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ABSTRACT 

 Storm surge poses a major risk in the northern Gulf of Mexico, causing inundation and 

erosion of low-lying barrier islands. This reduces the flood protection that barrier islands provide 

to the mainland. Hydrodynamics and morphology were simulated at Dauphin Island, Alabama, 

and Petit Bois Island, Mississippi, between 2005 and 2020. Tropical cyclone-driven 

hydrodynamics were simulated using ADCIRC+SWAN. Then, storm-induced morphological 

changes and natural recovery were simulated using XBEACH and EDGR process-based 

morphologic models. The resulting elevation was used for the following storm simulation.  

Averaged across all storms, differences at the mainland were 2.2 and 0.9 cm, and differences 

near the islands were 1.2 and 6.4 cm. The maximum difference in peak wave height was 84.1 cm 

greater at the barrier islands than the mainland. Understanding how using different 

representations of barrier island morphology impacts simulated hydrodynamics can help improve 

engineering design and restoration planning on the mainland and the islands. 
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CHAPTER 1 

INTRODUCTION 

Storm surge, often due to tropical cyclones (TCs), is one of the deadliest natural disasters 

globally, causing about 2.6 million casualties over the past ~200 years (Needham et al., 2015). 

Low-lying coastal cities are particularly at risk of storm surge-induced inundation because of 

their large population size and density, and extensive infrastructure (Lindsey, 2022; Mudd et al., 

2014). Increasing coastal populations and urbanization in the United States (Kerr et al., 2013) 

puts more people and infrastructure at risk of being impacted by storm surges (Adams et al., 

2010; Lindsey, 2022). Over time, storm surge magnitude (Wamsley et al., 2010) will increase 

nonlinearly due to increasing sea levels (Bilskie et al., 2016) and TC frequency (Davis et al., 

2019; McTaggart-Cowan et al., 2007). Therefore, further research is necessary in order to protect 

communities, ecosystems, and infrastructure from storm surge-driven damage (Kerr et al., 2013). 

Barrier islands are small islands that run parallel to the mainland. They provide numerous 

ecosystem services and socioeconomic benefits, such as attenuating wind waves, reducing storm 

surge during severe weather (Bilskie et al., 2016), and creating bays that act as nurseries for 

commercially valuable species (Miller-Way et al., 1996). During storm events, high-velocity 

water interacts with barrier islands, causing erosion, breaching, and inundation (Coogan et al., 

2019). In the Northern Gulf of Mexico (NGOM), TCs are fairly common (Chen et al., 2008) and 

constitute a major driver of morphological change on low-lying barrier islands (Rosati & Stone, 

2009). When the area and/or volume of barrier islands decreases, the islands’ ability to attenuate 

wave energy and surge also decreases (Dietrich, Westerink, et al., 2011). This reduces the 
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amount of protection that these islands provide to the mainland, resulting in increased 

environmental and economic damage. As the area of barrier islands decreases due to erosion and 

sea level rise (SLR), hydrodynamics on the mainland may be affected (Bilskie et al., 2014). 

Including changes in barrier island morphology over time in hydrodynamic models may improve 

the accuracy of simulated peak water levels (Bilskie et al., 2014). 

Including morphological changes to barrier islands in hydrodynamic models has 

implications in land development, infrastructure design, and restoration planning. Accurately 

modelling the magnitude and extent of storm surge-induced inundation allows practitioners to 

more effectively design homes, sea walls, levees, dune nourishment projects, and other coastal 

infrastructure. Engineers should understand the risk associated with the location of their design 

and account for the magnitude and frequency of storm surge impacts. For protective 

infrastructure, knowing the threat that must be protected against in the present and throughout 

the project’s lifespan is necessary. Specifically, in the NGOM, knowing the level of storm surge 

that will occur under current and future morphological and SLR scenarios is crucial. Accounting 

for storm-driven morphological changes, and changes between TCs, may improve the results of 

long-term hindcasts. 

 

This research addresses the following research objectives: 

1. Do storm-driven morphological impacts to barrier islands affect mainland flood hazard? 

2. Does simulating storm-driven morphological change and post-storm beach and dune 

recovery on barrier islands between tropical cyclones improve long-term hydrodynamic 

hindcasts?  
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CHAPTER 2 

LITERATURE REVIEW 

Storm Surge 

Storm surge due to TCs and less severe storms can have devastating social, economic, 

and environmental impacts on coastal communities (Mudd et al., 2014; Needham et al., 2015; 

Resio et al., 2017). Storm surges are primarily caused by high winds and low pressure (S. Wang 

et al., 2008). These conditions push water toward the coast (Chen et al., 2008; Needham & Keim, 

2011), increase the water surface elevation (WSE) (Resio & Irish, 2015; Sebastian et al., 2014), 

and can cause overland flooding (Brown et al., 2010; Bunya et al., 2010). Storm surge is “the 

phenomenon of rising coastal water levels due to the cumulative effect of processes such as 

wind-driven setup and currents, geostrophic effects, wave setup, wave runup and breaking, 

atmospheric pressure changes, precipitation (freshwater flooding), and astronomical tides” (Kerr 

et al., 2013). The high winds that cause storm surge also create larger than usual waves, 

exacerbating storm surge. When peak surge coincides with high tide, the water elevation is 

further increased. 

Climate change causes SLR and increased air and water temperatures (Onea & Rusu, 

2017), which contribute to increased storm surge risk (Kerr et al., 2013). TCs are predicted to 

become more frequent (Davis et al., 2019; McTaggart-Cowan et al., 2007) and intense in the 

future due to higher mean sea surface temperature (SST) (Mudd et al., 2014; Onea & Rusu, 

2017). Higher intensity storms are characterized by greater wind speeds and central pressure 

deficits, which correlate to larger storm surges (Irish et al., 2009). Additionally, as mean sea 
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level (MSL) increases due to SLR (Bilskie et al., 2014; Bilskie, Hagen, Alizad, et al., 2016; 

Lindsey, 2022; Taylor et al., 2015), storm surge magnitudes are expected to increase nonlinearly, 

at a faster rate than the base water level (Bilskie et al., 2016). In turn, these effects will have 

nonlinear feedbacks on barrier island morphology, resulting in increased dune erosion, overwash 

and breaching (Passeri, Bilskie, et al., 2018; Passeri et al., 2020).  

Physical Processes 

Hurricanes are characterized by maximum sustained wind speed of at least 119 km/h (74 

mph) (Saffir-Simpson Hurricane Wind Scale, 2012), resulting in severe storm surge. Storm surge 

can also occur during less severe TCs or minor storms. Sebastian et al. (2014) found that a 15% 

increase in wind speeds causes a 23±3% increase in storm surge height, indicating a positive, 

nonlinear relationship between wind speed and storm surge. 

Storm surge is most directly determined by the long-term sustained wind speed of a TC 

rather than the wind speed at landfall; wind speeds at or immediately before landfall may differ 

than the longer-term sustained wind speed, leading to inaccurate storm surge predictions 

(Needham & Keim, 2011). For example, Hurricane Katrina (2005) reached a Category 5 on the 

Saffir-Simpson Hurricane Wind Scale, then rapidly decreased in intensity to a Category 3 as the 

storm approached the Gulf Coast (Chen et al., 2008; McTaggart-Cowan et al., 2007). Due to the 

rapid deintensification and the use of these immediately pre-landfall wind speeds to predict 

storm surge, storm surge was massively under-predicted (McTaggart-Cowan et al., 2007). The 

maximum storm surge of approximately 8.5 m observed during Hurricane Katrina (2005) more 

closely reflects the expected magnitude of a storm surge resulting from a Category 5 hurricane, 

rather than a Category 3 (Needham & Keim, 2011). Similarly, rapid intensification of a storm as 
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it approaches landfall does not always increase storm surge because winds need time to build up 

force on a water body to significantly raise WSE (Needham & Keim, 2011). 

Storm surge magnitude is impacted by the speed at which a TC as a whole approaches 

land, referred to as forward speed (Needham & Keim, 2011). Storms with slower forward speeds 

produce greater storm surge because strong winds act on the same area of water for a longer 

duration, exerting more force on the water and increasing WSE. Similarly, larger TCs tend to 

produce higher storm surges because they sustain high wind speeds for a longer duration and 

over a larger area than smaller radius storms (Needham & Keim, 2011). The greater fetch of 

larger storms increases wave height during severe weather events, further increasing peak water 

levels (Musinguzi et al., 2022). In the absence of obstructions such as barrier islands, fetches are 

maximized and more effectively increase wave and storm surge height (Bilskie, Hagen, Alizad, 

et al., 2016).  

The counterclockwise rotation of TCs in the northern hemisphere causes greater storm 

surge and wave heights on the right side of the eye (Hope et al., 2013; Irish et al., 2009) because 

the winds here are moving shoreward, and away from the shore on the left side of the storm 

(Chen et al., 2008; Needham & Keim, 2011). This phenomenon was observed during Hurricane 

Katrina (2005) in Bay St. Louis, Mississippi (Chen et al., 2008), which experienced higher WSE 

than in western Louisiana because of its location to the east of the storm path. Forward speed of 

the TC contributes to storm surge on both sides of the eye, though the winds blowing in the 

offshore direction to the left of the eye partially counteract this force (Needham & Kiem, 2011).  

Studies have found positive linear relationships between storm surge height and TC 

central pressure deficit (Mudd et al., 2014; Resio et al., 2013); the lack of force exerted 

downward by atmospheric pressure allows the water to rise more easily in the presence of high 
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winds (Bunya et al., 2010; Cid et al., 2014). The low central pressure of TCs increase storm 

surge magnitudes by approximately 1 cm per millibar of pressure (Welander, 1961). Storm surge 

attributed to low pressure alone for Hurricane Camille (1969), which had a record-high central 

pressure deficit of 108 millibars, was 1.08 meters (Needham & Keim, 2011). This accounted for 

a tangible proportion, approximately 14%, of the total 7.5-meter surge height (Needham & 

Keim, 2011).  

TC intensity, often quantified by wind speed (National Hurricane Center, 2022; Saffir-

Simpson Hurricane Wind Scale, 2012) or central pressure deficit (Resio et al., 2013; Taylor et 

al., 2015) is affected by short-term changes in climate (Cid et al., 2014) such as El Niño and is 

expected to increase due to long-term climate change (Cid et al., 2014; Mudd et al., 2014; Resio 

& Irish, 2015). Global warming due to climate change is predicted to increase SST. Mudd et al. 

(2014) found a significant increase in hurricane intensity when increases in SST alone were 

considered, though “the scientific community’s understanding is still developing as to how 

relative changes in SST will affect overall intensity and tropical cyclogenesis”. When TCs have 

higher intensity and a greater pressure deficit, the maximum potential storm surge height 

increases (Irish et al., 2009; Needham & Keim, 2011). Therefore, storm surge magnitudes are 

expected to increase as climate change and sea surface warming progress (Mudd et al., 2014; 

Resio & Irish, 2015). Additionally, severe TC frequency is predicted to increase in the future in 

the Gulf of Mexico (GOM) (Resio & Irish, 2015), in part due to increased SST, further 

increasing storm surge risk in coastal communities. 

Geographic Influences 

Geographic factors, such as the bathymetry of the continental shelf, the shape of the 

coastline, and the presence of barrier islands or other obstructions, impact storm surge height 
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(Needham & Keim, 2011). Storm surge is mitigated by obstructions such as barrier islands 

(Bilskie et al., 2014; Bilskie, Hagen, Alizad, et al., 2016; Needham & Keim, 2011; Sebastian et 

al., 2014), built infrastructure (Needham & Keim, 2011), and coastal wetlands (Akbar et al., 

2017; Wamsley et al., 2010), which restrict shoreward water movement. Simulations of 

Hurricane Ike (2008) show that the height and volume of surge are greater at points on the 

mainland not sheltered by barrier islands compared to those sheltered by barrier islands because 

the islands caused the water to “pile up” on their seaward side (Sebastian et al., 2014). When 

these barrier islands have higher dune elevations, they can better protect the mainland from 

storm surge because they experience less overtopping (Bilskie, Hagen, Alizad, et al., 2016). 

Barrier islands also decrease the effective fetch acting on the water (Bilskie, Hagen, Alizad, et 

al., 2016), which decreases the storm surge magnitude on the mainland, as storm surge is a 

primarily wind-driven process (S. Wang et al., 2008). 

Aside from protection from storm surge, barrier islands also attenuate wave height and 

force (Dietrich, Westerink, et al., 2011), which is especially beneficial during severe weather 

because waves are also wind-driven (Swain, 1997) and add to storm surge magnitude (Bunya et 

al., 2010; Dietrich, Tanaka, et al., 2011). When barrier islands are breached, such as Dauphin 

Island during Hurricane Katrina (2005) (Morton, 2008), they offer less protection from waves 

and storm surge, resulting in greater marsh erosion, damage to fisheries, and greater inundation 

on the mainland (Alizad et al., 2018; Passeri, Hagen, Medeiros, et al., 2015). While provide these 

benefits to the mainland, they must bear the brunt of the storm surge with minimal protection.  

Built (grey) infrastructure, such as levees and floodgates, and nature-based (green) 

infrastructure such as barrier islands, wetlands, dunes, and oyster reefs, slow and/or block water 

when storm surge occurs (Alizad et al., 2018; Dietrich, Westerink, et al., 2011; Passeri et al., 
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2021). Built features can help attenuate storm surge on a local scale by blocking certain inlets or 

areas of shoreline and directing water elsewhere (Resio & Irish, 2015; Vuik et al., 2016), while 

nature-based features attenuate storm surge (Bunya et al., 2010) by increasing bottom friction, 

increasing wind drag (Akbar et al., 2017; Alizad et al., 2018; Dietrich, Westerink, et al., 2011), 

decreasing the effective fetch (Bilskie et al., 2016), and attenuating wave height (Alizad et al., 

2018; Bunya et al., 2010). When grey infrastructure is used, storm surge often reaches peak 

heights against levees and other structures (Westerink et al., 2008). For example, the New 

Orleans area levee system impedes flow and causes localized ponding during surge events, 

altering hydrodynamics but not always reducing storm surge or inundation height (Westerink et 

al., 2008).  

When barrier islands, oyster reefs, or coastal wetlands are present, the area of open water 

decreases; this decreases the fetch that acts on the water, lessening storm surge (Costanza et al., 

2008). Bottom friction is higher on landforms such as beaches, marshes, and other vegetation 

compared to open water (Arcement & Schneider, 1989). This decreases storm surge by 

increasing the about of force that must be exerted on the water surface to produce a given WSE 

(Resio & Westerink, 2008; Vuik et al., 2016). For example, the barrier islands near Galveston 

Bay, Texas, reduced surge magnitudes by about 1 meter, and significant wave heights by about 5 

meters, on the mainland during Hurricane Ike (2008) (Sebastian et al., 2014). For marshes, 

simulations show that 1 m of storm surge can be attenuated for between 14.5-20 km of marsh 

(Alizad et al., 2018); during Hurricane Andrew (1992), 4.7 cm of storm surge were attenuated 

for every km of marsh (Costanza et al., 2008), equivalent to 1 m of attenuation for every 21.3 km 

of marsh. In addition to increasing the base water level, SLR contributes to a decrease in land 
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area and wetland productivity, reducing the surge attenuation potential of barrier island systems, 

causing positive nonlinear relationships between SLR and storm surge (Smith et al., 2010).  

Needham & Keim (2011) explain that in shallow areas, deep water currents cannot carry 

away excess water, causing the WSE to increase due to the influx of excess water. For steeply 

sloping continental shelves, the approaching TC spends relatively little time above shallow 

water, therefore storm surge has a lower magnitude compared to slightly sloped continental 

shelves. When the continental shelf has a smaller (flatter) slope, an approaching TC reaches the 

transition between deep and shallow water farther from the coast, and therefore spends more 

time above a shallow water region (Figure 2.1) (Chen et al., 2008). Figure 2.1 suggests that the 

relatively flat, shallow bathymetry beneath Hurricane Katrina (2005) contributed to its high 

surge heights. 

Figure 2.1: Water depth versus the distance from shore for Hurricanes Katrina (2005), Ivan 

(2004), and Frederic (1979) (top) and the surge height compared to distance from shore for flat 

and sloping bathymetry (bottom) (Chen et al., 2008). 
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This is shown by Chen et al. (2008), who simulated a synthetic Hurricane Katrina-

strength TC that followed the track of Hurricane Frederic (1979) and made landfall near Mobile 

Bay, Alabama rather than New Orleans, Louisiana. The abandoned deltaic flats surrounding 

Mississippi River Delta, where Hurricane Katrina (2005) made landfall, are slightly sloped, 

while Mobile Bay has a comparatively steep continental shelf. Hurricane Katrina (2005) resulted 

in an 8.53 m peak storm surge (Needham et al., 2015) while the synthetic storm with the same 

wind speed, forward speed, and radius, that made landfall in Alabama resulted in a maximum 

storm surge of 6.5 m at the head of Mobile Bay, Alabama (Chen et al., 2008). Storm surge 

estimates for this synthetic storm reach as low as four meters lower than the modelled surge for 

Hurricane Katrina (2005) (Chen et al., 2008). Although differences in coastal geometry and the 

presence of barrier islands and obstructions likely contributed to this difference (Needham & 

Keim, 2011), the bathymetry likely played a major role (Chen et al., 2008).  

Wider and more homogenous continental shelves and estuaries tend to have lower storm 

surge than narrower ones because there is more potential for water to move parallel to the shore 

rather than toward the shore (Chen et al., 2008). For example, the greater New Orleans area has a 

very complex coastline with numerous lakes, inlets, and wetlands, which restricts longshore flow 

and contributes to greater storm surge (Westerink et al., 2008) such as that observed during 

Hurricane Katrina (2005) (Chen et al., 2008). In contrast, Mobile Bay, Alabama has minimal 

nearby flow restrictions; Chen et al. (2008) simulated a synthetic, Katrina-strength storm that 

followed Hurricane Frederic’s (1979) path and observed lower storm surge magnitudes than 

were observed during Hurricane Katrina (2005).  

 

 



 

11 

Storm Surge on the NGOM Coast 

The Mississippi and Alabama coast is located in the NGOM, which experiences the 

highest storm surge magnitudes in the western North Atlantic and the second highest frequency 

of both high-magnitude (≥5 m) and low-magnitude (≥1 m) surges globally (Needham et al., 

2015). This is due to a combination of having a high frequency of TCs (Chen et al., 2008), and 

wide and gently sloping continental shelves (Luettich et al., 2013). Because TC genesis requires 

warm SST (Needham & Kiem, 2011), the subtropical location of the NGOM is conducive to 

hurricanes and tropical storms; severe TCs typically occur several times a year in this region 

(National Hurricane Center, 2022). Both the intensity and frequency of TCs are expected to 

increase in the future due to climate change (Resio & Irish, 2015), consequently increasing storm 

surge frequency and magnitude (Bilskie, Hagen, Alizad, et al., 2016). 

The shallow bathymetry of the GOM, particularly near the outlet of the Mississippi 

River, causes high storm surge magnitudes on the NGOM coast (Chen et al., 2008; Resio & 

Westerink, 2008). The GOM is characterized by a relatively flat continental shelf, with a shallow 

water region that extends far from the coast in most places (Chen et al., 2008). Specifically, the 

eastern portion of the NGOM (Alabama and the Florida panhandle) have much more steeply 

sloping continental shelves than the western portion (Mississippi, Louisiana, and Texas) (Chen et 

al., 2008). The GOM is relatively large and contains few islands and obstructions; these 

conditions allow powerful winds with large fetches (Bilskie, Hagen, Alizad, et al., 2016). 

Because storm surge and wind speed are positively correlated (Sebastian et al., 2014), these 

conditions often result in high storm surge magnitudes. 

Storm surge has particularly devastating effects on the NGOM coast because of the low-

lying, flat topography (Resio & Irish, 2015). The southeastern US is characterized by slightly 
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sloping shorelines (Doran et al., 2017), with low-gradient beaches and wetlands separating the 

land from the sea (S. Wang et al., 2008). This causes more devastating coastal flooding due to 

wind-driven surge (Bunya et al., 2010) compared to if a surge of the same magnitude impacted a 

shoreline with a greater slope (Chen et al., 2008). Relative SLR is also higher than global 

averages in the NGOM due to subsidence (Lindsey, 2022), which raises the base sea level and 

consequently the storm surge magnitude (Smith et al., 2010). Under SLR, barrier island erosion 

and the rate of overall morphological change are expected to increase (Gutierrez et al., 2011; 

Irish et al., 2010). The reduction in area and elevation of barrier islands will change the flow path 

of water during extreme events, and reduce the amount of surge that the islands are able to 

attenuate. During extreme events, this leads to an increase in peak surge that is greater than the 

level of SLR by up to 80% on the mainland and in bays behind the barrier islands (Bilskie et al., 

2014). 

The increase in surge magnitude and frequency caused by SLR will accelerate barrier 

island erosion (Gutierrez et al., 2011), causing a nonlinear increase in the magnitude of storm 

surge that the islands, and the mainland behind the islands, will experience. This is further 

exacerbated by marsh degradation and a decrease in marsh area attributable to SLR; with less 

marshland, the inland area is less protected from storm surge (Alizad et al., 2018). These 

phenomena result in a positive, nonlinear relationship between SLR and storm surge height, 

where increases in storm surge magnitude exceed the increase in sea level (Bilskie et al., 2014; 

Bilskie, Hagen, Alizad, et al., 2016; Resio & Irish, 2015). 

Summary & Further Research 

Storm surge is a wind-driven, temporary increase in sea level above the astronomic tides 

during extreme weather (Kerr et al., 2013). Surge magnitudes tend to increase in magnitude as 
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wind speeds, central pressure deficit, and storm radius increase (Resio et al., 2013; Sebastian et 

al., 2014). Storm surges can cause major flooding in coastal areas, particularly in low-lying 

coastal regions such as the NGOM coast (Dullaart et al., 2020). Their heights and extents vary 

with storm radius, intensity, forward speed, and landfall location (Chen et al., 2008; Needham & 

Keim, 2011). The nearshore bathymetry influences storm surge height on a more local scale, 

with shallow, open water causing the greatest storm surge magnitudes (Bilskie, Hagen, Alizad, et 

al., 2016; Chen et al., 2008; Needham & Keim, 2011). Storm surge has particularly severe 

impacts on the NGOM coast because of the gently sloping continental shelf and low-lying 

topography (Bilskie et al., 2014; Bilskie, Hagen, Alizad, et al., 2016; Resio & Westerink, 2008). 

In the NGOM, TC frequency and intensity are predicted to increase due to climate change (Mudd 

et al., 2014), along with storm surge (Resio & Irish, 2015). Together with urbanization, marsh 

degradation, barrier island erosion, and SLR impacting the region, it is likely that storm surge 

severity and frequency will increase in the future. These increased sea levels, and intensified 

storm surges under SLR, will cause further barrier island erosion (Plant et al., 2016). Therefore, 

it is important to understand, study, and model storm surge, particularly along the Mississippi 

and Alabama coasts. 

While advances in understanding and modelling storm surge have been made in the past 

decades, further improvement and research is needed. Modelling storm surge on and around 

complex coastlines, wetlands, and islands continues to have relatively high error (Westerink et 

al., 2008). This model error has been diminished due to increased mesh resolution and 

computational efficiency (Bilskie, Hagen, Medeiros, et al., 2016), but can still be improved upon. 

Forecasting storm surge magnitude, extent, and timing in real-time during storm events also has 

high error, and grave implications for inaccurate predictions (Resio et al., 2017). Accounting for 
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nonlinear impacts of climate change on TC and storm surge inundation frequency and magnitude 

is a developing field. While general trends between SLR, SST, and storm surge/TC activity have 

been established (Mudd et al., 2014), localized impacts should be further studied. 

Barrier Island Morphology 

Barrier islands are long, narrow islands that run parallel to the coast of the mainland. 

Barrier islands provide multiple ecological, environmental, economic, and social benefits to the 

mainland, bays, and sounds that they protect, in addition to ecosystems on the island themselves. 

Barrier islands reduce the fetch of wind that acts on the open water, reducing the potential 

magnitude of wind-driven surge that the mainland behind the islands experience (Bilskie, Hagen, 

Alizad, et al., 2016). In addition, barrier islands alter the flow path of storm surge nearshore 

(Bilskie et al., 2014). A study by Sebastian et al. (2014) found that barrier islands reduced the 

conveyance of the forerunner into Galveston Bay because the islands caused the surge to “pile 

up” on their seaward side. Because barrier islands often absorb much of the wave and surge 

energy during TCs, they tend to have high rates of sediment transport and erosion (Goff et al., 

2010), making them highly dynamic. As islands change in size, elevation, and location, their 

protective abilities change in magnitude and location (Bilskie et al., 2014). 

Increasing coastal populations and urbanization in the United States (Kerr et al., 2013) 

puts more people and infrastructure at risk of being impacted by storm surges (Adams et al., 

2010). Barrier islands’ abilities to protect against storm surges and waves (Hope et al., 2013) 

make them an important form of natural infrastructure that protects the coast. Breaches, 

inundation, and erosion, often resulting from TCs and other extreme weather, reduce barrier 

islands’ protective abilities (Bilskie et al., 2014). Climate change and SLR will likely accelerate 
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the rate of morphological change (Plant et al., 2016), likely increasing storm surge magnitudes 

on the mainland in the future. 

Using numerical models to resolve nearshore hydrodynamics has improved substantially 

in recent years, though simulations in areas with barrier islands can be improved upon. For 

example, smaller barrier islands are occasionally ignored due to computational limitations 

(Bilskie et al., 2015). ADCIRC cannot model sediment transport (Akbar et al., 2017), and 

ADCIRC nor ADCIRC+SWAN can model coastal morphology (Sebastian et al., 2014), meaning 

that changes to topography, bathymetry, and coastal morphology must be either neglected, or 

loosely coupled based on observed data or the results of other models (e.g. Delft3D) (Passeri et 

al., 2020). The potential implications of barrier island morphology under climate change and 

SLR, coupled with the relatively poor ability to model hydrodynamics on and around barrier 

islands, necessitates further study of barrier islands using numerical models. 

History of NGOM Barrier Island Morphology 

Coogan et al. (2019) describe Dauphin Island as a low-lying (average elevation of 2-3 m), 

narrow (100-1800 m wide), micro-tidal barrier island in the NGOM. This area is geologically 

complex, with spatially variable barrier island types, and is characterized by frequent TC activity 

(Rosati & Stone, 2009). The low elevations of the barrier islands along the coasts of Louisiana, 

Mississippi, and Alabama make them particularly susceptible to storm surge-induced inundation 

and breaching during extreme events (Coogan et al., 2019; Resio & Irish, 2015). In general, the 

NGOM coast is sediment-starved and is slowly subsiding at a rate of up to 10-15 mm/yr (Coogan 

et al., 2019). Although morphological changes are more rapid and visible during extreme 

conditions, gradual morphological change occurs during quiescent periods between major storm 

events. Passeri et al. (2016) conducted a thorough study of the effects of SLR on tidal 
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hydrodynamics and barrier island morphology in the NGOM. The Mississippi/Alabama coast is 

characterized by diurnal, microtidal tide action (Seim et al., 1987). They found that the tides at 

Grand Bay (Figure 2.2) are ebb-dominant, meaning the net morphological effect is seaward 

sediment transport. This is causing erosion in marshes along the northern coast of Grand Bay 

(Jenkins et al., 2023). In contrast, the tides at Weeks Bay are flood-dominant, bringing sediment 

toward the mainland. Fair weather waves cause minimal morphological change, as the average 

wave height is approximately 0.5 meters (Seim et al., 1987). 

Barrier islands along the MS and AL coasts have been consistently migrating westward 

for at least the past 175 years (Morton, 2008; Passeri et al., 2016). The westernmost points of 

Dauphin and Petit Bois Islands have migrated west at a rate of 55.3 m/yr and 34.5 m/yr, 

respectively, for the period between 1848-1986 (Rosati & Stone, 2009). The eastern end of 

Dauphin Island, AL, is more stable than the less-developed western portion of the island; 

because of the relative stability of the east side of the island and the westward migration trend, 

the island is elongating over time (Rosati & Stone, 2009). Dauphin Island breached during 

Figure 2.2: Map of Grand Bay and Weeks Bay (in red and purple boxes, respectively) relative to 

the Gulf coast (Passeri et al., 2016) 
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Hurricane Katrina (2005) (Morton, 2008), and is now more susceptible to overwash and 

inundation in this area (Coogan et al., 2019). Petit Bois Island, Mississippi is experiencing a net 

loss of land area at a rate of approximately 2.0 hectares per year (Byrnes et al., 1991). 

Simultaneously, central Petit Bois Island is accumulating sediment from offshore sources (Rosati 

& Stone, 2009). Overall, barrier islands on coastal MS and AL are highly dynamic, particularly 

during storm events; even in fair weather, they are consistently migrating westward and changing 

in area and shape. 

Response to Extreme Conditions 

Hurricanes are considered a dominant driver of morphological change on barrier islands 

(Rosati & Stone, 2009). Breaching and sediment transport on and around barrier islands are 

accelerated when they experience highly energetic conditions. Breaching that may occur during 

storms reduces the protection that the mainland and back bays receive, increasing potential for 

erosion and increased wave heights and water levels (Bilskie et al., 2014).  

A case study of the effects of Hurricane Nate (2017) on Dauphin Island, Alabama 

analyzed inundation and overwash on the island (Coogan et al., 2019). During Hurricane Katrina 

(2005), Dauphin Island was breached; in 2011 following the Deepwater Horizon Oil Spill, a rock 

wall barrier was placed across the breach to promote accretion. Coogan et al. (2019) found that 

the area surrounding this breach experienced the most overwash during Hurricane Nate (2017). 

66% of the island experienced some degree of overwash; about half of the area that experienced 

overwash had overwash fans, which were largely caused by low-elevation gaps in the dune used 

for driveways (Coogan et al., 2019). Every island transect studied experienced a net loss of 

sediment, though sediment deposition was observed on the roads on the eastern portion of the 

island. Much of the sand that eroded from the foredune is hypothesized to have been transported 
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offshore. Hurricane Nate (2017) was a relatively weak Category 1 hurricane, therefore other TCs 

can be expected to have similar, if not more severe, morphological outcomes. 

Storm Surge 

Barrier islands absorb and attenuate much of the energy of oncoming storm surges, 

resulting in complex hydrodynamic and morphological processes (Alizad et al., 2018; Dietrich, 

Westerink, et al., 2011). The elevation of the island relative to the storm surge magnitude tends 

to dictate the barrier island’s response to the surge (Rosati & Stone, 2009). The dune height on 

the barrier island helps decrease surge behind the island, while surge tends to cause erosion 

(Sallenger, 2000), creating a feedback between morphological and hydrodynamic processes if 

the dune does not have sufficient time to recover prior to the next surge event. Bilskie et al 

(2016) analyzed Choctawhatchee Bay under various SLR conditions, and found that when 

primary dune height near the Bay’s inlet was reduced by about 3 m, there was a “drastic 

increase” in surge within the Bay. Including changes in land elevation over time such as this 

alters simulated storm surge magnitude, whereas a static model would often underpredict peak 

water levels (Bilskie et al., 2014). In addition to the force of the water on the foredune, barrier 

islands can also experience surge from the bay side of the island when ponding occurs after 

storm events (Passeri, Bilskie, et al., 2018; Passeri, Long, et al., 2018).  

Waves 

Though storm surge is the primary driver of morphological change, waves also cause 

morphological change, especially during periods of increased water elevations (Rosati & Stone, 

2009). During extreme events, the NGOM coast can experience very high wave heights, such as 

up to 15 meters observed during Hurricane Gustav (2008) (Dietrich, Westerink, et al., 2011). In 

order for sediment to become mobilized, a combination of sufficiently high water elevations and 
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powerful waves is necessary (Rosati & Stone, 2009); TC-induced storm surge typically provides 

these conditions that are conducive to morphological change. Storm surge often leads to 

inundation and breaching, which can lead to propagation of larger waves (Alizad et al., 2018) 

and further sediment transport and morphological change. 

Morphological Responses to Climate Change 

Climate change is associated with SLR, higher SST (Onea & Rusu, 2017), and increased 

TC frequency and intensity (Davis et al., 2019; McTaggart-Cowan et al., 2007). SLR alone poses 

a threat to low-lying land since the base water level is increased, and accretion rates often cannot 

keep pace with the rate of SLR (Plant et al., 2016). Bilskie et al. (2014) state that it is "only 

intuitive" that SLR will accelerate shoreline and barrier island morphological change. These 

changes are exacerbated by landscape changes caused by SLR, such as marsh drowning (Day et 

al., 1995) or flooding of jetties or other infrastructure, which increase the potential fetch (Bilskie, 

Hagen, Alizad, et al., 2016), and reduce bottom friction and wave attenuation abilities of the 

islands (Bilskie et al., 2014). Anthropogenic changes to the landscape such as development and 

creation of wave-breaking infrastructure can exacerbate, or reduce, these effects. In addition to 

the effects of SLR alone, the increase in TC frequency and intensity increases the storm surge 

risk that the islands experience since severe surges will increase in magnitude and occur more 

often (McTaggart-Cowan et al., 2007).  

Numerical Modelling 

Due to the complex physics of nearshore hydrodynamics, numerical models are often 

needed to accurately predict water levels, especially during severe weather or along complex 

coastlines. Even when using numerical models, there are many variables that must be 

manipulated and input correctly to accurately define the physical system and predict water levels 
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(Bunya et al., 2010). Model accuracy tends to decrease when modelling highly energetic 

conditions during extreme events (Rusu et al., 2008); complex wind fields and high-energy 

conditions associated with TCs makes modelling water levels near the coast especially 

challenging during TCs (Swain, 1997). It is important to note that numerical models represent 

the most complete knowledge of hydrodynamic processes at the time they are made, and may not 

include all of the involved variables in actual hydrodynamic processes. 

ADCIRC+SWAN 

The ADvanced CIRCulation (ADCIRC) hydrodynamic model solves the shallow water 

equations in either two- or three-dimensions (Luettich, 2018). ADCIRC can be paired with the 

Simulating WAves Nearshore (SWAN) model to simulate nearshore wind-generated waves. 

ADCIRC+SWAN is well-suited to simulate water elevations and wave activity during both fair 

weather and extreme conditions such as TCs (Hope et al., 2013; Luettich, 2018). Both the 

uncoupled ADCIRC and the coupled ADCIRC+SWAN models are sufficient for representing 

hydrodynamic processes (Luettich et al., 2013). Using ADCIRC and ADCIRC+SWAN to model 

hydrodynamic conditions caused by severe weather and TCs is common practice, though it 

presents several challenges.  

Model outputs such as sea level, wave height and period, and storm surge depend heavily 

on the quality of the meteorological inputs such as wind and barometric pressure (Menendez et 

al., 2014). Poor meteorological inputs are often a primary source of error in storm surge 

modelling (Weaver & Luettich, 2010). Model performance typically decreases when high-energy 

peak winds occur (Kerr et al., 2013; Onea & Rusu, 2017) because the physical system responds 

differently to fair-weather versus highly energetic conditions (Rusu et al., 2008). Therefore, it is 
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important to use high-quality, thoroughly validated, and high-resolution data for optimal model 

performance, especially during extreme conditions (Menendez et al., 2014). 

Due to their low annual exceedance probabilities and small sample size, TC hindcast 

studies often have high uncertainty (Resio et al., 2009). In order to decrease uncertainty and 

increase sample size, many researchers utilize include synthetic storms. Synthetic storms can be 

created using theoretical meteorological forcing values, often based on actual storm data, in 

order to study alternative situations (e.g. Chen et al., 2008; Irish et al., 2009). This allows 

researchers to study how specific variables such as wind speed, storm size, landfall location, etc. 

impact model outputs (Irish et al., 2009). Synthetic storms can also be used to create hypothetical 

future storms by incorporating meteorological changes due to climate change such as, anticipated 

morphological changes such as shoreline location or bathymetry (Bilskie et al., 2014), or SLR 

(Taylor et al., 2015). The efficiency of numerical models allows many simulations to be 

completed in a relatively short amount of time (e.g., Sebastian et al., 2014). 

Long-Term Hindcasts 

Hindcasts can be used to help validate numerical models by simulating a previous storm 

or time period with thorough data with the model, and comparing model results to observed 

conditions. These hindcasts can be as short as the duration of one hurricane (e.g. Kerr et al., 

2013) and span up to several decades (e.g. Sotillo et al., 2005). Known meteorological data (e.g. 

winds, barometric pressure) are input into the model, then the model outputs (e.g. wave height, 

water level, peak storm surge time, etc.) are compared to real-time observations such as those by 

the National Data Buoy Center (NDBC). The model is then calibrated as needed until the 

observed and modeled results show good agreement; then, the model is considered accurate and 

can be used for similar observed or synthetic events. Often, the model must be iteratively 
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calibrated and validated several times to achieve optimal agreement. Long-term hindcasts can 

yield accurate results; for a long-term wave height hindcast in the Black Sea, ADCIRC+SWAN 

achieved an R2 of 0.92, a 0.12-meter bias, and a 0.36 SI between observed and modelled values 

(Akpınar & Bingölbali, 2016). Hindcasts can only be validated using variables with 

observational data during the event. However, proxies for variables that were not directly 

measured can also yield adequate validation and/or error statistics (Kirk et al., 2022). 

Accuracy of Model Outputs 

Many studies report fairly accurate model results for both uncoupled and coupled 

ADCIRC(+SWAN) models. Typically, these studies use Root Mean Squared Error (RMSE), R2, 

normalized bias (MN Bias), and/or scatter index (SI) to quantify model error. Discrepancies 

between observed and modelled data may occur due to inaccurate input data or poor mesh 

resolution (Akbar et al., 2017; Brown et al., 2010), or due to inaccurate observations. The 

accuracy of model predictions for different variables (e.g. water levels, wave height, wave 

period) varies with wind intensity; for example, S. Wang et al. (2008) found that peak wind 

speed and surge height were underestimated as conditions become more energetic.   

Water Levels 

Accurate water level predictions can be achieved (Dietrich, Tanaka, et al., 2011; Y. Wang 

et al., 2018) in both deep and shallow water (Dietrich et al., 2013) and during severe weather 

(Kerr et al., 2013). Hope et al. (2013) found good agreement between ADCIRC+SWAN results 

and observed water level data, with an R2 >0.9, an SI of 0.1463, and an MN Bias of -0.0114 

meters. 

Despite challenges for highly energetic systems, ADCIRC+SWAN is an accurate 

predictor of hydrodynamic conditions during severe weather. ADCIRC has been shown to 
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simulate both peak and lower-magnitude storm surges with fairly low bias (Resio et al., 2017; 

Westerink et al., 2008). Kerr et al. (2013) accurately modelled peak storm surge for hurricanes 

Ike (2008) and Rita (2005) using ADCIRC+SWAN, though other studies (Cid et al., 2014; Davis 

et al., 2019; S. Wang et al., 2008) found that storm surge was underestimated during extreme 

events. For example, Davis et al. (2019) found an RMSE <0.5 meters, and still considered the 

results “acceptable”. For peak water levels during four hurricanes, a separate study found R2 

values that ranged from 0.77-0.93 (Dietrich, Tanaka, et al., 2011). Westerink et al. (2008) used 

ADCIRC to hindcast storm surge during hurricanes Betsy (1965) and Andrew (1992); for 

Hurricane Betsy, the mean error was 0.58 meters, and for Andrew it was 0.29 meters (0.43 and 

0.27 meters without outliers, respectively). Predicting peak surge timing using ADCIRC+SWAN 

can be improved upon (Akbar et al., 2017; Y. Wang et al., 2018). In some cases, storm surge 

magnitude may be accurately predicted, but the timing of the peak surge may be incorrect due to 

a combination of factors, such as improper bottom friction or hydraulic conductivity estimates 

nearshore (Akbar et al., 2017).  

 Wave Characteristics 

Waves are a major contributor to total water levels, accounting for up to 30% of the surge 

in localized areas during TCs such as Hurricane Isabel (2003) (Weaver & Luettich, 2010). 

Therefore, it is important to evaluate model performance for wave height in both fair-weather 

and severe conditions. ADCIRC cannot model short waves; pairing ADCIRC with a nearshore 

wave model such as SWAN can increase the accuracy of the model, particularly in coastal areas 

most effected by wind waves (Musinguzi et al., 2022). Oftentimes, neglecting short waves can 

lead to underestimation of WSE (Musinguzi et al., 2022). 
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During high wind conditions, ADCIRC(+SWAN) studies report varying accuracy and 

bias for wave height outputs. Onea & Rusu (2017) found that ADCIRC+SWAN tends to 

underestimate peak wave heights for waves experiencing highly energetic conditions (Rusu et 

al., 2008). On the other hand, Kerr et al. (2013) found that coupled hydrodynamic circulation 

models that include waves (e.g. ADCIRC+SWAN) tend to overpredict water levels. Another 

study determined that an uncoupled ADCIRC model slightly underestimated storm surge and 

wave height for Hurricane Irma (2017), but still produced fairly accurate results; a coupled 

ADCIRC+SWAN model performed better for the same initial conditions, partially because of the 

explicit inclusion of waves (Musinguzi et al., 2022). ADCIRC+ SWAN can also accurately 

model significant wave height in complex estuaries and wetlands such as the Biloxi Marsh (Hope 

et al., 2013). For high frequency waves, ADCIRC+SWAN is a fairly accurate model, estimating 

frequencies over 0.35 Hz correctly in a study by Björkqvist et al. (2019). Despite conflicting 

findings of over- and underestimation of wave heights and water levels, the literature reports that 

ADCIRC+SWAN is an accurate and efficient model to predict waves during TCs (Dietrich et al., 

2013), and has been frequently used for this purpose (Davis et al., 2019; Hope et al., 2013). 

Limitations during Extreme Conditions 

Modeling waves and sea level during extreme events accurately is highly dependent on 

the quality of the meteorological forcings (Menendez et al., 2014). Meteorological inputs must 

have high spatial and temporal resolution in order to detect and include rapidly developing, short 

duration, or small storms (S. Wang et al., 2008). Using data at the smallest available spatial and 

temporal scales, especially near complex or rapidly changing features such as barrier islands, 

steep coastlines, or estuaries, results in the best model outputs (Cid et al., 2014). However, low 

quality and temporal resolution of input wind data is a common issue for hydrodynamic models 
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that should be addressed (Onea & Rusu, 2017). The downside to using finer spatial and temporal 

scales is the increase in necessary computational power to run the simulation; to avoid this, 

researchers often use unstructured meshes. 

Calibration and validation of model outputs is also difficult during extreme weather 

because data collection instruments may be damaged or malfunction due to the high winds and 

energetic conditions (Hope et al., 2013). For example, some meteorological gauges were lost and 

destroyed during Hurricane Katrina in 2005 (National Data Buoy Center, 2023), necessitating 

replacement and strengthening of these buoys in order to improve data quality and quantity, 

especially during severe weather (Hope et al., 2013). Despite these challenges, using numerical 

models is a practical way to study these large-scale, relatively infrequent, events. 

Model Forcings & Inputs 

Wind is a primary driver of waves and storm surge (Bunya et al., 2010), and is an 

important ADCIRC+SWAN input for modelling storm surge and water levels during severe 

weather. Wind and barometric pressure, which are closely related, are the most important 

variables to consider when studying storm surge (Irish et al., 2009). Use of finer-resolution 

meteorological forcings during storms results in a better representation of both wind fields and 

storm surges (Dullaart et al., 2020). For small-radius or rapidly forming TCs, and during early 

TC genesis, high-resolution wind fields are especially important because of the relatively small 

spatial and temporal scale at which wind speed and direction change (Dullaart et al., 2020). The 

quality of observed and reanalysis wind data is consistently improving (Hersbach et al., 2020; 

Olauson, 2018), although further improving wind fields’ spatial and temporal resolution would 

help improve storm surge hindcasts (Dietrich et al., 2013).  



 

26 

Reanalyses are “datasets devoted to reproduce past atmospheric fields as accurately as 

possible” (Menendez et al., 2014), and are some of the most widely used datasets for climate 

research (Buizza et al., 2018). Reanalyses combine observed data and thoroughly validated 

models to provide estimated climatic conditions on small spatial and temporal scales (Menendez 

et al., 2014; Valmassoi et al., 2022). Observed wind data is collected by remote sensing and on-

site gauges periodically at many locations globally; reanalysis datasets are created by 

interpolating between these known points in space and time, creating consistent “maps without 

gaps” (Hersbach et al., 2020). A benefit of reanalysis data includes its potential to be used over 

long time scales (Menendez et al., 2014) and in places with limited on-site observations 

(Valmassoi et al., 2022). Reanalysis wind products are ideal for places with inconsistent data 

collection, both spatially and temporally, because of the detailed interpolation between points in 

space and time, as well as the consistency and long temporal records of past wind data available 

via reanalysis (Olauson, 2018). 

Continuous efforts have been made to increase the reliability, accuracy, and resolution of 

reanalysis meteorological products since their conception (Bunya et al., 2010). Due to constant 

improvements to interpolation methods, remote sensing measurement accuracy, and the 

increased presence of tide gauges and buoys, reanalyses have become a very reliable source for 

large-scale meteorological data. Reanalysis products such as European Re-Analysis 5 (ERA5) 

undergo extensive calibration & validation based on buoy measurements, weather stations, and 

other in-situ measurement methods (Björkqvist et al., 2019; Bunya et al., 2010) prior to their 

official release to the public (Hersbach et al., 2020). Despite using the best available data and 

technology, actual wind speeds are generally higher than reanalysis predictions (Islek et al., 

2021). The spatial resolution is not yet fine enough to resolve local variations, making reanalysis 
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products an inadequate tool to estimate longer-term (months-years) average wind speeds 

(Olauson, 2018) and small spatial-scale events like TCs (Dullaart et al., 2020). 

ERA5 

ERA5 is a meteorological reanalysis dataset released by the European Centre of Medium-

Range Weather Forecasts (ECMWF) and Copernicus, with a time range of 1950-present (Bell et 

al., 2021). ERA5 is a very accurate product, with significant improvements made over the five 

generations of ERA, including increased spatial and temporal resolution (Dullaart et al., 2020). 

Gaps in measured data are filled by short-term (9-hour) forecasts, which are archived in 1-hour 

time steps. The end of one nine-hour forecast is used as the starting point for the next; these 

forecasts are repeatedly verified with observed data and re-calibrated until sufficient agreement 

is reached between the observations and the forecasts (Hersbach et al., 2020). ERA5 and 

previous versions have been used globally to study long-term wind patterns (Hersbach et al., 

2020; Menendez et al., 2014; Olauson, 2018), wave heights and patterns (Islek et al., 2021; Onea 

& Rusu, 2017), sea levels (Cid et al., 2014), and severe storms (Dullaart et al., 2020; S. Wang et 

al., 2008). However, ERA5 is not frequently used in the NGOM to model these variables, 

presenting an opportunity for further research using ERA5 to model TC-induced storm surge 

(Hersbach et al., 2020).  

ERA5 better captures the large pressure deficits and strong winds of TCs (Dullaart et al., 

2020) and has a lower SI (Hersbach et al., 2020) compared to previous ERA versions, making it 

a useful meteorological product to accurately model TCs and their resulting storm surge. For 

example, a study by Dullaart et al. (2019) studying storm surge magnitudes found that ERA5 

yielded very good agreement for Hurricanes Irma (2017) and Florence (2018), but 

underestimated Hurricane Michael (2018). Because of its novelty, Hersbach et al. (2020) 



 

28 

recommend studying systematic errors between ERA5 and other datasets. For example, the 

Climate Forecast System Reanalysis (CFSR) dataset tends to cause greater predicted significant 

wave heights than similar ERA products (Islek et al., 2021). Despite these difficulties and its 

novelty, ERA5 is a sufficiently complete background wind dataset for TC simulations. 

One shortcoming of ERA5, particularly when it is used to study highly spatially variable 

events such as TCs, is its coarse resolution; despite substantially improving compared to its prior 

versions (Hersbach et al., 2020), the 31 km spatial resolution and 1-hour timestep of ERA5 

(Hersbach et al., 2019) are still insufficient to capture rapidly-forming, small, and/or fast-moving 

TCs (Bilskie et al., 2022). This can cause underestimations of wind speeds in the immediate 

vicinity of the storm track. Similarly, ERA5 resolution is often insufficient to capture the vortex 

pattern of TC winds (Dullaart et al., 2020). To improve wind fields immediately surrounding 

TCs, background wind fields like ERA5 can be supplemented with vortex models.  

Bottom Friction 

Bottom friction, also referred to as bottom roughness, represents the amount of drag that 

the sea floor or ground exerts on the water that passes over it, thereby decreasing the water’s 

energy. Bottom friction is often quantified by Manning’s n coefficient (Arcement & Schneider, 

1989). Bottom friction changes rapidly as one approaches the coast (Dietrich, Tanaka, et al., 

2011; Sebastian et al., 2014); deeper water experiences less bottom friction than shallow water 

areas with sand, marshes, rocks, or other uneven surfaces. Storm surge and water levels are 

impacted by bottom friction (Bilskie et al., 2014). Storm surge propagates faster and reaches 

higher magnitudes in areas with lower bottom friction, and in some cases, simulated peak surge 

timing is early (Akbar et al., 2017). In ADCIRC models, initial Manning’s n values at each node 

are typically based on land-cover definitions (Bunya et al., 2010). ADCIRC+SWAN models 
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linearly interpolate Manning’s n values spatially, and compute a new bottom roughness at each 

time step (Dietrich et al., 2022; Hope et al., 2013; Luettich, 2018).  Bottom friction has complex 

interactions with hydrodynamic flow, especially in shallower areas (Hope et al., 2013), making it 

important to have as thorough and accurate bottom friction data as possible (Cid et al., 2014). 

Unstructured Meshes 

Model performance depends on a number of factors including mesh resolution, coastline 

complexity, and water depth (Westerink et al., 2008). Meshes that have finer resolution near the 

coastline produce the most accurate predictions (Chen et al., 2008; Dietrich, Tanaka, et al., 2011; 

Dullaart et al., 2020; Irish et al., 2009; Resio et al., 2017; S. Wang et al., 2008). However, using 

very high mesh resolution throughout the model domain increases computational expense and 

time; unstructured meshes allow variable resolution across the study area, so that coarse 

resolution can be used in uniform regions, and finer resolution can be used in complex regions 

(Dullaart et al., 2020). This improves computational efficiency without sacrificing simulation 

accuracy. 

Linear interpolation of elevation between nodes oversimplifies the coastline, causing 

coarse meshes to miss more coastal details such as small wetlands, inlets, or floodwalls and 

overpredict storm surge heights than fine meshes (Dietrich et al., 2013; Westerink et al., 2008). 

Errors in ADCIRC+SWAN predictions are typically due to poor meteorological input data 

(Weaver & Luettich, 2010) or excessively coarse mesh resolution (Dietrich et al., 2013). In less 

complex regions, such as deep, open water, a coarser mesh may be used and still yield accurate 

results (Björkqvist et al., 2019). 

Bathymetry inputs are particularly important for studies that focus on wave breaking and 

storm surge magnitude (Dietrich, Tanaka, et al., 2011). As with most variables, finer spatial 
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resolution of bathymetric data improves model accuracy (Dietrich, Tanaka, et al., 2011; Dullaart 

et al., 2020). Bathymetry typically changes rapidly between deep water and the coastline 

(Dietrich, Tanaka, et al., 2011). It is especially important to use finer mesh resolution in rapidly 

changing areas, while coarser resolution can be applied in the open ocean where changes are 

more gradual.  

Hydrodynamic processes in areas with complex geometry are still not well-understood 

(Chen et al., 2008); nonuniformities such as barrier islands impact the magnitude and path of 

storm surge in ways that are still unpredictable to researchers (Bilskie et al., 2014). Therefore, 

models of areas with complicated shorelines tend to predict storm surge and waves less 

accurately than models with uniform coastlines (Menendez et al., 2014). Based on their 

ADCIRC+SWAN study, Bilskie et al. (2014) concluded that accurately representing small raised 

features such as dune crests is necessary to simulate storm surge flow paths accurately.  

Nearshore bathymetry can also alter model predictions of the path, pattern, and magnitude of 

coastal flooding (Bilskie, Hagen, Alizad, et al., 2016; Passeri, Hagen, Bilskie, et al., 2015). 

Ensuring proper representation of land elevation via adequately fine mesh resolution is crucial to 

accurately modelling coastal hydrodynamics. 

Due to its highly complex coastline and unique bathymetry and storm surge patterns, the 

NGOM coast is considered one of the most challenging areas in the world to correctly model 

storm surge and flooding during severe storms (Westerink et al., 2008). Unstructured meshes are 

publicly available to be used in hydrodynamic models for locations globally, including the 

NGOM (Luettich, 2018). Kerr et al. (2013) report that in areas such as coastal Louisiana with a 

low topographic gradient, models are much more sensitive to wetting and drying. In areas like 
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these, fine mesh resolution and high-resolution inputs should be used, and model definitions of 

‘wet’ and ‘dry’ should be carefully calibrated and validated (Kerr et al., 2013). 

Uncertainty in Models 

Uncertainty in numerical modeling reflects the confidence of a researcher in their result, 

though the definition of uncertainty is subjective (Merz & Thieken, 2005). Zerger et al. (2002) 

state that, “uncertainty, in contrast to error, assumes no prior knowledge of data accuracy.” 

Model error represents a statistically quantifiable difference between an observed, or ‘true’, 

value and a predicted result. Historically, numerical modelers’ response has been to ignore 

uncertainty. This excludes valuable information and implies a greater degree of confidence and 

accuracy in the results of the model than actually exists (Zerger et al., 2002). Due to the nature of 

numerical models and the complexity of coastal hydrodynamic systems, it is impossible to 

eliminate uncertainty, and quantifying uncertainty is an inexact science. 

Merz & Thieken (2005) describe two types of uncertainty: natural, derived from random 

variation in physical processes, and epistemic, caused by inadequacies of the model and 

incomplete knowledge of the study system. Quantifying natural uncertainty is relatively 

straightforward and involves determining the probability that a certain variable will reach a given 

value. This is often done by analyzing past behaviors of the variable of interest (Freer et al., 

2013). For example, Niedoroda et al. (2010) considered tidal variation as part of their uncertainty 

measure. Due to the low return period of TCs, there is a low sample size to derive natural 

uncertainty statistics from for severe weather events at any one study location (Mousavi et al., 

2011; Resio et al., 2013). For these low-probability, high-intensity events, uncertainty is even 

greater (Resio et al., 2013), increasing the need for transparency when communicating 

uncertainty estimates.  
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Natural uncertainty varies spatially and temporally. Quantifying natural uncertainty of 

wind speed or tidal range, for example, is highly site-specific. Spatial scale is important when 

considering TC return period for a specific area; Resio et al. (2013) recommend a study area no 

larger than 2x the radius to maximum wind speed (Rmax) in width. Zerger et al. (2002) found that 

in a relatively flat area of Australia, flood risk uncertainty was greater than if the area were more 

topographically heterogeneous. Implications of human-driven climate change including SLR and 

TC intensification are other sources of natural uncertainty (Freer et al., 2013; Purvis et al., 2008). 

The climate change models used to obtain these predicted values have both natural and epistemic 

uncertainty, further increasing the uncertainty associated with these estimates. In general, natural 

uncertainty can be reduced by obtaining a higher resolution and/or a longer time period of 

observed data (Freer et al., 2013; Merz & Thieken, 2005; Purvis et al., 2008).  

Model error is a major source of epistemic uncertainty. Systematic model errors are 

biases and inaccuracies that cause the model to behave predictably inaccurately. For example, 

models tend to overestimate storm surge in complex areas such as estuaries when the resolution 

is too coarse (Westerink et al., 2008), but underestimate both extreme wind speeds and very high 

storm surge (Onea & Rusu, 2017; S. Wang et al., 2008). Models also include simplifying 

assumptions that may skew predictions. For example, using fewer dimensions in models (e.g. 2D 

depth-averaged versus 3D models) increases uncertainty (Teng et al., 2017) since velocity is 

assumed constant throughout the water column. Bottom roughness is highly spatially and 

temporally variable (Freer et al., 2013), and difficult to obtain an exact measurement for. Other 

simplifications such as element-wide wet/dry algorithms (Purvis et al., 2008; Teng et al., 2017) 

and linear SLR effects (Taylor et al., 2015) increase the uncertainty associated with the model. 

Model uncertainty does not diminish over time since it is independent of forecast time, making it 
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slightly simpler to quantify than other sources of epistemic uncertainty (Resio et al., 2017). 

Model errors, both random and systematic, can be reduced by increasing the number of 

observations and model runs (Mousavi et al., 2011; Resio et al., 2013) and improving the 

calibration and validation process. In addition, increasing spatial and temporal of the model can 

reduce uncertainty, though trade-offs with computational cost and readability limit the extent to 

which resolution can be improved (Mousavi et al., 2011; Purvis et al., 2008). 

Epistemic uncertainty also includes the lack of knowledge of the physical system; 

quantifying this value is highly subjective. Swain (1997) noted: "Although the [ECMWF WAM] 

model represents the physics of the wave evolution in accordance with our knowledge today, 

there can be a number of potentially important effects which are not included in this model." 

Epistemic uncertainty can be decreased by increasing the duration for which you study a system 

(Merz & Thieken, 2005) since models tend to produce more accurate results when more data is 

used to verify and calibrate the model. Researchers often rely on archived data from long-

standing organizations such as NOAA to obtain this data. However, many study areas are 

underrepresented in meteorological data collection and may lack reliable or thorough data that 

dates back far enough to meet the needs of the project (Menendez et al., 2014). When climate 

change is accounted for, nonlinear relationships between different (individually uncertain) 

variables increases the uncertainty associated with future climate estimates (Taylor et al., 2015). 

Failure to account for uncertainty can have substantial social, economic, and 

environmental impacts, especially during TCs. Resio et al. (2013) found that failing to include 

uncertainty led to an underestimation of storm surge magnitudes by about 20% in the Gulf of 

Mexico. When the median or ‘most likely’ value is used for a key variable such as SLR, low-

probability, high-intensity events may remain unaccounted for, underestimating future conditions 
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(Freer et al., 2013). Underestimating storm severity can lead to inadequate evacuation planning 

and infrastructure damage or failure (Zerger et al., 2002), resulting in financial, ecological, and 

cultural costs. Merz & Theieken (2005) suggest that conservative designs and courses of action 

are implemented when epistemic uncertainty is high. Explicitly quantifying and communicating 

uncertainty is crucial for decisionmakers and stakeholders’ safety and wellbeing. 

Quantifying Uncertainty 

Methods for quantifying uncertainty vary throughout the literature. Generally, natural and 

epistemic uncertainty are calculated separately (Merz & Thieken, 2005) and are combined as one 

of the final steps in the process. When quantifying uncertainty, “the following steps should be 

considered: firstly, the sources of uncertainty are to be identified; secondly, uncertainty from 

different sources need to be quantified (or at least ranked qualitatively) and then prioritised” 

(Teng et al., 2017); the objective is to establish a probability distribution of potential values. In 

the hydrodynamic modelling literature, Bayesian, ensemble, and/or other statistical methods are 

often employed to quantify uncertainty.  

 Statistical and Bayesian Methods 

Uncertainty can be implicitly communicated by presenting probabilistic (describing a 

range of possible values) rather than deterministic (communicating one most likely value) 

results. Resio et al. (2017) produced cumulative distribution functions (CDFs) for forecasted 

storm surge magnitudes. The CDF, f(x), represents the probability that a surge event with a 

magnitude less than or equal to x will occur. Several CDFs were created for each study location 

and forecast length. These five CDFs accounted for various uncertainty estimations: forecast 

error but no model error, forecast and model error, two times the sum of the forecast and model 

error, forecast and model error plus bias, and two times the sum of the forecast and model error 
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plus bias. The CDF’s slope and maximum value depended on the uncertainty bound applied. The 

full range of the five CDFs was taken to represent the total uncertainty. The uncertainty 

decreased as the time before landfall decreased (i.e., the CDFs differed from each other more for 

the 96-hour forecast than for the 24-hour forecast). Though very simplistic, this method of 

uncertainty estimation yields more holistic results than a deterministic estimate would. 

Using Bayesian methods to estimate uncertainty involves weighting then combining 

several probability distributions in order to best represent the range of potential values. Merz & 

Thieken (2005) employ this methodology to quantify the uncertainty of a flood frequency 

analysis, though the results are applicable to a wide range of topics. This study defines the 

output, flow volume, as a random variable with a set probability density (Merz & Thieken, 

2005). By defining the variable as random, it can be represented by a probability distribution and 

therefore more easily analyzed. A probability distribution about the mean is then established 

based on observed data, simulation results, or some arbitrary distribution (e.g. Gaussian). This 

probability distribution is subjective, and “represents the analyst's degree of belief that the 

parameter has different values” (Merz & Thieken, 2005).  

The ability of the analyst to choose the estimated probability distribution implicitly 

accounts for some uncertainty. Typically, probability distributions are obtained from several 

methodologies and/or analyses, then these distributions are weighted and combined to estimate 

the uncertainty of the given variable. Merz & Thieken point out that models are weighted either 

based on expert judgement or “by applying a measure of fit between model and observation”; 

when a particular model has a lower standard deviation or better fit, it is weighted more heavily. 

The weighted average of the probability distributions is used to represent this final range of 

potential values, and uncertainty values are derived from that distribution. Methods such as this 
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are well-equipped to quantify natural uncertainty, but often fail to consider epistemic uncertainty, 

necessitating that they be expanded upon and/or combined with other quantification methods. 

Ensemble Methods 

Ensemble methods utilize a large number of slightly varied simulations of synthetic 

events to assess model uncertainty. Slight perturbations to storm characteristics such as central 

pressure deficit, angle of approach, and Rmax are used to increase the number of predictions to 

analyze (e.g., (Niedoroda et al., 2010; Taylor et al., 2015; Teng et al., 2017; Zerger et al., 2002). 

By conducting multiple simulations of the same time period or event with slightly varied inputs, 

a range of potential model outcomes can be generated; this is especially useful for stochastic 

models that lack a predictable probability curve (Zerger et al., 2002). The range of outcomes are 

plotted and fitted with a probability distribution, from which it is relatively simple to derive 

uncertainty. Common ensemble methods for determining probabilistic storm surge estimates are 

Surge Response Functions (SRF), the Joint Probability Method (JPM), and a variation of this 

method, JPM-Optimal Sampling (JPM-OS).  

SRFs are physics-based algebraic expressions of storm surge that are based on the 

shallow water equations and the results of many storm surge simulations (Taylor et al., 2015). 

Irish et al. (2009) used SRFs to estimate the maximum potential surge height at a particular 

location based on several parameters such as forward speed, storm radius, and angle of approach 

to land. Irish et al. (2009) represent this function with 

 “where ϕkm is the dimensional surge response function for track angle k and forward speed m, cp 

is the hurricane central pressure, and Rp is the hurricane pressure radius.” The result of this 

 𝜁(𝑥, 𝑦) = 𝜙𝑘𝑚([𝑥𝑜, 𝑦], [𝑐𝑝, 𝑅𝑝], [𝑥, 𝑦]) (2.1) 
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function is a continuous probability density function (PDF), from which it is fairly simple to 

derive uncertainty. This SRF is based on 75 simulations with varied cp and Rp. Surge estimations 

using the SRF presented in Equation 2.1 yielded highly accurate results, with RMSE <0.32 m for 

all SRF predictions when compared to ADCIRC simulations (Irish et al., 2009). By producing a 

continuous PDF, the probability of each of the full range of potential outcomes is easily 

interpreted, better informing uncertainty estimations compared to methods that yield a single 

deterministic value.  

The JPM is the preferred surge hazard assessment method in the USA (Taylor et al., 

2015) because of its statistical stability, though it comes with a high computational cost 

(Niedoroda et al., 2010). To reduce computational cost compared to JPM, JPM-OS was 

developed. JPM-OS reduces the number of synthetic storms that must be run by selecting a 

fraction of total possible storms to represent the ‘true’ results obtained from the full JPM results 

(Figure 2.3). Niedoroda et al. (2010) weighted each of these representative storms based on their 

distance from some coastal reference point. In this case, central pressure deficit, distance from 

the landfall location, and the storm radius were the main determinants of surge response. The 

Figure 2.3: Synthetic storm tracks used for a JPM-OS study by Niederoda et al. (2010) 
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model did not include tides or random variations in Holland b parameter, which were accounted 

for in the uncertainty function (Niedoroda et al., 2010). 

Taylor et al. (2015) propose a modified JPM-OS that makes use of SRFs to reduce the 

number of simulations needed, and therefore the computational cost required. Inputs to SRFs 

include the storm’s central pressure, Rmax, forward velocity, and track angle, among others. The 

use of SRFs in addition to JPM-OS further increase epistemic uncertainty beyond what exists for 

JPM-OS alone because of the extra simplifying assumptions. Natural uncertainty is low for parts 

of this study because the field measurements used as inputs for the model are accurate and 

thorough, and no forecasts are involved. When SLR is introduced, uncertainty increases since 

future SLR is unknown. Taylor et al. (2015) assumed a normal distribution about the uncertainty, 

which is calculated by summing the standard deviation of major constituents:  

where ε𝑧 is total epistemic uncertainty. Niedoroda et al. (2010) used a similar equation, 

accounting for slightly different variables. A total uncertainty value of 0.7 m is assumed for 

“tide, wave, wind, computational model, and residual sources” based on a prior study by Resio et 

al. (2013). This uncertainty quantification method is proposed because current approaches sum 

SLR and storm surge magnitudes, neglecting dynamic and non-linear feedbacks between sea 

level and storm surge. This method yields accurate results, with R2 ≥ 0.73 at all 73 open ocean 

locations measured, and R2 ≥ 0.80 at 84% of these locations. For bay locations measured, R2 ≥ 

0.70 at 89% and R2 ≥ 0.80 at 26% of locations measured. Calculating the error of each variable 

and model simplification individually based on JPM-OS storm selection criteria then summing 

them proves to be an accurate method for quantifying uncertainty (Irish et al., 2011; Song et al., 

2012). 

 𝜀 𝑧
2 = 𝜀 𝑡𝑖𝑑𝑒

2 + 𝜀 𝑤𝑎𝑣𝑒𝑠
2 + 𝜀 𝑤𝑖𝑛𝑑𝑠

2 + 𝜀 𝑚𝑜𝑑𝑒𝑙
2 + 𝜀 𝑆𝑅𝐹

2 + 𝜀 𝑆𝐿𝑅
2 + 𝜀 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

2  (2.2) 
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Sensitivity analysis is a smaller-scale ensemble method that studies the effects of small 

perturbations to a simulation’s inputs on the simulation’s outputs (Zerger et al., 2002). Initial 

conditions, boundary conditions, or topography are typically manipulated (Teng et al., 2017). 

Sensitivity analyses can be conducted locally, where one variable at a time is perturbed by a 

small amount, or globally, where variables are simultaneously varied through their entire feasible 

range (Teng et al., 2017). Local sensitivity analysis can determine which variables impact the 

model most, especially in reference to a specific region or landform. On the other hand, a global 

sensitivity analysis is a relatively fast method to obtain the full potential range of modeled 

outcomes. Teng et al. (2017) emphasize that sensitivity analysis is an imperfect process, where 

different methods may lead to slightly different results. 

Summary & Conclusion 

As climate change increases the frequency and severity of TCs (Davis et al., 2019; 

McTaggart-Cowan et al., 2007; Resio & Irish, 2015) and causes further SLR (Onea & Rusu, 

2017), storm surge risk is increasing nonlinearly (Bilskie et al., 2014; Kerr et al., 2013). 

Naturally occurring features such as barrier islands, coastal wetlands, and oyster reefs attenuate 

waves and reduce water elevations during surge events force (Dietrich, Westerink, et al., 2011), 

protecting the mainland from storm surge-induced inundation and damage (Sebastian et al., 

2014). Barrier islands are highly dynamic systems (Cowell et al., 2003), susceptible to sediment 

transport and substantial morphological changes in relatively short periods of time (Rosati & 

Stone, 2009); this alters their protective capacity on decadal time scales.  

Numerical models such as ADCIRC+SWAN are used to simulate hydrodynamic impacts 

during TCs by solving the shallow water equations and simulating nearshore wind waves 

(Luettich, 2018). ADCIRC+SWAN produces accurate results for peak water levels and wave 
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heights under highly energetic conditions (Dietrich et al., 2013), including hurricanes (Davis et 

al., 2019). Numerical models have inherent uncertainty that can be reduced by increasing the 

amount and resolution of input data (Menendez et al., 2014; Onea & Rusu, 2017), conducting 

model calibration and validation, and by reducing the number of simplifying assumptions that 

are made (Teng et al., 2017). However, these improvements require both computational power 

and time that are often unavailable. Researchers typically fail to explicitly report uncertainty in 

their model results (Zerger et al., 2002), which can lead to a misinterpretation of data that can 

have potentially fatal outcomes in TC evacuation scenarios. Quantifying uncertainty is an inexact 

science that is often done by using statistical methods (e.g. Resio et al., 2017) and/or by 

estimating uncertainty of each individual variable then combining those uncertainty values (e.g. 

Taylor et al., 2015). 

As TCs become more frequent and intense, it is increasingly important to study how TCs 

impact barrier island morphology and, consequently, their ability to protect the mainland from 

storm surge. Understanding the uncertainty of both hydrodynamic and morphological models 

that are used to predict morphological change is crucial for improving land management 

outcomes and clearly communicating results to stakeholders. 
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CHAPTER 3 

METHODS 

 A 15-year ADCIRC+SWAN hindcast of TC activity in the NGOM between 2005-2020 

was performed for Dauphin Island, Alabama and Petit Bois Island, Mississippi. The simulated 

ADCIRC+SWAN WSE and wave height, direction, and period were used as boundary 

conditions for simulations of storm-driven morphological change. An integrated modeling 

approach using three models was applied to simulate barrier island morphologic evolution at 

Dauphin and Petit Bois Islands during quiescent and storm periods. The resulting DEM was 

interpolated onto the NGOM-Real Time (NGOM-RT) ADCIRC+SWAN mesh for the next 

simulation. In addition to updating the DEM between runs, the hindcasted storms were also run 

on a Post-Ivan (2004) DEM (Seymour, 2020), and the most up-to-date LiDAR data available, 

both interpolated onto the Post-Ivan NGOM-RT mesh. 

Storm Selection 

The beginning of the study period was chosen to begin after Hurricane Ivan (2004), in 

part because of the detailed and accurate Post-Ivan DEM (Seymour, 2020). Storms were selected 

based on the following criteria: passed through a 200 km radius of Dauphin or Petit Bois Island; 

reached tropical storm status or higher; occurred between 2005-2020; has observed WSE data 

available at Dauphin Island (NOAA Station #8735180; Figure 3.1) for dates that coincide with 

the NHC best-track storm duration dates; and caused a tangible increase in WSE at NOAA 

Station #8735180. From these criteria, 10 storms were selected for inclusion in this study (Table 

3.1). 
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# 
Storm 

Name 
Year Classification 

Date of NHC 

data extraction 

1 Arlene 2005 Tropical Storm Aug. 23, 2022 

2 Cindy 2005 Cat. 1 Hurricane Aug. 31, 2022 

3 Dennis 2005 Cat. 4 Hurricane Oct. 4, 2010 

4 Katrina 2005 Cat. 5 Hurricane Oct. 4, 2010 

5 Ida 2009 Cat. 2 Hurricane Jan. 13, 2010 

6 Nate 2017 Cat. 1 Hurricane Apr. 24, 2018 

7 Alberto 2018 Tropical Storm May 3, 2019 

8 Gordon 2018 Tropical Storm May 3, 2019 

9 Cristobal 2020 Tropical Storm May 24, 2021 

10 Sally 2020 Cat. 2 Hurricane May 24, 2021 

Table 3.1: Selected storms & the dates that their best track data were obtained 

Figure 3.1: Locations of NOAA tide gauges (black) and NDBC buoy (blue) stations. NOAA 

Station #8735180 is located on eastern Dauphin Island. 
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Model Selection & Setup 

ADCIRC+SWAN 

Hydrodynamic models such as ADCIRC and SWAN are commonly used to model the 

complex physics of winds, waves, tides, and water levels in both fair weather and extreme 

conditions (Hope et al., 2013; Luettich, 2018). ADCIRC solves the shallow water equations in 

two dimensions using unstructured meshes that allow varied spatial resolution (Luettich, 2018). 

This study utilized the NGOM-RT unstructured mesh developed by Bilskie et al. (2020) (Figure 

3.5). The ADCIRC model can predict storm surge, flooding, tides, and wind-driven circulation 

(Hope et al., 2013; Luettich, 2018). The coupled model, ADCIRC+SWAN, also accounts for 

nearshore waves (Dietrich et al., 2022), often leading to greater and more accurate WSE 

predictions than ADCIRC alone (Hope et al., 2013; Musinguzi et al., 2022). ADCIRC+SWAN 

has been shown to represent significant wave heights during storm conditions accurately (Hope 

et al., 2013). 

This study used a two-dimensional ADCIRC+SWAN coupled hydrodynamic model of 

the NGOM to simulate WSE, significant wave height, wave period, and wave direction. 

ADCIRC+SWAN was run with a 1-second timestep, with advective terms included in the 

simulation. A 14-day spin-up was run for each storm, allowing the background wind field and 

the eight major tidal constituents (Q1, O1, P1, K1, N2, M2, S2, & K2) to reach a dynamic 

equilibrium before hot-starting the simulation at the start time of the NHC best-track. Wetting 

and drying were enabled.  

Background wind speeds were obtained from ERA5 (Hersbach et al., 2020) via the 

Climate Data Store (Copernicus) website on April 1, 2022. ERA5 offers a 31km spatial 

resolution and 1-hour temporal resolution (Olauson, 2018). The generalized asymmetric Holland 



 

44 

vortex model (GAHM) (Gao et al., 2018) was used to supplement ERA5 by creating a high-

resolution cyclonic wind field along the NHC best track (Bilskie et al., 2022). GAHM wind 

forcing was used between the storm location along the NHC best track and 3 times Rmax (Figure 

3.2, inner circle). Only ERA5 was used beyond 12 times Rmax away from the storm location 

(Figure 3.2, outer circle). Between 3Rmax and 12Rmax (Figure 3.2, middle circle) the wind was 

linearly interpolated for a smooth transition between GAHM and ERA5. Storm simulations using 

blended ERA5+GAHM wind fields have been shown to predict more accurate wind speeds, 

WSE, and wave heights than those with ERA5 alone (Bilskie et al., 2022).  

 

Figure 3.2: Wind blending schematic; outer circle represents ERA5, the inner circle represents 

GAHM, and the middle circle is the transition area (Bilskie et al., 2022). 
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Morphological Model: Storm Periods 

XBeach was used to simulate beach and dune morphological change during TCs. XBeach 

is a two-dimensional, depth-averaged model that resolves coupled short wave energy, flow and 

infragravity wave propagation, sediment transport and bed level change (Roelvink et al. 2009). 

The code solves the nonlinear shallow water equations and incorporates time-varying wave 

action balance and roller energy balance. Sediment transport was simulated using a depth-

averaged advection-diffusion equation (Galappatti & Vreugdenhil, 1985; Grzegorzewski et al., 

2009). The model is capable of simulating morphologic change from the swash, collision, 

overwash and inundation storm-impact regimes (Sallenger, 2000).  XBeach was run in surfbeat 

hydrostatic mode. 

Figure 3.3: Locations where XBeach boundary conditions were input to the model. 
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The model domain spans from west of Petit Bois Island in Horn Island Pass to east of 

Dauphin Island in Mobile Inlet (Figure 3.4). The XBeach model domain was comprised of 3045 

x 3024 cells and extends approximately 13km in the cross-shore and 45km in the alongshore 

(Frank-Gilchrist et al., 2023). Grid resolution varies from 3.5 m to 11 m in the cross-shore, and 

15 m in the alongshore. The model was previously validated for hurricanes Ivan, Katrina and 

Sally (Frank-Gilchrist et al., 2023). For the decadal hindcast, the model was forced with hourly 

water levels forced at the four corners of the grid domain, and hourly wave conditions (peak 

period, mean direction, significant wave height) at the southern offshore boundary (Figure 3.3). 

Morphological Models: Quiescent Periods 

For quiescent periods, two empirical models were applied to simulate post-storm dune 

growth and shoreline change. A previously developed empirical dune growth (EDGR) model 

was applied to account for post-storm dune recovery. EDGR fit Gaussian curves to cross-shore 

profiles of the island to represent the island platform, dunes and berms. The model then evolved 

the foredune of each profile based on growth curves parameterized with observed LiDAR data 

(Dalyander et al., 2020). EDGR accounts for Aeolian transport without explicitly resolving the 

Figure 3.4: XBeach model domain 
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underlying physical processes in order to model dune formation and recovery during fair-weather 

conditions (Dalyander et al., 2020). EDGR was calibrated for each island using LiDAR data, and 

has produced reliable results with an average RMSE of 0.72 m from 2006-2015. 

To resolve quiescent shoreline change, an empirical shoreline change (ESC) model was 

developed based on decadal shoreline change rates calculated from LiDAR data and previous 

morphological model simulations (Jenkins et al., 2020); the shoreline change rates were 

calculated at each of the EDGR cross-shore profiles. Compared to observations, ESC replicated 

shoreline change with an RSME of 25.91 m across the entirety of Dauphin Island; historic 

shoreline change rates at Petit Bois Island were not available. The ESC model was then applied 

to resolve the total shoreline change over each quiescent period at each island. Using the post-

storm XBeach elevations as an initial condition, the two empirical models were run sequentially, 

with shoreline change resolved first and then dune growth for the entirety of the quiescent 

period. The resulting elevations were then passed back to ADCIRC+SWAN to be interpolated 

onto the NGOM-RT mesh (Figure 3.5) for the next storm simulation.  

EDGR and ESC were not run between Hurricanes Cindy & Dennis (2005) because the 

NHC best track durations for these storms overlapped. For the period between Hurricanes Ida 

(2009) and Nate (2017), EDGR and ESC were run until May 2011, and then paused to alter the 

DEM to account for the installation of the rock wall in Katrina Cut of Dauphin Island in response 

to the Deepwater Horizon Oil Spill. The rock wall elevations were interpolated onto the DEM 

and the feature was considered non-erodible in XBeach. EDGR and ESC were then resumed to 

account for recovery from May 2011 to October 2017 at which point Hurricane Nate occurred. 

EDGR and ESC were not run after Hurricane Sally (2020) because Sally was the final storm of 

the study.  
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DEM Interpolation 

ADCIRC+SWAN simulations utilized the unstructured NGOM-RT finite element mesh 

(Figure 3.5) for its high resolution and computational efficiency (Bilskie et al., 2020). The Post-

Ivan DEM (Seymour, 2020), used data collected in 1998 and 2001, and data from the CONED 

model (1888-2013) for the background topobathy. Topography and nearshore bathymetry 

elevations for Dauphin and Petit Bois Islands were obtained from survey data collected in April-

September 2004 by the USACE, and LiDAR data collected by the USGS and NASA in 

September 2004 (Seymour, 2020). The Post-Ivan DEM elevations were interpolated onto the 

NGOM-RT mesh using the cell area averaging (CAA) method (Bilskie et al., 2015). The default 

CAA value was multiplied by 3 for improved topographic smoothing.  

a. 

 
 

b. 

 
 

c. 

 
 

d. 

 
 

Figure 3.5: NGOM-RT Unstructured Mesh; a. full mesh domain, b. region of interest, c. Petit 

Bois Island, d. Dauphin Island. 
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The morphology simulations output topobathy data at 2.5-meter resolution. These outputs 

were then interpolated onto the Post-Ivan NGOM-RT mesh. Dauphin Island’s vertical features 

(Bilskie et al., 2015) were flagged to retain dune crest elevations. On Petit Bois Island, flagging 

vertical features was unnecessary because raised features that prohibit flow were large enough to 

be captured without being flagged as vertical features, and the lack of flagging did not cause 

significant elevation errors (Bilskie et al., 2015). This was partly because of the lack of man-

made features on Petit Bois Island that are present on Dauphin Island, such as roads, that create 

drastic sub-mesh-scale elevation changes.  

To make the ‘up-to-date’ LiDAR meshes, DEM’s were obtained from NOAA’s 

Continuously Updated Digital Elevation Model (CUDEM; CIRES, 2014) and USGS’s Coastal 

National Elevation Database (CoNED; Danielson & Haines, 2023) at all available time steps for 

Dauphin and Petit Bois Islands and their nearshore bathymetry. The elevations of Petit Bois, 

West Petit Bois, and Dauphin Islands were interpolated onto the Post-Ivan (2004) DEM using 

the same method employed for the DEM output by XBeach/EDGR. The vertical features (Bilskie 

et al., 2015) were flagged on Dauphin Island to retain peak dune heights. Mainland elevations 

were not updated. Table 3.2 shows which DEM was used for each storm's most up-to-date 

observed data. 
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Storm  Landfall Date Up-to-date LiDAR DEM DEM Source 

Arlene June 11, 2005 Post-Ivan (2004) USACE, USGS, NASA 

Cindy July 6, 2005 Post-Ivan (2004) USACE, USGS, NASA 

Dennis July 7, 2005 Post-Ivan (2004) USACE, USGS, NASA 

Katrina Aug. 29, 2005 Post-Ivan (2004) USACE, USGS, NASA 

Ida Nov. 10, 2009 2008 July USGS CoNED 

Nate Oct. 7, 2017 2016 July-October USACE 

Alberto May 28, 2018 2016 July-October USACE 

Gordon Sept. 3, 2018 2016 July-October USACE 

Cristobal June 7, 2020 2018 Oct-Nov (DI) & 
2019 Nov (PB) 

USGS, USACE 

Sally Sept. 16, 2020 2018 Oct-Nov (DI) & 
2019 Nov (PB) 

USGS, USACE 

Table 3.2: Chronological list of storms, their year, the time that the most up to date available 

LiDAR and/or survey data for that DEM was collected, and which organization collected this 

data. 

Model Error Quantification 

Hydrodynamic Model Validation 

Water level time-series data was available in six-minute intervals from NOAA’s tide 

gauge system (CO-OPS Map, 2023). Fourteen stations (4-8 per storm) were located within 100 

km of the Dauphin Island NOAA Station (#8735180; Figure 3.1) and had WSE data for all or 

part of the storm duration. Four total (1-3 per storm) NOAA NDBC stations (National Data 

Buoy Center, 2023) were located within a 120 km radius of NOAA Station #8735180 and had 

wave direction, period, and/or height data available for all or part of the storm duration.  

ADCIRC+SWAN computed WSE time-series, significant wave height, mean wave 

period, peak wave period, and wave direction at a 1-second time step. These time-series, as well 

as maximum WSE, were compared to observed values at corresponding geographic coordinates. 

WSE time-series values were compared to NOAA tide gauge observations using RMSE, MN 
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Bias, and SI (Equations 3.1, 3.2, and 3.3) for each storm, “where N is the number of 

observations, Ei = Si − Oi is the error between the modeled Si and measured Oi values, and 𝐸̅ is 

the mean error” (Dietrich, Westerink, et al., 2011; Hanson et al., 2009). RMSE is measured in 

meters, and MN Bias and SI are unitless (Model Performance Statistics Definitions, 2017). 

Average values for these metrics were calculated for each storm at all available NOAA tide 

gauges and NDBC buoys. 

Root Mean Squared Error √
∑ (𝑆𝑖 − 𝑂𝑖)

2𝑁
𝑖=1

𝑁
 (3.1) 

Normalized Bias 

1
𝑁

∑ 𝐸𝑖
𝑁
𝑖=1

1
𝑁

∑ |𝑂𝑖|𝑁
𝑖=1

 (3.2) 

Scatter Index 
√1

𝑁
∑ (𝐸𝑖 − 𝐸̅)2𝑁

𝑖=1

1
𝑁

∑ |𝑂𝑖|𝑁
𝑖=1

 (3.3) 

To verify that using ERA5+GAHM winds improved hydrodynamic model accuracy 

compared to simulations that used ERA5 only, time-series and peak wind speed and WSE were 

compared. Observed and simulated wind speed and WSE were compared for simulations run 

with ERA5 only, and for ERA5+GAHM, on the Post-Ivan DEM. Observed values were pulled 

from all NOAA stations within 500 km of the NOAA station at eastern Dauphin Island (NOAA 

#8735180; Figure 3.1) (Table 3.3). For WSE, only stations with data available with respect to 

NAVD88 or MSL datums were selected. RMSE, MN Bias, and SI were used to quantify error 

between wind speed and WSE time-series plots throughout the model period. Peak wind speeds 

and WSE were also regressed against one another, and slope of the regression line and R2 were 

quantified. 
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Station # State Years active (WSE) Years active (Wind) 

NOAA 8727520 FL 2005 2005, 2018 

NOAA 8728690 FL 2005 N/A 

NOAA 8729210 FL 2005 2005, 2017, 2018 

NOAA 8729840 FL N/A 2005, 2009, 2018, 2020 

NOAA 8731439 AL 2009 N/A 

NOAA 8734673 AL N/A 2009, 2017, 2018, 2020 

NOAA 8735180 AL 2005, 2009, 2017, 2018, 2020 2005, 2009, 2017, 2018, 2020 

NOAA 8735181 AL 2005 N/A 

NOAA 8735391 AL 2017, 2018, 2020 N/A 

NOAA 8735523 AL 2017, 2018, 2020 2018 

NOAA 8736897 AL 2009, 2017, 2018, 2020 2009, 2017, 2018, 2020 

NOAA 8737048 AL 2009, 2017, 2018, 2020 2018 

NOAA 8737138 AL 2017, 2018, 2020 2018 

NOAA 8738043 AL 2017, 2018, 2020 2018 

NOAA 8739803 AL 2017 2018 

NOAA 8741003 MS N/A 2009, 2018, 2020 

NOAA 8741094 MS N/A 2009, 2017 

NOAA 8741196 MS 2005 N/A 

NOAA 8741501 MS N/A 2009, 2017 

NOAA 8741533 MS 2009, 2017, 2018, 2020 2018 

NOAA 8742221 MS 2005 N/A 

NOAA 8743281 MS 2005 2005 

NOAA 8744117 MS 2005 N/A 

NOAA 8744707 MS N/A 2009 

NOAA 8745557 MS 2009 N/A 

NOAA 8745651 MS N/A 2009 

NOAA 8747437 MS 2009, 2017, 2018, 2020 2009, 2017, 2018, 2020 

NOAA 8747766 MS 2005 2005 

NOAA 8760721 LA N/A 2017, 2018, 2020 

NOAA 8760922 LA 2005, 2009, 2017, 2018, 2020 2005, 2009, 2017, 2018, 2020 

NOAA 8761305 LA 2009, 2017, 2018, 2020 2009, 2017, 2018, 2020 

NOAA 8761724 LA 2005, 2009, 2017, 2018, 2020 2005, 2009, 2017, 2018, 2020 

NOAA 8761927 LA 2009, 2017, 2018, 2020 2009, 2018, 2020 

NOAA 8761955 LA 2009, 2017, 2018, 2020 2018 

NOAA 8762372 LA N/A 2005, 2009 

NOAA 8762484 LA N/A 2018 

NOAA 8764227 LA 2009, 2017, 2018, 2020 2009, 2017, 2018, 2020 

NOAA 8764314 LA N/A 2017, 2018, 2020 

NOAA 8766072 LA 2009, 2017, 2018, 2020 2017, 2018 

NOAA 8767961 LA N/A 2018 

NOAA 8768094 LA 2005, 2009, 2017, 2018, 2020 2005, 2009, 2018 

NOAA 8769858 LA 2020 N/A 

Table 3.3: NOAA Stations used for WSE and wind speed time-series and peak value comparisons 

between ERA5 and ERA5+GAHM. Years active includes years within the study period (2005-

2020) during which at least one of the selected storms occurred. 
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Island Transects 

Simplified -5-meter contour lines (“simplified shorelines”) (Figure 3.6a) were drawn 

around West Petit Bois, Petit Bois, and Dauphin Islands. The eastern end of Dauphin Island was 

excluded because this area experiences minimal morphological changes due to urbanization, and 

was not the focus of this study. Cross-shore transects were created (Figure 3.6b), and extend 

perpendicularly from the simplified southern shoreline until they intersect with the simplified 

northern shoreline. The transects were spaced every 1 kilometer in the alongshore direction, 

expect for at Katrina Cut where they were spaced every 0.5 km. Elevations were extracted at 1-

meter intervals along each transect. 

 

a. Simplified shoreline, 

roughly located at the -5-

meter contour line. 

 

b. Cross-shore transects 

that begin at the seaward 

side of the simplified 

shoreline and extend to 

the northern side of the 

simplified shoreline. 

 

c. Nearshore points 

located at the 

northernmost and 

southernmost point of 

each transect, as well as 

along the transect closer 

to the shoreline on 

western Dauphin Island. 

Figure 3.6 – Island transects & nearshore points. 

b 

a 

c 
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Morphology Error Quantification 

The original Post-Ivan, XBeach updated, and up-to-date LiDAR DEM’s were compared, 

with the up-to-date LiDAR DEM’s being considered the ‘true’ value. Beach profiles across 

island transects (Figure 3.6b) were compared between the three DEM’s using RMSE, MN Bias, 

and SI. The peak elevation height and location, the 0-meter intercept, and the area beneath the 

transect between the 0-meter bounds were calculated for each transect and then compared 

between the different DEM’s. The location of the 0-meter elevation contour line was compared 

for each DEM. The area and volume of the island above 0 meters NAVD88 were also calculated. 

Nearshore Hydrodynamics  

Simulated WSE, significant wave height, wave direction, and mean and peak wave 

period were extracted from 39 nearshore points (Figure 3.6c) located at the intersection of each 

transect and the seaward side of the simplified shoreline. Five additional nearshore points, 

located along the transects, but closer to shore, were also selected on western Dauphin Island. 

WSE and wave variables were compared between DEMs at these locations using RMSE, MN 

Bias, and SI. WSE and significant wave height were extracted from 39 points on the back side of 

the island, where the transects intersect with the northern side of the simplified shoreline. WSE 

and significant wave height time series and maxima were studied at 40 points at the 0 m contour 

near the shore of the mainland (Figure 3.8). 

High Water Marks 

High water mark (HWM) observations for several storms were obtained from LSU’s 

SurgeDAT Data Center (Surge Database Console, 2018) and the USGS flood event viewer 

(Flood Event Viewer, 2023). Simulated WSE maxima were regressed against observed HWM 

data, and the R2 and the slope of the regression line were quantified. This was repeated for each 
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individual storm, and for all storms at once, for points within 200 km of NOAA Station 

#8735180 at Dauphin Island (Figure 3.1).  

In addition to comparisons to observed data, 40 points on the shoreline of the mainland 

(Figure 3.8), plus 65 points located along the cross-shore transects (Figure 3.7), were selected for 

studying the direct localized impacts of topobathy on the simulated HWM. WSE maxima for the 

same storm on different DEMs were regressed against one another. This was repeated for only 

mainland points, only points along the cross-shore transects, and for all 105 points. R2 and the 

slope of the regression line were quantified. 

  

Figure 3.7: Selected locations on the barrier islands for WSE and significant wave height 

analysis 

Figure 3.8: Selected points on the mainland for WSE and significant wave height analysis 
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CHAPTER 4 

RESULTS 

Hydrodynamic Model Validation 

ADCIRC+SWAN hydrodynamic simulations were validated using WSE data from all 

available NOAA tide gauges within 100 km of Dauphin Island, and wave data from all NDBC 

stations within 120 km of Dauphin Island, for each storm using RMSE, MN Bias, and SI. NOAA 

Station 8739803 was excluded from analysis due to consistent overestimation of WSE by greater 

than 1 m, likely caused by poor mesh resolution at the NOAA station’s inland location. NOAA 

Station 8741196 was also excluded because it was only active for Tropical Storm Arlene. Post-

Ivan LiDAR data was the most up-to-date observation for the storms that occurred in 2005. 

Therefore, only storms post-2005 were simulated using all three DEMs. Hindcasts were 

completed for all storms on the Post-Ivan DEM, all storms except Arlene on the XBeach-

generated DEM, and all storms after 2005 on the LiDAR-derived DEM (Table 4.1).  

Storm # NOAA 

Stations 

# NDBC 

Stations 

Post-Ivan 

DEM 

XBeach 

DEM 

LiDAR 

DEM 

Arlene 5 2 ✓   

Cindy 5 1* ✓ ✓  

Dennis 5 1* ✓ ✓  

Katrina 4 2 ✓ ✓  

Ida 6 2 ✓ ✓ ✓ 

Nate 8 2 ✓ ✓ ✓ 

Alberto 8 2 ✓ ✓ ✓ 

Gordon 8 2 ✓ ✓ ✓ 

Cristobal 8 2 ✓ ✓ ✓ 

Sally 8 2 ✓ ✓ ✓ 

*No wave direction data available 

Table 4.1: Stations used for validation of simulation results, and DEMs used for simulations. 
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Model Error 

Simulated WSE and significant wave height were significantly different from observed 

values (p = 0.00) according to two-way paired t-tests. WSE error for the three different DEMs, 

on average across all storms, were not statistically significant from one another (p ≤ 0.10). 

Average error across all storms ranged from 0.192 - 0.204 m for RMSE, -0.234 - -0.247 for MN 

Bias, and 0.319 - 0.347 for SI (Table 4.2). This level of error is consistent with other studies 

(e.g., Dietrich, Westerink, et al., 2011; Kerr et al., 2013) and constitutes accurate representation 

of the physical system. Stations that lack data beyond 2005 are listed as “No data” in the LiDAR 

column. Wave variables were not averaged across all storms due to the limited number of 

stations with available observational data. 

 Post-Ivan WSE Averages XBeach WSE Averages LiDAR WSE Averages 

Station 

RMSE 

MN 

Bias SI RMSE 

MN 

Bias SI RMSE 

MN 

Bias SI 

NOAA 8731439 0.149 -0.331 0.288 0.145 -0.357 0.233 0.145 -0.358 0.226 

NOAA 8735180 0.150 -0.058 0.305 0.148 -0.079 0.276 0.139 -0.178 0.217 

NOAA 8735181 0.142 -0.067 0.298 0.149 -0.062 0.309 No data No data No data 

NOAA 8735391 0.255 -0.383 0.314 0.255 -0.384 0.310 0.255 -0.384 0.311 

NOAA 8735523 0.158 -0.171 0.299 0.156 -0.172 0.292 0.157 -0.173 0.294 

NOAA 8736897 0.237 -0.278 0.376 0.231 -0.286 0.355 0.231 -0.287 0.357 

NOAA 8737048 0.227 -0.309 0.361 0.222 -0.316 0.340 0.224 -0.318 0.344 

NOAA 8737138 0.238 -0.155 0.388 0.236 -0.164 0.383 0.238 -0.157 0.386 

NOAA 8738043 0.170 -0.160 0.339 0.167 -0.165 0.326 0.168 -0.167 0.329 

NOAA 8741533 0.209 -0.262 0.345 0.200 -0.261 0.318 0.205 -0.270 0.326 

NOAA 8742221 0.314 -0.394 0.402 0.385 -0.428 0.476 No data No data No data 

NOAA 8743281 0.191 -0.280 0.299 0.202 -0.277 0.311 No data No data No data 

NOAA 8744117 0.195 -0.274 0.349 0.204 -0.266 0.374 No data No data No data 

NOAA 8745557 0.189 -0.150 0.496 0.159 -0.175 0.397 0.159 -0.176 0.399 

Average 0.202 -0.234 0.347 0.204 -0.242 0.336 0.192 -0.247 0.319 

Maximum 0.314 -0.058 0.496 0.385 -0.062 0.476 0.255 -0.157 0.399 

Minimum 0.142 -0.394 0.288 0.145 -0.428 0.233 0.139 -0.384 0.217 

Table 4.2: Average WSE error for all storms at each station. RMSE is in meters. 
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The NHC best track durations overlapped for Hurricanes Cindy and Dennis (2005). 

Therefore, statistics for Hurricane Cindy were calculated for July 3, 2005 at 1800 UTC to July 8, 

2005 at 0600 UTC, and statistics for Hurricane Dennis began July 8, 2005 at 0600 UTC. During 

Hurricane Katrina, two of the four NOAA stations stopped collecting data prior to the end of the 

NHC best track duration, near the peak of the storm on August 29, 2005 at 0600 UTC. NDBC 

station 42007 also stopped collecting data prior to the end of the storm, on August 29, 2005 at 

0700 UTC. 

Average RMSE and SI were both lowest for LiDAR DEMs (0.192 m and 0.319) 

compared to Post-Ivan (0.202 m and 0.347) and XBeach (0.204 m and 0.336) DEMs. Average 

MN Bias was lowest for the Post-Ivan DEM (-0.234) compared to XBeach (-0.242) and LiDAR 

(-0.247). It is important to note that variation of these values between DEMs was minimal; 

RMSE varied by less than one centimeter between DEMs when all stations were averaged. 

Wave variables displayed less obvious trends. Simulated significant wave height and 

peak period most closely matched observed values when the Post-Ivan DEM was used; mean 

wave period showed the best agreement for simulations run on XBeach DEMs; wave direction 

best matched observations on the LiDAR DEMs. Again, the range of error was small; on 

average, the RMSE ranges for significant wave height, peak period, mean period, and wave 

direction were 0.03 m, 0.80 s, 0.09 s, and 6.68 degrees, respectively. The small sample size (4 

stations) limits the weight that these statistics hold, though the results suggest good agreement 

between modelled and observed data. 

ERA5 versus ERA5+GAHM 

 Model time-series error was quantified for WSE and wind speeds (Table 4.3). For wind 

speed, average RMSE and SI were lower for ERA5 than ERA5+GAHM. Meanwhile, MN Bias 
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and the absolute value of MN Bias was slightly lower for ERA5+GAHM. For WSE, average 

RMSE, absolute MN Bias, and SI were lower for ERA5 than ERA5+GAHM, while MN Bias 

was improved with ERA5+GAHM compared to ERA5. For both wind speed and WSE, 

differences in average error were slight. 

  RMSE MN Bias SI Absolute MN Bias 

WSE ERA5 only 0.23 m -0.06 0.35 0.34 

ERA5+GAHM 0.24 m -0.03 0.37 0.34 

Wind 

Speed 

ERA5 only 2.96 m/s 0.30 0.60 0.33 

ERA5+GAHM 3.33 m/s 0.28 0.70 0.32 

Table 4.3: Error metrics, averaged for all storms at all stations, for WSE and wind speeds. 

 Peak observed and simulated wind speed and WSE values for all storms at all stations 

were regressed against one another. The slope of the regression line for observed versus 

simulated wind speeds was 0.564 for simulations that used ERA5 and 0.414 for simulations that 

used ERA5+GAHM (Figure 4.1). However, the R2 was lower for ERA5 peak wind speed 

comparisons than for ERA5+GAHM simulations (0.299 vs. 0.360, respectively; Figure 4.1). 

Simulations run with ERA5+GAHM had a more even split of over- and underestimated wind 

speeds, skewed toward overestimation (58% vs. 42%, Figure 4.1). Simulations which used only 

ERA5 had substantially fewer overestimations than underestimations (30% vs. 70%, Figure 4.1).  

  

Figure 4.1: Observed and simulated peak wind speeds for simulations run using ERA5 only (left) 

and ERA5+GAHM (right). 
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For regressions of observed and simulated peak WSE, instances where observed and 

simulated values differed by ≥ 5 m were removed, as they indicated faulty observations. The 

slopes of the regression lines were effectively equal for simulations run using ERA5 only 

compared to those using ERA5+GAHM (0.546 vs. 0.545, Figure 4.2). The R2 was lower for 

simulations run with ERA5 only than for simulations which used ERA5+GAHM (0.483 vs. 

0.500, Figure 4.2). Similar to wind speed comparisons, ERA5+GAHM simulations had a more 

even split between over-and under-estimations (55% vs. 45%), skewed toward overestimations. 

Simulations which used ERA5 only had substantially more over- than underestimations, 33% vs. 

67%.  

c vv 

  

Figure 4.2: Observed and simulated peak WSE for simulations run using ERA5 only (left) and 

ERA5+GAHM (right). 
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Nearshore Hydrodynamics 

Water Surface Elevation  

WSE was compared between Post-Ivan, XBeach, and LiDAR DEMs on both the seaward 

(front) side of the islands, and on the back side of the islands for all storms (Figure 4.3b, Table 

4.4). Simulated values were not statistically significantly different between DEMs (p ≤ 0.10) for 

any storms on either the front or back sides. XBeach and LiDAR DEMs were most similar to one 

another, with the lowest RMSE (0.007 m) and SI (0.020).  

 RMSE (m) MN Bias SI 

PI v XB 0.018 0.002 0.050 

back 0.035 0.005 0.095 

PI v LiDAR 0.020 -0.004 0.058 

back 0.029 -0.016 0.081 

XB v LiDAR 0.007 -0.005 0.020 

back 0.023 -0.016 0.066 

Table 4.4: Statistics, averaged across all points, comparing WSE for all three DEMs. Minimum 

error values for the front side of the island are bolded, and those for the back side of the island 

are italicized. 

Figure 4.3: Numbered transects (top) and points on the front and back of the islands (bottom). 

b 

a 
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Differences between DEMs were larger on the back side of the island than the front. For 

the front side of the islands, differences between DEMs were greatest at points 1, 14, 15, 16, 18, 

and 23. For the back side of the islands, differences between DEM increased from east to west, 

with RMSE, MN Bias, and SI all peaking at the transects east of Katrina Cut, Dauphin Island. 

Hydrodynamic error between simulations run on Post-Ivan and XBeach DEMs and Post-Ivan 

and LiDAR DEMs did not increase over time.  

Averaged for all storms on all DEMs, simulated WSE was 6.8 cm higher behind the 

island than in front of the island. Post-Ivan DEMs predicted an average 8.2 cm difference, 

XBeach predicted 7.1 cm, and LiDAR 5.3 cm. Two-tailed paired t-tests (p ≤ 0.05) showed that 

simulated water level gradients for all DEMs were significantly different from one another (p = 

0). 

WSE time series and peak WSE were compared between DEMs at 40 points located at 

the mainland shoreline (Figure 3.7). WSE time series on the mainland were compared using 

RMSE, MN Bias, and SI. All comparisons showed low RMSE, MN Bias, and SI (Table 4.5), and 

based on averages of these measures across all storms at all points, there were no two DEMs that 

were clearly most similar to each other. On average, peak WSE was most similar between the 

XBeach and LiDAR DEMs, with an average difference of 0.9 cm. The Post-Ivan and XBeach 

had an average difference of 3.3 cm, and the Post-Ivan and LiDAR DEMs had an average 

difference of 2.4 cm. The maximum and minimum average differences between DEMs followed 

the same trend where Post-Ivan vs. XBeach > Post-Ivan vs. LiDAR > XBeach vs. LiDAR. 

Despite the small differences between peak WSE, two-way paired t-tests showed significant 

differences (p ≤ 0.05) between average peaks for all DEMs. Only for Hurricanes Katrina (2005) 
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and Alberto (2018) did one or more comparison showed no statistically significant difference in 

peak WSE. 

 RMSE (m) MN Bias SI 

PI v XBeach 0.025 0.002 0.061 

PI v LiDAR 0.017 -0.010 0.044 

XBeach v LiDAR 0.016 -0.008 0.045 

Table 4.5 -Statistics, averaged across all points, comparing WSE on the mainland for all three 

DEMs. Minimum error values are bolded. 

Significant Wave Height 

 Significant wave height was compared between Post-Ivan, XBeach, and LiDAR DEMs 

on both the seaward side of the islands, and the back side of the islands for all storms (Table 4.6). 

Simulated values were statistically significantly different between DEMs (p ≤ 0.05) for some 

storms at some points (Table A.1, A.2). 

 RMSE (m) MN Bias SI 

PI v XB 0.074 -0.016 0.066 

back 0.040 -0.024 0.062 

PI v LiDAR 0.037 0.003 0.036 

back 0.036 -0.027 0.061 

XB v LiDAR 0.084 0.023 0.080 

back 0.037 0.003 0.072 

Table 4.6: Statistics, averaged across all points, comparing significant wave heights for all three 

DEMs. Minimum error values for the front side of the island are bolded, and those for the back 

side of the island are italicized. 

For the front side of the islands, differences between DEMs were greatest at transects 1, 

14, 15, 16, 23, and 44. For the back side of the islands, differences between all DEMs were 

elevated at transects across Katrina Cut. Differences between DEMs were also high on West 

Petit Bois Island and Western Dauphin Island. Errors between Post-Ivan and XBeach and Post-

Ivan and LiDAR did not display any noticeable pattern of change over time. 

 On average, simulated significant wave height was 1.53 m higher in front of the 

island than behind the island. Post-Ivan DEMs predicted an average of 1.54 m different, XBeach 
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predicted 1.46 m, and LiDAR 1.58 m. Two-tailed paired t-tests (p ≤ 0.05) showed that simulated 

wave attenuation values for both Post-Ivan and LiDAR DEMs were significantly different from 

the XBeach DEM (p = 0.00 for both). Wave attenuation for simulations run on Post-Ivan and 

LiDAR DEMs were not significantly different from one another (p = 0.086). 

Significant wave height time series and peak significant wave heights were compared for 

each DEM at 40 points located at the mainland shoreline (Figure 3.7). Significant wave height 

time series on the mainland were compared using RMSE, MN Bias, and SI. All comparisons 

showed low RMSE (≤1 cm), MN Bias, and SI; based on these measures the Post-Ivan and 

XBeach DEMs performed most differently by a slight margin. On average, peak wave heights 

were most similar between the XBeach and LiDAR DEMs, with an average difference of 0.5 cm. 

The Post-Ivan and XBeach has an average difference of 1.4 cm, and the Post-Ivan and LiDAR 

DEMs had an average difference of 0.9 cm. In contrast to the small differences between peak 

WSE, two-way paired t-tests showed significant differences (p ≤ 0.05) between average peaks 

for all DEMs. Only for Hurricanes Dennis (2005), Katrina (2005), and Sally (2020) did one or 

more comparison showed no statistically significant difference in peak significant wave height. 
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LiDAR – Post-Ivan Peak Wave Height 

 
LiDAR – XBeach Peak Wave Height 

 
Post-Ivan – XBeach Peak Wave Height 

 
Figure 4.4: Differences between peak wave heights for the three DEMs; red indicates that the 

wave heights for the first DEM listed were greater than for the second, and vice-versa for blue. 

Mean & Peak Period 

Mean and peak period were compared between Post-Ivan, XBeach, and LiDAR DEMs on 

the seaward side of the islands for all storms. For both mean and peak period, Post-Ivan and 

LiDAR DEMs were the most similar when RMSE and SI were considered. Post-Ivan and 
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XBeach DEMs had the lowest absolute difference in MN Bias for both measures. XBeach and 

LiDAR DEMs were least similar for both mean and peak period. Simulated values were 

statistically significantly different between DEMs (p ≤ 0.05) for some storms at some points 

(Table A.3). 

 RMSE (s) MN Bias SI 

PI v XB (Mean) 0.155 0.003 0.021 

PI v LiDAR (Mean) 0.115 -0.003 0.016 

XB v LiDAR (Mean) 0.178 -0.006 0.025 

PI v XB (Peak) 0.233 0.000 0.031 

PI v LiDAR (Peak) 0.198 -0.003 0.029 

XB v LiDAR (Peak) 0.242 -0.003 0.035 

Table 4.7: Statistics, averaged across all points, comparing mean and peak period for all three 

DEMs. Minimum error values are bolded. 

Wave Direction 

Wave direction was compared between Post-Ivan, XBeach, and LiDAR DEMs on the 

seaward side of the islands for all storms. Simulated wave direction was most similar for 

simulations run on the Post-Ivan and LiDAR DEMs for all error metrics. Simulated values were 

statistically significantly different between DEMs (p ≤ 0.05) for some storms at some points 

(Table A.4). 

 RMSE (degrees) MN Bias SI 

PI v XB  6.218 0.011 0.052 

PI v LiDAR 5.114 0.001 0.043 

XB v LiDAR  7.579 -0.005 0.056 

Table 4.8: Statistics, averaged across all points, comparing wave direction for all three DEMs. 

Minimum error values are bolded. 

High Water Marks 

Observed and simulated HWM were regressed for all storms with available data for each 

DEM. The only storms with observed data that were simulated using all three DEMs were 

Hurricanes Nate (2017) and Gordon (2018) (Figure 4.5). Simulations run on the XBeach-updated 
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DEM slightly outperforms the others, though differences between the slope of the regression line 

and the R2 were minimal.  

Five storms were run on both the XBeach and Post-Ivan DEMs and had HWM data 

available. When all storms were regressed together, the R2 and slope were identical. One more 

point was wetted for the XBeach DEM than the Post-Ivan DEM. No regressions showed a 

substantial difference between XBeach and Post-Ivan DEMs when compared to observed data. 

   

Figure 4.5: Observed vs. simulated HWM within 200 km of the Dauphin Island NOAA station for 

the Post-Ivan, XBeach, and LiDAR DEMs. 

  
Figure 4.6: Observed vs. simulated HWM within 200 km of the Dauphin Island NOAA stations 

for the Post-Ivan and XBeach DEMs. 
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Figure 4.7: Peak WSE comparisons for the 65 points on the barrier islands. 

 

Storm 
Post-Ivan DEM XBeach DEM LiDAR DEM 

Slope R2 n Slope R2 n Slope R2 n 

Cindy 1.65 0.76 7 1.65 0.76 7 N/A N/A N/A 

Dennis 0.48 0.19 35 0.48 0.19 35 N/A N/A N/A 

Katrina 0.86 0.87 645 0.86 0.87 645 N/A N/A N/A 

Nate 0.86 0.72 28 0.87 0.75 28 0.87 0.73 28 

Gordon 0.44 0.23 7 0.45 0.23 8 0.44 0.23 7 

Nate + Gordon 0.805 0.806 35 0.815 0.825 36 0.810 0.809 35 

All 0.888 0.900 722 0.886 0.900 723 N/A N/A N/A 

Table 4.9: Observed versus simulated correlation statistics for each DEM. 

Maximum water levels at 65 points on the barrier islands (Figure 3.8) and 40 points on 

the mainland shoreline (Figure 3.7) were selected for comparison between DEMs. Simulated 

maximum WSE was compared at both the mainland and island points together for all storms 

post-2005. For all storms at all points, LiDAR and Post-Ivan performed most similarly (Table 

4.10). However, LiDAR and XBeach perform most similarly when storms were considered 
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individually (Table 4.10). When only points on the mainland were included, all storms perform 

highly similarly (R2 = 0.998-0.999, slope = 1.010-1.033; Figure 4.7 & Table 4.10). When only 

points on the three islands were included, LiDAR and XBeach perform the most similarly (R2 = 

0.960, slope = 1.000), though all correlations were high (Table 4.10). Hurricanes Cindy, Dennis, 

and Katrina (2005) were only simulated using Post-Ivan and XBeach DEMs; R2 and slope of the 

regression line for these storms are presented in Table 4.11. 
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 Storm 
Post-Ivan vs. XBeach Post-Ivan vs. LiDAR LiDAR vs. XBeach 

Slope R2 Slope R2 Slope R2 
Ida 1.131 0.972 1.073 0.981 1.057 0.997 
Nate 1.045 0.994 1.023 0.998 1.022 0.998 
Alberto 0.952 0.954 0.791 0.636 0.867 0.778 
Gordon 1.102 0.993 1.088 0.998 1.013 0.995 
Cristobal 0.961 0.998 0.984 0.999 0.976 0.999 
Sally 0.918 0.997 0.932 0.998 0.986 0.999 
All 1.033 0.998 1.010 0.999 1.023 0.999 
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Storm 
Post-Ivan vs. XBeach Post-Ivan vs. LiDAR LiDAR vs. XBeach 

Slope R2 Slope R2 Slope R2 
Ida 0.756 0.676 0.736 0.523 0.961 0.842 
Nate 0.980 0.798 0.973 0.842 0.957 0.824 
Alberto 0.396 0.219 0.864 0.726 0.418 0.278 
Gordon 0.565 0.744 0.599 0.857 0.815 0.771 
Cristobal 0.541 0.596 0.775 0.841 0.652 0.580 
Sally 0.497 0.552 0.675 0.738 0.646 0.572 
All 0.960 0.951 0.958 0.959 1.000 0.960 
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Storm 
Post-Ivan vs. XBeach Post-Ivan vs. LiDAR LiDAR vs. XBeach 

Slope R2 Slope R2 Slope R2 
Ida 0.916 0.801 0.906 0.742 1.007 0.916 
Nate 1.086 0.976 1.048 0.985 1.026 0.979 
Alberto 0.623 0.665 0.919 0.858 0.627 0.702 
Gordon 1.093 0.942 1.033 0.933 1.010 0.965 
Cristobal 0.822 0.822 0.956 0.939 0.845 0.831 
Sally 0.773 0.878 0.860 0.945 0.886 0.894 
All 1.000 0.996 0.997 0.998 1.017 0.988 

Table 4.10: Slope and R2 for points only on the mainland (top), only on the three islands 

(middle), and on all points (bottom) when compared between DEMs. Values closest to 1.000 are 

bolded. 
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Storm 

Post-Ivan vs. XBeach 
Slope R2 

Mainland 
Only 

Cindy 0.999 0.999 
Dennis 0.975 0.998 
Katrina 0.984 0.999 

Island Only 
Cindy 0.827 0.728 
Dennis 0.874 0.809 
Katrina 0.947 0.971 

Mainland 
and Island 

Cindy 1.028 0.989 
Dennis 1.005 0.972 
Katrina 0.981 0.994 

Table 4.11: Statistics for 2005 storms for points only on the mainland (top), only on the three 

islands (middle), and on all points (bottom). Values closest to 1.000 for each storm are bolded. 

Morphology- Island Area & Volume 

The area and volume of West Petit Bois + Petit Bois Islands, Dauphin Island, and all 

three islands above 0 m NAVD88 were computed for each DEM. The change over time for 

simulated and LiDAR DEMs were studied separately and compared to the area and volume of 

the original Post-Ivan DEM (Figure 4.8). On Dauphin Island, island area was well-predicted until 

some time between Hurricane Ida (2009) and Nate (2017), when simulated area begins to exceed 

observed island area. The 2020 LiDAR dataset lacks data for northern Dauphin Island, leading to 

underestimations in area and volume for this time step. Simulated DEMs consistently 

underestimate island volume before 2018. 

Figure 4.8: Simulated and observed volume of Dauphin Island, including beach nourishment. 
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For Petit Bois Island, simulated island area increased over time, while observed area 

decreased over time. Simulated area begins to diverge from the observed early in the study 

period, just after Hurricane Katrina (2005). Observed volume exceeds the simulated volume until 

some time between Hurricanes Ida (2019) and Nate (2017). After Hurricane Nate (2017), 

observed island volume decreased, while simulated volume increased. Due to the overestimation 

of area and underestimation of volume, simulated average elevation was about 0.2 m greater than 

observed (Figure 4.9) on both West Petit Bois/Petit Bois and Dauphin Islands. 

For total area of the three islands, area was fairly accurately predicted until 2010. After 

2010, simulated DEMs begin to overestimate island area. The error increased over time after 

2010. The simulated DEMs underestimate island volume until 2018. After 2018, the simulated 

island volume begins to exceed the observed. After Hurricane Arlene (2005), island volume 

decreased drastically (by ~8.9e5 m3), while total area increased by relatively little (2.0e5 m2). 

Similar trends were present on both Petit Bois and Dauphin Islands; in all cases the final 

simulated area and volume both exceeded the observed value. 

  

Figure 4.9: Average elevation of Petit Bois & West Petit Bois Islands (left) and Dauphin Island 

(right), without adjustment for anthropogenic beach nourishment/restoration activity. 
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Morphology- Island Transects 

Peak dune elevation, peak dune height location, island cross-sections (dune profiles), 

locations of the 0-meter intercept, island width, and island midpoint were calculated at each 

transect (Figure 4.10). Observations were compared to the simulated values at the nearest time 

step. 

 

Observed DEM Simulated DEM Time Difference 

2008 CoNED 

Post-Katrina (2009) 

16 months 

January 2010 LiDAR 2 months 

May 2010 LiDAR 6 months 

June 2010 LiDAR 7 moths 

2016 LiDAR Post-Ida (2017) 15 months 

2018 LiDAR Post-Alberto (2018) 1 month 

2019 LiDAR Post-Gordon (2020) 7 months 

2020 LiDAR 
Post-Cristobal (2020) < 1 month 

Post-Sally (2020) 1 month 

Table 4.12: Observed DEMs and the corresponding simulated DEM at the nearest time step 

 

Figure 4.10: Island transect measurements. 
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Post-Katrina (XB) vs. July 2008 LiDAR 

The Post-Katrina XBeach DEM represents topobathy at October 2009, just prior to 

Hurricane Ida. All 39 island transects were studied. Low RMSE and MN Bias (1.21 m and 0.10, 

respectively) indicate good agreement of simulated and observed peak dune heights (). The peak 

dune height was simulated to be, on average, 63.6 m away from the one observed by LiDAR. 

Transect 1 has two dunes of similar height (Figure 4.12); the observed and simulated DEMs 

showed different dunes being the maximum. Therefore, the difference in location between 

maximum dunes was 456 m. When the peak dune location was adjusted for the same dune to be 

selected, mean absolute error was reduced to 56.3 m.  

hen all transects were considered, RMSE in elevation across the entire dune profile is, on 

average, 3.65 m. When only aboveground points were considered, this value decreased to 0.7 m. 

On average, the aboveground area beneath the transects were underestimated by 30.0 m2. 

Underestimation of the area beneath transect 2 was greatest, with 752.7 m2 difference between 

simulated and observed area. 

Figure 4.11: Peak dune heights at all 39 transects. 



 

74 

On average, island width was accurately predicted (Figure 4.13), with an average 

overestimation of 30.9 m across all transects, and average overestimations of 80.5 m and 19.3 m 

on Petit Bois (excluding West Petit Bois) and Dauphin Islands, respectively. Transects 2, 13, and 

28 had the largest error in transect width (Figure 4.14), with transect 2 underestimating width by 

229 m, and transects 13 and 28 overestimating width by 367 and 261 m, respectively. Island 

midpoint was also poorly simulated at transect 13, with an error of 211.5 m to the south. The 

average transect midpoint across all transects was predicted to be 26.5 m further south than 

LiDAR data placed it. On Dauphin Island, the average simulated transect midpoint was 35.0 m 

south of observed data, and on Petit Bois Island (excluding West Petit Bois Island), the average 

error was 32.9 m to the south. Shoreline location was well-estimated by the morphological 

simulations; simulations placed the southern shoreline, on average, 44.1 m further south than 

LiDAR observations, and the northern shoreline an average of 8.9 m to the south. Only transects 

Figure 4.12: Dune profile at transect 1 for Post-Katrina and 2008 LiDAR DEMs. 



 

75 

2 and 13 had errors in shoreline location >200 m (Figure 4.14), with the southern shorelines 

being placed 223 m too far north for transect 2, and 395 m to the south at transect 13. 

  

  
Figure 4.14: Dune profiles for transects 2(top) and 13 (bottom) across the entire profile (left) 

and for only aboveground points (right). 

Figure 4.13: 0-meter intercepts for transects 15-39. 
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Post-Katrina (XB) vs. January 2010 LiDAR 

21 island transects, all located on Dauphin Island, were studied. The simulated Post-

Katrina DEM displays little bias (MN Bias = -0.17) in peak dune height predictions, with an 

RMSE of 1.13 m (Figure 4.15). Overestimation of peak elevation was most obvious at transect 

32-37, on eastern Dauphin Island (Figure 4.3). Average error across the entire island cross 

section is presented in Table 4.13. The subaerial area beneath the island transects were, on 

average, underestimated by 41.0 m2. The only locations where area was overestimated was at 

transects 18, 25, and 26 on western Dauphin Island (Figure 4.3Error! Reference source not 

found.). Absolute error in peak elevation location was 57.9 m. Error was greatest for transects 18 

and 32, which fail to resolve the highest observed dune altogether. 

Location Transect # 
All Points >0 m NAVD88 only 

RMSE MN Bias SI RMSE MN Bias SI 

All Transects 15-39 3.37 -2.92 1.64 0.62 0.35 0.68 

Table 4.13: Error across the entire island transect, averaged for all transects. 

Figure 4.15: Peak elevations for transects 15-39. 
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The Post-Katrina XBeach DEM and the January, 2010 LiDAR data showed good 

agreement when island width was considered (Figure 4.16), with an average underestimation of 

45.3 m. Transect 32 showed the greatest variation, with the Post-Katrina DEM underestimating 

width by 267 meters. Average midpoint location was simulated to be, on average, 43.7 m further 

south than LiDAR data placed it.  

Post-Katrina (XB) vs. May 2010 LiDAR 

21 island transects, all located on Dauphin Island, were studied. There was no substantial 

over- or under-estimation of peak elevation, indicated by the low MN Bias of 0.24 (Figure 4.17). 

The Post-Katrina DEM overestimated peak dune heights at transects 19-37. Aboveground area 

beneath the island transects were accurately simulated, with an average underestimation of 36.0 

m2. The peak dune location was poorly simulated at transects 18 and 32, where peak elevation 

was located 263 m north and 180 m south of where LiDAR data placed it, respectively. Average 

absolute error in peak dune location was 53.6 m. Island width was fairly accurately simulated at 

all transects (Figure 4.18) except 27, 32, and 33, all underestimating width by >200 m. On 

Figure 4.16: 0 m intercepts for Post-Katrina and January, 2010 LiDAR DEMs. 
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average, island width was underestimated by 35.9 m. Simulations placed the midpoints of 

transects, on average, 90.5 m further south than observed by LiDAR.  

Post-Katrina (XB) vs. June 2010 LiDAR 

14 island transects located on Petit Bois (12) and West Petit Bois (2) islands were 

compared. Peak dune heights were underestimated at most transects (Figure 4.19). RMSE is 

greater when entire transects were considered versus when only aboveground points were 

Figure 4.18: Maximum elevations for transects 15-39. 

Figure 4.17: Observed and simulated 0-meter intercepts. 
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considered (RMSE = 2.83 vs 0.84 m, respectively). For aboveground points only, error was 

greater on West Petit Bois Island than on Petit Bois Island, though when all points were 

considered, error was greater on Petit Bois Island (Table 4.14). The area beneath the transects 

were consistently underestimated, with an average underestimation of 100.6 m2; area was 

overestimated at transect 5 only.  

Location Transect # 
All Points >0 m NAVD88 only 

RMSE MN Bias SI RMSE MN Bias SI 

All Transects 1-14 2.83 -1.87 2.01 0.834 0.50 0.67 

West Petit Bois 1-2 2.29 -0.75 2.08 1.72 1.42 1.43 

Petit Bois 3-14 2.93 -2.06 2.00 0.69 0.35 0.54 

Table 4.14: Average error across the entire dune profile for Post-Katrina (October 2009) 

morphology versus June 2010 LiDAR observations.  

The location of the peak dune was simulated to be, on average, 4.9 m further back on the 

transect (further north) than LiDAR data placed it, though the average absolute difference was 

95.9 m. Error was greatest at transects 1 and 12; both of these transects had two peaks, and 

different peaks were the greatest for observed and simulated DEMs. When transects 1 and 12 

were adjusted so the same dune was selected as the peak for both simulated and observed DEMs, 

average absolute error was reduced to 57.5 m. 

Figure 4.19: Maximum elevations along transects 1-14. 
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The 0-meter intercept location was well-predicted on Petit Bois Island (transects 3-14), 

especially on the north side of the island (Figure 4.20). On average, island width was 

overestimated by 36.8 meters on Petit Bois Island, and underestimated by an average of 145 

meters on West Petit Bois Island. Underestimates were very different between the two transects 

on West Petit Bois Island, with simulations underestimating width by 19 m at transect 1, and by 

54 m at transect 2. On average, the midpoint of Petit Bois Island was simulated to be 17.29 

meters to the south of where the LiDAR data placed it. For West Petit Bois Island, midpoint 

location was simulated to be an average of 81.8 meters further north than LiDAR data placed it; 

the error for transect 1 was much larger than that for transect 2 (148.5 versus 15 meters 

difference in midpoint location).  

Post-Ida (XB) vs. 2016 LiDAR 

The Post-Ida XBeach DEM represents topobathy at September 2017, just before 

Hurricane Nate (2017). 39 island transects across West Petit Bois (2), Petit Bois (14), and 

Dauphin Island (23) were compared. Simulated peak dune heights were generally accurate, with 

Figure 4.20: Observed and simulated 0-meter intercepts 
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RMSE = 1.21 m and a low MN Bias of 0.15 (Figure 4.21), averaged across all transects. Peak 

elevation location was well-predicted, with a majority of transects (25/39) predicting the 

maximum elevation within 30 m of observed data. Error was greatest at transects 1, 14, and 32. 

Average absolute error in peak dune location is 52.1 m. Peak dune height estimates were most 

accurate at and around Katrina Cut (transects 29-32).  

When the entire dune profile was considered, average RMSE across all transects was 

3.64 m; when only aboveground points were included, RMSE decreased to 0.80 m. On average, 

the area below the transect but above 0 m NAVD88 was underestimated by 13.6 m2. This was 

caused by a fairly even split of over- and underestimated transects (18 vs. 21, respectively); 

absolute error was 105.0 m2. 

 0-meter intercepts (Figure 4.22), island width, and island midpoints were taken at all 

transects. For transect 15, XBeach predicted no aboveground data. On Petit Bois Island, island 

width was overestimated by XBeach due to placement of the southern shoreline an average of 

115.4 m further south than LiDAR data placed the 0 m contour. XBeach also placed the northern 

shoreline an average of 18.2 meters further north than LiDAR data, increasing island width by 

Figure 4.21: Observed and simulated peak dune heights for transect 1-39. 
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133.6 m, on average. Simulations placed the midpoints of the Petit Bois Island transects an 

average of 48.6 m further south than observed by LiDAR.  

On Dauphin Island, island width was also overestimated by XBeach, especially at the 

transects just to the east and west of Katrina Cut (transects 28 and 31, by 318 and 197 meters, 

respectively). The width of Dauphin Island was overestimated by 77.6 m, on average, across 

transects 16-39. These overestimations were largely due to the southern shoreline being 

predicted, on average, 89.0 meters further south than LiDAR placed it. The northern shoreline 

was also predicted to be 11.5 meters further south than LiDAR data placed it. The location of 

island midpoints was therefore predicted to be 50.3 m further south than observed by LiDAR. 

Post-Alberto (XB) vs. 2018 LiDAR  

The Post-Alberto DEM represents topobathy for August 2018. All 39 island transects 

were compared. Simulated peak dune heights showed no evidence of consistent over- or under-

estimation, evidenced by a low MN Bias of 0.09 (Figure 4.23). Average absolute error in peak 

dune location was 56.64 m. Average RMSE across all transects was fairly low (0.74 m) when 

only aboveground (>0 m NAVD88) points were considered. This increased to 3.68 m when the 

Figure 4.22: 0-meter intercepts at all 39 transects. 
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entire transect was considered, indicating relatively poor model representation of nearshore 

bathymetry compared to subaerial topography (e.g. Figure 4.24). The simulated Post-Alberto 

DEM was the first that overestimated subaerial area beneath the island transects when compared 

to the 2018 LiDAR data, simulations overestimate area by 65.3 m2, on average.  

  

Figure 4.24: Simulated versus observed beach profiles for aboveground only (left) and all (right) 

locations at Transect 23 on western Dauphin Island. 

The simulated DEM predicts a wider island footprint on average across all transects 

(123.3 m wider than LiDAR data). On average, Petit Bois Island was predicted to be 182.08 m 

wider than LiDAR data, and Dauphin Island was overestimated by 112.96 meters, on average. 

Island widths were most drastically overestimated at transects 12 and 13 on eastern Petit Bois 

Figure 4.23: Simulated versus observed maximum dune heights along transects 1-39. 
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Island by 307 m and 479 m, respectively, and at transect 28 on the western side of Katrina Cut 

by 326 m. The footprints of Petit Bois and Dauphin Islands were, on average, predicted to be 

70.63 and 62.7 m further south than observed. This shift was primarily due to model error in 

predicting the southern shoreline of the islands; morphological models placed the shoreline 161.7 

and 119.2 meters too far to the south on Petit Bois and Dauphin Islands, respectively. 

Post-Gordon (XB) vs. 2019 LiDAR 

 The Post-Gordon DEM represents topobathy for May 2020. 2019 LiDAR data was only 

available for West Petit Bois and Petit Bois Islands. 14 transects were compared, with 2 located 

on West Petit Bois and 12 on Petit Bois islands. Peak dune heights were underestimated (RMSE 

= 1.62 m), at all transects except for 6 and 7, both located on central Petit Bois Island (Figure 

4.25). Peak dune locations had an average absolute error of 77.71 m. Across the entire dune 

profile, when the elevations of only points above 0 m NAVD88 were considered, average RMSE 

= 0.92 m. When all points were considered, RMSE increased to 3.09 m. The average area 

beneath the transect was, on average, overestimated by 19.1 m2, though the absolute error was 

154.8 m2. Nine of the 14 transects had an error >100 m2. 

Figure 4.25: Peak dune heights along transects 1-14. 
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 The Post-Gordon XBeach DEM placed the midpoint of West Petit Bois Island an 

average of 85.3 meters too far north, largely due to a northern shift in both the southern and 

northern 0 m intercepts on transect 1 by 199 and 139 meters, respectively. Morphological models 

overpredicted the width of Petit Bois Island by an average of 169.5 meters. The overprediction 

was especially pronounced on the east side of the island at transects 12 and 13 (312 and 443 

meters overprediction, respectively). Transect 14 had a much smaller overestimation of 106 

meters. The simulated transect midpoints were located further south than the LiDAR data placed 

them by an average of 60.9 meters. The change in island midpoint was greatest at transect 13, 

primarily due to placement of the southern shoreline 479 meters further south than observed by 

LiDAR. 

Post-Cristobal (XB) vs. 2020 LiDAR 

The Post-Cristobal DEM represents simulated topobathy as of August 2020. All 39 

transects were compared. Peak dune heights displayed low MN Bias of 0.13 and an RMSE of 

1.18 m (Figure 4.26). Average absolute error in peak dune location was 63.49 m before transect 

Figure 4.26: Simulated versus observed maximum dune heights at transects 1-39. 
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1 was corrected so that the same dune was flagged as the peak elevation, and 56.8 m after the 

corrections were applied. Subaerial area beneath the transect was, on average, overestimated by 

49.8 m2; absolute error was 117.0 m2. When only aboveground points (elevation > 0 m, 

NAVD88) were considered, RMSE across the entire dune profile was, on average for all 

transects, 0.83 m. When all points were included, average RMSE increased to 1.99 m. 

The location of West Petit Bois Island was simulated to be, on average, 77.8 m further to 

the north than LiDAR data placed it, based on the location of transect midpoints. This was 

mostly due to a 225 m error for the southern shoreline at transect 1 (Figure 4.27). The simulated 

footprint of Petit Bois Island was an average of 66.3 meters further south than the footprint 

according to the LiDAR data. The southern shore was simulated to be an average of 157.7 meters 

further south than the LiDAR footprint, and the north shore 25.1 meters further north, for an 

average increase in island width by 182.8 meters. The island width at transects 12 and 13 were 

the most overestimated (Figure 4.27), by 327 and 461, respectively.  

Figure 4.27: Northern- and southern-most 0-meter intercepts on transects 1-39. Transect 15 was 

fully submerged and therefore has no 0 m intercepts. 
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Across Dauphin Island, morphological models overestimate island width (Figure 4.27) by 

an average of 109.0 meters. At transect 16, island width was predicted to be 336 meters, while 

LiDAR data showed an island width of 45 m, a 291-meter difference. This was primarily caused 

by the southern shoreline being placed 264 m further south than the LiDAR data located it. On 

average, the simulated transect midpoints were located 52.6 m further south than the LiDAR data 

suggests. This error was increased by overly southward predictions at transect 16 (118.5 meter 

difference in midpoint location) and transects 27, 32, and 33, immediately to the west and east, 

respectively, of Katrina Cut (188.5, 148, and 173 meter difference in midpoint location). 

Post-Sally (XB) vs. 2020 LiDAR 

For the Post-Sally DEM, only storm-driven morphological change was simulated; dune 

recovery simulations were not completed. The Post-Sally DEM represents elevations for 

October, 2020. All 39 transects were compared. The location of peak elevation had a mean 

absolute error of 61.54 m. No corrections were necessary for transect 1. Simulated peak dune 

heights displayed low MN Bias (0.13) with an RMSE = 1.19 m (Figure 4.28). Across the entire 

Figure 4.28: Observed and simulated peak dune heights for transects 1-39. 
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dune profile, average RMSE was low when all transects were considered (1.62 m) and when 

only elevations above 0 m NAVD88 were considered (0.82 m) (Figure 4.29). The area beneath 

the transect but above 0 m NAVD88 was overestimated, on average, by 38.1 m2.  

Transects 1, 12, and 13 display the largest shifts in the location of the southern shoreline, 

with simulations placing the 0 m intercept 355 meters to the north, 258 m to the south, and 466 

meters to the south, respectively. The error of the northern shorelines of West Petit Bois and Petit 

Bois Islands was, on average across all transects, 69 and 25.3 meters to the north, respectively. 

The southern shoreline of Petit Bois Island was predicted to be 151.2 m further south than 

observed, contributing to an average widening of the island by 176.5 meters. The simulated 

transect midpoints were located 63 .0 meters, on average, further south than the LiDAR data 

placed them (Figure 4.30). 

Figure 4.29: Dune profile across the entire island transect (left) and for the aboveground points 

only (right) at transect 10 on central Petit Bois Island. 

On average across Dauphin Island transects, the southern shoreline was simulated to be 

105.9 m too far to the south. Transects 16, 27, 32, and 33 had errors >200 m in southern 

shoreline location. The simulated location of the northern shoreline was highly accurate, on 

average being located 3.1 m further south than LiDAR data placed it. Only transect 32 had an 

error >200 m. Due to these southward shoreline errors, the average shift in island midpoint 
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across all transects was 54.5 m to the south. Transect 32 had the greatest error in midpoint 

location, being 205.5 m further south than observed by LiDAR. On average, island width was 

overestimated by 102.8 m (Figure 4.30). 

  

Figure 4.30: 0-meter intercept locations for the simulated Post-Sally DEM at transects 1-39. 
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CHAPTER 5 

DISCUSSION  

Hydrodynamics 

Overall, WSE and waves were similar for all simulations run on each of the three DEMs, 

especially when compared to observed data. Offshore RMSE ranged from, on average, 19.2 cm 

for LiDAR DEMs to 20.4 cm for XBeach-derived DEMs across all storms and NOAA stations. 

Error for Post-Ivan DEMs was, on average, 20.2 cm (Table 4.2). These errors are consistent with 

those from other studies (Dietrich, Westerink, et al., 2011; Kerr et al., 2013) and indicate fairly 

good agreement between modeled and observed values. The 1 cm differences in RMSE for the 

WSE of simulations run on the three different DEMs represent a small and insignificant 

difference relative to the ~20 cm RMSE (Table 4.2). It is important to note that the quality of 

observed data is imperfect, especially during extreme conditions like TCs, and may contribute to 

some of these errors. 

Differences in RMSE for WSE between DEMs was quantified. For the offshore NOAA 

Stations, differences ranged from, on average for all storms, 3.0 cm at NOAA Station #8745557 

at Gulfport, MS, to 0.0 cm at Dog River Bridge, AL, about 10 miles south of Mobile, AL, on the 

west side of Mobile Bay. At Eastern Dauphin Island, AL, RMSE ranged from 13.9 cm to 15.0 

cm (1.1 cm difference) (Table 4.2). This shows minimal influence of changes to the DEM on the 

quality of observed data between 0 to 100 km away from the nearest changes. 

Observed HWM data were regressed against simulated peak WSE obtained from models 

run on the different DEMs. Minimal differences in model agreement were present when the 
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regressions were compared. This is likely due to a combination of the large study area (200 km 

radius from Dauphin Island) needed to gather sufficient data to run regressions (e.g. Figure 5.1), 

and the lack of storms with well-documented data. There was also little to no data in the 

immediate study area (~10-15 points on Dauphin Island and 0 points on Petit Bois Island). Since 

hydrodynamic differences were most prominent in locations proximate to the morphological 

differences, the lack of nearby observations reduced the relevance of this metric. Future studies 

should improve water level data collection, especially on barrier islands and in uninhabited 

coastal areas. 

WSE and significant wave height time series and peak values were compared between 

the three DEMs at nearshore points, points on the islands, and on the mainland (Figure 5.2). At 

all locations, XBeach and LiDAR DEMs performed most similarly for both significant wave 

height and WSE measurements (Figure 5.3). This indicates that simulating DEM updates 

improve hydrodynamic hindcasts compared to using the Post-Ivan (2004) DEM (Seymour, 2020) 

for the entire duration. 

Figure 5.1: Map of all observed HWM data points within 200 km of Dauphin Island. Inlay 

shows points most proximate to the study area. 
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a. 

b. 

 

c. 

 
 

Figure 5.2: a. Nearshore points (see Figure 3.6), b. On-island points (see Figure 3.7), and c. 

Mainland points (see Figure 3.8). 
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Figure 5.3: Peak WSE and significant wave height difference plots for Hurricane Ida (2009). 

Reds indicate LiDAR simulating greater values than XBeach (or Post-Ivan), and vice-versa for 

blue. The middle and bottom figures show zoomed-in images of the barrier islands for LiDAR vs. 

XBeach and LiDAR vs. Post-Ivan, respectively. 

 Differences between DEMs were most pronounced at dynamic locations with high 

morphological change, such as near Katrina Cut, between Petit Bois and Dauphin Islands, and 

near southeast Dauphin Island (Figure 5.3). For WSE, even the maximum differences at 

nearshore points (Figure 5.2a) were <12 cm, with an 11.7 cm difference at the southeasternmost 

point studied on Petit Bois Island during Hurricane Ida. On the back side of the islands, errors 

were even less. This indicates minimal impact of morphological changes to simulated WSE for 

points at -5 m depth (NAVD88). On the mainland shoreline (near 0 m NAVD88, Figure 5.2c), 

LiDAR vs. XBeach - WSE LiDAR vs. XBeach – Sig. Wave Height Difference (m) 
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the only instances of differences >10 cm were during Hurricane Nate when the Post-Ivan and 

XBeach DEMs were compared. The highest errors all occurred north of Petit Bois Island. 

Average differences between DEMs were very low (<6.5 cm), suggesting that variations in WSE 

caused by minor changes to the barrier islands are highly localized, and likely depend on a 

number of factors such as storm track and intensity. 

 Significant wave heights followed a similar spatial pattern as differences in WSE 

between DEMs, but with greater differences in magnitude (Figure 5.3). Average RMSE for 

significant wave height time-series compared between DEMs ranged from 3.7-8.4 cm. However, 

when only peak wave height values were considered (as in Figure 5.3), differences on the front 

side of the island reached up to 91.3 cm for Hurricane Ida at point 14, near southeastern Petit 

Bois Island (Figure 5.4). This is a very morphologically dynamic area that is difficult to 

accurately model, especially for the storm in the study immediately following Hurricane Katrina, 

explaining the timing and location of the discrepancy. However, average peak differences 

between DEMs on the front side of the islands averaged around 0.427 m, showing that a 

difference this extreme was an anomaly.  

The back side of the island experienced smaller average and peak differences in 

significant wave height, likely because of the substantial wave attenuation that the barrier islands 

offered (Figure 5.5). The greatest difference on the back side of the island was 65.7 cm, during 

Hurricane Gordon (2018) between Petit Bois and West Petit Bois Islands. Again, this is a 

dynamic and relatively poorly simulated area, morphologically, explaining the location of the 

discrepancy. Average peak differences were 22.6 cm, substantially less than the average 

difference on the front side of the island, and the peak difference for the back side of the islands. 
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Figure 5.4: Time-series plot of significant wave height for Hurricane Ida at the station with the 

greatest difference between any DEMs for any storm. 

 

Figure 5.5: Significant wave height map for Hurricane Ida (2009), showing the decrease in 

significant wave height on the bay side of the islands. 

When peak WSE was compared at mainland, on-island, and the mainland and on-island 

points together, agreement is very high (R2 > 0.95) between all DEMs when all storms were 

plotted together. When individual storms were considered, all peak WSE regressions had greater 

correlation coefficients on the mainland than on the islands (Table 4.10, Table 4.11). This 
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indicates a relationship between proximity to the morphological changes and the hydrodynamic 

impacts of these morphological changes.  

Morphology 

Simulated DEMs were consistently overly flattened, with lower peak dune heights and 

greater areas than observed by LiDAR. The overestimation of island area coupled with the 

underestimation of subaerial volume implies flattening of the island and offshore transport. 

Further studies should examine the flow path and ultimate location of the sediment that moves 

from the subaerial portion of the island.  

Model performance tended to be best at undeveloped transects far from the open Gulf, 

such as central Petit Bois Island and parts of Western Petit Bois Island. Peak dune heights and 

locations may be most accurate on undeveloped transects because incorporating anthropogenic 

impacts into the morphological models is highly challenging. Additionally, the highest point 

along the transect is not necessarily the peak dune height; it may represent a road or some natural 

high-elevation area behind the dune. In developed areas, it is far more likely that the dune profile 

is tampered with by development or dune nourishment initiatives. These factors cannot be 

accurately accounted for in models. To remedy this, visual analysis of each transect is necessary, 

rather than automated extraction of the highest point.  
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Figure 5.6: Aboveground dune profiles at transects 29 (left) and 31 (right) for 2016 vs. Post-Ida 

DEM (top), 2018 vs. Post-Alberto DEM (middle), and 2020 vs. Post-Sally DEM (bottom). 

A shortcoming of numerical morphological models is the inability to include 

anthropogenic impacts to the island, including beach and dune nourishment efforts, infrastructure 

development, and post-storm recovery (i.e., clearing roads). For hindcasts, this can be remedied 

by ending the simulation prior to the beginning of some anthropogenic-driven change to 
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morphology, adding the impacts of the human activity, then continuing the simulation. This was 

completed for this project during the installation of a rock wall at Katrina Cut in 2011; the 

EDGR model was paused, the DEM was edited to include the rock wall, then EDGR was 

resumed. This resulted in fairly accurate peak dune heights (e.g. Figure 4.21, Figure 4.26, & 

Figure 4.28), and peak dune location (Figure 5.6), though the shape of the dune profile, and the 

subaerial width of the island were poorly estimated (Figure 5.6). Though this method improves 

dune recovery simulations by including anthropogenic impacts, storm-driven morphological 

change and shoreline change during quiescent periods did not include any anthropogenic 

impacts. This hindcast only included the rock wall construction, and smaller human-driven 

morphological impacts were ignored. Including small-scale and future anthropogenic 

morphological impacts is more challenging and should be addressed in future projects. 

Change in Error Over Time 

It was hypothesized that the LiDAR and simulated (XBeach) DEMs would diverge from 

the Post-Ivan DEM, and each other, over time. In theory, errors in the morphological simulations 

would compound over time, reducing the accuracy of the simulated DEM when compared to the 

LiDAR data as the study period progresses. Because of the expected increase in morphological 

differences between 2005 and 2020, simulated WSE and significant wave heights were also 

expected to diverge.  

For nearshore points (Figure 5.2a), error in WSE between Post-Ivan and XBeach and 

Post-Ivan and LiDAR DEMs did not increase over time. Rather, error is noticeably higher for 

Hurricane Ida. This is likely due to a combination of its position as next to be simulated after 

Hurricane Katrina, and four years apart chronologically from Katrina. During Hurricane Katrina, 

major morphological change occurred, and errors likely compounded as the empirical models 



 

99 

were run during the quiescent period. However, comparisons between XBeach and LiDAR 

yielded consistent WSE error over time, including for Hurricane Ida (2009). This suggests that 

observed and simulated DEMs have a consistent level of error that does not change for multi-

year time scales. 

a 

b 

Figure 5.7: Simulated and observed 0 m contour change over time at a. Katrina Cut and b. 

Eastern Petit Bois Island (not to scale). 

 Simulated and observed 0 m contours were compared. Simulations predicted a southern 

shift in the southern shoreline over time and minimal change in the northern shoreline. However, 
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observational data showed a northward migration of the southern shoreline over time, and slight 

movement of the northern shoreline (Figure 5.7, Figure 5.8). Therefore, the error in island width 

at many locations increased over time. 

The simulated area and volume diverge farther from the observations as time progresses. 

This is partially caused by incomplete LiDAR data for 2020, which excludes a small portion of 

northeast Dauphin Island (Figure 5.9). Even when corrected for the study period to end in 2018 

(for Dauphin Island & all islands) or 2019 (for Petit Bois Island), the trend persists. For volume 

on Dauphin Island and all islands, observed island volume peaked around 2016 then decreased in 

2018, while the simulated island volume increased with a relatively linear trend. This caused 

error to increase rapidly early in the study period, then continue to increase at a slower rate later 

in the study. Error increased exponentially over time for Dauphin, Petit Bois, and all islands 

together. 

2008 vs. Post-Katrina 
2016 vs. Post-Ida 

2020 vs. Post-Sally 
 

Figure 5.8: Observed and simulated 0 m contour of Petit Bois Island in 2008, 2016, and 2020. 
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Figure 5.9: LiDAR data (colored) overlayed on the Post-Ivan DEM (black & white). Part of 

northeast Dauphin Island is not included in the LiDAR dataset. 

Limitations, Recommendations & Future Work 

This study could have been improved by more observational data to verify simulation 

results, and the inclusion of anthropogenic impacts in the morphological models. The 

comparison between both offshore WSE and wave data, and HWM data on land, could have 

been improved with more observational data. The observed WSE and wave data were limited to 

14 and 4 NOAA stations, respectively. In addition, relatively few data collection buoys were 

present in the study area and had WSE data available during the 10 storms studied (Figure 3.1). 

Improving data collection methods during severe storms and abundance can help improve model 

calibration for local scales. 

Alternatively, partner institutions could be contacted prior to the hindcast to obtain past 

observed data collected for other purposes or projects that can be used to verify the model. The 

amount and quality of observational data was particularly lacking in rural and undeveloped areas 

and on the barrier islands. Future work should involve a field component of the study area during 

at least one storm during the study period to better verify the model. The limited morphological 

data also limited the accuracy of the study; the LiDAR observations rarely aligned with the dates 

of the simulated DEMs. Even the small (~1 year) differences between these observations could 

encompass another TC, major storm, anthropogenic morphological change, and natural dune and 
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shoreline changes, leading to greater model error than actually exists. An improvement in the 

frequency of LiDAR surveys existed throughout the study period.  

Morphological model setup and performance reduced the accuracy of some 

morphological results. For example, shoreline change during quiescent periods consistently 

overestimated island width, especially on the south side of the islands. This is most likely due to 

a combination of several model simplifications. Alongshore sediment transport was not included 

in the shoreline change model; some of the sediment that migrated offshore in the southward 

direction was likely swept westward with the current (Rosati & Stone, 2009) either onto another 

transect or out to sea. This trend was not observed on the north side of the island primarily 

because shoreline change was only resolved on the Gulf side of the islands due to a lack of 

observed shoreline change data for the back side of the islands. Additional error was likely 

introduced because XBeach was not forced with winds, which could contribute to some 

proportion of observed sediment transport via currents. 

The inability for the model to account for anthropogenically-driven morphological 

change also hindered the study. On Dauphin Island especially, dune nourishment and post-storm 

clean up are frequent due to the economic importance of the island to the state of Alabama. The 

anthropogenic changes would have to be input manually, such as for the rock wall at Katrina Cut 

in 2011; these projects occurred frequently and on relatively small scales, and budgetary and 

time constraints limit the amount of detail that can be afforded for these morphological projects. 

This presents further challenges for forecasts, as human activity is notoriously difficult to 

predict; beach nourishment and road clearing projects rely heavily on tax revenue and state and 

federal budgets, which change between administrations and on decadal scales as the economy 

grows and recesses. 
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When conducting hydrodynamic and morphological forecasts of dynamic barrier island 

systems similar to this study, it is recommended that a sensitivity analysis of hydrodynamic 

conditions to slight morphological changes is conducted. By studying where the most 

morphologically dynamic locations are, perturbing them, and analyzing differences in WSE and 

significant wave height, the level of uncertainty can be quantified for localized areas. For 

example, a forecast of morphological and hydrodynamic conditions conducted on the Mississippi 

and Alabama coasts would have very high uncertainty in the locations where differences 

between DEMs were large (e.g., SE Petit Bois Island, Katrina Cut, West Petit Bois Island, and 

Pelican Island), and low uncertainty in offshore locations, uniform portions of the mainland 

coast, and in the northern portion of Mobile Bay. 

Further research can be completed to determine decadal or centuries- scale changes in 

hydrodynamic error in response to simulated DEM updates. The lack of a clear relationship over 

time between Post-Ivan and XBeach and Post-Ivan and LiDAR DEMs suggests that, 1. 

Morphological changes to the island are not becoming increasingly different from the Post-Ivan 

state, and/or, 2. The morphological differences that do occur do not substantially impact 

hydrodynamics at the points of interest. 
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CHAPTER 6 

CONCLUSIONS 

 Storm surge presents a major threat to low-lying areas of the NGOM due to the frequency 

and intensity of TCs, and the low land elevations of this coastline. Under SLR and climate 

change, storm surge magnitudes (Bilskie, Hagen, Alizad, et al., 2016; Smith et al., 2010) and 

associated risks (Lindsey, 2022; Mudd et al., 2014) are expected to increase nonlinearly. Barrier 

islands reduce the wind fetch that acts on the water (Bilskie, Hagen, Alizad, et al., 2016), and 

physically blocks (Sebastian et al., 2014) the oncoming surge, reducing the maximum potential 

magnitudes of surge that ultimately reach the mainland. However, these landforms are highly 

susceptible to storm-induced breaching, overwash, and inundation (Coogan et al., 2019), often 

because of their low elevations and the high-energy conditions that they encounter. When a 

barrier island is breaches, decreases in elevation, or otherwise morphologically changes, the flow 

path and magnitude of storm surge changes (Bilskie et al., 2014). Often, this reduces the amount 

of protection that they offer the mainland (Rosati & Stone, 2009).  

 Hindcasting TCs using ADCIRC+SWAN is a reliable and accurate method of 

representing storm-driven hydrodynamics (Dietrich, Westerink, et al., 2011; Hope et al., 2013; 

Kerr et al., 2013; Musinguzi et al., 2022). For this study, ten TCs that passed within 200 km of 

Dauphin or Petit Bois Islands between 2005-2020 were simulated. The model used the ERA5 

reanalysis wind product (Hersbach et al., 2020) for the background wind fields, supplemented 

with GAHM vortex model along the storms’ tracks. After each storm, storm-driven 

morphological change was modeled using XBeach on Petit Bois and Dauphin Islands. Then, 
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dune recovery during the quiescent periods between storms was simulated using the EDGR 

model. Shoreline changes during the quiescent periods were determined using an empirical 

equation. The hydrodynamic outputs of the ADCIRC+SWAN simulations run on the Post-Ivan 

(2004) DEM (Seymour, 2020), the simulated DEM, and contemporary LiDAR data were 

compared to one another, and to observed data. Simulated DEMs were compared to 

contemporary LiDAR data.  

Barrier islands offer substantial protection to the mainland from threats such as storm 

surge and wind-driven waves, especially during TCs. Despite the minimal differences in 

simulated hydrodynamic values when different DEMs were used, all simulations showed a 

reduction in significant wave height on the back side of the islands. The location and degree of 

protection varied slightly as storm-driven and quiescent morphological changes occurred in-situ 

and in simulations; however, the overall trend of mainland protection remained largely the same. 

Because of the relatively small degree of morphological change, and the distance between the 

mainland and the islands, the differences in WSE and significant wave heights were minimal, on 

the order of 5-10 cm.  

 This 15-year hindcast of TC activity and resultant morphological change represents a 

short geologic and meteorologic time scale. Therefore, results were likely different than if the 

study were longer (e.g., 200 years), or during periods with more severe or frequent TC activity 

(e.g., 2100). Many of the storms simulated were relatively weak on the Saffir-Simpson Wind 

Scale, and resulted in minimal morphological change, in contrast to Hurricane Katrina (2005), 

for example. If other storms of similar strength had occurred during the study period, the 

difference in attenuation abilities over time would have likely been greater than observed for this 
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study. Future studies should focus on longer time-scales, and conduct a forecast of future 

conditions under various restoration, SLR, and TC intensification scenarios. 

 Despite the overall lack of extreme hydrodynamic differences caused by morphological 

change, simulated hydrodynamic conditions (particularly significant wave heights) were very 

different in the most morphologically dynamic areas (Figure 5.3). Because of the morphological 

instability in itself, and the vast differences in simulated hydrodynamic conditions at these 

locations, a larger margin of error and greater uncertainty should be accounted for when 

designing infrastructure or restoration initiatives. Specifically, because hydrodynamic conditions 

on the mainland shoreline change by <10 cm, on average, between different DEMs, engineers 

can expect minimal change in conditions over the following 15 years due to morphological 

change alone, barring the occurrence of any anomalously intense storms. However, for 

developers on Dauphin Island, or restoration planners on Dauphin and Petit Bois Islands, a larger 

margin of error must be accounted for. Even slight differences in elevation inputs can lead to 

~0.5-meter differences in simulated significant wave heights; restoration and development 

designs should account for this level of error, as it is difficult to collect up-to-date elevation data 

and interpolate them onto the mesh used for the hydrodynamic simulations in enough detail to 

not introduce some level of error. Overall, greater caution should be taken on the barrier islands 

than on the mainland. 

 Because of the increasing storm surge risk and magnitudes on the NGOM coast, it is 

important to study factors that can mitigate this risk such as barrier islands. However, barrier 

islands are highly dynamic and susceptible to morphological change, altering their protective 

abilities. Little research has been done to determine how simulating morphological change 

between TCs can improve long-term hindcasts. Overall, simulating morphological changes to 
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barrier islands led to noticeable and often large differences in significant wave heights proximate 

to the most morphologically dynamic locations. Further research is needed to better understand 

how simulating morphological changes improves agreement to observed hydrodynamic data, and 

how climate change may impact the region using the methods presented in this study. 
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APPENDICES 

APPENDIX A: WAVE STATISTICS 

TABLE A.1: Front side of islands 

Significant Wave Height - Front side of Islands 

Storm 
Station 

no. 
DEMs 

p-
value 

 

Storm 
Station 

no. 
DEMs 

p-
value 

Cindy 1 Post-Ivan and XBeach 0.012 Alberto 1 Post-Ivan and XBeach   0.047 

Dennis 1 Post-Ivan and XBeach   0.000 Alberto 1 XBeach and LiDAR   0.011 

Dennis 15 Post-Ivan and XBeach   0.006 Gordon 1 Post-Ivan and XBeach   0.000 

Dennis 16 Post-Ivan and XBeach   0.009 Gordon 1 XBeach and LiDAR   0.000 

Katrina 1 Post-Ivan and XBeach   0.016 Gordon 18 Post-Ivan and XBeach   0.001 

Katrina 15 Post-Ivan and XBeach   0.049 Gordon 18 XBeach and LiDAR   0.016 

Ida 1 Post-Ivan and XBeach   0.000 Cristobal 1 Post-Ivan and XBeach   0.001 

Ida 1 XBeach and LiDAR   0.000 Cristobal 1 Post-Ivan and LiDAR   0.033 

Ida 14 XBeach and LiDAR   0.029 Cristobal 1 XBeach and LiDAR   0.000 

Ida 15 Post-Ivan and XBeach   0.013 Cristobal 3 Post-Ivan and XBeach   0.008 

Ida 15 XBeach and LiDAR   0.022 Cristobal 3 XBeach and LiDAR   0.007 

Ida 23 XBeach and LiDAR   0.036 Cristobal 14 Post-Ivan and LiDAR   0.024 

Nate 1 Post-Ivan and XBeach   0.000 Cristobal 14 XBeach and LiDAR   0.018 

Nate 1 Post-Ivan and LiDAR   0.000 Cristobal 15 Post-Ivan and XBeach   0.028 

Nate 1 XBeach and LiDAR   0.000 Cristobal 15 XBeach and LiDAR   0.036 

Nate 2 Post-Ivan and LiDAR   0.000 Sally 1 Post-Ivan and XBeach   0.000 

Nate 2 XBeach and LiDAR   0.000 Sally 2 XBeach and LiDAR   0.000 

Nate 15 Post-Ivan and XBeach   0.000 Sally 3 XBeach and LiDAR   0.044 

Nate 15 XBeach and LiDAR   0.000 Sally 14 Post-Ivan and LiDAR   0.020 

Nate 16 Post-Ivan and XBeach   0.000 Sally 14 XBeach and LiDAR   0.011 

Nate 16 Post-Ivan and LiDAR   0.000 Sally 15 Post-Ivan and XBeach   0.006 

Nate 17 Post-Ivan and XBeach   0.005 Sally 15 XBeach and LiDAR   0.009 

Nate 17 XBeach and LiDAR   0.047 Sally 16 Post-Ivan and XBeach   0.004 

Nate 18 Post-Ivan and XBeach   0.000 Sally 16 XBeach and LiDAR   0.001 

Nate 18 Post-Ivan and LiDAR   0.008 Sally 18 Post-Ivan and XBeach   0.038 

Nate 21 XBeach and LiDAR 0.008 Sally 23 Post-Ivan and XBeach   0.024 

Nate 23 Post-Ivan and XBeach   0.002 Sally 23 XBeach and LiDAR   0.024 

Nate 23 XBeach and LiDAR   0.001     
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TABLE A.2: Significant wave height for back side of islands 

Significant Wave Height - Back side of Islands 

Storm 
Station 

no. 
DEMs 

p-
value 

 

Storm 
Station 

no. 
DEMs 

p-
value 

Cindy 28 Post-Ivan and XBeach  0.008 Alberto 29 Post-Ivan and XBeach  0.008 

Cindy 29 Post-Ivan and XBeach  0.004 Alberto 29 Post-Ivan and LiDAR  0.034 

Cindy 30 Post-Ivan and XBeach  0.003 Alberto 30 Post-Ivan and XBeach  0.004 

Cindy 31 Post-Ivan and XBeach  0.003 Alberto 31 Post-Ivan and XBeach  0.007 

Cindy 32 Post-Ivan and XBeach  0.009 Alberto 32 Post-Ivan and XBeach  0.032 

Dennis 27 Post-Ivan and XBeach  0.002 Gordon 27 Post-Ivan and XBeach  0.002 

Dennis 28 Post-Ivan and XBeach  0.000 Gordon 27 Post-Ivan and LiDAR  0.006 

Dennis 29 Post-Ivan and XBeach  0.000 Gordon 28 Post-Ivan and XBeach  0.000 

Dennis 30 Post-Ivan and XBeach  0.000 Gordon 28 Post-Ivan and LiDAR  0.001 

Dennis 31 Post-Ivan and XBeach  0.000 Gordon 29 Post-Ivan and XBeach  0.000 

Dennis 32 Post-Ivan and XBeach  0.000 Gordon 29 Post-Ivan and LiDAR  0.001 

Dennis 33 Post-Ivan and XBeach  0.005 Gordon 30 Post-Ivan and XBeach  0.000 

Ida 27 Post-Ivan and XBeach  0.023 Gordon 30 Post-Ivan and LiDAR  0.004 

Ida 28 Post-Ivan and XBeach  0.003 Gordon 31 Post-Ivan and XBeach  0.001 

Ida 28 XBeach and LiDAR  0.005 Gordon 31 Post-Ivan and LiDAR  0.014 

Ida 29 Post-Ivan and XBeach  0.003 Gordon 32 Post-Ivan and XBeach  0.013 

Ida 29 XBeach and LiDAR  0.011 Cristobal 15 Post-Ivan and LiDAR  0.006 

Ida 30 Post-Ivan and XBeach  0.004 Cristobal 15 XBeach and LiDAR  0.000 

Ida 30 XBeach and LiDAR  0.022 Cristobal 27 Post-Ivan and XBeach  0.001 

Ida 31 Post-Ivan and XBeach  0.008 Cristobal 27 Post-Ivan and LiDAR  0.001 

Ida 31 XBeach and LiDAR  0.028 Cristobal 28 Post-Ivan and XBeach  0.000 

Ida 32 Post-Ivan and XBeach  0.035 Cristobal 28 Post-Ivan and LiDAR  0.000 

Nate 15 XBeach and LiDAR  0.001 Cristobal 29 Post-Ivan and XBeach  0.000 

Nate 27 Post-Ivan and XBeach  0.000 Cristobal 29 Post-Ivan and LiDAR  0.000 

Nate 27 Post-Ivan and LiDAR  0.000 Cristobal 30 Post-Ivan and XBeach  0.000 

Nate 28 Post-Ivan and XBeach  0.000 Cristobal 30 Post-Ivan and LiDAR  0.000 

Nate 28 Post-Ivan and LiDAR  0.000 Cristobal 31 Post-Ivan and XBeach  0.000 

Nate 29 Post-Ivan and XBeach  0.000 Cristobal 31 Post-Ivan and LiDAR  0.000 

Nate 29 Post-Ivan and LiDAR  0.000 Cristobal 32 Post-Ivan and XBeach  0.000 

Nate 30 Post-Ivan and XBeach  0.000 Cristobal 32 Post-Ivan and LiDAR  0.000 

Nate 30 Post-Ivan and LiDAR  0.000 Cristobal 33 Post-Ivan and XBeach  0.003 

Nate 30 XBeach and LiDAR  0.017 Cristobal 33 Post-Ivan and LiDAR  0.012 

Nate 31 Post-Ivan and XBeach  0.000 Sally 2 Post-Ivan and LiDAR  0.005 

Nate 31 Post-Ivan and LiDAR  0.001 Sally 2 XBeach and LiDAR  0.002 

Nate 31 XBeach and LiDAR  0.035 Sally 27 Post-Ivan and XBeach  0.048 

Nate 32 Post-Ivan and XBeach  0.000 Sally 28 Post-Ivan and XBeach  0.008 

Nate 32 Post-Ivan and LiDAR  0.014 Sally 29 Post-Ivan and XBeach  0.006 

Nate 33 Post-Ivan and XBeach  0.006 Sally 30 Post-Ivan and XBeach  0.007 

Alberto 28 Post-Ivan and XBeach  0.014 Sally 31 Post-Ivan and XBeach  0.018 

Alberto 28 Post-Ivan and LiDAR  0.031     
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TABLE A.3: Mean and peak wave period 

Wave period - Front side of Islands 

Storm 
Mean 

or Peak 
Station 

no. 
DEMs 

p-
value 

 

Storm 
Mean 

or Peak 
Station 

no. 
DEMs 

p-
value 

Katrina Peak 5 Post-Ivan and XBeach   0.015 Katrina Peak 31 
Post-Ivan 
and XBeach  

0.003 

Katrina Peak 6 Post-Ivan and XBeach   0.015 Katrina Peak 32 Post-Ivan 
and XBeach  

0.003 

Katrina Peak 7 Post-Ivan and XBeach   0.015 Katrina Peak 33 
Post-Ivan 
and XBeach  

0.009 

Katrina Peak 8 Post-Ivan and XBeach   0.009 Katrina Peak 34 
Post-Ivan 
and XBeach  

0.009 

Katrina Peak 9 Post-Ivan and XBeach 0.009 Katrina Peak 35 Post-Ivan 
and XBeach  

0.009 

Katrina Peak 10 Post-Ivan and XBeach   0.005 Katrina Peak 36 
Post-Ivan 
and XBeach  

0.009 

Katrina Peak 11 Post-Ivan and XBeach  0.005 Katrina Peak 37 
Post-Ivan 
and XBeach  

0.003 

Katrina Peak 12 Post-Ivan and XBeach  0.005 Katrina Peak 38 
Post-Ivan 
and XBeach  

0.003 

Katrina Peak 13 Post-Ivan and XBeach   0.009 Katrina Peak 39 
Post-Ivan 
and XBeach  0.003 

Katrina Peak 14 Post-Ivan and XBeach   0.048 Katrina Peak 40 
Post-Ivan 
and XBeach  

0.003 

Katrina Peak 15 Post-Ivan and XBeach   0.047 Katrina Peak 41 
Post-Ivan 
and XBeach  

0.003 

Katrina Peak 17 Post-Ivan and XBeach   0.015 Katrina Peak 42 Post-Ivan 
and XBeach  

0.003 

Katrina Peak 18 Post-Ivan and XBeach   0.014 Katrina Peak 43 
Post-Ivan 
and XBeach  

0.003 

Katrina Peak 19 Post-Ivan and XBeach  0.009 Katrina Peak 44 
Post-Ivan 
and XBeach  

0.003 

Katrina Peak 20 Post-Ivan and XBeach  0.015 Alberto Peak 1 Post-Ivan 
and XBeach  

0.027 

Katrina Peak 21 Post-Ivan and XBeach  0.003 Alberto Peak 1 
XBeach and 
LiDAR  

0.048 

Katrina Peak 22 Post-Ivan and XBeach  0.003 Alberto Peak 4 
Post-Ivan 
and XBeach  

0.027 

Katrina Peak 23 Post-Ivan and XBeach  0.003 Alberto Peak 4 XBeach and 
LiDAR  

0.048 

Katrina Peak 24 Post-Ivan and XBeach  0.003 Alberto Peak 5 
Post-Ivan 
and XBeach   0.027 

Katrina Peak 25 Post-Ivan and XBeach  0.003 Alberto Peak 5 
XBeach and 
LiDAR   

0.048 

Katrina Peak 26 Post-Ivan and XBeach  0.003 Nate Mean 16 
Post-Ivan 
and LiDAR  

0.018 

Katrina Peak 27 Post-Ivan and XBeach  0.003 Nate Mean 16 
XBeach and 
LiDAR  0.034 

Katrina Peak 28 Post-Ivan and XBeach  0.003 Nate Mean 44 
Post-Ivan 
and LiDAR  

0.042 

Katrina Peak 29 Post-Ivan and XBeach  0.003 Sally Mean 16 
XBeach and 
LiDAR  

0.016 

Katrina Peak 30 Post-Ivan and XBeach  0.003      
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TABLE A.4: Wave direction 

Wave Direction - Front side of Islands 

Storm 
Station 

no. 
DEMs 

p-
value 

 

Storm 
Station 

no. 
DEMs 

p-
value 

Cindy 1 Post-Ivan and XBeach 0.000 Gordon 1 Post-Ivan and XBeach 0.000 

Cindy 4 Post-Ivan and XBeach 0.001 Gordon 1 Post-Ivan and LiDAR 0.002 

Cindy 15 Post-Ivan and XBeach 0.009 Gordon 1 XBeach and LiDAR 0.000 

Cindy 16 Post-Ivan and XBeach 0.000 Gordon 2 Post-Ivan and XBeach 0.004 

Cindy 18 Post-Ivan and XBeach 0.001 Gordon 2 XBeach and LiDAR 0.000 

Cindy 21 Post-Ivan and XBeach 0.000 Gordon 3 XBeach and LiDAR 0.035 

Dennis 1 Post-Ivan and XBeach 0.000 Gordon 4 Post-Ivan and XBeach 0.004 

Dennis 2 Post-Ivan and XBeach 0.006 Gordon 4 XBeach and LiDAR 0.008 

Dennis 4 Post-Ivan and XBeach 0.000 Gordon 5 Post-Ivan and LiDAR 0.029 

Dennis 15 Post-Ivan and XBeach 0.005 Gordon 9 Post-Ivan and LiDAR 0.040 

Dennis 16 Post-Ivan and XBeach 0.000 Gordon 10 Post-Ivan and LiDAR 0.034 

Dennis 18 Post-Ivan and XBeach 0.000 Gordon 11 XBeach and LiDAR 0.006 

Dennis 21 Post-Ivan and XBeach 0.000 Gordon 15 Post-Ivan and XBeach 0.030 

Katrina 1 Post-Ivan and XBeach 0.000 Gordon 15 XBeach and LiDAR 0.004 

Katrina 4 Post-Ivan and XBeach 0.019 Gordon 16 Post-Ivan and XBeach 0.000 

Katrina 16 Post-Ivan and XBeach 0.000 Gordon 16 Post-Ivan and LiDAR 0.000 

Katrina 18 Post-Ivan and XBeach 0.000 Gordon 16 XBeach and LiDAR 0.000 

Katrina 21 Post-Ivan and XBeach 0.001 Gordon 18 Post-Ivan and XBeach 0.003 

Ida 1 Post-Ivan and XBeach 0.001 Gordon 18 Post-Ivan and LiDAR 0.001 

Ida 1 XBeach and LiDAR 0.000 Gordon 21 Post-Ivan and XBeach 0.000 

Ida 2 Post-Ivan and XBeach 0.013 Gordon 21 XBeach and LiDAR 0.000 

Ida 11 XBeach and LiDAR 0.017 Gordon 23 Post-Ivan and XBeach 0.000 

Ida 14 Post-Ivan and LiDAR 0.047 Gordon 23 XBeach and LiDAR 0.000 

Ida 15 XBeach and LiDAR 0.001 Cristobal 1 Post-Ivan and XBeach 0.000 

Ida 16 Post-Ivan and XBeach 0.000 Cristobal 1 Post-Ivan and LiDAR 0.000 

Ida 16 XBeach and LiDAR 0.000 Cristobal 1 XBeach and LiDAR 0.000 

Ida 18 Post-Ivan and XBeach 0.007 Cristobal 2 Post-Ivan and XBeach 0.000 

Ida 18 Post-Ivan and LiDAR 0.039 Cristobal 2 Post-Ivan and LiDAR 0.004 

Ida 18 XBeach and LiDAR 0.000 Cristobal 2 XBeach and LiDAR 0.000 

Ida 21 Post-Ivan and XBeach 0.001 Cristobal 4 Post-Ivan and XBeach 0.000 

Ida 21 XBeach and LiDAR 0.016 Cristobal 4 XBeach and LiDAR 0.000 

Nate 1 Post-Ivan and XBeach 0.000 Cristobal 5 Post-Ivan and LiDAR 0.046 

Nate 1 Post-Ivan and LiDAR 0.000 Cristobal 11 XBeach and LiDAR 0.023 

Nate 1 XBeach and LiDAR 0.000 Cristobal 15 XBeach and LiDAR 0.037 

Nate 2 Post-Ivan and XBeach 0.000 Cristobal 16 Post-Ivan and XBeach 0.000 

Nate 2 XBeach and LiDAR 0.000 Cristobal 16 Post-Ivan and LiDAR 0.009 

Nate 4 Post-Ivan and XBeach 0.000 Cristobal 16 XBeach and LiDAR 0.000 
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Wave Direction - Front side of Islands (continued) 

Storm 
Station 

no. 
DEMs 

p-
value 

 

Storm 
Station 

no. 
DEMs 

p-
value 

Nate 4 XBeach and LiDAR 0.000 Cristobal 18 Post-Ivan and LiDAR 0.002 

Nate 5 Post-Ivan and XBeach 0.018 Cristobal 20 Post-Ivan and LiDAR 0.001 

Nate 5 Post-Ivan and LiDAR 0.000 Cristobal 20 XBeach and LiDAR 0.003 

Nate 8 Post-Ivan and XBeach 0.046 Cristobal 21 Post-Ivan and XBeach 0.000 

Nate 9 Post-Ivan and LiDAR 0.023 Cristobal 21 XBeach and LiDAR 0.000 

Nate 10 Post-Ivan and LiDAR 0.005 Sally 1 Post-Ivan and XBeach 0.000 

Nate 10 XBeach and LiDAR 0.043 Sally 1 XBeach and LiDAR 0.000 

Nate 11 XBeach and LiDAR 0.000 Sally 3 Post-Ivan and XBeach 0.000 

Nate 12 Post-Ivan and LiDAR 0.021 Sally 3 XBeach and LiDAR 0.000 

Nate 13 Post-Ivan and LiDAR 0.049 Sally 16 Post-Ivan and XBeach 0.000 

Nate 15 Post-Ivan and XBeach 0.014 Sally 16 Post-Ivan and LiDAR 0.002 

Nate 15 XBeach and LiDAR 0.001 Sally 16 XBeach and LiDAR 0.000 

Nate 16 Post-Ivan and XBeach 0.000 Sally 17 Post-Ivan and XBeach 0.001 

Nate 16 Post-Ivan and LiDAR 0.000 Sally 17 XBeach and LiDAR 0.001 

Nate 16 XBeach and LiDAR 0.000 Sally 18 Post-Ivan and XBeach 0.036 

Nate 18 Post-Ivan and LiDAR 0.000 Sally 18 XBeach and LiDAR 0.033 

Nate 18 XBeach and LiDAR 0.000 Sally 21 Post-Ivan and XBeach 0.015 

Nate 21 Post-Ivan and XBeach 0.000 Sally 21 XBeach and LiDAR 0.010 

Alberto 1 Post-Ivan and XBeach 0.035     

Alberto 1 XBeach and LiDAR 0.002     

Alberto 3 Post-Ivan and XBeach 0.016     

Alberto 3 XBeach and LiDAR 0.021     

 


