
NSGA-VIT: AN EVOLUTIONARY APPROACH TO VISION TRANSFORMER

ARCHITECTURE DESIGN

by

ANDREW BECKER

(Under the Direction of Fred Maier)

ABSTRACT

In recent years, the success of Transformers has been demonstrated in computer vision (CV)

tasks, with the Vision Transformer (ViT), which competes with CNN networks on image

classification tasks when using pre-trained models. Many of these deep learning models are

designed by experts, which takes knowledge, time, and labor costs. Neural Architecture Search

(NAS), seeks to automate the process of designing a neural network architecture. In this paper, I

propose NSGA-ViT, a multi-objective evolutionary NAS for designing Transformer-based

networks for computer vision tasks. NSGA-ViT utilizes a multi-objective genetic algorithm

(NSGA-II) to design a ViT network with two objectives: maximizing performance, and

minimizing network size. NSGA-ViT searches a search space of self-attention and convolution

operations to discover a transformer architecture which outperforms ViT on CIFAR-10 and while

containing half the parameters.

INDEX WORDS: Neural Architecture Search, Evolutionary Computing, Computer Vision,

Transformers, Deep Learning

NSGA-VIT: AN EVOLUTIONARY APPROACH TO VISION TRANSFORMER

ARCHITECTURE DESIGN

By

ANDREW BECKER

B.S., The University of Georgia, 2022

B.A., The University of Georgia, 2022

A Thesis Submitted to the Graduate Faculty of The University of Georgia In Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2023

© 2023

Andrew Becker

All rights reserved.

NSGA-VIT: AN EVOLUTIONARY APPROACH TO VISION TRANSFORMER

ARCHITECTURE DESIGN

by

ANDREW BECKER

Major Professor: Fred Maier

Committee: Khaled Rasheed
Shannon Quinn

Electronic Version Approved:

Ron Walcott

Vice Provost for Graduate Education and Dean of the Graduate School

The University of Georgia

December 2023

ACKNOWLEDGMENTS

I would like to thank my committee for seeing me through the process of completing this work.

I would also like to thank my family and friends for sticking by my side and showing me support.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

Chapter 1: Introduction and Summary . 1

1.1 Introduction . 1

1.2 Motivations . 2

1.3 Summary . 3

1.4 Contributions . 6

Chapter 2: Related Work . 8

2.1 Transformer Models and Self- Attention . 8

2.2 Genetic Algorithm . 12

2.3 Neural Architecture Search . 15

2.4 Data-Sets . 19

v

Chapter 3: Methodology . 20

3.1 Overview of NSGA-VIT procedure . 20

3.2 Data Sets . 20

3.3 Designing the Search Space . 22

3.4 Evolutionary Search Procedure . 23

3.5 Architecture Evaluation . 26

Chapter 4: Results . 27

4.1 Search Results . 27

4.2 NSGA-ViT Architecture . 31

4.3 CIFAR-10 Results . 31

4.4 Comparison Against ViT on CIFAR-10 . 32

4.5 ImageNet Results . 33

4.6 Discussion . 35

Chapter 5: Conclusion . 39

5.1 Limitations . 39

5.2 Future work . 40

References . 44

Appendices . 48

Appendix A: Search Details . 49

Appendix B: NSGA-ViT Architectures . 52

Appendix C: Architecture Evaluation Details . 54

vi

Appendix D: Implementation Details . 55

vii

LIST OF TABLES

1.1 Parameter size and CIFAR-10 Validation Accuracy for NSGA-ViT and ViT.
ViT implementations all use an 8-head attention layer. 6

1.2 Comparison of ImageNet Testing Accuracy . 6

4.1 Parameter size and CIFAR-10 Validation Accuracy for NSGA-ViT and ViT.
ViT implementations all use an 8-head attention layer. Additionally, ViT imple-
mentations have 2 transformer blocks per cell. Network sizes are reported as (cells
@ initial channels). All networks are trained for 200 epochs unless otherwise spec-
ified. ViT with with convolution stem replaces patchify stem with 4 3x3 convolu-
tions and one 1x1 convolution per Xaio et. al[14] 32

4.2 Comparison of ImageNet Testing Accuracy. All Transformer architectures and
their train-from-scratch results on ImageNet-1k are reported from the literature,
except ours (NSGA-ViT). Transformers are generally labeled S for small configu-
ration, and B for base configuration, and labeled with the number of layers, where
applicable. 33

C.1 Configurations and parameters for architecture training. Configurations are pre-
sented as cells @ init channels. lr stands for learning rate, and decay refers to
weight decay in Adam . 54

viii

LIST OF FIGURES

2.1 Illustration of Attention Mechanisms from Vaswani et. al [1] LEFT: Scaled
Dot-Product Attention. RIGHT: Multi-head attention 9

2.2 Transformer architecture from Vaswani 2017 [1]. Inputs are fed into the en-
coder layer, which uses multi-head self-attention followed by a feed forward layer.
Labels (outputs) are fed into the decoder layer, as well as the output from the en-
coder. Finally, the decoder output is fed into a linear layer with a softmax classifier
to produce the output probabilities. 10

2.3 Vision transformer architecture from Dosovitskiy et. al [3]. Images are split
into patches by an initial convolution layer before being flattened and adding po-
sition and class embedding. The resulting data is fed into a stack of transformer
encoders, followed by an MLP classifier layer. 11

2.4 Illustration of Macro-level architecture from Zoph and Real [5, 6]. LEFT:
the overall structure of the architecture trained on CIFAR-10. Normal cells are
alternated with reduction cells (Not used in present study) at two depths in the
network. Cells are stacked linearly. MIDDLE: the structure of the normal blocks
in the model. Normal cells contain residual connections, allowing each cell to
receive input from two cells before it. RIGHT: illustration of a possible cell from
NAS-Net search space. The red circle highlights one operational block, made up of
two operations from hidden states 0 and 1, respectively, combined by an addition
operator. This cell contains 5 blocks with a final combiner. 16

2.5 NAS-Net Search Space from Zoph et. al [5]. Cells are formed via a series of
operational blocks. Blocks are formed by selecting two input hidden states, an
operation to be performed on each state, and a combination operation to produce
the new hidden state. 17

ix

3.1 NSGA-ViT Procedure: NSGA-ViT is a two step procedure, cosisting of architec-
ture search and architecture evaluation. Architecture Search is bi-level optimiza-
tion problem where architecture configurations are optimized in the outer layer,
and connection weights are optimized via training in the inner layer. Architecture
evaluation consists of training and evaluating discovered architectures against each
other to determine the best solution, and then comparing against Transformers in
the literature. 21

4.1 Comparison of CIFAR-10 Accuracy and parameter sizes for NSGA-ViT mod-
els. Architectures labeled NSGA-ViT-A were discovered during the cold-start search.
Architectures labeled NSGA-ViT-B were discovered during the cold-start search.
NSGA-ViT was discovered during warm-start. Each architecture was trained for
200 epochs on CIFAR-10 with an architecture of 6 layers and an input dimension
of 512. 28

4.2 Graph of CIFAR-10 validation error statistics for each generation in the search.
Statistics reported are best error, mean error, median error, and worst error for each
generation in the cold-start and warm-start setting. 29

4.3 Graph of computational complexity for each generation in each search setting.
Complexity is represented in FLOPS. Architectures in the cold-start setting are
initialized with 6 cells, and architectures in the warm-start setting are initialized
with 3 cells. 30

4.4 NSGA-ViT Architecture. TOP: NSGA-ViT architecture found in the search.
BOTTOM: ViT architecture with 8-head MHSA layer. Each cell contains 2 trans-
former layers, resulting in 2 MHSA and FFN layers per cell. 31

4.5 Confusion Matrix for NSGA-ViT on CIFAR-10. NSGA-Vit outperforms ViT on
CIFAR-10 when trained from scratch, achieving relatively balanced performance
across classes. The largest confusion between classes can be seen between cats and
dogs. 34

B.1 Architectures Discovered in NSGA-ViT . 53

x

CHAPTER 1

INTRODUCTION AND SUMMARY

1.1 Introduction

In recent years, the Transformer Architecture has become the de-facto solution for Natural Lan-

guage Processing (NLP) tasks, outperforming both traditional machine learning methods and deep

learning methods such as Convolution Neural Networks (CNN) and Recurrent Neural Networks

(RNN)[1]. As a result, large language models built from transformers, such as Chat-GPT, built

from the Generative Pre-trained Transformer (GPT-3) [2], have accrued widespread popularity for

a myriad of generative text applications. Recently, the success of Transformers has been demon-

strated in computer vision (CV) tasks, with the development of the Vision Transformer (ViT),

which competes with state-of-the-art (SOTA) CNN networks on image classification tasks when

using transfer learning to fine-tune pre-trained models [3].

Additionally, many of these state-of-the-art deep learning models are designed and built by

teams of machine learning experts, which takes extensive expert knowledge, time, and labor costs.

In recent years, however, research into Automated Machine Learning (AutoML) seeks to stream-

line the process of designing deep-learning algorithms by using machine learning to make the

design decisions. Further, Neural Architecture Search (NAS), pioneered by Zoph et. al [4], seeks

to automate the process of designing a neural network architecture by using a search strategy to

design the architecture. NAS-built CNN architectures have been shown to compete with hand-

designed architectures in a range of computer vision tasks [5, 6, 7]. In addition to optimizing

the performance of networks, work in hardware-aware NAS has been performed, optimizing ar-

chitectures for the trade-off between performance and computational complexity [8, 9], allowing

1

NAS-built architectures to be implemented in a range of compute environments depending on the

resources available.

NAS is beginning to be applied to transformer architectures [10, 11], with a number of studies

optimizing various hyper-parameters of the network, such as depth, number of attention heads, em-

bedding size, etc. Additionally, some Transformer NAS frameworks utilize a hybrid search space

of convolutions and multi-head attention layers in order to combine the benefits of transformers

with CNNs for a myriad of NLP and vision tasks[11, 12].

In this paper, I propose a multi-objective evolutionary framework for designing Transformer-

based networks for computer vision tasks, deemed NSGA-ViT. NSGA-ViT utilizes a multi-objective

genetic algorithm (NSGA-II) to evolve a population of architectures according to two primary ob-

jectives: maximizing performance, and minimizing network size. NSGA-ViT searches a search

space of self-attention and convolution operations to produce a hybrid convolution-attention trans-

former architecture which outperforms ViT on small datasets while maintaining a similar number

of parameters.

The rest of this paper is organized as follows. Chapter 1 discusses motivations, contributions,

and a summary of experiments, Chapter 2 provides a review of related literature, Chapter 3 outlines

experimental procedures, Chapter 4 presents experimental results and discussion for NSGA-ViT,

and Chapter 5 discusses limitations and future work.

1.2 Motivations

While there have been many hand-designed transformer architectures for computer vision [3, 13,

14] Neural Architecture Search for Vision Transformers has yet to be thoroughly explored in the

existing literature [13]. Furthermore, Transformer architectures, while scaling up well [15], tend

to perform poorly when scaled-down to small data sets due to the high computational cost of

the multi-head attention layer. This means training transformers generally requires unreasonably

large data sets which may not be publicly available, especially when using a supervised learning

paradigm [16]. Additionally, the computational resources for pre-training models are not available

2

to the public, with pre-training ViT costing hundreds of TPU days on JFT-300M and ImageNet-

21k [3]. While pre-trained transformer models are available to the public [17, 18], pre-training

custom-built architectures is largely unavailable due to computational costs.

The goal of this study is to use a hardware-aware NAS procedure to discover a resource-aware

Transformer architecture which attains competitive train-from-scratch accuracy and small and mid-

size data sets, and allows for successful training on small and mid-size, publicly available data sets

to allow for greater accessibility to transformer usage and research.

1.3 Summary

The NSGA-ViT procedure is a two-step procedure, where in the first step (Search), evolutionary

search is run to automate the design of the main computational cell in the ViT architecture. After

search is performed, the second step, Architecture Evaluation is performed. In Architecture Evalu-

ation, discovered architectures are compared under CIFAR-10 training and evaluation to determine

the best solution. [13].

NSGA-ViT is a Neural Architecture Search (NAS) algorithm that utilizes a multi-objective

genetic algorithm (NSGA-II) [19] to search a search space of convolution and attention operations

to design a Transformer architecture for image classification tasks. The search space for NSGA-Vit

is a variant of the Nas-Net search space, defined by Zoph 2018 [5]. In this search space, the search

algorithm designs cells of operations, which are stacked to form the final architecture, mimicking

the way many hand-designed deep learning models are built [5, 20, 21, 22, 1].

1.3.1 Evolutionary Search with Competing Objectives

For multi-objective optimization, I am choosing to optimize two criteria in each network. The first

criteria is to maximize validation accuracy on CIFAR-10, and the second is to minimize the number

of parameters in the network. During the search, I use the number of floating-point operations

(FLOPS) as an estimator for the size of the network, following the same procedure as [8]. Because

there are multiple objectives, I utilize a multi-objective genetic algorithm, NSGA-II, with binary

3

tournament selection, two-point crossover, and polynomial mutation. NSGA-II utilizes a special

non-dominated sorting algorithm to maintain a diverse population of solutions that are optimized

along multiple objectives. Because individuals are ranked and sorted by their performance on each

objective, there is no need to weight the objectives against each other, removing bias towards one

objective from the evaluation.

In each generation of the search, a population of solutions is generated and evaluated via train-

ing and validation on CIFAR-10 [23]. The best performing individuals from the population have

an opportunity to engage in crossover to share good genes and produce promising offspring. Each

generation, only the best performing architectures on both objectives advance to the next gener-

ation (selected from the pool of offspring and parents), a framework known as an elitist search,

since the best architectures remain in the population. As the search progresses, the population is

optimized as a whole, and at the end of the search, the best performing individual, representing

the global optimum is produced. Since NSGA-ViT jointly optimizes solutions under competing

objectives, the final population of architectures represents the pareto-front, the global optima of

trade-offs between the conflicting objectives.

There are two main experimental settings in which I run the NSGA-II algorithm to search

for candidate architectures. These two search procedures are (1) a randomly initialized initial

population, and (2) a ’warm-start’ where the initial population consists of ViT architectures.

1.3.2 Cold-Start (Random Initialization)

In the Cold-Start setting, the first population is seeded using random initialization. The result is

a wide diversity of initial architectures, which can be good for forming a diverse Pareto front at

the end of the search. Because of the random initialization, this search procedure produces many

wide cells which contain many hidden states to be combined at the end of the cell by the final

combiner function. To allow for the network to capture the full complexity of the hidden states,

the final combiner function is a concatenation of the hidden state tensors. In addition, the input

embedding size is multiplied by the number of final hidden states to account for the size of the new

4

concatenated tensor. This parameter is consistent with most CNN NAS methods [7, 4, 8, 6].

1.3.3 Warm-Start

To provide a more focused search around modifying and improving the ViT architecture, I test

the effects of ”warm-starting” the search by initializing the first generation of architectures with

the encoding for the ViT architecture. With this initialization, the diversity of individuals is re-

duced greatly compared to the random initialization, however, it leverages expert knowledge by

seeding with a well-performing architecture. Specifically, I initialize with ViT because this is the

architecture in which I seek to improve upon.

1.3.4 Architecture Evaluation

To evaluate the architectures gathered from NSGA-ViT, the cell with the highest validation ac-

curacy from each search was gathered and trained on CIFAR-10 for 200 epochs, with 512 initial

channels, and a network with 6 layers. The architecture with the highest validation accuracy is

reported as the final architecture. To compare this architecture against ViT, I report a variety of

architecture sizes to compare performance over different numbers of parameters. Following train-

ing of CIFAR-10, I scale-up the data-set and train the model on ImageNet-1k and compare the

results against transformers in the literature. Finally, I utilize the models trained on ImageNet and

fine-tune them on CIFAR-10 to evaluate the ability to utilize transfer learning.

1.3.5 Results

NSG-ViT produces an architecture that outperforms ViT on CIFAR-10, even in its smallest con-

figuration. NSGA-ViT utilizes a combination of convolution, separable convolution, attention,

and feed-forward layers to achieve 92.95% accuracy on CIFAR-10 when trained from scratch, an

11.5% improvement . Additionally, NSGA-ViT in its largest configuration is a similar size to the

8-head ViT implementation, containing roughly 3M more parameters than ViT.

NSGA-ViT also outperforms 8-head ViT utilizing the same training parameters on ImageNet-

5

1k by roughly 7%. However, NSGA-ViT under-performs ViT base from Dosovitskiy et. al [3] by

roughly 6% while containing half the parameters.

Table 1.1: Parameter size and CIFAR-10 Validation Accuracy for NSGA-ViT and ViT. ViT
implementations all use an 8-head attention layer.

Arch Params (M) Test Accuracy (CIFAR-10)
ViT 3 @ 256 5.140229 76.58
ViT 6 @ 512 41.008138 81.34

NSGA-ViT 3 @ 256 5.567242 88.37
NSGA-ViT 6 @ 512 44.224522 92.95

1.4 Contributions

This paper contributes to and extends the current body of literature in several ways, indicated by

the headings below.

1.4.1 Applying NAS to ViT in Novel Way

The first contribution is taking the cutting edge field of Neural Architecture Search and applying

it to the new and promising Transformer architecture. While various transformers have been de-

signed using neural architecture search, a hybrid search space of attention layers and convolution

layers has yet to be done for computer vision tasks. Overall, work in NAS for transformers is still

in its infancy, with less than 4 years of work done in this field as of 2023 [13], leaving a significant

space for work such as the present study. Additionally, much of the work in Transformer NAS is

focused on optimization of language models, while NSGA-ViT expands this research into com-

puter vision. This project expands transformer architecture search into computer vision in a way

that has yet to be published.

Table 1.2: Comparison of ImageNet Testing Accuracy

Model Params (M) ImageNet Accuracy
ViT-B/16 [3] 86.6 79.8

ViT-8 6 @ 512 43.5 66.7
NSGA-ViT 6 @ 512 45.2 73.5

6

1.4.2 Multi-objective Optimization of Transformers

Furthermore, nearly all the literature on transformer architecture is concerned only with one ob-

jective: improving accuracy/performance. However, many transformer architectures are too large

to be stored on a single GPU, let alone limited-compute environments such as smartphones or

laptops. I expand this realm of research into the joint optimization of increasing testing per-

formance while minimizing compute costs, and the result is a range of architectures along the

size-performance trade-off, which can be used in many applications, including limited resource

environments. NSGA-ViT utilizes a multi-objective genetic algorithm to do joint optimization

without the need for weighting the importance of certain objectives, resulting in reduced user bias

when performing optimization.

1.4.3 Optimizing ViT for small data-sets

Generally, Transformers are pretrained on very large datasets, containing billions of images, and

then fine-tuned on smaller data-sets for application in a process called transfer learning. However,

fine-tuning models tends to require a high computational costs when the model is pretrained on a

large dataset. Thereby, by reducing the size of the pre-training data-sets, the resources required to

fine-tune the model can be reduced, creating more efficient transfer learning [24]. However, stan-

dard Transformer networks require this large data when pre-training to produce good results. This

paper looks into directly optimizing Transformers for smaller data-sets to increase the efficiency

of transfer learning and utilize more readily-available data for training.

7

CHAPTER 2

RELATED WORK

2.1 Transformer Models and Self- Attention

2.1.1 Transformer Model Overview

The Transformer architecture was introduced by Vaswani et. al [1] as a novel solution to sequence-

to-sequence problems like machine translation, building language models, and other NLP related

problems. The main contribution of the Transformer architecture is its use of the self-attention

mechanism (or Scaled Dot-Product Attention)(Figure 2.1). The self-attention mechanism takes

the input data and transforms it via linear projection layers into the key, value, and query (K, V,

Q) and uses them to compare input values against their time-stamp or positional encoding. This

mechanism allows the self-attention layer to make representations of global features of the data,

while convolution layers, used in CNNs, only create representations of local features. Addition-

ally, self attention mechanism may be applied multiple times in parallel, with the outputs being

concatenated together to improve performance. This type of attention layer is called a multi-head

self-attention layer, and this is the attention layer that the Transformer architecture utilizes.

The equation for the Scaled-Dot-Product attention mechanism can be defined as:

Attention(Q,K, V) = Softmax(QKT/
√
d)V (2.1)

Where Q, K, and V are the query, key, and value, T is the time-stamp (position) and d is the

dimension of the input. Additionally, masking may be applied, hiding values from the attention

layer, which sometimes improves performance [1].

8

Figure 2.1: Illustration of Attention Mechanisms from Vaswani et. al [1] LEFT: Scaled Dot-
Product Attention. RIGHT: Multi-head attention

The Transformer is made of two blocks, the encoder layer, and the decoder layer (Figure 2.2).

Each block of the network is formed by an Attention layer followed by a fully connected feed

forward network (multi-layer perceptron [MLP]) with residual connections between the operations

of the block. This way, the MLP layer can see both the output of the attention layer and the

unaltered input of the attention layer. For supervised training, inputs are fed into the encoder,

and then the outputs of the encoder are fed into the decoder along with the outputs (labels) of the

training data. The encoder stores the representations of the inputs, and the decoder converts the

output probabilities into the output sequences. Inside the encoder and decoder, the transformer

block is stacked multiple times to form the architecture. For the base Transformer, the encoder is

made of 6 transformer blocks, and the decoder is made of 8 stacked transformer blocks Figure 2.2.

2.1.2 Vision Transformer

In 2021, Dosovitskiy et. al [3] developed a transformer architecture for computer vision tasks,

called the Vision Transformer (ViT). In contrast to CNN models, ViT does not use convolutions

9

Figure 2.2: Transformer architecture from Vaswani 2017 [1]. Inputs are fed into the encoder
layer, which uses multi-head self-attention followed by a feed forward layer. Labels (outputs) are
fed into the decoder layer, as well as the output from the encoder. Finally, the decoder output is
fed into a linear layer with a softmax classifier to produce the output probabilities.

to extract local image features, and therefore reduces the inductive bias in the architecture as com-

pared to CNN models. To reduce inductive bias, ViT takes advantage of self-attention and the

transformer encoder to create representations for global image features, even at low levels in the

architecture. Since the self-attention layer of the Transformer only takes in 1-dimensional data, but

images are 2-dimensional, ViT adds preprocessing layers to make the image data compatible with

the self-attention layer (Figure 2.3). First, the images are turned into non-overlapping ”patches” of

image data by running though a NxN convolution stem with a stride of N (patchify stem), where

N is the patch size. Then, the patches are flattened to produce a 1-dimensional representation of

the image, and a position embedding, and learnable class token (common for NLP tasks) are added

to the patch to closely replicate the structure of language data. After the preprocessing stem, the

10

data is fed into a Transformer Encoder, with layer normalization occurring before attention layer

and MLP layer. Finally, the output of the transformer encoder is fed into an MLP head classifier

layer to make the class predictions.

Figure 2.3: Vision transformer architecture from Dosovitskiy et. al [3]. Images are split into
patches by an initial convolution layer before being flattened and adding position and class embed-
ding. The resulting data is fed into a stack of transformer encoders, followed by an MLP classifier
layer.

One drawback of ViT and Transformer architectures is the large data requirement for pretrain-

ing the network. It is recorded that ViT under-performs CNN architectures when trained and eval-

uated on ImageNet, which contains over 1 million training images, with 1000 unique class-labels

[3]. However, ViT begins to compete with and outperform CNN architectures after pre-training on

large datasets, ImageNet-21k [25] with 21,000 unique class labels, and the proprietary JFT-300M

data-set [26], indicating a reliance on big-data for training transformer models for downstream

tasks. Work is being done to develop more efficient transformers which can acheive high accu-

racy on ImageNet-1k and CIFAR-10 by training from scratch. Cao et. al [27] evaluates different

vision transformer models under various train-from-scratch environments on small datasets (2040

images), adopting a method of pre-training on small data to create less data hungry fine-tuning.

11

Yuan et. al [28] adapts the patchify stem to create overlapping tokens in the images, achieving

83.3% accuracy when trained from scratch on ImageNet, a significant improvement to the base

ViT [3]. However, work on creating less data-hungry ViT models remains in its infancy, allowing

a niche for the present work to contribute.

2.2 Genetic Algorithm

2.2.1 GA overview

The genetic algorithm is a form of population-based optimization algorithms that improves a pop-

ulation of individual solutions simultaneously. The inspiration for this algorithm comes from Dar-

winian survival of the fittest, where only the best suited to survive organisms survive to reproduce.

In a genetic algorithm, individuals are complete solutions to the given optimization problem. Each

individual is evaluated, and assigned a ”fitness” score based on the individual’s performance on

the evaluation. Once all the individuals are given a fitness score, there begins a selection process

to determine which solutions will pass their ”genes” onto the next generation. Parents may be

selected in a variety of selection schemes, such as ”roulette wheel,” where individuals are cho-

sen based on the proportion of the total population fitness that they carry, or ”tournament,” where

solutions are picked out for small tournaments with the highest ranking individuals advancing to

parenthood. After parents are selected, they produce the next generation, or offspring through the

process of recombination or crossover. Through crossover, genes are recombined between parents

so that the portions of the fitness that produce competitive fitness scores are propagated through-

out the population. After recombination, mutation is performed on the individuals to introduce

new genes into the population. Mutation usually occurs at a very small rate, with a gene from a

selected individuals switched out for another gene in the search space. In the genetic algorithm,

mutation allows for exploration of the search space by introducing new genes into the population,

and crossover allows for exploitation of good genes to improve the fitness of the population. At the

end of a set number of generations or fitness evaluations, the best performing individual from the

search is returned as the final solution. The psuedocode of the general-purpose genetic algorithm

12

is presented in Algorithm 1.

Algorithm 1 Genetic Alogorthm. After initializing a fixed number of generations and an initial
population, each individual is evaluated to determine its fitness score. Then, each generation, the
individuals from the population with high fitness scores are selected via selection operators to be
added to the parent pool. Then, parents from the parent pool are chosen for crossover, sharing
genes to create offspring. The offspring undergo mutation, and are then evaluated for their fitness
scores. When the number of offspring matches the population size, the previous population is
removed, and the offspring population takes their place (generational GA). This process occurs for
the number of predefined generations. The highest scoring solution in the search is reported.

n gens ▷ Number of generations
population
while |population| < P do ▷ Initialize and evaluate population

initialize individual
evaluate individual

end while
while generation < n gens do ▷ Perform evolutionary operations

while |offspring| < |population| do ▷ Generational algorithm
sample← Ø ▷ parent candidates
while |samples| < S do

candidate← random element from population
add candidate to sample

end while
parent1, parent2← highest scoring individuals in sample
offspring←= Crossover(parent1, parent2)
offspring←= Mutate(offspring)
offspring.fitness = Evaluate(offspring)
add offspring to population

end while
remove dead from population ▷ Lowest scoring

end while
return highest-scoring in search

2.2.2 Non-Dominated Sorting Genetic Algorithm

The Non-Dominated sorting genetic algorithm II (NSGA-II) is a multi-objective genetic algorithm

originally proposed by Deb et. al [19] as a solution to optimization problems with multiple con-

flicting objectives. NSGA-II is an elitist algorithm, meaning the best solutions are always kept in

the population allowing for each generation to represent an updated pareto frontier, representing

the best trade-offs between the objectives. In addition to elitism, NSGA-II utilizes a fast non-

13

dominated sorting approach, which has a time complexity of O(MN2), compared to NSGA-I,

which utilizes a sorting algorithm with a time complexity of O(MN3) [19], where M is the num-

ber of objectives and N is the population size. This non-dominated sorting algorithm seeks to

retain only each solution that is not dominated by another solution. In order for a solution to be

dominated, it must be defeated on one or more objectives, while defeating the other individual on

no objectives. This way, each solution that is retained represents the best trade-off between the

objectives compared to its neighbors.

In order to determine the best individuals in each population, each solution p is assigned two

values, a domination count, np, which is the number of solutions that dominate p, and S(p), the

set of solutions which p dominates. All the solutions on the domination front have the domination

count, np = 0. Then, for each solution on the first domination count, each member of S(p) is

visited and its domination count is reduced by 1. If any of these members have a domination

count, np = 0, it is placed in a second list, Q, which is the second non-dominated front. Then, the

procedure is done again on list Q until the third non-dominated front is found. In this procedure,

each solution is visited a maximum of N−1 times before its domination count becomes 0, and it is

never visited again. This results in a time complexity of O(MN2). This fast non-dominated sorting

approach is an essential piece of NSGA-II, allowing fast evaluations of each non-dominated front

in the population.

Since NSGA-II is a multi-objective elitist algorithm, in theory, the final population is the best

estimation of the pareto front. However, to produce a useful set of solutions, it is ideal that al-

gorithms are adequately spaced along the pareto front. To accomplish this, NSGA-II utilizes a

unique crowding function, which preserves the diversity of solutions along the non-dominated

front. The crowding function estimates the average density of solutions around each solution in

the non-dominated front to determine the solutions to keep in the population. Each solution has

two metrics used for determining which individuals to keep: 1) the domination rank (which domi-

nation front does the solution belong to), and 2) the crowding distance. This way, for two solutions,

the one in the better ranking domination front is kept, and if they are in the same domination front,

14

the one that is less crowded (largest crowding distance) is kept. This results in an even disper-

sal of solutions across the pareto front, without the need for user tuning of any parameters which

introduce bias.

NSGA-II has become the most widely used multi-objective GA due to its fast time complexity

and efficient domination calculations. Because of these features, NSGA-II is a promising algorithm

for multi-objective optimization, such as the work done in this paper.

2.3 Neural Architecture Search

2.3.1 NAS overview

Neural Architecture Search (NAS) is an automated optimization procedure to design neural net-

work architectures. Traditionally, the best performing neural network architectures are designed

by hand, however, this process requires expert knowledge, often a team of machine learning ex-

perts, along with time, labor, and associated labor costs. Furthermore, a neural network is consid-

ered a black-box or unexplainable form of AI, meaning the representations inside the architecture

are not interpret-able by human practitioners, leaving design decisions up to a guess-and-check

framework. Neural Architecture Search, developed by (Zoph 2016)[4] seeks to eliminate much

of expert-knowledge and manual labor required for designing high-performing neural architec-

tures. The process of NAS involves using a machine-learning based search procedure on a selected

search space which defines network operations and connectivity. NAS can be done on two levels

of the architecture, allowing for design of the overall connectivity of the whole architecture (macro

search space), or searching for small blocks of operations, called cells, which are stacked to form

the final architecture (micro or cell-based search space), mimicking the way many hand-built neu-

ral architectures are designed [29]. Furthermore, a variety of machine-learning algorithms may be

used to sample and evaluate architectures within the search space.

Neural Architecture search can be considered a bi-level optimization problem, where two lay-

ers of the problem are optimized simultaneously. In the outer level of optimization, the search

procedure is used to optimize the individual architecture. During the evaluation phase, the inner

15

Figure 2.4: Illustration of Macro-level architecture from Zoph and Real [5, 6]. LEFT: the
overall structure of the architecture trained on CIFAR-10. Normal cells are alternated with re-
duction cells (Not used in present study) at two depths in the network. Cells are stacked linearly.
MIDDLE: the structure of the normal blocks in the model. Normal cells contain residual con-
nections, allowing each cell to receive input from two cells before it. RIGHT: illustration of a
possible cell from NAS-Net search space. The red circle highlights one operational block, made
up of two operations from hidden states 0 and 1, respectively, combined by an addition operator.
This cell contains 5 blocks with a final combiner.

level of optimization is evoked, where the network is trained and network weights are optimized

to provide a fitness evaluation of each individual. The inner level of optimization is done by some

variation of Stochastic Gradient Descent (SGD), such as Adam or traditional SGD depending on

the types of architectures being evaluated. While this accrues large computation costs, it is the

simplest and most straightforward way to evaluate the success of an individual solution.

One form is Reinforcement Learning [4, 5], which uses a Recurrent Neural Network (RNN)

as the controller to sample architectures from the search space, and the controller is rewarded by

feedback from the environment, which is the training-validation environment. Through rewards

for good architectures, over many iterations, the controller improves the architectures being sam-

pled, until termination criteria are met. This search uses a hand-designed cell-based search space

deemed NAS-Net search space, in which operations are applied in pairs and combined to form

hidden states inside the network. Each cell is made of a fixed number of these operation pairs,

called blocks. For each block, the controller samples two hidden states for input, an operation to

16

Figure 2.5: NAS-Net Search Space from Zoph et. al [5]. Cells are formed via a series of
operational blocks. Blocks are formed by selecting two input hidden states, an operation to be
performed on each state, and a combination operation to produce the new hidden state.

be performed on each hidden state, and a combiner function to combine the states to produce a

new hidden state. Any blocks with no directed output are concatenated together to form the output

of the cell. During hidden state selection, the controller may sample any hidden state before it,

including the output of the previous cell (h[i]) and the output of the cell prior to the previous cell

(h[i− 1]).

Real et. al [6] demonstrated that evolution provides a more efficient search procedure for NAS,

saving GPU costs, while producing an architecture competitive with hand-designed architectures,

and architectures found through reinforcement learning. Furthermore, Real et. al [6] demonstrates

that evolution is effective at searching the NAS-Net search space, as they utilize the same search

space as Zoph et. al, 2018 [5]. In this framework, outer-level optimization is done using a genetic

algorithm (see Genetic Algorithm) where each individual is a cell encoding, and networks are

trained one-by-one to produce a fitness score. Lu et. al [8] takes this a step further by using a multi-

objective genetic algorithm (NSGA-II) to optimize competing objectives, maximizing network

performance while minimizing network size to produce a population of architectures that can be

used across different compute sizes.

17

The implementation of the architecture search for NSGA-ViT is heavily inspired by Lu et. al

[9], who report their discovered architecture (NSGA-Net) in a macro-level architecture search,

in which they use NSGA-II to define the connectivity of an entire network. However, in their

implementation, they include reports of their methodology used on the NAS-Net search space [5].

This paper utilizes their implementation of NSGA-Net on the NAS-Net search space as the basis

for the methodology, i.e. utilizing NSGA-II on the NAS-Net search space, utilizing crossover and

polynomial mutation, and following the same architecture encoding framework.

2.3.2 NAS for Transformers

Although all the previous examples are searching for CNN architectures, So 2019 [11] utilizes

the NAS-Net search space to search for transformer cells that include both multi-head attention

layers and Nx1 convolution operations to extract local features from 1-dimensional linguistic data.

The researchers use a single-objective genetic algorithm to sample the cell-based search space for

both the encoder layer and the decoder layer. Unlike [6], the number of stacked cells in the final

architecture is included in the search space, optimizing the size of the network for the validation

phase. The evaluation stage of the search is performed using WMT’14 data set. The resulting

architecture, known as the Evolved Transformer, uses a combination of 1-dimensional convolutions

and multi-head attention layers to acheive SOTA results on a selection of language tasks. The

success of this method is shown in large language models, as the evolved transformer was used as

the backbone for Gooogle’s Meena chatbot [30].

The search space and implementation of the Transformer encoder for this paper is inspired

heavily from So et. al, who utilize the NAS-Net search space to design cells for the transformer

encoder. Like So et. al, we utilize 4-head, 8-head, and 16-head MHSA layers, as well as a subset

of convolution operations and nonlinearities from the search space. See Appendix A for a list of all

the possible operations in our search space. Additionally, like So et. al, we explore both a ”cold-

start” initialization and a ”warm-start” initialization for the evolutionary search. See Chapter 3 for

more details about the search and the different initialization methods.

18

2.4 Data-Sets

In many NAS frameworks for computer vision, architecture training is done on common bench-

mark datasets for computer vision, such as CIFAR-10, CIFAR-100 [23], and ImageNet [25] [4, 5,

6, 7, 8, 31, 13].

2.4.1 CIFAR-10

CIFAR-10 is a small image dataset that consists of 60,000 32x32 color images, spread evenly

across 10 mutually exclusive classes [23]. The training set consists of 50,000 images, and the test

set consists of 10,000 images, all evenly spread across the classes. The dataset was developed as a

benchmark for low-resolution computer vision tasks. An expanded version, CIFAR-100, contains

60,000 images across 100 unique class labels.

2.4.2 ImageNet

ImageNet was created by Deng et. al as a large-scale image data-set based upon the WordNet on-

tology [32]. ImageNet seeks to populate a majority of the 80,000 wordnet synsets with 50-100 high

resolution images. The result is a hierarchically structured data-set with 3.2 million cleaned and

labeled images spread over 5247 categories. A commonly used subset of ImageNet, ImageNet-1k,

contains 1,281,167 training images, 50,000 validation images, and 100,000 test images, spread

across 1,000 classes. This subset was introduced for the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [33] in 2012, a widely popular and influential computer vision competi-

tion, resulting in the introduction of a number of state-of-the-art computer vision models, such as

AlexNet [20], GoogLeNet [21], Resnet [22], and SENet [34].

Much of the work in NAS for computer utilizes CIFAR-10 as a proxy data-set to predict model

performance on ImageNet during the search procedure. This framework speeds up the search

process to allow for realistic compute-times. This method was first validated by Zoph et. al [4],

and followed in all the previously discusses NAS methods for CNNs.

19

CHAPTER 3

METHODOLOGY

3.1 Overview of NSGA-VIT procedure

NSGA-ViT is an iterative search algorithm that optimizes a group of potential solutions, called the

population. Each candidate solution in the population is called an individual. In each generation,

a subset of the population is chosen to become a parent for the next generation. By utilizing

crossover, the algorithm recombines the parents to form offspring, which compete with the parent

population for survival into the next generation. Each generation, the population is updated with

the best performing individuals from the parents and offspring to create the next population. In

this way, the entire population of solutions is optimized at once, providing a range of potential

candidates that optimize the trade-off between competing objectives.

The NSGA-ViT procedure is a two-step procedure, where in the first step (Search), evolution-

ary search is run to automate the design of the main computational cell in the final architecture.

After search is performed, the second step, Architecture Validation is performed. In Architecture

Validation, the size, weights, learning-rate, dropout, and other hyperparameters of the network are

optimized by hand or simple grid search to maximize the accuracy of the final architecture[13].

3.2 Data Sets

The structure of the Neural Architecture Search (NAS) can be considered a bi-level optimization

problem, in which the outer level of optimization involves using a search procedure to find the

optimum neural architecture, and the inner level of optimization is training the weights of each

candidate architecture. Because of the bi-level nature of the optimization problem, the inner level

20

Architecture Search:
NSGA-II

Fitness Evaluation:

Architecture Evaluation:

NSGA-ViT Procedure

Accuracy

-Train and validate
on CIFAR-10

Size

-Evaluate number
of FLOPS

Cold- Start Warm-Start
CIFAR-10:

- Scale up model size
- Train 200 Epochs
- Determine best model

-Compare against ViT

ImageNet:
- Scale up model size
- Train 100 Epochs
- Compare against ViT

Figure 3.1: NSGA-ViT Procedure: NSGA-ViT is a two step procedure, cosisting of architecture
search and architecture evaluation. Architecture Search is bi-level optimization problem where
architecture configurations are optimized in the outer layer, and connection weights are optimized
via training in the inner layer. Architecture evaluation consists of training and evaluating discov-
ered architectures against each other to determine the best solution, and then comparing against
Transformers in the literature.

of optimization must occur at every step of the search procedure, leading to long run times. In

order to reduce the run times of each search, I have taken steps to reduce the complexity of the

inner optimization problem to ensure faster training.

While ViT networks typically require very large amounts data to perform at the state-of-the-art

level, small datasets like CIFAR-10 are often used as a proxy data-set for predicting ImageNet

performance during architecture search [5, 7, 6]. Additionally, time-to-train is quicker for smaller

data-sets, as they contain fewer examples to train the network, and a smaller resolution. Therefore,

during the search procedure, all networks are trained on CIFAR-10, and resulting architectures are

optimized on CIFAR-10 to produce a train-from-scratch accuracy score. After optimizing the final

architecture on CIFAR-10, we move on to evaluation of train-from-scratch accuracy on the larger

ImageNet (1k) data set.

21

3.3 Designing the Search Space

3.3.1 NSGA-ViT Search Space

The search space for NSGA-ViT is a variant of the Nas-Net search space, defined in Zoph 2017 [5]

(see section 2.3). In this search space, the architecture is designed by stacking cells of operations

and hidden states, to form the final architecture structure. The search space is at the cell - level,

where convolution and attention operations are applied in pairs, and the results are added together.

Each pair of operations and their associated add functions is considered a block, and the output of

each block is a new hidden state. Each block is provided an index in the encoding of the search

space to determine the order of operations (see Encoding). At the end of the cell, any hidden states

with no output are combined via the final combiner function (add or concatenate) to produce the

output of the cell.

3.3.2 Encoding Architectures in the Search Space

Genetic algorithms often do not operate directly on the individual solutions (phenotypes). Instead,

each individual is represented by a genotype, or a simple encoding of the individual that provides

instructions for building the phenotype. Encoding the individuals in this way allows for simple

operations to be performed in order to change each individual throughout the generations [35].

Individuals in NSGA-ViT are encoded using a list of integers to represent the cell in the NAS-

Net search space. Integers are listed in groups of 2, where every group represents a hidden-state

operation and index. Every group of 4 integers represents two hidden states which are added

together. In this encoding, a cell with two blocks (four hidden states) would be represented as:

[[[x1
o, x

1
i], [x

2
o, x

2
i]], [[x

3
o, x

3
i], [x

4
o, x

4
i]]] (3.1)

where every xo represents an operation, and every xi represents the index of the block that serves

as the input for the operation. In this way, the operation numbers define the operations and the

22

indices define the structure of the cell. The cell is then repeated to form the complete architecture

of the network.

3.4 Evolutionary Search Procedure

3.4.1 Genetic Algorithm and Objectives

For the outer-level of optimization, I use a multi-objective genetic algorithm (NSGA-II) to optimize

two criteria in each network. The first criteria is to maximize validation accuracy on CIFAR-10,

and the second is to minimize the number of parameters in the network.

During the search, I use the number of floating-point operations (FLOPS) as an estimator for

the size of the network, following the same procedure as Lu 2019 [8]. Because there are multi-

ple competing objectives, the search produces a final population that estimates the pareto front,

representing the best trade-offs between each objective.

I utilize a multi-objective genetic algorithm, NSGA-II, with binary tournament selection, two-

point crossover, and polynomial mutation. NSGA-II utilizes a special non-dominated sorting al-

gorithm to maintain a diverse population of solutions that are optimized along multiple objectives.

Because individuals are ranked and sorted by their performance on each objective, there is no

need to weight the objectives against each other, removing bias towards one objective from the

evaluation.

Additionally, the chosen evolutionary operations have various benefits for the proposed search

procedure. Utilizing crossover, not common in evolutionary NAS methods[6, 11, 36], allows for

architectures in the population to share genes that contribute to performance on the fitness evalu-

ation. The non-dominated sorting algorithm implemented by NSGA-II preserves solutions closest

to the pareto-front and removes solutions that are defeated on both objectives by another individ-

ual. This mechanism allows for a smooth multi-objective search without the need for weighting

objectives and introducing bias into the fitness evaluation. Mutation is important because it intro-

duces new genes into the gene-pool, allowing for exploration of the search space and preserving

genetic variation in the population. Utilizing tournament selection allows the algorithm to rank

23

architectures on a comparative-basis, eliminating the need for high raw scores on objectives. This

is useful when training small architectures, as the raw accuracy of each network may be low due

to pruning of the network size.

The evolution phase of the optimization procedure uses a population size of 40, and evolves

for 50 generations, resulting in the evaluation of 2000 architectures per search. At the end of each

search, a Pareto front of solutions which optimize accuracy at different computational complexities

is produced. To evaluate the best architectures against networks from the literature, I take the

solution with the highest validation accuracy at the end of the search as the final architecture for

architecture validation.

3.4.2 Random Initialization vs Warm-Starting the Search

There are two main experimental settings in which I run NSGA-ViT to search for candidate archi-

tectures. These two search procedures are (1) a randomly initialized initial population (cold-start),

and (2) a ’warm-start’ where the initial population consists of ViT architectures. Evolutionary

search can be particularly sensitive to initialization, especially when resource or time constraints,

or over-exploitation can limit the portion of the search which is evaluated. With this in mind, I

wanted to compare the effect of initializing randomly with a more ’focused’ search, which cen-

ters around the architecture I wish to improve on. Within each experimental setting, a few preset

parameters are changed to keep each search more cohesive with the current body of research, and

optimize the performance of the common architectures found in each framework.

3.4.3 Cold-Start (Random Initialization)

In the Cold-Start setting, the first population is seeded using random initialization. The result is

a wide diversity of initial architectures, which can be good for forming a diverse Pareto front at

the end of the search. Initial experimentation indicates that because of the random initialization,

this search procedure produces many wide cells which contain many hidden states to be combined

at the end of the cell by the final combiner function. To allow for the network to capture the full

24

complexity of the hidden states, the final combiner function is a concatenation of the hidden state

tensors. In addition, the input embedding size is multiplied by the number of final hidden states to

account for the size of the new concatenated tensor. This parameter is consistent with CNN NAS

frameworks [7, 4, 8, 6]. The solution space in this search tends to be dominated by Multi-Scale

Transformers, where the embedding size of the transformer changes due to the width of the cells,

often scaling up to 3-4 times the initial embedding size.

3.4.4 Warm-Start

To provide a more focused search around modifying and improve the ViT architecture, I test the

effects of ”warm-starting” the search by initializing the first generation of architectures with the

encoding for the ViT architecture. With this initialization, the diversity of individuals is reduced

greatly compared to the random initialization, however, it leverages expert knowledge by seeding

with a well-performing architecture. Specifically, I initialize with ViT because this is the archi-

tecture in which I seek to improve upon, and as mentioned previously, I configured the skeleton

of the network to include the patchify stem, flattening step, position embedding, and class tokens

of the ViT architecture. This technique is inspired by So et. al [11], who record a improvement

of model performance by initializing their search with a population of Transformer architectures

compared to random initialization. To remain consistent with the search parameters set in [11],

any hidden states without output via addition to form the output tensor of the cell. In initial exper-

iments, a large majority of the architectures observed in this setting contain only one final hidden

state, therefore, the final combiner function is not used. However, to remain consistent with So et.

al [11] and the standard Transformer architectures [1, 3], the final combiner function in this setting

is addition.

Additionally, the traditional architecture for ViT contains encoder cells stacked with no skip

connects between each cell. Therefore, each cell only receives input from the cell before it. How-

ever, the encoding scheme in this study allows a hidden state from two cells before before the

current cell, equating to a skip-connect on the macro level. I have included skip-connected hidden

25

state in the search space, and the search procedure may find benefits in including the skip connect

as an available hidden state.

3.5 Architecture Evaluation

3.5.1 Comparing Discovered Architectures

Once Candidate architectures have been gathered from the search, the best architectures from each

search are compared across the same learning conditions. To determine the best performing archi-

tecture, I train each architecture discovered in the search on CIFAR-10, and take the architecture

with the best validation accuracy. During architecture evaluation on CIFAR-10, Networks are

trained for 200 epochs, using Adam optimizer, with a learning rate of 0.0001, no dropout or weight

decay, and Cosine Annealing as the learning rate scheduler. The best performing architecture is

then taken for comparison against ViT networks.

3.5.2 Evaluation on CIFAR-10 and ImageNet

Following Network Evaluation on CIFAR-10, I train NSGA-ViT on ImageNet-1k for 300 epochs,

following training parameters reported by Dosovitskiy et. al [3]. I report the testing accuracy on

ImageNet compared to other networks in the literature with a similar number of parameters. I

utilize a network architecture with 12 layers and an embedding size of 512 for NSGA-ViT training

on ImageNet.

26

CHAPTER 4

RESULTS

4.1 Search Results

During each search iteration, roughly 2000 architectures are evaluated. Since NSGA-ViT is a

multi-objective procedure, the final population of architectures contains an estimation of the pareto

front, representing the best trade-offs between validation accuracy and the smallest parameter size.

After the search, the architecture with the highest validation accuracy is taken as the best architec-

ture to be reported. The search takes 12 GPU days on a single AX5000 GPU.

4.1.1 Cold-Start vs Warm-Start

The Cold-start and warm-start settings are able to achieve comparable results after 50 genera-

tions. Figure 4.1 shows a comparison of NSGA-ViT architectures discovered during the search

procedures. Architectures labeled NSGA-ViT-A were discovered during the cold-start search, and

architectures labeled NSGA-ViT-B were discovered during the cold-start search. NSGA-ViT was

discovered during warm-start. Architectures discovered during the warm-start setting tend to have

a larger parameter size than architectures in the warm start setting with the same number of layers

and input channels due to the increased output dimension of wide cells.

Figure 4.2 shows the accuracy statistics for each generation in the search in the cold-start and

warm-start search settings. The table presents the best error, mean error, median error, and worst

error recorded in each generation. As seen on the table, in both the cold-start and warm-start

settings, the mean error and the best error consistently improves over the course of the search. In

the cold start search the worst error spikes around 10-15 epochs due to the instability of initializing

27

Figure 4.1: Comparison of CIFAR-10 Accuracy and parameter sizes for NSGA-ViT models.
Architectures labeled NSGA-ViT-A were discovered during the cold-start search. Architectures
labeled NSGA-ViT-B were discovered during the cold-start search. NSGA-ViT was discovered
during warm-start. Each architecture was trained for 200 epochs on CIFAR-10 with an architecture
of 6 layers and an input dimension of 512.

randomly, but levels out for the remainder of the search.

Figure 4.3 shows the complexity statistics for generation in the search in the cold-start and

warm-start search settings. The table presents the best complexity, mean complexity, median

complexity, and worst complexity recorded in each generation. All complexities are measured

in floating-point operations (FLOPS), which was used as the estimator for parameter size in the

search. As seen on the table, in the warm-start setting, the mean complexity and the best com-

plexity consistently improves over the course of the search. In the warm-start the best complexity

remains the same over the course of the search, while the worst complexity and mean complexity

actually increase slightly during the search, indicating that the initial ViT model is the smallest

model discovered during the search.

28

(a) CIFAR-10 validation error for Cold-Start setting.

(b) CIFAR-10 validation error for Warm-Start setting.

Figure 4.2: Graph of CIFAR-10 validation error statistics for each generation in the search.
Statistics reported are best error, mean error, median error, and worst error for each generation in
the cold-start and warm-start setting.

29

(a) Complexity metrics for the cold-start search

(b) Complexity metrics for the warm-start search

Figure 4.3: Graph of computational complexity for each generation in each search setting.
Complexity is represented in FLOPS. Architectures in the cold-start setting are initialized with 6
cells, and architectures in the warm-start setting are initialized with 3 cells.

30

4.2 NSGA-ViT Architecture

After validating results against the other architectures discovered in searches, the most robust ar-

chitecture is presented here as NSGA-ViT. The NSGA-ViT cell architecture is presented visually

in Figure 4.4. The NSGA-ViT architecture retains the multi-head attention and FFN layer at the

end of the network from the ViT architecture. However, NSGA-ViT replaces the first half of the

ViT cell with a series of convolution operations, using 3x1, 1x1, and 11x1 separable convolutions.

The architecture also retains the unbroken chain of identity operations from input to output that is

observed in the ViT architecture.

(a) NSGA-ViT Cell

(b) ViT Cell

Figure 4.4: NSGA-ViT Architecture. TOP: NSGA-ViT architecture found in the search. BOT-
TOM: ViT architecture with 8-head MHSA layer. Each cell contains 2 transformer layers, resulting
in 2 MHSA and FFN layers per cell.

4.3 CIFAR-10 Results

This section presents the results of NSGA-ViT architecture evaluation on CIFAR-10. CIFAR-10

training is done for 200 epochs using the Adam optimizer with decoupled weight decay unless

otherwise specified. All networks use the patchify stem with a patch size of 4 unless otherwise

specified. See Appendix C for details on the training parameters.

31

Table 4.1: Parameter size and CIFAR-10 Validation Accuracy for NSGA-ViT and ViT. ViT
implementations all use an 8-head attention layer. Additionally, ViT implementations have 2 trans-
former blocks per cell. Network sizes are reported as (cells @ initial channels). All networks
are trained for 200 epochs unless otherwise specified. ViT with with convolution stem replaces
patchify stem with 4 3x3 convolutions and one 1x1 convolution per Xaio et. al[14]

Arch Params Test Accuracy (CIFAR-10) f1-score
ViT 3 @ 256 5.140229 76.58 -
ViT 6 @ 512 41.008138 81.34 -

ViT (convolution stem)[14] 6 @ 512 42.797130 82.53 -
NSGA-ViT 3 @ 256 5.567242 88.37 -
NSGA-ViT 6 @ 512 44.224522 91.35 -

NSGA-ViT 6 @ 512 (600 epochs) 44.224522 92.35 -
NSGA-ViT 6 @ 512 + reg 44.224522 92.95 0.92

4.4 Comparison Against ViT on CIFAR-10

Table 4.1 shows the train-from-scratch CIFAR-10 test accuracy of NSGA-ViT compared to a tra-

ditional ViT model with 8 heads. NSGA-ViT outperforms ViT at both model sizes on CIFAR-10

by roughly 10% The base ViT size (12 layers, 6 cells in my implementation) with 8 heads achieves

a mild 81.34% validation accuracy on CIFAR-10 after 200 epochs, and contains 41M parameters,

while NSGA-ViT with similar parameter size (44M parameters) performs with 91.35% validation

accuracy after 200 epochs. In addition, the NSGA-ViT small network outperforms ViT base by

roughly 7% with only 5.6M parameters.

NSGA-ViT achieves 92.95% train-from-scratch validation accuracy on CIFAR-10 when trained

for 200 epochs using Adam with a weight decay of 0.3, learning rate of 0.0001 with cosine an-

nealing learning scheduler. Contributing to this performance was a high regularization, including

a dropout probability of 0.2, image cutout, and gradient clipping at global norm 1. Interestingly,

adding heavy regularization improves performance more than increasing training time from 200

epochs to 600 epochs, as shown in Table 4.1. NSGA-ViT also achieves an f1-score of .92, indicat-

ing good precision and recall.

32

Table 4.2: Comparison of ImageNet Testing Accuracy. All Transformer architectures and their
train-from-scratch results on ImageNet-1k are reported from the literature, except ours (NSGA-
ViT). Transformers are generally labeled S for small configuration, and B for base configuration,
and labeled with the number of layers, where applicable.

Model Params (M) ImageNet Accuracy
CvT-21 [37] 32.0 82.5

T2T-ViTt-19 [28] 39.0 81.4
ResNet101 [22] 44.7 77.4

Swin-S [38] 50.0 83.0
NesT-B [39] 68.0 83.8

DeiT-B/16 [40] 86.6 81.8
ViT-B/16 [3] 86.6 79.8

ViT-8 6 @ 512 43.5 66.7
NSGA-ViT 6 @ 512 45.2 73.5

4.4.1 Confusion Matrix on CIFAR-10

Figure 4.5 Shows the Confusion Matrix for ViT on CIFAR-10 testing. Results are fairly even across

classes with the largest confusion between cats and dogs. The class that was correctly classified

the most was car with 97% accuracy, and the classes plane, car, frog, horse, ship and truck have

similarly high accuracy.

4.5 ImageNet Results

Table 4.2 shows a comparison of size, FLOPS, and train-from-scratch accuracy on ImageNet-1k

between NSGA-ViT and other Transformers from the literature. Although different configurations

are available, architectures with similar parameter sizes to NSGA-ViT are chosen, as well as the

base configuration of various transformers, which tend to be larger. As demonstrated, NSGA-ViT

outperforms the ViT configuration of similar size (our ViT implementation, 8-heads, 6 cells, 512

embedding dimension) utilizing the same training parameters. However, both 8-head ViT and

NSGA-ViT under-perform other ViT architectures in the literature in a train-from-scratch setting.

Many of these transformers utilize hand-designed alterations to the ViT architecture, i.e. adapting

the stem to include shifting windows [38] or recursively aggregating neighboring tokens into one

token [28]. Additionally most of these methods utilized more advanced training techniques such as

33

Fi
gu

re
4.

5:
C

on
fu

si
on

M
at

ri
x

fo
r

N
SG

A
-V

iT
on

C
IF

A
R

-1
0.

N
SG

A
-V

it
ou

tp
er

fo
rm

s
V

iT
on

C
IF

A
R

-1
0

w
he

n
tr

ai
ne

d
fr

om
sc

ra
tc

h,
ac

hi
ev

in
g

re
la

tiv
el

y
ba

la
nc

ed
pe

rf
or

m
an

ce
ac

ro
ss

cl
as

se
s.

T
he

la
rg

es
tc

on
fu

si
on

be
tw

ee
n

cl
as

se
s

ca
n

be
se

en
be

tw
ee

n
ca

ts
an

d
do

gs
.

34

utilizing a CNN teacher for learning token distillation [40] or utilizing advanced regularization and

data-processing techniques, such as Mixup, augmented regularization, or altering the way postition

and class tokens are generated in the network [13, 37, 28, 38, 39, 40]

4.6 Discussion

This section contains a discussion the results gathered from NSGA-ViT.

4.6.1 Evaluating Search Results

Figure 4.1 Shows a comparison of size and performance for all the architectures found in the

search. As Shown, each search produced models that perform similarly on CIFAR-10. One no-

table difference is a performance of roughly 83% accuracy for NSGA-ViT-B, however, this search

terminated early after roughly 600 fitness evaluations. Another notable feature is that searches in

the ”warm-start” setting produced final models with roughly 50% more parameters than architec-

tures in the warm start. As seen in Appendix A, each search produced a substantially different

architecture, indicating that a variety of architectures perform similarly in the evaluation stage.

This hints at the potential for a wider variety of successful transformer-based models, either NAS

discovered or handmade, in the future.

Cold Start vs. Warm-Start: Additionally, Figure 4.3 and Figure 4.2 show the graphs of accuracy

and complexity metrics across generations in the search. In the cold start search, we can see that the

best, worst, mean, and median metrics for both accuracy and size improve throughout the duration

of the search, with an outlier architecture occurring between 10 and 15 epochs. However, when

we examine the performance of the best architecture in each generation, we can see only a small

improvement of 2-4% from beginning to end in the search. Although the best accuracy and size see

only a small improvement throughout the search, The architectures with the best accuracy generally

are the largest architectures, so a significant improvement from 3.0 MFLOPS to 1.5 MFLOPS from

beginning to end is substantial if we consider this correlation with high accuracy. Interestingly, due

to the high variety of architecture configurations, crossover operates less as an exploitative operator

35

and more as a large ”jump” mutation. This is because the exact good genes cannot be determined

without predictive analytics or ablation studies, and deep learning models tend to be unstable,

meaning a small change to the architecture can result in a large difference in performance. Because

NSGA-ViT is elitist, and as such tends to be highly exploitative, risking becoming trapped in local

optima. However, because crossover acts as large jumps in the configuration of an architecture, the

algorithm may be able to effectively escape a local optimum.

In the warm-start search, the initial population was made up of ViT architectures. This means

that mutation plays a large role in producing new architectures early in the search. We can see from

the graph of validation error (Figure 4.2), that quick improvements are made early in the search,

indicating the effectiveness of the selection operator in picking effective solutions to advance gen-

erations. By halfway through the search the best and worst accuracies level out, remaining rela-

tively constant through the end of the search. During this time however, the rest of the population

continues to improve, indicated by the improvement in mean and median Since models produced

in the warm-start are less genetically diverse than in the cold-start setting, crossover works in an

exploitative manor, especially early on, recombining many identical elements while introducing

small variations to the parent architectures. This feature may contribute to the significant improve-

ments seen early on in the search. Examining the graph of complexity in the warm-start search,

we can see that the complexity of architectures in each generation actually increases slightly. This

may be because the ViT cell that initializes the search is a 5-block cell, containing an extra skip

connection compared to the standard 4-block ViT to keep the number of blocks consistent across

the searches. This extra block of skip-connections allows for the architecture to be complexified

by replacing the connections with operations, a design decision I feel is validated, as including

an extra skip connect allows for a more sophisticated layer of operations to potentially replace

the complex MHSA layer. Even so, the worst size in each generation only increases by about 0.5

MFLOPS from beginning to end of the search, indicating that NSGA-ViT successfully evaluated

architecture along both objectives.

36

4.6.2 Optimizing for Small Data-Sets

The NSGA-ViT process successfully optimizes a ViT network tailored for small datasets. By

utilizing CIFAR-10 performance as an evaluation metric for the search, models that perform well

with small data outperform models that may have performed better on larger datasets. While this

leaves the ability to scale the model up to question and experimentation, models are produced with

a low-risk for over-fitting small datasets, a significant gap in the literature to be filled [24, 27,

13]. Specifically, the models perform well on the dataset used for evaluation during the search,

outperforming ViT by nearly 10% in our largest configuration. This indicates the potential for

various future experiments searching on datasets with higher resolution images, like subsets of

ImageNet to gather models that perform well with higher resolution images in small samples.

Looking at the Confusion Matrix for ViT on CIFAR-10 (Figure 4.5), we can see that NSGA-

ViT has fairly even class distribution across classes, indicating a well balanced model. However,

there is a relatively large confusion between two classes, dog, and cat, animals with similar fea-

tures. This indicates that NSGA-ViT may not be representing distinguishing features thoroughly

enough and relying more on global feature representation to make decisions (i.e. small size, 4 legs,

etc.). Regardless, The significant improvement over ViT, which contains no local feature represen-

tation, indicates that some features are being represented in NSGA-ViT which are not featured in

ViT.

4.6.3 ImageNet Discussion

Though training for NSGA-ViT follows the training procedure outlined by Dosovitskiy et al. [3],

utilizing a learning rate of 0.0001 with the Adam optimizer and cosine annealing scheduler, as well

as a warmup period of roughly 10 epochs, NSGA-ViT vastly underperforms other transformers on

ImageNet training. Additionally, NSGA-ViT underfits the dataset, indicating that adding regular-

ization (as done for CIFAR-10) is not a promising solution for improving ImageNet performance.

However, examining the configuration of NSGA-ViT may reveal essential elements that hinder

succsess on ImageNet. The first is that the search procedure was done on CIFAR-10, training

37

networks on a small data-set of low-resolution images. The result is an architecture optimized for

low-resolution images, not guaranteeing success on higher-resolution images.

The second feature of NSGA-ViT that may be hindering its success on ImageNet is related to

the size of the MHSA layer and input dimension. NSGA-ViT was configured for 32x32 images on

ImageNet. Thus, with an MHSA with 16 heads and an input dimension of 512, each head in the

attention layer, resulting in 32 pixels (i.e. one whole image) being fed to each head in the attention

layer. However, the base ViT configuration contains 12 heads in the MHSA layer and an input

dimension of 768, resulting in 64 pixels being sent to each head of the attention layer. ImageNet

images are processed with a resolution of 224x224 and ViT uses a patch size of 16, resulting in 4

patches being sent to each attention head. However, in NSGA-ViT, only 2 patches are sent to each

attention layer, which may not be enough to determine global features from the images. This can

be solved by increasing the input dimension of NSGA-ViT to 1024, resulting in the same number

of pixels being sent to each attention head, but this will increase the parameter size of the model.

Unfortunately, utilizing one GPU for training on ImageNet limits my ability to train under this

parameter setting, and further experimentation may be reserved for future work. See chapter 5 for

further discussion of future work on ImageNet training.

38

CHAPTER 5

CONCLUSION

This paper proposes NSGA-ViT, an evolutionary NAS algorithm for optimizing Vision Trans-

former Architectures. NSGA-ViT utilizes a multi-objective genetic algorithm to optimize Trans-

former architectures for performance and computational complexity.

The resulting NSGA-ViT architecture utilizes a combination of 1-dimensional convolutions,

multi-head attention mechanisms, and feed-forward layers to produce a Vision Transformer archi-

tecture that acheieves 92.35% testing accuracy on CIFAR-10 when trained from scratch. Addi-

tionally, NSGA-ViT contains only 47M parameters, roughly half the size of ViT Base, defined by

Dosovitskiy et. al [3], which contains roughly 86M parameters. Additionally, NSGA-ViT outper-

forms the 8-head ViT implementation, containing roughly 44M parameters, by 12% on CIFAR-10,

and NSGA-Vit Small outperforms ViT by 7% while containing only 5M parameters.

On ImageNet training, NSGA-ViT under-performs ViT and other transformers, most likely due

to the reduced number of pixels being sent to each MHSA head, compared to ViT.

5.1 Limitations

5.1.1 Computational Resources

This study contains a number of limitations due to computational resource constraints. One limi-

tation is the paper only evaluates performance on image classification tasks, and therefore, results

cannot be generalized to other computer vision tasks, such as object detection or specialized image

recognition tasks. Another limitation of the study is the lack of computational resources avail-

able during experimentation. All experiments were done on a single NVIDIA AX5000 GPU. In

39

contrast, many NAS and transformer training paradigms utilize a number of GPUs with data par-

allelism to speed up training time [5, 3, 6, 13]. With only one GPU, training for 300 epochs takes

30 days, so searching architectures on ImageNet for better performance predictions was infeasible,

and performing hyperparameter tuning on ImageNet for architecture evaluation was restricted to a

minimum.

Additionally, increasing the input embedding to improve imagenet training is limited by the

GPU size. A discussion of future work to tune hyperparameters for ImageNet training is presented

in Future Work. However, NSGA-ViT performs well on the CIFAR-10 data-set when trained from

scratch, allowing low-resource fine-tuning for other small data-sets [27].

5.1.2 Not Generalized to Other Search Spaces

Furthermore, the search procedure was limited to a specific hand-designed search space, and results

cannot be generalized to search space with different operations. Adding more operations to the

candidate operations increases the generalizability of the search space, but increases the search

space size by an order of magnitude. Since a search of 2000 architectures only covers a fraction of

the search space, increasing the size of the search space results in a less robust exploration of the

space.

5.2 Future work

5.2.1 Expanding the Search Space

Results for the current study are not generalizable to different search spaces. Because of this, future

work may be done applying a similar framework on different search spaces. The NSGA-ViT search

space uses attention, convolution, separable convolution, and nonlinearities in the search space. So

2019 [11] includes lightweight convolutions, originally proposed by Wu 2019 [41]. As the name

suggests, lightweight convolutions are lightweight (low-memory) convolution blocks that were

developed as an alternative to attention layers. Including these in the search space may contribute

to smaller models, helping the search to produce models that score well on the size objective.

40

Further, many parameters of the NSGA-ViT transformer were designed by hand, such as the

number of layers, input dimension, hidden layer size in feed-forward networks, and patch size.

Some of these parameters were set based on expert knowledge, such as a small patch size on

CIFAR-10 networks, since many studies indicate that smaller patch sizes improve performance on

ViT networks [3, 27, 37]. However, some of these parameters, such as size, input dimension, and

hidden layer size may be included in the search space, resulting in an algorithm which requires less

expert knowledge to design the final algorithm. There are various stem configurations available in

the literature, such as Wu’s including replacing the patchify stem with a small convolution stem

[37], or utilizing a stem using overlapping patches, demonstrated by Liu et al. [38]. It may be

possible to include an encoding for several different stem configurations in the architecture search,

leading to a more robust automation of the design process.

Additionally, the search may be configured to to handle variable length encoding, as done by

So et. al [11], who leave the number of blocks as a variable in the encoding, as well as encoding for

input and output dimension of every operation. Expanding the search space in this way may lead to

difficulty utilizing certain types of crossover in a many evolutionary computing packages, however,

as presented by He 2021 [29], crossover is generally considered non-essential in evolutionary

neural architecture search. furthermore, the length of the encoding could be expanded to include

an individual encoding for every cell of the network, allowing a certain level of control over the

macro architecture.

All of the mentioned additions to the search space will increase the size of the space by orders

of magnitude, and therefore will require further methods to be taken to improve the efficiency or

speed of the search to ensure a robust optimization within the search space.

5.2.2 Increasing Search Speed

All searches in NSGA-ViT were completed on a single NVDIA AX5000 GPU with no data paral-

lelism. Because of this, only one architecture could be trained at a time, meaning fitness evaluation

is a bottleneck for the evolutionary search. In the future, there are various options available to

41

increase the speed of the search, although some may result in less valid fitness evaluations.

The first and most simple method would be to eliminate the resource constraints. By utilizing

data parallelism and multiple GPUs, training can be performed on multiple networks simultane-

ously, reducing the time required to evaluate an entire population. Furthermore, Surrogate Assisted

NAS utilizes machine learning algorithms which estimate the fitness of each individual, eliminat-

ing the need for training of every model, which may speed up evaluation signifigantly. However,

this method requires a data-set of architectures to train the surrogate algorithm, which may not be

available, applicable (valid), or require significant initialization time if done from scratch.

5.2.3 Hyperparameter Tuning for ImageNet training

In this study, only one set of hyperparameters were used for training on ImageNet. I followed the

ImageNet-1k training parameters set by Dosovitskiy et. al [3], e.g. Adam learning rate, learn-

ing rate of 0.0001, cosine annealing scheduler, linear warm-up, and high weight decay of 0.3.

However, training under these parameters leads to NSGA-ViT under-fitting the data-set. Possi-

ble improvements to the training scheme to be done in future work could be altering the learning

rate scheduler (cosine annealing, linear, hybrid) and maximum learning rate, as fine-tuning these

parameters is essential for effective training. Further, I followed Dosovitskiy et. al in utilizing a

high weight decay, anticipating overfitting, however, this parameter could be dialed back to eval-

uate its effect on the results. Further, image augmentation schemes which have become popular

for ViT training, such as Mixup and CutMix are not supported by the version of pytorch used

for this project, and future implementations may include these new data processing steps to assist

with training [27]. As shown in ?? when training a similar sized ViT configuration with standard

training parameters, it under-performs NSGA-ViT and state-of-the-art transformer models. This

indicates that more advanced training procedures, utilized in most of these models [40, 39, 38, 28]

is essential for achieving successful training in ImageNet-1k.

In addition, parameters that may be adjusted are the number of heads in the MHSA layers and

the embedding dimension. Having the right ratio between image size, embedding size, and number

42

of attention heads is crucial for ensuring effective global representations in the network [3, 15].

In this study, the network size was configured for CIFAR-10, with NSGA-ViT utilizing 16-head

attention layer (Figure 4.4) and an embedding size of 512, resulting in each head getting 32 pixels

fed into it. However, this configuration may not be ideal for an image with 224X224 resolution.

Dosovitskiy [3] uses a ratio of 764 embedding size for 8 heads in the attention layer, resulting in

64 pixels per layer. Adjusting the embedding size for future parameter tuning on ImageNet may be

effective for increasing its performance, however, this increases the size of the network to roughly

167M parameters.

43

REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information Processing
Systems, I. Guyon et al., Eds., vol. 30, Curran Associates, Inc., 2017.

[2] “Language models are few-shot learners,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, Curran
Associates, Inc., 2020, pp. 1877–1901.

[3] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition
at scale,” in International Conference on Learning Representations, 2021.

[4] B. Zoph and Q. Le, “Neural architecture search with reinforcement learning,” in Interna-
tional Conference on Learning Representations, 2017.

[5] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for
scalable image recognition,” pp. 8697–8710, Jun. 2018.

[6] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image classifier
architecture search,” 2019, p. 19.

[7] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture search,” in Inter-
national Conference on Learning Representations, 2019.

[8] Z. Lu et al., “Nsga-net: Neural architecture search using multi-objective genetic algorithm,”
ser. GECCO ’19, Prague, Czech Republic: Association for Computing Machinery, 2019,
pp. 419–427, ISBN: 9781450361118.

[9] “Multiobjective evolutionary design of deep convolutional neural networks for image clas-
sification,” IEEE Transactions on Evolutionary Computation, vol. 25, pp. 277–291, 2 Apr.
2021.

[10] K. T. Chitty-Venkata, M. Emani, V. Vishwanath, and A. K. Somani, “Neural architecture
search for transformers: A survey,” IEEE Access, vol. 10, pp. 108 374–108 412, 2022.

[11] D. So, Q. Le, and C. Liang, “The evolved transformer,” in Proceedings of the 36th In-
ternational Conference on Machine Learning, K. Chaudhuri and R. Salakhutdinov, Eds.,
ser. Proceedings of Machine Learning Research, vol. 97, PMLR, Sep. 2019, pp. 5877–5886.

[12] X. Shi, P. Zhou, W. Chen, and L. Xie, Darts-conformer: Towards efficient gradient-based
neural architecture search for end-to-end asr, 2021. arXiv: 2104.02868 [cs.SD].

[13] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers in
vision: A survey,” ACM Computing Surveys, vol. 54, no. 10s, pp. 1–41, Jan. 2022.

44

https://arxiv.org/abs/2104.02868

[14] T. Xiao, M. Singh, E. Mintun, T. Darrell, P. Dollar, and R. Girshick, “Early convolutions help
transformers see better,” in Advances in Neural Information Processing Systems, vol. 34,
Curran Associates, Inc., 2021, pp. 30 392–30 400.

[15] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, Scaling vision transformers, 2022. arXiv:
2106.04560 [cs.CV].

[16] X. Chen, S. Xie, and K. He, An empirical study of training self-supervised vision transform-
ers, 2021. arXiv: 2104.02057 [cs.CV].

[17] T. Wolf et al., Huggingface’s transformers: State-of-the-art natural language processing,
2020. arXiv: 1910.03771 [cs.CL].

[18] A. Paszke et al., Pytorch: An imperative style, high-performance deep learning library,
2019. arXiv: 1912.01703 [cs.LG].

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective ge-
netic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2,
pp. 182–197, 2002.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Advances in Neural Information Processing Systems, F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25, Curran Associates, Inc., 2012.

[21] C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[23] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for advanced research),”

[24] A. Hassani, S. Walton, N. Shah, A. Abuduweili, J. Li, and H. Shi, Escaping the big data
paradigm with compact transformers, 2022. arXiv: 2104.05704 [cs.CV].

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009, pp. 248–255.

[26] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness of
data in deep learning era,” in 2017 IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 843–852.

[27] Y.-H. Cao, H. Yu, and J. Wu, “Training vision transformers with only 2040 images,” in
Computer Vision – ECCV 2022, S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T.

45

https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/2104.02057
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2104.05704

Hassner, Eds., Cham: Springer Nature Switzerland, 2022, pp. 220–237, ISBN: 978-3-031-
19806-9.

[28] L. Yuan et al., “Tokens-to-token vit: Training vision transformers from scratch on imagenet,”
in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 538–
547.

[29] X. Chen, S. Xie, and K. He, “An empirical study of training self-supervised vision trans-
formers,” pp. 9620–9629, Oct. 2021.

[30] D. Adiwardana et al., Towards a human-like open-domain chatbot, 2020. arXiv: 2001.09977
[cs.CL].

[31] P. Ren et al., “A comprehensive survey of neural architecture search: Challenges and solu-
tions,” ACM Computing Surveys, vol. 54, 4 Jul. 2021.

[32] C. Fellbaum, WordNet: An Electronic Lexical Database. Bradford Books, 1998.

[33] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” International
Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[34] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.

[35] J. H. Holland, “Genetic algorithms and adaptation,” in Adaptive Control of Ill-Defined Sys-
tems, O. G. Selfridge, E. L. Rissland, and M. A. Arbib, Eds. Boston, MA: Springer US,
1984, pp. 317–333, ISBN: 978-1-4684-8941-5.

[36] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey on evolutionary
neural architecture search,” IEEE Transactions on Neural Networks and Learning Systems,
Feb. 2023.

[37] H. Wu et al., “Cvt: Introducing convolutions to vision transformers,” in 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 22–31.

[38] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using shifted windows,” in
2021 IEEE/CVF International Conference on Computer Vision (ICCV), Los Alamitos, CA,
USA: IEEE Computer Society, Oct. 2021, pp. 9992–10 002.

[39] Z. Zhang, H. Zhang, L. Zhao, T. Chen, S. Ö. Arik, and T. Pfister, “Nested hierarchical
transformer: Towards accurate, data-efficient and interpretable visual understanding,” Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 3, pp. 3417–3425,
Jun. 2022.

46

https://arxiv.org/abs/2001.09977
https://arxiv.org/abs/2001.09977

[40] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jegou, “Training data-
efficient image transformers; distillation through attention,” in Proceedings of the 38th Inter-
national Conference on Machine Learning, M. Meila and T. Zhang, Eds., ser. Proceedings
of Machine Learning Research, vol. 139, PMLR, 2021, pp. 10 347–10 357.

[41] F. Wu, A. Fan, A. Baevski, Y. Dauphin, and M. Auli, “Pay less attention with lightweight and
dynamic convolutions,” in International Conference on Learning Representations, 2019.

[42] D. Hendrycks and K. Gimpel, Gaussian error linear units (gelus), 2023. arXiv: 1606.08415
[cs.LG].

47

https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415

Appendices

APPENDIX A

SEARCH DETAILS

A.1 Candidate Operations

The following is a list of the candidate operations utilized in the search space.

• 4-head self-attention

• 8-head self-attention

• 16-head self-attention

• Feed-Forward Network

• Skip connection

• GELU [42]

• 1x1 convolution

• 3x1 convolution

• 3x1 depth-wise separable convolution

• 5x1 depth-wise separable convolution

• 7x1 depth-wise separable convolution

• 9x1 depth-wise separable convolution

• 11x1 depth-wise separable convolution

A.2 Evolution

NSGA-II is used to optimize competing objectives, the validation accuracy on CIFAR-10, and

minimizing the number of floating point operations (FLOPS) in the network. Evolution is run

for 50 generations, with a population size of 40 (2000 fitness evaluations), and survival selection

between both children and offspring. Since NSGA-II is an elitist search, the best architectures

always remain in the population.

49

Selection. Parent selection is done though tournament selection with size = 2. parents are

selected at random for the tournament, and the highest ranking individual always wins.

Crossover NSGA-ViT utilizes 2-point crossover with a probability of 0.9. [8] demonstrates

the effectiveness of crossover in NAS using NSGA-II, while traditional methods typically only use

mutation for child production. I include crossover to remain consistent with [8].

Mutation. Polynomial mutation with integer rounding is used at a probability of 0.02. This

mutation has a higher likelihood to exchange an integer in the genome for a close value, and a

lower likelihood to mutate to a value further away.

Survival survival selection is done in a µ + λ schema, meaning the selection pool consists of

parents and children. All the individuals are sorted and ranked based on their performance on the

objectives, and a crowding metric is used to preserve diversity across the pareto-front. The best

performing individuals move onto the next generation in an elitist fashion.

A.3 CIFAR-10

To carry out architecture search, I hold out half the CIFAR-10 training data as a validation set.

A small network of 3 cells with an initial embedding dimension of 256 is trained using Adam

for 20 epochs for each architecture in the search. CIFAR-10 training during the search allows for

a reduced training time, and Zoph et al. [5] indicated that performance on CIFAR-10 is a good

estimator of performance on larger datasets, such as ImageNet.

A.4 Architecture Details

During search, all networks are implemented with 3 layers and an initial embedding dimension of

256. During cold-start search, the embedding dimension increases proportionally to the width of

the cell, as final hidden states are concatenated together. each cell is initialized with 5 blocks. In

the warm-start search, a 5 block ViT implementation is used for the initialization, where the first

block consists of skip-connections from the input. This implementation allows for more possible

architectures while retaining essential parts of the ViT architecture.

50

Per Vaswani and Dosovitsky, [1, 3] Feed Forward operations in the search pool are imple-

mented using 1x1 Convolution projections rather than linear layer embeddings. All FFNs in the

search operations use two layers with GELU nonlinearity on the hidden layer. Embedding sizes

for the input, hidden layer, and output, are (N, 4N,N) where N is the embedding dimension.

Additionally, the base ViT network from Dosovitskiy et. al [3] utilizes 12 heads and 12 layers

with an embedding dimension of 768, resulting in a network with 86M parameters. Due to resource

limitations, particularly, using 1 GPU, ViT networks are all implemented with 8-heads and either

256 channels or 512 channels depending on the network depth.

51

APPENDIX B

NSGA-VIT ARCHITECTURES

This section presents visualizations of all the NSGA-ViT architectures found in the experimental

procedure. NSGA-ViT-A architectures were discovered in the cold-start setting, and NSGA-ViT-B

cells were found in the warm-start setting.

52

(a) NSGA-ViT

(b) NSGA-ViT-B

(c) NSGA-ViT-B2

(d) NSGA-ViT-A

(e) NSGA-ViT-A2

Figure B.1: Architectures Discovered in NSGA-ViT

53

APPENDIX C

ARCHITECTURE EVALUATION DETAILS

C.1 Data-sets and Processing

C.1.1 CIFAR-10

During CIFAR-10 training, images use a size of 32X32 and are processed using random horizontal

flip and random rotation, as well cutout where applicable. Batches of 128 images are used for

training and validation.

C.1.2 ImageNet

ImageNet images are cropped using a random center crop of size = 224X224 and processed using

random horizontal flip, random rotation, and cutout, where applicable. Batches of 64 images are

used for training and validation.

C.2 Training Parameters

This section presents the parameters used for architecture validation.

Config epochs optim lr scheduler dropout cutout decay data
3 @ 256 200 AdamW 0.0001 cosine - - - CIFAR-10
6 @ 512 200 AdamW 0.0001 cosine - - - CIFAR-10
6 @ 512 200 AdamW 0.0001 cosine 0.2 16 0.3 CIFAR-10
6 @ 512 600 AdamW 0.0001 cosine 0.2 - 0.3 CIFAR-10
6 @ 512 100 AdamW 0.0001 cosine 0.1 - 0.1 ImageNet
6 @ 512 300 AdamW 0.0001 cosine 0.1 - 0.1 ImageNet

Table C.1: Configurations and parameters for architecture training. Configurations are presented
as cells @ init channels. lr stands for learning rate, and decay refers to weight decay in Adam

54

APPENDIX D

IMPLEMENTATION DETAILS

D.1 Software Implementation

Architecture Search and Validation are implemented in python using Pytorch, Torch Vision, and

Pymoo package for implementing NSGA-II. The code for training and implementing models is

inspired by and modified from (Liu 2019) [7] and code for performing NAS is inspired by and

modified from Lu et.al [8]. All Transformer architectures are implemented by modified code from

PyTorch source code [18], utilizing the VisionTransformer class as the blueprint for the network

backbone, including the patchify or convolution stem, image flattening, positional embeddings,

and class tokens. Code for this paper can be found at https://github.com/drewbecker02/nsga-vit/.

D.2 Experimental Equipment

Training and Search were performed on a single NVIDIA AX5000 GPU. Training during search

is performed with 8 workers, and validation during search is performed with 4 workers.

55

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 | Introduction and Summary
	Introduction
	Motivations
	Summary
	Contributions

	2 | Related Work
	Transformer Models and Self- Attention
	Genetic Algorithm
	Neural Architecture Search
	Data-Sets

	3 | Methodology
	Overview of NSGA-VIT procedure
	Data Sets
	Designing the Search Space
	Evolutionary Search Procedure
	Architecture Evaluation

	4 | Results
	Search Results
	NSGA-ViT Architecture
	CIFAR-10 Results
	Comparison Against ViT on CIFAR-10
	ImageNet Results
	Discussion

	5 | Conclusion
	Limitations
	Future work

	References
	Appendices
	A | Search Details
	B | NSGA-ViT Architectures
	C | Architecture Evaluation Details
	D | Implementation Details

