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Abstract

Modularity - the concept that complex proteins can be broken down into simpler, interdepen-

dent components - manifests in enzymatic evolution and underpins their functional diversification. 

Glycosyltransferases and kinases, enzymes with crucial roles in cellular processes, serve as exem-

plars to decipher modular evolution. Detailed comparative analysis of these enzymes provides 

novel insights into their inherent functional plasticity, illuminating versatile allosteric mechanisms 

to regulate catalysis. This research further extends to enzyme engineering, demonstrating how un-

derstanding enzymatic modularity can facilitate the design of new enzymes with desired functions. 

Ultimately, this dissertation presents a comprehensive framework for the modular understanding 

of enzymatic evolution and its implications for bioengineering, which can aid in the development 

of novel therapeutic and biotechnological applications.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 A preamble to systems biology

In the ever-evolving narrative of biology, every sub-discipline boasts its own distinct language,

enabling precise communication and understanding of intricate processes. Systems biology employs

the dynamic process of reading, writing, and erasing information to the functions of proteins

(Meyer and Jaffrey 2017; Gillette and Hill 2015; Dedola et al. 2020). Readers interpret ’writing’.

They recognize and bind specifically to certain post-translational modifications, such as specific

carbohydrate assemblies, ensuring that the message carried by the PTM is correctly understood and

responded to within the biological system. Writers like kinases and glycosyltransferases, ’write’

or modify biomolecules by addition of a phosphate or sugar (Figure 1.1). These modifications

contribute to a wide-variety of functions, from cell-signalling to triggers for the unfolded protein

response to altered recognition or evasion of the immune system (A. Chakrabarti, A. W. Chen,

and Varner 2011; Varki, Richard D Cummings, et al. 2022). Erasers remove or modify written

information. Together, this process of reading, writing, and erasing, regulate cellular processes.
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My focus in this dissertation involves two enzymatic writers, kinases and GTs, and how they have

evolved modular elements to finely-tune this writing process to dictate biological processes.

Figure 1.1: Cartoon example of the writing function performed by a glycosyltransferase. It can
transfer monosaccharides to build bigger sugars or transfer them onto other biomolecules regulating
cellular processes.

1.1.2 Modular evolution

Protein evolution is a multi-dimensional process shaped by various selection factors including

entropy, environment, and genetics (Pál, Papp, and Lercher 2006). Together, these factors not

only affect the physical characteristics of individual organisms but also contribute to broader

evolutionary trends across species and lineages.

This complexity is further nuanced by the concept of modular evolution. Modular evolution

suggests that proteins, and biological systems as a whole, may evolve in ’modules’ or distinct units

that can function independently but also interact with other modules. These modules can be as

small as individual protein domains or as large as entire metabolic pathways (Moore et al. 2008).

Modularity allows for more flexible adaptations, as one module can change or evolve without

necessarily disrupting the function of others. Modularity in evolution thus adds another layer to
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the multi-dimensional landscape in which proteins evolve, enabling more targeted changes and

potentially accelerating the pace of evolutionary innovation.

The modular nature of protein evolution has a profound impact on the diversity of proteins we

observe. Because modules can evolve independently, it becomes possible for multiple variants of

a module to coexist and combine in different ways, leading to a rich tapestry of protein functions.

This is somewhat analogous to building blocks: by rearranging a set number of blocks, you can

create a vast array of structures. In biological terms, this improves adaptation of an organism,

allowing it to more readily handle red queen effects or changing environmental conditions (Chr

and Smith 1984).

But how can we trace the origins and diversification of these modules? One powerful approach

is through the study of evolutionary conservation. Modules that serve critical functions are likely

to be conserved, or remain relatively unchanged, across different species (Hirsh and Fraser 2001).

For example, the protein hydrophobic core is a slow-evolving conserved module around which a

protein folds; it is less likely to be variant because folding and packing defects fundamentally

affect overall protein stability. By comparing the sequences of conserved modules across various

organisms, we can gain insights into their evolutionary history and perhaps even pinpoint the

emergence of new functional modules (Echave and Wilke 2017).

Therefore, modular evolution and evolutionary conservation are interlinked concepts that

together offer a comprehensive view of protein evolution. They help us understand not just how

proteins change, but also how these changes are orchestrated to produce the incredible biological

diversity we see today.

1.1.3 Protein hydrophobic cores

Building upon the framework of modular evolution, it is noteworthy to consider its implications at

the structural level within proteins. As mentioned earlier, one of the essential structural modules

within proteins is the hydrophobic core. Traditionally considered as static entities, these cores are
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integral in maintaining protein stability and guiding the folding process. Formed by the aggregation

of hydrophobic amino acids, these cores exist in the interior of the protein, shielded from the

aqueous environment, thereby minimizing the system’s free energy (Kronberg 2016).

While the hydrophobic core has been extensively studied for its role in providing stability

to protein structure, the traditional view of these cores as rigid, unchanging entities has been

challenged (Sarina Bromberg and Ken A Dill 1994; S. Taylor et al. 2004; Lazar and Handel 1998).

Particularly in protein kinases, recent studies have revealed an astonishing degree of flexibility

within the hydrophobic core (S. Taylor et al. 2004; Susan S. Taylor and Alexandr P. Kornev 2011).

This flexibility suggests a more dynamic role for the hydrophobic core, potentially allowing for

adaptive changes in protein function or interactions.

This newfound flexibility in kinases raises intriguing questions for the broader landscape of

enzymatic functions. Could similar levels of flexibility in the hydrophobic cores of other enzymes

be a generalized phenomenon? Such a possibility would further emphasize the modularity and

adaptability of protein structures in response to evolutionary pressures. Alterations in the hy-

drophobic core are not without consequences. Disruptions in this structural module, whether

due to mutations or external perturbations, can significantly affect protein stability and function

(Sarina Bromberg and Ken A Dill 1994; Lazar and Handel 1998). For example, mutations that

destabilize the hydrophobic core can result in protein misfolding, a pathological condition im-

plicated in a variety of diseases, including neurodegenerative disorders like Alzheimer’s disease

(Knowles, Vendruscolo, and Dobson 2014; Selkoe 2004).

The hydrophobic core can be conceptualized as a structural module that plays a critical role

in both the stability and adaptability of proteins. This perspective not only enriches the existing

understanding of protein architecture but also opens new avenues for exploring the evolution and

diversity of enzymatic functions. My research explores the impact and significance of this core

module on protein structure-function and allosteric regulation in two distinct enzyme superfamilies:

Eukaryotic Protein Kinases (EPKs) and Fold A Glycosyltransferases (GT-As).
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1.1.4 Kinase biology

EPKs are a critical family for cell signaling due to their role in phosphorylation and are thus one of

the largest druggable families in the proteome (Manning et al. 2002). All kinases have a heavily

conserved chassis, formed by an N-lobe and C-lobe which function to bind ATP and phosphorylate

substrates (Gógl et al. 2019). Spanning these lobes is are two spines of a hydrophobic core

that dynamically assemble to regulate kinase activity. These spines are called the Catalytic spine

(C-spine) and Regulatory spine (R-spine) (S. Taylor et al. 2004). The C-spine is not a contiguous

set of residues; it requires ATP to bind, improving core packing of the disjointed C-spine (S.

Taylor et al. 2004; Susan S. Taylor and Alexandr P. Kornev 2011). This may be why kinases show

increased thermostability upon ATP binding.

Kinases phosphorylate. Phosphorylation acts as a molecular switch, modulating protein func-

tions, and consequently affecting the operational and regulatory processes within cells. By altering

the structure and activity of proteins, kinases control cellular responses to environmental cues,

facilitate inter- and intra-cellular communication, and maintain cellular homeostasis (Cowan and

Storey 2003).

Substrate recognition by kinases is not merely sequence-based but is also influenced by the

spatial and temporal distribution of both the kinase and substrate (Johnson et al. 2023; Zhou et al.

2023), ensuring highly regulated and context-dependent cellular functions. This complex interplay

between kinases and substrates underscores the versatility and adaptability of cellular signaling

networks, allowing cells to respond efficiently to varied physiological demands and environmental

conditions. Kinases occupy a central role in cellular biology, orchestrating a myriad of cellular

processes through the modification of a diverse range of substrates (Manning et al. 2002). The

convergence of specificity and diversity within kinases ensures the accurate propagation of cellular

signals, allowing organisms to adapt and respond to their environment effectively. The intricate

regulatory mechanisms and the conserved catalytic core among the diverse kinase family highlight
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the evolutionary significance and the complexity of cellular signaling networks (Manning et al.

2002; S. Taylor et al. 2004).

The diversity within the kinase family is reflected not only in their substrate preferences but also

in their structural configurations, regulatory mechanisms, cellular localizations, and physiological

roles. Despite this diversity, a commonality among kinases is their conserved catalytic core (S.

Taylor et al. 2004; Gógl et al. 2019), responsible for the binding of ATP and the transfer of

the phosphate group, providing a universal mechanism for phosphorylation across different kinase

classes. Because they are so well conserved, they are often differentiated by N-terminal and

C-terminal segments that flank the kinase chassis. Kinases interact with a multitude of scaffold

proteins, adaptor proteins, and other signaling molecules, forming multi-protein complexes that

facilitate signal transduction and ensure the spatial and temporal specificity of signaling events.

Previously, we published a paper on holozoan tyrosine kinases revealing how differences in the

N-terminus of various kinases contribute to alterations in function and compartmentalize signaling

components, allowing for the synchronized regulation of cellular processes (Yeung, Kwon, et al.

2021). It is critical to understand how a diversity of N and C-terminal modules that flank the

kinase yield the functional diversity we see today. The intricate regulatory mechanisms governing

kinase activity underscore their importance in maintaining cellular equilibrium.

Finally in this dissertation, we compare kinases to other enzyme families such as glycosyl-

transferases uncovering the convergent and divergent evolutionary paths that have shaped the

family’s enzymatic landscape. We reveal the shared principles between kinases and GTs, as well

as unique modular adaptations that underlie the functional diversity and specificity of different

enzyme classes, offering a holistic perspective on the orchestration of cellular processes and the

evolutionary design of biological systems.
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1.1.5 Glycosyltransferase biology

The various folds of GTs

Glycosyltransferases (GTs) are a diverse group of enzymes that play central roles in the glyco-

sylation processes across myriad organisms. Their diversity extends not just to their substrate

preferences and reaction types, but also to structural makeup. One of the intriguing aspects of

GTs is their distinct structural conformations or "folds". These folds provide insights into the

evolutionary pathways, functional specificities, and mechanistic operations of these enzymes. Here,

we delve into the different established folds of GTs, namely Fold A, B, C, and lysozymal-type

(Varki, Richard D Cummings, et al. 2022; Moremen and Haltiwanger 2019; Venkat, Tehrani, et al.

2022; Taujale, Venkat, et al. 2020; Taujale, Zhou, et al. 2021).

1. Fold A GTs (GT-A):

General Structure: Fold A GTs are primarily characterized by a Rossmann-fold, a common

motif in proteins that bind nucleotides. This motif consists of alternating β-strands and α-helices

in a specific β/α/β-fold pattern.

Function & Mechanism: Enzymes of this fold operate via either an inverting (SN2), which use

an xED-catalytic base to deprotonate the acceptor, or retaining (SN i) mechanism, where the ac-

ceptor is deprotonated by the NDP-sugar β-phosphate (Varki, Richard D Cummings, et al. 2022).

This action often requires the presence of a divalent metal cation, typically Manganese, bound

through the DxD motif, however, some variant GT-As may no longer need to bind a metal cation,

independently losing the need for the DxD. Instead, they coordinate the NDP-sugar through

family-specific variations of amino acids that may mimic the divalent cation (e.g. DGK-lysine

in GT116 (Amos et al. 2022) or mutation of the C-His to basic amino acids in GT14 (Taujale,

Venkat, et al. 2020)).
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Figure 1.2: Cartoon representation of different GT folds.

2. Fold B GTs (GT-B):

General Structure: Similar to GT-As, GT-Bs have dual Rossmann-fold domains. The C-terminal

domain binds the nucleotide sugar donor, where the acceptor lies between the cleft of both do-

mains.

Function & Mechanism: Like GT-As, enzymes of this fold have both inverting and retaining

mechanisms. In rare cases, retaining GT-B enzymes may also use a double-displacement type

mechanism instead of the front-facing (SN i) mechanism (Venkat, Tehrani, et al. 2022). However,

GT-Bs forego the use of a DxD motif and do not use a divalent cation for catalytic activity (Varki,
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Richard D Cummings, et al. 2022).

3. Fold C GTs (GT-C):

General Structure: This fold is less structurally represented as compared to Folds A and B.

They structurally diverge significantly from these enzymes as well, with an additional massive

membrane bound domain.

Function & Mechanism: Unlike GT-A and GT-B enzymes, these enzymes predominantly use

lipid-linked donors (Varki, Richard D Cummings, et al. 2022).

4. Lysozymal-type GTs (GT-lyso):

General Structure: These GTs share structural similarities with lysozymes, enzymes known for

breaking down bacterial cell walls within the lysosome. The core structure usually incorporates a

prominent β-sheet configuration.

Function & Mechanism: Akin to GT-C enzymes, these use lipid-linked donors. They have

structural kinship with lysozymes and these GTs do not appear structurally cluster with any other

GT families (Taujale, Zhou, et al. 2021).

The structural folds of glycosyltransferases offer a fascinating lens into their evolutionary

history, functional diversity, and catalytic mechanisms. The variety in their configurations—ranging

from the well-studied Rossmann-folds in Fold A GTs to newly characterized lysozyme-type GTs

underscores the adaptability and versatility of these crucial enzymes. As research into GTs continues

to expand, understanding these structural nuances will be paramount in decoding their intricate

roles in biology and potential applications in biotechnology.
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GT-As across the tree of life

Glycosyltransferases (GTs), particularly those belonging to the GT-A family, exhibit a unique and

conserved structural framework. We previously delineated that most GT-As generally share 231

residues that make up this common scaffold (Taujale, Venkat, et al. 2020). Structurally, this

scaffold is made up of a Rossmann-like fold characterized by a central β-sheet flanked by α-helices,

creating an α/β/α sandwich architecture, interspersed with highly divergent hypervariable regions,

which altogether coordinate the binding specificity of a diversity of donor and acceptor substrates,

as well as fine-tuning binding kinetics and kinetic efficiency for the transfer of sugars.

From bacteria to eukaryotes, GT-As exhibit a vast array of functional diversities, participating

in the synthesis of a myriad of glycoconjugates essential for cellular structure, recognition, and

signaling. Their presence across the tree of life denotes the evolutionary conservation and functional

versatility of GT-As in mediating glycosylation reactions crucial for the survival and adaptation

of organisms (Taujale, Venkat, et al. 2020). Exploring GT-As across different species reveals

the evolutionary trajectories and adaptive innovations of these enzymes, offering insights into

the co-evolutionary dynamics of glycosylation pathways and cellular networks. Analyzing the

distribution and diversification of GT-As can unravel the evolutionary pressures and ecological

contexts that have shaped the functional landscape of glycosyltransferases. Understanding how

GTs relate to one another and the influence of the hydrophobic core on these relationships is

essential for elucidating the evolutionary patterns and functional dynamics of these enzymes.

As mentioned previously, the hydrophobic core has been long considered a static component.

However, its potential dynamic nature may be instrumental in understanding the evolutionary

and functional adaptations of GTs. This flexibility might play a critical role in shaping enzyme

specificity and determining functional pathways, thereby influencing the evolutionary trajectories

of glycosyltransferases. An in-depth study of the evolutionary patterns of GTs and the role of

their hydrophobic cores can enhance our understanding of molecular evolution. This exploration

can provide a comprehensive perspective on the factors influencing the structural and functional
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variations among enzymes, highlighting the evolutionary mechanisms underpinning the diverse

functionalities of these proteins.

1.2 Research gaps and major questions addressed

The research in this dissertation will dive into the modular evolution of glycosyltransferases and

kinases through three pivotal studies. These studies aim to bridge the existing gaps in our

understanding of the evolutionary and functional intricacies of these enzymes.

1.2.1 GT-A evolution and modularity of the hydrophobic core

The overarching evolution of GT-As and the structure and conservation of the GT-A hydrophobic

core was first elucidated by our published work in 2020 (Taujale, Venkat, et al. 2020), where we

constructed systematic sequence profiles of glycosyltransferases using bayesian sequence methods

(Andrew F. Neuwald 2009; Andrew F Neuwald 2014). These methods extracted evolutionary

patterns from GT-As through classification of GT-A enzyme families into distinct sets, separated

by constraints unique to each set. Constraints shared across GT-As were used to identify residue

features like the hydrophobic core and key motifs like the DxD motif, G-loop, xED motif, and

C-His, as well as three hypervariable regions which share almost no sequence conservation between

families.

The existing literature lacks comprehensive studies unraveling the intricate relationships be-

tween the evolutionary trajectories of GT-As and the dynamic nature of their hydrophobic cores.

There is an unmet need for research addressing the possible functional adaptations and structural

diversities emerging from the modifications in the hydrophobic core, potentially revealing novel

insights into the evolution of enzymatic specificity and diversity.

My research explored the foundational structural elements of proteins, specifically hydrophobic

cores, traditionally related to protein folding and stability, and their impacts on protein evolution
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and function within fold A glycosyltransferases (GT-As). The focus was on a large superfamily of

enzymes—GT-As, renowned for catalyzing the formation of glycosidic linkages across a spectrum

of donor and acceptor substrates through distinct catalytic mechanisms (inverting versus retaining).

Through the application of hidden Markov models and comprehensive protein structural align-

ments, this study unearthed resemblances in the phosphate-binding cassette (PBC) of GT-As

and those found in unrelated nucleotide-binding proteins like UDP-sugar pyrophosphorylases. The

exploration substantiates that GT-As have undergone divergent evolution from other nucleotide-

binding proteins due to structural expansions of the PBC and its unique hydrophobic linkage to

the F-helix, which encompasses the catalytic base (xED-Asp).

The research illustrated that while hydrophobic tethering is a conserved trait across various

GT-A fold enzymes, anomalies exist, exemplified by families like B3GNT2. This study conducted

meticulous experimental mutational analysis and molecular dynamics simulations to assess the

structural and functional repercussions of variations in core packing and tethering interactions,

discovering that specific core mutations, like T336I in B3GNT2, augment catalytic efficiency by

influencing the conformational positioning of the catalytic base.

This exploration has culminated in a published paper, presenting a groundbreaking model of

evolution where the GT-A core experienced progressive evolution, elaborating upon an ancient

PBC, seen in various nucleotide-binding proteins. This modifiable core has been a pivotal struc-

tural platform, allowing the evolution of novel catalytic and substrate-binding functions within

contemporary GT-A fold enzymes. The findings illuminate the intricate evolutionary paths and

functional adaptabilities within GT-As, contributing to the enriched understanding of protein

structures and functions, and offering insights that have the potential to impact future studies in

protein evolution.
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1.2.2 Kinase Allostery by Flanking Segments: DCLKs Introduction

Protein kinases are extraordinarily conserved enzymes involved in the dynamic orchestration of

cellular signaling. This conservation begs the question of how different kinases, in spite of their

highly conserved chassis, regulate activity. Recent research unveils how kinases vary flanking

segments at the N-terminus resulting in evolutionary and functional diversification (Yeung, Kwon,

et al. 2021). But there are still gaps in the understanding of the molecular and regulatory roles

of C-terminal flanking segments in allostery and the isoform-specific differences therein. Dual

specificity protein kinase (DCLK) family members, characterized by their diverse isoforms and

regulatory modules, offer a promising avenue to explore these gaps. Detailed studies focusing

on the isoform-specific modules from alternative splicing and their impact on kinase function in

DCLKs are currently scarce but critical for understanding the functional intricacies and regulatory

diversity of kinases.

DCLKs have intrigued the scientific community, due to their unique microtubule-associated

properties and, notably, their distinct C-terminal tail segments, which appear to be involved in

autoregulation of function. In our study, we hone in on this C-tail variability, driven by alternative

splicing events, to unravel its implications on the holistic functional mechanism of DCLK kinases.

With the varying tail lengths across DCLK isoforms, we were curious about the molecular basis

of how these changes affect kinase autoregulation. To tackle this conundrum, we employed a

series of approaches: statistical sequence analysis, molecular dynamics simulations, and meticulous

in vitro mutational analysis. These methodologies, combined, shed light on the evolutionary

intricacies within the DCLK family. We identified, within the DCLK1 sub-family, distinct splice

variants that utilize alternative codons, enhancing the inhibitory capacity of the DCLK1 C-tail.

Moreover, our investigations have delineated specific co-conserved motifs, which not only

demarcate DCLKs from the broader Calcium Calmodulin Kinase (CAMK) ensemble but also

emphasize the assembly of pivotal motifs anchoring the C-terminal tail for auto-regulatory purposes.
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When the C-terminal tail undergoes structural modifications, the ramifications span pro-

tein stability, nucleotide/inhibitor-binding affinity, and enzymatic activity, suggesting a complex,

isoform-driven regulatory matrix.

This work provides a scaffold for dissecting kinome regulation, with a spotlight on the regulatory

mechanisms of intrinsically disordered regions. These insights, I believe, will be instrumental in

guiding the future design of DCLK1 modulators, with therapeutic potential that may very well

reshape our current landscape of kinase-targeted interventions.

1.2.3 AI for Glycosyltransferases

Accurate prediction of glycosyltransferase specificity remains a complex challenge, due to the

inherent complexity of expression and purification of GTs, as well as a lack of structural data

availability. As previously described, GTs are exhibit great functional diversity. Given their pivotal

role in various metabolic and signaling pathways, there exists a critical need to predict and classify

GT function to aid in hypothesis generation and testing for glycobiologists.

With the advent of deep learning and protein language models, how can advanced computa-

tional tools be developed to classify glycosyltransferase function in a robust and accessible manner?

We introduce "Glydentify," an advanced tool designed for classification of glycosyltransferase func-

tion. Distinct from traditional sequence classification or conventional machine learning methods,

Glydentify leverages state-of-the-art protein language models, specifically ESM2. This enables

the tool to extract high-dimensional sequence embeddings, providing a rich dataset for accurate

classification. The results indicate that Glydentify can classify GT families with a confidence

level of 92% and also predict potential donor binding with an 89% confidence, using input fasta

sequences.

Furthermore, the utility of Glydentify extends beyond its computational capabilities. Integrating

Gradio ensures the tool provides an intuitive interface, eliminating the need for extensive program-
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ming knowledge. This design choice ensures broader accessibility to researchers, facilitating the

application of cutting-edge machine learning in diverse research settings.

Available as an open-source tool on GitHub and also accessible via web browser

(https://huggingface.co/spaces/arikat/Glydentify), Glydentify aims to drive advancements in GT

research. By combining sophisticated computational methodologies to serve practical research

needs, it provides a foundational platform for deeper insights into glycosyltransferase functional

diversities and evolutionary patterns.
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2.1 Abstract

Hydrophobic cores are fundamental structural properties of proteins typically associated with

protein folding and stability; however, how the hydrophobic core shapes protein evolution and

function is poorly understood. Here, we investigated the role of conserved hydrophobic cores

in fold-A glycosyltransferases (GT-As), a large superfamily of enzymes that catalyze formation

of glycosidic linkages between diverse donor and acceptor substrates through distinct catalytic

mechanisms (inverting versus retaining). Using hidden Markov models and protein structural align-

ments, we identify similarities in the phosphate-binding cassette (PBC) of GT-As and unrelated

nucleotide-binding proteins, such as UDP-sugar pyrophosphorylases. We demonstrate that GT-As

have diverged from other nucleotide-binding proteins through structural elaboration of the PBC

and its unique hydrophobic tethering to the F-helix, which harbors the catalytic base (xED-Asp).

While the hydrophobic tethering is conserved across diverse GT-A fold enzymes, some families,

such as B3GNT2, display variations in tethering interactions and core packing. We evaluated

the structural and functional impact of these core variations through experimental mutational

analysis and molecular dynamics simulations and find that some of the core mutations (T336I

in B3GNT2) increase catalytic efficiency by modulating the conformational occupancy of the

catalytic base between “D-in” and acceptor-accessible “D-out” conformation. Taken together,

our studies support a model of evolution in which the GT-A core evolved progressively through

elaboration upon an ancient PBC found in diverse nucleotide-binding proteins, and malleability

of this core provided the structural framework for evolving new catalytic and substrate-binding

functions in extant GT-A fold enzymes.

Keywords

glycobiology – glycosyltransferase – protein evolution – structure–function – bioinformatics
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2.2 Introduction

Glycosyltransferases (GTs) are a diverse family of enzymes that catalyze the formation of glycosidic

linkages between sugars and other macromolecules (Varki, Richard D. Cummings, et al. 2015).

These enzymes are found across the tree of life and are involved in a number of critical cellular

functions through post-translational modifications, including protein folding, signaling, and stability

(Varki, Richard D. Cummings, et al. 2015).

Figure 2.1: Cartoon Mechanism

Misregulation, or aberrant glycosylation, is implicated in a wide range of diseases, including

Alzheimer’s, Parkinson’s, muscular dystrophies, and human cancers (Agrawal et al. 2017; Chugh

et al. 2015; Grewal et al. 2001; Kitazume, Saido, and Hashimoto 2004; Moll, Shaw, and

Cooper-Knock 2020; Yoshida et al. 2001). Based on the catalytic mechanism, GTs are broadly
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classified as “inverting” or “retaining” based on the stereochemistry of the glycosidic bond they

generate (Figure 2.1). Inverting GTs generally employ a direct SN2 displacement mechanism with

a protein-associated catalytic base that deprotonates the acceptor nucleophile hydroxyl leading to

attack on the anomeric center and displacement of the nucleotide diphosphate–leaving group. By

contrast, retaining GTs do not use an enzyme side chain as catalytic base but instead are generally

considered to employ a same-side SN i-type mechanism where the acceptor hydroxyl nucleophile

is deprotonated by the donor β-phosphate oxygen and attacks the anomeric carbon atom of the

donor sugar from the same side as the leaving nucleotide (Moremen and Haltiwanger 2019). While

there are rare examples of unusual GTs that presumably employ a double-displacement mechanism

(Kimber et al. 2020; Ovchinnikova et al. 2016), in general, the differences in catalytic machinery

between inverting and retaining GTs are the location and use of a catalytic base in acceptor

deprotonation and the location of the acceptor nucleophile hydroxyl relative to the nucleotide

sugar donor (Moremen and Haltiwanger 2019).

Independent of the catalytic mechanism, GTs can be classified into one of four major folds

(A, B, C, and lyso) (Varki, Richard D. Cummings, et al. 2015; Moremen and Haltiwanger 2019;

Taujale, Zhou, et al. 2021) or variants of known folds (Taujale, Zhou, et al. 2021) based on

primary sequence similarity and 3D topology. A vast majority of GTs fall within the GT-A fold,

which is characterized by the Rossmann fold–like α/β/α sandwich topology adopted by a diverse

class of nucleotide-binding proteins unrelated to GTs (Varki, Richard D. Cummings, et al. 2015;

Breton et al. 2006), but the structural basis for how GTs evolutionarily diverged from other

Rossmann fold proteins is not known. We recently reported a deep evolutionary classification of

GT-A fold sequences into 53 (sub)families that broadly fall into nine different clades and identified

the core structural features shared among diverse GT-A fold enzymes (Taujale, Venkat, et al.

2020; Kadirvelraj et al. 2021). These core features include two motifs (DxD and xED) involved

in catalytic functions as well as an extended network of hydrophobic residues connecting the

catalytic and nucleotide-binding sites. While a majority of these conserved hydrophobic residues
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are present in other Rossmann fold enzymes, a subset of GT-A families such as GT6 and GT8,

the GT-A–specific residues are frequently mutated in cancer subtypes (Table S1). However, the

structural and functional roles of these natural and disease variations in the core are largely

unknown.

Nearly all folded proteins are characterized by hydrophobic residues in the core that contribute

to protein folding and stability (Baldwin and Matthews 1994; Maxwell and Davidson 1998; Szilágyi

and Závodszky 2000) While most protein cores are optimally packed, in many regulatory and

signaling proteins, the core packing is nonoptimal resembling a “nuts-and-bolts” in a jar model

(S. Bromberg and K. A. Dill 1994), in which some core residues are rigid, whereas others are

flexible. The overall fitness of a hydrophobic core is determined by energetic favorability of packing

interactions (J. Chen and Stites 2001), and packing efficiency has been correlated with protein

dynamics and allosteric functions (Bhardwaj and Gerstein 2009; Ben-David et al. 2019). The

nonoptimal packing of the core provides a selective advantage in some proteins, such as protein

kinases, which are dynamically assembled during regulation of catalysis. Protein kinases contain

an extended hydrophobic network connecting the ATP and substrate-binding lobes, termed the

“spines,” which are dynamically assembled during kinase activation (Alexandr P. Kornev and Susan

S. Taylor 2010) and the suboptimal packing of the spine residues enable dynamic regulation of

catalytic activity (J. Chen and Stites 2001; Susan S. Taylor and Alexandr P. Kornev 2011; J. Kim

et al. 2017). Indeed, malleable cores have been implicated in allosteric regulation or inhibition in

other enzyme families as well (Hardy et al. 2004; Horn and Shoichet 2004; Mei et al. 2018), but

the role of conserved core in GT-A evolution and function has not been systematically investigated.

Here using a combination of structural bioinformatics and experimental studies, we investigate

the role of conserved hydrophobic core in GT-A structure, function, and evolution. Based on

the identification of an ancient phosphate-binding cassette (PBC; (Longo et al. 2020), Fig. 1)

shared by GT-As and other nucleotide-binding proteins, we dissect the hydrophobic core of GT-A

enzymes into three categories: residues shared among PBC-containing enzymes, residues shared by
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Figure 2.2: Structural comparison of the PBC in selected enzyme superfamilies. A) cartoon
representations of different enzyme superfamilies with a GT-A structure at the left, demonstrating
superfamily specific variations to a shared ancestral β-α-β phosphate-binding region. B) compar-
ison of a subset of GT-A, Rossmann fold, and P-loop NTPase PBC topologies as cartoons to
show how GT-As structurally differ from most other Rossmann fold enzymes. Many topologies
exist to bind the phospho-nucleotide ligand.

Rossmann fold proteins, and residues unique to the GT-A core. We perform an in-depth structural

analysis of the GT core–specific residues (residues 156 and 183) connecting the PBC and the

αF-helix and find a strong correlation between hydrophobic packing and catalytic mechanism

(inverting versus retaining). We propose that a dynamic GT-A core provides a selective advantage

by enabling new modes of donor- and acceptor-binding functions. Our studies support a model

in which the GT-A core evolved progressively through elaboration of an ancient PBC found in

diverse nucleotide phosphate–binding proteins. Implications of our findings in the synthetic design

of GTs and characterization of oncogenic mutations mapping to the core are discussed.
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2.3 Results

2.3.1 Delineation of the PBC and modular evolution of the GT-A

hydrophobic core

Recently, an ancestral PBC shared among P-loop NTPases and Rossmann fold enzymes was

reported (Longo et al. 2020). This includes several major enzyme superfamilies, such as py-

rophosphorylases, oxidoreductases, epimerases, and hydrolases. Now, based on further structural

comparisons (see the Experimental procedures section), we extend the presence of this ancestral

PBC to GT-As (Fig. 1). We used hidden Markov models (HMMs) from previously published PBC

themes (Longo et al. 2020), which produced significant hits to the PBC of GT-As. Different en-

zyme families have variable structural topologies of the PBC (28). By performing an all-versus-all

structural comparison of a representative set of these different PBCs, we identify clusters of PBCs

that further support structural and functional similarities between the GT-A PBC and NDP-sugar

pyrophosphorylases (Fig. S4). GT-A PBCs closely resemble that of Rossmann pyrophosphorylases

in terms of overall topology. Notably, both pyrophosphorylases and GT-As consistently use metal

ions to bind the dinucleotide phosphate. Specifically, UDP-sugar pyrophosphorylases bind a UTP

donor and sugar-1-phosphate acceptor and catalyze the formation of a UDP-sugar substrate,

which is used as a donor substrate for both GT-A and GT-B fold enzymes (Varki, Richard D.

Cummings, et al. 2015). Structural alignment of the PBCs (using Protein Data Bank [PDB]

IDs: 3OH3 and 2Z87) reveals similar PBC topologies for cofactor and nucleotide binding in these

two enzymes (Figs. S2–S5). Matching homology from the HMM analysis and the structural

alignment suggest a shared ancestry between these two protein families, although the possibility

of convergent evolution of a common phosphate-binding mode cannot be ruled out.

GT-A PBCs differ from most other Rossmann fold enzymes and P-loop NTPases by flipping

the topological orientation and replacing the glycine-rich loop (located between the β1 sheet and

25



α1 helix) with an additional pseudo beta bridge (β’), shifting the binding site for both the ligand

and divalent cation (Figs. 1B and S2). Likewise, elaboration of the loop connecting β1 and

α1 helix in GT-A through insertion of the metal coordinating DxD motif further contributes to

structural and functional divergence of GT-A PBC from other Rossmann enzymes (Figs. 1B and

S2).

Figure 2.3: The GT-A hydrophobic core is separable into three modules over evolutionary time.
A, structural depiction of the ancestral phosphate-binding cassette (PBC) in GT2 (Protein Data
Bank ID: 2Z87), which contains three of the hydrophobic residues of the GT-A core (surface
representation). B and C, extension of the hydrophobic core from the PBC, showing the insertion
of an N-lobe core, common to all Rossmann fold enzymes, and a GT-A specific C-lobe tether
which connects the αF-helix to the PBC.

In GT-As, the PBC corresponds to β4, αD, and β6 (residues Y234 to G266 in PBC; Fig.

2A) containing the classic metal-binding DxD motif and a miniature hydrophobic core (Fig.

2A). Delineation of the PBC allows us to further dissect the anatomy of the GT-A core into

three hierarchical categories based on the depth of conservation of hydrophobic residues. We

denote these residues based on the GT2 structure (PDB ID: 2Z87) and the consensus alignment

numbering published in a previous study (alignment position indicated parenthetically). Residues

present in the PBC include V235 (86), A236 (87), and V249 (100) (Figs. 2A and S6). Residues

shared by Rossmann fold enzymes include I154 (1), V155 (2), I156 (3), L165 (13), L169 (17),
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L172 (20), V183 (32), I184 (33), V185 (34), V235 (86), and A236 (87) (Figs. 2B and S6); and

residues unique to GT-A fold enzymes include V249 (100), F340 (156), and F365 (183) (Figs. 2C

and S6). Hydrophobic residues shared by Rossmann fold enzymes tether the PBC to the N-lobe

(αA-helix), whereas residues unique to GT-A fold enzymes tether the PBC to the αF-helix in the

C-lobe. In particular, the GT-A–specific hydrophobic residue in the F-helix (F365; position 183

in Fig. 2C) mediate a van der Waals interaction with hydrophobic residues in the PBC (F340

position in Fig. 2C) and a backbone hydrogen bond with the catalytic xED-Asp. Because the

C-lobe tethering of the PBC is unique to GT-As and represent the most recent addition in GT-A

core evolution, we focus on the C-lobe tethering interaction (F340 and F365) in the following

sections.

2.3.2 GT-A–specific extension of the ancestral core is malleable and

contributes to conformational flexibility, acceptor recognition,

and catalysis

We performed a detailed analysis of the structural interactions mediated by tether residues (at

positions 156 [F340] and 183 [F365]) in representative crystal structures to investigate their role in

GT-A fold structure. Analysis of the contact distances between these residues indicates significant

variability in side-chain contact distances (ranging from 4 to 14 Å) across diverse GT-A enzymes.

Further analysis of these distances in inverting and retaining enzymes revealed strong correlation

between contact distance and catalytic mechanism (p = 1.61E-13, using a two-tailed t test) (Fig.

3A, Supp File 156-183dist).

In inverting GT-As, the hydrophobic contact distance between 156 and 183 is in the range

of 4 to 7 Å, whereas in the majority of retaining GT-As, the median distance between these

residues increases significantly, with a normalized maxima around 10 Å. Retaining GT-As form

a bimodal distribution, where several retaining GT-As have a contact distance between 4 and 7

Å. We observe these retaining GT-As to appear in clades containing previously phylogenetically
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Figure 2.4: Structural conservation and variability in the C-lobe tether. A, Violin plot of repre-
sentative GT-A Protein Data Bank structures, separated by mechanism, measuring the minimum
distance from hydrophobic core positions 156 and 183, with a line of fit for histogram density
showing significant separation between retaining and inverting GT-As (p = 1.61E-13). The gray
bar indicates the range for a typical hydrophobic contact. Retaining GT-As show a higher variation
than inverting GT-As for this region, with most retaining GT-As having a minimum distance be-
tween 9 and 10 Å, greater than a hydrophobic contact. Inversely, most inverting GT-As appear to
maintain a contact distance of ≈3 to 6 Å, within contact distance. B and C, structural differences
between retaining and inverting GTs, using two representative GT-A structures reveal a separation
in most retaining GTs that appears to extend the size of the hydrophobic core. Core residues in
yellow are conserved across all Rossmann fold enzymes, whereas red residues are GT-A specific.
Where most inverting cores (blue) can directly make contacts in the tether, many retaining GTs
have a gap between these conserved residues from packing defects.

classified subfamilies (Breton et al. 2006) of the large GT2 CAZy family, thus we term these as

“GT2 related” (Figs. 3A and S7). GT2s are more primordial (Breton et al. 2006), and as such, we

note that retaining enzymes related to GT2 have largely maintained a spacing consistent with the

more constrained inverting enzymes. More distant retaining GT-As appear to have a less tightly

packed C-lobe tether (Fig. 3, B and C).

While the catalytic base (xED-Asp) is conserved in inverting GTs, in retaining enzymes, the

xED-Asp is often replaced by a glutamine or a glutamate, which shifts the site of catalysis by >2

Å (moremen_emerging_2019), preventing it from being used as a catalytic base. Instead of

the xED motif, retaining GTs use the β-phosphate oxygen of the UDP-sugar donor as a catalytic

base and perform a dissociative SNi-type reaction mechanism (moremen_emerging_2019).

To determine whether the loss of constraint on the xED-Asp in retaining enzymes correlates with
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packing in the C-lobe tether, we analyzed the nature of residues surrounding the tether in primary

sequences and 3D structures (Fig. 4). Comparisons of inverting and retaining GTs indicate

differences in both xED-Asp position as well as residues involved in C-lobe tether (Fig. 4A). We

further compare core packing interactions between representative GT-A crystal structures, and

note that the retaining GT-As have a less tightly packed tether because of a substitution of a

flexible methionine (M322) by a valine (V235), which alters core packing (Figs. 4, B and C

and S3). In a subset of GTs, such as GT15, the hydrophobic tether is replaced by a salt bridge

interaction (Fig. S9). Likewise, in B3GNT2 (GT31), a conserved water molecule is involved in

the tethering interaction (Fig. S9E). The structural and functional implications of these family

specific variations are discussed later.

2.3.3 B3GNT2-specific variations in the C-lobe tether contribute to

catalytic activity, stability, and dynamics

We next investigated the structural and functional implications of B3GNT2-specific variation in

the C-lobe tether. In B3GNT2 crystal structures, the threonine (T336) side chain forms van der

Waals interactions with hydrophobic residues (F156) in the phosphate-binding module to maintain

the C-lobe tether. Also, the small size of the threonine side chain creates internal cavities that are

occupied by a water molecule, which coordinate with the hydroxyl group of T336 side chain as

well as the xED-Asp. To investigate the structural and functional implications of these B3GNT2-

specific variations, we performed a computational and experimental screen of different variants

at position 183 (T336). A computational screen using Rosetta predicted a subset of stabilizing

and destabilizing mutations (Fig. 5A).

With these predicted sets of stabilizing and destabilizing mutations, we then experimentally

expressed a subset of single and double mutants (F309W, T336I, Y311I/T336V, Y311F/T336I,

Y311F/T336Y, and Y311F/T336V) through recombinant expression in human embryonic kidney

293 cells (Kadirvelraj et al. 2021). All the generated mutants expressed at detectable levels and
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Figure 2.5: Amino acid preferences in the C-lobe tether of inverting and retaining enzymes. A,
array of the top ten residue frequencies from a sequence alignment of inverting and retaining GTs,
showing higher conservation and constraints in the C-terminal tether (156, 183) and xED-Asp
(180) in inverting GT-As. A full table of these residue frequencies is shown in Table S4. B and C,
a comparison of representative inverting and retaining GT-A core packing in the same orientation,
showing that the retaining pocket is less packed, as compared with inverting GT-As. The xED is
highlighted in green, the C-lobe tether residues are highlighted in red, and in blue are residues in
the logo adjacent to the C-lobe tether.

did not impair folding or secretion (Table S3 and Fig. S10). We next examined the thermostability

and catalytic activity of these mutants using thermal shift assays and Promega UDP-Glo assays,

respectively. The mutants altered thermal stability to varying degrees. While T336I, Y311F/T336I,

and Y311F/T336V were partially destabilizing (≈2 °C relative to wt), F309W, Y311I/T336V,

and Y311F/T336V were more destabilizing (>4 °C relative to wt) (Fig. 5B).
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Figure 2.6: Computational and experimental screen of B3GNT2-specific variations in the C-lobe
tether. A, computational mutational screen of the T336 mutants to identify potential stabilizing
mutations. B, thermostability data of T336I mutant and wt B3GNT2, with all other mutants. C,
table of kinetic parameters for acceptor and donor saturation in wt and T336I. D, kinetic efficiency
(Kcat/Km) of B3GNT2 wt versus T336I upon acceptor and donor saturation, demonstrating a
1.3-fold and 2.5-fold increase, respectively, for the T336I relative to wt.

Analysis of the kinetic efficiency (kcat/Km) of the mutants revealed varying impact on sub-

strate affinity (Km) and turnover (kcat). In particular, catalytic activity of T336I increases by

approximately twofold relative to wt, under acceptor and donor saturation (Fig. 5, C and D

and Table S2). The Km of T336I increased twofold under acceptor saturation and decreased

by 0.15-fold under donor saturation. The catalytic efficiency of T336I increased by 1.3-fold and

2.5-fold under acceptor and donor saturations, respectively (Fig. 5D and Table S2). On the other

hand, the F309W mutant displayed catalytic efficiency comparable to wt upon acceptor saturation,

and a 1.93-fold increase in efficiency upon donor saturation, despite reduced thermostability. The

other mutants, generally, displayed decreased catalytic efficiency relative to wt (Table S2).

To investigate the structural basis for the increased activity observed for the T336I mutant,

we performed microsecond time-scale molecular dynamics (MD) simulations of wt and mutant

B3GNT2 (Fig. 6), focusing on the conformational changes associated with the xED-Asp. In

the crystal structure, the xED-Asp (D333) exists in two distinct conformations: D-in and D-out.
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In the D-in conformation, the xED-Asp is pointing toward the hydrophobic core and forms a

water-mediated hydrogen bonding network with T336. In the D-out conformation, the xED-Asp

points out toward the acceptor-binding site and forms a hydrogen bond with a hydroxyl group

in the acceptor-bound complex where it acts as catalytic base (Fig. 6A). In the MD simulations

of wt B3GNT2, both these conformations are equally sampled in the apo and acceptor-bound

complexes (Fig. 6B). However, in the T336I mutant, the xED-Asp is predominantly observed in

the D-out conformation. The D-in conformation is not sampled as frequently in the mutant, since

the Ile substitution occludes the water-binding site in wt B3GNT2. The shift in the conformational

occupancy of the xED-Asp in the acceptor-bound “out” conformation may explain the partial

increase in catalytic activity observed for the T336I mutant because the xED-Asp is readily able

to deprotonate the acceptor. We further note that in the crystal structure of the closest relative,

Manic fringe (PDB ID: 2J0A (29)), which contains a valine in place of the threonine, the xED-Asp

adopts the D-out conformation in the crystal structure. Indeed, MD simulation with a valine

mutant also demonstrates a preference for the D-out conformation (Fig. S11). Finally, we note

that protonation of the xED-Asp also alters conformational dynamics (Figs. S12 and S13) primarily

through changes in the chi-2 dihedral, as noted in other systems (P. Chakrabarti 1994; Shan

et al. 2009). Based on these MD simulations, we hypothesize that changes in pKa may influence

B3GNT2 catalytic activity. Together, our simulations provide additional support for our hypothesis

that GT-A fold catalytic activities and mechanisms can be fine-tuned through mutations in the

GT-A–specific C-lobe tether.
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Figure 2.7: Molecular dynamics simulations of wt and mutant B3GNT2. A, snapshots from an MD
simulation of the wt complex, showing two unique conformations of the xED-Asp. The D-in and
D-out conformations are termed as such depending on their orientation inward, interacting with
the threonine aided through a hydrogen bond interaction with a water molecule, or outward toward
the acceptor–donor complex. B, 12 MD simulations (three replicates, 1 µs each) demonstrating
the conformational shift of mutant T336I to the D-out conformation. Replicates show the dynamic
switching between the D-in and D-out conformations over the course of the simulation, with the
histograms showing the total ratio of D-in:D-out for each replicate.

2.4 Discussion

2.4.1 A proposed modular evolution of GT-As

In our previous study comparing GT-A fold enzymes from diverse organisms, we identified a

conserved hydrophobic core under strong selective pressure, as reflected by the low evolutionary

rates of these residues among the 231 aligned positions in the GT-A catalytic domain (Figs. 7A
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and S14). Here, we further dissect the anatomy of the core based on a broader analysis of diverse

nucleotide-binding Rossman fold enzymes. Our studies reveal three distinct GT-A core modules

added over evolutionary time (Fig. 7B) that are further embellished by family specific hypervariable

regions. The first module is contained within an ancestral PBC, common to many nucleotide

phosphate–binding enzymes. Ancestral phosphate-binding enzymes embellished upon this core to

maintain its phosphate-binding function while resulting in the functionally diverse superfamilies

that exist today. This core serves a similar function in GT-As by conserving motifs (specifically,

the DXD motif) that are directly involved in binding the phosphate moiety of the donor substrate.

GT-As, along with many other enzyme families, build upon this PBC to form the Rossmann fold,

which binds a diverse array of cofactors including nucleotide sugars (Shin and Kihara 2019). We

note different topological orientations of the PBC in enzyme families, even within the P-loop

NTPases (Longo et al. 2020). However, the similarities between pyrophosphorylases and GT-

As, in terms of shared PBC topologies, nucleotide, and divalent cation binding, suggests either

convergent evolution, or a common ancestor connecting these enzyme families.

Extant GT-A fold enzymes extended the phosphate-binding module through addition of a

unique C-terminal extension of the hydrophobic core, facilitated by the residues 156 and 183 (F340

and F365 in GT2), which tethers the F-helix and xED catalytic base to the PBC. The tether

aids in positioning the catalytic base residue for inverting GTs critical for their SN2 displacement

mechanism (moremen_emerging_2019). Among retaining GTs, the tether to the F-helix

and positioning of the xED motif is maintained, but since catalytic base function for most

retaining enzymes is accomplished by the β-phosphate oxygen of the sugar nucleotide donor

(moremen_emerging_2019), selective pressure for maintaining the position of the catalytic

base relative to the sugar donor is no longer needed. As a result, residues flanking the xED in

retaining GT-As may be more malleable and likely to mutate, allowing these GT-As to sample

new acceptor interactions and other functions, resulting in increased tethering variation.
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Figure 2.8: Modular evolution of GT-As. A, site-specific rate conservation of each residue of the
231 aligned positions. Dots in yellow bars reflect hydrophobic residues common to all Rossmann
fold enzymes. Dots in blue bars reflect functional motifs, including DxD, G-loop, xED, and the
C-His. Dots in red bars are GT-A–specific residues of the hydrophobic core. B, model of the
evolutionary progression of fold A glycosyltransferases. Beginning from the elementary phosphate-
binding cassette, GT-As gained a Rossmann fold that extended the hydrophobic core. Following
this, various GT-As make use of the xED motif as a catalytic base, the presence of this motif
correlates with mechanistic variations. Finally, family specific hypervariable regions are introduced
to further regulate GT-A function. New additions in pink.

We previously proposed that inverting and retaining mechanisms evolved multiple independent

times during GT-A enzyme evolution by generating a phylogenetic tree of diverse GT-A fold

enzymes (Taujale, Venkat, et al. 2020). Here, we show that variations in the C-lobe tether may

have contributed to this multiple independent evolution by altering core packing and xED-base

positioning for either an associative mechanism or a dissociative mechanism. Consistent with

this view, retaining GTs, mostly the ones that are further away from inverting families in the

phylogenetic tree (GT2 unrelated, Fig. S7), tend to elongate the C-lobe tether with distances
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around 9 to 10 Å, often even accommodating extra residues between these positions (Figs. 3C

and S8). In contrast, inverting GTs and GT2-related retaining GT-As have a tightly packed tether

with inter-residue distances of around 3 to 4 and 5 to 7 Å, respectively. Multiple GTs show

variability in this tether, even going so far as to change the packing interactions from van der

Waals to salt bridges (Fig. S9).

We note that the retaining GTs, GT55 (mannosyl-3-phosphoglycerate synthase) and GT15

(glycolipid 2-α-mannosyltransferase) that are divergent (located in different branches of the tree),

have a salt-bridge tether in common, suggesting that this variation may not just be structural but

may have a functional role. Notably, both GTs are mannosyltransferases that catalyze transfer

to unique acceptors; GT55 to a phosphate-linked glycerate acceptor and GT15 to a glycolipid

(Gonçalves et al. 2010; Possner, Claesson, and Guy 2015). These two mannosyltransferases,

accommodating different acceptor substrates, may suggest a convergent evolution of this tether

and one of multiple solutions that influences accommodation of a vast diversity of acceptor–donor

complexes. Thus, variability and malleability of the C-lobe tether provides the structural frame-

work for multiple independent paths for evolutionary interconversion of retaining and inverting

mechanisms on a common fold.

The regulatory functions of a flexible hydrophobic core have been well articulated in large

protein superfamilies such as kinases (Susan S Taylor, Meharena, and Alexandr P Kornev 2019).

Here, through computationally aided mutational analyses and MD simulations of the C-lobe tether

in B3GNT2, we demonstrate that this GT-A–specific extension contributes to the functional

stability of the enzyme. Introduction of the more canonical hydrophobic packing in the C-lobe

tether favored the D-out conformation of the xED-Asp. This D-out conformation was also

observed in the native crystal structures of a related GT31 enzyme, Manic fringe (Jinek et al.

2006; Moloney et al. 2000), which has a valine in place of B3GNT2’s threonine. By changing

the conformational occupancy of the catalytic base, wt B3GNT2 may illustrate an evolutionary

mechanism to fine-tune catalytic activity. Accumulation of such mutations provides the basis for
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large-scale transitions in enzyme function during evolution (S. Bromberg and K. A. Dill 1994;

J. Chen and Stites 2001; Tyzack et al. 2017).

An analysis of cancer variants cataloged in The Cancer Genome Atlas and COSMIC (the

Catalogue Of Somatic Mutations In Cancer) reveals nearly 420 nonsynonymous mutations mapping

to the GT-A hydrophobic core, 47 of which map to the C-lobe tether (Table S1 and Fig. S15).

Most of these mutations are predominantly located in the GT8 subfamilies, such as GT8-LARGE,

and change the size or biochemical properties of the hydrophobic residues. Investigating how these

oncogenic mutations impact GT structure and regulation will further illuminate the functions of

the understudied GT-A core in disease states. The ability to switch substrate preferences and

control enzyme kinetics through malleable cores could mark the fine margins to ensure proper

glycosyl transfer. As such, understanding the intricate mechanisms that guide the activity of these

diverse enzyme families allows us to engineer new regulatory functions, and we believe that the

identification of the critical rheostat functions played by the hydrophobic core could pave the way

for rational design and engineering of GTs with new functional properties.

2.5 Methods

Hydrophobic core distance plots

To get minimum distances for each aligned hydrophobic residue in each PDB, we first split

each chain from 470 GT crystal structures taken from the CAZy database into 972 PDBs. We

then wrote a script using the Biopython module (Cock et al. 2009) to measure the minimum

distances of each aligned hydrophobic position amongst each other. We only used structures with

a resolution under 2.5 Å. We generated csv files of these positions and minimum atomic distance

values, generating plots of each residue distance, as well as all-versus-all median distances for

each hydrophobic core position (Fig. S16). With this table, we were able to categorize these GTs

by (sub)family and mechanism and generate plots of the extended core. To avoid bias by PDBs
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that are overrepresented in the available GT-A structures, we performed a CD-HIT query on all

available PDB sequences at 90% sequence similarity to generate a diverse and representative set

of PDBs for structural informatics studies.

Rosetta modeling

Structural minimization and loop modification were performed, in preparation for MD simulations,

using Rosetta’s kinematic loop generation protocol (Susan S. Taylor and Alexandr P. Kornev

2011). Structures underwent 10,000 cycles of minimization to prevent atomic clashes in silico.

Oncogenic variant analyses

Full-length GT-A sequences were mined from The Cancer Genome Atlas (Tomczak, Czerwińska,

and Wiznerowicz 2015) and COSMIC databases. These sequences were mapped to previously

published GT-A profiles (Taujale, Venkat, et al. 2020). Mutations falling at hydrophobic core

positions were collected, and duplicate counts were pruned based on patient and sample IDs to

get a final count.

Mutational analyses

For the B3GNT2 structure, we computed mutations for every amino acid for the equivalent

positions at 154 and 183 (F309 and T336 in B3GNT2 [PDB ID: 6WMN]). These mutations were

performed using the cartesian DDG protocol (Frenz et al. 2020; Park et al. 2016), with three

replicates. Rosetta energies were averaged to produce the table of energy values in Table S2.

From this table, we picked, based on Rosetta energy scores, sets of stabilizing and destabilizing

mutations. A critical caveat to note is that the Rosetta energy score only gives a relative indication

of whether a structure is stabilizing or destabilizing. This method does not consider backbone

rearrangement upon a mutation that changes packing; thus, the score does not always reflect in

vitro data. Nevertheless, these scores provide an adequate basis for selecting mutations.
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Mutant expression and purification

The B3GNT2 wt construct was generated as previously described (Kadirvelraj et al. 2021). Site-

directed mutagenesis was performed using the Q5 Site-Directed Mutagenesis Kit (New England

Biolabs) to generate the six mutant B3GNT2 samples. Recombinant B3GNT2 and mutants

were generated by transfection of 100 ml cultures of FreeStyle 293-F cells (Thermo Fisher Scien-

tific) as previously described (Kadirvelraj et al. 2021). Six days after transfection, the samples

were harvested using centrifugation, and enzyme in the culture supernatant was purified by

Ni2+–nitrilotriacetic acid chromatography. Final samples were buffer exchanged into 25 mM

Hepes and 300 mM NaCl, pH 7.5, concentrated by ultrafiltration, and protein concentration was

determined using GFP-fluorescence and UV absorbance using a Nanodrop spectrophotometer.

The samples were buffer exchanged into 25 mM Hepes and 300 mM NaCl and verified for purity

and length using SDS-PAGE gels.

Sequence analysis

Sequence logos were generated using WebLogo 3.0 and GTXplorer (Crooks et al. 2004; Taujale,

Soleymani, et al. 2021), using sequence alignments generated in our previous article (Taujale,

Venkat, et al. 2020). We performed the structure-based sequence alignment using PROMALS3D

and visualized the sequence alignment using ESPript3 (Gouet, Robert, and Courcelle 2003; Pei,

B.-H. Kim, and Grishin 2008). The secondary structure representation in the alignment was

generated using data from the DSSP output (Kabsch and Sander 1983) on the GT2 crystal

structure (PDB ID: 2Z87). Calculation of deletions was performed by counting the percentage of

gaps in a position across the sequence alignment (Fig. S17).

HMM analysis

Utilizing HMMs produced from Ref. (Kolodny et al. 2021), we ran searches across available GT-A

sequences using HMMsearch (Mistry et al. 2013). These searches detected significant similarities
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in the PBC of P-loop NTPases and a subset of Rossmann fold enzymes, including GT-As. We then

took a broad number of the PBCs from the published HMMs along with a set of representative

PBCs from GT-As and pyrophosphorylases and performed an all-versus-all structural comparison

using the TMalign algorithm (Zhang and Skolnick 2005). These RMSDs were then used in a

network graph in Cytoscape (National Resource for Network Biology) (Shannon et al. 2003),

where nodes represent each PDB and edges represent the RMSD similarity between each node.

We used an edge-weighted spring embedded layout to organize the nodes into clusters of closely

related proteins. We used a cutoff filter of 2.5 Å to remove the noise of distant connections. This

resulted in clusters of closely related proteins, placing UDP-sugar pyrophosphorylases and GT-As

next to each other.

Dihedral analyses

Python code was written for analyzing dihedral angles of residues in PBDs and MD frames (Figs.

5, S11–S13 and S18). This code can be found in the GitHub link in the Data availability section.

Kinetics

Promega UDP-Glo GT assays were used to analyze the B3GNT2 kinetic parameters as previously

described (Kadirvelraj et al. 2021). Reactions were performed in a buffer containing 100 mM

Hepes, pH 7, 2 mM MnCl2, and 1 mg/ml bovine serum albulin in 10 µl reactions using varied

concentrations of lacto-N-neotetraose (0.3125–5 mM) as acceptor and UDP-GlcNAc (0.0625–1

mM) as donor to determine the KM and kcat values for wt and mutant B3GNT2 (Table S2 and

Fig. S19). Enzyme input varied from 0.156 ng for wt B3GNT2 to 10 ng for severely destabilizing

mutations, and each sample was run in biological duplicates.
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Molecular Dynamics

Multiple MD simulations were run on the B3GNT2 crystal structures (PDB IDs: 6WMN and

6WMO). We first performed loop modeling using the Kinematic Loop Modeling Protocol in

Rosetta to address any missing regions in the structure and then minimized the structure to

avoid steric clashes (Stein and Kortemme 2013). Long time-scale unbiased MD simulations were

performed on B3GNT2 at the microsecond level, with two replicates (each 1 µs long). All MD

simulations used the Amber99SB-ILDN force field, commonly used for long time-scale protein

simulations, along with the GLYCAM06 force field for glycan parameterization (Case et al. 2005;

Kirschner et al. 2008; Lindorff-Larsen et al. 2010). Long-range electrostatics were calculated

via particle mesh Ewald algorithms. All simulations used the TIP3P water model (Price and

Brooks 2004). Energy minimization was run for a maximum of 10,000 cycles, performed using

the steepest-descent algorithm, followed by the conjugate-gradient algorithm. The system was

heated from 0 K to a temperature of 300 K. MD analyses were facilitated in python using the

MDAnalysis module (Michaud-Agrawal et al. 2011). After two equilibration steps that lasted 50

ps, microsecond-long simulations were run at a 2 fs timestep.

Single-molecule charge calculations

We derived the protocol for parameterization of the UDP-donor substrate for the GTs from

the GLYCAM force-field article (Kirschner et al. 2008). Ab initio QM was performed using

Gaussian16 to optimize the donor ligand at the HF/6-31G* level. We then calculated the charge

of the compound using antechamber. The electric charge of the aglycon was previously calculated

to be -0.194 au. These parameters were then used to generate ligand input files for use with MD

simulations.
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Molecular modeling

The structures were visualized and analyzed in Schrodinger PyMOL 2.0. Structural alignments

were performed in PyMOL 2.0 using the cealign algorithm (Shindyalov and Bourne 1998). Cartoon

models of these structures were created using The Protein Imager (Tomasello, Armenia, and Molla

2020) to aesthetically portray these structures, after alignment in PyMOL 2.0.

Site-specific relative evolutionary rate conservation

To produce a normalized conservation value for each aligned position, we used a previously

generated alignment, published in our previous article (Taujale, Venkat, et al. 2020), as input

into the program Rate4Site (Pupko et al. 2002). This software employs an empirical Bayesian

method to calculate a neighbor-joining tree with maximum likelihood distances to output a relative

conservation score at each site.

Thermal Shift

ThermoFluor assays were performed in 96-well PCR plates in duplicates with each well containing

45 µl of GFP-tagged protein in the desired buffer at a concentration of 2 µM. The buffer consisted

of 25 mM Hepes, 300 mM NaCl, pH 7.5, with 5 µl of 100× SYPRO Orange (Thermo Fisher

Scientific). After a 15 min preincubation at room temperature, a melt curve program was run on

a Bio-Rad CFX96 machine using a 50 µl total sample volume, from 25 to 95 °C, with a ramp

speed of 1 °C/min. The B3GNT2 melt curve was observed in the 40 to 70 °C temperature range

based on an increase in SYPRO Orange fluorescence, whereas the GFP fusion tag exhibited an

additional melt curve at ≈88 °C.

AlphaFold2 models

AlphaFold2 produced several previously unknown GT-A structures (Jumper et al. 2021). For

subfamilies not found in the AlphaFold2 database, we ran AlphaFold2 on a supercomputer cluster
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to produce models. After mapping these sequences to known profiles, as described in our previous

article (Taujale, Venkat, et al. 2020), we wrote a python script to map alignment positions to

these structural models and then visualized the hydrophobic core positions in PyMOL 2.0.
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3.1 Abstract

Catalytic signaling outputs of protein kinases are dynamically regulated by an array of struc-

tural mechanisms, including allosteric interactions mediated by intrinsically disordered segments

flanking the conserved catalytic domain. The Doublecortin Like Kinases (DCLKs) are a fam-

ily of microtubule-associated proteins characterized by a flexible C-terminal autoregulatory ‘tail’

segment that varies in length across the various human DCLK isoforms. However, the mecha-

nism whereby these isoform-specific variations contribute to unique modes of autoregulation is

not well understood. Here, we employ a combination of statistical sequence analysis, molecular

dynamics simulations and in vitro mutational analysis to define hallmarks of DCLK family evo-

lutionary divergence, including analysis of splice variants within the DCLK1 sub-family, which

arise through alternative codon usage and serve to ‘supercharge’ the inhibitory potential of the

DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other

Calcium Calmodulin Kinases (CAMKs), and a ‘Swiss-army’ assembly of distinct motifs that tether

the C-terminal tail to conserved ATP and substrate-binding regions of the catalytic domain to

generate a scaffold for auto-regulation through C-tail dynamics. Consistently, deletions and mu-

tations that alter C-terminal tail length or interfere with co-conserved interactions within the

catalytic domain alter intrinsic protein stability, nucleotide/inhibitor-binding, and catalytic activity,

suggesting isoform-specific regulation of activity through alternative splicing. Our studies pro-

vide a detailed framework for investigating kinome–wide regulation of catalytic output through

cis-regulatory events mediated by intrinsically disordered segments, opening new avenues for the

design of mechanistically-divergent DCLK1 modulators, stabilizers or degraders.

Keywords

kinase – allostery – protein evolution – structure–function – bioinformatics
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3.2 Introduction

Protein kinases are one of the largest druggable protein families comprising 1.7% of the human

genome and play essential roles in regulating diverse eukaryotic cell signaling pathways (Man-

ning et al. 2002). The Doublecortin-like kinases (DCLKs) are understudied members of the

calcium/calmodulin-dependent kinase (CAMK) clade of serine-threonine kinases (Agulto et al.

2021; Bayer and Howard Schulman 2019; Gógl et al. 2019). There are three distinct paralogs of

DCLK (1, 2, and 3), the last of which is annotated as a “dark” kinase due to the lack of information

pertaining to its function (Berginski et al. 2021). Human DCLK1 (also known as DCAMKL1) was

initially identified in 1999 (Sossey-Alaoui and Srivastava 1999), followed by the cloning of human

DCLK2 and 3 paralogs (Ohmae et al. 2006). Full-length DCLK proteins contain N-terminal

Doublecortin-like (DCX) domains, microtubule-binding elements that play a role in microtubule

dynamics, neurogenesis, and neuronal migration (Couillard-Despres et al. 2005; Horesh et al.

1999). DCLKs have garnered much interest as disease biomarkers, since they are upregulated in

a variety of cancer pathologies (Cheng et al. 2022; Gao et al. 2016; Westphalen, Quante, and

T. C. Wang 2017), as well as neurodegenerative disorders such as Huntington’s Disease (Galvan,

Francelle, Gaillard, Longprez, Carrillo-de Sauvage, Liot, Cambon, Stimmer, Luccantoni, Flament,

et al. 2018b). However, the mechanisms by which DCLK activity is auto-regulated, and how and

why they have diverged from other protein kinases is not well understood.

Like all protein kinases, the catalytic domain of DCLKs adopts a bi-lobal fold (Gógl et al.

2019), with an N-terminal ATP binding lobe and C-terminal substrate binding region. Canonical

elements within the two lobes include the DFG motif, a Lys-Glu salt bridge that is associated with

the active conformation, Gly-rich loop, and ATP-binding pocket, which are all critical elements for

catalysis. Many protein kinases, including CAMKs, Tyrosine Kinases (TKs) and AGCs, elaborate

on these core elements with unique N-terminal and C-terminal extensions that flank these catalytic

lobes (Kannan et al. 2007; Yeon et al. 2016; T. Nguyen et al. 2015; Yeung, Kwon, et al. 2021),
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allowing them to function as allosteric regulators of catalytic activity (Gógl et al. 2019). Indeed,

CAMKs are archetypal examples of kinases that can exist in an active-like structural conformation,

yet still remain catalytically inactive (Gógl et al. 2019). This is in large part due to the presence

of unique C-terminal tails that are capable of blocking ATP or substrate binding in well-studied

kinases such as CAMK1 and CAMKII. In canonical CAMKs, autoinhibition may be released upon

Ca2+/Calmodulin (CaM) interaction with the CAMK C-tail, which makes the substrate-binding

pocket and enzyme active-site accessible (Rellos et al. 2010). In CAMKII, the N and C-terminal

segments flanking the kinase domain are variable in length across different isoforms and the level

of kinase autoinhibition or autoactivation has been reported to be dependent on the linker length

(Bhattacharyya et al. 2020). The CAMKII C-tail can be organized into an autoregulatory domain

and an intrinsically disordered association domain. The autoregulatory domain also serves as a

pseudosubstrate, which physically blocks the substrate binding pocket until it is competed away

by CaM (Hudmon and Howard Schulman 2002). Notably, this autoregulatory pseudosubstrate

can be phosphorylated (Rellos et al. 2010), and phosphorylation of the C-tail makes CAMKII

insensitive to CaM binding. Across the CAMK group, several other kinases share autoinhibitory

activity via interactions between Ca2+/CaM binding domains and the C-terminal tail (Huse and

Kuriyan 2002; Wayman et al. 2008), and a major feature of these kinases is variation in the tail

length across the distinct genetic isoforms.

Name (this study) Isoform number Uniprot ID Alternate Names

DCLK1.1 1 O15075-2 DCAMKL1 alpha

DCLK1.2 2 O15075-1 DCAMKL1 beta

∆DCLK1.1 3 O15075-3 -

∆DCLK1.2 4 O15075-4 -

The human genome encodes four distinct DCLK1 isoforms, termed DCLK1.1-1.4 in UniProt

(Table 1, Figure 3.1, (Omori et al. 1998)), which display differential activity– and tissue-specific

expression profiles. Human DCLK1.1 (also known as DCLK1 alpha) is expressed in a variety of
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tissues, but is enriched in cells derived from the fetal and adult brain, whereas DCLK1.2 (also

known as DCLK1 beta) is expressed exclusively in the embryonic brain (Matsumoto, Pilz, and

Ledbetter 1999). DCLK1.3 and 1.4, which lack tandem microtubule-binding DCX domains (Figure

3.1) but are otherwise identical to DCLK1.1 and DCLK1.2, respectively, are also highly expressed

in the brain. To aid with clarity, the names of the human DCLK1 genes and their isoforms used in

this paper are summarized in Table 1. Recent structural and cellular analyses have begun to clarify

the mechanisms by which the DCLK1.2 isoform is regulated by the C-tail (Agulto et al. 2021; Patel

et al. 2021; Cheng et al. 2022). Mechanistically, autophosphorylation of Thr 688, which is present

only in the C-tail of DCLK1.2 (and DCLK1.4), blunts kinase activity and subsequently inhibits

phosphorylation of the N-terminal DCX domain and thus drives DCLK microtubule association

in cells (Agulto et al. 2021). Consistently, deletion of the C-tail or mutation of Thr 688 restores

DCLK1.2 kinase activity, subsequently leading to DCX domain phosphorylation and the abolition

of microtubule binding. The length and sequence of the C-tail varies across the DCLK1 isoforms;

however, how these variations contribute to isoform-specific functions and how they emerged

during the course of evolution is not known.
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Figure 3.1: A) Schematic representation of domain organization for the known isoforms of the

three human DCLK paralogs. Domain boundaries are annotated according to the representative

amino acid sequences derived from UniProt. B) DCLK1 isoforms visualized as cartoons, showing

key structural differences between the four human DCLK1 isoforms and a DCLK1 catalytic domain

with artificially short linker regions (DCLK1cat).

In this paper, we employ an evolutionary systems approach that combines statistical sequence

analysis with experimental studies to generate new models of DCLK evolutionary divergence and

functional specialization. We identify the C-terminal tail as the hallmark of DCLK functional

specialization across the kingdoms of life and propose a refined model in which this regulated

tail functions as a highly adaptable ‘Swiss-Army knife’ that can ‘supercharge’ multiple aspects of

DCLK signaling output. Notably, a conserved segment of the C-tail functions as an isoform-specific

autoinhibitory motif, which mimics ATP functions through direct tail docking to the nucleotide-
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binding pocket, where it forms an ordered set of interactions that aligns the catalytic (C) spine of

the kinase in the absence of ATP binding. Furthermore, molecular modelling demonstrates that a

phosphorylated threonine in the C-tail of DCLK1.2, which is absent in DCLK1.1, is positionally-

poised to competitively mimic the gamma phosphate of ATP, perhaps in a regulated manner.

Other segments of the tail function as a pseudosubstrate by occluding the substrate-binding

pocket and tethering to key functional regions of the catalytic domain. Thermostability analysis

of purified DCLK1 proteins, combined with molecular dynamics simulations, confirms major

differences in thermal and dynamic profiles of the DCLK1 isoforms, while catalytic activity assays

reveal how specific variations in the G-loop and C-tail can rescue DCLK1.2 from the autoinhibited

conformation. Together, these studies demonstrate that isoform-specific variations in the C-

terminal tail co-evolved with residues in the DCLK kinase domain, contributing to regulatory

diversification and functional specialization.

3.3 Results

3.3.1 Origin and evolutionary divergence of DCLK family members

The human DCLKs repertoire is composed of three genes, termed DCLK1, 2 and 3 (Figure 3.1A,

Table 1). The experimental model employed in this study, DCLK1, is composed of multiple

spliced variants in human cells. Those full-length proteins that contain N-terminal DCX domains

are usually referred to as DCLK1.1 or DCLK1.2 and the variants that lack the DCX domains

are termed here (for simplicity) ∆DCLK 1.1 and ∆DCLK1.2 (also referred to as DCLK1.3 and

DCLK1.4). The core catalytic domain with minimal flanking regions (DCLK1cat, Figure 3.1B)

is identical in all DCLK1 proteins, whereas the length of the tail, or the presence of the DCX

domains, generates considerable diversity from the single human DCLK1 gene (Figure 3.1B, Figure

3.1-figure supplement 1). To infer evolutionary relationships of DCLK paralogs, and especially

the evolution of the C-terminal tail regions that lie adjacent to the kinase domain (Figure 3.1),
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we performed phylogenetic analysis of 36 DCLK sequences with an outgroup of closely related

CAMK sequences (Figure 3.2A, Figure 3.2-source data 1). These DCLK sequences are from

a representative group of holozoans, which consist of multicellular eukaryotes (metazoans) and

closely related unicellular eukaryotes (pre-metazoans). The analysis generated four distinct clades:

pre-metazoan DCLK, metazoan DCLK3, vertebrate DCLK2 and vertebrate DCLK1. Interestingly,

DCLK genes demonstrated significant expansion and diversification within metazoan taxa. The

pre-metazoan DCLK sequences were the most ancestral and showed no DCLK diversity, suggesting

the DCLK expansion and diversification correlated with the evolution of multicellular organisms.

Within the metazoan expansion of DCLK, DCLK3 is the most ancestral and can be broken down

into two sub-clades: protostome DCLK3 and deuterostome DCLK3. Within invertebrates, only two

DCLK paralogs were present, one that was identified as a DCLK3 ortholog and another that was

not clearly defined as either DCLK1 or DCLK2. This suggests that the diversification into DCLK1

and DCLK2 paralogs from an ancestral DCLK1/2-like paralog occurred after the divergence of

invertebrates and vertebrates, which is further supported by the monophyletic DCLK1 and DCLK2

clades in vertebrates (bootstrap value: 99).
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Figure 3.2: Evolution of the DCLK family. A) Phylogenetic tree showing the divergence and

grouping of DCLK sub-families in different taxonomic groups. Bootstrap values are provided

for each clade. B) Shows domain annotations for sequences included in the phylogenetic tree.

The length of C-terminal tail segment for these sequences is shown as a histogram (green). The

original tree generated using IQTREE is provided in Figure 2-source data 1.

Interestingly, the expansion of DCLK in metazoans and the diversification of DCLK1 and

DCLK2 within vertebrates correlates well with the length and sequence similarity of the C-terminal

tail, which also varies between the different DCLK1 splice variants (Figure 3.1A, Figure 3.1-figure

supplement 1 and 2). Within both protostome and deuterostome DCLK3, the length of the

C-terminal tail is ≈50 residues or less. This is in marked contrast to the tail lengths of vertebrate

DCLK1 and DCLK2, which are ≈100 residues long. In addition to the C-terminal tail, an analysis
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of the domain organization of these DCLKs reveals that DCLK3 predominantly contains only

a single N-terminal Doublecortin domain (DCX), whereas invertebrate DCLKs, and vertebrate

DCLK1 and DCLK2 predominantly contain two DCX domains at the N-terminus of the long

isoforms (Figure 3.2B). In addition, we identified a putative active site-binding motif, VSVI, and

a phosphorylatable threonine conserved within vertebrate DCLK1 and DCLK2, which is absent in

all other DCLK sequences, including invertebrate DCLK1/2. This raises the possibility that the

DCLK1/2 tail extensions are employed for vertebrate-specific regulatory functions.

Next, we compared the type of DCLK1 protein sequence encoded by a range of chordate

mammalian genomes. The domain organization of each DCLK1 isoform was compared based

on annotated sequences from UniProt, demonstrating the presence of at least one DCLK1 pro-

tein that lacks the DCX domains in every species examined, with a mixture of ∆DCLK1.1 and

∆DCLK1.2 splice variants. Interestingly, it was only in the human DCLK1 gene that definitive

evidence for ∆DCLK1.1 and ∆DCLK1.2 variants erewere found (Figure 3.3A). To establish

a model for DCLK1 biophysical analysis, we constructed a recombinant hybrid human DCLK1

catalytic domain with a short C-tail sequence that is equivalent to DCLK1.1 amino acids 351-689,

containing the catalytic domain with a short C-tail region. As shown in Figure 3.3B, incubation

of size-exclusion chromatography (SEC) purified GST-tagged DCLK1 with 3C protease generated

the mature untagged DCLK1 protein for biophysical analysis. Analytical SEC revealed that purified

DCLK1.1 and DCLK1.2 isoforms are monomeric in solution (Figure 3.3-figure supplements 1-3).

We evaluated catalytic activity for DCLK1.1351-689 using a validated peptide phosphorylation

assay (Figure 3.3C), which revealed efficient phosphorylation of a DCLK1 substrate peptide. The

KM[ATP] for peptide phosphorylation was close to 20 µM in the presence of Mg2+ ions (Figure

3.3C, left panel), similar to values measured for other Ser/Thr kinases that are autophospho-

rylated and active after expression from bacteria (Dominic P. Byrne, Shrestha, et al. 2020).

DCLK-dependent peptide phosphorylation was completely blocked (Figure 3.3C, right panel)

by prior incubation of the reaction mixture (containing 1mM ATP) with the chemical inhibitor
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DCLK1-IN-1, as expected (29). In addition to enzyme activity, we monitored thermal denaturation

of purified, folded, DCLK1351-689 protein in the presence of ATP, either alone or as a Mg:ATP

complex, which is required for catalysis. As shown in Figure 3.3D, DCLK1 was stabilized by 2.1°C

upon incubation with an excess of Mg:ATP, and this protective effect was completely blocked

by mutation of Asp 533 (of the conserved DFG motif) to Ala, consistent with canonical ATP

interaction in the nucleotide-binding site. Finally, we assessed the thermal effects of a panel of

DCLK1 inhibitors on the model DCLK1.1351-689 protein. Prior incubation with DCLK1-IN-1,

LRRK2-IN-1, the benzopyrimidodiazipinones XMD8-92 and XMD8-85, which have been reported

to potently (though not specifically) inhibit DCLK1 activity (Patel et al. 2021), led to marked

protection from thermal unfolding (Figure 3.3-figure supplement 4). Consistently, the negative

control compound DCLK1-Neg (Ferguson et al. 2020) was ineffective in stabilizing DCLK1.
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Figure 3.3: A) Cartoon cladogram of mammalian species showing the domain organization of each

DCLK1 isoform from representative annotated sequences from UniProt. UniProt IDs for each

sequence are provided in Figure 3-Source File 1. B) SDS-PAGE of 6His-GST-3C-DCLK1.1 (351-

689, Top) or a D533A mutant in which the DFG Asp is mutated to Ala (Middle). Proteins were

separated by size exclusion chromatography, and high-purity fractions were pooled. The affinity

tag was removed prior to analysis by incubation with 3C protease, leading to a demonstrable

shift in mobility (bottom) C) Evaluation of catalytic activity towards DCLK1 peptide. DCLK1.1

351-689 possesses a Km [ATP] 20 µM in vitro (left) and real-time substrate phosphorylation was

inhibited by prior incubation with the small molecule DCLK1-IN-1, right). D) Thermal shift assay

demonstrating a 2.1°C increase in the stability of DCLK1 351-689 in the presence of Mg:ATP

(left), which was absent in the D533A protein (right).
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3.3.2 Key differences between isoforms in the C-tail of DCLK1 arise

from alternative-splicing and different open-reading frames

Higher-order vertebrates have multiple isoforms of DCLK1 and DCLK2, where sequence variations

occur in either or both the N and C terminal regions attached to the kinase domain. Human

DCLK1, for example, has four unique isoforms. Isoforms 1 and 2 differ in C-terminal tail length

due to variations in exon splicing (Figure 3.3.4A). Further examination of the intron and exon

boundaries indicates that human DCLK1.1 contains an additional exon (exon 16) that is not

spliced in DCLK1.2. Exon 16 is spliced with exon 17 with a phase 2 intron, which introduces a

shift in the reading frame and an earlier translated stop codon (UGA) in exon 17 (Figure 3.3.4B).

In DCLK1.2, exon 15 is spliced with exon 17, with a non-disruptive phase 0 intron, resulting in

the full translation of exon 17. These changes introduce multiple indels (insertions and deletions)

and result in the insertion of a phosphorylatable threonine (T688) in DCLK1.2 that is absent

in the DCLK1.1 variant (Figure 3.3.4B-C), suggesting a possible exon duplication for adaptive

regulation of DCLK1 function by phosphorylation. DCLK1.2 is the best-characterized isoform

in terms of structure and function (Cheng et al. 2022), and to compare it with DCLK1.1, we

generated a series of C-terminal tail deletion mutants to evaluate how variations in the C-terminal

tail contribute to isoform specific DCLK1 functions.
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Figure 3.4: A) Gene and intron-exon organization of DCLK1 human isoforms in the C-terminal

tail. The DCLK1 gene is present on locus 13q13.3, and isoforms 1 and 3, contain an additional

exon (exon 16), in the C-terminal tail that is absent in DCLK1.2. B) A phase 2 intron results in

the alternative transcript of exon 17 in isoform 1, translating a different open-reading frame and

early stop codon, resulting in the shorter sequence. C) Cartoon organization of the C-tail exons

(exon 15, 16, and 17) of the DCLK1
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3.3.3 Isoform-specific variations encode changes in molecular dy-

namics, thermostability and catalytic activity in DCLK1

To study isoform specific differences in the C-tail, we employed experimental techniques to com-

pare protein stability and catalytic activity between purified DCLK1 proteins alongside molecular

dynamics simulations for DCLK1.1 and DCLK1.2 with different tail lengths. Isoforms 1.1 and

1.2 share identical sequences across the kinase domain and within the first 38 residues of the

C-tail, and we used this information to design a new recombinant protein, termed DCLK1cat

(residues 351-686). C-terminal to this totally conserved region, both isoforms possess extended

tail segments, which includes the putative inhibitory binding segment (IBS; residues 682-688) and

an additional intrinsically-disordered segment (IDS; residues 703-end). To study the role of the

C-tail in modulating kinase stability and activity, we purified the DCLK1cat, and C-tail containing

(long and short) variants of each isoform, each of which lack the N-terminal DCX domains (Figure

3.3.5A). SDS-PAGE demonstrated that protein preparations were essentially homogenous after

affinity and gel filtration chromatography (Figure 3.3.5-figure supplement 1). The short forms of

the recombinant proteins (DCLK1.1351-703 and DCLK1.2351-703) possess a partially truncated

C-tail and were designed to match the amino acid sequence previously used to solve the structure

of DCLK1.2 protein (Cheng et al. 2022). Notably, these proteins exclude the IDS. The long

forms of the DCLK1 proteins include the full-length C-tail for each isoform (DCLK1.1351-729 and

DCLK1.2351-740) and incorporate IDS domains. We first performed comparative thermal shift

analyses to quantify variance in thermal stability between the different purified proteins. When

contrasting DCLK1.1short and DCLK1.2short which do not differ in size or tail length but encode

unique sets of amino acids in their partially truncated C-tail as a result of alternative splicing

(Figure 3.3.4), we observed that DCLK1.2 was some 14°C more stable than DCLK1.1 (Figure

3.3.5B). When compared with DCLK1cat, both DCLK1.1 short and long exhibited only subtle
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changes in thermal stability (Figure 3.3.5C & E), whereas both DCLK1.2 proteins (DCLK1.2short

and DCLK1.2long) were significantly stabilized (relative ∆Tm >16°C, Figure 3.3.5D & E).

Figure 3.5: Structural and dynamic variations between DCLK1 isoforms. A) Cartoons of DCLK1

construct used in our assays, portraying the locations of the Inhibitory Binding Segment (IBS)

and the Intrinsically Disordered Segment (IDS). B-E) DSF thermal denaturation profiling of the

purified DCLK1 core catalytic domain, or tail-matched DCLK1.1 and DCLK1.2 proteins. Unfolding

curves and changes in Tm values (∆Tm) for each protein relative to WT DCLK1cat are indicated.

F-H) B-factor structural representations of DCLK1short proteins shown in A). The width of the

region indicates the extent of flexibility based on averaged RMSF data from three one microsecond

MD replicates. I) DSSP analysis of three replicates of one microsecond MD simulations showing

the residues surrounding the IBS in the C-tail of DCLK1.1short and DCLK1.2short. Blue indicates

the presence of a Beta-sheet or Beta-bridge secondary structures and red indicates the presence

of alpha-helical structures.
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We next performed MD simulations to study the dynamics within the distinct DCLK1 C-

tails that might explain the observed difference in protein stability. The crystal structure of

DCLK1.2 (PDB: 6KYQ) was employed for the DCLK1.2short model and AlphaFold2 was used

to model the other proteins (DCLK1cat and DCLK1.1short). Comparison of the root mean

square fluctuations (RMSF) of the two isoforms in three different replicates of molecular dynamics

simulations indicates strikingly different thermal fluctuations in the C-terminal tails and catalytic

domains (Figure 3.3.5-source data 1). In particular, the IBS segment (between 682-688) is stably

docked in the ATP binding pocket in DCLK1.2 and an alpha helical conformation is maintained

during the microsecond time scale across different replicates (Figure 3.3.5I, bottom). In contrast,

the IBS is more unstable in DCLK1.1, as indicated by high thermal fluctuations and a lack of

secondary structure propensity (Figure 3.3.5I, top). A caveat to bear in mind is that DCLK1.1 is

an AlphaFold2 model, which will also account for increased RMSF. Analysis of sequence variations

and structural interactions provides additional insights into the differential dynamics of the two

isoforms. The helical conformation of the IDS in DCK1.2 is maintained during the simulation due,

in part, to a capping interaction with Thr 687, which is absent in DCLK1.1 due to the alternative

splicing event detailed above. Likewise, another key residue in DCLK1.2, Lys 692, anchors the

tail to the catalytic domain through directional salt bridges with the conserved aspartates (Asp

511 and Asp 533) in the HRD and DFG motifs (Figure 3.3.5, figure-supplement 2A). These

interactions are not observed in DCLK1.1 simulations because Lys 692 is substituted to a histidine

(His 689), which is unable to form a corresponding interaction with the catalytic domain (Figure

3.3.5, figure-supplement 2B). We also evaluated the effects of T688A (non-phosphorylated) or

T688E (phosphomimetic) mutations through DCLK1 MD simulations and found that the two

mutations slightly destabilize the tail relative to WT. Three replicates of the two mutants show

increased RMSF of the tail region relative to WT DCLK1.1 (Figure 3.3.5, figure-supplement

3). Either mutation was not sufficiently destabilizing on its own to unlatch the C-tail, and we

hypothesize that other residues in addition to T688 are also likely to be important for contributing
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to conformational regulation of the kinase domain by the C-terminal tail. The variable docking

of the C-tail within the kinase domains of the two DCLK1 isoforms, and the extent to which this

contributes to more transient or stable autoinhibited states are explored in more detail in the next

section.

3.3.4 Residues contributing to the co-evolution and unique tethering

of the C-terminal tail to the DCLK catalytic domain

To identify specific residues that contribute to the unique modes of DCLK regulation by the

C-terminal tail, we performed statistical analysis of the evolutionary constraints acting on DCLK

and related CAMK family sequences. We aligned the catalytic domain of DCLK and related CAMK

sequences from diverse organisms and employed the Bayesian Partitioning with Pattern Selection

(BPPS) method (30) to identify residues that most distinguish DCLK sequences (foreground

alignment in Figure 3.3.6B) from CAMK sequences (background alignment). Beyond the catalytic

domain, DCLKs share sequence and structural similarities in the first helix of the tail (αR1 in

CAMK1) (31,32), with other CAMKs but share no detectable sequence similarity beyond this

helical segment. DCLKs also share a CAMK-specific insert segment located between F and G

helices in the catalytic domain, although the nature of residues conserved within the insert is

unique to individual CAMK families (Figure 3.3.6-figure supplement 1). BPPS analysis revealed

DCLK-specific constraints in different regions of the kinase domain, most notably, the ATP binding

G-loop, N terminus of the C-helix, the activation loop, and C-terminus of the F-helix (Figure

3.3.6-figure supplement 2).
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Figure 3.6: Identification of DCLK specific constraints. A) Cartoon of DCLK1.2 and the intrinsi-

cally disordered segment (IDS) with evolutionary constraints mapped to the kinase domain and

C-tail. B) Sequence constraints that distinguish DCLK1/2/3 sequences from closely related CAMK

sequences are shown in a contrast hierarchical alignment (CHA). The CHA shows DCLK1/2/3

sequences from diverse organisms as the display alignment. The foreground consists of DCLK

sequences while the background alignment contains related CAMK sequences. The foreground

and background alignments are shown as residue frequencies below the display alignment in integer

tenths (1–9). The histogram (red) indicates the extent to which distinguishing residues in the

foreground diverge from the corresponding position in the background alignment. Black dots

indicate the alignment positions used by the BPPS (Neuwald, 2014) procedure when classifying

DCLK sequences from related CAMK sequences. Alignment number is based on the human

DCLK1.2 sequence (UniProt ID: O15075-2). C) Sequence alignment of human DCLK1 isoforms.
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Some of the most significant DCLK specific residue constraints map to the ATP binding G-loop

(GDGNFA motif) (Figure 3.3.6A-B). In particular, Asp 398, Asn 400 and Ala 402 are unique to

DCLKs as the corresponding residues are strikingly different in other CAMKs. Asp 398 is typically

a charged residue (K/R) in other CAMKs while Asn 400 and Ala 402 are typically hydrophobic

and polar residues, respectively (see residue frequencies in background alignment; Figure 3.3.6B).

Notably, both Asn 400 and Asp 398 make direct interactions with residues in the C-tail either in

the crystal structure or molecular dynamics simulations (see below). Likewise, DCLK conserved

residues in the C-helix and activation loop tether the C-terminal tail to functional regions of the

kinase core, suggesting co-option of the DCLK catalytic domain to uniquely interact with the

flanking cis regulatory tail.

3.3.5 An autoinhibitory ATP-mimic completes the C-spine and mim-

ics the gamma phosphate of ATP

The most stable segment of the C-tail based on the B-factor and RMSF fluctuations in MD

simulations is a unique region (682-688 in DCLK1.2) that docks into the ATP binding pocket

through both hydrophobic and hydrogen-bonding interactions. Remarkably, this peptide segment

mimics the physiological ATP ligand, and stabilizes the catalytic domain through ‘completion’ of

the hydrophobic catalytic spine (Figure 3.3.7A, (33)). The residues that mimic adenosine and

complete the C-spine of DCLK1 are Val 682, Val 684, and Ile 685 (PDB: 6KYQ), which are part

of the α-helix that docks to the ATP-binding pocket (Figure 3.3.7B). Interestingly, based on our

BPPS analyses, these C-tail residues are uniquely vertebrate DCLK1-specific pattern constraints.

At the tail end of this α-helix are two Thr residues, Thr 687 and Thr 688. As previously noted,

these Thr residues mark the beginning of exon 17, and are one of the key variations between

human DCLK1 isoforms, found only in DCLK1.2 variants.
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Figure 3.7: The DCLK1 C-tail ‘completes’ the regulatory C-spine (green). A) PKA crystal

structure (pdb: 1ATP) with bound ATP in red and Mg2+ in purple. The C-spine is completed by

the adenine ring of ATP. The gamma phosphate of ATP hydrogen bonds with the second glycine

of the G-loop. B) DCLK1.2 crystal structure (pdb: 6KYQ) showing how the C-tail (red) docks

underneath the pocket and mimics the ATP structure. The C-spine is completed by V682 and

V684 in the C-tail and helical segments defined using DSSP are shown. T687 is also depicted

making multiple hydrogen bonds with the backbone of V684 and I685 (dashed lines). C) DCLK1.1

AlphaFold2 model showing an unstructured loop in the C-tail docking into the ATP binding pocket,

where V684 and I685 are predicted to complete the C-spine. The average per-residue confidence

of the C-tail is 49%. D-F) Zoomed out versions of A-C, demonstrating how the DCLK1 C-tail

docks into the ATP binding cleft, akin to ATP in PKA.
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Structural analysis and MD simulations reveal that Thr 687 in DCLK1.2 caps the stable α-

helix that extends the C-spine (Figure 3.3.7B, Figure 3.3.7-figure supplement 1B). In comparison,

the same region in DCLK1.1, which lacks Thr 687, is predicted to be unstructured. Upon

phosphorylation, Thr 688 in DCLK1.2 can mimic the gamma phosphate of ATP by maintaining a

stable hydrogen bonding distance with the backbone of the second glycine of the G-loop (G399)

(Figure 3.3.7B, Figure 3.3.7-figure supplement 1C). We additionally observe that the sidechain of

Asn 400, a DCLK-specific G-loop constraint, further stabilizes the phosphate group in pThr 688

through hydrogen bonding. As previously described, Thr 688 is unique to DCLK1.2. The lack of

this functional site in DCK1.1 is correlated with increased RMSF and instability of the ATP-mimic

segment in isoform 1 MDs (Figure 3.3.5C-D, Figure 3.3.7-figure supplement 1B). Comparatively,

MD analysis of DCLK1.2 and a phosphothreonine-containing DCLK1.2 demonstrates reduced

C-tail fluctuations, suggesting the potential regulatory involvement of Thr 688 phosphorylation

for further modulation of the autoinhibited conformation (Figure 3.3.7-figure supplement 1C),

consistent with previous findings (Agulto et al. 2021).

3.3.6 Mutational analysis support isoform-specific allosteric control

of catalytic activity by the C-terminal tail

To evaluate how sequence differences between DCLK1.1 and DCLK1.2 affected both thermal

stability and catalytic potential, we generated targeted mutations at contact residues within the

Gly-rich loop and C-tail of DCK1.1 and DCLK1.2 (at the indicted residues depicted in Figure

3.3.8A) which we predicted would disrupt or destabilize C-tail docking within the domain. All

proteins were purified to near homogeneity by IMAC and size exclusion chromatography (Figure

3.3.5-figure supplement 1), and the thermal stability of a panel of DCLK1.2 mutant and WT

proteins were compared side-by-side with the DCLK1cat (Figure 3.3.8B). The ∆Tm values

obtained (Figure 3.3.8C) demonstrate that mutation of Asp 398 or Asn 400 in the Gly-rich loop

are by themselves insufficient to destabilize DCLK1.2. In marked contrast, dual mutation of the
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hydrophobic pair of Val 682 and Val 684 residues to Thr, or mutation of the acidic tail residue Asp

691, resulted in a pronounced reduction in DCLK1.2 thermal stability. Moreover, the recorded Tm

values for these latter two mutations quite closely resembled the Tm of DCLK1cat (which lacks

the C-tail entirely), which is consistent with the uncoupling of the C-tail and a commensurate

decrease in thermal stability associated with loss of this interaction.

Figure 3.8: A) Structural depiction of DCLK1.2 (PDB: 6KYQ) showing the location of modified

DCLK1 amino acids on the G-loop (purple) or C-tail (red). B-C) Differential Scanning Fluorimetry

assays depicting thermal denaturation profiles of each protein along with the calculated Tm value.

D) Kinase assays. DCLK1-dependent phosphate incorporation (pmol/min-1) into the DCLK1

peptide substrate was calculated for DCLK1cat, long and short DCLK1.1 and the indicated

DCLK1.2 variants. E) Thermal stability analysis in the presence of ATP or DCLK1-IN-1 for

DCLK1 proteins. For DCLK1.2, all proteins were generated in the DCLK1.2 short background.

We next determined the catalytic activity of our recombinant DCLK1.1 and DCLK1.2 proteins

side-by-side (Figure 3.3.8D, Figure 3.3.8-figure supplement 1). Although partially diminished
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in relation to DCLK1cat, both DCLK1.1short (351–703) and DCLK1.1long (351–729) variants

possess robust catalytic activity. This suggested ineffective ATP-competitive auto-inhibition

mediated by the C-tail segment of DCLK1.1 and is consistent with their closely matched Tm

values to DCLK1cat (Figure 3.3.5C). Interestingly, both C-tail containing variants of DCLK1.1

(and particularly DCLK1.1351-729) exhibited lower affinity for ATP (inferred from KM[ATP] for

peptide phosphorylation), which is consistent with partial-occlusion of the ATP binding pocket

(Figure 3.3.8-figure supplement 1). In marked contrast, the detectable kinase activity for short

(351–703) or long (351–740) DCLK1.2 proteins was significantly blunted compared to DCLK1cat,

exhibiting just ≈5% of the activity of the catalytic domain alone, and consistently, the calculated

KM[ATP] was ≈4 fold higher compared to the catalytic domain lacking the C-tail. We also

utilized autophosphorylation as a proxy for overall kinase activity. Quantitative tandem mass

spectrometry (MS/MS) analysis of site-specific autophosphorylation within DCLK1.1short and

DCLK1.2short demonstrate a marked reduction in the site-specific abundance of phosphate in

DCLK1.2 when compared to DCLK1.1 at two separate sites that could be directly and accurately

quantified by MS (S438 and S660, DCLK1.1 relative abundance set to 1, Figure 3.3.8-figure

supplement 2). LC-MS/MS also indicated that several autophosphorylation sites identified in

isoform 1 were absent in DCLK1.2 (Ser 683 and Thr 692, the latter of which is an amino acid

that is unique to the C-tail of DCLK1.1, Figure 3.3.8-figure supplement 2). Interestingly, amino

acid substitutions in the G loop or the C-tail of DCLK1.2 designed to subvert C-tail and ATP site

interactions also had major effects on DCLK1.2 phosphorylation and catalytic activity. DCLK1.2

D398A was activated some 5-fold when compared to the WT form, whereas DCLK1.2 N400A

was almost as active as the DCLK1cat.

Consistently, DCLK1.2 V682T/V684T and D691A proteins were also much more active than

the WT form of DCLK1.2. Kinetic analysis also confirmed higher Vmax (but broadly similar

KM[ATP]) values for DCLK1.2 D398A and V682T/V684T relative to the WT protein (Figure

3.3.8-figure supplement 1). Moreover, comprehensive LC-MS/MS phosphosite mapping revealed a
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marked increase in the total number of phosphorylated amino acids in all of the mutant DCLK1.2

proteins, consistent with the enhanced catalytic activity of these proteins when compared to

WT DCLK1.2 (Figure 3.3.8-figure supplement 2). Together, these observations confirm that

targeted mutations are sufficient to relieve ATP-competitive C-tail autoinhibition by physical tail

uncoupling; this model is also strongly supported by marked changes in the biophysical stability

of the mutant proteins, particularly for V682/684T and D691A (Figure 3.3.8B).

To expand on this finding, we investigated the interaction of Mg:ATP or DCLK1-IN-1 to our

panel of DCLK1.1 and 1.2 proteins (Figure 3.3.8E), using changes in thermal stability as a reporter

of ligand binding. DCLK1cat (351–686), DCLK1.1short (351–703) and DCLK1.1long (351–729)

proteins all behaved similarly in the presence of either Mg:ATP or DCLK1-IN-1, inducing marked

stabilization. In contrast, DCLK1.2short (351–703) or DCLK1.2long (351–740) proteins registered

negligible thermal shifts in the presence of the same concentration of either ligand, which is in-line

with the C-tail tightly occupying the ATP-binding site and obstructing their binding. Remarkably,

D398A and N400A DCLK1.2, whose high basal Tm values (compared to DCLK1cat) are consistent

with stabilization by docking of the C-tail within the kinase domain, were markedly destabilized

in the presence of either ligand. This suggests that incorporation of these G-loop mutations in

isolation is insufficient to dislodge the C-tail, but rather that the stability of the interaction is

compromised to the extent that either ATP or DCLK-IN-1 can competitively dislodge the bound

tail from the ATP active site, resulting in a net destabilization caused by lack of tail engagement.

This observation is corroborated by the results of our kinase assays, where both D398A and

N400A mutants were more active than WT DCLK1.2, confirming appropriate ATP binding (a

pre-requisite for catalysis). Finally, DCLK1.2 V682T/V684T and D691A, which exhibit lower basal

Tm values than the WT protein (indicating a loss of tail interaction), were both stabilized in a

ligand-dependent manner to a similar degree to that observed for DCLK1cat and DCLK1.1 proteins

(Figure 3.3.8E). Collectively, these observations clearly demonstrate that the C-tail section of

DCLK1.2 can both stabilize the canonical DCLK kinase domain and inhibit kinase activity (by
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impeding the binding and structural coordination of Mg:ATP) much more effectively than that

of DCLK1.1. Our targeted mutational analysis of key contact residues in DCLK1.2 also clearly

shows that this is a consequence of specific amino acid interactions that are absent in DCLK1.1

due to alternative-splicing and subsequent sequence variation.

3.3.7 Classification of DCLK regulatory segments

We synthesized our experimental findings by classifying the DCLK C-tail into six functional seg-

ments, based on interactions with different regions of the catalytic domain and their conservation

between the C-tail splice variants in our analysis (Figure 3.3.9): First is an ATP-mimetic pep-

tide segment (residues 682-688 in DCLK1.2) that readily mimics physiological ATP binding by

completing the C-spine in the nucleotide-binding site. The inhibitory peptide also contains a phos-

phorylatable Thr residue, which sits adjacent to the highly characteristic Gly-rich loop (GDGNFA,

residues 396-402). Second, we define a pseudosubstrate mimic (PSM, residues 692-701), which

interacts with the acidic HRD and DFG Asp side-chains and docks in the substrate pocket occlud-

ing substrate access. Third, at the C-terminus of the tail, lies an intrinsically disordered segment

(IDS, residues 702-749, Figure 3.3.9-figure supplement 1), which packs dynamically against DCLK

conserved residues in the kinase activation loop. Fourth, at the beginning of the C-tail lies a

CAMK-tether (residues 654-664), a set of residues that pack against a CAMK-specific insert in

the C-lobe. In many CAMK crystal structures, this insert makes multiple contacts with the F-helix

and C-tail (Figure 3.3.6-figure supplement 1). Fifth, this is followed by a highly dynamic pseudo-

substrate region (residues 672-678) that occludes the substrate pocket and will thus interfere with

substrate phosphorylation. Sixth, a transient beta-strand is formed in DCLK1.2 through amino

acid specific sequences that help modulate and potentially strengthen binding of the C-tail in this

isoform (Figure 3.3.7-figure supplement 1A-B).
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Figure 3.9: A DCLK1 C-tail can act as a multi-functional Swiss Army Knife, using six distinct

segments for a variety of regulatory functions including mimicking ATP binding/association,

stabilizing the G-loop, occluding the substrate binding pocket, and packing against the kinase

activation loop.

Collectively, these segments and their associated interaction sites demonstrate that co-evolution

of the unique C-tail with the catalytic domain is the central hallmark of DCLK functional divergence,

and that changes in these segments possess the ability to ‘supercharge’ catalytic output of the

kinase. In particular, the variable C-terminal segments of the tail might contribute to isoform-
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specific functional specialization. The combinatorial diversity of events that modulate C-tail

function may allow DCLKs to nimbly coordinate various tasks including ATP-binding, substrate-

based phosphorylation, regulation of DCX domain phosphorylation and structural disposition,

kinase autoinhibition and allosteric regulation. Isoform-specific variability provides additional

nuance to regulatory and catalytic signaling events and may even contribute to differences in

cellular localization (e.g. cytoplasm or nucleoplasm) and tissue-specific activity, enabling contextual

DCLK regulation through these modular sequence segments.

3.4 Methods

3.4.1 Ortholog Identification

To identify orthologs, we used the software KinOrtho (L.-C. Huang et al. 2021) to query one-to-

one orthologous relationships for DCLK1/2/3 across the proteome. After collation of the various

orthologs, we parsed the sequence data for taxonomic information and classified each sequence

by family. We further separated human DCLK1 into each unique isoform and aligned them.

3.4.2 Phylogenetic Analysis

We identified diverse DCLK orthologs from the UniProt database (UniProt Consortium 2021) using

an profile-based approach (Andrew F. Neuwald 2009). From this dataset, we manually curated

a taxonomically diverse set of DCLK orthologs composed of 36 sequences spanning 16 model

organisms. These sequences were used to generate a maximum-likelihood phylogenetic tree using

IQTREE version 1.6.12 (L.-T. Nguyen et al. 2015). Branch support values were generated using

ultrafast bootstrap with 1000 resamples (Hoang et al. 2018). The consensus tree was selected as

the final tree. The optimal substitution model for our final topology was determined to be LG (Le

and Gascuel 2008) with invariable sites and discrete gamma model (Gu, Fu, and W. H. Li 1995)

based on the Bayesian Information Criterion as determined by ModelFinder (Kalyaanamoorthy
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et al. 2017). We rooted our final tree against an outgroup of 17 closely related human CAMK

kinases using ETE Toolkit version 3.1.2 (Huerta-Cepas, Serra, and Bork 2016).

3.4.3 Sequence and Structure Analysis

MAFFT (Katoh et al. 2002) generated multiple sequence alignments were fed into the Bayesian

Partitioning with Pattern Selection (BPPS) tool to determine evolutionarily conserved and function-

ally significant residues (Andrew F Neuwald 2014). Constraints mapped onto AlphaFold-predicted

structures were visualized in PyMOL to analyze biochemical interactions.

3.4.4 Rosetta Loop Modeling

Loop modeling was performed on the crystal structure (6KYQ) using the Kinematic Loop Modeling

protocol (Mandell, Coutsias, and Kortemme 2009) to model missing residues. Following this, the

structure underwent five cycles of rotamer-repacking and minimization using the Rosetta Fast-relax

protocol (Tyka et al. 2011).

3.4.5 DSSP Analysis

To analyze changes in secondary structure over our MDs, we employed the DSSP command

in GROMACS (kabsch_dictionary_1983). This produces an output that contains an array

of secondary structure values against each residue. The MDAnalysis python module (Michaud-

Agrawal et al. 2011) was used to plot these values.

3.4.6 Molecular Dynamics

PDB constructs were generated by retrieving structural models RCSB and the AlphaFold2 database.

Post-translational modifications were performed in PyMOL using the PyTMs plugin. All structures

were solvated using the TIP3P water model (Jorgensen et al. 1983). Energy minimization was
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run for a maximum of 10,000 steps, performed using the steepest-descent algorithm, followed by

the conjugate-gradient algorithm. The system was heated from 0K to a temperature of 300K.

After two equilibration steps that each lasted 20 picoseconds, 1 microsecond long simulations

were run at a two femtosecond timestep. Long-range electrostatics were calculated via particle

mesh Ewald (PME) algorithms using the GROMACS MD engine (Pronk et al. 2013). We utilized

the CHARMM36 force field (J. Huang and MacKerell 2013). The resulting output was visualized

using VMD 1.9.3 (Humphrey, Dalke, and Schulten 1996). All molecular dynamics analysis was

conducted using scripts coded in Python using the MDAnalysis module (Michaud-Agrawal et al.

2011).

3.4.7 Computational Mutational Analysis

Cartesian ddG in Rosetta (Park et al. 2016) was utilized to predict potential stabilizing and

destabilizing mutations in the enzyme structure. We performed three replicates per mutation

and averaged the Rosetta energies. All mutant energies were then subtracted by the wt Rosetta

energy to generate a panel of ddG values relative to wt. Combined with our sequence analyses, we

mutated kinase and DCLK-specific constraints to identify destabilizing interactions in the c-tail.

3.4.8 Exon-Intron Boundary Mapping

The precise gene structure of DCLK1 isoforms were mapped onto the human genome with each

isoform used as a query protein sequence in order to generate exon-intron borders. This was

achieved using Scipio (version 1.4.1) (Keller et al. 2008) with default settings. Exons were

numbered based on Ensembl annotations (Cunningham et al. 2022). The translation of each

annotated gene sequence to protein sequence was provided with the output file (Figure 3.3.4-source

file 1-4).
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3.4.9 DCLK1 cloning and recombinant protein expression

6His-DCLK1 catalytic domain (351–686), DCLK1.1 351-703 (short C-tail) or 351-729 (full C-tail),

DCLK1.2 351-703 (short C-tail) or 351-740 (full C-tail), and DCLK1.2 351-703 containing D398A,

N400A, V682T/V684T or D691A substitutions were synthesized by Twist Biosciences in pET28a.

6His-GST-(3C) DCLK1.1 351-689 was amplified by PCR and cloned into pOPINJ. Kinase dead,

D533A 6His-GST-(3C) DCLK1.1 351-689 was generated by PCR-based site directed mutagenesis

(Figure 3.3-source data 3). All plasmids were sequenced prior to their use in protein expression

studies. All proteins, including 6His-GST-(3C) DCLK1 351-689, with a 3C-protease cleavable

affinity tag, were expressed in BL21(DE3)pLysS E. coli (Novagen) and purified by affinity and size

exclusion chromatography. The short N-terminal 6-His affinity tag present on all other DCLK1

proteins described in this paper was left in situ on recombinant proteins, since it does not appear

to interfere with DSF, biochemical interactions or catalysis. For analytical SEC chromatography,

1 mg of each DCLK1 protein was assayed on a Superdex 200 Increase 10/300 GL (Cytiva), and

the eluted fractions were also analysed by SDS-PAGE and Coomassie blue staining to confirm

composition. The molecular weight standards were loaded in a mixture of 200 ug of Bovine Serum

Albumin (BSA), Carbonic Anhydrase (CA), and Alcohol Dehydrogenase (AD) each.

3.4.10 Mass Spectrometry

Purified DCLK1 proteins (5 µg) were diluted (≈40-fold) in 100 mM ammonium bicarbonate

pH 8.0 and reduced (DTT) and alkylated (iodoacetamide, as previously described (Ferries et al.

2017), and digested with a 25:1 (w/w) trypsin gold (Promega) at 37 °C for 18 hours with gentle

agitation. Digests were then subjected to strong cation exchange chromatography using in-house

packed stage tip clean-up (Leonard A. Daly et al. 2021). Dried tryptic peptides were solubilized in

20 µl of 3% (v/v) acetonitrile and 0.1% (v/v) TFA in water, sonicated for 10 min, and centrifuged

at 13,000 x g for 10 min at 4°C and supernatant collected. LC-MS/MS separation was performed
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using an Ultimate 3000 nano system (Dionex), over a 60-min gradient (Ferries et al. 2017).

Briefly, samples were loaded at a rate of 12 µL/min onto a trapping column (PepMap100, C18,

300 µm × 5 mm) in loading buffer (3% (v/v) acetonitrile, 0.1% (v/v) TFA). Samples were

then resolved on an analytical column (Easy-Spray C18 75 µm × 500 mm, 2 µm bead diameter

column) using a gradient of 97% A (0.1% (v/v) formic acid): 3% B (80% (v/v) acetonitrile, 0.1%

(v/v) formic acid) to 80% B over 30 min at a flow rate of 300 nL/min. All data acquisition was

performed using a Fusion Lumos Tribrid mass spectrometer (Thermo Scientific). Samples were

injected twice with either higher-energy C-trap dissociation (HCD) fragmentation (set at 32%

normalized collision energy [NCE]) or Electron transfer dissociation (ETD) with supplemental 30%

NCE HCD (EThcD) for 2+ to 4+ charge states using a top 3s top speed mode. MS1 spectra

were acquired at a 120K resolution (at 200 m/z), over a range of 300 to 2000 m/z, normalised

AGC target = 50%, maximum injection time = 50 ms. MS2 spectra were acquired at a 30K

resolution (at 200 m/z), AGC target = standard, maximum injection time = dynamic. A dynamic

exclusion window of 20 s was applied at a 10 ppm mass tolerance. Data was analysed by Proteome

Discoverer 2.4 in conjunction with the MASCOT search engine using a custom database of the

UniProt Escherichia coli reviewed database (Updated January 2023) with the DCLK1 mutant

variant amino acid sequences manually added, and using the search parameters: fixed modification

= carbamidomethylation (C), variable modifications = oxidation (M) and phospho (S/T/Y), MS1

mass tolerance = 10 ppm, MS2 mass tolerance = 0.01 Da, and the ptmRS node on; set to

a score > 99.0. For HCD data, instrument type = electrospray ionization–Fourier-transform

ion cyclotron resonance (ESI-FTICR), for EThcD data, instrument type = EThcD. For label

free relative quantification of phosphopeptide abundances of the different DCLK1 variants, the

minora feature detector was active and set to calculate the area under the curve for peptide m/z

ions. Abundance of phosphopeptide ions were normalised against the total protein abundance

(determine by the HI3 method (Silva et al. 2006), as in the minora feature detector node) to

account for potential protein load variability during analysis.
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3.4.11 DCLK1 DSF

Thermal Shift Assays (TSA), were performed using Differential Scanning Fluorimetry (DSF) in

a StepOnePlus Real-Time PCR machine (Life Technologies) in combination with Sypro-Orange

dye (Invitrogen) and a thermal ramping protocol (0.3°C per minute between 25 and 94°C).

Recombinant DCLK1 proteins were assayed at a final concentration of 5 µM in 50 mM Tris–HCl

(pH 7.4) and 100 mM NaCl in the presence or absence of the indicated concentrations of ligand

(ATP or Mg:ATP) or DCLK1 inhibitor compounds, with final DMSO concentrations never higher

than 4% (v/v). Thermal melting data were processed using the Boltzmann equation to generate

sigmoidal denaturation curves, and average Tm/∆Tm values were calculated as described using

GraphPad Prism software, as previously described, from 3 technical repeats (Dominic P. Byrne,

Clarke, et al. 2020).

3.4.12 DCLK1 kinase assays

DCLK1 peptide-based enzyme assays (Dominic P. Byrne, Vonderach, et al. 2016; Omar et al.

2023) were carried out using the LabChip EZ Reader platform, which monitors and quantifies

real-time phosphorylation-induced changes in the mobility of the fluorescently-labelled DCLK1

peptide substrate 5-FAM-KKALRRQETVDAL-CONH2. To assess DCLK1 catalytic domains, or

DCLK1.1 or DCLK1.2 variants, 100ng of purified protein were incubated with a high (1 mM)

concentration of ATP (to mimic cellular levels of nucleotide) and 2 µM of the fluorescent substrate

in 25 mM HEPES (pH 7.4), 5 mM MgCl2, and 0.001% (v/v) Brij 35. DCLK1-IN-1 and DCLK1-

NEG (kind gifts from Dr Fleur Ferguson, UCSF) enzyme inhibition was quantified under identical

assay conditions in the presence of 10 µM of each compound. Assays are either reported as rates

(pmoles/min phosphate incorporation) during linear phosphate incorporation (e.g total substrate

phosphorylation limited to <20-30% to prevent ATP depletion and to ensure assay linearity),

or presented as time-dependent percentage substrate phosphorylation (kinetic mode). Rates
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of substrate phosphorylation (pmol phosphate incorporation per min) were determined using a

fixed amount of kinase and linear regression analysis with GraphPad Prism software; Vmax and

KM[ATP] values were calculated at 2 µM substrate peptide concentration, as previously described

(McSkimming et al. 2016). Rates are normalized to enzyme concentration and all enzyme rate

and kinetic data are presented as mean and SD of 4 technical replicates.

3.5 Discussion

The kinase domain is a conserved switch for phosphorylation-based catalytic regulation. Yet

the complexity of cell signaling pathways demands other nuanced forms of regulation beyond

binary “on” or “off” switch-based mechanisms. For many Ser/Thr kinases, including AGC and

CAMK families, these distinct regulatory functions come from segments which flank the kinase

domain, N– and C-terminal regions, which serve to modulate activity through allosteric activation,

inhibition, or rheostatic behaviors that change based on environmental conditions (Gógl et al.

2019). In this study, we expand on our knowledge of allosteric diversity in the human kinome by

revealing how alternative splicing of the DCLK1 C-tail contributes to isoform-specific behaviors,

coupling regulation of catalytic output, phosphorylation, protein dynamics and stability, substrate

binding, and protein-protein interactions. Our “Swiss Army Knife” model for DCLK1 expands our

view of allosteric regulation as not just a dynamic process facilitated by proteins, but one where

adaptive genetic mechanisms, like differential splicing, dexterously tune isoform-specific functions

for specific cellular signaling roles; in the case of DCLK1.1, this allows ‘supercharging’ of catalysis

between splice variants due to key amino acid differences in the C-tail that are lacking in the

DCLK1.2 isoform.

Multiple members of the human kinome have independently evolved C-tail regions that dock

to the N or C-lobe of the kinase domain in cis. In the case of the AGC kinases, the C-terminal

tail is a very well-studied in-cis modulatory element that serves to explain a variety of regulatory

properties in this kinase sub-family (Kannan et al. 2007; Romano et al. 2009; Baffi and Newton
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2022; Susan S. Taylor and Alexandr P. Kornev 2011). Classical deletion studies with members

of the CAMK family, have also revealed a cis-acting inhibitory element lying C-terminal to the

catalytic domain of both CAMK1 (Yokokura et al. 1995) and CAMK2 (Yang and H. Schulman

1999). More recent examples of C-tail functional diversity in CAMK family members are presented

by the human pseudokinases TRIB1 and TRIB2, which employ C-tail sequences to either latch

(and structurally restrict) the atypical kinase domain or to bind competitively to the Ubiquitin E3

ligase COP1 (Patrick A. Eyers 2015; Patrick A. Eyers, Keeshan, and Kannan 2017). Functional

disengagement of the TRIB1 or TRIB2 tail through deletion, mutagenesis or small molecule binding

has marked effects on pseudokinase conformation, intrinsic stability and cellular transformation

(Foulkes et al. 2018; Harris et al. 2022; Keeshan et al. 2010; James M. Murphy et al. 2015).

3.5.1 A novel pseudosubstrate region encoded by DCLK1

In addition to the marked differences between DCLK1 splice variants relevant to nucleotide binding,

small molecule interactions and catalysis, our work also reveals two unique pseudosubstrate

segments present before and after the IBS. Before the IBS segment, we observe the formation

of an anti-parallel transient beta sheet with the beta1 strand in the catalytic domain (Figure

3.3.5I, Figure 3.3.7-figure supplement 1A-B). During the formation of this transient structure,

the C-tail dynamically occludes part of the substrate binding pocket. A beta-sheet is observed in

all three MD replicates of DCLK1.1, but only in a single replicate of DCLK1.2 dynamic analysis.

At the other end of the IBS is another pseudosubstrate segment whose structure and dynamics

change as a result of alternative exon splicing. In DCLK1.2, the pseudosubstrate segment is

stable, with an average RMSF of 1.8 Angstroms, facilitated by key interactions from Lys 692,

which coordinates acidic residues in the HRD and DFG motifs (Figure 3.3.5-figure supplement

2A). In DCLK1.1, Lys 692 is replaced by a His, which weakly coordinates with the HRD and

DFG motifs, resulting increased dynamics of the segment and an RMSF of 3.1Å (Figure 3.3.5,

Figure 3.3.5-figure supplement 2B). Together, residue variation between isoforms contribute to
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differences in stability and alteration of dynamics of the tail. HPCAL1 was recently proposed as

a possible substrate that activates DCLK1 in a calcium-dependent manner, but it is unclear how

it may bind DCLK1 (Patel et al. 2021). Because only exon 15 of the C-tail is conserved between

the isoforms, it is possible the location of binding occurs in this dynamic pseudosubstrate segment

prior to the IBS, where increased flexibility and occlusion of the substrate pocket is reflective of

the absence of HPCAL1, or a similar calmodulin-like substrate.

3.5.2 Discovery of the DCLK1 ATP-Mimic region; a splice-variant

specific regulatory module

Our structural analysis of DCLK1 reveals a remarkable structural mimic of ATP located in the

C-tail, which differs markedly between DCLK1.1 and DLCK1.2 splice variants. We note for the first

time that a set of three residues in the ATP-mimic, Val 682, Val 684, and Ile 685, are conserved

across all isoforms of DCLK1 and DCLK2 (Figure 3.1C) and serve to extend the kinase C-spine.

Mutation of these residues in DCLK1.2 uncouples tail binding and activates the kinase. Proximal

to these residues are two Thr residues (Thr 687 and Thr 688), which are present in DCLK1.2,

but absent in DCLK1.1. Based on published phosphoproteomics data, both Thr residues can

be phosphorylated (2) and are thus likely to be regulatory in DCLK1.2. Although we could not

detect phosphorylation of either of these predicted regulatory sites in the WT form of DCLK1.2,

we consistently observed pThr 688 in activated mutant DCLK1.2 variants (Figure 3.3.8-figure

supplement 2). By analyzing DCLK1 dynamics using MD simulations, we observed multiple

key interactions between the G-loop and the C-tail in DCLK1, such as dipole interactions with

the second glycine in the G-loop by the phosphothreonine. In addition, Thr 687 contributes to

increased stabilization of DCLK1.2 tail by forming a C-cap with the helical ATP-mimic segment.

We aligned the intensively-studied protein kinase (PKA, PDB: 1ATP), a DCLK1.2 structure (PDB:

6KYQ), and frames of our MD trajectory, which demonstrate remarkable overlap of the ATP

gamma phosphate and C-tail phosphothreonine, which seemingly acts as a mimic for the ATP

86



co-factor. As phosphorylation is reported to lead to DCLK1 inhibition, this suggests a complex

mechanism of regulation, in which the DCLK-specific constraints in the G-loop, the intrinsic

flexibility of the C-tail, and threonine phosphorylation, by cis or trans-mediated modification,

systematically prevent hyperphosphorylation of the doublecortin domains and cellular effects.

Somewhat paradoxically, we could only identify phosphorylated Thr 688 in activated DCLK1.2

mutants, but not in the autoinhibited (WT) versioin. form. This suggests that the selected

mutations exhibit a regulatory hierarchal dominance over inhibitory Thr 688 phosphorylation and

are sufficient to liberate DCLK1.2 from its auto-inhibited, C-tail bound state. This also implies

that phosphorylation of Thr 688 may only be minimally-required for autoinhibition, especially

given its association with the hyperactive variants obtained by mutagenesis (Figure 3.3.8-figure

supplement 1-2).

Finally, we have evaluated the terminal residues in the DCLK1 C-tail, which are predicted to

be intrinsically disordered. Side-by-side analysis of DCLK1.1 and DCLK1.2 in which this region is

added from a common core terminating at residue 703, shows that increasing the length of the tail

in both DCLK1.1 and DCLK1.2 has little additional effect on the inhibitory or stabilizing effects

driven by the highly ordered tail regions that precede it. Kinase domains are regulated by IDRs in a

multitude of ways, but the CAMK family is specifically enriched for adapted C-terminal extensions

that, as we show here, can block the ATP and substrate binding, and enzymatically inactivate the

kinase domain by occlusion of the activation loop through a flexible helical IDS on their C-tail (4).

We note that the DCLK1.2 kinase domain crystallizes in an ‘active’ closed conformation, despite

binding of the C-tail in an autoinhibitory manner (Cheng et al. 2022). Repeated packing motions

of the IDS against the activation loop in all replicates of DCLK1.1 MD simulations, suggest that

tail may occlude the activation loop, similar to other CAMKs, possibly pointing to a mode of cis

autoregulation. Conversely, AlphaFold2 predicts the placement of the DCX domains as adjacent

to the IDS in both DCLK1.1 and DCLK1.2 (Figure S1). It is possible, like other CAMKs, the IDS
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facilitates protein binding, whether to the DCX domains, calcium-modulated proteins, or other

kinases.

3.5.3 Evolutionary divergence and functional specialization of DCLKs

For the DCLK family as a whole, we discovered phylogenetic divergence between DCLK1 and 2 as a

relatively recent event, (Figure 3.1A) in which metazoan DCLK3 is the more ancestral DCLK gene

from which DCLK1 and 2 emerged after duplication. Because of shared evolutionary constraints

and the recent divergence between DCLK1 and 2, we surmise the functional specialization of the

DCLK1 tail is shared between these paralogs. Moreover, we quantify key differences between

human DCLK1.1 and 1.2 activity that are impacted by amino acid changes that contribute to

the function of the C-tail. The differences between DCLK1 isoforms 1 and 2 are generated

by variations in exon splicing, which change both the C-tail protein sequence, and introduce

or exclude potential phosphorylation sites. Expression of the highly autoinhibitable DCLK1.2

isoform is believed to be predominant in the brain during embryogenesis, although DCLK1.1 is

also thought to be present in the adult brain (Burgess and Reiner 2002). It is therefore possible

that an altered ratio in DCLK1.1/1.2 expression, accompanied by changes in the requirement for

DCLK1 auto-regulation, are relevant for early neurogenesis. The overall sequence similarity at

the protein level, despite the loss of a pair of putative phosphorylation sites, suggests a possible

exon duplication in the C-tail, whereby polymorphisms have allowed for adaptive regulation during

development and proliferation. Indeed, we also speculate that the induced expression of DCLK1.2

splice variants in multiple cancer subtypes (Qu et al. 2019) is likely to be indicative of a survival

and drug-resistance role that could be targetable with new types of small molecule. Although

nanomolar DCLK1 ATP-site inhibitors such as DCLK1-IN-1 have been developed that can bind

tightly to the DCLK1 ATP site (Figure 3.3 and Figure 3.3-figure supplement 1), the ‘problematic’

existence of human DCLK1.1 and DCLK1.2 splice variants with distinct auto-inhibitory properties

may present a challenge to compound engagement in the cell, where relief of auto-inhibition
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through C-tail undocking in DCLK1.2 is likely to require a high concentration of compound in

order to compete and disengage interactions at the ATP site. Indeed, although potent chemical

DCLK1 inhibitors such as DCLK1-IN-1 are known to influence DCLK1 autophosphorylation and

cell motility, they have relatively modest effects in cells in terms of cytotoxicity (Ferguson et al.

2020; Ding et al. 2021). Therefore, we propose that the dual inhibitory effects of the C-tail and

the transmission of this information to adjacent DCX domains, which control adaptive cellular

phenotypes such as EMT in cancer cells (Major et al. 1985), may make allosteric classes of

DCLK1 inhibitor a preferred therapeutic option, especially if they can be tailored specifically

towards DCLK1.1 or DCLK1.2, whose autoregulation is different in terms of the varied molecular

details we have uncovered here.
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4.1 Abstract

Protein language models have emerged as a powerful tool for predicting protein function by cap-

turing the underlying grammar and syntax of protein sequences. Here, we introduce Glydentify, an

open-source and user-friendly application that uses protein language models for the classification

of glycosyltransferases (GTs). Utilizing the state-of-the-art ESM2 protein language model, Glyden-

tify extracts high-dimensional sequence embeddings to accurately classify GTs into fold A families

with 92% accuracy. The tool also predicts GT-A donor binding preferences with an accuracy of

88%. Notably, Glydentify identifies key residues that contribute to a prediction, thereby adding

an explainable component to the application. With an intuitive interface powered by Gradio, Gly-

dentify requires no programming experience from the user, democratizing access to cutting-edge

deep learning technologies for GT research. The application is freely available on GitHub and can

be accessed directly through any web browser (https://huggingface.co/spaces/arikat/Glydentify).

Keywords:

Glycobiology, Bioinformatics, Deep Learning, Sequence Classification, Protein Language Model
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4.2 Introduction

Identification and characterization of protein sequences is a critical task in biological research,

from understanding fundamental biochemical processes to advancing enzymatic synthesis. Yet

there are few tools available for biomedical scientists to study and make hypotheses about Glyco-

syltransferases (GTs) (Taujale, Soleymani, et al. 2021; York et al. 2020), an underappreciated

enzyme superfamily that catalyzes glycosidic linkages. These enzymes are highly divergent and

difficulties with expression and purification hinder progress with classification.

Currently, GTs are classified by sequence similarity using traditional alignment approaches.

The largest repository for GT family classification is the Carbohydrate Active Enzyme (CAZy)

database (Cantarel et al. 2009), the authority on the classification of new GT families, among other

enzymes. However, because GTs are highly divergent, the effectiveness of traditional methods

is diminished. Through extensive evolutionary, phylogenetic, and deep learning approaches, we

previously uncovered a number of new subfamilies and even novel GT folds (Taujale, Soleymani,

et al. 2021; Taujale, Venkat, et al. 2020; Taujale, Zhou, et al. 2021; Venkat, Tehrani, et al.

2022). With the emergence of deep learning protein language models, like ESM2 (Evolutionary

Scale Modeling) (Z. Lin et al. 2023), alignment-free approaches (Yeung, Zhou, Mathew, et al.

2023) are now possible using sequence embeddings, which encapsulate high-dimensional data

about protein evolution, structure, and chemistry. These embeddings can then be leveraged to

train classification models for function prediction.

Here, we present Glydentify (Figure 4.1), a novel, open-source application released with two

modules, one which uses a classifier trained for predicting fold A GT (GT-A) family membership,

and another which uses a classifier to predict potential donor substrates for GT-A sequences.

Users can input fasta sequences and seamlessly receive a prediction. Glydentify is open-source

and freely available on GitHub. In addition, it can be accessed online directly through the online

HuggingFace webtool.
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Figure 4.1: A cartoon workflow for developing a Glydentify module.

4.3 Methods

Family data collection and preprocessing

Glycosyltransferase sequences were obtained by searching the Uniprot database using sequence-

based profiles, as previously described (Taujale, Venkat, et al. 2020). About 200,000 sequences

were obtained; CD-Hit (ref) was used to purge sequences above 90% similarity. 10,000 sequences

equally distributed across the 72 known GT-A families (Taujale, Venkat, et al. 2020) were pulled

from the remaining sequences (183,212). These sequences had an amino acid length between
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200-600 amino acids, to prevent capture of fragmentary sequences or sequences with multiple

domains. Each sequence was labeled with the family it belonged to, using the CAZy numbering

scheme. We took a subset of our 10,000 sequence training set for validation testing using an

80-20 split. The remainder of the 173,212 sequences was used for testing.

Donor data collection and preprocessing

GT sequences were obtained by scraping the Uniprot database for sequences with information about

catalytic activity. Five datasets were created for GTs that bound mannose, glucose, galactose,

GalNAc, and GlcNAc, totaling about 50,000 sequences. Each dataset was purged at 80% similarity

using CD-Hit. Finally, we split the dataset at 70-15-15, for training, validation, and testing, using

sklearn, with stratification enabled to ensure equal distribution of labels. Like before, the amino

acid length of trained sequences was between 200-600 amino acids to prevent capture of sequences

with multiple domains or fragmentary GT sequences. Each sequence was labeled with the donor

substrate it would bind.

Embedding Generation and Training

The ESM2 protein language model was used to generate sequence embeddings. The sequences

were tokenized and padded or truncated to a maximum length of 512 before passing them to the

model. ESM2 has been shown to effectively capture protein sequence properties (Z. Lin et al.

2023). Employing the softmax function we converted the model’s output logits into probabilities,

which serve as a statistical basis for prediction. These softwmax-transformed logits are used to

construct a bar graph using MatPlotLib to allow users to appreciate the confidence level of the

top predictions. The models were trained using an nVidia RTX 5000 GPU, but only require a

single cpu for running the program.
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Validation and Testing

The validation set was evaluated during the training and the loss/accuracy curves were plotted

to help tune hyperparameters and evaluate if the model was overfitting the training set. Using a

validation set helped evaluate how generalizable our results would be without running the data

through the large testing set.

Explainability

To explain which residues contribute to a particular prediction, we programmed a post-hoc method

which masks N residues during the prediction, and re-runs the prediction for (Total Residues/N)

iterations. By masking a set of residues, the model takes account for alternative predictions which

manifest based on hidden residues.

App Development and Packaging

The trained model was integrated into a Gradio-based web application, providing a user-friendly

interface to input glycosyltransferase sequences and receive predictions. The application is freely

available on the HuggingFace platform (https://huggingface.co/spaces/arikat/Glydentify). We

also uploaded this application into a downloadable GitHub package for easy deployment and use.

4.4 Results

Traditional sequence-based approaches, like Conserved Domain Database (CDD) search, rely

heavily on pre-defined, curated domain databases. While they are effective for identifying known

domains in sequences, these methods often struggle with novel sequences or sequences with low

similarity to known domains. Additionally, they may fail to capture functionally important but

less-conserved elements of the sequence, leading to incomplete or less accurate annotations.
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Glydentify, on the other hand, is fine-tuned from the ESM2 embeddings, allowing it to draw

from evolutionary and structural patterns within Glycosyltranserase (GT) families. This empowers

it to classify GTs based on subtle patterns that may not be easily identified by traditional sequence

approaches or raw ESM2 embeddings alone.

Figure 4.2: A confusion matrix showing model accuracy for each donor label in our testing dataset.
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The classification performed by ESM-2 in Glydentify is based on a transformer architecture,

which embeds protein sequences into high-dimensional spaces, capturing complex patterns and

dependencies in the sequence data. The model then uses a form of logistic regression at the

output layer, specifically a softmax layer, to classify the sequences into different categories, and

it is trained with a cross-entropy loss to optimize its predictions.

Our two modules fine-tuned from the T33-150M ESM2 model offer accuracies of 92% for

family classification and 87% for donor classification (Figure S1). We can further break these

accuracies down through the use of a confusion matrix (Figure S2, Figure 4.2), which indicates

model performance based on comparison of true and predicted labels. Our family classification is

highly accurate with most GT families. However, some accuracy is lost when classifying subfamilies.

Predominantly, we see the model confuses closely related GT2-subfamilies, understanding they

are within the broader GT2 superfamily, but having trouble distinguishing the distinct features

that differentiate closely related subfamilies. This may be due to lower representation of certain

GT2 subfamilies. Alternatively, our choice to truncate the sequence to the GT-domain to save

on computational cost, may also contribute to model inaccuracy.

Similarly, our donor classification indicates that the model largely performs donor prediction

well, but has difficulty with classification of highly similar donors, like N-acetyl galactosamine

(GalNAc) and Galactose (Gal). These discrepancies may arise from situations like the ABO

glycosyltransferases which transfer the aforementioned sugars, resulting in an A or B blood

phenotype (Patenaude et al. 2002). There are only four distinct residues which differ between

ABO GTs (Patenaude et al. 2002), which distinguish whether they transfer GalNAc or Gal. There

are likely many more such cases, and with larger and more fine-grained explainable deep learning

models, the particular residues involved in changing donor specificity may be identified.
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Figure 4.3: Explainable heatmap where the y-axis represents sequence range in groups of ten

residues, and the X-axis represents categorical prediction (which sugar the enzyme sequence is

predicted to bind). Collectively, the heatmap outlines the residues which contribute the most to a

given prediction, as well as highlights potential residues in other predictions that may be helpful

for engineering bifunctional or promiscuous GT-A enzymes.
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To this avail, we added an explainable component to the donor prediction model in Glydentify

(see Methods). We masked every N residues and re-ran the prediction to generate a heatmap

of possible predictions (Total Residues/N), when N residues are masked. This heatmap then

highlights possible residue groups that contributed to a prediction (Figure 4.3). We provide the

option to change granularity of the heatmap, by allowing the user to select the number of residues

masked (N). Lower masking results in increased compute time, but higher resolution regarding

which residues may contribute to a prediction. In our example, our model correctly predicts

Galactose for B-1,3-Galactosyltranferase (B blood-type GT-A enzyme).

Figure 4.4: A heatmap mapped to a pdb structure of B-1,3-Galactosyltransferase, a B blood-type

ABO GT (pdb: 2RIX).
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We mapped the explainable heatmap onto an ABO GT structure (Figure 4.4) and it indicates

that some of the residues of interest for the galactose prediction are the conserved phosphate

binding cassette in GTs (Venkat, Tehrani, et al. 2022), which is necessary for the binding the

donor, as well as the glycine rich loop (G-loop) (Taujale, Venkat, et al. 2020), which contain two

of four residues which differ between A and B blood-type GT-As (Patenaude et al. 2002). The

model also asserts slight contributions are made by regions containing the catalytic xED motif

and C-His, which helps bind the metal cation. With an explainable component, biologists may be

more inclined to comprehend a particular prediction with biochemical or sequence expertise.

4.5 Conclusion

Glydentify leverages evolutionary and structural patterns concealed within sequences to effectively

classify fold A GTs by family and by donor function. It provides a robust solution to the problem of

sequence diversity in protein families. GTs, for instance, are incredibly diverse in terms of sequence,

structure, and function (Taujale, Soleymani, et al. 2021; Taujale, Venkat, et al. 2020; Taujale,

Zhou, et al. 2021; Venkat, Tehrani, et al. 2022; Moremen and Haltiwanger 2019; Varki, Richard D

Cummings, et al. 2022). Thus, traditional sequence methods may struggle to accurately classify

such a diverse group, but Glydentify’s alignment-free embedding-based approach is well-suited to

handle this variability. Glydentify also does not rely on pre-defined, curated databases, making it

better equipped to handle novel sequences or sequence regions that may not be well-represented

in existing databases.

Despite its proficiency, it’s important to note that protein language models do not fully

incorporate three-dimensional structure information. As the field of bioinformatics continues to

advance, with developments like AlphaFold2 improving 3D structure prediction and emerging

sequence-structure methods such as contrastive-learning approaches, the prospects for holistic

protein learning models become increasingly promising. Such advancements are anticipated to

predict critical attributes including protein structure, binding location and substrate specificity, and
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mechanisms of allostery. Ultimately, as more comprehensive and accurate models are developed,

it will be critical to improve large-scale accessibility and usage for non-specialists to verify and

enhance our understanding of protein function and contribute to efforts in bioengineering and

substrate synthesis.

Finally, the Glydentify application is modular, allowing for easy addition of new classification

models. The open-source code can be forked on github by interested scientists, seeking to train

their own classifiers on glyco-enzymes of interest. Well-performing models can easily be added

to the Glydentify interface, enhancing its utility and further establishing it as a platform that

democratizes access to AI for glycobiology.
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Chapter 5

Concluding remarks and

future directions

5.1 Achievement of Goals

Evolutionary biology is the applied philosophy through which we attempt to comprehend the

machinations of natural selection. This approach allows us to capture information from millions of

years of natural engineering producing the diverse and highly regulated enzymes that exist today.

Just as bricks can be assembled in various configurations to create structures with differing func-

tions, enzymes too evolve through modular principles, allowing for diversification while retaining

core functionalities. This dissertation explored the underlying principles of modularity in enzyme

evolution, illuminating how nature, like an expert architect, repurposes, combines, and innovates

to craft the intricate web of biological pathways that sustain life. Through our findings, we gain

a deeper appreciation for the evolutionary dynamics that have shaped the enzymatic repertoire

of living organisms and provide insights that may guide future endeavors in synthetic biology and

bioengineering.
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5.2 Modular evolution of GT-As

Here we dived into the evolution of fold A glycoslytransferases (Venkat, Tehrani, et al. 2022),

mining the sequential and structural patterns hidden within glycosyltransferase sequences to

construct an evolutionary trajectory of GT-As. Specifically, we established that GT-As evolve in

three distinct modules originating from the hydrophobic core, with further hypervariable modules

embellishing the canonical GT-A scaffold, allowing for the extensive diversity of functions performed

by modern GT-As today. We also uncover that the latest hydrophobic core module tethers the

phosphate binding cassette, which contains the DxD motif, to the F-helix, which contains the

catalytic base, the xED motif, differs between inverting and retaining glycosyltransferases. We

further demonstrate through mutations in the tether that we can allosterically regulate GT-A

function, elucidating how nuanced effects from variation of the tether help control GT-A function.

5.2.1 Future directions

This work is the foundation for multiple research directions. We focused on GT-A function and

allosteric regulation of these enzymes, but no bioinformatics analyses have been performed on

non-functional or pseudoenzyme variants of this superfamily. Pseudoenzymes are a burgeoning

topic and have been identified in multiple families. One may ask what the purpose of a non-

catalytic enzyme is, for what is the purpose of a brick, if not for building. Yet, nature has found

many ways to repurpose these biological bricks to serve other functions, as chaperones, scaffolds,

for localization and more (Ribeiro et al. 2019). While many pseudoenzymes have been identified

for other enzymes, only a single pseudo GT-A has been identified (COSMC) (Yingchun Wang

et al. 2010), but with existing sequence profiles of GT-As, it seems feasible (although no doubt

difficult) to uncover non-canonical and potential pseudoenzymes through systematic analysis of

GT-A sequence. However, this is not trivial because extensive diversity in glycosyltransferases

often do not result in loss of function, but simply variance of it. I investigated non-canonical and
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potential pseudoenzymes using COSMC as a case-study (see Appendix A). However, I believe that

the emergence of deep learning and specifically protein language models like ESM2, will improve

our ability to discern hidden patterns of functionality, or lackthereof, in the GT-A sequence space.

While we have focused predominantly on fold A glycosyltransferases, our work also reveals

that GT-B fold enzymes appear to have convergently evolved glycosyltransferase function, based

on differences in the topology of their phosphate binding cassette (PBC), as compared to GT-As.

GT-B fold enzymes appear to share a PBC similar to traditional Rossmann fold enzymes, whereas

the PBC of GT-As matches enzymes like pyrophosphorylases. Pyrophosphorylases also bind metal

cations akin to GT-As, whereas GT-B enzymes do not bind metal ions at all for function, aking

to traditional Rossmann fold enzymes. This additionally may explain why little sequence similarity

exists between GT-A and GT-B fold enzymes, despite a shared function and Rossmann-like fold. I

hypothesize that while these enzymes may share an ancient ancestor, they may have independently

converged on sugar-transferring function.

Thus, a natural direction is to focus on GT-B enzymes independently to understand how

they evolved and unique patterns that contributed to functional diversication in these enzymes.

Compared to other enzymes, glycosyltransferases have less structural representation, with a large

number of GT-A and GT-B families still left uncharacterized. But with the advent of AlphaFold2,

alignment of these enzymes and identification of the limits of their domains is now feasible. I

first generated Hidden Markov Model profiles of every known GT-B family and then pulled all

sequences matching these GT-B profiles from the Uniprot database. The resultant 4̃00,000 GT-B

sequences were then filtered and aligned (see Appendix B), resulting in the first global alignment

of GT-B sequences. The resultant sequence alignment contained over 20,000 columns, and was

therefore cleaned of inserts (see Appendix C), to create an easy-to-visualize sequence alignment

and sequence logo. With the availability of this alignment, we can now create comparative

phylogenetic trees of GT-B enzymes, through both a sequence-based nearest-neighbor tree, as

well as an RMSD-based distance tree by structural alignment of accurate AlphaFold structures
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(see Appendix D). These trees would allow for evolutionary and functional insights into the GT-B

family and would represent the first effort to globally align this enzyme family. GT-B enzymes are

an vastly important family of enzymes, and the availability of easier compute resources and deep

learning tools enables study of the superfamily as a whole.

5.3 Evolution of a multi-functional tail in Doublecortin-

like Kinases

In my second project, we elucidated the mechanisms of a multi-functional C-tail in Doublecortin-

like kinases, which utilize this tail as a swiss army knife of regulatory functions in microtubule

dynamics and neuronal development. We show how engineering of specific mutations in the

autoinhibited DCLK1.2 isoform rescues DCLK1 activity, pointing to an evolutionary adaptation to

autoregulate function depending on environmental influences (Venkat, Watterson, et al. 2023).

5.3.1 Future directions

Our focus on DCLK1 can really be expanded to kinase allostery as a whole, given that their

conserved domains are like a molecular chassis, which kinases have embellished upon over evolu-

tionary time through N and C terminal modular additions. DCLKs belong to the CAMK family

of kinases and though some information has been uncovered about how these enzymes uniquely

regulate kinase function through variable and intrinsically disordered C-tails. We can further

expand into looking at DCLK2 and DCLK3 as models for understanding orthologous function of

the DCLK family as a whole. DCLK3, especially, is one of least studied kinases, with a single paper

identifying it as a neuroprotectant in Huntington’s disease (Galvan, Francelle, Gaillard, Longprez,

Carrillo-de Sauvage, Liot, Cambon, Stimmer, Luccantoni, Flament, et al. 2018a). Investigation

of its structure and how it is post-translationally modified, as well as mechanistic insights into
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its function and potential substrates will greatly improve our ability to understand its role and

potential interaction with the Huntingtin protein.

Additionally, and importantly, we can use what we have learned from DCLK1 as a model

for how kinases may use alternative splicing mechanisms to directly modulate enzyme function

through minor changes in intron/exon placement. Little exploration aside from our paper has

delved into the genetic basis of kinase regulation. We show in our own paper that availability of

isoform data is often quite poor due to misannotation or lack of annotation in protein sequence

databases. It is therefore necessary to establish automated protocols to study the global effect of

intron/exon variations that mediate kinase activity.

5.4 Development of a deep learning predictive classifier

of GT-A function

Through use of novel protein language models, we created a classifier that predicts GT-A family

and donor substrate binding. Sugar donors are expensive, thus this model offers a lucrative

method to cut-down on testing sugar-donors for unknown sequences by computational prediction

and hypothesis generation.

5.4.1 Future directions

Naturally, we have started with five well-studied and well-represented donors. However, there are

nine mammalian GT-A donors available for testing. Because the rest of these donors are not as well

represented in Uniprot, they are difficult to incorporate without loss of accuracy. With appropriate

dataset augmentations, loss functions, and regularization, I believe these donors could also be

included within the model. Eventually, all donors could be included and the classifier could extend

to GT-B families as well with sufficient data availability (see appendix B). As sequence embeddings

are higher-dimensional numerical representations of sequences (vector representations), we do
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not require an alignment (Yeung, Zhou, S. Li, et al. 2023). Instead we can directly compare

sequence embeddings to derive function-predictions. This opportunity is ripe to pursue as GT-

Bs are enormously difficult to compare through traditional alignment methods because of little

sequence conservation. As protein language models consider a holistic set of features of a protein,

capturing the grammar and syntax of amino acids from chemistry to evolution, their applications

will be invaluable in future bioinformatics studies.
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A.1 Abstract

A.2 Introduction

Across evolutionary time, enzymes have demonstrated an abundance of ways to catalyze a particular

reaction. For glycosylation, this means varying donor and acceptor substrates, varying the location

of a glycosidic linkage, as well as the stereochemistry of the glycosidic bond (alpha or beta).

Glycosyltransferases (GTs), which catalyze glycosidic linkages, also come in four distinct folds (A,

B, C, and lyso), which differ by structure and subcellular location (Varki, Richard D Cummings,

et al. 2022; Taujale, Zhou, et al. 2021). We previously mined over 600,000 GT-A fold sequences

from all domains of life, showing extraordinary sequence diversity across the tree of life, facilitating

numerous critical cellular functions, including protein folding, signaling, and stability (Taujale,

Venkat, et al. 2020; Taujale, Soleymani, et al. 2021; Venkat, Tehrani, et al. 2022). In the face of

this incredible sequence diversity, we find numerous GT-As that contain amino acid variations at

key catalytic and functional motifs, possibly indicating catalytic impairment. Notably, catalytic

inactivation of enzymes has been noted before, prevailingly in the kinase field (Kwon et al. 2019;

Shrestha et al. 2020). These so-termed “pseudokinases” and other pseudoenzymes still function

in central roles, working as dynamic scaffolds, allosteric modulators, chaperones, and used for

cellular localization (Figure 1). However, due to difficulties with expression and crystallization

with glycosyltransferases, the exploration of possible catalytically inactive GTs has been limited,

but the recent availability of the sequence data and predicted structures via AlphaFold2 reignite

the exploration into classifying non-canonical and pseudoGTs.
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Figure A.1: Table of pseudoenzymes and experimentally determined pseudoenzyme functions

Pseudoenzymes are a burgeoning topic of study (Ribeiro et al. 2019) with close sequence

homology to extant enzymes but lacking the equivalent catalytic function. While pseudoenzymes

are commonly defined by the loss of canonical motifs or differences in key sequence variations

(James M Murphy, Farhan, and Patrick A Eyers 2017), classifying pseudoGTs by this metric is not

a trivial matter. GTs vary active site residues for a variety of reasons, from modulating binding of

a divalent cation to swapping a mechanism from an Sn2 to an Sni mechanism. This high level

of sequence variation, even in key catalytic motifs, makes it difficult to apply the pseudo label to

GTs, as variation in these motifs often defines variation of chemistry and catalytic mechanism,

rather than absence of function. Yet catalytically dead glycosyltransferases, such as COSMC,

have been identified, losing their primary catalytic function and instead adopting a new function,

such as a molecular chaperone (Ju and Richard D Cummings 2002; Yingchun Wang et al. 2010).

Here we seek to delineate the features of canonical, non-canonical, and pseudoGTs to establish a

method of classification for these diverse enzymes.

The closest evolutionary relative to COSMC is the catalytic T-Synthase enzyme, yet COSMC

has no catalytic activity itself. It is instead predicted to act as a scaffold for T-synthase folding.

T-Synthase activity is dependent on COSMC (Ju and Richard D Cummings 2002; Yingchun
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Wang et al. 2010). Utilizing state-of-the-art sequence and structure methods, we explore the

structure-function and evolution of the dynamic interplay between COSMC and T-Synthase as a

case-study to understand how pseudogenization may occur in this diverse family.

A.3 Results

Our investigation into the distribution and characteristic features of non-canonical GTs revealed

their widespread occurrence across the tree of life, a trend similar to what is observed with

pseudokinases (Figure 2). However, unlike pseudokinases, the variation of catalytic motifs within

these GTs does not signify a loss of function, but rather a diversification of it.
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Figure A.2: GT-A phylogenetic tree highlighting non-canonical GT-As, GT-As lacking the DxD

motif, across the tree of life

One striking example in GT-As is the catalytic base Aspartate (the xED motif) whose function

varies in necessity: it is crucial for inverting GTs, but not for retaining ones (Venkat, Tehrani, et al.

2022). This variation is linked to the functional diversification of the GT-As (Taujale, Venkat,

et al. 2020). Similarly, we observed variation in the G-loop, which is modulated to accommodate

the specific needs of binding different acceptor substrates.
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Figure A.3: Short list of non-canonical enzymes using the CAZy-numbering scheme and how they

vary motifs critical to GT-A function

Moreover, we noticed a significant dependency of GT-A function on metal binding, largely

mediated by the DxD motif. However, non-canonical GTs such as GT14 and RRGAT1 deviate

from this norm, presenting variations in the DxD motif. They exhibit seemingly metal-independent

functions, utilizing other pocket residues for donor substrate binding. Upon closer examination of
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the canonical motifs, we identified that a large proportion of the non-canonical GTs we studied

exhibited variations in the DxD motif (Figure 3). These findings suggest that non-canonical GTs

could use different molecular strategies for function, hinting at a broader functional diversity within

the GT family than previously understood.

Much like pseudokinases, non-canonical GTs are found across the tree of life (Figure 2).

However, unlike pseudokinases, variation of catalytic motifs in GTs is associated with variation

in function, rather than absence of it. GT-As, for example, vary in the use of the catalytic base

Aspartate (xED motif), which is critical for function in inverting GTs but not in retaining GTs

(Taujale, Venkat, et al. 2020; Moremen and Haltiwanger 2019). The G-loop is varied based on

the needs of binding a specific acceptor substrate (Taujale, Venkat, et al. 2020). GT-A function

is also largely metal-dependent, due to the metal binding DxD motif, yet GT14 and RRGAT1

are non-canonical GTs that vary the DxD motif and seemingly have metal-independent function,

where other residues in the pocket are used to bind the donor substrate (Amos et al. 2022).

Looking strictly at the canonical motifs, many of the non-canonical GTs we have identified tend

to vary the DxD motif (Figure 3).

Because of the great variability of GTs, variation in key canonical motifs may not indicate

pseudogenization. But combining sequence analyses, literature searches, and the availability of

accurate structure-prediction methods, such as AlphaFold2, we can link how key variations in

sequence affect structure and consequently function of an enzyme. We observe several mutations

in the DxD motifs of non-canonical GTs (Figs 3 and 4). Intriguingly, both GT14 and RRGAT1

have lost the DxD motif entirely at the family level, suggesting an evolutionary shift towards

alternate mechanisms for donor substrate binding. Considering that the majority of GTs rely on

metal binding for their catalytic activity, the loss of residues crucial for binding metal cations bears

significant implications for the enzyme’s affinity for the donor substrate.
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Figure A.4: AlphaFold structures of non-canonical GT-A enzymes, with DxD (bottom) and xED

(top) motifs highlighted in red sticks

This finding elevates the importance of those individual sequences within a family that loses the

DxD motif while the motif is otherwise conserved. The likely evolutionary timescale suggests it’s

improbable that an alternate substrate-binding method has had sufficient time to evolve. Therefore,

these outlier sequences may be particularly valuable subjects for further study, potentially providing

insights into the early stages of functional adaptation and diversification in GTs.
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GT14 and GT116 (RRGAT1) have collectively lost the DxD motif at a family level (Briggs and

Hohenester 2018; Amos et al. 2022), evolving alternate methods of binding the donor substrates.

Because most GTs are metal-dependent for catalytic activity, losing the key residues that facilitate

binding the metal cation is significant because it directly affects enzyme affinity for the donor

substrate. Therefore, individual sequences that lose the DxD in a family that conserves this motif

may be worth inspecting because it is unlikely enough time has passed to evolve an alternate

method of binding the donor substrate.

A.3.1 Exploration of Non-Canonical GT-As taken from 185,000 Al-

phaFold2 structures

Given the limited number of crystallized GT-A sequences available, we relied on the structure-

prediction tool AlphaFold2 for structural analysis. While these models are predictions and come

with associated uncertainties, the majority of predicted AlphaFold2 structures matched their

respective crystallographic counterparts within a margin of 1.1 angstroms (Figure S1). This

consistency gives us confidence in the utility of the tool for our analysis.

For our study, we applied AlphaFold2’s pLDDT metric to evaluate the confidence level of

predicted structures. By analyzing the architecture of these anomalous structures, we could make

initial inferences regarding potential pseudogenization within GT-As, offering new insights into

the functional evolution of these diverse enzymes.

As most GT-A sequences are not crystallized, AlphaFold2 (Jumper et al. 2021) has become

an excellent source for structural analysis. While it is necessary to include the caveat that these

are predicted models, we note that a majority of predicted AlphaFold structures match their

crystallographic matches within 1.1 angstroms [Fig S1]. Moving on this assumption and filtering

structures using AlphaFold2’s pLDDT metric for evaluating structure-confidence (see appendix

D), we plan to pull structures that deviate from the canonical DxD motif out of the the 185,000
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available structures and analyze the architecture to make possible inferences about modifications

to the active site of GT-As.

A.3.2 COSMC as a case study for pseudoGTs.

Building on our findings on the potential pseudogenization within GT-As, we proceeded with a case

study to explore features that might define a pseudoGT. We chose to focus on the GT-A COSMC,

which is known to lack catalytic function (Ju and Richard D Cummings 2002; Yingchun Wang

et al. 2010) but plays an essential role as a chaperone for an evolutionary relative, T-synthase.

We found that COSMC likely evolved through a duplication event from an ancestral T-synthase

(Figure 5). Unlike their ancestral counterparts, eukaryotic T-synthase enzymes require COSMC

as a chaperone for proper folding. Notably, key differences exist in the DxD motif and the C-His

sequence between T-synthase and COSMC. The former alters the DxD motif to RPT in COSMC,

while the latter is completely absent in COSMC (Figure 5B-C).
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Figure A.5: Evolution of COSMC and T-Synthase via duplication event. A) Phylogenetic tree

highlighting the location of COSMC on the GT-A phylogenetic tree. B) Sequence logo depicting

the loss of the DxD constraint between closely related sequences COSMC and T-Synthases. C)

Phylogenetic tree of T-Synthase and COSMC evolution, where stars depict a duplication event.

Secondary structure and key motifs of each human sequence is shown.

The DxD motif and C-His sequence are critical for metal cation binding in GTs. We hypothesize

that the absence of these motifs in COSMC results in its inability to bind the Mn2+ ion that
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T-Synthase binds. However, COSMC is still capable of binding Zn2+ and Fe2+ with its C-terminal

tail, a process important for oligomerization. This C-terminal tail forms part of the hypervariable

region 3 in the COSMC sequence, a region involved in a range of functions including substrate

affinity and binding.

To further probe the relationship between COSMC and T-Synthase, we used AlphaFold2-

Multimer to generate an oligomeric structure comprised of two molecules each of T-Synthase

and COSMC. Our model predicts a strand-exchange interaction between the C-terminal tails of

COSMC and T-Synthase, as well as an interaction between the hypervariable region 1 (HV1) of

COSMC and the N-terminal recognition domain of T-Synthase.

Further investigations using Bayesian analyses revealed key constraints in both COSMC and

T-Synthase. Combined with interactions in the hypervariable regions, these constraints suggest

a network of interactions that extends from the catalytic pocket to HV regions 1 and 3, which

seem to mediate the binding of T-Synthase to COSMC and vice-versa (Figure 6).
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Figure A.6: Sequence logo of COSMC-specific patterns, identified via Bayesian analysis. Red

histograms indicate level of significance of a given pattern residue. These patterns were then

mapped onto an AlphaFold structure, showing a network of connected residues across the active

site, connecting the active site to HV regions.

Intriguingly, COSMC’s HV1 appears to be lengthened compared to most HV1s in GT-As, and is

predicted to interface around the catalytic pocket of T-Synthase. Also, the N-terminal recognition

domain of T-Synthase, which is experimentally demonstrated to be specific for COSMC binding,

is predicted to interface with COSMC’s HV1.
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Figure A.7: Sequence logo of T-synthase-specific patterns, identified via Bayesian analysis. Red

histograms indicate level of significance of a given pattern residue. These patterns were then

mapped onto an AlphaFold structure, showing a network of connected residues across the active

site, connecting the active site to HV regions.

To further investigate the function of these constraints identified by bayesian sequence analyses,

we performed molecular dynamics simulations at the microsecond timescale for both the monomer

and the predicted tetrameric structure.

To investigate features that may define a pseudoGT, we employed our analyses on the GT-A

COSMC as a case study. COSMC has previously been stated to lack catalytic function (Ju and

Richard D Cummings 2002). Additionally, it has been implicated as a necessary component for the

folding of an evolutionary relative, T-synthase. We show COSMC evolved in a duplication event

from an ancient T-synthase (Fig 5). Where ancestral T-synthase enzymes are capable of folding
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without a chaperone, eukaryotic T-synthase requires COSMC as a chaperone (Hanes, Moremen,

and Richard D Cummings 2017). The key differences in catalytic motifs between T-synthase

and COSMC are in the DxD motif, where COSMC mutates the DxD to RPT, and the C-His, a

deletion in the COSMC sequence (Fig 5B-C).

COSMC as being unable to bind the Mn divalent cation that T-Synthase binds. Interestingly,

COSMC is capable of binding Zn2+ and Fe2+ with the C-terminal tail, which is pertinent for

oligomerization (Hanes, Moremen, and Richard D Cummings 2017). This C-terminal tail is

part of hypervariable region 3 in the COSMC sequence. Hypervariable regions are considered

to be used for substrate affinity, binding, and a host of other functions (Taujale, Venkat, et al.

2020; Venkat, Tehrani, et al. 2022). To evaluate the interactions between COSMC and T-

Synthase, we used AlphaFold2-Multimer to generate an oligomeric structure composed of two

T-synthase molecules and two COSMC molecules. Interestingly, our AlphaFold model predicts a

strand-exchange interaction between the C-terminal tails of COSMC and T-Synthase, as well as

an interaction between HV1 of COSMC and the N-terminal recognition domain of T-Synthase

(70-93% accuracy measured by pLDDT).

Using Bayesian analyses, we further identify key constraints in COSMC and T-Synthase which,

combined with interactions in the hypervariable (HV) regions, suggest a network of interactions

extending from the catalytic pocket to HV regions 1 and 3, which seem facilitate the binding of

T-Synthase to COSMC and vice-versa (Fig 6). Specifically, we note that COSMC seems to extend

HV1, where most HV1s in GT-As are about four residues (Taujale, Venkat, et al. 2020). The

length of this HV1 is 12 residues, predicted by AlphaFold2 to interface around the catalytic pocket

of T-Synthase. Further, residues classified as the N-terminal recognition domain of T-Synthase,

a region experimentally demonstrated to be specific for binding COSMC (Hanes, Moremen, and

Richard D Cummings 2017), is predicted to interface with COSMC’s HV1.
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We investigated the function of BPPS-identified constraints using molecular dynamics sim-

ulations. Simulations were performed at the microsecond timescale for the monomer and the

predicted tetrameric structure.

A.4 Methods

Phylogenetic and sequence analysis.

We used a previously published phylogenetic tree (elife 2020). Sequences containing variations of

the DxD motif were identified by scanning through previously generated sequence profiles. These

sequences were used to highlight branches on the phylogenetic tree to place where pseudoGTs

appeared among GT-A families. Sequence logos were generated using WebLogo 3 and GTXplorer

(Crooks et al. 2004; Taujale, Soleymani, et al. 2021). Sequence constraints were generated using

the Bayesian Partitioning with Pattern Selection (BPPS) software (Andrew F Neuwald 2014),

highlighting specific amino acid constraints for T-synthase and COSMC, along with histograms

that detailed the significance of a given pattern.

Structure prediction, analysis, and visualization.

Predicted monomers and oligomers were generated for COSMC and T-synthase using AlphaFold2

(Jumper et al. 2021) with the multimer option. Full length sequences were provided as input

and structures predicted were first filtered using the pLDDT confidence metric before analysis.

A python script was written to map AlphaFold2 pdb numbering to existing sequence profiles,

allowing for us to match sequence constraints onto the pdb structure. These structures were

visualized using Schrodinger PyMol 2.6.
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Comparison of AlphaFold and crystal structures.

GT-A Crystal structures were pulled from RCSB. Corresponding Uniprot IDs were pulled from

the same RCSB page and compared to the AlphaFold structure produced for the given Uniprot

sequence. The structures were then aligned using the ceAlign algorithm in Schrodinger PyMol

2.0, producing an RMSD value. An additional structural alignment was performed using the

tmAlign algorithm as a validation step, producing a TM score. A box-and-whisker plot was used

to represent the corresponding RMSD and TM values.
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Appendix B

Deep Evolutionary Analysis of

Fold-B Glycosyltransferases
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B.1 Abstract

Glycosyltransferases (GTs) catalyze the transfer of sugar moieties and are pivotal in the biosynthesis

of carbohydrates, glycoproteins, and glycolipids. Among GTs, fold B glycosyltransferases (GT-

Bs) are particularly intriguing due to their unique two-domain architecture and a vast substrate

range. GT-Bs play a critical role in numerous physiological processes, with implications ranging

from bacterial cell-wall synthesis to the modulation of host-pathogen interactions. Despite their

importance, a comprehensive understanding of GT-Bs has been hampered by challenges associated

with aligning sequences across diverse GT-B families. Traditional alignment methodologies often

fall short in capturing the nuanced variations and conserved motifs due to the GT-Bs’ inherent

sequence diversity. To address this gap, this study introduced a pioneering methodology employing

deep learning, specifically utilizing the tool "learnMSA." Our approach not only efficiently aligns

GT-B sequences across various families, but also reveals previously obscured conserved motifs and

functional nuances. By leveraging a Bayesian approach for sequence grouping and integrating

high-confidence structural data, we present a comprehensive landscape of GT-Bs. Our study

paves the way for deeper insights into the functional, evolutionary, and therapeutic potentials of

GT-Bs, underscoring the transformative power of integrating machine learning into bioinformatics

challenges.
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B.2 Background

Glycosyltransferases (GTs) are a diverse group of enzymes responsible for catalyzing the transfer

of sugar moieties from donor molecules to acceptor molecules, playing an indispensable role in the

biosynthesis of carbohydrates, glycoproteins, and glycolipids (Varki, Richard D Cummings, et al.

2022). Among the diverse classes of GTs, fold B glycosyltransferases, often referred to as GT-Bs,

stand out due to their unique structural features and functionalities. GT-Bs are characterized by a

distinctive two-domain architecture, with both domains contributing to the active site formation

(Varki, Richard D Cummings, et al. 2022; Moremen and Haltiwanger 2019). Despite sharing

almost no significant sequence similarity with GT-As, another primary group of GTs, the two-

domain structure of GT-Bs is reminiscent of the Rossmann fold. This evolutionarily conserved

domain is typically associated with binding nucleotide cofactors (Venkat, Tehrani, et al. 2022),

underscoring the significance of GT-Bs in the realm of enzymology and biochemistry. Previously

we classified GT-As with a landmark paper that defined the landscape of GT-A fold enzymes

(Taujale, Venkat, et al. 2020), now we seek to do the same with GT-Bs.

However, the diversity of GT-Bs goes beyond their structural uniqueness. Their vast substrate

range, from simple sugars to complex polysaccharides, underpins numerous physiological processes.

GT-Bs are implicated in a myriad of biological phenomena, including cell-wall synthesis in bacteria,

glycosylation of proteins in eukaryotes, and the modulation of host-pathogen interactions (More-

men and Haltiwanger 2019). Their dysfunction can lead to a plethora of pathological conditions,

emphasizing their importance in health and disease.

Despite their significance, a comprehensive understanding of GT-Bs has remained elusive due

to challenges associated with sequence alignment across GT-B families. Traditional sequence

alignment methodologies often fail to capture the nuanced variations and conserve motifs among

the vast and varied members of the GT-B clan. These difficulties arise from the inherent sequence
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diversity of GT-Bs, punctuated by sporadic conservation patches, making it a daunting task to

delineate meaningful patterns.

With the advent of deep learning, new horizons in bioinformatics and computational biology

have emerged. Deep learning’s ability to identify patterns from vast, seemingly unrelated data

offers a promising avenue to address the longstanding challenge of GT-B alignment. By embracing

a paradigm shift from traditional alignment methodologies to deep learning-based strategies, we

venture into a novel approach to decode the mysteries of GT-Bs.

Figure B.1: Sequence logo of an alignment of GT-B sequences. N = 160,665

In this endeavor, we introduce a pioneering methodology that not only efficiently aligns GT-

B sequences from various families but also unveils previously obscured conserved motifs and
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functional nuances. By offering a comprehensive, high-resolution view of the GT-B landscape,

this study sets the stage for future investigations into the functional, evolutionary, and therapeutic

potentials of this intriguing class of enzymes. By combining deep learning methods for sequence

alignment, learnMSA (Becker and Stanke 2022), with traditional sequence methods, such as

Hidden Markov Model profile alignments (Eddy 1996), we can generate precise profiles for enzyme

domains across the GT-B family; I generated profiles from GT-B families classified in CAZy

and used them to mine the Uniprot database for sequences related to my GT-B profiles. These

sequences were aligned with learnMSA and GapClean (see Appendix C) was subsequently utilized

to generate a clean alignment of sequences, with threshold-limited gaps for ease of visualization

and interpretability. We demonstrate the power of this approach by presenting a sequence logo of

over 160,000 aligned GT-B sequences, spanning the known GT-B families found in CAZy (Figure

B.1). Our approach not only efficiently aligns GT-B sequences across various families, but also

reveals previously obscured conserved motifs and functional nuances.

I performed a preliminary phylogenetic analysis using a trimmed alignment from the initial

160,000 sequences. This alignment was filtered at 60% using CD-Hit. After filtering, I constructed

a radial rooted phylogenetic tree using the Jones-Taylor-Thornton maximum-likelihood model with

FastTree (Figure B.2). An initial observation of the tree indicates that the GT1 family is widely

spread throughout the tree of life. The tree is rooted between GT1 and GT4 families, suggesting

a potential evolutionary GT-B ancestor from these families. It is critical to note that while this

initial large tree was used to lay out relationships between GT-B families, many sequences lack

sufficient annotation to make functional conclusions. There are two approaches that will be critical

to interpreting functional and evolutionary information from these families. The first is careful

curation of well-annotated sequences from Uniprot; a focus on model organisms to produce a

phylogenetic tree as performed in (Venkat, Watterson, et al. 2023), will be necessary for confident

interpretation.
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Figure B.2: Phylogenetic tree of GT-B families filtered at 60% from an alignment of 160,000

sequences. N = 53,028. Blue circles indicate bootstrap values above 98%.

Additionally, by leveraging bayesian approaches for sequence clustering and delineation of

family-specific constraints (Taujale, Venkat, et al. 2020; Kwon et al. 2019), we can elucidate

how evolutionary patterns led to functional divergence across GT-B enzymes. By integrating

high-confidence structural data as well as highly confident predicted structures from AlphaFold2,

we can present a comprehensive landscape of GT-Bs. This study can pave the way for deeper

insights into the structure-function and evolution of GT-Bs.
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Appendix C

GapClean: A tool for cleaning

up sequence alignments.

C.1 Background

At the heart of bioinformatics lies the foundational task of sequence alignment, a method used to

identify regions of similarity between biological sequences. This similarity can arise from functional,

structural, or evolutionary relationships between the sequences. The primary goal of sequence

alignment is to identify the optimal way to line up two sequences so that the highest number of

matching characters (nucleotides or amino acids) can be achieved, taking into account possible

gaps that might be introduced due to deletions, insertions, or evolutionary divergences.

There are generally two types of sequence alignment methods: global alignment and local

alignment. Global alignment attempts to align every residue in every sequence, often useful when

the sequences in question are of roughly equal size and are suspected to share a common ancestry.

Local alignment, on the other hand, identifies regions of similarity within long sequences that are

often widely divergent overall.

One of the pioneering global alignment algorithms is the Needleman-Wunsch algorithm, pro-

posed by Saul B. Needleman and Christian D. Wunsch in 1970. This algorithm employs a dynamic
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programming approach to ensure that the optimal alignment is found. It systematically builds a

matrix that keeps track of alignment scores at each position, ensuring that the final path chosen

through this matrix represents the best possible alignment of the two sequences. The beauty

of the Needleman-Wunsch algorithm lies in its ability to guarantee an optimal solution, but this

comes at the cost of increased computational complexity, especially for long sequences.

Figure C.1: Example of a Needleman-Wunsch Alignment, with a black arrow representing the

optimal traceback, based on gap, match, and mismatch scores.

The Needleman-Wunsch algorithm and its derivatives have set the stage for many subsequent

innovations in sequence alignment. Over the decades, a plethora of software tools have been

developed to tackle the challenge of aligning sequences, where modern tools are now capable of

aligning millions of sequences.
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Naturally, the alignment of a million sequences also poses a critical problem. It is difficult to

visualize and comprehend a large sequence alignment. How do we handle millions of inserts and

gaps that vary between every sequence?

I developed a tool, GapClean, for this exact task. GapClean takes a gappy multiple sequence

alignment and removes columns at a threshold value. For example, at a threshold of 70%, any

position in a sequence alignment containing more than 70% gaps across the entire alignment,

will be removed. This refocuses the alignment on the larger conserved segments of the protein

domain. It would aid in identifying key motifs and for building an overall consensus sequence over

a massive sequence alignment.

The application turns a sequence alignment into an array of i x j characters, where i represents

a row, and j represents a column. Because a sequence alignment ensures that all sequences are the

same length, accounting for inserts and deletions, we can simply count the presence or absence

(indicated by a dash, "-") of an amino acid across the column. If we iterate over i, over all

columns, we can tabulate the number of deletions in a column, or alignment position, and delete

the column if it does not meet an input threshold. Through this method, we can eliminate family

or subfamily-specific inserts in a sequence alignment, and output an alignment that highlights

shared features across the sequence space. It is also critical to note that arrays are generally

easier to compute with, rather than strings ("text"), thus the computational time required for

processing sequences, even as large as one million sequences in an alignment, would dramatically

decrease.

As a case study, I used this tool to truncate the GT-B alignment of 1̃60,000 sequences to

capture the GT-B domain (see appendix B), despite extensive diversity across the GT-B sequences.

This trimmed a 13GB sequence alignment with 2̃0,000 aligned positions to a 300MB file with 4̃00

aligned positions. GapClean can therefore be an incredibly useful tool for handling large sequence

alignments. I plan to create an easy user-interface for biologists of all backgrounds to be able to

use for their own needs.
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In summary, GapClean addresses a simple, but unmet need in the field of bioinformatics,

specifically in handling the complexities of multiple sequence alignments. By efficiently removing

columns exceeding a specified gap threshold, GapClean streamlines the alignment, enabling a

clearer focus on conserved protein domains and key motifs. This is particularly beneficial for large-

scale sequence analyses, where traditional methods may falter under the sheer volume of data. The

transformation of sequence alignments into an array further optimizes computational efficiency,

making it feasible to process alignments with up to a million sequences within a manageable

timeframe. While further benchmarking is necessary to quantify processing times accurately,

preliminary observations suggest a promising linear relationship between the number of sequences

and processing duration. As bioinformatics continues to evolve, tools like GapClean will play a

pivotal role in interpretation of complex protein data.
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Figure C.2: Example of GapClean-ed alignment, at a 40% threshold, removing extraneous gaps

and sequence-specific inserts.

148



C.2 GapClean code

1 #!/bin/bash

2 # Function to display help

3 display_help () {

4 echo

5 echo

6 echo " ==================================================== "

7 echo

8 echo " GapClean (v0.5) "

9 echo

10 echo " Written by Aarya Venkat "

11 echo

12 echo " ==================================================== "

13 echo

14 echo "Description: GapClean takes a gappy multiple sequence alignment"

15 echo "and removes columns with gaps at a specified threshold value to"

16 echo "produce a \"cleaner\" and easier to visualize sequence alignment

."

17 echo

18 echo "Usage: $0 [options]"

19 echo

20 echo " -i Input file Required."

21 echo " -o Output file Required."

22 echo " -t Threshold value Optional. Default is 99."

23 echo " -h Display this help message."

24 echo

25 echo

26 echo " Example: gapclean -i input.fa -o output.fa -t 95 "

27 echo

28 exit 1
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29 }

30

31 # Initialize variables

32 INPUT=""

33 OUTPUT=""

34 THRESHOLD =99 # Default value

35

36 # Parse command line arguments

37 while getopts "i:o:t:h" opt; do

38 case $opt in

39 i) INPUT="$OPTARG"

40 ;;

41 o) OUTPUT="$OPTARG"

42 ;;

43 t) THRESHOLD="$OPTARG"

44 ;;

45 h) display_help

46 ;;

47 \?) echo "Invalid option -$OPTARG" >&2

48 ;;

49 esac

50 done

51

52 # Check if required arguments are provided

53 if [ -z "$INPUT" ] || [ -z "$OUTPUT" ]; then

54 echo

55 echo "Invalid options. -i (input) and -o (output) are required."

56 echo

57 display_help

58 echo

59 exit 1

60 fi
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61

62 # Dynamic naming based on the input name

63 NEWLINE_TMP="${INPUT }. newline.txt"

64 HEADERS_TMP="${INPUT }. headers.txt"

65 SEQUENCES_TMP="${INPUT }. sequences.txt"

66 PROCESSED_SEQUENCES_TMP="${INPUT}. sequences.processed.txt"

67 echo

68

69 perl ${0% gapclean}bucket/remove_newline.pl $INPUT > $NEWLINE_TMP

70

71 echo "Initial cleanup of newlines from fasta sequence"

72

73 echo

74

75 echo "splitting $INPUT into sequences and headers"

76

77 grep -v ">" $NEWLINE_TMP > $SEQUENCES_TMP

78 grep ">" $NEWLINE_TMP > $HEADERS_TMP

79

80 echo

81

82 # Call the python script with the parsed arguments

83 python ${0% gapclean}bucket/gapclean.py -i $SEQUENCES_TMP -o

$PROCESSED_SEQUENCES_TMP -t "$THRESHOLD"

84

85 # Combine headers and processed sequences into the output file

86 paste -d’\n’ $HEADERS_TMP $PROCESSED_SEQUENCES_TMP > $OUTPUT

87

88 # Remove temporary files

89 rm $HEADERS_TMP $SEQUENCES_TMP $PROCESSED_SEQUENCES_TMP $NEWLINE_TMP

Listing C.1: bash code for GapClean
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Appendix D

alphaFilter: a tool for

filtering AlphaFold2 models.

D.1 Background

AlphaFold2 was an incredibly impactful tool in the biochemistry world, releasing millions upon

millions of protein structures from the Uniprot database. The ease of using the tool with straight-

forward interpretability led to its widespread use among computational and experimental scientists

alike. While the value of AlphaFold2 is easily recognizable, it has normalized an excessive avail-

ability of poor quality and biased models, which many non-experts in molecular modeling may

find difficult to parse and deal with. To combat this, I generated alphaFilter, a simple tool to

filter out poor quality and fragmentary AlphaFold2 structures.

Fragmentary structures oversaturate the AlphaFold2 database, they are often high accuracy

structures but only represent part of the overall proteins. They often only add noise to a given

dataset and are typically excised during data curation. Similarly, poor accuracy models, identified

by median pLDDT, a per-residue confidence metric AlphaFold2 places in the B-factor column of

a structure, can lead to faulty interpretations of a protein structure-function.
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To aid scientists needing to operate on multitudes of AlphaFold2 structures, I created a simple

pythonic tool to filter structures by median pLDDT (accuracy) and number of residues (to remove

fragmentary structures). Users can individually define the thresholds they need for each, but

hopefully the availability of this tool can aid scientists in their analyses of AF2 structures. It is

a simple python script that counts the total residues and takes the median pLDDT value from

the B-factor column and compares these counts against an input threshold. It outputs only pdbs

that meet this threshold.

To use alphaFilter, one must simply provide the path to the directory containing the AlphaFold2

models, the desired plddt confidence threshold, and the minimum number of residues a model

should have.

Usage: python3 alphafilter.py -d DIRECTORY -t THRESHOLD -r RES_MINIM

Example: python3 alphafilter.py -d /home/aarya/Desktop/alphafold_pdbs/ -t 80 -r 120

The example above takes all alphafold pdbs located in /home/aarya/Desktop/alphafold_pdbs/,

identifies only pdbs with a median pLDDT above 80% and contains over 120 residues in the

structure, and finally outputs a filtered list of pdbs for you to then perform further analyses on.

Scientists can make their alphafold2 datasets more robust to interpretibility through using this

tool. The tool can be found at https://github.com/arikat/alphaFilter.
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D.2 alphaFilter code

1 import os

2 import statistics

3 import argparse

4

5 def extract_plddt(pdb_file):

6 plddt_values = []

7 amino_acid_count = 0

8 last_residue_number = None

9

10 with open(pdb_file , ’r’) as f:

11 for line in f:

12 if line.startswith("ATOM"):

13 # B-factor column is columns 61-66 in PDB format.

14 plddt = float(line [60:66]. strip ())

15 plddt_values.append(plddt)

16

17 # Residue number is columns 23-26 in PDB format.

18 current_residue_number = int(line [22:26]. strip())

19 if current_residue_number != last_residue_number:

20 amino_acid_count += 1

21 last_residue_number = current_residue_number

22

23 return plddt_values , amino_acid_count

24

25 def print_plddt(directory , threshold =90, min_amino_acids =250):

26

27 # Print PDB files in a directory with a median pLDDT above a given

threshold and a minimum amino acid count.

28
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29 for file in os.listdir(directory):

30 if file.endswith(".pdb"):

31 plddt_values , amino_acid_count = extract_plddt(os.path.join(

directory , file))

32 if statistics.mean(plddt_values) > threshold and

amino_acid_count >= min_amino_acids:

33 print(file)

34

35

36 def main():

37 parser = argparse.ArgumentParser(description=’Process a directory of

AlphaFold2 model and output a list based on a mean confidence threshold

.’)

38 parser.add_argument(’-d’, ’--directory ’, help=’Path to file directory ’

, required=True)

39 parser.add_argument(’-t’, ’--threshold ’, help=’Threshold for plddt

confidence (default is 90)’, type=int , default =90, required=True)

40 parser.add_argument(’-r’, ’--res_minim ’, help=’Filter minimum number

of residues in AlphaFold2 structure ’, type=int , default =90, required=

True)

41

42

43 args = parser.parse_args ()

44

45 print_plddt(args.directory , args.threshold , args.res_minim)

46

47 if __name__ == "__main__":

48 main()

Listing D.1: Python code for alphaFilter
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Appendix E

Prevalence and Homology of

the Pneumococcal Serine-Rich

Repeat Protein at the Global

Scale

Aceil, J.*, Venkat, A.* et al. "Prevalence and Homology of the Pneumococcal Serine-Rich Repeat Protein at
the Global Scale" Microbiology Spectrum (2023).
Reprinted here with permission of the publisher.
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E.1 Abstract

Pneumococcal pneumonia remains a WHO high-priority disease despite multivalent conjugate vac-

cines administered in clinical practice worldwide. A protein-based, serotype-independent vaccine

has long-promised comprehensive coverage of most clinical isolates of the pneumococcus. Along

with numerous pneumococcal surface protein immunogens, the pneumococcal serine-rich repeat

protein (PsrP) has been investigated as a potential vaccine target due to its surface exposure

and functions toward bacterial virulence and lung infection. Three critical criteria for its vaccine

potential - the clinical prevalence, serotype distribution, and sequence homology of PsrP - have

yet to be well characterized. Here, we used genomes of 13,454 clinically isolated pneumococci

from the Global Pneumococcal Sequencing project to investigate PsrP presence among isolates,

distribution among serotypes, and interrogate its homology as a protein across species. These

isolates represent all age groups, countries worldwide, and types of pneumococcal infection. We

found PsrP present in at least 50% of all isolates across all determined serotypes and nontypeable

(NT) clinical isolates. Using a combination of peptide matching and HMM profiles built on

full-length and individual PsrP domains, we identified novel variants that expand PsrP diversity

and prevalence. We also observed sequence variability in its basic region (BR) between isolates

and serotypes. PsrP has a strong vaccine potential due to its breadth of coverage, especially

in nonvaccine serotypes (NVTs) when exploiting its regions of conservation in vaccine design.

IMPORTANCE: An updated outlook on PsrP prevalence and serotype distribution sheds new

light on the comprehensiveness of a PsrP-based protein vaccine. The protein is present in all

vaccine serotypes and highly present in the next wave of potentially disease-causing serotypes not

included in the current multivalent conjugate vaccines. Furthermore, PsrP is strongly correlated

with clinical isolates harboring pneumococcal disease as opposed to pneumococcal carriage. PsrP

is also highly present in strains and serotypes from Africa, where the need for a protein-based
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vaccine is the greatest, giving new reasoning to pursue PsrP as a protein vaccine.

Keywords: PsrP, Streptococcus pneumoniae, bioinformatics, epidemiology, protein vaccine
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