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ABSTRACT 

 Though present in all climatic environments, non-perennial channels are a dominant 

hydrologic feature of semi-arid regions. At present, projected warming trends are anticipated to 

shift climate patterns within arid regions, increasing maximum temperatures and decreasing 

precipitation volume. In combination, these changes have the potential to alter the flow patterns 

of many presently perennial river systems, decreasing their discharge and resulting in infrequent, 

seasonal, or cyclic periods of flow cessation. This evolution from perennial to ephemeral systems 

will likely have important effects on regional hydrologic processes and water management. This 

dissertation explores the varied impact of this transition in semi-arid regions both domestically 

and in Morocco, applying a combination of statistics, remote sensing, and field work to better 

characterize shifting flow dynamics and their impact on regional groundwater recharge. 

 

(1) Significant trends in stream drying are observed within semi-arid regions of CONUS. 

From 1980 to present, the timing of wet season moisture was identified as a primary 

control on the novel stream intermittency observed as developing across the region. 



Projected shifts in regional precipitation underscore the expected expansion of non-

perennial stream flow into higher elevation, perennial systems. 

 

(2) Characterization of intermittent flow patterns remain a challenge in data-scarce regions, 

which lack sufficient gaging. Linear Discriminant Function Analysis is demonstrated to 

effectively predict channel flow in a shallow, turbid, and flashy ephemeral system in 

central Morocco. From 1984 to 2022, flow frequency was observed to decrease. The 

spatial and temporal distribution of flow however, which was maintained in the channel 

upstream and during the wet season, support potential channel infiltration and 

groundwater recharge despite this reduction. 

 

(3) Infiltration through ephemeral channels is a primary form of aquifer recharge in arid 

regions. In central Morocco, subsurface temperature probes were deployed to 

characterize surface flow events and their connection to infiltration. Across two 

ephemeral channels in disparate recharge zones, infiltration was concentrated within the 

upstream channel reach, and increased in velocity with greater depth in the subsurface. 

Improved characterization of channel flow patterns informs our understanding of 

potential transmission loss, crucial for accurate estimates of groundwater recharge in 

semi-arid environments. 
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CHAPTER 1 

INTRODUCTION 

 Non-perennial channels, or rivers which experience periods of flow cessation or 

discontinuity, are a naturally occurring hydrologic feature present across all climate regimes. By 

some estimates, such intermittent systems encompass greater than one third of all global river 

length (Datry et al., 2014; Messager et al., 2021). Non-perennial channels span a broad spectrum 

of environments, with flow disruption ranging from intra-seasonal to inter-annual. A number of 

sub-categories are loosely applied to differentiate temporal and spatial variability in flow, 

however both their definition within the literature and physical characteristics occur on a 

continuum (Busch et al., 2020). A key subset within the broad umbrella of intermittent systems 

are ephemeral channels, or rivers which flow only in response to hydrologic inputs (McMahon 

and Nathan, 2021). Ephemeral systems are recognized as predominantly dry, losing or 

disconnected streams which lack groundwater input to support baseflow (Busch et al., 2020). 

Channels may be separated from the water table by an unsaturated zone, through which surface 

water infiltrates during periods of flow. These systems experience wetting and drying cycles in 

response to local precipitation, snowmelt, or artificial hydrologic inputs such as reservoir 

releases. Moisture inputs are largely seasonal, and their timing and duration primarily control 

surface flow within the channel (Fakir et al., 2021). 

Though present in variable climates, ephemeral channels are the most common 

hydrologic feature in arid and semi-arid systems (Milewski et al., 2015; Hammond et al., 2021; 

Messager et al., 2021). This is in part due to the limited precipitation inputs which classify these 
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environments as drylands (Beck et al., 2018). Although ber of variables have been identified as 

controlling stream intermittency, climate factors (precipitation, ET, and temperature) are widely 

considered the primary drivers (Costigan et al., 2016; Hammond et al., 2021; Zipper et al., 2021). 

Physical features such as channel elevation, slope, geomorphology, and near-surface geology 

additionally play a important roles in regulating the development and extent of ephemeral flow 

patterns (Costigan et al., 2016; Hammond et al., 2021; Zipper et al., 2021). Within arid basins, 

ephemeral channels are found across a continuum from the mountain front to basin plain 

(Bouimouass et al., 2024). High elevation mountain fronts frequently support intermittent 

channel flow, driven by rapid surface runoff and the underlying geology (Bouimouass et al., 

2024). On basin plains, ephemeral channels develop in response to sporadic hydrologic inputs, 

elevated evapotranspiration, and infiltration into near-surface sediments (Scamardo and Wohl, 

2024). The loss of stream discharge to sediment infiltration is a phenomenon known as 

transmission loss, as stream flow declines with distance downstream (McMahon and Nathan, 

2021). The rate, depth of infiltration, and initial sediment saturation control whether water will 

be reevaporated or contribute to groundwater recharge (Fakir et al., 2021). Within arid 

environments, this form of direct recharge through ephemeral channels is considered the primary 

source of aquifer recharge (Shentsis and Rosenthal, 2003; Levick et al., 2008; Shanafield and 

Cook, 2014). Surface and groundwater interaction via transmission loss further facilitates crucial 

nutrient transport and biogeochemical cycling, characteristic of intermittent systems 

(Stubbington et al., 2020; Zimmer et al., 2022).  

 Despite their ubiquity, physical, economic, and social barriers have all contributed to the 

limited study of intermittent channels. Ephemeral systems have historically been categorized as 

distinct from perennial streams, in part due to lack of monitoring. Ephemeral channels are less 
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suited to traditional gaging due to large sediment pulses during flood events (Constantz and 

Thomas, 1997; Zimmer et al., 2020, 2022). Systems with sustained zero-flow periods are further 

deprioritized for hydrologic monitoring infrastructure, particularly in low-income nations that 

comprise approximately 90% of arid land globally (UNEMG, 2011; Zimmer et al., 2022). This 

lack of gaging has created a data gap for many ephemeral systems, particularly outside of North 

America.  

With warming climate, arid regions are projected to experience broad shifts toward 

reduced precipitation and elevated temperature (Scheff and Frierson, 2012; Ficklin et al., 2016; 

Beck et al., 2018). This has the potential to facilitate the expansion of intermittent flow regimes 

in previously perennial systems (Jaeger et al., 2014; Costigan et al., 2016; Schilling et al., 2021; 

Sauquet et al., 2021; Kelly and Bruckerhoff, 2024). Though this process will likely occur on a 

continuum, as systems experience decreasingly sporadic periods of intermittency in line with 

climate extremes, it remains poorly characterized. At present, there is limited understanding of 

the potential spatial and temporal extent of these shifts, or how this alteration may impact current 

and future estimates of groundwater recharge. Key questions remain regarding the variables 

which control and facilitate ephemeral channel development, and how to sustainably manage 

systems projected to experience a shift from perennial to intermittent flow.  

This dissertation broadly explores stream disconnection, the spatial and temporal 

development of intermittent systems, and its overall impact on hydrologic processes. It 

specifically focuses on the expansion of intermittent flow regimes in semi-arid environments at 

varying scales. This research works to address three key challenges within the field of 

intermittent flow regimes, (1) improved understanding of the variables which drive spatial and 

temporal expansion of ephemeral channels, (2) characterization of intermittent flow patterns in 
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data-scarce environments, and (3) quantifying the contribution of ephemeral flow to groundwater 

recharge through transmission losses in disparate recharge environments.  

This dissertation begins at the broadest continental scale in chapter two, exploring which 

variables control the spatial and temporal expansion of intermittent channels across semi-arid 

regions of the United States. This work specifically utilizes the extensive gage network and 

monitoring history of USGS stream gages, paired with 33 climatic, physical, and anthropogenic 

variables, to better understand primary controls on patterns of stream intermittency. This work 

further characterized present trends in stream discharge, and trends in the frequency and duration 

of dry periods within a subset of intermittent channels. Broad trends point to the drying of 

perennial streams and the expansion of dry periods in intermittent systems. It additionally 

identified the importance of the timing of wet season moisture, both precipitation and soil 

moisture, as a dominant control on developing intermittency across the region. 

The third chapter focuses in from the continental to the basin scale, and shifts from gaged 

to ungaged systems. Specifically, it works to characterize intermittent flow patterns in a 

minimally gaged ephemeral channel in central Morocco, through the development of a novel 

methodology for water pixel classification. This methodology was further applied to historic 

satellite images to identify shifts in temporal and spatial flow patterns across the system. 

Broadly, frequency of stream flow within the channel was found to be in decline, both spatially, 

moving from the upstream to the downstream reaches, and temporally across the observation 

period. Despite these reductions, flow patterns were observed to be maintained across the wet 

season. In tandem, this signifies the potential of sustained levels of aquifer recharge, despite 

overall reductions in flow within the channel. Additionally, it highlights both the accuracy and 
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utility of discriminant function analysis in ephemeral channel investigation through satellite 

imagery. 

The fourth chapter further explores channel intermittency within ungaged systems in 

central Morocco, but shifts its focus from the basin to field scale. Specifically, it explores the 

connection between intermittent stream flow and the spatial variability of potential recharge via 

transmission loss, across two disparate recharge zones. Installation of temperature monitoring 

probes within the subsurface of two ephemeral channels was utilized as a proxy for infiltration 

during periods of surface flow. Broad observations highlight that both spatial and temporal 

variability in potential infiltration have favorable implications for groundwater recharge, as it 

promotes the antecedent sediment moisture conditions necessary support deeper infiltration.  

Across drylands, the projected impact of warming climate has the potential to further 

exacerbate the transition of presently perennial streams to intermittent channels. Advancements 

in our understanding of intermittent channel flow patterns have the potential to alter estimates of 

present groundwater storage, particularly in data-limited environments. Improved projections 

have direct implications for increased sustainable water management, both domestically and 

abroad.  
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2.1 Chapter Abstract 

Broad trends point to the slow drying of streams, with increasing maximum temperatures 

and altered precipitation fueling declines in discharge across the Western United States. 

Sustained reductions in streamflow have the potential to drive the evolution of non-perennial 

channels, yet this process remains poorly characterized, with limited understanding of the 

variables which control stream vulnerability to intermittency or the spatial and temporal extent of 

these shifts. This research identifies trends toward novel intermittency across semi-arid CONUS, 

within 483 stream gages from 1980 to 2024. Greater than half of all gages demonstrated 

reductions in discharge and increases in the frequency and duration of flow cessation. The timing 

of wet season moisture, specifically December and January precipitation, were identified as 

primary controls on developing intermittency. With forecasted reductions in total precipitation 

across CONUS, intermittent flow regimes are projected to expand further into previously 

perennial basins, as well as exacerbate drying in vulnerable channels. 

 

2.2 Introduction 

River systems are a principal indicator of changing climate, in which they both convey 

and are transmuted by altered patterns of precipitation and land surface temperature. Stream 

networks across the landscape capture local and regional shifts in historic climate and 

communicate these changes through variations in streamflow. Across the contiguous United 

States (CONUS), broad trends point to declines in stream discharge, particularly in the 

Southwest (Lins and Slack, 2005; Ficklin et al., 2016; Dudley et al., 2020; Dethier et al., 2020; 

Hammond et al., 2021, 2022; Zipper et al., 2022). Drying rivers are, in part, a response to a 

steady reduction in total precipitation across dryland zones (Ting et al., 2018; Seager et al.). 
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Trends in elevated land surface temperature and water cycle intensity further augment these 

declines by increasing evapotranspiration and reducing stored soil moisture and surface water 

(Ting et al., 2018; Zowam et al., 2023; U.S. Environmental Protection Agency, 2024; Seager et 

al.). These climate patterns mirror broader global trends, in which dryland regions are projected 

to shift toward increased aridity, altering local and regional river systems in the process (Scheff 

and Frierson, 2012; Beck et al., 2018; U.S. Environmental Protection Agency, 2024; Seager et 

al.).  

Semi-arid regions encompass one-quarter of CONUS, with 42% concentrated in the 

Western U.S. (Beck et al., 2018). Streamflow in dryland river systems is distinctly seasonal; in 

line with precipitation, lowest flows are observed during the summer dry season, with the highest 

discharge during the wetter winter (Lins and Slack, 2005; Goodrich et al., 2018; Ting et al., 

2018; Seager et al.). In the absence of consistent precipitation, perennial baseflow is sustained by 

groundwater discharge and headwater snowmelt (Levick et al., 2008; Gleeson et al., 2020; Chen 

et al., 2022). For semi-arid streams with already limited discharge, reduced precipitation inputs 

have the potential to drive drying to the point of periodic disconnection and the development of 

intermittent flow regimes (Jaeger et al., 2014; Costigan et al., 2016; Schilling et al., 2021; 

Sauquet et al., 2021; Kelly and Bruckerhoff, 2024). Though non-perennial and ephemeral 

streams are a significant and naturally occurring component of the global river network, their 

number is only expected to grow with increased aridity (Datry et al., 2014; Costigan et al., 2016; 

Messager et al., 2021). Limited attention has focused on present trends in the evolution of 

intermittent flow regimes or their projected future distribution, particularly in dryland streams 

with the greatest vulnerability to reduced stream permanence (Levick et al., 2008; Zimmer et al., 

2022). Understanding and quantifying the factors which predispose a stream to shift from 
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perennial to intermittent flow is crucial for sustainable management, but complicated by 

interactions between numerous physical, climatic, and anthropogenic controls (Costigan et al., 

2016; Jaeger et al., 2018; Schilling et al., 2021; Hammond et al., 2021, 2022; Zipper et al., 

2021). Aridity has been strongly linked to increased flow disruption; however, the dominant 

influence of this signal has the potential to obscure the impact of other relevant variables in 

multi-climate studies (Eng et al., 2016; Peña-Gallardo et al., 2019; Hammond et al., 2021; Zipper 

et al., 2021). 

Currently, the majority of river systems in the Western U.S. are managed under the 

assumption of the perennial availability of flow, with water users reliant on surface water to 

sustain agriculture through seasonally variable precipitation (Kampf et al., 2021; Zipper et al., 

2022; Ketchum et al., 2023). Failure to appropriately predict and account for developing stream 

intermittency has the potential to exacerbate stream drying and disconnection (O¶CRQQRU HW aO., 

2014; Ketchum et al., 2023). The anticipated alteration of historic flow patterns requires a shift 

from passive to proactive management of developing ephemerality, to ensure a future of 

sustainable water availability (Kovach et al., 2019). 

This research explores the evolution of novel stream intermittency and the primary 

variables driving shifts in historic flow patterns. We conducted a large-scale analysis of 

developing intermittent flow regimes across 483 stream gages located in semi-arid zones of 

CONUS, for a minimum 30-year period spanning 1980 to 2024. Each gage was evaluated for 

trends in seasonal discharge, with gages identified as non-perennial assessed for the seasonal 

distribution and duration of zero-flow days. Physical, hydrologic, climatic, and anthropogenic 

variables were further compiled for each gage, with relationships evaluated via Principal 

Component Analysis (PCA) and combined with Discriminant Function Analysis (DFA) for flow 
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differentiation and prediction. The goals of our analyses were, (1) characterize the current 

patterns and distribution of seasonal non-perennial flow across streams in semi-arid CONUS, (2) 

identify the dominant variables driving perennial vs. intermittent stream flow in semi-arid 

systems, and (3) predict a streams vulnerability to the development of flow intermittency in 

basins with limited gaging. 

 

 

 

Figure 2-1. Drying streams across semi-arid CONUS.  

(a) Seasonal discharge trends reveal statistically significant decreases in stream discharge, 

particularly across the Southwest. (b) Streams with intermittent flow patterns are expanding 

further, with 60.2% of stream gages experiencing an increase in the frequency of a completely 

dry channel. Here, gage size signals increasing or decreasing strength of trend. 
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2.3 Methods 

This section describes the sourcing, organization, and analysis of both U.S. Geologic 

Survey (USGS) stream gages and related variables. The goal of this analysis was to explore 

existing and developing patterns of non-perennial flow across 483 USGS stream gages in semi-

arid zones of the CONUS from 1980 to 2024. Specially, daily discharge measurements at each 

gage were aggregated seasonally and analyzed for seasonal trends in discharge, days with zero-

stream flow, and length of zero-flow periods. For each gage, we worked to aggregate 33 unique 

variables related to stream intermittency for exploration via linear discriminant function analysis 

(LDA). The resulting linear function was further used to predict flow intermittency in 448 USGS 

stream gages with insufficient data history, as well as identify the primary variables which 

predispose a stream section to non-perennial flow. A detailed description of the data sourcing 

and methodology follows. 

 

Gage Selection 

 Stream gages located within semi-arid regions of CONUS were the primary focus of this 

study, as dryland systems with both seasonal and limited precipitation have increased 

vulnerability to periodic flow cessation (Levick et al., 2008; Boulton et al., 2017). Semi-arid 

zones were defined by the Köppen-Geiger climate classification, which differentiate semi-arid 

steppe into subgroups based on mean annual air temperature (BSh and BSk) (Beck et al., 2018).  

Active stream gage data was sourced from the USGS National Water Information System 

(NWIS) database (U.S. Geological Survey, 2001). USGS stream gages located within these 

defined semi-arid regions were filtered and further evaluated for sufficient daily discharge using 

R statistical software (v4.1.1) and the dataRetrieval R package (v2.7.12) (R Core Team, 2011; 
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DeCicco, 2024). Gages which lacked consistent daily discharge values for a continuous 30-year 

period between 1980 and 2024 were excluded, resulting in 483 gages with a sufficient data 

history for statistical analysis. Gages excluded for insufficient discharge data were filtered by 

unique subbasins (USGS defined 8-digit hydrologic unit), to produce a secondary dataset of 448 

stream gages with unknown intermittency patterns (U.S. Geological Survey and U.S. Department 

of Agriculture, Natural Resources Conservation Service, 2013). 

 

Trend Analysis 

 Seasonal Mann-Kendall trend analysis was applied to stream gages in the primary dataset 

to identify seasonal trends in discharge and historic patterns of intermittent streamflow. In 

addition to seasonal trends in stream discharge (increasing, decreasing, or no change), we 

explored two hydrologic signatures linked to intermittency: zero-flow occurrence and zero-flow 

duration (Zipper et al., 2021). Specifically, seasonal zero-flow occurrence estimates the trend in 

frequency of µQR IORZ¶ Ga\V during both seasons, with an increasing trend indicating a drier 

system with more periods of zero-flow. Seasonal zero-flow duration estimates the trend in the 

length of a no flow period (the number of consecutive days without streamflow) over the same 

seasonal breakdown, with an increasing trend indicative of longer stretches in which the gage 

reads zero. For CONUS, we broadly define the wet season as October through March, and the 

dry season as April through September (Ting et al., 2018; Seager et al.). Seasonal zero-flow 

occurrence was further used to classify each gage as either intermittent or perennial based on the 

presence of zero-flow days (234 and 249 gages, respectively). 

Mann-Kendall trend analysis is a non-parametric statistical test used to estimate 

statistically significant trends in time-series data (Mann, 1945; Kendall, 1948; Meals et al., 
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2011). In seasonal Mann-Kendall analysis, the trend for each season is calculated individually 

before being combined. This method is ideal for hydrologic data, which generally displays 

seasonal patterns related to precipitation and groundwater abstraction (Hirsch et al., 1982; Meals 

et al., 2011). Seasonal discharge data was delineated monthly, while zero-flow occurrence and 

duration were calculated based on aggregated values within the broadly defined dry and wet 

seasons for North America (Ting et al., 2018). Statistical analysis was performed using the R 

package Kendall (v.2.2.1) (McLeod, 2022). It is important to note, that a gage reading of zero, 

though intended to signal flow cessation, may in fact represent equipment error, flow reversal, or 

management diversion (Zimmer et al., 2020). To address this, preference was given to stream 

gage data checked for accuracy by the reporting agency. 

 
Variable Selection and Data Collection 

 Diverse physical, climatic, and anthropogenic variables have been identified in previous 

studies as potentially significant controls on flow intermittency (Costigan et al., 2015; Boulton et 

al., 2017; Schilling et al., 2021; Hammond et al., 2021; Zipper et al., 2021). Thirty-three 

variables were selected for analysis and synthesized for each gage in both the primary and 

secondary datasets, resulting 30,723 measurements across 931 gages. Variable details and 

sources are outlined below (Table 2-1).  
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Table 2-1. Variable Data Source and Availability. 

*Variables with an asterisk were log transformed prior to analysis to normalize their distribution, 

required for the statistical analysis. 

Variables Data Description Spatial Resolution 
Contributing Drainage Area1  Sourced from the USGS NWIS dataset, 

USGS defined contributing drainage area 
(sq. miles). A minority of stream gages 
lacked this metric, and USGS designated 
watershed areas (HUC 10) were used as a 
substitute. 

30 m  

Dams*2,3  USDOT National Inventory of Dams dataset. 
The state of Texas was supplemented with an 
inventory of state regulated dams (TCEQ). 
Dam counts were aggregated for each gage 
sub-basin (HUC 8) 

NA 

Elevation1  USGS derived gage elevation (ft), from 
USGS NWIS dataset. Values were 
supplemented by elevation from USGS 1-arc 
second DEM. 

30 m 

Evapotranspiration (ET)4 Elnashar et al. (2021) multi-product and 
satellite aggregated global ET dataset. ET 
was averaged monthly from 2010±2019, with 
average ET calculated for each gage sub-
basin (HUC 8). 

0.1° 

Irrigated Area*5  Landsat based irrigation dataset (LANID) for 
CONUS (2018±2020). Percent irrigated area 
was aggregated for each gage sub-basin 
(HUC 8). 

30 m  

Land Cover6 NLCD MRLC land cover classification for 
CONUS (2021). Dominant land cover type 
(percentage of total area) within gage sub-
basin (HUC 8) was extracted. 

30 m  

Maximum Land Surface 
Temperature (LST)7 

Zhang et al. (2021) NASA MODIS 
(Terra/Aqua) generated dataset. LST 
averaged monthly from 2010±2019, with 
units converted to °F. Maximum LST within 
each gage sub-basin (HUC 8) was extracted. 

 0.1°  

Precipitation*8 PRISM average monthly 30-year normal 
precipitation dataset (CONUS). Values were 
averaged across each gage sub-basin (HUC 
8). 

800 m 



19 

 

Notes: 1U.S. Geological Survey, 2001; 2U.S. Dept. of Transportation, 2013; 3Texas Commission on 
Environmental Quality; 4Elnashar et al., 2021; 5Martin et al., 2023; 6Dewitz and U.S. Geological Survey, 
2021; 7Zhang et al., 2021; 8PRISM Climate Group, 2014; 9NRCS Database; 10Jiang et al., 2022; 11Zowam & 
Milewski, 2024; 121U.S. Geological Survey, 2022. 
 

Discriminant Function Analysis (DFA) and Principal Component Analysis (PCA) 

 We applied Discriminant Function Analysis (DFA) to identify variables with the 

strongest relationship to channel intermittency, and to generate a linear function for prediction of 

non-perennial flow in systems with a limited gaging history (Appendix Chapter 2, Figure 1). 

Linear DFA is a statistical method used to sort continuous data into known categorical groups 

(here, intermittent, or perennial channels) through the generation of a linear function built on 

provided variables (Davis, 2002). Stream gages with sufficient time series data were used as a 

training dataset, with the predictive accuracy of the linear DFA evaluated by whether its 

classifications matched known group membership (79.50% predictive accuracy) (Maindonald 

and Braun, 2003). Prior to analysis, a subset of variables were log transformed to normalize their 

data distribution. Z-scores were further calculated for all variables to standardize data for 

comparison. Validation was performed through jackknife resampling which produces a 

secondary predictive accuracy, free of resubstitution error (74.33% predictive accuracy) 

(Maindonald and Braun, 2003). We then applied our DFA linear function to the secondary gage 

Soil Hydrologic Group9 U.S. Soil Hydrologic Group (SSURGO) 
water infiltration classification. Dominant 
soil hydrologic group (percentage of total 
area) within gage sub-basin (HUC 8) was 
extracted. 

30 m  

Soil Moisture (SM)*10,11 Jiang et al. (2022) multi-product and satellite 
generated dataset, downscaled by Zowam 
and Milewski (2024). SM was averaged 
monthly from 2010±2019, and further 
averaged across each gage sub-basin (HUC 
8). 

 0.1° 

Slope12  Average slope across each gage sub-basin 
(HUC 8), derived from USGS 1-arc second 
DEM. 

30 m 
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dataset with insufficient time-series data, to predict gage vulnerability to intermittent flow. DFA 

statistical analysis and data processing was performed in R using the MASS R package (v7.3±

60) (Venables and Ripley, 2002). 

Principle Component Analysis (PCA) was additionally applied to explore variable 

relationships and corroborate observations from DFA analysis. PCA is a statistical analysis used 

to reduce the dimensionality of a dataset, particularly ideal for situations with many variables 

(Lever et al., 2017). This method organizes data by reorienting axes based on decreasing 

variance (Lever et al., 2017). PCA was performed on stream gages with sufficient time series 

data, generating four principal components which explained 78.1% of the data variance. A 

correlation biplot was additionally generated to visualize the spatial relationships between 

variables (Appendix Chapter 2, Figure 2). 

 
2.4 Results 

Stream gages distributed across semi-arid regions of CONUS reveal significant patterns 

of drying. From 1980 to 2024, 63.1% of stream gages demonstrated statistically significant 

seasonal trends in decreased discharge. Across the 483 gages analyzed, less than one-third 

(29.4%) experienced increases in seasonal discharge, while 7.5% of gages exhibited no 

statistically significant change. Though drying streams are distributed across all semi-arid 

regions of CONUS, they are most concentrated within the Southwest; gages with increased 

discharge were focused within the Northern Great Plains (Figure 2-1a.). Seasonal discharge 

trends were further explored for two signatures of stream intermittency: zero-flow occurrence 

and zero-flow duration. Seasonal zero-flow occurrence analyzes the quantity of zero discharge 

days per season, while seasonal zero-flow duration explores the consecutive length of daily zero-

flow gage readings. Statistically significant trends in zero-flow occurrence were observed in 118 
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stream gages from 1980 to 2024, with 60.2% experiencing an increase in the number of no-flow 

days per season (Figure 2-1b.). Of the 117 gages with statistically significant trends in duration 

of zero-flow period, 59.8% shifted seasonally toward longer periods without stream discharge (p 

< 0.05). Stream gages undergoing a seasonal expansion in the frequency and length of zero-flow 

periods paralleled the spatial distribution of streams experiencing decreased seasonal discharge. 

Periods of zero-flow occurrence were used to classify stream gages as either intermittent or 

perennial stream sections. Regardless of current intermittency status, stream gages are largely 

becoming drier; 65.5% of perennial and 60.7% of intermittent gages demonstrate seasonal and 

statistically significant reductions in flow. This implies the likely expansion of the number of 

stream sections shifting toward patterns of intermittent flow across semi-arid regions of CONUS. 

In conjunction with this projected shift, dominant drivers of flow intermittency were 

identified in exclusively dryland zones (Table 2-1). Broadly, variables related to wet season 

moisture had the greatest influence on differentiating perennial from intermittent stream flow 

(Figure 2-2). During October through March, the timing of precipitation and soil moisture 

variables at distinct points within the wet season primarily drove group separation. Dominant 

variables contributing to the distinction between perennial and intermittent systems were 

identified through Discriminant Function Analysis (DFA). Average December precipitation had 

the overall greatest influence on distinguishing between stream types. Specifically, average 

December precipitation and average soil moisture for both January and March were identified as 

the greatest controlling variables for intermittent streams. Average precipitation for January and 

November, paired with average February soil moisture, demonstrated the greatest impact on 

perennial flow (Appendix Chapter 2, Figure 1). Considering the timing of these variables, our 

results imply that the concentration and maintenance of moisture at the end of the wet season is 
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largely what separates an intermittent from perennial system. Soil moisture is closely tied to 

precipitation in the month preceding, a relationship highlighted by the grouping of November 

precipitation±December soil moisture and December precipitation±January soil moisture (Sehler 

et al., 2019) (Appendix Chapter 2, Table 2). The relevance of November precipitation further 

suggests that an early onset of soil moisture influences the overall storage of a hydrologic system 

for the entire wet season, reducing a systems vulnerability to flow disruption in the drier summer 

months. The role of moisture seasonality was further validated through Principal Component 

Analysis (PCA), which established an inverse relationship between wet season precipitation and 

dry season soil moisture (Appendix Chapter 2, Figure 2). Correlation between decreased wet 

season soil moisture and increased elevation was observed, suggesting the role of snowpack in 

higher elevation gages to sustain perennial flow during the lower precipitation dry season. 

Excluding climate variables, whicK GHPRQVWUaWH WKH JUHaWHVW RYHUaOO cRQWULbXWLRQ WR WKH DFA¶V 

group differentiation, several physical variables exerted a secondary influence on intermittency. 

Specifically, the contributing drainage area of each gage, and the dominance of both Shrub/Scrub 

land cover and slow infiltration soils (class C) within each sub-basin were identified as non-

climate related controls with influence on group differentiation (Appendix Chapter 2, Figure 3).  
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Figure 2-2. Timing of wet season moisture controls developing intermittency. Average 

December precipitation exerts the most significant control on non-perennial flow. Sustained 

moisture inputs late in the wet season are correlated to strong distinctions between channels 

which flow perennially and those which dry up. 
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Broad shifts towards decreased stream discharge and increased non-perennial flow 

highlight the necessity of efficient characterization for stream management and conservation. 

Across stream gages located in semi-arid regions of CONUS which lack sufficient data history 

for trend analysis, we applied the previous DFA characterization to predict non-perennial flow 

and identify gage vulnerability to stream intermittency. Of the 448 gages with insufficient 

discharge data, 49.6% were predicted to experience intermittent flow patterns (Figure 2-3). 

Gages predicted to be intermittent were uniformly spatially distributed across semi-arid CONUS, 

with minor concentration in the Southwest and Southern Great Plains. The exception was the 

upper Rocky Mountain region (Utah, Wyoming, Colorado), in which the majority of gages were 

predicted to be in perennially flowing systems. Projected shifts in water cycle intensity, however, 

highlight the potential for an even greater expansion of intermittency into these regions, with 

broad swaths of the Central and Southwest U.S. predicted to experience declines in precipitation 

with stable evapotranspiration (Figure 2-3a). (Zowam et al., 2023). This scenario could likely 

exacerbate projected stream drying, increasing both the distribution and acute severity within 

individual streams. 
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Figure 2-3. Stream intermittency is projected to expand. (a) Across semi-arid CONUS, 49.6% of 

gages with an insufficient data history were predicted to be vulnerable to the development of 

stream intermittency. (b) Changing climate patterns, particularly reductions in precipitation 

paired with stable ET, highlight the potential expansion of non-perennial flow into historically 

perennial stream reaches. 

 

2.5 Discussion and Conclusions 

Changing climate patterns across dryland CONUS are rapidly altering river flows, with 

increasing trends toward drying and expansion of intermittency. Stream gages are documenting 

both an elevated frequency of zero-flow periods and progressively longer temporal stretches 

before water returns. The timing and distribution of moisture, particularly within the winter wet 

season, is identified as the primary control on non-perennial flow. Higher precipitation in the 

latter half of the wet season, December and January, is expected to translate to elevated soil 

a. b.

0 250 500125 Miles

N N
0 250 500125 Miles

Predicted perennial
Predicted intermittent

Perennial stream
Intermittent stream

Perennial flowIntermittent flow High water cycle intensityLow water cycle intensity



26 

 

moisture and overall increased water storage within a hydrologic system (Small, 2005). 

Accumulation of moisture, particularly at the cessation of the wet season, likely helps to sustain 

discharge throughout the advancing dry season.  

Our results further identified the relevance of early onset wet season precipitation for 

channel intermittency. The initial rains in November generally mark a transition to the wet 

season, bringing with them not only moisture inputs, which may reactivate a non-flowing or low-

discharge channel, but ushering in a drop in temperature and reduced evapotranspiration. Soil 

moisture content plays a significant role in arid systems, where antecedent sediment moisture is 

necessary for sustained infiltration to the water table (Fakir et al., 2021). Early wet season 

precipitation thus can drive increased percolation and overall greater seasonal recharge, through 

both focused recharge via the stream channel and diffuse recharge across the landscape (Small, 

2005). This has the potential to raise the height of the water table and increase groundwater 

discharge into streams, supporting perennial baseflow.  

Our results further underscore the impact of bracketed seasonal moisture on the 

development of channel intermittency, via both precipitation and soil moisture at the onset and 

conclusion of the wet season. Projected climate patterns across semi-arid regions of CONUS are, 

however, forecasted to increase the seasonality of precipitation, with a reduction in the frequency 

of storms and an increase in the size of singular events (Wasko et al., 2021; Chang et al.). This 

shift may impact the timing of precipitation and ultimately the volume of water able to 

effectively infiltrate and replenish groundwater stores during the wet season, contributing to the 

increased development of intermittent channels. Expanding ephemerality has serious 

implications not only for hydrologic, but physical and ecologic processes, disturbing aquatic 

communities, and sediment and nutrient flux (Datry et al., 2014; Shumilova et al., 2019). It 
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further holds significant consequences for regional water management strategies. Though current 

management may consider seasonal variability in stream discharge, this thinking must be 

expanded to include periods of stream drought. Failure to manage for zero discharge intervals 

has the potential to exacerbate stream dry downs, increasing their duration, and stressing 

alternative water sources such as groundwater. Insufficient preparation for novel non-perennial 

flow will likely have a substantial economic impact, particularly on regional agriculture which 

relies on stream flow to support irrigation during the dry summer months (Ketchum et al., 2023). 

Improved understanding of the dominant variables controlling developing stream intermittency is 

necessary, not only to strengthen both our characterization and prediction, but to mitigate non-

perennial stream expansion in vulnerable dryland basins around the globe. 
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CHAPTER 3 

QUANTIFYING INTERMITTENT FLOW REGIMES IN UNGAUGED BASINS: 

OPTIMIZATION OF REMOTE SENSING TECHNIQUES FOR EPHEMERAL CHANNELS 
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3.1 Chapter Abstract 

Intermittent and ephemeral channels are a critical component of the global hydrologic 

network. The dominant feature in dryland environments, ephemeral channel transmission loss 

facilitates aquifer recharge. Characterizing flow intermittency improves groundwater storage 

estimates; however, limited gauging of intermittent systems impedes this understanding. This 

research develops an improved classification for surface flow, optimized for ephemeral systems 

using linear discriminant function analysis and remotely sensed imagery. It further applies this 

methodology to assess temporal and spatial flow patterns across the Souss channel, an ungauged, 

ephemeral system in central Morocco. Linear discriminant function analysis demonstrates high 

predictive accuracy for Landsat imagery, with significantly improved classification success as 

compared to the Modified Normalized Difference Water Index. Application to the Souss channel 

from 1984 to 2022 points to a decreasing trend in flow frequency. Despite this change, flow 

events remain concentrated within the wet season, critical for regional aquifer recharge. Spatial 

flow characteristics further support sustained infiltration, with the majority of events focused 

within the upstream channel section during both dry and wet seasons. Decreased occurrence 

moving downstream highlights the likely impact of additional factors such as transmission loss, 

evapotranspiration, and agricultural abstraction contributing to channel intermittency. 

 

3.2 Introduction 

Perennial channels remain the dominant conceptual framework for hydrologic research, 

yet more than half of the global stream network experiences flow cessation on an annual basis 

(Datry et al., 2014; Messager et al., 2021). Non-perennial channels (e.g., intermittent, and 

ephemeral channels) encompass a broad range of dynamic systems, with periods of flow 
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discontinuity ranging from a single day to the majority of the year (Costigan et al., 2017). 

Observed across both humid and arid climates, this range of disruption, as well as the primary 

drivers, vary widely (Hammond et al., 2021; Messager et al., 2021; Zipper et al., 2021). 

Intermittent flow is a naturally occurring feature of many hydrologic regimes; it may be 

catalyzed by drought, anthropogenic abstraction, or occur only in response to precipitation 

events. Key drivers of flow variability include climate, topography, height of the water table, and 

basin land use (Costigan et al., 2017; Hammond et al., 2021; Messager et al., 2021; Zipper et al., 

2021). In conjunction with providing critical water resources, non-perennial channels facilitate 

key biogeochemical processes and sediment flux as they shift between wet and dry phases (Datry 

et al., 2014; Stubbington et al., 2020; Stark et al., 2021; Zimmer et al., 2022). 

Despite their hydrologic and ecologic significance, intermittent systems remain poorly 

characterized (Datry et al., 2014; Zimmer et al., 2020). Though increasing work has been carried 

out to understand their prevalence and global distribution, minimal research has been focused on 

the dynamic nature and temporal variability of flow. This is particularly relevant as many 

perennial streams are anticipated to grow increasingly intermittent with projected climate 

warming and altered patterns of precipitation (Zipper et al., 2021). 

Limited characterization is a specific concern within dryland environments, where 

intermittent and ephemeral channels are the dominant hydrologic feature (Milewski et al., 2009, 

2015; Hammond et al., 2021; Messager et al., 2021). Ephemeral channels experience episodic 

flow only in response to storm events; streamflow is closely tied to precipitation seasonality and 

is spatially and temporally variable (Fakir et al., 2021). Transmission loss, the vertical infiltration 

of surface water through channel sediments, represents the primary form of aquifer recharge 

within arid zones (Shentsis and Rosenthal, 2003; Levick et al., 2008; Shanafield and Cook, 
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2014). Limited research has focused on quantifying ephemeral channel flow regimes, despite 

direct implications of channel intermittency for groundwater recharge and water availability. 

This is, in part, a result of the minimal gauging and limited data history frequently observed in 

non-perennial systems (Levick et al., 2008; Costa et al., 2013; Costigan et al., 2017). Though 

under-prioritized, ephemeral channels present specific challenges to monitoring (Krabbenhoft et 

al., 2022). Extended periods of no-flow, punctuated by large, destructive floods may damage 

gauge equipment. Flow may further be spatially discontinuous across the channel, with 

stationary gauges poorly suited to capture flow heterogeneity (Zimmer et al., 2020). In arid 

regions with already limited water resources, even minor shifts in onset, duration, and 

distribution of precipitation may have profound implications for ephemeral channel flow and 

resulting recharge (Fakir et al., 2021). Failure to quantify spatial and temporal patterns of surface 

flow impedes modeling efforts and water-balance estimates, increasing the likelihood of 

mismanagement (Döll and Schmied, 2012). 

Remote sensing has frequently been used to characterize landscapes, including 

substantial work in water detection (Alsdorf et al., 2007; Zhou et al., 2017). Common methods 

include the application of image masks, indices, classification schemes, and proxies to 

differentiate water pixels from the land surface. These methods however are broadly focused on 

large, clear water bodies, such as oceans, lakes, and major perennial rivers, which display low, 

relatively consistent reflectance values over space and time (McFeeters, 1996; Xu, 2006; Feyisa 

et al., 2014; Fisher et al., 2016). Though interest has increased in recent years, water detection 

methods developed for open water bodies are poorly suited for water pixel identification within 

ephemeral channels (Seaton and Mazvimavi, 2020; Maswanganye, 2022). Within these systems, 

water pixels are frequently mixed, highly turbid, and spatially and temporally inconsistent (Sun 
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et al., 2012; Tulbure et al., 2016; Borg Galea et al., 2019; Maswanganye, 2022). Common fluvial 

features such as braided or multi-threaded geomorphology may yield channels too narrow to be 

resolved at the spatial resolution of common sensors (Levick et al., 2008; Sun et al., 2012). 

Temporally, ephemeral channels vary greatly, with inundation ranging from a period of hours to 

days (Levick et al., 2008; Costigan et al., 2017). The limited temporal resolution of publicly 

available satellites may further fail to capture this variability. Physical properties of arid 

environments may present challenges, with low topographic gradients and limited vegetation 

impeding channel delineation (Hamada et al., 2016). Highly turbid flow events may additionally 

produce high spectral reflectance, reducing contrast between adjacent channel alluvial sediments 

(Jacobberger et al., 1983; Hamada et al., 2016). Recent work has identified the utility of tailored 

water pixel detection to specific environments through the use of machine learning algorithms 

and statistical analyses (Jacobberger et al., 1983; Hamada et al., 2016; Isikdogan et al., 2017). 

Specific applications include the use of random forest algorithms with satellite-derived variables 

(TOA bands, NDVI, or common water pixel indices) for water pixel prediction and subsequent 

mapping (Tulbure et al., 2016; Malinowski et al., 2016; Veh et al., 2018; Chen et al., 2020; Fei et 

al., 2022). For intermittent systems, this has the potential to improve water pixel classification 

and identification. 

At present, remote sensing analysis of temporary water bodies is minimal and has 

primarily assessed non-channelized flow, such as generalized flooding, glacial outbursts, or 

isolated pools (Malinowski et al., 2016; Veh et al., 2018; Seaton and Mazvimavi, 2020; 

Maswanganye, 2022). Within ephemeral systems, research has focused on the mapping and 

delineation of channel morphology and connectivity, disregarding fluctuations in inundation 

(Hamada et al., 2016; Chen et al., 2020; Fei et al., 2022). Across this work, LiDAR is frequently 
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chosen for high-resolution, spatially focused imagery capable of measuring topographic variation 

(Hamada et al., 2016; Malinowski et al., 2016). LiDAR scanning however is costly and not 

readily available, with limited temporal range for trend analysis. Publicly available, passive 

satellites may be better suited for the assessment of long-term shifts in inundation; imagery is 

generally available across a longer temporal period, necessary for the evaluation of hydrologic 

trends (Seaton and Mazvimavi, 2020). Existing research within this area generally struggles with 

data availability, both temporally and spatially, for the assessment of significant trends at the 

established 30-year hydrologic reference period (World Meteorological Organization (WMO), 

2017). This limits the ability of existing methodologies to quantify statistically significant trends, 

particularly in intermittent systems which may be experiencing shifting inundation in relation to 

climate warming. 

This research is focused on understanding large-scale hydrologic processes within 

ungauged basins through the use of remote sensing and a flexible statistical classification. It 

further explores the application of this remote sensing methodology to quantify streamflow 

variability within an ungauged, ephemeral channel in central Morocco. This work specifically 

aims to (1) assess the utility of discriminant function analysis for improved classification of 

ephemeral channel inundation. In turn, this methodology is applied to (2) quantify the temporal 

and (3) spatial patterns of flow variability across the Souss channel, an evolving ephemeral 

system. 

Within this study, discriminant function analysis was applied to NASA Landsat imagery 

(missions 5, 7, and 8) from 1984 to 2022 to develop an optimized water classification scheme 

based on the unique characteristics of water pixels within ephemeral river systems. Improved 

water pixel classification was applied to identify patterns of surface flow across upstream, 
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midstream, and downstream reaches of the channel. Remotely sensed precipitation data (TRMM-

TMPA, GPM-IMERG) were applied to validate flood presence. Remote sensing has the potential 

to resolve data gaps for the past and present characterization of channel intermittency, 

particularly in data-limited systems. This analysis demonstrates potential in its application to 

quantify patterns of intermittent surface flow across non-perennial channels, improving 

management in water-scarce regions. 

 

3.3 Methods 

Study Area 

The Souss±Massa (27,000 km2) is a semi-arid, highly agricultural basin located in central 

Morocco (Figure 1) (Bouchaou et al., 2011; Hssaisoune et al., 2016). Bounded by the High-Atlas 

Mountains to the north and Anti-Atlas Mountains to the south, the Souss channel flows from the 

Aoulouz reservoir in the foothills to terminate at the Atlantic Ocean. Overall, a gently sloping 

system, the average stream gradient shifts from 12.2 m/km in the channel upstream to flatten 

across the midstream and downstream sections (5.7 m/km and 3.1 m/km, respectively). This 

channel is underlain by alluvial material, primarily gravels, sands, and lacustrine limestones, 

which comprise a thick Pliocene±Quaternary sequence (Choukr-Allah et al., 2016; Hssaisoune et 

al., 2019). These sediments contain an unconfined regional aquifer with variable thickness; depth 

to the water table is shown to increase moving westward and with distance from the channel 

(Dindane et al., 2003; Ait Brahim et al., 2017). The unconfined aquifer is shallowest adjacent to 

the Souss, ranging from an average of 10±30 m below the surface (Dindane et al., 2003; Ait 

Brahim et al., 2017). Historically an ephemeral system, surface flow is seasonal, supported by 

tributaries originating in the High-Atlas Mountains and precipitation during the wet season from 
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November±March (Bouchaou et al., 2011; Hssaisoune et al., 2016). Post-1990, discharge has 

been modulated through releases by the Aoulouz dam, located at the channel headwaters 

(Bouragba et al., 2011). As a result of flow intermittency and limited infrastructure, data are 

scarce across the basin. Discharge measurements are restricted to only two gauges located in the 

upstream and midstream channel sections, with intermittent measurements beginning in 1999 

(Bouizrou et al., 2023). 

 

 

Figure 3-1. The Souss channel, located in central Morocco. The channel is broken into three 

distinct sections based on basin morphology: upstream, midstream, and downstream. The final 

16 km of the downstream section of the channel was excluded from analysis, as the reach from 

Drarga to the terminus at the Atlantic Ocean experiences rare surface flow and common 

saltwater intrusion. In the upper left, a DEM of the Souss±Massa basin displays variable 

elevation, ranging from 4144 m in the channel uplands to 0 m across the downstream section of 

the plain. 
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Across this basin, precipitation is heterogenous, with annual averages ranging from 500 

mm in the uplands to 250 mm across the plain (Hssaisoune et al., 2019). Decreased precipitation 

intensity and increased mean annual temperature have been observed in recent decades, with 

inter-annual variability resulting in a higher frequency of drought (Bouragba et al., 2011; 

Bouchaou et al., 2011). Despite limited water resources, the Souss±Massa basin relies heavily on 

irrigation via surface and groundwater pumping to support critical citrus and vegetable exports, 

accounting for greater than 50% and 85%, respectively, of the national total (Ait Brahim et al., 

2017; Almulla et al., 2022). The basin additionally is widely utilized for cereal and almond 

production (Almulla et al., 2022). Since the 1970s, over-pumping for agriculture, in tandem with 

reduced precipitation, has driven steady declines in the height of the unconfined Souss aquifer 

(Ait Brahim et al., 2017). Though surface flow in the channel plays a vital role in supporting 

regional agriculture, a limited understanding of flow intermittency creates a challenge for 

sustainable water management. 

 

Data 

Using Google Earth Engine, satellite imagery of the Souss channel was acquired from 

NASA Landsat missions 5, 7, and 8, spanning a combined 38-year period from 1984 to 2022. 

Top of Atmosphere (TOA) reflectance imagery (Tier 1) was selected, and dark-object 

subtraction was applied for atmospheric correction (Chavez, 1988). Landsat imagery is available 

approximately every 16 days; however images were filtered for low cloud cover (less than 5% of 

the image), reducing the number of available images (Table 3-1). The Souss channel was divided 

into three sections of varying length corresponding to upstream, midstream, and downstream 

reaches, delineated on the basis of channel morphology and geographic markers. In particular, 
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the upstream and midstream sections were separated at a distinct bend in the channel, which is 

further the approximate location of reduced flow frequency. The midstream and downstream 

channel sections were delineated at the mid-sized town of Taroudant, which is further correlated 

to qualitative observations of reduced surface flow (Figure 1). Channel reaches were used to 

spatially filter imagery to regions of interest (Figure 2). Only images which entirely cover 

channel sections were selected to avoid edge pixels, which commonly have incomplete band 

information. An exception, however, was made for the downstream section, with the inclusion of 

four additional images which only partially cover the section (ranging from 0.69 to 5.11% fewer 

pixels) to support a more complete time span for Landsat 5 path 203/row 39 (WRS-2). Though 

the number of images per section is in part an artifact of variable cloud cover, Landsat 5 path 

203/row 39 has approximately one-third fewer images collected than path 202/row 39. From 

visual inspection, the truncated images included were entirely dry and devoid of surface flow. 

Across all selected imagery, band values were extracted for each pixel in the image (Figure 3). 

For comparison across bands, each pixel value was converted to a percent range, standardizing 

the scale of all values from 0 to 1, as demonstrated in Equation (1). 

Pi�el Percen� Range ൌ
ሺPi�el Val�e െ Band Minim�mሻ

ሺBand Ma�im�m െ Band Minim�mሻ
 (1) 
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Table 3-1. Landsat 5, 7, and 8 satellite information. Across the three satellites, the Panchromatic 

and Thermal bands (1 and 2) were excluded from linear discriminant function analysis due to 

their varied spatial resolutions. 

Satellite Filtered Temporal Range Bands Range Resolution 

Landsat 5 TM 
TOA 

Collection 1, 
Tier 1 

May 1984±September 2011 

Band 1: Blue 30 m 0.45±0.52 ȝm 
Band 2: Green 30 m 0.52±0.60 ȝm 
Band 3: Red 30 m 0.63±0.69 ȝm 
Band 4: NIR 30 m 0.76±0.90 ȝm 

Band 5: SWIR 1 30 m 1.55±1.75 ȝm 
Band 6: Thermal Infrared 60 m 10.40±12.50 ȝm 

Band 7: SWIR 2 30 m 2.08±2.35 ȝm 

Landsat 7 TOA 
Collection 1, 

Tier 1 
October 2011±April 2013 

Band 1: Blue 30 m 0.45±0.52 ȝm 
Band 2: Green 30 m 0.52±0.60 ȝm 
Band 3: Red 30 m 0.63±0.69 ȝm 
Band 4: NIR 30 m 0.77±0.90 ȝm 

Band 5: SWIR 1 30 m 1.55±1.75 ȝm 
Band 6: Thermal Infrared 60 m 10.40±12.50 ȝm 

Band 7: SWIR 2 30 m 2.08±2.35 ȝm 
Band 8: Panchromatic 15 m 0.52±0.90 ȝm 

Landsat 8 TOA 
Collection 2, 

Tier 1 
April 2013±May 2023 

Band 1: Coastal aerosol 30 m 0.43±0.45 ȝm 
Band 2: Blue 30 m 0.45±0.51 ȝm 

Band 3: Green 30 m 0.53±0.59 ȝm 
Band 4: Red 30 m 0.64±0.67 ȝm 
Band 5: NIR 30 m 0.85±0.88 ȝm 

Band 6: SWIR 1 30 m 1.57±1.65 ȝm 
Band 7: SWIR 2 30 m 2.11±2.29 ȝm 

Band 8: Panchromatic 15 m 0.52±0.90 ȝm 
Band 9: Cirrus 30 m 1.36±1.38 ȝm 

Band 10: Thermal Infrared 1 100 m 10.60±11.19 ȝm 
Band 11: Thermal Infrared 2 100 m 11.50±12.51 ȝm 
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Figure 3-2. Footprint of Landsat imagery within the Souss±Massa basin (outlined in gray). 

Across the channel, the differing section length translates to a variable number of pixels per 

section. The upstream and midstream reach both fall within the path 202/row 39 Landsat image, 

while the downstream stretch falls entirely within the path 203/row 39 image and partially in the 

path 202/row 39 image (WRS-2). 
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Figure 3-3. Example of water and non-water pixel selection within the training dataset. Pixels 

outlined in white indicate water, while pixels outlined in black indicate non-water. 

 

 Statistical Analysis 

Discriminant function analysis is a statistical method used to identify known, categorical 

groups within unknown, continuous data. For remotely sensed images, this statistical procedure 

allows for a computationally simple, supervised pixel classification based on a combination of 

variables. Within ephemeral channels where water pixels do not closely align with those of clear 

and open water bodies, water pixel identification can be tailored to site-specific reflectance 

values across multiple bands. Discriminant function analysis provides the advantage of rapid, 

computationally inexpensive, and flexible classification for binary groups without overfitting, an 

advantage over similar machine learning classifiers such as decision trees or random forest 

models. Linear Discriminant Analysis (LDA) generates a linear function which maximizes the 

distinction between groups, in this study, water and non-water pixels (Davis, 2002). This 
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function uses the visible and near-infrared bands of each satellite as explanatory variables, 

producing loadings for each. Larger loadings, positive or negative, identify the bands which have 

the greatest impact on group determination (Davis, 2002; Maindonald and Braun, 2003). For 

each pixel within the training dataset, group membership is determined as a classification 

probabilit\. The predictive accurac\ of an LDA is evaluated through a comparison of a pi[el¶s 

group classification via linear function and its known group membership (Maindonald and 

Braun, 2003). This is further evaluated using jackknife validation, which generates a predictive 

accuracy free of resubstitution error (Maindonald and Braun, 2003). When appropriate accuracy 

has been determined, an LDA is free to be applied to pixels outside of the training dataset, those 

with unknown group membership. 

For Landsat 5 and 8, an image corresponding to a flood event within the midstream 

section of the ephemeral channel was visually identified in natural color and used to construct a 

training dataset. Water and non-water pixels were manually selected (1600 pixels per group, 

3200 total) for the training dataset (Table A1). The selection prioritized pixels with clear group 

membership and avoided edge or mixed pixels. Using R Statistical Software (v4.1.1) and the 

MASS R package (v7.3±60), a separate LDA was then trained for each satellite based on the 

known pixel values of the training dataset (Venables and Ripley, 2002; R Core Team, 2011). 

When appropriate predictive accuracy was determined via jackknife validation, the LDA 

function was applied across all previously identified images for that satellite, predicting group 

membership for each pixel. This was then translated to a percent of water pixels per image, used 

to determine whether an image displays inundation or dry conditions. 

As the Souss channel is predominantly dry, the majority of images are expected to 

display water pixel percentages near zero. Flood events represent atypical behavior in this 
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system, resulting in significantly fewer images with elevated water pixel percentages. Surface 

flow has qualitatively been observed less frequently with increasing distance from source. Flood 

events which originate in the upstream section of the channel may extend only partially into 

midstream and downstream channel reaches, though this spatial variability is poorly understood. 

Small percentages of water pixels may be identified within images lacking surface flow as a 

result of either anthropogenic water storage adjacent to the channel or analysis error. Such 

percentages, however, are expected to be minimal due to the high predictive accuracy of both 

LDAs.  

The cutoff between wet and dry channel conditions was determined via Receiver 

Operator Characteristic (ROC) curves, calculated for each satellite. Cutoffs aim to maximize the 

number of true positives, correctly identified flood events, while minimizing false positives. For 

each satellite, 10% of the evaluated imagery was randomly sampled and visually analyzed for 

inundation. Random samples maintained the same proportion of channel sections present in the 

evaluated imagery. ROC curves for each satellite were compared for both percentages and counts 

of water pixels per image to identify the cutoff value associated with the greatest sensitivity and 

specificity. Both percentage and counts were included to explore a greater number of 

classification thresholds in the random subsample. For Landsat 5, images with greater than 

0.55% water pixels were determined to represent flood conditions within the channel (TPR = 

0.85, FPR = 0.18). For Landsat 8, images with more than 1200 pixels were identified as flood 

conditions (TPR = 0.71, FPR = 0.24) (Figure 4).  

The Landsat 7 satellite sustained a failure in its scan line corrector in mid-2003, resulting 

in a scan line error and artifact within the subsequent imagery. As a result, the number of pixels 

per image was reduced by approximately 20% (Andrefouet et al., 2003). This artifact further 
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significantly increased the number of edge pixels per image, pixels in which one or more bands 

lack a value. Due to these errors, use of Landsat 7 imagery was minimized to only the temporal 

period not covered by Landsat 5 and Landsat 8, December 2011 through April 2013. As a result, 

the small number of available images eliminates the need for automated image classification and 

instead enables visual analysis of flood presence. Additionally, the inconsistent exclusion of 

band values within the edge pixels is poorly suited for LDA construction and application, as this 

method assumes an equal number of variables within all cases.  

 

 

 

Figure 3-4. ROC curves for Landsat 5 and Landsat 8 flood cutoffs. ROC curves for both counts 

and water pixel percentages were compared for each satellite. For all satellites, the majority of 

images have water pixel values which cluster near zero percent. This is consistent with our 

understanding of a default dry channel, with intermittent periods of surface flow. 
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Validation 

Within the Souss±Massa basin, precipitation gauging is limited and temporally variable. 

Gauges are further poorly spatially distributed and concentrated in the midstream and 

downstream sections of the channel, despite higher precipitation in channel uplands (Bouizrou et 

al., 2023). Due to its ephemeral nature, antecedent precipitation is considered necessary for 

surface flow within the Souss basin. Satellite-based precipitation estimates thus may serve as a 

tool to validate flood presence. NASA and JAXA TRMM-TMPA (Daily Accumulated 

Precipitation, TRMM-3B42 V7) and GPM-IMERG (Daily Accumulated Precipitation²Final 

Run V06) products were used for validation of channel inundation from January 1998 through 

August 2021. Estimates from the TRMM-TMPA satellite were used from 1998 to 1999, while 

2000 to 2021 utilizes the GPM-IMERG algorithm which fuses TRMM and GPM estimates 

across the overlap period from 2000 to 2015. Precipitation estimates were aggregated into a 

cumulative total precipitation across the seven-day period prior to a satellite image. Estimates of 

less than 10 mm per seven-day period were excluded, as previous work has identified elevated 

error in estimation of light precipitation events, including false precipitation (Tian et al., 2009). 

The utility of the TRMM product for precipitation estimates across Morocco has 

demonstrated accuracy at elevations less than 1000 m (Milewski et al., 2015; Tramblay et al., 

2016). This is in line with global observations of reduced estimate accuracy over variable 

topography. Within the Souss±Massa basin, TRMM-TMPA was found to provide accurate 

estimates of daily precipitation, outperforming similar precipitation estimates (CHIRPS, and 

PERSIANN) when compared to in situ measurements (Bouizrou et al., 2023). Precipitation 

estimates were further improved with the launch of the GPM satellite in 2014, equipped with a 

dual-frequency precipitation radar capable of better distinguishing the light precipitation events 
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characteristic of arid environments (Saouabe et al., 2020). Evaluation of GPM estimate accuracy 

in a mountainous Moroccan basin found strong agreement with observed precipitation, improved 

in lower elevation sections of the basin (Saouabe et al., 2020). Though GPM-IMERG Final Run 

is regarded as a research-level product, it is important to note the potential for introduced biases 

from retrospective processing (Tang et al., 2020). Research focused on the resampled period 

(2000±2015), however, found suitable accuracy at the daily scale, with increased accuracy 

moving from 2001 to 2018 through the addition of passive microwave samples (Tang et al., 

2020). Studies in arid environments further indicate GPM-IMERG Final Run suitability for 

precipitation estimates (Shawky et al., 2019). 

Following flood validation, Mann±Kendall trend analysis was applied to identify 

statistically significant monotonic trends in flood events across the time period. Trend analysis 

was explored at monthly, seasonal, and annual flood occurrence aggregations across individual 

and grouped channel sections. 

 

3.4 Results 

LDA Training 

The Landsat 5 LDA was trained on the midstream section of a flood image from 30 

September 1997 (Figure 5). This LDA has high predictive accuracy when applied to the training 

dataset, with 100% accuracy in group classification with and without jackknife validation (Table 

2). The resulting LDA demonstrates similar classification success when applied to unknown 

pixels in images with and without channel flooding (Table 2). Plotted, this LDA supports distinct 

group classification without overlap, with loadings that indicate that the Red (0.63±0.69 ȝm) and 
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SWIR 2 (2.08±2.35 ȝm) bands have the greatest influence on the linear function (Table 3-3) 

(Figure 3-6) 

 

 

 

Figure 3-5. (A) Landsat 5 image of a midstream channel flood, 30 September 1997. (B) Landsat 

5 image of midstream channel without surface flow, 17 November 1997. 
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Table 3-2. Predictive accuracies calculated for the training dataset used to construct the LDA. 

Both achieve 100% accuracy in classifying test pixels correctly into the two groups. 

Classification was then tested on unknown pixels within a flood and non-flood image in the 

midstream channel region. The classifier correctly infers a much greater number of water pixels 

(5.80% vs. 0.20%) in the flood image. 

Landsat 5 LDA Training Pixels Predictive Accuracy Jackknife Predictive 
Accuracy 

Training Dataset  
Flood Image  

30 September 1997 

Water pixels 1600 100% 100% 

Non-water pixels 1600 100% 100% 

Test Classification  Pixels per Image Predicted Water pixels Predicted Non-water pixels 
Flood Image 
Midstream  

30 September 1997 
 137,056 pixels 7956 pixels (5.80%) 129,100 pixels (94.20%) 

Non-flood Image 
Midstream  

17 November 1997 
 137,056 pixels 271 pixels (0.20%) 136,785 pixels (99.80%) 

 

Table 3-3. Landsat 5 LDA loadings. Bolded values signify bands which have the greatest 

contribution. 

Bands Loadings 
Blue í2.64 

Green 3.38 
Red 10.28 
NIR í4.44 

SWIR 1 í5.32 
SWIR 2 í9.61 
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Figure 3-6. Graphical distribution of Landsat 5 discriminant function analysis for water vs. non-

water pixels. Lack of overlap, as well as tight within-group pixel distribution indicates strong 

group separation and a successful LDA. 

 

The Landsat 8 LDA was constructed using a midstream flood image from 7 December 

2016 (Figure 3-7). High predictive accuracy was achieved with the training dataset, yielding a 

98.13% and 98.75% accuracy for the water and non-water pixels, respectively (Table 3-4). This 

LDA demonstrates successful group classification with minimal overlap, with loadings which 

identify the Blue (0.45±0.51 ȝm) and Coastal aerosol bands (0.43±0.45 ȝm) as most significant 

to the discriminant function (Table 3-5) (Figure 3-8). Application to unknown pixels within flood 

and non-flood images (12 July 2016 and 16 July 2016, respectively) align with these 

observations; water pixels are predicted to comprise 11.68% of the flood image and 0.71% of the 

non-flood image (Figure 3-7) (Table 3-4). 
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Figure 3-7. (A) Landsat 8 image of a channel flood across the midstream section, 7 December 

2016. (B) Landsat 8 image without surface flow, midstream section, 16 July 2016. Images were 

used for testing LDA classification on unknown pixels. 
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Table 3-4. Predictive accuracies calculated for the training dataset of the Landsat 8 DFA. Both 

achieve near 100% accuracy in classifying the pixels correctly into the two groups. Classification 

testing of water pixel predictions for flood vs. non-flood images successfully identified higher 

water pixel percentages with known water presence (11.68% vs. 0.71%). 

Landsat 8 LDA Training Pixels Predictive 
Accuracy 

Jackknife Predictive 
Accuracy 

Training Dataset 
Flood Image: 
12 July 2016 

Water pixels 1600 98.13% 98.13% 
Non-water 

pixels 1600 98.75% 98.69% 

Test 
Classification  Pixels per 

Image 
Predicted Water 

pixels Predicted Non-water pixels 

Flood Image 
Midstream, 
12 July 2016 

 137,056 pixels 16,014 pixels 
(11.68%) 88.32% 

Non-flood Image 
Midstream, 
16 July 2016 

 137,056 pixels 970 pixels (0.71%) 99.29% 

 

Table 3-5. Landsat 8 LDA loadings. Bolded values signify bands with the greatest contribution. 

Bands Loadings 
Coastal aerosol 38.19 

Blue í44.28 
Green 8.01 
Red í2.25 
NIR 7.25 

SWIR 1 í10.63 
SWIR 2 11.37 
Cirrus í1.76 
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Figure 3-8. Graphical depiction of group classification for Landsat 8 LDA, indicating successful 

delineation with minimal overlap. 

 

Due to the scan line artifact and minimal imagery spanning from December 2011 through 

April 2013, Landsat 7 imagery was visually analyzed. With only 14 images in the upstream and 

midstream sections, respectively, and six images in the downstream section, only one upstream 

image displayed channel surface flow (26 March 2013). This Landsat 7 flood image was 

assigned a value of 5.01% water pixels, the average water pixel percent for Landsat 5 and 

Landsat 8 upstream flood imagery.  

 

Modified NDWI Comparison 

Predictions from the LDA pixel classifications were compared to a widely accepted and 

commonly used classification index, the Modified Normalized Difference Water Index (modified 

NDWI) (Xu, 2006). Developed to minimize built-up land noise in water pixel extraction, the 
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modified NDWI has proven successful in open water delineation through the use of the SWIR 

and green bands (Xu, 2006). It has been further shown to effectively identify turbid water bodies, 

a feature particularly suited to ephemeral channels (Xu, 2006). The modified NDWI was applied 

to the Landsat 5 and 8 LDA training datasets, as well as flood and non-flood test imagery. Using 

the commonly applied threshold of zero, positive values are characterized as water pixels, while 

zero and negative values are considered land (Xu, 2006). Across both the Landsat 5 and 8 LDAs, 

the modified NDWI proved to be less sensitive in its identification of water pixels, 

misclassif\ing 9.38% (Landsat 5) and 98.06% (Landsat 8) of the training dataset¶s water pi[els 

as non-water (Table 3-6). In contrast, the index had high accuracy in identification of non-water 

pixels, with 100% (Landsat 5) and 99.94% (Landsat 8) non-water pixels correctly classified. For 

both satellites, the modified NDWI leaned heavily toward over classification of land pixels while 

failing to identify observed water. This further supports our concern that commonly utilized 

water classification indices may be poor classifiers of the water features within ephemeral 

channels, failing to accurately quantify water presence in these systems. 
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Table 3-6. Comparison of Landsat 5 and 8 LDA classifications to modified NDWI. 

  Modified NDWI LDA 

  Water 
Pixels 

Non-Water 
Pixels 

Water Pixels 
Non-Water 

Pixels 

Landsat 5 

Training dataset,  
Water pixels  

30 September 1997 
1450 150 1600 0 

Training dataset,  
Non-water pixels  

30 September 1997 
0 1600 0 1600 

Flood Image,  
30 September 1997 2647 (1.93%) 134,409 (98.07%) 7956 (5.80%) 129,100 (94.20%) 

Non-flood Image,  
17 November 1997 3 (0.002%) 137,053 (99.99%) 271 (0.20%) 136,785 (99.80%) 

Landsat 8 

Training Dataset,  
Water pixels  
12 July 2016 

31 1569 1570 30 

Training Dataset,  
Non-water pixels  

12 July 2016 
1 1599 20 1580 

Flood Image,  
12 July 2016 90 (0.07%) 136,966 (99.93%) 16,014 (11.68%) 121,042 (88.32%) 

Non-flood Image,  
16 July 2016 0 (0%) 137,056 (100%) 970 (0.71%) 136,086 (99.29%) 

 

Validation 

For images correlated to the period of TRMM-TMPA and GPM-IMERG estimates, flood 

presence as identified by ROC curve cutoff values (>0.55% water pixels for Landsat 5, >1200 

water pixels for Landsat 8) was validated through combined precipitation estimates of 10 mm or 

greater for the preceding seven-day period (Appendix Chapter 3, Figure 1). Results indicate a 

higher number of non-precipitation-validated floods further upstream in the channel, with the 

number of precipitation-validated events increasing moving further downstream (Table 3-7) 

(Figure 3-9). As the Souss channel is an ephemeral system supported by surface runoff and 

experiencing transmission losses, increased distance from the headwaters would be expected to 

correlate with an increase in precipitation-linked flow. Surface flow is further frequently 

observed in the upstream section of the channel, likely supported by precipitation and runoff in 
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the adjacent mountain block, and less tied to precipitation adjacent to the channel. Orographic 

precipitation may not directly translate to precipitation (and thus satellite estimates) on the plain. 

This may additionally highlight increased error in satellite precipitation estimates with increasing 

elevation (Shawky et al., 2019). Several minor tributary channels originating in the adjacent 

mountain block may further be supported by this precipitation, with confluences in the 

midstream and downstream sections contributing to non-precipitation-validated flow. In 

addition, dam installation at the channel headwaters post-1990 has resulted in infrequent dam 

releases uncorrelated to precipitation. Dam releases may produce limited surface flow in the 

channel upstream and midstream sections, and account for instances of non-precipitation-

validated flow.  

Across the three channel sections, a cumulative 336 upstream, 336 midstream, and 122 

downstream images were evaluated, spanning from 1984 through 2023. Of these images, 43.88% 

percent were identified as containing channel surface flow, while 56.17% represent dry 

conditions. Separated by section, the highest frequency of surface flow is observed within the 

upstream channel (50.28%), which is consistent with visual observation. The midstream and 

downstream sections demonstrate notably fewer flood events (33.62%, 16.09%), with the least 

occurring downstream (Table 3-8). 
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Table 3-7. Validation of flood presence through prior precipitation, separated by channel section. 

 Precipitation-Validated Flood Non-Precipitation-Validated Flood 
Upstream 43 (50.59%) 42 (49.41%) 
Midstream 36 (54.55%) 30 (45.45%) 

Downstream 37 (80.43%) 9 (19.57%) 
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Figure 3-9. Flood events across the observation period, separated by channel section and satellite 

precipitation validation. Periods in black indicate events which fall outside the range of available 

TRMM-TMPA and GPM-IMERG estimates. The majority of non-precipitation-validated events 

(blue) are observed in the upstream section of the channel, decreasing further downstream. This 

is consistent with runoff patterns which support flow within an ephemeral system. 

 

Flood Assessment 

Across the three channel sections, a cumulative 336 upstream, 336 midstream, and 122 

downstream images were evaluated, spanning from 1984 through 2023. Of these images, 43.88% 

percent were identified as containing channel surface flow, while 56.17% represent dry 

conditions. Separated by section, the highest frequency of surface flow is observed within the 

upstream channel (50.28%), which is consistent with visual observation. The midstream and 
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downstream sections demonstrate notably fewer flood events (33.62%, 16.09%), with the least 

occurring downstream (Table 3-8). 

 

Table 3-8. Flood event frequency across channel sections and satellite images. 

 Landsat 5 Landsat 7 Landsat 8 Total 
Upstream 103 1 (0.57%) 71 175 (50.28%) 
Midstream 81 0 (0%) 36 117 (33.62%) 

Downstream 25 0 (0%) 31 56 (16.09%) 
Total 209 1 138  

 

Temporal Variability 

Across the observation period, the temporal frequency of flood events remained relatively 

consistent, with surface flow representing a sporadic, but regular event within the Souss channel 

(Figure 3-10). From 1998 to 2008, however, a period of reduced flow frequency was observed 

across all channel sections. Evaluation of seasonal patterns of channel inundation further 

highlight the overall reduction in both wet and dry season events during this period (Figure 3-

11). This is consistent with significant droughts, which occurred from 1998 to 2001, 2005, and in 

2007 (Verner et al., 2018). Pre-1998, dry season flood events are observed as a significant 

proportion of all channel inundation. Post-2008, however, the contribution of dry season events 

decreases, while wet season floods increase in overall occurrence. 
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Figure 3-10. Flood frequency across the observation period, separated by channel section. Events 

are delineated as flood (blue) or non-flood conditions (brown). Monotonic trends in water pixels 

per image for flood events across the period are not observed. 
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Figure 3-11. Seasonal flood frequency across the observation period. From 1984 to 2023, the 

dominant season of flood contribution shifts from the dry season (April±October) to the wet 

season (November±March). This shift begins to occur in 2001, correlated with the same period 

of reduced channel flooding from 2001 to 2008. 

 

Mann±Kendall trend analysis was applied to assess monotonic trends in the number of 

flood events from 1984 through 2023 (Table 3-9) (Figure 3-12). With flood occurrence 

aggregated annually, Mann±Kendall analysis identified statistically significant (i.e., non-zero) 

positive trends in flood events across the observation period for a combination of all three 

sections, and the downstream section individually. For non-flood events, statistically significant 

positive trends were observed for all channel sections, both grouped and individually. It further 

identified a statistically significant positive trend in the number of flood events across all 
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sections when aggregated monthly, and for the wet season specifically. No statistically 

significant trend, either positive or negative, was observed for flood events during the dry 

seasons. For non-flood events, a statistically significant positive trend in the number of flood 

events was found when aggregated monthly, and for both wet and dry seasons. 

 

Table 3-9. Mann±Kendall trend analysis. 

Aggregation All Channel Sections Upstream Midstream Downstream 
Annual 

Flood events 
tau = 0.234 
p = 0.0403 

tau = 0.143 
p = 0.2134 

tau = 0.0703 
p = 0.5539 

tau = 0.347 
p = 0.0043 

Annual 
Non-flood events 

tau = 0.335 
p = 0.0029 

tau = 0.279 
p = 0.0163 

tau = 0.231 
p = 0.0436 

tau = 0.59 
p = 1.0729e-06 

Wet Season 
Flood Events 

tau = 0.302 
p = 0.0089    

Wet Season 
Non- flood events 

tau = 0.457 
p = 0.0002    

Dry Season 
Flood events 

tau = 0.0753 
p = 0.5181    

Dry Season 
Non-flood events 

tau = 0.254 
p = 0.0293    

Monthly 
Flood events 

tau = 0.222 
p =< 2.22 × 10í16    

Monthly 
Non-flood events 

tau = 0.227 
p =< 2.22 × 10í16    
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Figure 3-12. Mann±Kendall trend analysis. Aggregations vary, however each represents analysis 

of all three channel sections. (A) Annual aggregation for all flood events. (B) Wet season 

aggregation for all flood events. (C) Dry season aggregation for non-flood events. 

 

Spatial Variability 

Due to the twice-monthly return of the Landsat satellites, quantifying the spatial 

connectivity of surface flow for a specific inundation event is challenging via satellite imagery. 

The assessment of larger trends in the spatial variability of flood events across the Souss 

upstream, midstream, and downstream sections, however, demonstrates a decreased frequency of 

inundation moving downstream (Table 3-10) (Appendix Chapter 3, Figure 2). This is consistent 

with visual observation, in which flow rarely extends to downstream reaches and instead 
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fluctuates between upstream and midstream sections. It is further logical within an arid, 

ephemeral system, in which surface water is lost to evapotranspiration and transmission losses. 

Across the observation period, occurrence of flood events within the downstream section of the 

channel is observed to increase following 2004, in tandem with the previously observed 

increased frequency of wet season inundation events (Figure 3-12). Across the wet season, flood 

frequency is observed as relatively balanced across the midstream and downstream channel 

sections, with approximately half of all events occurring within the upstream section (Table 3-

10). In contrast, however, the proportion of flood events occurring within the downstream 

section drops significantly during the dry season, shifting from 24.28% to only 8.00% of all 

flood events. The upstream section continues to represent approximately half of all events during 

this season. 

 

Table 3-10. Spatial distribution of flood events by season. 

Season Upstream Midstream Downstream 
Wet 81 (46.8%) 50 (28.90%) 42 (24.28%) 
Dr\ 94 (53.71%) 67 (38.29%) 14 (8.00%) 
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3.5 Discussion 

LDA Classification 

Commonly used water classification indices are broadly tailored to identify clear, 

consistent, open water bodies, the antithesis of the shallow, turbid, and temporal pixels observed 

within ephemeral channels. As a result, the application of these indices for the assessment of 

surface water presence within intermittent systems may fail to capture the reality of flow within 

the channel. The high predictive accuracy of linear discriminant function analysis (LDA) when 

applied to both the Landsat 5 and Landsat 8 imagery presents a novel solution to this challenge. 

As a highly flexible and exploratory statistical method, LDA classification allows for tailoring to 

site-specific features, both spectral and physical. Within the Souss basin, the Red and SWIR 2 

bands (Landsat 5), and Blue and Coastal aerosol bands (Landsat 8) were identified as key 

parameters in the distinction between water and non-water pixels for each group of satellite 

imagery. For Landsat 5, identification of the Red band may highlight the relevance of bare soil, a 

dominant component of a landscape with minimal vegetation. The SWIR 2 band has previously 

been identified as effectively distinguishing water from the landscape, particularly adjacent 

agricultural fields. For Landsat 8, the Blue band is commonly associated with the reflectance of 

surface water, while the Coastal aerosol band may capture heavily turbid water pixels, a key 

characteristic of ephemeral systems like the Souss. Though these bands have been identified as 

the dominant contributors to their respective LDAs, it is important to recognize that the 

remaining five bands additionally play an important role in the linear function. 

The overall poor performance of the modified NDWI confirms the previous intuition that 

existing classifiers may be poorly suited to ephemeral and intermittent systems. The modified 

NDWI index utilizes the Green and SWIR 1 bands, both of which did not appear as primary 
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factors in differentiating water and non-water pixels in this channel. Of the loadings for each 

LDA, the Green band ranked fifth (both for Landsat 5 and 8) and the SWIR 1 band ranking third 

and fourth (Landsat 5 and Landsat 8, respectively). This may indicate the minimized significance 

of vegetation and soil moisture when differentiating surface water presence in this system. For 

the Green band, this is somewhat intuitive within an arid basin like the Souss±Massa, where 

riparian vegetation is minimal. SWIR 1 reflectance, however, is understood to increase with drier 

soil, a common feature in this basin. Interestingly, the mid-ranking of the SWIR 1 band for both 

LDAs indicates that this band likely does play some role, though is not the dominant factor, in 

distinguishing water and non-water pixels.  

Optimizing water classification schemes is critical for improved estimates of large-scale 

hydrologic processes within data-scarce environments. This is specifically relevant in ephemeral 

systems, where improved understanding of surface flow directly informs estimates of 

transmission loss, groundwater storage, and shifting flow patterns as a result of climate and 

anthropogenic influence. With minimal gauging, remotely sensed imagery and precipitation 

estimates are the primary means of understanding the variability of these hydrologic processes 

across time. Satellite imagery, however, does present specific challenges to time-series analysis. 

The infrequent, bi-monthly return of Landsat imagery, paired with filtering for cloud cover and 

image quality, significantly reduces the number of images available for analysis. The offset 

image collection dates for the upstream±midstream channel sections and the downstream section 

further make it difficult to track the progression of an individual flood event within the system. 

Instead, the analysis of patterns of surface water within the Souss is forced to focus more broadly 

on temporal and spatial shifts in flow across the time period. The spatial resolution of Landsat 

pixels may further fail to capture variations in braided flow commonly observed in the Souss and 
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other ephemeral systems. Spatial resolution may lack the detail necessary to distinguish the 

shifting fluvial geomorphology of a system, resulting in mixed pixels. Additional physical 

features of the landscape and riparian vegetation may result in shadowing; however, impacts are 

likely minimized within similarly arid systems which are frequently topographically uniform and 

vegetation sparse. 

The use of satellite precipitation estimates for validation presents additional challenges, 

particularly with spatial resolution. TRMM-TMPA (0.25° × 0.25°) and GPM-IMERG (0.1° × 

0.1°) grid cells are significantly coarser than Landsat pixels and further aggregated to an average 

precipitation upstream of the channel section of interest. Estimates may fail to capture the spatial 

heterogeneity of precipitation across the basin. TRMM-TMPA and GPM-IMERG have further 

demonstrated varied estimation accuracy with elevation and aridity, factors which may introduce 

error into precipitation estimates for the Souss (Milewski et al., 2015). Additionally, from 2000 

to 2021, precipitation estimates are derived from fusion of TRMM-TMPA and GPM-IMERG, 

retrospective processing which may introduce an additional layer of error for estimates over this 

period (Tian et al., 2009). Despite these considerations, remotely sensed precipitation estimates 

are an effective comparative tool for the assessment of precipitation-driven ephemeral channel 

flow. Results from this work identify the increasing percentage of precipitation-validated flood 

events moving downstream within the channel (upstream = 5.59%, midstream = 54.55%, 

downstream = 80.43%). This is in line with the previous understanding of regional flow 

processes, in which channel flow is predominantly derived from precipitation and surface runoff. 

As the ephemeral system moves downstream, an increasing proportion of surface water is 

hypothesized to be transferred to the subsurface via transmission losses. To support flow in the 

downstream section, an increasing input of precipitation is needed. The upstream section of the 
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basin may additionally derive runoff form the adjacent mountain block, resulting in the reduced 

need for prior precipitation adjacent to the channel. 

 

Temporal and Spatial Variability 

The optimized LDA classification was applied to the Souss channel to analyze temporal 

and spatial patterns of flow intermittency. Mann±Kendall analysis initially identified a positive 

trend in the number of flood events when aggregated annually, monthly, and by wet season. This 

trend, however, is identifying the increase in available imagery for the Landsat 8 period. For this 

study, Landsat 5 imagery spans 27 years, with an identified 209 floods out of 415 total images 

(50.36%). In contrast, Landsat 8 imagery spans only a 10-year period, with 138 floods out of 290 

total images (47.59%). Though there is certainly a positive trend in increased image density over 

the time period, we can observe that, in fact, the percentage of flood events actually decreases by 

2.77%. 

Focused on non-flood events, Mann±Kendall analysis identified a similar statistically 

significant positive trend for the upstream, midstream, and downstream sections individually and 

grouped, when aggregated annually. This was additionally supported via aggregation monthly, 

and by wet and dry season. Of Landsat 5 imagery, 50.84% is observed to represent non-flood 

events, compared to 81.03% of Landsat 8 imagery. This increase in the temporal frequency of 

non-flood events further supports our understanding of decreased flooding across the time 

period. 

In contrast to the channel as a whole, Mann±Kendall analysis of flood events by section 

identified a statistically significant positive trend within only the downstream section, aggregated 

annually. Within the downstream section of Landsat 5, 25 of 39 images were identified as flood 
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events (64.10%), while Landsat 8 imagery identified 31 of 32 events as representative of surface 

flow (96.88%). This observation of increased temporal frequency of flooding is at odds with the 

results for the upstream and midstream sections, which display a trend toward decreased 

flooding. Increased frequency of surface flow within the downstream section of the channel may 

in fact be supported by tributary contribution, as opposed to source-derived flow. It may 

additionally indicate the increased occurrence and distance of saltwater intrusion, a phenomenon 

that has been frequently observed near the channel mouth (Choukr-Allah et al., 2016).  

Overall, decreased frequency of flood events within the channel from 1984 through 2023 

is consistent with broad decadal warming trends for Morocco, in which precipitation is projected 

to decrease and temperatures are expected rise (Verner et al., 2018). Decreased inputs paired 

with elevated evapotranspiration may result in the increased frequency of drought in dryland 

environments. Analyzed seasonally, flood frequency appears to shift around 1998, with the 

preceding period dominated by dry season flood events and the following period experiencing 

increased wet season flood frequency. Within the Souss±Massa basin, the sharpest seasonal 

increase in flood events occurs during the dry season from 1990 to 1998. This may be partially 

driven by the creation of the Aoulouz dam at the channel headwaters in 1990. The dam is 

intended to support irrigation needs and artificial recharge through channel infiltration, leading to 

dam releases when the channel lacks consistent flow (Dindane et al., 2003). Previous work on 

ephemeral channel transmission loss has identified prior sediment moisture as crucial for 

infiltration and sustained aquifer recharge (Fakir et al., 2021). Flood events concentrated within 

the wet season thus may have a higher likelihood of recharging the regional aquifer, as 

transmission losses have the potential for deeper percolation. Within the Souss, the trend toward 

increased flood events within the wet season represents a positive shift for regional water 
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storage. Despite an overall decreasing trend in the frequency of channel flooding, the impact on 

the regional water balance may be mitigated if reductions are concentrated within the dry season. 

Spatial characteristics of flood variability additionally play an important role in sustained 

groundwater recharge. Across the wet season, flood events are relatively balanced, with 46.8% 

occurring with the upstream, 28.90% the midstream, and 24.28% the downstream channel 

sections. The reduction between the upstream and midstream sections points to external factors 

likely impacting the extent of channel flow. Specifically, transmission loss may be partially 

responsible for the decreased flow frequency within the midstream and downstream sections. 

Over pumping and abstraction to support agriculture additionally occurs broadly across the plain 

adjacent to the channel midsection, and likely contributes to reduced surface flow (Bouchaou et 

al., 2011; Ait Brahim et al., 2017). Increased transmission loss during the wet season period has 

positive implications for aquifer recharge, with infiltration between the upstream±midstream 

sections reducing the overall time surface water remains on the landscape and potentially 

contributing to reductions in PET (Fakir et al., 2021). During the dry season, the majority of 

flood events are concentrated within the upstream section of the channel (53.71%). This may 

further be to the benefit of regional aquifer recharge, as the higher number of flood events within 

this section increase the likelihood of antecedent sediment moisture and sustained infiltration 

(Fakir et al., 2021). 

 

3.6 Conclusions 

Within data-limited, ephemeral systems, remotely sensed imagery paired with linear 

discriminant function analysis has the potential to improve our understanding of large-scale 

hydrologic processes. Despite overall reductions in the frequency of flow within the Souss 



80 

channel, the preservation of events within the wet seasons increases the likelihood that sustained 

aquifer recharge can persist. The spatial distribution of surface water further contributes to the 

potential for recharge, with the majority of events concentrated within the upstream reaches of 

the channel. The addition of in situ measurements of precipitation and related discharge across 

channel sections has the potential to further refine and validate these observations, at the scale of 

both pixel classification and flood variability. The incorporation of subsurface monitors of 

infiltration and sustained recharge would further help connect this work to regional estimates of 

transmission loss and optimal conditions for aquifer recharge. Field measurements may 

ultimately help expand the application of this method to intermittent systems across varied 

environments, quantifying broad shifts in regional flow patterns.  
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SPATIAL VARIABILITY IN POTENTIAL RECHARGE: QUANTIFYING TRANSMISSION 
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4.1 Chapter Abstract 

Transmission losses frequently constitute the majority of aquifer recharge in semi-arid 

environments and are a key hydrologic feature of ephemeral channels. Despite this 

understanding, infiltration variability and its primary controls remain poorly characterized. In 

this study, the spatial and temporal variability of transmission loss through ephemeral channels is 

explored across disparate recharge environments in central Morocco. Continuous temperature 

monitoring within the near-surface sediments of two ephemeral channels was used to record 

infiltration events across both wet and dry seasons in upstream and midstream channel reaches. 

Temperature time series were then used to estimate rates of infiltration at specific depth and 

compared to sediment-based estimates of saturated hydraulic conductivity. Thermographs 

indicate distinct spatial patterns of infiltration, both longitudinally across stream channels and 

vertically within channel sediment. Specifically, observations support the role of near-surface 

sediment, both its sorting and antecedent moisture, in controlling sustained infiltration during 

surface flow events. Improved understanding of transmission loss and its controls is critical for 

estimates of potential groundwater recharge, particularly in data-scarce, arid systems. 

 

4.2 Introduction 

Focused recharge through stream channels represents the primary form of aquifer 

recharge in arid environments, particularly within ephemeral systems which are estimated to 

constitute more than half of all river length globally (Datry et al., 2014; Shanafield and Cook, 

2014; Di Ciacca et al., 2023). Transmission loss, or streamflow infiltration through channel 

sediments, has frequently been used as a proxy for groundwater recharge. This is despite the 

uncertainty that infiltrating water will be transported to depths sufficient to reach the water table 
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and not re-evaporated (Shanafield and Cook, 2014). Quantifying channel infiltration is critical 

for sustainable water management in water-limited environments, but largely depends on 

understanding drivers of its spatial and temporal variability. 

The physical and climatic characteristics which shape ephemeral channel development 

further predispose a system to transmission loss. Though they can occur in both high-elevation 

and plains environments, ephemeral channels frequently evolve in response to limited or 

seasonal precipitation patterns. Non-perennial systems generally lack baseflow inputs from 

groundwater and are disconnected from deeper, unconfined aquifers. Channels are regularly 

characterized by highly permeable sediment, such as coarse-grained sand or alluvium, ideal for 

rapid infiltration of surface water. Previous work has identified the role of antecedent sediment 

moisture in facilitating deep infiltration, as well as the impact of subsurface geology and 

heterogeneity (Shanafield and Cook, 2014; Fakir et al., 2021). With these variable controls, 

patterns of transmission loss are considered non-standard across arid regions and in individual 

basins, varying both spatially and temporally across recharge environments.  

The connection between transmission loss and sustained recharge remains poorly 

quantified, despite the development of a robust theoretical framework through controlled studies 

within experimental watersheds. In part, research has been concentrated within heavily 

instrumented ephemeral channels in the western USA, with more limited analysis of systems 

abroad which lack gaging equipment (Shanafield and Cook, 2014; Portoghese et al., 2022). 

Significant gaps remain in our understanding of regional controls of ephemeral channel 

infiltration and thus our ability to quantify groundwater recharge via ephemeral systems. This 

deficiency may only become more urgent with the current expansion of non-perennial systems 

under warming climate conditions. Climate change is projected to extend drylands globally, 



93 

which currently encompass approximately 40% of the global land surface, increasing intermittent 

flow and overall contribution of transmission loss to aquifer recharge (Eng et al., 2016; Costigan 

et al., 2016; Gaur and Squires, 2018; Jaeger et al., 2018). 

This research focuses on quantifying regional differences in transmission loss and 

potential recharge through streambed-sediment thermographs, as well as explores associated 

controls, in semi-arid basins. Specifically, this work examines patterns of transmission loss 

within ephemeral channels across both mountain front and plain recharge zones in central 

Morocco. The goals of this research are (1) quantify temporal frequency and rate of infiltration 

events in differing recharge environments, (2) understand spatial patterns of transmission loss, 

both intra-channel and across systems, and (3) identify primary controls driving regional 

differences in potential recharge. 

 

4.3 Methods 

Study Area: Mountain Front Recharge, Tensift Basin 

The Ourika sub-basin (507 km2) is a semi-arid mountain front basin located in the larger 

Tensift basin of central Morocco (Figure 1) (Bouimouass et al., 2024). Originating at the high 

elevation mountain front of the High Atlas (4,167 m.a.s.l.), Oued Ourika flows north across the 

Haouz plain (1,070 m) before joining with the larger Oued Tensift (Daoudi and Saidi, 2008; 

Rhoujjati et al., 2021; Bouimouass et al., 2024). Surface flow in Oued Ourika is intermittent and 

largely driven by seasonal inputs of precipitation and snowmelt, which results in peak flows 

during April (wet season, October± April) (Bouimouass et al., 2024). Precipitation is 

heterogeneous across the basin, with an average of 700 mm/year in the High Atlas Mountains 

upstream and 300 mm/year in the mid- and downstream plain (Daoudi and Saidi, 2008; 
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Delcaillau et al., 2010; Fakir et al., 2021; Bell et al., 2022). Concentrated seasonal moisture 

inputs, paired with a steep gradient of 11% and a narrow, incising valley, predispose the channel 

to extreme flooding (Daoudi and Saidi, 2008; Delcaillau et al., 2010; Fakir et al., 2021). 

The Haouz plain Is underlain by heterogeneous Quaternary alluvial deposits while high- 

elevation regions of the basin, near Oukaïmeden, are comprised of Precambrian crystalline rocks 

(Ayt Ougougdal et al., 2020; Bouimouass et al., 2024). An unconfined alluvial aquifer is the 

primary source of groundwater in the plain, extending up to 150 m beneath the stream. A deeper 

confined aquifer is comprised of both Eocene marls and Turonian-Cenomanian limestones 

(Bouimouass et al., 2024). Regionally, mountain-front recharge through stream infiltration 

represents the primary form of recharge to the unconfined aquifer (Markovich et al., 2019; 

Bouimouass et al., 2024). In part, this is due to concentration of precipitation and snowmelt 

concentrated at higher elevations, which extend the seasonal duration of hydrologic inputs to the 

more arid downstream reaches. This impact has led to the High Atlas Mountains to be 

colloquiall\ referred to as ³water towers´ (Pascon, 1978; Jarlan et al., 2015). 

Intermittent flow within Oued Ourika is used in conjunction with the unconfined Haouz 

aquifer to support regional agriculture. Stream diversion is essential to irrigation within the 

basin, with olive and winter cereal production representing the primary land use and economic 

activity within the mountain-front region (Modeste et al., 2016; Bouimouass et al., 2024). In 

recent decades, increased pressure on regional groundwater has caused average water-table 

declines of two meters annually (Bouimouass et al., 2020). This has likely been exacerbated by 

recurring droughts and reduced total precipitation, falling by 28% in the last half-century 

(Ouassanouan et al., 2022). Total discharge has similarly declined by 40% within the mountain 

front sub-basins of the Tensift (Ouassanouan et al., 2022).  
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Plains Recharge: Souss-Massa Basin 

The Souss-Massa basin (27,000 km2) is located in west-central Morocco, nestled between 

the High Atlas Mountains to the north and Anti-Atlas Mountains to the south (Figure 1) 

(Bouchaou et al., 2008; Hssaisoune et al., 2019). Situated on the basin plain (4,200 km2), Oued 

Souss is an ephemeral stream which stretches 180 km from the upstream Aoulouz reservoir to 

the Atlantic Ocean (Hssaisoune et al., 2019). The plain is gradually sloping, ranging in elevation 

from 700 m at Aoulouz to sea level at the terminus (Hssaisoune et al., 2019). Classified as semi-

arid, the plain receives an average of 250 mm of precipitation annually, with the majority 

concentrated during the wet-season from October through April (Hssaisoune et al., 2019). 

Evapotranspiration exceeds 2000 mm annually, and temperature fluctuates on both daily and 

seasonal cycles (Bouchaou et al., 2008). It is this distinct seasonality which facilitates the 

majority of groundwater recharge across the Souss plain, with wet season precipitation 

supporting surface flow and direct infiltration through channels sediments. Outside of the plain, 

additional recharge occurs from precipitation at higher elevations (Bouchaou et al., 2008; 

Hssaisoune et al., 2017).  

The plain and Souss river channel are underlain by multilayered, unconsolidated 

Pliocene-Quaternary sediments, deposited by alluvial fans (Ait Hssaine and Bridgland, 2009). 

These sediments (primarily gravels and sands) and lacustrine limestones extend up to 300 m in 

depth and are underlain by Senonian marls, which confine a deeper aquifer of Turonian 

limestone (Hssaisoune et al., 2019, 2021). The unconfined aquifer is shallowest beneath 

upstream sections of Oued Souss, within 10 m to 30 m of the surface, and deepens downstream 

(westward) and away from the channel (Dindane et al., 2003; Ait Brahim et al., 2017). Surface- 

water abstraction and groundwater pumping, primarily from the unconfined aquifer, are 
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necessary to support regional irrigation. The Souss basin is an economically critical agricultural 

region, producing the majority of national citrus and vegetable exports, along with cereals and 

almonds (Bouchaou et al., 2008; Choukr-Allah et al., 2016; Almulla et al., 2022). Over-pumping 

of regional aquifers has been well documented in the past five decades, manifesting as water 

level declines ranging from 0.5 to 2.5 m/year (Hssaisoune et al., 2016). Rapid declines in aquifer 

storage have given rise to basin subsidence and salinization, particularly in the downstream reach 

(Bouchaou et al., 2008; Richards and Milewski, 2022). Similar to patterns of projected climate 

warming in arid regions globally, in recent decades the Souss has experienced a shift toward 

increased mean annual temperatures and decreased precipitation intensity, with elevated 

frequency of drought (Bouragba et al., 2011; Bouchaou et al., 2011). Controlled releases from 

the Aoulouz Dam have been irregularly employed to artificially recharge the unconfined aquifer 

and support irrigation during drought periods (Bouragba et al., 2011). Though historically 

ephemeral, the frequency of surface flow within Oued Souss has shifted with changing 

precipitation, resulting in a reduction in flood events, which may impact regional groundwater 

recharge patterns (Davidson et al., 2023). 
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Figure 4-1. Research basins, located in central Morocco. Transects 1, 2, and 3 are located in the 

upstream section of the Tensift basin, at Oukaïmeden, High Atlas Mountains (T1). Transect 4 is 

located within the midstream section of the Tensift basin on the Haouz plain (T2). The upstream 

section of the Souss basin has two distinct transect sites installed laterally across the channel, 

near Aoulouz. Transects 6 and 7 are established in the channel center (S1) and transect 5 is 

located near the channel left bank (S2). Transect 8 was deployed in the midstream section of the 

Souss channel, near Issen (S3). Basin elevation highlights the location of upstream sites in higher 

elevation zones. 
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 Detection of Potential Recharge through Sediment Temperature 

Streambed sediment temperature profiles have historically been employed to detect 

surface flow and channel infiltration (Constantz and Thomas, 1997; Constantz et al., 2001; 

Constantz, 2008). Heat is a particularly useful tracer in ephemeral channels, where streambed 

sediment is generally saturated only in response to surface flow conditions. Dry sediments 

exhibit greater diurnal temperature fluctuations than saturated material, as a result of adsorption 

of solar radiation and heat propagation via conduction (Constantz, 2008; Shanafield and Cook, 

2014). In a flowing stream with saturated sediment, radiation is both reflected and absorbed prior 

to advection (Constantz, 2008). In both saturated and unsaturated material, diurnal temperature 

fluctuations are further attenuated with depth due to heat absorption by stream sediments 

(Constantz, 2008). This behavior allows for the calculation of infiltration rates from subsurface 

temperature data collected at variable depths, as distinct changes in temperature pattern co-occur 

with infiltration events. For ephemeral systems with limited gaging, subsurface temperature 

probes offer an effective alternative to surface-water monitoring. They further allow for 

exploration of the connection between periodic surface flow and aquifer recharge via 

transmission losses (Constantz et al., 2001; Blasch et al., 2004; Fakir et al., 2021). 

Our study deployed temperature loggers in vertical transects beneath bed sediments of 

two ephemeral channels to quantify intermittent streamflow and related infiltration. Eight 

vertical transects were installed during no-flow channel conditions, and transect depth was 

dependent on near-surface sediment sorting and height of the water table. Each transect consisted 

of a minimum of three HOBO temperature pendants (Onset Computer, Bourne, MA, USA) 

attached to a wire and spaced at a set distance, ranging from 10 to 35 cm depending on transect 

depth. Pendant measurement range is from -4° to 158° F (± 0.95°F). The temperature pendant 
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nearest the surface (Pendant A) was buried between 5 and 25 cm, while the deepest pendant 

(Pendant C or D) reached depths between 40 and 105 cm. Temperature measurements were 

recorded at 15-minute intervals, with variable length of the collection period (3 months ± 1 year) 

as a result of battery failures. Previous studies in subsurface temperature monitoring have 

identified a minimum depth of 15 cm as ideal to mitigate temperature anomalies related to 

atmospheric events and diurnal temperature fluctuations (Constantz et al., 2001; Blasch et al., 

2004). 

In the Ourika basin, Transects 1, 2, and 3 were deployed at the upstream site, near 

Oukaïmeden (October 2015±October 2016, June 2022±June 2023, and June 2023±May 2024, 

respectively) (Table 4-1). Transect 4 was deployed at the channel midstream, near Ourika, from 

June to August 2022. In the Souss basin, four transects were deployed across upstream and 

midstream sites, spanning a two-year period. At the upstream location, Transects 6 and 7 were 

deployed in the channel midstream (S1), recording from June to October 2022 and June 2023 to 

May 2024, respectively. Transect 5 was deployed parallel to S1 along the channel bank (S2) and 

recorded data from June to November 2022. This transect utilized an Onset HOBO U12 

temperature logger as an alternative to temperature pendants, which recorded temperature 

hourly. At the midstream location, Transect 8 was installed from June 2023 to May 2024 (Table 

4-1). Within the Souss basin, sediment samples were additionally collected at all transect 

locations, with material fining upward similar to stacked sediment patterns commonly observed 

in ephemeral systems (Jadoon et al., 2016). 
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Table 4-1. Study Basin Transect Locations 

Mountain Front System Plain System 
Upstream 

(Oukaïmeden, 
Tensift) 

Midstream  
(Ourika, Tensift) 

Upstream 
(Aoulouz, Souss) 

Midstream 
(Issen, Souss) 

T1 T2 S1 S2 S3 
Transect 1 Transect 4 Transect 6 Transect 5 Transect 8 
Transect 2  Transect 7   
Transect 3     

 

Event Detection through Statistical Anomalies 

 Temperature data for each transect were statistically evaluated using seasonal z-scores for 

detection of anomalies associated with potential infiltration events. Infiltration of water into 

unsaturated sediment is characterized by a distinct drop in temperature and loss of diurnal 

pattern. Atmospheric events, such as cold fronts preceding a storm, may present similar 

temperature patterns to legitimate infiltration (Jadoon et al., 2016). Statistical anomaly detection 

is thus necessary to accurately differentiate true hydrologic events, and a variety of techniques 

have been employed. Common methodologies work to mitigate seasonal variability, through data 

smoothing and the application of weighted or moving windows (Blasch et al., 2004; Partington et 

al., 2021). As sensors are insulated from diurnal temperature fluctuations with increasing depth, 

potential infiltration events were required to exhibit a sharp temperature drop across all sensors 

in the transect (Blasch et al., 2004). 

To address the distinct seasonality of climate in our research basins, temperature data 

from each pendant were separated into wet- and dry-season subsets prior to the calculation of z-

scores (Zhou and Tang, 2016). Scores within the 5th percentile were flagged as negative 

anomalies indicative of a potential infiltration event. Anomalies were further visually confirmed 

within the temperature data for loss of diurnal pattern during the event. Six events (two within 
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the Tensift basin, four within the Souss) were statistically flagged as infiltration events, though 

visually mimicked the appearance of cold fronts. Specifically, this was due to the maintenance of 

their diurnal pattern despite an overall drop in temperature. A potential event in February 2023 at 

the upstream site of the Tensift basin was not statistically identified as being within of the lowest 

5th percentile, but it visually demonstrated a pattern indicative of infiltration and significant prior 

precipitation. The anomaly for this event fell within the lowest 5.5% of the temperature data, and 

expansion of the cutoff to this value did not identify any additional events. Omission of these 

seven events did not substantially alter estimated rates of infiltration for each site (both 

increasing by less than 1.00 cm/h) and were included in these results (though identified). 

 
Validation via Satellite-based Precipitation Estimates 

Due to limited availability of in-situ stream gaging, precipitation prior to and during 

potential infiltration events was used to validate presence of surface flow. Stream and 

precipitation gage data within Morocco are not publicly available and, furthermore, fail to 

capture local climate conditions at upstream and midstream sections of both basins. GPM-

IMERG multi-satellite precipitation estimates with gage calibration (half-hourly, averaged daily± 

Final Run V07) satellite precipitation estimates were utilized to validate potential infiltration 

events. Application of final run GPM precipitation estimates within Morocco have been found to 

have suitable accuracy across arid, mountainous basins, with strongest agreement in lower 

elevation portions of the basin (Shawky et al., 2019; Saouabe et al., 2020). 

 
Multimodal Estimation of Infiltration Rate  

 Infiltration rates were calculated for potential recharge events via two methods: 1) the 

time lag observed between temperature anomalies across pendants in a transect versus the 
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vertical distance traveled, and 2) based on saturated hydraulic conductivity estimated from 

sediment analysis. Infiltration rates determined via time lag were calculated for each pendant in a 

single event, representing infiltration rates spanning from the near surface to depths with a 

dampened diurnal signal. An average overall rate was further calculated for each individual 

event, as well as for each pendant within the transect. In the case of pendant battery failure 

during the observation period, infiltration rates are calculated based on remaining pendants and 

denoted with an asterisk. Hydraulic conductivity estimates were calculated from sediment 

samples within the Souss basin and determined from literature analysis within the Tensift. 

Sediment samples were collected at depths ranging from 75 to 85 cm for better representation of 

subsurface material. A low-permeability layer at the surface of channel bed sediment is a 

common feature in arid systems, in part due to the upward fining and sorting of alluvial 

sediments (Fakir et al., 2021). Analysis was conducted via wet sieve and Meter PARIO Soil 

Particle Analyzer to produce particle distribution curves and taxonomic identification via soil 

texture (Appendix Chapter 4, Figure 2). Particle distribution curves were applied to the Kozeny-

Carman formula for estimation of saturated hydraulic conductivity in channel sediments (Table 

4-2). Kozeny-Carman is a widely accepted empirical method successfully applied to 

unconsolidated porous media of varying sizes, particularly coarse material (Kozeny, 1927; 

Freeze and Cherry, 1979; Taheri et al., 2017). Though saturated hydraulic conductivity is a 

property of the porous material, as infiltration approaches steady-state, this value becomes 

equivalent to saturated hydraulic conductivity. For transect locations within the Tensift basin, 

saturated hydraulic conductivity values were derived from previous studies of vertical infiltration 

and sediment composition in close proximity to upstream and midstream sites (Table 4-3). Fakir 

et al. (2021) sampled bed sediment at 100 cm depth, utilizing sieve and textural analysis to 
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estimate saturated hydraulic conductivity. At the upstream site, previous studies have reported 

soil erodibility (K factor) based on a calculation of detailed soil properties, including sand 

percentage (Ayt Ougougdal et al., 2020). Sand percentage paired with field analysis of sediment 

texture during transect installation led to its characterization as a sandy clay loam. This 

classification strongly agreed with previous characterization of soils at this location, and a 

standard hydraulic conductivity value associated with saturated and loosened conditions for this 

soil class was assigned (Rawls et al., 1998; Alaoui Haroni et al., 2009). Saturated hydraulic 

conductivity values were further compared to sensor-based estimates of infiltration rate at depth. 

 

Table 4-2. Souss Basin Sediment Analysis 

Site Taxonomy Depth 
(cm) 

Coarse 
Sand  

(>1000 µm 
± 500 µm) 

Medium Sand 
(500 µm ± 250 

µm) 

Fine Sand  
(250 µm± 
53 µm) 

Fines  
(<53 µm) 

Kozeny-
Carman Sat. 
Hydraulic 

Conductivit
y (m/s) 

S1 
Upstream 
(center) 

Loamy 
Sand 85 47.17% 23.47% 12.10% 17.26% 2.66 × 10-7 

S2 
Upstream 

(bank) 

Loamy 
Sand 80 39.00% 34.00% 7.77% 19.23% 3.47 × 10-8 

S3 
Midstream 

Sandy 
Clay 
Loam 

75 22.17% 23.03% 13.57%55 41.23% 4.34 × 10-7 

 

Table 4-3. Tensift Basin Sediment Analysis 

Site Taxonomy Depth 
(cm) 

Gravel  
(>2000 ȝm) 

Coarse 
sand (250 

ȝm ±
2,000 ȝm) 

Fine 
sand  

(50 ȝm ±
250 ȝm) 

Silt  
(2 ȝm ±
50 ȝm) 

Clay  
(<2 ȝm) 

Sediment 
Analysis 

Sat. 
Hydraulic 

Conductivity 
(m/s) 

T1 
Upstream Loam ± ± 49% ± 40% 11% 2.18 × 10-6 

T2 
Midstream 

Medium 
Sand 100 58.30% 27.4 % 5.1 % 0.5 % 8.7% 4.00 × 10í5 
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Exploration of Infiltration Controls through Principal Component Analysis  

  Principal components analysis (PCA) was applied to evaluate a subset of variables 

correlated to infiltration across the upstream and midstream sites of both the Tensift and Souss 

basins (Table 4-4). Variables of primary interest were related to channel geomorphology 

(channel width, length, and slope), bed sediment composition (sand, clay, and silt percentage 

based on sample analysis), and properties of the unconfined aquifer (estimated hydraulic 

conductivity and maximum depth) (Cataldo et al., 2013). PCA is a statistical analysis used to 

identify complex relationships between variables and reduce dataset dimensionality (Lever et al., 

2017). Three principal components were generated, explaining 99.82% of the data variance. A 

correlation biplot was used to visualize the relationship between variables and transect locations. 

Table 4-4. PCA Variables 

Site Basin Location Sand 
% 

Clay 
% 

Silt 
% 

Sat. Hydraulic 
Conductivity 

(m/s) 

Channel 
length (m) 

Channel 
width (m) 

Elevation 
(m) Slope 

Maximum 
Depth of 

Unconfined 
Aquifer 

(m) 
S1         Souss Upstream 0.83 0.08 0.08 2.66 × 10-7 17,299 113 556 0.83 300 (1) 
S2 Souss Upstream 0.81 0.12 0.08 3.47 × 10-8 17.299 113 555 0.83 300 (1) 
S3 Souss Midstream 0.59 0.28 0.13 4.34 × 10-7 985,665 44 86 0.53 140 (2) 

T1 Tensift Upstream 0.49 0.11 0.4 2.18 × 10-6 86.25 3 2,588 3.48 0 (3) 
T2 Tensift Midstream 0.91 0.087 0.005 4.00 × 10í5 (1) 24,036 73 883 2.59 150 (4) 

Note: Sediment and saturated hydraulic conductivity values for the Souss basin derived from sample analysis. Values for channel length, width, 
and slope derived from Google Earth, 2020.1 Fakir et al., 2021;2 Bouchaou et al., 2008; 3 Hssaisoune et al., 2021; 4 N'da et al., 2018; 5 
Bouimouass et al., 2024. 
 

4.4 Results 

Anomaly Detection for Potential Infiltration 

Across the eight research transects, 33 events were identified as seasonal anomalies, and 

hypothesized to represent infiltration within the channels (Table 5). Potential infiltration events 

were observed at every site except Transect 4, located in the midstream section of the Tensift 

basin. The sensors in this transect recorded the shortest period of data collection, approximately 
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two months, prior to battery failure. This period was during the summer months when fewer 

surface flow events are expected to occur.  

The Tensift and Souss basins demonstrated comparable numbers of potential infiltration 

events across the study period (Tensift = 16, Souss = 17), with a greater portion of events 

observed in the upstream channel reaches (Tensift = 16, Souss = 10). With lack of in situ stream 

gaging, these events were corroborated with GPM satellite precipitation estimates (Table 4-5). 

Anomalies within the Souss basin demonstrated notably lower precipitation estimates, both for 

the seven days prior and across the duration of the events (averages of 6.8 mm and 7.65 mm, 

respectively, as compared to 12.6 mm and 21.4 mm for Tensift). This is in line with lower 

precipitation levels across this basin, in particular when compared to the high elevation upstream 

section of the Tensift (Bouimouass et al., 2020). Precipitation events generally occurred in 

tandem with potential infiltration anomalies, with an average precipitation of 9.1 mm in the week 

prior, and 14.1 mm during the duration of the event. Across both basins, 63.6% were validated 

by precipitation estimates greater than 5 mm prior to or during the event. 

Seasonally, 48.5% of potential infiltration events occurred during the wet season 

(November±March) across both the Souss and Tensift basins. The final month of the dry season, 

October, exhibited the highest percentage of events across both basins (18.2%), followed by 

March, April, and December (15.2%, respectively). Considered individually, both October and 

April, which bookend the onset and conclusion of the dry season, encompass the highest number 

of potential infiltration events in the Tensift basin. Within the Souss there was less concentration, 

with an equally high number of events in March, October, and December. Potential infiltration 

events within the midstream section of the Souss channel predominantly occurred during the wet 

season (85.7%), while upstream reaches of both systems had a larger share of dry-season events. 
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Table 4-5. Potential Infiltration Events based on Temperature Anomalies and Precipitation 
Estimates 

Basin Section Transect Event Date of 
Initiation 

Total 
precipitation 7-
days prior (mm) 

Total precipitation for 
duration of event 

(mm) 

Tensift 
T1: Upstream 

Transect 1 

1 2/15/16 1.62 39.46 
2 3/21/16 17.41 76.99 
3 4/20/16 2.09 2.46 
4 5/10/16 55.39 1.22 

Transect 2 

5 9/25/22 12.12 8.10 
6 10/12/22 16.53 1.31 
7 10/16/22 14.16 9.15 
8 12/1/22 1.34 40.54 
9 4/4/23 0.00 3.58 
10 1/17/23 0.75 64.52 
11 2/23/23* 14.50 46.14 
12 5/17/23 4.30 14.47 

Transect 3 

13 10/14/23 11.30 1.38 
14 12/13/23 41.39 11.43 
15 3/23/24 1.60 1.14 
16 4/26/24 7.50 20.57 

T2: Midstream Transect 4  NA NA NA 

Souss 

S2: Upstream Transect 5 
17 6/21/22 3.36 1.12 
18 10/12/22 0.72 7.51 

S1: Upstream 

Transect 6  
19 6/13/22 2.36 6.28 
20 9/24/22 5.14 16.18 

Transect 7 
 
  

21 10/19/23 3.76 0.81 
22 12/16/23 0.00 0.02 
23 2/9/24 21.39 21.19 
24 3/25/24 4.29 3.30 
25 3/29/24 8.46 7.02 
26 4/18/24 0.00 0.00 

S3: Midstream Transect 8 

27 10/21/2023 2.06 0.33 
28 12/1/2023 36.06 35.38 
29 12/18/23 0.00 0.00 
30 1/7/24 0.23 0.00 
31 2/9/24 21.39 21.19 
32 3/25/24 4.29 9.66 
33 4/27/24 0.00 0.00 

 

Note: Events highlighted in grey indicate events statistically flagged as anomalies, but which visually 
mimic atmospheric events due to maintenance of diurnal temperature pattern. * Event 11 was included 
based on visual pattern and statistical proximity to the standard cut off (z-score was in the lowest 5.5% 
of the data). 
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Figure 4-2. Transect 1 Thermograph, Upstream, Tensift Basin 

 

 

Figure 4-3. Transect 2 Thermograph, Upstream, Tensift Basin 

T1: Transect 1, October 2015± October 2016
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Figure 4-4. Transect 3 Thermograph, Upstream, Tensift Basin 

 

 

Figure 4-5. Transect 4 Thermograph, Midstream, Tensift Basin 
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Figure 4-6. Transect 5 Thermograph, Upstream, Souss Basin 

 

 

Figure 4-7. Transect 6 Thermograph, Upstream, Souss Basin 
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Figure 4-8. Transect 7 Thermograph, Upstream, Souss Basin 

 

 

Figure 4-9. Transect 8 Thermograph, Midstream, Souss Basin 

 

 

 

 

S1: Transect 7, June 2023± Ma\ 2024 
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Saturated Hydraulic Conductivity and Estimated Rates of Infiltration 

The Souss basin sites displayed an overall faster average rate of infiltration than the 

Tensift basin sites (Table 4-6). Though both locations recorded a comparable number of potential 

infiltration events, the Tensift basin had no record of events in its midstream section. Within the 

Souss basin (Table 4-7), infiltration rates slowed significantly moving from the upstream to the 

midstream section of the channel (13.00 cm/h vs. 6.12 cm/h), however without a comparison 

within the Tensift it is difficult to know if this is a consistent trend. If true, a lack of midstream 

events may result in an overall lower rate of average infiltration for the Tensift basin than 

reported. 

 Across transects in both basins, infiltration rate was observed to increase with vertical 

depth in the channel subsurface. This was particularly distinct within the Souss basin, where 

temperature pendants at the shallowest depth recorded infiltration rates on average 3.43 cm/h 

lower than those deeper. This is consistent with previous assertions that ephemeral channels 

commonly display finer, relatively impervious layers near the channel surface with increased 

coarsening with depth (Fakir et al., 2021).  

Seasonally, potential events during the dry season demonstrate greater rates of infiltration 

than those within the wet season. However, dry-season rates display a greater range and overall 

variability (standard deviation of 9.88 cm/h for dry season vs. 2.60 cm/h for wet season). With 

the exclusion of outliers (rates >8.67 cm/h), the average rate of wet-season infiltration is 

marginally faster than that of the dry season events (5.19 cm/h, vs. 4.45 cm/h for dry-season 

events). Transect 5 specifically reported elevated rates of infiltration (30.00 cm/h and greater). 

This may be partially due to the larger sampling window of this sensor, which recorded 
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temperature measurements hourly as opposed to 15-min increments. In this transect, infiltration 

rates may in fact be greater, but are obscured by the coarse sampling window. 

Overall, infiltration rates calculated from individual events were markedly more rapid than 

rates based on estimated saturated hydraulic conductivities (Table 6, Table 7). This may in part 

be due to the influence of the entire sediment profile on in-situ infiltration calculations, where 

permeability is variable with depth. Additionally, for unsaturated systems, saturated hydraulic 

conductivity is influenced by preexisting sediment moisture, a metric not accounted for in this 

value, but inherent to in-situ calculations. 
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Table 4-6. Estimated Rate of Infiltration: Tensift Basin 

Transect Event Date of 
Initiation 

Estimated Rate of Infiltration:  
Temperature anomaly (cm/h) 

Average (cm/h)    Pendant 
A 

Pendant 
B 

Pendant 
C 

Pendant 
D 

Depth (cm)   8 20 30 40 

Transect 1 

1 2/15/16  8.00 3.75 1.07 4.27 

2 3/21/16  8.96 5.00 4.00 5.99 

3 4/20/16  1.31 1.50 2.07 1.63 

4 5/10/16  3.43 5.99 1.76 3.73 
Average    5.43 4.06 2.23 3.91 

Estimated Infiltration: Saturated Hydraulic Conductivity  0.762 

Depth   5 25 55   

Transect 2 

5 9/25/22  4.44 3.16  3.80 
6 10/12/22  5.71 5.45  5.58 
7 10/16/22  6.67 5.00  5.83 
8 12/1/22  6.67 3.53  5.10 
9 4/4/23  X 20.00  20.00 
10 1/17/23  X 9.23  9.23 
11 2/23/23  X 2.40  2.40 
12 5/17/23  X 8.00  8.00 

Average    5.87 7.10  7.49 
Estimated Infiltration: Saturated Hydraulic Conductivity   0.762 

Depth   10 30 50   

Transect 3 

13 10/14/23  1.74 12.27  7.00 

14 12/13/23  4.61 1.71  3.16 

15 3/23/24  4.28 13.48  8.88 

16 4/26/24  2.50 2.92  2.71 
Average    3.28 7.60  5.44 

Estimated Infiltration: Saturated Hydraulic Conductivity   0.762 
NRWe: µX¶ LQdLcaWeV WKaW a VeQVRU ceaVed UecRUdLQJ, JeQeUaOO\ dXe WR baWWeU\ IaLOXUe. FRU TUaQVecW 2, SeQdaQW A ceased to 
function mid-December 2022, with subsequent data based on measurements from pendant B and C. All reported events 
displayed infiltration to the depth of the deepest pendant. Rows colored in grey indicate potential events occurring during 
the dry season; white rows to potential events during the dry season. 
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Table 4-7. Estimated Rate of Infiltration: Souss Basin 

   Transect Event Date of 
Initiation 

Estimated Rate of Infiltration: 
Temperature anomaly (cm/h)  

   Pendant 
A 

Pendant 
B Pendant C Pendant D Average 

(cm/h) 
Depth   10 40 70 105  

Transect 5 
17 6/21/22  X 30.00 35.00 32.50 
18 10/12/22  X 30.00 35.00 32.50 

Average     30.00 35.00 32.50 
Estimated Infiltration: Saturated Hydraulic Conductivity  0.0125 

Depth   10 40 80   

Transect 6 
19 6/13/22  5.29 3.53  4.41 
20 9/24/22  X 2.08  2.08 

Average    5.29 2.80  3.25 
Estimated Infiltration: Saturated Hydraulic Conductivity  0.0958 

Depth   25 50 80   

Transect 7 

21 10/19/23  2.50 2.79  2.65 
22 12/16/23  3.03 2.35  2.69 
23 2/9/24  3.70 4.62  4.16 
24 3/25/24  5.00 2.73  3.87 
25 3/29/24  3.70 1.88  2.79 
26 4/18/24  3.57 3.00  3.29 

Average    3.58 2.89  3.24 

Estimated Infiltration: Saturated Hydraulic Conductivity   0.0958 

Depth   25 50 80   

Transect 8 

27 10/21/2023  8.33 3.64  5.99 
28 12/1/2023  5.88 17.14  11.51 
29 12/18/23  5.56 1.45  3.505 
30 1/7/24  6.67 4.00  5.335 
31 2/9/24  X 5.64  5.64 
32 3/25/24  X 4.58  4.58 
33 4/27/24  X 5.64  5.64 

Average    6.61 6.01  6.03 
Estimated Infiltration: Saturated Hydraulic Conductivity   0.1560 
NRWe: µX¶ LQdLcaWeV WKaW a VeQVRU ceaVed UecRUdLQJ, JeQeUaOO\ dXe WR baWWeU\ IaLOXUe. IQ TUaQVecW 5, SeQdaQW A 
displayed an instrument error and was excluded, with all reported measurements related to pendants B, C, and D. All 
reported events displayed infiltration to the depth of the deepest pendant. Rows colored in grey indicate potential 
events occurring during the dry season; white rows to potential events during the dry season. 
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Figure 4-10. Estimated rate of infiltration by depth. Despite their marginally deeper installation, 

transects within the Souss basin demonstrate comparable infiltration rates. The height of the 

water table precluded deeper installation within the Tensift basin. 

 

Variable Controls on Recharge 

Analysis of physical variables across both basin and stream locations reinforce observed 

spatial variability in infiltration (Table 4-8; Figure 4-11; Appendix Chapter 4, Figure 1). 

Specifically, channel length was negatively correlated to saturated hydraulic conductivity, in line 

with observed decreases in infiltration rate moving from upstream to midstream sites. Sediment 

sand percentage is further negatively correlated to channel length, potentially indicating that a 

reduction in coarse material and increase in clay percentage may be a primary control on 
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declining infiltration. Broadly, elevation and maximum depth of the unconfined aquifer exert the 

greatest influence on distinguishing transect locations. Upstream sites within the Souss basin 

plotted together, but distinct from the upstream site in the Tensift basin. Midstream locations for 

both basins were shown to be distinct from one another, as well as upstream transect locations. 

 

Table 4-8. PCA Output Table 

 PC1 PC2 PC3 

Maximum depth of unconfined aquifer (m) -0.403 -0.150 -0.178 

Channel width (m) -0.386 -0.238 -0.115 

Basin location -0.352 0.224 -0.278 

Sand % -0.294 -0.371 0.187 

Channel length (m) -0.088 0.506 0.197 

Clay % -0.058 0.524 0.136 

Location in channel -0.053 0.183 0.603 

Sat. hydraulic conductivity (m/s) 0.038 -0.286 0.547 

Silt % 0.373 0.149 -0.288 

Slope 0.394 -0.214 0.122 

Elevation (m) 0.410 -0.143 -0.154 
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Figure 4-11. PCA Correlation Biplot of physical variables related to infiltration across transect 

locations. Transects within the Tensift basin (purple) and Souss basin (orange) show distinct 

based on basin and location in channel. S1, S2, and T1 represent upstream locations, while S3 

and T2 represent the channel midstream. 
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4.5 Discussion 

Spatial and temporal variability in transmission loss has significant implications for local 

groundwater recharge. Previous work on ephemeral channel infiltration has identified the 

importance of antecedent sediment moisture and preferential flow paths through partially 

saturated sediments in facilitating deeper infiltration, leading to aquifer recharge as opposed to 

re-evaporation (Fakir et al., 2021). This is in part supported by the understanding that saturated 

hydraulic conductivity may be orders of magnitude greater than unsaturated hydraulic 

conductivity (Elzeftawy and Cartwright, 1981). Not all infiltration events will not have equal 

impact on regional recharge, however their temporal variability may be crucial to prime the 

system for future infiltration. A spread of infiltration events across a multi-month period, and not 

simply concentrated within the wet season, has the potential to increase antecedent sediment 

moisture during drier periods of the year and allow for meaningful infiltration outside of the wet 

season (e.g., Transect 1, Transect 3). 

High-elevation and upstream channel locations generally receive more precipitation than 

those within the midstream or on the plain. This supports the observation of increased infiltration 

events in high-elevation and upstream locations, which have the necessary moisture to facilitate 

them. It may additionally suggest that when infiltration events do occur, they lead to deeper 

vertical movement and aquifer recharge, producing anomalies which can statistically be 

identified. Indeed, visual analysis of all transect thermographs indicate many small perturbations, 

particularly in pendants nearest the surface. Whether this variability is a result of atmospheric 

events being detected in unsaturated sediments, or minor infiltration events that are re-

evaporated, requires further study. Future work is necessary to quantify infiltration events which 



119 

do not continue to move deeper and work to disentangle potential barriers preventing further 

infiltration. 

Though hydraulic conductivity estimates serve as a useful comparison, they may not 

represent a true analog for infiltration rates within the subsurface. This is due to the in-situ reality 

of sediment heterogeneity and sorting, both vertically and laterally. Sediment samples were 

collected from depth and may fail to represent saturated hydraulic conductivity in the near 

surface. The inherent impact of instrument installation, which despite best efforts may result in 

some degree of preferential pathways, may further serve to increase local rates of infiltration. 

Despite these concerns, saturated hydraulic conductivity values from sediment analysis were 

comparable to those reported within the literature (Fakir et al., 2021; Hssaisoune et al., 2021). 

Future work to understand transmission loss variability across ephemeral systems must 

work to better constrain pre-existing moisture in the subsurface and quantify its seasonal 

variability. The addition of streamflow gaging equipment would be further useful to quantify the 

lag between channel flow and initiation of infiltration. This is particularly interesting because of 

the presence of a near-surface, low-permeability layer which may cause initial infiltration to be 

slower than in situ observations at depth. Additional work is needed to better appreciate the role 

of this layer, and whether it hinders initial infiltration during surface flow or acts as a barrier to 

re-evaporation. Finally, prior work has referenced, but not explored, the potential contribution of 

lateral infiltration (Fakir et al., 2021). This may be significant in its contribution to antecedent 

sediment moisture and increased rates of infiltration. Though not the focus of this study, the 

horizontal installation of sites S1 and S2 within the upstream section of the Souss basin indicates 

the potential contribution of lateral infiltration. Specifically, Transect 6, located in the center of 

the channel at site S1, identified potential infiltration on June 13 2022 and September 24 2022. 
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Events were flagged in Transect 5, located on the left bank of the channel at site S2, 

approximately 50 meters away, on June 21 2022, (8 days later) and October 12 2022, (18 days 

later). Transect 5 had rates of infiltration (average 32.5 cm/h) significantly greater than those 

observed throughout other transects in the study, including Transect 6 (average 3.25 cm/h). This 

may suggest that surface flow within the channel was initially more focused, before expanding 

laterally with greater discharge to reach Transect 5 near the bank over a period of days. This lag 

may additionally suggest that surface flow itself did not expand, but that subsurface infiltration 

moved laterally, which may account for the near simultaneous occurrence of moisture at all 

depths in Transect 5. These infiltration events occurred during the dry season, when antecedent 

sediment moisture was presumed to be minimal. In the following year, Transect 7 (installed in 

the same location in the channel center) recorded comparable rates of infiltration as in Transect 

6. 

 

4.6 Conclusions 

Within ephemeral channels, improved understanding of transmission loss informs 

estimates of regional groundwater recharge and supports sustainable management. This is 

particularly important in water-scarce, arid systems which lack sufficient stream gaging and 

groundwater monitoring infrastructure. Across central Morocco, subsurface temperature probes 

were installed in vertical transects beneath two ephemeral channels to improve our understanding 

of spatial and temporal variability in transmission loss. Thermographs recorded over multiple 

years identified 33 potential infiltration events across both wet and dry seasons. Patterns of 

infiltration highlight the potential role of pre-existing sediment moisture in facilitating rapid 

infiltration for sustained groundwater recharge. They further suggest the role of near-surface 
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sediments in both constraining and augmenting vertical infiltration. Within each basin, 

infiltration rates were observed to decrease with distance downstream, while infiltration was 

shown to accelerate with increased depth. Sites on the alluvial plain of the Souss basin 

demonstrated faster rates of infiltration than sites in the high-elevation mountain front of the 

Tensift basin. In data-limited systems, expanded understanding of local controls on transmission 

loss processes has the potential to improve current and future estimates of groundwater recharge, 

particularly within arid basins vulnerable to changing climate. 
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CHAPTER 5 

CONCLUSIONS 

Broadly, flow intermittency is expanding into previously perennial channels, and 

becoming more extreme in presently ephemeral systems. This is primarily thought to be driven 

by climate shifts to overall reduced total precipitation and increasingly sporadic events in arid 

environments. Dryland systems historically have strongly been defined by seasonality of 

precipitation, but such shifts are eroding these boundaries. This work broadly underscores the 

role of wet season moisture and its timing in controlling stream intermittency. The wet season, 

commonly October± April in arid regions, was identified at both the continental and basin scale 

as having a significant contribution to intermittent flow and associated infiltration. Across 

CONUS, precipitation which occurred at the onset or cessation of the wet season was observed 

to exert the largest control on developing intermittency throughout the year. In representative 

basins in Morocco, wet season precipitation was further identified as driving the majority of 

potential recharge events in both mountain front and plains recharge zones. Despite an observed 

expansion of intermittency at the continental, basin, and field scale, maintenance of flow events 

during the wet season indicates the potential for sustained patterns of groundwater recharge. This 

underscores the need for future work to further prioritize the characterization of wet season 

phenomena and local climate patterns. Advancements in flow identification through the 

application of DFA and remote sensing show promise for surface flow characterization in data 

scarce systems, but further breakthroughs are necessary to quantify precipitation total, intensity, 

and temporal and spatial distribution in systems which lack gaging.  
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Across all scales, intermittent channels present challenges to characterization. Flow 

intermittency can be heterogenous both spatially and temporally, with channels displaying a 

combination of both localized flow and dry sections. As a result, observations of flow 

intermittency can be spatially dependent. Within gaged systems, the characterization of 

intermittency relies on the alignment of channel dry sections with gage locations. This was 

particularly relevant to work at the continental scale, which prioritized broad characterizations of 

flow to understand dominant regional trends. Within ungaged systems at both the basin and field 

scale, lack of gage data presented a challenge to validation of localized surface conditions and 

limited finer resolution distinctions in intermittency.  

Future work focused on the details of flow seasonality, particularly the variability of wet 

and dry season onset and duration, will further clarify our understanding of temporal and spatial 

flow variability, and sustained groundwater recharge. Paired with improved satellite imagery and 

recharge estimates, research outcomes have the potential to refine management decision making, 

particularly in water-limited environments faced with an uncertain climate future. 
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APPENDIX, CHAPTER TWO 

 

 

 

 

 

 



135 

 

Appendix Chapter 2, Figure 1. DFA Analysis. (a) Graphical distribution of DFA analysis for 

intermittent vs. perennial streams. Distinct groupings and tight within-group distribution 

indicates effective group separation by the linear function. (b) DFA loadings for 33 variables. 

Largest values indicate greatest contribution and variable color marks group correlation. 
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Appendix Chapter 2, Figure 2. PCA Analysis. (a) Principal components explain 78.1% of data 

variance, and (b) relationships between variables demonstrate distinct seasonal groupings. 
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Appendix Chapter 2, Figure 3. Non-climate variables exert minor controls on stream 

intermittency. Contributing basin drainage area (displayed as gage size), and sub-basins 

dominated by shrub/scrub and slow infiltration soils display subtle correlation to group 

distinction. Intuitively, perennially streams are observed to correlate to greater contributing 

drainage areas than intermittent systems. 
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APPENDIX, CHAPTER THREE 

Appendix Chapter 3, Table 1. Pixel comparison across training and test imagery. 

Training DFA 3200 Pixels (1600 Water, 1600 Non-Water) 
Upstream section 23,741 pixels 
Midstream section 137,056 pixels 

Downstream section 45,598 pixels 

 

 

Appendix Chapter 3, Figure 1. Average daily precipitation as estimated by the TRMM and GPM 

satellites, across the upstream section of the Souss channel. Due to its improved estimation 

capabilities, GPM-IMERG data were prioritized over TRMM-TMPA data, beginning in 2000. 
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APPENDIX, CHAPTER 4 

 

 

Appendix Chapter 4, Figure 1. PCA Analysis scree plot,  principal components explain 99.82% 
of data variance. 
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Appendix Chapter 4, Figure 2. Sieved sediment samples from transect locations within the Souss 
basin. Percentage of sediment grain size within each sample is noted in orange.  

 
 

 

 

 


