=0.035), the ratio of short-distance to

internal commutes (p=0.047), and the ratio of long-distance to internal commutes
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Figure 2.2. State-level Influenza-like Illness Seasonal Epidemic Intensity (A) and County-level Commuting Summaries of
Long-distance (B), Short-distance (C), and Zero-distance / Internal Commutes (D). Epidemic intensity is Shannon's entropy
rescaled to the unit interval where values closer to one correspond to more intense outbreaks with incidence concentrated over
relatively few weeks in an influenza season. The graph depicts the epidemic intensity for each state averaged over nine influenza
seasons. Commuting extent frequencies show the county-level categorizations of commuting flows which were then summarized to

the state-level for use as predictors in regression models of ILI epidemic intensity.
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(p=0.002) (Supplementary Table A.5). Additionally, we observe marginally significant
(0.05<p<0.1) model fit improvement when including terms for the proportion of short-
distance commutes (p=0.051) and the proportion of long-distance commutes (p=0.097).
For each of these models, the coefficient estimates for the population size term stayed
relatively consistent. Though, for the models including the proportion of long-distance
commutes and the ratio of long-distance to internal commutes, the coefficient estimates
for the population size term (B=-0.041 and =-0.045, respectively) are slightly lower than
estimates for other models (e.g., B=-0.051 when including peak week). This suggests that
these commuting extent summary metrics are associated with epidemic intensity and that
the effects of long-distance commutes may be somewhat related to those of population
size.

By plotting the model curves, we can more clearly see the non-monotonic
relationships between the commuting extent summary metrics and epidemic intensity
(Figure 3). Even though some cubic terms are statistically significant (Supplementary
Table A.5), the prevailing trend in the data seems to be an inverted U-shaped curve. That
is, epidemic intensity values tend to be lower valued at either extreme, while they are
higher at middling, intermediate values of the commuting extent summary metrics. For
example, in states where either relatively few or many (small or large proportions,
respectively) workers commute within their residence county, there tend to be more
diffuse ILI epidemics. Though, there seems to be substantial unexplained variability
(Figure 3 B-D, F-H) and, at most, a moderately sized effect. This suggests that summaries

of commuting extent have a slight impact on epidemic intensity, states with
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Figure 2.3. Estimated Model Curves for the Relationships between Influenza-like
Illness Epidemic Intensity and (A-D) the Proportion of Internal Commutes and (E-
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influenza season for a single US state. As the commuting data are less temporally
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the model curves. Generally, the relationship between population size and epidemic
intensity can be seen along a top-bottom gradient.
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intermediately valued commuting patterns experience more intense epidemics, and that

the relationship is likely well-described with quadratic terms.

DISCUSSION

Influenza epidemic dynamics are complex and influenced by a variety of
mechanisms across scales. Human mobility is one such factor that has been well-
characterized as a driver of influenza spread and outbreak dynamics. In this study, we
attempted to characterize patterns of human mobility at a sub-national, regional spatial
scale within the US and investigate their associations with ILI epidemic intensity. We
identified a potentially region-defining distance of ~150 km or ~93 mi by fitting gravity
models to worker commutes. This distance may vary slightly across broad regions of the
US and may be subject to shifting over time. Moreover, commuting extent summary
metrics seemed to both vary substantially among US states and weakly correlate with ILI
epidemic intensity.

The estimated distance thresholds seem to agree with estimates from others who
employed gravity models fit to commuting data (6,8) as well as to a much more complex
mobility model fit to extensive mobile-phone data (4). As such, it seems likely that ~150
km or ~93 mi is a region-defining distance. Human mobility is complex and can be
influenced by a variety of factors. The built environment greatly impacts mobility
patterns, e.g., via characteristics such as walkability or the availability of public transport
(22,23). These aspects may underlie identified scales of human mobility (4). This also

means that patterns in human mobility, such as what constitutes a regional scale, may be

43



spatially heterogeneous, depending on transportation infrastructure. Our results may offer
evidence of heterogeneous scale definition as we observed slightly different distance
thresholds among US Census regions. However, there may be an alternative explanation
for the observed variation. Rather than fundamental differences in a scale-defining
distance, there may be several alternative explanations, including data imbalance,
heterogeneity in spatial organization of populations, and observation censoring.
Particularly, we suspect that interval censoring of spatial distances may have a
particularly strong impact. For example, we estimate a larger distance threshold for the W
region. However, qualitatively, the size of counties increases along an East-to-West
gradient, and many of the counties or county-equivalent areas in the West are large
enough to completely contain short-distance displacements, e.g., Matanuska-Susitna
Borough, Alaska (Figure 2.1C).

Infectious disease data are often only available at coarser resolutions, e.g., state
versus county, whether for reasons of limitations in observation or concerns of privacy.
This discrepancy presents a challenge to consolidate disjointed / misaligned data in cross-
scaling analyses as it is not trivial to align theoretical structuring with practical
constructs/units of aggregation found in data. Generally, this can represent a challenge in
integrating disparate data and effectively quantifying nested distributions across scales.
Aggregation to a common spatial unit is a simple fix. This is often done in studies that
focus on the coupling patterns between larger geographic regions found in mobility data
(6); in doing so, much of the heterogeneity in mobility nested within larger geographic
areas is effectively lost (c.f., mixing assumptions in infectious disease models). Some

researchers have found ways to translate information across scales. For example, Dalziel
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et al (2018) characterize a city’s baseline transmission potential in terms of population
crowding within city districts (21). Here, we suggest that nested mobility patterns at a
regional scale may also be impactful to influenza outbreak dynamics. A simple
explanation for this may relate to population mixing. We observed more diffuse ILI
epidemics in places where either a small or a large proportion of workers commuting
short distances. These places may represent either a higher- or lower-degree of
population mixing, respectively. More extensive population mixing may correspond to
increased baseline transmission of influenza which relates to more diffuse influenza
epidemics, as in the findings of Dalziel et al (2018) (21). Conversely, less extensive
population mixing may be interpreted as relative isolation, or a modular/fragmented
population through which influenza struggles to spread consistently. Either way, the
intermediate values in commuting extent summary metrics may represent a sort of
“Goldilocks™ scenario with more intense influenza epidemics.

The greatest limitation of our study lies with limitations in the data, specifically in
the granularity. The influenza data was well-resolved temporally, with weekly incidence
estimates, yet relatively spatially coarse, aggregated to the state level. On the other hand,
the commuting data was temporally coarse, 5-year aggregates, yet more spatially
granular, county level. Additionally, the commuting data is limited in the spatial

relationships it quantifies; less than 2% of all potential / unique county pairings (32222) are

represented, and other mechanisms of mobility, e.g., leisure, or mobility of different
segments of the population, e.g., children, are not captured. Additionally, as these data
are made available using the geopolitical units of county and state, it was not possible for

us to assess these as “containers” which impact human mobility scales (4), though other
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researchers have noted that state borders may not represent epidemiologically relevant
population partitions.

Despite these limitations in the data, we still were able to characterize a sub-
national regional scale within the US and relate patterns of mobility about that scale to

patterns in ILI epidemic intensity.
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CHAPTER 3

INFLUENZA TRANSMISSION ZONES WITHIN THE UNITED STATES'
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ABSTRACT

Seasonal influenza viruses spread around the world. The World Health
Organization (WHO) categorizes countries into Influenza Transmission Zones (ITZs).
However, these classifications may not appropriately capture the spatial heterogeneity
found in large countries. For the United States, I hypothesize there may be important
subnational ITZs each capable of harboring influenza outbreaks and shaping influenza
epidemiology. This study aims to identify and validate US regional delineations relevant
to influenza epidemiology. Utilizing network science community detection, I generate
various regional delineations and evaluate their alignment with human mobility, disease
incidence, and viral evolution to propose subnational influenza transmission zones in the
US. Out of the 173 regional delineations evaluated, many with 8-13 regions showed an
increased signal in modularity for commuting networks. A similar signal is seen when
comparing fits to influenza-like illness clustering networks, but schema with fewer
regions had greater modularity scores, perhaps indicative of a resolution limit given a
more sparsely connected network. Tip-trait association indices between regional
delineations and H3 phylogenetic trees may suggest better alignment for schema with six
or fewer regions, but the delineations with 5-14 regions all fit similarly well. Overall,
these results suggest that the US may be comprised of ~8 subnational ITZs. Furthermore,
data driven regional delineations produced herein indicate slightly different spatial
structuring than existing administrative regional delineations such as the Department of

Health and Human Services Regions which is commonly used in influenza research.
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INTRODUCTION

Seasonal influenza viruses routinely spread among many regions of the world.
Recognizing the global and diffuse nature of influenza transmission, the World Health
Organization (WHO) classified nations and territories among 18 influenza transmission
zones (ITZs) which represent “geographical groups of countries, areas or territories with
similar influenza transmission patterns” (1). While a regional classification as proposed
by the WHO is able to aid in international coordination in the prevention and control of

influenza on the global scale, its validity in describing transmission zones remains to be

shown.

The timing and extent of seasonal influenza outbreaks has been used to
investigate alternative classifications of ITZs. Caini et al (2017) studied the WHO
European Region and report a simpler scheme wherein two ITZs were suggested over the
five ITZs outlined by WHO (2). This work has, in turn, garnered its own scrutiny. In an
opinion piece, Shin and Manuel (2017) voiced concerns of bias in the representation of
large countries as single data points; specifically, they discuss Russia, the largest country
in the world with considerable geographic and demographic variation (3). This critique
resonates with the delineation of the North American ITZ which is comprised of
Bermuda, Canada, Greenland, Saint Pierre and Miquelon, and the United States of
America (US) (1). Such a coarse classification misrepresents the heterogeneity of the
region and its ability to harbor multiple influenza outbreaks. The US alone is the third
largest country in the world in terms of both total area and population (4). As such, the

US likely constitutes several separate, subnational ITZs.
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Regional delineations of the US are plentiful. This topic has received much
attention in the field of economics research in the descriptions of labor markets (5,6) as
well as from the Office of Management and Budget in the characterizations of core-based
statistical areas (CBSAs) (7). Largely, these efforts towards regional delineations work to
identify agglomerations of county or county-equivalent areas, irrespective of state
borders. Similarly, Rosensteel et al (2021) developed a county-level “epidemiological
geography” of influenza through the use of proprietary data on influenza-like illness (8).
However, we recognize the tendency for publicly available data on seasonal influenza to
be less spatially resolved. Publicly available surveillance data on seasonal influenza, e.g.,
reported case counts and location metadata of sampled viral isolates, are often reported at
the state-level, rather than for smaller geographic units. Regional delineations respective
of state borders are still plentiful. However, none are directly related to nor derived with
respect to influenza. For example, the US Census Regional Divisions first arose to
describe geographical groupings of the colonies (9). So, while many regional delineations
are conveniently available, the choice of which to use for influenza research is not trivial.
Without due consideration of spatial units of analysis, researchers may open their
inferences to unforeseen bias (5). In this study, we aim to address this gap by both
identifying regional delineations of the US that are relevant to the epidemiology of
seasonal influenza and validating them as putative influenza transmission zones. We do
this in two stages. First, we generate many variations of US regional delineations using a
network science community detection approach. Then, we evaluate these regional

delineations in their alignment with spatial constructs found in human mobility, disease
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incidence, and viral evolution to identify subnational influenza transmission zones in the

US.

METHODS

Data

Data for these analyses are publicly available and consist of ILI incidence,
commuting flows, geographic centers of population, regional classifications, and
phylogenetic trees of seasonal influenza subtype H3N2.

Data on ILI incidence are from Centers for Disease Control and Prevention
(CDC) FluView (10) and the Florida Department of Public Health. These data contain
weekly counts of reported ILI cases and the population of healthcare recipients from
which the ILI cases originated. These counts cover the 50 US states, the District of
Columbia, and Puerto Rico (henceforth, collectively referred to as “states) and span
October 2011 to September 2020.

State-level cartographic boundary files were downloaded from the US Census
Bureau (11). Questionnaire responses concerning the origin and destinations of
commuting flows from the American Community Survey (ACS) are summarized as
tables and made available by the US Census Bureau (12); tables for 2011-2015 and 2016-
2020 were downloaded and included in analysis. The (ACS) commuting data is essential
for understanding patterns of daily movement among populations, which can be
indicative of economic activity, urban planning needs, and regional connectivity. Data on
the spatial distributions of population are also from the US Census (13). These data

consist of single point locations, geographic coordinates, representing the geographic
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center of population for each state at the time of the decennial census, 2010 and 2020.
The 2010 estimates of population center coordinates were aligned with the 2011-2015
estimates of ILI and commuting, and the 2020 estimates were aligned with the 2016-2020
ILI and commuting estimates. State classifications into Census Regions, Census
Divisions, and Department of Health and Human Services (HHS) Regions were
abstracted and used in comparisons with our data-driven regional delineations. Of note,
the US Census Regions nor US Census Divisions include Puerto Rico in their
classifications, so, when necessary, we include Puerto Rico as its own separate region
within the US Census Regions and US Census Divisions classifications.

Damodaran et al (2023) investigated the phylogeography of seasonal influenza
virus H3N2 in the US(14). In their work, a set of empirical trees was sampled from a
posterior distribution derived from Markov chain Monte Carlo (MCMC) computation via
a Bayesian Evolutionary Analysis Sampling Trees (BEAST) analysis (25). In our study,
we use the resulting set of 500 empirical H3N2 trees from Damodaran et al (2023) to
compare regional delineations. In doing so, we aim to identify and validate the regional
structures that best describe the spread of the virus, providing insights into the dynamics
of influenza transmission.

All data management and analysis were conducted using R programming
language (version 4.3.0) in the RStudio/Posit interactive developer environment(15),
unless otherwise specified. Processing and analytical scripts are made available in
GitHub repositories (link daileyco/Influenza-like-Illness-Clustering and daileyco/Spatial-

Structuring) to facilitate reproducibility.
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Community Detection

We work to characterize US ITZs by generating regional delineations from
human mobility and ILI incidence data. To generate regional delineations of the US, we
investigate community structuring in a network science framework. Networks were
generated from the data to represent coupling between locations. Broadly, we analyze
two types of networks: commuting networks and clustering networks. Commuting
networks are generated from the commuting flows data, and clustering networks are
generated from a focused clustering analysis.

To generate commuting networks, we aggregate the commuting flow data to the
state level separately for each time period of data. While our clustering analyses only
included undirected, state-level commuting networks, in this community analysis, we
also analyze the commuting flow data as directed, state-level commuting networks.
Additionally, we include modified versions of each network which have rescaled edge
weights. The edges in the networks were rescaled by standardizing the edge weights
according to the total number of commuters originating from each location/node in the
directed networks; that is, edge weights in the directed networks were divided by the total
sum of edge weights for each origin node to transform edge weights into proportions. As
with the original directed commuting network, these scaled networks were aggregated for
each unique pair of locations to generate undirected networks.

In addition to networks based purely on commuting data, we generate networks
based on the incidence of ILI using a spatial clustering analysis. Briefly, clusters were
identified using scan statistics via the SaTScan software (16) by comparing bi-weekly

change in the counts of ILI between locations. Our approach to this clustering analysis is
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discussed in more detail in the Supplementary Information. Our clustering results consist
of two types of clusters, i.e., spatial clusters and commuting network clusters. Each set of
clusters was transformed into an adjacency matrix wherein two locations were considered
adjacent if a single cluster included both locations. The weights in these adjacency
matrices correspond to the frequencies of clustering, i.e., how many times two states
clustered together. These adjacency matrices were used to generate two networks: one
spatial clusters network and one commuting clusters network.

Altogether, we analyze ten separate networks: two directed commuting networks
(one for each time period of data, 2011-2015 and 2016-2020), two undirected commuting
networks, two scaled/directed commuting networks, two scaled/undirected commuting
networks, and two ILI clustering networks. Network management and analyses are
carried out using the igraph package in R (17).

To generate regional delineations of the US, i.e., potential ITZs, we investigate
the community structuring in each included network. We do this by passing each network
to an array of community detection algorithms. A community in network science refers to
a group of nodes more strongly or densely connected to each other than to nodes
belonging to other groups; in our case, as nodes correspond to spatial locations, the
generated communities reflect groups of states or regions. We use three community
detection algorithms: edge-betweenness, Louvain, and Spinglass which all vary in how
communities are generated but may each be useful in delineating transmission regions
(reviewed in (18)). The Louvain and Spinglass algorithms both contain a hyper-
parameter, called resolution, r, and gamma, y, respectively, which effectively controls

the number of communities detected within a network. We implemented a grid search
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approach in which these hyperparameters were set to a range of values (r,y 1
[0,0.5,1,1.5,2]) to generate an array of regional delineations which vary in the total
number of regions/communities. With the 10 included networks and the 11 variations of
community detection algorithms, we attempted 110 independent runs to generate regional
delineations of the US. In addition to these data-driven regional delineations, we include
three administrative classifications in our comparisons: US Census Regions, US Census

Divisions (9), and HHS Regions (19).

Comparison of Regional Delineations

As our goal is to identify US ITZs, we compare our data-driven regional
delineations in terms of their fit to the underlying networks from which they were
generated, their alignment with grouping patterns in seasonal influenza phylogenies, and
their relative balance in community memberships.

To quantify the fit of the regional delineations to commuting and clustering
networks, we use network modularity. Clauset, Newman, and Moore (2004) (20),
following Newman and Girvan (2003) (21), define the modularity of a weighted network

as

1 kik;
Q= 210 =5 ] 8@,
ij

where A;; represents the weight of the edge between nodes i and j, k; = }.; A;; is the sum

of the weights of the edges attached to, or degree of, node i, m = },;; 4;; is the total sum
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of edge weights in the network, c; is the community to which node i is assigned, and the
6 function S(Ci, Cj) is 1 if ¢; = ¢; and 0 otherwise. Modularity values are strictly less than
one; positive values indicate that community ties are stronger than would be expected by
random chance, zero values indicate no deviation from randomness, and negative values
indicate community ties are weaker than expected by random chance. Simply, higher
values of modularity correspond to better alignment of community structure with the
underlying relationships in the network. We calculated the modularity for each
combination of regional delineation and network in our analysis. Modularity scores were
averaged for commuting and clustering networks, separately, to have two composite
scores for each regional delineation. These scores were used to rank the regional
delineations in their alignments with patterns of either human mobility or disease
incidence.

To quantify the alignment between regional delineations and phylogenetic
groupings of seasonal influenza viruses, we use the tip-trait association index and
parsimony score. Following Wang et al (2001) (22), Parker, Rambaut, and Pybus (2008)

(23) define the association index statistic (Al) as

where k is the number of internal nodes in a phylogeny, f; is the frequency of the
majority trait among all descendant tips of internal node i, and m; is the total number of

descendant tips of internal node i. Simply, larger values of Al correspond to worse
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alignment between trait classifications, here ITZ, and the grouping structure in the
phylogeny. The significance of observed phylogeny-trait associations can be tested
against null distributions of association index values for a given phylogeny. These null
distributions are generated by permuting trait labels among phylogenetic tree tips and
recalculating the association index. Furthermore, by averaging values across a set of trees
generated from posterior distributions in Bayesian analyses, it is possible to incorporate
phylogenetic uncertainty. We use methods similar to those employed in the Bayesian
Tip-association Significance testing (BaTS) software (23,24). Briefly, we calculate Al of
the observed data with each of the 500 phylogenies in the empirical tree set found in
Damodaran et al (2023) (14). The observed trait data are permuted 1000 times and
subsequently used to generate a null distribution of AI. We then record the proportion of
trees in the null distribution that have an Al value less than or equal to the median Al of
the observed trait data and the H3N2 phylogenies. Additionally, we follow the same
procedure with the data in the calculations of parsimony scores (PS) to relate the regional
delineations to phylogenetic grouping. Calculations of Al and PS were done using Leke
Lyu’s R package, TTAT (https://github.com/lyu-leke/TTAT). Together, we use the
metrics of Al and PS to rank regional delineations in the alignments with patterns of
ancestry for an important seasonal influenza virus.

To quantify the relative balance in community membership among regional
delineations, we calculate the Shannon entropy for two metrics. First, we use entropy to
assess the balance in membership frequencies of states among regions, i.e., does each
region have a similar number of constituent states. Second, we use entropy to assess the

balance of maximum clade sizes (MCS) (23,24) of each region in the H3N2 empirical
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tree set. Damodaran et al (2024) included a subsample of 1000 sequences based on the
overall phylogenetic diversity in all available sequences for their phylogenetic
reconstructions; as such, we feel that by assessing the balance in MCS, we also indirectly
quantify the extent of shared phylogenetic diversity within each region. MCS and
respective calculations of entropy are done for each phylogeny in the empirical tree set.
Following, we take the median MCS entropy across all trees for a single metric per
regional delineation. We use both membership and MCS entropy values to rank regional
delineations in their balancing of region size.

Altogether, we ranked each of the regional delineations with respect to their
ability to capture spatial patterns in human mobility networks, ILI incidence, and H3N2
phylogenetic grouping while also balancing the sizes of each region with respect to the
number of constituent states and, by proxy, the shared phylogenetic diversity. We take
each of the four ranking metrics equally to create a composite ranking of the regional
delineations. We use this composite ranking in two ways. First, we select the overall best
regional delineation. Second, we take the top 50 ranking regional delineations and
overlay their boundaries for a composite view of the extent/magnitude of partitioning

between states.

RESULTS
ILI data were mostly complete over the 469-week study period, from 2 October
2011 to 20 September 2020. Puerto Rico was the only location with missing data with

~22% of dates missing observations; these missing values mostly correspond to the 2011-
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2012 and 2012-2013 influenza seasons, with complete data 2014 onwards. Observations
with missing data were simply excluded from clustering analyses.

Using this ILI data, we identified 730 and 671 potential spatial and commuting
network clusters, respectively (Supplementary Table 1). Of these, 67 (9.2%) of spatial
clusters and 46 (6.9%) of commuting clusters were deemed significant based on
permutation tests.

Significant spatial and commuting clusters were used to generate two cluster
networks. The spatial clusters network was not fully connected, i.e., not all nodes were
connected to another node by an edge and had a total of 892 edges (Supplemental Table
2). The commuting clusters network was fully connected by its 1 060 edges. On average,
the clustering networks seem to have relatively larger edge weights than the other
commuting networks. The undirected commuting networks have more edges than
clustering networks, as do the directed commuting networks, expectedly.

Eighty-five of our 110 runs (77%) of the community detection algorithms
identified a total of 144 regional delineations (schematized in Figure 1). All runs of the
edge-betweenness community detection algorithm yielded results. The Louvain algorithm
runs yielded results for every network except the two directed commuting networks as
the algorithm works for undirected networks only. The Spinglass algorithm does not
work for graphs that aren’t fully connected and, thus, did not yield results for the spatial
clustering network. The hierarchy of communities detected from the edge-betweenness
algorithm was extracted and all levels were included in our comparisons; this is
compared to a single regional delineation for each successful run of the Louvain and

Spinglass algorithms which include hyperparameters to similarly yield a set of
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community schemes varying in resolution. In addition to our 144 data-driven regional
delineations we include 4 comparisons: US Census Regions, US Census Divisions, US
HHS Regions, and a regional delineation where each state is its own region (e.g., using
the two-letter state code as the classification).

Our regional delineations had a variable number of regions, ranging from 1 up to
51 separate regions with most integers covered in between. Eleven of our regional
delineations contained only a single region and 2 others contained only two regions, one
of which was solely comprised of Puerto Rico.

When examining the commuting network modularity scores, we find a signal of
increased modularity for regional delineations which have a total number of 4-14 separate
regions which peaks with delineations having approximately 6-8 regions (Figure 3.1).
The administrative regional delineations (US Census Regions, Census Divisions, and
HHS Regions) fall within this range and have similarly large modularity values; though,
some of our other data-driven regional delineations seem to outperform the
administrative delineations with respect to modularity of the commuting networks. This
pattern seems consistent across all commuting networks, i.e., for both time periods and
regardless of the network modifications we explored. Averaging modularity across all
commuting networks, we rank the regional delineations in terms of their alignment with
human mobility. The US Census Regions, US Census Divisions, and HHS Regions rank
46", 54 and 52", respectively, in commuting network modularity.

A similar signal in the modularity scores of clustering networks is observed with a
band of observations separated from others at the baseline. However, unlike modularity

in the commuting networks, the signal in the modularity of the clustering networks seems
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Figure 3.1. Commuting Networks (A,B) and Clustering Networks (C,D) Modularity Scores for Regional Delineations
against the Number of Regions. In all networks, nodes were individual states. For the commuting networks, the edges
connecting nodes represented the commuting ties between those nodes. For the clustering networks, the edges represented the
number of times two nodes were in an identified disease cluster together. Higher modularity values represent a stronger
community structure within the given network. The highlighted points show the scores of three administrative regional
delineations and a single overall-best-performing regional delineation generated from the community detection analyses.
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in favor of fewer regions, peaking for those delineations with 2-3 regions; though, this
may be an artifact of a resolution limit due to the relatively sparse connections in the
clustering networks compared with the commuting networks (discussed in (25)). Again,
the administrative regional delineations similarly matched our regional delineations in
their fit to the clustering networks. The tendency for greater clustering network
modularity in delineations with fewer regions to seems to explain much of the
discrepancy in modularity for the US Census Regions compared to the US Census
Divisions, HHS Regions, and our delineations with a similar number of regions; that is,
much of the variation is seemingly affected by the differences in the number of regions.
Averaging the modularity for each delineation between the two clustering networks, we
rank the regional delineations in terms of their alignment with the incidence of influenza-
like illness. The US Census Regions, US Census Divisions, and HHS Regions rank 9,
32" and 39", respectively, in clustering network modularity.

Comparing the phylogenetic tip-trait association indices (Al) shows a slight favor
for delineations with fewer regions (Figure 3.2). The values for the Al are less directly
comparable across the delineations varying in the number regions; that is, the Al has an
implicit bias for traits with fewer numbers of classification levels (Supplemental Figure
B.7). The values shown for the Al reflect the proportion of values in our generated null
distribution which had an Al statistic less (i.e., more extreme) than the median Al statistic
across all trees for the observed data, similar to a p-value. These Al show a less
pronounced signal than the modularity scores. Many of the delineations with 5-12 regions
have similar values for Al. Contrary to the commuting network modularity scores, the Al

for the administrative regions seem to be on the lower-valued (i.e., better) edge of these
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Figure 3.2. Phylogenetic Tip-trait Association of Regional Delineations with H3N2
Empirical Tree Set against the Number of Regions. (A) Association Index; (B)
Parsimony Score. Association indices were calculated for each regional delineation and
each of 500 phylogenetic trees sampled from a posterior distribution in a Bayesian
evolutionary analysis of influenza virus subtype A/H3. Trait labels, i.e., state of isolate
collection, were permuted to generate a null distribution. The median association index
value was compared to this null distribution to calculated to show proportions. Lower
values indicate that groupings found in the phylogeny support the spatial structuring of a
given regional delineation.
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points, with relatively few of our regional delineations performing better. The PS values
have no signal whatsoever with all of the phylogenetic groupings being most
parsimoniously described by the observed data for most regional delineations with
markedly little variation. Combining these metrics of phylogenetic association, we rank
the regional delineations in terms of their alignment with the phylogenetic groupings of
H3N2 influenza viruses. The US Census Regions, US Census Divisions, and HHS
Regions rank 14", 27" and 22™, respectively, in phylogenetic tip-trait association.

The entropy scores for region memberships and maximum clade sizes (MCS)
again show a pronounced signal in favor of delineations with approximately 4-14 regions
(Figure 3.3). A band of observations lies separate from others at the baseline with
relatively higher entropy scores. However, unlike clustering network modularity and
phylogenetic tip-trait Al, entropy scores are biased in favor of delineations with greater
numbers of regions. Entropy scores peak locally around 14 regions, and globally for
those delineations with 40+ regions. Combining the entropy scores for region
membership sizes and MCS using a simple arithmetic mean, we rank the regional
delineations in terms of their balance of the frequencies of states included in each region
and the aggregate apportionment of phylogenetic diversity. The US Census Regions, US
Census Divisions, and HHS Regions rank 102", 55% and 46", respectively, in regional
entropy/balance.

By combining each of our four comparison rankings, we create a composite score
to identify candidate ITZs within the US. We use this composite score to select an overall
best regional delineation and to identify specific partitions common among top-

performing delineations; we include the top 50 (Figure 3.4). Our overall best regional
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Figure 3.3. Entropy of Community Membership (A) and Maximum Clade Size (B)
for Regional Delineations against the Number of Regions. I use entropy to assess the
balance of regions within each delineation. If a delineation has several regions with few
states and a single region with many, this would be an unbalanced regional delineation
with relatively lower entropy. So, larger values of entropy indicate a more balanced
regional delineation. Community size is as described with the relative frequencies of
states within each region. Maximum clade size refers to the largest monophyletic
grouping for a given region across a posterior set of 500 phylogenies of influenza virus
subtype A/H3; here, entropy captures the relative balance of phylogenetic diversity.
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delineation outlines 8 regions within the US (Figure 3.4). This overall best regional
delineation ranks 10" in commuting network modularity, 21 in clustering network
modularity, 35" in phylogenetic tip-trait association, and 71 in entropy. Of all the
administrative regions, the regions in our overall best delineation are most similar to the
HHS Regions (Rand Index (RI) = 0.793), followed by the US Census Divisions (RI =
0.788), and then the US Census Regions (RI =0.691).

Comparing our overall best and administrative regional delineations qualitatively,
we note some differences which may contribute to varying performance. One of the more
pronounced differences between the administrative regions and our top-performing
regional delineations concerns classification of Kentucky. Our top-50-performing
regional delineations indicate a strong separation between Tennessee and Kentucky while
in each of the administrative regions, these two states are grouped together. Similarly, we
observe strong separation of the DC-Maryland-Virginia area from either areas to the
North and South; this region is grouped with Pennsylvania to the North in the HHS
Regions and with North Carolina to the South in the Census Regions and Divisions,
while in our overall best it stands alone. From the other perspective, our top-performing
regional delineations indicate a strong grouping between Oregon, Washington, and Idaho.
This grouping is found in the HHS Regions and Census Regions, though Idaho is split
from the others in the Census Divisions. Similarly, we observe strong grouping between
New Mexico and Texas, but the Census Regions and Divisions partition areas along their
border. No single regional delineation, among our overall best and the administrative
regions, seems to represent all the strong partitions or groupings found in our top 50.

However, our findings do suggest that there is strong regional structuring in the US and
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Figure 3.4. Regional Delineations of the US. (A) Overlayed borders of our Top-50-performing regional delineations, (B)
Census Regions, (C) Census Divisions, (D) HHS Regions, (E) Our Overall Best regional delineation, (F) Classifications of
Alaska, Hawaii, and Puerto Rico for (A,B,D,E). Combining scores across commuting network modularity, clustering network
modularity, and phylogenetic tip-trait association indices(and entropy), I was able to rank the performance of all regional delineations
for their ability to capture patterns across mobility, disease incidence, and viral population structure. The top 50 performing regional
delineations are shown here with region borders overlayed. Therefore, darker lines correspond to divisions found more often in the top
performing regional delineations; conversely, faint, lighter lines correspond to divisions less frequently found in the top performing
regional delineations. Categorizations of Alaska, Hawaii, and Puerto Rico are shown as simple color-coded legend boxes.
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that there may be some implicit hierarchies around core states, e.g., Georgia, Texas, and

California.

DISCUSSION

Transmission of influenza viruses occurs on broad spatial scales and is not
necessarily obstructed by geopolitical borders found across the world. Conversely, a lack
of administrative or practical partitions in surveillance data from broad geographic areas
does not necessarily correspond to a lack of epidemiologically relevant partitions within
the region. As one of the largest countries in the world, the US likely constitutes several
separate influenza transmission zones (ITZs). Here, we explored this notion of
subnational ITZs. First, we explored patterns of clustering in the incidence of influenza-
like illness (ILI). We found largely similar spatial signals in the clustering of ILI
incidence in space and on commuting networks, though the temporal signals may suggest
locations are linked by different mobility processes over the course of an outbreak. We
then utilize our clustering results alongside representations of human mobility and
seasonal influenza virus evolution to identify epidemiologically relevant regional
delineations of the US, i.e., ITZs. We find a strong signal indicating that the US may be
well characterized using 4-14 regions. Also, in our evaluations of many potential ITZ
classifications, we present a holistic approach to characterizing the spatial epidemiology
of seasonal influenza and suggest an overall best regional delineation.

Epidemiological surveillance data has been used by others in the characterization
of ITZs (2,26). These studies relied on similar timing and peaks in epidemic curves to

identify groups or clusters in the data. Similarly assessing aspects of epidemic timing,
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Rosensteel et al (2021) developed a county-level “epidemiological geography” using a
similar network community detection approach. However, we feel that the clusters
identified in this way may not directly correspond to transmission clusters. For example,
similarity in the timing of influenza outbreaks can occur between locations simply based
on the timing of seasonal forcing / local climates. Without more concrete linkages
between outbreaks in difference locations, e.g., contact tracing or viral genetic
relationships, it is difficult to assess the validity of clustering as transmission linkages.
We attempt to overcome this limitation in two ways: we generate regional delineations
using patterns in human mobility and disease incidence; and we holistically evaluate
many potential regional delineations as ITZs.

As an obligate intracellular parasite, influenza viruses rely on their hosts’ mobility
for diffusion and dispersion on larger geographic scales. While global patterns of
influenza spread are largely owed to passenger air travel, influenza spread within the US
more strongly relate to local processes, e.g., workers' commutes and geographic distance
(27,28). Commutes are largely local movements and commuter volume between locations
is greatly impacted by the geographical distance that separates them, diminishing greatly
as separation increases (29,30). Our results reinforce the importance of more local spatial
relationships as our regional delineations were comprised of contiguous regions. By
analyzing our data in a network science framework, we removed implicit spatial
constraints and allowed for the possibility of ITZs to be spatially discontinuous. This was
intentional as we considered the possibility that highly populated, international travel-hub
states would be more tightly coupled with one another than with flanking, hinterland

regions. However, we did not identify such a feature in our candidate delineations.
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Rather, regions were contiguous collections of states, save the obvious exceptions for
Alaska, Hawaii, and Puerto Rico; though, Alaska, Hawaii, and Puerto Rico were grouped
with the closest region of the mainland in our overall best delineation.

In our clustering analyses, we use ILI rates of change as our outcome of interest.
That is, instead of using aspects of onset timing or epidemic peaks to assess the
coupling/relatedness of outbreaks in separate locations, we analyze the progression of an
outbreak using biweekly rates of change. If two locations have similar outbreak
dynamics, this may offer stronger evidence of some degree of relationship, e.g., linked in
transmission, between outbreaks as opposed to relationships potentially confounded by
latent variables, e.g., coinciding seasonal forcing. Additionally, the composition of each
cluster is founded on relationships based on both geographic proximity and population
interconnectivity, i.e., commuting ties, as opposed to relationships or similarity only
found in data signals. That is, we find these clusters to be epidemiologically/biologically
plausible groupings of outbreaks. Consequently, we feel this feature extends to our
candidate ITZ delineations. By using patterns of human mobility and disease incidence to
identify ITZs, there are elements of construct validity in each of our data-driven regional
delineations.

Further adding to the validity, each of the regional delineations in our analysis
was evaluated for its ability to align with spatial constructs in human mobility, disease
incidence, and viral ancestry. This interdisciplinary and cross-scaling feature of our
analysis is an increasingly necessary feature of infectious disease research. Of specific
interest, phylogeographic analyses interrogate pathogen molecular sequences, e.g., genes,

to uncover evidence of large-scale geographic transmission. One particularly common
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approach in these studies is the discretization of geographic space which allows for
simple and flexible inference of gene flow unconstrained by notions of distance.
However, we find that the use of regional delineations in influenza research is non-
standard and subject to analyst choice, e.g., CDC FluView presents “regional” data for
both Census Regions and HHS Regions (31). Furthermore, conveniently available
regional delineations, e.g., Census Regions, may not align well with the geographic limits
of an outbreak (14,27). This misrepresentation of space can allow lurking variables to
bias estimates of geographic diffusion. For example, consider the difference between the
classification of Kentucky in our overall best regional delineation (i.e., with Southern
states) versus the administrative regional delineations (i.e., with Midwest/Great Lake
states). For a quick reminder, our top-performing regional delineations indicated a strong
grouping between Kentucky and Indiana/Ohio and a strong partitioning between
Kentucky and Tennessee. If we extend this to describe influenza outbreaks, we could
consider there to be more shared phylogenetic diversity between Kentucky and
Indiana/Ohio and less shared phylogenetic diversity between Kentucky and Tennessee.
So, if we were to conduct a phylogeographic analysis using one of the administrative
regional delineations which group Kentucky with other Southern states, we could
artificially inflate / bias our estimates of gene flow between Southern and Midwest/Great
Lake states. Of course, this type of error is common to any discretization of space (or
continuous variables), and infectious disease surveillance data would first need to be
available at finer geographic resolutions to even attempt to optimally mitigate

misrepresentations.
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We identify at least three limitations in our study. First, we use a non-specific
disease indicator in influenza-like illness for our clustering analyses. There are many co-
circulating respiratory viruses which are subject to common seasonal forcing each winter
in the US, i.e., climate impacts transmissibility (32,33); these include SARS-CoV-2 and
RSV which together with influenza comprise the “tripledemic” threatening global health
(studied in (34). However, by using ILI in our analyses, we may have identified more
general respiratory infectious disease transmission zones, rather than specifically ITZs.
This could facilitate comparative analyses across infectious disease systems which could
be a fruitful direction for future research. Second, as previously mentioned, the scope and
resolution of our analysis is limited by the same characteristics of our data. We felt it
necessary to conduct our analysis respective of state borders, though smaller scale areas
may better align with outbreak limits. However, by using states as spatial units, we both
facilitate practical spatial alignment in data and, potentially, public health intervention.
Additionally, as we envision our results’ use cases in phylogeographic analyses, fewer
classifications (e.g., 8 regions versus 52 states versus 925 core-based statistical areas) are
much preferable to avoid issues computational complexity and model identifiability. This
aspect is becoming increasingly important as molecular epidemiology studies transition
into an era of big data. Third, we apply a rigid definition for the concept of community /
ITZ. Our community detection analyses yield non-overlapping / mutually exclusive,
static regional delineations. In reality, these characteristics likely do not apply to
transmission zones. Particularly, the stochastic nature of virus introduction may relate to
more variable delineations from season to season as the transmission zone unfolds

depending on where a local outbreak originates. However, regional delineations and 1TZs
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with these characteristics would have a limited utility as existing methodologies may
have difficulty accounting for the added complexity.

Altogether, we conclude that the US is characterized by several ITZs. Alongside
our specific results pertaining to the overall best regional delineation, we set forth a
framework for aligning spatial constructs across biological scales of organization and

validating given geographic constructs.
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ABSTRACT

Genomic epidemiology approaches are increasingly common in influenza
surveillance, offering high-resolution insights into transmission patterns. By analyzing
genomic data and reconstructing pathogen ancestry through phylogenetic methods,
researchers can uncover transmission dynamics that traditional case-based approaches
might fail to capture. Particularly, phylogenetic trees can shed light on to the underlying
transmission dynamics in an outbreak. With the accumulation of genomic data, it may
now be possible to systematically characterize spatial variation in transmission dynamics
of seasonal influenza in the United States. This study works towards this goal by
describing the phylogenetic signals of local influenza outbreaks across the US from 2010-
2020, focusing on type A (H3 and H1 subtypes) and type B (Victoria and Yamagata
lineages) influenza viruses. Comparing local influenza outbreaks, I find that the mean
pairwise patristic distance (MPD) among isolates of local outbreaks tends to be higher for
influenza A viruses than influenza B viruses, and that there seems to be a strong seasonal
fluctuation in the signals, perhaps indicative of subtype/strain dominance within a given
season. The MPD of these local transmission clusters showed weak spatial dependence
overall, but, comparatively, Hl and BYamagata seemed to be more consistent among
neighboring outbreaks, both in terms of space, e.g., border-sharing neighbors, and time,
e.g., sequential influenza seasons. Also, I find that local outbreaks in some states, e.g.,
California and Georgia, had marginally less diverse local outbreaks, potentially
suggesting some systematic differences in transmission patterns, if not simply isolate

sampling. With continued efforts towards systematic characterizations of local outbreaks
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using genomic epidemiology approaches, we stand to gain new, high-resolution insights

to seasonal influenza epidemiology.

INTRODUCTION

Genomic epidemiology approaches are becoming increasingly common in
influenza surveillance and research efforts. The analysis of genomic data on influenza
allows for the characterization of patterns that are obscured or otherwise difficult to
observe using more traditional, case-based approaches alone. A particular advantage of
using molecular scale approaches is the inherent high-resolution of observations.
Additionally with respect to genomic sequences, relationships among observations are
objectively encoded within the sequences themselves. These aspects can be leveraged
such that by reconstructing the ancestral patterns of pathogens using phylogenetic
methodologies, researchers can glean aspects of transmission (1,2). Phylogenetic trees
contain a wealth of information, and through their detailed analysis, we have learned
much about influenza. For example, phylogenetic studies of seasonal influenza viruses
have empirically characterized large-scale circulation patterns (3—5), coupling in
epidemiology and viral evolution (5,6), ecological interactions among co-circulating
strains (7), and numerous drivers of transmission (8,9). Moreover, simulation studies
have shown that simple quantitative summary metrics of phylogenies or tree shape
statistics are able to discriminate host contact patterns of transmission (10), help in
predictions of viral lineage persistence (11), and correlate with epidemiological quantities
such as reproduction numbers (12). With the increasing quality, coverage, and

availability of genomic sequence data, researchers are afforded new opportunities for
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higher-resolution studies of influenza. We find one such opportunity to investigate the
spatial variation of seasonal influenza outbreaks within the United States (US).

Seasonal influenza outbreaks may be caused by any one of several different
seasonal influenza viruses, including type A influenza viruses (IAV), H3 and H1
subtypes, and type B influenza viruses (IBV), Victoria and Yamagata lineages (13).
Spatial heterogeneities and hierarchies in seasonal influenza outbreak dynamics have
been well-characterized, e.g., with respect to timing (14—18) and epidemic intensity (19).
However, it is unclear how underlying patterns of transmission of local influenza
outbreaks may compare across the US. Here, we attempt to address this gap by
systematically characterizing the phylogenetic signal of local influenza outbreaks within

the US, 2010-2020.

METHODS

Data

Data for this study are publicly available and consist of genetic sequences, spatial
boundaries, and commuter flows.

Influenza genetic sequences are hosted by the Global Initiative on Sharing All
Influenza Data (GISAID) platform (20). Viral hemagglutinin (HA) gene sequences were
downloaded for influenza A viruses (IAV), H3 and H1 subtypes, and influenza B viruses
(IBV), Victoria and Yamagata lineages. Sequences were included for influenza virus
isolates sampled within the US from January 2010 through December 2020; any

sequences out of the study scope or with indeterminate/missing metadata on location and
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date of collection were excluded from analysis. Additionally, four isolate sequences, one
for each subtype, from 2000-2001 were included to serve as outgroups.

Cartographic boundary files for state or state-equivalent areas in 2018 at the 1:5m
resolution were downloaded from the US Census Bureau (21). Questionnaire responses
concerning the origin and destinations of commuting flows from the American
Community Survey (ACS) are summarized as tables and made available by the US
Census Bureau (22); tables for 2011-2015 and 2016-2020 were downloaded and included
in analysis.

All data management and analysis were conducted using R programming
language (version 4.3.0) in the RStudio/Posit interactive developer environment (23),
unless otherwise specified. Processing and analytical scripts are made available in a

GitHub repository (link daileyco/Seasonal-Flu-Evolution) to facilitate reproducibility.

Phylogenetic Reconstructions

Sequences were aligned in a multiple sequence alignment using MAFFT (24) for
each of the four influenza subtypes separately. Following, sequences were further
stratified, or grouped, by location and influenza season. Locations comprise the fifty
states and the District of Columbia (DC). Influenza seasons span the 2010-2011 season
through the 2019-2020 season. Sequence data were partitioned using overlapping two-
year intervals; for example, a stratum for the 2010-2011 influenza season would include
all sequences collected from 1 January 2010 through 31 December 2011. Each data

partition also included a single outgroup isolate sequence from 2000-2001. Altogether,
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there are 2040 strata or combinations of the 4 subtypes, 51 locations, and 10 influenza
seasons.

Strata containing at least 3 isolate sequences were used to reconstruct
phylogenies. All phylogenetic trees, i.e., phylograms/evolutionary trees, were generated
in a maximum likelihood framework under a general time reversible (GTR) nucleotide
substitution model using the IQ-TREE2 software (25). Additionally, each phylogenetic
tree was dated or rescaled using the least-squares dating (LSD2) method also available
via IQ-TREE2. Outgroups were used to specify root branches then subsequently dropped
in the phylogenetic dating process; that is, outgroups are not included in the resulting
time trees. Additionally, phylogenetic tree reconstruction and dating were performed in
duplicate with replicated analyses excluding outgroup sequences and relying on least-
squares fit to identify the best root branch prior to dating.

We compare the replicate time trees to select a single representation for
downstream analyses. The time trees were selected according to two criteria. First, we
evaluated each time of the most recent common ancestor (tMRCA) and how close the
estimated date was to the given influenza season. Second, we assessed the difference
between the tMRCAs from trees generated with and without the outgroups. If a tMRCA
for the time tree reconstructed without an outgroup was both closer to the given influenza
season and the difference between outgroup and no-outgroup tree tMRCAs was greater
than 3 years, then we included the time tree reconstructed without an outgroup in
downstream analyses; otherwise, the time tree reconstructed with an outgroup was

included.
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Local Transmission Clusters

Following phylogenetic estimation and dating, we identified specific
subtrees/clades within each phylogenetic tree that represent local transmission clusters.
Phylogenies were reconstructed using genetic sequences from isolates collected over an
entire two-year period. As such, trees potentially include relationships (i.e., nodes and
edges) between isolates beyond the scope of a single influenza season. So, we “pruned”
or partitioned each phylogenetic tree into subtrees/components based on the alignment in
the timing of virus ancestry with that of the focal influenza season. We define influenza
seasons as starting in calendar (or epidemiological/epi-) week 30 (~end of July) in year 1
and ending in calendar week 18 (~beginning of May) in year 2; for example, the 2010-
2011 influenza season was defined as starting 25 July 2010 and ending 7 May 2011. In
each of the resulting pruned subtrees, included taxa correspond to isolates which were
both collected within the focal season and descendant from a single common ancestor
estimated to have existed within the focal season; that is, phylogenetic trees were
pruned/cut or partitioned by identifying separate, co-circulating lineages that diverged
sometime before the beginning of the given influenza season. In this way, each resulting
subtree conveys patterns of ancestry, or diversification, specific to each location and each
influenza season, potentially in replicate for multiple clades or co-circulating lineages

within each subtype. These subtrees are referred to as local transmission clusters.

Spatiotemporal Lags

Local transmission clusters were quantitatively summarized using tree shape

statistics, metrics of phylogenetic signal. Chiefly, we focus on the mean pairwise patristic
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distance or mean pairwise tree distance (MPD) to quantify the relatedness, or diversity, of
isolates represented in a phylogeny. These MPD values were treated as time-series and
subsequently analyzed to quantify spatial, temporal, and cross-subtype dependence in
phylogenetic signals. In other words, we correlate the phylogenetic signals of local
transmission clusters with those of neighboring locations, sequential seasons, and other
co-circulating influenza subtypes.

State borders and commuting ties were used to define spatial and network
neighbors, respectively, for all locations. Locations were considered spatial neighbors, or
spatially adjacent, if they shared a border determined by the spdep R package’s poly2nb()
function using binary encoding (i.e., neighbor or not)(26). Spatial neighbors were
determined up to three degrees of separation, or three spatial lags, e.g., neighbors of
neighbors correspond to two spatial lags. Similarly, commuting flow data were
transformed into weighted adjacency matrices to represent commuting network neighbors
where weights correspond to the number of people estimated to have participated in the
given, undirected commuting flow between two locations; note, network neighbor
weights were only calculated for the single degree of separation, or one network lag, as
the state level commuting networks are nearly fully connected. Two network adjacency
matrices were created corresponding to the two time periods of commuting data.

Using the adjacency matrices, MPD values for local transmission clusters were
spatially lagged. Spatial and network lagged values of MPD were calculated by averaging
the MPD values observed in neighboring locations. That is, non-missing values were
averaged across all a location’s neighbors to yield a single MPD value for the given

spatial lag, subtype, and season; for the network neighbors, network lagged MPD values
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were weighted averages of neighbor values. Following, all MPD values were temporally

lagged up to three degrees of separation, i.e., three seasons.

Correlating Phylogenetic Signals

Pearson correlation coefficients were computed using these MPD values to
characterize temporal, spatial, and spatiotemporal dependence within and among the
phylogenetic signals of each circulating influenza virus lineage. As there were multiple
local transmission clusters / co-circulating strains / subtrees for some combinations of
subtype, season, and location, a single local transmission cluster was randomly sampled
within each stratum before generating the spatiotemporally lagged values and computing
the correlations. The data were repeatedly resampled for 1000 replications. The resulting
distributions of correlation coefficients were summarized using quantiles and are
presented as medians and 95% confidence intervals; a correlation was deemed significant

if the confidence interval did not include zero.

RESULTS

Over 50 000 influenza hemagglutinin (HA) gene sequences were downloaded
from GISAID. After exclusions and quality control, N =42 113 isolate sequences
remained with an additional 4 virus isolate sequences for the outgroups (Supplementary
Figure C.1). Sequences for IAV subtype H3 (n = 18 829) were most numerous, followed
closely by subtype H1 (n = 12 243) and distantly by both IBV lineages (n = 6 371 for B

Victoria, and n =4 670 for B Yamagata).
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When fully stratified by subtype, season, and location, 1 806 of 2 040 (~88.5%)
strata contained enough HA sequences to attempt phylogenetic reconstruction. Suitable
data coverage varied with influenza subtypes, as with the frequency of isolate sequences
(Supplementary Figure C.2). The data coverage was more complete for [AV compared to
IBV. Also, data were more complete for more recent seasons for both types of influenza
viruses with a notable increase in coverage/frequency from ~2015 onwards. For all
locations and influenza seasons, there were enough H3 isolate sequences to estimate
phylogenies, 510 of 510 strata (100%). Comparatively, there were 490 (96.1%), 409
(80.2%), and 397 (77.8%) strata with enough data for H1, B Victoria, and B Yamagata,
respectively. Phylogenies were reconstructed successfully for all but one set of B Victoria
sequences.

Each stratum had a variable number of sequences, and, consequently, the number
of sequences used to reconstruct each phylogeny varied. Phylogenies included a median
of 41.5 [Q1=20, Q3=71], 25 [11, 48], 14 [6, 32], and 14 [7, 29] sequences for H3, H1, B
Victoria, and B Yamagata, respectively (Supplemental Table C.1).

The estimated time trees tMRCAs indicated a potentially poor fit to a molecular
clock model for many strata. When comparing the tMRCAs among the full phylogenetic
trees, H3 lineages coalesced a median of 5 years before the circulating season, while H1,
BVic, and BYam trees coalesced approximately 2.1, 3.1, and 3.3 years, respectively,
before the given influenza season. There were 577 phylogenies which had an estimated
tMRCA that was over 5 years before the start of the season in which the isolates were

collected (Supplementary Figure C.7); excluding those, tMRCA medians are
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approximately 3.3, 1.9, 2.0, and 2.5 years before the circulating season for H3, H1, BVic,
and BYam, respectively.

The average mutation rates estimated were 2.7x107-3, 3.8x10"-3, 1.8x10"-3, and
2.2x10"-3 substitutions per site per year for H3, H1, BVic, and BYam, respectively;
excluding the phylogenies with extreme tMRCAs, the average mutation rates for H3, HI,
BVic, and BYam are 3.2x10"-3, 4.1x10"-3, 2.3x107-3, and 2.9x10"-3
mutations/site/year. The distributions of the estimated mutation rates across seasons were
somewhat stable, though some individual seasons for each subtype showed more broad
distributions with many potential outlying estimates (Supplemental Figures C.3 & C.6).
With the time-scaled phylogenies, we were able to identify local transmission clusters
(Figure 4.1).

The relative frequencies of local transmission clusters (extracted subtrees) were
similar to the frequencies of available sequence data across influenza subtypes.
Frequencies were greatest for H3 (n=1 897), followed by H1 (n=1 419), BYam (n=852),
and BVic (n=831; Supplemental Table C.2). Some phylogenies did not have an internal
node estimated to have existed within the given seasons, and, as such, the frequencies of
missing data slightly increased following local transmission cluster identification.

Local transmission clusters seemed well aligned with each season following partitioning
as, on average, the MRCAs were estimated to have existed just before the new year (i.e.,
1 January) within each influenza season (Supplemental Table C.2, Supplemental Figure
C.5). The subtrees are more balanced in the number of tips than the full phylogenetic
trees with a median of 3 tips across subtrees from all subtypes. As such, the comparisons

of tree shape statistics may be more meaningful.
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Figure 4.1. Time-scaled Phylogenetic Tree of Influenza A Subtype H3 using Isolate Sequences Collected from 2016 to 2018 in
Georgia (A) and Identified Local Transmission Clusters (B-F). Hemagglutinin gene sequences from viral isolates sampled across a
few years were used to reconstruct phylogenies. Using a least-squares dating procedure, nodes and branches were scaled in time. By
isolating internal nodes and descendant tips that exist within a focal flu season window, I identify isolates comprising local
transmission clusters, or local outbreaks. Each of these local transmission clusters can be simply summarized by calculating the
average branch length between pairs of tips, a measure of phylogenetic diversity.
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The MPD of H3 subtrees was an average of 1.2x10”-3 substitutions per site
compared to 1.4 x107-3, 0.7 x10"-3, and 0.9 x10"-3 substitutions per site for H1, BVic,
and BYam, respectively. MPD values show a decreasing trend over the course of an
individual influenza season with the earliest transmission clusters in each season having
larger values than transmission clusters identified later in the season (Figure 4.2). There
does seem to be some season-to-season variability in MPD across all subtypes and
locations (Figure 4.3).

Additionally, I compared MPD values across states using a standardized mean
differences comparing local transmission clusters within each state to the seasonal
average for each subtype; to get a marginal summary, each of these mean differences
were averaged across all subtypes and seasons to get a single value for each state which
gives a sense of the relative diversity per local outbreak (Figure 4.4). We observe that
local transmission clusters in some states tend to be less diverse than seasonal averages,
e.g., Georgia and New York, while those in other states tend to be more diverse, e.g.,
West Virginia and Oklahoma (Figure 4.4). When comparing the distributions of MPD
values across all subtypes within each season, the MPD values seemingly exhibit some
negative / antagonistic interactions / interference. For example, in the 2016-2017 season,
MPD values for H1 transmission clusters are lower than those of IBV and H3
transmission clusters within the same season and H1 transmission clusters from
surrounding seasons. Similarly, for the 2018-2019 season, MPD values for IBV
transmission clusters are distributed at lower values compared to those of [AV
transmission clusters. To further investigate associations, we quantified the correlations

of these measures of diversity across space, time, and influenza virus subtypes.
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Figure 4.2. Profiles of Mean Pairwise Distances of Local Transmission Clusters of Seasonal Influenza. Influenza A Subtype H3
with highlighted examples from Figure 1 (A), Influenza A Subtype H1 (B), Influenza B Lineage Victoria (C), Influenza B
Lineage Yamagata (D). Each data point represents a single local transmission cluster. The times of the most recent common ancestor
(TMRCA) on the x-axis corresponds to the estimated time of the single internal node from which all tips in a local transmission cluster
descended.
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Figure 4.3. Average Diversity Realized in Local Transmission Clusters. All local
transmission clusters for a given subtype-season-state were averaged to generate the
shown values. White spots represent combinations of subtype-season-state where there is
no data on local transmission clusters. Diversity here is the mean pairwise phylogenetic
distance and has units of substitutions per site.
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Figure 4.4. Relative Differences of Local Transmission Clusters’ Diversity. Values of mean pairwise phylogenetic distance were
standardized for each subtype-season combination. These standardized values were then summarized with a simple arithmetic average
for each state yielding the values shown on the graph. Lower, blue values correspond to marginally lesser isolate diversity within local
transmission clusters, and higher, red values correspond to marginally greater isolate diversity within local transmission clusters. Of

note, there seems to be a general pattern with more populous states having marginally lesser isolate diversity within local transmission
clusters.
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Spatiotemporal autocorrelations within each subtype were relatively weak with
the maximum significant correlation coefficient of 0.369 for contemporary (temporal lag
= 0) for BYam trees for spatial neighbors (spatial lag = 1; Figure 4.5d). Significant
positive correlations were observed within each subtype when comparing contemporary
transmission clusters across spatial neighbors (Figure 4.5); that is, increasing values of
MPD in local transmission clusters are observed with increasing values of MPD in local
transmission clusters from neighboring locations. As the spatial lag increases, there is a
relative decrease in the correlation coefficients for each subtype. For example, MPD
values for local transmission clusters of H3 are slightly more correlated with transmission
clusters in neighboring locations (rtho = 0.141) than those clusters found at more distant
locations (three spatial lags, rho = 0.126, Figure 4.5a). This decreasing trend seems to
slightly vary among subtypes; the correlations decrease most for BVic and least for H3 at
increasing spatial distances.

There are no consistently significant correlations across temporal lags for any of
the spatial lags. Contemporary correlations across all spatial lags for each subtype are
positive; that is, regardless of spatial separation, increasing values of MPD in
transmission clusters for a given subtype and season are observed with increasing values
of MPD in other transmission clusters of the same subtype and season. However, when
comparing the correlations across temporal lags, there is an alternating pattern in the
direction of the association which seems to vary between IAVs and IBVs. The
correlations observed for a single temporal lag (i.e., comparing a season to the season
before) are negative for IAVs; that is, increasing values of MPD in transmission clusters

for a given IAV subtype in this influenza season are observed with decreasing values of
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Figure 4.5. Spatiotemporal Autocorrelations of Viral Diversification / Tree Shape (MPD). Matrices have a focal point in the
bottom left with both spatial and temporal lags of zero. Increasing up the y-axis, each increasing spatial lag corresponds to the order of
separation among border-sharing states; that is, spatial lag of 1 compares a focal state to the neighboring states which share a border
with the focal state, spatial lag of 2 compares a focal state the neighbors of border-sharing neighbors, and so on. Increasing along the
x-axis, each increasing temporal lag corresponds to a previous influenza season; that is, temporal lag of 1 compares a focal influenza
season to the previous season, temporal lag of 2 compares a focal influenza season to two seasons previous, and so on. Spatiotemporal
lags are represented by the boxes not immediately adjacent to either axis. Median Pearson correlation coefficients are shown if 95%
bootstrap intervals did not cross zero.

99



MPD in transmission clusters for the same respective subtype in the previous influenza
season. The correlations continue this alternating pattern at increasing temporal lags for
both IAV subtypes, though it is much more pronounced in H1 transmission clusters
(Figure 4.5a-b). On the other hand, for IBVs, a similar alternating pattern is not observed
(Figure 4.5¢c-d). For BVic, the temporal signal is least pronounced with most correlations
with past seasons being negative and scantly significant. For BY am, the correlations at a
single temporal lag are null-valued and insignificant. However, at two temporal lags, the
signal is very pronounced and consistently negative across all spatial lags; that is,
increasing values of MPD in BYam transmission clusters this season are observed with
decreasing values of MPD in BYam transmission clusters from two seasons ago.

Spatiotemporal cross correlations between influenza subtypes are generally
weaker than the autocorrelations within each subtype; the maximum magnitude of
significant correlation coefficients is 0.189 (Supplementary Figures C.8-C.11).

For H3 transmission clusters, we observe weakly negative correlations with
contemporary H1 transmission clusters while there are somewhat stronger positive
correlations with contemporary BYam transmission clusters across all spatial lags
(Supplementary Figure C.8). The correlations with contemporary BVic transmission
clusters are not as consistent and shift from a weakly negative association at two spatial
lags (tho =-0.068) to a stronger positive association at three spatial lags (rho = 0.162).
Similar to the spatiotemporal autocorrelations within each subtype, the cross correlations
between MPD values of H3 and H1 transmission clusters exhibit some alternating signals
across temporal lags. That is, while there is a negative correlation between contemporary

H3 and H1 transmission clusters, when comparing H3 transmission clusters to H1

100



transmission clusters from the previous season, we observe positive correlations. In other
words, increasing values of MPD in H1 transmission clusters from last season are
observed with decreasing values of MPD in H3 transmission clusters this season. This
alternating pattern extends across all temporal lags. The temporal signal is less clear
when comparing H3 transmission clusters to those of either IBV, though there may be
some consistently negative correlations at two temporal lags for both IBV.

For H1 transmission clusters, the relationships with increasingly distant and past
H3 transmission clusters are similar to those comparing H3 transmission clusters to
distant and past H1 transmission clusters, with the alternating temporal signal being most
prominent (Supplementary Figure C.9). The correlation between H1 and BYam
transmission clusters is weak and inconsistent, save a strong positive correlation between
H1 transmission clusters and local BYam transmission clusters from three seasons ago,
three temporal lags (rho = 0.141). We observe weakly positive correlations between H1
transmission clusters and contemporary BVic transmission clusters, and these
correlations decrease in magnitude with increasing spatial lags.

For IBV transmission clusters, we see consistent patterns relating each IBV to
each IAV. For example, BVic transmission clusters are positively correlated with
contemporary and local H1 transmission clusters (rho = 0.106) and positively correlated
with contemporary H3 transmission clusters at three spatial lags (rtho = 0.185;
Supplementary Figure C.10). However, instead of antagonism or interference between
IBV, we observe positive correlations between contemporary and local BVic and BYam
transmission clusters (rho = 0.136; Supplementary Figure C.10-C.11). For BVic, this

positive relationship extends to local BYam transmission clusters from the previous
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season (rho = 0.127; Supplementary Figure C.10); but for BYam, the relationship is
observed as antagonistic at larger spatial lags (tho =-0.091 at two spatial lags; rho = -
0.102 at three spatial lags; Supplementary Figure C.11). Even though, MPD values for
IAV transmission clusters did not seem to depend on BYam transmission clusters, the
converse does not seem true; that is, we observe more significant correlations between
BYam transmission clusters and IAV transmission clusters across space and time.
Particularly, we see negative correlations between BYam transmission clusters and H3
transmission clusters from the previous season (at one spatial lag rho = -0.135), positive
correlations with H1 transmission clusters from two seasons ago (at one spatial lag rho =
0.17), and positive correlations with H3 transmission clusters from three seasons ago (at

two spatial lags rho = 0.133).

DISCUSSION

The evolution of seasonal influenza viruses contributes to the recurrence of
outbreaks around the world. As viruses spread along chains of transmission within an
outbreak, they diversify and the extent of genetic and antigenic change realized can
impact viral fitness and, consequently, the likelihood of survival and persistence.
Moreover, the overlapping nature of co-circulating pathogens allows for ecological
interactions which may impact chains of transmission and, consequently, viral evolution.
However, the spatial variation in transmission patterns of co-circulating influenza viruses
within the US has not been thoroughly characterized. In this study, we characterize
spatial variation in the phylogenetic signal of local influenza virus outbreaks in the US.

We find evidence of the dependence of transmission patterns across space, time, and
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influenza subtypes, and that these patterns of dependence vary among seasonal influenza
subtypes. Particularly, we note that the spatial scale of dependence is seemingly greater
for HI and BYam than H3 and BVic and that temporal dependence patterns are more
consistent in [AVs than IBVs. Furthermore, we describe ecological interactions between
seasonal influenza viruses and note that the nature of these interactions is greatly
dependent on the spatial and temporal scope of analysis.

IAVs have been shown to circulate on larger geospatial scales, with regular
emergence of variants causing outbreaks around the world(5). Comparatively, IBVs tend
to circulate in more local geographies (3,5). Our findings support this notion of smaller
spatial scales for IBVs compared to IAVs as we observed the strength of spatial
interaction to decrease more rapidly for IBVs than IAVs at increasing spatial distances.
IAVs are thought to be more virulent pathogens that evolve on quicker time scales than
IBVs (6). This aspect of the infectious disease systems manifests evidently in the
epidemiology of influenza illnesses. As IAVs experience greater extents of genetic and
antigenic drift, they are less limited by the standing population adaptive immunity and
able to infect a general population (6,7). Conversely, IBVs change less and less quickly,
and, as such, induced population adaptive immunity can considerably impact their ability
to spread within populations (5). For these reasons, IBVs are relatively more prevalent in
children who have relatively naive immunities compared to adults who have had
opportunities to develop protective if not sterilizing immunity to IBVs (27). Given the
potential differences in the population demography of susceptible individuals, it is not
surprising that IBVs have a more limited spatial scale than IAVs as children have a more

limited range of mobility than adults (27,28).
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The relative differences of evolutionary potential between IAVs and IBVs may
also help to explain the differences we observed between the temporal patterns of
dependence in diversification of transmission clusters. Temporal patterns for the IAVs
were more regular than those of IBVs. As IAV variants regularly arise around the world
and invade the United States each year, marginal population immunity may be similar at
the onset of seasonal forcing. On the other hand, the local persistence of IBVs may allude
to a more dynamic landscape of population immunity which changes along different time
scales than that related to IAVs. Often, the incidence of influenza illness within a
seasonal outbreak is seemingly dominated by a single subtype; in other seasons, influenza
illnesses are more well distributed among subtypes. Predicting which subtype will
predominate in upcoming seasons has proven as challenging as it would be rewarding.
This may be, in part, due to complex interactions among the co-circulating viruses.

Antagonistic interactions or interference between IAVs has been noted in
infectious disease modeling studies (29) as well as in molecular epidemiology studies (7).
We add to this body of literature of antagonistic interaction between H3 and H1 with
evidence negatively correlated diversification in transmission clusters occurring within
the same influenza season. This finding is likely simply due to the competition between
pathogens for susceptible hosts. The disruption of chains of transmission of one subtype
from the other could be the result of changes to host behavior, e.g., sick behavior,
impacting epidemiologic contact rates or changes to host innate immunity, e.g., induced
antiviral states, which may impact secondary host susceptibility. At the molecular scale,
conserved or convergent epitopes in the proteomes of influenza viruses may allow for

cross-reactive adaptive immunity (30). Interaction as this may be more plausible/probable
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for more closely related influenza viruses, e.g., homologous strains. So, while potentially
less impactful across influenza subtypes or even contemporary strains, the population
adaptive immunity induced from previous influenza outbreaks may have lasting
impressions on the future incidence of infections of similar viruses. Even without overlap
in protein epitope / antigen profiles, co-circulating influenza viruses may still interact
across scales. For example, the landscape of an outbreak can also be drastically altered
when co-circulating, contemporary and collocated, pathogens aggregately act to disrupt
chains of transmission. This could be through moderation of either contact patterns
between hosts, e.g., via sick behavior, or the susceptibility of secondary hosts, e.g.,
induced antiviral states. Either of these fundamental interactions could explain the
antagonistic interactions between the IAVs, but there remains the possibility of antigenic
overlap between subtypes as well. Ecological interactions as these have been suggested in
explanations to observed patterns of branching in influenza virus phylogenies and
incidence of influenza illness (7,31). However, study of these interactions has been
conducted using rather coarse spatial resolutions, and, as such, the spatial extent, or scale,
of interaction is still unclear. Delineating the root cause of such interaction through
comparisons of epitope profiles could be a fruitful and challenging avenue for future
research. The synergistic interactions between IBVs and between IBVs and IA Vs,
though, is not so simply explained. Aside from explanations towards increased
susceptibility and co-infections, it may be possible that the observed synergy is more due
to chance and the alignment of unrelated outbreaks within an influenza season. To this
point, the limited spatial scale of IBV outbreaks may offer support. Given the somewhat

coarse, state-level resolution of our analysis combined with differences in population
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demography of susceptible peoples, it may be possible that the identified transmission
clusters for IBVs have little to no spatial nor demographic overlap with each other or
with IAV outbreaks. As such, the coinciding seasonal forcing could be driving the
observe relationships.

A study such as this has only been recently made possible due to the accumulation
of relevant pathogen genomic sequence data. Still, we have found that the coverage of
suitable data is flimsy and there remain many gaps that can impact the scope of analytical
inferences. Centers for Disease Control and Prevention (CDC) have developed a “Right
Size Roadmap” in which they promote increasing sample sizes for pathogen molecular
epidemiological surveillance (32). This initiative has seemingly borne fruit as the
coverage of sequence data drastically improved within our study scope from 2010
through 2020, particularly from 2015 onwards. However, data coverage is the greatest
limitation in this study. In addition to the coverage with respect to subtypes and seasons,
the granularity of spatial data in pathogen molecular sequences greatly limits analytical
scope. Despite this limitation, we still identify spatial dependence, though, the relatively
weak correlations that we did identify could be indicative of a poorly aligned spatial scale
between influenza ecology and data. This is not an easily overcome barrier in data
collection as increasingly precise spatial resolutions in data come with threats to privacy
of infected people who have deserved rights for their health information to be protected.
However, there may be a middle ground between state-level resolutions and those at
which patients are potentially identifiable such as with core-based statistical areas (33) or
labor markets (34,35). Yet, the transition to finer spatial resolutions in data would bring

about novel challenges as well, e.g., regions that cross administrative borders.
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Another limitation to this study lies within the methodology, particularly the
phylogenetic reconstructions and dating procedures. The choice to generate series of
“small” phylogenetic trees is both a strength and a limitation of this research. This
relatively simple approach allowed us to use the entirety of available influenza isolate
sequence data without necessarily subsampling, a key advantage to our approach to those
found elsewhere. Additionally, this relatively simple approach could be conducted in a
decentralized manner in near real time during influenza season, potentially augmenting
molecular surveillance efforts from public health labs around the country. Furthermore,
another strength is in the relative simplicity of phylogenetic reconstruction with fewer
taxa included. Phylogenetic complexity does not scale linearly, and, at big data scales, the
degree of phylogenetic uncertainty can become extensive and computation complexity
related to phylogenetic reconstruction can become intractable. By limiting the scope of
each phylogenetic reconstruction, these issues of complexity are somewhat mitigated,
and, as such, this methodology can be performed with limited expertise in phylogenetics
and by using relatively simple techniques, e.g., maximum likelihood versus Bayesian
frameworks.

Still, the limited scope of included isolate sequences inherently limits the
temporal signal in the data. This temporal signal is essential for accurate phylogenetic
dating. We acknowledge this limitation to be present in our study evidenced by extreme
estimates of tMRCA s in some phylogenies. However, we mitigated this limitation in two
ways. First, we included outgroup isolates to aid in the identification of valid roots for
each phylogenetic tree; though, the use of outgroups did not guarantee accurate dating for

the entire phylogeny, particularly at the roots. Second, we included influenza isolates
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collected over an entire two-year period, both well before and well after the focal
influenza season. Having these bookends in each phylogeny can help to constrain the
phylogenetic dating procedure to identify more plausible tMRCAs. Still, it is likely that
we missed some local transmission clusters. This limitation is also found in our choices
for the start dates and end dates of an influenza season. Though influenza viruses in the
United States have the potential to arise from introductions from outside the US, there
remains the possibility of chains of transmission beginning before our designated start
date. As such, we have potentially missed some of those transmission clusters that
originated before calendar week 30 each year. However, this limitation in the
identification of transmission clusters may act more to contributed to missingness in our
data rather than bias our estimates.

Altogether, we have described the spatial variation in the phylogenetic signal of
seasonal influenza viruses and characterized the scales at which these pathogens interact
within their respective subtypes and across subtypes. Epidemic and evolutionary
dynamics are co-dependent, yet little research has gone into characterizing the extent of
evolutionary change realized within an outbreak. Rather, the focus in the literature has
been directed towards using evolutionary change to predict epidemics, such as in (7).
Here, we take a first step to assess the flow of information in the other direction with the
quantification of diversity realized over the course of an influenza outbreak. We employ a
simple metric in the mean pairwise patristic/tree distance to quantify evolution, but there
remain a multitude of tree shape statistics with which similar analyses can be performed
and each of which may divulge a different aspect of influenza transmission. We note that

the spatial resolution of our study is limited, but we have also limited the spatial scope of
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the analysis to the United States. Future works may also expand the analytical scope to
the global scale as well as to incorporate additional infectious disease systems, e.g., RSV
and COVID-19. The efforts of this work may culminate in improving efforts towards the

prediction of evolutionary trajectories and epidemic dynamics.
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CHAPTER 5
CONCLUSIONS

In this dissertation, we characterize spatial structuring in the United States (US)
and its impact on the epidemiological and evolutionary patterns observed in seasonal
influenza. We do this in recognition of challenges arising from the integration of data and
theory across ecological scales. Specifically, at larger scales, important spatial constructs
lack concrete definitions which inhibits integrative approaches to studying seasonal
influenza across scales. To address this in the context of seasonal influenza in the US, we
carefully analyzed publicly available data related to seasonal influenza, including
commuting flows, influenza-like illness incidence, and genetic sequences of seasonal
influenza viruses. We integrated these disparate data streams using several different
methodologies (incorporating elements of geography, human mobility, disease incidence,
and molecular evolution). Each of the aims / chapters offers evidence suggestive of
important spatial structuring, and, when taken together, this work constitutes a holistic
characterization of subnational, regional scale within the US.

In Aim 1/ Chapter 2, we analyzed patterns in commuting flows, and, by using
human mobility models, we were able to identify a critical point in the distance
distributions of commuting flows. This potentially region-defining distance, ~146km or
~91mi, has been found in others’ work, both with similar approaches as ours outside of
the context of defining spatial scales [~119km in US commutes by Viboud et al

(2004)(1); ~300km in global commutes by Balcan et al (2009)(2); and ~146km or
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~293km, depending on the formulation, in US commutes by Truscott & Ferguson
(2012)(3)] and as a result of specific inquiry to scales in human mobility using more
complex human mobility models [~161km in high-resolution displacements in Denmark
by Alessandretti et al (2020)(4)].

In Aim 2 / Chapter 3, we focused more intently on delineating regions within the
US. Using a network science approach, we were able to generate an array of candidate
regional delineations which were then evaluated for their ability to capture patterns in
commuting flows, influenza-like illness incidence, and viral ancestry. Our results suggest
that the US may be well-characterized with ~8 multistate agglomerations / regions, or
influenza transmission zones. Due to differences in the resolution of data and results, it is
more difficult to directly compare our findings with those found in the literature [cf., the
epidemic invasive tree from Figure 4b of Balcan et al (2009)(2) or the epidemiological
geographies from Figure 4 of Rosensteel et al (2021)(5). This challenge of reconciling
spatial units across scales remains unmitigated in the absence of more standardized,
concrete definitions of larger scale spatial constructs. We are still able to interpret our
regionalization results from Aim 2 / Chapter 3 with the results from Aim 1 / Chapter 2,
i.e., the region defining distance. Many of our delineated regions span substantially
longer distances than what would be dictated by a region-defining distance of <100mi.
Rather than interpreting this as suggestive of another, separate, larger regional scale
within the US, we feel this observed pattern relates more to heterogeneity in the spatial
distribution and organization of populations. In other words, regions may be influenced
by scale-related distance, but they are ultimately defined by local metapopulation

structures.

114



This notion of local metapopulation dynamics may be further supported by our
findings in Aims 1 & 3. In Aim 1, we explored the association between commuting
summaries and influenza-like illness epidemic intensity. Viboud et al (2004) showed that
the synchrony of influenza outbreaks among states in the US is influenced by shared
commuting flows, i.e., metapopulation dynamics (1). Consider that the aggregation of
data across spatial scales can explain an inherent relationship between outbreak
synchrony and epidemic intensity. For example, asynchronous outbreaks within a region
may be interpreted as an overall diffuse outbreak when aggregated to the regional scale,
while simultaneous, synchronized outbreaks within a region would be interpreted as an
intense outbreak when similarly aggregated. Extending the implications of these more
localized spatial contexts, we may interpret this to mean that state-level resolution is too
coarse to properly characterize the spatial epidemiology of seasonal influenza, potentially
supported by our findings in Aim 3 / Chapter 4.

In Aim 3 / Chapter 4, we took a molecular epidemiology approach using
phylogenetics to explore the similarities of local outbreaks across space and time.
Ultimately, we found weak that local outbreaks are rather dissimilar when compared to
outbreaks in neighboring states (gauged via correlations in the phylogenetic signals (i.e.,
mean pairwise tree distances) of each seasonal influenza virus). While at least partly
founded in the inefficiency of our approach to comparisons, our results from this analysis
could be explained by a poor alignment of spatial scales between the research questions
and data. That is, the state- and multistate-/regional-level resolution may be too broad /

coarse to capture meaningful relationships in the spatial contexts of local outbreaks.
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With the continued emphasis on molecular surveillance, we will continually
observe the epidemiology, ecology, and evolution of influenza with increasingly finer
detail. Consequently, this will allow us to uncover and resolve more intricate patterns.
This point encapsulates both potential future direction and an inherent limitation of this
study: availability of high-resolution data. We were able to overcome some aspects of the
limited resolution in the data, e.g., summarizing county-level commuting patterns to the
state-level without complete loss of nested information. However, ultimately, we were
limited to a state-level resolution for all analyses. While we acknowledge that state-level
characterizations have practical advantages, e.g., working within defined constructs in
data and public health practice, important relationships found at smaller spatial scales are
likely obfuscated by such coarse resolution. As influenza incidence and molecular
sequence data become increasingly available and with improvements in spatial coverage,
we may be able to leverage this high-resolution observations to better characterize local
transmission dynamics, a fundamental linkage between spatial epidemiology and viral
evolution.

We find that our work is most immediately applicable to computational modeling,
both mathematical simulations and phylogeographic analyses. There is a precedence of
increased model accuracy with more explicit consideration / parameterization of spatial
relationships / hierarchies; Turtle et al (2021) showed that models fit to subpopulations
with multi-county clusters outperformed those fit to aggregated cluster data (6). Also
discussed by Turtle et al (2021)(6), Centers for Disease Control and Prevention (CDC) in
the US host an annual influenza forecasting challenge where forecasts are generated for

the aggregate US and individual Health and Human Services (HHS) regions (7,8). If we
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consider that modeling at finer resolutions may improve forecast accuracy, then state-
level predictions would yield similarly accurate predictions regardless of whether the
predictions are aggregated to a regional level as defined in our Aim 2 or that defined by
the HHS regions. However, continuing up spatial hierarchies, we may speculate that
different subnational geographic representations could impact larger scale model
estimations, e.g., international spread, especially in phylogeographic contexts.
Characteristics of spread (local metapopulation dynamics & phylogenetic signal
in local outbreaks) may also be useful signals to consider as indicators for anomaly
detection in influenza surveillance. The emergence of antigenic variants is a continual
concern for influenza, whether from zoonotic origins following antigenic shift events or a
more subtle change arising somewhere in human populations following antigenic drift
(9,10). The early detection of these emergent strains is paramount to control efforts.
Antigenic novelty has been shown to allow for more widespread transmission, both with
respect to geographical diffusion as well as demographic segments of a population
(9,11,12). In characterizing typical spatial patterns in the spread of seasonal influenza,
e.g., delineating specific influenza transmission zones, we may also be thereby creating a
useful case for anomaly detection. For example, when spread patterns substantially
diverge from those expected given established spatial constructs, this could be indicative
of novel variant emergence. We feel this similarly applies to the characterization of local
outbreaks using phylogenetic approaches; Perofsky et al (2021) corroborate this with a
suggestion that quantifications of patterns in phylogenies [via local branching index] can
indicate “selective sweeps” which are characteristic in the emergence of antigenic

variants (11).
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APPENDIX A
SUPPLEMENTAL MATERIALS FOR AIM 1
DATA MANAGEMENT

The commuting data in its raw format was already a dataframe of adjacency,
containing records for location pairs of origins and destinations (nodes) and the
commuter volume between those locations (edges with weight). This data was used to
estimate the gravity model parameters. To fit the gravity models, data for the population
sizes of the locations and the distances between locations were also required.

It was important to first consider the granularity of the data. The commuting data
were at the county level for spatial scale and were 5-year period estimates for the
temporal scale (2011-2015 and 2016-2020). Data on the location of population centers
for US counties for 2010 and 2020 were found; these data included population size and
coordinates for the population centers. While population estimates for each year were
available, the coordinates for population centers were not readily available for each year.
Interpolation between 2010 and 2020 coordinates was a potential solution, but it was
likely overly complex, especially considering the commuting data were 5-year estimates.

Therefore, it was necessary to consider how to best align the data to combine
across sources. The commuting data were used as the base dataset and augmented with
population data and spatial data (i.e., the coordinates of population centers). The
population data consisted of the midpoint year for the commuting data time periods; for

the 2011-2015 commuting data, 2013 population data were used, and for the 2016-2020
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commuting data, 2018 population data were used. For the spatial data, the 2010
population center coordinates were used for the 2011-2015 commuting data, and the 2020

population center coordinates were used for the 2016-2020 commuting data.
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Supplementary Table A.1. Commuting and Population Data Summaries by US Census Region

Period Variable Class Parameter All US Midwest Northeast South West
38];' Total Observations N = 137 806 N = 43 414 N = 18 479 N = 60 328 N = 15 585
Total Workers N =144 550 912 N=31597818 N=27387863 N=52401175 N =33 164056
E’gff;&‘;\’vorkers Intracountyn (%) 104 478 675 (72.3) 22310313 (70.6) 17 729 877 (64.7)36 942 071 (70.5) 27 496 414 (82.9)
Intrastate n (%) 34738165 (24) 8123392 (25.7) 8 074 883 (29.5)13 284 204 (25.4) 5 255 686 (15.8)
Intraregion n (%) 4349729 (3) 896 122 (2.8) 1380498 (5) 1786716 (3.4) 286 393 (0.9)
Interregion n (%) 984 343 (0.7) 267 991 (0.8) 202605 (0.7) 388184 (0.7) 125563 (0.4)
Workers in Mean (SD) 1048.9 (20 024.4)  727.8 (13 247) 1482.1 (16 371.1) 868.6 (14 263.5) 2 127.9 (44 155.9)

Commuting Flow

B"ng']a” 17 [8, 53] 13 [5, 42] 17 [8, 61] 20 [9, 61] 17 [8, 48]
[Min, Max] [1,4181968]  [1,2 095 117] [1,730763] [1,1886175]  [1, 4 181 968]
Distance (km) Mean (SD) 544.2 (835)  399.6 (597.5) 558.2 (909.8)  487.6 (731.2) 1149.2 (1 297.2)
Median 197.38 [82.47,  165.67[78.72,  202.49[89.05,  182.6 [75.49, 547.68 [165.64, 1
[IQR] 608.56] 426.28] 492.53] 579.21] 834.72]
[Min, Max] [0.000, 9 415.947] [0.000, 7 422.532] [0.000, 9 415.947] goé30402,57] [0.000, 8 176.692]
Surrounding Mean (SD)  43741678(74 34708218 (6752615236 (75835 42142969 (72 64 562 343 (89
Population 384 947) 817 479) 385) 807 674) 566 987)
Median Corne apgy O [N 920t 18642837 [2616 6060403769 14 935 436 [1 746
[IQR] o] % ia5 85660764 239] 861,42 024 103] 573, 98 340 837]
[Min, Max]  [0,319489617] [0,318585761] [0, 318 553 808] [0, 319 428 840] [0, 319 489 617]
2013  Total Counties N = 3 220 N = 1055 N = 295 N = 1422 N = 448
Total Population N=319653024 N=67576524 N=59505852 N=118397213 N =74 173435
Pooulation Mean (SD) 992711 (318 64053.6 (212  201714.8 (341 83261 (221 165 565.7 (612
P 499.2) 727.6) 719.5) 953.3) 641.2)
Median 26 023[11193.0, 20117 [8301.5, 64 545 [37 414.5, 265%758 [;g 21 286 [7 274.75,
[IQR] 66 204.5] 44 788.0] 182 953.5] 502,251 83 254.75]
[Min, Max]  [89, 9987 189] [454, 5252 513] [1 815, 2 587 759] [106, 4 352 419]  [89, 9 987 189]
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Period Variable Class Parameter All US Midwest Northeast South West
gggg‘ Total Observations N = 121 034 N = 37 860 N = 15 897 N = 53 707 N = 13 570
Total Workers N=154581044 N=32926166 N=28172851 N=57101842 N =36 380 185
E’gﬁ]’:&;workers Intracountyn (%) 112 280 334 (72.6) 23321016 (70.8) 18 290 061 (64.9)40 380 024 (70.7) 30 289 233 (83.3)
Intrastate n (%) 36 851 534 (23.8) 8416523 (25.6) 8 284 190 (29.4)14 485 335 (25.4) 5 665 486 (15.6)
Intraregion n (%) 4425438 (2.9) 919048 (2.8) 1392442 (4.9) 1810530 (3.2) 302518 (0.8)
Interregion n (%) 1023738(0.7) 268 679 (0.8) 206 158 (0.7) 425953 (0.7) 122 948 (0.3)

Workers in 1063.2 (16
G Flow Mean (SD) 1277.2 (23065.9) 869.7 (14 931.4) 1772.2 (18 232.7) sor4) 26808 (51300)
B"gg']a” 2119, 74] 15 [6, 57] 23[9,86] 25[11.0, 85.5] 219, 64]
[Min. Max] [1,4429523]  [1,2 192 398] [1,748979] [1,2014104] [1,4 429 523]
Distance (km) Mean (SD) 520 (820.2)  377.7 (590.7) 531.1(893.3)  470.2 (717.5) 1101.1 (1 284.9)
Median 173.25[75.58,  143.23 [72.43, 178.5[79.07, 162.03 [70.07, 484.32 [147.08, 1
[IQR] 564.14] 375.55] 447.95] 556.95] 685.97]
[Min, Max] [0.000, 8 385.497] [0.000, 7 354.188] [0.000, 8 385.497] 506?0907,17] [0.000, 8 177.124]
Surrounding Mean (sp) 43 102871(75 33670220 (6950 852 875 (77 049 42199502 (74 63 946 833 (01
Population 849 047) 439 275) 161) 342 561) 057 534)
. 5473 778 [695

Median aie o000 2949276[409 15738 528[2140 5335326 [650 13 796 610 [1 507
[IQR] O iz 620,20 157976] 863, 56 818 646] 389, 41049 150] 259, 92 929 858]
[Min, Max] [0, 329 899 075] [0, 328 952 132] [0, 328 938 728] [0, 329 899 075] [0, 329 543 803]
2018  Total Counties N =3 222 N = 1055 N = 296 N = 1422 N = 449
Total Population N=330023248 N=68263019 N=59269592 N = 124649 156 N = 77 841 481
Ponulation Vean (sp)  102428.1(328  647043(212  200235.1(341 676576 (237 173366.3 (630
P 388.5) 404.5) 022.4) 931.5) 587.1)
Median 26080.5[11 19847 [8 170.5, 63 028.5 [35 641.0, 2633?058 [gj 22 286 [7 409, 86
[IQR] 094.5, 67 012.5] 45 055.0] 180 890.2] iod 78] 761]
[Min, Max]  [87, 10 061 533] [463,5 171 007] [1 713, 2 580 088] [149, 4 676 913] [87, 10 061 533]
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There were additional alignment issues with Alaska and Connecticut. While
exploring the data, data sources, and relevant documentation, it was observed that there
were slight changes in the “counties” for both of these states around 2019.

Alaska had a county-equivalent called Valdez-Cordova Census Area that was split
into Chugach Census Area and Copper River Census Area. The population data for 2010-
2020 already included the population estimates for these separated “counties,” but the
commuting data for 2011-2015 only had records for the combined Valdez-Cordova
Census Area. As a simple fix, the data for Chugach and Copper River were summed for
the 2010-2015 years to recreate population estimates for Valdez-Cordova. Downloading
and using the 2010-2015 census population estimates that contained Valdez-Cordova
records was considered, but it was noted that estimates can change from year to year and
that newer estimates supersede older ones. Although it likely would not matter
significantly, the decision was made to use the newer estimates.

Similarly but distinctly, Connecticut recently requested that the census use newly
designated “Planning Regions” rather than their former counties. The population
estimates for 2010-2020 still had records for the counties, not planning regions. However,
the commuting data for 2016-2020 had records for the planning regions and not the
counties. Since the planning regions were not directly aligned with county borders, it was
not possible to simply aggregate county-level data to reflect the planning regions. A
census notice was found that provided a simple table giving 2010 and 2019 population
estimates for the planning regions. Additionally, the census population estimates data at

the county level for 2020-2022 included data for the planning regions. Therefore, the
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simple table of planning region population estimates for 2010 and 2019 was downloaded,

and linear regression was used to interpolate the values for 2011-2018.

GRAVITY MODELS & DISTANCE THRESHOLD OPTIMIZATION

Three gravity models were fit: one including only the distance threshold, another
incorporating a large-population-assortative component similar to Truscott & Ferguson
(2012) (1), and a more extensive population-size-assortative model, wherein the model
includes separate terms for all pairwise combinations of population size tertiles, i.e., not
only large-to-large population flows.

Population sizes for each location were categorized using tertiles (e.g., small,
medium, large population sizes). These categories were used to fit two variations of the
gravity models. First, similar to Truscott and Ferguson (2012), an interaction term was
introduced via an indicator variable identifying commuting flows between two large
populations; Truscott and Ferguson (2012) suggest this assortative component is
important to maintain epidemiological relationships in simulations using synthetic data.
Continuing with this notion, another gravity model variation uses an interaction term for
all nine, unique pairings of population size categories (e.g., (small | medium | large) +
(small | medium | large)). Additionally, the gravity models were further extended by
compounding interaction terms for time period and census region. These increasingly
complex formulations were fit to the commuting data and compared using analyses of

variance.
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We use these additional gravity models for comparisons in the distance threshold

optimization, but we also use them to formally test whether the increases in complexity

are warranted via fit improvements to the data.

Supplementary Table A.2. Gravity Model Analyses of Variance

Model Terms Df Sum of Sq

F Pr>F) AIC  BIC RMSE

~log(Origin Population)

1 +log(Destination Population) 868,871.0868,923.2
+log(Distance)

2 *[(Long Distance) 4143,355.77632,658.726<0.001775,114.6775,208.5
*(Large-Large Population Size

3 8 8,849.267 1,008.002<0.001768,021.8768,199.3
Pairings)

4 *(Population Size Category Pairings) 56 4,806.450
5 *(Origin Census Region) 216 27,707.115

6 *(Time Period) 284 928.451

78.213<0.001764,187.1764,949.1
116.891<0.001740,580.0743,596.8

2.979<0.001740,301.4746,282.8

1.353

1.124

1.108

1.099

1.048

1.046

The distance threshold parameter was chosen to minimize the root mean square

error (RMSE) of the gravity model predictions compared to the observed commuter

volume. The gravity models were fitted using log-linear models; thus, the modeled

outcome was the log-transformed count of workers in the commuting flow. For the sake

of comparisons, the impact of the choice of data scale (i.e., either raw counts referred to

as “identity” or log-transformed counts) for use in the objective function during
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optimization was explored. Furthermore, tuning results were compared between a gravity
model including only the distance threshold interaction, a gravity model including
distance threshold interaction and pairings between two large populations, and a gravity
model including distance threshold and population size category pairings interactions

(i.e., the full 18-group gravity model discussed previously).

The distance threshold was tuned across different subsets of the total data based
on combinations of the time period and the census region of the origin location. Three
time periods were considered, corresponding to the time frames of the commuting data
collection: 2011-2015, 2016-2020, or both time periods 2011-2020. Five “regions” were
considered, corresponding to the four US census regions (Midwest, Northeast, South,
West) plus the entire aggregate US. Thus, there were 15 combinations of time periods

and regions for which the distance threshold was calibrated.
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Supplementary Figure A.1. Sensitivity Analysis of Distance Threshold Optimization
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Supplementary Figure A.2. Gravity Model Power Parameter Estimates

Collectively, much lower values for the distance power were estimated for short-
distance commutes than long-distance commutes; that is, the frequencies of commutes at

short-distances decay much more quickly along increasing distances, while long-distance
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commutes are less affected by increasing distance experiencing only gradual declines.
The distance power parameters seemed most variable among regions for short-distance
commutes. For short-distance commutes in both population size pairing subgroups, the
distance power is estimated to be much lower for the MW region. Additionally, the
distance power for short-distance commutes between other population size pairings in the
NE is markedly greater than those of the other regions. Overall, this suggests that
commuting frequencies decay more steeply over increasing distances in the MW and
more gradually in the NE.

Population power estimates across regions were comparably more consistent,
though we do find some differences among regions. For all short-distance commutes, the
destination population power parameter estimates are larger than those of the origin
population, except for the W region. For non-assortative short-distance commutes
originating in the W, the destination population power parameter is slightly less than the
origin population power parameter. Additionally, the relative difference in population
power parameter estimates for commutes between two large populations is also lower in
magnitude for the W region compared to the others. This suggests that comparatively the

commutes originating in the W are less impacted by destination population sizes.

EPIDEMIC INTENSITY CALCULATIONS

We partition the ILI time series according to the timing of influenza season, set to
begin on the 40th calendar / epi week and end the following 39th calendar / epi week.
Using each season’s cumulative ILI case count, we calculate the relative frequencies of

cases observed each week which is then summarized using Shannon’s entropy. These
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values are transformed and scaled so that zero corresponds to a diffuse epidemic with
cases more evenly distributed among weeks and one corresponds to an intense epidemic
with cases more concentrated / distributed among fewer weeks. We calculated the ILI
epidemic intensity for each of the 52 locations in each of the 9 influenza seasons from
2011-2020, data permitting. Within the ILI data, we also determine the week at which ILI
cases were greatest for each state in each season. These ILI data summaries were merged
with population data for each state. The population estimates roughly correspond to the
estimated population size at the midpoint, 1 July, for each year. To better align with the
influenza season, population data were averaged in a two-year rolling window and then

joined with the data on epidemic intensities.
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Supplementary Figure A.3. Influenza-like Illness Incidence
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Supplementary Table A.3. Epidemic Intensities by Season and State

Region 2011-2012  2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 2019-2020 | Average
Alabama 0.031 0.338 0.204 0.315 0.098 0.376 0.268 0.132 0215 0.220
Alaska 0.135 0.242 0.375 0.188 0.285 0.217 0.075 0.134 03911 0.227
Arizona 0.036 0.179 0.082 0.057 0.118 0.031 0.062 0.070 0.157 1 0.088
Arkansas 0.322 0.609 0.428 0.404 0.275 0.325 0.414 0.278 0.146 | 0.356
California 0.019 0.078 0.074 0.060 0.066 0.038 0.075 0.065 0.146 1 0.069
Colorado 0.056 0.181 0.299 0.193 0.080 0.284 0.292 0.072 0.302 | 0.196
Connecticut 0.305 0.379 0.376 0.252 0.270 0.313 0.286 0.571 0.297 1 0.339
Delaware 0.743 0.640 0.405 1 0.436 0.381 0.821 0.496 0.390 1 0.590
District of Columbia 0.001 0.019 0.034 0.126 0.054 0.053 0.056 0.040 0.090 | 0.053
Florida 0 0.067 0.086 0.140 0.196 0.102 0.265 0.084 0.532 | 0.164
Georgia 0.025 0.175 0.332 0.122 0.033 0.078 0.232 0.082 0.147 1 0.136
Hawaii 0.030 0.401 0.091 0.171 0.133 0.068 0.106 0.074 0.239 | 0.146
Idaho 0.064 0.411 0.473 0.244 0.257 0.330 0.423 0.484 0.234 1 0.324
Ilinois 0.035 0.069 0.045 0.072 0.075 0.095 0.184 0.158 0.231 1 0.107
Indiana 0.096 0.296 0.182 0.244 0.118 0.236 0.244 0.183 02931 0.210
Iowa 0.300 0.515 0.090 0.541 0.334 0.571 0.411 0.257 0.290 | 0.368
Kansas 0.364 0.468 0.359 0.337 0.205 0.417 0.485 0.208 0.254 1 0.344
Kentucky 0.261 0.468 0.472 0.635 0.318 0.353 0.450 0.352 0.282 | 0.399
Louisiana 0.055 0.101 0.076 0.084 0.022 0.053 0.135 0.092 0.142 1 0.085
Maine 0.079 0.098 0.059 0.069 0.038 0.074 0.385 0.103 0.296 | 0.133
Maryland 0.058 0.086 0.116 0.074 0.052 0.159 0.195 0.859 0.193 | 0.199
Massachusetts 0.012 0.106 0.055 0.072 0.081 0.109 0.147 0.080 02111 0.097
Michigan 0.087 0.091 0.098 0.208 0.139 0.128 0.218 0.095 0299 | 0.152
Minnesota 0.066 0.184 0.100 0.115 0.151 0.124 0.204 0.038 0.170 1 0.128
Mississippi 0.035 0.084 0.077 0.103 0.034 0.071 0.183 0.121 0.183 1 0.099
Missouri 0.367 0.297 0.295 0.297 0.182 0.333 0.628 0.397 0.293 | 0.343
Montana 0.586 0.513 0.673 0.525 0.449 0.463 0.791 0.195 0.244 1 0.493
Nebraska 0.178 0.250 0.125 0.191 0.112 0.550 0.160 0.175 0.230 1 0.219
Nevada 0.093 0.259 0.141 0.238 0.167 0.099 0.185 0.110 0.187 1 0.164
New Hampshire 0.344 0.566 0.374 0.466 0.139 0.117 0.379 0.226 0.562 | 0.353
New Jersey 0.205 0.142 0.053 0.054 0.178 0.062 0.137 0.051 0.193 1 0.120
New Mexico 0.047 0.136 0.093 0.115 0.148 0.143 0.237 0.224 0312 0.162
New York 0.009 0.089 0.044 0.026 0.044 0.047 0.154 0.072 0.264 | 0.083
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Region 2011-2012  2012-2013 2013-2014 2014-2015_ 2015-2016  2016-2017 2017-2018 2018-2019 2019-2020 | Average
North Carolina 0.135 0.377 0.158 0.274 0.147 0.291 0.493 0.200 0212 0.254
North Dakota 0.227 0.215 0.598 0.600 0.327 0.551 0.410 0.158 0.242 1 0.370
Ohio 0.165 0.281 0.152 0.269 0.110 0.160 0.250 0.120 0.262 1 0.197
Oklahoma 0.276 0.349 0.269 0.297 0.185 0.319 0.414 0.290 0.338 | 0.304
Oregon 0.138 0.413 0.389 0.246 0.353 0.753 0.167 0.168 0.160 | 0.310
Pennsylvania 0.050 0.177 0.060 0.123 0.064 0.229 0.210 0.117 0.176 | 0.134
Puerto Rico 0.346 0.061 0.021 0.083 0.038 0.019 0.148 | 0.102
Rhode Island 0.342 0.531 0.365 0.549 0.351 0.433 0.503 0.414 0.595 1 0.454
South Carolina 0.134 0.411 0.408 0.409 0.272 0.260 0.382 0.196 0.227 1 0.300
South Dakota 0.242 0.273 0.075 0.120 0.089 0.200 0.204 0.124 0229 0.173
Tennessee 0.207 0.389 0.497 0.326 0.075 0.222 0.444 0.991 0.247 1 0.378
Texas 0.020 0.099 0.087 0.079 0.078 0.150 0.265 0.144 02821 0.134
Utah 0.036 0.129 0.100 0.076 0.075 0.145 0.233 0.088 0.186 1 0.119
Vermont 0.054 0.126 0.102 0.309 0.145 0.108 0.194 0.176 0.226 | 0.160
Virginia 0.055 0.178 0.073 0.146 0.042 0.145 0.233 0.131 0.265 1 0.141
Washington 0.118 0.214 0.167 0.225 0.239 0.333 0.380 0.726 0274 1 0.297
West Virginia 0.139 0.352 0.261 0.276 0.076 0.318 0.381 0.315 03971 0.279
Wisconsin 0.145 0.230 0.202 0.213 0.151 0.263 0.205 0.062 0.178 | 0.183
Wyoming 0.214 0.555 0.339 0.308 0.239 0.237 0.269 0.432 0.381 1 0.330
Average 0.152 0.271 0.220 0.243 0.160 0.231 0.288 0.220 0.258 1 0.227
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Supplementary Figure A.4. Influenza-like Illness Seasonal Epidemic Intensity for US States and the District of Columbia, 2011-2020
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FEATURE ENGINEERING & INCLUDED PREDICTORS

In addition to summarizing only the commuting data, we combine it with the
population data to calculate summary metrics of the spatial distribution of population
within each state. We use the county-level population data to calculate state-level mean
crowding and patchiness, similar to Dalziel et al (2018) (2,3). Finally, using population
and commuting data combined, we approximate “daytime” population distributions by
shifting population counts according to the net change of population due to commutes
(influx and outflux). These shifted population counts allowed us to calculate
“workday/daytime” mean crowding and patchiness as well as the changes in these

quantities due to commuting frequencies.
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Supplementary Table A.4. State-level Summary Statistics of Epidemic Intensity and

Predictor Variables

var Mean (SD) Median [Min,Max] Missing n
ei 0.203 (0.147) 0.172 10, 1] 2
peak wk 5.425 (5.467) 5[-12, 39] 2
county.pop.mean 149034.335 80872 [12557.568, 710534.5]
population 6247251.358 4304076.25 [572073.5,
Total. Workers 2886984.761 1962038 [284566, 18225448]
Internal 2092556.346  1338846.5 [247142, 15116254]
Short Distance 759457.744 532604 [1458, 3144479]
Long_Distance 34970.671 (40148.385) 23271 [1200, 234728]
ratio.si 0.372 (0.226) 0.348 [0.002, 1.146]
ratio.ls 0.132(0.343) 0.051[0.002, 2.816]
ratio.li 0.018 (0.007) 0.018[0.002, 0.045]
Internal prop 73.667 (11.059) 73.438 [46.486, 99.179]

Short Distance prop
Long Distance prop

county.popday.mean
populationday
state.crowding
state.patchiness
state.crowding.day
state.patchiness.day

state.crowding.dailychange
state.patchiness.dailychange
state.crowding.dailychangeratio
state.patchiness.dailychangeratio

distance_mean_km

distance_mean_km_nozeros

county_count

county area_km2 mean
state area_km2 land
state area km?2 water
pop_density
pop_density2
state_area_km?2

25.004 (11.253)
1.329 (0.543)

150681.895
6247246.113
583346.798

4.637 (3.242)
591048.782

4.709 (3.293)
7701.984 (13652.366)
0.072 (0.075)

1.017 (0.021)

1.014 (0.011)

19.888 (4.415)

147.877 (348.839)
61.923 (45.959)
4186.737 (7564.209)
176121.104 (218805.58)
13271.67 (35954.609)
16394.05 (58676.313)
140.916 (523.059)
189392.775
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25.498 [0.215, 53.273]
1.318 [0.117, 3.153]

80770.25 [12566.698, 797724.1]
4311613.35 [573475.3,
324203.881 [46704.579,

3.904 [1, 18.832]

334840.209 [46996.232,
3.962[1, 19.069]

4354.886 [-4733.437, 96496.2]
0.044 [-0.005, 0.299]

1.013 [0.992, 1.154]

1.013 [0.998, 1.048]

19.455 [11.249, 41.091]
70.665 [24.349, 2543.536]

63 [1,254]

1872.696 [113.704, 50994.472]
136859.004 [158.34,

3898.064 [18.687, 245481.577]
4139.118 [49.132, 448738.629]
36.682 [0.421, 4013.694]
143520.797 [177.028,



MIXED EFFECTS REGRESSION MODEL
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Supplementary Figure A.5. Random Effect Estimates for Region
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Supplementary Table A.5. Coefficient Estimates from Linear Mixed-effects Regression Models

Population Size Parameter Linear Quadratic Cubic Model.P
-0.051 (-0.082,-0.019)* Peak Week 0 (-0.004,0.004) 0 (-0.001,0) 0 (0,0)* 0.316
-0.07 (-0.109,-0.031)* Population Density (Land Area) 0.016 (-0.037,0.069) -0.02 (-0.04,-0.001)* -0.007 (-0.016,0.002) 0.047
-0.071 (-0.109,-0.032)* Population Density (Total Area) 0.018 (-0.035,0.071)  -0.02 (-0.037,-0.002)* -0.007 (-0.015,0.002) 0.044
-0.067 (-0.104,-0.031)* County Count 0.001 (-0.003,0.005) 0 (0,0)* 0 (0,0)* 0.247
-0.065 (-0.095,-0.035)* Average County Area -0.029 (-0.08,0.021)  -0.024 (-0.04,-0.009)* 0.008 (-0.001,0.016) 0.009
-0.036 (-0.072,-0.001)* Average County Population 0.003 (-0.061,0.067) -0.004 (-0.032,0.024) -0.016 (-0.04,0.009) 0.124
-0.038 (-0.073,-0.003)* Average County Population during Day 0.007 (-0.056,0.07) -0.005 (-0.033,0.023) -0.017 (-0.04,0.006) 0.088
-0.027 (-0.068,0.013) State Crowding -0.031 (-0.095,0.032) -0.011 (-0.036,0.015) -0.001 (-0.021,0.02) 0.246
-0.062 (-0.095,-0.029)* State Patchiness -0.009 (-0.063,0.046)  -0.032 (-0.056,-0.007)* 0.01 (-0.006,0.026) 0.074
-0.027 (-0.067,0.013) State Crowding during Day -0.032 (-0.096,0.031) -0.011 (-0.037,0.015) -0.001 (-0.021,0.02) 0.225
-0.062 (-0.094,-0.029)* State Patchiness during Day -0.007 (-0.062,0.047)  -0.031 (-0.055,-0.007)* 0.009 (-0.007,0.026) 0.081
-0.059 (-0.093,-0.025)* Daily Change in State Crowding 0.011 (-0.033,0.055)  -0.017 (-0.027,-0.008)* -0.002 (-0.005,0.001) 0.007
-0.058 (-0.089,-0.027)* Daily Change in State Patchiness 0.055 (0.016,0.095)* -0.017 (-0.041,0.007) -0.011 (-0.02,-0.003)* 0.034
-0.06 (-0.089,-0.031)* Daily Change Ratio in State Crowding 0.021 (-0.015,0.056)  -0.018 (-0.029,-0.006)*  -0.005 (-0.008,-0.002)* 0.008
-0.057 (-0.087,-0.027)* Daily Change Ratio in State Patchiness 0.04 (0.007,0.073)* -0.012 (-0.039,0.014) -0.005 (-0.01,0) 0.055
-0.06 (-0.092,-0.027)* State Area Total -0.014 (-0.058,0.03) -0.003 (-0.037,0.03) 0.003 (-0.005,0.011) 0.078
-0.061 (-0.093,-0.028)* State Land Area -0.011 (-0.055,0.033) -0.004 (-0.04,0.032) 0.003 (-0.006,0.012) 0.094
-0.041 (-0.075,-0.008)* State Water Area  -0.061 (-0.112,-0.009)* -0.007 (-0.024,0.01) 0.009 (0.002,0.015)* 0.002
-0.223 (-0.542,0.099) Total Workers 0.131 (-0.18,0.441) -0.02 (-0.051,0.011) 0.018 (-0.006,0.043) 0.400
-0.049 (-0.082,-0.016)* Average Commute Distance 0.002 (-0.034,0.038) 0.001 (-0.016,0.016) 0 (-0.006,0.006) 0.999
-0.053 (-0.085,-0.021)* Average Commute Distance (no zeros) 0.016 (-0.033,0.065) -0.018 (-0.061,0.023) 0.002 (-0.008,0.011) 0.455
-0.136 (-0.295,0.024) Total Commutes Internal/Intracounty 0.05 (-0.117,0.216) -0.025 (-0.057,0.007) 0.017 (-0.006,0.038) 0.323
-0.055 (-0.087,-0.023)* Proportion Commutes Internal/Intracounty -0.015 (-0.074,0.045)  -0.028 (-0.049,-0.007)* 0.006 (-0.01,0.021) 0.035
-0.053 (-0.132,0.027) Total Commutes Short Distance 0.007 (-0.092,0.105) -0.024 (-0.07,0.021) -0.005 (-0.019,0.008) 0.595
-0.055 (-0.087,-0.022)* Proportion Commutes Short Distance 0.016 (-0.046,0.076)  -0.026 (-0.047,-0.004)* -0.006 (-0.023,0.01) 0.051
-0.118 (-0.193,-0.043)* Total Commutes Long Distance 0.105 (0.009,0.199)* -0.004 (-0.028,0.019) -0.012 (-0.025,0.002) 0.153
-0.041 (-0.073,-0.008)* Proportion Commutes Long Distance 0.044 (0.01,0.079)* 0.007 (-0.017,0.03) -0.005 (-0.012,0.003) 0.097
-0.054 (-0.087,-0.022)* Ratio of Short Distance to Internal Commutes 0.004 (-0.045,0.053)  -0.037 (-0.063,-0.01)* -0.008 (-0.018,0.002) 0.047
-0.051 (-0.084,-0.018)*  Ratio of Long Distance to Short Distance Commutes 0.014 (-0.033,0.061) -0.017 (-0.05,0.015) 0.002 (-0.003,0.008) 0.701
-0.045 (-0.075,-0.015)* Ratio of Long Distance to Internal Commutes 0.06 (0.026,0.095)* -0.005 (-0.021,0.011)  -0.009 (-0.014,-0.003)* 0.002
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR AIM 2

CLUSTERING OF INFLUENZA-LIKE ILLNESS

To characterize coupling/linkages between outbreaks in separate locations, we
investigate clustering patterns in the incidence of ILI. For the response variable, weekly
reported ILI counts were transformed to a bi-weekly rate of change. We define this rate
of change (RoC) as the percent change of the current week’s ILI case count from the

previous week’s count; that is,

ILI, — ILI,_,
RoC, = —+——t=1
0% 1Ll

where RoC; is the rate of change observed for week t, ILI; is the count of ILI cases for
week t, and ILI;_; is the count of ILI cases for week t — 1, the week prior. These rate of
change values were calculated for each state across the study period of 2011-2020 and
served as the outcome of interest, or response variable, for the clustering analyses.

Clusters were identified using scan statistics via the SaTScan software (16).
Briefly, clusters are searched in an iterative fashion using each state as a focal point from
which circles of increasing radii extend to define potential cluster constituents. Values of
ILI RoC are compared between locations within the cluster and those outside of the

cluster using the scan statistics. Cluster significance is determined via permutation tests
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with a significance level of a = 0.05. A model for a normal distribution was specified,
and total patient counts were used as population weights.

The relationship between locations is necessary to identify potential clusters, i.e.,
plausible groupings/agglomerations of locations. We define this relationship using two
distance metrics. First, we use a simple geographic distance, i.e., Haversine / Great Circle
distance. Each state is represented as a point location with latitude and longitude
coordinates of the spatial center of population. These coordinates are used by the
SaTScan software to calculate distances for generating candidate clusters. We refer to the
clusters generated using this distance metric as spatial clusters. Additionally, we
investigate clustering using a distance metric related to how many people commute
between locations. Data on commuting flows were aggregated to the state level for each
unique pair of locations; that is, the data were transformed into undirected, state-level,
commuting networks with edges weighted by the number of people commuting between
two states, separately for 2011-2015 and 2016-2020. As the edge weights in this
commuting network represent the strength of the coupling between nodes, we need to
transform the edge weights so that they can be interpreted as distances. We take the
reciprocal of the commuting totals to represent the network distance between two
locations. Clusters identified using commuting network distance, or network distance, are
referred to as commuting clusters or network clusters. We briefly compare the spatial and
network clusters in their effect sizes, overall cluster size, and timing relative to influenza
season.

Spatial clusters had a median 11 [Q1: 4, Q3: 18.5] constituent states; commuting

clusters were similarly sized (p=0.47) with a median 8.5 [4, 15.75] states comprising each
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cluster. ILI RoC within spatial and commuting clusters were also similar with an average
RoC of +38.6 and +34% change, respectively; weighted means within clusters were also
similar at +36.1 and +32.1% change for spatial and commuting clusters, respectively. The
magnitudes of ILI RoC outside of clusters were also similar (p=0.33) between spatial and
commuting clusters, with an average ILI RoC of -1.8% change outside of spatial clusters
and -4.9% change outside of commuting clusters. Consequently, the differences in ILI
RoC between clustered and non-clustered states are similar for both types of clusters. At
the margin, both types of clusters occurred at similar times with an average occurrence on
the 23" epidemiological/calendar week, i.e., the end of May. When examining the spatial
distribution of clusters over the course of an influenza season, there is considerable
overlap between spatial and commuting clusters (Figure 1. However, from January-
March, there seem to be a higher concentration of spatial clusters, and, from
approximately April-June each year, there seem to be relatively few spatial clusters
(Figures #, Supplemental Figure #). Comparatively, commuting clusters seem more

evenly spread across the year.
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Supplementary Table B.1. Identified Clusters of ILI Incidence

Variable Levels Commuting Spatial StatisticParameter p
n =46 (40.7) n=67(59.3)
Cluster Size 8.5[4, 15.75] 11[4,18.511,416.00 0.47
Missing 0 (0) 0 (0)
Mean inside 0.34235 (0.32614) 0.38601 -0.72 91.470.47
Missing 0 (0) 0 (0)
Mean outside -0.04947 -0.01809  -0.99 85.660.33
Missing 0(0) 0(0)
meandiff 0.39182 (0.21314) 0.4041 (0.24543)  -0.28 104.930.78
Missing 0 (0) 0 (0)
Weighted mean 0.32087 (0.33735) 0.36103  -0.66 87.350.51
Missing 0 (0) 0 (0)
Weighted mean -0.06417 -0.02984  -1.20 83.520.23
Missing 0(0) 0(0)
wtdmeandiff 0.38504 (0.23461) 0.39087 -0.13 96.890.9
Missing 0 (0) 0 (0)
ew 22.52174 2337313  -0.27 101.480.78
Missing 0 (0) 0 (0)
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Supplementary Figure B.2. Spatial Clusters
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Supplementary Figure B.3. Commuting Network Clusters
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NETWORKS

Supplementary Table B.2. Summary Statistics of Networks included in Community Detection Analyses

Variable

ACS 2011-2015 ACS 2011-2015 (UD) ACS 2011-2015 (Scaled) ACS 2011-2015 (Scaled; UD)

1s.directed
1s.connected

any loop

adhesion

cohesion

diameter

reciprocity

alpha centrality.mean
authority score.mean
hub score.mean
betweenness.mean
closeness.mean
degree.mean
diversity.mean
eccentricity.mean
edge betweenness.mean
meansd.edge.weight
iqr.edge.weight
n.edges

NN
DO —

0.933
-0.022
0.886
0.901
5.346
0.018
91.308

1.558

1.234

0.005 (0.035)
0 (0, 0.001)
2374

0

1

0

31

31

2

1

-0.02

0.939
0.939

1.135
0.019
48.731

1

1.558

1.093
0.008 (0.046)
0 (0, 0.002)
1267

1

1

0

22

22
2.017
0.933
-0.021
0.881
0.912
5.346
0.018
91.308

1.558

1.234

0.025 (0.093)

0.003 (0.001, 0.008)
2374

0

1

0

31

31

2.001

1

-0.02

0.943

0.943

1.135

0.018

48.731

0.999

1.558

1.093

0.027 (0.096)
0.003 (0.001, 0.01)
1267
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Variable

ACS 2016-2020 ACS 2016-2020 (UD) ACS 2016-2020 (Scaled) ACS 2016-2020 (Scaled; UD)

1s.directed
1s.connected

any loop

adhesion

cohesion

diameter

reciprocity

alpha centrality.mean
authority score.mean
hub score.mean
betweenness.mean
closeness.mean
degree.mean
diversity.mean
eccentricity.mean
edge betweenness.mean
meansd.edge.weight
iqr.edge.weight
n.edges

NS\
NAANNO — —

0.93
-0.017
0.872
0.885
6.327
0.018
89.346

1.654

1.283

0.005 (0.034)
0 (0, 0.001)
2323

0

1

0

32

32

2

1

-0.022
0.925
0.925
1.596
0.018
47.808

1

1.654

1.134
0.008 (0.046)
0 (0, 0.002)
1243

1

1

0

26

26

2.01

0.93

-0.018

0.861

0.895

6.327

0.017

89.346

1.654

1.283

0.026 (0.094)
0.003 (0.001, 0.009)
2323

0

1

0

32

32

2.004

1

-0.02

0.927

0.927

1.596

0.018

47.808

0.999

1.654

1.134

0.028 (0.095)
0.003 (0.001, 0.01)
1243
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Variable Clusters ACS Clusters Spatial
1s.directed 0 0
1s.connected 1 0
any loop 0 0
adhesion 22 0
cohesion 22 0
diameter 2.118 2.45
reciprocity 1 1
alpha centrality.mean -0.015 -0.009
authority score.mean 0.706 0.735
hub score.mean 0.706 0.735
betweenness.mean 5.115 7.378
closeness.mean 0.015 -
degree.mean 40.769 34.308
diversity.mean 0.998 --
eccentricity.mean 1.904 1.942
edge betweenness.mean 1.502 1.859
meansd.edge.weight 0.146 (0.152) 0.324 (0.225)
iqr.edge.weight 0.118 (0, 0.235) 0.3(0.15, 0.5)
n.edges 1060 892
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Supplementary Figure B.4. Commuting Networks for 2011-2015 (top) and 2016-2020

(bottom)
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Edge Weight

Supplementary Figure B.5. Spatial Clusters Network
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Edge Weight

Supplementary Figure B.6. Commuting Clusters Network
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COMPARING COMMUNITY SCHEMES
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Supplementary Figure B.7. Relationship between Tip-Trait Association Index and the

Number of Trait Classes

I devised a simulation to explore how the values of the tip-trait association index
depended on the number of classes within a given trait. Color may be categorized three
classes as red, blue, or green, or it could be broken down into many more categories; |
was curious how the tip-trait association index statistic would differ when only the
number of classes changed. I simulated phylogenetic trees and randomly assigned tips to
some trait class. This was repeated for many iterations and many different traits which

varied in the number of trait classes.
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Each tree has 100 tips. Tips are classified into from 2 up through 20 separate classes for a
“trait”. Traits for a given class number are generated in 10 repetitions. There are 19

“traits” simulated for 10 repetitions for 1000 trees in sets of 25 trees.

Supplementary Figure B.7 shows that the value of the association index will depend on
the number of classes within the trait. Therefore, it may be difficult to compare the fit of
two separate traits which differ in the number of classes by direct comparison of the

association index statistics.
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Supplementary Figure B.8. Administrative and Generated Regions of the United States
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Supplementary Table B.3. Summary Statistics of Administrative and Generated Regions of the United States

Parameter Census Census HHS Overall Top 50 All Others
groupedrank3 26 35 21 1 27 12,47 112.5[52,173]
n communities 10 5 10 8 913, 19] 131, 52]
modularity network.acs.1115 0.492 0.506 0.508 0.602 0.57710.275,0[-0.099, 0.608]
modularity network.acs.1115.scaled 0.452 0.493 0.497  0.557 0.54210.318,0[-0.054, 0.537]
modularity network.acs.1115.scaled.undirected 0.45 0.491 0.496 0.555 0.541[0.318, -0.002 [-0.056,
modularity network.acs.1115.undirected 0.491 0.506 0.508 0.601 0.57710.275, -0.001[-0.101,
modularity network.acs.1620 0.489 0.504 0.511 0.602 0.57710.276,0 [-0.099, 0.606]
modularity network.acs.1620.scaled 0.454 0.499 0.492  0.558 0.539[0.316,0[-0.055, 0.536]
modularity network.acs.1620.scaled.undirected 0.451 0.497 0.491 0.557 0.538[0.316,0[-0.057, 0.535]
modularity network.acs.1620.undirected 0.489 0.504 0.51 0.602 0.577[0.276,0[-0.101, 0.606]
modularity network.clusters.acs 0.062 0.109 0.061 0.077 0.072[0.038, -0.008 [-0.029,
modularity network.clusters.spatial 0.113 0.159 0.092 0.117 0.105[0.057, -0.003 [-0.025,
modularity mean 0.394 0.427 0.417  0.483 0.45710.268, -0.002[-0.058,
modrank 58 46 57 9 28 [1,65] 112120, 173]
modacsrank 54 53 52 10 271, 65] 112.5[18, 173]
modclustrank 32 9 39 21 30 [1, 64] 112 [3, 173]
ai propp grand 0.13 0.094 0.123 0.139 0.14710.034, 0.216[0.026,
ps propp grand 0 0 0 0 070, 0] 0710, 1]
ttairank 27 14 22 35 4112,74]1 112.5[1,173]
membership entropy 2.196 1.43 2.266 1.995 2.044[0.775, 1.84]0,3.951]
mcs entropy 2.167 1.371 2262  2.043 2.043[0.692, 2.067 [0, 2.973]
entrank 55 102 46 71 6818, 119] 108 [1, 173]
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APPENDIX C

SUPPLEMENTAL MATERIALS FOR AIM 3

SUPPLEMENTARY TABLES & FIGURES
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Supplementary Figure C.1. Data Processing
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Supplementary Figure C.2. Coverage of Included Hemagglutinin Sequences
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Supplementary Table C.1. Full Phylogenetic Tree Summaries

Variable Levels BVic BYam H1 H3 Statistic Parameter p Test

n=>510 (25) n=>510 (25) n=>510 (25) n=>510 (25)

ntips 14 6, 32] 147, 29] 25[11, 48] 41.5[20, 71]255.40650 3<0.001 Kruskal-
Missing 102 (20) 113 (22.2) 20 (3.9) 0(0)

mpd 0.0104 (0.00529) 0.0145 (0.00723) 0.03407 (0.03194) 0.02029 (0.00917)152.92612 3, 1801<0.001 AoV

imbalance.collessnorm 0.51516 (0.21095) 0.47922 (0.20956) 0.46304 (0.22123)  0.33234 (0.1879) 70.44287 3, 1801<0.001 AoV

avgladder 2.67982 (1.80769) 2.34488 (1.38364) 2.50771 (1.21182) 2.93548 (1.13976) 15.27091 3, 1801<0.001 AoV

tmrcal -3.12 [- -3.34 [- 2.1 [- -4.96 [-277.68576 3<0.001 Kruskal-

rate 0.00175 (0.00201)

0.00221 (0.00412)

0.0038 (0.00471)

0.00272 (0.00146) 31.37160

3,1801<0.001 AoV
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Supplementary Figure C.3. Mutation Rate of Full Phylogenetic Trees
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Supplementary Figure C.4. Coverage of Local Transmission Clusters
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Supplementary Table C.2. Summaries of Local Transmission Clusters

Variable Levels BVic BYam H1 H3 Statistic Paramete p Test

n =831 (16.6) n =852 (17) n=1419 (28.4) n=1897 (37.9)

ntips 32, 6] 3[2,5] 3[2,7] 3[2,6]27.863388 3 <0.00 Kruskal
Missin 261 (31.4) 273 (32) 162 (11.4) 89 (4.7)

mpd 7e-04 (0.00077) 0.00086 (0.00088) 0.00141 (0.00121) 0.0012 (0.00109) 74.223637  3,4210 <0.00 AoV

imbalance.collessnor 0.74987 (0.30846)  0.79882 (0.29441) 0.72869 (0.29957) 0.73539 (0.31138) 4.342069 3,2564 <0.00 AoV
475 (57.2) 541 (63.5) 615 (43.3) 800 (42.2)

avgladder 1.39375 (2.40215) 0.96765 (1.88494) 1.1379 (1.85129)  1.23945 (2.04366) 4.906241 3,4210 <0.00 AoV

tmrcal -0.17 [- -0.13 [- -0.19 [- -0.22 [- 109.06572 3 <0.00 Kruskal
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Supplementary Figure C.6. Estimated Mutation Rates from Full Phylogenetic Trees
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Supplementary Table C.3. Pearson Correlation Coefficients of Spatiotemporally Lagged

Auto- and Cross-correlations of Seasonal Diversification of Influenza Subtypes /

Lineages with BVictoria

Subtype Spatial Lag Spatial BVic

Tlag=0 1 2 3
BVic Auto 0 1 -0.081(-0.159,- -0.033 (-0.112, -0.021 (-0.113,
BVic Network 1 0.057 (-0.006, -0.017 (-0.066, -0.025 (-0.085, -0.074 (-0.132, -
BVic Spatial 1 0.074 (-0.013, 0.036 (-0.02, -0.046 (-0.128, -0.031 (-0.128,
BVic Spatial 2 0.153 (0.067, -0.035 (-0.101, -0.06 (-0.134, -0.124 (-0.189, -
BVic Spatial 3 0.097 (0.026, 0.018 (-0.038, -0.061 (-0.123, 0.011 (-0.062,
BYam Auto 0 0.136 (0.037, 0.036 (-0.048, 0.118 (0.04, 0.068 (-0.1,
BYam Network 1 0.039 (-0.041, -0.085(-0.161,- -0.062 (-0.162, 0.097 (0.023,
BYam Spatial 1 0.047 (-0.04, -0.004 (-0.098, -0.036 (-0.136, 0.025 (-0.064,
BYam Spatial 2 0.067 (-0.01, -0.091 (-0.159, - 0.014 (-0.081, 0.094 (-0.019,
BYam Spatial 3 0.076 (-0.005, -0.102 (-0.161, - 0.029 (-0.05, 0.036 (-0.033,
H1 Auto 0 0.106 (0.012, -0.031 (-0.099, -0.033 (-0.118, -0.04 (-0.127,
H1 Network 1 0.063 (-0.005, -0.046 (-0.11,  -0.028 (-0.085, -0.016 (-0.101,
H1 Spatial 1 0.099 (0.019, -0.097 (-0.163,-  -0.049 (-0.116, 0.003 (-0.078,
H1 Spatial 2 0.024 (-0.044, 0.017 (-0.057, 0.013 (-0.055, -0.104 (-0.173, -
H1 Spatial 3 0.01 (-0.059, 0.042 (-0.033,  -0.041 (-0.106, 0.053 (-0.02,
H3 Auto 0 0.056 (-0.03, -0.065 (-0.145, -0.073 (-0.143, - 0.041 (-0.025,
H3 Network 1 0.034 (-0.022, 0.003 (-0.056, -0.024 (-0.088, 0.058 (-0.015,
H3 Spatial 1 -0.031 (-0.1, -0.011 (-0.078,  -0.044 (-0.104, 0.05 (-0.035,
H3 Spatial 2 -0.068 (-0.127, - 0.057 (-0.017, -0.06 (-0.124, 0.011 (-0.042,
H3 Spatial 3 0.162 (0.099, 0.019 (-0.052, -0.053 (-0.119, 0.071 (0.008,
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Supplementary Table C.4. Pearson Correlation Coefficients of Spatiotemporally Lagged

Auto- and Cross-correlations of Seasonal Diversification of Influenza Subtypes /

Lineages with BYamagata

Subtype Spatial Lag Spatial BYam

0 1 2 3
BVic Auto 0 0.136 (0.037, 0.127 (0.044,  -0.007 (-0.091, -0.041 (-0.15,
BVic Network 1 0.065 (-0.007, -0.038 (-0.083, -0.068 (-0.118,-  -0.005 (-0.061,
BVic Spatial 1 0.034 (-0.052, -0.043 (-0.099, -0.091 (-0.149, - 0.021 (-0.061,
BVic Spatial 2 0.018 (-0.042, 0.073 (0.003, -0.111(-0.159,-  -0.055 (-0.128,
BVic Spatial 3 0.103 (0.02, 0.015(-0.045, -0.103 (-0.157,- -0.116 (-0.193, -
BYam Auto 0 1 0.005 (-0.1, -0.189 (-0.306, - 0.073 (-0.07,
BYam Network 1 0.356 (0.27, -0.039 (-0.092, -0.249 (-0.326,-  -0.034 (-0.113,
BYam Spatial 1 0.369 (0.287, -0.021 (-0.075, -0.246 (-0.322,- -0.095 (-0.184, -
BYam Spatial 2 0.238 (0.158,  0.036 (-0.024, -0.201 (-0.296, - 0.027 (-0.040,
BYam Spatial 3 0.258 (0.175, -0.008 (-0.048, -0.184 (-0.289, - 0.088 (-0.004,
H1 Auto 0 -0.015(-0.117, 0.052(-0.034, 0.071 (-0.035, 0.141 (0.05,
H1 Network 1 -0.051 (-0.11,  -0.007 (-0.093, 0.011 (-0.058,  -0.022 (-0.076,
H1 Spatial 1 -0.07 (-0.148, -0.033 (-0.101, 0.078 (0.01,  -0.028 (-0.082,
H1 Spatial 2 0.054(-0.015, -0.053 (-0.12, 0.04 (-0.028, -0.016 (-0.089,
H1 Spatial 3 -0.01 (-0.082,  0.003 (-0.063, 0.014 (-0.056, 0.028 (-0.037,
H3 Auto 0 0.102(-0.012, 0.002(-0.079, -0.013 (-0.128, -0.081 (-0.184,
H3 Network 1 0.142 (0.049, 0.02 (-0.039,  -0.049 (-0.115,  -0.007 (-0.062,
H3 Spatial 1 0.111 (0.035, 0.036 (-0.034, -0.035(-0.113,  -0.021 (-0.087,
H3 Spatial 2 0.043(-0.024, 0.011(-0.051, -0.048 (-0.122,  -0.008 (-0.073,
H3 Spatial 3 0.025(-0.045, 0.008 (-0.074, -0.08 (-0.141, - 0.002 (-0.065,
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Supplementary Table C.5. Pearson Correlation Coefficients of Spatiotemporally Lagged

Auto- and Cross-correlations of Seasonal Diversification of Influenza Subtypes /

Lineages with H1
Subtype Spatial Lag Spatial H1

0 1 2 3
BVic Auto 0 0.106 (0.012, -0.057 (-0.15, 0.069 (-0.015, 0.012 (-0.075,
BVic Network 1 0.002 (-0.069, 0.009 (-0.063, 0.029 (-0.028, -0.06 (-0.115, -
BVic Spatial 1 0.08 (-0.02, 0.022 (-0.056, 0.024 (-0.043, -0.084 (-0.159, -
BVic Spatial 2 -0.027 (-0.087, -0.026 (-0.086, 0.055 (-0.018,  -0.058 (-0.111,
BVic Spatial 3 0.006 (-0.06, -0.03 (-0.095, 0.049 (-0.019, -0.085 (-0.143, -
BYam Auto 0 -0.015(-0.117, 0.078 (-0.01, 0.05(-0.079, -0.014 (-0.119,
BYam Network 1 -0.14 (-0.225, - 0.05 (-0.017, 0.115(0.053, -0.027 (-0.109,
BYam Spatial 1 -0.082 (-0.165, 0.047 (-0.02, 0.17 (0.104, -0.066 (-0.146,
BYam Spatial 2 -0.075(-0.156,- -0.074 (-0.164, 0.118 (0.046, -0.015 (-0.108,
BYam Spatial 3 -0.017 (-0.096, 0.006 (-0.071, 0.076 (0,0.148) -0.012 (-0.087,
H1 Auto 0 1 -0.086(-0.172, 0.093 (0.004, -0.005 (-0.098,
H1 Network 1 0.203 (0.108,  -0.066 (-0.129, 0.09 (0.014, -0.173 (-0.25, -
H1 Spatial 1 0.203 (0.113, -0.029 (-0.1, 0.112 (0.036, -0.151(-0.241, -
H1 Spatial 2 0.136 (0.048, -0.185 (-0.251, - 0.133 (0.06, -0.173 (-0.254, -
H1 Spatial 3 0.148 (0.068, -0.206 (-0.275, - 0.157 (0.08, -0.19 (-0.27, -
H3 Auto 0 -0.043 (-0.13, 0.043 (-0.04, -0.041 (-0.122, 0.022 (-0.053,
H3 Network 1 -0.086 (-0.154, - 0.056 (-0.031, -0.045 (-0.12, 0.105 (0.043,
H3 Spatial 1 -0.045(-0.113, 0.024 (-0.055, -0.043 (-0.112, 0.144 (0.082,
H3 Spatial 2 -0.074 (-0.156, - 0.047 (-0.025, -0.113 (-0.185, - 0.098 (0.023,
H3 Spatial 3 -0.032 (-0.114, 0.126 (0.055, -0.064 (-0.127, 0.138 (0.072,
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Supplementary Table C.6. Pearson Correlation Coefficients of Spatiotemporally Lagged

Auto- and Cross-correlations of Seasonal Diversification of Influenza Subtypes /

Lineages with H3
Subtype Spatial Lag Spatial H3

0 1 2 3
BVic Auto 0 0.056 (-0.03, -0.019 (-0.118, 0.061 (-0.034, 0.052 (-0.066,
BVic Network 1 -0.01 (-0.095, 0.029 (-0.057,  -0.048 (-0.123, -0.095 (-0.163, -
BVic Spatial 1 -0.067 (-0.154, 0.048 (-0.047,  -0.059 (-0.146, -0.045 (-0.12,
BVic Spatial 2 0.02 (-0.054, 0.052 (-0.018,  -0.036 (-0.099, 0.041 (-0.036,
BVic Spatial 3 0.185 (0.135, -0.044 (-0.14, 0.003 (-0.059, 0.007 (-0.065,
BYam Auto 0 0.102 (-0.012,  -0.066 (-0.171,  -0.036 (-0.142,  -0.026 (-0.124,
BYam Network 1 0.093 (-0.013, -0.133 (-0.244, - -0.078 (-0.153, - 0.047 (-0.03,
BYam Spatial 1 0.088 (-0.035, -0.135(-0.232,- -0.091 (-0.164, - 0.006 (-0.072,
BYam Spatial 2 0.05 (-0.063, -0.114(-0.193,-  -0.045 (-0.136, 0.133 (0.051,
BYam Spatial 3 0.026 (-0.069, -0.062 (-0.132, -0.001 (-0.09, 0.123 (0.055,
H1 Auto 0 -0.043 (-0.13, 0.076 (-0.011,  -0.048 (-0.135, 0.046 (-0.032,
H1 Network 1 -0.082 (-0.162, 0.07 (-0.009, -0.091 (-0.166, - 0.047 (-0.034,
H1 Spatial 1 -0.053 (-0.12, 0.073 (0.008, -0.082 (-0.161, - 0.039 (-0.035,
H1 Spatial 2 -0.099 (-0.185, - 0.116 (0.052, -0.189 (-0.254, - 0.082 (0.014,
H1 Spatial 3 -0.028 (-0.107, 0.095 (0.042, -0.103 (-0.165, - 0.023 (-0.031,
H3 Auto 0 1 -0.023 (-0.094, 0.02 (-0.056, -0.046 (-0.123,
H3 Network 1 0.13(0.042, -0.062 (-0.139, 0.048 (-0.036, -0.074 (-0.141, -
H3 Spatial 1 0.141 (0.059, -0.087 (-0.155, - 0.042 (-0.041, -0.082 (-0.146, -
H3 Spatial 2 0.028 (-0.056, -0.113 (-0.173, - 0.05 (-0.018,  -0.001 (-0.063,
H3 Spatial 3 0.126 (0.07, -0.101 (-0.147, - 0.035 (-0.028, -0.01 (-0.055,
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