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ABSTRACT 

  

The epidemiology of seasonal influenza is shaped by mechanisms across 

ecological scales, from molecular interactions to global climate patterns. Misaligned data 

may greatly impact analytical inference, but spatial constructs characterizing larger 

scales, e.g., regions, lack concrete, standard definitions and, consequently, are often 

overlooked in influenza research.  

In this dissertation, I analyze patterns in human mobility, disease incidence, and 

viral genetic evolution to holistically characterize spatial structuring within the United 

States related to seasonal influenza. In Chapter 2, I model commuting flows and 

influenza-like illness (ILI). Using an estimated critical distance of ~150km or ~93mi, I 

show that simple summary metrics of local mobility from county-level commutes 

informs some variation in state-level ILI epidemic intensity. In Chapter 3, I evaluate 

numerous regional delineations of the US for their ability to capture important patterns of 

worker commutes, ILI incidence, and viral population structure. From this network 

science community analysis, I find evidence suggesting that the US may be best 



represented with ~8 subnational regions which are not precisely captured by existing 

administrative regional delineations. In Chapter 4, I systematically describe local 

outbreaks of four seasonal influenza viruses across a decade of flu seasons in the US. I 

show that the average isolate diversities of local outbreaks exhibit weak spatial 

autocorrelation, and marginally, local outbreaks in more populous states tended to have 

less diverse viral isolates which may suggest either impactful differences in transmission 

patterns or isolate sampling.  

Taken together, these analyses suggest that there is inherent structuring of local 

and regional scales within the US. Given these findings, I speculate that much of the 

observed variation in seasonal influenza epidemiology at the regional level could be 

explained by the underlying spatial organization of local populations. Additionally, this 

work shows that even with simple methodologies and crude conceptualizations of scale, 

we can abstract information from data at higher resolutions which is salient to patterns at 

larger scales and coarser resolutions. With continued effort, we may be able to identify 

systematic sources of variation in outbreak dynamics and viral evolution which would be 

invaluable when modeling an otherwise largely chaotic infectious disease system. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

OVERVIEW 

The epidemiology of infectious diseases, such as seasonal influenza, is shaped by 

mechanisms across ecological scales, from the molecule, cell, and organism to the 

population and metapopulation (1). However, spatial constructs characterizing larger 

scales lack concrete definitions and, consequently, are often overlooked in influenza 

research (2). To explain briefly, a metapopulation is defined as a collection of local 

populations separated by space but connected by migration (3); while distinctions of the 

metapopulation patches housing local populations may be clear at some scales, e.g., host 

cells or organisms as patches for parasites, what constitutes a “local” population is less 

well-defined at larger scales, e.g., host populations as patches. This dearth of knowledge 

in spatial structuring may both bias inference (4) and inhibit accurate modeling (5), cf., 

the ecological fallacy and cross-level bias (6) or gerrymandering (7).  

In this dissertation, I attempt to address this problem in part by characterizing sub-

national spatial structuring in the United States (US) and its impact on epidemiological 

patterns of seasonal influenza. To achieve this goal, I set forth three specific aims: 

characterize regional patterns in human mobility and their associations with the epidemic 

intensity of influenza-like illness; identify specific influenza transmission zones (ITZs) 

within the US; and describe the spatial variation in the phylogenetic signal of local 
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influenza outbreaks. Altogether, this work constitutes a holistic characterization of the 

spatial epidemiology of seasonal influenza on a subnational, metapopulation scales in the 

US.  

This introduction gives background on seasonal influenza and observed 

epidemiological patterns, particularly focusing on transmission across scales and the 

importance of researching this topic.  

 

INFLUENZA VIRUS & DISEASE CHARACTERIZATION 

Influenza Illness 

Influenza is a respiratory illness caused by influenza virus infection (8). Influenza 

infections and the illness they cause are acute in nature, i.e., quickly onset and relatively 

short-lived. The natural history of an illness describes the progression of disease from 

exposure to resolution in the absence of medical intervention; for influenza, this typically 

spans 4-7 days for the average, uncomplicated case (8). Following transmission of 

influenza virus particles, an infected person can begin feeling sick after an average of 2 

days and can shed virus and become contagious, up to 1 day before or without ever 

feeling ill (9). Once symptoms begin to show, an infected person will typically feel worst 

over the next 1-2 days and be sick for 3-7 days total (9).  

Influenza illness presents in a range of disease severity. Some may experience an 

asymptomatic, subclinical infection, while, for others, influenza infection may be a 

primary cause of death. Clinical presentation in uncomplicated cases may include fever, 

cough, sore throat, chills, or malaise (8). More severe cases may have more numerous or 

debilitating symptoms and additional complications may develop not limited to the upper 
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respiratory system, such as encephalitis (brain inflammation), pneumonia, or even sepsis 

(10); these complications may be the result of the influenza virus infection alone or 

related to influenza-associated secondary bacterial co-infections (10,11). 

 

Virology 

Influenza viruses are orthomyxoviruses, a family of negative-sense RNA viruses 

with segmented genomes and host-derived envelopes (17). There are two genera of 

influenza viruses that cause significant disease in humans, influenzavirus A and 

influenzavirus B, more colloquially referred to as type A and type B. Influenza B viruses 

(IBV) are solely human pathogens, while influenza A viruses (IAV) have a broad range 

of hosts and, relatedly, similarly broad genomic diversity (18). Further narrowing it 

down, there are two IAV subtypes, H3 and H1, and two IBV lineages, Victoria and 

Yamagata, that circulate widely causing seasonal outbreaks in the US; these four viruses 

are referred to collectively as seasonal influenza viruses. 

IAV and IBV share similarities in their viral structure, genomic composition, and 

viral protein functions. Both types of influenza viruses have genomes composed of 

single-stranded RNA and consist of eight homologous gene segments. The genomes 

encode similar proteins essential for the virus’s structure and replication, including two 

surface antigens, hemagglutinin (HA) and neuraminidase (NA). HA is responsible for 

binding the virus to host cells and is the primary target of human adaptive immunity (19). 

Opposing the binding function of HA, NA cleaves the binding between HA and sialic 

acid residues which helps the virus escape from infected cells as well as avoid 

mucociliary clearance (20,21).  
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Box 1. Clinical Case Management of Influenza 

The acute nature of influenza infection, illness, and the risk of 

complications makes an accurate and timely diagnosis paramount in clinical case 

management. Chief complaints and clinical presentation are not uniquely 

characterized for / specific to influenza. For example, influenza-like illness 

syndrome (ILI), often used in surveillance based on triaged signs, is defined as a 

fever (temperature 100F/37.8C or higher) and a cough and/or a sore throat (12). 

These criteria are non-specific, and, consequently, patients with ILI are not 

necessarily influenza cases. Many other seasonal, respiratory infectious agents 

cause similarly characterized respiratory illness which may be captured in 

syndromic surveillance programs. Even so, aggregate analysis of signs and 

symptoms can help to identify influenza cases via clinical decision/prediction rules, 

though algorithm performance and accuracy can vary in practical settings, e.g., 

using patient reported signs and symptoms in telemedicine contexts (13), and, 

ultimately, these approaches still need to be validated (14). Influenza diagnosis can 

be confirmed using one of many available diagnostic tests. These tests identify 

influenza by detection of viral antigens (e.g., rapid diagnostic tests), viral genetic 

material (e.g., polymerase chain reaction assays), or viable virus (cultures) in 

samples collected from suspected cases (15). Testing for influenza is recommended 

for clinicians if the results may influence clinical management of disease (16). 

Diagnostic testing does not preclude influenza treatment using antivirals, though, 

but it can still be otherwise useful for understanding prognostic risk profiles and 

recommending non-pharmaceutical interventions for outbreak control (16). 
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DESCRIPTIVE EPIDEMIOLOGY 

Person 

Each year in the United States, approximately 8% of people experience influenza 

illness; this amounts to estimates of 9.3 million – 41 million incident cases annually since 

2010 (22,23). Most infections are self-limiting, resolving without medical intervention, 

and some may even be subclinical with no or very mild symptoms. Still, many influenza 

infections cause significant disease; surveillance figures indicate as much, with annual 

estimates of 100,000 – 710,000 hospitalizations and 4,900 – 51,000 deaths (23).  

Everyone is susceptible to influenza virus infection, but the risks of infection, 

symptomatic illness, and more severe illness with complications are influenced by 

characteristics specific to the individual person as well as characteristics of the infecting 

viral strain. Typical host-related risk factors include age (being young or elderly), having 

a compromised immune system, and having numerous other comorbid conditions which 

may all influence an individual’s probability of developing more severe illness and/or 

complications (10). These risk factors are all closely interrelated and may ultimately 

underlie factors of the immune system and its ability to react effectively (quickly and 

efficiently) to the influenza viruses (24). For example, younger children and the elderly 

may have less effective immune responses to influenza challenges, though for differing 

reasons, i.e., naïveté versus senescence, respectively. Conversely, a well-adapted immune 

system may be considered a protective factor, potentially even to the extent of sterilizing 

immunity, i.e., infection-preventing immunity. As it is thoroughly ingrained into human 

ecology, most people have repeated influenza infections over the course of their lives 

with adaptive immunity developing early in childhood (24,25).  
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Place & Time 

The incidence of influenza illness is not consistent throughout the year. Rather, 

the burden felt during influenza outbreaks is concentrated over several months. In the US, 

influenza outbreaks align with the winter season, usually beginning around October, 

peaking sometime between December and February, and dissipating around May (26). 

This routine occurrence, or seasonality, in influenza incidence is not limited to the US, 

but common among other regions with temperate climates. Although coinciding with 

behavioral shifts during the winter holidays, the pattern of seasonal outbreaks is largely 

attributed to changing climatic conditions which directly impact the transmissibility of 

influenza viruses (27,28).  

Influenza outbreaks happen at different times in different places. These 

heterogeneities in the regularity and relative timing of influenza outbreaks around the 

world may combine to facilitate the spread and persistence of influenza virus lineages 

(29). For example, on the global scale, the northern and southern hemispheres experience 

winter at different points in time in a calendar year. In fact, these seasons are 

complementary over the course of a year; winter in the northern hemisphere corresponds 

to summer in the southern hemisphere, as does northern summers and southern winters. 

As more ideal climatic conditions oscillate back and forth between northern and southern 

hemispheres over the course of a year, influenza virus lineages can follow these suitable 

environmental conditions by hopping between (or causing) asynchronous outbreaks (29). 

This conveniently timed range expansion offers opportunities for influenza virus lineages 

to avoid seasonal transmission bottlenecks (25,29). 
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Variable Disease & Outbreak Dynamics  

Although clearly important to influenza epidemiology, these observed patterns 

and aspects of person, place, and time are moderated by features more directly related to 

the virus itself. Generally, IAV, particularly H3N2, are more notorious, contributing to 

both higher rates of infection and severe disease; IBV also cause significant disease, but 

overall incidence is less than IAV (3 IAV to every 1 IBV confirmed case) and 

demographic profiles of incidence and mortality skew relatively younger for IBV (30,31).  

IAV and IBV co-circulate in human populations causing seasonal outbreaks in the 

US. Viruses from either influenza type may be the predominant cause of influenza illness 

within an outbreak or aggregate season, but identifying which strain will dominate in an 

upcoming season is not so trivial. Further compounding uncertainty, the dynamics and 

epidemiological profiles of outbreaks caused can vary considerably among populations 

and seasons, even when caused by closely related strains. For example, consider that 

there is a four-fold discrepancy in the range of point estimates for single season burdens 

of symptomatic illness, i.e., 9.3 million versus 41 million symptomatic illnesses estimated 

for the 2011-2012 and 2017-2018 influenza seasons, respectively (23). These aspects 

directly impact public health preparedness, particularly in strain selection for seasonal 

influenza vaccine design as mismatches between strains included in vaccines and those 

circulating can contribute to reduced vaccine effectiveness (32).  
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TRANSMISSION ACROSS SCALES 

Molecular Basis 

Antigenic novelty significantly impacts the fitness of influenza viruses through a 

complex interplay of immune escape and functional constraints. Antigenic drift allows 

viruses to evade host immunity, driving the continuous replacement of circulating strains 

(37,38). Viral HA is robust to mutation (39), and seemingly minor differences in protein 

sequences can correspond to distinct antigen profiles (37,40). As the immunodominant 

Box 2. Reproduction Numbers 

The basic reproductive number, R0 (R-naught), is an estimated figure of the average 

number of secondary cases generated by a single infectious case (of any communicable 

disease) in a completely susceptible population. Influenza is thoroughly ingrained in human 

ecology making it difficult to calculate R0. The effective reproductive number, Re, is a 

similar metric without the stipulation of a population being completely susceptible, a more 

immediate and practical measure of transmission. For seasonal influenza, Re is estimated to 

be around 1.19-1.37 (33,34); this means that seasonal influenza cases generally transmit to 1-

2 others. This measure of transmission has shown to vary among influenza strains; Re 

estimates are around 1.47-2.27 for the 1918 influenza pandemic and 1.3-1.7 for the 2009 

influenza pandemic (33). More recently, Parino et al (2024) estimates of the maximum value 

of Re within a seasonal outbreak to be ~2.25 for IAV and ~1.5 for IBV (35). Additionally, 

while reproduction numbers vary among influenza strains, they also can vary among the 

specific populations which harbor influenza outbreaks (36). 
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antigen, specific mutations encoding changes in HA antigenicity can confer an advantage 

to novel variants as the ability to evade adaptive immunity may correspond to an 

increased viral fitness. However robust and efficient, evolutionary trajectories are limited 

as viral function must be maintained. Aside from mutations impeding specific protein 

viability or function, evolution is further constrained by the need to balance complex 

relationships and interactions among viral components, e.g., opposing mechanisms of 

binding and release between HA and NA (41). Additionally, the fitness landscape is 

complex and dynamic, with some mutations only becoming deleterious in later strains, 

and molecular evolution does not always follow locally optimal pathways (41,42).  

IAV and IBV differ in their potential to generate diversity. Similar influenza 

viruses can trade whole genome segments, but IAV and IBV have diverged extensively 

and reassortment across types is no longer possible (43,44). This mechanism of genomic 

change, referred to as antigenic shift, contributes to pandemic IAV, but more subtle 

genomic change based on the accumulation of mutations, called antigenic drift, 

contributes to the ability of seasonal influenza viruses to repeatedly invade human 

populations (40). IAV and IBV differ in their mutation rates, which is suggested to be 

rooted in RNA polymerase differences (25); H3N2 strains tend to drift more than H1N1 

and IBV, which have more stable antigenic profiles (25,40). Although seemingly subtle, 

these molecular scale differences are the basis for substantial differences observed at 

larger scales in influenza epidemiology.  
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Spatial Heterogeneity 

Global patterns of circulation differ among strains of influenza viruses. H3N2 

circulates globally, while H1N1 and both IBV have more limited geographic ranges and 

may even persist locally during the off season (40). Southeast Asia, China, and India 

have been shown to act as important sources of influenza viral diversity (45). Global 

circulation patterns do not strictly adhere to a source-sink model of viral gene flow. 

Rather, influenza viruses will sometimes exhibit dynamic metapopulation structuring 

with lineages traversing the globe along geographic pathways outside of those expected 

from source-sink dynamics (46). Further supporting this notion and reinforcing the 

concept of dynamic metapopulation, evidence suggests that no influenza virus strains 

persist in the local contexts of outbreaks (45); instead, influenza viruses may persist by 

jumping from outbreak to outbreak within or across regions (29,45), reinforcing the 

concept of dynamic metapopulation and the importance of spatial epidemiology . 

However, much of what contributes to a region’s ability to incubate variant lineages and 

act as a global transmission corridor remains only speculated. 

Human mobility is a well-characterized driver of spatial spread across scales. 

Modes of transport and other factors underlying mobility patterns, e.g., motivating reason 

and distance, seem to have differential importance depending on the focal scale. 

Passenger air travel significantly influences the global spread of influenza, especially that 

related to H1N1 and H3N2 (47,48), and domestic airline travel volume, particularly 

around Thanksgiving, can help to predict the rate of influenza spread in the US (49). 

However, at increasingly local levels, more geographically limited mechanisms of 

mobility, e.g., work commutes and non-routine travel, are stronger predictors of influenza 
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spread than air traffic (50–52). Simulation modeling efforts recapitulate the impact of 

scale on the dynamics showing that population interconnectivity via passenger air travel 

alone is insufficient to reproduce observed patterns of spatial spread within regions 

(53,54). Continuing down the scale, the patterns of spread between cities in the US 

exhibit even more local patterns with stronger relationships with geographic distance than 

already locally biased work commutes (52).  

At the regional level and below, other factors in addition to mobility have been 

shown to impact spatial patterns in seasonal influenza epidemiology. Beyond mobility, 

spatial hierarchies in epidemic spread, first described in the context of measles epidemics 

(55), may be related to differences in populations’ abilities to host outbreaks, e.g., 

population size and density or gradients of seasonal forcing (27,28,50,56). Along the 

lines of host-density-dependent transmission (57), it is intuitive that influenza outbreaks 

in more populous locations would be larger and more extensive. However, Dalziel et al 

(2018) showed that seasonal influenza epidemics tend to be more diffuse, or spread out 

over time, in cities with larger populations and more crowding, suggested to result from 

increased off season transmission (58). 

In addition to aspects more directly related to host population organization and 

mixing, ecological interactions can shape disease and outbreak dynamics. Seasonal 

influenza viruses exhibit complex ecological interactions, including competition and 

cooperation among different types and subtypes. Studies have found evidence suggesting 

interference between influenza strains (59–61) and between influenza strains and other 

respiratory pathogens, such as respiratory syncytial virus (RSV) (62,63). Interactions as 

these impact population dynamics potentially through immune-mediated interference 
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(63,64). Though potentially less impactful to transmission dynamics, coinfections with 

bacterial pathogens, such as Streptococcus pneumoniae, are an inherent risk of influenza 

and can impact an individual’s disease severity and outcomes (65).  

 

DEFINING SCALE WITHIN THE US FOR SEASONAL INFLUENZA 

Necessary Scale Considerations  

Much of the variation in patterns of seasonal influenza epidemiology has a 

molecular basis, but there are also numerous larger-scale, ecological factors that 

influence influenza epidemiology and viral population biology; that is, influenza disease 

dynamics are shaped by mechanisms across scales from either direction. Seasonal 

influenza epidemiology is complex and dynamic, coupled with viral evolution and 

dependent on scale. This nature of the infectious disease system (1) has continually 

frustrated public health efforts towards prevention and control, e.g., vaccine 

effectiveness, and, relatedly, (2) necessitates cross-scaling perspectives and study. 

However, cross-scaling studies are inherently challenging, owing partly to difficulties in 

compiling fragmented, disparate data and the need for multi-disciplinary approaches 

(66,67). An additional part of the challenge in cross-scaling approaches is that the 

concept of scale is somewhat abstract and lacks a concrete definition, an aspect that is 

needed for practical applications, e.g., units of observation or analysis. Individual hosts 

are well-defined units [of infection], but distinctions become less clear at larger scales, 

e.g., individual populations or regions. There is an additional challenge when theoretical 

constructs do not align well with the practical constructs or units of aggregation found in 

data. For example, cities have been referred to as “the natural unit of an outbreak” (50), 
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but their administrative/geopolitical boundaries may poorly represent the local population 

organization and intermixing (53), cf., core-based statistical areas (68).  

 

Regionalizing the United States 

The US is the third largest country in the world with respect to both land area and 

population, with substantial spatial heterogeneity in geography and demography (69). 

Regional delineations of the US are plentiful. This topic has received much attention in 

the field of economics research in the descriptions of labor markets (70,71) as well as 

from the Office of Management and Budget in the characterizations of core-based 

statistical areas (CBSAs) (72). Rosensteel et al (2021) found similar issues and used a 

complex network approach to identify an epidemiological geography of the US, and 

suggested 3-5 epidemiologically distinct regions per flu season (2). Largely, these efforts 

towards regional delineations work to identify agglomerations of county or county-

equivalent areas, irrespective of state borders. However, we recognize the tendency for 

data on seasonal influenza to be less spatially resolved.  

Publicly available surveillance data on seasonal influenza, e.g., reported case 

counts and location metadata of sampled viral isolates, are reported at the state-level, 

rather than for smaller geographic units. Regional delineations respective of state borders 

are still plentiful. However, none are directly related to nor derived with respect to 

influenza. For example, the US Census Regional Divisions first arose to describe 

geographical groupings of the colonies (73) and the Department of Human and Health 

Services Regions function to facilitate governance and communication between federal 

and local administrations (74). These two examples of regional schema are found in 
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influenza surveillance and research, e.g., Centers for Disease Control and Prevention 

FluView (75), but their definitions of regions conflict with each other, i.e., group states 

differently. So, while many regional delineations are conveniently available, the choice of 

which to use for influenza research is not trivial. Without due consideration of spatial 

units of analysis, researchers may open their inferences to unforeseen bias (70); for 

example, misrepresented spatial heterogeneity could obscure effect size estimates in 

epidemiological association studies, and improper population partitioning could influence 

gene flow estimates from phylogeographic studies.  

 

APPROACH & DISSERTATION ORGANIZATION 

In this dissertation, I work to address this problem of defining scale within the 

US. To characterize scale within the US related to seasonal influenza, I set forth three 

specific aims.  

In Aim 1, I characterize regional patterns of human mobility within the US and 

quantify their associations between mobility and influenza-like illness (ILI) epidemic 

intensity. Human mobility has been the topic of modeling studies from a variety of 

disciplines. Recently, Alessandretti et al (2020) described scales of human mobility 

relating them to hierarchical containers; this represents a paradigm shift away from the 

scale-free properties of human mobility, a characteristic suggested by the authors to be 

the result of data aggregation (76). Mobility models have been often used in influenza 

research, though they tend to be comparatively simple, e.g., gravity-based formulations. 

Researchers use mobility models to generate synthetic networks which both capture 

essential but minimal characteristics of human mobility and are able to capture 
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relationships important to outbreak patterns. Independent studies have found a disjointed 

relationship relating mobility to distance, particularly in the US, and that models are 

improved by explicitly modeling short- and long-distance commutes (50,77). As 

Alessandretti et al (2020) suggest that data aggregation may obscure scale, I believe that 

this disjointed nature of distance distributions in the US reflects an inherent scale. 

Furthermore, I hypothesize that mobility patterns summarized according to scale may 

relate to patterns in influenza outbreaks. To test this, I first identify a critical distance 

threshold using gravity models fit to county-level commuting flows. Next, I use the 

identified distance threshold to summarize the commuting data to the state level, the 

resolution of ILI data. Finally, I explore the association between nested mobility patterns 

and ILI epidemic intensity using linear regression models. 

In Aim 2, I generate data-driven regional delineations of the US and, along with 

other existing delineations, evaluate their suitability and validity in characterizing 

influenza transmission zones (ITZs). Geopolitical borders and boundaries, or other 

administrative geographical units, may not be suitable for describing epidemiologically 

relevant partitions between populations (2,53). Conversely, treating the US as a single 

entity or data point effectively ignores substantial spatial heterogeneity, cf., the World 

Health Organization’s North American Influenza Transmission Zone (78). To address 

this issue, I take a similar approach to Rosensteel et al (2021). However, I expand upon 

this methodology in several key ways, including a holistic assessment of alternative 

schemes. I begin by conducting a specific spatial clustering analysis incorporating both 

ILI incidence data and human mobility to enumerate specific groupings of states that 

exhibit similar incidence patterns, i.e., weekly rates of change in ILI cases. Next, I 



 

16 

compile clustering results into a pairwise adjacency matrix creating a network 

representation of incidence patterns. Along with commuting networks, I analyze these 

networks for community structuring using several iterations of community detection 

algorithms. The resulting regional delineations are then compared to one another and to 

other existing delineations by quantifying their ability to capture elements of (1) the 

commuting networks, (2) ILI clustering, and (3) phylogenetic grouping of H3N2. By 

incorporating aspects of mobility, disease incidence, and pathogen ancestry in this way, I 

assess and evaluate the validity of regional delineations to represent influenza 

transmission zones.  

In Aim 3, I investigate spatial variation in the phylogenetic signal of local 

outbreaks caused by co-circulating seasonal influenza viruses. Seasonal influenza 

exhibits considerable spatial variation in outbreak dynamics, e.g., epidemic intensity (58). 

However, it is unclear whether this corresponds to variation in the underlying 

transmission. Molecular surveillance and genomic epidemiology have become important 

tools in public health practice and infectious disease research, and, consequently, 

molecular sequence data have accumulated to a considerable degree. As artifacts of 

transmission are imprinted into the genomic sequences of pathogens (79,80), this means 

that systematic characterizations of transmission may now be possible. Furthermore, 

ecological interactions among and between influenza viruses, and other pathogens exist 

and shape outbreak dynamics (60,62–64), but the spatial extent of these interactions, or 

scale, has not been described. To explore these gaps, I take a phylogenetic approach to 

identify local transmission clusters. The phylogenetic trees of these local transmission 

clusters are then summarized to quantify the mean pairwise patristic distance, a measure 
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of phylogenetic diversity. I then correlate the realized diversity among local transmission 

clusters at various spatial, temporal, and spatiotemporal extents, as well as across 

influenza subtypes/lineages. In doing so, I characterize implicit relationships and 

statistical dependence in the evolutionary patterns, or more simply, the transmission 

chains of local outbreaks.  

This dissertation is organized accordingly with the next three chapters 

corresponding to these three aims. Finally, I conclude with a discussion of the overall 

thesis in a final chapter, drawing conclusions from the aggregate work and suggesting 

promising future directions of this work.  
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CHAPTER 2 

REGIONAL COMMUTING PATTERNS AND INFLUENZA-LIKE ILLNESS IN THE 

UNITED STATES1 
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ABSTRACT 

Human mobility shapes the spread of communicable diseases such as seasonal 

influenza. Although mobility has often been described as scale-free, several studies 

modeling commuting patterns have found it necessary to include scale-dependent 

components, e.g., piece-wise distance functions, to more accurately simulate influenza 

spread. Whether mobility is scale-free in nature or not, spatial scales are an inherent part 

of observation and data, e.g., spatial resolution, and spatial misalignment challenges 

analyses integrating disparate data. However, it remains unclear how to best address 

spatial misalignment of data, and analytical solutions are often unique for every given 

application. This challenge is exemplified in commuting and influenza incidence data 

which are available at the US-county- and US-state-levels, respectively. I hypothesized 

that by more explicitly considering spatial scale, it may be possible to translate 

information across the differing spatial resolutions. To investigate this, I first estimate a 

critical distance threshold distinguishing local and long-distance commutes. Then, I 

explore the associations between regional summaries of these local commuting patterns 

and regional influenza-like illness epidemic dynamics. I identified a fairly consistent 

distance threshold, ~150km, across US Census Regions from separate gravity model fits. 

Distance-based commuting summaries, e.g., proportions of total commutes that were 

local, showed a curvilinear relationship with ILI epidemic intensity, with intermediate 

values of commuting summaries often corresponding to more intense seasonal epidemics. 

These results suggest that there is an inherent local scale in commuting flows which may 
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be useful for characterizations of local population mixing and its impact on regional 

outbreak dynamics.   

 

INTRODUCTION 

Patterns in human mobility shape the spatial spread of communicable infectious 

disease, including seasonal influenza. Traditionally, human mobility has been 

characterized by scale-free properties, suggesting that movement patterns do not adhere 

to a specific scale and may be well described with power-law distributions (1–3). More 

recently, inherent scales of human mobility have been described, and observed scale-free 

properties are an artifact of data aggregation (4,5).  

As a result, mobility models have been extensively used in influenza research. 

Studies have incorporated mobility in various ways and across scales (3,6–8). Many 

mechanisms of mobility contribute to influenza epidemics, but the importance of any one 

is determined by the spatial scale. Influenza viruses spread quite effectively around the 

globe along complex and dynamic networks of geographic pathways (9–11) well-

characterized by passenger air travel (7,11,12). At smaller, subnational spatial scales, the 

population interconnectivity, and therefore influenza spread, is governed by smaller scale 

yet more frequent mobility mechanisms such as those related to work and school 

commutes (6,7,13). Mobility models fit to worker commutes in the US have revealed a 

somewhat disjointed relationship across space. For example, both Viboud et al (2006) 

and Truscott et al (2012) fit gravity models to US data using separate terms for short and 

long distances represented in the data; the gravity model of Viboud et al (2006) fit 
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commutes at distances less than and greater than 119 km separately (6), and Truscott et al 

(2012) estimated critical distances of ~150 km and ~300 km for separate model 

formulations (8).  

Here, we posit that this disjointed relationship may be suggestive of an important 

regional scale within the US and, furthermore, hypothesize that mobility patterns at this 

scale may impact influenza epidemic dynamics. To test this hypothesis, we take a two-

stage approach. First, we estimate a distance threshold distinguishing between short- and 

long-distance commuting flows. Then, we use this distance threshold to summarize state-

level commuting flows into several metrics which are then assessed for their associations 

with state-level influenza-like illness (ILI) epidemic intensity.  

 

METHODS 

Data 

All data included in this analysis are publicly available. Data on worker 

commutes (14), county and state population sizes (15), county and state spatial 

coordinates (16) and boundaries (17), and regional classifications (18) come from the US 

Census Bureau. Data on influenza-like illness incidence are from Centers for Disease 

Control and Prevention (CDC) FluView and the Florida Department of Public Health 

(19). All data management and analyses were conducted using R (version 4.3.0) and 

RStudio (20). Scripts are compiled in a reproducible format on GitHub 

(daileyco/Mobility-Models & daileyco/Influenza-like-Illness). 
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Mobility Model Fitting 

Data Management 

Commuting data from two time periods, 2011-2015 and 2016-2020, were 

combined with population and spatial data all at the county-level. Population size 

estimates for midpoint years were used to align with the commuting data; population size 

estimates for 2013 and 2018 were joined with commuting data for 2011-2015 and 2016-

2020, respectively. Additional aspects of data alignment are described in further detail in 

the supplemental methods. Population center coordinates were used to calculate pairwise 

distances between locations, using Haversine or Great Circle distances.  

Altogether, this dataset contains observations of commuting flows (i.e., the 

number of workers estimated to commute) between pairs of counties or county-

equivalent areas, population estimates and coordinates of population centers for both 

origin/resident and destination/work locations, and the distances for each commuting 

flow.  

 

Gravity Models 

Commuting flows between two locations were modeled using a series of gravity 

models. The basic formulation of the gravity model characterizes the number of workers, 

Tij, commuting from origin/resident location i to destination/work location j as 

 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐶𝐶
𝑃𝑃𝑖𝑖
β1𝑃𝑃𝑗𝑗

β2

𝑑𝑑𝑖𝑖𝑖𝑖
β3

, 
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where 𝑇𝑇𝑇𝑇𝑇𝑇 is the commuter flux (number of people) between locations 𝑖𝑖 and 𝑗𝑗, the origin 

and destination, respectively, 𝐶𝐶 is a constant / intercept, 𝑃𝑃𝑃𝑃 the origin population size, 𝑃𝑃𝑃𝑃 

the destination population size, 𝑑𝑑𝑑𝑑𝑑𝑑 the distance between origin and destination, and 𝛽𝛽1,2,3 

are power parameters.  

 We extend this basic gravity model four-fold by including three-way interaction 

terms using indicators of long-distance commutes and commutes between two large 

populations, similar to Truscott and Ferguson (2012) (8).  The indicator term 

distinguishing short- and long-distances is set by an additional distance threshold 

hyperparameter which we estimate as the focal point of this analysis. County population 

size tertiles were calculated, and commuting flows between counties whose population 

sizes were both in the upper tertile range were categorized as “commutes between two 

large populations.” Altogether, the base gravity model is estimated separately for four 

subgroups: (1) short-distance commutes between two large populations, (2) long-distance 

commutes between two large populations, (3) short-distance commutes between all other 

population pairs, and (4) long-distance commutes between all other population pairs.  

The intercept and power parameters of the gravity model were estimated in 

tandem with the distance threshold hyperparameter. The gravity model was fit using log-

linear regression models. The distance threshold parameter was optimized against the 

root mean square error (RMSE) of the gravity model predictions; the RMSE is calculated 

on the log scale comparing model predictions with observed commutes. We estimate 

these parameters for the aggregate US and for subsets of the data corresponding to the US 

census region of the origin locations to explore potential regional variation.  
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Epidemic Intensity Regression 

Data Management 

In the next stage of our analysis, we investigate patterns in the epidemic intensity 

of ILI at the state-level. Epidemic intensity was calculated similar to Dalziel et al (2018) 

(21). Briefly, we calculate the relative distribution of ILI cases over the course of an 

influenza season and summarize this distribution using Shannon’s entropy. The 

reciprocal of entropy is scaled to a unit interval using the observed minimum and 

maximum; epidemic intensities closer to zero correspond to more diffuse outbreaks with 

cases more evenly distributed among weeks, and epidemic intensities closer to one 

correspond to intense outbreaks with cases more concentrated / distributed among fewer 

weeks.  

We combine data on epidemic intensities with data on population sizes and 

several spatial area descriptors, e.g., average county size and total state size. We calculate 

several metrics summarizing the commuting patterns observed at the county-level within 

each state. Using the distance thresholds characterized in our previous analyses, we 

categorize county-level commutes based on their distances, referred to as extents. 

Commuting extents are either internal / intracounty, short-distance, or long-distance, and 

we summarize the county-level commutes accordingly in counts, proportions, and ratios.  

Univariate and bivariate distributions of data were inspected using histograms and 

scatter plots. Some variables were transformed to mitigate the effects of skewing and 

extreme values on model fit. Chiefly, the transformations include a square root 

transformation of epidemic intensity, quarter root transformations of ratios of commuting 
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extents, and natural logarithm transformations for most others. Additionally, prior to 

model fitting, each of the covariates were centered and scaled. 

 

Regression 

To analyze the variation in epidemic intensity, linear mixed effects regression 

models were fit to the data. The seasonal ILI epidemic intensity for each state served as 

the outcome of interest, or response variable, for this analysis. Independent variables 

included population size and various metrics summarizing spatial organization and 

mobility. We include two independent random effects for states (space) and influenza 

season (time).  

We first fit a base model including only the random effects for location and 

season and a single fixed effect for population size. From this base model, we investigate 

the variation explained by a single additional predictor. That is, each covariate is assessed 

independently from the others but controlling for location, season, and population size. 

Point and 95% confidence interval estimates were calculated for each covariate term. As 

covariate terms were standardized, save those for peak week and county counts, the 

magnitudes of parameter coefficients are directly comparable and can be interpreted as 

changes to epidemic intensity values estimated for one standard deviation increases in 

covariate value.  

  



36 

 

RESULTS 

Three-hundred thirty million twenty-three thousand two-hundred forty-eight 

people are estimated to have lived in the US in 2018, with over 68 million, 59 million, 

124 million, and 77 million people in the Midwest (MW), Northeast (NE), South (S), and 

West (W), respectively (Supplementary Table A.1). The population is distributed among 

3222 (3220 in 2013) county or county-equivalent areas, with 1055 (32.8%), 296 (9.2%), 

1422 (44.1%), and 449 (13.9%) counties in the MW, NE, S, and W census regions, 

respectively. The slight imbalance of both population and spatial units suggests that 

models fit to the aggregate data would be biased towards the S region.  

The commuting data are extensive with over 258 840 observations total 

accounting for nearly 300 million workers’ trips over the ten-year period (Supplementary 

Table 1). Most workers in the data reported working in their resident county (72.5%); we 

refer to these as internal / intracounty / zero-distance commutes. The relative frequencies 

of internal commutes varied slightly across regions with a larger share of workers in the 

W (83%) and a slightly lower share of workers in the NE (65%) working in their resident 

county, compared with 71% in both the MW and S. Commuting distances ranged from 

zero to over 9400 kilometers; the median distances of commutes were 155 km for the 

MW, 190 km for the NE, 172 km for the S, and 519 km for the W. These marginal 

distributions suggest some differences with respect to the extent of commutes across 

regions.  

Gravity model fit improved when successively stratified by a distance indicator 

(i.e., short- vs long-distance), an assortative population size indicator (i.e., between two 
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large populations or not), the census region of the origin/residence location, and the time 

period of data (all p<0.001, Supplemental Table A.2).  

Trips longer than 120 km, 138 km, 136 km, and 189 km were identified as long-

distance commutes in the MW, NE, S, and W regions, respectively (Figure 2.1). The 

estimated distance thresholds seem to be relatively consistent across the two time periods 

of data for all regions, save the NE region whose estimated distance threshold is <100 km 

for commutes from 2016-2020. This finding is sensitive to changes in the objective 

function used in the optimization procedure, particularly in whether the error between 

observed and predicted values is calculated for the data on a log scale or as counts 

(Supplementary Figure A.1). This suggests that there may be some regional heterogeneity 

as to a threshold distinguishing short- and long-distances in commuting flows. 

Comparing estimates of the gravity model power parameters, we find some slight 

differences among modeled subgroups, including regions. Power parameter estimates 

seem most heterogeneous across short-distance and long-distance commutes 

(Supplemental Figure A.2). 

Using these distance thresholds, we summarize the commuting data by categorizing 

commuting flows as internal, short-distance, or long-distance. Across all locations, short-

distance commutes accounted for an average of 25% (SD=11.3%) of all commutes and 

long-distance commutes accounted for an average of 1.33% (SD=0.54%) (Supplemental 

Table A.4). Comparing commuting extent within each state, the average ratio of short-

distance to internal commutes is 0.37 (SD=0.23), the average ratio of long-distance to 

short-distance commutes is 0.13 (SD=0.34), and the average ratio of long-distance to  
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Figure 2.1. Estimated Distance Thresholds used in Gravity Models (A) and Select Examples of Commuting Flows near the 
Distance Threshold in the mainland US (B), Alaska (C), Hawaii (D), and Puerto Rico (E). Distance thresholds represent a 
hyperparameter distinguishing the piece-wise components of the distance decay terms in a gravity model. The selected examples of 
commuting flows are at distances similar to the estimated distance thresholds, highlighting the relative differences in scale between 
local mobility, US counties, and US Census Regions. Note that the size of county-equivalent areas in Alaska and the selected 
commuting flow distance are much larger than found elsewhere. 
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internal commutes is 0.02 (SD=0.007). This suggests that the commuting patterns within 

each state could be heterogeneous. 

ILI data were mostly complete, save for Puerto Rico in the 2011-2012 and 2012-

2013 influenza seasons (Supplemental Figure A.3). The average epidemic intensity for all 

locations across all seasons was 0.227 (Supplemental Table A.3); season averages ranged 

from 0.152 for the 2011-2012 season to 0.288 for the 2017-2018 season. On average, 

Delaware experienced the most intense epidemics, 0.59 averaged across all seasons, and 

the District of Columbia experienced the most diffuse epidemics, 0.053 averaged across 

all seasons. Season specific trends in epidemic intensity are seen somewhat universally 

across all locations; similarly, but to a lesser extent, many states seem to exhibit 

consistent patterns of epidemic intensity across all seasons (Supplementary Figure A.4). 

Taken together, this suggests that autocorrelation is substantial within seasons and within 

locations.  

These commuting extent summary metrics, along with various others, were 

included as fixed effects in mixed-effects linear regression models of epidemic intensity 

(main variables depicted in Figure 2.2). Upon noticing potentially non-monotonic, 

curvilinear relationships during data exploration, we decided to include polynomial 

terms, through third-order/cubic terms, for the assessed independent variables. When 

compared to a baseline model including random effects for season and location 

(Supplementary Figures A.5 & A.6) and a fixed effect for population size, we observe 

significant (p<0.05) model fit improvements from analyses of variance when including 

terms for the proportion of internal commutes (p=0.035), the ratio of short-distance to 

internal commutes (p=0.047), and the ratio of long-distance to internal commutes   
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Figure 2.2. State-level Influenza-like Illness Seasonal Epidemic Intensity (A) and County-level Commuting Summaries of 
Long-distance (B), Short-distance (C), and Zero-distance / Internal Commutes (D). Epidemic intensity is Shannon's entropy 
rescaled to the unit interval where values closer to one correspond to more intense outbreaks with incidence concentrated over 
relatively few weeks in an influenza season. The graph depicts the epidemic intensity for each state averaged over nine influenza 
seasons. Commuting extent frequencies show the county-level categorizations of commuting flows which were then summarized to 
the state-level for use as predictors in regression models of ILI epidemic intensity.
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(p=0.002) (Supplementary Table A.5). Additionally, we observe marginally significant 

(0.05<p<0.1) model fit improvement when including terms for the proportion of short-

distance commutes (p=0.051) and the proportion of long-distance commutes (p=0.097). 

For each of these models, the coefficient estimates for the population size term stayed 

relatively consistent. Though, for the models including the proportion of long-distance 

commutes and the ratio of long-distance to internal commutes, the coefficient estimates 

for the population size term (β=-0.041 and β=-0.045, respectively) are slightly lower than 

estimates for other models (e.g., β=-0.051 when including peak week). This suggests that 

these commuting extent summary metrics are associated with epidemic intensity and that 

the effects of long-distance commutes may be somewhat related to those of population 

size. 

By plotting the model curves, we can more clearly see the non-monotonic 

relationships between the commuting extent summary metrics and epidemic intensity 

(Figure 3). Even though some cubic terms are statistically significant (Supplementary 

Table A.5), the prevailing trend in the data seems to be an inverted U-shaped curve. That 

is, epidemic intensity values tend to be lower valued at either extreme, while they are 

higher at middling, intermediate values of the commuting extent summary metrics. For 

example, in states where either relatively few or many (small or large proportions, 

respectively) workers commute within their residence county, there tend to be more 

diffuse ILI epidemics. Though, there seems to be substantial unexplained variability 

(Figure 3 B-D, F-H) and, at most, a moderately sized effect. This suggests that summaries 

of commuting extent have a slight impact on epidemic intensity, states with   
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Figure 2.3. Estimated Model Curves for the Relationships between Influenza-like 
Illness Epidemic Intensity and (A-D) the Proportion of Internal Commutes and (E-
H) the Ratio of Long-distance to Internal Commutes. Data points represent a single 
influenza season for a single US state. As the commuting data are less temporally 
resolved, observations for each state tend to stack along the x-axis. The curvilinear 
relationship is weak, and high-leverage values seem to be quite influential in the shape of 
the model curves. Generally, the relationship between population size and epidemic 
intensity can be seen along a top-bottom gradient.  
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intermediately valued commuting patterns experience more intense epidemics, and that 

the relationship is likely well-described with quadratic terms. 

 

DISCUSSION 

Influenza epidemic dynamics are complex and influenced by a variety of 

mechanisms across scales. Human mobility is one such factor that has been well-

characterized as a driver of influenza spread and outbreak dynamics. In this study, we 

attempted to characterize patterns of human mobility at a sub-national, regional spatial 

scale within the US and investigate their associations with ILI epidemic intensity. We 

identified a potentially region-defining distance of ~150 km or ~93 mi by fitting gravity 

models to worker commutes. This distance may vary slightly across broad regions of the 

US and may be subject to shifting over time. Moreover, commuting extent summary 

metrics seemed to both vary substantially among US states and weakly correlate with ILI 

epidemic intensity.  

The estimated distance thresholds seem to agree with estimates from others who 

employed gravity models fit to commuting data (6,8) as well as to a much more complex 

mobility model fit to extensive mobile-phone data (4). As such, it seems likely that ~150 

km or ~93 mi is a region-defining distance. Human mobility is complex and can be 

influenced by a variety of factors. The built environment greatly impacts mobility 

patterns, e.g., via characteristics such as walkability or the availability of public transport 

(22,23). These aspects may underlie identified scales of human mobility (4). This also 

means that patterns in human mobility, such as what constitutes a regional scale, may be 
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spatially heterogeneous, depending on transportation infrastructure. Our results may offer 

evidence of heterogeneous scale definition as we observed slightly different distance 

thresholds among US Census regions. However, there may be an alternative explanation 

for the observed variation. Rather than fundamental differences in a scale-defining 

distance, there may be several alternative explanations, including data imbalance, 

heterogeneity in spatial organization of populations, and observation censoring. 

Particularly, we suspect that interval censoring of spatial distances may have a 

particularly strong impact. For example, we estimate a larger distance threshold for the W 

region. However, qualitatively, the size of counties increases along an East-to-West 

gradient, and many of the counties or county-equivalent areas in the West are large 

enough to completely contain short-distance displacements, e.g., Matanuska-Susitna 

Borough, Alaska (Figure 2.1C).  

Infectious disease data are often only available at coarser resolutions, e.g., state 

versus county, whether for reasons of limitations in observation or concerns of privacy. 

This discrepancy presents a challenge to consolidate disjointed / misaligned data in cross-

scaling analyses as it is not trivial to align theoretical structuring with practical 

constructs/units of aggregation found in data. Generally, this can represent a challenge in 

integrating disparate data and effectively quantifying nested distributions across scales. 

Aggregation to a common spatial unit is a simple fix. This is often done in studies that 

focus on the coupling patterns between larger geographic regions found in mobility data 

(6); in doing so, much of the heterogeneity in mobility nested within larger geographic 

areas is effectively lost (c.f., mixing assumptions in infectious disease models). Some 

researchers have found ways to translate information across scales. For example, Dalziel 
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et al (2018) characterize a city’s baseline transmission potential in terms of population 

crowding within city districts (21). Here, we suggest that nested mobility patterns at a 

regional scale may also be impactful to influenza outbreak dynamics. A simple 

explanation for this may relate to population mixing. We observed more diffuse ILI 

epidemics in places where either a small or a large proportion of workers commuting 

short distances. These places may represent either a higher- or lower-degree of 

population mixing, respectively. More extensive population mixing may correspond to 

increased baseline transmission of influenza which relates to more diffuse influenza 

epidemics, as in the findings of Dalziel et al (2018) (21). Conversely, less extensive 

population mixing may be interpreted as relative isolation, or a modular/fragmented 

population through which influenza struggles to spread consistently. Either way, the 

intermediate values in commuting extent summary metrics may represent a sort of 

“Goldilocks” scenario with more intense influenza epidemics.   

The greatest limitation of our study lies with limitations in the data, specifically in 

the granularity. The influenza data was well-resolved temporally, with weekly incidence 

estimates, yet relatively spatially coarse, aggregated to the state level. On the other hand, 

the commuting data was temporally coarse, 5-year aggregates, yet more spatially 

granular, county level. Additionally, the commuting data is limited in the spatial 

relationships it quantifies; less than 2% of all potential / unique county pairings �32222 � are 

represented, and other mechanisms of mobility, e.g., leisure, or mobility of different 

segments of the population, e.g., children, are not captured. Additionally, as these data 

are made available using the geopolitical units of county and state, it was not possible for 

us to assess these as “containers” which impact human mobility scales (4), though other 
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researchers have noted that state borders may not represent epidemiologically relevant 

population partitions.  

Despite these limitations in the data, we still were able to characterize a sub-

national regional scale within the US and relate patterns of mobility about that scale to 

patterns in ILI epidemic intensity.  
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CHAPTER 3 

INFLUENZA TRANSMISSION ZONES WITHIN THE UNITED STATES1 
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ABSTRACT 

Seasonal influenza viruses spread around the world. The World Health 

Organization (WHO) categorizes countries into Influenza Transmission Zones (ITZs). 

However, these classifications may not appropriately capture the spatial heterogeneity 

found in large countries. For the United States, I hypothesize there may be important 

subnational ITZs each capable of harboring influenza outbreaks and shaping influenza 

epidemiology. This study aims to identify and validate US regional delineations relevant 

to influenza epidemiology. Utilizing network science community detection, I generate 

various regional delineations and evaluate their alignment with human mobility, disease 

incidence, and viral evolution to propose subnational influenza transmission zones in the 

US. Out of the 173 regional delineations evaluated, many with 8-13 regions showed an 

increased signal in modularity for commuting networks. A similar signal is seen when 

comparing fits to influenza-like illness clustering networks, but schema with fewer 

regions had greater modularity scores, perhaps indicative of a resolution limit given a 

more sparsely connected network. Tip-trait association indices between regional 

delineations and H3 phylogenetic trees may suggest better alignment for schema with six 

or fewer regions, but the delineations with 5-14 regions all fit similarly well. Overall, 

these results suggest that the US may be comprised of ~8 subnational ITZs. Furthermore, 

data driven regional delineations produced herein indicate slightly different spatial 

structuring than existing administrative regional delineations such as the Department of 

Health and Human Services Regions which is commonly used in influenza research.   
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INTRODUCTION 

Seasonal influenza viruses routinely spread among many regions of the world. 

Recognizing the global and diffuse nature of influenza transmission, the World Health 

Organization (WHO) classified nations and territories among 18 influenza transmission 

zones (ITZs) which represent “geographical groups of countries, areas or territories with 

similar influenza transmission patterns” (1). While a regional classification as proposed 

by the WHO is able to aid in international coordination in the prevention and control of 

influenza on the global scale, its validity in describing transmission zones remains to be 

shown.  

The timing and extent of seasonal influenza outbreaks has been used to 

investigate alternative classifications of ITZs. Caini et al (2017) studied the WHO 

European Region and report a simpler scheme wherein two ITZs were suggested over the 

five ITZs outlined by WHO (2). This work has, in turn, garnered its own scrutiny. In an 

opinion piece, Shin and Manuel (2017) voiced concerns of bias in the representation of 

large countries as single data points; specifically, they discuss Russia, the largest country 

in the world with considerable geographic and demographic variation (3). This critique 

resonates with the delineation of the North American ITZ which is comprised of 

Bermuda, Canada, Greenland, Saint Pierre and Miquelon, and the United States of 

America (US) (1). Such a coarse classification misrepresents the heterogeneity of the 

region and its ability to harbor multiple influenza outbreaks. The US alone is the third 

largest country in the world in terms of both total area and population (4). As such, the 

US likely constitutes several separate, subnational ITZs. 
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Regional delineations of the US are plentiful. This topic has received much 

attention in the field of economics research in the descriptions of labor markets (5,6) as 

well as from the Office of Management and Budget in the characterizations of core-based 

statistical areas (CBSAs) (7). Largely, these efforts towards regional delineations work to 

identify agglomerations of county or county-equivalent areas, irrespective of state 

borders. Similarly, Rosensteel et al (2021) developed a county-level “epidemiological 

geography” of influenza through the use of proprietary data on influenza-like illness (8). 

However, we recognize the tendency for publicly available data on seasonal influenza to 

be less spatially resolved. Publicly available surveillance data on seasonal influenza, e.g., 

reported case counts and location metadata of sampled viral isolates, are often reported at 

the state-level, rather than for smaller geographic units. Regional delineations respective 

of state borders are still plentiful. However, none are directly related to nor derived with 

respect to influenza. For example, the US Census Regional Divisions first arose to 

describe geographical groupings of the colonies (9). So, while many regional delineations 

are conveniently available, the choice of which to use for influenza research is not trivial. 

Without due consideration of spatial units of analysis, researchers may open their 

inferences to unforeseen bias (5). In this study, we aim to address this gap by both 

identifying regional delineations of the US that are relevant to the epidemiology of 

seasonal influenza and validating them as putative influenza transmission zones. We do 

this in two stages. First, we generate many variations of US regional delineations using a 

network science community detection approach. Then, we evaluate these regional 

delineations in their alignment with spatial constructs found in human mobility, disease 
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incidence, and viral evolution to identify subnational influenza transmission zones in the 

US.  

 

METHODS 

Data 

Data for these analyses are publicly available and consist of ILI incidence, 

commuting flows, geographic centers of population, regional classifications, and 

phylogenetic trees of seasonal influenza subtype H3N2.  

Data on ILI incidence are from Centers for Disease Control and Prevention 

(CDC) FluView (10) and the Florida Department of Public Health. These data contain 

weekly counts of reported ILI cases and the population of healthcare recipients from 

which the ILI cases originated. These counts cover the 50 US states, the District of 

Columbia, and Puerto Rico (henceforth, collectively referred to as “states”) and span 

October 2011 to September 2020.  

State-level cartographic boundary files were downloaded from the US Census 

Bureau (11). Questionnaire responses concerning the origin and destinations of 

commuting flows from the American Community Survey (ACS) are summarized as 

tables and made available by the US Census Bureau (12); tables for 2011-2015 and 2016-

2020 were downloaded and included in analysis. The (ACS) commuting data is essential 

for understanding patterns of daily movement among populations, which can be 

indicative of economic activity, urban planning needs, and regional connectivity. Data on 

the spatial distributions of population are also from the US Census (13). These data 

consist of single point locations, geographic coordinates, representing the geographic 
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center of population for each state at the time of the decennial census, 2010 and 2020. 

The 2010 estimates of population center coordinates were aligned with the 2011-2015 

estimates of ILI and commuting, and the 2020 estimates were aligned with the 2016-2020 

ILI and commuting estimates. State classifications into Census Regions, Census 

Divisions, and Department of Health and Human Services (HHS) Regions were 

abstracted and used in comparisons with our data-driven regional delineations. Of note, 

the US Census Regions nor US Census Divisions include Puerto Rico in their 

classifications, so, when necessary, we include Puerto Rico as its own separate region 

within the US Census Regions and US Census Divisions classifications. 

Damodaran et al (2023) investigated the phylogeography of seasonal influenza 

virus H3N2 in the US(14). In their work, a set of empirical trees was sampled from a 

posterior distribution derived from Markov chain Monte Carlo (MCMC) computation via 

a Bayesian Evolutionary Analysis Sampling Trees (BEAST) analysis (25). In our study, 

we use the resulting set of 500 empirical H3N2 trees from Damodaran et al (2023) to 

compare regional delineations. In doing so, we aim to identify and validate the regional 

structures that best describe the spread of the virus, providing insights into the dynamics 

of influenza transmission. 

All data management and analysis were conducted using R programming 

language (version 4.3.0) in the RStudio/Posit interactive developer environment(15), 

unless otherwise specified. Processing and analytical scripts are made available in 

GitHub repositories (link daileyco/Influenza-like-Illness-Clustering and daileyco/Spatial-

Structuring) to facilitate reproducibility.  
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Community Detection 

We work to characterize US ITZs by generating regional delineations from 

human mobility and ILI incidence data. To generate regional delineations of the US, we 

investigate community structuring in a network science framework. Networks were 

generated from the data to represent coupling between locations. Broadly, we analyze 

two types of networks: commuting networks and clustering networks. Commuting 

networks are generated from the commuting flows data, and clustering networks are 

generated from a focused clustering analysis.  

To generate commuting networks, we aggregate the commuting flow data to the 

state level separately for each time period of data. While our clustering analyses only 

included undirected, state-level commuting networks, in this community analysis, we 

also analyze the commuting flow data as directed, state-level commuting networks. 

Additionally, we include modified versions of each network which have rescaled edge 

weights. The edges in the networks were rescaled by standardizing the edge weights 

according to the total number of commuters originating from each location/node in the 

directed networks; that is, edge weights in the directed networks were divided by the total 

sum of edge weights for each origin node to transform edge weights into proportions. As 

with the original directed commuting network, these scaled networks were aggregated for 

each unique pair of locations to generate undirected networks. 

In addition to networks based purely on commuting data, we generate networks 

based on the incidence of ILI using a spatial clustering analysis. Briefly, clusters were 

identified using scan statistics via the SaTScan software  (16) by comparing bi-weekly 

change in the counts of ILI between locations. Our approach to this clustering analysis is 
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discussed in more detail in the Supplementary Information. Our clustering results consist 

of two types of clusters, i.e., spatial clusters and commuting network clusters. Each set of 

clusters was transformed into an adjacency matrix wherein two locations were considered 

adjacent if a single cluster included both locations. The weights in these adjacency 

matrices correspond to the frequencies of clustering, i.e., how many times two states 

clustered together. These adjacency matrices were used to generate two networks: one 

spatial clusters network and one commuting clusters network. 

Altogether, we analyze ten separate networks: two directed commuting networks 

(one for each time period of data, 2011-2015 and 2016-2020), two undirected commuting 

networks, two scaled/directed commuting networks, two scaled/undirected commuting 

networks, and two ILI clustering networks. Network management and analyses are 

carried out using the igraph package in R (17).  

To generate regional delineations of the US, i.e., potential ITZs, we investigate 

the community structuring in each included network. We do this by passing each network 

to an array of community detection algorithms. A community in network science refers to 

a group of nodes more strongly or densely connected to each other than to nodes 

belonging to other groups; in our case, as nodes correspond to spatial locations, the 

generated communities reflect groups of states or regions. We use three community 

detection algorithms: edge-betweenness, Louvain, and Spinglass which all vary in how 

communities are generated but may each be useful in delineating transmission regions 

(reviewed in (18)). The Louvain and Spinglass algorithms both contain a hyper-

parameter, called resolution, 𝑟𝑟, and gamma, 𝛾𝛾, respectively, which effectively controls 

the number of communities detected within a network. We implemented a grid search 
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approach in which these hyperparameters were set to a range of values (𝑟𝑟, 𝛾𝛾 Î 

[0,0.5,1,1.5,2]) to generate an array of regional delineations which vary in the total 

number of regions/communities. With the 10 included networks and the 11 variations of 

community detection algorithms, we attempted 110 independent runs to generate regional 

delineations of the US. In addition to these data-driven regional delineations, we include 

three administrative classifications in our comparisons: US Census Regions, US Census 

Divisions (9), and HHS Regions (19).  

 

Comparison of Regional Delineations 

As our goal is to identify US ITZs, we compare our data-driven regional 

delineations in terms of their fit to the underlying networks from which they were 

generated, their alignment with grouping patterns in seasonal influenza phylogenies, and 

their relative balance in community memberships.  

To quantify the fit of the regional delineations to commuting and clustering 

networks, we use network modularity. Clauset, Newman, and Moore (2004) (20), 

following Newman and Girvan (2003) (21), define the modularity of a weighted network 

as 

 

𝑄𝑄 =
1
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��𝐴𝐴𝑖𝑖𝑖𝑖 −
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, 

 

where 𝐴𝐴𝑖𝑖𝑖𝑖 represents the weight of the edge between nodes 𝑖𝑖 and 𝑗𝑗, 𝑘𝑘𝑖𝑖 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑗𝑗  is the sum 

of the weights of the edges attached to, or degree of, node 𝑖𝑖, 𝑚𝑚 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the total sum 
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of edge weights in the network, 𝑐𝑐𝑖𝑖 is the community to which node 𝑖𝑖 is assigned, and the 

δ function δ�𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗� is 1 if 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗 and 0 otherwise. Modularity values are strictly less than 

one; positive values indicate that community ties are stronger than would be expected by 

random chance, zero values indicate no deviation from randomness, and negative values 

indicate community ties are weaker than expected by random chance. Simply, higher 

values of modularity correspond to better alignment of community structure with the 

underlying relationships in the network. We calculated the modularity for each 

combination of regional delineation and network in our analysis. Modularity scores were 

averaged for commuting and clustering networks, separately, to have two composite 

scores for each regional delineation. These scores were used to rank the regional 

delineations in their alignments with patterns of either human mobility or disease 

incidence.  

To quantify the alignment between regional delineations and phylogenetic 

groupings of seasonal influenza viruses, we use the tip-trait association index and 

parsimony score. Following Wang et al (2001) (22), Parker, Rambaut, and Pybus (2008) 

(23) define the association index statistic (AI) as 

 

𝐴𝐴𝐴𝐴 = �
1 − 𝑓𝑓𝑖𝑖
2𝑚𝑚𝑖𝑖−1

,
𝑘𝑘

𝑖𝑖=1

 

 

where 𝑘𝑘 is the number of internal nodes in a phylogeny, 𝑓𝑓𝑖𝑖 is the frequency of the 

majority trait among all descendant tips of internal node 𝑖𝑖, and 𝑚𝑚𝑖𝑖 is the total number of 

descendant tips of internal node 𝑖𝑖. Simply, larger values of AI correspond to worse 
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alignment between trait classifications, here ITZ, and the grouping structure in the 

phylogeny. The significance of observed phylogeny-trait associations can be tested 

against null distributions of association index values for a given phylogeny. These null 

distributions are generated by permuting trait labels among phylogenetic tree tips and 

recalculating the association index. Furthermore, by averaging values across a set of trees 

generated from posterior distributions in Bayesian analyses, it is possible to incorporate 

phylogenetic uncertainty. We use methods similar to those employed in the Bayesian 

Tip-association Significance testing (BaTS) software (23,24). Briefly, we calculate AI of 

the observed data with each of the 500 phylogenies in the empirical tree set found in 

Damodaran et al (2023) (14). The observed trait data are permuted 1000 times and 

subsequently used to generate a null distribution of AI. We then record the proportion of 

trees in the null distribution that have an AI value less than or equal to the median AI of 

the observed trait data and the H3N2 phylogenies. Additionally, we follow the same 

procedure with the data in the calculations of parsimony scores (PS) to relate the regional 

delineations to phylogenetic grouping. Calculations of AI and PS were done using Leke 

Lyu’s R package, TTAT (https://github.com/lyu-leke/TTAT). Together, we use the 

metrics of AI and PS to rank regional delineations in the alignments with patterns of 

ancestry for an important seasonal influenza virus. 

 To quantify the relative balance in community membership among regional 

delineations, we calculate the Shannon entropy for two metrics. First, we use entropy to 

assess the balance in membership frequencies of states among regions, i.e., does each 

region have a similar number of constituent states. Second, we use entropy to assess the 

balance of maximum clade sizes (MCS) (23,24) of each region in the H3N2 empirical 
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tree set. Damodaran et al (2024) included a subsample of 1000 sequences based on the 

overall phylogenetic diversity in all available sequences for their phylogenetic 

reconstructions; as such, we feel that by assessing the balance in MCS, we also indirectly 

quantify the extent of shared phylogenetic diversity within each region. MCS and 

respective calculations of entropy are done for each phylogeny in the empirical tree set. 

Following, we take the median MCS entropy across all trees for a single metric per 

regional delineation. We use both membership and MCS entropy values to rank regional 

delineations in their balancing of region size.  

 Altogether, we ranked each of the regional delineations with respect to their 

ability to capture spatial patterns in human mobility networks, ILI incidence, and H3N2 

phylogenetic grouping while also balancing the sizes of each region with respect to the 

number of constituent states and, by proxy, the shared phylogenetic diversity. We take 

each of the four ranking metrics equally to create a composite ranking of the regional 

delineations. We use this composite ranking in two ways. First, we select the overall best 

regional delineation. Second, we take the top 50 ranking regional delineations and 

overlay their boundaries for a composite view of the extent/magnitude of partitioning 

between states.  

 

RESULTS 

 ILI data were mostly complete over the 469-week study period, from 2 October 

2011 to 20 September 2020. Puerto Rico was the only location with missing data with 

~22% of dates missing observations; these missing values mostly correspond to the 2011-
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2012 and 2012-2013 influenza seasons, with complete data 2014 onwards. Observations 

with missing data were simply excluded from clustering analyses.  

 Using this ILI data, we identified 730 and 671 potential spatial and commuting 

network clusters, respectively (Supplementary Table 1).  Of these, 67 (9.2%) of spatial 

clusters and 46 (6.9%) of commuting clusters were deemed significant based on 

permutation tests.  

 Significant spatial and commuting clusters were used to generate two cluster 

networks. The spatial clusters network was not fully connected, i.e., not all nodes were 

connected to another node by an edge and had a total of 892 edges (Supplemental Table 

2). The commuting clusters network was fully connected by its 1 060 edges. On average, 

the clustering networks seem to have relatively larger edge weights than the other 

commuting networks. The undirected commuting networks have more edges than 

clustering networks, as do the directed commuting networks, expectedly. 

Eighty-five of our 110 runs (77%) of the community detection algorithms 

identified a total of 144 regional delineations (schematized in Figure 1). All runs of the 

edge-betweenness community detection algorithm yielded results. The Louvain algorithm 

runs yielded results for every network except the two directed commuting networks as 

the algorithm works for undirected networks only. The Spinglass algorithm does not 

work for graphs that aren’t fully connected and, thus, did not yield results for the spatial 

clustering network. The hierarchy of communities detected from the edge-betweenness 

algorithm was extracted and all levels were included in our comparisons; this is 

compared to a single regional delineation for each successful run of the Louvain and 

Spinglass algorithms which include hyperparameters to similarly yield a set of 
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community schemes varying in resolution. In addition to our 144 data-driven regional 

delineations we include 4 comparisons: US Census Regions, US Census Divisions, US 

HHS Regions, and a regional delineation where each state is its own region (e.g., using 

the two-letter state code as the classification). 

Our regional delineations had a variable number of regions, ranging from 1 up to 

51 separate regions with most integers covered in between. Eleven of our regional 

delineations contained only a single region and 2 others contained only two regions, one 

of which was solely comprised of Puerto Rico.  

When examining the commuting network modularity scores, we find a signal of 

increased modularity for regional delineations which have a total number of 4-14 separate 

regions which peaks with delineations having approximately 6-8 regions (Figure 3.1). 

The administrative regional delineations (US Census Regions, Census Divisions, and 

HHS Regions) fall within this range and have similarly large modularity values; though, 

some of our other data-driven regional delineations seem to outperform the 

administrative delineations with respect to modularity of the commuting networks. This 

pattern seems consistent across all commuting networks, i.e., for both time periods and 

regardless of the network modifications we explored. Averaging modularity across all 

commuting networks, we rank the regional delineations in terms of their alignment with 

human mobility. The US Census Regions, US Census Divisions, and HHS Regions rank 

46th, 54th, and 52nd, respectively, in commuting network modularity.  

A similar signal in the modularity scores of clustering networks is observed with a 

band of observations separated from others at the baseline. However, unlike modularity 

in the commuting networks, the signal in the modularity of the clustering networks seems  
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Figure 3.1. Commuting Networks (A,B) and Clustering Networks (C,D) Modularity Scores for Regional Delineations 
against the Number of Regions. In all networks, nodes were individual states. For the commuting networks, the edges 
connecting nodes represented the commuting ties between those nodes. For the clustering networks, the edges represented the 
number of times two nodes were in an identified disease cluster together. Higher modularity values represent a stronger 
community structure within the given network. The highlighted points show the scores of three administrative regional 
delineations and a single overall-best-performing regional delineation generated from the community detection analyses. 
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in favor of fewer regions, peaking for those delineations with 2-3 regions; though, this 

may be an artifact of a resolution limit due to the relatively sparse connections in the 

clustering networks compared with the commuting networks (discussed in (25)). Again, 

the administrative regional delineations similarly matched our regional delineations in 

their fit to the clustering networks. The tendency for greater clustering network 

modularity in delineations with fewer regions to seems to explain much of the 

discrepancy in modularity for the US Census Regions compared to the US Census 

Divisions, HHS Regions, and our delineations with a similar number of regions; that is, 

much of the variation is seemingly affected by the differences in the number of regions. 

Averaging the modularity for each delineation between the two clustering networks, we 

rank the regional delineations in terms of their alignment with the incidence of influenza-

like illness. The US Census Regions, US Census Divisions, and HHS Regions rank 9th, 

32nd, and 39th, respectively, in clustering network modularity.  

Comparing the phylogenetic tip-trait association indices (AI) shows a slight favor 

for delineations with fewer regions (Figure 3.2). The values for the AI are less directly 

comparable across the delineations varying in the number regions; that is, the AI has an 

implicit bias for traits with fewer numbers of classification levels (Supplemental Figure 

B.7). The values shown for the AI reflect the proportion of values in our generated null 

distribution which had an AI statistic less (i.e., more extreme) than the median AI statistic 

across all trees for the observed data, similar to a p-value. These AI show a less 

pronounced signal than the modularity scores. Many of the delineations with 5-12 regions 

have similar values for AI. Contrary to the commuting network modularity scores, the AI 

for the administrative regions seem to be on the lower-valued (i.e., better) edge of these   
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Figure 3.2. Phylogenetic Tip-trait Association of Regional Delineations with H3N2 
Empirical Tree Set against the Number of Regions. (A) Association Index; (B) 
Parsimony Score. Association indices were calculated for each regional delineation and 
each of 500 phylogenetic trees sampled from a posterior distribution in a Bayesian 
evolutionary analysis of influenza virus subtype A/H3. Trait labels, i.e., state of isolate 
collection, were permuted to generate a null distribution. The median association index 
value was compared to this null distribution to calculated to show proportions. Lower 
values indicate that groupings found in the phylogeny support the spatial structuring of a 
given regional delineation.
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points, with relatively few of our regional delineations performing better. The PS values 

have no signal whatsoever with all of the phylogenetic groupings being most 

parsimoniously described by the observed data for most regional delineations with 

markedly little variation. Combining these metrics of phylogenetic association, we rank 

the regional delineations in terms of their alignment with the phylogenetic groupings of 

H3N2 influenza viruses. The US Census Regions, US Census Divisions, and HHS 

Regions rank 14th, 27th, and 22nd, respectively, in phylogenetic tip-trait association. 

The entropy scores for region memberships and maximum clade sizes (MCS) 

again show a pronounced signal in favor of delineations with approximately 4-14 regions 

(Figure 3.3). A band of observations lies separate from others at the baseline with 

relatively higher entropy scores. However, unlike clustering network modularity and 

phylogenetic tip-trait AI, entropy scores are biased in favor of delineations with greater 

numbers of regions. Entropy scores peak locally around 14 regions, and globally for 

those delineations with 40+ regions. Combining the entropy scores for region 

membership sizes and MCS using a simple arithmetic mean, we rank the regional 

delineations in terms of their balance of the frequencies of states included in each region 

and the aggregate apportionment of phylogenetic diversity. The US Census Regions, US 

Census Divisions, and HHS Regions rank 102nd, 55th, and 46th, respectively, in regional 

entropy/balance. 

By combining each of our four comparison rankings, we create a composite score 

to identify candidate ITZs within the US. We use this composite score to select an overall 

best regional delineation and to identify specific partitions common among top- 

performing delineations; we include the top 50 (Figure 3.4).  Our overall best regional   
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Figure 3.3. Entropy of Community Membership (A) and Maximum Clade Size (B) 
for Regional Delineations against the Number of Regions. I use entropy to assess the 
balance of regions within each delineation. If a delineation has several regions with few 
states and a single region with many, this would be an unbalanced regional delineation 
with relatively lower entropy. So, larger values of entropy indicate a more balanced 
regional delineation. Community size is as described with the relative frequencies of 
states within each region. Maximum clade size refers to the largest monophyletic 
grouping for a given region across a posterior set of 500 phylogenies of influenza virus 
subtype A/H3; here, entropy captures the relative balance of phylogenetic diversity. 
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delineation outlines 8 regions within the US (Figure 3.4). This overall best regional 

delineation ranks 10th in commuting network modularity, 21st in clustering network 

modularity, 35th in phylogenetic tip-trait association, and 71st in entropy. Of all the 

administrative regions, the regions in our overall best delineation are most similar to the 

HHS Regions (Rand Index (RI) = 0.793), followed by the US Census Divisions (RI = 

0.788), and then the US Census Regions (RI = 0.691).  

Comparing our overall best and administrative regional delineations qualitatively, 

we note some differences which may contribute to varying performance. One of the more 

pronounced differences between the administrative regions and our top-performing 

regional delineations concerns classification of Kentucky. Our top-50-performing 

regional delineations indicate a strong separation between Tennessee and Kentucky while 

in each of the administrative regions, these two states are grouped together. Similarly, we 

observe strong separation of the DC-Maryland-Virginia area from either areas to the 

North and South; this region is grouped with Pennsylvania to the North in the HHS 

Regions and with North Carolina to the South in the Census Regions and Divisions, 

while in our overall best it stands alone. From the other perspective, our top-performing 

regional delineations indicate a strong grouping between Oregon, Washington, and Idaho. 

This grouping is found in the HHS Regions and Census Regions, though Idaho is split 

from the others in the Census Divisions. Similarly, we observe strong grouping between 

New Mexico and Texas, but the Census Regions and Divisions partition areas along their 

border. No single regional delineation, among our overall best and the administrative 

regions, seems to represent all the strong partitions or groupings found in our top 50. 

However, our findings do suggest that there is strong regional structuring in the US and   



70 

 

Figure 3.4. Regional Delineations of the US. (A) Overlayed borders of our Top-50-performing regional delineations, (B) 
Census Regions, (C) Census Divisions, (D) HHS Regions, (E) Our Overall Best regional delineation, (F) Classifications of 
Alaska, Hawaii, and Puerto Rico for (A,B,D,E). Combining scores across commuting network modularity, clustering network 
modularity, and phylogenetic tip-trait association indices(and entropy), I was able to rank the performance of all regional delineations 
for their ability to capture patterns across mobility, disease incidence, and viral population structure. The top 50 performing regional 
delineations are shown here with region borders overlayed. Therefore, darker lines correspond to divisions found more often in the top 
performing regional delineations; conversely, faint, lighter lines correspond to divisions less frequently found in the top performing 
regional delineations. Categorizations of Alaska, Hawaii, and Puerto Rico are shown as simple color-coded legend boxes. 
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that there may be some implicit hierarchies around core states, e.g., Georgia, Texas, and 

California.  

 

DISCUSSION 

 Transmission of influenza viruses occurs on broad spatial scales and is not 

necessarily obstructed by geopolitical borders found across the world. Conversely, a lack 

of administrative or practical partitions in surveillance data from broad geographic areas 

does not necessarily correspond to a lack of epidemiologically relevant partitions within 

the region. As one of the largest countries in the world, the US likely constitutes several 

separate influenza transmission zones (ITZs). Here, we explored this notion of 

subnational ITZs. First, we explored patterns of clustering in the incidence of influenza-

like illness (ILI). We found largely similar spatial signals in the clustering of ILI 

incidence in space and on commuting networks, though the temporal signals may suggest 

locations are linked by different mobility processes over the course of an outbreak. We 

then utilize our clustering results alongside representations of human mobility and 

seasonal influenza virus evolution to identify epidemiologically relevant regional 

delineations of the US, i.e., ITZs. We find a strong signal indicating that the US may be 

well characterized using 4-14 regions. Also, in our evaluations of many potential ITZ 

classifications, we present a holistic approach to characterizing the spatial epidemiology 

of seasonal influenza and suggest an overall best regional delineation.  

Epidemiological surveillance data has been used by others in the characterization 

of ITZs (2,26). These studies relied on similar timing and peaks in epidemic curves to 

identify groups or clusters in the data. Similarly assessing aspects of epidemic timing, 
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Rosensteel et al (2021) developed a county-level “epidemiological geography” using a 

similar network community detection approach. However, we feel that the clusters 

identified in this way may not directly correspond to transmission clusters. For example, 

similarity in the timing of influenza outbreaks can occur between locations simply based 

on the timing of seasonal forcing / local climates. Without more concrete linkages 

between outbreaks in difference locations, e.g., contact tracing or viral genetic 

relationships, it is difficult to assess the validity of clustering as transmission linkages. 

We attempt to overcome this limitation in two ways: we generate regional delineations 

using patterns in human mobility and disease incidence; and we holistically evaluate 

many potential regional delineations as ITZs.  

As an obligate intracellular parasite, influenza viruses rely on their hosts’ mobility 

for diffusion and dispersion on larger geographic scales. While global patterns of 

influenza spread are largely owed to passenger air travel, influenza spread within the US 

more strongly relate to local processes, e.g., workers' commutes and geographic distance 

(27,28). Commutes are largely local movements and commuter volume between locations 

is greatly impacted by the geographical distance that separates them, diminishing greatly 

as separation increases (29,30). Our results reinforce the importance of more local spatial 

relationships as our regional delineations were comprised of contiguous regions. By 

analyzing our data in a network science framework, we removed implicit spatial 

constraints and allowed for the possibility of ITZs to be spatially discontinuous. This was 

intentional as we considered the possibility that highly populated, international travel-hub 

states would be more tightly coupled with one another than with flanking, hinterland 

regions. However, we did not identify such a feature in our candidate delineations. 
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Rather, regions were contiguous collections of states, save the obvious exceptions for 

Alaska, Hawaii, and Puerto Rico; though, Alaska, Hawaii, and Puerto Rico were grouped 

with the closest region of the mainland in our overall best delineation.  

In our clustering analyses, we use ILI rates of change as our outcome of interest. 

That is, instead of using aspects of onset timing or epidemic peaks to assess the 

coupling/relatedness of outbreaks in separate locations, we analyze the progression of an 

outbreak using biweekly rates of change. If two locations have similar outbreak 

dynamics, this may offer stronger evidence of some degree of relationship, e.g., linked in 

transmission, between outbreaks as opposed to relationships potentially confounded by 

latent variables, e.g., coinciding seasonal forcing. Additionally, the composition of each 

cluster is founded on relationships based on both geographic proximity and population 

interconnectivity, i.e., commuting ties, as opposed to relationships or similarity only 

found in data signals. That is, we find these clusters to be epidemiologically/biologically 

plausible groupings of outbreaks. Consequently, we feel this feature extends to our 

candidate ITZ delineations. By using patterns of human mobility and disease incidence to 

identify ITZs, there are elements of construct validity in each of our data-driven regional 

delineations.  

Further adding to the validity, each of the regional delineations in our analysis 

was evaluated for its ability to align with spatial constructs in human mobility, disease 

incidence, and viral ancestry. This interdisciplinary and cross-scaling feature of our 

analysis is an increasingly necessary feature of infectious disease research. Of specific 

interest, phylogeographic analyses interrogate pathogen molecular sequences, e.g., genes, 

to uncover evidence of large-scale geographic transmission. One particularly common 
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approach in these studies is the discretization of geographic space which allows for 

simple and flexible inference of gene flow unconstrained by notions of distance. 

However, we find that the use of regional delineations in influenza research is non-

standard and subject to analyst choice, e.g., CDC FluView presents “regional” data for 

both Census Regions and HHS Regions (31). Furthermore, conveniently available 

regional delineations, e.g., Census Regions, may not align well with the geographic limits 

of an outbreak (14,27). This misrepresentation of space can allow lurking variables to 

bias estimates of geographic diffusion. For example, consider the difference between the 

classification of Kentucky in our overall best regional delineation (i.e., with Southern 

states) versus the administrative regional delineations (i.e., with Midwest/Great Lake 

states). For a quick reminder, our top-performing regional delineations indicated a strong 

grouping between Kentucky and Indiana/Ohio and a strong partitioning between 

Kentucky and Tennessee. If we extend this to describe influenza outbreaks, we could 

consider there to be more shared phylogenetic diversity between Kentucky and 

Indiana/Ohio and less shared phylogenetic diversity between Kentucky and Tennessee. 

So, if we were to conduct a phylogeographic analysis using one of the administrative 

regional delineations which group Kentucky with other Southern states, we could 

artificially inflate / bias our estimates of gene flow between Southern and Midwest/Great 

Lake states. Of course, this type of error is common to any discretization of space (or 

continuous variables), and infectious disease surveillance data would first need to be 

available at finer geographic resolutions to even attempt to optimally mitigate 

misrepresentations.  
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We identify at least three limitations in our study. First, we use a non-specific 

disease indicator in influenza-like illness for our clustering analyses. There are many co-

circulating respiratory viruses which are subject to common seasonal forcing each winter 

in the US, i.e., climate impacts transmissibility (32,33); these include SARS-CoV-2 and 

RSV which together with influenza comprise the “tripledemic” threatening global health 

(studied in (34). However, by using ILI in our analyses, we may have identified more 

general respiratory infectious disease transmission zones, rather than specifically ITZs. 

This could facilitate comparative analyses across infectious disease systems which could 

be a fruitful direction for future research. Second, as previously mentioned, the scope and 

resolution of our analysis is limited by the same characteristics of our data. We felt it 

necessary to conduct our analysis respective of state borders, though smaller scale areas 

may better align with outbreak limits. However, by using states as spatial units, we both 

facilitate practical spatial alignment in data and, potentially, public health intervention. 

Additionally, as we envision our results’ use cases in phylogeographic analyses, fewer 

classifications (e.g., 8 regions versus 52 states versus 925 core-based statistical areas) are 

much preferable to avoid issues computational complexity and model identifiability. This 

aspect is becoming increasingly important as molecular epidemiology studies transition 

into an era of big data. Third, we apply a rigid definition for the concept of community / 

ITZ. Our community detection analyses yield non-overlapping / mutually exclusive, 

static regional delineations. In reality, these characteristics likely do not apply to 

transmission zones. Particularly, the stochastic nature of virus introduction may relate to 

more variable delineations from season to season as the transmission zone unfolds 

depending on where a local outbreak originates. However, regional delineations and ITZs 
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with these characteristics would have a limited utility as existing methodologies may 

have difficulty accounting for the added complexity.  

Altogether, we conclude that the US is characterized by several ITZs. Alongside 

our specific results pertaining to the overall best regional delineation, we set forth a 

framework for aligning spatial constructs across biological scales of organization and 

validating given geographic constructs.  
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CHAPTER 4 

SPATIAL VARIATION IN THE PHYLOGENETIC SIGNAL OF LOCAL 

OUTBREAKS OF SEASONAL INFLUENZA IN THE UNITED STATES1 
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ABSTRACT 

Genomic epidemiology approaches are increasingly common in influenza 

surveillance, offering high-resolution insights into transmission patterns. By analyzing 

genomic data and reconstructing pathogen ancestry through phylogenetic methods, 

researchers can uncover transmission dynamics that traditional case-based approaches 

might fail to capture. Particularly, phylogenetic trees can shed light on to the underlying 

transmission dynamics in an outbreak. With the accumulation of genomic data, it may 

now be possible to systematically characterize spatial variation in transmission dynamics 

of seasonal influenza in the United States. This study works towards this goal by 

describing the phylogenetic signals of local influenza outbreaks across the US from 2010-

2020, focusing on type A (H3 and H1 subtypes) and type B (Victoria and Yamagata 

lineages) influenza viruses. Comparing local influenza outbreaks, I find that the mean 

pairwise patristic distance (MPD) among isolates of local outbreaks tends to be higher for 

influenza A viruses than influenza B viruses, and that there seems to be a strong seasonal 

fluctuation in the signals, perhaps indicative of subtype/strain dominance within a given 

season. The MPD of these local transmission clusters showed weak spatial dependence 

overall, but, comparatively, H1 and BYamagata seemed to be more consistent among 

neighboring outbreaks, both in terms of space, e.g., border-sharing neighbors, and time, 

e.g., sequential influenza seasons. Also, I find that local outbreaks in some states, e.g., 

California and Georgia, had marginally less diverse local outbreaks, potentially 

suggesting some systematic differences in transmission patterns, if not simply isolate 

sampling. With continued efforts towards systematic characterizations of local outbreaks 
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using genomic epidemiology approaches, we stand to gain new, high-resolution insights 

to seasonal influenza epidemiology. 

 

INTRODUCTION 

Genomic epidemiology approaches are becoming increasingly common in 

influenza surveillance and research efforts. The analysis of genomic data on influenza 

allows for the characterization of patterns that are obscured or otherwise difficult to 

observe using more traditional, case-based approaches alone. A particular advantage of 

using molecular scale approaches is the inherent high-resolution of observations. 

Additionally with respect to genomic sequences, relationships among observations are 

objectively encoded within the sequences themselves. These aspects can be leveraged 

such that by reconstructing the ancestral patterns of pathogens using phylogenetic 

methodologies, researchers can glean aspects of transmission (1,2). Phylogenetic trees 

contain a wealth of information, and through their detailed analysis, we have learned 

much about influenza. For example, phylogenetic studies of seasonal influenza viruses 

have empirically characterized large-scale circulation patterns (3–5), coupling in 

epidemiology and viral evolution (5,6), ecological interactions among co-circulating 

strains (7), and numerous drivers of transmission (8,9). Moreover, simulation studies 

have shown that simple quantitative summary metrics of phylogenies or tree shape 

statistics are able to discriminate host contact patterns of transmission (10), help in 

predictions of viral lineage persistence (11), and correlate with epidemiological quantities 

such as reproduction numbers (12). With the increasing quality, coverage, and 

availability of genomic sequence data, researchers are afforded new opportunities for 
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higher-resolution studies of influenza. We find one such opportunity to investigate the 

spatial variation of seasonal influenza outbreaks within the United States (US).  

Seasonal influenza outbreaks may be caused by any one of several different 

seasonal influenza viruses, including type A influenza viruses (IAV), H3 and H1 

subtypes, and type B influenza viruses (IBV), Victoria and Yamagata lineages (13).  

Spatial heterogeneities and hierarchies in seasonal influenza outbreak dynamics have 

been well-characterized, e.g., with respect to timing (14–18) and epidemic intensity (19). 

However, it is unclear how underlying patterns of transmission of local influenza 

outbreaks may compare across the US. Here, we attempt to address this gap by 

systematically characterizing the phylogenetic signal of local influenza outbreaks within 

the US, 2010-2020. 

 

METHODS 

Data 

Data for this study are publicly available and consist of genetic sequences, spatial 

boundaries, and commuter flows.  

Influenza genetic sequences are hosted by the Global Initiative on Sharing All 

Influenza Data (GISAID) platform (20). Viral hemagglutinin (HA) gene sequences were 

downloaded for influenza A viruses (IAV), H3 and H1 subtypes, and influenza B viruses 

(IBV), Victoria and Yamagata lineages. Sequences were included for influenza virus 

isolates sampled within the US from January 2010 through December 2020; any 

sequences out of the study scope or with indeterminate/missing metadata on location and 
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date of collection were excluded from analysis. Additionally, four isolate sequences, one 

for each subtype, from 2000-2001 were included to serve as outgroups.  

Cartographic boundary files for state or state-equivalent areas in 2018 at the 1:5m 

resolution were downloaded from the US Census Bureau (21). Questionnaire responses 

concerning the origin and destinations of commuting flows from the American 

Community Survey (ACS) are summarized as tables and made available by the US 

Census Bureau (22); tables for 2011-2015 and 2016-2020 were downloaded and included 

in analysis.  

All data management and analysis were conducted using R programming 

language (version 4.3.0) in the RStudio/Posit interactive developer environment (23), 

unless otherwise specified. Processing and analytical scripts are made available in a 

GitHub repository (link daileyco/Seasonal-Flu-Evolution) to facilitate reproducibility.  

 

Phylogenetic Reconstructions 

Sequences were aligned in a multiple sequence alignment using MAFFT (24) for 

each of the four influenza subtypes separately. Following, sequences were further 

stratified, or grouped, by location and influenza season. Locations comprise the fifty 

states and the District of Columbia (DC). Influenza seasons span the 2010-2011 season 

through the 2019-2020 season. Sequence data were partitioned using overlapping two-

year intervals; for example, a stratum for the 2010-2011 influenza season would include 

all sequences collected from 1 January 2010 through 31 December 2011. Each data 

partition also included a single outgroup isolate sequence from 2000-2001. Altogether, 



87 

there are 2040 strata or combinations of the 4 subtypes, 51 locations, and 10 influenza 

seasons. 

Strata containing at least 3 isolate sequences were used to reconstruct 

phylogenies. All phylogenetic trees, i.e., phylograms/evolutionary trees, were generated 

in a maximum likelihood framework under a general time reversible (GTR) nucleotide 

substitution model using the IQ-TREE2 software (25). Additionally, each phylogenetic 

tree was dated or rescaled using the least-squares dating (LSD2) method also available 

via IQ-TREE2. Outgroups were used to specify root branches then subsequently dropped 

in the phylogenetic dating process; that is, outgroups are not included in the resulting 

time trees. Additionally, phylogenetic tree reconstruction and dating were performed in 

duplicate with replicated analyses excluding outgroup sequences and relying on least-

squares fit to identify the best root branch prior to dating.  

We compare the replicate time trees to select a single representation for 

downstream analyses. The time trees were selected according to two criteria. First, we 

evaluated each time of the most recent common ancestor (tMRCA) and how close the 

estimated date was to the given influenza season. Second, we assessed the difference 

between the tMRCAs from trees generated with and without the outgroups. If a tMRCA 

for the time tree reconstructed without an outgroup was both closer to the given influenza 

season and the difference between outgroup and no-outgroup tree tMRCAs was greater 

than 3 years, then we included the time tree reconstructed without an outgroup in 

downstream analyses; otherwise, the time tree reconstructed with an outgroup was 

included.  
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Local Transmission Clusters 

Following phylogenetic estimation and dating, we identified specific 

subtrees/clades within each phylogenetic tree that represent local transmission clusters. 

Phylogenies were reconstructed using genetic sequences from isolates collected over an 

entire two-year period. As such, trees potentially include relationships (i.e., nodes and 

edges) between isolates beyond the scope of a single influenza season. So, we “pruned” 

or partitioned each phylogenetic tree into subtrees/components based on the alignment in 

the timing of virus ancestry with that of the focal influenza season. We define influenza 

seasons as starting in calendar (or epidemiological/epi-) week 30 (~end of July) in year 1 

and ending in calendar week 18 (~beginning of May) in year 2; for example, the 2010-

2011 influenza season was defined as starting 25 July 2010 and ending 7 May 2011. In 

each of the resulting pruned subtrees, included taxa correspond to isolates which were 

both collected within the focal season and descendant from a single common ancestor 

estimated to have existed within the focal season; that is, phylogenetic trees were 

pruned/cut or partitioned by identifying separate, co-circulating lineages that diverged 

sometime before the beginning of the given influenza season. In this way, each resulting 

subtree conveys patterns of ancestry, or diversification, specific to each location and each 

influenza season, potentially in replicate for multiple clades or co-circulating lineages 

within each subtype. These subtrees are referred to as local transmission clusters.  

 

Spatiotemporal Lags 

Local transmission clusters were quantitatively summarized using tree shape 

statistics, metrics of phylogenetic signal. Chiefly, we focus on the mean pairwise patristic 



89 

distance or mean pairwise tree distance (MPD) to quantify the relatedness, or diversity, of 

isolates represented in a phylogeny. These MPD values were treated as time-series and 

subsequently analyzed to quantify spatial, temporal, and cross-subtype dependence in 

phylogenetic signals. In other words, we correlate the phylogenetic signals of local 

transmission clusters with those of neighboring locations, sequential seasons, and other 

co-circulating influenza subtypes.  

State borders and commuting ties were used to define spatial and network 

neighbors, respectively, for all locations. Locations were considered spatial neighbors, or 

spatially adjacent, if they shared a border determined by the spdep R package’s poly2nb() 

function using binary encoding (i.e., neighbor or not)(26). Spatial neighbors were 

determined up to three degrees of separation, or three spatial lags, e.g., neighbors of 

neighbors correspond to two spatial lags. Similarly, commuting flow data were 

transformed into weighted adjacency matrices to represent commuting network neighbors 

where weights correspond to the number of people estimated to have participated in the 

given, undirected commuting flow between two locations; note, network neighbor 

weights were only calculated for the single degree of separation, or one network lag, as 

the state level commuting networks are nearly fully connected. Two network adjacency 

matrices were created corresponding to the two time periods of commuting data. 

Using the adjacency matrices, MPD values for local transmission clusters were 

spatially lagged. Spatial and network lagged values of MPD were calculated by averaging 

the MPD values observed in neighboring locations. That is, non-missing values were 

averaged across all a location’s neighbors to yield a single MPD value for the given 

spatial lag, subtype, and season; for the network neighbors, network lagged MPD values 
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were weighted averages of neighbor values. Following, all MPD values were temporally 

lagged up to three degrees of separation, i.e., three seasons.  

 

Correlating Phylogenetic Signals 

Pearson correlation coefficients were computed using these MPD values to 

characterize temporal, spatial, and spatiotemporal dependence within and among the 

phylogenetic signals of each circulating influenza virus lineage. As there were multiple 

local transmission clusters / co-circulating strains / subtrees for some combinations of 

subtype, season, and location, a single local transmission cluster was randomly sampled 

within each stratum before generating the spatiotemporally lagged values and computing 

the correlations. The data were repeatedly resampled for 1000 replications. The resulting 

distributions of correlation coefficients were summarized using quantiles and are 

presented as medians and 95% confidence intervals; a correlation was deemed significant 

if the confidence interval did not include zero.  

 

RESULTS 

Over 50 000 influenza hemagglutinin (HA) gene sequences were downloaded 

from GISAID. After exclusions and quality control, N = 42 113 isolate sequences 

remained with an additional 4 virus isolate sequences for the outgroups (Supplementary 

Figure C.1). Sequences for IAV subtype H3 (n = 18 829) were most numerous, followed 

closely by subtype H1 (n = 12 243) and distantly by both IBV lineages (n = 6 371 for B 

Victoria, and n = 4 670 for B Yamagata).  
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When fully stratified by subtype, season, and location, 1 806 of 2 040 (~88.5%) 

strata contained enough HA sequences to attempt phylogenetic reconstruction. Suitable 

data coverage varied with influenza subtypes, as with the frequency of isolate sequences 

(Supplementary Figure C.2). The data coverage was more complete for IAV compared to 

IBV. Also, data were more complete for more recent seasons for both types of influenza 

viruses with a notable increase in coverage/frequency from ~2015 onwards. For all 

locations and influenza seasons, there were enough H3 isolate sequences to estimate 

phylogenies, 510 of 510 strata (100%). Comparatively, there were 490 (96.1%), 409 

(80.2%), and 397 (77.8%) strata with enough data for H1, B Victoria, and B Yamagata, 

respectively. Phylogenies were reconstructed successfully for all but one set of B Victoria 

sequences.  

Each stratum had a variable number of sequences, and, consequently, the number 

of sequences used to reconstruct each phylogeny varied. Phylogenies included a median 

of 41.5 [Q1=20, Q3=71], 25 [11, 48], 14 [6, 32], and 14 [7, 29] sequences for H3, H1, B 

Victoria, and B Yamagata, respectively (Supplemental Table C.1).  

The estimated time trees tMRCAs indicated a potentially poor fit to a molecular 

clock model for many strata. When comparing the tMRCAs among the full phylogenetic 

trees, H3 lineages coalesced a median of 5 years before the circulating season, while H1, 

BVic, and BYam trees coalesced approximately 2.1, 3.1, and 3.3 years, respectively, 

before the given influenza season. There were 577 phylogenies which had an estimated 

tMRCA that was over 5 years before the start of the season in which the isolates were 

collected (Supplementary Figure C.7); excluding those, tMRCA medians are 
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approximately 3.3, 1.9, 2.0, and 2.5 years before the circulating season for H3, H1, BVic, 

and BYam, respectively.  

The average mutation rates estimated were 2.7x10^-3, 3.8x10^-3, 1.8x10^-3, and 

2.2x10^-3 substitutions per site per year for H3, H1, BVic, and BYam, respectively; 

excluding the phylogenies with extreme tMRCAs, the average mutation rates for H3, H1, 

BVic, and BYam are 3.2x10^-3, 4.1x10^-3, 2.3x10^-3, and 2.9x10^-3 

mutations/site/year. The distributions of the estimated mutation rates across seasons were 

somewhat stable, though some individual seasons for each subtype showed more broad 

distributions with many potential outlying estimates (Supplemental Figures C.3 & C.6). 

With the time-scaled phylogenies, we were able to identify local transmission clusters 

(Figure 4.1).  

The relative frequencies of local transmission clusters (extracted subtrees) were 

similar to the frequencies of available sequence data across influenza subtypes. 

Frequencies were greatest for H3 (n=1 897), followed by H1 (n=1 419), BYam (n=852), 

and BVic (n=831; Supplemental Table C.2). Some phylogenies did not have an internal 

node estimated to have existed within the given seasons, and, as such, the frequencies of 

missing data slightly increased following local transmission cluster identification.  

Local transmission clusters seemed well aligned with each season following partitioning 

as, on average, the MRCAs were estimated to have existed just before the new year (i.e., 

1 January) within each influenza season (Supplemental Table C.2, Supplemental Figure 

C.5). The subtrees are more balanced in the number of tips than the full phylogenetic 

trees with a median of 3 tips across subtrees from all subtypes. As such, the comparisons 

of tree shape statistics may be more meaningful.   
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Figure 4.1. Time-scaled Phylogenetic Tree of Influenza A Subtype H3 using Isolate Sequences Collected from 2016 to 2018 in 
Georgia (A) and Identified Local Transmission Clusters (B-F). Hemagglutinin gene sequences from viral isolates sampled across a 
few years were used to reconstruct phylogenies. Using a least-squares dating procedure, nodes and branches were scaled in time. By 
isolating internal nodes and descendant tips that exist within a focal flu season window, I identify isolates comprising local 
transmission clusters, or local outbreaks. Each of these local transmission clusters can be simply summarized by calculating the 
average branch length between pairs of tips, a measure of phylogenetic diversity. 
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The MPD of H3 subtrees was an average of 1.2x10^-3 substitutions per site 

compared to 1.4 x10^-3, 0.7 x10^-3, and 0.9 x10^-3 substitutions per site for H1, BVic, 

and BYam, respectively. MPD values show a decreasing trend over the course of an 

individual influenza season with the earliest transmission clusters in each season having 

larger values than transmission clusters identified later in the season (Figure 4.2). There 

does seem to be some season-to-season variability in MPD across all subtypes and 

locations (Figure 4.3).  

Additionally, I compared MPD values across states using a standardized mean 

differences comparing local transmission clusters within each state to the seasonal 

average for each subtype; to get a marginal summary, each of these mean differences 

were averaged across all subtypes and seasons to get a single value for each state which 

gives a sense of the relative diversity per local outbreak (Figure 4.4). We observe that 

local transmission clusters in some states tend to be less diverse than seasonal averages, 

e.g., Georgia and New York, while those in other states tend to be more diverse, e.g., 

West Virginia and Oklahoma (Figure 4.4). When comparing the distributions of MPD 

values across all subtypes within each season, the MPD values seemingly exhibit some 

negative / antagonistic interactions / interference. For example, in the 2016-2017 season, 

MPD values for H1 transmission clusters are lower than those of IBV and H3 

transmission clusters within the same season and H1 transmission clusters from 

surrounding seasons. Similarly, for the 2018-2019 season, MPD values for IBV 

transmission clusters are distributed at lower values compared to those of IAV 

transmission clusters. To further investigate associations, we quantified the correlations 

of these measures of diversity across space, time, and influenza virus subtypes.   
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Figure 4.2. Profiles of Mean Pairwise Distances of Local Transmission Clusters of Seasonal Influenza. Influenza A Subtype H3 
with highlighted examples from Figure 1 (A), Influenza A Subtype H1 (B),  Influenza B Lineage Victoria (C), Influenza B 
Lineage Yamagata (D). Each data point represents a single local transmission cluster. The times of the most recent common ancestor 
(TMRCA) on the x-axis corresponds to the estimated time of the single internal node from which all tips in a local transmission cluster 
descended.
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Figure 4.3. Average Diversity Realized in Local Transmission Clusters. All local 
transmission clusters for a given subtype-season-state were averaged to generate the 
shown values. White spots represent combinations of subtype-season-state where there is 
no data on local transmission clusters. Diversity here is the mean pairwise phylogenetic 
distance and has units of substitutions per site.  
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Figure 4.4. Relative Differences of Local Transmission Clusters’ Diversity. Values of mean pairwise phylogenetic distance were 
standardized for each subtype-season combination. These standardized values were then summarized with a simple arithmetic average 
for each state yielding the values shown on the graph. Lower, blue values correspond to marginally lesser isolate diversity within local 
transmission clusters, and higher, red values correspond to marginally greater isolate diversity within local transmission clusters. Of 
note, there seems to be a general pattern with more populous states having marginally lesser isolate diversity within local transmission 
clusters. 
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Spatiotemporal autocorrelations within each subtype were relatively weak with 

the maximum significant correlation coefficient of 0.369 for contemporary (temporal lag 

= 0) for BYam trees for spatial neighbors (spatial lag = 1; Figure 4.5d). Significant 

positive correlations were observed within each subtype when comparing contemporary 

transmission clusters across spatial neighbors (Figure 4.5); that is, increasing values of 

MPD in local transmission clusters are observed with increasing values of MPD in local 

transmission clusters from neighboring locations. As the spatial lag increases, there is a 

relative decrease in the correlation coefficients for each subtype. For example, MPD 

values for local transmission clusters of H3 are slightly more correlated with transmission 

clusters in neighboring locations (rho = 0.141) than those clusters found at more distant 

locations (three spatial lags, rho = 0.126, Figure 4.5a).  This decreasing trend seems to 

slightly vary among subtypes; the correlations decrease most for BVic and least for H3 at 

increasing spatial distances. 

There are no consistently significant correlations across temporal lags for any of 

the spatial lags. Contemporary correlations across all spatial lags for each subtype are 

positive; that is, regardless of spatial separation, increasing values of MPD in 

transmission clusters for a given subtype and season are observed with increasing values 

of MPD in other transmission clusters of the same subtype and season. However, when 

comparing the correlations across temporal lags, there is an alternating pattern in the 

direction of the association which seems to vary between IAVs and IBVs. The 

correlations observed for a single temporal lag (i.e., comparing a season to the season 

before) are negative for IAVs; that is, increasing values of MPD in transmission clusters 

for a given IAV subtype in this influenza season are observed with decreasing values of   
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Figure 4.5. Spatiotemporal Autocorrelations of Viral Diversification / Tree Shape (MPD). Matrices have a focal point in the 
bottom left with both spatial and temporal lags of zero. Increasing up the y-axis, each increasing spatial lag corresponds to the order of 
separation among border-sharing states; that is, spatial lag of 1 compares a focal state to the neighboring states which share a border 
with the focal state, spatial lag of 2 compares a focal state the neighbors of border-sharing neighbors, and so on. Increasing along the 
x-axis, each increasing temporal lag corresponds to a previous influenza season; that is, temporal lag of 1 compares a focal influenza 
season to the previous season, temporal lag of 2 compares a focal influenza season to two seasons previous, and so on. Spatiotemporal 
lags are represented by the boxes not immediately adjacent to either axis. Median Pearson correlation coefficients are shown if 95% 
bootstrap intervals did not cross zero.  
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MPD in transmission clusters for the same respective subtype in the previous influenza 

season. The correlations continue this alternating pattern at increasing temporal lags for 

both IAV subtypes, though it is much more pronounced in H1 transmission clusters 

(Figure 4.5a-b). On the other hand, for IBVs, a similar alternating pattern is not observed 

(Figure 4.5c-d). For BVic, the temporal signal is least pronounced with most correlations 

with past seasons being negative and scantly significant. For BYam, the correlations at a 

single temporal lag are null-valued and insignificant. However, at two temporal lags, the 

signal is very pronounced and consistently negative across all spatial lags; that is, 

increasing values of MPD in BYam transmission clusters this season are observed with 

decreasing values of MPD in BYam transmission clusters from two seasons ago.  

Spatiotemporal cross correlations between influenza subtypes are generally 

weaker than the autocorrelations within each subtype; the maximum magnitude of 

significant correlation coefficients is 0.189 (Supplementary Figures C.8-C.11).  

For H3 transmission clusters, we observe weakly negative correlations with 

contemporary H1 transmission clusters while there are somewhat stronger positive 

correlations with contemporary BYam transmission clusters across all spatial lags 

(Supplementary Figure C.8). The correlations with contemporary BVic transmission 

clusters are not as consistent and shift from a weakly negative association at two spatial 

lags (rho  = -0.068) to a stronger positive association at three spatial lags (rho = 0.162). 

Similar to the spatiotemporal autocorrelations within each subtype, the cross correlations 

between MPD values of H3 and H1 transmission clusters exhibit some alternating signals 

across temporal lags. That is, while there is a negative correlation between contemporary 

H3 and H1 transmission clusters, when comparing H3 transmission clusters to H1 
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transmission clusters from the previous season, we observe positive correlations. In other 

words, increasing values of MPD in H1 transmission clusters from last season are 

observed with decreasing values of MPD in H3 transmission clusters this season. This 

alternating pattern extends across all temporal lags. The temporal signal is less clear 

when comparing H3 transmission clusters to those of either IBV, though there may be 

some consistently negative correlations at two temporal lags for both IBV.  

For H1 transmission clusters, the relationships with increasingly distant and past 

H3 transmission clusters are similar to those comparing H3 transmission clusters to 

distant and past H1 transmission clusters, with the alternating temporal signal being most 

prominent (Supplementary Figure C.9). The correlation between H1 and BYam 

transmission clusters is weak and inconsistent, save a strong positive correlation between 

H1 transmission clusters and local BYam transmission clusters from three seasons ago, 

three temporal lags (rho = 0.141). We observe weakly positive correlations between H1 

transmission clusters and contemporary BVic transmission clusters, and these 

correlations decrease in magnitude with increasing spatial lags.  

For IBV transmission clusters, we see consistent patterns relating each IBV to 

each IAV. For example, BVic transmission clusters are positively correlated with 

contemporary and local H1 transmission clusters (rho = 0.106) and positively correlated 

with contemporary H3 transmission clusters at three spatial lags (rho = 0.185; 

Supplementary Figure C.10). However, instead of antagonism or interference between 

IBV, we observe positive correlations between contemporary and local BVic and BYam 

transmission clusters (rho = 0.136; Supplementary Figure C.10-C.11). For BVic, this 

positive relationship extends to local BYam transmission clusters from the previous 
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season (rho = 0.127; Supplementary Figure C.10); but for BYam, the relationship is 

observed as antagonistic at larger spatial lags (rho = -0.091 at two spatial lags; rho = -

0.102 at three spatial lags; Supplementary Figure C.11). Even though, MPD values for 

IAV transmission clusters did not seem to depend on BYam transmission clusters, the 

converse does not seem true; that is, we observe more significant correlations between 

BYam transmission clusters and IAV transmission clusters across space and time. 

Particularly, we see negative correlations between BYam transmission clusters and H3 

transmission clusters from the previous season (at one spatial lag rho = -0.135), positive 

correlations with H1 transmission clusters from two seasons ago (at one spatial lag rho = 

0.17), and positive correlations with H3 transmission clusters from three seasons ago (at 

two spatial lags rho = 0.133).  

 

DISCUSSION 

The evolution of seasonal influenza viruses contributes to the recurrence of 

outbreaks around the world. As viruses spread along chains of transmission within an 

outbreak, they diversify and the extent of genetic and antigenic change realized can 

impact viral fitness and, consequently, the likelihood of survival and persistence. 

Moreover, the overlapping nature of co-circulating pathogens allows for ecological 

interactions which may impact chains of transmission and, consequently, viral evolution. 

However, the spatial variation in transmission patterns of co-circulating influenza viruses 

within the US has not been thoroughly characterized. In this study, we characterize 

spatial variation in the phylogenetic signal of local influenza virus outbreaks in the US. 

We find evidence of the dependence of transmission patterns across space, time, and 



103 

influenza subtypes, and that these patterns of dependence vary among seasonal influenza 

subtypes. Particularly, we note that the spatial scale of dependence is seemingly greater 

for H1 and BYam than H3 and BVic and that temporal dependence patterns are more 

consistent in IAVs than IBVs. Furthermore, we describe ecological interactions between 

seasonal influenza viruses and note that the nature of these interactions is greatly 

dependent on the spatial and temporal scope of analysis.  

IAVs have been shown to circulate on larger geospatial scales, with regular 

emergence of variants causing outbreaks around the world(5). Comparatively, IBVs tend 

to circulate in more local geographies (3,5). Our findings support this notion of smaller 

spatial scales for IBVs compared to IAVs as we observed the strength of spatial 

interaction to decrease more rapidly for IBVs than IAVs at increasing spatial distances. 

IAVs are thought to be more virulent pathogens that evolve on quicker time scales than 

IBVs (6). This aspect of the infectious disease systems manifests evidently in the 

epidemiology of influenza illnesses. As IAVs experience greater extents of genetic and 

antigenic drift, they are less limited by the standing population adaptive immunity and 

able to infect a general population (6,7). Conversely, IBVs change less and less quickly, 

and, as such, induced population adaptive immunity can considerably impact their ability 

to spread within populations (5). For these reasons, IBVs are relatively more prevalent in 

children who have relatively naïve immunities compared to adults who have had 

opportunities to develop protective if not sterilizing immunity to IBVs (27). Given the 

potential differences in the population demography of susceptible individuals, it is not 

surprising that IBVs have a more limited spatial scale than IAVs as children have a more 

limited range of mobility than adults (27,28).  
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The relative differences of evolutionary potential between IAVs and IBVs may 

also help to explain the differences we observed between the temporal patterns of 

dependence in diversification of transmission clusters. Temporal patterns for the IAVs 

were more regular than those of IBVs. As IAV variants regularly arise around the world 

and invade the United States each year, marginal population immunity may be similar at 

the onset of seasonal forcing. On the other hand, the local persistence of IBVs may allude 

to a more dynamic landscape of population immunity which changes along different time 

scales than that related to IAVs. Often, the incidence of influenza illness within a 

seasonal outbreak is seemingly dominated by a single subtype; in other seasons, influenza 

illnesses are more well distributed among subtypes. Predicting which subtype will 

predominate in upcoming seasons has proven as challenging as it would be rewarding. 

This may be, in part, due to complex interactions among the co-circulating viruses.  

Antagonistic interactions or interference between IAVs has been noted in 

infectious disease modeling studies (29) as well as in molecular epidemiology studies (7). 

We add to this body of literature of antagonistic interaction between H3 and H1 with 

evidence negatively correlated diversification in transmission clusters occurring within 

the same influenza season. This finding is likely simply due to the competition between 

pathogens for susceptible hosts. The disruption of chains of transmission of one subtype 

from the other could be the result of changes to host behavior, e.g., sick behavior, 

impacting epidemiologic contact rates or changes to host innate immunity, e.g., induced 

antiviral states, which may impact secondary host susceptibility. At the molecular scale, 

conserved or convergent epitopes in the proteomes of influenza viruses may allow for 

cross-reactive adaptive immunity (30). Interaction as this may be more plausible/probable 
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for more closely related influenza viruses, e.g., homologous strains. So, while potentially 

less impactful across influenza subtypes or even contemporary strains, the population 

adaptive immunity induced from previous influenza outbreaks may have lasting 

impressions on the future incidence of infections of similar viruses. Even without overlap 

in protein epitope / antigen profiles, co-circulating influenza viruses may still interact 

across scales. For example, the landscape of an outbreak can also be drastically altered 

when co-circulating, contemporary and collocated, pathogens aggregately act to disrupt 

chains of transmission. This could be through moderation of either contact patterns 

between hosts, e.g., via sick behavior, or the susceptibility of secondary hosts, e.g., 

induced antiviral states. Either of these fundamental interactions could explain the 

antagonistic interactions between the IAVs, but there remains the possibility of antigenic 

overlap between subtypes as well. Ecological interactions as these have been suggested in 

explanations to observed patterns of branching in influenza virus phylogenies and 

incidence of influenza illness (7,31). However, study of these interactions has been 

conducted using rather coarse spatial resolutions, and, as such, the spatial extent, or scale, 

of interaction is still unclear. Delineating the root cause of such interaction through 

comparisons of epitope profiles could be a fruitful and challenging avenue for future 

research. The synergistic interactions between IBVs and between IBVs and IAVs, 

though, is not so simply explained. Aside from explanations towards increased 

susceptibility and co-infections, it may be possible that the observed synergy is more due 

to chance and the alignment of unrelated outbreaks within an influenza season. To this 

point, the limited spatial scale of IBV outbreaks may offer support. Given the somewhat 

coarse, state-level resolution of our analysis combined with differences in population 
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demography of susceptible peoples, it may be possible that the identified transmission 

clusters for IBVs have little to no spatial nor demographic overlap with each other or 

with IAV outbreaks. As such, the coinciding seasonal forcing could be driving the 

observe relationships.  

A study such as this has only been recently made possible due to the accumulation 

of relevant pathogen genomic sequence data. Still, we have found that the coverage of 

suitable data is flimsy and there remain many gaps that can impact the scope of analytical 

inferences. Centers for Disease Control and Prevention (CDC) have developed a “Right 

Size Roadmap” in which they promote increasing sample sizes for pathogen molecular 

epidemiological surveillance (32). This initiative has seemingly borne fruit as the 

coverage of sequence data drastically improved within our study scope from 2010 

through 2020, particularly from 2015 onwards. However, data coverage is the greatest 

limitation in this study. In addition to the coverage with respect to subtypes and seasons, 

the granularity of spatial data in pathogen molecular sequences greatly limits analytical 

scope. Despite this limitation, we still identify spatial dependence, though, the relatively 

weak correlations that we did identify could be indicative of a poorly aligned spatial scale 

between influenza ecology and data. This is not an easily overcome barrier in data 

collection as increasingly precise spatial resolutions in data come with threats to privacy 

of infected people who have deserved rights for their health information to be protected. 

However, there may be a middle ground between state-level resolutions and those at 

which patients are potentially identifiable such as with core-based statistical areas (33) or 

labor markets (34,35). Yet, the transition to finer spatial resolutions in data would bring 

about novel challenges as well, e.g., regions that cross administrative borders.  
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Another limitation to this study lies within the methodology, particularly the 

phylogenetic reconstructions and dating procedures. The choice to generate series of 

“small” phylogenetic trees is both a strength and a limitation of this research. This 

relatively simple approach allowed us to use the entirety of available influenza isolate 

sequence data without necessarily subsampling, a key advantage to our approach to those 

found elsewhere. Additionally, this relatively simple approach could be conducted in a 

decentralized manner in near real time during influenza season, potentially augmenting 

molecular surveillance efforts from public health labs around the country. Furthermore, 

another strength is in the relative simplicity of phylogenetic reconstruction with fewer 

taxa included. Phylogenetic complexity does not scale linearly, and, at big data scales, the 

degree of phylogenetic uncertainty can become extensive and computation complexity 

related to phylogenetic reconstruction can become intractable. By limiting the scope of 

each phylogenetic reconstruction, these issues of complexity are somewhat mitigated, 

and, as such, this methodology can be performed with limited expertise in phylogenetics 

and by using relatively simple techniques, e.g., maximum likelihood versus Bayesian 

frameworks. 

Still, the limited scope of included isolate sequences inherently limits the 

temporal signal in the data. This temporal signal is essential for accurate phylogenetic 

dating. We acknowledge this limitation to be present in our study evidenced by extreme 

estimates of tMRCAs in some phylogenies. However, we mitigated this limitation in two 

ways. First, we included outgroup isolates to aid in the identification of valid roots for 

each phylogenetic tree; though, the use of outgroups did not guarantee accurate dating for 

the entire phylogeny, particularly at the roots. Second, we included influenza isolates 
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collected over an entire two-year period, both well before and well after the focal 

influenza season. Having these bookends in each phylogeny can help to constrain the 

phylogenetic dating procedure to identify more plausible tMRCAs. Still, it is likely that 

we missed some local transmission clusters. This limitation is also found in our choices 

for the start dates and end dates of an influenza season. Though influenza viruses in the 

United States have the potential to arise from introductions from outside the US, there 

remains the possibility of chains of transmission beginning before our designated start 

date. As such, we have potentially missed some of those transmission clusters that 

originated before calendar week 30 each year. However, this limitation in the 

identification of transmission clusters may act more to contributed to missingness in our 

data rather than bias our estimates.  

Altogether, we have described the spatial variation in the phylogenetic signal of 

seasonal influenza viruses and characterized the scales at which these pathogens interact 

within their respective subtypes and across subtypes. Epidemic and evolutionary 

dynamics are co-dependent, yet little research has gone into characterizing the extent of 

evolutionary change realized within an outbreak. Rather, the focus in the literature has 

been directed towards using evolutionary change to predict epidemics, such as in (7). 

Here, we take a first step to assess the flow of information in the other direction with the 

quantification of diversity realized over the course of an influenza outbreak. We employ a 

simple metric in the mean pairwise patristic/tree distance to quantify evolution, but there 

remain a multitude of tree shape statistics with which similar analyses can be performed 

and each of which may divulge a different aspect of influenza transmission. We note that 

the spatial resolution of our study is limited, but we have also limited the spatial scope of 
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the analysis to the United States. Future works may also expand the analytical scope to 

the global scale as well as to incorporate additional infectious disease systems, e.g., RSV 

and COVID-19. The efforts of this work may culminate in improving efforts towards the 

prediction of evolutionary trajectories and epidemic dynamics.   
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CHAPTER 5 

CONCLUSIONS 

 In this dissertation, we characterize spatial structuring in the United States (US) 

and its impact on the epidemiological and evolutionary patterns observed in seasonal 

influenza. We do this in recognition of challenges arising from the integration of data and 

theory across ecological scales. Specifically, at larger scales, important spatial constructs 

lack concrete definitions which inhibits integrative approaches to studying seasonal 

influenza across scales. To address this in the context of seasonal influenza in the US, we 

carefully analyzed publicly available data related to seasonal influenza, including 

commuting flows, influenza-like illness incidence, and genetic sequences of seasonal 

influenza viruses. We integrated these disparate data streams using several different 

methodologies (incorporating elements of geography, human mobility, disease incidence, 

and molecular evolution). Each of the aims / chapters offers evidence suggestive of 

important spatial structuring, and, when taken together, this work constitutes a holistic 

characterization of subnational, regional scale within the US.  

 In Aim 1 / Chapter 2, we analyzed patterns in commuting flows, and, by using 

human mobility models, we were able to identify a critical point in the distance 

distributions of commuting flows. This potentially region-defining distance, ~146km or 

~91mi, has been found in others’ work, both with similar approaches as ours outside of 

the context of defining spatial scales [~119km in US commutes by Viboud et al 

(2004)(1); ~300km in global commutes by Balcan et al (2009)(2); and ~146km or 
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~293km, depending on the formulation, in US commutes by Truscott & Ferguson 

(2012)(3)] and as a result of specific inquiry to scales in human mobility using more 

complex human mobility models [~161km in high-resolution displacements in Denmark 

by Alessandretti et al (2020)(4)].  

 In Aim 2 / Chapter 3, we focused more intently on delineating regions within the 

US. Using a network science approach, we were able to generate an array of candidate 

regional delineations which were then evaluated for their ability to capture patterns in 

commuting flows, influenza-like illness incidence, and viral ancestry. Our results suggest 

that the US may be well-characterized with ~8 multistate agglomerations / regions, or 

influenza transmission zones. Due to differences in the resolution of data and results, it is 

more difficult to directly compare our findings with those found in the literature [cf., the 

epidemic invasive tree from Figure 4b of Balcan et al (2009)(2) or the epidemiological 

geographies from Figure 4 of Rosensteel et al (2021)(5). This challenge of reconciling 

spatial units across scales remains unmitigated in the absence of more standardized, 

concrete definitions of larger scale spatial constructs. We are still able to interpret our 

regionalization results from Aim 2 / Chapter 3 with the results from Aim 1 / Chapter 2, 

i.e., the region defining distance. Many of our delineated regions span substantially 

longer distances than what would be dictated by a region-defining distance of <100mi. 

Rather than interpreting this as suggestive of another, separate, larger regional scale 

within the US, we feel this observed pattern relates more to heterogeneity in the spatial 

distribution and organization of populations. In other words, regions may be influenced 

by scale-related distance, but they are ultimately defined by local metapopulation 

structures.  
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 This notion of local metapopulation dynamics may be further supported by our 

findings in Aims 1 & 3. In Aim 1, we explored the association between commuting 

summaries and influenza-like illness epidemic intensity. Viboud et al (2004) showed that 

the synchrony of influenza outbreaks among states in the US is influenced by shared 

commuting flows, i.e., metapopulation dynamics (1). Consider that the aggregation of 

data across spatial scales can explain an inherent relationship between outbreak 

synchrony and epidemic intensity. For example, asynchronous outbreaks within a region 

may be interpreted as an overall diffuse outbreak when aggregated to the regional scale, 

while simultaneous, synchronized outbreaks within a region would be interpreted as an 

intense outbreak when similarly aggregated. Extending the implications of these more 

localized spatial contexts, we may interpret this to mean that state-level resolution is too 

coarse to properly characterize the spatial epidemiology of seasonal influenza, potentially 

supported by our findings in Aim 3 / Chapter 4. 

 In Aim 3 / Chapter 4, we took a molecular epidemiology approach using 

phylogenetics to explore the similarities of local outbreaks across space and time. 

Ultimately, we found weak that local outbreaks are rather dissimilar when compared to 

outbreaks in neighboring states (gauged via correlations in the phylogenetic signals (i.e., 

mean pairwise tree distances) of each seasonal influenza virus). While at least partly 

founded in the inefficiency of our approach to comparisons, our results from this analysis 

could be explained by a poor alignment of spatial scales between the research questions 

and data. That is, the state- and multistate-/regional-level resolution may be too broad / 

coarse to capture meaningful relationships in the spatial contexts of local outbreaks.  
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 With the continued emphasis on molecular surveillance, we will continually 

observe the epidemiology, ecology, and evolution of influenza with increasingly finer 

detail. Consequently, this will allow us to uncover and resolve more intricate patterns. 

This point encapsulates both potential future direction and an inherent limitation of this 

study: availability of high-resolution data. We were able to overcome some aspects of the 

limited resolution in the data, e.g., summarizing county-level commuting patterns to the 

state-level without complete loss of nested information. However, ultimately, we were 

limited to a state-level resolution for all analyses. While we acknowledge that state-level 

characterizations have practical advantages, e.g., working within defined constructs in 

data and public health practice, important relationships found at smaller spatial scales are 

likely obfuscated by such coarse resolution.  As influenza incidence and molecular 

sequence data become increasingly available and with improvements in spatial coverage, 

we may be able to leverage this high-resolution observations to better characterize local 

transmission dynamics, a fundamental linkage between spatial epidemiology and viral 

evolution.  

We find that our work is most immediately applicable to computational modeling, 

both mathematical simulations and phylogeographic analyses. There is a precedence of 

increased model accuracy with more explicit consideration / parameterization of spatial 

relationships / hierarchies; Turtle et al (2021) showed that models fit to subpopulations 

with multi-county clusters outperformed those fit to aggregated cluster data (6). Also 

discussed by Turtle et al (2021)(6), Centers for Disease Control and Prevention (CDC) in 

the US host an annual influenza forecasting challenge where forecasts are generated for 

the aggregate US and individual Health and Human Services (HHS) regions (7,8). If we 
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consider that modeling at finer resolutions may improve forecast accuracy, then state-

level predictions would yield similarly accurate predictions regardless of whether the 

predictions are aggregated to a regional level as defined in our Aim 2 or that defined by 

the HHS regions. However, continuing up spatial hierarchies, we may speculate that 

different subnational geographic representations could impact larger scale model 

estimations, e.g., international spread, especially in phylogeographic contexts. 

Characteristics of spread (local metapopulation dynamics & phylogenetic signal 

in local outbreaks) may also be useful signals to consider as indicators for anomaly 

detection in influenza surveillance. The emergence of antigenic variants is a continual 

concern for influenza, whether from zoonotic origins following antigenic shift events or a 

more subtle change arising somewhere in human populations following antigenic drift 

(9,10). The early detection of these emergent strains is paramount to control efforts. 

Antigenic novelty has been shown to allow for more widespread transmission, both with 

respect to geographical diffusion as well as demographic segments of a population 

(9,11,12). In characterizing typical spatial patterns in the spread of seasonal influenza, 

e.g., delineating specific influenza transmission zones, we may also be thereby creating a 

useful case for anomaly detection. For example, when spread patterns substantially 

diverge from those expected given established spatial constructs, this could be indicative 

of novel variant emergence. We feel this similarly applies to the characterization of local 

outbreaks using phylogenetic approaches; Perofsky et al (2021) corroborate this with a 

suggestion that quantifications of patterns in phylogenies [via local branching index] can 

indicate “selective sweeps” which are characteristic in the emergence of antigenic 

variants (11).  
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APPENDIX A 

SUPPLEMENTAL MATERIALS FOR AIM 1 

DATA MANAGEMENT 

The commuting data in its raw format was already a dataframe of adjacency, 

containing records for location pairs of origins and destinations (nodes) and the 

commuter volume between those locations (edges with weight). This data was used to 

estimate the gravity model parameters. To fit the gravity models, data for the population 

sizes of the locations and the distances between locations were also required.  

It was important to first consider the granularity of the data. The commuting data 

were at the county level for spatial scale and were 5-year period estimates for the 

temporal scale (2011-2015 and 2016-2020). Data on the location of population centers 

for US counties for 2010 and 2020 were found; these data included population size and 

coordinates for the population centers. While population estimates for each year were 

available, the coordinates for population centers were not readily available for each year. 

Interpolation between 2010 and 2020 coordinates was a potential solution, but it was 

likely overly complex, especially considering the commuting data were 5-year estimates. 

Therefore, it was necessary to consider how to best align the data to combine 

across sources. The commuting data were used as the base dataset and augmented with 

population data and spatial data (i.e., the coordinates of population centers). The 

population data consisted of the midpoint year for the commuting data time periods; for 

the 2011-2015 commuting data, 2013 population data were used, and for the 2016-2020 
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commuting data, 2018 population data were used. For the spatial data, the 2010 

population center coordinates were used for the 2011-2015 commuting data, and the 2020 

population center coordinates were used for the 2016-2020 commuting data.  
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Supplementary Table A.1. Commuting and Population Data Summaries by US Census Region 

Period Variable Class Parameter All US Midwest Northeast South West 
2011-
2015 Total Observations   N = 137 806 N = 43 414 N = 18 479 N = 60 328 N = 15 585 

 Total Workers   N = 144 550 912 N = 31 597 818 N = 27 387 863 N = 52 401 175 N = 33 164 056 

 Extent of Workers' 
Commute Intracounty n (%) 104 478 675 (72.3) 22 310 313 (70.6) 17 729 877 (64.7) 36 942 071 (70.5) 27 496 414 (82.9) 

  Intrastate n (%) 34 738 165 (24) 8 123 392 (25.7) 8 074 883 (29.5) 13 284 204 (25.4) 5 255 686 (15.8) 
  Intraregion n (%) 4 349 729 (3) 896 122 (2.8) 1 380 498 (5) 1 786 716 (3.4) 286 393 (0.9) 
  Interregion n (%) 984 343 (0.7) 267 991 (0.8) 202 605 (0.7) 388 184 (0.7) 125 563 (0.4) 

 Workers in 
Commuting Flow  Mean (SD) 1 048.9 (20 024.4) 727.8 (13 247) 1 482.1 (16 371.1) 868.6 (14 263.5) 2 127.9 (44 155.9) 

   Median 
[IQR] 17 [8, 53] 13 [5, 42] 17 [8, 61] 20 [9, 61] 17 [8, 48] 

   [Min, Max] [1, 4 181 968] [1, 2 095 117] [1, 730 763] [1, 1 886 175] [1, 4 181 968] 
 Distance (km)  Mean (SD) 544.2 (835) 399.6 (597.5) 558.2 (909.8) 487.6 (731.2) 1 149.2 (1 297.2) 

   Median 
[IQR] 

197.38 [82.47, 
608.56] 

165.67 [78.72, 
426.28] 

202.49 [89.05, 
492.53] 

182.6 [75.49, 
579.21] 

547.68 [165.64, 1 
834.72] 

   [Min, Max] [0.000, 9 415.947] [0.000, 7 422.532] [0.000, 9 415.947] [0.000, 7 
887.425] [0.000, 8 176.692] 

 Surrounding 
Population  Mean (SD) 43 741 678 (74 

384 947) 
34 708 218 (67 

817 479) 
52 615 236 (75 835 

385) 
42 142 969 (72 

807 674) 
64 582 343 (89 

566 987) 

   Median 
[IQR] 

6 550 510 [849 
815.8, 46 147 

049.8] 

3 704 492 [517 
450.5, 25 536 

715.5] 

18 642 837 [2 616 
856, 60 764 239] 

6 060 403 [769 
861, 42 024 103] 

14 935 436 [1 746 
573, 98 340 837] 

   [Min, Max] [0, 319 489 617] [0, 318 585 761] [0, 318 553 808] [0, 319 428 840] [0, 319 489 617] 
         
2013 Total Counties   N = 3 220 N = 1 055 N = 295 N = 1 422 N = 448 
 Total Population   N = 319 653 024 N = 67 576 524 N = 59 505 852 N = 118 397 213 N = 74 173 435 

 Population  Mean (SD) 99 271.1 (318 
499.2) 

64 053.6 (212 
727.6) 

201 714.8 (341 
719.5) 

83 261 (221 
953.3) 

165 565.7 (612 
641.2) 

   Median 
[IQR] 

26 023 [11 193.0, 
66 204.5] 

20 117 [8 301.5, 
44 788.0] 

64 545 [37 414.5, 
182 953.5] 

26 277.5 [13 
523.50, 62 

592.25] 

21 286 [7 274.75, 
83 254.75] 

   [Min, Max] [89, 9 987 189] [454, 5 252 513] [1 815, 2 587 759] [106, 4 352 419] [89, 9 987 189] 
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Period Variable Class Parameter All US Midwest Northeast South West 
2016-
2020 Total Observations   N = 121 034 N = 37 860 N = 15 897 N = 53 707 N = 13 570 

 Total Workers   N = 154 581 044 N = 32 926 166 N = 28 172 851 N = 57 101 842 N = 36 380 185 

 Extent of Workers' 
Commute Intracounty n (%) 112 280 334 (72.6) 23 321 016 (70.8) 18 290 061 (64.9) 40 380 024 (70.7) 30 289 233 (83.3) 

  Intrastate n (%) 36 851 534 (23.8) 8 416 523 (25.6) 8 284 190 (29.4) 14 485 335 (25.4) 5 665 486 (15.6) 
  Intraregion n (%) 4 425 438 (2.9) 919 948 (2.8) 1 392 442 (4.9) 1 810 530 (3.2) 302 518 (0.8) 
  Interregion n (%) 1 023 738 (0.7) 268 679 (0.8) 206 158 (0.7) 425 953 (0.7) 122 948 (0.3) 

 Workers in 
Commuting Flow  Mean (SD) 1 277.2 (23 065.9) 869.7 (14 931.4) 1 772.2 (18 232.7) 1 063.2 (16 

597.4) 2 680.9 (51 390) 

   Median 
[IQR] 21 [9, 74] 15 [6, 57] 23 [9, 86] 25 [11.0, 85.5] 21 [9, 64] 

   [Min, Max] [1, 4 429 523] [1, 2 192 398] [1, 748 979] [1, 2 014 104] [1, 4 429 523] 
 Distance (km)  Mean (SD) 520 (820.2) 377.7 (590.7) 531.1 (893.3) 470.2 (717.5) 1 101.1 (1 284.9) 

   Median 
[IQR] 

173.25 [75.58, 
564.14] 

143.23 [72.43, 
375.55] 

178.5 [79.07, 
447.95] 

162.03 [70.07, 
556.95] 

484.32 [147.08, 1 
685.97] 

   [Min, Max] [0.000, 8 385.497] [0.000, 7 354.188] [0.000, 8 385.497] [0.000, 7 
901.971] [0.000, 8 177.124] 

 Surrounding 
Population  Mean (SD) 43 102 871 (75 

849 047) 
33 670 220 (69 

439 275) 
50 852 875 (77 049 

161) 
42 199 502 (74 

342 561) 
63 946 833 (91 

057 534) 

   Median 
[IQR] 

5 473 778 [695 
817.8, 42 555 

217.8] 

2 949 276 [409 
620, 20 157 979] 

15 738 528 [2 140 
863, 56 818 646] 

5 335 326 [650 
389, 41 049 150] 

13 796 610 [1 507 
259, 92 929 858] 

   [Min, Max] [0, 329 899 075] [0, 328 952 132] [0, 328 938 728] [0, 329 899 075] [0, 329 543 803] 
         
2018 Total Counties   N = 3 222 N = 1 055 N = 296 N = 1 422 N = 449 
 Total Population   N = 330 023 248 N = 68 263 019 N = 59 269 592 N = 124 649 156 N = 77 841 481 

 Population  Mean (SD) 102 428.1 (328 
388.5) 

64 704.3 (212 
404.5) 

200 235.1 (341 
022.4) 

87 657.6 (237 
931.5) 

173 366.3 (630 
587.1) 

   Median 
[IQR] 

26 080.5 [11 
094.5, 67 012.5] 

19 847 [8 170.5, 
45 055.0] 

63 028.5 [35 641.0, 
180 890.2] 

26 280.5 [13 
301.50, 64 

494.75] 

22 286 [7 409, 86 
761] 

   [Min, Max] [87, 10 061 533] [463, 5 171 007] [1 713, 2 580 088] [149, 4 676 913] [87, 10 061 533] 
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There were additional alignment issues with Alaska and Connecticut. While 

exploring the data, data sources, and relevant documentation, it was observed that there 

were slight changes in the “counties” for both of these states around 2019. 

Alaska had a county-equivalent called Valdez-Cordova Census Area that was split 

into Chugach Census Area and Copper River Census Area. The population data for 2010-

2020 already included the population estimates for these separated “counties,” but the 

commuting data for 2011-2015 only had records for the combined Valdez-Cordova 

Census Area. As a simple fix, the data for Chugach and Copper River were summed for 

the 2010-2015 years to recreate population estimates for Valdez-Cordova. Downloading 

and using the 2010-2015 census population estimates that contained Valdez-Cordova 

records was considered, but it was noted that estimates can change from year to year and 

that newer estimates supersede older ones. Although it likely would not matter 

significantly, the decision was made to use the newer estimates. 

Similarly but distinctly, Connecticut recently requested that the census use newly 

designated “Planning Regions” rather than their former counties. The population 

estimates for 2010-2020 still had records for the counties, not planning regions. However, 

the commuting data for 2016-2020 had records for the planning regions and not the 

counties. Since the planning regions were not directly aligned with county borders, it was 

not possible to simply aggregate county-level data to reflect the planning regions. A 

census notice was found that provided a simple table giving 2010 and 2019 population 

estimates for the planning regions. Additionally, the census population estimates data at 

the county level for 2020-2022 included data for the planning regions. Therefore, the 
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simple table of planning region population estimates for 2010 and 2019 was downloaded, 

and linear regression was used to interpolate the values for 2011-2018. 

 

GRAVITY MODELS & DISTANCE THRESHOLD OPTIMIZATION 

Three gravity models were fit: one including only the distance threshold, another 

incorporating a large-population-assortative component similar to Truscott & Ferguson 

(2012) (1), and a more extensive population-size-assortative model, wherein the model 

includes separate terms for all pairwise combinations of population size tertiles, i.e., not 

only large-to-large population flows. 

Population sizes for each location were categorized using tertiles (e.g., small, 

medium, large population sizes). These categories were used to fit two variations of the 

gravity models. First, similar to Truscott and Ferguson (2012), an interaction term was 

introduced via an indicator variable identifying commuting flows between two large 

populations; Truscott and Ferguson (2012) suggest this assortative component is 

important to maintain epidemiological relationships in simulations using synthetic data. 

Continuing with this notion, another gravity model variation uses an interaction term for 

all nine, unique pairings of population size categories (e.g., (small | medium | large) + 

(small | medium | large)). Additionally, the gravity models were further extended by 

compounding interaction terms for time period and census region. These increasingly 

complex formulations were fit to the commuting data and compared using analyses of 

variance.  
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We use these additional gravity models for comparisons in the distance threshold 

optimization, but we also use them to formally test whether the increases in complexity 

are warranted via fit improvements to the data.  

 

 

Supplementary Table A.2. Gravity Model Analyses of Variance 

Model Terms Df Sum of Sq F Pr(>F) AIC BIC RMSE 

         

1 

~log(Origin Population) 

 +log(Destination Population) 

 +log(Distance) 

    868,871.0 868,923.2 1.353 

2 *I(Long Distance) 4 143,355.776 32,658.726 <0.001 775,114.6 775,208.5 1.124 

3 
*(Large-Large Population Size 

Pairings) 
8 8,849.267 1,008.002 <0.001 768,021.8 768,199.3 1.108 

4 *(Population Size Category Pairings) 56 4,806.450 78.213 <0.001 764,187.1 764,949.1 1.099 

5 *(Origin Census Region) 216 27,707.115 116.891 <0.001 740,580.0 743,596.8 1.048 

6 *(Time Period) 284 928.451 2.979 <0.001 740,301.4 746,282.8 1.046 

 

 

The distance threshold parameter was chosen to minimize the root mean square 

error (RMSE) of the gravity model predictions compared to the observed commuter 

volume. The gravity models were fitted using log-linear models; thus, the modeled 

outcome was the log-transformed count of workers in the commuting flow. For the sake 

of comparisons, the impact of the choice of data scale (i.e., either raw counts referred to 

as “identity” or log-transformed counts) for use in the objective function during 



 

141 

optimization was explored. Furthermore, tuning results were compared between a gravity 

model including only the distance threshold interaction, a gravity model including 

distance threshold interaction and pairings between two large populations, and a gravity 

model including distance threshold and population size category pairings interactions 

(i.e., the full 18-group gravity model discussed previously). 

 

The distance threshold was tuned across different subsets of the total data based 

on combinations of the time period and the census region of the origin location. Three 

time periods were considered, corresponding to the time frames of the commuting data 

collection: 2011-2015, 2016-2020, or both time periods 2011-2020. Five “regions” were 

considered, corresponding to the four US census regions (Midwest, Northeast, South, 

West) plus the entire aggregate US. Thus, there were 15 combinations of time periods 

and regions for which the distance threshold was calibrated. 

  



 

142 

 

Supplementary Figure A.1. Sensitivity Analysis of Distance Threshold Optimization 
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Supplementary Figure A.2. Gravity Model Power Parameter Estimates 

 

 

Collectively, much lower values for the distance power were estimated for short-

distance commutes than long-distance commutes; that is, the frequencies of commutes at 

short-distances decay much more quickly along increasing distances, while long-distance 
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commutes are less affected by increasing distance experiencing only gradual declines. 

The distance power parameters seemed most variable among regions for short-distance 

commutes. For short-distance commutes in both population size pairing subgroups, the 

distance power is estimated to be much lower for the MW region. Additionally, the 

distance power for short-distance commutes between other population size pairings in the 

NE is markedly greater than those of the other regions. Overall, this suggests that 

commuting frequencies decay more steeply over increasing distances in the MW and 

more gradually in the NE.  

Population power estimates across regions were comparably more consistent, 

though we do find some differences among regions. For all short-distance commutes, the 

destination population power parameter estimates are larger than those of the origin 

population, except for the W region. For non-assortative short-distance commutes 

originating in the W, the destination population power parameter is slightly less than the 

origin population power parameter. Additionally, the relative difference in population 

power parameter estimates for commutes between two large populations is also lower in 

magnitude for the W region compared to the others. This suggests that comparatively the 

commutes originating in the W are less impacted by destination population sizes.  

 

EPIDEMIC INTENSITY CALCULATIONS 

We partition the ILI time series according to the timing of influenza season, set to 

begin on the 40th calendar / epi week and end the following 39th calendar / epi week. 

Using each season’s cumulative ILI case count, we calculate the relative frequencies of 

cases observed each week which is then summarized using Shannon’s entropy. These 
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values are transformed and scaled so that zero corresponds to a diffuse epidemic with 

cases more evenly distributed among weeks and one corresponds to an intense epidemic 

with cases more concentrated / distributed among fewer weeks. We calculated the ILI 

epidemic intensity for each of the 52 locations in each of the 9 influenza seasons from 

2011-2020, data permitting. Within the ILI data, we also determine the week at which ILI 

cases were greatest for each state in each season. These ILI data summaries were merged 

with population data for each state. The population estimates roughly correspond to the 

estimated population size at the midpoint, 1 July, for each year. To better align with the 

influenza season, population data were averaged in a two-year  rolling window and then 

joined with the data on epidemic intensities.  
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Supplementary Figure A.3. Influenza-like Illness Incidence 
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Supplementary Table A.3. Epidemic Intensities by Season and State 

Region 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 2019-2020 Average 
Alabama 0.031 0.338 0.204 0.315 0.098 0.376 0.268 0.132 0.215 0.220 
Alaska 0.135 0.242 0.375 0.188 0.285 0.217 0.075 0.134 0.391 0.227 
Arizona 0.036 0.179 0.082 0.057 0.118 0.031 0.062 0.070 0.157 0.088 
Arkansas 0.322 0.609 0.428 0.404 0.275 0.325 0.414 0.278 0.146 0.356 
California 0.019 0.078 0.074 0.060 0.066 0.038 0.075 0.065 0.146 0.069 
Colorado 0.056 0.181 0.299 0.193 0.080 0.284 0.292 0.072 0.302 0.196 
Connecticut 0.305 0.379 0.376 0.252 0.270 0.313 0.286 0.571 0.297 0.339 
Delaware 0.743 0.640 0.405 1 0.436 0.381 0.821 0.496 0.390 0.590 
District of Columbia 0.001 0.019 0.034 0.126 0.054 0.053 0.056 0.040 0.090 0.053 
Florida 0 0.067 0.086 0.140 0.196 0.102 0.265 0.084 0.532 0.164 
Georgia 0.025 0.175 0.332 0.122 0.033 0.078 0.232 0.082 0.147 0.136 
Hawaii 0.030 0.401 0.091 0.171 0.133 0.068 0.106 0.074 0.239 0.146 
Idaho 0.064 0.411 0.473 0.244 0.257 0.330 0.423 0.484 0.234 0.324 
Illinois 0.035 0.069 0.045 0.072 0.075 0.095 0.184 0.158 0.231 0.107 
Indiana 0.096 0.296 0.182 0.244 0.118 0.236 0.244 0.183 0.293 0.210 
Iowa 0.300 0.515 0.090 0.541 0.334 0.571 0.411 0.257 0.290 0.368 
Kansas 0.364 0.468 0.359 0.337 0.205 0.417 0.485 0.208 0.254 0.344 
Kentucky 0.261 0.468 0.472 0.635 0.318 0.353 0.450 0.352 0.282 0.399 
Louisiana 0.055 0.101 0.076 0.084 0.022 0.053 0.135 0.092 0.142 0.085 
Maine 0.079 0.098 0.059 0.069 0.038 0.074 0.385 0.103 0.296 0.133 
Maryland 0.058 0.086 0.116 0.074 0.052 0.159 0.195 0.859 0.193 0.199 
Massachusetts 0.012 0.106 0.055 0.072 0.081 0.109 0.147 0.080 0.211 0.097 
Michigan 0.087 0.091 0.098 0.208 0.139 0.128 0.218 0.095 0.299 0.152 
Minnesota 0.066 0.184 0.100 0.115 0.151 0.124 0.204 0.038 0.170 0.128 
Mississippi 0.035 0.084 0.077 0.103 0.034 0.071 0.183 0.121 0.183 0.099 
Missouri 0.367 0.297 0.295 0.297 0.182 0.333 0.628 0.397 0.293 0.343 
Montana 0.586 0.513 0.673 0.525 0.449 0.463 0.791 0.195 0.244 0.493 
Nebraska 0.178 0.250 0.125 0.191 0.112 0.550 0.160 0.175 0.230 0.219 
Nevada 0.093 0.259 0.141 0.238 0.167 0.099 0.185 0.110 0.187 0.164 
New Hampshire 0.344 0.566 0.374 0.466 0.139 0.117 0.379 0.226 0.562 0.353 
New Jersey 0.205 0.142 0.053 0.054 0.178 0.062 0.137 0.051 0.193 0.120 
New Mexico 0.047 0.136 0.093 0.115 0.148 0.143 0.237 0.224 0.312 0.162 
New York 0.009 0.089 0.044 0.026 0.044 0.047 0.154 0.072 0.264 0.083 
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Region 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 2019-2020 Average 
North Carolina 0.135 0.377 0.158 0.274 0.147 0.291 0.493 0.200 0.212 0.254 
North Dakota 0.227 0.215 0.598 0.600 0.327 0.551 0.410 0.158 0.242 0.370 
Ohio 0.165 0.281 0.152 0.269 0.110 0.160 0.250 0.120 0.262 0.197 
Oklahoma 0.276 0.349 0.269 0.297 0.185 0.319 0.414 0.290 0.338 0.304 
Oregon 0.138 0.413 0.389 0.246 0.353 0.753 0.167 0.168 0.160 0.310 
Pennsylvania 0.050 0.177 0.060 0.123 0.064 0.229 0.210 0.117 0.176 0.134 
Puerto Rico   0.346 0.061 0.021 0.083 0.038 0.019 0.148 0.102 
Rhode Island 0.342 0.531 0.365 0.549 0.351 0.433 0.503 0.414 0.595 0.454 
South Carolina 0.134 0.411 0.408 0.409 0.272 0.260 0.382 0.196 0.227 0.300 
South Dakota 0.242 0.273 0.075 0.120 0.089 0.200 0.204 0.124 0.229 0.173 
Tennessee 0.207 0.389 0.497 0.326 0.075 0.222 0.444 0.991 0.247 0.378 
Texas 0.020 0.099 0.087 0.079 0.078 0.150 0.265 0.144 0.282 0.134 
Utah 0.036 0.129 0.100 0.076 0.075 0.145 0.233 0.088 0.186 0.119 
Vermont 0.054 0.126 0.102 0.309 0.145 0.108 0.194 0.176 0.226 0.160 
Virginia 0.055 0.178 0.073 0.146 0.042 0.145 0.233 0.131 0.265 0.141 
Washington 0.118 0.214 0.167 0.225 0.239 0.333 0.380 0.726 0.274 0.297 
West Virginia 0.139 0.352 0.261 0.276 0.076 0.318 0.381 0.315 0.397 0.279 
Wisconsin 0.145 0.230 0.202 0.213 0.151 0.263 0.205 0.062 0.178 0.183 
Wyoming 0.214 0.555 0.339 0.308 0.239 0.237 0.269 0.432 0.381 0.330 
Average 0.152 0.271 0.220 0.243 0.160 0.231 0.288 0.220 0.258 0.227 
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Supplementary Figure A.4. Influenza-like Illness Seasonal Epidemic Intensity for US States and the District of Columbia, 2011-2020 
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FEATURE ENGINEERING & INCLUDED PREDICTORS 

In addition to summarizing only the commuting data, we combine it with the 

population data to calculate summary metrics of the spatial distribution of population 

within each state. We use the county-level population data to calculate state-level mean 

crowding and patchiness, similar to Dalziel et al (2018) (2,3). Finally, using population 

and commuting data combined, we approximate “daytime” population distributions by 

shifting population counts according to the net change of population due to commutes 

(influx and outflux). These shifted population counts allowed us to calculate 

“workday/daytime” mean crowding and patchiness as well as the changes in these 

quantities due to commuting frequencies.  
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Supplementary Table A.4. State-level Summary Statistics of Epidemic Intensity and 

Predictor Variables 

var Mean (SD) Median [Min,Max] Missing n 

 
    ei 0.203 (0.147) 0.172 [0, 1] 2 
peak_wk 5.425 (5.467) 5 [-12, 39] 2 
county.pop.mean 149034.335 

 

80872 [12557.568, 710534.5]  
population 6247251.358 

 

4304076.25 [572073.5, 

 

 
    
Total.Workers 2886984.761 

 

1962038 [284566, 18225448]  
Internal 2092556.346 

 

1338846.5 [247142, 15116254]  
Short_Distance 759457.744 

 

532604 [1458, 3144479]  
Long_Distance 34970.671 (40148.385) 23271 [1200, 234728]  
ratio.si 0.372 (0.226) 0.348 [0.002, 1.146]  
ratio.ls 0.132 (0.343) 0.051 [0.002, 2.816]  
ratio.li 0.018 (0.007) 0.018 [0.002, 0.045]  
Internal_prop 73.667 (11.059) 73.438 [46.486, 99.179]  
Short_Distance_prop 25.004 (11.253) 25.498 [0.215, 53.273]  
Long_Distance_prop 1.329 (0.543) 1.318 [0.117, 3.153]  
    
county.popday.mean 150681.895 

 

80770.25 [12566.698, 797724.1]  
populationday 6247246.113 

 

4311613.35 [573475.3, 

 

 
state.crowding 583346.798 

 

324203.881 [46704.579, 

 

 
state.patchiness 4.637 (3.242) 3.904 [1, 18.832]  
state.crowding.day 591048.782 

 

334840.209 [46996.232, 

 

 
state.patchiness.day 4.709 (3.293) 3.962 [1, 19.069]  
state.crowding.dailychange 7701.984 (13652.366) 4354.886 [-4733.437, 96496.2]  
state.patchiness.dailychange 0.072 (0.075) 0.044 [-0.005, 0.299]  
state.crowding.dailychangeratio 1.017 (0.021) 1.013 [0.992, 1.154]  
state.patchiness.dailychangeratio 1.014 (0.011) 1.013 [0.998, 1.048]  
    
distance_mean_km 19.888 (4.415) 19.455 [11.249, 41.091]  
distance_mean_km_nozeros 147.877 (348.839) 70.665 [24.349, 2543.536]  
county_count 61.923 (45.959) 63 [1, 254]  
county_area_km2_mean 4186.737 (7564.209) 1872.696 [113.704, 50994.472]  
state_area_km2_land 176121.104 (218805.58) 136859.004 [158.34, 

 

 
state_area_km2_water 13271.67 (35954.609) 3898.064 [18.687, 245481.577]  
pop_density 16394.05 (58676.313) 4139.118 [49.132, 448738.629]  
pop_density2 140.916 (523.059) 36.682 [0.421, 4013.694]  
state_area_km2 189392.775 

 

143520.797 [177.028, 
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MIXED EFFECTS REGRESSION MODEL 

 

Supplementary Figure A.5. Random Effect Estimates for Region 
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Supplementary Figure A.6. Random Effect Estimates for Season 
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Supplementary Table A.5. Coefficient Estimates from Linear Mixed-effects Regression Models 
Population Size 

 
Parameter Linear Quadratic Cubic Model.P 

  -0.051 (-0.082,-0.019)* Peak Week 0 (-0.004,0.004) 0 (-0.001,0) 0 (0,0)* 0.316 
-0.07 (-0.109,-0.031)* Population Density (Land Area) 0.016 (-0.037,0.069) -0.02 (-0.04,-0.001)* -0.007 (-0.016,0.002) 0.047 

-0.071 (-0.109,-0.032)* Population Density (Total Area) 0.018 (-0.035,0.071) -0.02 (-0.037,-0.002)* -0.007 (-0.015,0.002) 0.044 
-0.067 (-0.104,-0.031)* County Count 0.001 (-0.003,0.005) 0 (0,0)* 0 (0,0)* 0.247 
-0.065 (-0.095,-0.035)* Average County Area -0.029 (-0.08,0.021) -0.024 (-0.04,-0.009)* 0.008 (-0.001,0.016) 0.009 
-0.036 (-0.072,-0.001)* Average County Population 0.003 (-0.061,0.067) -0.004 (-0.032,0.024) -0.016 (-0.04,0.009) 0.124 
-0.038 (-0.073,-0.003)* Average County Population during Day 0.007 (-0.056,0.07) -0.005 (-0.033,0.023) -0.017 (-0.04,0.006) 0.088 

-0.027 (-0.068,0.013) State Crowding -0.031 (-0.095,0.032) -0.011 (-0.036,0.015) -0.001 (-0.021,0.02) 0.246 
-0.062 (-0.095,-0.029)* State Patchiness -0.009 (-0.063,0.046) -0.032 (-0.056,-0.007)* 0.01 (-0.006,0.026) 0.074 

-0.027 (-0.067,0.013) State Crowding during Day -0.032 (-0.096,0.031) -0.011 (-0.037,0.015) -0.001 (-0.021,0.02) 0.225 
-0.062 (-0.094,-0.029)* State Patchiness during Day -0.007 (-0.062,0.047) -0.031 (-0.055,-0.007)* 0.009 (-0.007,0.026) 0.081 
-0.059 (-0.093,-0.025)* Daily Change in State Crowding 0.011 (-0.033,0.055) -0.017 (-0.027,-0.008)* -0.002 (-0.005,0.001) 0.007 
-0.058 (-0.089,-0.027)* Daily Change in State Patchiness 0.055 (0.016,0.095)* -0.017 (-0.041,0.007) -0.011 (-0.02,-0.003)* 0.034 
-0.06 (-0.089,-0.031)* Daily Change Ratio in State Crowding 0.021 (-0.015,0.056) -0.018 (-0.029,-0.006)* -0.005 (-0.008,-0.002)* 0.008 

-0.057 (-0.087,-0.027)* Daily Change Ratio in State Patchiness 0.04 (0.007,0.073)* -0.012 (-0.039,0.014) -0.005 (-0.01,0) 0.055 
-0.06 (-0.092,-0.027)* State Area Total -0.014 (-0.058,0.03) -0.003 (-0.037,0.03) 0.003 (-0.005,0.011) 0.078 

-0.061 (-0.093,-0.028)* State Land Area -0.011 (-0.055,0.033) -0.004 (-0.04,0.032) 0.003 (-0.006,0.012) 0.094 
-0.041 (-0.075,-0.008)* State Water Area -0.061 (-0.112,-0.009)* -0.007 (-0.024,0.01) 0.009 (0.002,0.015)* 0.002 

-0.223 (-0.542,0.099) Total Workers 0.131 (-0.18,0.441) -0.02 (-0.051,0.011) 0.018 (-0.006,0.043) 0.400 
-0.049 (-0.082,-0.016)* Average Commute Distance 0.002 (-0.034,0.038) 0.001 (-0.016,0.016) 0 (-0.006,0.006) 0.999 
-0.053 (-0.085,-0.021)* Average Commute Distance (no zeros) 0.016 (-0.033,0.065) -0.018 (-0.061,0.023) 0.002 (-0.008,0.011) 0.455 

-0.136 (-0.295,0.024) Total Commutes Internal/Intracounty 0.05 (-0.117,0.216) -0.025 (-0.057,0.007) 0.017 (-0.006,0.038) 0.323 
-0.055 (-0.087,-0.023)* Proportion Commutes Internal/Intracounty -0.015 (-0.074,0.045) -0.028 (-0.049,-0.007)* 0.006 (-0.01,0.021) 0.035 

-0.053 (-0.132,0.027) Total Commutes Short Distance 0.007 (-0.092,0.105) -0.024 (-0.07,0.021) -0.005 (-0.019,0.008) 0.595 
-0.055 (-0.087,-0.022)* Proportion Commutes Short Distance 0.016 (-0.046,0.076) -0.026 (-0.047,-0.004)* -0.006 (-0.023,0.01) 0.051 
-0.118 (-0.193,-0.043)* Total Commutes Long Distance 0.105 (0.009,0.199)* -0.004 (-0.028,0.019) -0.012 (-0.025,0.002) 0.153 
-0.041 (-0.073,-0.008)* Proportion Commutes Long Distance 0.044 (0.01,0.079)* 0.007 (-0.017,0.03) -0.005 (-0.012,0.003) 0.097 
-0.054 (-0.087,-0.022)* Ratio of Short Distance to Internal Commutes 0.004 (-0.045,0.053) -0.037 (-0.063,-0.01)* -0.008 (-0.018,0.002) 0.047 
-0.051 (-0.084,-0.018)* Ratio of Long Distance to Short Distance Commutes 0.014 (-0.033,0.061) -0.017 (-0.05,0.015) 0.002 (-0.003,0.008) 0.701 
-0.045 (-0.075,-0.015)* Ratio of Long Distance to Internal Commutes 0.06 (0.026,0.095)* -0.005 (-0.021,0.011) -0.009 (-0.014,-0.003)* 0.002 
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APPENDIX B 

SUPPLEMENTARY MATERIALS FOR AIM 2 

CLUSTERING OF INFLUENZA-LIKE ILLNESS 

To characterize coupling/linkages between outbreaks in separate locations, we 

investigate clustering patterns in the incidence of ILI. For the response variable, weekly 

reported ILI counts were transformed to a bi-weekly rate of change. We define this rate 

of change (RoC) as the percent change of the current week’s ILI case count from the 

previous week’s count; that is,  

 

𝑅𝑅𝑅𝑅𝐶𝐶𝑡𝑡 =
𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡−1

𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡−1
, 

 

where 𝑅𝑅𝑅𝑅𝐶𝐶𝑡𝑡 is the rate of change observed for week 𝑡𝑡, 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 is the count of ILI cases for 

week 𝑡𝑡, and 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡−1 is the count of ILI cases for week 𝑡𝑡 − 1, the week prior. These rate of 

change values were calculated for each state across the study period of 2011-2020 and 

served as the outcome of interest, or response variable, for the clustering analyses.  

Clusters were identified using scan statistics via the SaTScan software  (16). 

Briefly, clusters are searched in an iterative fashion using each state as a focal point from 

which circles of increasing radii extend to define potential cluster constituents. Values of 

ILI RoC are compared between locations within the cluster and those outside of the 

cluster using the scan statistics. Cluster significance is determined via permutation tests 
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with a significance level of α =  0.05. A model for a normal distribution was specified, 

and total patient counts were used as population weights.  

The relationship between locations is necessary to identify potential clusters, i.e., 

plausible groupings/agglomerations of locations. We define this relationship using two 

distance metrics. First, we use a simple geographic distance, i.e., Haversine / Great Circle 

distance. Each state is represented as a point location with latitude and longitude 

coordinates of the spatial center of population. These coordinates are used by the 

SaTScan software to calculate distances for generating candidate clusters. We refer to the 

clusters generated using this distance metric as spatial clusters. Additionally, we 

investigate clustering using a distance metric related to how many people commute 

between locations. Data on commuting flows were aggregated to the state level for each 

unique pair of locations; that is, the data were transformed into undirected, state-level, 

commuting networks with edges weighted by the number of people commuting between 

two states, separately for 2011-2015 and 2016-2020. As the edge weights in this 

commuting network represent the strength of the coupling between nodes, we need to 

transform the edge weights so that they can be interpreted as distances. We take the 

reciprocal of the commuting totals to represent the network distance between two 

locations. Clusters identified using commuting network distance, or network distance, are 

referred to as commuting clusters or network clusters. We briefly compare the spatial and 

network clusters in their effect sizes, overall cluster size, and timing relative to influenza 

season.  

Spatial clusters had a median 11 [Q1: 4, Q3: 18.5] constituent states; commuting 

clusters were similarly sized (p=0.47) with a median 8.5 [4, 15.75] states comprising each 
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cluster. ILI RoC within spatial and commuting clusters were also similar with an average 

RoC of +38.6 and +34% change, respectively; weighted means within clusters were also 

similar at +36.1 and +32.1% change for spatial and commuting clusters, respectively. The 

magnitudes of ILI RoC outside of clusters were also similar (p=0.33) between spatial and 

commuting clusters, with an average ILI RoC of -1.8% change outside of spatial clusters 

and -4.9% change outside of commuting clusters. Consequently, the differences in ILI 

RoC between clustered and non-clustered states are similar for both types of clusters. At 

the margin, both types of clusters occurred at similar times with an average occurrence on 

the 23rd epidemiological/calendar week, i.e., the end of May. When examining the spatial 

distribution of clusters over the course of an influenza season, there is considerable 

overlap between spatial and commuting clusters (Figure 1. However, from January-

March, there seem to be a higher concentration of spatial clusters, and, from 

approximately April-June each year, there seem to be relatively few spatial clusters 

(Figures #, Supplemental Figure #). Comparatively, commuting clusters seem more 

evenly spread across the year.  
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Supplementary Table B.1. Identified Clusters of ILI Incidence 

Variable Levels Commuting 

 

Spatial Statistic Parameter p 
         n = 46 (40.7) n = 67 (59.3)    
Cluster Size  8.5 [4, 15.75] 11 [4, 18.5] 1,416.00  0.47 
 Missing 0 (0) 0 (0)    
Mean inside  0.34235 (0.32614) 0.38601 

 

-0.72 91.47 0.47 
 Missing 0 (0) 0 (0)    
Mean outside  -0.04947 

 

-0.01809 

 

-0.99 85.66 0.33 
 Missing 0 (0) 0 (0)    
meandiff  0.39182 (0.21314) 0.4041 (0.24543) -0.28 104.93 0.78 
 Missing 0 (0) 0 (0)    
Weighted mean 

 

 0.32087 (0.33735) 0.36103 

 

-0.66 87.35 0.51 
 Missing 0 (0) 0 (0)    
Weighted mean 

 

 -0.06417 

 

-0.02984 

 

-1.20 83.52 0.23 
 Missing 0 (0) 0 (0)    
wtdmeandiff  0.38504 (0.23461) 0.39087 

 

-0.13 96.89 0.9 
 Missing 0 (0) 0 (0)    
ew  22.52174 

 

23.37313 

 

-0.27 101.48 0.78 
 Missing 0 (0) 0 (0)    
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Supplementary Figure B.1. Frequencies of Spatial and Commuting Clusters by 

Calendar/Epi Week 
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Supplementary Figure B.2. Spatial Clusters 
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Supplementary Figure B.3. Commuting Network Clusters 
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NETWORKS 

Supplementary Table B.2. Summary Statistics of Networks included in Community Detection Analyses 

Variable ACS 2011-2015 ACS 2011-2015 (UD) ACS 2011-2015 (Scaled) ACS 2011-2015 (Scaled; UD) 
     is.directed 1 0 1 0 
is.connected 1 1 1 1 
any loop 0 0 0 0 
adhesion 22 31 22 31 
cohesion 22 31 22 31 
diameter 2 2 2.017 2.001 
reciprocity 0.933 1 0.933 1 
alpha centrality.mean -0.022 -0.02 -0.021 -0.02 
authority score.mean 0.886 0.939 0.881 0.943 
hub score.mean 0.901 0.939 0.912 0.943 
betweenness.mean 5.346 1.135 5.346 1.135 
closeness.mean 0.018 0.019 0.018 0.018 
degree.mean 91.308 48.731 91.308 48.731 
diversity.mean -- 1 -- 0.999 
eccentricity.mean 1.558 1.558 1.558 1.558 
edge betweenness.mean 1.234 1.093 1.234 1.093 
meansd.edge.weight 0.005 (0.035) 0.008 (0.046) 0.025 (0.093) 0.027 (0.096) 
iqr.edge.weight 0 (0, 0.001) 0 (0, 0.002) 0.003 (0.001, 0.008) 0.003 (0.001, 0.01) 
n.edges 2374 1267 2374 1267 
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Variable ACS 2016-2020 ACS 2016-2020 (UD) ACS 2016-2020 (Scaled) ACS 2016-2020 (Scaled; UD) 
     is.directed 1 0 1 0 
is.connected 1 1 1 1 
any loop 0 0 0 0 
adhesion 26 32 26 32 
cohesion 26 32 26 32 
diameter 2 2 2.01 2.004 
reciprocity 0.93 1 0.93 1 
alpha centrality.mean -0.017 -0.022 -0.018 -0.02 
authority score.mean 0.872 0.925 0.861 0.927 
hub score.mean 0.885 0.925 0.895 0.927 
betweenness.mean 6.327 1.596 6.327 1.596 
closeness.mean 0.018 0.018 0.017 0.018 
degree.mean 89.346 47.808 89.346 47.808 
diversity.mean -- 1 -- 0.999 
eccentricity.mean 1.654 1.654 1.654 1.654 
edge betweenness.mean 1.283 1.134 1.283 1.134 
meansd.edge.weight 0.005 (0.034) 0.008 (0.046) 0.026 (0.094) 0.028 (0.095) 
iqr.edge.weight 0 (0, 0.001) 0 (0, 0.002) 0.003 (0.001, 0.009) 0.003 (0.001, 0.01) 
n.edges 2323 1243 2323 1243 
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Variable Clusters ACS Clusters Spatial 
   is.directed 0 0 
is.connected 1 0 
any loop 0 0 
adhesion 22 0 
cohesion 22 0 
diameter 2.118 2.45 
reciprocity 1 1 
alpha centrality.mean -0.015 -0.009 
authority score.mean 0.706 0.735 
hub score.mean 0.706 0.735 
betweenness.mean 5.115 7.378 
closeness.mean 0.015 -- 
degree.mean 40.769 34.308 
diversity.mean 0.998 -- 
eccentricity.mean 1.904 1.942 
edge betweenness.mean 1.502 1.859 
meansd.edge.weight 0.146 (0.152) 0.324 (0.225) 
iqr.edge.weight 0.118 (0, 0.235) 0.3 (0.15, 0.5) 
n.edges 1060 892 



 

165 

 

 

Supplementary Figure B.4. Commuting Networks for 2011-2015 (top) and 2016-2020 

(bottom) 
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Supplementary Figure B.5. Spatial Clusters Network   
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Supplementary Figure B.6. Commuting Clusters Network 
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COMPARING COMMUNITY SCHEMES 

 

 

Supplementary Figure B.7. Relationship between Tip-Trait Association Index and the 

Number of Trait Classes 

 

I devised a simulation to explore how the values of the tip-trait association index 

depended on the number of classes within a given trait. Color may be categorized three 

classes as red, blue, or green, or it could be broken down into many more categories; I 

was curious how the tip-trait association index statistic would differ when only the 

number of classes changed. I simulated phylogenetic trees and randomly assigned tips to 

some trait class. This was repeated for many iterations and many different traits which 

varied in the number of trait classes.   



 

169 

Each tree has 100 tips. Tips are classified into from 2 up through 20 separate classes for a 

“trait”. Traits for a given class number are generated in 10 repetitions. There are 19 

“traits” simulated for 10 repetitions for 1000 trees in sets of 25 trees.  

 

Supplementary Figure B.7 shows that the value of the association index will depend on 

the number of classes within the trait. Therefore, it may be difficult to compare the fit of 

two separate traits which differ in the number of classes by direct comparison of the 

association index statistics.  
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Supplementary Figure B.8. Administrative and Generated Regions of the United States 
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Supplementary Table B.3. Summary Statistics of Administrative and Generated Regions of the United States 

Parameter Census 

 

Census 

 

HHS 

 

Overall 

 

Top 50 All Others 
       groupedrank3 26 35 21 1 27 [2, 47] 112.5 [52, 173] 
n communities 10 5 10 8 9 [3, 19] 13 [1, 52] 
modularity network.acs.1115 0.492 0.506 0.508 0.602 0.577 [0.275, 

 

0 [-0.099, 0.608] 
modularity network.acs.1115.scaled 0.452 0.493 0.497 0.557 0.542 [0.318, 

 

0 [-0.054, 0.537] 
modularity network.acs.1115.scaled.undirected 0.45 0.491 0.496 0.555 0.541 [0.318, 

 

-0.002 [-0.056, 

 
modularity network.acs.1115.undirected 0.491 0.506 0.508 0.601 0.577 [0.275, 

 

-0.001 [-0.101, 

 
modularity network.acs.1620 0.489 0.504 0.511 0.602 0.577 [0.276, 

 

0 [-0.099, 0.606] 
modularity network.acs.1620.scaled 0.454 0.499 0.492 0.558 0.539 [0.316, 

 

0 [-0.055, 0.536] 
modularity network.acs.1620.scaled.undirected 0.451 0.497 0.491 0.557 0.538 [0.316, 

 

0 [-0.057, 0.535] 
modularity network.acs.1620.undirected 0.489 0.504 0.51 0.602 0.577 [0.276, 

 

0 [-0.101, 0.606] 
modularity network.clusters.acs 0.062 0.109 0.061 0.077 0.072 [0.038, 

 

-0.008 [-0.029, 

 
modularity network.clusters.spatial 0.113 0.159 0.092 0.117 0.105 [0.057, 

 

-0.003 [-0.025, 

 
modularity mean 0.394 0.427 0.417 0.483 0.457 [0.268, 

 

-0.002 [-0.058, 

 
modrank 58 46 57 9 28 [1, 65] 112 [20, 173] 
modacsrank 54 53 52 10 27 [1, 65] 112.5 [18, 173] 
modclustrank 32 9 39 21 30 [1, 64] 112 [3, 173] 
ai propp grand 0.13 0.094 0.123 0.139 0.147 [0.034, 

 

0.216 [0.026, 

 
ps propp grand 0 0 0 0 0 [0, 0] 0 [0, 1] 
ttairank 27 14 22 35 41 [2, 74] 112.5 [1, 173] 
membership entropy 2.196 1.43 2.266 1.995 2.044 [0.775, 

 

1.84 [0, 3.951] 
mcs entropy 2.167 1.371 2.262 2.043 2.043 [0.692, 

 

2.067 [0, 2.973] 
entrank 55 102 46 71 68 [18, 119] 108 [1, 173] 
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SUPPLEMENTAL MATERIALS FOR AIM 3 

SUPPLEMENTARY TABLES & FIGURES 

 

Supplementary Figure C.1. Data Processing 
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Supplementary Figure C.2. Coverage of Included Hemagglutinin Sequences 
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Supplementary Table C.1. Full Phylogenetic Tree Summaries 

Variable Levels BVic BYam H1 H3 Statistic Parameter p Test 
            n = 510 (25) n = 510 (25) n = 510 (25) n = 510 (25)     
ntips  14 [6, 32] 14 [7, 29] 25 [11, 48] 41.5 [20, 71] 255.40650 3 <0.001 Kruskal-

 

  

 

 Missing 102 (20) 113 (22.2) 20 (3.9) 0 (0)     
mpd  0.0104 (0.00529) 0.0145 (0.00723) 0.03407 (0.03194) 0.02029 (0.00917) 152.92612 3, 1801 <0.001 AoV 
          
imbalance.collessnorm  0.51516 (0.21095) 0.47922 (0.20956) 0.46304 (0.22123) 0.33234 (0.1879) 70.44287 3, 1801 <0.001 AoV 
avgladder  2.67982 (1.80769) 2.34488 (1.38364) 2.50771 (1.21182) 2.93548 (1.13976) 15.27091 3, 1801 <0.001 AoV 
tmrca1  -3.12 [-

 

 

-3.34 [-

 

 

-2.1 [-

 

 

-4.96 [-

 

 

277.68576 3 <0.001 Kruskal-

 

  

 

rate  0.00175 (0.00201) 0.00221 (0.00412) 0.0038 (0.00471) 0.00272 (0.00146) 31.37160 3, 1801 <0.001 AoV 
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Supplementary Figure C.3. Mutation Rate of Full Phylogenetic Trees 
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Supplementary Figure C.4. Coverage of Local Transmission Clusters 
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Supplementary Table C.2. Summaries of Local Transmission Clusters 

Variable Levels BVic BYam H1 H3 Statistic Paramete

 

p Test 
            n = 831 (16.6) n = 852 (17) n = 1419 (28.4) n = 1897 (37.9)     
ntips  3 [2, 6] 3 [2, 5] 3 [2, 7] 3 [2, 6] 27.863388 3 <0.00

 

Kruskal

 

 

  

 Missin

 

261 (31.4) 273 (32) 162 (11.4) 89 (4.7)     
mpd  7e-04 (0.00077) 0.00086 (0.00088) 0.00141 (0.00121) 0.0012 (0.00109) 74.223637 3, 4210 <0.00

 

AoV 
          
imbalance.collessnor

 

 0.74987 (0.30846) 0.79882 (0.29441) 0.72869 (0.29957) 0.73539 (0.31138) 4.342069 3, 2564 <0.00

 

AoV 
  475 (57.2) 541 (63.5) 615 (43.3) 800 (42.2)     
avgladder  1.39375 (2.40215) 0.96765 (1.88494) 1.1379 (1.85129) 1.23945 (2.04366) 4.906241 3, 4210 <0.00

 

AoV 
tmrca1  -0.17 [-

 

 

-0.13 [-

 

 

-0.19 [-

 

 

-0.22 [-

 

 

109.06572

 

3 <0.00

 

Kruskal
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Supplementary Figure C.5. Time of the Most Recent Common Ancestor of Full 

Phylogenetic Trees 
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Supplementary Figure C.6. Estimated Mutation Rates from Full Phylogenetic Trees  
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Supplementary Figure C.7. Time of the Most Recent Common Ancestor for Full 

Phylogenetic Trees  
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Supplementary Figure C.8. Cross-correlations of H3
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Supplementary Figure C.9. Cross-correlations of H1 
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Supplementary Figure C.10. Cross-correlations of BVic 
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Supplementary Figure C.11. Cross-correlations of BYam 
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Supplementary Table C.3. Pearson Correlation Coefficients of Spatiotemporally Lagged 

Auto- and Cross-correlations of Seasonal Diversification of Influenza Subtypes / 

Lineages with BVictoria 

Subtype Spatial Lag 

 

Spatial 

 

BVic 

 

 

 

          Tlag = 0 1 2 3 
BVic Auto 0 1 -0.081 (-0.159, -

 

-0.033 (-0.112, 

 

-0.021 (-0.113, 

 
BVic Network 1 0.057 (-0.006, 

 

-0.017 (-0.066, 

 

-0.025 (-0.085, 

 

-0.074 (-0.132, -

 
BVic Spatial 1 0.074 (-0.013, 

 

0.036 (-0.02, 

 

-0.046 (-0.128, 

 

-0.031 (-0.128, 

 
BVic Spatial 2 0.153 (0.067, 

 

-0.035 (-0.101, 

 

-0.06 (-0.134, 

 

-0.124 (-0.189, -

 
BVic Spatial 3 0.097 (0.026, 

 

0.018 (-0.038, 

 

-0.061 (-0.123, 

 

0.011 (-0.062, 

 
BYam Auto 0 0.136 (0.037, 

 

0.036 (-0.048, 

 

0.118 (0.04, 

 

0.068 (-0.1, 

 
BYam Network 1 0.039 (-0.041, 

 

-0.085 (-0.161, -

 

-0.062 (-0.162, 

 

0.097 (0.023, 

 
BYam Spatial 1 0.047 (-0.04, 

 

-0.004 (-0.098, 

 

-0.036 (-0.136, 

 

0.025 (-0.064, 

 
BYam Spatial 2 0.067 (-0.01, 

 

-0.091 (-0.159, -

 

0.014 (-0.081, 

 

0.094 (-0.019, 

 
BYam Spatial 3 0.076 (-0.005, 

 

-0.102 (-0.161, -

 

0.029 (-0.05, 

 

0.036 (-0.033, 

 
H1 Auto 0 0.106 (0.012, 

 

-0.031 (-0.099, 

 

-0.033 (-0.118, 

 

-0.04 (-0.127, 

 
H1 Network 1 0.063 (-0.005, 

 

-0.046 (-0.11, 

 

-0.028 (-0.085, 

 

-0.016 (-0.101, 

 
H1 Spatial 1 0.099 (0.019, 

 

-0.097 (-0.163, -

 

-0.049 (-0.116, 

 

0.003 (-0.078, 

 
H1 Spatial 2 0.024 (-0.044, 

 

0.017 (-0.057, 

 

0.013 (-0.055, 

 

-0.104 (-0.173, -

 
H1 Spatial 3 0.01 (-0.059, 

 

0.042 (-0.033, 

 

-0.041 (-0.106, 

 

0.053 (-0.02, 

 
H3 Auto 0 0.056 (-0.03, 

 

-0.065 (-0.145, 

 

-0.073 (-0.143, -

 

0.041 (-0.025, 

 
H3 Network 1 0.034 (-0.022, 

 

0.003 (-0.056, 

 

-0.024 (-0.088, 

 

0.058 (-0.015, 

 
H3 Spatial 1 -0.031 (-0.1, 

 

-0.011 (-0.078, 

 

-0.044 (-0.104, 

 

0.05 (-0.035, 

 
H3 Spatial 2 -0.068 (-0.127, -

 

0.057 (-0.017, 

 

-0.06 (-0.124, 

 

0.011 (-0.042, 

 
H3 Spatial 3 0.162 (0.099, 

 

0.019 (-0.052, 

 

-0.053 (-0.119, 

 

0.071 (0.008, 
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Supplementary Table C.4. Pearson Correlation Coefficients of Spatiotemporally Lagged 

Auto- and Cross-correlations of Seasonal Diversification of Influenza Subtypes / 

Lineages with BYamagata 

Subtype Spatial Lag 

 

Spatial 

 

BYam 

 

 

 

          0 1 2 3 
BVic Auto 0 0.136 (0.037, 

 

0.127 (0.044, 

 

-0.007 (-0.091, 

 

-0.041 (-0.15, 

 
BVic Network 1 0.065 (-0.007, 

 

-0.038 (-0.083, 

 

-0.068 (-0.118, -

 

-0.005 (-0.061, 

 
BVic Spatial 1 0.034 (-0.052, 

 

-0.043 (-0.099, 

 

-0.091 (-0.149, -

 

0.021 (-0.061, 

 
BVic Spatial 2 0.018 (-0.042, 

 

0.073 (0.003, 

 

-0.111 (-0.159, -

 

-0.055 (-0.128, 

 
BVic Spatial 3 0.103 (0.02, 

 

0.015 (-0.045, 

 

-0.103 (-0.157, -

 

-0.116 (-0.193, -

 
BYam Auto 0 1 0.005 (-0.1, 

 

-0.189 (-0.306, -

 

0.073 (-0.07, 

 
BYam Network 1 0.356 (0.27, 

 

-0.039 (-0.092, 

 

-0.249 (-0.326, -

 

-0.034 (-0.113, 

 
BYam Spatial 1 0.369 (0.287, 

 

-0.021 (-0.075, 

 

-0.246 (-0.322, -

 

-0.095 (-0.184, -

 
BYam Spatial 2 0.238 (0.158, 

 

0.036 (-0.024, 

 

-0.201 (-0.296, -

 

0.027 (-0.046, 

 
BYam Spatial 3 0.258 (0.175, 

 

-0.008 (-0.048, 

 

-0.184 (-0.289, -

 

0.088 (-0.004, 

 
H1 Auto 0 -0.015 (-0.117, 

 

0.052 (-0.034, 

 

0.071 (-0.035, 

 

0.141 (0.05, 

 
H1 Network 1 -0.051 (-0.11, 

 

-0.007 (-0.093, 

 

0.011 (-0.058, 

 

-0.022 (-0.076, 

 
H1 Spatial 1 -0.07 (-0.148, 

 

-0.033 (-0.101, 

 

0.078 (0.01, 

 

-0.028 (-0.082, 

 
H1 Spatial 2 0.054 (-0.015, 

 

-0.053 (-0.12, 

 

0.04 (-0.028, 

 

-0.016 (-0.089, 

 
H1 Spatial 3 -0.01 (-0.082, 

 

0.003 (-0.063, 

 

0.014 (-0.056, 

 

0.028 (-0.037, 

 
H3 Auto 0 0.102 (-0.012, 

 

0.002 (-0.079, 

 

-0.013 (-0.128, 

 

-0.081 (-0.184, 

 
H3 Network 1 0.142 (0.049, 

 

0.02 (-0.039, 

 

-0.049 (-0.115, 

 

-0.007 (-0.062, 

 
H3 Spatial 1 0.111 (0.035, 

 

0.036 (-0.034, 

 

-0.035 (-0.113, 

 

-0.021 (-0.087, 

 
H3 Spatial 2 0.043 (-0.024, 

 

0.011 (-0.051, 

 

-0.048 (-0.122, 

 

-0.008 (-0.073, 

 
H3 Spatial 3 0.025 (-0.045, 

 

0.008 (-0.074, 

 

-0.08 (-0.141, -

 

0.002 (-0.065, 
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Supplementary Table C.5. Pearson Correlation Coefficients of Spatiotemporally Lagged 

Auto- and Cross-correlations of Seasonal Diversification of Influenza Subtypes / 

Lineages with H1 

Subtype Spatial Lag 

 

Spatial 

 

H1 

 

 

 

          0 1 2 3 
BVic Auto 0 0.106 (0.012, 

 

-0.057 (-0.15, 

 

0.069 (-0.015, 

 

0.012 (-0.075, 

 
BVic Network 1 0.002 (-0.069, 

 

0.009 (-0.063, 

 

0.029 (-0.028, 

 

-0.06 (-0.115, -

 
BVic Spatial 1 0.08 (-0.02, 

 

0.022 (-0.056, 

 

0.024 (-0.043, 

 

-0.084 (-0.159, -

 
BVic Spatial 2 -0.027 (-0.087, 

 

-0.026 (-0.086, 

 

0.055 (-0.018, 

 

-0.058 (-0.111, 

 
BVic Spatial 3 0.006 (-0.06, 

 

-0.03 (-0.095, 

 

0.049 (-0.019, 

 

-0.085 (-0.143, -

 
BYam Auto 0 -0.015 (-0.117, 

 

0.078 (-0.01, 

 

0.05 (-0.079, 

 

-0.014 (-0.119, 

 
BYam Network 1 -0.14 (-0.225, -

 

0.05 (-0.017, 

 

0.115 (0.053, 

 

-0.027 (-0.109, 

 
BYam Spatial 1 -0.082 (-0.165, 

 

0.047 (-0.02, 

 

0.17 (0.104, 

 

-0.066 (-0.146, 

 
BYam Spatial 2 -0.075 (-0.156, -

 

-0.074 (-0.164, 

 

0.118 (0.046, 

 

-0.015 (-0.108, 

 
BYam Spatial 3 -0.017 (-0.096, 

 

0.006 (-0.071, 

 

0.076 (0, 0.148) -0.012 (-0.087, 

 
H1 Auto 0 1 -0.086 (-0.172, 

 

0.093 (0.004, 

 

-0.005 (-0.098, 

 
H1 Network 1 0.203 (0.108, 

 

-0.066 (-0.129, 

 

0.09 (0.014, 

 

-0.173 (-0.25, -

 
H1 Spatial 1 0.203 (0.113, 

 

-0.029 (-0.1, 

 

0.112 (0.036, 

 

-0.151 (-0.241, -

 
H1 Spatial 2 0.136 (0.048, 

 

-0.185 (-0.251, -

 

0.133 (0.06, 

 

-0.173 (-0.254, -

 
H1 Spatial 3 0.148 (0.068, 

 

-0.206 (-0.275, -

 

0.157 (0.08, 

 

-0.19 (-0.27, -

 
H3 Auto 0 -0.043 (-0.13, 

 

0.043 (-0.04, 

 

-0.041 (-0.122, 

 

0.022 (-0.053, 

 
H3 Network 1 -0.086 (-0.154, -

 

0.056 (-0.031, 

 

-0.045 (-0.12, 

 

0.105 (0.043, 

 
H3 Spatial 1 -0.045 (-0.113, 

 

0.024 (-0.055, 

 

-0.043 (-0.112, 

 

0.144 (0.082, 

 
H3 Spatial 2 -0.074 (-0.156, -

 

0.047 (-0.025, 

 

-0.113 (-0.185, -

 

0.098 (0.023, 

 
H3 Spatial 3 -0.032 (-0.114, 

 

0.126 (0.055, 

 

-0.064 (-0.127, 

 

0.138 (0.072, 
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Supplementary Table C.6. Pearson Correlation Coefficients of Spatiotemporally Lagged 

Auto- and Cross-correlations of Seasonal Diversification of Influenza Subtypes / 

Lineages with H3 

Subtype Spatial Lag 

 

Spatial 

 

H3 

 

 

 

          0 1 2 3 
BVic Auto 0 0.056 (-0.03, 

 

-0.019 (-0.118, 

 

0.061 (-0.034, 

 

0.052 (-0.066, 

 
BVic Network 1 -0.01 (-0.095, 

 

0.029 (-0.057, 

 

-0.048 (-0.123, 

 

-0.095 (-0.163, -

 
BVic Spatial 1 -0.067 (-0.154, 

 

0.048 (-0.047, 

 

-0.059 (-0.146, 

 

-0.045 (-0.12, 

 
BVic Spatial 2 0.02 (-0.054, 

 

0.052 (-0.018, 

 

-0.036 (-0.099, 

 

0.041 (-0.036, 

 
BVic Spatial 3 0.185 (0.135, 

 

-0.044 (-0.14, 

 

0.003 (-0.059, 

 

0.007 (-0.065, 

 
BYam Auto 0 0.102 (-0.012, 

 

-0.066 (-0.171, 

 

-0.036 (-0.142, 

 

-0.026 (-0.124, 

 
BYam Network 1 0.093 (-0.013, 

 

-0.133 (-0.244, -

 

-0.078 (-0.153, -

 

0.047 (-0.03, 

 
BYam Spatial 1 0.088 (-0.035, 

 

-0.135 (-0.232, -

 

-0.091 (-0.164, -

 

0.006 (-0.072, 

 
BYam Spatial 2 0.05 (-0.063, 

 

-0.114 (-0.193, -

 

-0.045 (-0.136, 

 

0.133 (0.051, 

 
BYam Spatial 3 0.026 (-0.069, 

 

-0.062 (-0.132, 

 

-0.001 (-0.09, 

 

0.123 (0.055, 

 
H1 Auto 0 -0.043 (-0.13, 

 

0.076 (-0.011, 

 

-0.048 (-0.135, 

 

0.046 (-0.032, 

 
H1 Network 1 -0.082 (-0.162, 

 

0.07 (-0.009, 

 

-0.091 (-0.166, -

 

0.047 (-0.034, 

 
H1 Spatial 1 -0.053 (-0.12, 

 

0.073 (0.008, 

 

-0.082 (-0.161, -

 

0.039 (-0.035, 

 
H1 Spatial 2 -0.099 (-0.185, -

 

0.116 (0.052, 

 

-0.189 (-0.254, -

 

0.082 (0.014, 

 
H1 Spatial 3 -0.028 (-0.107, 

 

0.095 (0.042, 

 

-0.103 (-0.165, -

 

0.023 (-0.031, 

 
H3 Auto 0 1 -0.023 (-0.094, 

 

0.02 (-0.056, 

 

-0.046 (-0.123, 

 
H3 Network 1 0.13 (0.042, 

 

-0.062 (-0.139, 

 

0.048 (-0.036, 

 

-0.074 (-0.141, -

 
H3 Spatial 1 0.141 (0.059, 

 

-0.087 (-0.155, -

 

0.042 (-0.041, 

 

-0.082 (-0.146, -

 
H3 Spatial 2 0.028 (-0.056, 

 

-0.113 (-0.173, -

 

0.05 (-0.018, 

 

-0.001 (-0.063, 

 
H3 Spatial 3 0.126 (0.07, 

 

-0.101 (-0.147, -

 

0.035 (-0.028, 

 

-0.01 (-0.055, 
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