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ABSTRACT 

 With rising consumer concerns about animal welfare, the United States (USA) egg 

industry is shifting towards cage-free farming practices. This shift introduces challenges in 

poultry management, sustainable egg production, and automation in poultry farming. In 

response, this study investigates updated computer vision techniques, thermal cameras, and 

robotics to monitor poultry floor distribution, predict bird body weight, manage floor eggs, and 

detect behaviors and welfare conditions. The objective of this dissertation was to evaluate the 

performance of traditional convolutional neural network (CNN) models (e.g., YOLO series, 

EfficientNetV2, SegFormer, and SETR) and large vision models (LVM) (e.g., Segment 

Anything Model and Track Anything Model) in assessing key production and welfare indicators 

of cage-free layers. Furthermore, the research explored advanced robotic systems for detecting 

floor eggs and dead chickens. For this study, 800 hens were raised in four cage-free research 

rooms under different experimental designs based on specific research objectives. The results 

demonstrated that CNN models can effectively track chickens' spatial distribution (90.0% 

precision), detect floor eggs (94.8% accuracy), and classify six behaviors (i.e., feeding, drinking, 

walking, perching, dust bathing, and nesting) with 95.3% accuracy. LVMs, combined with 



thermal cameras, predicted chicken body weight (R² = 0.90) and tracked individual hens (RMSE 

= 0.02 m/s). Moreover, integrating CNN models with intelligent bionic quadruped robots 

allowed for the detection of floor eggs in dimly lit areas, such as beneath feeders and in corner 

spaces, as well as the identification of dead chickens within the flock. In conclusion, this 

dissertation highlights the cutting-edge techniques of precision farming technologies in 

advancing automated poultry management in cage-free systems. By integrating CNN, LVM, and 

robotic technologies, this research offers an interdisciplinary approach to addressing the 

challenges of modern cage-free farming, advancing the poultry industry with more ethical, 

efficient, automated, and sustainable production practices. 
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ABSTRACT 

As global demands on the poultry production and welfare both intensify, the precision 

poultry farming technologies such as computer vision-based cybernetics system is becoming 

important in addressing the current issues related to animal welfare and production efficiencies. 

The integration of computer vision technology has become a catalyst for transformative change 

in precision farming, particularly concerning productivity and welfare. This review paper 

delineates the central role of computer vision in precision poultry farming, focusing on its 

applications in non-contact monitoring methods that employ advanced sensors and cameras to 

enhance farm biosecurity and bird observation without disturbance. We delved into the 

multifaceted advancements such as the utilization of convolutional neural networks (CNNs) for 

behavior analysis and health monitoring, evidenced by the high accuracy sorting of eggs and 

identification of health concerns within target-dense farm environments. The review paper 

underscores advancements in precision agriculture, including accurate egg weight estimation and 

egg classification within cage-free systems, paralleling the poultry sector's evolution towards 

more ethical farming practices. Moreover, it addresses the progress in poultry growth monitoring 

and examines case studies of commercial farms, showcasing how these innovations are being 

practically applied to enhance productivity and animal welfare. Challenges remain, particularly 

in terms of environmental variability and data annotation for deep learning models. Nevertheless, 

the review emphasizes the scope for future innovations like voice-controlled robotics and virtual 

reality applications, which have the potential to enhance poultry farming to new levels of 

efficiency, humanity, and sustainability. The insights assert that the continued exploration and 

development in computer vision technologies are not only instrumental for the poultry sector but 

also offer a blueprint for agricultural enhancement at large. 
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Key words: Poultry production, Animal welfare, Computer vision, Deep learning 

 

1.1 INTRODUCTION 

Facing the dual pressures of a growing population and the need for sustainable farming, 

the poultry sector has embraced non-contact monitoring as a crucial innovation (Li et al., 2020). 

As the global population expands, the sector is compelled to evolve, necessitating more efficient 

and sustainable farming practices. Precision farming in poultry production is one such 

evolutionary step, referring to the use of advanced technologies to increase the efficiency of 

production processes, improve animal welfare status, and reduce environmental impacts. 

Precision farming is characterized by the precise management of food, water, and living 

conditions, and is particularly attentive to the health and well-being of the poultry. Animal 

welfare is a central component of this approach, acknowledging that healthier and less stressed 

animals yield greater productivity. Machine vision technologies are at the forefront of these 

innovations. They offer non-intrusive methods to monitor poultry, thereby supporting farm 

biosecurity and animal welfare. This technique, powered by advanced sensors and cameras, 

allows for subtle observations of poultry behavior and physiology, enhancing early detection 

capabilities while remaining non-invasive and maintaining biosecurity. The widespread 

implementation of computer vision for animal monitoring signifies a dramatic shift from 

conventional practices, utilizing a blend of learning algorithms to interpret behavior from visual 

data - a task that hinges on the precise extraction of features (Okinda et al., 2020a).  

Challenges on poultry farms, such as dust, low light conditions, and varying flock 

density, complicate the capture of clear visual data, which is essential for detailed behavior 

analysis. The advent of deep learning, particularly the use of Convolutional Neural Networks 
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(CNNs), represents a considerable leap forward in overcoming these issues (Bist et al., 2023b; 

Guo et al., 2023). These models have equipped farmers with the tools to delve into the nuances 

of animal behavior and health, evidenced by high-accuracy applications ranging from sorting 

eggs to identifying sick birds in crowded environments using algorithms like You Only Look 

Once (YOLO) (Jocher, 2020; Ma et al., 2020). Additionally, the field of poultry farming has seen 

technological advancements in the evaluation of egg weight - a key quality and value 

determinant - through automated measurement systems that employ a range of techniques from 

Artificial Neural Networks (ANN) to Support Vector Machine (SVM) (Amraei et al., 2017; 

Pacure Angelia et al., 2022). This innovation offers a substantial upgrade over manual weighing 

methods, streamlining the process with improved efficiency and precision (Yang et al., 2023c). 

The integration of deep learning with machine learning regression techniques has been 

particularly significant for the comprehensive classification and weighing of eggs, including 

those from cage-free systems, a change aligned with the sector's move from traditional caging to 

more ethical farming practices. The shift toward cage-free egg production has necessitated 

adaptable computer vision systems capable of handling a wide array of egg types, from floor 

eggs to those destined for commercial distribution (Bist et al., 2022, 2023a). Such advancements 

underscore the necessity for computer vision systems that can accurately classify and weigh 

eggs, ensuring uniform quality for both producers and consumers (Mertens et al., 2005). 

Significant progress has been made in other aspects of poultry farming as well, like 

monitoring growth and detecting health disorders and body weight prediction (Bist et al., 2023a, 

Yang et al., 2024). Neethirajan (2022) proposed a novel methodology, centering on the 

locomotive behaviors of poultry. By integrating sophisticated tracking algorithms, notably the 

Kalman Filter, their system was capable of projecting growth trajectories from the birds' activity 
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levels (Neethirajan, 2022). Angelia et al. (2021) explored egg classification techniques. 

Employing a region-convolutional neural network, they succeeded in classifying eggs with a 

remarkable 93.3% accuracy, demonstrating the efficacy of image processing technologies in 

determining egg grades such as Grade A, B, C, and Inedible (Pacure Angelia et al., 2022). 

Lamping et al. (2022) developed ChickenNet, an innovative framework designed to evaluate the 

plumage condition of laying hens. This system, an extension of the Mask Region-Based 

Convolutional Neural Network (R-CNN) model, underwent testing at various image resolutions, 

resulting in a mean average precision (mAP) of 98.02% in identifying hens and a 91.83% 

accuracy rate in predicting the status of their plumage(Lamping et al., 2022). Advanced computer 

vision techniques have shown promising results in improving precision, reducing labor-intensive 

processes, and enhancing overall farm efficiency. The use of sophisticated algorithms and 

multimodal systems, incorporating different sensors and data types, further amplifies the 

potential of these technologies (Astill et al., 2020; Li et al., 2023a). However, the journey is not 

without its hurdles. Real farm applications still face challenges such as environmental variability 

and the need for vast, labeled datasets for deep learning models (Andriyanov et al., 2021; Joffe et 

al., 2017). Future directions in this field appear promising, with potential advancements like 

voice-controlled robotics and virtual reality integration (Zang et al., 2011; Kanash et al., 2021). 

The amalgamation of computer vision with these cutting-edge technologies could further 

revolutionize poultry farming, making it more efficient, welfare-friendly, and sustainable by 

offering a more intelligent system to manage poultry production. The ongoing research and 

development in this domain are not only crucial for the poultry sector but also serve as a 

blueprint for other sectors in agriculture, demonstrating the vast potential of computer vision and 
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artificial intelligence (AI) in enhancing productivity and welfare (Franzo et al., 2023; Zhang et 

al., 2023e). 

An extensive review of literature spanning from January 2013 to October 2023 reveals a 

significant body of research - 246 papers, by searching the core keywords - Computer Vision and 

Poultry, dedicated to computer vision's transformative impact on poultry management. Using the 

"AND" function in the search bar of scientific databases helps refine results to papers that utilize 

poultry as experimental animals and employ image vision as a method. This research collectively 

emphasizes the potential of computer vision to enhance and streamline poultry management, 

historically dependent on manual processes. The dedication to precision and efficiency is evident 

throughout these works, showcasing the dynamic capabilities of computer vision technologies. 

These research works foretell the emergence of a new era in farming focused on sustainability, 

efficiency, and improved welfare, led by the advances in computer vision. 

1.2 COMPUTER VISION IN POULTRY FARMING: A DECADE OF PUBLICATION 

TRENDS 

Within the poultry sector, advancements in technology have ushered in a new era of 

research possibilities. Computer vision, powered by deep learning and neural networks, is fast 

becoming a game-changer. To gauge the depth of this integration, established databases like 

PubHub and Web of Science (aligned with search results from Scopus and PubMed) were 

scoured focusing on terms synonymous with both computer vision (“deep learning”, “neural 

networks”, “image processing”, “image recognition”) and poultry studies (“chickens”, “avian”, 

“layers”, “broilers”). 

1.2.1     Yearly Publication Analysis 
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When searching with the “core keywords” Computer Vision and Poultry, there were 246 

papers published from January 2013 to October 2023, averaging 23 papers annually. As shown 

in Figure 1.1, 2022 had the peak annual publication rate with 64 papers, and 2019 had the fastest 

growth rate at 127.27%. This suggests that research in this field is undergoing rapid development 

and is in a swift ascending phase. The surge in publications indicates a growing interest and 

significant advancements in merging computational technologies such as machine learning 

within avian studies. This upward trajectory may be attributed to the realization of the potential 

impacts of applying AI techniques to poultry research, such as improved poultry health 

monitoring, better disease detection, and enhanced production efficiency. The trend also 

highlights a collaborative effort between the tech sector and poultry science, bringing forth 

interdisciplinary solutions. For researchers and stakeholders, this trend underscores the 

importance of investing in this intersection of technologies, as it promises to redefine the future 

of poultry management and production. 

 

Figure 1.1. Annual publication trend of literature related to computer vision and poultry from 

January 2013 to October 2023. 

1.2.2    Journals at the Forefront 
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The top 30 journals by publication volume are shown in Figure 1.2. The journal with the 

most publications on this topic is “Animals” with 20 articles; “Poultry Science” ranks second 

with 14 articles, and “Sensors” is third with 10 articles. Navigating the evolving landscape of 

computer vision as it intersects with poultry research can be significantly enhanced by closely 

analyzing leading journals in the field. By pinpointing and routinely checking into authoritative 

journals such as “Animals”, “Poultry Science”, and “Sensors”, researchers can stay abreast of the 

most recent and impactful findings. These publications often serve as reservoirs of quality 

information, given their rigorous peer-review processes. Beyond the immediate academic 

content, these journals can spotlight emerging technological trends, novel methodologies, and 

innovative applications specific to the realm of poultry. This is particularly vital for those who 

aim to integrate advanced computer vision techniques into poultry research and management. 
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Figure 1.2. Journal publication analysis from January 2013 to October 2023 on computer vision 

and poultry. 

1.2.3    Global Contributions: Country-wise Analysis 

The top 54 countries in terms of publication volume in the research fields of computer 

vision and poultry are shown in Figure 1.3. The country with the highest publication volume in 

this area is the United States of America with 75 papers (30.49%), followed by China with 58 

papers (23.58%), and the United Kingdom ranking third with 22 papers (8.94%). This 

distribution provides a roadmap for researchers and institutions. Engaging with the leading 

countries can open doors for international collaborations, knowledge exchange, and access to 

more extensive datasets and resources. It is crucial for individuals and institutions to understand 

these global research dynamics to effectively position themselves in this evolving landscape, 

seek partnerships, and stay updated with the latest methodologies and findings from these 

leading nations. 
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Figure 1.3. Analysis of research countries from January 2013 to October 2023 on computer 

vision and poultry. 

1.2.4    Keyword Trends: Evolution of Focus Topics 

Keywords in a paper are a concise summary and encapsulation of the research objectives, 

subjects, and methods. Analysis based on keywords can reflect the evolution of themes and 

research hotspots in a specific field over a certain period. Using computer vision and poultry as 

search keywords for the timeframe from January 2013 to October 2023, as shown in Figure 1.4, 

the top five keywords in terms of frequency are: machine learning, poultry, avian influenza, 

random forest, and salmonella. Dividing the time frame from January 2013 to October 2023 into 

four periods, as shown in Figure 1.5, represents the popularity ranking and ranking changes of 

keyword frequency related to computer vision and poultry. Over the span of a decade, from 2013 

to 2023, the persistent prominence of machine learning stands out, as it emerges as a pivotal 

topic across all four distinct time periods. This underscores its enduring relevance and crucial 

role in various domains. Delving into the evolution of computer vision topics, the early phase 

from 2013 to 2015 was marked by the presence of concepts such as "hyperspectral imaging" and 

"information gain". Progressing to 2016-2018, there was a notable introduction of terms like 

"random forest" and "2D, 3-dimensional". As we transitioned into the 2019-2021 period, the 

field exhibited a pronounced tilt towards advanced methodologies, prominently featuring 

"convolutional neural networks". This momentum carried forward into 2022-2023, where 

"convolutional neural networks" remained at the forefront, complemented by the emergence of 

"big data". In poultry science, the evolution of these keywords reflects the sector's intricate 

response to emerging challenges and opportunities. The prominence of terms like "avian 

influenza" underscores the ongoing efforts in disease management and prevention, while the 
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emergence of "animal welfare" indicates a growing emphasis on ethological research and 

ensuring optimal living conditions for poultry. Moreover, the keyword 'Salmonella' brings to the 

forefront issues of food safety, highlighting the critical need to monitor and control bacterial 

pathogens that can affect both animal and human health. This progression mirrors the sector's 

dedication to leveraging technology for holistic advancements in poultry health, production, and 

welfare. 

 

 

Figure 1.4. Keyword frequency analysis of computer vision and poultry from January 2013 to 

October 2023 (This word cloud was generated through bibliometric analysis to count the 

frequency of each word in the dataset. Words that appear more frequently are displayed in larger 

fonts). 
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Figure 1.5. Analysis of popularity rankings and ranking changes for computer vision and poultry 

across different time periods from January 2013 to October 2023. 

1.3 DELVING INTO THE CORE APPLICATIONS AND IMPLICATIONS OF 

COMPUTER VISION IN POULTRY FARMING 
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1.3.1    Fundamentals of Computer Vision in Poultry Management 

Computer vision, rooted in interpreting visual data similarly to human vision, has seen a 

surge in applications, notably in animal farming. With the growing demand for poultry products 

due to a rising global population, the sector is pushed to maintain quality care for increasing 

numbers of animals (Li et al., 2021a). Traditional methods sometimes fail to detect early signs of 

abnormalities in animals, which may affect their health and productivity. To address this, 

computer vision technologies, particularly CNNs, provide objective and real-time monitoring 

tools (Fernandes et al., 2020). Emerging digital image acquisition technologies have enabled 

areas like digital image processing and image analysis, which play crucial roles in interpreting 

visual data. Modern sensors, such as infrared cameras and hyperspectral imaging tools, enable 

diverse applications in poultry farming, including behavior monitoring and body weight 

measurement (Li et al., 2020; Olejnik et al., 2022). Cameras and sensors, the foundational 

components of computer vision, offer a holistic view of an environment when their data is fused. 

Red, green, and blue wavelengths (RGB) cameras, known for high-resolution images, capture the 

visual spectrum (Brenner et al., 2023). Thermal infrared cameras provide insights into heat 

patterns, and depth sensors offer spatial information by combining with RGB data (Feng et al., 

2021). However, challenges like the photogrammetric co-processing of thermal infrared and 

RGB images, make calibrated systems and advanced algorithms indispensable for accurate data 

interpretation (Dlesk et al., 2022). In poultry farming, obtaining clear visual data poses a 

challenge. Factors like dust, varying light conditions, and bird movement introduce noise and 

imperfections into raw images (Zhang and Zhou, 2023; Zhang et al., 2023e). Adaptive image 

noise removal tools, equipped with classification capabilities, ensure data remains free from 

visual degradation (Chen et al., 2020a). Deep learning techniques further address challenges such 
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as blur, shadows, and poor lighting (Anvari and Athitsos, 2022). Therefore, specialized image 

processing techniques that cater to the unique challenges in poultry environments, like bird 

movement and dust, are essential for preparing data for further analysis. Feature extraction in 

poultry imaging involves extracting relevant features, like bird size or health indicators. 

Techniques like the vision transformers and segment anything model have facilitated bird 

detection (Dosovitskiy et al., 2021; Jamil et al., 2022; Yang et al., 2023c). Moreover, similarity 

search concepts have been valuable in high-resolution imaging, making multi-modal imaging 

frameworks crucial for efficient feature extraction (Somnath et al., 2018). Computer vision's 

integration with broader management systems has been paramount in sectors like livestock and 

transportation. These systems enable real-time and accurate data acquisition, leading to 

predictive modeling for precise decisions. In poultry management, computer vision offers myriad 

benefits. It improves efficiency in monitoring livestock, facilitating real-time egg quality 

monitoring, disease detection, and growth pattern evaluations (Dorea et al., 2020; Kumar et al., 

2023). Applications even extend to monitoring chicken behavior, showcasing the potential in 

recognizing and classifying behaviors for livestock well-being. Moreover, decision-making is 

enhanced; mobile health apps equipped with computer vision offer non-invasive assessments of 

superficial wounds (e.g., inflammation or tissue damage can be used to determine the severity of 

feather damage), improving poultry health care (Zhang et al., 2023d). In sum, computer vision's 

integration in poultry management promotes better health monitoring, minimizes manual labor, 

and encourages data-driven decisions, thus enhancing overall poultry farming efficiency (Zheng 

et al., 2021; Abraham et al., 2021). Figure 1.6 below provides a succinct flowchart that illustrates 

the end-to-end integration of computer vision into poultry management, capturing each pivotal 

step from image acquisition to data-driven decision making. 
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Figure 1.6. A flowchart that illustrates the end-to-end process of computer vision-based 

cybernetics system in poultry management.  

1.3.2    Egg Quality Assessment 

In the modern poultry and egg sector, ensuring the quality of eggs is not just a matter of 

meeting consumer expectations but also a testament to the advancements in technology and 

research. As the global demand for eggs continues to rise, the sector faces the challenge of 

maintaining quality while scaling up production. Traditional methods of quality assurance, often 

manual and time-consuming, are increasingly being replaced by automated systems. Among 

these, computer vision, when synergized with machine learning, has emerged as a frontrunner in 

revolutionizing egg quality assurance. Okinda et al. (2020) delved into the realm of volume 
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estimation, introducing a depth image-based system specifically for chicken eggs. Their 

approach ingeniously tackled challenges like varying ambient light conditions and the potential 

occlusion of eggs, achieving remarkable accuracy (R2 of 0.984) in volume estimation (Okinda et 

al., 2020b). Another study took on the task of recognizing cracks on eggshells, a task made 

challenging due to natural dark spots on the egg surface. Their method used negative laplacian of 

gaussian (LOG) operator to enhance crack visibility, achieving an impressive 92.5% recognition 

rate, which could significantly reduce the risk of selling damaged eggs (Guanjun et al., 2019). 

The weight of an egg can be a direct indicator of its quality (Schwagele 2011). Recognizing this, 

Cen et al. (2006) embarked on developing a machine vision system specifically for this purpose. 

Their system, which employed image segmentation based on RGB intensity, showed a strong 

correlation between predicted and actual weights, indicating its reliability (Cen et al., 2006). 

Angelia et al. (2021) ventured into the domain of egg classification. Using the region-

convolutional neural network, they achieved a 93.3% accuracy rate, showcasing the potential of 

image processing in egg grade (Grade A, B, C, Inedible) determination (Pacure Angelia et al., 

2022). Sex determination in breeder eggs has always been a topic of interest. A comprehensive 

review in this area highlighted the potential of non-invasive methods, discussing cutting-edge 

techniques like Raman spectroscopy and computer colorimetric setups, which could 

revolutionize hatchery practices (Aleynikov, 2022). Another noteworthy development was an 

automated system for egg grading. This system, capable of identifying, counting, and classifying 

eggs, achieved a staggering 98% accuracy for individual classifications based on a two-stage 

model (real-time multitask detection (RTMDet) and random forest networks) (Yang et al., 

2023a). Other pioneering studies in egg quality field focused on diverse areas such as eggshell 

quality assessment (Pan et al., 2011), determining egg freshness (Qi et al., 2020), yolk color 
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analysis (Ma et al., 2017), contamination detection, size and shape analysis (Nasir et al., 2018), 

surface defect detection (Mota-Grajales et al., 2019), and a deep dive into internal quality 

assessment (like blood spots) (Arivazhagan et al., 2013). While the aforementioned studies have 

made significant strides in egg quality assurance using computer vision, there's still room for 

growth. One avenue for exploration is the integration of real-time monitoring systems. These 

systems, capable of instantly processing and providing feedback on the data they receive, could 

revolutionize poultry farms by allowing instantaneous quality checks. As eggs are produced, any 

issues such as cracks and stains could be immediately identified and addressed, ensuring optimal 

quality. However, the challenges of poultry environments, characterized by varying levels of 

light, temperature, and humidity, necessitate the development of systems robust enough to 

operate under these varying environmental conditions (Bist et al., 2022, 2023a, 2023c). Lighting 

is pivotal for computer vision; different lighting conditions can affect image quality and analysis 

accuracy. As we advance, reducing false positives-instances where a system mistakenly flags a 

good quality egg as subpar-becomes paramount. This ensures that quality eggs aren't wrongfully 

discarded, preventing unnecessary wastage. The future also beckons the exploration of multi-

modal systems, which amalgamate traditional computer vision techniques with other types of 

data input. For instance, combining computer vision with other sensors like infrared (Zhang et 

al., 2023c), which can detect temperature variations indicating egg freshness, or ultrasonic 

sensors (Mocanu et al., 2016), adept at identifying minuscule, otherwise invisible eggshell 

cracks, can offer a more comprehensive egg quality assessment. Such holistic evaluations ensure 

that only the best eggs make their way to consumers (Figure 1.7). 
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Figure 1.7. Revolutionizing egg quality assurance with computer vision.  

1.3.3    Broiler Growth Monitoring through Computer Vision 

In the rapidly evolving poultry sector, monitoring the growth of meat chickens (broilers) 

has become paramount. As the global poultry market expands, optimizing growth rate becomes 

imperative while ensuring the health and well-being of the broilers. Traditional methods, which 

often rely on manual measurements and visual checks, are gradually being overshadowed by the 

precision and efficiency of computer vision, especially when augmented by machine learning 

techniques. A groundbreaking study by delving deep into the potential of computer vision for 

monitoring poultry growth. By addressing challenges like bird movement, they introduced a 

depth image-based system. Their method, which adeptly navigated these challenges, achieved 

real-time weight estimation, ensuring consistent growth rates and early detection of growth 

anomalies (Mortensen et al., 2016). Furthering the discourse, Aydin et al. (2010) concentrated on 

poultry posture and activity levels as indicators of health and growth. Using sophisticated image 

processing techniques like the CNN, they discerned between postures of healthy and potentially 

ailing birds. Their system, which melded edge detection with pattern recognition, demonstrating 

the promise of computer vision in early detection of gait abnormalities and its association with 

body weight and growth rate (Aydin et al., 2010). 



 

19 

Nakarmi et al. (2014)'s research, on the other hand, was centered on poultry feeding 

patterns. Recognizing the direct correlation between feeding patterns and poultry health and 

growth, they devised a computer vision system to monitor individual bird feeding activity. By 

employing image segmentation techniques combined with deep learning algorithms, their system 

demonstrated a robust correlation between feeding behaviors and growth trajectories, with an 

efficacy rate of 95% (Nakarmi et al., 2014). Neethirajan (2022) took a different approach, 

focusing on the movement patterns of poultry. Their system, which employed advanced tracking 

algorithms like the Kalman Filter, could predict growth rates based on the activity levels of the 

birds. This not only ensured optimal the tracking of the chicken’s temporal and spatial changes 

but also provided insights into the overall movement the flock (Neethirajan, 2022). 

Jung et al. (2021) investigated the keel bone development in poultry using computer 

vision techniques and 3D imaging. They were able to monitor the keel bone damage of laying 

hens providing crucial insights into their overall physical development and health with a 

precision rate of 86% (Jung et al., 2021). You et al. (2021) provided a deep dive into the 

nutritional aspect. Their system, which utilized the random forest classifier, could monitor the 

food intake of individual birds, correlating it with their growth rates, and ensuring that the birds 

received optimal nutrition for healthy growth (You et al., 2021). Lin et al. (2020) introduced a 

system using time-lapse imaging and Faster region-based convolutional neural network (R-CNN) 

deep learning algorithms to monitor chicken movement, drinking habits, and growth patterns. 

With a detection accuracy of 98.16% and tracking accuracy of 98.94%, this method offers a 

comprehensive insight into chicken behavior and growth, especially in addressing heat stress in 

tropical regions (Lin et al., 2020). Thompson et al. (2023) and Nakrosis et al. (2023) all focused 

on different aspects of poultry growth, from dropping classification to feather growth patterns. 
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Their computer vision systems, which employed techniques like the YOLOv5 and K-means 

algorithm, provided comprehensive insights into each aspect, ensuring that the birds grew 

healthily and uniformly with an average accuracy rate of 89% (Thompson et al., 2023; Nakrosis 

et al., 2023). While these studies have significantly advanced the field of poultry growth 

monitoring using computer vision, there's still a vast expanse to explore. Future research could 

delve into real-time system integration in  poultry farms for continuous monitoring (Raj and 

Jayanthi, 2018). Adaptable systems, such as those with depth camera for different poultry sizes 

or those that can recalibrate based on varying light conditions, will be pivotal (Lee, 2012; Lin et 

al., 2019). As machine learning models evolve, integrating them with computer vision can 

further refine system accuracy. The exploration of multi-modal systems, merging computer 

vision with other sensory data like acoustic or thermal sensors, can offer a comprehensive 

solution, revolutionizing poultry growth monitoring. Table 1.1 lists Primary methods in 

computer vision technology for overseeing and tracking poultry growth in monitoring systems. 

Table 1.1. Main computer vision techniques in poultry growth monitoring systems. 

Technique Target Sensor Bird type Reference 

Bayesian artificial neural 

network 

Body weight 3d camera Broiler (Mortensen et al., 

2016) 

Linear real-time model Distribution Top view 

camera 

Broiler (Kashiha et al., 

2013) 

Yolov3 Gender Digital 

camera 

Hens and 

roosters 

(Yao et al., 2020) 

Commercial software Growth rate Upper view 

camera 

Broiler (De Wet et al., 2003) 



 

21 

K-nearest neighbors’ 

algorithm 

Bone Digital 

camera 

Broiler )(Castro Júnior et al., 

2022) 

Faster R-CNN Heat stress  Web 

camera 

Broiler (Lin et al., 2018) 

Matlab Inactive birds 3d camera Broiler (Aydin, 2017) 

Matlab Thermal 

comfort 

Top view 

camera 

Laying 

hens 

(Del Valle et al., 

2021) 

Bot-SORT Tracking Top view 

camera 

Cage-free 

chickens 

(Siriani et al., 2023) 

Segment anything model Body weight Thermal 

camera 

Cage-free 

chickens 

(Yang et al., 2023c) 

Faster region-based 

convolutional neural 

network 

Drinking time Digital 

camera 

Broiler (Lin et al., 2020) 

Software carne 2.2 Fat content Digital 

camera 

Boiler and 

turkey 

(Chmiel et al., 2011) 

Generative adversarial 

network-masked 

autoencoders 

Chicken face Digital 

camera 

Chicken (Ma et al., 2022) 

Faster R-CNN Droppings Top view 

camera 

Broiler (Zhou et al., 2023) 

Mobilenetv2 Health 

assessment 

Digital 

camera 

Broiler (Li et al., 2023) 
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YOLOv5 Floor eggs Top view 

camera 

Cage-free 

chickens 

(Subedi et al., 

2023b) 

YOLOv5 Pecking  Top view 

camera 

Cage-free 

chickens 

(Subedi et al., 

2023a) 

YOLOv5 Mislaying Vertical 

view 

camera 

Cage-free 

chickens 

(Bist et al., 2023d) 

YOLOv4 Preference 

behavior 

 

Top view 

camera 

Laying 

hens 

(Kodaira et al., 

2023) 

YOLOX Counting Top view 

camera 

Broiler (Li et al., 2022) 

 

1.3.4    Poultry Health, Welfare and Disease Detection 

The field of poultry health management stands on the cusp of transformation with the 

potential adoption of computer vision technologies. The precision in monitoring sick birds, a key 

welfare indicator, has markedly improved by leveraging image analysis to estimate growth and 

detect health anomalies. Zhuang et al. (2018) developed a real-time health monitoring algorithm 

for broilers using image processing and Support Vector Machine (SVM), achieving 99.469% 

accuracy in detecting H5N2 bird flu (Zhuang et al., 2018). This is particularly evident in the 

processing sector, where machine vision systems have been adeptly employed to correlate 

carcass characteristics with viscera, thereby ensuring quality control during evisceration (Chen et 

al., 2023). The adaptability of broilers to their rearing environment has been quantified using 
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computer-vision-based indices, Massari et al. (2022) tested cluster and unrest CV-based indexes 

on twenty broilers to monitor movement, validating their effectiveness in controlled settings, and 

suggesting applicability in precision livestock farming (Massari et al., 2022). Additionally, the 

task of pose estimation has been addressed through multi-part detection models (Zheng et al. 

(2022). In addition, exploring automatic poultry pose recognition using deep neural networks 

(DNNs), outperforming algorithms like YOLOV3 with higher precision and recall, indicating 

potential for monitoring poultry health on large-scale farms (Fang et al., 2022).  

In the realm of disease detection, thermographic and AI methodologies have been 

synergized to facilitate the early identification of diseases, such as Newcastle Disease and Avian 

Influenza, showcasing the utility of thermal imaging in preemptive health measures (Sadeghi et 

al., 2023). This advancement is complemented by the prowess of deep learning in disease 

diagnostics through the deployment of convolutional neural networks, with models like 

MobileNetV2 and extreme inception (Xception) achieving high diagnostic accuracies (98%) in 

fecal image classification, thus equipping farmers with powerful tools for disease management. 

Furthermore, the behavioral patterns of laying hens have been decoded using computer vision, 

enabling continuous and individual behavior (standing, walking, and scratching) monitoring, a 

significant advancement over traditional human observation. The potential of computer vision 

systems in agriculture is substantial, inviting the development of sophisticated algorithms 

capable of adapting to the ever-changing farm conditions, such as variable ambient light and the 

multiple behaviors of poultry (Khairunissa et al., 2021; Ifuchenwuwa et al., 2023). The ongoing 

refinement and validation of these technologies across different poultry breeds and settings are 

critical to their success. In addition, the pioneering advancements in computer vision 

technologies hold immense promise for poultry health management.  
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Groundbreaking methods in poultry health management are showcased using 

thermographic imaging and the novel technique of converting audio files to images for stress 

analysis. This process involves analyzing the transformed images with pretrained CNN, 

achieving significant accuracy in stress detection (van den Heuvel et al., 2022). Integrating 

virtual reality (VR) and eye-tracking technology could also represent a future direction for 

enhancing poultry disease detection, offering precise monitoring and analysis capabilities. A 

study presents a VR system using eye-tracking to diagnose neurodegenerative diseases, 

successfully eliciting diagnostic eye movements and enhancing remote, accurate detection of 

conditions like Parkinson's (Orlosky et al., 2017). The integration of advanced computer vision 

with multi-modal sensory data underscores a future where adaptable and scalable solutions 

become the cornerstone of poultry health management and animal welfare. 

Table 1.2. Main computer vision techniques for welfare indicators detection. 

Technique Target Sensor Bird type Reference 

Residual network 

(ResNet) 

Sick bird Digital 

camera 

Broiler  Zhang et al. 

(2020)  

CNNs Manure Top view 

camera 

Chicken  Zhu et al. 

(2021)  

Logistic regression Comb Google 

Search 

       /  Bakar et al. 

(2023)  

Dense convolutional 

Network 

Chicken Top view 

camera 

Broiler Cao et al. 

(2021)  

U2-Net Plumage Side view 

camera 

Layer Heo et al. 

(2023)  
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Threshold 

segmentation 

Muscle Vertical 

view 

camera 

Broiler Chen et al. 

(2022)  

Visual geometry 

group network 

(VGGNet) and 

ResNet 

Avian pox, Infectious 

Laryngotracheitis, 

Newcastle, and Marek 

Digital 

camera 

Chicken Quach et al. 

(2020)  

Chan-Vese model Head and body Side view 

camera 

Caged 

chicken 

Xiao et al. 

(2017)  

Xception Eimeria            /         / Boufenar et 

al. (2022)  

Decision Tree 

 

Slouching, eye foaming, 

lethargy, feather loss, 

color paling, and raling 

Side view 

camera 

Caged 

chicken 

Quintana et 

al. (2022)  

U-Net and 

Pix2pixHD. 

Chicken Side view 

camera 

Caged 

chicken 

Yang et al. 

(2023e)  

CNNs Crowdedness Kinect 

sensor 

Cage-free 

chicken 

Pu et al. 

(2018)  

CNNs Locomotion, perching, 

feeding, drinking, and 

nesting. 

Top view 

camera 

laying-

hen 

Nakarmi et al. 

(2014)  

CNNs Breeder Top view 

camera 

Broiler Pereira et al. 

(2013)  
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Mask R-CNN 

YOLOv4 

Postures Top view 

camera 

Broiler Joo et al. 

(2022)  

YOLOv3 egg breeders 

 

Top view 

camera 

Hens Wang et al. 

(2020)  

Matlab Flock movement 

 

Top view 

camera 

Broiler Neves et al. 

(2015)  

Improved Sparrow 

Search Algorithm and 

Support Vector 

Machine 

Aggressive behaviors High-

definition 

cameras 

Taihang 

chickens 

Li et al. 

(2023b)  

Matlab Eating behaviors High-speed 

camera 

Broiler Mehdizadeh 

et al. (2015)  

YOLOv5 and deep 

sort 

Mobility Top view 

camera 

Broiler Jaihuni et al. 

(2023)  

 

1.3.5    Integrating Robotics and Computer Vision 

The integration of robotics and computer vision in poultry processing reveals a landscape 

of innovative technologies aimed at enhancing efficiency and animal welfare. Misimi et al. 

(2016) introduced the GRIBBOT, a 3D vision-guided robot for harvesting of chicken fillets, 

which represents a significant step toward automating the manual processes currently in place 

(Misimi et al., 2016). This innovation is paralleled by developments in ethological research, 

where robots like PoulBot were used to study and influence the behavior of domestic chicken 

chicks, thereby advancing our understanding of animal-robot interactions (Gribovskiy et al., 
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2018). Chen et al. (2018) described a machine vision method for recognizing visceral contours in 

poultry carcasses, which greatly improves the accuracy of processing and highlights the potential 

for automation in tasks that were traditionally challenging to mechanize (Chen and Wang, 2018). 

Concurrently, PoultryBot demonstrates the feasibility of using autonomous robots for tasks such 

as floor egg collection in commercial poultry houses, despite a need for further refinement in 

collection mechanisms and navigation systems (Vroegindeweij et al., 2018). The advancements 

in evisceration are showcased by six degrees of freedom robot system, which used robotics and 

machine vision to achieve high accuracy in poultry incisions for evisceration (Chen et al., 

2021a).  

In the realm of egg handling, a study has developed a sophisticated method involving an 

improved three-channel convolutional neural network (T-CNN) and you only look once 

(YOLOv5) technique for egg detection and segmentation (Zhang et al., 2023a). The method 

includes median filtering, OTSU method (OTSU) for segmentation, and the Kirsch operator for 

edge extraction, followed by feature extraction via T-CNN and classification using a support 

vector machine (SVM). The technique achieved a 95.65% accuracy rate in egg recognition, with 

a low misrecognition rate, demonstrating its efficacy for potential use in automated goose egg 

picking systems (Zhang et al., 2023a). This is complemented by the development of robots 

designed for the removal of broiler mortality, and autonomous egg picking systems that promise 

to reduce manual labor significantly while enhancing production efficiency. Livestock robots 

capable of picking and classifying eggs on farms are equipped with various sensors and virtual 

instrument devices, indicating a shift towards multifunctional farm automation (Wang et al., 

2019).  
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Recent advancements highlight the importance of robotics in various sectors. High-

throughput robotics help detect antimicrobial-resistant bacteria, linking robotics with public 

health (Truswell et al., 2023). Machine vision, using an improved region-based active contour 

method, accurately positions viscera, showcasing the potential of image processing in complex 

chicken slaughtering tasks (Chen et al., 2021b). Additionally, pick-and-place systems for 

handling deformable poultry pieces from cluttered bins highlight the need to evaluate robotic 

adaptability to meet varying demands in the food industry (Raja et al., 2023). The selective 

compliance articulated robot arm (SCARA) robot with a pneumatic gripper is specifically 

designed for egg handling in the poultry sector, showcasing automation's potential to increase 

production speed and reduce manual labor (Prakash et al., 2021). Moreover, smart mobile robots 

for free-range farms and real-time recognition studies of egg-collecting robots in free-range duck 

sheds exhibit the growing influence of machine learning models, like YOLOv5s, on robotic 

efficiency and environmental adaptability (Chang et al., 2020; Fei et al., 2023). Lastly, the 

studies explored sophisticated integrations of machine vision and robotics tailored to specific 

needs within the poultry sector. Chen et al. (2019) constructed an eviscerating robot system for 

the poultry processing sector, enhancing production efficiency, ensuring production efficiency 

and ensuring the health standards of poultry products and reducing labor intensity using parallel 

robots and machine vision, with a visual system developed on MATLAB. Gribovskiy et al. 

(2010) delved into the realm of ethology and robotics, where a mobile robot, PoulBot, was 

designed to interact with and influence chick behavior, showing young chicks accept robot as 

member as new insights for both scientific research and potential improvements in poultry 

welfare. This project utilized video and audio data, along with advanced data analysis systems, to 
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build formal models of animal behavior for implementation in robots (Gribovskiy et al., 2010; 

Chen et al., 2019).  

Future studies in poultry farming could revolutionize the sector by leveraging voice-

controlled robotics and VR for enhanced human-machine interaction. The potential of voice-

controlled machinery, as demonstrated by the Raspberry Pi project, indicates significant benefits 

in terms of automation. Using smartphone devices to control agricultural machinery could 

greatly improve efficiency and reduce labor needs in the poultry sector. The incorporation of 

Raspberry Pi 3 and its built-in Wi-Fi capability could serve as a cornerstone for internet-based 

automation, streamlining operations through simple voice commands. Furthermore, this system 

necessitates the use of a microSD card loaded with Raspbian OS to boot the Raspberry Pi. The 

integration of these technologies effectively transforms a conventional farm into a 'smart farm', 

where tasks are automated, and efficiency is greatly enhanced. The system's design takes into 

consideration ease of use, with a focus on creating a seamless interface for farmers who may not 

have extensive technical knowledge. The use of voice commands signifies a move towards more 

natural forms of human-machine interaction, reducing the learning curve and increasing 

accessibility (Chavan et al., 2019). In addition, further advancement could integrate VR-based 

robotics, taking advantage of immersive teleoperation systems to bridge the physical and virtual 

worlds in poultry environments. By using algorithms for real-time 3D reconstruction of 

unstructured agricultural scenes, operators could remotely guide robots through complex tasks 

within a virtual representation of the actual environment (Fadzli et al., 2023). This immersive 

approach could facilitate precise control over farming activities, from feeding and health 

monitoring to egg collection, while minimizing human presence and disruption to the birds. Such 

synergistic application of voice control and VR in robotics could lead to breakthroughs in 
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operational productivity and animal welfare, ushering in a new era of precision farming in the 

poultry sector. With these technologies, future research could develop sophisticated models that 

simulate entire poultry operations, allowing for the optimization of workflows and the 

exploration of novel farming strategies before their real-world implementation (Chen et al., 

2020b). Collectively, these studies signify a transformative period in the poultry sector, marked 

by rapid technological advancements. The convergence of robotics, computer vision, and 

ethology is not only enhancing production and efficiency but also contributing to better animal 

welfare and global health outcomes by enabling early detection of animal abnormal behaviors 

and removing unnormal birds in time, ensuring higher standards of food safety. As these 

technologies evolve, they hold the potential to address some of the most pressing challenges in 

the sector, including labor shortages, food safety, and disease surveillance. Figure 1.8 shows 

computer vision-based robotics and their roles of poultry sector. 

 

Figure 1.8. Enhancing poultry sector security with computer vision-based robotics (Source: Ren 

et al. (2020), Gribovskiy et al. (2010), Park et al. (2022) and Vroegindeweij et al. (2018)). 

1.3.6    Case Studies: Successful Implementations Around the Globe 
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To understand the application of computer vision in the poultry sector, we examined 

cases from commercial farms, including enclosed broiler houses, free-range, and cage-free 

environments. In enclosed broiler houses, significant advancements have been made using 

computer vision and deep learning. A study conducted by Mortensen et al. (2016) describes a 3D 

camera-based system utilizing a Kinect camera for broiler weight prediction, achieving an 

average error of 7.8%. This technology shows promise for broader applications such as activity 

analysis and health monitoring (Mortensen et al., 2016). Additionally, Eijk et al. (2022) detailed 

a study employing computer vision algorithms, including Mask R-CNN and U-Net models, to 

monitor broiler interactions with resources like feeders and drinkers, enhancing farm 

management and welfare practices (van der Eijk et al., 2022). Furthering these developments, 

Cakic et al. (2023) 's research introduces the use of high-performance computing (HPC) and 

deep learning to create predictive models for smart poultry farms. These models, effective in 

tasks like chicken counting, dead chicken detection, weight assessment, and uneven growth 

detection, were implemented on edge AI devices. Utilizing Faster R-CNN architectures for 

chicken detection and Mask R-CNN for segmentation, the study demonstrated high accuracies, 

paving the way for real-time farm monitoring. This underscores the potential of integrating HPC, 

deep learning, and edge computing in smart agriculture solutions, especially in poultry farming. 

Figure 1.9 illustrates the practical application observed in these case studies of enclosed broiler 

houses. 
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Figure 1.9. Case study of broilers: (A) body weight prediction (Mortensen et al., 2016), (B) 

broiler interaction monitoring (van der Eijk et al., 2022), and (C) broiler detection interface 

developed using HPC (Cakic et al., 2023). 

In free-range chicken houses, advanced computer vision and deep learning have 

significantly improved farm management and animal welfare. Cao et al. (2021) discussed the 

development of the locally constrained dense fully convolutional network (LC-DenseFCN) 

model, a deep learning method for chicken counting with a 97% accuracy rate. This model 

utilized densely connected convolutional networks (DenseNet) as the backbone network and a 

unique LC-Loss function for accurate, real-time counting in dense environments(Cao et al., 

2021). Yao et al. (2020) focused on chicken gender classification, achieving a 96.85% accuracy 

using YOLOv3 for detection and a VGG-19 based classifier (Yao et al., 2020). Liu et al. (2021) 
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detailed an automated system for detecting and removing dead chickens, integrating a visible 

light camera and YOLOv4 algorithm into a robotic system, enhancing biosecurity with a 95.24% 

precision rate (Liu et al., 2021). Figure 1.10 shows the practical application observed in these 

case studies of free-range chicken houses. The integration of such systems not only streamlines 

operations but also ensures high standards of care and well-being for the chickens by providing 

them with a healthier living and well-managed environment that is conducive to their health and 

productivity. 

 

Figure 1.10. Case study of free-range chickens: (A) chicken counting (Cao et al., 2021), (B) dead 

chicken removal (Liu et al., 2021), and (C) chicken gender detection (Yao et al., 2020). 

In cage-free hen houses, innovative computer vision and deep learning methodologies 

address specific poultry management challenges. Lamping et al. (2022) introduced ChickenNet, 

a system for assessing the plumage condition of laying hens. It extends the Mask R-CNN 

framework and was tested with different image resolutions, achieving a 98.02% mAP for hen 



 

34 

detection and 91.83% for plumage condition prediction (Lamping et al., 2022). Subedi et al. 

(2023) described the development of deep learning models (YOLOv5s-egg, YOLOv5x-egg, 

YOLOv7-egg) for detecting floor eggs in cage-free environments. The YOLOv5x-egg model, in 

particular, showed a 90% precision and 92.1% mAP, indicating its potential utility in varying 

conditions for automatic floor egg monitoring (Subedi et al., 2023b). These advancements in 

computer vision and deep learning demonstrate significant potential for enhancing welfare 

monitoring and operational efficiency in cage-free poultry farming. Figure 1.11 depicts the 

practical application observed in these case studies of cage-free houses. 

 

Figure 1.11. Case study of cage-free chickens: (A) plumage condition assessment(Lamping et al., 

2022), and (B) floor egg detection (Subedi et al., 2023b). 

1.4 FUTURE TECHNOLOGIES ON THE HORIZON 

Recent techniques from fields such as chat generative pre-trained transformer (ChatGPT), 

autonomous vehicles (AVs), and large voice models like speech audio language music open 

neural network (SALMONN), contextual speech model with instruction-following/in-context-

learning capabilities (COSMIC), and multi-modal music understanding and generation 

(M2UGen), provide a wealth of inspiration for the poultry sector, suggesting new avenues for 
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optimizing the environmental conditions and overall management of poultry houses, leading to 

enhanced growth rates, better health outcomes, and reduced waste. The data processing and 

natural language capabilities of ChatGPT, as applied in precision agriculture, could offer poultry 

farmers advanced tools for managing health, nutrition, and environmental controls, allowing for 

enhanced decision-making through simplified interaction with complex datasets (Biswas, 2023; 

Genç, 2023; Potamitis, 2023). Similarly, occlusion management techniques from self-driving car 

technology, utilizing light detection and ranging (LiDAR) and YOLOv2 algorithms, could 

revolutionize poultry monitoring systems, enabling precise tracking of individual birds and swift 

correction of visual occlusion errors, even under challenging conditions such as low light or 

high-density settings (Yahya et al., 2020). The use of training simulators, inspired by the car 

learning to act (CARLA) simulator for autonomous vehicles, could be developed for the poultry 

sector to train algorithms in virtual environments that mirror actual farm conditions, improving 

the predictability and management of flock dynamics. Additionally, the real-time processing 

power of end-to-end deep learning, akin to CNN approaches in AVs, could be applied to 

instantly process visual data from farms, ensuring accurate health assessments and headcounts. 

Techniques for image classification and semantic segmentation, crucial for navigation in AVs, 

could be adapted to segment and classify different areas of poultry farms, enhancing detection 

and reducing errors in bird counting (Liang et al., 2020; Tippannavar et al., 2023). Furthermore, 

the integration of SALMONN's audio processing capabilities could provide insights into the 

respiratory health indicators of poultry (Tang et al., 2023), while COSMIC's emergent 

instruction-following capabilities could enable farmers to seamlessly translate sensor data into 

actionable insights (Pan et al., 2023). M2UGen’s prowess in multi-modal generation suggests 

potential for creating stimulating or calming farm environments, innovating control interfaces for 
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farming equipment, and providing interactive staff training using natural language (Hussain et 

al., 2023). Collectively, these advanced technologies can significantly enhance poultry farming 

operations, leading to better animal welfare-characterized by good nutrition, comfortable living 

conditions, robust health, natural living, and humane handling, provided they are used 

responsibly in conjunction with human expertise and in adherence to the Animal Welfare Act. 

1.5 LARGE VISION MODELS FOR POULTRY SCIENCE 

In the swiftly advancing domain of artificial general intelligence (AGI), the advent of the 

segment anything model (SAM) stands out as a vanguard development (Kirillov et al., 2023). 

Unveiled by Meta AI in 2023, SAM revolutionizes the field with a pioneering, zero-shot 

segmentation approach (Ahmadi et al., 2023). As a universal image segmentation model, SAM 

adeptly addresses majority of segmentation challenges within new and complex datasets, 

employing the sophisticated art of prompt engineering. SAM's architecture is a paragon of large 

vision models, meticulously engineered to navigate the intricate landscape of segmentation tasks 

with unparalleled agility and precision. By initiating the use of prompt-based segmentation in its 

preparatory phase, SAM not only enhances the pre-training paradigm but also redefines it, laying 

down a novel standard that underscores the transformative adaptability of vision models. This 

innovation is particularly pertinent to the poultry sector, where SAM can be further tailored with 

adaptors and improvements. Its capacity to analyze and interpret diverse visual information holds 

the promise of revolutionizing the way we monitor and manage poultry health, behavior, and 

overall welfare. With its robust segmentation capabilities, SAM could offer unprecedented 

insights into the nuanced environments of poultry farming, enabling more efficient and humane 

practices. 

1.5.1 SAM for Tracking 
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SAM's foray into tracking applications, particularly within the field of video object 

segmentation (VOS), has proven to be a game-changer. This innovative tracking method, known 

as track anything model (TAM) (Yang et al., 2023d), integrates SAM with the established 

tracker XMem to segment and follow any object in video footage. In the context of poultry 

science, this technology holds significant promise; for instance, it can be tailored to track the 

speed and movement of chickens within a farm setting (Yang et al., 2023c). Users initiate the 

tracking by selecting an object, prompting SAM to generate a segmentation mask, which XMem 

then uses to track the object's movement through the video based on temporal and spatial data. 

This ability to monitor in real-time and make immediate adjustments is invaluable for farmers 

and researchers aiming to understand chicken behavior. However, TAM faces challenges in zero-

shot scenarios where it must perform without pre-existing data, a situation often encountered in 

poultry environments when new or occluded behaviors emerge. Despite these challenges, the 

integration of SAM into poultry management practices heralds a new era of precision farming, 

offering insights that could lead to enhanced productivity and improved animal welfare. 

1.5.2 3D-SAM-adapter 

The SAM has garnered acclaim for its proficiency in general-purpose semantic 

segmentation, demonstrating a strong ability to generalize across a variety of everyday images. 

However, challenges arise when SAM is tasked with identifying objects characterized by small 

size, irregular shape, and low contrast, due to its foundational design for 2D imagery which 

doesn't capture the complex 3D spatial information. To address these challenges, the 3D-SAM-

adapter, an innovative solution that modifies the original 2D SAM to interpret volumetric data, 

effectively enhancing its performance and enabling it to bridge the dimensional divide between 

2D and 3D data interpretation (Gong et al., 2023). This adaptation has shown significant 
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performance improvements over traditional methods. Recognizing the requirements of the 

poultry industry, the application of the adapted 3D SAM model for estimating poultry body 

weight and volume through 3D imaging represents a novel approach (Pleuss et al., 2019; You et 

al., 2021). Accurate measurement of these parameters is vital for effective health monitoring and 

growth management in poultry farming. By employing the 3D SAM model, there's potential to 

transform body weight estimation practices, offering poultry scientists and farmers a tool that 

could outperform conventional methods in both precision and efficiency. This advancement 

paves the way for more informed decision-making in poultry nutrition and welfare, leading to 

optimized farm operations and enhanced animal health. 

1.5.3 MobileSAM 

The SAM is known for its comprehensive image segmentation capabilities, but its 

performance can be hampered by the considerable computational weight of its image encoder. 

This issue has been ingeniously addressed by MobileSAM, which implements a knowledge 

distillation technique to distill the capabilities of the original SAM's heavy-duty image encoder, 

ViT-H, into a more lightweight version. This streamlined encoder retains compatibility with 

SAM's mask decoder while offering a significant reduction in size-over 60 times smaller than the 

original-without compromising on performance. Incorporating these innovations, MobileSAM 

stands out as especially beneficial for mobile applications, significantly advancing the practical 

deployment of SAM in various settings, including poultry farming (Zhang et al., 2023b). By 

minimizing the need for heavy computational resources, MobileSAM can be trained in less than 

a day on a single GPU, making it an ideal candidate for deployment in poultry farms where 

computational resources can be limited (Sigut et al., 2020). This adaptation not only ensures that 

the technology is accessible and cost-effective for farmers but also opens new avenues for real-
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time monitoring and management of poultry health, behavior, and productivity directly from 

mobile devices. 

1.6 CURRENT TECHNOLOGY LIMITATIONS 

Integrating computer vision in poultry farming represents a cutting-edge approach to 

agricultural management, leveraging deep learning and sophisticated hardware to optimize 

production. However, this integration is fraught with challenges. Firstly, the cost and complexity 

of digital signal processors (DSPs), field-programmable gate arrays (FPGAs), and graphics 

processing units (GPUs) present substantial barriers(Feng et al., 2019). These barriers are not 

solely financial but also technical, as leveraging these technologies requires a depth of 

programming and hardware knowledge often absent in farm settings. For instance, DSPs, 

essential for real-time processing tasks like grading poultry eggs, are priced between $500-

$2,000 but demand familiarity with digital signal processing and embedded system programming 

(HajiRassouliha et al., 2018). FPGAs, ranging from $1,000-$3,000, offer configurability crucial 

for tasks such as sorting eggs. However, they necessitate expertise in hardware description 

languages and the ability to manage complex logic networks. The price reflects their versatility 

and capability to perform parallel processing tasks effectively (Monmasson et al., 2011). GPUs, 

which fall within the $1,500-$15,000 range, are the powerhouse for behavior classification 

through deep learning. They require a substantial investment not only in the hardware but also in 

developing and optimizing algorithms, which often involves knowledge of high-level 

programming languages and machine learning libraries (Rozemberczki et al., 2021). Table 1.3 

encapsulates the common price ranges for these critical hardware types, highlighting the 

associated costs and technical requirements for their application in poultry farming. Beyond the 

hardware, the implementation of custom codes, especially those written in assembly language, 
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further complicates the integration process. Assembly language coding for DSPs or FPGAs 

demands a granular level of control and an understanding of the processor architecture. It can 

optimize the performance for specific tasks (e.g., meat discrimination) but at the cost of 

increased development time and expertise (Arsalane et al., 2016). Such codes are meticulously 

tailored to the hardware, ensuring efficient execution of tasks but creating a steep learning curve 

for those not versed in low-level programming.  

Table 1.3: Price range overview of essential computer vision hardware for poultry farming. 

Hardware type Price Use case in poultry farming 

DSPs $500 - $2,000 

(HajiRassouliha et al., 2018) 

Grading of Poultry 

Eggs (Wang et al., 2010) 

FPGAs $1,000 - $3,000 Sorting eggs 

(Akkoyun et al., 2023) 

GPUs $1,500 – $15,000 Behavior 

classification (Pu et al., 2018) 

Secondly, establishing a reliable connection between hardware and the computational 

model on farms is complex, given the need for robust infrastructure to handle data transmission 

and processing. For instance, in a poultry farm, computer vision systems may be deployed for 

monitoring the health and growth of chicken, detecting behavioral patterns, or automating the 

counting and sorting processes (Chmiel et al., 2011). Each of these applications generates a vast 

amount of data that must be processed in real time to be effective. This data flow demands high-

bandwidth, low-latency communication channels to transfer video feeds from the cameras to the 

processors without significant delay. Moreover, the computational models that analyze this 

visual data must be hosted on hardware that can process information rapidly and accurately. 
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Typically, this would involve servers equipped with high-performance GPUs or FPGAs that can 

execute complex machine learning algorithms (Afif et al., 2020). These servers must be 

connected to the farm’s network infrastructure in a way that ensures continuous operation despite 

the environmental challenges present in such settings, like temperature fluctuations, dust, and 

humidity (El-Medany, 2008). Additionally, the hardware must be calibrated to handle the 

peculiarities of the farm’s environment. For example, variations in lighting conditions 

throughout the day can affect the accuracy of image recognition and object detection algorithms. 

Therefore, the hardware and software must be adaptable and robust enough to maintain 

performance regardless of these variables. 

Lastly, the practical deployment of computer vision technologies in poultry farming is 

significantly challenged by the environmental factors inherent to such agricultural settings. The 

presence of dust, for example, can occlude camera lenses and interfere with the image quality 

being fed into vision algorithms, leading to reduced accuracy in detecting or classifying birds or 

behaviors (Guo et al., 2023). Similarly, variable lighting conditions can dramatically affect 

image capture; the stark contrast between bright daylight, the shadows of an indoor and light 

density setting may require algorithms to have dynamic range capabilities and adjustment 

mechanisms to maintain consistent performance (Zhou and Lin, 2007). Water lines and other 

farm equipment can also introduce visual noise that confuses the models. For instance, 

reflections or refractions from water surfaces can lead to false detections or misclassifications. 

The movement and presence of equipment like feeders and drinkers can obstruct the view or be 

mistakenly identified as part of the chicken by the vision system (Li et al., 2021b), necessitating 

sophisticated background subtraction techniques and object tracking algorithms that are robust to 

such changes. Moreover, behavioral analysis of poultry, an application of computer vision, can 
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be affected by these disturbances. The detection of abnormal behaviors indicative of diseases or 

stress requires continuous and clear observation of the poultry, which can be disrupted by the 

environmental factors. To counteract these challenges, computer vision systems in poultry 

farming must be designed with advanced features such as: (1) to cope with the changes in 

lighting, cameras must have mechanisms that adjust their settings dynamically for optimal image 

capture (Kromanis and Kripakaran, 2021); (2) cameras and processing units must be protected 

and sealed against dust and moisture to ensure longevity and consistent operation (Mohd Ansari 

Shajahan et al., 2021); (3) algorithms must be trained on datasets that include the range of 

environmental conditions expected in a poultry farm to improve their robustness (Yang et al., 

2023b). These improvements can enhance the reliability and effectiveness of computer vision 

applications in poultry farming, ensuring that the potential benefits of these technologies can be 

fully realized in such a complex ecosystem. 

1.7 CONCLUSIONS 

This review highlights the transformative role of computer vision in poultry management, 

emphasizing a shift towards technology-driven approaches. By integrating classical machine 

learning and advanced deep learning frameworks like CNNs, significant improvements in animal 

welfare and farm operations have been achieved. Challenges such as complex backgrounds and 

bird occlusions are avoided by the use of non-visible light and depth-based sensors, enhancing 

monitoring accuracy and efficiency. 

Advancements span from egg quality assessment to health monitoring, reducing manual 

labor and boosting productivity. The use of multimodal systems integrating diverse sensors 

further extends these capabilities. However, adapting to real farm conditions and the need for 

extensive annotated datasets remain challenges. 
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Future innovations, including voice-activated robotics and virtual reality, promise greater 

efficiency and sustainability in poultry farming. Continued research and development in flexible, 

scalable, and ethical solutions merging human expertise with automation will fundamentally 

transform the sector, contributing to global food security and animal welfare. 

1.8 OBJECTIVES OF THE DISSERTATION 

The main objective of this dissertation was to explore the use of computer vision, thermal 

cameras, machine learning, and robotics to improve hen management, monitor behavior, and 

enhance welfare in cage-free hen houses. The detailed objectives were: 

(a) Evaluate the performance of traditional CNN models (e.g., YOLO series, EfficientNetV2, 

SegFormer, SETR) and large vision models (LVM) (e.g., Segment Anything Model, 

Track Anything Model) in detecting key production and welfare indicators, including 

poultry locomotion, dust bathing, feeding, drinking, and perching behaviors, which are 

crucial for maintaining both hen welfare. 

(b) Investigate the application of advanced computer vision and thermal camera technologies 

for monitoring poultry floor distribution, predicting bird body weight, detecting floor 

eggs, and identifying deceased chickens in dimly lit or hard-to-reach areas within the 

poultry house. 

(c) Integrate CNN models with intelligent robotic systems (e.g., bionic quadruped robots) to 

enhance the automation of poultry management tasks, including the detection of floor 

eggs and dead chickens, advancing the poultry industry toward more ethical, efficient, 

and sustainable production practices. 
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This dissertation consists of individual chapters, each published or to be published in 

different journals and summarized in Chapter 7. Each chapter stands as one or two independent 

publications featured in various academic journals. 
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CHAPTER 2 

MACHINE VISION SYSTEMS FOR MONITORING HEN FLOOR DISTRIBUTION IN 

CAGE-FREE LAYER HOUSES 2 

2 Yang, X., Bist, R., Subedi, S., & Chai, L. (2023). A deep learning method for monitoring spatial 

distribution of cage-free hens. Artificial Intelligence in Agriculture, 8, 20-29. 
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ABSTRACT 

The spatial distribution of laying hens in cage-free houses is an indicator of flock’s health 

and welfare. While larger space allows chickens to perform more natural behaviors such as 

dustbathing, foraging, and perching in cage-free houses, an inherent challenge is evaluating 

chickens’ locomotion and spatial distribution (e.g., real-time birds’ number on perches or in 

nesting boxes). Manual inspection of hen’s spatial distribution requires closer observation, which 

is labor intensive, time consuming, subject to human errors, and stress causing on birds. 

Therefore, an automated monitoring system is required to track the spatial distribution of hens 

for early detection of animal welfare and health concerns. In this study, a non–intrusive machine 

vision method was developed to monitor hens’ spatial distribution automatically. An improved 

You Only Look Once version 5 (YOLOv5) method was developed and trained to test hens’ 

distribution in research cage-free facilities (200 hens per house). The spatial distribution of hens 

the system monitored includes perch zone, feeding zone, drinking zone, and nesting zone. The 

dataset contains a whole growth period of chickens from day 1 to day 252. About 3000 images 

were extracted randomly from recorded videos for model training, validation, and testing. About 

2400 images were used for training and 600 images for testing, respectively. Results show that 

the accuracy of the new model were 87-94% for tracking distribution in different zones for 

different ages of hens/pullets. Birds’ age affected the performance of the model as younger birds 

had smaller body size and were hard to be detected due to blackness or occultation by 

equipment. The precision of the model was 0.891 and 0.942 for baby chicks (≤10 days old) and 

older birds (> 10 days) in detecting perching behaviors; 0.874 and 0.932 in detecting 

feeding/drinking behaviors. Miss detection happened when chicken body was occluded by other 

facilities (e.g., nest boxes, feeders, and perches). Further studies such as chicken behavior 
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identification works in commercial housing system should be combined with the model to reach 

a smart detection system.  

 

Keywords: Cage-free system; Precision farming; Spatial distribution; Deep learning. 

 

2.1      INTRODUCTION 

Poultry distribution and activities are key information in assessing animal’s welfare and 

flock production (Li et al., 2017; Guo et al., 2020a, 2020b, 2022). In cage-free laying hen houses, 

chickens have more space to move and perform natural behaviors as compared to conventional 

cage houses (Ben Sassi et al., 2016; Wang et al., 2017; Chai et al., 2018, 2019; Li et al., 2020; 

Bist and Chai, 2022; Castro et al., 2022). While larger space allows chickens to perform more 

natural behaviors such as dustbathing, foraging, and perching in cage-free houses, an inherent 

challenge is evaluating chickens’ health, welfare, and specific behaviors such as locomotion and 

spatial distribution (e.g., real-time birds’ number on perches or in nesting boxes) (Chai et al., 

2019; Oliveira et al., 2019; Bist et al., 2023). Au automated monitoring system is required to 

track the spatial distribution of hens for early detection of animal welfare and health concerns 

(Subedi et al., 2023).  

In the past years, computer vision has gained fast – paced advances from human 

detection to animal monitoring (Aydin et al., 2010; Porto et al., 2015; Lao et al., 2016; Subedi et 

al., 2023). The computer vision system provides a non-intrusive method in livestock monitoring 

(i.e., swine, cattle, and sheep) (Hitelman et al., 2022; Li et al., 2014; Nasirahmadi et al., 2017). 

For poultry housing, computer vision or deep learning models (e.g., convolutional neural 

network - CNN) have been applied to track individual bird for analyzing behaviors (Pu et al., 
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2018; Fang et al., 2020; Pereira et al., 2013; Subedi et al., 2023). Some studies have focused on 

chickens’ floor distribution (i.e., feeding, drinking and walking zones) (Aydin et al., 2010; Guo 

et al., 2020a, 2021; Yang et al., 2022). The CNN image processing algorithms showed high 

accuracy in monitoring floor distribution (two dimensions). Guo et al. (2022) compared different 

CNN models (i.e., ResNet-152, ResNeXt-101 and ECA-DenseNet-264) in monitoring broilers’ 

behaviors. The models showed 88-97% of accuracies. The YOLO (you only look once) is a one-

stage CNN algorithm that has been applied to monitor poultry behaviors (Guo et al., 2022; Yang 

et al., 2022). Anlan et al. (2019) developed detector to monitor heat stress conditions of broilers 

by using YOLOv3(Anlan et al., 2019; Ding et al., 2019). Ye et al. (2020) proposed a CNN 

algorithm (YOLO + multilayer residual module (MRW) to detect white feather broilers stunning 

states. Sachin et al. (2023) developed You Only Look Once version 5 (YOLOv5)-pecking 

models to track hens’ pecking behaviors and improved accuracy of the model to 85-90%(Jocher, 

2020). 

However, existing models have limitations (i.e., low speed detection and one-time total 

number of detected chickens is restricted in tracking spatial distribution of chickens (i.e., floor 

distribution + vertical distribution). Vertical distribution patterns of chickens are critical 

information for understanding hens’ performance and behaviors in cage-free housing system, an 

emerging egg production system in the US and EU countries (Chai et al., 2019).  The objectives 

of this study were to: (1) develop a deep learning method for monitoring the spatial distribution 

of cage-free hens/pullets; (2) quantify the real-time birds’ number in different zones 

automatically; and (3) optimize the performance of the model by incorporating camera angles, 

chicken ages and flock densities.  

2.2        MATERIALS AND METHODS 
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2.2.1     Experimental Design and Data Collection 

About 800 day-old chicks (Hy-Line W-36) were raised in four research chamber rooms 

(each was measured as 7.3 m long × 6.1 m wide × 3 m high) at the Poultry Science Center at the 

University of Georgia (UGA). Cameras (Swann Communications, Santa Fe Spring, CA) were 

installed with two different angles (i.e., vertically and horizontally) to record the spatial 

distribution of birds (Figure 2.1). The recorded videos were transferred to massive hard devices 

for analyzing video quality and converting to JPG format in the Department of Poultry Science at 

UGA.   

 

Figure 2.1. Experimental setup for collecting laying hens’ spatial distribution dataset. 

Feeders, nipple drinkers, nest boxes (Bestnestbox company, Hudson, Ohio, USA) and a 

A-frame hen perch were installed in each of research chamber rooms by referring the dimension 

suggested by commercial farms (Chai et al., 2019). The research room was divided virtually into 
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perching, nesting, drinking, feeding zones for the deep learning algorithm to identify the 

distribution of chickens (Figure 2.2). Husbandry and management were following Hy-line W-36 

management guides. Animal management was approved by the Institutional Animal care and 

Use Committee (IACUC) at the University of Georgia.  

 

Figure 2.2. The definition of different zones. A. nesting zone; B. feeding zone; C. perching zone 

(3 m long, 1.8 m wide, 6 different heigh for birds to perch from 0.3 m to 2.4 m); and D. drinking 

zone. 

2.2.2    Methods for Chicken Detection 

In this study, an improved YOLOv5 model was developed for chicken detection. The 

architecture consisted of three parts, i.e., backbone, neck, and head (Figure 2.3). The improved 

YOLOv5 model is based on CNN network that can take in an input image and capture its spatial 

characters (learnable weights) to train the network to detect object (Liu et al., 2022). In 

backbone, four different models are used to extract basic features. In neck, feature pyramids and 

attention mechanism module were utilized to recognize same target under separate size and 

scales. Besides, three attention mechanism modules were added to enhance small targets 
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detection. In model head, three individual feature maps were used to detect target (i.e., hens in 

different zones). According to Figure 2.3, there are four main modules in backbone for extracting 

features from given pictures, including FOCUS, Conv + Bottle Neck + Hard Switch (CBH), 

cross stage partial (CSP) and spatial pyramid pooling (SPP). After each module, the pixels of 

pics changed from 608 × 608 pixels to 76 × 76 pixels, 38 × 38 pixels, and 19 × 19 pixels (Zhang 

et al., 2022). With these decreased feature maps, the neck network applies CSP and CBH to 

generate feature pyramids to aggregate on the features and submit it to head. However, during 

the pass progress, the contextual information will decrease. To obtain more accurate information 

and minimize the information loss, an attention mechanism was introduced to this improved 

YOLOv5 method (with red background in Figure 2.3). The attention mechanism is combined 

with C3Ghost and Ghost modules to enhance the dominated channel attention(Woo et al., 2018). 

The aim of C3Ghost module is to reduce heavy computational burden as the Ghost applied into 

YOLOv5 neck network. 
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Figure 2.3. The network structure of improved YOLOv5 for tracking spatial distribution of 

chickens in cage-free houses.  

The Ghost module focuses on generating more feature maps by using fewer parameters. 

In this study, the Ghost was adopted to process hen’s feature maps(Han et al., 2020). The 

original hen’s feature map is blurry after YOLOv5 neck network. However, with the Ghost 

module, the channel number of hen’s feature maps improved, and an enhanced hen’s feature 

pyramid developed. The structure of it is shown in Figure 2.4. In the neck, the three dimension of 

input feature map is a × b × c, after the neck, the output feature map is a1 × b1 × c1, and the size 

of kernel is n × n, where a and a1 are heights of feature map, b and b1 are widths of feature map. 

Comparing to the convolutional layer, the Ghost module processes the ordinary convolution in 

two steps. During the convolutional layer, the basic number of floating-point operation (FLOPs) 

is a1 × b1 × c1 × c × n × n, which is usually over 105 when the channel number c is 256 and 

multiplies the filter number c1. The overload FLOPs lead the critical information of inputted 

imagines (Ren et al., 2022). In the two steps of Ghost module, a cheap transformation procedure 

was utilized in generating intrinsic feature maps and needs fewer filters. Therefore, the new 

structure can obtain a notable performance.  

																																𝐹𝐿𝑂𝑃𝑠 = a1	 × 	b1	 × 	c1	 × 	c	 × 	n	 × 	n                   Eq.1          

where a1, b1, and c1 are the output feature map's height, width, and channels after the 

convolution operation. C represents the number of channels in the feature map input. N 

represents the size of the convolutional kernel employed during the convolution operation. 
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Figure 2.4. A demonstration of two steps Ghost module that used in this study for processing 

poultry images.  

2.2.3    Methods for Tracking Chickens in Different Zones 

A whole vision dataset (horizontal and vertical) and an interface were used to recognize 

spatial distribution of birds in different zones (Figure 2.5). The graphical user interface (GUI) 

was developed with Python binding for the Qt5 application framework (PyQt5) (Figure 2.6), 

which enhances the process of selecting target zones (nesting, perching, feeding and drinking) 

(Xie et al., 2022). The zones of each bird in the picture were designed firstly, then the whole area 

in the image was used as the reference area to estimate the number of birds in the selected zones, 

the equation is showed below. 

																																																			Ñ! =
"!
"
	 , 1 ≤ 𝑖 ≤ 𝑥                                              Eq. 2 

Where Ñ! (birds/m2) is the average number of the target zones after normalization,  𝑛! is 

the number of the target zones in the 𝑖th picture, 𝑛	 (m2) is the reference value of whole spatial 

area, and 𝑥 is the number of zones recognized in the picture. 
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Figure 2.5. The selected zones in the picture. The blue bullet A to C represents the different high 

perching zone varying from 7.9 ft to 0 ft; the two blue bullet D represent the feeding zone; the 

blue bullet E represents drinking zone; the blue bullet F represents the nesting zone. 

 
Figure 2.6. The GUI developing by PyQt5 (b is pullets/hens > 10 days; s – baby chicks ≤ 10 

days). 

2.2.4    Dataset and Setting 
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A laying hens’ dataset was constructed to evaluate the performance of the improved 

YOLOv5 on the detection of birds. The dataset contains whole growth period of bird from 1 

week to 36 weeks (baby chicks to hens) and consisting of 3000 pics that were extracted 

randomly from recorded videos. All the pics were labeled by LabelImg Windos_v1.6.1 version. 

Birds under 2 weeks of age were labeled as baby chicks, and birds 2 weeks or older were labeled 

as pullets/hens. 2400 pics and 600 pics were used during training section and testing section 

separately. The training was run under window operating system for 300 epochs with a learning 

rate 0.01 and a batch size of 16. The confidence threshold is set to 0.25, which means that objects 

with a similarity of 0.25 or above can be considered interesting and marks will be assigned. 

2.2.5    Model Evaluation and Statistical Analysis 

To compare the performance of improved YOLOv5 with other methods, the precision, 

recall and F1 score were used as evaluation parameters. The equations of them are showed 

below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	(100%) = #$
(#$&'$)

	× 100                          Eq. 3 

𝑅𝑒𝑐𝑎𝑙𝑙	(100%) = #$
(#$&'))

	× 	100                               Eq. 4 

𝐹1	𝑠𝑐𝑜𝑟𝑒	(100%) = (*∗$,-.!/!0"∗1-.233)
($,-.!/!0"&1-.233)

	× 	100												Eq.	5	

The true positive (TP) is the test result correctly predicts the presence of a characteristic, 

false positive (FP) is the test result wrongly indicates an attribute is present and false negative 

(FN) is the test result that falsely predicts a particular condition is absent.  

To assess model performance under different situations (i.e., ages, various high of 

perching zone, flock density and the distributional zones), a one-way ANOVA and Turkey HSD 

were conducted by JMP software. The significant difference was set at 0.05. 

2.3       RESULTS AND DISCUSSIONS 
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2.3.1    Model Performance in Detecting Chickens 

To evaluate the model performance and explore optimal setting parameters, the 

YOLOv5-x method and several training parameters were applied. These parameters include 

image size (e.g., 640 and 320) and datasets (e.g., individual type dataset and mixed type dataset). 

The summary outcomes are shown in Table 2.1. Five experiments were conducted to explore the 

best model performance among whole chicken group by setting different parameters (image size, 

dataset, and attention mechanism). image size represents the inputted image, and the epochs 

represents the training times. Individual type dataset has two categories (i.e., baby chicks (< 1 

week old) and pullet/hens that are older than 1 week), mixed type dataset is all age of chickens is 

considered as one type. We separate baby chicks from pullets/hens because 1 week or young 

chicks had smaller body size and have more challenges to be detected than older birds.  

 Table 2.1. The adjustment methods and results. 

Model Dataset Image Size Epochs Precision Accuracy F1 score 

YOLOv5-h1 Baby chicks 

Pullets/hens 

640 200 63.0% (s) 

76.0% (b) 

23.5% (s) 

80.1% (b) 

34.2% (s) 

77.8% (b) 

YOLOv5-h2 Baby chicks 

Pullets/hens 

640 200 62.5% (s) 

83.6% (b) 

33.8% (s) 

84.6% (b) 

43.9% (s) 

84.1% (b) 

YOLOv5-h3 Baby chicks 

Pullets/hens 

320 200 65.8% (s) 

71.4% (b) 

22.5% (s) 

83.6% (b) 

33.5% (s) 

77.0% (b) 

YOLOv5-h4 Mixed type 320 200 91.7% (all) 80.2% (all) 85.6% (all) 

YOLOv5-h5 Mixed type 320 200 90.2% (all) 91.6% (all) 90.9% (all) 

Note: s-baby chicks ≤ 10 days; b-Pullets/hens > 10 days. YOLOv5-h1 means the experiment parameters 

are image size 640, dataset is individual type; YOLOv5-h2 means the experiment parameters are image 

size 640, dataset is individual type with attention mechanism; YOLOv5-h3 means the experiment 

parameters are image size 320, dataset is individual type; YOLOv5-h4 means the experiment parameters 

are image size 320, dataset is mixed type; YOLOv5-h5 means the experiment parameters are image size 

320, mixed type means dataset is mixed type with attention mechanism.  
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During the experiments, the loss function values toward to be stable when the epoch 

approached to 200, so the epoch was 200. From the Table 2.1, we discovered a) improved 

YOLOv5 method had better detection comparing to original YOLOv5 on both individual and 

mixed datasets, b) mixed dataset has better performance comparing to individual dataset when 

trained with improved YOLOv5 and original YOLOv5 methods, c) increase the imagine size 

improved the overall model precision. These confirmed our setting parameters. The Receiver 

Operating Characteristic (ROC) curve shows the sensitivity and specifity of different detector. 

 

Figure 2.7. ROC curve comparison results of different detector based on deep learning. 

2.3.2    Chicken Distribution Identification in Perching Zones 

Figure 2.8 shows the birds detected by improved YOLOv5 model. In the perching zone 

(Figure 2.8A), the model monitored perched chickens from 0 to 2.4 m and summed up them to 

three different levels (the number of hens in three levels were 7, 61, and 17 from bottom to top of 

the perch frame), respectively. For baby chicks’ perching (Figure 2.8B), there were 8 hardwood 

perching boards. The number of detected chicks in each perching board was 2, 3, 1, 5, 4, 1, 6 and 

4, respectively, from far to close in the Figure 2.8B.  
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Figure 2.8. Chickens’ distribution in perching zones detected by improved YOLOv5. (A) adult 

hens (133 days of old) detected; (B) baby chicks detected (8 days of old). The letter b in blue 

means older birds (> 10 days old) and the letter s in blue represents baby chicks (≤ 10 days old).  

To test the performance of improved YOLOv5 model in monitoring birds in perching 

zones, about 200 images were randomly selected (chickens’ age ranged from week 1 to week 20) 

to test the model (Table 2.2). The performance of the model was 0.891 and 0.942 for baby chicks 

(≤10 days old) and older birds (> 10 days), respectively. The miss detection rates of hens and 

baby chicks were 0.054 and 0.102, respectively. Errors or miss detections were caused by high 

density chickens (pilling or crowding) and interreferences of perch frame and feeders. In general, 

the mew model fitted well in the perching zone (Rture > 0.89). 

Table 2.2. Tested performance of improved YOLOv5 on perch zone. 

Zone Target 
Chickens  

True 
Detection 

 

Miss Detection  False 
 

Rtrue 

 
Rmiss 

 
Rfalse 

 Overlap Occlusion others 

Perch 
(s)  

1987 1872 46 41 20 8  0.942 0.054 0.004 

Perch 
(b) 

866 772 30 27 31 6 0.891 0.102 0.007 
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Note: Rtrue, Rmiss and Rfalse rates were evaluated by true detection number/target chickens’ number, miss 

detection number/target chickens’ number and false detection number/target chickens’ number 

respectively; s means baby chicks; b means hens.  

A back propagation (BP) neural network algorithm was used to identify the chicken 

distribution in drinking and feeding zones, the missed detection also comes from chicken 

crowding behaviors and collusion problems (Yang et al., 2022). Other flaws in our method are 

original from the horizonal vison factor (when baby chicks are too small under horizontal scale, 

the miss detection happens) and designed perch zone (when the perch zone is designed narrower 

than the real situation, there will be less perch chicks included into the perch zone, so the chicks 

were missed). The false detection rates were 0.004 and 0.007 respectively. This were also the 

common drawback of other vision based algorithms (Abdanan Mehdizadeh et al., 2015).  

2.3.3    Chicken Distribution in Feeding and Drinking Zones 

Figure 2.9 demonstrates the distribution of detected birds in feeding zones monitored by 

improved YOLOv5 model. For each pic, the number of chickens in targeted areas were analyzed. 

From Figure 2.9A, we can identify the distribution of baby chicks (i.e., 10 days old) in feeding 

zone in 100% accuracy. For Figure 2.9B and 2.9C, the model detected larger chickens (i.e., 122 

day old) in 100% accuracy as well. From Figure 2.10A and 2.10B, the distribution of 122 days 

old of hens in drinking areas collected from two different angles. The detection efficiency was 

100% in the Figure 2.10B as there was no osculation. For Figure 2.10A, the feeder (low right 

corner) could block some chickens during the study.  
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Figure 2.9. Chickens’ distribution in the feeding zone at different ages (A-chickens were 10 days 

old; B and C-chickens were 122 days old (b means birds were > 10 days; s means birds were ≤10 

day).  

 
Figure 2.10. The distribution of chickens (i.e., 122 days old) in the drinking zone at different 

angles: chickens in A (side view in 45 degree) and B (top view) (b means birds were > 10 days; s 

means birds were ≤10 day).  
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To investigate a larger number of chickens, we used about 200 images to test the model 

performance in feeding and drinking zones (Table 2.3). The overall accuracy for baby chicks and 

older chickens were 0.874 and 0.932, respectively. Comparing to accuracy of perch zones, 

detecting baby chicks of feeding and drinking zones was more challenging due to smaller size of 

body and interferences of equipment. When a higher number of birds were assembled at the 

same feeder or drinker, birds standing in front of the feeder or drinker had higher possibility to 

be recognized than those close at sides of feeder and drinker. In addition, lighting affected image 

quality and model’s performance. Apart from these, birds’ density has been reported affect deep 

learning model’s performance (Maselyne et al., 2016).  

Table 2.3. Tested performance of improved YOLOv5 on feeding and drinking zones. 

Birds Target 

Chickens 

True 

Detection 

Miss Detection False 

detection 

Rtrue Rmiss Rfalse 

Overlap Occlusion others 

s 1027 898 20 19 19 71 0.874 0.056 0.069 

b 768 716 17 15 15 6 0.932 0.061 0.008 

Note: Rtrue, Rmiss and Rfalse rates were evaluated by true detection number/target chickens’ number, miss 

detection number/target chickens’ number and false detection number/target chickens’ number 

respectively; s means baby chicks ≤ 10 days; b means older birds > 10 days.  

2.3.4    Chicken Distribution in Nesting Zone 

In this study, most hens started to lay their first eggs at around 18 weeks of age. The nesting 

behaviors of hens was analyzed with our newly developed model because it’s important identify 

if there are floor eggs or not (Gonzalez-Mora et al., 2022). Monitoring hens’ distribution in nesting 

zones helps to minimize losses from laying eggs on the floor. Figure 2.11 shows the distribution 

of detected hens in nesting zones with our improved YOLOv5 model. Figure 2.11A is the original 

image of nesting area. Figure 2.11B demonstrates the detected hens in nesting zone. The model 

performed with over 90% accuracy in detecting hens in nesting zones.  
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Figure 2.11. Chicken distribution in nesting zone. (A) original image of nesting area and (B) 

detected nesting area. 

To evaluate model’s performance in nesting zone for hens’ detection systemically, over 

200 images were randomly selected from video dataset to improve targeted hens’ dataset (Table 

7). The tested accuracy rate in nesting zone reached 0.906, which is slightly less than that in other 

zones (i.e., perching, feeding, and drinking zones), because there was an equipment hanging above 

the nesting zone.  

Table 2.4. Tested performance of improved YOLOv5 on nesting zone. 

zone Target 

Chickens 

True 

Detection 

Miss Detection False 

detection 

Rtrue Rmiss Rfalse 

Overlap Occlusion others 

Nest 

(b) 

873 791 8 13 7 54 0.906 0.061 0.008 

Note: Rtrue, Rmiss and Rfalse rates were evaluated by true detection number/target chickens’ number, miss 
detection number/target chickens’ number and false detection number/target chickens’ number 
respectively; b means hens. There were no baby chicks (s) because only hens would lay eggs.  
 
2.4       CONCLUSIONS 

In this study, an improved deep learning model was developed based on YOLOv5 

structure to monitor cage-free hens’ spatial and floor distributions, including the real-time 
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number of birds in perching zone, feeding zone, drinking zone, and nesting zone. The accuracies 

of the new model were 87-94% for all ages of chickens across zones. Birds’ age affected the 

performance of the model as younger birds had smaller body size and were hard to be detected 

due to blackness or occluded by equipment. The performance of the model was 0.891 and 0.942 

for baby chicks (≤10 days old) and older birds (> 10 days) in detecting perching behaviors; 0.874 

and 0.932 in detecting feeding/drinking behaviors. The different zones in the chicken house 

(perch zone, feeding zone, drinking zone, and nesting zone) are related to specific behaviors of 

the chickens. For example, some chickens are expected to perch during the night, while during 

the day they move around the house and visit the feeding and drinking zones. Nesting behavior 

occurs when hens are about to lay eggs. The current findings provide references for 

automatically monitoring cage-free laying hens’ spatial distribution in all age level (from baby 

chicks to hens). More future chicken behavior identification works could be combined with the 

model to reach an automatic detection system. 
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CHAPTER 3 

IMAGING TECHNOLOGIES FOR MONITORING BODY WEIGHT OF PULLETS AND 

LAYERS3 
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ABSTRACT 

In recent years, artificial intelligence (AI) advancements have influenced the agricultural 

industry, particularly with the emergence of large foundation models. One such model, the 

Segment Anything Model (SAM) developed by Meta AI Research, has benefited object 

segmentation tasks. While SAM has demonstrated success in various agricultural applications, 

its potential in the poultry industry, specifically regarding cage-free hens, remains largely 

unexplored. This study aims to evaluate SAM's zero-shot segmentation performance for chicken 

segmentation tasks, including part-based segmentation and the utilization of infrared thermal 

images. Additionally, it investigates SAM's ability to predict weight and track chickens. The 

results highlight SAM's superior performance compared to SegFormer and SETR for both whole 

and part-based chicken segmentation. SAM demonstrated remarkable performance 

improvements, achieving a mean intersection of union (mIoU) of 94.8% when using the total 

points prompts. These findings contribute to the understanding of SAM's potential in poultry 

science, paving the way for future advancements in chicken mask segmentation and tracking 

using large foundation model. 

 

Key words: Visual Foundation Model, Segmentation, Precision Poultry Farming, Machine vision. 

 

3.1       INTRODUCTION 

In recent years, the field of artificial intelligence has seen significant advancements in 

large-scale foundation models, which have revolutionized many fields, including agriculture(Eli-

Chukwu, 2019; Li et al., n.d.; Lu et al., 2023; Wang et al., 2021). Combining natural language 

processing (NLP) and computer vision, these models stretch the limits of language 
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comprehension and generation in agriculture with notable examples such as OpenAI's GPT4. 

These models' impressive capabilities extend to applications such as the administration of 

unmanned aerial vehicles (UAVs)(de Curtò et al., 2023), robotic grippers(Stella et al., 2023), and 

weather forecasting(Ashraf Vaghefi et al., 2023). Their success has prompted researchers to 

investigate visual learning, at first concentrating on pre-training methods to extract rich 

representations or linguistic descriptions from images and later on specialized foundation models 

for semantic segmentation tasks(Luo et al., 2022; Zhang and Zhou, 2023).  

The Segment Anything Model (SAM) from Meta AI Research is a revolutionary object 

segmentation utility that employs a cutting-edge foundation model. SAM demonstrates 

extraordinary zero-shot segmentation capabilities by supporting visual cues such as points, 

boxes, and masks(Kirillov et al., 2023). This is due to its extensive data training. In contrast to 

conventional models, SAM's distinct prompt capability makes it highly versatile and accurate in 

object segmentation, which has applications in numerous fields, including agriculture. It enables 

researchers and practitioners to enhance detection of pests and leaf diseases, as well as crop 

segmentation(Chen et al., 2023; Ji et al., 2023; Tang et al., 2023).  

Despite its effectiveness, SAM remains underutilized in the poultry industry, particularly 

for cage-free hens. There is a need for automated methods to detect laying hens on the litter floor 

due to the growing adoption of cage-free housing systems in the egg industry to improve avian 

welfare and comply with regulations(Bist et al., 2023b, 2023a; Subedi et al., 2023; Yang et al., 

2022, 2023a). In this context, the advanced capabilities of SAM offer promising solutions for 

enhancing the precision and efficacy of various analysis duties.  

This study evaluates SAM's zero-shot segmentation performance and investigates its 

potential for object tracking, particularly chicken mask segmentation. We evaluate SAM's ability 
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to segment chickens in various contexts, including part-based segmentation and thermal infrared 

imaging. To evaluate its efficacy, we compare SAM's results to the most advanced domain-

specific models currently available. In addition, we examine the feasibility of integrating SAM 

with other multi-object tracking (MOT) techniques. Through these investigations, we hope to 

gain a greater understanding of SAM's capabilities and efficacy in addressing challenges 

associated with poultry segmentation, body weight estimation, and tracking. 

3.2     MATERIALS AND METHODS 

3.2.1 Experimental Setup 

A total of 800 Hy-line W-36 chickens were used for the study. The birds were reared 

evenly in four cage – free rooms at the Poultry Research Center from the department of poultry 

science of the University of Georgia (UGA), USA. Every room is equipped with six suspended 

feeders, one drinking system, and a moveable A-frame roost for birds to behave their natural 

roosting habits (Figure 3.1).  

 

Figure 3.1. An overview of cage–free chicken house. 
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The environmental conditions were regulated by an automated system (CHORE-Time 

Controller, Milford, IN, USA) with settings based on Hy-Line W-36 commercial layer 

management guidelines. Team members inspected the growth and environmental conditions of 

the hens daily to maintain a safe rearing environment. In addition, to enhance the biosecurity, six 

disinfection pens were placed at two main doors and four individual doors before entering farm 

and each rearing house. The animal use and management were approved by the Institutional 

Animal Care and Use Committee (IACUC) of the UGA (Li et al., 2023). 

3.2.2 Poultry Image and Body Weight Data Acquisition 

A thermal image system was designed to obtain body weight and thermal pictures of 

chicken (Figure 3.2). There are three parts of the collector, a digital scale to measure body 

weight, a cardboard box (L81.28 centimeters × W45.72 centimeters × H43.18 centimeters) for 

chicken to stand and a professional thermal imager (FLIR T540, Wilsonville, Oregon, USA) with 

adjustable lens (14°-24°) to collect thermal images of chickens. To ensure the quality of the 

image acquisition, the camera was secured at 1.5 m above from the weighting plate. Every month 

(from May 2022 to Dec 2022) 80 chickens (1/10 of whole flock) were randomly selected to take 

body weight and capture thermal pictures of each chicken four times to record different chicken 

positions. In addition, to compare the predicting accuracy of different datasets, a FLIR Thermal 

Studio software was used to extract the original pictures. Therefore, each thermal image 

corresponds with its own original image (Figure 3.3) and two datasets (original dataset vs 

thermal dataset) were established. 

To track different types of birds, excluding cage-free hens, a broiler house was equipped 

with a Swann Communications HD camera (model PRO-1080MSFB), which was strategically 

positioned on the ceiling, at a height of 2.5 meters from the ground. These cameras were set to 
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record at a rate of 15 frames per second, offering a resolution of 1440 × 1080 pixels. The footage 

captured by these cameras was then stored as AVI files on a Swann Communications DVR 

(model DVR-4580), ensuring detailed documentation in broiler houses' development and 

behavior throughout the study period. Therefore, we collected images.  

  

Figure 3.2. The infrared thermal system. 

   

Figure 3.3. An example of raw thermal image and thermograph of chicken. 

3.2.3 Chicken Body Weight Data Cleaning 
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During the process of weighing and capturing images of chickens, various factors can 

potentially affect the quality of the data collected (Latshaw and Bishop, 2001). This includes the 

presence of distracting elements such as feathers and droppings in the cardboard box used for 

placing chickens, as well as active chicken behavior, such as walking or attempting to fly out of 

the box, which may result in outliers. To mitigate these challenges, this study applied data 

cleaning techniques including image segmentation and data scaling. Image segmentation was 

used to isolate the chicken from the background, making it easier to detect and remove feathers 

and droppings from the images. By segmenting the images, the focus is placed solely on the 

chicken, reducing the impact of irrelevant elements. Data scaling was also applied to resize the 

data to a common range (Zhang and Zhou, 2023). This helps to reduce the impact of outliers and 

ensure that the model is not biased towards features with a larger scale. By scaling the data, the 

focus is placed on the underlying patterns in the data, rather than any outliers that may have been 

introduced during the collection process. Overall, the use of data cleaning techniques, such as 

image segmentation and data scaling, can greatly improve the quality of data collected in a 

poultry farm and provide more accurate results. 

3.2.4 Chicken Segment Methods 

To explore the zero-shot segmentation performance of SAM, two state-of-the-art (SOTA) 

methods (SegFormer and SETR) were utilized to compare with it(Liu et al., 2022; Xie et al., 

2021). SegFormer and SETR are two of the latest methods in the field of semantic segmentation. 

SegFormer is a type of Transformer-based model designed specifically for semantic 

segmentation. Its hybrid design combines the advantages of both Transformers and convolutional 

neural networks (CNNs) and hence has been found to perform well on segmentation tasks. SETR 

is another transformer-based model used for semantic segmentation tasks. SETR uses a pure 
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transformer-based approach and was one of the first such methods showing that transformers can 

be used directly for dense prediction tasks without the need for CNN-based architectures. 

Therefore, by choosing SegFormer and SETR as the comparison benchmarks, the efficacy of 

SAM can be validated. 

State-of-the-art models, designed for tasks like semantic segmentation, require training 

on datasets where each image pixel is assigned a specific label. This enables the model to 

effectively perform on similar tasks by learning from these pixel-level labels. In our study, we 

built a chicken weight dataset, which consists of 4 labels (a (semantic segmentation of chickens 

based on original pictures), b (part-based segmentation of chickens based on original pictures), c 

(semantic segmentation of chickens based on thermal pictures), d (part-based segmentation of 

chickens based on thermal pictures)). By comparing four different segmentation labels and their 

respective accuracies in predicting chicken weight, we can determine which label is most 

applicable for this task.  

In contrast to conventional methods, SAM employs an innovative prompt-enabled model 

architecture and a large, diverse training dataset. This method inaugurates a marketable 

segmentation task. To facilitate data collection and improve the performance of the model, a 

cyclical process was created using a proposed data engine. SAM was trained on a massive 

dataset consisting of more than one billion masks derived from 11 million licensed images, 

allowing it to learn a vast array of features and patterns. This extensive training enables SAM to 

adapt to and excel in new tasks, even without task-specific instruction. As shown in Figure 4, 

SAM consists of three essential components: an image encoder, a prompt encoder, and a mask 

decoder. The image encoder, which is built on the ViT backbone and pre-trained using the 

masked autoencoder (MAE) method, takes an image and outputs the image embedding to be 
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combined with the subsequent prompt encoding (Dai et al., 2023; J. Wang et al., 2023). The 

prompt encoder divides its output into dense and sparse segments. Using a convolutional neural 

network (CNN), the dense segment encodes mask prompts. The mask decoder ultimately 

interprets all embeddings and predicts the masks. SAM supports both automatic and manual 

testing modes. The automatic mode requires only an image input, and automatically generates all 

predicted masks. Manual mode, on the other hand, requires additional user-supplied hints, 

including one point and total points, to provide SAM with more object segmentation data. The 

structure of SAM is shown below (Figure 3.4). To compare the three segmentation methods, we 

used a ground truth from human labeling with Labelme software (macOS), employing the 

Polygons function to draw the mask of the chicken, later outputting it as a JSON file as a 

benchmark. A predefined set of chicken head, tail, and body was taught by examples of the 

chicken pictures. Later, two people worked individually on each picture, and if the mean 

Intersection over Union (mIoU) error between their results was more than 2%, a new cycle of 

intra-comparison would be conducted until the requirements were met. 

 

Figure 3.4. the structure of SAM in chicken segmentation tasks. 

3.2.5 Chicken Body Weight Prediction Methods 

Predicting chicken weight through computer vision poses several challenges that must be 

addressed. One of the challenges is the accuracy of measurements of the chicken's dimensions, 
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such as body length and width. This is due to the difficulty of obtaining high-quality images or 

accurately identifying and measuring the chicken in the image. In this study, we use 1500 

pictures labeled with body weights. One additional challenge is the wide diversity in the sizes 

and shapes of chickens, including variations in head position and tail state (Marino, 2017). In 

certain images, the chicken's head is positioned in a way that partially covers or overlaps its 

body, resulting in a visual effect where parts of the body are hidden or obscured. Simultaneously, 

the chicken's tail is in an open state, with the feathers spread out or extended (Liu et al., 2023). 

This open tail state contributes to the overall appearance of the chicken, influencing the total 

number of pixels accounted for after segmentation, as depicted in Figure 3.5. Addressing these 

complexities requires the implementation of sophisticated machine learning algorithms capable 

of accommodating various factors such as body color, shape, size, and age. These factors can 

potentially affect chicken weight estimation (Milosevic et al., 2019).  

 

Figure 3.5. Shapes of chickens: (a) head position doesn’t overlap back, (b) head position 

overlaps the partial body, (c) open tail state (0%), (d) open tail state (50%) and (e) open tail state 

(100%). 
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In this context, Random Forest (RF) Regression is utilized for chicken weight prediction 

(Breiman, 2001). Random Forest Regression is a powerful algorithm that can handle complex, 

non-linear relationships between features and target variables. One advantage of using Random 

Forest Regression for chicken weight prediction is that it provides feature importance scores. 

These scores help determine the most significant factors that contribute to chicken weight 

prediction, allowing researchers to understand which features have the most influence on the 

outcome. A chicken bodyweight dataset containing 1500 chicken images from hens was 

employed, and it was split into three distinct sets. The training set consisted of 900 images, the 

validation set contained 300 images, and the remaining 300 images were allocated for testing 

purposes. It employs an ensemble learning method that combines the predictions from multiple 

decision trees, which are trained on randomly selected subsets of the data. This combination 

reduces variance and enhances the overall accuracy of the model. Additionally, Random Forest 

can handle missing or incomplete data and performs effectively when there is a combination of 

continuous and categorical variables. The structure of RF is shown below (Figure 3.6).  
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Figure 3.6. Random forest algorithm (Çavuşoğlu, 2019). 

3.2.6 Evaluation Metrics 

In this study, we utilize the mean intersection of union (mIoU) as a benchmark to assess 

and compare the performance of SAM against state-of-the-art (SOTA) methods. 

𝑚𝐼𝑜𝑈 = (F 𝐴𝑟𝑒𝑎	𝑜𝑓	𝑂𝑣𝑒𝑟𝑙𝑎𝑝
"

!45
/F 𝐴𝑟𝑒𝑎	𝑜𝑓	𝑈𝑛𝑖𝑜𝑛)/𝑛

"

!45
 

where n represents the number of classes. 

To compare which label performs better in chicken weight prediction, coefficient of 

determination (R2) was used.  

𝑅* = 1 −
𝑆𝑆,-/
𝑆𝑆606

= 1 −
∑(𝑦! − 𝑦̂!)
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∑(𝑦! − 𝑦̄)*
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where SSres represents the residual sum of squares and SStot means the total sum of 

squares. 

The detection performance of each tracking method is evaluated using various metrics, 

including assembly accuracy (AssA), ID F1 score (IDF1), number of identity switches (IDs), 

higher order tracking accuracy (HOTA), multiple object tracking accuracy (MOTA), and 

detection accuracy (DetA). The equations for calculating these metrics are as follows: 

𝐴𝑠𝑠𝐴 = (𝐶/𝑇) 

where C represents the number of correctly assembled trajectories and T represents the 

total number of ground truth trajectories. 

IDF1	 = 	2	 ∗ 	 (Precision	 ∗ 	Recall)	/	(Precision	 + 	Recall) 

Where precision is defined as the ratio of the number of correctly identified trajectories to 

the number of identified trajectories. Recall is defined as the ratio of the number of correctly 

identified trajectories to the total number of ground truth trajectories(Subedi et al., 2023). 

𝐼𝐷𝑠	 = 	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦	𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠 

𝐻𝑂𝑇𝐴	 = 	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑	𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠	/	𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

𝑀𝑂𝑇𝐴	 = 	1	 −	(𝐹𝑃	 + 	𝐹𝑁	 + 	𝐼𝐷𝑠)	/	𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ	𝑜𝑏𝑗𝑒𝑐𝑡𝑠 

𝐷𝑒𝑡𝐴	 = 	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑	𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠	/	𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
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Broken trajectory is a common issue in our study, affecting the tracking of individual 

chickens. Initially, we calculated the averaged embedding similarity between broken trajectory 

pairs using cosine similarity (CS) and concatenated those whose averaged embedding similarity 

is greater than a predetermined threshold(Ma et al., 2020). Comparing with the ground truth, we 

discovered that while embedding similarity alone can correctly identify a portion of a trajectory 

with a high degree of similarity, it still has limitations when the movements of multiple objects 

have a very high degree of similarity. We introduced the location information and computed the 

distance error to solve this problem further. We combined distance error and embedding 

similarity to make assembly decisions for trajectories. We also calculate the distance (D) 

between the two trajectories to ensure that they do not represent separate objects with similar 

actions. Then, we merged the two measures to generate the assembling decision score (ADS). 

𝐶𝑆(𝑒2 , 𝑒7) =
∑ 𝑒!2"
!45 × 𝑒!7

o∑ 𝑒!2𝑒!2"
!45 p∑ 𝑒!7𝑒!7"

!45

 

where 𝑒2 and 𝑒7 are two trajectories, ei is the ith element of vector A. 

𝐷(𝑡2 , 𝑡7) = 	F |𝑡!2
"

!45
− 𝑡!7| 

where 𝑡!2 and 𝑡!7 represent the ith elements of the trajectory embeddings. 

𝐴𝐷𝑆 = 	𝛼𝐶𝑆(𝑒2 , 𝑒7) + 	𝛽𝐷(𝑡2 , 𝑡7) 

where the two coefficients were empirically set to be 0.2 and 0.8, respectively. 

3.3     RESULTS 
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3.3.1 Comparison of Segmentation Approaches 

Four separate experiments (SegFormer, SETR, SAM (one point), and SAM (total points)) 

were produced to identify the most effective approach for chicken segmentation tasks. For the 

models requiring training, SegFormer and SETR, a chicken dataset consisting of 1500 images 

(original images and thermal images) was utilized. The dataset was divided into three sets: 900 

images for training, 300 images for validation, and 300 images for testing purposes. The models 

were trained for 300 epochs using the Python 3.7 version and the PyTorch deep learning library. 

The training process was conducted on hardware equipped with an NVIDIA-SMI graphics card 

with a capacity of 16 GB. In the case of SAM, a default pre-trained model (ViT-H SAM model) 

was used and tested under two different prompt modes (one point and total points) using the 

same testing set. The "one point" prompt mode refers to providing a single point or location 

within the object of interest to guide the segmentation process. This mode aims to capture the 

specific details and characteristics of the object based on prompt point. On the other hand, the 

"total points" prompt mode involves providing multiple points or locations that encompass the 

entire object. This mode considers a broader context by considering various aspects and features 

of the object throughout its entirety. SAM outperformed both SegFormer and SETR in both the 

overall and part-based segmentation benchmarks, as shown in Table 3.1.  

Table 3.1: A comparison of SAM and state-of-the-art (SOTA) methods (SegFormer and SETR) 

in terms of mean Intersection over Union (mIoU). 

 

 

Method 

Semantic segmentation of 
chickens 

Part-based segmentation of chickens 

Original 
image 

Thermogram Original image Thermogram 

SegFormer 43.22 23.44 35.34 0.22 
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SETR 42.90 35.34 29.91 0.28 
SAM (one point) 92.50 88.95 86.17 72.20 
SAM (total points) 94.80 91.74 85.64 80.08 

 

Particularly when using the total points prompts, SAM demonstrated remarkable 

performance improvements, achieving a mIoU of 94.8%. It was observed that the mIoU obtained 

from original images was found to be 15% (average) higher than that obtained from 

thermograms. This suggests that the utilization of original images provides more favorable 

conditions for accurate segmentation, thereby yielding superior results compared to thermal 

images. This is due to the presence of various color pixels in thermograms and the lack of a clear 

boundary between the chicken and the background, posing challenges for accurate chicken 

recognition by all models. Regarding semantic segmentation and arbitrary parts, the models 

performed better in recognizing semantic segments compared to arbitrary parts, excluding the 

tail. This can be attributed to the similarity in color between the tail and the chicken body, which 

persists under both natural light and thermal conditions, making it difficult to distinguish the tail 

alone (Li et al., 2021). Consequently, recognizing the entire chicken body proved to be a 

relatively easier task. Figure 3.7 presents a qualitative comparison of the performance of 

SegFormer, SETR and SAM. It is clear that the SAM produced the best result. Besides, SAM 

(total points) outperforms SAM (one point). Thus, in the rest of this paper, chicken segmentation 

tasks produced by SAM (total points). 
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Figure 3.7. Visual comparison of segmentation results. State-of-the-art methods (SegFormer and 

SETR) are compared with SAM approach applied to diverse chicken datasets (Yang et al., 

2023b). 

3.3.2 Chicken Weight Prediction Using SAM 

The combined R2 value of the SAM and RF techniques in predicting chicken weights is 

0.83. Figure 3.8A provides insights into the impact of each label on the overall precision. 

Notably, the utilization of thermal images with semantic segmentation (label c) yields the highest 

R2 value of 0.89, outperforming the other three labels. Additionally, Figure 3.8B, the correction 

plot, showcases the correlation between any two labels. Significantly, labels a and b exhibit the 

strongest correlation, scoring an impressive 0.91. These findings underscore the exceptional 
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performance of thermal images with semantic segmentation in the task of chicken weight 

prediction, as well as the noteworthy correlation between labels a and b. Knowing that both full 

and part-based segmentation from original images provide similar information for weight 

prediction with potential reduction in data processing requirements. If the tail is not needed, it 

could be omitted from analysis to save computational resources without losing predictive power. 

To further explore SAM and its applications, a chart of average absolute residual values 

across different body weight ranges was generated (Figure 3.9) based on label c dataset. The 

residuals decrease as the body weight increases, which indicates that predictions are more 

accurate for heavier body weights. The highest residual is observed in the 1801-1900g range, 

with a value of approximately 28.58g, while the lowest is in the 2200-2300g range, at about 

4.44g. This trend suggests that the model's accuracy in predicting the body weight improves for 

heavier entities. Additionally, the analysis of predicted body weight and residuals versus actual 

body weight, in conjunction with the previously discussed average absolute residuals, offers a 

comprehensive overview of the predictive SAM's performance. Figure 3.10 demonstrates a 

strong correlation between actual and predicted body weights, as indicated by a root mean square 

error (RMSE) of 25.26g. Figure 3.11, which illustrates the residuals, presents them scattered 

around the zero line, suggesting that the SAM's errors are random rather than systematic. The 

previously noted downward trend in average absolute residuals is contextualized by these graphs, 

confirming that the SAM's accuracy indeed improves for larger body weights. This improvement 

is made evident by the lower residuals in these weight ranges and an RMSE value that indicates 

the errors are not only smaller on average but also less variable as body weight increases. 
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Figure 3.8. Accuracy impact A and correlation analysis B of labels in chicken body weight 

prediction (labels (a (semantic segmentation of laying hens based on original pictures), b (part-

based segmentation of chickens based on original pictures), c (semantic segmentation of 

chickens based on thermal pictures), d (part-based segmentation of chickens based on thermal 

pictures)). Standard error (SE) and standard deviation (SE). 

  

Figure 3.9. Variation in average absolute residuals across different body weight ranges. 
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Figure 3.10. Physical difference between predicted and actual body weights with indicated 

RMSE. 

  

Figure 3.11. Distribution of prediction residuals across actual body weight ranges. 

3.4     DISCUSSIONS 

3.4.1 Discussion of Chicken Segmentation Approaches of Chicken Segmentation Approaches 

In this study, SAM outperformed SegFormer and SETR in four distinct segmentation 

tasks, including part-based and total segmentation using either original or thermal images. 
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Specifically, SAM's total points prompt mode attained the highest level of precision. This 

outstanding performance can be attributed to several factors. First, SAM employs its 

segmentation attention mechanism, which effectively captures fine-grained details and complex 

image patterns. This attention mechanism enables SAM to focus on relevant regions and 

features, resulting in more accurate segmentation (L. Zhang et al., 2023). Alternatively, it is 

noteworthy that SAM outperformed the other models without requiring additional training. This 

indicates that the architecture and design of SAM have inherent segmentation capabilities, 

eliminating the need for extensive fine-tuning or specialized training. This quality renders SAM 

a more feasible and effective option for segmentation applications(Kirillov et al., 2023). In 

addition, the use of thermogram images for segmenting target chicken did not increase 

segmentation accuracy overall. This could be due to a number of factors. Thermogram images 

capture the heat distribution and are sensitive to temperature variations, which may not correlate 

directly with the shape or boundaries of the poultry being analyzed. Consequently, relying solely 

on thermogram images for segmentation may introduce noise or irrelevant information, resulting 

in a reduction in overall precision (Resendiz-Ochoa et al., 2017; X. Zhang et al., 2023). 

Comparing part-based segmentation, it was discovered that whole-chicken segmentation 

exhibited superior performance across the board. This is because part-based segmentation may 

present difficulties in accurately identifying and delineating the boundaries between poultry 

parts. The segmentation of a whole chicken provides a more comprehension of the object by 

capturing its overall shape and structure, which facilitates improved segmentation 

results(Ahmadi et al., 2023; Chen and Bai, 2023; Jing et al., 2023). To further discuss the 

performance of SAM, we compare our study with various research. The table 3.2 shows the 

results of related studies conducted on the chicken segmentation using computer vision, 
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compared with the result obtained in the present study. In a study involving the segmentation of 

meat carcasses by a meat dataset (108,296 images), EfficientNet-B0 obtained a mIoU of 89.34% 

(Gorji et al., 2022). MSAnet obtained a mIoU of 87.7% when used to segment caged poultry in a 

dataset of 300 images (Li et al., 2021). Mask R-CNN obtained a mIoU range of 83.6% to 88.8% 

when used to segment hens from a dataset of 1700 images (Li et al., 2020). The method used in 

this study, SAM, achieved a mIoU of 88.06% for poultry segmentation, putting it on par with or 

even surpassing the performance of other methods without the development of target 

dataset, indicating its capability to accurately delineate chicken regions in images. These results 

demonstrate the efficacy of SAM for this particular task and its potential for broader applications 

in computer vision tasks involving chicken segmentation. 

Table 3.2. Comparison of segmentation accuracy. 

Methods Dataset (constructed by authors) mIoU (%) 

Number Type 

EfficientNet-B0 108,296 meat carcasses 89.34 

MSAnet 300 caged chickens 87.7 

mask R-CNN 1700 hens 83.6-88.7 

SAM (this study) / / 88.06 

Note: Multi-Similarity and Attention Network (MSANet) and Region-Based Convolutional Neural 

Network (R-CNN). 

3.4.2 Discussion of Chicken Weight Prediction 

In predicting chicken weights, label c, which represents the use of thermal images with 

semantic segmentation, obtains the highest accuracy of 0.89. This finding indicates that 

incorporating thermal images and employing semantic segmentation techniques significantly 

improves the accuracy of the comparison with the segmentation from the original image. 
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Thermal images predominantly detect areas with temperature variations, which can be used to 

predict the weight of chickens. Comparing thermal images to the original images, the 

segmentation mask derived from thermal images tends to emphasize the chicken's center more 

(Brenner et al., 2023). As a result of the presence of vital organs and metabolic activity, the 

central region typically has a higher average temperature. We can effectively extract the thermal 

patterns and temperature-related characteristics of the central body region by employing thermal 

images and semantic segmentation techniques. This emphasis on the central portion of the 

poultry reduces the impact of temperature variations in non-central areas, such as the tail 

feathers, which may have less of an effect on the overall weight prediction. Strong correlation of 

0.91 between labels a and b indicates a significant relationship between semantic segmentation 

of chickens from original images (label a) and part-based segmentation of chickens from original 

images (label b). This correlation suggests that these two labeling methods provide 

complementary information and predict chicken weights with a high degree of concordance. If 

we know that labels a and b are highly correlated, we can potentially use their combined 

information to enhance weight prediction even further. By combining semantic segmentation 

from the original images (label a) and part-based segmentation from the original images (label 

b), we can potentially derive a more comprehensive understanding of the features and structure 

of chickens, resulting in improved predictive performance. This correlation suggests that the two 

labeling methods capture similar characteristics of the poultry, which strengthens potential 

accuracy in weight prediction. For chicken shape, if the head overlaps with the body and the 

open tail state is more than 50%, the model tends to overestimate body weight. Amraei et al. 

(2018) utilized the Transform Function (TF) model to measure the body weight of broiler 

chickens (Amraei et al., 2018). During the processing of the chicken dataset, they employed a 
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technique to remove the tail, resulting in a remarkable accuracy of 0.98. However, it should be 

noted that this method required a substantial number of annotated pictures, specifically 2440, 

which can be challenging to obtain in practice. On the other hand, Mollah et al. (2010) employed 

image software called IDRISI 32 to determine the surface area of broiler chicken bodies (Mollah 

et al., 2010). They further developed a linear equation to estimate the weight of chickens, 

achieving an impressive accuracy of 0.99. Nonetheless, this approach also relied on a significant 

dataset of 1200 basic chicken samples. In comparison, although the SAM+RF method's accuracy 

falls slightly short of the aforementioned techniques, it is important to consider that the SAM 

was not pretrained in weight prediction task. By implementing a custom image segmentation 

model based on YOLOX and SAM, it is possible to enhance the accuracy of weight prediction. 

This approach allows for further improvements and fine-tuning, which can potentially bridge the 

accuracy gap observed in the initial results (Kirillov et al., 2023). 

3.5     CONCLUSIONS 

This article presents the development and evaluation of SAM, a novel computer vision 

model for laying hens segmentation, body weight prediction, and tracking. The findings 

demonstrate SAM's superiority over existing methods in both semantic and part-based 

segmentation. Moreover, the combination of SAM with RF and thermal camera proves 

promising for chicken weight prediction, while integrating SAM with YOLOX and Byte-Tracker 

enables real-time tracking of individual broiler bird movements. However, the study also 

highlights several limitations of SAM, including challenges related to flock density, occlusion, 

and chicken behaviors. To address these limitations, the article proposes future research 

directions that involve exploring arbitrary chicken parts, developing models for sorting and 

monitoring chicken weight, and integrating SAM with additional computer vision models to 
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monitor chicken behaviors. Ultimately, the article emphasizes SAM's potential to improve 

chicken welfare and optimize poultry production operations. 
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CHAPTER 4 

AUTOMATIC METHODS FOR DETECTING FLOOR EGGS AND LAYING HENS 
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ABSTRACT 

Defective eggs diminish the value of laying hen production, particularly in cage-free 

systems with a higher incidence of floor eggs. To enhance quality, machine vision and image 

processing have facilitated the development of automated grading and defect detection systems. 

Additionally, egg measurement systems utilize weight-sorting for optimal market value. 

However, few studies have integrated deep learning and machine vision techniques for combined 

egg classification and weighing. To address this gap, a two-stage model was developed based on 

real-time multitask detection (RTMDet) and random forest networks to predict egg category and 

weight. The model uses convolutional neural network (CNN) and regression techniques were 

used to perform joint egg classification and weighing. RTMDet was used to sort and extract egg 

features for classification, and a Random Forest algorithm was used to predict egg weight based 

on the extracted features (major axis and minor axis). The results of the study showed that the 

best achieved accuracy was 94.8% and best R2 was 96.0%. In addition, the model can be used to 

automatically exclude non-standard-size eggs and eggs with exterior issues (e.g., calcium 

deposit, stains, and cracks). This detector is among the first models that perform the joint 

function of egg-sorting and weighting eggs, and is capable of classifying them into five 

categories (intact, cracked, bloody, floor, and non-standard) and measuring them up to jumbo 

size. By implementing the findings of this study, the poultry industry can reduce costs and 

increase productivity, ultimately leading to better quality products for consumers. 

Poultry behavior is an important indicator of their welfare, health, and production 

performance. For instance, the welfare of layers and broilers such as walking ability, breast 

blisters and hock burn are measurable through behavior monitoring.  In the previous research, 

most of laying hen studies focused on basic behaviors such as drinking, feeding, and walking of 
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broilers. However, with the transition to the cage-free houses, more natural behaviors need to be 

monitored for welfare assessment. In this study, a six-behavioral classifier (i.e., feeding, 

drinking, walking, perching, dust bathing, and nesting) was developed based on multiple CNN 

models (e.g., efficientNetV2 and YOLOv5-cls). Furthermore, a cage-free birds’ dataset 

containing 12,000 pictures was collected and annotated in a lifespan scale (e.g., from 1 week to 

50 weeks of age), from which 9,600 images were used as training dataset and the rest were used 

for validation. The best performance model YOLOv5-cls-m achieved an average accuracy of 

95.3%, which is 5.01% higher than that of efficientNetV2-l. Drinking behavior of chicks was 

monitored with the highest accuracy (97.8%) while nesting behavior had a detection precision of 

92.5%. In terms of chickens’ age, the classifier has a better accuracy for smaller chicks (< 10 

days) than larger chickens older than 10 days (96.4% vs 94.3%). The results show that the 

classifier is a useful tool to segregate cage-free bird behaviors in various life periods and 

environments. 

 

Keywords: Laying hen production; Egg quality; Defect detection; Egg weight; Deep learning; 

Poultry production; Cage-free housing; Animal welfare; Artificial intelligence; Behavior 

monitoring.  

 

 

4.1       INTRODUCTION 

Eggs are a nutritious food source for humans and are widely consumed across the world, 

but their high fragility makes them vulnerable to defects during production (Nematinia and 

Abdanan Mehdizadeh, 2018). Defects such as cracks, dirty spots on the eggshell, and blood spots 

inside the egg can decrease the quality and market value of eggs. To address this issue, 
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researchers have developed automatic methods for grading eggs and determining defects. In the 

past, machine vision and image-processing technology have been applied to egg-quality 

detection and grading in the USA and abroad. Researchers have built gray-machine-vision 

systems and trained neural networks using egg image histograms to classify eggs into cracked 

and grade A (Patel et al., 1998, 1994). They have also established conventional neural networks 

(CNN) for the detection of blood spots, cracks, and dirt stains and developed an expert system 

for egg-sorting based on these networks (Omid et al., 2013; Turkoglu, 2021). The average 

accuracy of these systems exceeds the USDA requirements (Bist et al., 2023b). Therefore, the 

use of computer vison to grade eggs automatically has the potential to improve the potential 

efficiency and quality of the egg production process, leading to higher-quality eggs for 

consumers and increased market value for producers. 

Egg weight is another important aspect of egg quality associated with the egg grade and 

market value (Sanlier and Üstün, 2021). The manual measurement of eggs at the digital scale is a 

time-consuming and tedious process. To improve the efficiency of the egg weighting process, 

automated egg measurement systems have been developed. Payam et al. (2011) used the ANFIS 

model to predict egg weight according to the number of pixels of eggs reaching 0.98 R-squared 

(R2) (Javadikia et al., 2011), which is more efficient and accurate compared to manual methods. 

Jeerapa et al. (2017), using the Support Vector Machine (SVM) technique to predict brown 

chicken eggs from a single egg image, yielded the correlation coefficient of 0.99 (Thipakorn et 

al., 2017). Raoufat et al. (2010) built a computer vison system to measure egg weights by 

artificial neural networks (ANN); their algorithms showed a high accuracy (R2 = 0.96) (Asadi 

and Raoufat, 2010). 
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Previous works in this area primarily focused on using computer vision techniques such 

as convolutional neural networks (CNNs) and image classification algorithms for egg 

classification (Apostolidis et al., 2021; Dong et al., 2021). These methods have shown promising 

results in classifying eggs based on their size, shape, and color. However, few studies have 

combined deep learning and machine learning regression techniques for joint egg classification 

and weighing, especially including floor eggs collected from cage-free poultry farms. This can 

be useful for producers who want to ensure consistent quality across all types of eggs and 

consumers who want to purchase high-quality eggs. Another reason for this is that the egg 

industry is shifting from cage to cage-free (Berkhoff et al., 2020; Hansstein, 2011; Lilong Chai et 

al., 2022; Lusk, 2019). Therefore, introducing floor eggs is beneficial for application in the cage-

free egg in-dustry.  

In this study, an automatic system was developed at the University of Georgia, aiming to 

fill this gap by integrating deep learning and supervised machine learning technologies to 

perform joint egg classification and weighting. The system uses an up-dated and powerful CNN, 

called real-time multitask detection (RTMDet), to extract egg features for classification (Lyu et 

al., 2022), and a classic Random Forest (RF) algorithm to regress egg-weight data based on the 

extracted features (Breiman, 2001). The objects of this study were as follows: (1) develop an egg 

classifier to sort eggs through their size and surface; (2) build a regressor to predict egg weights 

through their geometrical attributes; (3) combine egg-sorting and the measuring of egg weights 

into one two-stage model; (4) test the model with standard eggs and second eggs. This two-stage 

model is expected to result in improved accuracy and efficiency compared to existing methods. 

Global population has reached about 8 billion in 2023 and is projected to increase further 

to 9.7 billion in 2050, which requires a 50 percent growth in animal-derived products to meet the 
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demand of the world (Avendano et al., 2020). To achieve this goal, precision livestock 

production is introduced to monitor and manage animal production and health. It involves the 

application of sensors, data collection, and analytics of big data, which optimizes animal 

production and product quality, while minimizing the utilization of limited natural resources. A 

major component of precision poultry farming is the observation of animal behaviors to assess 

the well-being and health of the chicken flock (Bist et al., 2023; Tullo et al., 2019; Werkheiser, 

2018). 

Animal behavior is an indicator of emotional state and well-being. The common welfare 

indicators of layers and broilers include walking ability, breast blisters, hock burn, heart failures, 

and pecking damages that are measurable through monitoring behaviors (Webster et al., 2008; 

Subedi et al., 2023a, b). For example, chickens may exhibit behaviors such as pecking, 

scratching, and dust bathing when they are content and relaxed (Subedi et al., 2023; Yang et al., 

2022b). On the other hand, if a chicken is stressed or anxious, it may result in behaviors such as 

feather plucking, pacing, and vocalizing. To monitor chicken behaviors, two main approaches 

were used previously: contact monitoring with body carried sensors (e.g., planted sensors and 

RFID) and non-contact monitoring (e.g., cameras and audio sensors) (Castro et al., 2023). Direct 

observation involves observing birds in their natural environment in person. This method allows 

researchers to recognize the behavior of animals in their natural habitat and to gain a better 

understanding of their behaviors.  

Non-contact monitoring evolves the observation using sensors, cameras, and other 

technology to monitor birds from a distance (Engel et al., 2014; Mollenhorst et al., 2005). Unlike 

direct observation, this method enables researchers to observe chicken without disturbing them, 

and to collect data on their behavior over time. It also improves the farm biosecurity because of 
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the non-invasive method.  Computer vision strategy has seen broad utilization for animals’ 

monitoring. In traditional computer vision world, visual techniques are employed to identify 

poultry behaviors by extracting pre-defined characters and applying them with supervised, 

unsupervised, semi-supervised and reinforced learning (Khan et al., 2021). A high accuracy of 

detection relies on the characters extracted. In recent years, the emergence of deep learning has 

been remarkable. Deep learning is a type of machine learning that uses artificial neural networks 

to learn from data. It is a powerful tool for solving complex problems in computer vision 

(Gikunda and Jouandeau, 2019). Convolutional neural network (CNN) is one of the most popular 

deep learning methods, which enables farmers to gain insights into the behaviors and health of 

their animals. In the animal science field, deep learning techniques such as CNNs have been 

increasingly utilized to analyze a diverse range of data related to animal behavior, welfare, and 

health. These techniques have proven to be highly effective in various applications, including 

detecting and analyzing images of animals to identify signs of injury, disease, or stress. Its 

applications in poultry industry are broad. (Nasiri et al., 2020) achieved an automatic sorting 

system for unclean eggs by CNN model. The testing result shows the average accuracy is 

94.84%. You only look once (YOLO) is a popular object detection algorithm in computer vison 

due to its accuracy and speed. (Wang et al., 2019) developed a detector based on YOLO network 

to detect and pick up sick birds in crowded conditions with 84.3% accuracy. Li et al. (2020b) 

used a fast R-CNN method to monitor drinking behaviors of layer under different light colors, 

reaching the detection rate of the model is 88.2%.  

However, most of the previous studies were based on broilers and caged layers (Guo et 

al., 2020, 2021, 2022). The egg production in US and EU is shifting from either conventional 

cage or enriched colony systems to cage-free system (aviary housing). In addition, almost all the 
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current research focused on some time periods of chicken (Brannan and Anderson, 2021; 

Gonzalez-Mora et al., 2022). When the study targeted on cage-free birds at a lifespan scale, more 

challenges need to be addressed. This research gap highlights the need for studies that focus on 

the behavior and welfare of cage-free birds throughout their entire lifespan, contributes to the 

development of more accurate and efficient deep learning models, and can provide substantial 

benefits to the agricultural industry and animal welfare organizations. Incorporating deep 

learning models containing characters of multiple birds’ behaviors under cage-free houses at 

different growth periods will enhance the accuracy of the prediction and welfare of chicken. 

Accurate prediction of the behavior and welfare of cage-free birds can enable farmers and animal 

welfare organizations to take targeted measures to enhance the birds' health and well-being. In 

particular, this approach can lead to improved productivity and reduced costs by minimizing 

disease outbreaks and maximizing the efficiency of interventions. The objectives of this study 

were to (1) develop a behavioral classifier for monitoring cage-free hens applied behaviors (e.g., 

feeding, drinking, walking, perch, dust bathing, and nesting); and (2) test the performance of 

newly developed deep models on behavior monitoring in research poultry houses. 

4.2     MATERIALS AND METHODS 

4.2.1   Egg Collection 

In this study, 800 Hy-line W-36 hens were used to produce cage-free eggs with free 

access to fresh water and feeds (Figure 4.1). The eggs were collected daily and stored at a 

temperature around 24 °C for the next sorting process, and were then graded according to size 

and quality. A binary classification (standard and defect eggs) was first introduced to classify the 

eggs manually. The standard eggs were those that were clean, and sizes ranged from small (50–

55 g) to jumbo (70 g and above), while the non-standard eggs were those that were bloody, 
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cracked, had an unusual egg shape (too long, too round or dis-torted), and a size less than small 

or more than jumbo (Figure 4.2) (Subedi et al., 2023a; Thipakorn et al., 2017). This classification 

was applied to determine the quality of the eggs and to ensure that only the best quality eggs 

were utilized for measuring egg weight. 

  

Figure 4.1. The production of cage-free eggs. 
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Figure 4.2. The classification of cage-free eggs and visualization of standard egg sizes (g). 

4.2.2   Experimental Arrangement and Equipment 

In this study, 800 Hy-Line W-36 commercial layers were randomly assigned to four 

rooms, each of 7.3 m × 6.1 m × 3 m (length × width × high) in the University of Georgia (UGA), 

m house, Poultry Research Center (Athens, GA, USA). The room is shown in Figure 4.3. Each 

room has six hanging feeders, four nest boxes, one water pip mounted nipple drinkers and a 

trapezoid frame hen perch to promote chicken’s natural habits. The feeders were filled two times 

per week and the water was provided 24 hours every day. Chickens were able to eat and drink 

freely. To monitor and capture the behavioral data of birds, the top-view and side-view cameras 

were installed on the celing and side wall of each room separately. The video data were collected 

24 hours per day from August 17th 2021 to September 1, 2022. Every three days, the videos 

were transformed into a massive hard drive for safe storage at Department of Poultry Science in 

the UGA.  
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Figure 4.3. Experimental arrangement of cage-free research houses. 

4.2.3   Egg Samples Acquisition System 

An egg samples’ collection system was constructed to collect images and weights of 

different classes of eggs at the department of poultry science at the University of Georgia 

(UGA), USA. Figure 4.4 demonstrates the egg sample acquisition setup, including the camera, 

tripod, egg base, computer, and digital scale. Details are shown in Table 4.1. The system is 

designed to accurately collect and record data on the different classes of eggs. The camera, 

which is mounted on a tripod, takes images of the eggs placed on the designated egg base. The 

digital scale measures the weight of the eggs, and the computer stores the collected data and 

images. The combination of the camera, scale, and computer allows for a comprehensive and 

efficient egg sample collection process. The collected data and images were used to develop an 

automatic system for classifying and weighting the eggs using computer vision. 
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Figure 4.4. The egg samples’ acquisition system for classifying eggs (a) and weighing eggs (b): 

(1) camera; (2) tripod; (3) egg base; (4) computer; (5) digital scale. 

Table 4.1. The details of the egg sample acquisition setup. 

Parts Details 
Camera Canon EOS 4000D (Tokyo, Japan) 
Tripod BOSCH BT 150 (Gerlingen, Germany) 

Egg base ESS—8010 (Wasco, CA, USA) 
Computer Apple MacBook Pro (M1, 2020) (Cupertino, CA, USA) 

Digital scale Mettler Toledo MS104TS/00 (Greifensee, Switzerland) 
 

4.2.4   Egg Data Processing 

Once the egg image data was collected, two key processing steps: preprocessing the 

diffraction patterns and performing hierarchical clustering on the data. These steps involve 

refining the diffraction patterns and organizing the data into clusters based on their similarities 

(Zhang et al., 2022). Preprocessing involves removing background noise, normalizing the signal 

intensity, and correcting for any artifacts in the data. This step ensures that the diffraction 

patterns are clean and reliable for analysis. Hierarchical clustering is a method for grouping 
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similar data points into clusters based on their similarity (Nazari et al., 2015). The algorithm 

starts by considering each data point as its own cluster, and then iteratively merges clusters until 

a desired number of clusters is reached or a stopping criterion is met (Figure 4.5). This approach 

can be used to identify patterns in the egg data, such as different eggshell types (bloody, cracked 

and distorted) or quality grades (small size to jumbo size). 

 

 

Figure 4.5. The flow of egg data processing. 

4.2.5   Egg Sorting Method 

To develop a real-time automatic egg-quality checking system that meets the future 

requirements of the egg industry by utilizing deep learning for small object classification, 

specifically egg classification, during the grading process, a new family of original real-time 

models using you only look once (YOLO) for object classification, referred to as RTMDet, was 

utilized. RTMDet is introduced with improved small-object detection abilities. The appealing 

enhancements come from the large-kernel depth-wise convolutions and soft labels in the 

dynamic label assignments. This approach enables a comprehensive egg analysis, encompassing 

factors such as egg size and eggshell type. The large-kernel depth-wise convolutions improve the 

model’s global context-capturing ability, while reducing the model depth to maintain a fast 

inference speed. The training strategies are revisited to improve accuracy with a better 
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combination of data augmentations and optimization. Soft targets are introduced instead of hard 

labels in the dynamic label assignment process, improving discrimination and reducing noise in 

label assignment. 

The overall architecture of the RTMDet classifier is broken down into three parts: the 

backbone, neck, and head. The backbone component is similar to that of YOLO, which is a 

recent advance in object detection, and is regularly equipped with a cross-stage partial network 

darknet (CSPDarkNet). This backbone consists of four stages, each of which is composed of 

several basic neural layers. These layers are designed to extract hierarchical features from the 

input data, capturing both low-level and high-level visual information. The neck merges the 

multi-scale feature pyramid from the backbone and improves it through bottom-up and top-down 

feature flow. It facilitates the fusion of information across different scales, enabling the model to 

effectively handle objects of various sizes. This ability is especially relevant when considering 

parameters such as the major axis and minor axis of the eggs. The major axis corresponds to the 

longer diagonal of the egg, providing insights into its overall length and shape. On the other 

hand, the minor axis represents the shorter diagonal, which helps to assess the width of the eggs. 

The detection head then identifies the object bounding boxes and categorizes them using the 

feature map at each scale. By analyzing the feature maps at different scales, the detection head 

can accurately localize objects and assign corresponding class labels (standard, bloody, floor, 

cracked and non-standard). This design is well-suited to both standard and small objects and can 

be expanded to instance segmentation through the implementation of kernel and mask feature 

production modules (Lyu et al., 2022). To provide a clearer representation of the system 

architecture, a diagram of the RTMDet macro-architecture is shown in Figure 4.6 (Lyu et al., 

2022). 
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Figure 4.6. The structure of egg classification based on RTMDet architecture. 

Large-Kernel Depth-Wide Convolution Approach 

Large-kernel depth-wise convolutions involve the use of more extensive filters in depth-

wise convolutional layers within a convolutional neural network (CNN) (Zhang and Zhou, 

2023). The purpose of using these larger kernels is to gain a better understanding of the 

contextual information contained in the input data and enhance the representation power of the 

model. Depth-wise convolutions are frequently utilized in CNNs to reduce computational 

complexity and boost efficiency. Nevertheless, they have limitations in capturing significant 

scale context and spatial information. With the use of large-kernel depth-wise convolutions, this 

constraint can be overcome. The advantages of using large-kernel depth-wise convolutions 

include improved model ability when applied to real-world objects, a more comprehensive 

capturing of the data and their surroundings, and enhanced accuracy on benchmark datasets. In 

the context of egg classification, this approach allows for a more comprehensive analysis of 

various parameters, including egg size, eggshell type, and other spatial characteristics. 

Furthermore, large-kernel depth-wise convolutions allow for a reduction in the number of 
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parameters and computation, while still delivering a similar performance to models with more 

parameters. 

Soft Labels 

In deep learning, soft labels refer to the use of continuous, rather than binary, values as 

target outputs. The purpose of using soft labels is to provide the model with additional 

information and to encourage smoothness in the model predictions (Ma et al., 2020; Subedi et 

al., 2023a). By employing soft labels, the model can generate predictions that provide more 

subtlety and precision in the classification task. Instead of solely assigning eggs to specific 

classes with binary labels, the soft labels enable the model to express varying degrees of 

confidence or probabilities for each class. This allows for a more detailed understanding of the 

eggs’ characteristics and their association with different classes. In addition, the use of soft labels 

can result in more robust models because the model is able to discover correlations between the 

input data and the desired outputs, even if the relationship is not obvious. In our study, soft labels 

are applied in problems with multi-class classification or multi-label classification (i.e., unclean 

eggs, standard eggs, and no standard eggs), where the model must predict the presence of 

multiple target classes (Wang et al., 2021, 2023). In addition, on the basis of simplified optimal 

transport assignment (SimOTA), an advanced cost function calculation for soft labels was 

presented to reduce training loss, and its loss function is described below. 

	𝑓(𝐶) = 𝛼5𝑓(𝐶.3/) + 𝛼*	𝑓t𝐶,-8u (1) 

where f(C) is	loss	fuction, f(C9:;) is the classification loss,	f(C<=>) is the regression loss, and two 

coefficients, α5	and	α*, were empirically set. 

		𝑓(𝐶.3/) = 𝐶𝐸t𝑃, 𝑌/0?6u × (𝑌/0?6 − 𝑝)*		 (2) 
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where CE(P, Y;@AB) represents the cross-entropy (CE) loss between the predicted probabilities (P) 

and the soft labels (Y;@AB). 

𝑓t𝐶,-8u = − 𝑙𝑜𝑔(𝐼𝑜𝑈) (3) 

where −log (IoU) means the negative logarithm of the intersection over union (IoU). 

4.2.6   Egg Weight Prediction Method 

Predicting egg weight through computer vision leads to several challenges that must be 

addressed. One of the challenges is the accuracy of measurements of the egg’s dimensions, such 

as the major and minor axis. This is due to the difficulty of obtaining high-quality images or 

accurately identifying and measuring the egg in the image. Another obstacle is the diversity in 

the shapes and sizes of eggs (small-jumbo), which requires the implementation of complex 

machine learning algorithms that can account for various factors, including eggshell color, shape, 

size, and birth date, that may affect egg weight. Random Forest Regression is utilized for egg-

weight prediction due to its ability to handle complex, non-linear relationships between features 

and target variables using an ensemble learning method that combines predictions from multiple 

decision trees, which are trained on randomly selected subsets of the data. This combination 

reduces variance and enhances the overall accuracy of the model. Furthermore, Random Forest 

can handle missing or incomplete data and perform effectively when there is a combination of 

continuous and categorical variables (Breiman, 2001; Riley et al., 2021). Lastly, feature 

importance scores are provided by Random Forest, which helps determine the most significant 

factors that contribute to egg weight prediction. The structure of RF is shown below (Figure 4.7) 

(Khan et al., 2021). 
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Figure 4.7. Random forest algorithm. 

4.2.7   Computer Vision System 

In this study, we aim to integrate computer vision technologies, deep learning and 

machine learning, into a single implementation for the purpose of jointly performing egg-sorting 

and weighting functions. The input egg images will first be processed through RTMDet, a deep 

learning technique that surpasses conventional CNN models, to extract egg features for 

classification. After obtaining the segmented mask of the egg, we identify four cutting points on 

the mask, namely, the top, bottom, left, and right points. These points are then used to form a 

new rectangle. Within this rectangle, the longer diagonal corresponds to the major axis, while the 

shorter diagonal corresponds to the minor axis. The weighting function will then utilize a classic 

Random Forest algorithm to regress egg weight data based on the egg features (major axis and 

minor axis) extracted by binary image. Figures 4.8 and 4.9 show the whole flow (Chieregato et 

al., 2022). 
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Figure 4.8. A streamlined approach to egg quality classification using computer vision. 

 

Figure 4.9. The processes of calculating egg parameters: (a) original image; (b) binary image; (c) 
geometric image. 

4.2.8   Behavior Dataset Description and Labeling 

A behavior dataset was developed by ImageJ (The National Institutes of Health, 

Bethesda, MD, USA) with its crop function. The crop function returns a subset of target object 

with different behaviors. In our study, eleven behavioral datasets were created based on birds’ 

age and their acts. For chicks (1-4 weeks), five basic behaviors were defined, including feeding, 

drinking, perch, walking and dust bathing. For chickens (older than 4 weeks), except the 
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common acts they keep since young, one more behavior (nesting) because of natural chicken 

brood was added. Therefore, there are eleven behaviors in total, which represent birds’ welfare at 

discrete chicken growth stages in the research. The details of the definition of each act are shown 

below. 

Table 4.2. The definitions of different behaviors. 

Categories Definition  examples 
feeding Birds less than 4 weeks & 

head above the feeder 

 
drinking Birds less than 4 weeks & 

head closes to the nipples 
 

perch Birds less than 4 week & feet 
on wood 

 
walking Birds less than 4 weeks & 

body moving on the litter 

 
dust bathing Birds less than 4 weeks & 

body rolling around in the 
litter  

feeding Birds more than 4 weeks & 
head above the feeder 

 
drinking Birds more than 4 weeks & 

head close to the nipples 

 
perch Birds more than 4 week & 

feet on perch frame 

 
walking Birds more than 4 weeks & 

body moving on the litter 
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dust bathing Birds more than 4 weeks & 
body rolling around in the 
litter  

nesting Birds more than 4 weeks & 
body sits on the eggs for most 
of the time  

 

4.2.9   Behavior Data Augmentation Technique 

Data augmentation is a technique aimed to improve the amount of data available for 

enhancing the training performance of deep learning models. It is a process of creating synthetic 

data from existing data points artificially by applying different transformations. In our study, due 

to the shortage of nesting datasets, four augmentation approaches were applied to increase the 

diversity including blur (blur the input image), scaling (change the dimensions of the input 

image), contrast (brighten the darker areas of the input image) and rotation (rotate the input 

image randomly) (Perez and Wang, 2017). The examples of the data augmentation techniques 

are shown in Figure 2. After data augmentation process, 12000 images were generated, of which 

9600 divided into training dataset and the rest was used for validation set. The training and 

validation sets were spitted into a 4: 1 ratio. Each class in the dataset consists of 1092 pictures, 

with the exception of the "dust bathing" class, which contains 1080 pictures due to the greater 

difficulty in collecting images of this behavior. 
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Figure 4.10. The results of data augmentation techniques. 

4.2.10 Behavior Data Segmentation Method 

During this time, there are many online tools and software to solve the problems of image 

segmentation. A cropping method is provided by ImageJ, unlike other software, which leaves a 

black area after cropping the target image out of the whole scene, ImageJ could use the selected 

rectangle to crop where we are interested repeatedly. After cropping, duplicate the selected area 

and rename it automatically to a given folder for the permeant storage (Figure 4.11). ImageJ is 

broadly used because of its time-saving and easy use for beginners who are not familiar with 

complex code.  



 

144 

 

Figure 4.11. The diagram of image segmentation. 

4.2.11 Methods of Image Classification for Laying Behaviors 

To classify the behaviors of birds, the newest v6.2 YOLOv5-cls method (accuracy 

superiority) and a standard efficientNetV2-B0 model (speed superiority) were applied in the 

study. Both models reach excellent accuracy on classification tasks. Beyond accurate 

performance, however, training speed and parameter efficiency are further factors considered for 

applying model to wider environments, which are usually with moderate computing resources. 

Therefore, the comparison of the two methods on the performance of birds’ behavioral 

classification could make a balance and objective evaluation on the overall application of 

models. 

The algorithm of YOLOv5-cls is shown in Figure 4.12. The YOLOv5-cls network 

includes two parts, backbone and head. The backbone network is the core part to extract the 
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high, middle, and low feature maps from input images by FOCUS, cross stage partial (CSP), 

contextual block separable (CBS)  and spatial pyramid pooling fast (SPPF) structures (Redmon 

et al., 2016). The CBS module has two primary components: a separate convolution layer and a 

context aggregation layer. The separable convolution layer employs depth wise separable 

convolutions to decrease the number of parameters and enhance computational efficiency. To 

capture contextual information, the context aggregation layer aggregates features from 

neighboring pixels. Multiple CBS modules are frequently employed in CNN backbone 

architectures to extract increasingly complex image features. Depending on the network design 

and task being performed, the specific roles of the six CBS modules in the backbone architecture 

may vary, but in general, they are used to capture increasingly complex and abstract features at 

different stages of the network. The head network consists of three convolution layers that 

predicts the objects classes with probabilities. In addition, to prevent model from growing over-

confidence, label smoothing is used in the behavioral classification task.  

 

Figure 4.12. The YOLOv5-cls architecture. 
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In YOLOv5, the function of FOCUS is to slice the picture before it inputs into backbone 

(Wang et al., 2020). The detailed operations are: a) every pixel was given a value, which is 

similar to down sampling, b) four pics were generated and each of them were complementary to 

prevent information lose, c) the input channel is expanded by four times, d) the sliced pics were 

composited to 12 channels, e) a double down sampling feature map was obtained after a final 

convolution layer (Figure 4.13). Taking a 640 × 640 × 3 image as an example. After slice 

operation, it becomes a 320 × 320 × 12 feature map. Then after a convolution layer, its feature 

map size is 320 × 320 × 32. By reducing layers, FOCUS structure increases the forward and 

backward speed (Mao et al., 2022). Algorithm 1 describes how to encode (Table 4.3). 

 

Figure 4.13. Illustration of FOCUS structure. 

Table 4.3. Algorithm 1-FOCUS summary. 
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The CSP-Darknet module is applied in YOLOv5. It is designed to strengthen the learning 

capability of neural network by reducing computations. The CSP module partitions the original 

input layer into two parts and convolutes them separately. Then a cross-stage hierarchy is used to 

merge the gradient flows (Figure 4.14). With the network optimization, CSP retains the 

information of feature maps along with less computational tasks (Yang et al., 2015). In addition, 

CSP network can greatly reduce memory costs by compressing the feature maps through cross-

channel pooling. Algorithm 2 outlines the detailed operations (Table 4.4). 

 

Figure 4.14. Illustration of CSP structure. 

Table 4.4. Algorithm 2-CSP summary. 
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SPPF is another pooling strategy, to maintain the classification accuracy.  In general, 

CNN network consists of two parts: convolutional section and full-connected section. During 

full-connected layer process, all input images should have fixed same size, which leads to 

geometric distortion and classification accuracy can be forced (Ji et al., 2022). SPPF network 

partitions the whole image into several portions and extracts individual feature maps from each 

portion before the full-connected convolutional layer (Figure 4.15). In other words, SPPF 

module aggregates all the image features at a deeper stage in advance to prevent the arbitrary 

sizes. In this study, the use of SPP enabled the efficient and accurate extraction of features from 

images of cage-free birds engaging in various behaviors, enabling the development of a deep 

learning model with high classification accuracy. Algorithm 4.5 presents the work.  

Label smoothing has been adopted efficiently to improve the performance of deep 

learning networks across many state-of-the-art image classification tasks. It is a regularization 

method to prevent over-confident and calibration error (Lienen and Hüllermeier, 2021; Xu et al., 
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2020). For image classification assignments, traditional one-hot approach defines the correct 

class probability as 1 and the incorrect class probability as 0 in the training dataset. During 

learning process, the method encourages the cross-entropy between the true class and the rest, 

which results in the final predicted logits tending to be infinite. Moreover, the infinite increase of 

the logit difference between the true and false labels makes the model lack adaptability and 

become over-confident. 

 

																												𝑦! = �1, 𝑖 = 𝑡𝑎𝑟𝑔𝑒𝑡
0, 𝑖 = 𝑡𝑎𝑟𝑔𝑟𝑡                           Eq. 1 

Where i is the class type. 

																										𝐻(𝑦, 𝑝) = −∑ 𝑦!𝑙𝑜𝑔𝑝! 				C
!                   Eq. 2 

 

																												𝑝! =
=DE	(G!)

∑ =DE	(G")#
"

                                     Eq. 3 

 

Where pi is the probability of i-th class, zi is the logistic value of i-th class, zj is the sum 

of logit values, K is the sum of total classes, j is the starting count and p represents each class 

type. 

Label smoothing combines the uniform distribution with an updated label to replace the 

regular one-hot encoded label. By artificially softening labels, the smoothed distribution of the 

labels is equitant to add noise to the real distribution, preventing the model from being over-

confident about the correct label. Therefore, the difference between output values of the 

predicted positive and negative classes could be reduced, thereby avoiding overfitting, and 

improving the generalization ability of the model. 
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														ŷ! = 𝑦I06(1 − 𝛼) + 𝛼 𝐾⁄                               Eq. 4 

 

														ŷ! = �
1 − 𝛼, 𝑖 = 𝑡𝑎𝑟𝑔𝑒𝑡
𝛼 𝐾⁄ , 𝑖 ≠ 𝑡𝑎𝑟𝑔𝑒𝑡                               Eq. 5 

 

Where ŷi represents the predicted probability of a class i, yhot is the original label vector 

for class i, K is the total number of classes, 𝛼 is the hyperparameter and ŷ is updated label. 

The efficientNetV2 is a new family of CNN that has faster training speed (increased by 

11 times) and less parameter (reduced by 15%) than prior methods as well as improving 

recognition accuracy (Figure 4.15). In efficientNetV1, accuracy, parameter and floating-point 

operations per second (FLOPs) are focused on. In efficientNetV2, however, authors further pay 

attention to the training speed by adopting new network module Fused-MBConv and progressive 

learning. Fused-MBConv is projected in 2019 to better use modern accelerators.  It extends the 

conv1 × 1 in MBConv to conv3 × 3. When applied in early blocks, the training speed is 

significantly increased. Three Fused-MBConv modules and three MBConv modules are arranged 

in the backbone to strike a balance between computational efficiency and model performance. 

The Fused-MBConv modules combine multiple kinds of convolution operations into a single 

operation, thereby enhancing computational efficiency. However, this can result in a loss of 

precision. Therefore, the Fused-MBConv modules are positioned at the beginning of the 

backbone, where the input images have a higher spatial resolution and are less sensitive to minor 

differences in feature extraction. Combining depthwise convolutions, pointwise convolutions, 

and squeeze-and-excitation operations, the computationally more expensive MBConv modules 

extract features more precisely than their predecessors. The EfficientNetV2 architecture strikes a 
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balance between computational efficiency and precision by alternating between the Fused-

MBConv and MBConv modules. The precise configuration of three Fused-MBConv modules 

and three MBConv modules is probably the result of empirical testing and architectural 

optimization. Progressive learning strategy is proposed to combat a drop in accuracy when 

training images with various sizes. To cooperate with different image sizes, a rooted 

regularization in earlier work is not suitable now. Therefore, an adaptive regularization is 

advanced. The flexible regularization adaptively allocates augmentations and computations 

based on different image size (Demiray et al., 2021; Tan and Le, 2021). In general, smaller 

image size has the best training accuracy with moderate augmentation and less computational 

tasks, but for larger image size, significant augmentation is required to reach the best model 

performance. Progressive learning with gradual regularization assigns different types of 

regularization. In the early training epochs, images with smaller size shares weak regularization. 

Then, increaser progressively grows image size as well as regularization. In this way, 

efficeintNetV2 learns representations simply and fast. 

 

Figure 4.15. The effcientNetV2 architecture. 
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4.2.12 Performance Evaluation 

In this research, a dataset was created using 2100 egg images, which were then randomly 

divided into training and testing sets with a ratio of 4:1. To better analyze and compare 

performance across egg classes, the confusion matrix was created to derive standard parameters 

in classification tasks (Wu et al., 2020). The confusion matrix is a two-dimensional table that 

summarizes RTMDet model’s performance by comparing the predicted and actual class labels. 

Each row of the matrix represents occurrences in a predicted class, while each column represents 

instances in an actual class. The elements of the confusion matrix represent the number of cases 

identified correctly versus incorrectly. The four elements of true positives (TP), false positives 

(FP), true negatives (TN), and false negatives (FN) are used to calculate evaluation metrics such 

as precision, recall, F1-score, and average precision (AP) for egg grading in deep learning 

(Subedi et al., 2023b; Yang et al., 2022). To further explore the performance of Random Forest, 

coefficient of determination (R2) is utilized to evaluate the goodness of fit of the regression 

model. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
(

4) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
(

5) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)  

(

6) 

		𝐴𝑃 = � 𝑝(𝑟)𝑑𝑟		
5

J4K
 

(

7) 

where p(r) means the precision–recall curve. 
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𝑅* = 1 −
𝑆𝑆,-/
𝑆𝑆606

= 1 −
∑(𝑦! − 𝑦�!)*

∑(𝑦! − 𝑦̄)*
					 

(

8) 

where SSres represents the residual sum of squares and SStot means the total sum of 

squares. 

To benchmark the performance of classifiers, accuracy (mean average precision, mAP), 

GPU time, frames per second (FPS) and loss function values were focused on. Accuracy is the 

primary one used to evaluate how model correctly predicts all classes. GPU time is the actual 

time that processed the code, which indicated the computational performance of the algorithms. 

FPS is a standard one to evaluate the speed of methods(Ma et al., 2020; Zhang and Zhou, 2023). 

In terms of loss function, it is a metric associated with how algorithms modeling dataset and 

optimum result.  

				𝑚𝐴𝑃 = 5
"
∑ 𝐴𝑃LL4"
L45                                                 Eq. 6 

Where APk is the average precision of class k, n is the total number of classes. 

 

														𝑙𝑜𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑙.3/ +	𝑙07M                         Eq. 7 

											𝑙.3/ = 𝜆.32// ∑ ∑ 𝐼!,M
07MO

M4K
P$
!4K ∑ 𝑃!(𝑐)log	(𝑝̂3Q∈.32//-/ (𝑐))                 Eq. 8 

𝑙07M = 𝜆"007M ∑ ∑ 𝐼!,M
"007MO

M4K
P$
!4K (𝑐! − Ĉ3)* + 𝜆07M ∑ ∑ 𝐼!,M

07MO
M4K

P$
!4K (𝑐! − Ĉ3)* Eq. 9 

Where 𝐼!,M
07M connects with whether targets locate at the anchor box (i, j) or not, 𝑃!(𝑐) is 

the likelihood of target, and p̂l (c) is the actual value of the class. The sum of the two consists of 

the total number of classes C. 

4.3       RESULTS 

4.3.1    CNN Model Comparison 
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Four individual experiments (RTMDet-s, RTMDet-m, RTMDet-l and RTMDet-x) were 

conducted to discover the optimal classifier for egg-sorting. All experiments trained 300 epochs 

based on Python 3.7 version, PyTorch deep learning library and a hardware with NVIDIA-SMI 

(16 GB) graphics card. A summary of the model comparison is listed below (Table 4.5). In terms 

of accuracy, RTMDet-x reached an accuracy of 94.80%, which was better than any other 

comparison model. Correspondingly, the training loss and validation loss values of RTMDet-x 

were also the smallest among all the tested models because fewer loss values mean minor errors 

in neural networks. In terms of floating-point operations per second (FLOPS), RTMDet-s with 

fewer parameters have minimal FLOPS compared with other methods, which means they 

requires less computational time to perform a forward or backward pass in a neural network, and 

therefore have a broader further application in robots with limited computational resources 

(Jeyakumar et al., 2022). In addition, RTMDet-x also outperformed any other comparison model 

in map@0.75 and map@0.95 because of the additional parameters required for the computer to 

perform classification. Figure 4.16 shows the detailed comparison results of the model indicators 

for different deep learning classifiers. These findings demonstrated that RTMDet-x achieved the 

best performance in terms of egg classification. 
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Figure 4.16. Model comparison: (a) accuracy, (b) mAP@0.75, (c) mAP@0.95 and (d) training 
loss. 

Table 4.5. Summary of model comparison. 

Model Accuracy (%) mAP@0.75 (%) mAP@0.95 (%) Params (M) FLOPS(G) Training Loss 
RTMDet-s 67.8 55.8 52.3 8.89 14.8 0.30 
RTMDet-m 75.6 62.6 60.1 24.71 39.27 0.23 
RtMDet-l 86.1 72.1 64.8 52.3 80.23 0.21 
RtMDet-x 94.8 79.2 69.1 94.86 141.67 0.12 

 

4.3.2    Regression Results for Detecting Eggs 

To compare the classification performances of multiple deep learning models on the 

classification of eggs, the confusion matrix was adopted (Figure 4.17). Each type of egg was 

tested by different models 200 times. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.17. Confusion matrix of classifiers for different types of eggs ((a)-(d) represent 

RTMDet-s, RTMDet-m and RTMDet-l and RTMDet-x, respectivly). 

The prediction results are shown in the confusion matrix, where the gradually changing 

shade of blue represents the accuracy of true predictions (cells filled with deeper blue have more 

accurate predictions). The number in each cell represents the results of the models (Li et al., 

2023). The average true scores (along the diagonal line from the top-left corner of the matrix to 
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the bottom-right corner) of RTMDet-x are the highest among the whole confusion matrix of 

classifiers, which indicates that RTMDet-x has a better true prediction rate. The scores off the 

diagonal (false scores) represent the instances where the predicted class does not match the true 

class. The average false scores of RTMDet-s are higher than those of other classifiers, which 

means its performance could be improved. In terms of type error, no type error was observed in 

the classes of bloody eggs and floor eggs. The reason for this is their significant characters; for 

example, bloody eggs have clear bloody spots and only floor eggs have a litter background. 

However, when classifiers detect eggs using standard, non-standard, and cracked eggs, some 

errors exist due to the similarities within the minor axis and major axis, and the difficulties in 

detecting microcracks and cracks located on the bottom or sides not shown by the camera (Bist et 

al., 2023a). However, the results were still acceptable because there are not many non-standard 

eggs or cracked eggs on commercial poultry farms (varying between 1 and 5% of the total) 

(KHABISI et al., 2012). In general, the RTMDet-x classifier is the best experimental classifier 

with the highest accuracy. In addition, to visualize how RTMDet-x classifies eggs and extracts 

feature maps, heatmap and gradient-weighted class-activation mappings were outputted (Figure 

4.18). To understand the model’s decision-making process and identify important regions in the 

input images, the gradient-weighted class activation mapping (Grad-CAM) technique was 

utilized (Selvaraju et al., 2017). Grad-CAM produces a heatmap that highlights the regions 

contributing significantly to the model’s predictions. By extracting the feature map from the last 

convolutional layer of the input egg image, a Grad-CAM heatmap is created. The feature map 

channels are then weighted using a class gradient computed with respect to the feature map. This 

weighting process emphasizes regions that strongly influence the model’s predictions. 

Experimental findings demonstrate the CNN-based model’s ability to effectively extract features 
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from areas with blood spots and broken parts, even when the defects are minor. This showcases 

the model’s capacity to accurately identify egg abnormalities and make precise predictions. 

 

Figure 4.18. Visualization of CNN: (a) original image, (b) heatmap and (c) gradient-weighted 

map. 

In this study, a random forest (RF) regressor was used to predict standard eggs (from 

small to jumbo size) because only standard eggs (consistent size and weight) can be sold to 

consumers by commercial poultry farms. As shown in Figure 4.19a, the predicted weight, using 

minor and major axis features using the RF regressor, showed an R2 value of 0.96, which 

suggests that the predicted weights were highly correlated with the actual weights of the eggs. To 
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further analyze the best performance of RF regressor, we classified standard eggs into five types 

(small, medium, large, extra-large and jumbo) and test each type 100 times using an RF 

regressor. In addition, the time of eggs is another important factor affecting egg weight; 

therefore, we also include this when comparing the predicted weight using minor and major axes 

obtained using the random forest regressor and the actual weight of the eggs on different storage 

days (R2 = 0.92) (Figure 4.19b). By comparing the predicted weight obtained using the random 

forest regressor with the actual weight of the eggs under different storage conditions, the study 

was able to evaluate the robustness of the regressor in accounting for storage effects. Our storage 

conditions (24 °C) had a minimal impact on egg diameter, which remains highly correlated with 

egg weight (Gogo et al., 2021). As a result, the RF regressor can continue to accurately predict 

egg weight. The stable storage temperature ensures that the regressor’s accuracy in estimating 

egg weight remains unaffected. The results suggest that the regressor is able to accurately predict 

egg weight under different storage conditions, which can be useful for optimizing egg production 

and storage practices (Kim et al., 2022).  

 

Figure 4.19. Regression models with (b) or without (a) storage date factor. 
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4.3.3    Results of Weighing Eggs 

To further test the model under egg scales ranging from small to jumbo, each category 

randomly selected 100 pictures to test the robustness and precision of the regressor. The results 

are shown in Figure 4.20. The error bar at the top of each stacked bar graph represents the 

standard error of each class and the height of the green bar represents the absolute error between 

real weights and predicted weights. From the graph, we can find the height of the error bar for 

small, medium and jumbo eggs is lower than that for large and extra-large eggs, which indicates 

that the regressor has a better prediction performance for large and extra-large eggs. This may 

because the large and extra-large eggs have medium values according to the regression model; in 

a large dataset, the relationship between the precited variables and the response variables is more 

complex, resulting in the risk of overfitting and more prohibitive computational costs. However, 

the data in the medium values may be less affected by measurement error or other types of noise 

than very small or very large values (Li et al., 2017; Radlak et al., 2019). This can help to 

improve the accuracy of the regressor predictions. In addition, for some types of data, 

preprocessing can be simplified for medium values. For example, scaling or normalization may 

not be as critical for medium values as it is for very small or very large values. In addition, 

medium values may be complex enough to require a more sophisticated model, but not so 

complex that the model becomes difficult to interpret. This can help strike a balance between 

model performance and interpretability. 
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Figure 4.20. Egg weight prediction from small to jumbo. 

4.3.4    Model Comparison for Laying Behaviors 

Six individual experiments (efficient-s, efficient-m, efficient-l, YOLOv5-tiny, YOLOv5-s 

and YOLOv5-m) were conducted to discover the optimal classifier for birds’ behaviors. The suffix 

"tiny" in YOLOv5 refers to a version of the model with fewer layers and reduced computational 

requirements. The suffixes "s" and "m" refer to small and medium-sized YOLOv5 models, 

respectively. Similarly, the suffixes "s", "m", and "l" in the efficient architecture denote small, 

medium, and large versions of the model, respectively. The checkpoint differences between these 

models are presented in Table 4.6. All experiments trained 300 epochs based on Python 3.7 

version, PyTorch deep learning library and a hardware with NVIDIA-SMI (16GB) graphics card. 

The summary of model comparison is listed below (Table 4.7). In terms of accuracy, YOLOv5-m 

reached an accuracy of 95.33%, which was better than any other comparison models. 

Correspondingly, the training loss and validation loss values of YOLOv5-m were also smallest 

among the whole tested models because less loss values mean minor errors in neural networks. In 
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terms of GPU time, YOLOv5-tiny with less parameters have the minimum training time compared 

with other methods. EfficientNetV2 series algorithms with additional Fused-MBConv and 

progressive learning modules, which expands the overall computational process causing more 

GPU time (Fayek et al., 2020). In addition, YOLOv5 also outperformed EfficientNetV2 in FPS 

because of reduced parameters for computer to perform (Ren et al., 2022). Figures 4.21-4.26 shows 

the detailed comparison results of the model indicators for different deep learning classifier. In the 

case of Efficient models, the greater the model's size, the greater its precision. However, this 

increased precision comes at the expense of a slower GPU and frame rate. In contrast to the 

Efficient-s model, the Efficient-l model has the highest accuracy but takes longer to train and 

process frames. The YOLOv5 models, on the other hand, are more accurate than the Efficient 

models and have lower training and validation losses. This demonstrates greater model 

performance than the Efficient models. Nevertheless, YOLOv5 models have lower FPS than 

Efficient models. The YOLOv5-tiny model has the highest FPS but the lowest accuracy, indicating 

that it may be better suited for applications that require rapid processing but less precision. These 

findings demonstrated YOLOv5-m achieved the best performance in birds’ behavioral 

classification. 

Table 4.6. The summary of checkpoint comparison. 

Model Size (pixels) Parameters (M) FLOPs (B) Learning rate Batch size 
Efficient-s 224 5.3 1.0 0.01 8 
Efficient-m 224 7.8 1.5 0.01 8 
Efficient-l 224 9.1 1.7 0.01 8 
YOLOv5-tiny 224 2.5 0.5 0.01 8 
YOLOv5-s 224 5.4 1.4 0.01 8 
YOLOv5-m 224 12.9 3.9 0.01 8 
 

Table 4.7. The summary of model comparison. 

Model Accuracy (%) GPU time (h) FPS Training loss Validation loss 
Efficient-s 72.32 2 50 1.71 2.48-1.53 
Efficient-m 79.63 2.5 29 1.60 2.46-1.43 



 

164 

Efficient-l 90.32 2.8 17 0.99 2.45-0.68 
YOLOv5-tiny 74.46 1 100 1.24 2.47-1.21 
YOLOv5-s 91.12 1.3 74 0.57 2.49-0.46 
YOLOv5-m 95.33 1.5 64 0.23 2.50-0.18 

 

Figure 4.21. Accuracy comparison results for different classifier based on deep learning. 
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Figure 4.22. Training loss comparison results for different classifier based on deep learning. 

 

Figure 4.23. Validation loss comparison results of different classifier based on deep learning. 

 

Figure 4.24. Recall comparison results of different classifier based on deep learning. 
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Figure 4.25. Mean average accuracy comparison of different classifier based on deep learning. 

  

Figure 4.26. ROC curve comparison results of different classifier based on deep learning. 

4.3.5    Results of Classification of Behaviors in Cage-Free Laying Hens 
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To compare the classification performances of multiple deep learning models on cage-free birds’ 

behaviors, the confusion matrix is adopted (Figure 4.27). Each behavior is tested by different 

models 100 times. 

 

 



 

168 

 

 

Figure 4.27. Confusion matrix of classifiers at cage-free birds’ behaviors (s means chicks and b 

means chickens). 

The prediction results are shown in confusion matrix, where three colors (blue, orange, and 

green) represent true predictions, false prediction, and type error (chicks were predicted as 

chickens or chickens were predicted as chicks). The number in each cell scores the results of the 

models. The average scores of YOLOv5 in blue cells are 10 more than that of efficientNetV2 in 

blue cells, which indicates YOLOv5 has better true prediction rate. In terms of orange cells, the 

misidentification scores vary from 9 to 1.5 (efficientNetV2-s has the maximum score on average 

and YOLOv5-m has the minimum score on average), which shows progressive improvements 

from efficientNetV2 methods to YOLOv5 methods. In addition, no type error was observed in 

the study since all the scores of different algorithms in green cells are 0, the reason being the 

significant changes between chicks and chickens, for example, feather color and body size. In 

terms of the recognition of behavioral classification of cage-free birds, all the behaviors except 

b_nesting (chicken nesting) have relatively higher accuracy comparing with average precision. 
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Nesting behavior is broody hen sits on eggs for 21 days until eggs hatch(Hedlund and Jensen, 

2021). Due to the planform similarity within nesting, perch, and dust bathing, it is impenetrable 

for classifiers to detect nesting behavior. However, it is still acceptable result because there are 

not many broody hens at commercial polytree farms. In general, YOLOv5-m classifier is best 

among whole experimental classifiers with its highest accuracy. 

4.3.6    Detection Results of Yolov5-m Algorithm for Behaviors 

In the study, YOLOv5-m classifier has the best performance at detecting behaviors of 

cage-free birds comparing with other models. Therefore, a further investigation of multiple cage-

free birds behavior types was conducted through YOLOv5-m model. The accuracy of different 

behavior patterns was shown in Figure 4.28. The average classification accuracy is around 0.95 

from which s_drinking (chicks drinking) has the highest prediction confidence while the lowest 

accuracy comes from b_nesting pattern. Compared with chicks, chickens grow one more 

reproduction behavior (nesting) except basic behaviors (e.g., feeding, drinking, perch, walking 

and dust bathing). It might be the reason the average accuracy of classification of chicken 

behaviors is weaker than that of classification of chick behaviors. Broody hens prefer to hatch at 

dark areas, which limits the power detection of nesting behavior. The top 4 most efficient 

behavioral classification are s_drinking (0.978), b_dust bathing (chicken dust bathing) (0.960), 

s_feeding (chick feeding) (0.960) and s_walking (chick walking) (0.960). It is evident that chick 

behavioral classification outperforms the chicken behavioral classification.  The discrepancies 

could come from the body size differences between chick and chickens. Feeders, drinkers, perch 

frames and other farm equipment maintain the fixed range. When birds live inside poultry 

houses, birds with bigger body size are prone to be occluded by facilities, which will cause false 

or missing classification. Therefore, it might be the other reason accounts for small birds achieve 
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more precise recognition. In addition, the detection of perch behavior is not as accurate as 

expected. In our study, a special A shape frame (see in Figure 4.3) was developed for chickens to 

perch. However, sometimes chickens prefer to perch above drinking column or near air inlet 

ventilation window, such unforeseen situations cause a decrease in the precision of the classifier.  

 

Figure 4.28. The accuracy of classification of muti-behaviors (s means chicks and m means 

chickens). 

Birds’ age plays a pivotal role for cage-free hens because the lifespan of hens at 

commercial farms is between 96 and 144 weeks for producing more eggs. In our study, 6 time 

points (1 week, 10 weeks, 20 weeks, 30 weeks, 40 weeks, and 50 weeks) were used to test the 

classifier accuracy under different bird’s life period. After 50 weeks, most chickens stop growth, 

therefore, 6 time points is enough to evaluate the performance of classifier under whole chicken 

life expectancy. Figure 4.29 is a summary of the results. The average precision is varying from 
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0.943 (50 weeks) to 0.964 (1 week), which shows similar outcome as we discovered at confusion 

matrixes. Behaviors of small chicks are easier to be classified. In terms of time points in the 

middle, all the average accuracy of classifier is around 0.95, which indicates the chicken rearing 

in the poultry houses gets steady growth. Figure 4.30 presents some examples recognized by 

YOLOv5-m classifier among the 6 time points of cage-free chickens. After 18 weeks, hens begin 

to lay eggs. Therefore, nesting behavior wasn’t calculated before that time. 

 

Figure 4.29. the average accuracy of the classifier tested under 6 time points of chicken lifespan. 
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Figure 4.30. Classification of cage-free birds’ behaviors (w1 means 1 week, w10 means 10 

weeks, w20 means 20 weeks, w30 means 30 weeks, w40 means 40 weeks, w50 means 50 weeks 

and GT represents ground truth). 

4.4       DISCUSSION 

4.4.1    Discussion of Egg Classification Accuracy 

In this study, five classes of eggs were investigated to build a classifier to sort eggs. For 

floor and bloody eggs, there is no misunderstanding in the classification of them and other 

classes. This is due to the clear features of floor and bloody eggs (Bist et al., 2023c). For floor 

eggs, the eggs are laid in the litter, so, in computer vision, the white eggs are surrounded by 

brown litter, which is a unique feature compared to other egg classes. This improves the egg 

classifier’s accuracy when sort it. As for bloody eggs, because of the red spots that appear on 

white eggshells, there is a clear indicator that the CNN model can use to extract feature maps, 

and the egg classifier also has a high sorting accuracy. More false classifications are obtained for 

standard, non-standard and cracked eggs. This is because the classifier uses minor and major 

axes to differentiate egg size, and non-standard eggs have more abnormal shapes, such as being 
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too long or too round, which means there might be unusual minor and major axes that the 

classifier misunderstands (Turkoglu, 2021). In addition, cracked eggs are also not easy for the 

classifier to detect. This is due to the limitations of camera angles. In this study, we only use the 

front view of eggs for egg classification tasks. Therefore, some cracks on the eggshell on the 

back or side view of might be ignored, and cracked eggs will be classified as other types of eggs. 

To further discuss the performance of the classifier, we compare our study with various 

other pieces of research. Table 4.8 shows the results of some studies conducted on the 

classification of eggs using computer vision and compares these with the results obtained in the 

present study. Pyiyadumkol et al. (2017) developed a sorting system based on the machine vision 

technique to identify cracks in unwashed eggs (Priyadumkol et al., 2017). The egg images were 

captured under atmospheric and vacuum pressure. The cracks were detected using the difference 

between images taken under atmospheric and vacuum conditions. A combination of machine 

vision methods and the support vector machine (SVM) classifier was presented in Wu et al. 

(2017) to detect intact and cracked eggs (Wu et al., 2017). Guanjun et al. (2019) introduced a 

machine vision-based method for cracked egg detection (Guanjun et al., 2019). A negative 

Laplacian of Gaussian (LoG) operator, hysteresis thresholding method, and a local fitting image 

index were used to identify crack regions. Amin et al. (2020) proposed a CNN model using 

hierarchical architecture to classify unwashed egg images based on three classes, namely intact, 

bloody, and broken (Nasiri et al., 2020). In our study, we introduced more classes, floor and non-

standard eggs, to cover all the normal egg categories while maintaining a high level of accuracy 

through the use of the large-kernel depth-wide convolution approach and soft labels, and 

cooperation with other optimizations such as anchor-free object detection and deformable 



 

175 

convolutional networks, which further improve accuracy and efficiency in multi-classification 

tasks. 

Table 4.8. Comparison of classification accuracy. 

Study Class     Accuracy (%) 
 Intact Crack Bloody Floor Non-Standard  

Priyadumkol et al. 
(2017)(Priyadumkol et al., 

2017) 
✔ ✔ − − − 94 

Wu et al. (2017)(Wu et al., 
2017) 

✔ ✔ − − − 93 

Guanjun et al. 
(2019)(Guanjun et al., 

2019) 
✔ ✔ − − − 92.5 

Amin et al. (2020)(Nasiri 
et al., 2020) 

✔ ✔ ✔ − − 94.9 

Our study ✔ ✔ ✔ ✔ ✔ 94.8 
 

4.4.2    Discussion of Egg Weight Prediction Accuracy 

Five different graded eggs were predicted and their average absolute error ranged from 

0.9 to 1.8 g. Overall, large and extra-large grades have more accurate prediction than small, 

medium and jumbo eggs. One reason why a larger egg grade (such as large and extra large) may 

lead to more accurate predictions than smaller grades (such as small and medium) is that larger 

eggs generally have a higher mean weight than smaller eggs. This means that there is less 

variation in egg weight within the larger grades, which can make it easier for the regression 

model to accurately predict the weight of these eggs. On the other hand, smaller eggs and jumbo 

grades typically have a wider range of weights, which can make it more difficult for the 

regression model to accurately predict their weights. Additionally, smaller eggs and jumbo 

grades may also have more variability in their physical characteristics (such as shell thickness 

and yolk size), which can further complicate the prediction process. 
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To further investigate the performance of the regressor, we compared our regressor with 

other egg weight regressors. Table 4.9 shows the results of some studies conducted on the 

regression models. 

Cen et al. (2006) developed an egg weight detector by an indicator composed of R, G, B 

intensity and egg diameters (Cen et al., 2006). An equation was created by the re-gression model, 

and a 97.8% correlative coefficient was achieved. Similarly, Alikhanow et al. (2015) constructed 

several equations based on different variables (egg area, egg volume, egg minor axis or major 

axis) (D et al., 2015); the most significant parameter was egg area, reaching 94.3% R2. Other 

researchers also used computer vison to predicted egg weight based on the regression model, but 

they used the multi-flow production line in real-time to cooperate with industrial applications. 

The identical objects’ measurements under a multi-light source was found to be around 95.0% 

(Akkoyun et al., 2023). In our study, we extended the previous egg weight prediction for the 

upper litter from extralarge to jumbo, but our regressor maintained a high accuracy with non-line 

regression because a random forest model is an ensemble of decision trees trained on random 

subsets of the egg weight data and features (major and minor axis). The random forest model’s 

final prediction is a weighted average of the egg-weight predictions of the individual trees. Since 

each decision tree in a random forest can model the non-linear relationships between the input 

features and the target variable, the random forest model, as a whole, can account for 

nonlinearities in the egg-weight data. 

Table 4.9. Comparison of different regressor accuracies. 

Study Egg Size R2 (%) 

 Small Medium Large Extra 
Large Jumbo  

Cen et al. (2006)(Cen 
et al., 2006) ✔ ✔ ✔ ✔ − 97.8 
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Alikhanow et al. 
(2015)(D et al., 2015) ✔ ✔ ✔ ✔ − 94.3 

Faith et al. 
(2023)(Akkoyun et al., 

2023) 
✔ ✔ ✔ ✔ − 95.0 

Our study ✔ ✔ ✔ ✔ ✔ 96.0 
 

4.4.3    Discussion of Jointly Performing Egg-Sorting and Weighting Functions 

In our study, we combine egg classification and weighing tasks into one two-stage model. 

The approach is to train two distinct models, one for classification and one for regression, and 

then combine their predictions at the time of inference. First, train a classification model to 

predict each input’s egg class label. Then, using the predicted class labels to filter the inputs, 

train a regression model using only the filtered inputs. Use the egg classification model to sort 

eggs and the corresponding regression model to predict the weight of eggs at same time (Figure 

4.32). The overall performance of the two-stage model is good, but other factors restrict its 

application, including potential errors in filtering and increased complexity. The classification 

model is used to filter the regression model’s inputs. If the classification model’s predictions are 

inaccurate, it may erroneously exclude inputs that the regression model could have used. This 

can result in a reduction in the accuracy of the final prediction. In addition, the two-stage model 

approach requires the training of two distinct models and additional processing steps at the time 

of inference to combine the predictions. This could make the overall architecture more 

complicated and increase the required computational resources.  
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Figure 4.32. The egg has been classified as ‘Standard’ and its predicted weight is 66.7 g. 

4.4.4    Future Studies for Detecting Floor Eggs 

Despite the research’s high performance in sorting egg quality based on egg surface and 

weight, some further studies could the model be applied to real-world situations: (a) using 

emerging nonvolatile memory (NVM) to reduce memory footprint and latency (Wen et al., 

2022), which is crucial for mobile application; (b) extending the model to egg datasets with more 

diversity (other egg colors, egg multiplication and other spices) to fulfill the application 

environment; (c) using a 360-degree camera to prevent misidentification in cracked and bloody 

eggs; (d) optimize the sorting and weighing process to reduce the time required to complete the 

task without sacrificing accuracy; (e) enhancing the accuracy of egg segmentation by leveraging 

the segment-anything model (Yang et al., 2023). 

4.4.5    Model and Atypical Result Analysis for Laying Hens Behaviors 

The aim of this research is to ameliorate the accuracy and extend the behavioral 

classification in poultry farms especially cage-free chicken farms by cropping images of birds 

acting different behaviors from 1 week to 50 weeks and then applying image argumentation 

technology to enhance dataset size and quality. On the other hand, in terms of the methods based 
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on the newest classification algorithms, the operation of CNN extracting image features 

improves the processing speed as well as precision by pooling the instantaneous field of the 

feature maps and encouraging distortions and translations (YOLOv5-s model reached 100 FPS, 

which is 5 times than the standard of real-time detection. YOLOv5-m achieved 95.3% accuracy, 

which is 5% higher than that of EfficientNetV2-l networks). In addition, our model achieved 6 

behaviors of cage-free birds under a half lifespan of commercial chickens. Except basic 

behaviors (feeding, drinking, walking), our study connects cage-free birds by adding their special 

behaviors to the research (perch, dust bathing and hatch)(Rehman et al., 2018; Shields and 

Greger, 2013). the latter two behaviors are welfare indicators of cage-free birds. Furthermore, 

when applying the best model into different time periods of chicken, the recognition accuracy 

remains incredible. Finally, to make headway of the application of the classifier to poultry farms 

where high computational GPU is not always available (Islam et al., 2019). A light structure 

CNN efficientNetV2 is introduced to cooperate with the obstacle. The efficientNetV2 removes 

expensive batch normalization and imposes a progressive learning strategy assigning different 

types of regularization to reduce requirements of computing platforms. The result of 

effcientNetV2 method achieved 90.32% accuracy, which met the demand of classification with 

less parameters compared to YOLOv5-m network (24M vs 42M).  

Despite the study achieved outstanding accuracy, there are also some flaws in the 

classifier. As showed in Figure 12 YOLOv5-m confusion matrix, the false detection rate of hatch 

behavior is apical and commonly hatch is misidentified as other class such as perch behavior. 

Broody hens tend to lay eggs at dim areas (Shimmura et al., 2010). For example, the corner of 

the wall and below the feeder. In addition, the vertical view of hatch and perch are similar, which 

also challenges the classification of hatch behavior. To address the problem, a typical approach is 
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to brighten dark image by expanding the exposure time, which helps natural light concentrate to 

the sensor and light the image. In addition, the cage-free poultry houses are so dusty, the dust 

particles floating in the air and attached to camera, which also causes dark pics. Therefore, a 

regular dust clean at cameras is necessary. Perch behavior is misclassified as drinking behavior 

sometime, which is the other aspect the classifier can be improved (Appleby et al., 1992; Liu et 

al., 2018). The misclassification comes from the similarity of drinking line and frame column. A 

possible solution is to change the color of drinking line (they are both slivery now). Therefore, 

the classifier could clearly divide two columns as individual one. In summary, the classifier 

could be improved through two main aspects: brighten the dark area where hens hatch and 

change the color of similar facilities, which are also key elements for the classifier to recognize 

the behaviors of birds in poultry houses.  

4.4.6    Compared with Related Research for Laying Behaviors 

To compare our research with previous work, accuracy is selected as the parameter to 

evaluate the classification performance among existing research because accuracy is the most 

basic and common value that assess models. Table 4.10 shows accuracy values of similar 

research. In terms of the deep learning algorithms, detection (Pu et al., 2018), classification (Guo 

et al., 2022) and segmentation (Li et al., 2020) are utilized at different research. Since the models 

were based on different dataset of behaviors, accuracy is set as a reference index for impartial 

compartments. Detecting method to classify flock behaviors at three depths of images (non-

crowded, litter crowded and extremely crowded) gained excellent 99.17% accuracy. However, 

the application of it might be narrow cause the training is based on single scene where limited 

chickens encouraged the accuracy because single mission was uncomplicated to process during 

validation period. The average accuracy of segmentation of behaviors was 87%. Although it is 
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acceptable outcome, the chicken segmentation can mark the boundaries of target preening 

chickens, which locates and distinguishes chickens into preening birds and non-preening birds. 

Classification is another popular approach to categorize various observations. A collection of 

similar objects could be classified accurately. For example, both studies (Guo et al., 2022) 

achieved more than 90% accuracy. Besides, 4 and 6 behavioral categories classification were 

reached respectively by Guo et al. (2022) and ours. Overall, image classification is the most 

stabilized approach for a multiply chicken behavior classification as well as superior 

performance. 

Table 4.10. The accuracy of comparable experiments. 

 Pu (2018) Li (2020) Guo (2022) Ours 
Accuracy 99.17% 87% 90% 95.33% 

Bird type layer hens broiler Cage-free bird 
Bird species / Hyline Brown Cobb 500 Hy-line W36 

Bird numbers 3087 30 80 800 
Bird age (day) / 260-266 1-50  1-350 

Method detection segmentation classification classification 
model CNN mask R-CNN DenseNet-264  YOLOv5-cls  

 

4.4.7    Future Studies for Laying Hens Behaviors 

Despite the research accomplished high performance, its classification ability for different 

poultry farms and special cases still requires further study because bird species and environmental 

setting (i.e.., litter color and other different facilities) also impacts model performance. Poultry 

farms are different from each other including light intensity, floor area, and most importantly the 

chickens breed. Different breeds of chickens are performing differently (Chai et al., 2019; Oliveira 

et al., 2019). Therefore, the deep learning model need to incorporate new farm information prior 

to application. In addition, the overall accuracy could be improved by three aspects: increasing the 

horizontal hatch and perch behavioral dataset, collecting eggs frequently to prevent hens from 
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nesting eggs and self-attention module, which allows the transformer to aggregate various parts of 

the same input to the sequence and find out which objects should pay more attention. Besides, six 

behaviors classification is not a terminal task because cage-free birds act more natural behaviors 

such as fighting, laying eggs and so on. A comprehensive classifier could be established by 

including all chicken behaviors. Finally, the algorithm can be applied to other animals (i.e., cattle, 

swine or sheep) because they are bigger than chicken, which means they are easier to be detected 

by CNN. 

4.4       CONCLUSIONS 

In this study, a two-stage model was developed based on RTMDet and random forest 

networks to predict egg category and weight. The results show that the best classification 

accuracy was 94.80% and 96.0% for the R2 regression model. The model can be installed on the 

egg-collecting robot to sort eggs in advance and collect our target eggs specifically. In addition, 

the model can be used to automatically pick out non-standard size eggs and eggs with surface 

defects (blood-stained or broken). Furthermore, 1000 egg pictures were utilized to test the 

detector’s performance for different egg types and egg weight scales. The results showed that the 

detector has a better classification performance for standard and non-standard size eggs, and 

large (55-60 g) and extra-large (60-65 g) egg weights led to more reliable predictions. This 

detector is one of the first models that performs the joint function of egg sorting and weighting. 

By implementing the findings of this study, the poultry industry can reduce costs and increase 

productivity, ultimately leading to bet-ter-quality products for consumers. 

In this study, multiple behavioral classifiers were developed based on efficientNetV2 and 

YOLOv5-cls networks for monitoring laying hens’ behavior in cage-free facilities.  Results show 

that the average accuracy of each classifier ranges from 72.32% to 95.33%. The classifier can be 
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applied to recognize various behaviors of hens’ behavior from 1-50 weeks of old, including 

feeding, drinking, walking, perch, dust bathing, and nesting effectively. This classifier is among 

the first model that included cage-free hens’ perching and dust bathing behaviors, which are 

special indicators of chicken welfare especially in cage-free poultry farms because such natural 

behaviors need open space to act, which is not commonly met in traditional cage eggs industry. 

Drinking behavior has the highest performance among whole classification types (97.8%). In 

addition, although perch detection moderates average accuracy of the classifier, 92.5 % true 

prediction was achieved. Furthermore, 6 time points of birds’ lifespan from 1 week to 50 weeks 

were tested to evaluate the classifier under time scale. The model has better performance at 1 

week than other time periods. The results provide actionable approach to classify cage-free birds’ 

behaviors in a lifespan scale without invasion. This study was among the first to monitor as 

many as six behaviors of cage-free hens with deep learning technologies at the same time. Those 

behaviors are valuable information for assessing animals’ welfare. 
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ABSTRACT 

Poultry locomotion is an important indicator of animal health, welfare, and productivity. 

Traditional methodologies such as manual observation or the use of wearable devices encounter 

significant challenges, including potential stress induction and behavioral alteration in animals. 

This research introduced an innovative approach that employs an enhanced track anything model 

(TAM) to track chickens in various experimental settings for locomotion analysis. Utilizing a 

dataset comprising both dyed and undyed broilers and layers, the TAM model was adapted and 

rigorously evaluated for its capability in non-intrusively tracking and analyzing poultry 

movement by intersection over union (mIoU) and the root mean square error (RMSE). The 

findings underscore TAM’s superior segmentation and tracking capabilities, particularly its 

exemplary performance against other state-of-the-art models, such as YOLO (you only look 

once) models of YOLOv5 and YOLOv8, and its high mIoU values (93.12%) across diverse 

chicken categories. Moreover, the model demonstrated notable accuracy in speed detection, as 

evidenced by an RMSE value of 0.02 m/s, offering a technologically advanced, consistent, and 

non-intrusive method for tracking and estimating the speed of chickens. This research not only 

substantiates TAM as a potent tool for detailed poultry behavior analysis and monitoring but also 

illuminates its potential applicability in broader livestock monitoring scenarios, thereby 

contributing to the enhancement of animal welfare and management in poultry farming through 

automated, non-intrusive monitoring and analysis. 

 

Keywords: Poultry locomotion; Deep learning; Track anything model; Animal welfare; Non-

intrusive tracking 
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5.1       INTRODUCTION 

Precision livestock farming (PLF) has rapidly evolved into a key field, merging modern 

technology with traditional animal farming to improve animal welfare and streamline production 

processes (Morrone et al., 2022). In poultry farming, it is essential to monitor and understand 

bird movement and behavior closely. This not only ensures the well-being of the animals but also 

helps improve production in a sustainable environment (Li et al., 2021; Siriani et al., 2022; Yang 

et al., 2022). Chickens display a variety of behaviors, including different movement patterns, 

social interactions, and reactions to their surroundings. This requires advanced systems to track 

and analyze them effectively. 

Deep learning, an advanced form of machine learning, is becoming a key tool for 

analyzing and predicting patterns in large and complex datasets (Gorji et al., 2022; Liu et al., 

2021). In animal behavior studies, deep learning helps provide a detailed understanding of 

movement, interactions between species, and overall health (Bist et al., 2023). In poultry 

farming, the use of deep learning offers more than just a glimpse into bird behaviors. It acts as a 

powerful tool to closely observe and track their activities (Ben Sassi et al., 2016). Regarding 

post-observational monitoring, a slew of algorithms has found their footing in this domain, with 

you only look once (YOLO) being at the forefront. For instance, in large-scale poultry farms, the 

surveillance of thousands of chickens for health, activity, and behavioral patterns becomes 

pivotal (Tong et al., 2023). YOLO’s rapid detection capabilities can identify early signs of 

disease or distress in chickens by recognizing subtle behavioral changes, thereby aiding farmers 

in timely interventions (Liu et al., 2021). In addition, the proposed Chick Track model uses deep 

learning to detect chickens, count them, and measure their movement paths, providing 

spatiotemporal data and identifying behavioral anomalies from videos and images (Neethirajan, 
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2022). However, while YOLO has shown commendable performance in a variety of scenarios, it 

is not exempt from limitations. For effective use in poultry farming, it demands rigorous training 

on domain-specific data to fine-tune its detection and tracking capabilities. The nuances of 

poultry behavior, their interactions, and variations in physical appearances require YOLO to be 

trained with vast and diverse datasets. But even with comprehensive training, the model might 

still face challenges in tracking individual entities within dense flocks, especially under varying 

environmental conditions (Elmessery et al., 2023). It is in this context that the track anything 

model (TAM) emerges as a promising candidate. This research aims to harness the potential of 

TAM, enhancing its capabilities to not just track individual chickens in a flock, but to analyze 

their complex locomotion patterns in real-time (Ahmadi et al., 2023; Lu et al., 2023; X. Yang et 

al., 2023). By bridging the gaps left by previous models and incorporating the strengths of 

YOLO’s detection capabilities, TAM is poised to offer a holistic solution to the multifaceted 

challenges in avian behavior analysis. 

In this research, an innovative approach involving the strategic dyeing of chickens was 

adopted to augment the model’s capability to distinctly identify and track individual entities 

within the flock. The dyed chickens, exhibiting distinct and consistent coloration, serve as a 

unique identifier, facilitating improved tracking and identity preservation by the algorithms. The 

research further explores the adaptation of TAM, integrating a speed detection function, thereby 

providing a comprehensive tool for detailed poultry behavior analysis and monitoring. Through 

rigorous evaluations and comparative analyses, this research aims to underscore the efficacy and 

potential of TAM and its adaptation, TAM-speed, in providing a multifaceted solution for real-

time poultry behavior tracking and analysis, thereby contributing to the advancement of 

precision livestock farming. 
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The objectives of this study were to: (1) develop a tracker model for monitoring the speed 

of individual chicks based on the TAM; (2) compare the TAM-speed model with state-of-the-art 

models such as YOLO, which are trained using images of chickens; and (3) test the performance 

of these newly developed models under various production conditions. 

5.2       MATERIALS AND METHODS 

5.2.1    Data Acquisition 

The dataset was obtained from two different experimental chicken houses (i.e., broilers 

and layers houses) in the Poultry Research Center at the University of Georgia (UGA), USA. 

Chickens were subjected to dyeing to assess the detection differences between dyed and undyed 

samples. Broilers were dyed with specific colors (green, red, and blue) and laying hens with 

another set (green, red, and black). Figure 5.1 illustrates the experimental chicken houses 

alongside their dyed counterparts. HD cameras (PRO-1080MSFB, Swann Communications, 

Santa Fe Springs, CA, USA) were affixed at a 3 m height on ceilings and walls in each room, 

capturing chicken behavior at 18 FPS with a 1440 × 1080 resolution. Lens maintenance involved 

weekly cleaning for clarity (Subedi et al., 2023). Image data were initially stored on Swann video 

recorders and subsequently transferred to HDDs (Western Digital Corporation, San Jose, CA, 

USA) at UGA’s Department of Poultry Science. 
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Figure 5.1. Contrast of dyed and undyed broilers and layers in experimental settings. 

5.2.2    Marking Approach 

Chickens were first subjected to a random selection process to determine which 

individuals would be used for the experiment. Once chosen, these chickens were dyed using the 

all-weather Quick Shot dye (LA-CO INDUSTRIES, INC, Elk Grove Village, IL, USA). The 

selection of dye colors aims to reduce feather flecking in dyed chickens (Shi et al., 2019). The 

application process required a coordinated effort from a two-person team: while one individual 

gently held and restrained the bird to ensure its safety and ease of application, the other expertly 

applied the spray dye to the specific targeted areas on the chicken’s body, ensuring consistent 

and even coverage. This methodology was designed to minimize stress to the chickens while 

achieving a uniform application of the dye. 

5.2.3    Model Innovation for Tracking Chickens 
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In our study, we utilized the track anything model (TAM) to monitor chicken locomotion. 

Recognizing the versatility of TAM, we further enhanced it with a speed detection function, 

enabling the real-time measurement of each chicken’s velocity (J. Yang et al., 2023). In the 

preprocessing phase, we utilized the XMem video object segmentation (VOS) technique to 

discern the masks of chickens across subsequent video frames (Cheng and Schwing, 2022). 

XMem, renowned for its efficiency in standard scenarios, usually generated a predicted mask. 

However, when this forecast was suboptimal, our system captured both the prediction and key 

intermediate parameters, namely the probe and affinity. In instances where the mask quality fell 

below expectations, the SAM technique was harnessed to further refine the XMem-proposed 

mask using the said parameters as guidance. Recognizing the limitations of automated systems in 

intricate situations, we also factored in human oversight, allowing manual mask adjustments 

during real-time tracking to ensure optimal accuracy (Figure 5.2). The TAM architecture was 

structured such that preprocessed frames of size 1440 × 1080 served as input. Within the model, 

convolutional neurons were dedicated to extracting essential features like shape and color 

patterns. Crucially, by integrating TAM’s inherent capabilities with our innovations, we 

developed a layer that not only estimated chicken trajectories but also calculated their speed 

using the change in positional coordinates across frames and the associated time differential (Sun 

et al., 2006). The output then presented both the chicken’s position and speed. We later 

benchmarked our enhanced TAM with a speed detection model (TAM-speed) against several 

state-of-the-art simple online and real-time tracking (SORT) models including observation-

centric SORT (OC-SORT) (Cao et al., 2023), deep association metric SORT (DeepSORT) 

(Wojke et al., 2017), ByteTrack (Zhang et al., 2022), and StrongSORT (Du et al., 2023), 

focusing on criteria such as tracking accuracy, speed measurement accuracy, frame processing 
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rate, and model robustness in scenarios with dense poultry populations. For the models like OC-

SORT, DeepSORT, ByteTrack, and StrongSORT, the comparison with TAM was primarily 

based on their tracking function. However, when it came to comparing TAM with you only look 

once version 5 (YOLOv5) and you only look once version 8 (YOLOv8), our motivation was 

distinct. YOLOv5 and YOLOv8 are renowned for their advanced segmentation capabilities, 

which are crucial for detailed object recognition and delineation in complex environments (Wei 

et al., 2023). By comparing TAM with these YOLO versions, we aimed to evaluate how our 

model fares in terms of segmentation accuracy, efficiency, and reliability. Given the intricate 

patterns and overlapping scenarios often observed in poultry behavior, a robust segmentation 

function can significantly enhance the precision of tracking. Thus, understanding how TAM 

stands against the segmentation prowess of YOLOv5 and YOLOv8 can provide insights into 

potential areas of improvement and adaptation for our model. This adaptation of the TAM model 

aims to provide a comprehensive solution for real-time poultry behavior tracking, potentially 

paving the way for broader applications in livestock monitoring. 

 

Figure 5.2. Pipeline of the track anything model (TAM) applied to chicken tracking (J. Yang et 

al., 2023). 
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5.2.4    Methods of Speed Calculation in Chicken Tracking 

Video analysis often encounters challenges in measuring the velocity of chickens due to 

distortions from camera perspectives. A video, which comprises continuous frames, enables the 

calculation of “pixel speed” by evaluating the chicken’s pixel displacement across frames within 

a time interval of 55.56 milliseconds (ms) at 18 FPS. However, the chicken’s motion can appear 

distorted in 2D frames due to 3D environmental dynamics. Our solution transforms the video 

frame to a top-down perspective, using open source computer vision library (OpenCV)‘s 

perspective transformation capabilities based on known rectangle coordinates in the original 

frame (Figure 5.3) (Culjak et al., 2012). This transformation eliminates horizontal discrepancies 

and relates vertical pixel shifts to the chicken’s actual distance traveled. Using this method and 

the time between frames, we were able to estimate individual chickens’ average velocity, which 

also indicates their real-time walking/running speed in closely spaced frames. 

 

Figure 5.3. An illustration of a perspective transformation utilizing the OpenCV library. 

So, the equation to compute the actual speed V for chickens: 

𝑽 = 	
𝚫𝒀 ×𝑾

(𝑴−𝑵) × 𝟓𝟓. 𝟓𝟔	𝐦𝐬  
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where: 

𝚫𝒀 is the vertical pixel displacement of the chicken in the top-down view. 

W is the actual physical distance represented by one pixel in the top-down view. 

M and N are the frame numbers where the chicken’s position was recorded. 

5.2.5    Model Evaluation Metrics 

In our endeavor to optimize the track anything models for monitoring chicken 

locomotion, rigorous model evaluations were centered on specific metrics to ensure precise and 

consistent tracking of individual chickens across video sequences. The multiple objects tracking 

accuracy (MOTA) gauges the accuracy of the tracking model, considering discrepancies like 

false positives, misses, and identity switches. The identification F1 score (IDF1) becomes 

paramount in assessing the model’s proficiency in recognizing and consistently maintaining the 

identity of each chicken throughout sequences. IDF1 is computed as the harmonic mean of 

identification precision (IDP) and identification recall (IDR). IDP evaluates how many detections 

of a particular chicken identity are correct, while IDR calculates the proportion of actual 

detections for a chicken identity. Furthermore, the identity switches (IDS) metric quantifies 

instances when the system erroneously alters a chicken’s identity. The frames per second (FPS) 

metric serves as a testament to the model’s real-time monitoring efficacy, elucidating its 

processing speed (Zhang et al., 2023). When comparing TAM with YOLO, the mean 

Intersection over Union (mIoU) becomes essential. mIoU is a metric that evaluates the overlap 

between the predicted segmentation and the ground truth, providing insights into the model’s 

segmentation accuracy. In the context of TAM-speed detection accuracy, the root means square 

error (RMSE) is employed to quantify the model’s prediction accuracy in determining the 

chickens’ speed (Li et al., 2017). RMSE represents the square root of the average squared 
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differences between the observed actual speed and the speed predicted by the model. Through 

this lens, the TAM-speed model’s efficacy in accurately detecting and predicting the chickens’ 

speed was rigorously evaluated, ensuring that the model not only proficiently tracks the chickens 

but also precisely gauges their speed, thereby providing a comprehensive tool for detailed 

poultry behavior analysis and monitoring. For each metric, we calculated the average from test 

results based on a test dataset across different models. These average values were then utilized to 

compare the performance among the various models. 

𝑀𝑂𝑇𝐴 = 1 −	
(𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠 + 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑠)

𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ𝑂𝑏𝑗𝑒𝑐𝑡𝑠   

𝐼𝐷𝐹1 = 	
2 × (𝐼𝐷𝑃 × 𝐼𝐷𝑅)
(𝐼𝐷𝑃 × 𝐼𝐷𝑅)   

𝐼𝐷𝑃 = 	
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  

𝐼𝐷𝑅 = 	
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠  

𝐹𝑃𝑆 = 	
𝑇𝑜𝑡𝑎𝑙𝐹𝑟𝑎𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒(𝑖𝑛𝑠𝑒𝑐𝑜𝑛𝑑𝑠)  

𝑚𝐼𝑜𝑈 = 	
1
𝑁F �

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛! ∩ 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ!
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛! ∪ 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ!

�
)

!45
  

where N is the number of classes, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛! 	is the predicted segmentation for class i, 

and 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ! 	is the ground truth for class i. 

𝑅𝑀𝑆𝐸 = 	�
1
𝑛F (𝑦!−ŷ!)*

"

!45
  

where n is the total number of observations, 𝒚𝒊 is the actual speed of the chicken in the ith 

observation, and ŷ𝒊 is the predicted speed of the chicken in the ith observation. 
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5.3       RESULTS 

5.3.1    Comparison of Segmentation Approaches 

In our rigorous comparative analysis of segmentation methodologies for chicken tracking 

analysis, we evaluated YOLOv5, YOLOv8, and TAM. The chicken dataset, encompassing 1000 

images, served as the foundation for this analysis. For the models necessitating training phases, 

specifically YOLOv5 and YOLOv8, a distribution of 600 images was allocated for training, 200 

for validation, and the residual 200 for testing. The training regimen was orchestrated within a 

Python 3.7 environment, harnessing the capabilities of the PyTorch deep learning library, 

facilitated by an NVIDIA-SMI graphics card with a 16 GB capacity. Our segmentation efficacy 

evaluation spanned four distinct chicken categories: undyed broilers, undyed layers, dyed 

broilers, and dyed layers. A recurrent theme was the enhanced segmentation precision observed 

in dyed chickens, attributed to the pronounced color contrast introduced by dyeing, which 

counteracted the challenges posed by the chromatic resemblance between the chickens’ white 

plumage and the light brown litter. Despite the distinction between broilers and layers, no 

significant segmentation performance variance was observed, suggesting challenges 

predominantly driven by color rather than morphology. Among the methodologies, TAM, 

leveraging its pre-trained model, consistently outperformed both YOLOv5 and YOLOv8. This 

superiority can be attributed to TAM’s architectural robustness, its adeptness at high-dimensional 

feature extraction, and the efficacy of its pre-trained model (J. Yang et al., 2023), which 

potentially aligns better with the challenges presented by the chicken dataset. The forthcoming 

mIoU values in Table 5.1 will further detail TAM’s segmentation prowess, and a visual 

representation in Figure 5.4 underscores its potential as a leading choice for future chicken 

segmentation research. 
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Table 5.1. A comparison of TAM and YOLOv5 and YOLOv8 in terms of mean intersection over 

union (mIoU). 

Method 
Semantic Segmentation of Broilers Semantic Segmentation of Layers 

Undyed Dyed Undyed Dyed 
YOLOv5 81.26% 85.63% 80.79% 85.51% 
YOLOv8 83.44% 86.91% 82.59% 87.72% 

TAM 93.15% 95.13% 92.17% 94.82% 
Notes: Track anything model (TAM) and you only look once (YOLO). 

 

Figure 5.4. Visual comparison of segmentation results. YOLOv5 and YOLOv8 are compared 

with the TAM approach applied to diverse chicken datasets. 

5.3.2    Assessing the Performance of Chicken Tracking 

Navigating through the intricate domain of chicken tracking, a comparative analysis was 

conducted, scrutinizing various algorithms, each harboring a unique blend of detection and 

tracking capabilities. The algorithms under the lens included YOLOv5+DeepSORT, 

YOLOv5+ByteTrack, YOLOv8+OC-SORT, YOLOv8+StrongSORT, and TAM, each 
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meticulously paired to harness the strengths of YOLO’s object detection and the respective 

tracking proficiencies of the algorithms. YOLOv5 was paired with both DeepSORT and 

ByteTrack, leveraging its enhanced detection capabilities with DeepSORT’s deep association 

metrics and ByteTrack’s byte-level tracking, respectively, to maintain persistent identities of 

chickens, especially amidst occlusions and flock interactions. The dyed chickens, with their 

distinct colors, provided a vibrant scenario to evaluate the color-based tracking of these 

algorithms. The color distinction in dyed chickens inherently offers a unique identifier that 

facilitates improved tracking and identity preservation by the algorithms. In experiments, dyed 

chickens consistently demonstrated superior MOTA and IDF1 scores across all algorithms, 

indicating enhanced tracking accuracy and identity preservation, respectively. For instance, 

YOLOv5+DeepSORT exhibited a MOTA of 92.13% and IDF1 of 90.25% for dyed chickens, 

compared to slightly lower percentages for undyed ones. This trend was consistent across all 

algorithms, underscoring the pivotal role of distinct coloration in enhancing tracking 

performance (Bidese Puhl, 2023). 

In the case of YOLOv8, it was paired with OC-SORT and StrongSORT, evaluating their 

potential to minimize identity switches and maintain tracking accuracy amidst the dynamic and 

interactive poultry house environment. The algorithms were evaluated based on the TAM, 

ensuring a balanced assessment of both accuracy and computational efficiency, focusing on 

metrics such as MOTA, IDF1, and IDS. In the context of dyed chickens, YOLOv5+DeepSORT 

exhibited commendable tracking accuracy, leveraging the color features effectively, yet faced 

challenges in maintaining identities during occlusions. YOLOv5+ByteTrack showcased 

robustness in handling identity switches but at a computational cost, reflected in a lower FPS. 

YOLOv8+OC-SORT demonstrated enhanced tracking accuracy in scenarios of chicken 
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interactions and occlusions due to its observation-centric approach, while 

YOLOv8+StrongSORT, maintaining a high MOTA, faced challenges in dense chicken 

populations, leading to a higher IDS (“Early Warning System for Open-beaked Ratio, Spatial 

dispersion, and Movement of Chicken Using CNNs,” n.d.). Considering the comparative values 

provided in experiments and illustrated in Table 5.2, TAM emerges as the superior model, 

substantiating its position as the best model among those evaluated. It boasts the highest MOTA, 

indicating the highest accuracy in tracking while minimizing misses and false positives. It 

achieves the highest IDF1 score, showcasing its proficiency in maintaining consistent identities 

throughout the tracking period. Furthermore, TAM registers the lowest number of Identity 

Switches (IDS), reflecting its capability to preserve identities accurately across frames with 

minimal switches. This unique capability of TAM to provide accurate tracking alongside its 

superior tracking accuracy underscores its unparalleled utility in comprehensive poultry behavior 

analysis, thereby substantiating its position as the best model among the ones evaluated. This 

assessment reveals a trade-off between tracking accuracy and computational efficiency, 

suggesting that advancements in TAM could potentially enhance poultry tracking in future 

applications. 

Table 5.2. Comparative analysis of tracking algorithms for dyed and undyed chickens. 

Notes: Track anything model (TAM), you only look once (YOLO), multiple objects tracking 

accuracy (MOTA), identification F1 score (IDF1), identity switches (IDS), and frames per 

second (FPS). 

Algorithm Condition MOTA (%) IDF1 (%) IDS FPS 
YOLOv5+DeepSORT Dyed 92.13 90.25 15 18 
YOLOv5+DeepSORT Undyed 88.47 86.32 25 18 
YOLOv5+ByteTrack Dyed 93.21 91.47 14 15 
YOLOv5+ByteTrack Undyed 89.36 87.14 22 15 
YOLOv8+OC-SORT Dyed 95.67 93.12 12 17 
YOLOv8+OC-SORT Undyed 91.78 89.12 20 17 

YOLOv8+StrongSORT Dyed 94.56 92.34 13 18 
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YOLOv8+StrongSORT Undyed 90.12 88.45 23 18 
TAM-speed Dyed 97.45 95.67 10 16 
TAM-speed Undyed 94.78 92.34 18 16 

Notes: Track anything model (TAM), you only look once (YOLO), multiple objects tracking accuracy 

(MOTA), identification F1 score (IDF1), identity switches (IDS), and frames per second (FPS). 

5.3.3    Evaluating Velocity Measurement 

In the meticulous pursuit of accurate and reliable chicken tracking, TAM-speed has been 

subjected to a thorough evaluation, particularly focusing on its capability to accurately detect and 

quantify the speed of chickens within a controlled environment. In our experiments, where the 

average speed of the chickens was measured to be 0.05 m/s, the precision with which TAM-

speed could predict and validate these speed measurements became paramount. Utilizing the 

RMSE as a pivotal metric to quantify the average discrepancies between the speeds predicted by 

TAM-speed and the actual observed speeds, a comprehensive analysis was conducted. Given that 

RMSE provides a high penalty for larger errors, it serves as a stringent metric, ensuring that the 

model’s predictions are not only accurate on average but also do not deviate significantly in 

individual predictions. In our analysis, dyed chickens, with their distinct and consistent 

coloration, provided a somewhat stable basis for the tracking algorithm to latch onto, potentially 

minimizing the instances where tracking was lost or inaccurately assigned. The RMSE for dyed 

chickens was recorded at a laudable 0.02 m/s, indicating a high degree of accuracy in speed 

detection. The distinct coloration likely assisted the model in maintaining a consistent track, 

thereby enabling more accurate speed calculations over a sequence of frames. Conversely, 

undyed chickens, with their more variable and less distinct visual features, posed a slightly more 

complex scenario for TAM-speed. The RMSE for undyed chickens was marginally higher, 

recorded at 0.025 m/s. This subtle elevation in error might be attributed to the challenges in 

maintaining consistent tracking amidst the visually similar undyed chickens, potentially leading 
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to brief losses in tracking or misidentifications, which in turn, could slightly skew the speed 

calculations (Okinda et al., 2020). Despite these discrepancies, it is crucial to note that in the 

dynamic and somewhat unpredictable environment of a poultry house, numerous variables can 

influence the chickens’ speed, such as their age, size, and overall health, as well as external 

factors like lighting and noise levels. Despite the challenges, TAM-speed has showcased a 

commendable capability in speed detection, providing predictions that, while subject to error, 

still provide valuable insight into the locomotion and behavior of the chickens. The utility of 

such a model extends beyond mere speed detection, offering potential insights into the health and 

well-being of the poultry by monitoring their mobility and activity levels (Fang et al., 2020). In 

conclusion, while TAM-speed demonstrates a notable accuracy in speed detection, it is 

imperative to continually refine the model, considering the myriad of variables that can influence 

the speed and behavior of chickens. Future iterations of the model might benefit from additional 

training data, encompassing a wider range of scenarios and conditions, to further enhance its 

predictive accuracy and reliability in diverse poultry house environments. Table 5.3 summarizes 

the velocity changes among dyed and undyed chickens. Figure 5.5 displays a visualization of 

speed and track detected by TAM-speed. 

Table 5.3. Comparative analysis of velocity for dyed and undyed chickens. 

Algorithm Condition RMSE (m/s) Velocity Range (m/s) 
TAM-speed Dyed 0.02 0.00–0.21 
TAM-speed Undyed 0.025 0.00–0.21 
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Figure 5.5. Track and detection speed of broilers (the green number indicates the tracking 

number, while the black number represents speed). 

5.4       DISCUSSIONS 

5.4.1    Chicken Segmentation Approaches 

In the present exploration, TAM has notably eclipsed both YOLOv5 and YOLOv8 in a 

variety of tracking tasks, particularly those involving chickens in dyed condition. Specifically, 

TAM’s integrated mode, which amalgamates tracking and speed measurement, has showcased 

unparalleled precision across diverse tracking scenarios. This exemplary performance can be 

attributed to several pivotal factors. Firstly, TAM utilizes a specialized tracking mechanism that 

adeptly captures intricate movement patterns and complex trajectories, enabling it to focus on 

pertinent features and trajectories, thereby facilitating more accurate tracking. Moreover, it is 

worth noting that TAM surpassed other models without necessitating additional training or 

extensive fine-tuning. This implies that the architecture and design of TAM inherently possess 

robust tracking capabilities, negating the need for exhaustive model adjustments or specialized 

training datasets. This inherent proficiency not only underscores TAM as a more practical and 

effective option for tracking applications but also highlights its potential to be applied in various 
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poultry tracking scenarios without the need for exhaustive model adjustments or specialized 

training datasets. In addition, the segmentation of dyed chickens consistently exhibited superior 

performance across all algorithms when compared to undyed chickens. This can be attributed to 

the distinct colors of the dyed chickens, which provide a more discernible feature for the model 

to track, thereby reducing identity switches and enhancing tracking accuracy (Wang et al., 2023). 

This nuanced capability of TAM to adeptly manage variations in object features further solidifies 

its position as a versatile and reliable model for chicken tracking applications. Comparing the 

tracking of whole chickens, it was observed that tracking dyed chickens demonstrated superior 

performance across all metrics. This is because tracking dyed chickens may provide additional 

distinctive features for the model to latch onto, thereby facilitating improved tracking results. 

The tracking of a dyed chicken provides a more comprehensive understanding of the object by 

capturing its overall shape and structure, which facilitates improved tracking results. Table 5.4 

presents a comparative analysis of TAM with various research studies in the domain of chicken 

tracking using computer vision. For instance, EfficientNet-B0 achieved a mIoU of 89.34% in a 

study involving the segmentation of meat carcasses using a dataset of 108,296 images (Gorji et 

al., 2022). Similarly, MSAnet secured a mIoU of 87.7% for segmenting caged poultry across a 

300-image dataset (Li et al., 2021), while Mask R-CNN recorded a mIoU between 83.6% and 

88.8% for segmenting hens in a 1700-image dataset (Li et al., 2020). Contrarily, TAM 

demonstrated a mIoU of 93.12% for poultry tracking, potentially outperforming other methods 

even without a specialized target dataset. This highlights TAM’s ability to accurately trace 

chicken movements within images and underscores its efficacy and potential applicability in 

broader computer vision tasks related to chicken tracking. 

Table 5.4. Comparison of segmentation accuracy. 
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Methods Dataset (Constructed by Authors) mIoU (%) Number Type 
EfficientNet-B0 108,296 meat carcasses 89.34 

MSAnet 300 caged chickens 87.7 
mask R-CNN 1700 hens 83.6–88.7 

TAM (this study) / / 93.12 
 

5.4.2    The Precision of Velocity Measurement in Poultry Tracking 

In the realm of poultry tracking, the implementation of speed detection, particularly 

through computer vision, remains a relatively unexplored territory. The TAM-speed model, 

however, has emerged as a pioneering approach in this domain, offering a novel perspective in 

estimating the velocity of broiler and layers. This model, while primarily focused on tracking, 

also encapsulates the capability to measure speed, providing a dual functionality that is both 

innovative and crucial for comprehensive poultry behavior analysis. In contrast, the field of 

vehicle speed detection has witnessed substantial advancements, with numerous methodologies 

being developed and refined over the years. A common approach within this domain involves the 

utilization of a perspective transformer, which aids in estimating the speed of vehicles by 

analyzing the change in position of a vehicle over consecutive frames, considering the camera’s 

perspective (Wu et al., 2023; Zhang et al., 2023). This method, while effective for vehicles, 

presents unique challenges when applied to poultry due to the erratic and non-linear movement 

patterns exhibited by chickens. Comparatively, other methods of speed detection in poultry have 

traditionally relied on wearable equipment or radio speed detection techniques. Wearable 

devices, while providing accurate data, may influence the natural behavior and movement of the 

chickens due to the physical burden and potential stress induced by the equipment (Fujinami et 

al., 2023; Siegford et al., 2016). On the other hand, radio speed detection, which typically 

involves tracking the radio frequency identification (RFID) tags attached to the chickens, may 
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offer valuable data but is often constrained by its dependency on the proximity and orientation of 

the RFID tags, potentially limiting the accuracy and consistency of the data collected (Chien and 

Chen, 2018; Doornweerd et al., 2023; Zhang et al., 2016). TAM-speed, in this context, offers a 

non-intrusive, consistent, and technologically advanced method of not only tracking but also 

estimating the speed of chickens without the need for physical contact or proximity-based 

technology. It leverages computer vision to analyze movement and estimate speed, providing a 

wealth of data that are both accurate and comprehensive, without influencing the natural 

behaviors of the poultry. 

5.4.3    Limitations and Future Works 

TAM and its derivative, TAM-speed, exhibit a notable limitation in their substantial 

computational and memory demands, especially when applied to scenarios involving the tracking 

of numerous entities over extended durations. In specific test cases, even when utilizing the 

robust NVIDIA A100 GPU, which is equipped with a substantial 96 GB of memory and is 

renowned for its computational prowess, the models encountered difficulties in sustaining 

tracking for periods exceeding 2 min, particularly when tasked with simultaneously tracking 

more than 20 individual chickens. This computational demand not only restricts the duration and 

scale of tracking but also poses significant barriers to its application in real-world, large-scale 

poultry farms where continuous monitoring of larger flocks is imperative for effective 

management and research. 

In future endeavors, leveraging distributed computing can mitigate TAM’s computational 

demands, enabling the analysis of larger poultry populations and extended tracking durations. 

Additionally, incorporating edge computing strategies, where initial data processing occurs on 

local devices, could alleviate the computational load on the central model, ensuring efficient and 
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timely poultry behavior analysis. Furthermore, implementing adaptive sampling techniques, 

which dynamically adjust the TAM model’s sampling rate based on scene complexity, could 

optimize computational resource allocation, ensuring detailed analyses during complex behaviors 

while conserving resources during simpler scenarios (Xie et al., 2023). 

5.6       CONCLUSION 

The track anything model and its adaptation, TAM-speed, have emerged as potent tools 

for analyzing chicken locomotion and behavior, demonstrating superior performance in tracking 

and segmenting dyed chickens compared to other models like YOLOv5 and YOLOv8. TAM 

achieved a mean Intersection over Union (mIoU) of up to 95.13%, showcasing its architectural 

robustness and effective pre-trained model. Furthermore, TAM-speed exhibited commendable 

speed detection capabilities, with an RMSE of 0.02 m/s for dyed chickens, providing valuable 

insights into poultry behavior and potential health indicators. This research underscores TAM’s 

potential as a multifaceted tool for comprehensive poultry behavior analysis without requiring 

extensive training or fine-tuning, paving the way for advanced applications in precision livestock 

farming. 
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ABSTRACT 

Floor eggs and dead chickens present new challenges as the egg industry transitions from 

caged to cage-free housing due to animal welfare concern. In this study, convolutional neural 

network (CNN) models and the intelligent bionic quadruped robot were used to detect floor eggs 

and dead chickens in cage-free housing environments. A dataset comprising 1200 images was 

used to develop detection models, which were split into training, testing, and validation sets in a 

3:1:1 ratio. Five different CNN models were developed based on YOLOv8 and the robot's 360° 

panoramic depth perception camera. The final results indicated that YOLOv8m exhibited the 

highest performance, achieving a precision of 90.59%. The application of the optimal model 

facilitated the detection of floor eggs in dimly lit areas such as below the feeder area and in 

corner spaces, as well as dead chickens within the flock. This research underscores the utility of 

bionic robotics and convolutional neural networks for poultry management and precision 

livestock farming. 

 

Keywords: Poultry management; Robotics; Computer vision; Deep learning, Convolutional 

neural networks 

 

6.1        INTRODUCTION 

Animal welfare policies are receiving increased global attention. In poultry farming, 

traditional battery cages severely restrict hens' natural behaviors, leading to disuse osteoporosis 

(Chang et al., 2020). Even with improved environments and managed activities, hens in cages 

are deprived of expressing most of their natural behaviors (Hewson, 2003). Consequently, many 

countries are actively formulating policies and trade measures to protect animal welfare in 
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poultry production systems (Shields and Duncan, 2009). The egg industry is shifting to cage-free 

houses to improve bird welfare, providing sufficient space for hens to engage in natural 

behaviors. For example, legislation in California mandates that all eggs sold must come from 

hens in cage-free houses (Mullally and Lusk, 2018). However, the transformation to cage-free 

systems presents new challenges, including managing floor eggs and the increased time required 

to inspect the entire house for deceased chickens (5%-15%) (Bist et al., 2023b; Li et al., 2020). 

Automatic floor egg collection and removal of deceased chickens are primary concerns for egg 

producers in cage-free housing. One potential solution is to utilize robots for these tasks (Ren et 

al., 2020a). 

Mobile robot technology has been extensively developed and applied in the agricultural 

industry (Rubio et al., 2019). Most robots utilize a two-wheeled differential drive method for 

directional control. They collect environmental information via multiple sensors, enabling target 

tracking and obstacle avoidance in unknown environments (Gopalakrishnan et al., 2004). In the 

poultry sector, Vroegindeweij et al. (Vroegindeweij et al., 2014) proposed a path-planning 

method using the PoultryBot to collect floor eggs, reducing the need for manual egg picking. 

Bao et al. (Bao et al., 2021) introduced an AI-based sensor method for monitoring dead and sick 

chickens using foot rings and a ZigBee network, achieving 95.6% accuracy and reducing costs 

by 25% over four years compared to manual inspection. In the ever-evolving landscape of 

mobile robotics, the incorporation of advanced object recognition technologies is pivotal in 

enhancing robotic capabilities and operational efficiency, particularly in intelligent bionic 

quadruped robots (Hentout et al., 2019). Reese et al. (Reese et al., 2024) investigated the 

integration of object recognition in autonomous quadruped robotics using Red-Green-Blue 

(RGB) cameras and You Only Look Once version 8 (YOLOv8) in “Unitree Go 1” robots, 
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optimizing sensor use for defense, surveillance, and industrial monitoring applications. Angulo et 

al. (Martinez Angulo et al., 2024) explored the implementation of Chat Generative Pre-trained 

Transformer (ChatGPT) with the “Unitree Go 1” Robot Dog using voice prompts. They 

developed an interface that connects the ChatGPT Application Programming Interface (API) 

with the Unitree Go 1 Software Development Kit (SDK), facilitating user-friendly control and 

software development. Our research focuses on the integration of advanced object recognition 

technologies within the “Unitree Go 1”, a quadrupedal robotic dog. This platform hosts a 

network of interconnected sensors and cameras, including Forward-Looking Infrared (FLIR), 

Light Detection and Ranging (LiDAR), and Depth Camera, for both autonomous and manually 

controlled applications. The study explores the synergistic effects of combining these 

technologies to enhance the capabilities and operational efficiency of the “Unitree Go 1”(Sharma 

et al., 2016). 

At the heart of our proposed system for object detection with the “Unitree Go 1” are 

Convolutional Neural Networks (CNNs) (Jiang et al., 2020). Besides the “Unitree Go 1”, some 

custom-designed robots utilize robotic arms, a conveyor belt, and a storage cache to remove 

deceased chickens. Additionally, a robotic bin-picking pipeline for chicken fillets employs 3D 

reconstruction of the environment using depth data from an RGB-D camera. Both systems are 

based on advanced computer vision techniques and CNNs (Jonker, 2023; Liu et al., 2021). CNNs 

utilize patterns in images to recognize objects, classes, and categories, making them suitable for 

various applications. Among these, the YOLO series stands out for its effectiveness in precision 

livestock farming. These algorithms can automatically extract target features from images, 

eliminating the need for manual observation and enhancing the model's generalizability (Li et al., 

2021). Seo et al. (Seo et al., 2019) demonstrated improved accuracy and processing time for real-



 

228 

time pig surveillance by combining YOLO object detection with image processing techniques. 

They utilized infrared and depth information to effectively separate touching pigs. Similarly, 

Tong introduced a real-time poultry disease detector by integrating scale-aware modules and 

slide weighting loss into YOLOv5. This enhancement significantly improved detection accuracy 

and health status recognition in chickens, facilitating automated monitoring (Tong et al., 2023). 

Given the high performance of YOLO in object detection for precision livestock farming, it has 

the potential to detect floor eggs and dead chickens in various cage-free housing environments. 

By combining the YOLO detection model with the “robot dog”, the system could efficiently 

identify and collect floor eggs as well as remove dead chickens (Yang et al., 2024). This 

integration enhances the functionality and applicability of automated monitoring and 

management in livestock farming.  

The objectives of this study were to: (1) develop a detector based on YOLOv8 and the 

robotic method (i.e., Unitree Go 1 robot) for monitoring floor eggs and deceased chickens in 

research cage-free houses; (2) train the YOLOv8 model using images and videos of dead hens 

and floor eggs collected by the robot wide-angle and RGB cameras; and (3) test the performance 

of the newly developed models under various production conditions.  

6.2       MATERIALS AND METHODS 

6.2.1    Birds’ Management 

The robotic monitoring system was tested at the University of Georgia (UGA)’s Poultry 

Research Center. Each research house, measuring 7.3 m in length, 6.1 m in width, and 3 m in 

height, housed 200 Lohmann White Leghorn Chickens (22-24 weeks age). Initially, the robot 

was placed in the henhouse with limited movement to avoid startling the chickens. Over time, as 

the chickens became more accustomed to its presence, the robot's activity levels were slowly 
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increased. The houses were equipped with lights, perches, nest boxes, feeders, and drinkers, with 

floors covered in pine shavings. Indoor conditions, including light intensity and duration, 

ventilation rates, temperature, and relative humidity, were managed using a Chore-Tronics 

Model 8 controller (CHORE-Time Controller, Milford, IN, USA).  The feed, a soy-corn mixture, 

was manufactured at the UGA feed mill every two months to ensure freshness and prevent 

mildew. Team members monitored the hens' growth and environmental conditions daily, 

following the UGA Poultry Research Center Standard Operating Procedure. This experiment 

adhered to the animal care and use guidelines established by UGA’s Institutional Animal Care 

and Use Committee (IACUC). 

6.2.2     Robotic System for Collecting Dead Chickens and Egg Samples 

In this study, we utilized the “Unitree Go1” dog (Unitree, Binjiang District, Hangzhou, 

China), which is the world's first intelligent bionic quadruped robot companion at the consumer 

level. It is the first full-size general-purpose humanoid robot capable of running and featuring 

360° panoramic depth perception. This robot boasts an extensive joint movement range with up 

to 34 joints, incorporating force-position hybrid control technology to simulate human hand 

operations for precise tasks (Kim et al., 2024). This capability enables it to potentially remove 

dead chickens and pick up eggs in the future. Figure 6.1 presents its three-dimensional view. The 

Go 1 is equipped with a built-in advanced AI processing unit, comprising a 16-core top CPU and 

a GPU (384 cores, 1.5 TFLOPS) for deploying AI models, such as chicken detection and chicken 

body weight prediction (Roh, 2023). The YOLOv8 model was integrated into the robot's AI unit, 

allowing it to analyze live video feeds captured by the robot's cameras to identify dead chickens 

and eggs in real-time. (Figure 6.2) We controlled the robot dog using its dedicated controller and 

the official application (unitree.com/app/go1/). The robotic dog was deployed twice daily, in the 
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morning and evening, to inspect the entire poultry house. The inspection route was pre-set by 

human operators using the robot's controller, guiding the robot from the entrance door around the 

perimeter of the house and across all sections, ensuring comprehensive coverage of the entire 

facility. Figure 6.3 illustrates the experimental setup. The robotic dog demonstrates several 

movement patterns, including turning, jumping, side-stepping, and more (Long et al., 2023). 

During our sample collection process, we primarily utilized climbing when encountering steps, 

as well as turning and walking to search for dead chickens and eggs and to capture sample 

images. 

 

 

Figure 6.1. Three-dimensional views of the “Unitree Go 1” robotic dog (Front, Side, and Top). 
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Figure 6.2. Overview of the automated detection system for poultry management using YOLOv8 

and Unitree Go 1 Robotic. 
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Figure 6.3. The robot dog in walking mode collecting chicken and egg images in the research 

poultry house. 

6.2.3     Data Processing and Analysis 

Bird and egg images were extracted from the robot dog and annotated using V7 Darwin, 

an online annotation tool provided by V7labs (V7, 8 Meard St, London, United Kingdom). This 

tool supports various formats, including JPG, PNG, TIF, MP4, MOV, SVS, DICOM, NIfTI, and 

more, enabling the consolidation of training data in one place (Vidal et al., 2021). In this study, 

we created two classes: dead chickens and good eggs. For each image, we first checked the 

quality to ensure that it captured our target objects. Using the bounding box tool, we created 

boxes around the target objects. After a final review, we marked the images as completed (Figure 

6.4). 

 

Figure 6.4. Examples of image labeling by V7 Darwin. 
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6.2.4     Detection Methods 

In our detection tasks, identifying small targets like chickens and eggs presents 

challenges such as limited feature availability and a low proportion of annotated areas for small 

targets. Additionally, the challenge is exacerbated by the limited dataset of 300 original images. 

To address these challenges, we first employed data augmentation methods like copy-paste 

enhancement, which involves randomly duplicating small targets multiple times within the image 

(pure cropping) or copying a region containing multiple small targets (cropping with background 

context), applying various transformations (scaling, flipping, rotating, etc.) during pasting. 

Additionally, we used over-sampling by duplicating the same image file multiple times and 

applying scaling and stitching techniques to combine multiple image files into one (Zou et al., 

2021). These data augmentation methods expanded the dataset size and increased its diversity, 

artificially boosting the proportion of small targets in the dataset to ensure the network can 

effectively learn their features. After data augmentation, we obtained 1200 images, which we 

split into training, testing, and validation sets in a 3:1:1 ratio. In this study, we adapted You Only 

Look Once version 8 (YOLOv8) to detect chickens and eggs, utilizing one of the five most used 

models for object detection within the YOLOv8 family (i.e., YOLOv8s, YOLOv8n, YOLOv8m, 

YOLOv8l, and YOLOv8x) (Safaldin et al., 2024). The backbone network, which is the 

foundation of the model, is responsible for extracting features from the input image, and these 

features are the basis for subsequent network layers to perform object detection. In YOLOv8, the 

backbone network uses a structure similar to Cross Stage Partial Darknet (CSPDarknet) (Sohan 

et al., 2024). The head network is the decision-making part of the object detection model, 

responsible for producing the final detection results, while the neck network lies between the 
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backbone and head networks, playing a role in feature fusion and enhancement. Other modules 

include the ConvModule, which contains convolutional layers, batch normalization (BN), and 

activation functions (e.g., Sigmoid Linear Unit (SiLU)) for feature extraction; 

DarknetBottleneck, which increases network depth through residual connections while 

maintaining efficiency; and the CSP layer, a variant of the Cross Stage Partial structure that 

improves model training efficiency through partial connections (Hussain, 2023). The design of 

the YOLOv8 network is shown in Figure 6.5. 

 

Figure 6.5. YOLOv8 network structure diagram. 

6.2.5     Model Evaluation 

To benchmark the performance of classifiers, we focused on precision, recall, mean 

average precision (mAP), frames per second (FPS), and loss function values (Equations 1-3). 

Precision measures the accuracy of detected objects, indicating the proportion of correct 

detections, while recall assesses the model's ability to identify all instances of objects in the 

images. The mAP, which evaluates the model's bounding box predictions on the validation 
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dataset, is determined by plotting precision and recall values at different confidence thresholds. 

Additionally, FPS is used to evaluate the speed of the methods, providing a measure of their 

efficiency. Finally, the loss function serves as a metric indicating how well the algorithms train 

the neural network model based on the dataset and achieve optimal results, tying together the 

overall performance evaluation.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = #$
(#$&'$)

                                       Eq. 1 

𝑅𝑒𝑐𝑎𝑙𝑙 = #$
(#$&'))

                                            Eq. 2 

𝑚𝐴𝑃 = 5
"
∑ 𝐴𝑃LL4"
L45                                          Eq. 3 

APk denotes the average precision for class k, where n is the number of classes. In 

chicken detection, True Positive (TP) correctly identifies a chicken, False Positive (FP) 

incorrectly identifies a non-chicken as a chicken, and False Negative (FN) fails to identify a 

chicken. mAP@0.5 refers to the mean average precision calculated at an Intersection over Union 

(IoU) threshold of 0.5. A loss function measures how well a model accomplishes its task by 

comparing its predicted dead chickens and eggs to the actual output. “lcls” measures the 

discrepancy between the predicted class probabilities and our labels, while “lobj” measures the 

confidence score assigned to each predicted bounding box, indicating whether it contains an 

object or not, as Equations 4-6.   

𝑙𝑜𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑙.3/ +	𝑙07M                     Eq. 4 
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07MO

M4K
P$
!4K ∑ 𝑃!(𝑐)log	(𝑝̂3Q∈.32//-/ (𝑐))                  Eq. 5 
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"007MO

M4K
P$
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In the equation, 𝐼!,M
07M indicates whether the targets are located at the anchor box (i, j), 

𝑃!(𝑐)  represents the probability of the target class c, and p̂l (c) denotes the actual value of the 

class. The summation across these terms encompasses the total number of classes C. 

6.3        RESULTS AND DISCUSSIONS 

6.3.1     Influence of Robotics on Chicken Activity 

In this study, we recorded the entire process of chickens' interactions with a robotic 

entity, over the course of one hour. The observation focused on their initial reactions and 

subsequent behavior changes, documenting phases of fear, curiosity, aggregation, and 

normalization (Ren et al., 2020b). The robot was positioned in our observation area, which 

included half a drinking line (camera view), two feeders, and one nesting box, representing a 

typical section of a cage-free house. We recorded the number of chickens around the robot in this 

area. Upon first encountering the robot, the chickens exhibited immediate flight responses, 

resulting in widespread panic within the flock, accompanied by dust and feathers flying. Initially, 

only two chickens remained at the edge of the observation area.  Within 20 minutes, the 

chickens' panic subsided, and curiosity began to dominate. Consequently, the number of 

chickens in the observation area rapidly increased from 2 to 37. This number continued to rise 

steadily, reaching 51 chickens by the 40-minute mark. After 40 minutes, more interactive 

behaviors, such as jumping and pecking at the robot, were observed (Vroegindeweij et al., 

2018a). Gradually, the chickens began to treat the robot as a normal object in their environment, 

with approximately 57 chickens present in the observation area by the end of the hour. This 

observation illustrates the process by which chickens overcome their initial fear and the time 

required for a flock to acclimate to the presence of a robotic entity. These findings can inform 

researchers aiming to integrate robotics into poultry environments, highlighting the optimal time 
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frame for chickens to become comfortable interacting with robots while maintaining their 

welfare (Figure 6.6). 

 

Figure 6.6. Time series of chicken interaction with the robot. 

6.3.2     Model Comparison 

Five individual experiments (YOLOv8s, YOLOv8n, YOLOv8m, YOLOv8l, and 

YOLOv8x) were conducted to identify the optimal detector for floor egg and dead chicken 

detection. The suffixes “s,” “n,” “m,” “l,” and “x” in YOLOv8 refer to different versions of the 

model, with varying numbers of layers and computational requirements. Specifically, 's' 

represents the smallest model with the fewest layers and parameters, while “x” denotes the 

largest model with the most layers and parameters. The '“n,” “m,” and “l,” versions fall between 

these two extremes, corresponding to nano, medium, and large models, respectively (Wu and 

Dong, 2023). All experiments were trained for 100 epochs using Python 3.7 and the PyTorch 

deep learning library, on hardware equipped with an NVIDIA-SMI (16 GB) graphics card. A 

summary of the model comparison is presented in Table 6.1.  
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Table 6.1. The summary of model comparison for dead chickens and egg detection. 

Model Precision (%) Recall (%) FPS mAP@0.5 Class_loss Box_loss 
YOLOv8s 85.39 79.32 74 85.08 0.94 2.01 
YOLOv8n 85.49 79.89 69 85.17 0.90 1.98 
YOLOv8m 90.59 79.34 63 85.40 0.92 2.02 
YOLOv8l 88.10 80.72 48 86.29 0.88 2.05 
YOLOv8x 87.97 78.52 41 85.31 0.89 2.01 

 

In terms of accuracy, YOLOv8m achieved 90.59%, outperforming all other models. This 

superior performance can be attributed to the small size of floor eggs and chickens in our images, 

which cover less than 10% of the image area (Rekavandi et al., 2022). Lower-stride models like 

YOLOv8m generally perform better with small objects because they retain more detail from the 

input image, which is crucial for accurate detection and classification. Consequently, YOLOv8m 

is more effective for detecting floor eggs and deceased chickens (Terven et al., 2023). In terms of 

recall, the values ranged from 78.52% to 80.52%, showing only a 2% maximum difference 

among the five models. This minimal variation in recall indicates that all models are similarly 

effective at identifying the presence of floor eggs and deceased chickens (Juba and Le, 2019). 

For FPS, YOLOv8s demonstrated the highest speed due to its fewer layers and reduced number 

of parameters compared to the other models (Held et al., 2016). In addition, mAP@0.5 shows the 

precision-recall trade-off at an IoU threshold of 0.5. YOLOv8l, YOLOv8m, and YOLOv8x have 

the top three mAP@0.5 scores, at 86.29%, 85.40%, and 85.31%, respectively. Although 

YOLOv8n and YOLOv8s have slightly lower mAP@0.5 values, all models perform reasonably 

well in detecting the bounding boxes for floor eggs and dead chickens. As for Class_loss and 

Box_loss, all models have Class_loss values close to 0.90 and Box_loss values close to 2.00. 

This indicates that their ability to classify floor eggs and deceased chickens, as well as the errors 
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in the predicted bounding box locations, are similar (Jiang et al., 2022). These findings 

demonstrate that YOLOv8m achieved the best performance in detecting floor eggs and deceased 

chickens (see Figures 6.7-6.11). 

 

 

Figure 6.7. Precision comparison results of different detectors for dead chickens and floor eggs. 
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Figure 6.8. Recall comparison results of different detectors for dead chickens and floor eggs. 

 

Figure 6.9. The mAP@0.5 comparison results of different detectors for dead chickens and floor 

eggs. 

 



 

241 

Figure 6.10. Class_loss comparison results of different detectors for dead chickens and floor 

eggs. 

 

Figure 6.11. Box_loss comparison results of different detectors for dead chickens and floor eggs. 

6.3.3    YOLOv8m Algorithm Detection 

In the study, the YOLOv8m detector demonstrated the best performance in detecting 

floor eggs and dead chickens compared to other models. Consequently, a further investigation 

was conducted using the YOLOv8m model in conjunction with the robot in cage-free houses. In 

cage-free houses, floor eggs are primarily found in dark areas such as below the feeder area and 

in corner spaces. YOLOv8m, when paired with the robot, performs well in detecting floor eggs 

in these dimly lit areas. This is because these areas are not completely dark but have lower than 

normal light intensity, which does not hinder the model's detection capability (Yang et al., 2022). 

Additionally, the robustness of the YOLOv8m model allows it to detect floor eggs effectively as 

long as the images capture the eggs. However, there are some misdetections when the robot is 

too far from the eggs, such as eggs located under perches where the robot cannot reach. To 
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mitigate this, it is recommended to either remove the perches or design higher perches on the 

first layer to accommodate the robot's detection capabilities (Bist et al., 2023a). Regarding the 

detection of dead chickens, there is no particular location where dead birds are commonly found. 

However, dead chickens often become mixed with the floor litter after death, which does not 

affect the model's detection performance (Bist et al., 2023b). When chickens die, their bodies and 

feet become stiff, and their heads often lie in the litter, creating unique features that make it 

easier to detect dead chickens. Consequently, the model can detect dead chickens using the 

robot. Nonetheless, occlusions can sometimes occur, such as when a dead chicken carcass is 

covered by other chickens (Bist et al., 2023c; Subedi et al., 2023). Therefore, the robot should 

inspect the entire house at least once daily to prevent carcass decomposition and address animal 

biosecurity concerns. Figures 6.12 and 6.13 illustrate the detection results using the robot in 

cage-free houses. 

 

Figure 6.12. Floor eggs identified by our model: original image (a) vs. identified floor eggs (b). 



 

243 

 

Figure 6.13. Floor eggs and death chickens identified by our model: original image (a) vs. 

identified floor eggs and death chickens (b). 

6.3.4    Compare with Related Studies 

To compare our research with previous work, we selected some recent studies on using 

robotics to detect eggs and deceased chickens. For egg collection, there are two primary 

methods: CNN and traditional sensing systems. One study featured a robot equipped with a 

YOLOv3-based deep-learning egg detector, a robotic arm, a two-finger gripper, and a hand-

mounted camera. The YOLOv3 detected eggs on a simulated litter floor in real-time, providing 

coordinates and dimensions for accurate gripper manipulation (Li et al., 2021). Another study 

introduced the PoultryBot, which utilizes various sensing systems, including a laser scanner with 

a 20-meter depth and 270-degree view, a digital camera for area visualization, and wheel 

encoders to measure rotation and movement. The localization technique involves a particle filter 

that estimates the robot's pose using prediction, update, and resampling phases (Vroegindeweij et 

al., 2016). Both systems demonstrated more than 90% accuracy in floor egg detection. However, 

when it came to picking up eggs, the sensing systems achieved only 43% success, while the 
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CNN maintained a high accuracy of 93% in egg collection (Vroegindeweij et al., 2018b). In our 

study, we also employed CNN to detect eggs, aiming to advance egg collection development 

using the robot. Compared to the study by Li et al. (2021), our data is based on cage-free houses, 

thus demonstrating greater potential for applications in cage-free egg collection. Regarding the 

detection of deceased chickens, CNN remains the mainstream method. Studies utilizing 

YOLOv3 and YOLOv4 for detecting dead broilers have achieved detection accuracy as high as 

99%, though these studies were conducted in stacked-cage broiler houses and sometimes 

required multiple robotics combinations for high precision (Hao et al., 2022; Lei et al., 2022a). In 

cage-free houses, our study can detect both deceased chickens and floor eggs simultaneously 

using an Intelligent Bionic Quadruped Robot. This comprehensive solution addresses the 

challenges of cage-free environments, such as floor eggs and the increased time required to 

inspect the entire house for deceased chickens. Therefore, employing CNN with a Quadruped 

Robot like “Unitree Go 1” has the potential to efficiently collect floor eggs and remove deceased 

chickens in a single system. 

6.3.5     Future Studies 

Despite the significant advancements in detecting floor eggs and deceased chickens, the 

robotic ability to pick up eggs and remove dead chickens remains an ongoing area of research. 

For egg collection, most studies integrate computer vision with mechanical arms. One common 

approach involves using a soft suction mechanism to pick up eggs. This design ensures that the 

eggs are handled delicately to prevent breakage during collection. Additionally, soft rubber 

grippers are employed to gently grasp and lift the eggs without causing damage. Once the eggs 

are picked up, they need to be stored in a tank within the robot for later retrieval (Chang et al., 

2020; Wang et al., 2019). Therefore, an additional mechanical arm and a storage tank can be 
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incorporated into the robot dog system to facilitate the collection and storage of floor eggs. On 

the other hand, removing dead chickens presents a more complex challenge due to their greater 

weight and size compared to floor eggs (Zhang et al., 2023; Zhou et al., 2023). A stronger 

mechanical arm, or alternatively, a separate robot equipped with a multi-target path routing 

scheme, can be utilized (Lei et al., 2022b). This secondary robot would collect the dead chickens 

using location data provided by the robotic system. 

6.4       Conclusions 

In this study, a multiple detector for floor eggs and dead chickens was developed based on 

YOLOv8 networks embedded in a robotic system for picking up eggs and removing dead chickens 

in cage-free facilities. Results show that the average accuracy of each detector ranges from 85.39% 

to 90.59%, with the best model being YOLOv8m, which achieved a precision of 90.59%. The 

detector can effectively recognize various floor eggs on the litter or under feeders and detect dead 

chickens in corners or around healthy chickens. This detector can be further combined with 

mechanical arms, such as soft suction mechanisms or soft rubber grippers, to pick up floor eggs. 

It can also be equipped with a secondary robot to remove dead chickens using location information 

provided by the robot. The results provide an actionable approach to detecting floor eggs and dead 

chickens in cage-free houses using a single system without intrusion. This study demonstrates the 

potential of using intelligent bionic quadruped robots to address the issues of floor eggs and dead 

chickens in cage-free houses. These advancements provide valuable information for using robotics 

to help improve the management of cage-free chickens. 
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CHAPTER 7 

SUMMARY 

The dissertation presents a comprehensive investigation into the use of innovative 

technologies and strategies to improve conditions within cage-free poultry farming systems. The 

research findings are significant, addressing the challenges of poultry management, sustainable 

egg production, and automation in modern farming. This study demonstrates the potential of 

precision farming technologies to tackle critical issues such as floor egg management and animal 

welfare. 

Welfare Enhancement: By combining traditional convolutional neural network (CNN) 

models (e.g., YOLO series, EfficientNetV2, SegFormer, and SETR) with large vision models 

(LVM) (e.g., Segment Anything Model and Track Anything Model) and thermal cameras, the 

study successfully tracked chickens' spatial distribution and predicted bird body weight with high 

accuracy (R² = 0.90). Moreover, behaviors like locomotion, feeding, drinking, and dust bathing 

were accurately classified, providing valuable insights into hen welfare. By integrating these 

technologies, the study offers a more nuanced understanding of how environmental factors 

impact both hen welfare. 

Floor Egg Management: One of the key achievements of this research was 

demonstrating how CNN and robotic systems effectively detect floor eggs with 94.8% accuracy. 

The study used intelligent bionic quadruped robots, which were instrumental in detecting floor 

eggs in dimly lit areas, such as beneath feeders and in corner spaces. This novel application of 
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robotics provides a promising solution to a common issue in cage-free systems, potentially 

reducing economic losses and labor costs associated with mislaid eggs. 

Animal Welfare Monitoring and Dead Chicken Detection: The study further explored 

the use of advanced robotic systems for identifying dead chickens within the flock. Combined 

with LVM and CNN models, the robots provided a groundbreaking approach welfare 

monitoring, offering automated systems for detecting welfare concerns such as footpad 

dermatitis. 

 

Conclusion: This dissertation underscores the transformative potential of integrating 

precision farming technologies with computer vision and robotics to improve production 

efficiency and welfare standards in cage-free poultry farming. The successful application of 

CNN and LVM models, alongside intelligent robots, marks a significant advancement towards 

the automation of poultry management. The findings advocate for a holistic approach, where AI-

driven technologies enhance production while ensuring ethical treatment of animals. This 

research sets a new benchmark for the future of cage-free farming, advancing the industry with 

more efficient, automated, and sustainable practices.  
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A.1 EDUCATION                                                                                                                 

! Sep 2021-Dec 2024 University of Georgia, Athens, GA, USA                                 

GPA: 3.90/4.0, PhD Candidate of Poultry Science 

! Sep 2018-Jun 2020 China Agricultural University, Beijing, China 

GPA: 3.22/4.0, Master of Science in Animal Science Granted in June 2020 

! Sep 2014-Jun 2018 South China Agricultural University, Guangzhou China 

GPA: 3.62/5.0, Bachelor of Science in Animal Science Granted in June 2018 

 

A.2 RESEARCH INTERESTS / SUMMARY 

! Focused on precision farming, interested in developing models helping manage chicken farm 

and improve poultry welfare based on computer vision; 

! Additional interest includes optimizing feed formula for feed mills and dealing with practical 

problems such as feed waste and waste disposal in farms; 

! Conducted several field trips and internships in farms and feed mills, has been practicing 

solving front-line difficulties with professional knowledge. 

 

A.3 RESEARCH TECHNIQUES AND SKILLS 

! Computer Vision: Python, deep learning, object recognition, classification, and segmentation 

by neural network 

! Real-time PCR: Detection of microorganisms in rumen fluid and feces 

! Gas Chromatograph: Determination of rumen fluid volatile fatty acids 
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! Proximate Analysis: Including moisture, ash, crude protein, ether extract, neutral detergent 

fiber, acid detergent fiber and so on 

! Other skills: Using thermal camera and SLR camera, collecting rumen fluid by a flexible 

esophageal tube; Design feed formula 

 

A.4 RESEARCH AND INTERNSHIP EXPERIENCES  

Sep 2021-Present, Research Assistant  

University of Georgia                                                                                                            Athens 

! Rear 800 cage-free chickens at Poultry Research Center and installed video systems, light 

control systems to collect image data 

! Measuring chicken body weight based on thermal camera and deep learning for less labor of 

weighting birds 

! Detecting cage-free chicken and calculating total number of recognized chickens to improve 

real-time detection of chicken using deep learning 

! Classifying behaviors of chicken automatically via convolutional neural network and utilizing 

these behavioral indicators to improve chicken welfare 

! Monitoring wild birds by computer vision to prevent high pathogenic avian influenza (HPAI) 

! Breeding Athens Canadian Random Bred (ACRB) 

! Helping extension (International Poultry Short Course, 4-H) at department of poultry science 

Sep 2020-May 2021, Lab assistant  

Sinovac Life Science Co., Ltd.                                                                                              Beijing 

! Worked as a lab assistant to evaluate the effectiveness of the vaccines 
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Mar 2019-Jun 2019, Assistant Experimenter Intern  

Hong’ An High-Quality Beef Cattle Technology Breeding Co., Ltd.           Yangxin   

! Part of the graduation experiment for my master’s degree, researched with doctoral students 

! Targeted to solve the problem of high tannin content in sorghum as the feed for cattle 

! Conducted Latin Square Experiment on Simmental bull, utilized the theoretical basis that 

polyethylene glycol can eliminate the toxic and side effects of tannin, increased the use of 

tannin-rich feed for beef cattle, which allowed sorghum to become a roughage resource that 

could feed grass-eating livestock like cattle, sheep, and camels in large quantities 

! Reduced nitrogen emissions in animal feces with a certain proportion of polyethylene glycol 

and tannin in their feed 

Jun2018-Aug 2018, Member, Elite Cattlemen Summer Program 

DeLaval Beijing and College of Animal Science and Technology, China Agricultural 

University                    Beijing 

! Joined as a member of the Elite Cattlemen Summer Program, merit-based, highly selective 

! Acquired theoretical lessons and production training at DeLaval, Beijing, in English; studied 

comprehensive and systemic solutions including traditional and fully automatic milking 

systems, milk quality and animal health maintaining, milk refrigeration, cow comfort, ranch 

supplies, feeding, manure treatment, barn facilities, and ranch management support systems, 

covering all aspects of ranch operations 

! Applied the knowledge to help dairy farmers to take care of cows and produce dairy products 

Sep 2017-Mar 2018, Academic Research 
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Undergraduate Thesis, The Distribution of Glucose Transporters at the Placenta of Sow, South 

China Agricultural University, Guided by Associate Professor Fang Chen          Guangzhou 

! Extracted RNA from different parts of the pig placenta, conducted real-time PCR, and 

explored the distributionsof the glucose transporter 

! Provided a theoretical basis for the use of glucose in pregnant sows, discussed the distribution 

of glucose carriers in the pig placenta preliminarily, prepared basic data for future research on 

the function of glucose transporters 

Jul2017-Aug 2017, Assistant ExperimenterIntern 

Changjiang Food Group Co., Ltd.                  Foshan 

! Performed piglet fattening experiments and learned to design experiments on production 

issues 

! Fed 300 piglets for one month, grouped them based on their initial weight, compared four feed 

produced by different companies by analyzing feed intake 

Aug 2016, Field Study, Farm Breeding Intern 

Guangdong Wen's Foodstuffs Group Co.,Ltd.                                  Zhaoqing  

! Learned breeding techniques, and experienced the whole process from breeding the pigs to 

selling the pigs 

! StudiedWen’s unique family cooperation model, provided farmers the unified piglets, 

vaccines, feed, and other technical instructions, helped them sow more piglets, reduce feed 

costs, and improve maturity rate 

Jun2015-Jun 2017, Pet Breeding Intern, Team Leader 

College of Animal Science, South China Agricultural University      Guangzhou 
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! Undergraduate Innovation and Entrepreneurship Program for the breeding of mammals and 

ornamental birds 

! Visited the pet laboratory three times a week, successfully bred two litters of Chinchillas, a 

litter of Russian blue cats, and a litter of Garfield cats, witnessed the yellow Opaline, pink 

Bourke’s Parrot, and other Ploceidae breeding offspring in the lab 

! Exhibited on pet culture festival, presented achievements to primary schools students nearby 

Aug2014, Feeding Intern 

ZhongshanJianbang Feed Technology Co., Ltd         Zhongshan 

! Understood the process of feed production, assisted workers to produce the feed, involved in 

the production and packaging of premixed feed, an average of 300 bags, each 20kg, were 

produced each day 

 

A.5 PROJECTS 

 

[ 1 ] 2023-2024: Post Vaccination Performance Model Development with Zoetis (the world's 

largest producer of medicine and vaccinations for pets and livestock). $100,000 (leader). 

[ 2 ] 2023-2026: Precision farming practices for sustainable egg production. USDA-NIFA. 

$300,000 (participant). 

[ 3 ] 2023-2024: A Precision Tracking System in Food Supply Chain. UGA. 

$37,500 (participant).  

[ 4 ] 2022-2024: An automatic imaging system for poultry welfare evaluation. Georgia Research 

Alliance. $50,000 (participant). 

[ 5 ] 2022-2024: Cloud computing for cage-free egg production. Oracle America. $100,000 (gifts 
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- computers/cloud credits). (Participant). 

[ 6 ] 2020-2023: An integrated method for air quality management in cage-free houses. Egg 

Industry Center. $100,000 (participant). 

 

A.6 PUBLICATIONS (31 peer-reviewed papers, 1 M.S. thesis, 29 conferences papers and 9 

first author international conference presentations) 

 

Peer Reviewed Journal Articles 

[ 1 ] Yang, X., Dai, H., Wu, Z., Bist, R. B., Subedi, S., Sun, J., ... & Chai, L. (2024). An innovative 

segment anything model for precision poultry monitoring. Computers and Electronics in 

Agriculture, 222, 109045, doi.org/10.1016/j.compag.2024.109045. 

[ 2 ] Yang, X., Bist, R. B., Paneru, B., & Chai, L. (2024). Deep Learning Methods for Tracking 

the Locomotion of Individual Chickens. Animals, 14(6), 911, doi.org/10.3390/ani14060911. 

[ 3 ] Yang, X., Bist, R. B., Paneru, B., Liu, T., Applegate, T., Ritz, C., ... & Chai, L. (2024). 

Computer Vision-Based cybernetics systems for promoting modern poultry Farming: A 

critical review. Computers and Electronics in Agriculture, 225, 109339, 

doi.org/10.1016/j.compag.2024.109339.  

[ 4 ] Yang, X., Bist, R. B., Paneru, B., & Chai, L. (2024). Deep Learning Methods for Tracking 

the Locomotion of Individual Chickens. Animals, 14(6), 911, doi.org/10.3390/ani14060911. 

[ 5 ] Yang, X., Bist, R. B., Subedi, S., Wu, Z., Liu, T., Paneru, B., & Chai, L. (2024). A Machine 

Vision System for Monitoring Wild Birds on Poultry Farms to Prevent Avian Influenza. 

AgriEngineering, 6(4), 3704-3718, doi.org/10.3390/agriengineering6040211.  

[ 6 ] Yang, X., Bist, R., Subedi, S., & Chai, L. (2023). A deep learning method for monitoring 
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spatial distribution of cage-free hens. Artificial Intelligence in Agriculture, 8, 20-29, 

doi.org/10.1016/j.aiia.2023.03.003. 

[ 7 ] Yang, X., Bist, R., Subedi, S., Wu, Z., Liu, T., & Chai, L. (2023). An automatic classifier 

for monitoring applied behaviors of cage-free laying hens with deep learning. Engineering 

Applications of Artificial Intelligence, 123, 106377, 

doi.org/10.1016/j.engappai.2023.106377. 

[ 8 ] Yang, X., Bist, R. B., Subedi, S., & Chai, L. (2023). A computer vision-based automatic 

system for egg grading and defect detection. Animals, 13(14), 2354, 

doi.org/10.3390/ani1314. 

[ 9 ] Yang, X., Chai, L., Bist, R. B., Subedi, S., & Wu, Z. (2022). A deep learning model for 

detecting cage-free hens on the litter floor. Animals, 12(15), 1983, doi.org/10.3390/ani1215. 

[ 10 ] Yang X., Jinchang Zhang, Bidur Paneru, Jiakai Lin, Ramesh Bist, Guoyu Lu, Lilong Chai, 

Monitoring Dead Chickens and Floor Eggs with Robotic Technologies. (Submitted) 

[ 11 ] Bist, R. B., Yang, X., Subedi, S., & Chai, L. (2024). Automatic detection of bumblefoot in 

cage-free hens using computer vision technologies. Poultry Science, 103(7), 103780, 

https://doi.org/10.1016/j.psj.2024.103780. 

[ 12 ] Bist, R. B., Yang, X., Subedi, S., Ritz, C. W., Kim, W. K., & Chai, L. (2024). Electrostatic 

particle ionization for suppressing air pollutants in cage-free layer facilities. Poultry Science, 

103(4), 103494, https://doi.org/10.1016/j.psj.2024.103494. 

[ 13 ] Bist, R. B., Yang, X., Subedi, S., Paneru, B., & Chai, L. (2024). Enhancing Dust Control for 

Cage-Free Hens with Electrostatic Particle Charging Systems at Varying Installation Heights 

and Operation Durations. AgriEngineering, 6(2), 1747-1759, 

https://doi.org/10.3390/agriengineering6020101. 
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[ 14 ] Bist, R. B., Yang, X., Subedi, S., Paneru, B., & Chai, L. (2024). An Integrated Engineering 

Method for Improving Air Quality of Cage-Free Hen Housing. AgriEngineering, 6(3), 2795-

2810, https://doi.org/10.3390/agriengineering6030162. 

[ 15 ] Li, W., Zhang, X., Li, J., Yang, X., Li, D., & Liu, Y. (2024). An explanatory study of factors 

influencing engagement in AI education at the K-12 Level: an extension of the classic TAM 

model. Scientific Reports, 14(1), 13922, https://doi.org/10.1038/s41598-024-64363-3.  

[ 16 ] Paneru, B., Bist, R., Yang, X., & Chai, L. (2024). Tracking perching behavior of cage-free 

laying hens with deep learning technologies. Poultry Science, 103(12), 104281, 

https://doi.org/10.1016/j.psj.2024.104281. 

[ 17 ] Bist, R. B., Yang, X., Subedi, S., Bist, K., Paneru, B., Li, G., & Chai, L. (2024). An automatic 

method for scoring poultry footpad dermatitis with deep learning and thermal imaging. 

Computers and Electronics in Agriculture, 226, 109481, 

https://doi.org/10.1016/j.compag.2024.109481.  

[ 18 ] Saeidifar, M., Li, G., Chai, L., Bist, R., Rasheed, K. M., Lu, J., ... & Yang, X. (2024). Zero-

shot image segmentation for monitoring thermal conditions of individual cage-free laying 

hens. Computers and Electronics in Agriculture, 226, 109436, 

https://doi.org/10.1016/j.compag.2024.109436. 

[ 19 ] Guo, Y., Aggrey, S. E., Yang, X., Oladeinde, A., Qiao, Y., & Chai, L. (2023). Detecting 

broiler chickens on litter floor with the YOLOv5-CBAM deep learning model. Artificial 

Intelligence in Agriculture, 9, 36-45, https://doi.org/10.1016/j.aiia.2023.08.002.  

[ 20 ] Bist, R. B., Yang, X., Subedi, S., & Chai, L. (2023). Illuminating Solutions for Reducing 

Mislaid Eggs of Cage-Free Layers. AgriEngineering, 5(4), 2170-2183, 

https://doi.org/10.3390/agriengineering5040133. 
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[ 21 ] Lu, H., Xue, M., Nie, X., Luo, H., Tan, Z., Yang, X., ... & Wang, T. (2023). Glycoside 

hydrolases in the biodegradation of lignocellulosic biomass. 3 Biotech, 13(12), 402, 

doi.org/10.1007/s13205-023-03819-1. 

[ 22 ] Bist, R. B., Subedi, S., Chai, L., Regmi, P., Ritz, C. W., Kim, W. K., & Yang, X. (2023). 

Effects of perching on poultry welfare and production: a review. Poultry, 2(2), 134-157, 

https://doi.org/10.3390/poultry2020013. 

[ 23 ] Bist, R. B., Subedi, S., Yang, X., & Chai, L. (2023). Effective Strategies for Mitigating 

Feather Pecking and Cannibalism in Cage-Free W-36 Pullets. Poultry, 2(2), 281-291, 

https://doi.org/10.3390/poultry2020021. 

[ 24 ] Bist, R. B., Subedi, S., Yang, X., & Chai, L. (2023). A novel YOLOv6 object detector for 

monitoring piling behavior of cage-free laying hens. AgriEngineering, 5(2), 905-923, 

https://doi.org/10.3390/agriengineering5020056.  

[ 25 ] Bist, R. B., Subedi, S., Yang, X., & Chai, L. (2023). Automatic detection of cage-free dead 

hens with deep learning methods. AgriEngineering, 5(2), 1020-1038, 

https://doi.org/10.3390/agriengineering5020064. 

[ 26 ] Subedi, S., Bist, R., Yang, X., & Chai, L. (2023). Tracking pecking behaviors and damages 

of cage-free laying hens with machine vision technologies. Computers and Electronics in 

Agriculture, 204, 107545, doi.org/10.1016/j.compag.2022.107545. 

[ 27 ] Bist, R. B., Subedi, S., Chai, L., & Yang, X. (2023). Ammonia emissions, impacts, and 

mitigation strategies for poultry production: A critical review. Journal of Environmental 

Management, 328, 116919, doi.org/10.1016/j.jenvman.2022.116919. 

[ 28 ] Bist, R. B., Yang, X., Subedi, S., & Chai, L. (2023). Mislaying behavior detection in cage-

free hens with deep learning technologies. Poultry Science, 102(7), 102729, 
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https://doi.org/10.1016/j.psj.2023.102729. 

[ 29 ] Bist, R. B., Yang, X., Subedi, S., Sharma, M. K., Singh, A. K., Ritz, C. W., ... & Chai, L. 

(2023). Temporal variations of air quality in cage-free experimental pullet houses. Poultry, 

2(2), 320-333, doi.org/10.3390/poultry2020024. 

[ 30 ] Subedi, S., Bist, R., Yang, X., & Chai, L. (2023). Tracking floor eggs with machine vision 

in cage-free hen houses. Poultry Science, 102(6), 102637, 

https://doi.org/10.1016/j.psj.2023.102637. 

[ 31 ] Xie, B., Yang, X., Yang, L., Wen, X., & Zhao, G. (2021). Adding polyethylene glycol to 

steer ration containing sorghum tannins increases crude protein digestibility and shifts 

nitrogen excretion from feces to urine. Animal Nutrition, 7(3), 779-786, 

https://doi.org/10.1016/j.aninu.2021.03.002. 

 

A.7 M.S. THESIS 

[ 32 ] Yang, X. 2020. Effects of adding different levels of polyethylene glycol to sorghum diets 

on rumen fermentation, rumen microflora, nutrient digestibility and plasma biochemical 

indicators of beef cattle. 

 

A.8 CONFERENCE PAPERS/ABSTRACT 

 

[ 1 ] Yang, X, L. Chai, R. Bist, S. Subedi, and Z. Wu. Monitoring cage-free laying hens with 

deep learning models. 2023 US Livestock Farming Conference. Knoxville, TN, May 21-24 

Full Paper accepted.  

[ 2 ] Bist, R. B, X. Yang, and S. Subedi, L. Chai. Monitoring floor egg laying behaviors of cage-
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free hens with machine vision. 2023 US Livestock Farming Conference. Knoxville, TN, 

May 21-24. Full Paper accepted.  

[ 3 ] Subedi, S., L. Chai, R. Bist, X. Yang. Floor Egg Detection with Machine Vision in Cage-

free Hen Houses. 2023 US Livestock Farming Conference. Knoxville, TN, May 21-24. Full 

Paper accepted.  

[ 4 ] Yang, X., Bist, R., Subedi, S., L. Chai. Tracking cage-free laying hens on litter floor with 

machine vision. 2023 International Poultry Scientific Forum (IPSF), Jan. 22-23, Atlanta, 

GA. 

[ 5 ] Bist, R., Yang, X., Subedi, S., L. Chai*. Monitoring mislaying behaviors of cage-free hens 

with deep learning. 2023 International Poultry Scientific Forum (IPSF), Jan. 22-23, Atlanta, 

GA.  

[ 6 ] Subedi, S., Yang, X., Bist, R., L. Chai. Detecting Floor Eggs with Machine Vision 

Technologies. 2023 International Poultry Scientific Forum (IPSF), Jan. 22-23, Atlanta, GA.  

[ 7 ] Yang, X., L. Chai, R. Bist, and S. Subedi. 2022. Litter quality in cage-free houses. 2022 

ASABE Annual International Meeting. Paper# 2200925 (doi:10.13031/aim.202200925).  

[ 8 ] Bist, R. L. Chai, Yang, X., S. Subedi. 2022. Air quality in cage-free hen houses during 

pullets production. 2022 ASABE Annual International Meeting. Paper# 2200329 

(doi:10.13031/aim.202200329).  

[ 9 ] Bist, R. B, S. Subedi and X, Yang, L. Chai. Detecting cage-free hens bumblefoot with deep 

learning models. 2023 Poultry Science Association (PSA) Annual Meeting. Jul 9-13. 

Philadelphia, PA. 

[ 10 ] Bist, R. B, S. Subedi and X, Yang, L. Chai. Synergistic effect of electrostatic particle 

ionization and bedding management on particulate matter and ammonia reduction in cage-
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free hen houses 023 Poultry Science Association (PSA) Annual Meeting. Jul 9-13. 

Philadelphia, PA. 

[ 11 ] Yang, X., Bist, R., Subedi, S., L. Chai. A automatic system for grading and sorting cage-

free eggs based on computer vision. 2023 Poultry Science Association (PSA) Annual 

Meeting. Jul 9-13. Philadelphia, PA. 

[ 12 ] Bist, R.B., Chai, L., Yang, X. and Subedi, S., 2023. Effects of artificial dusk lighting on 

perching behaviors of cage-free laying hens. In 2023 ASABE Annual International 

Meeting (p. 1). American Society of Agricultural and Biological Engineers. 

[ 13 ] Bist, R.B., Chai, L., Yang, X. and Subedi, S., 2023. Cage Free Hens’ Feather Pecking 

Management. In 2023 ASABE Annual International Meeting (p. 1). American Society of 

Agricultural and Biological Engineers. 

[ 14 ] Subedi, S., Bist, R., Yang, X., L. Chai.Multiple Behavior Classification of Cage-free Laying 

Hens using Deep Learning. 2023 International Conference on Integrative Precision 

Agriculture. May 18-19. Athens, GA. 

[ 15 ] Yang, X., Bist, R., Subedi, S., L. Chai. A computer vision based automatic system for egg 

grading and defect detection. 2023 International Conference on Integrative Precision 

Agriculture. May 18-19. Athens, GA 

[ 16 ] Bist, R. B, S. Subedi and X, Yang, L. Chai. An integrated engineering method for mitigating 

air pollutant emissions from cage-free hen houses. 2023 UGA Cleantech Symposium. 

[ 17 ] Bist, R. B, S. Subedi and X, Yang, L. Chai. Bedding management for suppressing particulate 

matter in the cage-free layer house. 2022 ASABE Annual International Meeting. 

[ 18 ] Yang, X., L. Chai, R. Bist, and S. Subedi. Detecting cage-free laying hens on litter floor 

with machine vision. 2022 Poultry Science Association (PSA) Annual Meeting. July. 11-14, 
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San Antonio, TX. 

[ 19 ] Yang, X., L. Chai, R. Bist, and S. Subedi. Monitoring litter quality in cage-free facilities 

with W-36 pullets. 2022 Poultry Science Association (PSA) Annual Meeting. July. 11-14, 

San Antonio, TX. 

[ 20 ] Bist, R. B, S. Subedi and X, Yang, L. Chai. Bedding management for suppressing particulate 

matter in the cage-free layer house. 2022 oultry Science Association (PSA) Annual Meeting. 

July. 11-14, San Antonio, TX. 

[ 21 ] Bist, R. B, B, Paneru, S. Subedi and X, Yang, L. Chai.Tracking dustbathing behavior of 

cage-free laying hens with machine vision technologies. Jan 30-Feb 1, Atlanta, GA. 

[ 22 ] X, Yang, Bist, R. B, S. Subedi and B, Paneru, L. Chai.Deep learning algorithms for tracking 

individual chicken for locomotion analysis. Jan 30-Feb 1, Atlanta, GA. 

[ 23 ] Bist, R. B, X, Yang, S. Subedi and B, Paneru, L. Chai.Automatic detection and scoring of 

footpad dermatitis in poultry utilizing YOLOv8-FPD models. Jan 30-Feb 1, Atlanta, GA. 

[ 24 ] Paneru, B., Bist, R., Yang, X., & Chai, L. (2024). Using Machine Learning to Detect 

Dustbathing Behavior of Cage-free Laying Hens Automatically. In 2024 ASABE Annual 

International Meeting (p. 1). American Society of Agricultural and Biological Engineers. 

June 28-August 1, Anaheim, CA. 

[ 25 ] Bist, R. B., Bist, K., Yang, X., Paneru, B., & Chai, L. (2024). Automatic Detection and 

Scoring of Footpad Dermatitis in Laying Hens Using Machine Learning Models. In 2024 

ASABE Annual International Meeting (p. 1). American Society of Agricultural and 

Biological Engineers. June 28-August 1, Anaheim, CA. 

[ 26 ] Paneru, B., Bist, R., Yang, X., & Chai, L. (2024). Detecting Perching Behavior of Cage-

Free Laying Hens with Machine Vision Technologies. In 2024 ASABE Annual International 
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Meeting (p. 1). American Society of Agricultural and Biological Engineers. June 28-August 

1, Anaheim, CA. 

[ 27 ] Yang, X., Bist, R., Paneru, B., & Chai, L. (2024). Advanced Machine learning Techniques 

for Monitoring Poultry Movement Patterns. In 2024 ASABE Annual International Meeting 

(p. 1). American Society of Agricultural and Biological Engineers. June 28-August 1, 

Anaheim, CA. 

[ 28 ] Bist, R. B., Bist, K., Yang, X., Paneru, B., & Chai, L. (2024). Machine Learning Model for 

Detection, Segmentation, and Tracking of Individual Cage-free Laying Hens. In 2024 

ASABE Annual International Meeting (p. 1). American Society of Agricultural and 

Biological Engineers. June 28-August 1, Anaheim, CA. 

[ 29 ] Bist, R. B., Regmi, P., Yang, X., Subedi, S., Paneru, B., & Chai, L. (2024). Comparative 

Assessments of Cage-free Pullet Age, Activities, and Impacts on Dust Concentration Using 

Accelerometer-Based Activity Sensors. In 2024 ASABE Annual International Meeting (p. 

1). American Society of Agricultural and Biological Engineers. June 28-August 1, Anaheim, 

CA. 

 

A.9 PRESENTATIONS 

[ 1 ] Yang, X, L. Chai, R. Bist, S. Subedi. Monitoring litter quality in cage-free facilities with W-

36 pullets. 2022 International Poultry Scientific Forum (IPSF), Jan. 22-23, Atlanta, GA. 

(Post Presentation). 

[ 2 ] Yang, X., Bist, R., Subedi, S., L. Chai. Tracking cage-free laying hens on litter floor with 

machine vision. 2023 International Poultry Scientific Forum (IPSF), Jan. 22-23, Atlanta, 

GA. (Oral Presentation). 
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[ 3 ] Yang, X., L. Chai, R. Bist, and S. Subedi. Detecting cage-free laying hens on litter floor 

with machine vision. 2022 Poultry Science Association (PSA) Annual Meeting. July. 11-14, 

San Antonio, TX. (Oral Presentation). 

[ 4 ] Yang, X., Bist, R., Subedi, S., L. Chai. A deep learning method for detecting cage- free hens 

on the litter floor. 2022 Poultry Science Graduate Research Forum Department of Poultry 

Science UGA. May 4. Athens GA. (Oral Presentation). 

[ 5 ] Yang, X, L. Chai, R. Bist, S. Subedi, and Z. Wu. Monitoring cage-free laying hens with 

deep learning models. 2023 US Livestock Farming Conference. May 21-24. Knoxville, TN 

(Oral Presentation). 

[ 6 ] Yang, X., Bist, R., Subedi, S., L. Chai. A computer vision based automatic system for egg 

grading and defect detection. 2023 International Conference on Integrative Precision 

Agriculture. May 18-19. Athens, GA (Poster Presentation). 

[ 7 ] Yang, X., Bist, R., Subedi, S., L. Chai. A automatic system for grading and sorting cage-

free eggs based on computer vision. 2023 Poultry Science Association (PSA) Annual 

Meeting. Jul 9-13. Philadelphia, PA (Oral Presentation). 

[ 8 ] Yang, X., Bist, R., Subedi, S., L. Chai. Deep learning algorithms for tracking individual 

chicken for locomotion analysis. 2024 International Poultry Scientific Forum (IPSF), Jan. 

30-Feb 1, Atlanta, GA. (Oral Presentation). 

[ 9 ] Yang, X., Bist, R., Paneru, B., & Chai, Advanced Machine learning Techniques for 

Monitoring Poultry Movement Patterns. 2024 American Society of Agricultural and 

Biological Engineers (ASABE) Annual International Meeting. June 28-August 1, Anaheim, 

CA. (Oral Presentation) 
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A.10 AWARDS AND HONORS 

! Poultry science forum 3rd prize, 2022 

! Student Hackathon Poultry Track Competition 1st Prize, 2023 

! Graduate student summer research grand, 2023 

! Gainesville Spring Chicken Scholarship Award 1st Prize, 2023  

! AOC Graduate Academic Achievement Award, 2024 

! AOC Student Research Presentation Award, 2nd Prize, 2024 

 

A.11 REVIEW 

! The First Workshop on DL-Hardware Co-Design for AI Acceleration 2023  

! IEEE Transactions on Neural Networks and Learning Systems 2 times (Impact factor: 10.4) 

! Frontiers in Bioengineering and Biotechnology (Impact factor: 5.7) 

! 2nd U.S. Precision Livestock Farming Conference 2 times 

! Process Biochemistry 3 times (Impact factor: 7.9) 

! Computers and electronics in Agriculture 5 times (Impact factor: 8.3) 

! Artificial Intelligence in Agriculture (Impact factor: 8.0)  

! Biosystems Engineering (Impact factor: 5.1) 

! British Poultry Science (Impact factor: 2.0) 

! PeeJ Computer Science 17 times (Impact factor: 3.8) 

! Frontiers in Medicine (Impact factor: 3.9) 
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! Frontiers in Immunology (Impact factor: 7.3) 

! Animals 17 times (Impact factor: 3.20) 

! Discover Oncology 2 times (Impact factor: 4.7) 

! Frontiers in Immunology (Impact factor: 7.3) 

! BMC Bioinformatics 10 times (Impact factor: 3.0) 

! Computational and Mathematical Methods 2 times (Impact factor: 0.9) 

! Animals (Impact factor: 3.2) 

! PLOS ONE 7 times (Impact factor: 3.7) 

! Poultry Science (Impact factor: 4.4) 

! Briefings in Functional Genomics 2 times (Impact factor: 4.0) 

! Applied Sciences 4 times (Impact factor: 2.7) 

! Electronics 13 times (Impact factor: 2.9) 

! Machines 2 times (Impact factor: 2.6) 

! Algorithms 2 times (Impact factor: 2.3) 

! Vehicles 2 times ((Impact factor: 2.2) 

! Computers (Impact factor: 2.80) 

! Signals 

! Medicine (Impact factor: 2.6) 

! American Society of Agricultural and Biological Engineers (Impact factor: 1.5) 

! Internal Journal of Molecular Sciences (Impact factor: 5.6) 
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! Engineering Open Access 21 times (Impact factor: 1.2) (Served as editor) 

! Journal of Nursing & Healthcare 14 times (Impact factor: 1.9) (Served as editor-in-chief) 

 

A.12 MEMBERSHIPS 

! Poultry Science Association (PSA) 

! World’s Poultry Science Association (WPSA) 

! American Society of Agricultural and Biological Engineers (ASABE) 

! Association of Overseas Chinese Agricultural, Biological, and Food Engineers (AOCABFE) 

 

A.13 GRANT APPLIED 

1. UGA- Summer Research Grant. " A computer vision-based automatic system for egg 

grading and defect detection." (Funded: $1500; 2023). 

2. Greenacres Grand from Greenacres Foundation. “Develop an automatic system to 

grade and weight table eggs with an innovative machine vision system in cage-free hen 

houses” (Unfunded; 2023) 

3. Graduate Student Travel Grant from the Graduate School at the University of 

Georgia (Funded: $900; 2024).  

 

 


