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Abstract

Background: Mortality in paediatric emergency care units in Africa often occurs within the first 24 h of admission
and remains high. Alongside effective triage systems, a practical clinical bedside risk score to identify those at
greatest risk could contribute to reducing mortality.

Methods: Data collected during the Fluid As Expansive Supportive Therapy (FEAST) trial, a multi-centre trial involving
3,170 severely ill African children, were analysed to identify clinical and laboratory prognostic factors for mortality.
Multivariable Cox regression was used to build a model in this derivation dataset based on clinical parameters that
could be quickly and easily assessed at the bedside. A score developed from the model coefficients was externally
validated in two admissions datasets from Kilifi District Hospital, Kenya, and compared to published risk scores using
Area Under the Receiver Operating Curve (AUROC) and Hosmer-Lemeshow tests. The Net Reclassification Index (NRI)
was used to identify additional laboratory prognostic factors.

Results: A risk score using 8 clinical variables (temperature, heart rate, capillary refill time, conscious level, severe
pallor, respiratory distress, lung crepitations, and weak pulse volume) was developed. The score ranged from 0–10
and had an AUROC of 0.82 (95 % CI, 0.77–0.87) in the FEAST trial derivation set. In the independent validation
datasets, the score had an AUROC of 0.77 (95 % CI, 0.72–0.82) amongst admissions to a paediatric high dependency
ward and 0.86 (95 % CI, 0.82–0.89) amongst general paediatric admissions. This discriminative ability was similar to, or
better than other risk scores in the validation datasets. NRI identified lactate, blood urea nitrogen, and pH to be
important prognostic laboratory variables that could add information to the clinical score.

Conclusions: Eight clinical prognostic factors that could be rapidly assessed by healthcare staff for triage were
combined to create the FEAST Paediatric Emergency Triage (PET) score and externally validated. The score
discriminated those at highest risk of fatal outcome at the point of hospital admission and compared well to
other published risk scores. Further laboratory tests were also identified as prognostic factors which could be
added if resources were available or as indices of severity for comparison between centres in future research studies.
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Background
The admission burden to paediatric wards or the emer-
gency room in African hospitals is very high, with many
children presenting with complications of common
infectious diseases such as sepsis and malaria. Life-
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threatening complications, including shock, are fre-
quently present, and mortality is high, at 15–30 % [1–3].
Severe forms of pneumonia, sepsis, or malaria are
amongst the most common causes of death [4], yet dif-
ferentiation of the specific underlying cause is often un-
clear at point of admission since they share similar
presenting clinical characteristics. Furthermore, most
deaths occur within the first 24 h of admission [5]. The
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WHO integrated management guidelines recommend
identifying children with ‘emergency’ or ‘priority’ fea-
tures as a proxy for triage for immediate treatment in
order to avert poor outcome; this approach has been
shown to reduce mortality but implementation and
consistency varies [6, 7]. At a clinical level, the key
challenge facing health services in Africa is precisely
how to distinguish those who are at greatest risk of
poor outcome, using largely clinical criteria, in order
to target parenteral antimicrobials and supportive ther-
apies. Bedside clinical risk scores at admission can be
used as part of triage systems to discriminate between
children at high and low mortality risk. They can also
be used to calculate risk-adjusted estimates of mortal-
ity in order to compare quality of care across hospitals
or to stratify children entering clinical trials or other
studies [8].
Paediatric risk scores have been developed in well-

resourced countries, and are used to describe severity of
illness in paediatric intensive care units in a variety
of settings [9–12]. Examples include the Pediatric
Risk of Mortality (PRISM) score, the Paediatric Index
of Mortality score (PIM) [13, 14], the Pediatric Early
Warning System score (PEWS), and Bedside PEWS [15].
These have helped with early identification for transfer to
high dependency units and in research to enable between
site and within study comparison of severity of illness.
However, very few generic paediatric risk scores have
been developed in resource-limited settings and those
that are published have not been widely used or vali-
dated. The limited utility for general triage of some
scores that focus on specific pathogens, such as malaria
[16, 17] or meningococcal disease [18, 19], is due to the
requirement of laboratory confirmation, therefore mak-
ing them more suitable for retrospective risk stratifica-
tion. Thus, there is a need for a practical risk score based
only on clinical bedside measures that can be easily
and quickly identified by busy healthcare workers on
admission, that has an intuitive range, that does not
need a specific disease or infection to be identified,
that uses clinical signs that are found in populations in
these settings, and that discriminates well between
children at different risks of mortality. Such a score
would also be useful in real-time stratification of chil-
dren for trial enrolment and comparison of centres in
these settings.
We identified prognostic factors for mortality in febrile

children with signs of shock admitted to emergency care
wards in East Africa and enrolled into the FEAST (Fluid
Expansion as Supportive Therapy) trial, and used them
to develop a bedside risk score for mortality. This score
was then validated using data on children admitted to a
rural district hospital in Kilifi, Kenya, and its perform-
ance compared to other published risk scores.
Methods
Study setting
Derivation data came from the FEAST trial which took
place in six centres (both large regional referral hospitals
and small district hospitals) across three countries
(Kenya, Uganda, and Tanzania) from 2009 to 2011 and
enrolled 3,170 sick febrile children aged between 2
months and 12 years with clinical evidence of impaired
perfusion ([20], ISCRTN 69856593). FEAST was con-
ducted in malaria endemic areas where national vaccin-
ation programmes included Haemophilus influenza type
B vaccine, but not a pneumococcal vaccine. Prior and
during the trial, admitting clinicians and nurses received
Emergency Triage Assessment and Treatment training
[21], which included the assessment of clinical features
of shock. Eligible children had an abnormal temperature
(pyrexia (≥37.5 °C) or hypothermia (<36 °C)), severe ill-
ness (presence of one or both of impaired consciousness
(prostration, the inability of a child older than 8 months
of age to sit upright or the inability of a child 8 months
of age or younger to breast-feed; or coma, the inability
to localize a painful stimulus) and respiratory distress)
and clinical evidence of impaired perfusion (one or more
of the following: capillary refill time >2 s; lower limb
temperature gradient, defined as a notable temperature
change from cold (dorsum of foot) to warm (knee) when
running the back of hand from the toe to the knee;
weak radial pulse or severe tachycardia, defined as
heart rate >180 beats per min (bpm) for children <1 year
old, >160 bpm for those 1 to 4 years old, >140 bpm for
those ≥5 years old). Children with severe malnutrition,
burns, trauma, gastroenteritis, or a presumed non-
infectious cause of severe illness were excluded. Children
were randomised to receive boluses of 20–40 mL/kg
of 5 % human albumin solution or 0.9 % saline solu-
tion over one hour, or maintenance fluids only at 4
mL/kg/h (no bolus control group). Those with severe
hypotension (systolic blood pressure <50 mmHg for
those aged <1 year, <60 mmHg for those 1–4 years
old, <70 mmHg for those ≥5 years old) were randomly
assigned in a separate stratum to receive 40 mL/kg bolus
of either albumin or saline. All children enrolled in both
strata were included in this study. Standardised case re-
port forms were completed at enrolment and at specific
time points during the first 48 h. At enrolment, lactate,
haemoglobin, oxygen saturation, and glucose were mea-
sured and an HIV antibody test and rapid diagnostic test
for malaria were performed. An automated handheld
blood analyser (i-STAT, Abbott Laboratories, Abbott
Park, IL) was used for immediate analyses of pH level,
potassium, base excess, blood urea nitrogen (BUN), so-
dium, chloride, TCO2, and PCO2. Children with haemo-
globin <5 g/dL were routinely transfused according to
national guidelines [22].
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The validation data came from one of the FEAST trial
sites, a rural district hospital in Kilifi, Kenya, which has a
general paediatric ward and a high dependency ward.
The Kenya Medical Research Institute Programme has
established ward surveillance and used standardised
forms to systematically collect clinical admission data
on all infants and children entering the hospital wards
since 1989, which has been linked to demographic sur-
veillance in the district since 2002 [23]. Children were
routinely transferred to the high dependency unit if
they had impaired consciousness (prostration or coma)
or deep-breathing (a clinical sign of metabolic acid-
osis), or if they required close medical supervision for life
threatening complications such as status epilepticus, se-
vere forms of shock, or a cardio-respiratory arrest. At ad-
mission to the high dependency unit (HDU) an extended
set of clinical details were routinely collected.
The first validation datasets included children aged be-

tween 2 months and 12 years admitted to the general
paediatric ward between March 2011 and December
2012 (5,173 children), and the second dataset is a subset
of the first and includes all children contemporaneously
admitted from the general ward to the HDU (1058/5173
children). These datasets did not include children from
the FEAST trial, which finished enrolment at this centre
in January 2011 and included information on the date,
but not time, of death.
Other published paediatric risk scores were evaluated

in the FEAST derivation and validation datasets. PRISM
III was developed in paediatric intensive care units in
the USA and has been validated in a variety of settings
[10, 24–28]. The Bedside Pediatric Early Warning
System score (PEWS) was developed in Canada to
quantify severity of children in hospitalised children and
help with referral to critical care experts [15]. For
African paediatric populations, the AQUAMAT (African
Quinine Artesunate Malaria Trial) prognostic score
(0–5) was developed in a post hoc analysis from the
trial dataset involving nine African countries as part of
the AQUAMAT trial comparing anti-malarial treat-
ments in children with severe malaria and included
five parameters (base deficit, impaired consciousness,
convulsions, elevated blood urea, and underlying
chronic illness) which were independently associated
with death [17, 29]. The Lamberéné Organ Dysfunction
Score (LODS) was created using data from six African
countries in children with malaria using only three
parameters (deep breathing, coma, and prostration)
[16, 30]. Berkley et al. [31] used Kilifi admission data
from 1998 to 2001 to develop prognostic scores for
deaths at different time points following admission,
subsequently named during a published validation as
the Pediatric Early Death Index for Africa (PEDIA). The
AQUAMAT score has not been subject to external
validation to date and PEDIA along with LODS have only
recently been externally validated in Uganda in children
with malaria and non-malarial illnesses [30].

Statistical analyses
The prognostic model for mortality by 48 h was built
following published guidelines [32] and is described in
Additional file 1: Table S1. There were 315 deaths; thus,
up to 30 candidate predictors could reasonably be con-
sidered [33]. Variables selected for initial consideration
were measured in >95 % of the included children, had
been found to be predictive in other studies, or were a
priori thought to be clinically important, and not highly
correlated with other variables (Table 1). All variables
were measured at or within 1 h of randomisation, which
occurred at a median (IQR) of 15 min (0–25 min) fol-
lowing ward admission, and prior to the administration
of any trial intervention. Model derivation was based on
multivariable fractional polynomials with backwards
elimination using Cox proportional hazards regression
in complete cases (adjusted for randomisation arm) [34].
Time to death was measured in hours and minutes
(from the time of randomisation) and follow-up was
censored at 48 h or time of leaving hospital if earlier.
Cox proportional hazards regression was used to allow
for information from children that absconded prior to
48 h to be included in the analysis (n = 11). This identi-
fied the most predictive variables for death and the best
functional form for continuous variables (exit and non-
linearity threshold P = 0.05). Interactions with the ran-
domisation arm were also considered in this model. We
carried out sensitivity analyses using logistic regression
to build the model and restricting the derivation dataset
to control arm data only (n = 1,044 children, 76 deaths).
A clinical bedside score (the FEAST Paediatric

Emergency Triage (PET) score) was created by cate-
gorising the continuous variables using appropriate
clinical cut-offs to use alongside already categorised
variables in a Cox regression model. Coefficients for the
categories of each variable in the model were then divided
by the coefficient nearest zero and rounded to the nearest
integer giving an initial score value [19]. These initial score
values were then further modified to ensure a straightfor-
ward scale from 1–10 by assigning 2 to the initial value if
it was >3, and 1 if it was ≤3, and dropping variables that
added the least predictive ability to the model (assessed by
using the Net Reclassification Index (NRI) [35]). A low
score on this scale then indicated a low risk of mortality
and a high score indicated a high risk of mortality.
The FEAST PET score was applied to the two valid-

ation datasets using the non-parametric area under the
receiver operating curve (AUROC) to measure discrim-
inative ability. Mortality was defined as death within 2
days of admission as time of death was not available in



Table 1 Candidate predictors of mortality considered for building multivariable model

Clinical bedside candidate predictors a Percentage missing Laboratory candidate predictors a Percentage missing

Age (months) 0 % Base excess (mmol/L) 34 %

Axillary Temperature (°C) <1 % Blood urea nitrate (mg/dL) 38 %

Capillary refill time (seconds) <1 % Chloride (mmol/L) 34 %

Conscious level b <1 % Glucose (mmol/L) 6 %

Cough <1 % Haemoglobin (g/dL) 3 %

Lung crepitations c <1 % HIV status 21 %

Decreased skin turgor <1 % Lactate (mmol/L) 5 %

Deep breathing <1 % Malaria positive 1 %

Fits greater than 30 min in this illness 1 % Oxygen saturation (%) 4 %

Fits in this illness <1 % pCO2 (mmHg) 34 %

Fitting/convulsions at admission 1 % pH 34 %

Heart rate (beats/min) <1 % Potassium (mmol/L) 35 %

History of fever <1 % Sodium (mmol/L) 33 %

Indrawing <1 % Systolic blood pressure 2 %

Jaundice <1 % TCO2 (mmol/L) 36 %

Liver size >2 cm below costal margin <1 %

Neck stiffness or bulging fontanelle <1 % Other predictors not considered

Respiratory distress <1 % Mid-upper arm circumference 6 %

Respiratory rate (breaths/min) <1 %

Severe pallor d <1 %

Sex 0 %

Temperature gradient e 0 %

Vomiting <1 %

Weak pulse 0 %

Weight (kg) 0 %
a Alphabetical order
b Conscious level defined as prostrate (the inability of a child older than 8 months of age to sit upright or the inability of a child 8 months of age or younger to
breast-feed) or coma (the inability to localize a painful stimulus)
c Added breath sounds heard on inspiration in one or both lung fields: any one of crackles, clicks or rattling (rales)
d Severe pallor manifested in tongue, gums, or inner eyelids
e The temperature gradient was assessed by running the back of hand from the toe to the knee; a positive temperature gradient was defined as a notable
temperature change from cold (dorsum of foot) to warm (knee)
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the two validation datasets. The FEAST data and two
validation datasets were also used to validate other pre-
viously published scores. To validate the PEDIA score,
immediate death (death within 4 h after admission, and
calculated exactly in FEAST) was interpreted as death
on the same day as admission, early death (death be-
tween 4 and 48 h) was interpreted as death within 2 cal-
endar days of admission but not the same day, and late
death (>48 h) as death occurring more than 2 days after
admission. Calibration was measured by Hosmer-
Lemeshow goodness-of-fit χ2 tests evaluated on groups
defined by quintiles [36]. PRISM III, Bedside PEWS,
AQUAMAT, and PEDIA scores were calculated using
the available admission variables and unavailable vari-
ables in the scores were set to 0 (as recommended). As-
sessments at later time points were not available to use for
PRISM III, although this score recommends using the
worst clinical measurement in the first 24 h [13, 27].
We also considered whether laboratory candidate pre-

dictors (Table 1; with >5 % missing data) could improve
the discriminatory ability of the score in situations where
they could feasibly be measured (e.g. specific research
studies). Multiple imputation by chained equations
under the missing at random assumption, with predict-
ive mean matching, was therefore used for imputation,
including all factors in Table 1 in the imputation model
and creating 25 imputed datasets [37]. Imputed and ob-
served values were compared visually. The NRI [35] was
calculated within each imputed dataset using mortality
risk cut-offs at 5 %, 10 %, and 15 %, and the range and
mean of this measure across the 25 imputed datasets
was used to assess whether the additional laboratory
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variables could be usefully added to the clinical bedside
variables already included in the score. The NRI assessed
the ability of each additional variable to directly increase
the discriminative ability of the model by looking at risk
classification categories (with an increased NRI showing
more children correctly classified). Backwards elimin-
ation (exit threshold mean P = 0.05 calculated from all
imputed datasets) including all laboratory markers was
then used to identify the laboratory variables with the
largest NRIs across the imputed datasets. These were
added to the clinical prognostic model to develop an ex-
tended score including laboratory markers identified as
adding important information to risk scoring by the
NRI. Rubin’s rules [38] were used to combine AUROCs
from the multiply imputed datasets to validate the score
including laboratory markers in the FEAST control arm
data [39]. Finally, in an additional analysis, Cox regres-
sion was used to identify the best prognostic model for
mortality based on best subsets regression in complete
cases including all laboratory markers with <10 % miss-
ing data and considering all interactions. Statistical ana-
lyses were carried out in Stata (version 13.1).
Table 2 Baseline characteristics of FEAST dataset and validation data

FEAST (2009–20

Baseline characteristics

Number with FEAST PET score calculable (% dataset) 3125 (99 %)

Age (months), median (IQR) 24 (13–38)

Gender (Female, %) 1444 (46 %)

Weight (kg) - median (IQR) 10 (9–13)

Conscious level – prostrate 1919 (61 %)

– coma 463 (15 %)

Axillary temperature (°C), median (IQR) 38.2 (37.3–39)

History of fever (%) 3110 (99 %)

Heart rate (beats per min), median (IQR) 169 (153–183)

Weak pulse (%) 660 (21 %)

Capillary refill time (s), median (IQR) 2 (1–3)

Temperature gradient (%) 1849 (59 %)

Respiratory rate (breaths per min), median (IQR) 58 (48–67)

Respiratory distress (%) 2585 (83 %)

Deep breathing (%) 2019 (65 %)

Indrawing (%) 2129 (68 %)

Lung crepitations (%) 692 (22 %)

Cough (%) 2245 (72 %)

Severe pallor (%) 1588 (51 %)

Convulsions (%) 455 (15 %)

Decreased skin turgor (%) 187 (6 %)

Vomiting (%) 1603 (51 %)

FEAST PET score, median (IQR) [range] 3 (2,4) [1, 9]
Results
Overall, 3,170 children with median age 24 months
(IQR, 13–38) were recruited to the FEAST trial, of
whom 315 (11 %) died within 48 h. A total of 3,121
(98 %) children (2,815 (99 %) surviving children and
306 (97 %) who died) had complete clinical data on
admission for calculation of clinical bedside score. Of
these, 15 % were comatose, 59 % had a temperature
gradient, 51 % severe pallor (manifested in tongue,
gums, or inner eyelids), and 21 % a weak pulse vol-
ume; median heart rate was 169 beats per minute
(Table 2).
Twenty five variables were included in the model

building process (Table 1) of which 10 were selected as
independent predictors of mortality in the final model.
The final prognostic model included axillary tem-
perature, heart rate, weight, lung crepitations (added
breath sounds heard on inspiration in one or both lung
fields: any one of crackles, clicks or rattling (rales)), weak
pulse, capillary refill time, conscious level, respiratory
distress, deep breathing, and severe pallor. Identical in-
dependent predictors of mortality were also chosen
sets from Kilifi

11) Kilifi High Dependency Ward
(2011–2012)

Kilifi General Admissions
(2011–2012)

1053 (99 %) 5098 (99 %)

38 (14–69) 24 (10–53)

437 (42 %) 2149 (42 %)

12 (8–16) 10 (7–14)

293 (28 %) 1117 (22 %)

311 (29 %) 331 (7 %)

37.6 (36.7–38.5) 37.6 (36.8–38.5)

743 (71 %) 3560 (70 %)

140 (118–162) 144 (124–162)

77 (7 %) 98 (2 %)

2 (1–2) 1 (1–2)

134 (13 %) 238 (5 %)

40 (32–52) 38 (32–50)

288 (27 %) 1377 (27 %)

211 (20 %) 369 (7 %)

229 (22 %) 1195 (23 %)

139 (13 %) 633 (12 %)

328 (31 %) 2096 (41 %)

412 (39 %) 1317 (26 %)

359 (34 %) 1023 (20 %)

89 (8 %) 338 (7 %)

348 (33 %) 1560 (31 %)

3 (1,4) [0,9] 2 (1,3) [0,9]
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using logistic regression (Additional file 1: Table S2).
The strongest prognostic factors for mortality were
coma, bradycardia (<80 beats per min), or severe tachy-
cardia (>220 beats per min). Lower temperature and
longer capillary refill times were also associated with an
increased risk of death. Mortality risk increased as
weight declined under <10 kg. As expected, weight
and age were highly correlated (Spearman’s rho = 0.88,
P <0.001), but age did not explain the mortality risk as
well as weight (Akaike Information Criterion differ-
ence +4.8 for model including age rather than weight).
Although weight-for-age z-score provided a similarly
good model fit to weight, it was not included because
it is not practical to calculate in an emergency setting.
Weight and deep breathing in the presence of the
other bedside factors were the least predictive (P >0.05
for their NRI values), and were therefore dropped in
order to create a simple score ranging from 0–10
(Table 3). The FEAST PET score’s discriminative ability
within the control arm (receiving maintenance fluids
only, and selected as they were not affected by the
Table 3 FEAST Paediatric Emergency Triage (PET) score and the FEA

Factor Coefficient (95 % CI)
from univariable
model

Coefficient (9
from multivar
model a

Axillary temperature: ≤37 °C 1.08 (0.86–1.31) 0.63 (0.38–0.8

Heart rate: <80 bpm (bradycardia) 2.46 (2.00–2.93) 1.34 (0.92–1.7

≥80 to <105 bpm 1.12 (0.57–1.68) 0.70 (0.11–1.3

≥220 bpm (severe tachycardia) 1.44 (0.73–2.14) 1.34 (0.92–1.7

Capillary refill time: 2 or more seconds 0.93 (0.63–1.23) 0.53 (0.21–0.8

Conscious level: prostrate 1.01 (0.58–1.46) 0.68 (0.23–1.1

– coma 2.24 (1.80–2.69) 1.53 (1.06–2.0

Respiratory distress 0.93 (0.52–1.34) 0.55 (0.07–1.0

Lung crepitations 0.77 (0.55–1.01) 0.60 (0.36–0.8

Severe pallor 0.90 (0.66–1.14) 0.49 (0.22–0.7

Weak pulse 1.45 (1.24–1.68) 0.73 (0.48–0.9

Weight: <6 kg 0.52 (0.02–1.03) 0.41 (–0.05–0

6–8 kg 0.30 (–0.01–0.61) 0.21 (–0.03–0

Deep breathing 1.17 (0.86–1.49) 0.42 (0.06–0.7

Total

Additional laboratory values to be
added if measured

Lactate >5 mmol/L 1.82 (1.54–2.09) 1.12 (0.79–1.4

pH <7.2 1.80 (1.51–2.08) 0.97 (0.69–1.2

Blood urea nitrogen >20 mg/dL 1.23 (0.95–1.52) 0.58 (0.26–0.9

Total (laboratory score)
a Coefficient from linear predictor of multivariable cox regression model on complete c
adjusted for all clinical factors
Note: weight and deep breathing were the least predictive factors and were therefo
adjusted for randomisation arm which was not included in the score
adverse outcome of fluid boluses) of the FEAST deriv-
ation dataset was good with AUROC = 0.82 (95 % CI,
0.77–0.87) compared to 0.84 (95 % CI, 0.79–0.87) for
full linear predictor from fitted regression coefficients,
including all 10 variables and non-linearity. The me-
dian score in the control arm was 3 (IQR 2–4), while
the maximum score was 9 out of a possible 10. Sensi-
tivity analyses developing a score in the control arm
data identified most of the 10 included variables as
significant predictors, but failed to identify others with
similar effect sizes in additional models due to re-
duced power (Additional file 1: Table S3).
Multiple imputation with chained equations was used

to assess the potential for the laboratory candidate pre-
dictors in Table 1 to add important information to a risk
score, even if these might be evaluated on a smaller
number of children. The NRI calculated in 25 imputed
datasets with risk category cut-offs of 5 %, 10 %, and
15 % identified lactate, HIV status, TCO2, potassium,
pH, BUN, and base excess as variables that significantly
improved the mortality score (Additional file 1: Table S2).
ST Paediatric Emergency Triage and Laboratory (PETaL) score

5 % CI)
iable

P value from
multivariable
model

Score value
given if
present

Maximum
possible value
for PET score

Maximum possible
value for PETaL
score

7) <0.001 1 1 1

7) <0.001 2 2 2

0) 0.02 1

7) <0.001 2

5) 0.001 1 1 1

3) 0.003 1 2 2

0) <0.001 2

2) 0.02 1 1 1

5) <0.001 1 1 1

6) <0.001 1 1 1

7) <0.001 1 1 1

.88) 0.08 – –

.45) 0.09

7) 0.02 – –

10

6) <0.001 2 2

5) <0.001 1 1

0) <0.001 1 1

14

ases. First section includes clinical factors only. Second section (laboratory values)

re excluded from the score. Univariable models and multivariable model also
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Using backwards elimination including the clinical fac-
tors and all laboratory markers, lactate, BUN, and pH
added independent information to the score (lactate
NRI range 10.7–14.2 %, mean P <0.001, BUN NRI
range 2.8–8.9 %, mean P = 0.02, pH NRI range 4.8–
9.1 %, mean P = 0.03; Additional file 1: Table S4). The
NRI of adding all three laboratory variables to the
clinical score was 24.7–28.9 %, all P <0.001. These var-
iables were therefore categorised using appropriate
clinical cut-offs and added to the FEAST score extending
the range of the score to 0–14 (Table 3) and creating the
FEAST Paediatric Emergency Triage and Laboratory
(PETaL) score. The AUROC for the FEAST PETaL score
in the control arm from the multiply imputed data was
0.86 (95 % CI, 0.82–0.90). Oxygen saturation, although
considered important in other studies, was not shown to
significantly improve the discriminative ability of the score
in our dataset (NRI range 1.1–5.3 %, mean P = 0.08;
Additional file 1: Table S4).
A Cox regression analysis using best subsets regression

and including the 10 clinical variables from the model
and the laboratory candidate predictors with <10 %
missing data on complete cases only, identified lactate,
haemoglobin, glucose, and malaria test results to be
important additional predictors of mortality (although
notably these factors did not all increase the ability to
distinguish mortality risk between children). A positive
malaria test result and high glucose were associated with
a reduced mortality risk (Additional file 1: Table S5). We
found an interaction between haemoglobin and lactate:
rather than the mortality risk uniformly increasing with
increasing lactate and uniformly decreasing with increas-
ing haemoglobin, the higher risk associated with higher
lactate (>7 mmol/L) values was restricted to those with
high haemoglobin (>6 g/dL). For children with profound
anaemia (haemoglobin <4 g/dL) there was a similar risk
regardless of lactate level, compared to an average child
enrolled who had a lactate of 5 mmol/L and a haemo-
globin of 7 g/dL (Fig. 1).
The FEAST PET score was externally validated on the

Kilifi HDU data (1,053 children, 98 (9 %) deaths), and
showed a fair discriminative ability with AUROC of
0.77 (95 % CI, 0.72–0.82) and Hosmer-Lemeshow test
P = 0.30 indicating good fit. The score’s discriminative
ability improved in the general admissions dataset
(5,098 children, 117 (2 %) deaths) giving an AUROC of
0.86 (95 % CI, 0.82–0.89) and Hosmer-Lemeshow test
P = 0.51 (Fig. 2).
In comparison with other scores, the FEAST PET

score showed significantly better discriminative ability
than Bedside PEWS, PRISM III, and the AQUAMAT
scores (Fig. 3; P <0.05 test for equality between AUROC
scores), and no evidence for a difference for LODS, and
PEDIA on the two validation datasets (Table 4). LODS
discriminated well in all the validation datasets and gave
an AUROC of 0.76 (0.71–0.81) in the HDU and 0.87
(0.83–0.90) in the general admissions dataset. The
AQUAMAT trial score discriminated better when re-
stricted to children with malaria in the FEAST trial
(AUROC 0.80; 95 % CI, 0.68–0.93) but did not discrim-
inate as well when restricted to the Kilifi datasets.

Discussion
Herein, we have developed and externally validated a
bedside clinical risk score for severely ill children pre-
senting to emergency care wards in resource-limited set-
tings in Africa that identifies those at greatest risk of
mortality within 48 h of admission. The FEAST PET
score is straightforward to use, includes only clinical var-
iables that are measured at the bedside, does not rely on
laboratory tests, and is not limited to children with spe-
cific diagnoses, but rather covers different presentation
syndromes reflecting the population of children present-
ing to hospital in these settings.
Prognostic scores created in resource-limited settings

have not often been externally validated, even though
this is an important part of the development process
[40]. This may explain why previous scores have not
been widely implemented. The FEAST PET score had
fair discriminative ability for HDU data and good dis-
criminative ability for general admissions data, showing
that it is generalizable to other clinical settings. The two
validation cohorts were heterogeneous, one included
more critically sick children that had been transferred to
a HDU which also acted as a research ward and the
other a more general paediatric admission population of
which the majority had come through the emergency
room. We have already highlighted the clinical and
epidemiological challenge of differentiating the major
causes of childhood illnesses since many have overlap-
ping clinical presentations [41–43]. Interestingly, the
FEAST PET score discriminated best in the general
admissions dataset, likely because this included more
children with low scores with very low mortality risk
(Additional file 1: Figure S1). However, similar propor-
tions with high scores died in both general admissions
and HDU validation sets, demonstrating that the
FEAST PET score is able to identify those children at
particularly high mortality risk even within children
presenting to the emergency room with a diverse set of
underlying conditions. However, perhaps because of the
diversity of underlying conditions among children in
the FEAST trial, the FEAST PET score discriminated
best in the general admissions dataset. This suggests
that the emergency room or general admissions would
be the most appropriate setting in which to explore
implementation, perhaps in comparison to the simpler
LODS score.



Fig. 1 Plots of the relationship between haemoglobin and lactate
and mortality estimated from the adjusted Cox regression model. a
Contour plot of mortality risk by baseline haemoglobin and lactate
estimated from Cox regression model. This shows in contrast to risk
uniformly increasing with increasing lactate and uniformly decreasing
with haemoglobin as might have been expected, we have observed
increased risk (green to red) when haemoglobin is increasing and
lactate is increasing relative to an average child enrolled who had a
lactate of 5 mmol/L and a haemoglobin of 7 g/dL. b Scatter plot of
observed baseline haemoglobin and lactate values
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Comparing different scores for 48 h mortality in the
two validation datasets, the FEAST PET score per-
formed similarly well to the PEDIA immediate death
and early death score, and the LODS score, and better
than Bedside PEWS, PRISM III, and AQUAMAT
scores, likely due to the FEAST PET score’s good gen-
eralisability and because all of the variables were easily
recorded at the bedside. It is perhaps not surprising
that the PEDIA immediate and early death scores per-
formed well within these datasets, as PEDIA was based
on data previously obtained from the same hospital,
but it is interesting that the very simple LODS score
(based on only three factors) also performed well. The
three PEDIA scores have only been externally vali-
dated once in Uganda [30] and may be complex to im-
plement since different prognostic factors predict
scores for different times of death (immediate vs early vs
late) and have different weighting within each score. The
PEDIA score for late deaths (>48 h) in particular discrimi-
nated poorly.
A limitation of our validation is that many of the la-

boratory tests included in PIM and PRISM III, and com-
monly done in well-resourced settings (such as total
bilirubin, calcium, potassium, arterial oxygen tension,
creatinine, prothrombin time) are not measured in most
African countries, and were not available in the FEAST
or validation datasets. The PIM score could not be vali-
dated at all as none of its variables were recorded in the
validation dataset [14]. The AQUAMAT score per-
formed well in the FEAST trial subgroup with malaria,
but performed poorly in the Kilifi validation dataset
probably because two of the five severity measures in
the score were not routinely recorded (BUN and base
excess).
Nevertheless, it is interesting to consider how much

additional discrimination could be obtained from wider
use of laboratory test results in resource limited-settings.
In our further analyses we added three laboratory mea-
sures (lactate, BUN, pH) to the PET score based on their
NRI to create the PETaL score; however, this did not
change discriminatory power in the derivation dataset,
showing that clinical measures can be sufficient for a
good score, and that improving prediction does not al-
ways improve ability to discriminate children at low and
high risk. Unfortunately, we were not able to externally
validate the PETaL score as the laboratory measures
were not available in the Kilifi validation datasets.
However, the fuller prognostic model including la-

boratory tests (with <10 % missing data) can provide
insights into underlying epidemiology of the acutely
sick child in Africa. For example, we found that the
increased risk of death associated with higher lactate,
i.e. >7 mmol/L, was much greater among children with
haemoglobin >6 g/dL. All those with low haemoglobin
(<4 g/dL) had similar risk regardless of lactate, possibly
because 89 % of these severely anaemic children were ef-
fectively treated with blood transfusion [22], whereas
those with high haemoglobin had diverse underlying
causes. This may also be due to different causes of high
lactate in anaemic (reduced oxygen carrying capacity)
compared to non-anaemic patients manifesting cardio-
vascular compromise of septic shock with diminished
oxygen delivery (leading to anaerobic metabolism from
shock) [44]. Moreover, acute onset of severe anaemia
(to levels as low as 5 g/dL) can be well tolerated be-
cause of compensatory mechanisms to sustain tissue
oxygenation [45].
Similarly, the association between reduced mortality

and a positive malaria test in the present study may be
due to asymptomatic P. falciparum infection being
common in malaria endemic areas, and carrying lower



Fig. 2 Receiver operating characteristic curves for the FEAST PET score in (a) the Kilifi high dependency unit and (b) the Kilifi general admissions dataset
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overall mortality, especially compared to children with
bacterial infections [46, 47]. Of interest, oxygen satur-
ation, a predictor of mortality in other studies [48, 49],
was not a significant predictor in our dataset, which may
be due to its effect being captured by other clinical
measures. Furthermore, the limited predicative ability of
hypoxia compared to another clinical feature (crepitations)
for identifying children with probable pneumonia supports
WHO recommendations of the value of this sign re-
inforcing the diagnosis of pneumonia in children with
severe breathing difficulties. Although crepitations could
be considered a subjective sign dependent on the
Fig. 3 Discriminatory ability of different scores when applied to data from
observer, a sensitivity analysis showed that excluding it
worsened the discriminatory ability of the score (AUROC
without lung crepitations 0.80 (0.75–0.86); P = 0.04 in
FEAST control arm data). This indicates it is important
to retain in the bedside score.
Advantages of using the FEAST dataset to develop a

clinical bedside score are its large size, multi-centred
and multi-disease nature with substantial subgroups
with severe malaria and sepsis, and its high quality as it
was collected during a randomised controlled trial [50, 51]
with few missing data for bedside measures. The prag-
matic nature of the trial design enabled it to be carried out
FEAST and Kilifi



Table 4 Discriminatory ability of different scores when applied to data from FEAST and Kilifi

FEAST (data from the control (no fluid bolus) arm only)
(n = 1044)

Kilifi High Dependency Ward (n = 1058) Kilifi General Admissions (n = 5107)

Score Variables included Number with
score (% died)

AUROC
(95 % CI) e

Hosmer-
Lemeshow
test (P value)

Number with
score (% died)

AUROC
(95 % CI) e

Hosmer-
Lemeshow
test (P value)

Number with
score (% died)

AUROC
(95 % CI) e

Hosmer-
Lemeshow
test (P value)

FEAST PET score Axillary temperature, heart rate,
capillary refill time, conscious
level, deep breathing, respiratory
distress, lung crepitations, weak
pulse

1024 (7 %) 0.82 (0.77–0.87) 0.56 1053 (9 %) 0.77 (0.72–0.82) 0.30 5098 (2 %) 0.86 (0.82–0.89) 0.50

Bedside PEWS score a Heart rate, capillary refill time,
respiratory rate, oxygen
saturation, systolic blood
pressure

1000 (9 %) 0.64 (0.56–0.71) 0.46 1053 (9 %) 0.69 (0.64–0.75) 0.56 5094 (2 %) 0.74 (0.69–0.79) 0.22

PRISM III score b Heart rate, temperature,
conscious level, systolic blood
pressure, glucose, potassium,
PCO2, pH, acidosis, pupillary
reflexes

627 (6 %) 0.71 (0.61–0.81) 0.26 1056 (9 %) 0.69 (0.64–0.74) 0.10 5099 (2 %) 0.77 (0.73–0.82) 0.01

AQUAMAT score c

(overall)
Conscious level, chronic disease,
convulsions, BUN, and base excess

648 (5 %) 0.74 (0.65–0.83) 0.84 1011 (9 %) 0.62 (0.56–0.68) 0.79 4964 (2 %) 0.73 (0.68–0.78) 0.04

AQUAMAT score c

(malaria positive only)
Conscious level, chronic disease,
convulsions, BUN, and base
excess

360 (3 %) 0.80 (0.68–0.93) 0.65 355 (6 %) 0.54 (0.42–0.66) 0.83 781 (3 %) 0.60 (0.49–0.72) 0.41

PEDIA Immediate
death score d

Anaemia, jaundice, indrawing,
deep breathing, conscious level,
convulsions/seizures, temperature

1007 (3 %) 0.75 (0.68–0.83) 0.64 680 (4 %) 0.79 (0.71–0.87) 0.47 3504 (1 %) 0.89 (0.84–0.94) 0.15

PEDIA Early death
score d

Jaundice, indrawing, conscious
level, convulsions/seizures,
wasting, kwashiorkor

1003 (4 %) 0.70 (0.63–0.77) 0.02 1016 (9 %) 0.69 (0.63–0.76) 0.76 5071 (2 %) 0.84 (0.78–0.89) 0.08

PEDIA Late death
score d

History >7 days, conscious level,
convulsions/seizures, temperature,
wasting, kwashiorkor

959 (1 %) 0.55 (0.40–0.69) 0.35 664 (10 %) 0.66 (0.60–0.73) 0.34 3472 (2 %) 0.72 (0.66–0.77) 0.08

LODS Deep breathing, coma and
prostration

1038 0.77 (0.72–0.82) 0.38 1057 (9 %) 0.76 (0.71–0.81) 0.62 5103 0.87 (0.83–0.90) 0.74

a Variables in the score but not measured: receipt of oxygen therapy, respiratory effort in four categories (normal, mild increase, moderate increase, severe increase, any apnoea). Underlined variables were available in
the FEAST dataset but not in the Kilifi datasets
b Variables in the score but not measured: pupillary reflexes, pH, total CO2, PCO2, arterial PaO3, creatinine, urea, white blood cells, prothrombin time, and platelets. Underlined variables were available in the FEAST
dataset but not in the Kilifi datasets
c Underlined variables were available in the FEAST dataset but not in the Kilifi datasets
d Time of death was not available in the Kilifi data. Immediate deaths were defined as those that occurred on the same day as admission to hospital. The early death score was calculated on mortality by two calendar
days but not the same day as admission. Late death defined as strictly greater than 2 days after admission. Immediate deaths were not included in the early death analysis, immediate and early deaths were not
included in the late death analysis as in the original publication
e The AUROC value for each score was compared to the FEAST PET score for mortality by 48 h. In the FEAST dataset there was no evidence of a difference between the AUROC for the FEAST PET score versus the AQUAMAT score
overall (P = 0.19) and in malaria only (P = 0.65), and the FEAST PET score was significantly better than Bedside PEWS (P < 0.001), PRISM III (P = 0.02), LODS (P = 0.05), and PEDIA for immediate (P = 0.002) and early death (P = 0.04).
In the Kilifi validation datasets (high dependency/general) there was no evidence of a difference between the AUROC for the FEAST PET score versus LODS (P = 0.67/0.73) or PEDIA for immediate (P = 0.34/0.82)
and early (P = 0.63/0.47) death, and the FEAST PET score was significantly better than Bedside PEWS (P = 0.02/<0.001), PRISM III (P = 0.003/<0.001), and the AQUMAT scores (P <0.001/<0.001)
AQUAMAT, African Quinine Artesunate Malaria Trial; AUROC, Area under the receiver operating curve; BUN, Blood urea nitrogen; FEAST, Fluid Expansion as Supportive Therapy; LODS, Lamberéné Organ Dysfunction
Score; PEDIA, Pediatric Early Death Index for Africa; PET, Paediatric Emergency Triage; PEWS, Pediatric Early Warning System; PIM, Paediatric Index of Mortality; PRISM, Pediatric Risk of Mortality
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in centres without a history of research and without many
interventions at a site level. The standard-of-care for trial
participants was thus very similar to the standard-of-care
on the wards, but with increased monitoring by nurses
over the first 48 h of admission. One important limitation
is that, despite it being a useful prognostic factor in other
studies [52], we were not able to consider mid-upper arm
circumference in any analysis due to differences in data
completeness between survivors and non-survivors
(violating the missing at random assumption needed for
multiple imputation), probably due to mid-upper arm cir-
cumference being of low priority to complete immediately
upon admission.
We developed the FEAST PET score using the full

clinical trial dataset (315 deaths) including intervention
arm as a model factor in order to increase power.
However, this raises potential concerns about interac-
tions with randomised interventions: the alternative
strategy is to restrict derivation models to the control
arm only (76 deaths) with consequent power reductions.
As no significant or important interactions had been
identified [20], we chose the former. Repeating the score
derivation process on control arm data as a sensitivity
analysis, as suggested by a reviewer, gave broadly similar
results, but un-intuitively identified fits as significantly
protective and, despite similar effect sizes, failed to iden-
tify capillary refill time and pallor as significant predic-
tors (Additional file 1: Table S3).
Conclusions
Although it would benefit from external validation in a
multi-centre African population outside of the FEAST
trial centres before implementation, there are several
ways that the FEAST PET score could be used. One
would be as an inclusion criterion for clinical trials, or
to stratify children into groups or perform risk-adjusted
comparisons of emergency care. For research studies re-
cording laboratory data, the FEAST PETaL score could
be used for inter-site or inter-centre comparisons. How-
ever, potentially the most valuable use of this standar-
dised, validated score is to support the implementation
of triage in resource-limited routine care settings,
thereby facilitating rapid prioritisation of care, or closer
monitoring, for the sickest children and hence improved
outcomes. Improved triage has been shown to reduce
mortality in these settings [6] and the FEAST PET score
would work across specific syndromes and specific diseases
to identify those that need prioritisation of any supportive
therapies available. It would also help ensure consistent
comparisons between patients by clinicians, compared to
simple clinical opinion, and encourage better examination
of clinical signs by all staff. Having a score that is simple to
implement and uses commonly measured clinical signs
could increase the number of hospitals in resource-limited
settings that successfully implement the triage process.

Additional file

Additional file 1: Supplementary Tables and Figures.
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