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Abstract

The sparse solution technique, stemming from the principles of compressive sensing,

holds myriad applications in both applied mathematics and data science. This dissertation

studies its applications in two directions: local clustering and function approximation. Local

clustering aims at extracting a local structure inside a graph without the necessity of knowing

the entire graph structure. As the local structure is usually small in size compared to the

entire graph, one can think of it as a compressive sensing problem where the indices of

target cluster can be thought as a sparse solution to a linear system associated with the

graph Laplacian. Inspired by this idea, we developed two algorithms which can find the

cluster of interest efficiently and effectively. For function approximation in C([0, 1]d), we

propose a new approach via Kolmogorov superposition theorem (KST) based on the linear

spline approximation of the K-outer function in Kolmogorov superposition representation.

We achieve the optimal approximation rate as O( 1
n2 ), with n being the number of knots of

the linear spline functions over [0, 1], and the approximation constant increases linearly in

the dimension d. We show that there is a dense subclass in C([0, 1]d) whose approximation

can achieve such optimal rate, and the number of parameters needed in such approximation

is at most O(nd). This approach can also be extended to the numerical solution of partial

differential equation such as the Poisson equation.



Index words: Spectral Graph Theory, Compressive Sensing, Sparse Solution,
Semi-supervised Learning, Data Clustering, Approximation Theory,
Kolmogorov Superposition Theorem, Spline Approximation, Pivotal
Location, Curse of Dimensionality



Sparse Solution Technique in Semi-supervised Local Clustering and High

Dimensional Function Approximation

by

Zhaiming Shen

B.Sc, Xi’an Jiaotong-Liverpool University, 2014

B.Sc (hons), University of Liverpool, 2014

M.Phil, University of Pennsylvania, 2017

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2024



© 2024

Zhaiming Shen

All Rights Reserved



Sparse Solution Technique in Semi-supervised Local Clustering and High

Dimensional Function Approximation

by

Zhaiming Shen

Approved:

Major Professor: Ming-Jun Lai

Committee: Lin Mu

Jingzhi Tie

Qing Zhang

Electronic Version Approved:

Ron Walcott

Dean of the Graduate School

The University of Georgia

May 2024



Acknowledgments

I am immensely grateful to my advisor, Ming-Jun Lai, for the unwavering guidance and

support extended to me throughout the past six years. I appreciate his time spent on me

through classes, research meetings, conferences, etc,. Without him, I would not have the

privilege of writing this dissertation, and would not become the person I am now. I also want

to thank my committee members Lin Mu, Jingzhi Tie, and Qing Zhang. Their commitment

to educating me through various classes in different branches of mathematics has been

instrumental in broadening my knowledge. Additionally, I am thankful for their valuable

suggestions and guidance, which have significantly contributed to the completion of this

dissertation.

Thanks to the Math Department at University of Georgia for continuously providing

me with the support for multiple years. I would like to thank Neil Lyall, David Gay, Laura

Ackerley, Lucy Barrera, Christy McDonald, all the other faculty members, staff, colleagues,

and friends for helping me succeed in general as a math graduate student. Their continuous

assistance has been instrumental in my academic journey, contributing to my growth and

achievements. I am thankful for the enriching environment they have fostered.

Furthermore, I would like to extend my gratitude to Ming-Jun Lai, Lin Mu, Daniel

Mckenzie, Weiwei Hu, Sheng Li, David Gay, Lisa Townsley, and Moyi Tian for generously

dedicating their time to assist me in research discussions and job applications. Their exper-

tise and dedication have been invaluable assets as I embark on my next academic and

professional endeavors.

iv



v

Finally, a special thank to my parents for consistently being by my side, offering unwa-

vering support through both ups and downs. Their enduring confidence in me and their

encouragement to believe in my capabilities beyond my own perception have been a source

of strength and motivation. Their supportive presence and encouraging words have not only

created a profound sense of community but also served as a wellspring of inspiration, guiding

me through the challenges of my academic pursuit.



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Compressive Sensing and Sparse Solution . . . . . . . . . . 1

1.2 Spectral Graph Theory and Clustering . . . . . . . . . . . 9

1.3 The Issue of Curse of Dimensionality . . . . . . . . . . . . . 14

2 Semi-supervised Local Clustering via Least Squares . . . . . . . . 17

2.1 Preliminaries and Notations . . . . . . . . . . . . . . . . . . 17

2.2 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Local Clustering based on Least Squares Approach . . . 20

2.4 Computational Complexity . . . . . . . . . . . . . . . . . . . 35

3 Semi-supervised Local Clustering via Compressive Sensing . . . . 37

3.1 Local Clustering based on Compressive Sensing Approach 37

3.2 Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Further Details on Experiments and Implementation . . . 52

4 Function Approximation via Kolmogorov Superposition Theorem 55

vi



vii

4.1 Kolmogorov Superposition Theorem . . . . . . . . . . . . . 55

4.2 ReLU Network Approximation via KST . . . . . . . . . . . . 59

4.3 KB-splines and LKB-splines . . . . . . . . . . . . . . . . . . . 68

4.4 Numerical Results for LKB-splines based Approximation

in 2D and 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 The Optimal Approximation Rate Based on Linear LKB-splines . 86
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Chapter 1

Introduction

The structure of this dissertation is as follows. In Chapter 1, we give an introduction of the

preliminaries and background which are necessary for the development of this dissertation.

More specifically, we introduce compressive sensing, spectral graph theory, and Kolmogorov

superposition theorem (KST). In Chapter 2 and 3, we introduce two approaches based on

least squares and compressive sensing for finding the local cluster respectively. In Chapter 4

and 5, we present a new function approximation scheme based on the representation of KST,

and we also discuss its application to numerically solving partial differential equations.

1.1 Compressive Sensing and Sparse Solution

We call a vector sparse if it has few non-zero entries in comparison to its overall length. The

idea of compressive sensing (also called compressed sensing/sampling), which is motivated

by problems arose in signal acquisition and compression for storage, comes from solving the

noisy recovery of the sparse solution with small tolerance ϵ > 0:

min
x∈Rn
∥x∥0 s.t. ∥Φx− y∥2 ≤ ϵ, (1.1)

where Φ ∈ Rm×n is called sensing matrix (usually underdetermined), y ∈ Rn is called mea-

surement vector, and the “zero quasi-norm” ∥ · ∥0 counts the number of nonzero components

in a vector. The goal of (1.1) is to find a s-sparse solution x ∈ Rn under some constraint. In

the case of ϵ = 0, we have the exact (noiseless) sparse recovery problem

min
x∈Rn
∥x∥0 s.t. Φx = y. (1.2)

1
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A related problem is

argmin
x∈Rn

∥Φx− y∥2 s.t. ∥x∥0 ≤ s. (1.3)

However, these problems involved in the ∥ · ∥0 is NP-hard. To solve it practically, people

often consider their convex relaxations:

min
x∈Rn
∥x∥1 s.t. ∥Φx− y∥2 ≤ ϵ. (1.4)

In the noiseless case, we have

min
x∈Rn
∥x∥1 s.t. Φx = y (1.5)

and

argmin
x∈Rn

∥Φx− y∥2 s.t. ∥x∥1 ≤ s. (1.6)

As in the literature, problem (1.5) is often referred to as basis pursuit [17]. The origin of

compressive sensing can be traced back to the realization that in the noiseless case, if Φ is a

random matrix such that y = Φx∗ with ∥x∗∥0 = s such that m = O(s log(n/s)), then (1.5)

and (1.6) has a unique solution, and this solution coincides with x∗, which is the solution

to (1.2) and (1.3). Among all the contributors, Donoho [29] and Candès, Romberg, Tao [16]

are widely recognized as the first to explicitly establish this connection.

1.1.1 Restricted Isometry Property

Now let us present two crucial concepts which are often employed in the analysis of sensing

matrices and compressive sensing algorithms. The first one is called Restricted Isometry

Property (RIP).

Definition 1.1.1 (Restricted Isometry Property). Let 0 < s < m be an integer, and sensing

matrix Φ ∈ Rm×n. Suppose there exists a constant δs > 0 such that

(1− δs)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δs)∥x∥22 (1.7)
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for all x ∈ Rn with ∥x∥0 ≤ s. Then the matrix Φ is said to have the Restricted Isometry

Property (RIP) of order s. The smallest constant δs(Φ) which makes (1.7) hold is called the

Restricted Isometry Constant (RIC) of Φ.

With this, it is easy to see that if δ2s < 1, then the solution of (1.2) is unique. Indeed, if

there are two s-sparse solutions x1 and x2 such that Φx1 = y and Φx2 = y, i.e., ∥x1−x2∥0 ≤

2s such that Φ(x1 − x2) = 0, then

(1− δ2s)∥x1 − x2∥22 ≤ ∥Φ(x1 − x2)∥22 = 0.

It follows that ∥x1 − x2∥2 = 0 when δ2s < 1. That is, the solution is unique.

The RIC can also defined via the following lemma. Its proof is straightforward, which is

included in [80] and [40].

Lemma 1.1.1. Let 0 < s < m be an integer, ΦT be a submatrix of Φ ∈ Rm×n which consists

of columns of Φ whose columns indices are in T ⊂ {1, 2, · · · , n}. Then

δs = max
#(T )≤s

∥Im − Φ⊤
TΦT∥2, (1.8)

where Im is the identity matrix of size m×m.

The following lemma gives a simple but useful bound for the spectrum of Φ⊤
TΦT . We

leave its proof to interested readers.

Lemma 1.1.2. Suppose that the sensing matrix Φ satisfies the RIP with RIC δs < 1. Then

for any index set T with #(T ) ≤ s, the symmetric matrix Φ⊤
TΦT is positive definite with the

largest eigenvalue λ1 ≤ 1 + δs and smallest eigenvalue λs ≥ 1− δs.

Practically, one wants to establish the uniqueness of solution to the ℓ1 noiseless sparse

vector recovery problem (1.5), so that any solution found via algorithmic approaches can be

guaranteed to be the desired solution. If the sensing matrix Φ has a good structure, i.e., the

RIC of δs is small, one can establish the following uniqueness result.
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Theorem 1.1.1 (Cai and Zhang, 2013 [14]). Suppose Φ ∈ Rm×n and y = Φx∗ such that

∥x∗∥0 = s. Then x∗ is the unique solution to (1.5) provided δs(Φ) = 1/3. Moreover, this

bound is sharp in the sense that there exists Φ such that δs(Φ) ≥ 1/3 and s-sparse vector

x∗ ∈ Rn such that x∗ is not the unique solution to (1.5).

Moreover, there are conditions imposed on δ2s, δ3s, and δ4s to guarantee to uniqueness of

solution to (1.5). For example:

Theorem 1.1.2 (Candes and Tao, 2005 [15]). Let x∗ ∈ Rn with sparsity ∥x∗∥0 = s such

that Φx∗ = y. Suppose Φ ∈ Rm×n satisfies

δ3s + 3δ4s < 2.

Then x∗ is the unique solution to (1.5).

Theorem 1.1.3 (Foucart and Lai, 2009 [41]). Suppose that s ≥ 1 such that

δ2s <
2

3 +
√
2
≈ 0.4531,

and let x∗ ∈ Rn be vector with ∥x∗∥0 ≤ s and Φx∗ = y. Then x∗ is the unique solution to

(1.5).

One notable feature of the RIP condition is that a random matrix is likely to satisfy RIP.

In fact, it has been demonstrated that matrices whose entries are drawn from Gaussian, sub-

Gaussian, uniform, or Bernoulli distributions satisfy the RIP condition with overwhelming

probability. We leave the discussion of what kind of matrices will satisfy the RIP condition

to Chapter 8 in the book [80].

1.1.2 Mutual Coherence

The second crucial concept which characterizes the correlation between pairs of columns in

the sensing matrix is called mutual coherence.
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Definition 1.1.2 (Mutual Coherence). Let Φ = [ϕ1, · · · , ϕn] ∈ Rm×n, where ϕi is the i-th

column of Φ. The mutual coherence is defined as

µ(Φ) := max
i,j=1,··· ,n

i ̸=j

|ϕ⊤
i ϕj|

∥ϕi∥2∥ϕj∥2
. (1.9)

Note that µ(Φ) ∈ [0, 1]. In many occasions, the mutual coherence is also defined as

µ(Φ) := max
i,j=1,··· ,n

i ̸=j

|ϕ⊤
i ϕj| (1.10)

if assuming all the columns ϕi are normalized. One can show that the mutual coherence

satisfies the following lower bound if the matrix is of full rank.

Lemma 1.1.3. Assume that Φ ∈ Rm×n is of full rank. Then µ(Φ) ≥
√

n−m
m(n−1)

. In particular,

if n ≥ 2m, then µ(Φ) ≥ (2m)−1/2.

Similar to Lemma 1.1.2, it is straightforward to show that the singular values of ΦT are

bounded below and above based on the value of mutual coherence. We omit its proof and

refer interested readers to [80].

Lemma 1.1.4. Let µ = µ(Φ) and s < 1/µ+ 1. For any T ⊂ {1, · · · , n} with #(T ) ≤ s and

ΦT the matrix consisting of the s columns of Φ with column indices in T , the singular values

of ΦT are bounded above by (1 + µ(s− 1))1/2 and below by (1− µ(s− 1))1/2.

Given a sensing matrix Φ satisfying RIP, its mutual coherence and RIC δs have the

following relation:

Lemma 1.1.5 (Rauhut, 2010 [112]). For any sensing matrix Φ,

δs ≤ (s− 1)µ(Φ),

where δs is the RIC of Φ.
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1.1.3 Greedy Algorithms and Perturbation Analysis

Before the idea of compressive sensing was introduced, (1.6) is often solved via techniques

such as matching pursuit [94], LASSO [132], and basis pursuit [17]. There were theoretical

results describing when these algorithms recovered sparse solutions, but the required type

and number of measurements were sub-optimal and subsequently greatly improved by com-

pressive sensing. More recently, the algorithmic approaches based on the idea of compressive

sensing were introduced. These mainly include two families of approaches: thresholding algo-

rithms (for example, iterative hard thresholding [10]) and greedy algorithms (for example,

orthogonal matching pursuit [133]). We present the Orthogonal Matching Pursuit (OMP)

algorithm as Algorithm 1, it is sometimes also referred to as Orthogonal Greedy Algorithm

(OGA) in the literature.

Algorithm 1: Orthogonal Matching Pursuit (OMP)

Data: Sensing matrix Φ = [ϕ1, · · · , ϕn], measurement vector y, sparsity parameter

L, tolerance ϵ.

Result: The estimated signal x#.

1 Initialization: S(0) = ∅, r(0) = y;

2 for k = 1, · · · , L do

3 ik = argmax1≤i≤n{|ϕ⊤
i r

(k−1)|};

4 S(k) = S(k−1) ∪ {ik};

5 x(k) = argminz∈Rn{∥y − Φz∥2 : supp(z) ⊂ S(k)};

6 r(k) = y − Φx(k) and x# = x(k);

7 if ∥r(k)∥2 < ϵ then

8 break

9 end

10 end
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There are also other variants of OMP, such as Generalized Orthogonal Matching Pursuit

[140], Regularized Orthogonal Matching Pursuit [105], Iterative Least Squares Orthogonal

Matching Pursuit [109], Quasi-Orthogonal Matching Pursuit [75, 37]. Later on, we will be

applying a more sophisticated algorithm, named Subspace Pursuit [21], in Chapter 2 and

3 for local clustering task. The notable aspect of the Subspace Pursuit lies in its ability to

dynamically update the selection of column indices after each iteration, whereas Orthog-

onal Matching Pursuit (OMP) maintains the selection of indices from the previous iteration

without alteration. We present the algorithm of Subspace Pursuit as Algorithm 2.

Algorithm 2: Subspace Pursuit

Data: Sensing matrix Φ, measurement vector y, sparsity parameter s, number of

iterations K.

Result: The estimated signal x#.

1 Initialization: S(0) = Ls(Φ
⊤y), x(0) = argminz∈Rn{∥y − Φz∥2 : supp(z) ⊂ S(0)},

r(0) = y − Φx(0);

2 for k = 1, · · · , K do

3 Ŝ(k) = S(k−1) ∪ Ls(Φ
⊤r(k−1));

4 u = argminz∈Rn{∥y − Φz∥2 : supp(z) ⊂ Ŝ(k)};

5 S(k) = Ls(u) and x(k) = Hs(u);

6 r(k) = y − Φx(k);

7 end

8 Let x#

S(K) = (Φ⊤
S(K)ΦS(K))−1Φ⊤

S(K)y and x#

(S(K))c
= 0.

The L(·) and H(·) are threholding operators defined as

Ls(v) := {i ∈ [n] : vi among s largest-in-magnitude entries in v},

Hs(v)i :=


vi if i ∈ Ls(v),

0 otherwise.
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Many proofs of correctness for compressive sensing algorithms rely on the Restricted

Isometry Property (RIP). Here we list a few of them. We omit their proofs and refer interested

readers to [80].

Theorem 1.1.4 (Mo, 2015 [99]). If δs+1 < 1√
s+1

, the exact recovery of the s-sparse signal

can be guaranteed by using Algorithm 1 in s iterations.

Theorem 1.1.5 (Wen, Zhou, Liu, Lai, and Tang, 2019 [142]). Let v := y − Φxb. Suppose

that v satisfies ∥v∥2 ≤ ϵ and Φ satisfies the RIP with δs+1 satisfying

δs+1 <
1√
s+ 1

. (1.11)

Then Algorithm 1 with stopping criterion ∥r(k)∥2 ≤ ϵ exactly recovers the support of the

sparse signal xb = [x1, · · · , xn]
⊤ in s iterations provided

min
xi ̸=0
{|xi|} >

2ϵ

1−
√
s+ 1δs+1

. (1.12)

Moreover, the recovery error can be bounded by

∥xb − x#∥ ≤ ϵ, (1.13)

where x# is the output from Algorithm 1.

One of the reasons behind the remarkable usefulness of compressive sensing lies in its

robustness against errors, including both additive and multiplicative types. More precisely,

suppose we know y = Φx∗ where y is the exact measurement of the acquired signal and Φ

is the exact measurement of the sensing matrix. However, we may only be able to access to

the noisy version ỹ = y+∆y and Φ̃ = Φ+∆Φ. Can we expect to approximate the solution

x∗ well from the noisy measurements ỹ and Φ̃. This question is affirmatively addressed by

several authors, starting with the work of [54]. For Subspace Pursuit algorithm, we have the

following result:

Theorem 1.1.6 (Li, 2016 [82]). Let x∗, y, ỹ, Φ, Φ̃ be as defined above, and for any t ∈ [n],

let δs := δs(Φ̃). Suppose that ∥x∗∥0 ≤ s. Define the following constants:

ϵy := ∥∆y∥2/∥y∥2 and ϵsΦ := ∥∆Φ∥(s)2 /∥Φ∥(s)2



9

where ∥M∥(s)2 := max{∥MS∥2 : S ⊂ [n],#(S) = s} for any matrix M . Define further:

ρ :=

√
2δ23s(1 + δ23s)

1− δ23s
and τ :=

(
√
2 + 2)δ3s√
1− δ23s

(1− δ3s)(1− ρ) +
2
√
2 + 1

(1− δ3s)(1− ρ)
.

Assume that δ3s < 0.4859 and let x(m) be the output of Algorithm 2 after m iterations. Then:

∥x∗ − x(m)∥2
∥x∗∥2

≤ ρm + τ

√
1 + δs
1− ϵsΦ

(ϵsΦ + ϵy).

It is also worthwhile to mention the following result which quantifies the effect of pertur-

bation on the RIC:

Theorem 1.1.7 (Herman and Strohmer, 2010 [54]). Suppose that Φ̃ = Φ +∆Φ. Let δ̃s and

δs be the restricted isometry constants for Φ̃ and Φ respectively. Then

δ̃s ≤ (1 + δs)(1 + ϵsΦ)
2 − 1.

1.2 Spectral Graph Theory and Clustering

In this dissertation, we will apply the idea of compressive sensing and sparse solution to study

the local community or clustering structure in graphs. We adapt the standard representation

of a graph G = (V,E), where V is the set of nodes and E is the set of edges. For convenience,

in the case that the graph is finite, we identify the set V with [n] = {1, · · · , n}. We use

A = (aij)i,j∈[n] ∈ {0, 1}n×n to denote the adjacency matrix, where aij = 1 if and only

if there is an edge connecting nodes i and j, otherwise aij = 0. Note that the notion of

adjacency matrix can be extended to weighted graph, in which case A = (aij)i,j∈[n] ∈ Rn×n.

Furthermore, we use di :=
∑n

j=1Aij to denote the degree for the i-th node, i = 1, · · · , n,

and the matrix D = diag(d1, · · · , dn) ∈ Rn×n to denote the matrix whose diagonal entries

are d1, · · · , dn.

1.2.1 Graph Laplacians

Let us first introduce the Laplacians of graph, their properties and their connection to graph

clustering.
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Definition 1.2.1 (Graph Laplacians). The unnormalized (combinatorial) Laplacian is

defined as Lcom := D − A. The normalized, symmetric Laplacian is defined as Lsym :=

I −D−1/2AD−1/2. The random walk Laplacian is defined as Lrw := I −D−1A.

For matrices Lcom, Lsym, Lrw, we summarize the following important properties in Lemma

1.2.1 and Lemma 1.2.2. Their proofs can be found in proposition 1 and 3 in [90].

Lemma 1.2.1 (Properties of Lcom). The matrix Lcom satisfies the following properties:

• for every x ∈ Rn, we have x⊤Lcomx =
1

2

n∑
i,j=1

aij(xi − xj)
2.

• Lcom is symmetric and positive semi-definite.

• The smallest eigenvalue of Lcom is λ1 = 0, the corresponding eigenvector is the constant

one vector 1.

• Lcom has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Lemma 1.2.2 (Properties of Lsym and Lrw). The matrix Lsym and Lrw satisfy the following

properties:

• for every x ∈ Rn, we have x⊤Lx =
1

2

n∑
i,j=1

aij

(
xi√
di
− xj√

dj

)2

.

• λ is an eigenvalue of Lsym with eigenvector u if and only if λ is an eigenvalue of Lrw

with eigenvector w = D1/2u.

• 0 is an eigenvalue of Lrw with constant vector 1 as eigenvector. 0 is an eigenvalue of

Lsym with eigenvector D1/21.

• Lsym and Lrw are positive semi-definite and have n non-negative, real-valued eigen-

values 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

The following result (see proposition 4 in [90] for its proof) serves as the foundation for

developing our local clustering algorithms in Chapter 2.
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Lemma 1.2.3 (Number of connected components and spectra of Lrw and Lsym). Let G be

an undirected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of

both Lrw and Lsym equals to the number of connected components C1, · · · , Ck in the graph.

For Lrw, the eigenspace of 0 is spanned by the indicator vectors of 1C1 , · · · ,1Ck
of those

components. For Lsym, the eigenspace of 0 is spanned by the vectors of D1/21C1 , · · · , D1/21Ck
.

1.2.2 Spectral Clustering

The graph Laplacian plays a key role in spectral clustering algorithm, which is arguably the

most well-known approach to partitional clustering. Spectral clustering debuted in [39] with

pioneering work on the two-cluster case, later gaining prominence in the realm of k-cluster

analysis through the influential contributions in [119, 106]. We refer interested readers to

the survey article [90], which gives an excellent explanation of spectral clustering. There

are many variants of spectral clustering algorithm since its debut, let us include the version

which makes use of the random walk Laplacian in Algorithm 3.

Algorithm 3: Spectral Clustering

Data: Adjacency matrix A ∈ Rn×n, number of clusters k.

Result: Clusters C1, · · · , Ck.

1 Compute the random walk normalized Laplacian matrix Lrw ∈ Rn×n;

2 Find the k eigenvectors u1, · · · ,uk corresponding to the k smallest eigenvalues of

Lrw;

3 Let U ∈ Rn×k be the matrix consisting of columns u1, · · · ,uk. Let ri ∈ Rk, for

i = 1, · · · , n, denote the i-th row of U ;

4 Cluster the points {r1, · · · , rn} ⊂ Rk into k clusters C̃1, · · · , C̃k using k-means;

5 Build the desired clusters C1, · · · , Ck via Ca = {i : ri ∈ C̃a} for i = 1, · · · , n;

There are also other ways of clustering a graph, let us give a very broad overview of

various graph clustering approaches in the literature, with the focus on (semi-supervised)

local clustering.
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1.2.3 Overview of Graph Clustering and Local Clustering

Traditional graph clustering problem assumes the underlying data structure as a graph where

data points are the nodes and the connections between data points are the edges. It assigns

each node into a unique cluster, assuming there are no multi-class assignments. For nodes

with high connection density, they are considered in the same cluster, and for nodes with

low connection density, they are considered in different clusters. Since the task is to learn

the clustering patterns by investigating the underlying graph structure, it is an unsupervised

learning task. Many unsupervised graph clustering algorithms have been developed through

decades. For example, spectral clustering [106], which is based on the eigen-decomposition of

Laplacian matrices of either weighted or unweighted graphs. Based on this, many variants of

spectral clustering algorithms have been proposed, such as [147] and [57]. Another category

is the graph partition based method such as finding the optimal cut [27, 28]. It is worthy

noting that spectral clustering and graph partition have the same essence [90].

Spectral clustering has become one of the popular modern clustering algorithms since it

enjoys the advantage of exploring the intrinsic data structures. It is simple to implement, and

it often outperforms the traditional algorithm such as k-means. However, one of the main

drawbacks of spectral clustering is its high computational cost, so it is usually not applicable

to large datasets. Meanwhile, the spectral clustering method does not perform well on the

auxiliary graphs which are generated from certain shapes of numerical data, e.g., elongated

band shape data and moon shape data. In addition, many other clustering methods have

been developed, such as the low rank and sparse representations based methods [86, 58],

deep embedding based methods [144], and graph neural network based methods [59, 134].

Besides the unsupervised way, some semi-supervised graph clustering methods have also been

proposed [66, 62, 113].

These clustering algorithms, whether unsupervised or semi-supervised, are all global clus-

tering algorithms, which means that the algorithms output all the clusters simultaneously.

However, it is often to people’s interests in only finding a single target cluster which contains
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the given labels, without worried too much about how the remaining part of graph will be

clustered. Such an idea is very useful in detecting small-scale structure in a large-scale graph.

This type of problem is referred to as local clustering. This concept was initially introduced

in the computer science literature in [124, 125]. Their motivation was to extend clustering

techniques to large graphs, denoted for which conventional partitional clustering techniques

were impractical. Their proposed algorithm finds a target cluster in almost linear time and is

a motivating example of the diffusion-based local clustering algorithm. Further examples of

this type of algorithm include the algorithms proposed in [5, 18, 63]. Another different family

of approaches to this problem are the local spectral methods. Its idea was first proposed in

[92] to find a local analogue of the second eigenvector of the Laplacian, which resembles

spectral clustering. In the work of [51, 83, 84, 120], the approach is to first subsample a

graph that is much smaller in size compared to the original graph, but very likely to con-

tain the target cluster, then apply spectral methods to extract the target cluster from this

subsampled graph. It is worth of pointing out that [42] have kindly put several methods of

local graph clustering into software, including [5, 43, 81, 135, 139]. A related problem, as

discussed in the statistics literature, pertains to the problem of cluster extraction. This was

motivated in [148] by the task of distinguishing a cluster from a background of vertices that

do not belong in any cluster. Such method is further developed in [143]. We do not discuss

further.

More recently, new two-stage approaches based on making the cut of graph and compres-

sive sensing are proposed in [70, 77] where they took a novel perspective by considering the

way of finding the optimal cut as an improvement from an initial cut via finding a sparse

solution to a linear system. Their results were further improved by [117], where the cut was

taken to be the entire graph so that it excluded possibility of missing any target vertices

from the initial cut. One notable feature of any local clustering algorithm is that it can, in

principle, be iterated to yield a partition over the entire vertices in the graph. That is, if

one proceeds by removing all clusters previously found and then extracting the next cluster,
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one ends up with a partition of the entire graph. Let us call this feature “one cluster at

a time”. On the other hand, retaining the clusters which being in the previous iterations

permits the presence of overlapping clusters. Therefore, local clustering encompasses both

partitional and overlapping clustering tasks. In Chapter 2 and 3, we will give a more detailed

discussion of the approaches which are proposed in [77] and [117] for semi-supervised local

clustering task.

1.3 The Issue of Curse of Dimensionality

Let us shift our attention now to briefly discussing the well-known bottleneck inherent in

the computation of high-dimensional learning and approximation — commonly referred to

as the curse of dimensionality.

Recently, deep learning algorithms have shown a great success in many fronts of research,

from image analysis, audio analysis, biological data analysis, to name a few. Incredibly, after

a deep learning training of thousands of images, a computer can tell if a given image is a

cat, or a dog, or neither of them with very reasonable accuracy. In addition, there are plenty

of successful stories such that deep learning algorithms can sharpen, denoise, enhance an

image after an intensive training. See, e.g. [47] and [95]. The 3D structure of a DNA can be

predicted very accurately by using the DL approach. The main ingredient in DL algorithms

is the neural network approximation based on ReLU functions. We refer to [22] and [25] for

detailed explanation of the neural network approximation in deep learning algorithms.

Learning a multi-dimensional data set is like approximating a multivariate function. The

computation of a good approximation suffers from the curse of dimension. For example,

suppose that f ∈ C([0, 1]d) with d ≫ 1. One usually uses Weierstrass theorem to have a

polynomial Pf of degree n such that

∥f − Pf∥∞ ≤ ϵ

for any given tolerance ϵ > 0. As the dimension of polynomial space =
(
n+d
n

)
≈ nd when

n > d, one will need at least N = O(nd) data points in [0, 1]d to distinguish different
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polynomials in Pn and hence, to determine this Pf . Notice that many good approximation

schemes enable Pf to approximate f at the rate of O((1/n)m) if f is of m times differentiable.

In terms of the number N of data points which should be greater than or equal to the

dimension of polynomial space Pn, i.e. N ≥ nd, the order of approximation is O(1/(N1/d)m).

When d≫ 1 is bigger, the order of approximation is less. This phenomenon is the so-called

curse of dimension. Sometimes, such a computation is also called intractable. Similarly, if

one uses a tensor product of B-spline functions to approximate f ∈ C([0, 1]d), one needs to

subdivide the [0, 1]d into nd small subcubes by hyperplanes parallel to the axis planes. As

over each small subcube, the spline approximation Sf of f is a polynomial of degree k, e.g.,

k = 3 if the tensor product of cubic splines are used. Even with the smoothness, one needs

N = O(kd) data points and function values at these data points in order to determine a

polynomial piece of Sf over each subcube. Hence, over all subcubes, one needs O(ndkd). It is

known that the order of approximation of Sf is O(1/nk+1) if f is of k+1 times coordinatewise

differentiable. In terms of N = O(ndkd) points over [0, 1]d, the approximation order of Sf will

be O(kk+1/N (k+1)/d). More precisely, in [26], the researchers showed that the approximation

order O(1/N1/d) can not be improved for smooth functions in Sobolev space W k,p with Lp

norm ≤ 1. In other words, the approximation problem by using multivariate polynomials or

by tensor product B-splines is intractable.

Furthermore, many researchers have worked on using ridge functions, neural networks,

and ReLU activation functions to approximate multidimensional functions. The orders of

all these approximations in L2 and in L∞ norms show the curse of dimensionality. See

[93, 110, 108, 7] for detailed statements and proofs. That is, the approximation problem by

using the neural networks is intractable. However, there is a way to obtain the dimension

independent approximate rate as explained by Barron in [8]. Let ΓB,C be the class of functions

f defined over B = {x ∈ Rd, ∥x∥ ≤ 1} such that Cf ≤ C, where Cf is defined as follows:

Cf =

∫
Rd

|ω||f̃(ω)|dω

with |ω| = (ω · ω)1/2 and f̃ is the Fourier transform of f .
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Theorem 1.3.1 (Barron, 1993). For every function f in ΓB,C, every sigmoidal function ϕ,

every probability measure µ, and every n ≥ 1, there exists a linear combination of sigmoidal

functions fn(x), a shallow neural network, such that∫
B

(f(x)− fn(x))
2dµ(x) ≤ (2C)2

n
.

The coefficients of the linear combination in fn may be restricted to satisfy
∑n

k=1 |ck| ≤ 2C,

and c0 = f(0).

It is worthy of noting that although the approximation rate is independent of the dimen-

sion in the L2 norm sense, the constant C can be exponentially large in the worst case

scenario as pointed out in [8]. This work leads to many recent studies on the properties and

structures of Barron space ΓB,C and its extensions, e.g. the spectral Barron spaces and the

generalization using ReLU or other more advanced activation functions instead of sigmodal

functions above, e.g., [64, 31, 32, 34, 33, 121, 122], and the references therein. More recently,

the super approximation power is introduced in [118] which uses the floor function, expo-

nential function, step function, and their compositions as the activation function and can

achieve the exponential approximation rate.

In Chapter 4 and 5, we turn our attention to Kolmogorov superposition theorem [65, 88]

and will see how it plays a role in the study of the rate of approximation for neural network

computation in deep learning algorithms, and how it can break the curse of dimension when

approximating high dimensional functions over Rd for d ≥ 2.



Chapter 2

Semi-supervised Local Clustering via Least Squares

Local clustering aims at extracting a local structure inside a graph without the necessity of

knowing the entire graph structure. As the local structure is usually small in size compared

to the entire graph, one can think of it as a compressive sensing problem where the indices of

target cluster can be thought as a sparse solution to a linear system. For convenience, let us

assume the target cluster is the first cluster C1 for the rest of discussion. The semi-supervised

local clustering problem we are interested in solving is:

Suppose G = (V,E) is a graph with underlying cluster C1, · · · , Ck where V = ∪n
i=1Ci,

Ci ∩ Cj = ∅ for 1 ≤ i, j ≤ k, i ̸= j. Given a set of labeled vertices Γ ⊂ C1, which we call

them seeds, assuming the size of Γ is small relative to the size of C1. The goal is to extract

all the vertices in the target cluster C1.

Based on the pioneering work [70] of local clustering via compressive sensing, we devel-

oped two approaches [77] and [117] with sequentially better performance. The major results

of these two works are summarized in this and next chapters. For the rest of discussion in

these two chapters, we will focus on undirect simple but weighted graphs.

2.1 Preliminaries and Notations

Let us introduce some more notations which we will use later. Suppose for the moment we

have information about structure of the underlying clusters for each vertex, then it is useful

to write G as a union of two edge-disjoint subgraphs G = Gin ∪ Gout where Gin = (V,Ein)

consists of only intra-connection edges, and Gout = (V,Eout) consists of only inter-connection

edges. We will use dini to denote the degree of vertex i in the subgraph Gin, and douti to denote

17
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the degree of vertex i in the subgraph Gout. We will also use Ain and Lin to denote the

adjacency matrix and graph Laplacian associated with Gin, and Aout and Lout to denote the

adjacency matrix and graph Laplacian associated with Gout. Note that these notations are

just for convenience for the analysis in the next section, in reality we will have no assurance

about which cluster each individual vertex belongs to, so we will have no access to Ain and

Lin. It is also worthwhile to point out that A = Ain + Aout but L ̸= Lin + Lout in general.

Furthermore, we will use |L| or |y| to denote the matrix or vector where each its entry is

replaced by the absolute value, and we will use |V | to denote the size of V whenever V is a

set. In the later sections, we will use L and Lin to indicate Lrw and Lin
rw respectively, and use

LC and Lin
C to denote the submatrices of L and Lin with column indices subset C ⊂ V = [n]

respectively. For convenience, let us formulate the notations being used through Chapter 2

and Chapter 3 into Table 2.1.
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Table 2.1: Table of Notations

Symbols Interpretations

G A general graph of interest

|G| Size of G

V Set of vertices of graph G

|V | Size of V

C1 Target Cluster

Γ Set of Seeds

T Removal set from V

E Set of edges of graph G

Ein Subset of E which consists only intra-connection edges

Eout Subset of E which consists only inter-connection edges

Gin Subgraph of G on V with edge set Ein

Gout Subgraph of G on V with edge set Eout

A Adjacency matrix of graph G

Ain Adjacency matrix of graph Gin

Aout Adjacency matrix of graph Gout

L Random walk graph Laplacian of G

Lin Random walk graph Laplacian of Gin

Lout Random walk graph Laplacian of Gout

LC submatrix of L with column indices C ⊂ V

Lin
C submatrix of Lin with column indices C ⊂ V

|M | Entrywised absolute value operation on matrix M

∥M∥2 ∥ · ∥2 norm of matrix M

|v| Entrywised absolute value operation on vector v

∥v∥2 ∥ · ∥2 norm of vector v.

1C Indicator vector on subset C ⊂ V

△ Set symmetric difference

Ker Kernel of the linear map induced by a matrix

Span Spanning set of a set of vectors

Ls(v) {i ∈ [n] : vi among s largest-in-magnitude entries in v}

2.2 Model Assumptions

We make the following assumption for our graph model in the asymptotic perspective.
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Assumption 2.2.1. Suppose G = (V,E) can be partitioned into k = O(1) connected com-

ponents such that V = C1 ∪ · · · ∪ Ck, where each Ci is the underlying vertex set for each

connected component of G.

(I) The degree of each vertex is asymptotically the same for vertices belong to the same

cluster Ci.

(II) The degree douti is small relative to degree dini asymptotically for each vertex i ∈ V .

The random graphs which satisfies assumption (I) is not uncommon, for example, the

Erdös-Rényi (ER) model G(n, p) with p ∼ ω(n) log(n)
n

for any ω(n)→∞, see [35] and [19]. A

natural generalization of the ER model is the stochastic block model (SBM) [55], which is a

generative model for random graphs with certain edge densities within and between under-

lying clusters, such that the edges within clusters are more dense than the edges between

clusters. In the case of each cluster has the same size and the intra- and inter-connection

probability are the same among all the vertices, we have the symmetric stochastic block

model (SSBM). It is worthwhile to note that the information theoretical bound for exact

cluster recovery in SBM are given in [1] and [2]. It was also shown in [70] that a general

SBM under certain assumptions of the parameters can be clustered by using a compressive

sensing approach. Our model requires a weaker assumption than the one in [70], indeed, we

remove the assumption imposed on the eigenvalues of L in [70]. Therefore, our model will

be applicable to a broader range of random graphs.

2.3 Local Clustering based on Least Squares Approach

Our analysis is based on the following key observation. Suppose that graph G has k connected

components C1, · · · , Ck, i.e., L = Lin. Suppose further that we temporarily have access to

the information about the structure of Lin. Then we can write the graph Laplacian Lin into
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a block diagonal form

L = Lin =



Lin
1

Lin
2

. . .

Lin
k


. (2.1)

Suppose now we are interested in finding the cluster with the smallest number of vertices, say

C1, which corresponds to Lin
1 . By Lemma 1.2.3, {1C1 , · · · ,1Ck

} forms a basis of the kernel

W0 of L. Note that all the 1Ci
have disjoint supports, so for w ∈ W0 and w ̸= 0, we can

write

w =
k∑

i=1

αi1Ci
(2.2)

with some αi ̸= 0. Therefore, if 1C1 has the fewest non-zero entries among all elements of

W0 \ {0}, then we can find it by solving the following minimization problem:

min ||w||0 s.t. Linw = 0 and w ̸= 0. (2.3)

Problem (2.3) can be solved using method such as greedy algorithm in compressive sensing

as explained in [70]. Let us propose a different approach and demonstrate that this proposed

new approach is more effective numerically and require a fewer number of assumptions.

2.3.1 Least Squares Cluster Pursuit

To solve Problem (2.3), instead of finding C1 directly, we can find the complement of C1.

Suppose there is a superset Ω ⊂ V such that C1 ⊂ Ω, and Ci ̸⊂ Ω for all i = 2, · · · , n. Since

Lin1C1 = 0, we have

Lin1Ω = Lin(1Ω\C1 + 1C1) = Lin1Ω\C1 + Lin1C1 = Lin1Ω\C1 . (2.4)

Letting y := Lin1Ω, then to find what are not in C1 within Ω is equivalent to solve the

following problem (2.5)

argmin
x∈Rn

∥Linx− y∥2. (2.5)
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Note that solving problem (2.5) directly will give x∗ = 1Ω ∈ Rn and x∗ = 1Ω\C1 ∈ Rn both

as solutions. By setting the columns Lin
V \Ω = 0, solving problem (2.5) is equivalent to solving

argmin
x∈R|Ω|

∥Lin
Ω x− y∥2. (2.6)

Directly solving problem (2.6) gives at least two solutions x∗ = 1 ∈ R|Ω| and x∗ = 1Cc
1
∈ R|Ω|,

where Cc
1 indicates the complement set of C1. Between these two solutions, the latter is much

more informative for us to extract C1 from Ω than the former. We need to find a way to

avoid the non-informative solution x∗ = 1 but keep the informative solution x∗ = 1Cc
1
.

We can achieve this by removing a subset of columns from index set Ω. Let us use T ⊂ Ω

to indicate the indices of column we aim to remove. Suppose we could choose T such that

T ⊂ C1. Now consider the following variation (2.7) of the minimization problem (2.6)

argmin
x∈R|Ω|−|T |

∥Lin
Ω\Tx− y∥2. (2.7)

Different from solving (2.6) which gives two solutions, solving (2.7) only gives one solution

x∗ = 1Cc
1
, as x∗ = 1 is no longer a solution because of the removal of T . The solution

x∗ = 1Cc
1
is indeed still a solution to (2.7) because Lin

Ω\T1Cc
1
= Lin1Ω\C1 = 0. Furthermore,

the solution to (2.7) is unique since it is a least squares problem with matrix Lin
Ω\T of full

column rank, therefore x∗ = 1Cc
1
is the unique solution to (2.7).

However, there is no way in theory we can select T and assure the condition T ⊂ C1.

In practice, the way we choose T is based on the following observation. Suppose L = Lin,

Ω ⊃ C1 and Ω ̸⊃ Ci for i = 2, · · · k. Then |L⊤
a | · |y| = 0 for all a ∈ C1, and |L⊤

a | · |y| > 0

for all a ∈ Ω \ C1. Therefore, we can choose T in such a way that |L⊤
t | · |y| is small for all

t ∈ T ⊂ Ω. These ideas lead to Algorithm 4.
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Algorithm 4: Least Squares Cluster Pursuit

Data: Adjacency matrix A, vertex subset Ω ⊂ V , least squares threshold parameter

γ ∈ (0, 1), and rejection parameter 0.1 ≤ R ≤ 0.9.

Result: C#
1 = Ω \W#.

1 Compute L = I −D−1A and y = L1Ω;

2 Let T be the set of column indices of γ · |Ω| smallest components of the vector

|LΩ
⊤| · |y|;

3 Let x# be the solution to

argmin
x∈R|Ω|−|T |

∥LΩ\Tx− y∥2 (2.8)

obtained by using an iterative least squares solver;

4 Let W# = {i : x#
i > R};

Remark 2.3.1. We impose the absolute value rather than direct dot product in order to have

fewer cancellation between vector components when summing over the entrywised products. In

practice, the value of γ ∈ (0, 1) will not affect the performance too much as long as its value

is not too extreme. We find that 0.15 ≤ γ ≤ 0.4 works well for our numerical experiments.

Remark 2.3.2. In practice, we choose to use MATLAB’s lsqr function to solve the least

squares problem (2.8). As we will see in Lemma 2.3.2, our problem is well-conditioned,

so it is also possible to solve the normal equation exactly for problems which are not in a

very large scale. However, we choose to solve it iteratively over exactly because the quality

of the numerical solution is not essential for our task here, we are only interested in an

approximated solution as we can use the cutoff R number for clustering.

Remark 2.3.3. As indicated in [70], we can reformulate problem (2.3) as solving

argmin
x∈Rn

{∥Lx− y∥2 : ∥x∥0 ≤ s} (2.9)

by applying the greedy algorithms such as subspace pursuit [21] and compressive sensing

matching pursuit (CoSaMP) [104]. Or alternatively, we can consider LASSO, see [114] and



24

[132], formulation of the problem

argmin
x∈Rn

{∥Lx− y∥22 + λ∥x∥1} = argmin
x∈Rn

{∥Lx− y∥22 + λ∥x∥0}. (2.10)

The reason that Lasso is a good way to interpret this problem is that the solution x∗ we are

trying to solve for is the sparse indicator vector which satisfies ∥x∗∥1 = ∥x∗∥0. We do not

analyze it further here.

However, in reality we have no access to Lin, what we know only is L, and in general

L ̸= Lin. We argue that the solution to the perturbed problem (2.8) associated with L will

not be too far away from the solution to the unperturbed (2.7) problem associated with Lin,

if the difference between L and Lin is relative small. Let us make this precise by first quoting

the following standard result in numerical analysis.

Lemma 2.3.1. Let ∥ · ∥ be an operator norm, A ∈ Rn×n be a non-singular square matrix,

x ∈ Rn, y ∈ Rn. Let Ã, x̃, ỹ be perturbed measurements of A, x, y respectively. Suppose

Ax = y, Ãx̃ = ỹ, and suppose further cond(A) < ∥A∥
∥Ã−A∥ , then

∥x̃− x∥
∥x∥

≤ cond(A)

1− cond(A)∥Ã−A∥
∥A∥

(∥Ã− A∥
∥A∥

+
∥ỹ − y∥
∥y∥

)
.

The above lemma asserts that the size of cond(A) is significant in determining the stability

of the solution x with respect to small perturbations on A and y. For the discussion from

now on, we will use ∥ · ∥ to denote the standard vector or matrix induced two-norm ∥ · ∥2

unless state otherwise. The next lemma claims the invertibility of (Lin
Ω\T )

⊤Lin
Ω\T and gives an

estimation bound of its condition number.

Lemma 2.3.2. Let V = ∪ki=1Ci be the disjoint union of k = O(1) underlying clusters with

size ni and assume (I). Let dj be the degree for vertex j ∈ V = [n], n1 = mini∈[k] ni, and

suppose Ω ⊂ V be such that Ω ⊃ C1 and Ω ̸⊃ Ci for i = 2, · · · k. Then

(i) If T ⊂ C1, then (Lin
Ω\T )

⊤Lin
Ω\T is invertible.
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(ii) Suppose further ⌈3n1

4
⌉ ≤ |T | < n1 and ⌈5n1

4
⌉ ≤ |Ω| ≤ ⌈7n1

4
⌉. Then

cond
(
(Lin

Ω\T )
⊤Lin

Ω\T
)
≤ 4

almost surely as n1 →∞, e.g. when n→∞.

Proof. Without loss of generality, let us assume that the column indices of Lin
Ω\T are already

permuted such that the indices number is in the same order relative to their underlying

clusters. The invertibility of (Lin
Ω\T )

⊤Lin
Ω\T follows directly from the fact that Lin

Ω\T is of full

column rank. So let us show that Lin
Ω\T is of full column rank. Because of the reordering,

Lin
Ω\T is in a block diagonal form

Lin
Ω\T =



Lin
C1\T

Lin
Ω∩C2

Lin
Ω∩C3

. . .


.

It is then suffices to show each block is of full column rank. By Lemma 1.2.3, each of Lin
Ci

has

λ = 0 as an eigenvalue with multiplicity one, and the corresponding eigenspace is spanned

by 1Ci
. Hence rank(Lin

Ci
) = |Ci|−1. Now suppose by contradiction that the columns of Lin

C1\T

are linearly dependent, so there exists v ̸= 0 such that Lin
C1\Tv = 0, or Lin

C1\Tv+Lin
T · 0 = 0.

This means that u = (v,0) is an eigenvector associated to eigenvalue zero, which contradicts

the fact that the eigenspace is spanned by 1Ci
. Therefore Lin

C1\T is linearly independent, hence

Lin
C1\T is of full column rank. For Ci with i ≥ 2, since Ci /∈ Ω, Ω ∩ Ci is a proper subset of

Ci. The strategy above applies as well. Therefore all blocks in Lin
Ω\T are of full column rank,

so Lin
Ω\T is of full column rank.

Now since (Lin
Ω\T )

⊤Lin
Ω\T is in a block form, to estimate the condition number, we only

need to estimate the largest and smallest eigenvalues for each block. Writing Lin
Ω\T = [lij] and

(Lin
Ω\T )

⊤Lin
Ω\T = [sij], for each i ∈ C1 \ T , sii =

∑n
k=1 lkilki =

∑n
k=1 l

2
ki =

∑n1

k=1 l
2
ki = 1 + 1

dini
,

and for i, j ∈ C1 \ T with i ̸= j, sij =
∑n

k=1 lkilkj =
∑n1

k=1 lkilkj. Note that the probability
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of having an edge between i and j given degree sequences d1, · · · dn1 equals to
didj∑
i∈C1

di
, as

the existence of an edge between two vertices is proportional to their degrees. So lij equals

to − 1
di

with probability
didj∑
i∈C1

di
, which implies E(lij) = − dj∑

i∈C1
di
; lji equals to − 1

dj
with

probability
didj∑
i∈C1

di
, which implies E(lji) = − di∑

i∈C1
di
. Hence the expectation

E(sij) = E(
n∑

k=1

lkilkj) =
n∑

k=1

E(lki)E(lkj) =
n1∑
k=1

E(lki)E(lkj)

=
didj∑
i∈C1

di
· (− 1

di
) +

didj∑
i∈C1

di
· (− 1

dj
) +

dkdi∑
i∈C1

di
· dkdj∑

i∈C1
di
· ( 1
dk

)2

= − di + dj∑
i∈C1

di
+

didj
(
∑

i∈C1
di)2

= − 2

n1

+
1

n2
1

.

By the law of large numbers, sij → − 2
n1

+ 1
n2
1
almost surely as n1 → ∞. Therefore for

i ∈ C1 \ T , we have∑
j∈C1\T,j ̸=i

|sij| → |C1 \ T | · (
2

n1

− 1

n2
1

) ≤ n1

4
· ( 2
n1

− 1

n2
1

) ≤ 1

2

almost surely as n1 →∞. Similarly, for each i ∈ Ck ∩ (Ω \C1), k ≥ 2, we have sii = 1+ 1
dini

,

and
∑

j∈Ck∩(Ω\C1),j ̸=i |sij| →
n1

4
· ( 2

nk
− 1

n2
k
) ≤ 1

2
almost surely as n1 →∞.

Now we apply Gershgorin’s circle theorem to bound the spectrum of (Lin
Ω\T )

⊤Lin
Ω\T . For all

i ∈ Ω \T , the circles are centered at 1+ 1
di
, with radius less than or equal to 1

2
almost surely,

hence σmin((L
in
Ω\T )

⊤Lin
Ω\T ) ≥

1
2
and σmax((L

in
Ω\T )

⊤Lin
Ω\T ) ≤

3
2
+ 1

di
≤ 2. almost surely. Therefore

we have

cond
(
(Lin

Ω\T )
⊤Lin

Ω\T
)
=

σmax((L
in
Ω\T )

⊤Lin
Ω\T )

σmin((Lin
Ω\T )

⊤Lin
Ω\T )

≤ 4

almost surely, as desired.

Remark 2.3.4. Note that there is a minor difficulty in estimating the expectation of inner

product between two different columns of Lin
Ω\T . The computation assumes the independence

of degree distribution of each individual vertex within each cluster, but this may not be true in

general for arbitrary graph. However, the independence will occur if the asymptotic uniformity

of the degree distribution within each cluster is assumed, that is why our model needs this

assumption.
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Now the perturbed problem (2.8) is equivalent to solving (L⊤
Ω\TLΩ\T )x

# = L⊤
Ω\T ỹ =

L⊤
Ω\T (L1Ω), while the unperturbed problem (2.7) is to solve (Lin

Ω\T )
⊤Lin

Ω\Tx
∗ = (Lin

Ω\T )
⊤y =

(Lin
Ω\T )

⊤(Lin1Ω). Let M := L−Lin, MΩ := LΩ−Lin
Ω , and MΩ\T := LΩ\T −Lin

Ω\T . Let us give

an estimate for M .

Lemma 2.3.3. Let L be the graph Laplacian of G and M := L− Lin. Let ϵi :=
douti

di
for all

i and ϵmax := maxi∈[n] ϵi. Then ∥M∥ ≤ 2ϵmax.

Proof. Let δij denote the Kronecker delta symbol, observe that

Lij := δij −
1

di
Aij = δij −

1

dini + douti

(Ain
ij + Aout

ij ).

Since ϵi :=
douti

di
, we have 1

di
= 1

dini +douti
= 1

dini
− ϵi

dini
. So we have

Lij = δij −
( 1

dini
− ϵi

dini

)
(Ain

ij + Aout
ij )

=
(
δij −

1

dini
Ain

ij

)
− 1

dini
Aout

ij +
ϵi
dini

(Ain
ij + Aout

ij )

= Lin
ij −

1− ϵi
dini

Aout
ij +

ϵi
dini

Ain
ij .

Therefore Mij = −1−ϵi
dini

Aout
ij + ϵi

dini
Ain

ij . To bound the spectral norm we apply Gershgorin’s

circle theorem, noting that Mii = 0 for all i, hence

∥M∥ = max{|λi| : λi eigenvalue of M} ≤ max
i

∑
j

|Mij|

= max
i

∑
j

∣∣∣− 1− ϵi
dini

Aout
ij +

ϵi
dini

Ain
ij

∣∣∣
≤ max

i

∑
j

∣∣∣− 1− ϵi
dini

∣∣∣Aout
ij +

∣∣∣ ϵi
dini

∣∣∣Ain
ij

≤ max
i

{1− ϵi
dini

∑
j

Aout
ij +

ϵi
dini

∑
j

Ain
ij

}
= max

i

{1− ϵi
dini

douti +
ϵi
dini

dini

}
= 2max

i
ϵi = 2ϵmax.

This completes the proof.

Next we will have the following result.
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Lemma 2.3.4. ∥(Lin
Ω\T )

⊤Lin
Ω 1Ω∥ ≥

√
|Ω\C1|
2

almost surely.

Proof. Note that ∥(Lin
Ω\T )

⊤(Lin1Ω)∥ = ∥(Lin
Ω\T )

⊤Lin
Ω 1∥. We want to give an estimate of

∥(Lin
Ω\T )

⊤Lin
Ω 1∥. Similar to the computation we did in Lemma 2.3.2, for each i ∈ C1 \ T ,

we have sii = 1+ 1
dini

,
∑

j∈C1
sij = 0, and

∑
j∈Ω\C1

sij = 0. For each i ∈ Ck ∩ (Ω \C1), k ≥ 2,

we have sii = 1+ 1
dini

,
∑

j∈C1
sij = 0, and

∑
j∈Ck∩(Ω\C1),j ̸=i sij →

n1

4
· (− 2

nk
+ 1

n2
k
) ≥ −1

2
almost

surely. Therefore, the row sum of (Lin
Ω\T )

⊤Lin
Ω for row i ∈ C1 \ T equals to zero, and the row

sum (Lin
Ω\T )

⊤Lin
Ω for row i ∈ Ω \ C1 larger than 1

2
almost surely. Hence ∥(Lin

Ω\T )
⊤Lin

Ω 1∥ ≥
√

|Ω\C1|
2

almost surely.

Now let us use previous lemmas to establish that the difference between perturbed solu-

tion and unperturbed solution is small in the order of ϵmax.

Theorem 2.3.1. Under the same assumptions as Lemma 2.3.2, let x# be the solution to

the perturbed problem (2.8), and x∗ = 1Cc
1
∈ R|Ω|−|T | which is the solution to the unperturbed

problem (2.7). Then

∥x# − x∗∥
∥x∗∥

= O(ϵmax)

almost surely for large n1.

Proof. Let B = (Lin
Ω\T )

⊤Lin
Ω\T , B̃ = (LΩ\T )

⊤LΩ\T , y = Lin1Ω, ỹ = L1Ω. We will apply

Lemma 2.3.2 with B, B̃, y, ỹ.

First by Lemma 2.3.3, we have ∥M∥ ≤ 2ϵmax. Therefore

∥B̃ −B∥ =
∥∥(LΩ\T )

⊤LΩ\T − (Lin
Ω\T )

⊤Lin
Ω\T
∥∥

=
∥∥(Lin

Ω\T )
⊤MΩ\T +M⊤

Ω\TL
in
Ω\T +M⊤

Ω\TMΩ\T
∥∥

≤
∥∥(Lin

Ω\T )
⊤MΩ\T

∥∥+ ∥∥M⊤
Ω\TL

in
Ω\T
∥∥+ ∥∥M⊤

Ω\TMΩ\T
∥∥

≤
(
2∥Lin

Ω\T∥+ ∥MΩ\T∥
)
· ∥MΩ\T∥

≤
(
2∥Lin

Ω\T∥+ ∥M∥
)
· ∥M∥

≤ 4ϵmax ·
(
∥Lin

Ω\T∥+ ϵmax

)
.
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For each i ∈ Ω \ T , we have ∥Li∥ ≥ 1, and σmax((L
in
Ω\T )

⊤Lin
Ω\T ) = ∥(Lin

Ω\T )
⊤Lin

Ω\T∥ =

σ2
max(L

in
Ω\T ) = ∥Lin

Ω\T∥2 ≥ maxi∈Ω\T ∥Li∥2 ≥ 1. Hence∥∥(LΩ\T )
⊤LΩ\T − (Lin

Ω\T )
⊤Lin

Ω\T

∥∥∥∥(Lin
Ω\T )

⊤Lin
Ω\T

∥∥ ≤
(
2∥Lin

Ω\T∥+ ∥M∥
)
· ∥M∥

∥Lin
Ω\T∥2

≤ 4ϵmax

∥Lin
Ω\T∥

+
4ϵ2max

∥Lin
Ω\T∥2

≤4(ϵmax + ϵ2max). (2.11)

We also have

∥ỹ − y∥ = ∥(LΩ\T )
⊤(L1Ω)− (Lin

Ω\T )
⊤(Lin1Ω)∥

= ∥(Lin
Ω\T +MΩ\T )

⊤(LΩ1Ω)− (Lin
Ω\T )

⊤(Lin
Ω 1Ω)∥

= ∥
(
(Lin

Ω\T )
⊤MΩ +M⊤

Ω\TL
in
Ω +M⊤

Ω\TMΩ

)
· 1Ω∥

≤
√
|Ω| ·

(
∥(Lin

Ω\T )
⊤MΩ∥+ ∥M⊤

Ω\TL
in
Ω ∥+ ∥M⊤

Ω\TMΩ∥
)

≤
√
|Ω| ·

(
2∥Lin

Ω ∥+ ∥MΩ∥
)
· ∥MΩ∥

≤ 4
√
|Ω| ·

(
∥Lin

Ω ∥+ ϵmax

)
· ϵmax.

Next by Lemma 2.3.4, ∥(Lin
Ω\T )

⊤Lin
Ω 1Ω∥ ≥

√
|Ω\C1|
2

almost surely. Therefore

∥(LΩ\T )
⊤L1Ω − (Lin

Ω\T )
⊤Lin1Ω∥

∥(Lin
Ω\T )

⊤Lin1Ω∥
≤

4
√
|Ω| ·

(
∥Lin

Ω ∥+ ϵmax

)
· ϵmax√

|Ω \ C1|/2

≤ 8
√
5ϵmax ·

(
∥Lin

Ω ∥+ ϵmax

)
≤ 8
√
5ϵmax ·

(√
2 + ϵmax

)
= 8
√
10ϵmax + 8

√
5ϵ2max.

The second inequality holds since |Ω| ≥ ⌈5n1

4
⌉. The third inequality holds since σmax((L

in
Ω )⊤Lin

Ω ) ≤

2, which comes from the similar reasoning as in Lemma 2.3.2 by using Gershgorin’s circle

theorem. Consequently, we have ∥Lin
Ω ∥ ≤

√
2. Now putting Lemma 2.3.2 and Lemma 2.3.1
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together with B = (Lin
Ω\T )

⊤Lin
Ω\T , B̃ = (LΩ\T )

⊤LΩ\T , y = Lin1Ω, ỹ = L1Ω, we have

∥x# − x∗∥
∥x∗∥

≤
cond

(
(Lin

Ω\T )
⊤Lin

Ω\T
)
·
(
4ϵmax + 4ϵ2max + 8

√
10ϵmax + 8

√
5ϵ2max

)
1− cond

(
(Lin

Ω\T )
⊤Lin

Ω\T
)
·
(
4ϵmax + 4ϵ2max

)
≤

16
(
(1 + 2

√
10)ϵmax + (1 + 2

√
5)ϵ2max

)
1− 16ϵmax(1 + ϵmax)

= O(ϵmax).

Next we can estimate the size of the symmetric difference between output C#
1 and the

true cluster C1 relative to the size of C1, the symmetric difference is defined as C#
1 △C1 :=

(C#
1 \ C1) ∪ (C1 \ C#

1 ). Let us state another lemma before we establish the result.

Lemma 2.3.5. Let T ⊂ [n], v ∈ Rn, and W# = {i : vi > R}. Suppose ∥1T − v∥ ≤ D, then

|T△W#| ≤ D2

min{R2,(1−R)2} .

Proof. Let U# = [n] \W# and write v = vU# + vW# , where vU# and vW# are the parts of

v supported on U# and W#. Then we can write

∥1T − v∥2 = ∥1T∩W# − (vW#)T∩W#∥2 + ∥(vW#)W#\T∥2 + ∥1T\W# − vU#∥2.

Note that ∥(vW#)W#\T∥2 ≥ R2 · |W# \ T | and ∥1T\W# − vU#∥2 ≥ (1 − R)2 · |T \W#|. We

have

∥1T − v∥2 ≥ ∥(vW#)W#\T∥2 + ∥1T\W# − vU#∥2

≥ R2 · |W# \ T |+ (1−R)2 · |T \W#|

≥ min{R2, (1−R)2} · (|W# \ T |+ |T \W#|)

= min{R2, (1−R)2} · |T△W#|.

Therefore |T△W#| ≤ ∥1T−v∥2
min{R2,(1−R)2} ≤

D2

min{R2,(1−R)2} as desired.

Theorem 2.3.2. Under the same assumptions as Theorem 2.3.1, we have

|C#
1 △C1|
|C1|

≤ O(ϵ2max).

In other words, the error rate of successfully recovering C1 is at most a constant multiple of

ϵ2max.
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Proof. From Theorem 2.3.1, we have ∥x# − x∗∥ = ∥x# − 1Ω\C1∥ ≤ O(ϵmax) · ∥x∗∥ ≤

O(ϵmax
√
n1). By Lemma 2.3.5, we get |W#△(Ω \ C1)| ≤ O(ϵ2maxn1). Since C#

1 = Ω \W#, it

then follows |C#
1 △C1| ≤ O(ϵ2maxn1), hence

|C#
1 △C1|
|C1| = O(ϵ2max) as desired.

2.3.2 Random Walk Threshold

In order to apply Algorithm 4, we need a “nice” superset which contains C1. The task for

this subsection is to find such a superset Ω from the given seeds Γ. We will apply a simple

diffusion based random walk algorithm on G to find such Ω. This leads to Algorithm 5,

which is described in [70] as well. However, the difference between our random walk threshold

algorithm and the one in [70] is that the threshold parameter δ here is heuristically chosen to

be larger than the corresponding threshold parameter in [70]. This is another advantage of

our method as it will increase the chances of having C1 entirely contained in Ω. Such a choice

is made based on the natural differences of our approaches. It is worthwhile to point out

that there are also other sophisticated algorithms such as the ones described in [5], [63] and

[139] which can achieve the same goal. We avoid using these methods here as our purpose is

just to implement a fast way of obtaining a set Ω ⊃ C1.

Algorithm 5: Random Walk Threshold

Data: Adjacency matrix A, a random walk threshold parameter δ ∈ (0, 1), a set of

seed vertices Γ ⊂ C1, estimated size n̂1 ≈ |C1|, and depth of random walk

t ∈ Z+.

Result: Ω = Ω ∪ Γ.

1 Compute P = AD−1 and v(0) = D1Γ;

2 Compute v(t) = P tv(0);

3 Define Ω = L(1+δ)n̂1(v
(t));

The thresholding operator Ls(·) is defined as

Ls(v) := {i ∈ [n] : vi among s largest entries in v}.
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The motivation of Algorithm 5 is the following intuitive observation. Suppose we are given

seed vertices Γ ⊂ C1, then by starting from Γ, since the edges within each cluster are

more dense than those between different clusters, the probability of staying within C1 will

be much higher than entering other clusters Ci, for i ̸= 1, in a short amount of depth.

Therefore, by performing a random walk up to a certain depth t, e.g., t = 3, we will have

a well approximated set Ω such that C1 is almost surely contained in Ω. Let us make this

more precisely in Theorem 2.3.3.

Theorem 2.3.3. Assume |Γ| = O(1) and t = O(1) in Algorithm 5, the probability P
(
C1 ⊂

Ω
)
≥ P

(∑
j∈C1

v
(t)
j = ∥v(t)∥1

)
≥ 1−O(ϵmax). In other words, the probability that the t-steps

random walk with seed vertices Γ being not in C1 is at most a constant multiple of ϵmax.

Proof. Let us first consider the case |Γ| = 1. Suppose Γ = {s}. Then we have P
(∑

j∈C1
v
(0)
j =

∥v(0)∥1
)
= P(v(0)

s = ∥v(0)∥1) = 1. It is also easy to see that P
(∑

j∈C1
v
(1)
j = ∥v(1)∥1

)
=

dini /di = 1 − ϵi ≥ 1 − ϵmax. For t ≥ 2, we have P
(∑

j∈C1
v
(t)
j = ∥v(t)∥1

)
≥ (1 − ϵmax) ·

P
(∑

j∈C1
v
(t−1)
j = ∥v(t−1)∥1

)
. So by assuming P

(∑
j∈C1

v
(t−1)
j = ∥v(t−1)∥1

)
≥ (1− ϵmax)

t−1 ≥

1− (t− 1)ϵmax, we have P
(∑

j∈C1
v
(t)
j = ∥v(t)∥1

)
≥ (1− ϵmax)

t ≥ 1− tϵmax = 1−O(ϵmax).

Suppose now |Γ| > 1, we can apply the above argument to each individual vertex in Γ,

where the random walk starting from each vertex can be considered independently, therefore

we have P
(∑

j∈C1
v
(t)
j = ∥v(t)∥1

)
≥ (1− tϵmax)

|Γ| ≥ 1− tϵmax|Γ| = 1−O(ϵmax).

Remark 2.3.5. It is worthwhile to note that we do not want t to be too large, one reason is

that Theorem 2.3.3 tells us the probability of staying within the target cluster C1 decreases

as t increases. An alternative interpretation is that we can treat our graph G, suppose con-

nected, as a time homogeneous finite state Markov chain with evenly distributed transition

probability determined by the vertex degree between adjacent vertices. Since G is connected,

it is certainly irreducible and aperiodic. By the fundamental theorem of Markov chains, the

limiting probability of finally being at each vertex will be the same, regardless of what the seed

set Γ is. Meanwhile, we do not want t to be too small as well, otherwise the random walk will
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not be able to explore all the reachable vertices. There is also a trade-off between the size of

Γ and the random walk depth t, where a smaller size of Γ usually induces a larger t in order

to fully explore the target cluster.

2.3.3 Local Cluster Extraction

Let us now combine the previous two subroutines into Algorithm 6. In practice, we may

want to vary the number of iterations MaxIter based on the number of examples in the

data set in order to achieve a better performance. For the purpose theoretical analysis, let

us fix MaxIter = 1.

Algorithm 6: Least Squares Clustering (LSC)

Data: Adjacency matrix A, a random walk threshold parameter δ ∈ (0, 1), a set of

seed vertices Γ ⊂ C1, estimated size n̂1 ≈ |C1|, depth of random walk t ∈ Z+,

least squares parameter γ ∈ (0, 0.8), and rejection parameter R ∈ [0, 1).

Result: C#
1 .

1 for i = 1, · · · ,MaxIter do

2 Ω←− Random Walk Threshold (A, Γ, n̂1, ϵ, t);

3 Γ←− Least Squares Cluster Pursuit (A, Ω, R, γ);

4 end

5 Let C#
1 = Γ;

Remark 2.3.6. The hyperparameter MaxIter in the algorithm is usually choosen based on

the size of initial seed vertices Γ relative to n, we do not have a formal way of choosing the

best MaxIter rather than choose it heuristically. In practice, we believe MaxIter ≤ 3 will

do a very good job most of the time.

The analysis in previous two subsections gives that the difference between true cluster

C1 and the estimated C#
1 is relative small compared to the size of C1, this can be written

more formally using the asymptotic notation.
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Theorem 2.3.4. Suppose ϵmax = o(1) and MaxIter = 1, then under the assumptions of

Theorem 2.3.2 and 2.3.3, we have P
(

|C#
1 △C1|
|C1| ≤ o(1)

)
= 1− o(1).

Proof. By Theorem 2.3.3, we know that the probability of Ω ⊃ C1 after performing Algorithm

5 is 1−O(ϵmax) = 1− o(1). By Theorem 2.3.2, the error rate is at most a constant multiple

of ϵ2max after performing Algorithm 4. Putting them together, we have P
(

|C#
1 △C1|
|C1| ≤ o(1)

)
=

1− o(1).

2.3.4 From Local to Global

We can make one step further by applying Algorithm 6 iteratively on the entire graph to

extract all the underlying clusters. That is, we remove C#
i each time after the Algorithm

6 finds it, and update the graph G by removing the subgraph spanned by vertices C#
i

successively. This leads to Algorithm 7. We will not analyze further the theoretical guarantees

of the iterative version the algorithm, but rather provide with numerical examples in the last

section of next chapter to show its effectiveness and efficiency.

Algorithm 7: Iterative Least Squares Clustering (ILSC)

Data: Adjacency matrix A, random walk threshold parameter δ ∈ (0, 1), least

squares parameter γ ∈ (0, 0.8), rejection parameter R ∈ [0, 1), depth of

random walk t ∈ Z+. Seed vertices for each cluster Γi ⊂ Ci, estimated size

n̂i ≈ |Ci| for i = 1, · · · k.

Result: C#
1 , · · · , C

#
k .

1 for i = 1, · · · , k do

2 Let C#
i be the output of Least Squares Clustering;

3 Let G(i) be the subgraph spanned by C#
i ;

4 Updates G← G \G(i);

5 end

Remark 2.3.7. It is worth noting that Algorithm 7 extracts one cluster at a time, which

is different from most of other global unsupervised clustering algorithms. In practice, those
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global clustering methods could have impractically high run time [103] or tricky to implement

[2]. In contrast, our method requires much lower computational time and can be implemented

easily. In addition, the ”one cluster at a time” feature of our method provides more flexibility

for problems under certain circumstances.

2.4 Computational Complexity

In this section, let us discuss the run time of the algorithms introduced previously.

Theorem 2.4.1. Algorithm 5 requires O(ndmaxt+n log(n)) operations, where t is the depth

of the random walk.

Proof. Notice that if A,D, P are stored as sparse matrices, then for each t in the second

step of Algorithm 5, it requires O(ndmax), where dmax is the maximal degrees among all the

vertices. Therefore the algorithm requires O(ndmaxt+ n log(n)), where the O(n log(n)) part

comes from the third step of sorting. In practice, the random walk depth t is O(1) with

respect to the graph size n, therefore we have O(ndmax + n log(n)).

Theorem 2.4.2. Algorithm 4 requires O(ndmax + n log(n)) operations.

Proof. For Algorithm 4, its first step requires O(ndmax), second step requires O(ndmax +

n log(n)), where the O(ndmax) part comes from matrix vector multiplication, and O(n log(n))

part comes from sorting. For its third step, to avoid solving the normal equation exactly for

large scale problems, we recommend using an iterative mehod, for example conjugate gradient

descent (we use MATLAB’s lsqr operation in our implementation). As we have shown the

matrices are associated with well behaved condition numbers, it requires only a constant

number of iterations to get a well approximated least squares solution to problem (2.8).

Since the cost for each iteration in conjugate gradient descent equals to a few operations of

matrix vector multiplication, which is O(ndmax), the total cost for Algorithm 4 is O(ndmax+

n log(n)).
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As a consequence, the total run time for Algorithm 6 is O(ndmax+n log(n)). if the number

of clusters k = O(1), then Algorithm 7 also runs in O(ndmax + n log(n)).

Remark 2.4.1. The computational scheme of our methods follow the similar framework as

CP+RWT in [70]. However, one of the differences between these two approaches is that we

apply lsqr to solve the least squares problem (2.8), but CP+RWT applies O(log n) iterations

of subspace pursuit algorithm to solve (2.8), and each its subspace pursuit is implemented

with lsqr as a subroutine. So essentially, our proposed method is O(log n) times cheaper than

CP+RWT. We can also see this difference by comparing the run times for our numerical

experiments in the last section of next chapter.



Chapter 3

Semi-supervised Local Clustering via Compressive Sensing

One of the major concerns for the local clustering approaches proposed in [70] and [77] is the

low quality of the initial cut. In this chapter, we introduce a more recent approach for local

clustering. Our approach discussed in this chapter improves the aforementioned two works

by making the initial cut to be the entire graph and hence overcomes the issue that missing

vertices of the target cluster from the initial cut are not recoverable in the later stage. We will

discuss both the theoretical framework and conduct comprehensive experiments to showcase

the effectiveness of this approach.

3.1 Local Clustering based on Compressive Sensing Approach

Recall that the local clustering task can be considered as a compressive sensing problem in

the following way. Suppose the vertices have been sorted according to their memberships,

i.e., the first n1 rows and columns in Lin corresponds to all the vertices in C1, the last nk

rows and columns corresponds to all the vertices in Ck, etc,.

Let Lin
−1 = (ℓin2 , · · · , ℓinn ) be the matrix obtained from Lin = (ℓin1 , · · · , ℓinn ) by deleting the

first column from C1. Let us take a look of a specific example of Lin, which is shown in

equation (3.1). For the graph associated with this Lin, all the clusters have size three. The

symbol ∗ equals to −1/2, and all the other entries in the off-diagonal blocks equal to zero.

37
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Lin
−1 =



∗ ∗

1 ∗

∗ 1

1 ∗ ∗

∗ 1 ∗

∗ ∗ 1

. . .

1 ∗ ∗

∗ 1 ∗

∗ ∗ 1



= (ℓin2 , · · · , ℓinn ). (3.1)

Then we can easily verify the desired solution to the compressive sensing problem

min ∥x∥0 s.t. Lin
−1x = −ℓin1 (3.2)

is x∗ = (1, 1, 0, · · · , 0)′. The significance of this formulation is that the nonzero components

in x∗ correspond to the indices of vertices which belong to the target cluster C1. This gives

us the intuitive idea of how to apply compressive sensing for solving local clustering problem.

However, we usually do not have access to Lin or Lin
−1, what we do have access to are

L and L−1. We can relax the exact equality condition to approximately equal to, so the

problem becomes

min ∥x∥0 s.t. L−1x ≈ y, (3.3)

where y is the row sum vector of L−1. Let x
# be the solution to (3.3). Suppose the graph

has a good underlying clusters structure, in other words, the entries in the off-diagonal block

of L−1 have very small magnitude, i.e., L−1 ≈ Lin
−1. Then we should have y ≈ yin, and hence

the difference between x# and x∗ should be small in certain sense. We can then use some

cut-off number R ∈ (0, 1) to separate the coordinates of x# and therefore extract the target

cluster from the entire graph.



39

3.2 Main Algorithm

In general, we can remove more than just one column. That is, we remove a set T ⊂ V in a

somewhat smart way, with the hope that T ⊂ C1, and then we solve

min ∥x∥0 s.t. ∥LV \Tx− y∥2 ≤ ϵ. (3.4)

Or equivalently, we solve

argmin
x∈R|V |−|T |

{∥LV \Tx− y∥2 : ∥x∥0 ≤ s} (3.5)

where vector y is the row sum vector of LV \T and s is the sparsity constraint.

Naively, if the size of Γ is not too small, then we can just choose T = Γ. However, for

the scope of our problem, the size of Γ is assumed to be small relative to the size of C1,

therefore this choice does not work well in practice. Instead, we select T based on a heuristic

criterion (as described in step 4) on a candidate set Ω which is obtained from a random

walk originates from Γ. We also find that the size of T does not matter too much based on

our exploration in the experiments. The idea is summarized in Algorithm 8 as CS-LCE. We

give a more detailed explanation about several aspects of the algorithm in Remark 3.2.1 and

Remark 3.2.2. More generally, we can apply CS-LCE iteratively to extract all the clusters

one at a time.
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Algorithm 8: Compressive Sensing for Local Cluster Extraction (CS-LCE)

Data: Adjacency matrix A, a small set of seeds Γ ⊂ C1, estimated size n̂1 ≈ |C1|,

random walk threshold parameter ϵ ∈ (0, 1), random walk depth t ∈ Z+,

sparsity parameter γ ∈ [0.1, 0.5], rejection parameter R ∈ [0.1, 0.9].

Result: The target cluster C1.

1 Compute P = AD−1, v0 = D1Γ, and L = I −D−1A;

2 Compute v(t) = P tv(0);

3 Define Ω = L(1+ϵ)n̂1(v
(t));

4 Let T be the set of column indices of γ · |Ω| smallest components of the vector

|L⊤
Ω| · |L1Ω|;

5 Set y := L1V \T . Let x
# be the solution to

argmin
x∈R|V |−|T |

{∥LV \Tx− y∥2 : ∥x∥0 ≤ (1− γ)n̂1} (3.6)

obtained by using O(log n) iterations of Subspace Pursuit [21];

6 Let W# = {i : x#
i > R};

7 return C#
1 = W# ∪ T .

We would like to point out the major differences between CS-LCE with its counterparts

CP+RWT in [70] and LSC in [77]. The key difference is that the latter two methods only

be able to extract target cluster from the initial cut Ω, since it is assumed that C1 ⊂ Ω in

these two methods before extracting all the vertices in C1, and once Ω fails to contain any

vertex in C1, there is no chance for CP+RWT or LSC to recover those vertices in the later

stage. However, such an assumption is not needed in CS-LCE. Since the sensing matrix in

CS-LCE is associated with all the vertices corresponding to V \ T , it is very probable for

CS-LCE to still be able to find the vertices which are in C1 but not in Ω.

Remark 3.2.1. The purpose of Ω is solely for obtaining the set T , and the vector y is

computed by adding up all the columns with indices in the set V \ T . This is another key
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difference between CS-LCE and CP+RWT [70] and LSC [77], whereas the latter two methods

directly use Ω to obtain y.

Remark 3.2.2. The rationale for choosing an iterative approach such as Subspace Pursuit

over other sophisticated optimization algorithms for solving (3.6) comes from the nature of

our task. Since the task is clustering, all we need is a relative good estimated solution instead

of the exact solution, then we can use a cutoff number R in Algorithm 8 to separate the

aimed cluster from the remaining of the graph. Due to the nature of an iterative approach,

the convergence is usually fast at the beginning and slow in the end, so we can stop early

in the iteration to save the computational cost once the estimated solution is roughly “close

enough” to the true solution.

3.3 Theoretical Analysis

For convenience, let us fix γ = 0.4 for the rest of discussion. We want to make sure the output

C#
1 from Algorithm 8 is as close to the true cluster C1 as possible. In order to investigate

more towards this aspect, let us use x∗ to denote the solution to the unperturbed problem:

x∗ := argmin
x∈R|V |−|T |

{∥Lin
V \Tx− yin∥2 : ∥x∥0 ≤ 0.6n1} (3.7)

where yin = Lin1V \T . Let x
# be the solution to (3.6), the perturbed problem, with γ = 0.4.

Let us first establish the correctness of having x∗ equals to an indicator vector as the

solution to (3.7), and then conclude that x# ≈ x∗ if L ≈ Lin in a certain sense. Once this

is established, we will be able to conclude C#
1 ≈ C1. These results are summarized in the

following as a series of theorems and lemma.

Theorem 3.3.1. Suppose T ⊂ C1. Then x∗ = 1C1\T ∈ R|V |−|T | is the unique solution to

(3.7).

Proof. Note that for yin = Lin1V \T , we can rewrite it as yin = Lin
V \T1 where 1 ∈ R|V |−|T |. It

is straightforward to check x∗ = 1C1\T is a solution to (3.7). The rest is to show it is unique.
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Suppose otherwise, then since Lin
V \T1C1\T = yin, we want to find x ∈ R|V |−|T | and x ̸=

1C1\T such that Lin
V \T (x − 1) = 0. Without loss of generality, let us assume the columns of

L are permuted such that it is in the block diagonal form, i.e.,

Lin
V \T =



Lin
C1\T

Lin
C2

. . .

Lin
Cn


.

Let us now show that Lin
C1\T is of full column rank, i.e., the columns of Lin

C1\T is linearly

independent. We first observe the following fact. By Lemma 1.2.3, each of Lin
Ci

has λ = 0

as an eigenvalue with multiplicity one, and the corresponding eigenspace is spanned by 1Ci
.

Now suppose by contradiction that the columns of Lin
C1\T are linearly dependent, so there

exists v ̸= 0 such that Lin
C1\Tv = 0, or Lin

C1\Tv + Lin
T · 0 = 0. This means that u = (v,0) is

an eigenvector associated to eigenvalue zero, which contradicts the fact that the eigenspace

is spanned by 1Ci
. Therefore Lin

C1\T is of full column rank.

Since Lin
C1\T is of full column rank, and Ker(Lin

Ci
) = Span{1Ci

} for i ≥ 2. We conclude

that x− 1 ∈ Ker(Lin
V \T ) = Span{1C2 , · · · ,1Cn}. Therefore in order to satisfy ∥x∥0 ≤ 0.6n1,

it is easy to see x = 1− 1C2 − 1C3 − · · · − 1Ck
= 1C1\T , which results in a contradiction by

our assumption.

The next theorem shows that x∗ and x# are close to each other if L and Lin are close.

Theorem 3.3.2. Let M := L−Lin. Suppose T ⊂ C1, ∥M∥2 = o(n−1/2) and δ1.8n1(L) = o(1).

Then

∥x# − x∗∥2
∥x∗∥2

= o(1). (3.8)
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Proof. Recall that x# is the output to (3.6) after O(log n) iterations of Subspace Pursuit.

By our assumption on M , we have

∥y − yin∥2 = ∥L1V \T − Lin1V \T∥2 = ∥(L− Lin)1V \T∥2

≤ ∥M∥2∥1V \T∥2 ≤ o(n−1/2) ·
√
n = o(1).

Then applying Theorem 2.5 in [70], we get the desired result.

Lemma 3.3.1. Consider K ⊂ [n], any v ∈ Rn, and W# = {i : vi > R}. If ∥1K − v∥2 ≤ D,

then |K△W#| ≤ D2

min{(1−R)2,R2} .

Proof. Let U# = [n] \ W#, we can write v = vU# + vW# where vU# and vW# are the

components of v supported on U# and W# respectively. Then we have

∥1K − v∥22 = ∥1K − vU# − vW#∥22

= ∥1K\W# − vU#∥22 + ∥vW#\T∥22

+ ∥1K∩W# − vK∩W#∥22

≥ ∥1K\W# − vU#∥22 + ∥vW#\T∥22

≥ (1−R)2 · |K \W#|+R2 · |W# \K|

≥ min{(1−R)2, R2}(|K \W#|+ |W# \K|)

= min{(1−R)2, R2}|K△W#|.

Therefore ∥1K − v∥2 ≤ D implies |K△W#| ≤ D2

min{(1−R)2,R2} as desired.

Theorem 3.3.3. Suppose T ⊂ C1. Then

|C1△C#
1 |

|C1|
≤ o(1) (3.9)

Proof. It is equivalent to show |C1△C#
1 | ≤ o(n1). Note that x∗ = 1C1\T . By Theorem 3.3.2,

we get ∥1C1\T−x#∥2 ≤ o(∥1C1\T∥2) = o(
√
n1). We then apply Lemma 3.3.1 with K = C1\T ,

W# = C#
1 , and v = x# to get |(C1 \ T )△C#

1 | ≤ o(n1). Therefore |C1△C#
1 | ≤ o(n1).
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3.4 Experiments

In this section, we evaluate Algorithm 8 on various synthetic and real datasets and compare

its performance with several baselines. For all experiments, we perform 100 individual runs.

Additional details about the experiments are provided in section 3.5. For reproducibility, we

make our code available at: https://github.com/zzzzms/LocalClustering.

Datasets. We use simulated stochastic block model, simulated geometric data with three

particular shapes, network data on political blogs [3], OptDigits1, AT&T Database of Faces2,

MNIST3, and USPS4 as our benchmark datasets.

Baselines and Settings. We adopt the LSC [77], CP+RWT [70], HK-Grow [63], PPR [5],

ESSC [143], LBSA [120], and several other modern semi-supervised clustering algorithms as

our baseline methods. For our experiments of stochastic block model, the only target cluster

is the most dominant cluster, i.e., the cluster with the highest connection probability. For

all other experiments, all of the clusters are considered as our target clusters, and we apply

CS-LCE iteratively to extract all of them. We use Jaccard index to measure the performance

of one cluster tasks and use mean accuracy across all clusters to measure the performance

of multiple clusters tasks.

3.4.1 Simulated Data

Symmetric Stochastic Block Model. The stochastic block model is a generative model for

random graphs with certain edge densities within and between underlying clusters. The

edges within clusters are denser than the edges between clusters. In the case of each cluster

has the same size and the intra- and inter-connection probability are the same among all

vertices, we have the symmetric stochastic block model SSBM(n, k, p, q). The parameter n

is the size of the graph, k is the number of clusters, p is the probability of intra-connectivity,

1https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+

digits
2https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/
3http://yann.lecun.com/exdb/mnist/
4https://git-disl.github.io/GTDLBench/datasets/usps_dataset/

https://github.com/zzzzms/LocalClustering
https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/
http://yann.lecun.com/exdb/mnist/
https://git-disl.github.io/GTDLBench/datasets/usps_dataset/
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and q is the probability of inter-connectivity. In our experiments, we fix k = 3 and vary n

among 600, 1200, 1800, 2400, 3000. We choose p = 5 log n/n, q = log n/n. With five labeled

vertices as seeds, we achieve average Jaccard index and logarithm of average run time shown

in Figure 3.1. We can see CS-LCE outperforms all other baselines with a reasonable running

time.

Figure 3.1: Jaccard Index and Logarthim of Running Time on SSBM.

General Stochastic Block Model. In a more general stochastic block model SBM(n, k, P ),

where n and k are the same as symmetric case. The matrix P indicates the connection

probability within each individual cluster and between different clusters. In our experiments,

we fix k = 3, and the size of clusters are chosen as n = (n1, 2n1, 5n1) where n1 is chosen from

{200, 400, 600, 800, 1000}. We set the connection probability matrix P = [p, q, q; q, p, q; q, q, p]

where p = log2(8n1)/(8n1) and q = 5 log(8n1)/(8n1). With five labeled vertices as seeds, the

average Jaccard index and logarithm of average run time of CS-LCE compared with several

other algorithms are shown in Figure 3.2.



46

Figure 3.2: Jaccard Index and Logarthim of Running Time on SBM.

Geometric Data.We also simulated three high dimensional datasets in Euclidean space where

the projections of the clusters onto two dimensional plane look like three lines, three circles,

or three moons. See Figure 3.3 for an illustration of them. These datasets are often used

as benchmark for data clustering and they are also described in [96] with slightly different

parameters. Because of the shape of underlying clusters, traditional k-means clustering or

spectral clustering fail on these contrived datasets. In our experiments, for each dataset, we

randomly select 10 seeds for each of the cluster. The mean accuracy and standard deviation

of CS-LCE compared with LSC [77] and CP+RWT [70] are given in Table 3.1. A more

detailed description of this simulated dataset is given in section 3.5.

Figure 3.3: 2D Visualizations of Geometric Data.
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Table 3.1: Mean Accuracy and Standard Deviation on Geometric Data (%)

Datasets Three Lines Three Circles Three Moons

LSC 89.0 (5.53) 96.2 (3.71) 85.3 (1.88)

CP+RWT 82.1 (9.06) 96.1 (5.09) 85.4 (1.33)

CS-LCE 92.4 (8.13) 97.6 (4.69) 96.8 (0.89)

3.4.2 Human Face Images

The AT&T Database of Faces contains gray-scale images for 40 different people of pixel size

92×112. Images of each person are taken under 10 different conditions, by varying the three

perspectives of faces, lighting conditions, and facial expressions. We use part of this dataset

by randomly selecting 10 people such that each individual is associated with 10 pictures of

themselves. The selected dataset and desired recovery are shown in Figure 3.4.

The mean accuracy and standard deviation of CS-LCE compared with LSC [77],

CP+RWT [70], and spectral clustering (SC) are summarized in Table 3.2. Note that

spectral clustering method is unsupervised, hence its accuracy does not affected by the label

ratios.
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Figure 3.4: Left : Randomly Permuted AT&T Faces. Right : Desired Recovery of all Clusters.

Table 3.2: Mean Accuracy and Standard Deviation on AT&T Data (%)

Label Ratios 10 % 20 % 30 %

LSC 94.8 (3.32) 97.8 (1.18) 98.2 (0.77)

CP+RWT 93.7 (3.34) 97.8 (1.44) 98.3 (0.43)

SC 95.8 (0.00) 95.8 (0.00) 95.8 (0.00)

CS-LCE 98.0 (1.90) 99.1 (0.79) 99.3 (0.59)

3.4.3 Network Data

“The political blogosphere and the 2004 US Election” [3] dataset contains a list of political

blogs that were classified as liberal or conservative with links between blogs. An illustration

of this dataset is shown in Figure 3.5. The state-of-the-art result on this dataset is given in

[2]. Their simplified algorithm gave a successful classification 37 times out of 40 trials, and

each of the successful trials correctly classified all but 56 to 67 of the 1,222 vertices in the

graph main component.
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In our experiments, given one labeled seed, CS-LCE succeeds 35 trials out of a total of

40 trials. Among these 35 successful trials, the average number of misclassified node in the

graph main component is 49, which is comparable to the state-of-the-art result. We note

that LSC [77] also succeeds 35 out of 40 trials, but the average number of misclassified node

equals to 55. We also note that CP+RWT [70] fails on this dataset.

Figure 3.5: Community structure of political blogs. Red for conservative and blue for liberal.

Orange links go from liberal to conservative, and purple ones from conservative to liberal. The size

of each blog reflects the number of other blogs that link to it [3].

3.4.4 Digits Data

OptDigits. This dataset contains grayscale images of handwritten digits from 0 to 9 of size

8× 8. There are a total of 5620 images and each cluster has approximately 560 images. The

average Jaccard index and logarithm of average run time of CS-LCE compared with several

other algorithms are shown in Figure 3.6. we exclude PPR and ESSC in the comparison as

they either too slow to run or the accuracy is too low.
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Figure 3.6: Jaccard Index and Logarthim of Running Time on OptDigits.

MNIST and USPS. The MNIST dataset consists of 70000 grayscale images of the handwritten

digits 0-9 of size 28 × 28 with approximately 7000 images of each digit. The USPS data

set contains 9298 grayscale images, obtained from the scanning of handwritten digits from

envelopes by the U.S. postal service. We test CS-LCE, LCS, CP+RWT, and several other

modern semi-supervised methods on these two datasets, the results are show in Table 3.3,

Table 3.4, and Table 3.5. It is worth pointing out that in Table 3.3 and Table 3.4, we have

only very few labeled data for our tasks. If one uses a neural network method to train for

classification of images, then it usually needs more labeled data for training. In Table 3.5,

we compare CS-LCE with several other constraint clustering algorithms. In each constrained

clustering algorithms, the total number of pairwise constraints are set to equal to the total

data points. Therefore in order to have a fair comparison, we choose a certain amount of

labeled data in CS-LCE such that the total pairwise constraints are the same.

Table 3.3: Mean Accuracy and Standard Deviation on USPS (%)

Label Ratios 0.2 % 0.3% 0.4%

CP+RWT [70] 68.9 (3.17) 73.3 (2.76) 76.6 (2.59)

LSC [77] 72.3 (3.54) 77.1 (3.42) 80.4 (3.20)

CS-LCE [117] 76.8 (3.37) 80.1 (3.14) 84.1 (2.53)
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Table 3.4: Mean Accuracy and Standard Deviation on MNIST (%)

Label Ratios 0.05 % 0.10 % 0.15 %

CP+RWT [70] 74.1 (3.13) 79.7 (2.43) 85.0 (2.37)

LSC [77] 77.0 (3.47) 83.6 (2.76) 88.8 (2.52)

CS-LCE [117] 85.3 (2.67) 89.8 (1.91) 93.2 (1.76)

Table 3.5: Mean Accuracy on MNIST and USPS (%)

MNIST USPS

KM-cst [9] 54.27 68.18

AE+KM [91] 74.09 70.28

AE+KM-cst [9] 75.98 71.87

DEC [144] 84.94 75.81

IDEC [50] 83.85 75.86

SDEC [113] 86.11 76.39

CS-LCE [117] 96.02 82.10

3.4.5 Image Color Clustering

Our approach also has applications in image color clustering. i.e., we can treat certain com-

ponent in the image as a cluster and extract it out from the entire image. See Figure 3.7 as

an example, where the “tomato” and “happy birthday” components are extracted from the

two images respectively.

For our proposed local clustering algorithm, there are several directions which deserve

more investigation. For example, is there a better way to choose a removal set T in Algo-

rithm 8, and also how to extend the current method to the unsupervised setting, i.e., if no
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seeds are given, how to select a small portion of seeds and make sure these seeds are all from

the same cluster. We leave these to future work.

Figure 3.7: Examples of Image Colors Clustering

3.5 Further Details on Experiments and Implementation

Let us provide more details of the datasets usage, hyperparameters, and data preprocessing

for the conducted experiments in this section.

3.5.1 Description of Geometric Data

Three Lines. The three lines are generated by sampling points uniformly at random in the

two dimensional x-y plane where the x coordinate is between 0 and 6 and y coordinate equals

to 0, 1, and 2 respectively. We draw 1200 points in each line to create three clusters. We

then embed each data point into R100 by appending zeros and then adding Gaussian random
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noise to each coordinate with mean 0 and standard deviation 0.15.

Three Circles. The three circles are generated by sampling points uniformly at random from

three concentric circles of radii 1, 2.4 and 3.8 respectively. We draw around 500 points from

the smallest circle, around 1200 points from the middle circle and around 1900 points from

the largest circle (the numbers are chosen so that the total number of points is 3600). We

then embed each data point into R100 by appending zeros and then adding Gaussian random

noise to each coordinate with mean 0 and standard deviation 0.15.

Three Moons. The three moons are generated by sampling points uniformly at random from

the upper semicircle of radius 1 centered at (0,0), the lower semi-circle of radius 1.5 centered

at (1.5, 0.4) and the upper semi-circle of radius 1 centered at (3,0). We draw 1200 points

in each semi-circle to create three clusters. We then embed each data point into R100 by

appending zeros and then adding Gaussian random noise to each coordinate with mean 0

and standard deviation 0.15.

3.5.2 Hyperparameters Setup

For each cluster to be recovered, we sampled the seed vertices Γi uniformly from Ci for all

of our implementations. We fix the rejection parameter R = 0.1, the random walk depth

t = 3 and random walk threshold parameter ϵ = 0.8 for all of our implementations. We fix

the least squares threshold parameter with γ = 0.2 for all experiments. All the numerical

experiments are implemented in MATLAB and can be run on a local machine.

3.5.3 Image Data Preprocessing

For our approach, the images data coming from each of the AT&T, OptDigits, MNIST,

USPS dataset have to be firstly constructed into an auxiliary graph before feeding into the

algorithm. We adopt the following way to build the auxiliary graphs.

Let xi ∈ Rn be the vectorization of an image from the original data set, we define the

following affinity matrix of the K-NN auxiliary graph based on Gaussian kernel according
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to [61] and [147],.

Aij =


e−∥xi−xj∥2/σiσj if xj ∈ NN(xi, K)

0 otherwise

The notation NN(xi, K) indicates the set ofK-nearest neighbours of xi, and σi := ∥xi−x(r)
i ∥

where x
(r)
i is the r-th closest point of xi. Note that the above Aij is not necessary symmetric,

so we consider Ãij = ATA for symmetrization. Alternatively, one may also want to consider

Ã = max{Aij, Aji} or Ã = (Aij + Aji)/2. We use Ã as the input adjacency matrix for our

algorithms. In our implementation, we choose the local scaling parameters K = 5, r = 3 for

AT&T faces images, and K = 15, r = 10 for OptDigits, MNIST, USPS.



Chapter 4

Function Approximation via Kolmogorov Superposition Theorem

In this chapter, we propose to use Kolmogorov superposition theorem (KST) to study the

approximation rate of high dimensional continuous functions. More specifically, we show that

there is a dense subclass of functions in C([0, 1]d) which can be approximated by using the

representation of KST with a dimension independent approximation rate O(1/n), with n

being the number of knots of the linear spline functions over [0, 1]. Moreover, the approxi-

mation constant in our approach increases quadratically in the dimension d, and the number

of parameters used in such neural network approximation equals is O(nd). The results in

this chapter are summarized in [76].

4.1 Kolmogorov Superposition Theorem

One of the suprising result in approximation theory is the Kolmogorov superposition The-

orem (KST), sometimes it is also called Kolmogorov–Arnold representation theorem. Let us

recall the statement of KST first. We will introduce two versions of KST which appear in

[65] and [88], respectively.

Theorem 4.1.1 (Kolmogorov Superposition Theorem – original version [65]). Let f ∈

C([0, 1]d), then there exists continuous functions gq : R → R and ϕqp : [0, 1] → R such

that

f(x1, · · · , xd) =
2d∑
q=0

gq

 d∑
p=0

ϕqp(xp)

 . (4.1)

The significance of this surprising result can be summarized succinctly: Addition is the

only continuous multivariate function. There have been many improvements of KST over

55
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the years. Lorentz [87] pointed out that the outer function gq can be chosen to be the same,

while Sprecher [126] showed that one can take ϕqp = λpϕq. Henkin [53] and Fridman [44]

pointed out that the inner functions ϕqp can be chosen to be Hölder continuous with exponent

α ∈ (0, 1] and Lipschitz continuous, respectively. Sprecher [127, 128, 129, 130] also showed

that inner functions can be replaced by one single inner function with an appropriate shift

in its argument through the constructive form of KST. His proofs were finally correctly

established in [11] and [12]. An excellent explanation of the history about the development

of KST can be found in [102]. We now turn our attention to the Lorentz’s version of KST

[88], which is more useful for the development of our approach in function approximation.

Theorem 4.1.2 (Kolmogorov Superposition Theorem – Lorentz’s version [88]). There exist

0 < λp ≤ 1, p = 1, · · · , d, and strictly increasing α-Hölder continuous functions ϕq(x) :

[0, 1] → [0, 1], q = 0, · · · , 2d, with exponent α ∈ (0, 1), such that for every f ∈ C([0, 1]d),

there exists a continuous function g ∈ C([0, d]), such that

f(x1, · · · , xd) =
2d∑
q=0

g

 d∑
p=1

λpϕq(xp)

 . (4.2)

Some notable features of the representation formula (4.2) are the following. Firstly, there

is only one outer function g associated with f . Secondly, the number 2d+1 in the summands

can not be further reduced [107, 131]. Thirdly, the inner functions can not be chosen to be

continuously differentiable [136, 137, 87].

The upshot for this representation is: for any continuous function f ∈ C([0, 1]d), there is

a continuous function gf ∈ C([0, d]) so that f can be represented by gf via (4.2). Conversely,

given any continuous function g ∈ C([0, d]), we can produce a continuous function fg ∈

C([0, 1]d) by using the representation formula (4.2). Such a correspondence between f and

g is one-to-one. Therefore we can use what we understand about univariate continuous

functions to understand multivariate continuous functions.

It is worthy noting that KST also has some nice topology and machine learning interpre-

tations. KST essentially established that all d dimensional compact metrizable spaces can
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be embedded into RN if and only if N ≥ 2d + 1. KST also guarantees that any continuous

statistical or machine learning model, after a suitable embedding, is a sum of generalized

additive models. There have been many generalizations and extensions of KST over the past

few decades. Ostrand [107] showed that KST holds on compact metric spaces. Doss [30] and

Demko [24] extended KST to Rn for unbounded and bounded continuous functions, respec-

tively. Feng [38] generalized KST to locally compact and finite dimensional separable metric

spaces.

It is straightforward to see that the representation formula (4.2) mimics the structure of a

two-layer neural network where the inner and outer functions can be considered as activation

functions. However, there have been debates over decades on whether such a representation

via KST is useful. Girosi and Poggio [46] claimed that some degree of smoothness is required

for inner and outer functions in order for the approximation to generalize and stabilize against

noise. Lin and Unbehauen [85] made a similar conclusion by noting that all information

carried by f must be contained in the univariate function g hence learning the latter is not

any easier than learning the former. On the other hand, Køurkovà [68, 69] countered some

of the criticisms from Girosi and Poggio by giving a constructive way to approximate the

univariate outer function g through linear combinations of the smooth sigmoid function.

She also bounded the number of units needed for a desired approximation. This has in turn

generated further interest in the study of neural network and approximation.

Indeed, KST has been actively studied which echoes the fast development of neural

network computing [20, 97, 110]. Hecht-Nielsen [52] was among the first to draw a connection

between KST and neural networks. This inspired much of the later works on universality of

two-layer neural networks. However, Hecht-Nielsen was doubtful about the direct usefulness

of this connection because no construction of the outer function was known then and he

mentioned the possibility of learning the outer function from input-output examples. Later

on, Igelnik and Parikh [60] proposed a neural network algorithm using spline functions to

approximate both the inner and outer functions. More recently, active research has been
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conducted on neural network approximation via KST and achieves promising results [100,

115, 36]. However, these results are not directly based on the representation formula (4.1.2)

and can be impractical to implement in practice. To the best of the authors’ knowledge,

there is yet no approximation scheme that is directly based on KST and is straightforward

to deploy in practice.

In this chapter, we propose to study the rate of approximation for ReLU neural network

via KST. We propose a special neural network structure via the representation of KST,

which can achieve a dimension independent approximation rate O(1/n) with the approxima-

tion constant increasing quadratically in the dimension when approximating a dense subset

of continuous functions. The number of parameters used in such a network increases linearly

in n. Furthermore, we shall provide a numerical scheme to practically approximate d dimen-

sional continuous functions by using at most O(dn) number of pivotal locations for function

value evaluattion instead of the whole equally-spaced O(nd) data locations, and such a set

of pivotal locations are independent of target functions.

The subsequent sections of this chapter are structured as follows. In section 4.2, we

introduce the neural network representation via KST and explain how to approximate mul-

tivariate continuous functions with no curse of dimensionality for a dense class of functions.

We also establish the approximation result for any continuous function based on the mod-

ulus of continuity of the K-outer function. In section 4.3, we introduce KB-splines based on

the spline approximation of K-outer function, and its smoothed version LKB-splines. We

will show that KB-splines are indeed the bases for functions in C([0, 1]d). In section 4.4,

we numerically demonstrate in 2D and 3D that LKB-splines can approximate functions in

C([0, 1]d) very well. Furthermore, we provide a computational strategy based on matrix cross

approximation to find a sparse solution using a few number of LKB-splines to achieve the

same approximation order as the original approximation. This leads to the new concept of

pivotal point set from any dense point set P over [0, 1]d such that the discrete least squares
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(DLS) fitting based on the pivotal point set has the similar rooted mean squares error to the

DLS fitting based on the original data set P .

4.2 ReLU Network Approximation via KST

We will use σ1 to denote ReLU function through the rest of discussion. It is easy to see that

one can use linear splines to approximate K-inner (continuous and monotone increasing)

functions ϕq, q = 0, · · · , 2d and also approximate the K-outer (continuous) function g. We

refer to Theorem 20.2 in [111]. On the other hand, we can easily see that any linear spline

function can be written in terms of linear combination of ReLU functions and vice versa,

see, e.g. [22, 25]. We shall include another proof later in this chapter. Hence, we have

Lq(t) :=

Nq∑
j=1

cq,jσ1(t− yqj) ≈ ϕq(t)

for q = 0, · · · , 2d and

Sg(t) :=

Ng∑
k=1

wkσ1(t− yk) ≈ g,

where g is the K-outer function of a continuous function f . Based on KST and the universal

approximation theorem [20, 56, 110], it follows that

Theorem 4.2.1 (Universal Approximation Theorem (cf. [123]). Suppose that f ∈ C([0, 1]d)

is a continuous function. For any given ϵ > 0, there exist coefficients wk, k = 1, · · · , Ng,

yk ∈ [0, d], k = 1, · · · , Ng, cq,j, j = 1, · · · , Ni and yq,j ∈ [0, 1], j = 1, · · · , Ni such that

|f(x1, · · · , xd)−
2d∑
q=0

Ng∑
k=1

wkσ1(
d∑

i=1

λi

Nq∑
j=1

cq,jσ1(xi − yqj)− yk)| ≤ ϵ. (4.3)

In fact, many results similar to the above (4.3) have been established using other activation

functions (cf. e.g. [20], [69], [100], and etc.).
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4.2.1 K-Lipschitz Function

To establish the rate of convergence for Theorem 4.2.1, we introduce a new concept. For each

continuous function f ∈ C([0, 1]d), let gf be the K-outer function associated with f . Let

KL = {f : K-outer function gf is Lipschitz continuous} (4.4)

be the class of K-Lipschitz continuous functions. Note that when f is a constant, its K-outer

function g = 1
d+1

f is also constant (cf. [13]) and hence, is Lipschitz continuous. That is,

the function class KL is not empty. On the other hand, we can use any univariate Lipschitz

continuous function g such as g(t) = Ct, g(t) = sin(Ct), g(t) = exp(−Ct), g(t) = sin(Ct2/2),

etc.. over [0, d] to define a multivariate function f by using the formula (4.2) of KST, where

C is any constant. Then these newly defined f are continuous over [0, 1]d and are belong to

the function class KL. It is easy to see that the class KL is dense in C([0, 1]d) by Weierstrass

approximation theorem. See Theorem 4.2.2 below. For another example, let g(t) be a B-

spline function of degree k ≥ 1, the associated multivariate function is in KL. We shall use

such B-spline functions for the K-outer function g approximation in a later section.

Theorem 4.2.2. For any f ∈ C([0, 1]d) and any ϵ > 0, there exists a K-Lipschitz continuous

function K such that

∥f −K∥∞ ≤ ϵ. (4.5)

Proof. By Kolmogorov superposition theorem, we can write

f(x1, · · · , xd) =
2d+1∑
q=0

g(
d∑

i=1

λiϕq(xi)).

By Weierstrass approximation theorem, there exists a polynomial p such that |p(t)− g(t)| ≤
ϵ

2d+1
for all t ∈ [0, d]. Such a polynomial p is certainly a Lipschitz continuous function over

[0, d].
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Therefore, by Letting K(x1, · · · , xd) =
∑2d+1

q=0 p(
∑d

i=1 λiϕq(xi)) ∈ KL, we have

|f(x1, · · · , xd)−K(x1, · · · , xd)| = |
2d+1∑
q=0

g(
d∑

i=1

λiϕq(xi))−
2d+1∑
q=0

p(
d∑

i=1

λiϕq(xi))|

≤
2d+1∑
q=0

|g(
d∑

i=1

λiϕq(xi))− p(
d∑

i=1

λiϕq(xi))|

≤ (2d+ 1) · ϵ

(2d+ 1)
= ϵ.

Note that the neural network being used for approximation in expression (4.3) is a spe-

cial class of neural network with two hidden layers of widths (2d + 1)dNq and (2d + 1)Ng

respectively. Let us call this special class of neural networks the Kolmogorov network, or

K-network in short and use Km,n to denote the K-network of two hidden layers with widths

(2d+ 1)dm and (2d+ 1)n based on ReLU activation function, i.e.,

Km,n(σ1) = {
2d∑
q=0

dn∑
k=1

wkσ1(
d∑

i=1

m∑
j=1

cqjσ1(xi − yqj)− yk), wk, cqj ∈ R, yk ∈ [0, d], yqj ∈ [0, 1]}.

(4.6)

The parameters in Km,n are wk, yk, k = 1, · · · , dn, and cqj, yqj, q = 0, · · · , 2d, j = 1, · · · ,m.

Therefore the total number of parameters equals to 2dn+2(2d+1)m. In particular if m = n,

the total number of parameters in this network is (6d+ 2)n. We are now ready to state one

of the main results in this chapter.

Theorem 4.2.3. Let f ∈ C([0, 1]d). Suppose that f is in the KL class. Let Cf be the Lipschitz

constant of the K-outer function associated with f . We have

inf
s∈Kn,n(σ1)

∥f − s∥C([0,1]d) ≤
Cf (2d+ 1)2

n
. (4.7)

The significance of this result is, for a dense subclass of continuous functions, we need

only (6d+2)n parameters to achieve the approximation rate O(1/n) with the approximation

constant increasing quadratically in the dimension. That is, the curse of dimensionality

is broken for functions in this dense subclass. In other words, the computation becomes
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tractable. The above result improved the similar one in [100]. Also, the researchers in [101]

showed that the KST can break the curse of dimension for band-limited functions. Our result

breaks the curse of dimensionality for a different class of functions. On the other hand, many

researchers used the smoothness of f to characterize the approximation of ReLU neural

networks. See [89, 145, 146], where the approximation rate on the right-hand side of (4.7)

is O(n−s/d) with s being the smoothness of the function f . Their approximation rates suffer

from the curse of dimension. In terms of the smoothness of the K-outer function, our result

above is believed to be the correct rate of convergence. In addition, we shall extend the

argument to the setting of K-Hölder continuous functions and present the convergence in

terms of K-modulus of smoothness.

4.2.2 Proof of Theorem 4.2.3

To prove Theorem 4.2.3, we need some preparations. Let us begin with the space N (σ1) =

span{σ1(w
⊤x−b), b ∈ R,w ∈ Rd} which is the space of shallow networks of ReLU functions.

It is easy to see that all linear polynomials over Rd are in N (σ1). The following result is

known (cf. e.g. [22]). For self-containedness, we include a different proof.

Lemma 4.2.1. For any linear polynomial s over Rd, there exist coefficients ci ∈ R, bias

ti ∈ R and weights wi ∈ Rd such that

s(x) =
n∑

i=1

ciσ1(wi · x+ ti),∀x ∈ [0, 1]d. (4.8)

That is, s ∈ N (σ1).

Proof. It is easy to see that a linear polynomial x can be exactly reproduced by using the

ReLU functions. For example,

x = σ1(x),∀x ∈ [0, 1]. (4.9)

Hence, any component xj of x ∈ Rd can be written in terms of (4.8). Indeed, choosing

wi = ej, from (4.9), we have

xj = σ1(ej · x), x ∈ [0, 1]d, j = 1, · · · , d.
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Next we claim a constant 1 is in N(σ1). Indeed, given a partition Pn = {a = x0 < x1 < · · · <

xn = b} of interval [a, b], let

h0(x) =


x− x1

x0 − x1

x ∈ [x0, x1]

0 x ∈ [x1, xn]

, (4.10)

hi(x) =



x−xi−1

xi−xi−1
x ∈ [xi−1, xi]

x−xi+1

xi−xi+1
x ∈ [xi, xi+1]

0 x ̸∈ [xi−1, xi+1]

, i = 1, · · · , n− 1 (4.11)

hn(x) =


x− xn−1

xn − xn−1

x ∈ [xn−1, xn]

0 x ∈ [x0, xn−1]

. (4.12)

be a set of piecewise linear spline functions over Pn. Then we know S0
1(Pn) = span{hi, i =

0, · · · , n} is a linear spline space. It is well-known that 1 =
n∑

i=0

hi(x). Now we note the

following formula:

hi(x) =
σ1(x− xi−1)

(xi − xi−1)
+ wiσ1(x− xi) +

σ1(x− xi+1)

(xi+1 − xi)
, (4.13)

where wi = −1/(xi − xi−1) − 1/(xi+1 − xi). It follows that any spline function in S0
1(Pn)

can be written in terms of ReLU functions. In particular, we can write 1 =
∑n

i=0 hi(x) =∑n
i=0 c

0
iσ1(x− xi) by using (4.13).

Hence, for any linear polynomial s(x) = a+
∑d

j=1 cjxj, we have

s(x) = a

n∑
i=0

c0iσ1(x− xi) +
d∑

i=1

ciσ1(ej · x) ∈ N(σ1).

This completes the proof.

The above result shows that any linear spline is in the ReLU neual networks. Also, any

ReLU neual network in R1 is a linear spline. We are now ready to prove Theorem 4.2.3. We

begin with the standard modulus of continuity. For any continuous function g ∈ C[0, d]), we
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define the modulus of continuity of g by

ω(g, h) = max
x∈[0,d]
0<t≤h

|g(x+ t)− g(x)| (4.14)

for any h > 0. To prove the result in Theorem 4.2.3, we need to recall some basic properties

of linear splines (cf. [116]). The following result was established in [111].

Lemma 4.2.2. For any function in f ∈ C[a, b], there exists a linear spline Sf ∈ S0
1(△) such

that

∥f − Sf∥∞,[a,b] ≤ ω(f, |△|) (4.15)

where S0
1(△) is the space of all continuous linear splines over the partition △ = {a = t0 <

t1 < · · · < tn = b} with |△| = maxi |ti − ti−1|.

In order to know the rate of convergence, we need to introduce the class of function of

bounded variation. We say a function f is of bounded variation over [a, b] if

sup
∀a=x0<x1<···<xn=b

n∑
i=1

|f(xi)− f(xi−1)| <∞

We let V b
a (f) be the value above when f is of bounded variation. The following result is

known (cf. [116])

Lemma 4.2.3. Suppose that f is of bounded variation over [a, b]. For any n ≥ 1, there exists

a partition △ with n knots such that

dist(f, S0
1(△))∞ = inf

s∈S0
1(△)
∥f − s∥∞ ≤

V b
a (f)

n+ 1
.

Let L = {f ∈ C([0, 1]d) : |f(x) − f(y)| ≤ Lf |x − y|, ∀x,y ∈ [0, 1]d} be the class of

Lipschitz continuous functions. We can further establish

Lemma 4.2.4. Suppose that f is Lipschitz continuous over [a, b] with Lipschitz constant Lf .

For any n ≥ 1, there exists a partition △ with n interior knots such that

dist(f, S0
1(△))∞ ≤

Lf (b− a)

2(n+ 1)
.
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Proof. We use a linear interpolatory spline Sf . Then for x ∈ [xi, xi+1],

f(x)− Sf (x) = f(x)− f(xi)
xi+1 − x

xi+1 − xi

− f(xi+1)
x− xi

xi+1 − xi

.

=
(xi+1 − x)(f(x)− f(xi))

xi+1 − xi

+
(x− xi)(f(x)− f(xi+1))

xi+1 − xi

≤ Lf
(x− xi)(xi+1 − x)

xi+1 − xi

+ Lf
(xi+1 − x)(x− xi)

xi+1 − xi

≤ Lf

2
(xi+1 − xi).

Hence, |f(x)− Sf (x)| ≤ Lf (b− a)/(2(n+ 1)) if xi+1 − xi = (b− a)/(n+ 1). This completes

the proof.

Furthermore, if f is Lipschitz continuous, so is the linear interpolatory spline Sf . In fact,

we have

|Sf (x)− Sf (y)| ≤ 2Lf |x− y|. (4.16)

We are now ready to prove one of our main results in this chapter.

Proof of Theorems 4.2.3. Since ϕq are univariate increasing functions mapping from [0, 1] to

[0, 1], they are bounded variation with V 1
0 (ϕq) ≤ 1. By Lemma 4.2.3, there are linear spline

functions Lq such that |Lq(t)− ϕq(t)| ≤ 1/(n+ 1) for q = 0, · · · , 2d.

For K-outer function g, when g is Lipschitz continuous, there is a linear spline Sg with

dn distinct interior knots over [0, d] such that

sup
t∈[0,d]

|g(t)− Sg(t)| ≤
dCg

2(nd+ 1)
≤ Cg

2n
,

where Cg is the Lipschitz constant of g by using Lemma 4.2.4. Now we first have

|f(x)−
2d∑
q=0

Sg(
d∑

i=1

λiϕq(xi))| ≤
2d∑
q=0

|g(
d∑

i=1

λiϕq(xi))− Sg(
d∑

i=1

λiϕq(xi))| ≤
(2d+ 1)Cg

2n
.

Next since g is Lipschitz continuous, so is Sg. Thus, by (4.16) and Lemma 4.2.3, we have

|Sg(
d∑

i=1

λiϕq(xi))− Sg(
d∑

i=1

λiLq(xi))| ≤ 2Cg

d∑
i=1

λi|ϕq(xi)− Lq(xi)| ≤
d · 2Cg

(n+ 1)
.

Let us put the above estimates together to have

|f(x)−
2d∑
q=0

Sg(
d∑

i=1

λiLq(xi))| ≤
(2d+ 1)Cg

2n
+

(2d+ 1)2dCg

(n+ 1)
≤ (2d+ 1)2Cg

n
.

The conclusion of Theorem 4.2.3 follows.
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4.2.3 Functions Beyond the K-Lipschitz Class

As K-outer function g may not be Lipschitz continuous, we next consider a class of functions

which is of Hölder continuity. Letting α ∈ (0, 1], we say g is in C0,α if

sup
x,y∈[0,d]

|g(x)− g(y)|
|x− y|α

≤ Lα(g) <∞. (4.17)

Using such a continuous function g, we can define a multivariate continuous function f by

using the formula in Theorem 4.1.2. Let us extend the analysis of the proof of Lemma 4.2.4

to have

Lemma 4.2.5. Suppose that g is Hölder continuous over [0, d], say g ∈ C0,α with Lα(g) for

some α ∈ (0, 1]. For any n ≥ 1, there exists a partition △ with n interior knots such that

dist(g, S0
1(△))∞ ≤

Lα(g)d
α

2(n+ 1)α
.

Similarly, we can define a class of functions which is K-Hölder continuous in the sense that

K-outer function g is Hölder continuity α ∈ (0, 1). For each univariate g in C0,α([0, d]), we

define f using the KST formula (4.2). Then we have a new class of continuous functions which

will satisfy (4.18). The proof is a straightforward generalization of the one for Theorem 4.2.3,

we leave it to the interested readers.

Theorem 4.2.4. For each continuous function f ∈ C([0, 1]d), let g be the K-outer function

associated with f . Suppose that g is in C0,α([0, d]) for some α ∈ (0, 1]. Then

inf
s∈Kn,n(σ1)

∥f − s∥C([0,1]d) ≤
(2d+ 1)2Lα(g)

nα
. (4.18)

Finally, in this section, we study the K-modulus of continuity. For any continuous function

f ∈ C([0, 1]d), let gf be the K-outer function of f based on the KST. Then we use ω(gf , h)

which is called the K-modulus of continuity of f to measure the smoothness of gf . Due to

the uniform continuity of gf , we have linear spline Sgf over an equally-spaced knot sequence

such that

|gf (t)− Sgf (t)| ≤ ω(gf , h), ∀t ∈ [0, d] (4.19)
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for any h > 0, e.g. h = 1/n for a positive integer n. It follows that

|gf (
d∑

i=1

λiϕq(xi))− Sgf (
d∑

i=1

λiϕq(xi)| ≤ ω(gf , h), (4.20)

for any (x1, · · · , xd) ∈ [0, 1]d. Since ϕq, q = 0, · · · , 2d are monotonically increasing, we use

Lemma 4.2.3 to have linear splines Lq such that |Lq(t) − ϕq(t)| ≤ h since V 1
0 (ϕq) ≤ 1. We

now estimate

|Sgf (
d∑

i=1

λiϕq(xi))− Sgf (
d∑

i=1

λiLq(xi))| (4.21)

for q = 0, · · · , 2d. Note that

|
d∑

i=1

λiϕq(xi)−
d∑

i=1

λiLq(xi)| ≤
d∑

i=1

|ϕq(xi)− Lq(xi)| ≤ dh.

The difference of the above two points in [0, d] is separated by at most d subintervals with

length h and hence, we will have

|Sgf (
d∑

i=1

λiϕq(xi))− Sgf (
d∑

i=1

λiLq(xi))| ≤ 2d · ω(gf , h) (4.22)

since Sgf is a linear interpolatory spline of gf . It follows that

|f(x1, · · · , xn)−
2d∑
q=0

Sgf (
d∑

i=1

λiLq(xi))|

≤
2d∑
q=0

|gf (
d∑

i=1

λiϕq(xi))− Sgf (
d∑

i=1

λiϕq(xi))|+
2d∑
q=0

|Sgf (
d∑

i=1

λiϕq(xi))− Sgf (
d∑

i=1

λiLq(xi))|

≤ (2d+ 1)ω(gf , h) + (2d+ 1)2d · ω(gf , h).

Therefore, we conclude the following theorem.

Theorem 4.2.5. For any continuous function f ∈ C[0, 1]d, let gf be the K-outer function

associated with f . Then

inf
s∈Kn,n(σ1)

∥f − s∥C([0,1]d) ≤ (2d+ 1)2ω(gf , 1/n). (4.23)
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4.3 KB-splines and LKB-splines

However, it is not easy to see if the K-outer function gf is Lipschitz continuous when given

a continuous functions f . To do so we have to compute gf from f first. To this end, we

implemented Lorentz’s constructive proof of KST in MATLAB by following the steps in

pages 168− 174 in [88]. See [13] for another implementation based on Maple and MATLAB.

We noticed that the curve gf behaviors very badly for many smooth functions f . Even if

f is a linear polynomial in the 2-dimensional space, the K-outer function g still behaviors

very widey although we can use K-network with two hidden layers to approximate this linear

polynomial f arbitrarily well in theory. This may be a big hurdle to prevent researchers in

[46], [52], [69], [60], [13], and etc. from successful applications based on Kolmogorov spline

network. We circumvent the difficulty of having such a wildly behaved K-outer function

g by introducing KB-splines and the denoised counterpart LKB-splines in this section. In

addition, we will explain how to use them to well approximate high dimensional functions

in a later section..

First of all, we note that the implementation of these ϕq, q = 0, · · · , 2d is not easy.

Numerical ϕq’s are not accurate enough. Indeed, letting zq(x1, · · · , xd) =
∑d

i=1 λiϕq(xi),

Consider the transform:

T (x1, · · · , xd) = (z0, z1, · · · , z2d) (4.24)

which maps from [0, 1]d to R2d+1. Let Z = {T (x1, · · · , xd), (x1, · · · , xd) ∈ [0, 1]d} be the image

of T ([0, 1]d) ⊂ R2d+1. It is easy to see that the image is closed. The theory in [88] explains

that the map T is one-to-one and continuous. As the dimension of Z is much larger than d,

the map T is like a well-known Peano curve which maps from [0, 1] to [0, 1]2 and hence, the

implementation of T , i.e., the implementation of ϕq’s is not possible to be accurate. However,

we are able to compute these ϕq and decompose g such that the reconstruction of constant

function is exact. Let us present two examples to show that our numerical implementation

is reasonable. For convenience, let us use images as 2D functions and compute their K-

outer functions g and then reconstruct the images back. In Figure 4.1, we can see that the
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reconstruction is very good visually although K-outer functions g are oscillating very much.

It is worthwhile to note that such reconstruction results have also been reported in [13].

Certainly, these images are not continuous functions and hence we do not expect that g

to be Lipschitz continuous. But these reconstructed images serves as a “proof” that our

computational code works numerically.

Original Image Reconstructed Image Associated Function g

Figure 4.1: Original image (left column), reconstructed image (middle column), and associated

K-outer function g (right column).

Next we present a few examples of smooth functions whose K-outer functions may not

be Lipschitz continuous in Figure 4.2. Note that the reconstructed functions are very noisy,

in fact they are too noisy to believe that the implementation of the KST can be useful.

In order to see that these noisy functions are indeed the original functions, we applied a

penalized least squares method based on bivariate spline method (to be explained later in

the chapter). That is, after denoising, the reconstructed functions are very close to the exact

original functions as shown in Figure 4.2. That is, the denoising method is successful which

motivates us to adopt this approach to approximate any continuous functions.
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Figure 4.2: Top left: reconstruction of f(x, y) = x. Top right: reconstruction of f(x, y) =

x2. Bottom left: reconstruction of f(x, y) = cos(2(x−y)/π). Bottom right: reconstruction

of f(x, y) = sin(1/(1 + (x− 0.5)(y − 0.5))).

4.3.1 KB-splines

To this end, we first use standard uniform B-splines to form some subclasses of K-Lipschitz

continuous functions. Let △n = {0 = t1 < t2 < · · · < tdn < d} be a uniform partition of

interval [0, d] and let bn,i(t) = Bk(t − ti), i = 1, · · · , dn be the standard B-splines of degree

k with k ≥ 1. For simplicity, we only explain our approach based on linear B-splines for

the theoretical aspect while using other B-splines (e.g. cubic B-splines) for the numerical

experiments. We define KB-splines by

KBn,j (x1, · · · , xd) =
2d∑
q=0

bn,j

 d∑
i=1

λiϕq(xi)

 , j = 1, · · · , dn. (4.25)

It is easy to see that each of these KB-splines defined above is nonnegative. Due to the

property of B-splines:
∑dn

i=1 bn,i(t) = 1 for all t ∈ [0, d], we have the following property of

KB-splines:
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Theorem 4.3.1. We have
∑dn

i=1KBn,i(x1, · · · , xd) = 1 and hence, 0 ≤ KBn,i ≤ 1.

Proof. The proof is immediate by using the fact
∑dn

i=1 bn,i(t) = 1 for all t ∈ [0, d].

Remark 4.3.1. The property in Theorem 4.3.1 is called the partition of unit which makes the

computation stable. We note that a few of these dn KB-splines will be zero since 0 < λi ≤ 1

and min{λi, i = 1, · · · , d} < 1. The number of zero KB-splines is dependent on the choice of

λi, i = 1, · · · , d.

Another important result is that these KB-splines are linearly independent.

Theorem 4.3.2. The nonzero KB-splines {KBn,j ̸= 0, j = 1, · · · , dn} are linearly indepen-

dent.

Proof. Suppose there are cj, j = 1, 2, · · · , dn such that
∑dn

j=1 cjKBn,j(x1, · · · , xd) = 0 for all

(x1, · · · , xd) ∈ [0, 1]d. Then we want to show cj = 0 for all j = 1, 2, · · · , dn. Let us focus on

the case d = 2 as the proof for general case d is similar. Suppose n > 0 is a fixed integer

and we use the notation zq =
∑2

i=1 λiϕq(xi) as above. Then based on the graphs of ϕq in

Figure 4.3, we can choose x1 = δ and x2 = 0 with 0 < δ ≤ 1 small enough such that

KBn,j(x1, 0) =
∑4

q=0 bj(zq(δ, 0)) = 0 for all j = 3, 4, · · · , 2n. Therefore in order to show the

linear independence ofKBn,j, j = 1, 2, · · · , 2n, it is suffices to show
∑2

j=1 cjKBn,j(x1, x2) = 0

implies c1 = c2 = 0. Let us confine x1 ∈ [0, δ] and x2 = 0. Then we have

0 = c1KBn,1(x1, x2) + c2KBn,2(x1, x2) = c1(
4∑

q=0

b1(zq)) + c2(
4∑

q=0

b2(zq))

= c1(
4∑

q=0

b1(zq)) + c2(5−
4∑

q=0

b1(zq)) = (c1 − c2)(
4∑

q=0

b1(zq)) + 5c2,

where we have used the fact that b1(x) + b2(x) = 1 over [0, 1/n]. Since c2 is constant, and∑4
q=0 b1(zq) is not constant when x1 varies between 0 and δ, we must have c1 = c2. Hence

c2 = 0 and therefore c1 = 0.
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Figure 4.3: Left: ϕq, q = 0, 1, 2, 3, 4, for 2D. Right: ϕq, q = 0, 1, 2, 3, 4, 5, 6, for 3D.

In the same fashion, we can choose x̃1 and δ̃ such that KBn,j =
∑4

q=0 bj(zq(x̃1, 0)) = 0

for all j = 1, 2, · · · , 2n except for j = k, k + 1. By the similar argument as above, we have

ck = ck+1 = 0. By varying k between 1 and 2n, we get cj = 0 for all j = 1, 2, · · · , n.

Since span{bn,i, i = 1, · · · , nd} will be dense in C[0, d] when n → ∞, we can conclude

that span{KBn,j, j = 1, · · · , nd} will be dense in C([0, 1]d). That is, we have

Theorem 4.3.3. The KB-splines KBn,j(x1, · · · , xd), j = 1, · · · , nd, are dense in C([0, 1]d)

when n→∞.

Proof. For any continuous function f ∈ C([0, 1]d), let gf ∈ C[0, d]) be the K-outer function

of f . For any ϵ > 0, there is an integer n > 0 and a spline Sgf ∈ span{bn,i, i = 1, · · · , dn}

such that

∥gf (t)− Sgf (t)∥∞ ≤ ϵ/(2d+ 1)

for all t. Writing Sgf (t) =
∑dn

i=1 ci(f)bn,i(t), we have

|f(x1, · · · , xd)−
dn∑
i=1

ci(f)KBn,i(x1, · · · , xd)|

= |
2d∑
q=0

g(zq(x1, · · · , xd))−
dn∑
i=1

ci(f)
2d∑
q=0

bn,i(zq(x1, · · · , xd))|

≤
2d∑
q=0

|g(zq(x1, · · · , xd))− Sgf (zq(x1, · · · , xd))| ≤ (2d+ 1)ϵ/(2d+ 1) = ϵ.

This completes the proof.
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4.3.2 LKB-splines

However, in practice, the KB-splines obtained in (4.25) are very noisy due to any implemen-

tation of ϕq’s as we have explained before that the functions zq, q = 0, · · · , 2d, like Peano’s

curve. One has no way to have an accurate implementation. As demonstrated before, our

denoising method can help. We shall call LKB-splines after denoising KB-splines.

Let us explain a multivariate spline method for denoising for d = 2 and d = 3. In general,

we can use tensor product B-splines for denoising for any d ≥ 2 which is the similar to

what we are going to explain below. For convenience, let us consider d = 2 and let △ be a

triangulation of [0, 1]2. For any degree D ≥ 1 and smoothness r ≥ 1 with r < D, let

Sr
D(△) = {s ∈ Cr([0, 1]2) : s|T ∈ PD, T ∈ △} (4.26)

be the spline space of degreeD and smoothness r withD > r. We refer to [73] for a theoretical

detail and [6] for a computational detail. For a given data set {(xi, yi, zi), i = 1, · · · , N} with

(xi, yi) ∈ [0, 1]2 and zi = f(xi, yi) + ϵi, i = 1, · · · , N with noises ϵi which may not be very

small, the penalized least squares method (cf. [71] and [74]) is to find

min
s∈S1

5(△)

∑
i=1,··· ,N

|s(xi, yi)− zi|2 + λE2(s) (4.27)

with λ ≈ 1, where E2(s) is the thin-plate energy functional defined as follows.

E2(s) =
∫
Ω

| ∂
2

∂x2
s|2 + 2| ∂2

∂x∂y
s|2 + | ∂

2

∂y2
s|2. (4.28)

Multivariate splines have been studied for several decades and they have been used for

data fitting (cf. [71], [74], [79], and [141]), numerical solution of partial differential equations

(see, e.g. [72]). and data denoising (see, e.g. [79]).

We now explain that the penalized least squares method can produce a good smooth

approximation of the given data. For convenience, let Sf,ϵ be the minimizer of (4.27) and

write ∥f∥P =
√

1
N

∑N
i=1 |f(xi, yi)|2 is the rooted mean squares (RMS). If f ∈ C2([0, 1]2), we

have the following
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Theorem 4.3.4. Suppose that f is twice differentiable over [0, 1]2. Let Sf,ϵ be the minimizer

of (4.27). Then we have

∥f − Sf,ϵ∥P ≤ C∥f∥2,∞|△|2 + 2∥ϵ∥P +
√

λE2(f) (4.29)

for a positive constant C independent of f , degree d, and triangulation △.

To prove the above result, let us recall the following minimal energy spline Sf ∈ S1
5(△)

of data function f : letting △ be a triangulation of [0, 1]2 with vertices (xi, yi), i = 1, · · · , N ,

Sf is the solution of the following minimization:

min
Sf∈S1

5(△)
{E2(Sf ) : Sf (xi, yi) = f(xi, yi), (xi, yi), i = 1, · · · , N.} (4.30)

Then it is known that Sf approximates f very well if f ∈ C2([0, 1]2). We have

Theorem 4.3.5 (von Golitschek, Lai and Schumaker, 2002 [138]). Suppose that f ∈

C2([0, 1]2). Then

∥Sf − f∥∞ ≤ C∥f∥2,∞|△|2 (4.31)

for a positive constant C independent of f and △, where ∥f∥2,∞ denotes the maximum norm

of the second order derivatives of f over [0, 1]2 and ∥Sf − f∥∞ is the maximum norm of

Sf − f over [0, 1]2.

of Theorem 4.3.4. Recall that Sf,ϵ is the minimizer of (4.27). We now use Sf to have

∥f − Sf,ϵ∥P ≤ ∥z − Sf,ϵ∥P + ∥ϵ∥P ≤
√
∥z − Sf,ϵ∥2P + λE2(Sf,ϵ) + ∥ϵ∥P

≤
√
∥z − Sf∥2P + λE2(Sf ) + ∥ϵ∥P ≤ ∥f − Sf∥P + 2∥ϵ∥P +

√
λE2(f)

≤ C∥f∥2,∞|△|2 + 2∥ϵ∥P +
√

λE2(f),

where we have used a fact that E2(Sf ) ≤ E2(f) which can be found in [138]. These complete

the theorem of this section.

If f is C2 smooth, then Sf,ϵ will be a good approximation of f when the size |△| of

triangulation is small, the thin plate energy E2(f) with λ > 0 is small, and the noises ∥ϵ∥P
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is small even though a few individual noises ϵi can be large. Note also that ϵ can be made

small by increasing the accuracy of the implementaion of ϕq.

Now let us illustrate some examples of KB-splines and LKB-splines in Figure 4.4. One can

see that the KB-splines are continuous but not smooth functions at all, while the LKB-splines

are. These LKB-splines are much smoother and nicer, therefore can be used to approximate

high dimensional continuous functions accurately. We leave the numerical results to the next

chapter.

Figure 4.4: Some examples of linear LKB-splines (the first and third columns) which are the

smoothed version of the corresponding linear KB-splines (the second and fourth columns).

4.4 Numerical Results for LKB-splines based Approximation in 2D and 3D

In this section, we will first demonstrate numerically that LKB-splines can approximate

general continuous functions well based on O(nd) equally-spaced sampled data locations.

Then we use the matrix cross approximation technique to show that there are at most O(nd)
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locations among those O(nd) locations are pivotal. Therefore, we only need the function

values at those pivotal locations in order to achieve a reasonable good approximation.

4.4.1 Numerical results based on O(nd) data points

Let us design numerical experiments to demonstrate the power of LKB-splines for approx-

imating functions in C([0, 1]d). We choose 41d equally-spaced points xi ∈ [0, 1]d. For any

continuous function f ∈ C([0, 1]d), we use the function values at these data locations to find

an approximation Fn =
∑dn

j=1 cjLKBn,j by using discrete least squares (DLS) method. In

other words, we solve the following minimization problem:

min
cj
∥f −

dn∑
j=1

cjLKBn,j∥P , (4.32)

where ∥f∥P is the RMS semi-norm based on the function values f over these 41d sampled

data points in [0, 1]d. We shall report the accuracy ∥f −Fn(f)∥PP , where ∥f∥PP is the RMS

semi-norm based on 101d function values. The current computational power enables to do

the numerical experiments for d = 2 with n = 100, 200, · · · , 10, 000 and for d = 3 with

n = 100, 200, · · · , 1000.

For d = 2, we choose the following 10 testing functions across different families of con-

tinuous functions to check the computational accuracy.

f1 = (1 + 2x+ 3y)/6; f2 = (x2 + y2)/2; f3 = xy;

f4 = (x3 + y3)/2; f5 = 1/(1 + x2 + y2);

f6 = cos(1/(1 + xy)); f7 = sin(2π(x+ y));

f8 = sin(πx) sin(πy); f9 = exp(−x2 − y2);

f10 = max(x− 0.5, 0)max(y − 0.5, 0);

For d = 3, we choose the following 10 testing functions across different families of contin-

uous functions to check the computational accuracy. The computational results are reported

in Tables 4.1 and 4.2 (those columns associated with 413).

f1 = (1 + 2x+ 3y + 4z)/10; f2 = (x2 + y2 + z2)/3; f3 = (xy + yz + zx)/3;
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f4 = (x3y3 + y3z3)/2; f5 = (x+ y + z)/(1 + x2 + y2 + z2);

f6 = cos(1/(1 + xyz)); f7 = sin(2π(x+ y + z));

f8 = sin(πx) sin(πy) sin(πz); f9 = exp(−x2 − y2 − z2);

f10 = max(x− 0.5, 0)max(y − 0.5, 0)max(z − 0.5, 0);

Remark 4.4.1. The major computational burden for the results in Tables 4.1 and 4.2 is

the denoise of the KB-splines to get LKB-splines which requires a large amount of data

points and values as the noises are everwhere over [0, 1]d. When dimension d≫ 1 gets large,

one has to use an exponentially increasing number of points and KB-spline values by, say a

tensor product spline method for denoising, and hence, the computational cost will suffer the

curse of dimensionality. However, the denoising step can be pre-computed once for all the

approximation tasks. That is, once we have the LKB-splines, the rest of the computational

cost is no more than the cost of solving a least squares problem.

This shows the power of LKB-splines in approximating general continuous functions.

However, the number of data points being sampled in order to achieve such approximation

error is O(nd). Therefore, when d gets large, we still need exponentially many sampled data.

Our final goal in this chapter is to reduce this amount of data values. In fact, we only need

at most O(nd) number of sampled data instead of O(nd) in order to achieve the same order

of approximation accuracy. Let us further explain our study in the next subsection.
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Table 4.1: RMSEs (computed based on 1012 equally-spaced locations) of the DLS fitting (4.32)

based on 412 equally-spaced location and pivotal location in 2D.

n = 100 n = 1000 n = 10000

# sampled data 412 54 412 105 412 521

f1 1.67e-05 2.60e-05 5.79e-06 1.02e-05 5.14e-07 1.21e-06

f2 4.19e-04 8.92e-04 1.17e-04 2.61e-04 2.83e-05 6.62e-05

f3 1.09e-04 2.19e-04 3.57e-05 7.46e-05 2.20e-05 5.67e-05

f4 7.67e-04 1.70e-03 2.10e-04 5.11e-04 4.99e-05 1.11e-04

f5 2.28e-04 5.04e-04 6.69e-05 1.47e-04 1.93e-05 4.08e-05

f6 2.52e-04 6.51e-04 7.97e-05 1.94e-04 1.43e-05 2.73e-05

f7 7.05e-02 1.32e-01 7.80e-03 2.25e-02 1.30e-03 3.30e-03

f8 1.50e-03 2.29e-03 3.73e-04 1.01e-03 1.69e-04 4.37e-04

f9 3.49e-04 7.97e-04 8.25e-05 1.98e-04 2.48e-05 5.52e-05

f10 2.02e-03 3.79e-03 7.77e-04 1.82e-03 1.68e-04 4.10e-04
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Table 4.2: RMSEs (computed based on 1013 equally-spaced locations) of the DLS fitting (4.32)

based on 413 equally-spaced location and pivotal location in 3D.

n = 100 n = 300 n = 1000

# sampled data 413 178 413 331 413 643

f1 8.27e-06 2.25e-05 1.51e-06 4.20e-06 3.62e-07 7.48e-07

f2 4.42e-05 1.68e-04 8.14e-06 2.18e-05 1.87e-06 4.11e-06

f3 1.24e-05 3.79e-05 3.77e-06 9.41e-06 1.22e-06 2.53e-06

f4 2.93e-04 5.60e-04 1.43e-04 2.55e-04 1.16e-04 2.63e-04

f5 1.31e-04 3.46e-04 9.09e-05 1.66e-04 6.61e-05 1.20e-04

f6 1.24e-04 3.22e-04 7.02e-05 1.34e-04 5.18e-05 1.09e-04

f7 1.65e-02 5.29e-02 1.15e-02 1.71e-02 1.10e-02 1.85e-02

f8 2.47e-03 8.28e-03 9.60e-04 1.94e-03 7.20e-04 1.19e-03

f9 1.43e-04 3.84e-04 1.14e-04 2.01e-04 9.84e-05 3.95e-04

f10 3.21e-04 9.74e-04 2.31e-04 4.00e-04 2.04e-04 3.91e-04

4.4.2 The pivotal data locations for breaking the curse of dimensionality

For convenience, let us use M to indicate the data matrix associated with the discrete least

squares problem (4.32). In other words, for 1 ≤ j ≤ dn, the jth column M(:, j) consists

of {LKBn,j(xi)} where xi ∈ [0, 1]d are those 41d equally-spaced sampled points in 2D or

3D. Clearly, the experiment above requires 41d data values which suffers from the curse of

dimensionality. However, we in fact do not need such many data values. The main reason is

that the data matrix M has many zero columns or near zero columns due to the fact that

for many i = 1, · · · , nd, the locations from 41d equally-spaced points do not fall into the

support of linear B-splines bn,i(t), t ∈ [0, d], based on the map zq. The structures of M are

shown in Figure 4.5 for the case of n = 1000 when d = 2.
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Figure 4.5: The sparsity pattern of data matrix for n = 1000.

That is, there are many columns in M whose entries are zero or near zero. Therefore,

there exists a sparse solution to the discrete least squares fitting problem. We adopt the well-

known orthogonal matching pursuit (OMP) (cf. e.g. [80]) to find a solution. For convenience,

let us explain the sparse solution technique as follows. Over those 41d points xi ∈ [0, 1]d, the

columns in the matrix

M = [LKBn,j(xi)]i=1,··· ,41d,j=1,··· ,dn (4.33)

are not linearly independent. Let Φ be the normalized matrix of M in (4.33) and b =

[f(xi)], i = 1, · · · , 41d. Write c = (c1, · · · , cdn)⊤, we look for

min ∥c∥0 : Φc = b (4.34)

where ∥c∥0 stands for the number of nonzero entries of c. See many numerical methods in

([80]). The near zero columns in Φ also tell us that the data matrix associated with (4.32)

of size 41d × dn is not full rank r < dn. The LKB-splines associated with these near zero

columns do not play a role. Therefore, we do not need all dn LKB-splines. Furthermore, let

us continue to explain that many data locations among these 41d locations do not play an

essential role.

To this end, we use the so-called matrix cross approximation (see [49, 48, 98, 45, 67, 4]

and the literature therein). Let r ≥ 1 be a rank of the approximation. It is known (cf. [49])
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that when MI,J of size r × r has the maximal volume among all submatrices of M of size

r × r, we have

∥M −M:,JM
−1
I,JMI,:∥C ≤ (1 + r)σr+1(M), (4.35)

where ∥ · ∥C is the Chebyshev norm of matrix and σr+1(M) is the r+1 singular value of M ,

MI,: is the row block of M associated with the indices in I and M:,J is the column block of

M associated with the indices in J . The volume of a square matrix A is the absolute value

of the determinant of A.

One mainly needs to find a submatrix MI,J of M such that MI,J has the maximal volume

among all r× r submatrices of M . In practice, we use the concept called dominant matrix to

replace the maximal volume. There are several algorithms, e.g. maxvol algorithm, available in

the literature (cf. [48]). Recall that originally we need to solve the DLS problem Mxf ≈ f =

[fI ; fIc ]. However, these greedy based maxvol algorithms enable us to find a good submatrix

MI,J and solve a much simpler discrete least squares problem MI,J x̂ ≈ fI . According to

Theorem 8 in [4], that x̂ is a good approximation of xf . Let us call the data locations

associated with row indices I the pivotal data locations. The pivotal data locations are

shown in Figure 4.6. It is worthwhile to point out that such a set of pivotal locations is only

dependent on the partition between [0, d] when numerically build KB-splines, the sampled

data when constructing LKB-splines, and the smoothing parameters for converting KB-

splines to LKB-splines. However, such set of pivotal locations is independent of the target

function to approximate.
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Figure 4.6: Pivotal data at 54 locations (selected from 412 equally-spaced locations) in 2D and 178

locations (selected from 413 equally-spaced locations) in 3D for n = 100.

We now present some numerical results in Table 4.1 and 4.2 (those columns associated

with 54, 105, 521 and 178, 331, 643) to demonstrate that the numerical approximation results

based on pivotal data locations have the same order as the results based on data locations

sampled on the uniform grid. We therefore conclude that the curse of dimensionality for 2D

and 3D function approximation can be overcome if we use LKB-splines with pivotal data

sets.

To verify the approximation order O(1/n) in Theorem 4.2.3, we plot the approximation

errors of several aforementioned functions based on pivotal point locations against n using

log-log scale. The results are shown in Figure 4.7. It is worthwhile to note that the slopes in

these plots are associated with the exponent α in Theorem 4.2.4. In other words, if the slope

of an convergence plot for a function is smaller than −1, then we can numerically conclude

that such a function belongs to the class of K-Lipschitz continuous functions. If the slope

α satisfies −1 < α < 0, then we can numerically conclude that such a function belongs to

the class of K-Hölder continuous functions with the outer function g belongs to C0,α. In

other words, our computational method provide with a numerical approach to check if a

multidimensional continuous function is K-Lipschitz or not.
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Finally, in Figure 4.8, we plot the number of pivotal locations against n, we can see that

the number of pivotal locations increasing linearly in n and the increasing rates (slopes)

are at most d. That is, we only need O(nd) data locations and O(nd) LKB functions to

approximate a multidimensional continuous function f with approximation rateO(1/n) when

f is K-Lipschitz continuous. Therefore, the curse of dimensionality is overcome when d = 2

and d = 3. We leave the numerical evidence for d = 4 or larger to the next chapter.

f(x, y) = (x3 + y3)/2 f(x, y) = sin(2π(x+ y)) f(x, y) = max(x− 0.5, 0)max(y − 0.5, 0)

f(x, y, z) = (1 + 2x+ 3y + 4z)/10 f(x, y, z) = (xy + yz + zx)/3 f(x, y) = sin(πx) sin(πy) sin(πz)

Figure 4.7: Plot of Convergence Rate using Log-log Scale for Functions in 2D and 3D.
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Figure 4.8: Number of Pivotal Locations (vertical axis) against n (horizontal axis) in 2D (left) and

3D (right).

Finally, let us end up this section with some important remarks.

Remark 4.4.2. The pivotal data set depends on the degree of KB-splines and the LKB-

splines which are dependent on the smoothing parameters and triangulation for converting

KB-splines to LKB-splines. After LKB-splines are constructed, the pivotal point set is depen-

dent on the discrete least squares (DLS) fitting method. For example, if we use randomly

sampled points over [0, 1]d for a DLS method instead of equally-space points, the pivotal

point set is clearly different from the pivotal points based on the equally-spaced points over

[0, 1]d. Even if we use 81× 81 equally-spaced points instead of 41× 41 equally-spaced points

when constructing a DLS fitting based on LKB-splines over [0, 1]2, the location of the pivotal

data are different and the size of pivotal data set is slightly bigger than the ones shown in

Figure 4.6. Although we can apply this trick to find a pivotal point set for any discrete least

squares method, it is the K-outer function g defined on [0, d] which enables us to approxi-

mate the g using nd LKB-splines based on the pivotal point set with cardinality at most nd

to achieve the rate O(1/n) of approximation.

Remark 4.4.3. Certainly, there are many functions such as f(x, y) = sin(100x) sin(100y)

or f(x, y) = tanh(100((2x− 1)2 + (2y − 1)2 − 0.25)) which the LKB-splines can not approx-

imate well based on the pivotal data sets above. Such highly oscillated functions are hard to
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approximate even using other methods. One indeed needs a lot of the data (points and the

function values over the points) in order to approximate them well. One may also consider

to use Fourier basis as K-outer functions rather than B-splines basis to approximate such

highly oscillated trigonometric functions via KST. We leave it as a future research topic.

Remark 4.4.4. To reproduce the experimental results in this chapter, we uploaded our

MATLAB codes in https: // github. com/ zzzzms/ KST4FunApproximation . In fact, we

have tested more than 100 functions in 2D and 3D with pivotal data sets which enables us

to approximate these functions very well.

https://github.com/zzzzms/KST4FunApproximation


Chapter 5

The Optimal Approximation Rate Based on Linear LKB-splines

In this chapter, we extend the results obtained in the previous chapter and discuss how to

achieve the best approximation rate for high dimemsional continuous functions based on the

linear spline approximation of the K-outer function. More specifically, we show that there

is a dense subclass in C([0, 1]d) which can be approximated by using the representation of

KST with a dimension independent approximation rate O(1/n2), with n being the number

of knots of the over [0, 1]. Moreover, the approximation constant in our approach increases

linearly in the dimension d, and the number of parameters used in such neural network

approximation equals is O(nd). Finally, we show an application of our approach by solving

Poisson equation numerically. The results in this chapter is summarized in [78].

5.1 K-Hölder Functions

We will consider a general class of continuous functions called K-Hölder class. Let us call

the function g and ϕq in (4.1.2) the K-outer function and K-inner function respectively. For

each continuous function f ∈ C([0, 1]d), let

Kβ := {f : K-outer function g is β-Hölder continuous with exponent 0 < β < 1 } (5.1)

be the class of K-Hölder continuous functions with exponent β. Recall that we say a function

f is in C0,α if

sup
x,y∈[0,d]

|f(x)− f(y)|
|x− y|α

<∞. (5.2)

One can easily show

Theorem 5.1.1. Under the KST representation (4.2). Suppose f ∈ Kβ, then f ∈ C0,αβ.

86
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Proof. Suppose x,y ∈ [0, 1]d, and (x1, · · · , xd) = x ̸= y = (y1, · · · , yd). Then

∣∣f(x)− f(y)
∣∣ =

∣∣∣∣∣∣
2d∑
q=0

g

 d∑
i=1

λiϕq(xi)

− 2d∑
q=0

g

 d∑
i=1

λiϕq(yi)

∣∣∣∣∣∣
≤

2d∑
q=0

∣∣∣∣∣∣g
 d∑

i=1

λiϕq(xi)

− g

 d∑
i=1

λiϕq(yi)

∣∣∣∣∣∣
≤

2d∑
q=0

C1

∣∣∣∣∣∣
d∑

i=1

λiϕq(xi)−
d∑

i=1

λiϕq(yi)

∣∣∣∣∣∣
β

≤
2d∑
i=0

C1

d∑
i=1

λβ
i

∣∣ϕq(xi)− ϕq(yi)
∣∣β

≤
2d∑
q=0

C1

d∑
i=1

λβ
i C

β
2 |xi − yi|αβ ≤ (2d+ 1)C1C

β
2

d∑
i=1

|xi − yi|αβ.

This completes the proof.

Now let us introduce two important subclasses of K-Hölder continuous functions: K-

polynomials and KB-splines.

5.1.1 K-polynomials and K-monomials

Let us define the K-polynomial as

Kpn(x1, · · · , xd) =
2d+1∑
q=0

pn

 d∑
i=1

λiϕq(xi)

 , (5.3)

where the function pn is a univariate polynomial. We call it a K-monomial if pn(t) := tn,

n ≥ 0. Figure 5.1 shows some plots of different K-monomials with and without using the

denoising/smoothing technique described in [76]. The significance of K-monomials are that

the span{Kpn}n≥0 are dense in C([0, 1]d). Let us call this result the K-Weierstrass theorem.
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Figure 5.1: Examples of K-monomials (Top Row: pn(x) = x, x2. Bottom Row: pn(x) = x4, x8).

Theorem 5.1.2 (K-Weierstrass Theorem). For any f ∈ C([0, 1]d) and for any ϵ > 0, there

exists K ∈ span{Kpn}n≥0 such that

∥f −K∥∞ ≤ ϵ. (5.4)

Proof. By Kolmogorov superposition theorem, we can write

f(x1, · · · , xd) =
2d+1∑
q=0

g

 d∑
i=1

λiϕq(xi)

 .
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By Weierstrass theorem, there exists a polynomial p such that |p(t) − g(t)| ≤ ϵ
2d+1

for all

t ∈ [0, d]. By letting K(x1, · · · , xd) =
∑2d+1

q=0 p
(∑d

i=1 λiϕq(xi)
)
∈ span{Kpn}n≥0, we have

|f(x1, · · · , xd)−K(x1, · · · , xd)| =

∣∣∣∣∣∣
2d+1∑
q=0

g

 d∑
i=1

λiϕq(xi)

− 2d+1∑
q=0

p

 d∑
i=1

λiϕq(xi)

∣∣∣∣∣∣
≤

2d+1∑
q=0

∣∣∣∣∣∣g
 d∑

i=1

λiϕq(xi)

− p

 d∑
i=1

λiϕq(xi)

∣∣∣∣∣∣
≤ (2d+ 1) · ϵ

(2d+ 1)
= ϵ.

This completes the proof.

Remark 5.1.1. There are many f ∈ C([0, 1]d) are K-Hölder continuous. Indeed, in addi-

tion to K-polynomials, we can use trigonmetric functions as K-outer function g to define

high dimensional continuous functions called K-trigonometric functions via (4.2). Similarly,

we can have K-exponential functions, K-logarithmic functions, etc,. In fact, any univariate

Hölder continuous function g gives a K-Hölder continuous function f via Kolmogorov rep-

resentation formula by using Theorem 4.1.2. Because these univariate functions g are of

Hölder continuous, their corresponding f are in the K-Hölder continuous class.

5.1.2 Linear KB-splines and LKB-splines

It is well known that linear spline function can be represented in terms of linear combination

of ReLU functions and vice versa, see, e.g. [22], and [25]. Let S0
1(△) be the space of all

continuous linear splines over the partition △ = {0 = t0 < t1 < · · · < tn = 1} with

|△| = maxi |ti− ti−1|. For univariate function f , let ω(f, h) := sup|x−y|≤h |f(x)− f(y)| be its

modulus of continuity. From standard approximation theory (c.f. [111]), we know that
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Lemma 5.1.1. Suppose f ∈ C([0, 1]), let △ be a partition over [0, 1] with n knots. Then

there exists a Lf ∈ S0
1(△) such that

∥f − Lf∥∞ ≤


ω(f, 1

n
), if f ∈ C([0, 1]),

1
2n
∥f ′∥∞, if f ∈ C1([0, 1]),

1
8n2∥f ′′∥∞, if f ∈ C2([0, 1]).

(5.5)

Remark 5.1.2. Note that even if we can further increase the smoothness of function f , the

approximation rate is not getting better. In order to achieve a better approximation rate for

those f with higher order smoothness, one has to use a higher degree splines. Therefore, for

linear spline approximation, O( 1
n2 ) is the optimal approximation rate.

For f ∈ C([0, 1]d), we would like to apply Lemma 5.1.1 for approximating the K-outer

function g, and hence approximating f via the representation formula (4.2). For this purpose,

let us define the linear KB-splines of f as

KB(f)n(x1, · · · , xd) :=
2d∑
q=0

Lg

 d∑
i=1

λiϕq(xi)

 , (5.6)

where Lg is chosen to be a linear spline interpolation of the K-outer function g ∈ C([0, d])

with uniform partition of nd knots, i.e., |△| = 1
n
. Then by Theorem 4.1.2 and Lemma 5.1.1,

we have

Theorem 5.1.3. Suppose f ∈ C([0, 1]d). Then

∥f −KB(f)n∥∞ ≤


(2d+ 1)ω(g, 1

n
), if g ∈ C([0, d]),

2d+1
2n
∥g′∥∞, if g ∈ C1([0, d]),

2d+1
8n2 ∥g′′∥∞, if g ∈ C2([0, d]).

(5.7)
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Proof. We only show the proof for the case g ∈ C2([0, d]), and the other two cases are similar.

For any x = (x1, · · · , xd), we have

∣∣f(x)−KB(f)n(x)
∣∣ =

∣∣∣∣∣∣
2d∑
q=0

g

 d∑
i=1

λiϕq(xi)

− 2d∑
q=0

Lg

 d∑
i=1

λiϕq(xi)

∣∣∣∣∣∣
≤

2d∑
q=0

∣∣∣∣∣∣g
 d∑

i=1

λiϕq(xi)

− Lg

 d∑
i=1

λiϕq(xi)

∣∣∣∣∣∣ ≤ 2d+ 1

8n2
∥g′′∥∞.

This completes the proof.

Theorem 5.1.3 immediately shows linear KB-splines are dense in C([0, 1]d). More impor-

tantly, the approximation rate of linear KB-splines is independent of dimension d while the

approximation constant is linearly dependent on d. Therefore we conclude that the approx-

imation of high dimensional continuous function f does not suffer from the curse of dimen-

sionality for a subclass of C([0, 1]d), i.e., those f whose K-outer function g ∈ C1([0, d]) or

g ∈ C2([0, d]). Such a subclass is dense because C1([0, d]) and C2([0, d]) are dense in C([0, d]).

In fact, there are enormous choices of such g. For example, we can choose g to be polynomial

functions, trigonometric functions, exponential functions, etc,.

Furthermore, let us recall the linear KB-splines basis functions defined in (4.25). Let

△n = {0 = t1 < t2 < · · · < tdn < d} be a uniform partition of interval [0, d], and bn,i(t), i =

1, · · · , dn be the standard univariate linear B-splines, we define the linear KB-spline (basis)

functions as

KBn,j(x1, · · · , xd) :=
2d∑
q=0

bn,j

 d∑
i=1

λiϕq(xi)

 , j = 1, · · · , dn.

In Chapter 4, we have seen that theseKBn,j have several nice properties, e.g. the partition

of unity, linear independence, and denseness in C([0, 1]d). Therefore we can treat KBn,j

as basis functions for approximating f ∈ C([0, 1]d). However, since there are only O(dn)

number of KBn,j basis functions, the amount of information each basis KBn,j carries is much

more than the information carried by each of the O(nd) basis in the usual tensor product

approximation or polynomial approximation. The basis KBn,j can behave very wildly, for
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example, they are not differentiable, and hence can not be directly used for approximating

f . For d = 2 and d = 3, we apply a spline denoising technique as introduced in the previous

chapter to smooth the KB-splines and get the corresponding LKB-splines. For dimension

d ≥ 4, we need to apply tensor product of such denoising technique as introduced in the

next section.

5.2 Tensor Product Approximation and Denoising

Let us first recall the approximation based on tensor product of Bernstein polynomial, which

is well-known in the literature. We review them in order to explain the computation of tensor

product splines for denoising in the later subsection.

5.2.1 Tensor product approximation of Bernstein polynomial

Suppose f ∈ C([0, 1]), we define the Bernstein operator of degree n on f as

Bnf(x) :=
n∑

i=0

f

(
i

n

)
Bn,i(x) (5.8)

where Bn,i =
(
n
i

)
xi(1−x)n−i is the Bernstein basis polynomial. From standard approximation

theory (c.f. [111]), we know

Lemma 5.2.1. Suppose f ∈ C2([0, 1]). Then

∥f −Bnf∥∞ ≤
1

8n
∥f ′′∥∞. (5.9)

In general, for f ∈ C([0, 1]d), we can define

Bn1,··· ,nd
f(x1, · · · , xd) :=

n1∑
i1=0

· · ·
nd∑

id=0

f

(
i1
n1

, · · · , id
nd

)
Bn1,i1(x1) · · ·Bnd,id(xd). (5.10)

By applying Lemma 5.2.1 and and a chain of triangle inequalities argument, it is not hard

to establish the following result. We leave its proof to the interested readers.
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Lemma 5.2.2. Suppose f ∈ C2([0, 1]d) for integer d ≥ 1. Then

∥f −Bn,··· ,nf∥∞ ≤
d

8n
|f ′′|2,∞, (5.11)

where |f |2,∞ = maxi1+···+id=2 ∥Di1
x1
· · ·Did

xd
f∥∞.

5.2.2 Tensor product of spline denoising

As mentioned before, the linear KB-splines obtained via (4.25) can behave wildly, therefore

may not be directly useful for approximation. We would like to smooth/denoise them so that

they will be useful. For self-containedness, let us introduce the ideas of spline denoising and

tensor product spline denoising. For convenience, we base our discussion on the bivariate

splines. Let us first recall bivariate spline spaces. For a triangulation △ of [0, 1]2, for any

degree d ≥ 1 and smoothness r ≥ 1 with r < d, let

Sr
d(△) = {s ∈ Cr([0, 1]2) : s|T ∈ Pd, T ∈ △} (5.12)

be the spline space of degree d and smoothness r with d > r. We refer to [73] for a theoretical

detail and [6] and [72] for a computational detail of multivariate splines. For convenience,

we can write a spline function

s(x, y) =
m∑
i=1

cibi(x, y) ∈ Sr
d(△), (5.13)

where ci’s are the spline coefficients, bi(·, ·) are bivariate basis splines with degree d and

smoothness r, andm is the dimension of the bivariate spline space. Note that the computation

of bi(x, y) is not easy at all. We adopt the approach in [6].

For a given data set {(xi, yi, zi), i = 1, · · · , N} with data locations (xi, yi) ∈ [0, 1]2 and

noisy data values zi, the penalized least squares method (cf. [71] and [74]) of bivariate spline

denoising is to find

min
s∈Sr

d(△)

∑
i=1,··· ,N

∣∣s(xi, yi)− zi
∣∣2 + λE2(s) (5.14)

for some fixed constant λ ≈ 1, where E2(s) is the thin-plate energy functional defined as

E2(s) :=
∫
[0,1]2

∣∣∣∣∣ ∂2

∂x2
s

∣∣∣∣∣
2

+ 2

∣∣∣∣∣ ∂2

∂x∂y
s

∣∣∣∣∣
2

+

∣∣∣∣∣ ∂2

∂y2
s

∣∣∣∣∣
2

. (5.15)
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It is well-known that this approach can be used for smoothing noisy data. This is the

denoising technique we have used in Chapter 4 to generate linear LKB-splines.

Now let us explain the idea of tensor product spline based denoising method for smoothing

noisy KB-splines. For convenience, let us consider the case d = 4, the similar arguements

can be applied to a general d. See [23] for the general case for tensor product splines for

data interpolation. For the rest of the discussion, we shall consider the tensor product the

bivariate spline space S := Sr
d(△)× Sr

d(△).

For a given data set {(xi, yi, uj, vj, zi,j), i, j = 1, · · · , N} with data locations (xi, yi, uj, vj) ∈

[0, 1]2 × [0, 1]2 and noisy data values zi,j, we can write a spline function

s(x, y, u, v) =

m1∑
i=1

m2∑
j=1

cijbi(x, y)bj(u, v) ∈ S, (5.16)

where cij’s are the spline coefficients, bi(·, ·) are bivariate splines with degree d and smooth-

ness r, and m1,m2 are the dimensions of the bivariate spline spaces. The penalized least

squares method of tensor product bivariate spline denoising is to find the spline coefficients

cij which solves

min
s∈S

∑
i,j=1,··· ,N

|s(xi, yi, uj, vj)− zij|2 + λE2×2(s) (5.17)

with r > 0, d > 0, λ ≈ 1 are hyperparameters, and E2×2(s) is defined as

E2×2(s) :=

∫
[0,1]2

∫
[0,1]2

∣∣∣∣∣ ∂2

∂x2
s

∣∣∣∣∣
2

+ 2

∣∣∣∣∣ ∂2

∂x∂y
s

∣∣∣∣∣
2

+

∣∣∣∣∣ ∂2

∂y2
s

∣∣∣∣∣
2

dxdy

 dudv

+

∫
[0,1]2

∫
[0,1]2

∣∣∣∣∣ ∂2

∂u2
s

∣∣∣∣∣
2

+ 2

∣∣∣∣∣ ∂2

∂u∂v
s

∣∣∣∣∣
2

+

∣∣∣∣∣ ∂2

∂v2
s

∣∣∣∣∣
2

dudv

 dxdy.

(5.18)

Let us explain next the computational procedure for finding the spline coefficients cij

based on a two-stage bivariate spline denoising scheme. Recall that tensor product splines

for data interpolation were explained in [23]. We extend its ideas to data denoising. For a

given data set {(xi, yi, uj, vj, zi,j), i, j = 1, · · · , N} with data locations (xi, yi) ∈ [0, 1]2 and

(uj, vj) ∈ [0, 1]2 and noised data values zi,j, i, j = 1, · · · , N , we can write

s(x, y, u, v) =

m1∑
i=1

m2∑
j=1

cijbj(u, v)bi(x, y). (5.19)
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Suppose our data is equally-spaced over [0, 1]2 × [0, 1]2, i.e., N = m1 = m2. Let us

denote di(u, v) =
∑m2

j=1 cijbj(u, v), then we can write equation (5.19) as s(x, y, u, v) =∑m1

i=1 di(u, v)bi(x, y). For fixed (uk, vk), k = 1, · · · , N , write di(uk, vk) = dik for all i =

1, · · · ,m1. For each fixed k, we can find the intermediate spline coefficients dik via (5.14) by

letting

s(xℓ, yℓ)k := s(xℓ, yℓ, uk, vk) =

m1∑
i=1

dikbi(xℓ, yℓ) (5.20)

for ℓ = 1, · · · , N . Once we have dik, then for each fixed i, we can find the spline coefficients

cij via (5.14) by letting

s(uk, vk) := dik =

m2∑
j=1

cijbj(uk, vk) (5.21)

for k = 1, · · · , N .

The advantage of tensor product spline denoising is its computational efficiency. If we

directly solve the penalized least squares problem (5.17) for the coefficients cij without using

this tensor product approach, then the matrix size associated in (5.19) is N2×m1m2. Hence,

solving it directly requires the computation complexity O(m2
1m

2
2N

2). However, if we solve it

by using tensor product via (5.20) and (5.21), then we only need to solve N systems whose

matrix size is of N ×m1 and another N systems whose matrix size is of N ×m2. Therefore

the computational complexity for solving them directly requires O(Nm2
1N + Nm2

2N) =

O((m2
1 + m2

2)N
2). If we use large degree d and high smoothness r ≥ 1 for denoising, then

m2
1 + m2

2 ≪ m2
1m

2
2. Therefore, the computational cost for the two-stage tensor product

denoising technique is much less than the direct denosing technique. This is why we adopt

the tensor product spline denosing method. For the general case d > 4, we can easily extend

this idea to have a multi-stage denoising scheme. We leave out the details here.

For each high dimensional linear KB-spline obtained via (4.25), we can apply such a

computational scheme to solve (5.17) and obtain the corresponding high dimensional linear

LKB-spline, which is useful for approximation. We will use these linear LKB-splines as basis

for high dimensional function approximation. Numerical results will be discussed in the

following sections.
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5.3 Numerical Results for LKB-splines based Approximation in 4D and 6D

Let us present the numerical results for function approximation in Rd with d = 4 and d = 6

based on the linear LKB-splines obtained via the computation procedure described in the

previous section.

In 4D, we sampled 114 equally-spaced data across [0, 1]4 and fit discrete least squares

(DLS) approximation of a continuous function f with 4D linear LKB-spline as basis, and we

check the RMSEs based on 264 equally-spaced data across [0, 1]4. The following 10 testing

functions across different families of continuous functions are used to check the approximation

accuracy.

f1 = (1 + 2x+ 3y + 4u+ 5v)/15;

f2 = (x2 + y2 + u2 + v2)/4;

f3 = (x4 + y4 + u4 + v4)/4;

f4 = (sin(x) exp(y) + cos(x) exp(u) + sin(x) exp(v))/(3 exp(1));

f5 = 1/(1 + x2 + y2 + u2 + v2);

f6 = sin(πx) sin(πy) sin(πu) sin(πv);

f7 = (sin(π(x2 + y2 + u2 + v2)) + 1)/2;

f8 = exp(−x2 − y2 − u2 − v2);

f9 = max(x− 0.5)max(y − 0.5)max(u− 0.5)max(v − 0.5);

f10 = max(x+ y + u+ v − 2, 0);

In 6D, we sampled 66 equally-spaced data across [0, 1]6 and fit DLS approximation of a

continuous function f with 6D linear LKB-splines, and we check the RMSEs based on 116

equally-spaced data across [0, 1]6. The following 10 testing functions across different families

of continuous functions are used to check the approximation accuracy.

f1 = (1 + 2x+ 3y + 4z + 5u+ 6v + 7w)/28;
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f2 = (x2 + y2 + z2 + u2 + v2 + w2)/6;

f3 = (x3y3 + x3z3 + y3z3 + x3u3 + u3v3 + v3w3)/6;

f4 = (sin(x)ey + cos(x)ez + sin(x)eu + cos(y)ev + sin(x)ew)/(5e);

f5 = 1/(1 + x2 + y2 + z2 + u2 + v2 + w2);

f6 = sin(πx) sin(πy) sin(πz) sin(πu) sin(πv) sin(πw);

f7 = (sin(π(x2 + y2 + z2 + u2 + v2 + w2)) + 1)/2;

f8 = exp(−x2 − y2 − z2 − u2 − v2 − w2);

f9 = max(x− 0.5)max(y − 0.5)max(z − 0.5)max(u− 0.5)max(v − 0.5)max(w − 0.5);

f10 = max(x+ y + z + u+ v + w − 3, 0);

Table 5.1: RMSEs (computed based on 264 equally-spaced locations) of the DLS fitting based 114

equally-space sampled data and pivotal location in 4D.

n = 100 n = 300 n = 1000

# Sampled Data 114 128 114 241 114 531

f1 3.06e-04 8.90e-04 6.02e-05 4.24e-04 2.79e-06 9.86e-06

f2 9.70e-04 2.75e-03 4.35e-04 1.63e-03 2.66e-04 5.85e-04

f3 4.00e-03 1.13e-02 1.87e-03 6.88e-03 1.12e-03 2.32e-03

f4 5.86e-04 1.88e-03 3.23e-04 1.45e-03 1.62e-04 4.31e-04

f5 1.39e-03 3.63e-03 4.76e-04 1.80e-03 2.67e-04 7.07e-04

f6 3.40e-02 1.07e-01 1.33e-02 7.80e-02 3.96e-03 2.24e-02

f7 9.75e-02 3.07e-01 4.13e-02 1.96e-01 1.57e-02 5.40e-02

f8 1.54e-03 3.78e-03 6.28e-04 2.55e-03 3.58e-04 8.85e-04

f9 3.51e-04 1.29e-03 1.80e-04 1.56e-03 1.03e-04 5.59e-04

f10 2.53e-02 5.32e-02 1.96e-02 8.25e-02 1.40e-02 3.45e-02
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Table 5.2: RMSEs (computed based on 116 equally-spaced locations) of the DLS fitting based 66

equally-space sampled data and pivotal location in 6D.

n = 20 n = 40 n = 120

# Sampled Data 66 13 66 24 66 70

f1 5.09e-02 7.81e-02 3.03e-02 5.52e-02 7.78e-03 3.61e-02

f2 4.56e-02 1.31e-01 4.09e-02 8.30e-02 1.73e-02 5.31e-02

f3 9.70e-02 1.29e-01 5.26e-02 8.39e-02 2.85e-02 5.09e-02

f4 7.50e-02 2.50e-01 7.27e-02 1.50e-01 3.59e-02 1.23e-01

f5 5.44e-02 1.88e-01 4.98e-02 1.22e-01 2.72e-02 7.25e-02

f6 3.95e-02 8.07e-02 3.55e-02 6.14e-02 1.64e-02 4.45e-02

f7 2.50e-02 8.71e-02 2.40e-02 6.46e-02 9.08e-03 3.94e-02

f8 8.84e-02 9.39e-02 6.83e-02 7.39e-02 4.62e-02 5.40e-02

f9 3.47e-01 3.55e-01 2.30e-01 2.56e-01 1.04e-01 1.86e-01

f10 3.12e-02 7.66e-02 2.37e-02 5.65e-02 1.25e-02 3.94e-02

In addition, we noticed that the linear system associated with the DLS approximation

has many zero or near zero columns due to the structure K-inner functions. As discussed in

Chapter 4, we adopt the matrix cross approximation in [4] to find the pivotal point set. Based

on the function values at the pivotal points in [0, 1]d, we can simply solve the subsystem with

much smaller size to find the approximation of f . Similar RMSEs are computed and present

in Table 5.1 and 5.2 side by side to show that the approximation of f for both approaches

works well and the approximation based on the function values over the pivotal points is

similar to the approximation based on the 114 function values.

We plot the approximation error based on the pivotal location against n on the log-log

scale, hence the exponent of n in the approximation rate is associated with the slope of

the fitted line via linear regression. The results are shown in Figure 5.3. The fitted line with
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slope less than −1 or −2 indicates that the approximation rate is at least O(1/n) or O(1/n2),

which indicates the corresponding gf ∈ C1([0, d]) or gf ∈ C2([0, d]).

We also plot the number of pivotal locations needed to achieve those approximation

errors, the results are shown in Figure 5.2. It shows that we only need fewer than O(nd)

function values of f to achieve the convergence rate O(1/nβ), O(1/n), or O(1/n2) based on

the smoothness of K-outer function gf .

Figure 5.2: Number of pivotal locations (vertical axis) against n (horizontal axis) in 4D (left) and

in 6D (right).
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f = (1 + 2x+ 3y + 4u+ 5v)/15 f = (1 + 2x+ 3y + 4z + 5u+ 6v + 7w)/28

f = sin(πx) sin(πy) sin(πu) sin(πv) f = sin(πx) sin(πy) sin(πz) sin(πu) sin(πv) sin(πw)

f = max(x+ y + u+ v − 2, 0) f = max(x+ y + z + u+ v + w − 3, 0)

Figure 5.3: Plots of convergence rate on the Log-log scale in 4D and 6D based on pivotal dataset.
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5.4 Application to Numerical Solution of Poisson Equation

One of the powerful aspects of the LKB-splines based approximation scheme is that we can

use it to solve the partial differential equations. To start with, let us consider the Poisson

equation:  ∆u = f,x ∈ Ω

u = 0,x ∈ ∂Ω.
(5.22)

For simplicity, let us consider the 2D case where Ω = [0, 1]2. Let us use the fi = LKBi, i =

1, · · · , 2n as the right-hand side of (5.22). We can use bivariate spline function of degree

d = 8 and r = 2 to solve (5.22) by using the spline collocation method as proposed in [72] to

obtain the solution ui i = 1, · · · , 2n. These form a set of basic Poisson solutions. Then for any

f , we use LKBi, i = 1, · · · , 2n to approximate f . As discussed in the previous section, we

can use a small number of LKBi to approximate f very well. Letting f =
∑2n

i=1 ci(f)LKBi

be a good approximation of f , the solution u of the Poisson equation (5.22) can be well

approximated by

un =
2n∑
i=1

ci(f)ui. (5.23)

To show u − un goes to 0 when n → ∞, we consider ∥∆(u − un)∥L2(Ω) which is ∥f −∑n
i=1 ci(f)LKBi∥L2(Ω). Let us recall a basic result from [72]. Define a new norm ∥u∥L on

H2(Ω) ∩H1
0 (Ω) for the Poisson equation as follows.

∥u∥L = ∥∆u∥L2(Ω). (5.24)

Lai and Lee in [72] showed that the new norm is equivalent to the standard norm on Banach

space H2(Ω) ∩H1
0 (Ω). That is,

Theorem 5.4.1. Suppose Ω ⊂ Rd be a bounded domain and the closure of Ω is of uniformly

positive reach rΩ > 0. Then there exist two positive constants A and B such that

A∥u∥H2(Ω) ≤ ∥u∥L ≤ B∥u∥H2 , ∀u ∈ H2(Ω) ∩H1
0 (Ω), (5.25)

where ∥ · ∥H2(Ω) is the standard H2 norm for the Sobolev space H2(Ω).
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For convenience, let ϵ1 = ∥f −
∑n

i=1 ci(f)LKBi∥L2(Ω), where Ω = [0, 1]2 which is convex

and hence, has an uniformly positive reach. We refer the interested reader to [72] for the

definition of positive reach.

The results in Theorem 5.4.1 show that

∥u− un∥H2(Ω) ≤ ϵ1/A.

As in the previous section, ϵ1 → 0 if f is K-Lipschitz continuous, we can further show the

following results by using the arguments in [72]:

Theorem 5.4.2. Suppose Ω ⊂ Rd is a bounded domain and the closure of Ω is of uniformly

positive reach rΩ > 0. Suppose that u ∈ H3(Ω). Then we have the following inequalities:

∥u− un∥L2(Ω) ≤ C|△|2ϵ1 and ∥∇(u− un)∥L2(Ω) ≤ C|△|ϵ1

for a positive constant C = 1/A, where A is one of the constants in Theorem 5.4.1 and |△|

is the size of the underlying triangulation △.

5.4.1 Numerical results

For numerical experiments, we will use the following six functions as testing functions for

the solution of (5.22). Their right-hand-side f can be easily computed.

u1 = x(1− x)y(1− y)/4;

u2 = sin(πx) sin(πy);

u3 = sin(x)(1− x)(1− y) sin(y);

u4 = (x(1− x)y(1− y)/4)2;

u5 = (sin(πx) sin(πy))2;

u6 = (sin(x)(1− x)(1− y) sin(y))2;

We first use the linear LKB-splines to approximate the right-hand-side f associated with

u1, · · · , u6 over [0, 1]
2. We sampled 1012 equally-spaced data across [0, 1]2 and fit the discrete
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least squares (DLS) approximation of a continuous function f with LKB-splines as basis,

and we check the RMSEs based on 10012 equally-spaced data across [0, 1]2. See Table 5.3 for

the numerical results.

Table 5.3: RMSEs (computed based on 10012 equally-spaced locations) of the approximation for

the right-hand-side function f = ∆u based on equally-space sampled data and pivotal locations.

n = 100 n = 300 n = 1000

# Sampled Data 1012 59 1012 76 1012 136

∆u1 4.90e-04 9.67e-04 2.46e-04 5.39e-04 1.01e-04 2.91e-04

∆u2 3.04e-02 4.35e-02 1.31e-02 2.22e-02 3.90e-03 6.98e-03

∆u3 2.00e-03 3.80e-03 1.00e-03 2.30e-03 3.77e-04 1.10e-03

∆u4 9.05e-05 1.32e-04 3.85e-05 8.59e-05 6.98e-06 1.86e-05

∆u5 2.38e-01 4.26e-01 1.13e-01 1.53e-01 2.83e-02 6.06e-02

∆u6 1.50e-03 2.20e-03 4.90e-04 9.49e-04 1.20e-04 3.17e-04

Next we compute the spline solution of the Poisson equation for each LKB-spline as the

right-hand side of the PDE (5.22) to obtain ui’s. As explained above, we use the coefficients

of linear LKB-spline approximation of each right-hand-side function f to form the solution of

the Poisson equation. We apply the method described in (5.23) to approximate the solution

of the Poisson equation and the numerical results are shown in Table 5.4. We can see that

our method works very well.

So far we only explained how to use LKB-splines for approximating the solution of the

Poisson equation with zero boundary conditions. The underlying domain of interest is [0, 1]2.

This is the most simple PDE. We are currently studying how to use the LKB-splines for the

numerical solution of the Poisson equation over arbitrary polygons with nonzero Dirichlet

boundary conditions.
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Table 5.4: RMSEs (computed based on 10012 equally-spaced locations) of the approximation for

the true solution u based on equally-space sampled data and pivotal locations.

n = 100 n = 300 n = 1000

# Sampled Data 1012 59 1012 76 1012 136

u1 1.04e-06 1.57e-05 4.02e-07 5.97e-06 8.09e-08 1.92e-06

u2 1.82e-04 1.20e-03 5.09e-05 6.95e-04 9.53e-06 1.05e-04

u3 4.56e-06 6.30e-05 1.82e-06 2.38e-05 3.23e-07 6.47e-06

u4 2.11e-07 6.91e-07 6.71e-08 1.07e-06 8.34e-09 1.05e-07

u5 1.80e-03 8.40e-03 5.98e-04 1.90e-03 1.26e-04 1.01e-03

u6 4.30e-06 1.15e-05 9.51e-07 9.51e-06 1.50e-07 1.77e-06

The advantage of this approach is that the basic solutions ui’s of the Poisson equation

can be solved beforehand and stored and one only needs to approximate the right-hand-side

function. Note that the right-hand-side function f can be easily approximated based on the

pivotal point locations without using a large amount of the function values if f is K-Hölder

continuous. This approach provides an efficient method for solving PDE numerically. As we

have seen, when f is K-Lipschitz or K-Hölider continuous, the LKB-splines approach gives a

nice approximation of the right-hand side, hence the accurate approximation of the solution

to the original Poisson equation.

So far we have seen that KB-splines can approximate a general continuous function (poly-

nomial, exponential, rational, etc,.) very well without many function evaluations. However,

the current scheme with KB-splines does not work very well for approximating trigonometric

functions with high frequency, e.g., f(x, y) = sin(100x+100y). We can instead using Fourier

basis to replace bn,j and define

KFn,j(x1, · · · , xd) :=
2d∑
q=0

(
pj(

d∑
i=1

λiϕq(xi)) + qj(
d∑

i=1

λiϕq(xi))
)
, j = 1, · · · , n, (5.26)
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where pj(t) = cos(2πjt) and qj(t) = sin(2πjt). We can also increase n to achieve a better

approximation accuracy. In this way, it may have the capacity to approximate high frequency

trigonometric functions or some other highly oscillated functions effectively.

Some other potential research directions are how to apply the KST representation for

approximating discontinuous functions, e.g., images, and how to extend the current approx-

imation scheme for general domains in Rn. We leave these investigation to future work.



Bibliography

[1] Emmanuel Abbe. Community detection and stochastic block models: Recent develop-

ments. Journal of Machine Learning Research, 18(177):1–86, 2018.

[2] Emmanuel Abbe and Clément Sandon. Recovering communities in the general

stochastic block model without knowing the parameters. In Advances in Neural Infor-

mation Processing Systems, pages 676–684, 2015.

[3] Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 us elec-

tion: Divided they blog. In Proceedings of the 3rd International Workshop on Link

Discovery, pages 36–43, 2005.

[4] Kenneth Allen, Ming-Jun Lai, and Zhaiming Shen. Maximal volume matrix cross

approximation for image compression and least squares solution. arXiv preprint

arXiv:2309.17403, 2023.

[5] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank

vectors. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science

(FOCS’06), pages 475–486. IEEE, 2006.

[6] Gerard Awanou, Ming-Jun Lai, and Paul Wenston. The multivariate spline method

for scattered data fitting and numerical solutions of partial differential equations. In

Wavelets and Splines: Athens, pages 24–74. 2005.

[7] Francis Bach. Breaking the curse of dimensionality with convex neural networks. The

Journal of Machine Learning Research, 18(1):629–681, 2017.

106



107

[8] Andrew R. Barron. Universal approximation bounds for superpositions of a sigmoidal

function. IEEE Transactions on Information Theory, 39(3):930–945, 1993.

[9] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active semi-supervision for

pairwise constrained clustering. In Proceedings of the 2004 SIAM International Confer-

ence on Data Mining, pages 333–344. Society for Industrial and Applied Mathematics,

2004.

[10] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed

sensing. Applied and computational harmonic analysis, 27(3):265–274, 2009.

[11] Jürgen Braun. An Application of Kolmogorov’s Superposition Theorem to Function

Reconstruction in Higher Dimensions. PhD thesis, University of Bonn, 2009.

[12] Jürgen Braun and Michael Griebel. On a constructive proof of kolmogorov’s superpo-

sition theorem. Constructive Approximation, 30(3):653–675, 2009.

[13] D. W. Bryant. Analysis of Kolmogorov’s Superposition Theorem and Its Implementa-

tion in Applications with Low and High Dimensional Data. PhD thesis, University of

Central Florida, 2008.

[14] T. Tony Cai and Anru Zhang. Sharp rip bound for sparse signal and low-rank matrix

recovery. Applied and Computational Harmonic Analysis, 35(1):74–93, 2013.

[15] Emmanuel J Candès and Terence Tao. Decoding by linear programming. IEEE trans-

actions on information theory, 51(12):4203–4215, 2005.

[16] Emmanuel J. Candès, Justin Romberg, and Terence Tao. Robust uncertainty princi-

ples: Exact signal reconstruction from highly incomplete frequency information. IEEE

Transactions on Information Theory, 52(2):489–509, 2006.

[17] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decompo-

sition by basis pursuit. SIAM Review, 43(1):129–159, 2001.



108

[18] Fan Chung. The heat kernel as the pagerank of a graph. Proceedings of the National

Academy of Sciences, 104(50):19735–19740, 2007.

[19] Fan Chung and Linyuan Lu. Complex Graphs and Networks, volume 107. American

Mathematical Society, 2006.

[20] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-

matics of Control, Signals, and Systems, 2(4):303–314, 1989.

[21] Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing signal recon-

struction. IEEE Transactions on Information Theory, 55(5):2230–2249, May 2009.

[22] Ingrid Daubechies, Ronald DeVore, Simon Foucart, Boris Hanin, and Guergana

Petrova. Nonlinear approximation and (deep) relu networks. Constructive Approx-

imation, 55(1):127–172, 2022.

[23] Carl De Boor. Efficient computer manipulation of tensor products. ACM Transactions

on Mathematical Software (TOMS), 5(2):173–182, 1979.

[24] Stephen Demko. A superposition theorem for bounded continuous functions. Proceed-

ings of the American Mathematical Society, 66(1):75–78, 1977.

[25] Ronald DeVore, Boris Hanin, and Guergana Petrova. Neural network approximation.

Acta Numerica, 30:327–444, 2021.

[26] Ronald A. DeVore, Ralph Howard, and Charles Micchelli. Optimal nonlinear approx-

imation. Manuscripta Mathematica, 63:469–478, 1989.

[27] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: Spectral clus-

tering and normalized cuts. In Proceedings of the Tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2004.



109

[28] Chris HQ Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst D. Simon. A min-

max cut algorithm for graph partitioning and data clustering. In Proceedings of the

2001 IEEE International Conference on Data Mining, pages 107–114, 2001.

[29] David L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,

52(4):1289–1306, 2006.

[30] Raouf Doss. A superposition theorem for unbounded continuous functions. Transac-

tions of the American Mathematical Society, 233:197–203, 1977.

[31] Weinan E. Machine learning and computational mathematics. arXiv preprint, 2020.

[32] Weinan E, Chao Ma, and Lei Wu. The barron space and the flow-induced function

spaces for neural network models. Constructive Approximation, 55(1):369–406, 2022.

[33] Weinan E and Stephan Wojtowytsch. On the banach spaces associated with multi-layer

relu networks: Function representation, approximation theory, and gradient descent

dynamics. arXiv preprint, 2020.

[34] Weinan E and Stephan Wojtowytsch. Representation formulas and pointwise proper-

ties for barron functions. Calculus of Variations and Partial Differential Equations,

61(2):1–37, 2022.
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