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Abstract

Job mobility has many overlapping determinants that are hard to characterize solely

on the basis of industry or occupation transitions. Workers may match with, and move

to, particular jobs on the basis of match quality, preferences, human capital, and mobility

costs. This paper implements a novel method based on complex network analysis to describe

how workers move from job to job. Using data from the Panel Study of Income Dynamics

(PSID), I find first that the labor market is composed of four distinct segments between

which job mobility is relatively unlikely. Second, these segments are not well-described

on the basis of industry, occupation, demographic characteristics, or education. Third,

mobility segments are associated with earnings heterogeneity, and there is evidence of positive

assortative matching across segments. Fourth, the boundaries to job mobility are counter-

cyclical: workers move more freely when unemployment is low.

Keywords: Job Mobility, Complex Networks, Job Matching

1. Introduction

The flexibility with which workers move between different types of employment affects

many economic outcomes, including earnings inequality (Autor and Dorn 2013), the persis-

tence of unemployment (Şahin et al. 2012), and individual earnings growth (Gathmann and

Schoenberg 2010). Recognizing this, economists are devoting renewed attention to models
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in which workers can not or do not move with between employment opportunities because

of mismatch, incomplete portability of skills, imperfect information about job opportunities,

or because of institutional barriers. A growing literature suggests the factors constraining

mobility are more complex than can be revealed through coarse industry or occupation cat-

egories (Neal 1999; Pavan 2011; Neal 1995; Yamaguchi 2010; Sullivan 2010). However, data

limit our ability to use less coarse categories, or to study transitions across combined industry

and occupation groups.

This paper introduces a new method, using tools of network analysis, to find the bound-

aries of labor market mobility using data on observed job transitions. A common implication

of models of imperfect mobility is that there are groups of jobs amongst which transitions

are relatively likely, and other groups amongst which transitions are relatively unlikely. Sat-

tinger (2006) emphasizes that overlapping labor markets are a common implication of models

in which workers and firms match on the basis of productive characteristics. Workers try

to match with specific jobs, but because of search frictions, they occasionally move between

different markets (Postel-Vinay and Robin 2002; Shimer 2005; Şahin et al. 2012). The bound-

aries to mobility therefore exist, but are porous. The empirical challenge this paper confronts

is to find labor market boundaries from data on job mobility in a manner that accounts for

the fact that workers can move across those boundaries.

Network analysis provides a solution to this conceptually and computationally challenging

problem. I represent job mobility as a network of connections between workers and employers

that evolves over time as people move from job to job. This network should be densely

connected among jobs between which it is easy to move, and sparsely connected among

jobs that lie across labor market boundaries. In complex network analysis, the need to

find densely connected groups of nodes arises in many applications, and is referred to as a

problem of “community structure detection”. I apply a well-developed method for detecting

community structure in a general network, modularity maximization (Girvan and Newman

2002; Blondel et al. 2008), to find labor market boundaries in the PSID. Figure 1 illustrates

the approach, which is described in detail in Section 2. Nodes in the figure correspond to
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jobs defined as unique pairs of finely-detailed industry-occupation codes. Whenever a worker

has held both jobs, they are connected. I find labor market boundaries around four groups

of jobs. I use a similar method to characterize the groups of workers that are matched to

these groups of jobs.

To address the key question of how this method compares to the more conventional

strategy of analyzing industry and occupation transitions, I define a measure based on the

concept of homophily. This measure defines how much mobility is observed within groups

relative to what would be expected if job matching were random. The analysis generates

three main results. First, the boundaries revealed by my network approach are much stronger

than boundaries based on industry, occupation, or industry-occupation pairs. Second, there

is very little sorting on the basis of observable demographic characteristics across labor

market boundaries. Third, the boundaries to mobility are associated with specific types of

industry-occupation combinations that are intuitive, but difficult to predict in advance.

I go on in Section 5 to show how the network-based approach fares in two applications for

which good measures of labor market boundaries are essential. First, I consider mismatch

unemployment, and show that workers are less likely to cross labor market boundaries when

unemployment is high. Next, I develop a complementary analysis of assortative matching –

who matches with whom. I show that the groups of jobs and workers revealed on the basis

of mobility patterns are distinguished by a significant amount of earnings heterogeneity.

Workers who earn more on average tend to be employed in jobs that pay more on average, a

fact that has become rather controversial in the literature using matched employer-employee

data Abowd et al. (1999). Altogether the results suggest that network-based measures of

job mobility are a useful addition to the toolbox of applied labor economics. I conclude

the paper with a discussion of other areas of labor economics that could benefit from this

approach.

2. The Labor Market as a Network

Figure 2 illustrates the formation of a realized mobility network from panel data collected

over three time periods in a labor market where the set of workers is W = {1, 2, 3, 4, 5, 6, 7, 8},
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and the set of employers is J = {A,B,C,D}. Workers and employers are nodes in the

network, and an edge connects a worker and employer whenever there is an employment re-

lationship between them. The example shows that while the structure of employer-employee

links is sparsely connected at any point in time, the realized mobility network may, and in-

deed does, become densely connected very quickly. In this section, I introduce the concepts

of network analysis and their application to labor market data.

2.1. Preliminaries

A graph or network, G, is defined by a set of nodes or vertices, V (G) = {1, ..., N},

and a set of edges that connect them, E(G) ⊂ V (G) × V (G). The edges are undirected

(i, j) ∈ E(G) whenever (j, i) ∈ E(G).

This paper considers networks in which multiple edges can form between two nodes,

represented by including an edge multiple times in E(G). An alternative is to characterize

an edge as a triple: (i, j, ω) ∈ E(G) ≡ V (G)×V (G)×Ω, where Ω is the set of whole numbers.

The set of neighbors of i is NG(i) = {j ∈ V (G) : ij ∈ E(G)}, the set of all nodes that

are connected to i. The degree of i, ki, is the number of i’s neighbors: |NG(i)|.

Finally, the adjacency matrix representation of G, AG, is an N × N matrix whose ijth

entry is ω if (i, j, ω) ∈ E(G) and 0 otherwise. Most of the computations performed in this

paper are based on manipulations of the adjacency matrix of the realized mobility network.

For instance, the degree list of G is simply AGuN ≡ k, where uN is the N × 1 sum vector

and k = [k1, . . . , kN ]T is the N × 1 vector whose entries are the degree of each node.

2.2. The Realized Mobility Network

The realized mobility network is an undirected bipartite graph since a defining feature is

that nodes representing workers only connect to nodes representing employers. To analyze

matching in the realized mobility network, I work with this bipartite representation, but

also with its “one-mode” projections: graphs of indirect connections between workers and

employers.
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2.2.1. The Bipartite Representation

The realized mobility network is generated from panel data with representative entry

{w, t,m}, where w ∈ W is the index of a particular worker, t ∈ T is the time period, and

m ∈ M identifies the employer of w at time t. The subsample of jobs in progress at a

fixed point in time, t, are edges in a bipartite graph, Rt, which is the realized employment

network at time t. The vertex set is V (Rt) = (W,M). An element (w,m) of the edge

set E(Rt) indicates that worker m holds a job with employer m. The realized mobility

network, R, accumulates information about matching over the sample period, t ∈ {1, ..., T},

by setting V (R) = (W,M) and E(R) = ∪Tt=1E(Rt). Note that the realized mobility network

is, therefore, unweighted.

2.2.2. One-Mode Projections onto Workers and Employers

Two employers are connected in the “one-mode employer projection” of the realized

mobility network whenever they share an employee in common. Many workers can hold jobs

with two employers. To recover the structure of matching in the bipartite graph, we want to

keep track of the number of such connections between two employers.1 The edge connecting

two employers in the one-mode projection is weighted by the number of common employees.

Formally, the one-mode employer projection graph is denoted by RM . Its vertex set is

M , the set of employers. The edge set is

E(RW ) =

 (m,n, ω) : m,n ∈M∧

ω = |{w ∈ W : (w,m) ∧ (w, n) ∈ R}|

 . (1)

The definition of the one-mode projection onto the set of worker nodes, RW , is analogous.

2.3. Characterizing Assortativity

This section introduces the specific measures of homophily and modularity that I use to

characterize boundaries to mobility and the assortatitivity of labor market matching.

1Intuitively, if one worker moves between two employers, it might be a fluke. If many workers do it, it
more likely indicates something common about the skill demand of the employers.

5



2.3.1. Node Partitions and Partition Graphs

Given the employer projection of the realized mobility network, RM , let ΦM be the set

of all partitions of the set of employers in M . The representative element, φM ∈ ΦM , is a

set of collection of subsets of nodes in M whose union is equal to M and whose intersection

is the empty set. Where the context makes it clear, I will drop the superscript denoting the

underlying node set. For convenience, the elements of the partition are indexed by natural

numbers. That is,

φ = {φ1, . . . , φL}. (2)

In the analysis, I represent the partition, φ, of M into L classes by a |M | × L matrix, Πφ.

The (w, `) entry of Πφ is 1 if w ∈ φ` and zero otherwise. For example, consider the partition

of the set of employer nodes into major industries, denoted φind. The associated matrix,

Πφind ≡ Πind is well-known to labor economists as the design matrix of industry effects

included in an analysis of industry earnings premia.

Homophily and modularity of RM are measured with respect to a given node partition,

φ. One way to build the intuition behind both measures is in terms of the Partition Graph.

Given the network, RM , and a partition of its nodes, φ, the partition graph is a “supergraph”

on “supernodes” that are the L partition classes in φ. There is a connection between partition

classes whenever there is a connection between nodes in the underlying graph that belong

to those partition classes. Under the industry partition, φind, two industries k and ` are

connected in the partition graph whenever a k employer is connected to an ` employer in

RM .

Formally, the partition graph of G with respect to φ, denoted by P (G, φ), is defined as

follows. The vertex set of P (G, φ) is V (P (G, φ)) = φ. The edge set is

E (P (G, φ)) = (φk, φ`, ω) : ω =

| {(m,n) : m ∈ φk, n ∈ φ`, (m,n) ∈ E(G)} |

 .
(3)

Unlike RM and RW , the partition graphs may include self-edges.
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The adjacency matrix of the partition graph is

AP (G,φ) =
(
Πφ
)T
AGΠφ. (4)

In the partition graph, the degree of each supernode is

k` =
∑

i:π(i)=`

di =e`Π
TAGuI

=e`Π
TAGΠuL

=e`AP (G,Π)uL, (5)

where e` is the `th column of the L × L identity matrix and uI is the I × 1 sum vector (a

vector of ones). The total weighted degree sum of G and of P (G,Π) is 2m, where m is the

sum of edge weights (in either graph).

2.3.2. Homophily

Intuitively, if the graph exhibits positive assortativity – homophily – it means more nodes

in the same partition class are connected than would be expected under random matching.

In the realized mobility network, homophily measures the extent to which a worker is more

likely to be employed in jobs in the same industry than would be predicted if job assignment

is random. Operationalizing this intuition requires a definition of random matching.

I adapt the approach in Currarini et al. (2009) to the labor market setting. The homophily

of group ` is the share of edges that connect group members relative to the number of

within-group edges that would be expected if agents connect at random. The comparison

relative to random matching is important, since some social groups are larger than others,

particularly with regards to majority/minority social relationships. In that case, we expect

more connections within the majority group than from the majority group to the minority

group simply because of their relative sizes. For the labor market application, the random

matching benchmark is meaningful as some employers may be more connected simply because

they constitute a larger share of total jobs. Under random matching, workers are more likely

to move into a job in manufacturing than in mining, simply because of the size of the two

sectors.
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Let p`,`′ be the number of edges in the partition graph between nodes in class ` and nodes

in class `′. The homophily index,

H` =
p``
k`
, (6)

is the share of the total degree of nodes in class ` accounted for by within-group edges. Next,

define the degree share of edges in class ` as

w` =
k`
2m

. (7)

If you pick up an edge at random, w` is the probability that one end is connected to a node

in partition class φ`.

The goal is to measure, for each partition class, the deviation between the number of

internal connections and the number expected under random matching. With this in mind,

define the excess homophily index for class ` by

EH` = H` − w`. (8)

Currarini et al. (2009) define the inbreeding homophily index of class ` by normalizing the

excess homophily:

IH` =
EH`

1− w`
. (9)

The latter definition standardizes the excess homophily by the maximum possible level of

homophily. In the empirical results, I prefer to present results for homophily using the

inbreeding homophily index. The modularity function has a direct interpretation in terms

of excess homophily. The results for homophily presented later are not sensitive to whether

I define them in terms of EH` or IH`.

2.3.3. Modularity

Modularity is an alternative measure of assortativity in a network with respect to a given

partition of its nodes. Modularity was introduced to the literature on complex network anal-

ysis as part of a method for detecting relatively densely connected groups of vertices as a

method for community structure detection. In what follows, I develop the modularity mea-

sure as an aggregation of the excess homophily index, and then show that this is equivalent
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to the usual definition of modularity given in the complex networks literature. The reader

can therefore interpret the maximum modularity partition as the partition that maximizes

aggregate homophily.

Given a graph, G, and a partition of its vertex set, φ, the modularity of G with respect

to φ is

Q(G, φ) =
1

2m

L∑
`=1

k`EH` (10)

=
L∑
`=1

w`EH`. (11)

This expression is the normalized degree-weighted sum across partition classes of the inbreed-

ing homophily index. Weighting by degree ensures that the overall influence of partitions on

the graph structure are reflected in the aggregate measure. The normalization by the degree

sum ensures that Q(G, φ) ≤ 1, with the extreme case corresponding to perfect homophily in

each class.

Substituting from above, modularity can also be expressed as

Q(G, φ) =
1

2m

L∑
`=1

(
p`` −

k2
`

2m

)
(12)

=
1

2m

∑
i,j

(AGij −
kikj
2m

)δ(i, j), (13)

where AG is the adjacency matrix of G, i, j are nodes in G, ki is the degree of i in G, and

δ(i, j) = 1 if i and j are in the same partition class and δ(i, j) = 0 otherwise. The final

expression is the typical characterization of modularity defined in terms of the full network,

sometimes referred to as “Newman-Girvan modularity” in the complex networks literature

(Good et al. 2010).

2.3.4. Modularity Maximization

To find the partition of employers into classes within which mobility is highly likely, I use

the method of modularity maximization. Modularity maximization takes the graph as given,

and finds the partition, φ ∈ Φ, that maximizes the modularity function. An advantage of this
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process is that the number of partition classes, L, is part of the optimization. A complete

search over elements of φ is computationally intractable for all but the smallest graphs. My

results are based on implementation of the ‘Louvain’ method for modularity maximization

(Blondel et al. 2008). The Louvain algorithm uses an optimization heuristic that begins with

all nodes in separate partition classes, and then finds combinations of classes that yield the

best local improvement in modularity.

The Louvain heuristic is fast, has been implemented in many diverse settings (Good

et al. 2010), and has excellent performance in recovering modules in networks with known

structure (Blondel et al. 2008). There is a minor concern that the algorithm could be affected

by the order in which classes are considered when combining them to make local increases

in modularity. To address this, I computed modularity under random re-orderings with no

meaningful effect on the results.

3. The Realized Mobility Network in the PSID

The following analysis uses a sample of heads and spouses in the Panel Study of Income

Dynamics (PSID) between 1987 and 1997. The PSID records the industry and occupation in

which an individual’s labor is employed. I define the set of pseudoemployers in the PSID as

the set of possible industry-occupation combinations to which a worker may be matched. The

realized mobility network in the PSID is formed as workers change industry and occupation.

The analysis therefore reveals the boundaries and barriers to mobility between different

industry and occupation groups. As we will see, the analysis helps refine the emerging view

in the literature that the nature of job mobility is related to industry and occupational

history in complex ways.

3.1. Data

An individual is at risk for inclusion in the analysis as long as he or she was in a family

that responded to the survey in both 1987 and 1997. Individuals who never reported a

primary industry-occupation pair during the sample are omitted since they do not contribute

a (relevant) vertex to the network. I chose heads and spouses because the PSID consistently
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collects their industry and occupation data. Additional demographic variables incorporated

into the analysis include race (white or not), gender, labor income, family income, state of

residence, age in 1987, and education. I further restrict attention to those individuals who

were over 23 years of age in 1987 and who contributed at least two years of valid industry

and occupation data. The age restriction reduces the influence of mobility associated with

career-shopping (Neal 1999; Pavan 2011; Yamaguchi 2010).

The number of workers in this subsample is |W | = 7, 515 and the number of pseudoem-

ployers (unique industry-occupation pairs) is |M | = 6, 944. The largest connected component

(CC) in the realized mobility network contains 7, 432 workers and 6, 771 pseudoemployers,

highlighting that boundaries to mobility are very porous. Table 1 shows that the basic char-

acteristics of the two samples of workers are nearly identical. Workers initiate 31, 578 unique

job spells with different pseudoemployers for a total of 51, 066 job-year observations in the

full panel.

Measurement error is a concern in any study using self-reported industry and occupa-

tion in the PSID. In particular, PSID coders interpret survey respondents’ descriptions of

industry and occupation differently, which may result in spurious transitions. Kambourov

and Manovskii (2008) use PSID Retrospective Files, available before 1981, to demonstrate

that this form of measurement error increases observed industry and occupational mobility.

After 1981, only originally coded data are available. Like Kambourov and Manovskii (2008)

(p. 72), I use the originally coded data for analyzing cross-industry and occupation mobility,

with the caveat that the overall level of mobility may be too high.

3.2. Basic Topology

Table 2 reports the average degree, characteristic parameters of the degree distribution,

and the clustering coefficient, along with basic node and edge counts. For comparison, I

have also included statistics on two social networks with similar topological properties: the

network of film stars and the network of co-authorship relationships in physics (Newman

2003). I have chosen these for comparison because they have similar density and clustering

to the worker and pseudoemployer projections. This is not a coincidence, as the network
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of film stars and network of co-authors are also projection graphs: film stars are connected

when they work on the same film, and authors are connected when they collaborate on a

paper.

The realized mobility network contains 27,519 edges connecting 7,515 workers to 6,944

pseudoemployers. Each edge represents a unique match. The average degree on the worker

nodes is 3.66 and on the pseudoemployer nodes is 3.96. The closeness of these numbers is an

artifact of the fact that the sets of nodes have similar cardinality, and that the degree sum

on both node sets must be equal due to its bipartite nature. The similarity in the average

degree masks major differences in the degree distributions.

The worker projection induces 428,848 edges between the 7,515 workers. The pseudoem-

ployer projection is less densely connected by an order of magnitude, with 44,840 edges

representing the number of times a pseudoemployer pair shares a worker in common. The

average degrees are 110.66 and 15.35 respectively, and are once again somewhat poor sum-

maries of the actual amount of connectivity in the graph. The clustering coefficients are

relatively high, at 0.65 and 0.70. The projection graphs inherit a certain amount of triadic

closure, which results in high clustering whenever workers are employed in more than two

jobs (for the pseudoemployer projection) and whenever pseudoemployers have more than

two workers (for the worker projection). For this reason, the clustering coefficient does not

give a clear measure of the extent to which workers move within tightly knit groups of jobs.2

2In the social networking context, clustering in a graph captures the idea that ‘friends of my friends are
also my friends’. More formally, graph clustering measures the transitivity of network relationships. The
clustering coefficient is

C =
1

n

∑
i

Ci,

where

Ci =
# of triangles connected to i

# of connected triples centered on i
.

A ‘connected triple’ is a subgraph of three nodes, {j, i, k}, in which j and k are both connected to i, which
is called the ‘center’ of the triple.
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3.3. Degree Distribution

Figure 3 presents log-log plots of the cumulative distributions of node degree in the bipar-

tite realized mobility network and the one-mode projections. The figure shows the empirical

CDF and parametric fits to a power law, log normal, and exponential distribution.3 The

distribution of pseudoemployer degree is very fat-tailed in the realized mobility network, as

well as in the pseudoemployer projection. The former is well-fit by a power law distribution,

while the best fit for the latter is a power law with exponential cutoff. The worker degree is

well-fit by an exponential distribution.4

The distribution of node degree has a strong connection to the process of network for-

mation, particularly with respect to whether nodes connect at random or preferentially

(Newman 2003). Consequently, the degree distribution in the realized mobility network

should be informative about the process of labor market matching. In the context of the

realized mobility network, node degree is a measure of mobility for workers and a measure of

total employment for employers. The (near) power-law distribution evokes the heavy-tailed

distribution of employment across firms (Axtell 2001). When workers move, they are drawn

to pseudoemployers with high employment, high turnover, or both. The exponential distri-

bution of worker degree indicates that mover-stayer heterogeneity is randomly distributed

in the population of workers.

In the one-mode projections, the evidence suggests independence between worker mo-

bility and employer size. In the worker projection, a large degree implies working in high

employment sector. Fat tails would arise if some workers are always in high employment

sectors and other workers are always in low employment sectors. The exponential distri-

bution of degree in the worker projection suggests a random growth model in which the

3I estimate the power law fit by maximum likelihood using the method of Clauset et al. (2009). Code
and details of the estimation are available upon request.

4Likelihood ratio tests reject the log-normal and power law in favor of the exponential for the degree
distribution of worker nodes. The evidence is less clear for the exact nature of the pseudoemployer degree
distributions. For the realized mobility network, a bootstrap test fails to reject the null hypothesis that the
data follow a power law, but the data do not discriminate between the power law and log-normal on the
basis of a likelihood ratio test. In the pseudoemployer projection, however, the bootstrap test rejects the
power-law null. A better fit is obtained by a power law distribution with exponential cutoff.
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number of jobs held by a worker over his life is a Poisson random variable, but the employers

with which these jobs are held are chosen by preferential attachment. This is also consistent

with dynamic equilibrium matching models where workers sample employers in proportion

to their employment level (Postel-Vinay and Robin 2002).

4. Assortativity in the Realized Mobility Network

I characterize assortativity in the realized mobility network – that is, who matches with

whom – by a three step process. First, I apply modularity maximization to the weighted

pseudoemployer projection of the realized mobility network. Second, I apply modularity

maximization to the weighted worker projection of the realized mobility network. Third, I

merge the partition classes for pseudoemployers and for workers onto the bipartite realized

mobility network. Guimerà et al. (2007) provide evidence that the three stage approach is

equivalent to directly partitioning the bipartite graph.

This process results in a clear division of the labor market into separate sub-markets

that attract specific groups of workers. There are three key results. The first is that the

sub-markets revealed by mobility patterns are much stronger than would be predicted on

the basis of grouping by occupation, by industry, or by industry-occupation pairs. Second,

while there are some differences across the classes of workers that serve different market

segments, there is very little homophily on the basis of race, gender, and education. Third,

the revealed matching sets suggest that industry, occupation, demography and skill are

relevant, but in ways that would be difficult to predict ahead of time. Taken together, these

findings demonstrate the value of an inductive analysis to characterize the complex nature

of labor market matching.

4.1. Assortativity in the Pseudoemployer Projection

4.1.1. The Maximum Modularity Partition

Applying the Louvain algorithm of Blondel et al. (2008) to the pseudoemployer projection

yields a modularity maximizing partition, φM∗∗, into 79 classes. The value of modularity
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at the optimizing partition is Q(RM , φM∗∗) = 0.5165. The classes in φ∗∗M are sorted by

cardinality, and the first four classes account for more than 80 percent of pseudoemployer

nodes and 87 percent of all matches. After the fourth partition class, the remaining classes

each contain fewer than five percent of nodes each. To simplify exposition, the remaining

discussion is based on a partition, φM∗, that collapses the small partitions of φ∗∗M into a single

class, labeled below as ‘Pseudoemployer Class 5’. This simplification has no effect on the

results: the modularity of the collapsed maximum modularity partition is Q(RM , φM∗) =

0.510.

Figure 4 presents the sparsity pattern of the adjacency matrix of the pseudoemployer

projection. The contrast between Figures 4a and 4b provides a succinct and stark exposi-

tion of the value of finding labor sub-markets on the basis of mobility patterns relative to

looking at connectivity between industries. In Figure 4a, the rows and columns of the ad-

jacency matrix, which each correspond to a unique pseudoemployer, are sorted by industry

classification. Figure 4b shows the same matrix, but with the rows and columns sorted by

modularity class. There are strong connections within industry, but the distinct blocking in

the bottom panel shows that the maximum modularity classification finds much more tightly

connected groups of employers.

Panel A of Table 3 presents the same information in a less dramatic, but more com-

prehensive form. The table reports the share of edges that end in each modularity class

conditional on where they start. The entries sum to 100 down the columns. The blocking

structure that appears in Figure 4b appears in the diagonal elements of the table. Between

50 and 60 percent of all edges are between nodes in the same class. Furthermore, outside of

those classes, the remaining edges are distributed fairly uniformly. There is some evidence of

relatively strong ties between Classes 2 and 4, a point we will return to later when discussing

who matches with whom in the realized mobility network. This will be easier after I describe

5Recall that at the random matching baseline, modularity is zero, and at the complete segmentation
extreme, modularity is equal to 1. Values of modularity above 0.3 generally indicate substantial community
structure (Blondel et al. 2008)
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the industries and occupations that characterize the different classes.

4.1.2. Characteristics of the Modularity Classes

Table 4 reports the industrial and occupational composition of each class of φM∗. The

table entries are the percent of pseudoemployers within a modularity class in a given industry

(Panel A) or occupation (Panel B). The entries sum to 100 percent across the rows. For

reference, the row labeled ‘Pop. Share’ lists the percent of pseudoemployers in each major

industry or occupation in the overall population.

The most salient feature of the maximum modularity partition is the contrast between

Class 1 and Class 2. Class 1 is concentrated in the Manufacturing, Construction, Transporta-

tion, and Retail industries, and in jobs as Craftsmen, Laborers, and Operatives. Class 2 is

concentrated in the Professional Service, Public Administration, and FIRE industries, and

overwhelmingly in Clerical and Professional Service occupations. Class 3 has an industrial

composition like Class 1, but in more Professional Service, Sales, Clerical, and Managerial

occupations. Class 4 is concentrated in Professional Services, Retail, and Personal Service

sectors, but in Service Work occupations. Class 5, which is something of a residual class, is

also concentrated in Manufacturing sector in jobs as Operatives, but also in Retail jobs and

as Clerical workers.

To summarize, the classes might be labeled as:

• Class 1: “Blue Collar” jobs;

• Class 2: Clerical Service jobs;

• Class 3: “White Collar” jobs;

• Class 4: Less-skilled Service jobs;

• Class 5: Other less-skilled Service and Manufacturing jobs,

acknowledging that these are simplifications of the true industrial and occupational compo-

sition. The job segments revealed in φM∗ cut across both industry and occupational lines in

ways that are intuitive, but not obvious a priori.
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These descriptions make sense of the connectivity/mobility patterns in Table 3. The

connectivity is weakest between Class 1 and Class 2 and between Class 3 and Class 4.

Relatively few Blue Collar workers are Clerical Workers at a different point in time. Also,

few ‘White Collar’ workers are in ‘Unskilled Service’ at some other point in time. These

connectivity patterns are displayed visually in Figure 1, which plots Classes 1-4 of RM . The

nodes in each class have different colors, and the figure is laid out using an algorithm that

heuristically minimizes the spatial distance between connected nodes.6

4.1.3. Homophily by Industry and Occupation

In this section, I evaluate how informative the maximum modularity approach is relative

to an analysis based on industry and occupation classification. I compare the maximum

modularity partition (φM∗) with partitions based on major industry (φind), major occupation

(φocc), and the interaction of major industry and major occupation (φind×occ).

Table 5 reports the modularity of the pseudoemployer projection under different parti-

tions. Recall that Q(RM , φM∗) = 0.510. By contrast, the modularity of the major industry

and occupation partitions are relatively small, at Q(RM , φind) = 0.351 and Q(RM , φocc) =

0.306 respectively. Increasing the resolution of the partition classes does not help:

Q(RM , φind×occ) = 0.223.

From Section 2.3.3, the modularity of a partition is a weighted sum of the excess ho-

mophily index for the associated partition classes. Homophily is an arguably more direct

measure of the extent to which workers who hold a job in a given industry are likely to hold

another job in the same industry. It is also possible that through aggregation, the modularity

function masks very large homophily in certain sectors.

Figure 5 plots the inbreeding homophily index (IH`) against the degree share (w`) for

each class of each partition. In the figure, the triangles represent the maximum modularity

partition. At every scale, the homophily in the maximum modularity partition classes is

higher than the homophily associated with industry or occupation.

6Figure 1 was laid out using the implementation of the OpenOrd algorithm and visualization tools in the
software package Gephi.
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Recall from Section 2.3.3 that the homophily index, H`, is the diagonal element of the

partition graph, which generalizes the transition matrix. Figure 5 therefore summarizes

the information that could be derived by comparing matrices that report the frequency

of industry-industry or occupation-occupation transitions with the frequency of transitions

across classes of the maximum modularity partition. Deriving the additional information in

the maximum modularity partition would be impossible in an analysis based on industry

and occupation partitions. To do so would require using more detailed industry-occupation

codes, but there is not enough data to estimate the relevant probabilities.

4.2. Assortativity in the Worker Projection

4.2.1. The Maximum Modularity Partition

In this section, I conduct the equivalent analysis of community structure in the worker

projection of the realized mobility network. Two workers are connected whenever they have

a common pseudoemployer. The modularity-maximizing partition, φW∗∗, has 86 separate

classes with value Q(RW , φW∗∗) = 0.580. The four largest partition classes in φW∗ account

for 78 percent of workers. Again for simplicity, I work with a partition, φW∗, that collapses

the remaining classes which each individually account for less than 5 percent of all workers,

into a single class. The modularity is barely affected: Q(RW , φW∗∗) = 0.551. I label the

partition classes of the worker nodes as Class A, B, C, D, and E, with E being the residual

class.

Table 6 summarizes the maximum modularity partition, after collapsing the small classes.

Panel A reports the share of edges that end in each modularity class conditional on where

they start. The entries sum to 100 down the columns. The community structure is even

more pronounced here than in the pseudoemployer projection. Between 49 and 70 percent

of all edges connect nodes in the same class.

4.2.2. Characteristics of the Modularity Classes

Table 7 reports the demographic and educational composition of each class in the max-

imum modularity partition, φW∗. To summarize, the modularity classes might be labeled

as:
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• Class A: Less-educated male workers;

• Class B: Average education female workers;

• Class C: Less-educated non-white female workers;

• Class D: More-educated white male workers;

• Class E: More-educated white female workers.

While the classes of the maximum modularity partition have relatively distinct demographic

profiles, demography seems to play a very small role in labor market matching, at least

relative to the amount of structure revealed in the maximum modularity partition.

4.2.3. Homophily by Individual Characteristics

Table 7 reports the inbreeding homophily index for each class in φW∗ (last column) and

for each demographic partition. Within each modularity class, the inbreeding homophily

index ranges between 0.649 (for Class D) and 0.779 (for Class A). Even the residual class is

very strongly connected: in Class E, the inbreeding homophily index is 0.751.

By contrast, the inbreeding homophily for white (and non-white) workers is 0.127.7 For

the education groups in φeduc, inbreeding homophily ranges from 0.051 and 0.228.8 Male (and

female) workers have a higher inbreeding homophily index of 0.420. These patterns are re-

flected in the modularity of the worker projection with respect to each demographic partition.

The modularity is Q(RW , φwhite) = 0.062, Q(RW , φsex) = 0.204, and Q(RW , φeduc) = 0.098.

Therefore, while there is evidence of labor sub-markets that match workers assortatively to

particular types of jobs, the attributes on which workers match skills are determined by

largely unobservable factors.

7For binary characteristics, the inbreeding homophily indices are equal for each type.
8Incidentally, across education groups, inbreeding homophily exhibits a U-shape – it is strongest for

workers with the least and the most education.
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4.3. Matching in the Realized Mobility Network

I now characterize who matches with whom. Figure 6 illustrates labor market match-

ing using the sparsity pattern in the adjacency matrix of the bipartite realized mobility

network. Its rows are associated with workers and the columns are associated with pseu-

doemployers. A 1 in the i, j position means worker i is matched with pseudoemployer j.

Figure 6a shows the adjacency matrix with workers and pseudoemployers sorted randomly,

which has no visibly discernible structure. Figure 6b shows the same matrix with rows and

columns sorted into maximum modularity partition classes. The figure shows first, that the

classification of nodes obtained in the worker and pseudoemployer projections are also useful

in characterizing structure in the bipartite graph from which they were derived, consistent

with Guimerà et al. (2007). Second, there is a close connection between the worker classes

and the pseudoemployer classes. Workers in a given modularity class tend to have jobs with

pseudoemployers in a single modularity class. This allows me to give a relatively succinct

summary of who matches with whom.

Table 8 provides a more complete account of the sub-markets in the realized mobility

network. It reports the percent of job matches (edges) in the realized mobility network that

connect workers in a given worker class to jobs in a particular pseudoemployer class. Using

the characterizations in terms of industry and occupation from Section 4.1.2, and in terms of

demographic characteristics from Section 4.2.2, the maximum modularity partition reveals:

• less-educated male workers are matched to “Blue Collar” jobs (16.56 percent of matches);

• female workers are evenly divided between “Clerical Service” and “Unskilled Service”

jobs (17.95 percent);

• less-educated non-white female workers are matched to “Unskilled Service” jobs (9.00

percent);

• more-educated white male workers are matched to “White Collar” jobs (11.48 percent);

• more-educated white female workers are matched to “Clerical Service” jobs (10.45

percent).
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These matches account for 65.44 percent of all jobs. Under random matching, the same com-

binations would contain 28.27 percent of all jobs. I emphasize that these characterizations

are provided to facilitate intuition. My descriptive labels indicate concentrations of activity.

5. Implications for Labor Market and Policy Analysis

The value of using network methods to describe labor market structure has to come

from enhanced analysis of labor market models and associated policy prescriptions. Here, I

consider several topics that can benefit from the approach I have developed.

5.1. Human Capital Specificity

The measurement of labor market mobility has traditionally focused on existing partitions

of the data (by industry and occupation, primarily). My analysis confirms that there are

better ways to partition workers and jobs that can reflect the underlying process of labor

market mobility and matching. The comparison of homophily and modularity measures in

Section 4 makes this argument precise. My results are therefore complementary to Neal

(1995), Yamaguchi (2010), and Sullivan (2010), all of whom suggest that human capital

specificity may depend on industry- and occupation-specific combinations that are difficult

to measure using conventional methods, usually due to sample size.

Recently, the labor economics literature has moved toward cardinal measures of task-

specific human capital (Lazear 2009; Gathmann and Schoenberg 2010; Yamaguchi 2012).

The maximum modularity partition of pseudoemployers strongly echoes the classification of

human capital across routine/non-routine and manual/analytic axes (Autor et al. 2003), but

was detected on the basis of matching patterns alone, and required no assumptions about

the nature or weighting of task content. The network analysis therefore confirms recent

developments in the empirical analysis of human capital specificity.

5.2. Unemployment and Mismatch

Limitations on mobility also affect and are affected by the business cycle – a point that

has been emphasized in the literature on mismatch following the recent recession (Şahin et al.

2012). Figure 7 documents how limitations on mobility, as measured by modularity, change
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over the period of my sample. Modularity is counter-cyclical. Figure 7 plots the four-year

modularity from 1988 through 1995, along with the annual unemployment rate. Modularity

increases by about 5 percent ahead of the 1990-1991 recession, then falls with the recovery.

Because the modularity calculation directly controls for the amount of observed mobility,

this effect is not driven by changes in the volume of mobility over the sample. It reflects

changes in the extent to which workers move within and between the maximum modularity

partition classes. The implication is that the boundaries to mobility are less effective during

expansions than during contractions. This is consistent with cyclical upgrading of labor

(McLaughlin and Bils 2001) and the counter-cyclical occupational mobility documented by

Kambourov and Manovskii (2008).

The method of modularity maximization treats the realized mobility network as static,

but the evolution of the labor market is, of course, a dynamic process. To produce the

figure, I construct a moving four-year window on realized employment networks. Within each

window, I compute the modularity of the observed pseudoemployer transition graph relative

to the predicted match probabilities estimated over the entire period, using the maximum

modularity partition of the pseudoemployers introduced in Section 4.1.1. The modularity

estimated in each four-year window can be interpreted as a measure of the contribution of

that four-year window to the overall modularity.

5.3. Labor Market Segments and Labor Market Earnings

The labor market may also allocate workers to employers on the basis of general charac-

teristics that affect productivity. The nature of that matching process has implications for

individual earnings, (Gibbons et al. 2005), for aggregate inequality (Sattinger 2006; Card

et al. 2013), and for labor market efficiency (Shimer 2005). In this section, I characterize

mobility segments in terms of earnings heterogeneity and use this heterogeneity to describe

who matches with whom. In doing so, I show that network methods can help produce in-

formation that can be used in estimation, identification, and evaluation of models of labor

market matching and directed search.

I decompose labor market earnings in the PSID panel in a linear model that controls for
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observable individual heterogeneity, as well as for the modularity class to which a worker

belongs and the modularity class in which they are employed. The analysis is structured

with explicit reference to the decomposition of earnings in matched employer-employee data

popularized by Abowd et al. (1999). I estimate the model

ln yit = α + Xitβ + θi + ψit + εit, (14)

where ln yit is the log wage and X is a vector of observable demographic and human capital

characteristics, including education, dummies for race and gender, and a gender-specific

quadratic in age. The error components, θ and ψ, are associated with worker and firm-specific

heterogeneity in the analysis of employer-employee data. Here, θi is the estimated coefficient

on a dummy that indicates the modularity class to which a worker belongs (Worker Class

A, B, C, D, or E). ψi,t is the estimated coefficient on a dummy that indicates the modularity

class to which the pseudoemployer of worker i’s period t job belongs (Pseudoemployer Class

1, 2, 3, 4, or 5).

Table 9 reports the results of estimating Equation 14 with and without controlling for

modularity class heterogeneity. The key results are the coefficients on the worker and pseu-

doemployer modularity classes. A worker in the highest-earning modularity class earns

roughly 25 percent more than a worker in the lowest modularity class, controlling for ob-

served characteristics as well as for the type of pseudoemployer they are working for. Like-

wise, a worker employed in the highest paying pseudoemployer class earns 50 percent more

than a worker employed in the lowest-paying class.9 These estimates are not causal effects,

as I use the earnings regression to summarize conditional expectations.

The earnings analysis shows that the maximum modularity partitions, revealed solely

on the basis of mobility patterns, are strongly associated with earnings heterogeneity. This

finding is consistent with these mobility patterns being driven by some latent factors that

9The careful reader will note that the worker and pseudoemployer modularity classes are mutually ex-
haustive. That is, they each produce a set of five dummy variables that will not be linearly independent
of the constant term. For identification, rather than drop one class, which is the conventional approach, I
restrict each effect to have mean zero across the population of matches.
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are differentially productive, and therefore differentially rewarded. One concern is that the

classification is picking up heterogeneity that is usually controlled by adding industry or

occupation effects. Column (3) in Table 9 shows the effect of adding controls for major

industry and occupation categories to the specification in Column (2). This does attenuate

the estimates of worker and pseudoemployer class heterogeneity but the overall pattern

of effects remains the same, as does the estimated assortativity in matched worker and

pseudoemployer types that I discuss next.

5.3.1. Assortative Matching

Next, to characterize who matches with whom, Table 10 reports the correlation of the

components of earnings in the full sample (Panel A) and across matches (Panel B). To build

the table, I assign to each observation in the PSID panel the value Xβ̂, which is the predicted

contribution to earnings of observable individual characteristics. I also assign the value θ̂ of

the modularity class to which the worker belongs, and the value ψ̂ of the pseudoemployer to

which the worker is matched.10

Focusing on the full sample reported in Panel A, note that the correlation between θ̂ and

ψ̂ is positive. There is a positive correlation between the index of observed characteristics,

Xβ̂, and both θ̂ and ψ̂ as well. These three facts further characterize who matches with

whom in the labor market. Workers with highly-paid observed traits are also highly-paid

on the basis of unobservables that affect labor market sorting. Furthermore, higher-paying

pseudoemployers tend to employ workers with highly-paid observable traits. Finally, higher-

paying pseudoemployers tend to match with workers that are highly-paid on the basis of

unobservables.

These observed correlations are large relative to estimates of the corresponding quantities

estimated in matched employer-employee data for the U.S. (Abowd et al. 2002; 2012). A

common finding in matched data is that the correlation between worker and firm heterogene-

ity is small and sometimes negative. However, my results are consistent with the presence of

10In the full sample, the mean of the variance components θ̂, ψ̂ and the residual are equal to zero by
assumption for identification purposed. This need not be the case in the population of matches.
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assortative matching on the basis of unobserved worker and employer-specific heterogeneity.

A common criticism of models like Equation 14 is that job mobility and assignment are

endogenous (Gruetter and Lalive 2009; Gibbons et al. 2005). In a working paper, Abowd

and Schmutte (2013) use a latent factor model to find groups of workers and employers

that are most likely to be connected, conditional on separation. The analysis suggests an

alternative approach to using non-wage information on mobility patterns to obtain additional

information about latent worker and employer types that can be exploited to correct for

endogenous assignment in the analysis of earnings and labor market matching.

6. Conclusion

Labor economic research runs up against the complexity inherent in individual mobility

and firm employment patterns. I have shown that tools of network analysis can provide some

simple descriptive statistics that characterize market complexity and that are also useful

in actual applications. Using mobility patterns to identify labor market segments yields

information that is not available when considering industry and occupation classifications,

either together or in isolation. The data reveal a set of labor market boundaries associated

with specific industry/occupation combinations that are intuitive, and bear relation to task-

specific measures recently developed in the literature.

I also provide evidence of positive assortative matching on earnings heterogeneity and

show that the barriers to job mobility are counter-cyclical. These findings demonstrate that

network statistics are a useful source of information for cross-sectional and dynamic sorting.

Combining models of network formation with dynamic equilibrium labor market models to

fit these network statistics may be a productive way to integrate the rigor of formal structural

models with the complex and unavoidable patterns in real-world labor market data. Research

on this topic is currently underway.
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Abowd, J. M., Kramarz, F., Pérez-Duarte, S., Schmutte, I. M., March 2012. A formal test

of assortative matching in the labor market, NBER Working Paper No. 15546 (revised).

Abowd, J. M., Schmutte, I. M., 2013. Endogenous mobility. Cornell University School of

Industrial and Labor Relations.

Autor, D., Dorn, D., 2013. The growth of low skill service jobs and the polarization of the

U.S. labor market. American Economic Review 103 (5), 1553–1597.

Autor, D., Levy, F., Murnane, R. J., 2003. The skill content of recent technological change:

An empirical exploration. The Quarterly Journal of Economics 118 (4), 1279–1333.

Axtell, R. L., 2001. Zipf distribution of US firm sizes. Science 293 (5536), 1818–1820.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of com-

munities in large networks. Journal of Statistical Mechanics: Theory and Experiment

2008 (10), P10008.

Card, D., Heining, J., Kline, P., 2013. Workplace heterogeneity and the rise of West German

wage inequality. The Quarterly Journal of Economics.

Clauset, A., Shalizi, C. R., Newman, M. E., 2009. Power-law distributions in empirical data.

SIAM review 51 (4), 661–703.

Currarini, S., Jackson, M. O., Pin, P., 2009. An economic model of friendship: Homophily,

minorities, and segregation. Econometrica 77 (4), 1003–1045.

27



Gathmann, C., Schoenberg, U., 2010. How general is human capital? A task-based approach.

Journal of Labor Economics 28 (1), 1–49.

Gibbons, R., Katz, L. F., Lemieux, T., Parent, D., 2005. Comparative advantage, learning

and sectoral wage determination. Journal of Labor Economics 23, 681–723.

Girvan, M., Newman, M., 2002. Community structure in social and biological networks.

Proceedings of the National Academy of Sciences of the United States of America 99,

7821–7826.

Good, B. H., de Montjoye, Y.-A., Clauset, A., 2010. Performance of modularity maximization

in practical contexts. Physical Review E 81 (4), 046106.

Gruetter, M., Lalive, R., 2009. The importance of firms in wage determination. Labour

Economics 16, 149–160.
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Figure 1: Projection of the realized mobility network in the PSID onto industry-occupation pairs. The figure
displays the four largest partition classes, which are labeled in bold.
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Figure 3: Degree Distributions in the Realized Mobility Network
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Table 1: Data Summary

PSID Sample CC∗

White 0.69 0.69
Male 0.51 0.51
Number of jobs 4.5 4.5
Average labor earnings† $19,900 $19,860
Age 35.43 35.40
Less than HS 0.21 0.21
High School 0.32 0.32
Some College 0.23 0.23
College 0.14 0.14
Postgraduate 0.09 0.10

Num. Workers 7,515 7,432

Num. Employers 6,944 6,771

All entries are mean values in the given sample except where noted.
∗ Workers in the largest connected component of the realized mobility network.
† Median of average within-sample labor earnings.
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Table 3: Modularity Classes in the Pseudoemployer Projection

A: Edge Shares B: Node Shares
Class 1 Class 2 Class 3 Class 4 Class 5 Emp. Not

Wtd. Wtd.
Class 1 58.39 7.21 11.09 13.10 14.87 21.36 22.72
Class 2 8.11 57.79 15.41 17.55 10.24 24.43 21.08
Class 3 10.28 12.69 58.40 8.09 8.61 16.58 20.29
Class 4 13.99 16.66 9.32 52.45 15.16 25.61 17.12
Class 5 9.23 5.65 5.77 8.82 51.13 12.02 18.78

NOTE – Table entries in Panel A are the percent of edges with one end in the modularity class indicated in
the column heading and the other end in the modularity class indicated in the row heading. Table entries in
Panel B are the share of nodes in each modularity class, weighted by the number of observed matches in the
realized mobility network, and not weighted (raw node share). In every column of both panels, the entries
sum to 100.
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Table 5: Modularity of the Pseudoemployer Projection Under Various Partitions

Partition Num. Classes Modularity
(1) Max. Modularity 79 0.516
(2) Max. Mod. Collapsed 5 0.510
(3) Major Industry 12 0.351
(4) Major Occupation 12 0.306
(5) Maj. Ind×Occ 144 0.223

NOTE – Table reports the modularity under each partitioning. Row (1) gives the modularity of the max-
imum modularity partition. Row (2) presents the modularity of the maximum modularity partition after
collapsing the smallest 75 classes. Row (3) and (4) report the modularity according to the partition by major
industry and major occupation. Row (5) reports modularity under a partition of jobs into a joint major
industry/major occupation cell.
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Table 6: Modularity Classes in the Worker Projection

A: Edge Shares B: Node Shares
Class A Class B Class C Class D Class E

Class A 70.12 7.06 9.78 12.51 5.05 25.04
Class B 10.02 63.94 19.57 11.42 14.77 22.65
Class C 8.30 11.70 56.36 10.05 6.12 16.21
Class D 4.61 2.97 4.37 49.72 4.37 14.00
Class E 6.95 14.33 9.93 16.30 69.70 22.10

NOTE – Table entries in Panel A are the percent of edges with one end in the modularity class indicated in
the column heading and the other end in the modularity class indicated in the row heading. Table entries in
Panel B are the share of workers in each modularity class. In every column of both panels, the entries sum
to 100.
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Table 8: Cross-Tabulation of Worker and Pseudoemployer Modularity Classes Across Matches in the Realized
Mobility Network

Pseudoemployer Modularity Class
1 2 3 4 5

Worker Class A 16.56 1.51 1.44 1.94 4.22
(5.49) (6.27) (4.26) (6.58) (3.09)

Worker Class B 1.50 9.02 0.92 8.93 2.11
(4.80) (5.49) (3.73) (5.76) (2.70)

Worker Class C 1.35 1.11 1.06 9.00 2.74
(3.26) (3.73) (2.53) (3.91) (1.84)

Worker Class D 1.08 2.33 11.48 0.60 1.28
(3.58) (4.10) (2.78) (4.30) (2.02)

Worker Class E 0.88 10.45 1.67 5.13 1.66
(4.23) (4.84) (3.28) (5.07) (2.38)

NOTE – The main unparenthesized table entries are the percent of observed matches between worker mod-
ularity classes and pseudoemployer modularity classes. There are 27,519 unique matches, which correspond
to the edges of the realized mobility network. For each match, the worker is assigned to her class in the max-
imum modularity partition of the weighted worker projection of the RMN. Likewise, the pseudoemployer in
the match is assigned to its class in the maximum modularity partition of the weighted pseudoemployer pro-
jection of the RMN. The parenthesized values are the percent of matches in the cell under random matching,
holding the number of edges in each modularity class fixed. Values in bold are those for which the observed
share is at least twice as large as the predicted share.
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Table 9: Linear Decomposition of Log Labor Market Earnings

(1) (2) (3)
Pseudoemployer
Class Effect
1 −.057 −.021

(.023) (.023)
2 0.186 0.112

(.028) (.030)
3 0.165 0.082

(.032) (.031)
4 −.282 −.174

(.028) (.028)
5 0.108 0.074

(.026) (.026)
Worker
Class Effect
A 0.011 −.002

(.023) (.022)
B −.144 −.060

(.030) (.030)
C −.007 −.008

(.030) (.029)
D 0.112 0.090

(.033) (.031)
E 0.051 0.003

(.029) (.029)
Demographic Yes Yes Yes
Controls
Modularity No Yes Yes
Class Controls?
Ind/Occ No No Yes
Controls?
Num. Obs. 48, 049 48, 049 48, 049
R2 0.241 0.280 0.326

Standard errors are clustered within person. All models control for gender, an indicator for reporting white
race, a quadratic in age interacted with gender, and educational attainment. The model in columns (2) and
(3) also includes indicators for the modularity class from the worker projection and the modularity class
from the pseudoemployer projection of the realized mobility network. Column (3) adds controls for major
industry and occupation. Table A.1 reports estimates for the demographic controls.
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Table 10: Correlation of Earnings Variance Components

Panel A: Full Sample (N=48,049)
Correlations

Mean Std. Dev. log Earn. Xβ̂ θ̂ ψ̂ Resid.
log Earn. 10.170 1.059 1

Xβ̂ 3.307 .458 0.490 1

θ̂ 0 .084 0.227 0.267 1

ψ̂ 0 .190 0.279 0.198 0.179 1
Resid 0 .899 0.849 0 0 0 1

Panel B: Match Sample (N=29,118)
Correlations

Mean Std. Dev. log Earn. Xβ̂ θ̂ ψ̂ Resid.
log Earn. 10.043 1.109 1

Xβ̂ 3.276 0.455 0.469 1

θ̂ .001 0.086 0.247 0.268 1

ψ̂ .006 0.186 0.294 0.209 0.224 1
Resid -.101 0.949 0.864 0.004 0.026 0.028 1

Summary statistics and correlations of the earnings heterogeneity components estimated from Equation (14).
Xβ is the linear prediction of log earnings based on observable characteristics (quadratic in age interacted
with sex, white or not, and highest completed education). θ is the portion of earnings variation associated
with the modularity class of the worker. ψ is the portion of earnings variation associated with the modularity
class of the pseudoemployer. Panel A reports statistics based on the full PSID panel from 1987-1997, which
implicitly weights jobs by their observed duration. Panel B reports statistics using only the first period of
each new employment spell.
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Appendix

Table A.1: Linear Decomposition of Log Labor Market Earnings: Demographic Controls

(1) (2) (3)
White .152 .085 .067

(0.018) (0.017) (0.016)
Male 0.095 0.096 0.131

(0.267) (0.256) (0.256)
Age 0.113 0.115 0.100

(0.010) (0.009) (0.009)
Age2 −.001 −.001 −.001

(0.0001) (0.0001) (0.0001)
Male×Age 0.023 0.021 0.018

(0.013) (0.013) (0.012)
Male×Age2 −2e-4 −2e-4 −2e-4

(2e-4) (2e-4) (1e-4)
High Sch. 0.375 0.315 0.253

(0.026) (0.025) (0.024)
Some Coll. 0.552 0.417 0.324

(0.028) (0.028) (0.027)
College 0.820 0.664 0.481

(0.031) (0.033) (0.034)
Postgrad. 1.060 0.917 0.709

(0.035) (0.037) (0.039)
Constant 6.73 6.862 7.033

(0.037) (0.037) (0.037)
Modularity No Yes Yes
Class Controls?
Ind/Occ No No Yes
Controls?
Num. Obs. 48, 049 48, 049 48, 049
R2 0.241 0.280 0.326

Estimated coefficients and standard errors of demographic controls in the linear decomposition of Table 9.
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