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Chapter 1

Introduction

We consider in this dissertation numerical solutions of Partial Differential Equa-

tions using splines of arbitrary degree and arbitrary smoothness over an arbitrary

tetrahedral partition of a bounded domain in R3. The basic strategy used here is

to minimize a suitable functional over a subset of a spline space. We have traced

back the idea of minimizing functionals to as early as 1972 where the first theore-

tical study of the method of Lagrange multipliers appeared [Babuska’72]. The book

[Fortin and Glowinski’83] gives an account of such methods. The main contribution of

this dissertation is that we have implemented approximations of PDE’s on bounded

domains in R3 using splines of arbitrary degree and arbitrary smoothness. The

approach we take here using the B-form of splines over tetrahedral partitions falls

within the framework of the so-called Generalized Finite Elements [Babuska’96]. We

notice that extension to arbitrary smoothness has been announced in [Babuska’96]

but has not been yet implemented tested and experimented. However in the frame-

work of [Babuska’96], the basis functions are assumed to already have some smooth-

ness properties. In [Babuska’72], Lagrange multipliers are only used to enforce the

boundary conditions, the idea to use them to systematically enforce smoothness

conditions does not seem to have attracted attention. Dorr, [Dorr’88] used Lagrange

multipliers to enforce continuity compatibility constraints in domain decomposition

methods. Let’s also mention that there’s a current trend to use penalty terms to

weakly enforce interelement continuity of solutions and of their normal flux in the
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so-called discontinuous Galerkin methods, [Cockburn, Karniadakis and Shu’00]. We

have been able to construct numerical solutions of arbitrary smoothness across inte-

rior triangular facets which do not share a face with the boundary. To summarize,

our approach is like the finite element method using piecewise polynomials over

tetrahedral partitions. The main features are: no local basis is constructed, smooth-

ness can be imposed in a flexible way across the domain at places where the solution

is expected to be smoo th, and we can use polynomials of arbitrary degrees. There

are still questions about the convergence of the method for higher order smoothness

we have not settled. This has to do with the fact that not much is known about

the approximation properties of trivariate spline spaces. We first review the ques-

tion of how to refine a tetrahedral partition while retaining basic properties that

guaranty the quality of the numerical solution. We identify a refinement strategy

and indicate some of its properties. Then we introduce the spline spaces which will

be used in this dissertation. The B-form representation of splines [cf. de Boor’87]

is discussed in that chapter and we review what is known about the approxima-

tion properties of trivariate spline spaces. We continue by exposing our method of

solving numerically partial differential equations. The basic idea to use splines was

first suggested by Ming-Jun Lai then we framed the problem in a minimization set-

ting. We have in an extensive way benefited from his implementation techniques for

2D problems. The programs have been implemented in MATLAB. To compute least

squares solutions of equations involving square singular matrices, we added a row

of zeros making the matrices non square. When the matrices become very large, we

have found useful to use an algorithm that reduces the problem to solve systems

of equations of smaller size. We consider how the method is applied to the Poisson

equation with both Dirichlet and Neumann boundary conditions then we study the

biharmonic equation. The motivation to study the biharmonic equation is that it

would be useful to approximate the solution of the Navier-Stokes equations in stream
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function formulation. In any case it gives an example of how our techniques can be

applied to a high order partial differential equation. The next chapter is devoted

to the Navier-Stokes equations. We provide a heuristic derivation of the equations.

Then using energy arguments, we derive the discrete equations satisfied by the solu-

tion. We then consider the numerical approximations of the Stokes equations and

the Navier-Stokes equations. We give a uniqueness result for the discrete equations

and prove convergence of our numerical schemes. Finally we conclude with remarks

about the strengths and weaknesses of our techniques and some additional topics

that will constitute a sequel to this work.



Chapter 2

Tetrahedral Partition of Polygonal Domains of R3

To increase the accuracy of numerical computations, one typically subdivides the

domains of numerical computation into smaller elements taking care that the ele-

ments do not degenerate, (a measure of degeneracy is introduced below). This is

because the error bounds for numerical solutions involve a constant which depends

on the degeneracy of elements and the size of these elements. So the idea is to assure

that the degeneracy of the elements does not exceed a threshold, i.e. that one has a

quasi-uniform partition.

In R2, by connecting the middle points of the three edges of a triangle, one obtains

four sub-triangles which are all similar to the original one. Proceeding this way, one

can get a uniform triangulation. The situation for tetrahedral elements is completely

different. It is not difficult to convince oneself that it is impossible to subdivide a

regular tetrahedron into eight identical sub-tetrahedra. We start by showing that

without careful subdivisions, one can at each level of refinement introduce tetrahedra

which are more degenerate than the ones at the previous level. Then we show that

it is possible to subdivide a model tetrahedron (which is non-degenerate) in such

a way that only one type of tetrahedron arises upon successive refinements. Then

we show how to extend this procedure to an arbitrary tetrahedral partition to get a

quasi-uniform refinement.

We start with a few notations and definitions.

4
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2.1 Notations and definitions

A tetrahedron is said to be non degenerate if

σT =
hT

ρT
<∞

where hT is the diameter of T , i.e its longest edge and ρT is the diameter of the

largest sphere inscribed in T . A tetrahedral partition is said to be quasi-uniform or

shape regular if there is a constant σ such that

σT =
hT

ρT
≤ σ <∞

for each tetrahedron T in the partition, [Braess’92].

We will deal in this dissertation with a polygonal domain Ω of R3 with piecewise

planar boundary. This hypothesis is made to make sure that the domain can be

subdivided into tetrahedra. Some results hold for more general domains. At times

we will indicate other assumptions on the boundary. A tetrahedral partition T =

{t1, . . . , tM} of Ω is said to be admissible provided that

1. t ⊂ Ω ∀t ∈ T ,
⋃

t∈T t = Ω

2. t◦i ∩ t◦j = ∅, ∀ ti, tj ∈ T and ti 	= tj , where t◦i denotes the interior of ti.

3. ∀ ti, tj ∈ T , exactly one of the following holds:

• ti ∩ tj = ∅

• ti and tj have a common vertex, a common edge, a common face or their

intersection is empty.

2.2 A global refinement scheme

It is desirable when refining a tetrahedral partition to keep the partition admissible as

well as getting a quasi-uniform partition as explained above. We distinguish two basic
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strategies to refine a tetrahedron. A refinement into two tetrahedra and a refinement

into eight tetrahedra. We’ll discuss extensively the latter since it leads to a ’more

stable’ refinement in the sense that the sub-tetrahedra are never more degenerate

than the original tetrahedron. Throughout this dissertation, by tetrahedral partition,

we shall mean an admissible one.

Given a tetrahedron T with four vertices a1, a2, a3 and a4, we let a12, a13, a14, a23, a24

and a34 be the midpoints of the edges, where aij is the midpoint of the edge joining

the vertex ai to the vertex aj . Using these points we form four tetrahedra in the

corners of T and an octahedron. The four corner tetrahedra are 〈a1, a12, a13, a14〉,

〈a2, a12, a23, a24〉, 〈a3, a23, a13, a34〉 and 〈a4, a14, a24, a34〉. There are three diagonals of

the octahedron: 〈a12, a34〉, 〈a14, a23〉 and 〈a24, a13〉. The choice of a diagonal of the

octahedron determine the other sub-tetrahedra.

If the diagonal 〈a12, a34〉 is chosen we get the following tetrahedra: 〈a14, a24, a12, a34〉,

〈a12, a34, a13, a14〉, 〈a12, a34, a24, a23〉 and 〈a12, a34, a13, a23〉. The octahedron can be

seen as formed with two pyramids which are then each divided into two tetrahedra.

We have then three possible refinements T1, T2, and T3 depending on the choice

of the diagonal. Let σi = max{σtk , tk ∈ Ti}, i = 1, 2, 3. There are various rules to

pick the diagonal. We suggest to simply pick the one that yields the smallest σ. It

appears that for an arbitrary tetrahedron, one of the σ′
is is always bigger than the

others so it is possible to always pick a diagonal generating a sequence of degenerate

tetrahedral partitions. The proof of this result can be found in [Zhang’88]. We show

that for the model tetrahedron introduced in [Ong’94], the smallest σ corresponds

to the one that measures the degeneracy of the original tetrahedron. This assures

quasi-uniformity of the refinement. The extension of this algorithm to a tetrahedral

partition is straightforward. For each tetrahedron in the partition, we simply apply

the above refinement strategy. The only inconvenience for this refinement strategy

is that it is time consuming to compare all the choices before picking one.
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To proceed we’ll need a more computer tractable formula for the shape measure

σ. We have for any tetrahedron T ,

ρT =
6VT

ST
, (2.1)

where VT is the volume of T and ST its surface area.

To see this, notice that the four tetrahedra formed by connecting the vertices of

T to its center have the same height, the radius r of the largest sphere inscribed in

T . The volume VT is given by the sum of the volume of the four sub-tetrahedra. So

VT =
1

3
S1r +

1

3
S2r +

1

3
S3r +

1

3
S4r,

where the Si’s are the area of the faces. It follows that VT = 1
3
ST r where ST is the

total surface area. So r = 3VT

ST
and finally we get (2.1).

Using (2.1) as a shape measure we have made some experiments which we now

report. The type of a tetrahedron is defined by the lengths of its edges.

We refine a model tetrahedron T0 with vertices a1 = (0, 0, 0), a2 = (1, 0, 0),

a3 = (0, 1, 0) and a4 = (0, 0, 1) such that the diagonal that produces the most

degenerate sub-tetrahedron is chosen. We list in the following table the number of

tetrahedra, the maximum shape measure σ for the refinement and the number of

types of tetrahedra.

Tetrahedra Sigma Types

1 4.1815 1

8 6.8102 2

64 10.1948 4

512 16.6254 10

4096 26.8399 24
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We now choose the diagonal such that the shape measure σ is the minimum

among all three choices. This leads to a uniform refinement in the sense that we

have tetrahedra of the same shape at all levels of refinement. This rule seems to

satisfy Ong’s rule of uniformly refining a cube [Ong’94]. We therefore conjecture

that when applied to an arbitrary tetrahedron, we’ll get a quasi-uniform refinement

and that at most six types of tetrahedra will arise upon iterative refinements.

Tetrahedra Sigma Types

1 4.1815 1

8 4.1815 1

64 4.1815 1

512 4.1815 1

4096 4.1815 1

Notice that for the model tetrahedron, only one type of sub-tetrahedron arises

after refinements. This is not the case for an arbitrary tetrahedron. For example

if we uniformly refine the tetrahedron with vertices a1 = (1, 0, 0), a2 = (2, 2, 0),

a3 = (0, 1, 0) and a4 = (0, 0, 1), we get the following table:

Tetrahedra Sigma Types

1 5.3660 1

8 5.4495 3

64 5.4495 4

512 5.4495 4

4096 5.4495 4
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2.3 Local refinement

In the previous section, we described a strategy to refine a single tetrahedron into

eight sub-tetrahedra and indicated that this strategy could be applied to all tetra-

hedra in a partition to get an admissible one. Let’s point out that in some situations

it is desirable instead of refining all tetrahedra in the partition, to refine only a few.

For example one may want to avoid solving a very large system of equations as

a result of having too many tetrahedra and at the same time want to reduce the

approximation errors in some regions where it is unacceptable. In that case it is more

delicate to get an admissible partition. Our refinement scheme for a single tetrahe-

dron could be combined with ideas of [Liu and Joe’96] to get a local refinement

strategy. We refer to their paper for additional details.

2.4 Conclusion

We have presented a refinement strategy which is basically a concatenation of

previous results. The numerical solution of three dimensional partial differential

equations is expensive in terms of CPU time and computer memory so in general we

have not been able to show several levels of refinement. If one simply subdivides a

tetrahedron into two sub-tetrahedra, the accuracy of the numerical solution does not

decrease fast through refinements. On the other hand it does not lead to a uniform

refinement which will definitely help show numerical evidence of convergence of

our algorithms. The bisection method for tetrahedra has been theoretically studied

in [Liu and Joe’94]. Basically, given a tetrahedron T = 〈a1, a2, a3, a4〉, using the

midpoint t of its longest edge say 〈a1, a2〉, it is bisected into two sub-tetrahedra

〈a1, t, a3, a4〉 and 〈t, a2, a3, a4〉. We show here for a cube of volume one subdivided

into six tetrahedra the shape measure and the number of type of tetrahedra which

appear at different level of refinements. We have numerically checked that for this
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situation, simply bisecting each tetrahedron in the cube with its longest edge leads

to an admissible tetrahedral partition.

Tetrahedra Sigma Types

6 4.1815 1

12 4.4142 1

24 3.8284 1

48 4.1815 1

96 4.4142 1

192 3.8284 1

384 4.1815 1

768 4.4142 1

1536 3.8284 1

These jumps in the shape measure σ, as we shall see, will have an effect on the

quality of the numerical solutions. For this reason, the bisection method has not

been used extensively in this study.



Chapter 3

Trivariate Spline Spaces

In this chapter, we introduce trivariate spline spaces. We generalize to the 3D setting

some results in [Lai and Schumaker’00] which will be needed. [de Boor’87] presents

a different approach in a multivariate setting.

Given a bounded domain Ω of R3 with piecewise planar boundary, let d ≥ 0 be

a fixed integer and let T be a tetrahedral partition of Ω. We are going to use the

spline spaces

Sr
d(Ω) = {p ∈ Cr(Ω), p|t ∈ Pd, ∀t ∈ T }

to approximate solutions of PDE’s defined on Ω. Pd denotes the space of trivariate

polynomials of degree d. The B-form representation of splines on tetrahedra will be

used, [de Boor’87]. This enables us to efficiently handle the condition that p ∈ Cr(Ω).

We are interested in trivariate polynomials of degree d. Those are functions

defined on R3 of the form

p(x, y, z) =
∑

0≤i+j+k≤d

αijkx
iyjzk, (3.1)

where the αijk are real numbers.

3.1 The B-form of polynomials on tetrahedra

We will derive a representation of a polynomial p on a tetrahedron equivalent to

(3.1) using barycentric coordinates.

11
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3.1.1 Barycentric coordinates

Let T = 〈v1, v2, v3, v4〉 be a non-degenerate tetrahedron with vi having coordinates

(xi, yi, zi), i = 1, 2, 3, 4. We have

Lemma 3.1.1 Every point v = (x, y, z) can be written uniquely in the form

v = b1v1 + b2v2 + b3v3 + b4v4, (3.2)

with

b1 + b2 + b3 + b4 = 1. (3.3)

The b′is, i = 1, 2, 3, 4 are called the barycentric coordinates of the point v = (x, y, z)

relative to the tetrahedron T . Moreover each bi is a linear polynomial in x, y, z.

Proof : (3.3) can be written
(

1 1 1 1

)


b1

b2

b3

b4


= 1 and (3.2) can be written


x

y

z

 = b1


x1

y1

z1

+ b2


x2

y2

z2

+ b3


x3

y3

z3

+ b4


x4

y4

z4

 .

This written in matrix form combined with (3.3) in matrix form gives

V



b1

b2

b3

b4


=



1

x

y

z



where V =



1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4


.
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We have det V = 6 volume(T ), which shows that the equation is nondegenerate

proving existence and uniqueness. Using Kramer’s rule, we have

b1 =
1

det V
det



1 1 1 1

x x2 x3 x4

y y2 y3 y4

z z2 z3 z4


and similar formulas for the other b′is, i = 2, 3, 4. This shows that they are linear

polynomials in x, y, z.

Remark: In the interior of the tetrahedron 〈v1, v2, v3, v4〉, we have bi > 0, i = 1, 2, 3.

This can be seen by noticing that bi is a linear polynomial with value 1 at the vertex

vi which vanishes on the face opposite to vi.

3.1.2 The Bernstein form of polynomials

For v = (x, y, z) ∈ R3, let (b1, b2, b3, b4) be the barycentric coordinates of v with

respect to T = 〈v1, v2, v3, v4〉. We introduce the Bernstein polynomials of degree d

as follows

Bd
ijkl(v) =

d!

i!j!k!l!
bi1b

j
2b

k
3b

l
4, i+ j + k + l = d.

They are polynomials of degree d since each bi is a linear polynomial. We have

Theorem 3.1.2 The set Bd = {Bd
ijkl(x, y, z), i + j + k + l = d} is a basis for the

space of polynomials Pd.

Proof : We recall that the dimension of Pd is
(

d+3
3

)
and notice that the number of

Bernstein basis polynomials is equal to the dimension of Pd. It is therefore enough to

show that any polynomial xνyµzκ, 0 ≤ ν+µ+κ ≤ d can be written as a combination
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of elements of Bd.

1 = (b1 + b2 + b3 + b4)
d

=
∑

i+j+k+l=d

d!

i!j!k!l!
bi1b

j
2b

k
3b

l
4

=
∑

i+j+k+l=d

Bd
ijkl(v), ∀v ∈ R3,

so 1 belongs to the linear span of Bd. And this is valid for any d ≥ 0. Now

x = b1x1 + b2x2 + b3x3 + b4x4

= (b1x1 + b2x2 + b3x3 + b4x4)
∑

i+j+k+l=d−1

Bd−1
ijkl (v),

and we have

b1B
d−1
ijkl = b1

(d− 1)!

i!j!k!l!
bi1b

j
2b

k
3b

l
4

=
1

d

d!

i!j!k!l!
bi+1
1 bj2b

k
3b

l
4

=
i+ 1

d

d!

(i+ 1)!j!k!l!
bi+1
1 bj2b

k
3b

l
4

=
i+ 1

d
Bd

i+1,j,k,l,

etc, so

x =
∑

i+j+k+l=d−1

1

d

[
(i+ 1)x1B

d
i+1,j,k,l + (j + 1)x2B

d
i,j+1,k,l

]
1

d

[
+(k + 1)x3B

d
i,j,k+1,l + (l + 1)x4B

d
i,j,k,l+1

]
=

∑
i+j+k+l=d

1

d
(ix1 + jx2 + kx3 + lx4)B

d
i,j,k,l.

and analogous relations for y and z. This shows that x, y and z belong to the linear

span of Bd.

Now for 1 ≤ µ+ ν + κ ≤ d, we have

xµyνzκ = (b1x1 + b2x2 + b3x3 + b4x4)
µ(b1y1 + b2y2 + b3y3 + b4y4)

ν

× (b1z1 + b2z2 + b3z3 + b4z4)
κ(b1 + b2 + b3 + b4)

d−µ−ν−κ
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and

(b1x1 + b2x2 + b3x3 + b4x4)
µ =

∑
i+j+k+l=µ

d!

i!j!k!l!
(b1x1)

i(b2x2)
j

× (b3x3)
k(b4x4)

l

=
∑

i+j+k+l=µ

c(i, j, k, l, x1, x2, x3, x4)B
µ
ijkl,

with c(i, j, k, l, x1, x2, x3, x4) = xi
1x

j
2x

k
3x

l
4. Finally

xµyνzκ =
∑

i+j+k+l=µ

c(i, j, k, l, x1, x2, x3, x4)B
µ
ijkl

×
∑

i+j+k+l=ν

c(i, j, k, l, y1, y2, y3, y4)B
µ
ijkl

×
∑

i+j+k+l=κ

c(i, j, k, l, z1, z2, z3, z4)B
µ
ijkl

×
∑

i+j+k+l=d−µ−ν−κ

Bd−µ−ν−κ
ijkl .

Collecting terms, we get

xµyνzκ =
∑

i+j+k+l=d

c(µ, ν, κ)ijklB
d
ijkl(x, y, z)

for some constants c(µ, ν, κ)ijkl which depends on (x1, x2, x3), (y1, y2, y3) and

(z1, z2, z3). This completes the proof.

As a consequence any polynomial p of degree d on T can be written uniquely

p =
∑

i+j+k+l=d

cijklB
d
ijkl. (3.4)

The representation (3.4) is referred to as the B-form of p. The cijkl are the B-

coefficients of p. The B-net of p is a vector of all B-coefficients for all the tetrahedra

in the tetrahedral partition. For later use we define the set of domain points in T to

be

Dd,T = {ξijkl =
iv1 + jv2 + kv3 + lv4

d
, i+ j + k + l = d}. (3.5)

It is common practice to associate the coefficients cijkl with the domain points ξijkl.
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3.1.3 Interpolation by trivariate polynomials on Tetrahedra

The following will be an essential tool when we study smoothness conditions, i.e.

conditions on the B-coefficients that assure that a piecewise polynomial on a tetra-

hedral partition is smooth across tetrahedra.

Theorem 3.1.3 There is a unique polynomial p of degree d that interpolates any

given function f on a tetrahedron T = 〈v1, v2, v3, v4〉 at the points in (3.5).

Proof : Let m=dimPd and (γα)m
α=1 be a set of basis functions of Pd. We can choose

for (γα)m
α=1 the Bernstein polynomials we have just introduced. The problem is to

find

p =

m∑
α=1

cαγα

such that

p(aβ) = f(aβ), β = 1, . . . , m,

where the aβ ’s denote the domain points in (3.5). This amounts to finding (cα)m
α=1

such that

m∑
α=1

cαγα(aβ) = f(aβ), β = 1, . . . , m.

Let G = (γα(aβ))m
α,β=1, c = (c1, . . . , cm)T and b = (f(a1), . . . , f(am))T . The problem

is then to solve Gc = b. Since G is square it is sufficient to show thatG is nonsingular.

Let c such that Gc = 0. That is, there is a polynomial p =
∑m

α=1 cαγα such that

p(aβ) = 0, β = 1, . . . , m.

We show that p is the zero polynomial which will imply that c = 0. We use the

following lemma whose proof can be found in [Lai and Schumaker’00].
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Lemma 3.1.4 A bivariate polynomial p of degree d is uniquely determined on a

triangle 〈v1, v2, v3〉 by its values at the domain points ξijk = iv1+jv2+kv3

d
. Note that

here the domain points have three indices.

For each l = 0, . . . , d, let αlx + βly + γlz = δl be the equation of the plane Pl

containing the domain points {ξijkl, i+ j + k+ l = d}. For each l the domain points

on that plane can be considered as domain points on a suitable triangle. Let’s assume

that the theorem is true for d− 1, we show that it is true for d. Since p reduces to a

bivariate polynomial of degree d on P0, by the previous lemma p vanishes identically

on P0 and we write

p(x, y, z) = (α0x+ β0y + γ0z − δ0)q(x, y, z),

with q of degree d − 1. This implies that q of degree d − 1 is identically zero on

the domain points {ξd
ijkl, l 	= 0} = Dd−1,T . By induction hypothesis q is the zero

polynomial. This completes the proof.

Numerical example: For computational purpose, we need to order the cijkl, i+

j + k + l = d. The order we choose for the domain points on the tetrahedron

〈v1, v2, v3, v4〉 can be described as follows: First we list the coefficients on the triangle

〈v1, v2, v3〉 the ones on the edge 〈v1, v2〉 first starting with the coefficient associated

with the vertex v1, then we continue with the other coefficients towards the coefficient

associated with v4. Specifically for d=2, the order is

c2000, c1100, c0200, c1010, c0110, c0020, c1001, c0101, c0011, c0002.

Explicitly, for t = 〈v1, v2, v3, v4〉 with v1 = (0, 0, 0), v2 = (1, 0, 0) v3 = (0, 1, 0)

and v4 = (0, 0, 1) and p(x, y, z) = x2 + 3xz + y2 of degree 2, the B-net is

(0, 0, 1, 0, 0, 1, 0, 1.5, 0, 1). This result was obtained by running a Matlab code but it

can be computed by hand.
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3.1.4 De Casteljau algorithm

There’s a recurrence relation about Bernstein polynomials that has algorithmic con-

sequences (De Casteljau algorithm). Notice that

Bd
ijkl =

d!

i!j!k!l!
bi1b

j
2b

k
3b

l
4

= d
(d− 1)!

i!j!k!l!
bi1b

j
2b

k
3b

l
4

= (i+ j + k + l)
(d− 1)!

i!j!k!l!
bi1b

j
2b

k
3b

l
4,

since i+ j + k + l = d, so that

Bd
ijkl = b1B

d−1
i−1,j,k,l + b2B

d−1
i,j−1,k,l + b3B

d−1
i,j,k−1,l + b4B

d−1
i,j,k,l−1.

Now, let

p =
∑

i+j+k+l=d

cijklB
d
ijkl

and let’s write cijkl = c
(0)
ijkl. Using the recurrence relation for Bd

ijkl, we get,

p =
∑

i+j+k+l=d

b1c
(0)
ijklB

d−1
i−1,j,k,l + b2c

(0)
ijklB

d−1
i,j−1,k,l + b3c

(0)
ijklB

d−1
i,j,k−1,l

+ b4c
(0)
ijklBi,j,k,l−1.

(3.6)

Each term in the sum (3.6) can be treated the same way. For example,∑
i+j+k+l=d

b1c
(0)
ijklB

d−1
i−1,j,k,l =

∑
i+j+k+l=d−1

b1c
(0)
i+1,j,k,lB

d−1
i,j,k,l.

We can therefore write, noticing that Bd−1
i,j,k,l is a common factor in all 4 terms,

p =
∑

i+j+k+l=d−1

(b1ci+1,j,k,l + b2ci,j+1,k,l + b3ci,j,k+1,l + b4ci,j,kl+1)B
d−1
i,j,k,l. (3.7)

We therefore define, for a positive integer r

c
(r)
ijkl(b) = b1c

(r−1)
i+1,j,k,l + b2c

(r−1)
i,j+1,k,l + b3c

(r−1)
i,j,k+1,l + b4c

(r−1)
i,j,k,l+1,
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so that

p =
∑

i+j+k+l=d−1

c
(1)
ijkl(b)B

d−1
ijkl ,

with

c
(0)
ijkl = cijkl.

And one can easily verify, using induction that

p =
∑

i+j+k+l=d−r

c
(r)
ijkl(b)Bd−r

ijkl ,

where b = (b1, b2, b3, b4) denotes the barycentric coordinates of the evaluation point.

As a consequence

p = c
(d)
0000.

This is the so-called de Casteljau algorithm.

It is possible to write c
(r)
ijkl(b), i+j+k+l = d−r in terms of the cijkl, i+j+k+l = d.

We have

Theorem 3.1.5

c
(m)
ijkl(b) =

∑
α+β+γ+δ=m

ci+α,j+β,k+γ,l+δB
m
α,β,γ,δ(v), i+ j + k + l = d−m. (3.8)

Proof : By induction on m. For m = 1, we have by definition

c
(1)
ijkl(v) = b1ci+1,j,k,l + b2ci,j+1,k,l + b3ci,j,k+1,l + b4ci,j,k,l+1,

since B1
1000(b) = b1 and similar formulas for B1

0100, B
1
0010 and B1

0001.

We assume the result true for s− 1. We have

c
(s)
ijkl(v) = b1c

s−1
i+1,j,k,l + b2c

s−1
i,j+1,k,l + b3c

s−1
i,j,k+1,l + b4c

s−1
i,j,k,l+1;
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but by the induction hypothesis

c
(s−1)
i+1,j,k,l(b) =

∑
α+β+γ+δ=s−1

ci+1+α,j+β,k+γ,l+δB
s−1
α,β,γ,δ(v), i+ j + k + l = d− s+ 1,

and similar formulas for the other terms. We also have

b1B
m−1
αβγδ =

(m− 1)!

α!β!γ!δ!
bα+1
1 bβ2b

γ
3b

δ
4

=
(α+ 1)

m
Bm

α+1,β,γ,δ,

and similar relations for biB
m−1
αβγδ, i = 2, 3, 4. So

cmi+1,j,k,l =
∑

α+β+γ+δ=m−1

(α + 1)

m
ci+1+α,j+β,k+γ,l+δB

m
α+1,β,γ,δ

+
(β + 1)

m
ci+α,j+1+β,k+γ,l+δB

m
α,β+1,γ,δ

+
(γ + 1)

m
ci+α,j+β,k+1+γ,l+δB

m
α,β,γ+1,δ

+
(δ + 1)

m
ci+α,j+β,k+γ,l+1+δB

m
α,β,γ,δ+1

=
∑

α+β+γ+δ=m

[αci+α,j+β,k+γ,l+δ + βci+α,j+β,k+γ,l+δ]

m
Bm

α,β,γ,δ

+
[γci+α,j+β,k+γ,l+δ + δci+α,j+β,k+γ,l+δ]

m
Bm

α,β,γ,δ

=
∑

α+β+γ+δ=m

ci+α,j+β,k+γ,l+δB
m
α,β,γ,δ,

since α + β + γ + δ = m. This completes the proof.

3.1.5 Directional derivatives of polynomials in B-form

We want to give formulas for the directional derivatives of p in a direction defined

by a vector u. For

p =
∑

i+j+k+l=d

cijkl B
d
ijkl,

Dup =
∑

i+j+k+l=d

cijkl DuB
d
ijkl,
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noticing that Bd
ijkl is a product of 4 terms, we get

DuB
d
ijkl =

d!

i!j!k!l!
(iDub1 b

i−1
1 bj2b

k
3b

l
4 + jDub2 b

i
1b

j−1
2 bk3b

l
4 + kDub3 b

i
1b

j
2b

k−1
3 bl4

+ lDub4 b
i
1b

j
2b

k
3b

l−1
4 )

= d(Dub1 B
d−1
i−1,j,k,l +Dub2 Bi,j−1,k,l +Dub3 Bi,j,k−1,l +Dub4 Bi,j,k,l−1).

We write Dubt = at, t = 1, . . . , 4, with a = (a1, a2, a3, a4) so

DuB
d
ijkl = d(a1 B

d−1
i−1,j,k,l + a2 B

d−1
i,j−1,k,l + a3 B

d−1
i,j,k−1,l + a4 B

d−1
i,j,k,l−1),

and collecting terms we can write

Dup = d
∑

i+j+k+l=d−1

c
(1)
ijkl(a) Bd−1

ijkl .

The at, t = 1, . . . , 4 turn out to be what are called T -coordinates of u. If u = y−x

with (α1, α2, α3, α4) and (β1, β2, β3, β4) being the barycentric coordinates of x and y

respectively, the T -coordinates of u are defined to be βk − αk for all k. Using the

definition of directional derivative, we have

Dubt(v) = lim
s→0

bt(v + su) − bt(v)

s

=
d

ds
bt(v + su)|s=0.

Recall that (b1, b2, b3, b4) denote the barycentric coordinates of v. Those of v + su

are bt + s(βt − αt) so that we get Dubt = βt − αt = at for all t.

For a polynomial of degree d, and for 1 ≤ m ≤ d, if ui, i = 1, . . . , m are m

directions defined by T -coordinates a(i), we immediately get

Dum · · ·Du1p(v) =
d!

(d−m)!

∑
i+j+k+l=d−m

c
(m)
ijkl(a

(1), . . . , a(m))Bd−m
ijkl (v),

with the obvious notation

c
(m)
ijkl(a

(1), . . . , a(m)) = c
(m)
ijkl(a

(1)) . . . (a(m)).
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For example, if we put dijkl = c
(1)
ijkl(a1), then c

(2)
ijkl(a1, a2) = d

(1)
ijkl(a2). In particular

Dm
u p(v) =

d!

(d−m)!

∑
i+j+k+l=d−m

c
(m)
ijkl(a)Bd−m

ijkl (v).

Example: For u = v2 − v1, a = (−1, 1, 0, 0) we have

c
(1)
ijkl(a) = −ci+1,j,k,l + ci,j+1,k,l.

3.1.6 Integrals and inner product of polynomials in B-form

There are precise formulas for the inner product and integrals of polynomials in B-

form. The inner product we use here is the integral of the product of two polynomials.

We begin with

Theorem 3.1.6 Let p have B-net cijkl, i + j + k + l = d on a tetrahedron t. We

have ∫
t

p(x, y, z) dxdydz =
volume(t)(

d+3
3

) ∑
i+j+k+l=d

cijkl.

Proof : Using an integral formula for the multi gamma function, we get∫
t

Bd
ijkl(x, y, z) dx dy dz =

volume(t)(
d+3
3

) .

Therefore∫
t

p(x, y, z) dxdydz =
∑

i+j+k+l=d

cijkl

∫
t

Bd
ijkl =

volume(t)(
d+3
3

) ∑
i+j+k+l=d

cijkl.

This proves the theorem. Now

Bd
ijklB

d
rstu =

d!

i!j!k!l!

d!

r!s!t!u!
bi1b

j
2b

k
3b

l
4b

r
1b

s
2b

t
3b

u
4

=
d!

i!j!k!l!

d!

r!s!t!u!
bi+r
1 bj+s

2 bk+t
3 bl+u

4

and

B2d
i+r,j+s,k+t,l+u =

(2d)!

(i+ r)!(j + s)!(k + t)!(l + u)!
bi+r
1 bj+s

2 bk+t
3 bl+u

4 ,
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so

Bd
ijklB

d
rstu =

d!

i!j!k!l!

d!

r!s!t!u!

(i+ r)!(j + s)!(k + t)!(l + u)!

(2d)!

×B2d
i+r,j+s,k+t,l+u

=
(i+ r)!

i!r!

(j + s)!

j!s!

(k + t)!

k!t!

(l + u)!

l!u!

d!d!

(2d)!
B2d

i+r,j+s,k+t,l+u

=

(
i+r
i

)(
j+s
j

)(
k+t
k

)(
l+u

l

)(
2d
d

) B2d
i+r,j+s,k+t,l+u.

It follows that∫
t

Bd
ijkl(x, y, z)B

d
rstu(x, y, z) dxdydz =

(
i+r

i

)(
j+s
j

)(
k+t
k

)(
l+u

l

)
volume(t)(

2d
d

)(
2d+3

3

) .

As a consequence for two polynomials

p =
∑

i+j+k+l=d

cijklB
d
ijkl and q =

∑
r+s+t+u=d

c̃rstuB
d
rstu, (3.9)

their inner product is given by∫
p(x, y, z)q(x, y, z) dxdydz =

volume(t)(
2d
d

)(
2d+3

3

) ∑
i+j+k+l=d
r+s+t+u=d

cijklc̃rstu

×
(
i+ r

i

)(
j + s

j

)(
k + t

k

)(
l + u

l

)
.

(3.10)

This can also be written in the form∫
p(x, y, z)q(x, y, z)dxdydz =

volume(t)(
2d
d

)(
2d+3

3

)CTGC̃, (3.11)

where C and C̃ encode respectively the B-net of p and q respectively and G is a

(m,m) square matrix with m=dimPd.

This process can be carried out for the product of three polynomials of degree d1, d2
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and d3. We have

Bd1
ijklB

d2
rstuB

d3
µνκδ =

d1!

i!j!k!l!

d2!

r!s!t!u!

d3!

µ!ν!κ!δ!
bi1b

j
2b

k
3b

l
4b

r
1b

s
2b

t
3b

u
4b

µ
1b

ν
2b

κ
3b

δ
4

=
d1!

i!j!k!l!

d2!

r!s!t!u!

d3!

µ!ν!κ!δ!
bi+r+µ
1 bj+s+ν

2 bk+t+κ
3 bl+u+δ

4

=
d1!

i!j!k!l!

d2!

r!s!t!u!

d3!

µ!ν!κ!δ!

× (i+ r + µ)!(j + s+ ν)!(k + t+ κ)!(l + u+ δ)!

(d1 + d2 + d3)!

×Bd1+d2+d3

i+r+µ,j+s+ν,k+t+κ,l+u+δ

=
(i+ r + µ)!

i!r!µ!

(j + s+ ν)!

j!s!ν!

(k + t+ κ)!

k!t!κ!

(l + u+ δ)!

l!u!δ!

× d1!d2!d3!

(d1 + d2 + d3)!
Bd1+d2+d3

i+r+µ,j+s+ν,k+t+κ,l+u+δ

=

(
i+ r

i

)(
i+ r + µ

i+ r

)(
j + s

j

)(
j + s+ ν

j + s

)(
k + t

k

)
×
(
k + t+ κ

k + t

)(
l + u

l

)(
l + u

l + u

)
d1!d2!d3!

(d1 + d2 + d3)!

×Bd1+d2+d3

i+r+µ,j+s+ν,k+t+κ,l+u+δ

so if (C1
ijkl)i+j+k+l=d1, (C2

rstu)r+s+t+u=d2 and (C3
µνκδ)µ+ν+κ+δ=d3 encode the B-nets of

p1, p2 and p3 respectively, we have∫
t

p1(x, y, z)p2(x, y, z)p3(x, y, z) dxdydz =
volume(t)(d1 + d2 + d3)!

d1!d2!d3!
(

d1+d2+d3+3
3

)
×

∑
µ+ν+κ+δ=d3

C3
µνκδ(C

1)TGµνκδC
2,

(3.12)

where Gµνκδ is a (m1, m2) matrix with m1=dimPd1 and m2=dimPd2 .

3.2 Smoothness Conditions

Let T be a subdivision of a domain Ω into tetrahedra and let p be a spline of degree

d defined over Ω, i.e. p|t ∈ Pd ∀t ∈ T . It is assumed that we have the B-form of each
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polynomial piece

pt =
∑

i+j+k+l=d

ctijklB
d
ijkl. (3.13)

We say that we have the B-form representation of the spline p. We would like to

give conditions on the ctijkl that will assure that p has certain global smoothness

properties.

Theorem 3.2.1 Let t = 〈v1, v2, v3, v4〉 and t′ = 〈v1, v2, v3, v5〉 be two tetrahedra with

common face 〈v1, v2, v3〉. Then p is of class Cr on t ∪ t′ if and only if

ct
′

ijkm =
∑

µ+ν+κ+δ=m

cti+µ,j+ν,γ+κ,δB
l
µ,ν,κ,δ(v5), for m = 0, . . . , r

and i+j+k=d-m.

The proof will follow from several lemmas.

Lemma 3.2.2 If u1, u2 and u3 are 3 independent directions in R3, f is of class Cr

at v if and only if Dα1
u1
Dα2

u2
Dα

uf(v) is continuous at v for all α, |α| = α1+α2+α3 ≤ r,

where Dui
is the directional derivative operator in the direction ui.

Proof : Let ui have coordinates (u1
i , u

2
i , u

3
i ), i = 1, 2, 3. We have

Du1

Du2

Du3

 =


u1

1 u2
1 u3

1

u1
2 u2

2 u3
2

u1
3 u2

3 u3
3




∂
∂x

∂
∂y

∂
∂z

 .

Because u1, u2 and u3 are linearly independent, the transformation matrix is invert-

ible so that the continuity of ∂
∂x
, ∂

∂y
∂
∂z

is equivalent to the continuity of the Dui
, i =

1, 2, 3. This proves the lemma for r = 1. Iterating we can express the Dα1
u1
Dα2

u2
Dα

uf(v)

in terms of the ∂|α|f
∂xα1∂yα2∂zα3

and conversely. This shows the result.

Lemma 3.2.3 Dm
u p(v) at v ∈ 〈v1, v2, v3〉 is uniquely determined by the cijkl, 0 ≤ l ≤

m.
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Proof : We look at the B-net of Dm
u p(v).

Dm
u p(v) =

d!

(d−m)!

∑
i+j+k+l=d−m

c
(m)
ijkl(a)Bd−m

ijkl (v),

Bd−m
ijkl (v) =

(d−m)!

i!j!k!l!
bi1b

j
2b

k
3b

l
4

for v ∈ 〈v1, v2, v3〉, b4 = 0 so for l 	= 0, Bd−m
ijk0 (v) = 0. Therefore

Dm
u p(v) =

d!

(d−m)!

∑
i+j+k=d−m

c
(m)
ijk0(a)Bd−m

ijkl (v),

which shows the result taking into account (3.8)

c
(m)
ijk0(a) =

∑
α+β+γ+δ=m

ci+α,j+β,k+γ,δB
m
α,β,γ,δ(a).

Lemma 3.2.4 If p and q are defined on two adjacent tetrahedra which share a

common face 〈v1, v2, v3〉, then p and q are joined in a Cr fashion if and only if

Dm
u p(v) = Dm

u q(v), v ∈ 〈v1, v2, v3〉, m = 0, . . . , r

where u is a direction not in the face 〈v1, v2, v3〉.

Proof : We note that u1 = v2−v1, u2 = v3−v1 and u are 3 independent directions

and we need only to show that the condition of the lemma is equivalent to

Dα1
u1
Dα2

u2
Dα

up(v) = Dα1
u1
Dα2

u2
Dα

uq(v), α1 + α2 + α = m,

m = 0, . . . , r in view of Lemma (3.2.2). This will be done by looking at Dα
up(v). Let

Dα
up(v) =

∑
i+j+k+l=s

cijklB
d
ijkl, Dα

uq(v) =
∑

i+j+k+l=s

dijklB
d
ijkl

Since α ≤ r, by the lemma cijkl = dijkl, i + j + k + l = s. We then show that

Dα1
u1
Dα2

u2
Dα

up(v) depends only on the cijkl and this forces continuity. But this is imme-

diate since these derivatives are determined by the values of Dα
up(v) on 〈v1, v2, v3〉.

And these values are completely determined by the cijkl = dijkl, i+ j + k + l = s.
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Lemma 3.2.5 Let t = 〈v1, v2, v3, v4〉 be a tetrahedron and w another point in R3

with barycentric coordinates a = (a1, a2, a3, a4). On 〈v1, v2, v3, w〉 p can be written

p =
∑

i+j+k+l=d

dijklB
d
ijkl,

with

dijkl = c
(l)
ijk0(a) =

∑
µ+ν+κ+δ=m

cti+µ,j+ν,γ+κ,δB
l
µ,ν,κ,δ(w).

Proof : For each v ∈ t, let b̃1(v), b̃2(v), b̃3(v) and b̃4(v) be the barycentric coordi-

nates of v relative to 〈v1, v2, v3, w〉. We substitute w = a1v1+a2v2+a3v3+a4v4 in v =

b̃1v1+ b̃2v2+ b̃3v3+ b̃4w and get v = (b̃1+ b̃4a1)v1+(b̃2+ b̃4a2)v2+(b̃3+ b̃4a3)v3+ b̃4a4v4.

Thus

Bd
α,β,γ,δ(v) =

d!

α!β!γ!δ!
(b̃1 + b̃4a1)

α(b̃2 + b̃4a2)
β(b̃3 + b̃4a3)

γ(b̃4a4)
δ

=
α∑

µ=0

β∑
ν=0

γ∑
κ=0

d!

α!β!γ!δ!

(
α

µ

)
b̃1

α−µ
b̃4

µ
aµ

1

(
β

ν

)
b̃1

β−ν
b̃4

ν
aν

1

×
(
γ

κ

)
b̃1

γ−κ
b̃4

κ
aκ

1 b̃4
δ
aδ

4

=

α∑
µ=0

β∑
ν=0

γ∑
κ=0

d!

α!β!γ!δ!

α!

µ!(α− µ)!

β!

ν!(β − ν)!

γ!

κ!(γ − κ)!

× b̃1
α−µ

b̃2
β−ν

b̃3
γ−κ

b̃4
µ+ν+κ+δ

aµ
1a

ν
2a

κ
3a

δ
4.

We have

Bµ+ν+κ+δ
µ,ν,κ,δ (w) =

(µ+ ν + κ+ δ)!

µ!ν!κ!δ!
aµ

1a
ν
2a

κ
3a

δ
4

and

B̃d
α−µ,β−ν,γ−κ,µ+ν+κ+δ(v) =

d!

(α− µ)!(β − ν)!(γ − κ)!(µ+ ν + κ + δ)!

× b̃1
α−µ

b̃2
β−ν

b̃3
γ−κ

b̃4
µ+ν+κ+δ

,

so

Bd
α,β,γ,δ(v) =

α∑
µ=0

β∑
ν=0

γ∑
κ=0

B̃d
α−µ,β−ν,γ−κ,µ+ν+κ+δ(v)B

µ+ν+κ+δ
µ,ν,κ,δ (w).



28

We substitute this in

p(v) =
∑

α+β+γ+δ=d

cα,β,γ,δB
d
α,β,γ,δ(v)

and get

p(v) =
∑

α+β+γ+δ=d

α∑
µ=0

β∑
ν=0

γ∑
κ=0

cα,β,γ,δB
µ+ν+κ+δ
µ,ν,κ,δ (w)

× B̃d
α−µ,β−ν,γ−κ,µ+ν+κ+δ(v).

We put

l = µ+ ν + κ+ δ, k = γ − κ,

j = β − ν, i = α− µ,

so B̃d
α−µ,β−ν,γ−κ,µ+ν+κ+δ = B̃d

ijkl. It appears that the coefficient of B̃d
ijkl is

c̃ijkl =
∑

µ+ν+κ+δ=l

ci+µ,j+ν,k+γ,δB
l
µ,ν,κ,γ.

And this proves the lemma.

Proof of the theorem: We can now give a proof of the theorem. Let u with

T -coordinates a = (a1, a2, a3, a4) be a direction not parallel to the face 〈v1, v2, v3〉.

We need only to show that the conditions of the lemma is equivalent to

Dm
u pt(v) = Dm

u pt′(v), v ∈ 〈v1, v2, v3〉 m = 0, . . . , r.

Let p =
∑

i+j+k+l=d c̃
t
ijklB

d
ijkl on 〈v1, v2, v3, v5〉. The previous lemma tells how to

relate c̃tijkl and ctijkl. To say that pt and pt′ agree on 〈v1, v2, v3〉 gives c̃tijk0 = ct
′

ijk0, i+

j + k = d. Moreover Dupt(v) = Dupt′(v) gives c̃
t(1)
ijk0 = c

t′(1)
ijk0 , i + j + k = d which

written explicitly is

a1c̃
t
i+1,j,k,0 + a2c̃

t
i,j+1,k,0 + a3c̃

t
i,j,k+1,0 + a4c̃

t
i,j,k,1 =

a1c
t′
i+1,j,k,0 + a2c

t′
i,j+1,k,0 + a3c

t′
i,j,k+1,0 + a4c

t′
i,j,k,1.
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This immediately gives c̃tijk1 = ct
′

ijk1, i+ j + k = d− 1. We now assume that

Dm
u pt(v) = Dm

u pt′(v), v ∈ 〈v1, v2, v3〉, m = 0, . . . , s− 1; s ≤ r

is equivalent to

c̃tijkm = ct
′

ijkm, i+ j + k = d−m, m = 0, . . . , s− 1; s ≤ r.

Ds
upt(v) = Ds

upt′(v), v ∈ 〈v1, v2, v3〉 gives c̃
t(s)
ijk0 = c

t′(s)
ijk0 , i + j + k = d − s which

written out in terms of c
t(s−1)
ijk0 gives c̃t

′
ijks = ctijks, i+ j + k = d − s. This completes

the proof of the theorem using the expression of c̃tijkm in terms of ctijkm.

Example: We give the conditions of C0 and C1 continuity for 〈v1, v2, v3, v4〉 and

〈v1, v2, v3, v5〉. Let v5 have B-coordinates (b1, b2, b3, b4), (ctijkl) and ct
′

ijkl encode the

B-net of pt and pt′ respectively. For C0 continuity we have

ct
′

ijk0 = ctijk0, i+ j + k = d.

For C1 continuity, we add

ct
′

ijk1 = cti+1,j,k,0B
1
1000(v5) + cti,j+1,k,0B

1
0100(v5) + cti,j,k+1,0B

1
0010(v5)

+ cti,j,k,1B
1
0001(v5),

but B1
1000 = b1 and similar formulas for the other Bernstein polynomials. So

ct
′

ijk1 = b1c
t
i+1,j,k,0 + b2c

t
i,j+1,k,0 + b3c

t
i,j,k+1,0 + b4c

t
i,j,k,1.



Chapter 4

Weak formulation of PDE’s and Spline Approximations

In this chapter, we recall basic properties of Sobolev spaces then we introduced the

main ideas of this dissertation on an abstract variational problem. We review the

approximation properties of spline spaces and give classical error estimates.

4.1 Sobolev spaces

We recall in this section the main results about Sobolev spaces which we shall use

later. A reference for this section is [Girault and Raviart’ 86]. Let Ω denote an open

subset of R3 with boundary ∂Ω. D(Ω) is the linear space of infinitely differentiable

functions with compact support on Ω. Let D′(Ω) denote the dual space of D(Ω) also

called space of distributions. Let α = (α1, α2, α3) and set

|α| = α1 + α2 + α3.

For u ∈ D′(Ω), we define ∂αu in D′(Ω) by

〈∂αu, φ〉 = (−1)|α|〈u, ∂αφ〉, ∀u ∈ D′(Ω)

when u is |α| times differentiable, ∂αu is the usual notion of derivative:

∂αu =
∂|α|u

∂xα1
1 ∂xα2

2 ∂x
α3
3

.

For each integer m ≥ 0 and real p, 1 ≤ p ≤ ∞, we define the Sobolev space

Wm,p(Ω) = {v ∈ Lp(Ω), ∂αu ∈ Lp(Ω), ∀|α| ≤ m}.

30
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This is a Banach space when endowed with the norm

||u||m,p,Ω = (
∑
|α|≤m

∫
Ω

|∂αu(x)|pdx)
1
p , p <∞,

or

||u||m,∞,Ω = max|α|≤m(esssupx∈Ω|∂αu(x)|), p = ∞.

We also equip Wm,p(Ω) with the following semi-norm

|u|m,p,Ω = (
∑
|α|=m

∫
Ω

|∂αu(x)|pdx)
1
p , p <∞

and the modification above for p = ∞.

When p = 2, Wm,2(Ω) is denoted H2(Ω), and its norm and semi-norm are simply

referred as ||u||m,Ω and |u|m,Ω. Also Hm(Ω) is a Hilbert space for the scalar product

(u, v)m,Ω =
∑
|α|≤m

∫
Ω

∂αu(x)∂αv(x)dx.

Let Wm,p
0 (Ω) be the closure of D(Ω) in Wm,p(Ω) for the norm ||.||m,p,Ω. Wm,2

0 (Ω)

is denoted Hm
0 (Ω). The following Poincare-Friedrichs lemma says that on Hm

0 (Ω),

||u||m,Ω and |u|m,Ω are two equivalent norms, [cf. Girault and Raviart’86].

Lemma 4.1.1 If Ω is connected and bounded in at least one direction, i.e. there

exists n such that {|x · n|,x ∈ Ω} is bounded, then for each m ≥ 0, there exists a

constant K = K(m,Ω) > 0 such that

||u||m,Ω ≤ K|u|m,Ω, ∀v ∈ Hm
0 (Ω).

For 1 ≤ p ≤ ∞, we denote by W−m,p′(Ω) the dual space of Wm,p(Ω), with p′

satisfying

1

p
+

1

p′
= 1. (4.1)
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It is equipped with the norm

||f ||−m,p′,Ω = supv∈W m,p
0 (Ω), v �=0

〈f, v〉
||v||m,p,Ω

.

As usual W−m,2(Ω) = H−m(Ω). The following lemma, [cf. Girault and Raviart’86],

describes elements of W−m,p′(Ω).

Lemma 4.1.2 For p and p′ satisfying (4.1), f belongs to W−m,p′(Ω) if and only if

there exist functions fα ∈ Lp′(Ω), for |α| ≤ m, such that

f =
∑
|α|≤m

∂αfα.

Definition 4.1.3 Ω is said to have a Lipschitz continuous boundary if for each

x0 ∈ ∂Ω there is a ball B of center x0 and radius r and a Lipschitz continuous

function φ defined on a domain D ⊂ R2 such that in a system of coordinates with

the origin at x0:

1. The set ∂Ω ∩B can be represented by an equation of type x3 = φ(x1, x2)

2. Each x ∈ Ω ∩ B satisfies x3 < φ(x1, x2).

Although in this dissertation, we limit ourselves to domains with piecewise planar

boundaries, it is interesting to note that some results hold for more general domains.

We also recall the Sobolev embedding theorem. For our purposes it says that elements

of H2(Ω) are globally continuous.

Lemma 4.1.4 Let Ω be an open subset of R3 with a Lipschitz continuous boundary

and let p ∈ R with 1 ≤ p <∞ and m,n ∈ N with n ≤ m. We have

Wm,p(Ω) ⊂ Cn(Ω) provided
1

p
<
m− n

3
.
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For example, H2(Ω) = W 2,2(Ω) ⊂ C0(Ω). We therefore have conditions under which

point values for functions in a Sobolev space are well defined. To give a meaning for

their values on the boundary, we’ll need the following trace theorem, [cf. Brenner

and Scott’94].

Theorem 4.1.5 Suppose that Ω has a Lipschitz boundary, and that p is a real

number in the range 1 ≤ p ≤ ∞. Then there is a constant, C, such that

||v||Lp(∂Ω) ≤ C||v||1−
1
p

Lp(Ω)||v||
1
p

W 1,p(Ω) for all v ∈W 1,p(Ω).

For v ∈ W 1,p(Ω), we will call trace of v on ∂Ω, its restriction on the boundary

interpreted as an element of L2(∂Ω). By definition,

H
1
2 (∂Ω) = {τ(u), u ∈ H1(Ω)},

where τ(u) stands for trace of u. H− 1
2 (∂Ω) will denote the dual of H

1
2 (∂Ω). Finally

we give a few Green’s formulas, [cf. Brenner and Scott’94]. Here

∂v

∂ν
= ν · ∇v.

Lemma 4.1.6 Let Ω be a bounded open subset of R3 with a Lipschitz continuous

boundary and let ν denote the unit outward normal on ∂Ω, defined almost everywhere

and by assumption is in L∞(∂Ω). We have:

• For u ∈W 1,1(Ω)3, ∫
Ω

∇ · u =

∫
∂Ω

u · ν.

• Let v, w ∈ H1(Ω). Then, for i=1,2,3,∫
Ω

(
∂v

∂xi
)w dx = −

∫
Ω

v(
∂w

∂xi
) dx+

∫
∂Ω

vw νi. (4.2)

• For u ∈ H2(Ω) and v ∈ H1(Ω), we have∫
∂Ω

(−∆u)v dx =

∫
∂Ω

∇u · ∇v dx−
∫

∂Ω

∂u

∂ν
v. (4.3)



34

4.2 Abstract variational problems

We have the following theorem due to Lax and Milgram [Lax’54]:

Theorem 4.2.1 Let V be a real Hilbert space with norm ||.|| and let (u, v) → a(u, v)

be a real bilinear form on V × V and f : V → R be a continuous linear form. We

assume that a is continuous and elliptic on V , i.e. there exist two constants M and

α > 0 such that

|a(u, v)| ≤M ||u||||v||, ∀u, v ∈ V (4.4)

a(v, v) ≥ α||v||2, ∀v ∈ V. (4.5)

Then the problem: Find u ∈ V such that

a(u, v) = f(v), ∀v ∈ V, (4.6)

has one and only one solution.

We have the following corollary which will be extensively used.

Corollary 4.2.2 When a is symmetric, i.e. a(u, v) = a(v, u) ∀u, v ∈ V , then the

solution of (4.6) is also the only element of V that minimizes the following functional

also called energy functional

J(v) =
1

2
a(v, v) − f(v).

Proof : We show that there’s only one element in V which minimizes J and that it

is also a solution of (4.6). By the V -ellipticity, a(v, v) ≥ 0, ∀v ∈ V and a(v, v) = 0

only if v = 0. The bilinear form a therefore defines an inner product over V . (4.4)

and (4.5) give

α||v||2 ≤ a(v, v) ≤M ||v||2.
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This shows that the associated norm to a is equivalent to ||.|| and so when V is

equipped with the inner product a(., .), it is a Hilbert space. By the Riesz represen-

tation theorem there exists u ∈ V unique such that

a(u, v) = f(v). (4.7)

We have a(v − u, v − u) = a(v, v) − 2a(u, v) + a(u, u) using the symmetry of a so

J(v) =
1

2
a(v, v) − f(v) =

1

2
a(v, v) − a(u, v)

=
1

2
a(v − u, v − u) − 1

2
a(u, u).

And this shows that minimizing J amounts to minimize a(v − u, v − u). We

conclude that J has a unique minimizer u solution of (4.7).

Remark: We have also thus proved Theorem (4.2.1) in the case a symmetric.

4.3 Spline Approximations by Energy Minimization

We are going to seek approximate solutions of boundary value problems in finite

dimensional subspaces of Sobolev spaces. Specifically we shall use the spline space

Sr
d(Ω). We define

Sr
d(Ω) = {p ∈ Cr(Ω), pt ∈ Pd ∀t ∈ T }.

We have Sr
d(Ω) ⊂ Hr+1(Ω). This follows from the following lemma, [Braess’92,p 60].

Lemma 4.3.1 Let k ≥ 1 and suppose Ω is bounded. Then a piecewise infinitely

differentiable function v : Ω → R belongs to Hk(Ω) if and only if v ∈ Ck−1(Ω).

4.3.1 Approximation properties of spline spaces

For r = 0, Sr
d(Ω) is the classical Lagrangian finite element space for arbitrary d.

There are classical approximation results for this finite element space which depend

on the following interpolation operator which we now introduce.
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Let T be a tetrahedral partition of Ω and let h = max hT , T ∈ T where hT is a

measure of the size of a tetrahedron T in T and denote by σ the maximum shape

measure associated with T .

Let T = 〈v1, v2, v3, v4〉 ∈ T , for v continuous on T let Πd(vT ), d ≥ 1 be the unique

polynomial on T which interpolates v at the domain points ψijkl = iv1+jv2+kv3+lv4

d
.

We define Πd(v) globally by

Πd(v)|T = Πd(v|T ).

The interpolant Πd(v) is therefore automatically continuous since the value of a

polynomial at the domain points ψijk = iv1+jv2+kv3

d
of a face 〈v1, v2, v3〉 uniquely

defines it on that face. For m = 0, 1, we have the following inequality [Quarteroni

and Valli’97, p.91]

|v − Πd(v)|m,Ω ≤ Chd+1−m|v|d+1,Ω, ∀v ∈ Hd+1(Ω). (4.8)

The constant C depends on Ω, σ and d and the restriction on the indexm is due to the

fact that Πd(v) is merely continuous. It is the lack of a suitable interpolation operator

and estimates as the above for Sr
d(Ω) for r ≥ 1 that makes it difficult to derive error

estimates for arbitrary smoothness and an arbitrary tetrahedral partition. Ming-Jun

Lai has proved in his dissertation these kind of estimates for Sr
d(Ω) when d ≥ 6r+3

in the L∞ norm.

4.3.2 Approximate solutions

We assume that the hypotheses of the Lax-Milgram lemma (Theorem 4.2.1) hold,

and a is symmetric. We approximate the problem

(P ) Find u ∈ V such that a(u, v) = f(v), ∀ v ∈ V,

by a similar finite dimensional one

(P1) Find u ∈ S such that a(u, v) = f(v), ∀ v ∈ S,
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where S is a finite dimensional subset of V . Typically, S will be a subset of Sr
d(Ω).

We now describe Sr
d(Ω) in a way more suitable for our purposes. Recall the

following B-form representation of a spline u with B-net c ∈ RN where N is equal

to the product of the number of tetrahedra and the dimension of Pd,

u =
∑

t

∑
i+j+k+l=d

ctijklB
d
ijkl.

We shall identify Sr
d with

{c ∈ RN , Hc = 0},

where H is a smoothness matrix of order r and degree d that encodes the smoothness

conditions that ensure that a spline is in Sr
d(Ω).

In addition since S ⊂ Sr
d(Ω), we shall describe it by additional constraints. These

constraints take the form Bc = G for some matrices B and G to impose boundary

conditions for PDE’s or Dc = 0 to impose the divergence free constraint for the

Stokes and Navier-Stokes problems. Here D is a discrete divergence matrix. For the

following abstract discussion, we shall assume that

S = {c ∈ RN , Hc = 0, Uc = d},

where Uc = d encode constraints in the approximating space for some matrix U

and a vector d.

Problem (P1) is equivalent to

(P2) Find u ∈ S which minimizes, J(u) =
1

2
a(u, u) − f(u) over S.

For u ∈ S, we can write for simplicity

u =

N∑
i=1

ciψi,



38

where ψi is one of the Bernstein polynomials Bd
ijkl on a tetrahedron of the partition.

We have

J(u) =
1

2
a(

N∑
i=1

ciψi,
N∑

i=1

ciψi) − f(
N∑

i=1

ciψi)

=
1

2

N∑
i,j=1

cicja(ψi, ψj) −
N∑

i=1

cif(ψi).

Denote by F the vector (f(ψ1), · · · , f(ψN))T and by A the matrix with entries aij =

a(ψi, ψj). A will be called the stiffness matrix and F the load vector. We can write

J(u) = J(c) =
1

2
cTAc − cTb.

We note that A is symmetric and that problem (P2), is equivalent to the following

constrained optimization problem.

(P3) Minimize J(c) =
1

2
cTAc − cTF over RN under the constraints

Hc = 0 and Uc = d.

By the theory of Lagrange multipliers there exist two vectors λ1 and λ2 such that

cTA+ λT
1H + λT

2U = FT ,

Hc = 0,

Uc = d.

(4.9)

Note that the conditions encoded in U are not linearly independent since in general

U will be a (N,m) matrix with m > N . The Lagrange multipliers corresponding to

the redundant equations are zero.

(4.9) can be written

Ac +HTλ1 + UTλ2 = F,

Hc = 0,

Uc = d,
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or in matrix form 
A HT UT

H 0 0

U 0 0




c

λ1

λ2

 =


F

0

d

 . (4.10)

Since we have assumed that the conditions of the Lax-Milgram theorem hold,

problem (P ) and similarly (P1), (P2) and (P3) have a unique solution. But the

situation is not so clear for (4.10). We have existence of the component c of the

unknown in (4.10) by the existence theorem for (P3). However there is no evidence

that solving (4.10) will give the unique solution of (P3). Indeed the matrix

R =


A HT UT

H 0 0

U 0 0


will be, in general, singular. Let Z =

[
FT , 0,dT

]T
; We have

R
[
cT , λT

1 , λ
T
2

]T − Z = 0.

It turns out that it is very convenient to find a least squares solution of the equation

Rx = Z with MATLAB. Since R does not have full rank, there is not a unique least

squares solution to this equation. This can be proved using the projection theorem,

[Ciarlet’89, p.272]. However, for such a least squares solution (eT , βT
1 , β

T
2 )T we have

||R
[
eT , βT

1 , β
T
2

]T − Z|| = 0,

so

R
[
eT , βT

1 , β
T
2

]T
= Z.

This means that
[
eT , βT

1 , β
T
2

]T
satisfies the necessary conditions for e being a mini-

mizer of J in S. Those conditions are also sufficient since the functional J is convex
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[Ciarlet’89, p 246]. The convexity of J is proven by using the fact that A is sym-

metric, [Ciarlet’89]. By the unicity of a solution to the problem P3, e = c. It is such

a c that we compute. We’ll now indicate two issues that arise from the discretiza-

tion process. Since we are going to interpolate functions on the boundary with an

interpolation operator which is merely continuous it will be impossible to satisfy

smoothness conditions near the boundary. So we relaxed the condition of smooth-

ness and construct approximations which are smooth across tetrahedra which do not

share a face with the boundary, i.e. if we let Ω̃ denote the union of these tetrahedra

{p ∈ Cr(Ω̃), pt ∈ Pd, ∀t ∈ T }. (4.11)

The second issue is that the matrix R is quite large, so it is desirable to reduce its

size. We now describe an algorithm which will be referred to later as the matrix

iterative algorithm. It is a variant of the augmented Lagrangian algorithm. It can be

used to cope with matrices of large size. The trade off is that as an iterative method,

it is less accurate than the least squares method. On the other hand, we prove below

the convergence of this algorithm only in the symmetric case. A convergence proof

for the nonsymmetric case can be found in [Awanou and Lai’03]. Oscillations in the

numerical error when the tetrahedral partition is refined makes it unappealing in

the non symmetric case.

4.4 A matrix iterative Algorithm

With obvious notations let’s write the equation
A HT UT

H 0 0

U 0 0




c

λ1

λ2

 =


F

0

d


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as  A BT

B 0

 c

λ

 =

 F

G

 . (4.12)

We consider for l= 0, 1, 2, . . . , the sequence of problems A BT

B −εI

 cl+1

λl+1

 =

 F

G − ελl

 , (4.13)

where λ0 is a suitable initial guess, for example λ0 = 0, and I is the identity matrix.

(4.13) reads

Acl+1 +BTλl+1 = F (4.14)

Bcl+1 − ελl+1 = G − ελl. (4.15)

Multiplying (4.15) on the left by BT we get

BTBcl+1 − εBTλl+1 = BTG − εBTλl

or

BTλl+1 = −1

ε
BTG +BTλl +

1

ε
BTBcl+1.

Substituting this last relation back into (4.14), we get

(A+
1

ε
BTB)cl+1 = F +

1

ε
BTG − BTλl. (4.16)

which reads for l = 0

(A+
1

ε
BTB)c1 = F +

1

ε
BTG − BTλ0.

Using Acl = F − BTλl, we have

(A+
1

ε
BTB)cl+1 = Acl +

1

ε
BTG, for l = 1, 2, . . . (4.17)
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This suggests the following algorithm.

ALGORITHM:

Given λ0, choose ε > 0 small enough and define c1 by

c1 = (A+
1

ε
BTB)−1(F +

1

ε
BT G −BTλ0)

and iteratively define

cl+1 = (A+
1

ε
BTB)−1(Acl +

1

ε
BTG), l = 1, 2, . . .

We have the following theorem:

Theorem 4.4.1 Assume that A is symmetric positive definite with respect to B,

i.e. xTAx ≥ 0, and xTAx = 0 with Bx = 0 implies x = 0. Then, the sequence (cl+1)

converges to the solution c of (4.12).

Remark: We prove below not only the convergence of the sequence, but also that

the convergence factor tends to 0 as ε → 0. We refer to [Fortin and Glowinski’83],

or [Awanou and Lai’03] for another proof of the convergence of the algorithm in the

context of augmented lagrangian algorithms.

Proof of the theorem.

First, we need to show that A + 1
ε
BTB is invertible. Since A is a square matrix, it

is enough to show that

(A+
1

ε
BTB)x = 0 ⇒ x = 0.

xT (A+
1

ε
BTB)x = xTAx+

1

ε
(Bx)T (Bx).

Since xTAx ≥ 0 and xTBTBx ≥ 0,

xT (A +
1

ε
BTB)x = 0 ⇒ xTAx = 0 and (Bx)T (Bx) = 0,
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so xTAx = 0 and Bx = 0. Since A is assumed to be symmetric positive definite with

respect to B, we get x = 0. The sequence cl+1 is therefore well-defined. Let’s write

E = (A+
1

ε
BTB).

By (4.16),

Ecl+1 = F +
1

ε
BTG −BTλl.

The same way, using (4.12), we have

F = Ac +BTλ

G = Bc,

so

F +
1

ε
BTG = Ac +BTλ+

1

ε
BTBc

= (A+
1

ε
BTB)c +BTλ

= Ec +BTλ.

It follows that

Ec = F +
1

ε
BTG − BTλ. (4.18)

Therefore

cl+1 − c = E−1BT (λ− λl).

We’ll show convergence of the sequence (λl), l = 1, 2, . . . to λ. This will prove the

result. Using (4.15), we get

−ε(λl+1 − λ) = −ε(λl − λ) + G − Bcl+1.

But

cl+1 = E−1F +
1

ε
E−1BT G −E−1BTλl,



44

so

ε(λl+1 − λ) = ε(λl − λ) − G +BE−1F

+
1

ε
BE−1BT G − BE−1BTλl

= ε(λl − λ) − G +BE−1(F +
1

ε
BTG − BTλl).

Using (4.18), we have

ε(λl+1 − λ) = ε(λl − λ) − G +BE−1(Ec +BTλ−BTλl)

= ε(λl − λ) −D(λl − λ),

where D = BE−1BT and we used Bc = G. Finally

λl+1 − λ = (I − 1

ε
D)(λl − λ). (4.19)

From (4.12) and (4.13),

B(c − cl) = ε(λl−1 − λl),

so λl−1−λl is in the range of B and we may assume that the same is true of λl−1−λ

by writing the later in terms λk−1 −λk, k ≤ l and choosing λ0 such that λ0 −λ is in

the range of B. This suggests that we regard D as a mapping from Im(B) to Im(B),

where Im(B) denotes the range of B. We claim that D is an invertible mapping from

Im(B) to Im(B). Since D is symmetric, it is enough to show that

R(y) =
yTDy

yTy
> 0, ∀ y ∈ Im(B), y 	= 0,

where R(y) is the Raleigh quotient. We have

R(y) =
yTBE−1BTy

yTy
=
yTBE−1(EE−1)BTy

yTy

=
(yTBE−1)E(E−1BTy)

yTy
.

So

R(y) =
||E−1BTy||2E

yTy
, (4.20)
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where we have defined a norm || ||E associated with the positive definite matrix E;

||u||2E = b(u, u) with b(u, v) = vTEu.

We have

||E−1BTy||E = supv∈RN

b(E−1BTy, v)

||v||E
,

with

b(E−1BTy, v)

||v||E
=
vTEE−1BTy

||v||E
=
vTBTy

||v||E
=
yTBv

||v||E
, ∀ v 	= 0 ∈ RN .

So

||E−1BTy||E = supv∈RN

yTBv

||v||E
. (4.21)

We claim that B is an invertible mapping from Im(BT ) to Im(B), [Segal’79]. Since

y ∈ ImB, there’s v in Im(BT ) such that y = Bv. We write ||v||2 = vTv. Then,

R(y) ≥ 1

||Bv||2

(
(Bv)T (Bv)

||v||E

)2

=
||Bv||2
||v||2E

=
||Bv||2

vTAv + 1
ε
vTBTBv

=
||Bv||2

||v||2A + 1
ε
||Bv||2 .

For an operator X, µXmin and µXmax denote respectively the smallest and greatest

eigenvalues of X. We have, using Raleigh’s principle,

||v||2A ≤ µAmax||v||2 and ||v||2µAmin ≤ ||v||2A.

On the other hand, since y = Bv 	= 0, ||Bv|| ≥ ||v||
||B−1|| . We therefore have

R(y) ≥
1

||B−1||2

µAmax + 1
ε
||B||2 > 0,

which shows that D is invertible. We want to estimate the spectral radius of I− 1
ε
D.

We have

µ 1
ε
Dmin ≥ 1

ε
R(y)

≥
1
ε
||Bv||2

||v||2A + 1
ε
||Bv||2 , y = Bv, v ∈ ImB
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Taking ε→ 0, we get

µ 1
ε
Dmin ≥ 1.

On the other hand,

µ 1
ε
Dmax = supy∈Im(B)

1

ε

yTDy

yTy

= supy∈Im(B)
1

ε

||E−1BT y||2E
yTy

using (4.20)

= supy∈Im(B)supv∈RN

1

εyTy

(yTBv)2

||v||2E
using (4.21)

≤ supv∈RN

1

ε

||Bv||2
||v||2E

= supv∈RN

1
ε
||Bv||2

||v||2A + 1
ε
||Bv||2

≤ 1.

These results show that the convergence factor in (4.19) goes to zero as ε→ 0 since

if µ is an eigenvalue of 1
ε
D, 1 − µ is an eigenvalue of I − 1

ε
D. This completes the

proof.

To finish let’s point out a classical error estimate for finite dimensional approxi-

mations, Cea’s lemma, [Brenner and Scott’94]. With the notations of this section,

let uS be the approximate solution in S. Then

||u− uS||V ≤ Cminv∈S||u− v||V

for a constant C. Using the inequality (4.8), one shows for specific problems inequa-

lities of this type with right hand side depending on the discretization parameter

h.



Chapter 5

Spline Approximations of the 3D Poisson Equation and the 3D

Biharmonic equation

We now apply the techniques we have developed to a simple second order elliptic

equation, the Poisson equation and to a fourth order elliptic equation, the biharmonic

equation.

5.1 The Case of the Poisson Equation

We consider numerical approximations of the 3D Poisson equation by splines of

arbitrary degree and arbitrary smoothness over an arbitrary tetrahedral partition of

a polygonal domain of R3. The equation is put in variational form and the associated

energy functional is minimized over a subset of a space of splines. The domain Ω here

is a bounded open subset of R3 with piecewise planar boundary. We consider both

the Dirichlet and Neumann boundary conditions and in the later case, the domain

will be assumed connected.

5.1.1 Existence and Uniqueness

We first consider the Dirichlet problem −∆u = f in Ω

u = g on ∂Ω

where ∂Ω will denote the boundary of Ω and ∆ denotes the Laplace operator, ∆ =∑3
i=1

∂2

∂x2
i
. Multiplying −∆u = f by v sufficiently smooth which vanishes on the

47
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boundary, integrating over Ω we get after using Green’s formula,∫
Ω

∇u∇v =

∫
Ω

fv. (5.1)

Let a(u, v) =
∫

Ω
∇u∇v. We have the following existence and uniqueness results of a

weak solution of the homogeneous Poisson, equation. [Girault and Raviart’86].

Theorem 5.1.1 For f in H−1(Ω), the problem: Find u in H1
0 (Ω), such that

a(u, v) =

∫
Ω

fv, ∀v ∈ H1
0 (Ω) (5.2)

has a unique solution u in H1
0 (Ω) . Moreover, since the bilinear form a is symmetric,

the solution u minimizes the functional

J : v −→ J(v) =
1

2
a(v, v) −

∫
Ω

fv over H1
0 (Ω). (5.3)

We would like to also describe the solution of the non homogeneous Dirichlet problem

as a solution of a minimization problem.

Let V = {w ∈ H1(Ω), w = g on ∂Ω} and u0 an element of V . We may then

assume that g is in H
1
2 (∂Ω). We notice that u0 +H1

0 (Ω) = V . For u ∈ V , we write

u = u0 + w and multiply −∆(u0 + w) = f by v an element of H1
0 (Ω). We get

a(w, v) =

∫
Ω

fv − a(u0, v), (5.4)

so the problem: Find w in H1
0 (Ω), such that

a(w, v) =

∫
Ω

fv − a(u0, v), ∀v ∈ H1
0 (Ω)

has a unique solution w0 in H1
0 (Ω) by the Lax-Milgram theorem. By its corollary

(4.2.2), w0 is a minimizer of

K(w) =
1

2
a(w,w)−

∫
Ω

fw + a(u0, w), (5.5)
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A simple substitution shows that u0 + w0 solves the non homogeneous problem

a(u, v) =

∫
Ω

fv, ∀v ∈ H1
0 (Ω), u ∈ V.

Let

L(w) = J(u0 + w) =
1

2
a(u0 + w, u0 + w) −

∫
Ω

f(u0 + w),

we have

L(w) = K(w) + J(u0).

Indeed for w in H1
0 (Ω),

L(w) =
1

2

∫
Ω

∇(u0 + w)∇(u0 + w) −
∫

Ω

f(u0 + w)

=
1

2

∫
Ω

|∇w|2 −
∫

Ω

fw +

∫
Ω

∇u0∇w +
1

2

∫
Ω

|∇u0|2 −
∫

Ω

fu0

= K(w) + J(u0).

So

L(w0) = K(w0) + J(u0) ≤ K(w) + J(u0) = L(w)

since w0 is a minimizer of K. As u0 +H1
0 (Ω) = V , this shows that u0 +w0 minimizes

L(w) over V . We have then proved the following well-known existence and uniqueness

result for the non-homogeneous Poisson equation.

Theorem 5.1.2 For f in H−1(Ω) and g in H
1
2 (∂Ω), the functional

J : v −→ J(v) =
1

2
a(v, v) −

∫
Ω

fv

has a unique minimizer in V which is the unique solution of the non-homogeneous

Poisson problem.
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We now consider the Neumann problem −∆u = f in Ω

∂u
∂n

= g on ∂Ω.
(5.6)

f and g are given. Assuming that u is smooth, multiplying the first of (5.6) by v

smooth, we have ∫
Ω

(−∆u)v =

∫
Ω

∇u · ∇v −
∫

∂Ω

∂u

∂n
v.

So ∫
Ω

∇u · ∇v =

∫
Ω

fv +

∫
∂Ω

∂u

∂n
v. (5.7)

If u is a solution of (5.6), then u+ c is also a solution for a constant c. Let’s assume

that f ∈ L2(Ω), g ∈ H− 1
2 (∂Ω). We define on H1(Ω) the equivalence relation

u � v if and only if u− v ∈ R

and seek u ∈ H1(Ω)/R such that (5.7) holds. For
.
u ∈ H1(Ω)/R and

.
v ∈ H1(Ω)/R,

let

a(
.
u,

.
v) =

∫
Ω

∇u · ∇v, ∀u ∈ .
u, ∀v ∈ .

v, ∀ .
u,

.
v ∈ H1(Ω)/R.

and consider the variational problem:

Find
.
u ∈ H1(Ω)/R such that a(

.
u,

.
v) =

∫
Ω

fv + 〈g, v〉, ∀ .
v∈ H1(Ω)/R. (5.8)

Here 〈, 〉 denotes the duality between H− 1
2 (∂Ω) and H

1
2 (∂Ω). We need to find out

under which conditions the right-hand side in (5.8) is independent of v in
.
v. Let then

F (v) =

∫
Ω

fv + 〈g, v〉.

For v, w ∈ .
v, v − w ∈ R and

F (v) − F (w) =

∫
Ω

f(v − w) + 〈g, v − w〉 = (v − w)
( ∫

Ω

f + 〈g, 1〉
)
.
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We therefore require ∫
Ω

f + 〈g, 1〉 = 0.

Notice that for g ∈ L2(∂Ω), this reads
∫

Ω
f +

∫
∂Ω
g = 0. On the other hand,

a(
.
u,

.
v) =

∫
Ω

∇u · ∇v, ∀ .
u,

.
v∈ H1(Ω)/R

defines an inner product on H1(Ω)/R which makes it a Hilbert space provided Ω is

connected. We only need to check that if a(
.
u,

.
u) = 0, then

.
u= 0.

a(
.
u,

.
u) =

∫
Ω

|∇u|2 = 0

implies that u is constant i.e.
.
u= 0. As a consequence

a(
.
u,

.
v) = || .

u ||H1(Ω)/R

is elliptic on H1(Ω)/R. We conclude that:

Theorem 5.1.3 Let Ω be connected with a Lipschitz continuous boundary. For f ∈

L2(Ω), g ∈ H− 1
2 (∂Ω) satisfying ∫

Ω

f + 〈g, 1〉 = 0

the problem (5.8) has a unique solution in H1(Ω)/R.

By the corollary of the Lax-Milgram lemma,
.
u is the unique minimizer in H1(Ω)/R

of

J(
.
u) =

1

2
a(

.
u,

.
u) −

∫
Ω

fu− 〈g, u〉.

It is useful to notice that algebraically and topologically, H1(Ω)/R and{
u ∈ H1(Ω),

∫
Ω

u = 0
}

are the same. This can be seen by considering the surjective mapping from H1(Ω)

to {u ∈ H1(Ω),
∫

Ω
u = 0}, defined by

u �→ u− 1

meas(Ω)

∫
Ω

u.

The kernel of this mapping is R and the result follows.
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5.1.2 Spline approximations of the Dirichlet problem

To approximate the right hand side f in the Poisson equation, we approximate f on

each tetrahedron t = 〈v1, v2, v3, v4〉 by the unique polynomial of degree d on t which

interpolates f at the domain points ψijkl. This gives rise to a global interpolation

operator Πd.

Let nth be the number of tetrahedra and nbf the number of boundary faces. We

introduce the boundary interpolation operator Πd
b which is defined on each boundary

face f = 〈v1, v2, v3〉, as the B-net of the unique polynomial interpolating any given

continuous function at the domain points { iv1+jv2+kv3

d
, i + j + k = d}. There are

n =
(

d+2
2

)
such points and therefore

Πd
b : C0(∂Ω) → RM (5.9)

with M = n× nbf . On the other hand, it can be seen that there’s a matrix B such

that given the B-net c of an element u of Sr
d(Ω)

Bc = Πd
b(u|∂Ω). (5.10)

Indeed for a tetrahedron 〈v1, v2, v3, v4〉 with a single boundary face 〈v1, v2, v3〉,

Πd
b(u|∂Ω) is a vector formed with the cijk0, i+ j + k = d.

We now introduce a finite dimensional subspace S of V .

S = {p ∈ Sr
d(Ω), p|∂Ω = Πd

b(g)}.

Let’s fix the tetrahedral partition T , and let n = dimPd. If nth is the number of

tetrahedra in T , the B-net of an element p of Sr
d(Ω) has length N = n ∗ nth. We

denote by p, an approximant of u and c the B-net of p. We therefore have

p|t =
n∑

s=1

ctsB
d
s . (5.11)
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We seek to minimize J(v) = 1
2

∫
Ω
|∇v|2 −

∫
Ω
fv over S ⊆ Sr

d(Ω). Let G encode

the B-net of the interpolant of g on the boundary. In terms of B-nets, elements of

S, are described by

{c ∈ RN , Hc = 0 and Rc = G}. (5.12)

We write Πd(f)|t =
∑n

α=1 f
t
αB

d
α and represent the B-net of Πd(f) by F. Let u =∑

t

∑n
β=1 c

t
γB

d
γ be an element of Sr

d(Ω). We introduce the local mass matrix M t =

(
∫

t
Bd

αB
d
β)α,β=1,... ,n and denote by M the corresponding global mass matrix. Kt =

(
∫

t
∇Bd

α∇Bd
β)α,β=1,... ,n is the local stiffness matrix and we denote by K the global

stiffness matrix. Arguing as in the continuous case, one shows that J has a unique

minimizer in S. In terms of B-nets J is written as

J(c) =
1

2

∫
Ω

|∇u|2 −
∫

Ω

fu

=
1

2

∑
t

∫
t

|∇u|2 −
∑

t

∫
t

fu

=
1

2

∑
t

n∑
α=1,β=1

ctαc
t
β

∫
t

∇Bd
α∇Bd

β −
∑

t

n∑
α=1,β=1

f t
αc

t
β

∫
t

Bd
αB

d
β

=
1

2

∑
t

(ct)TKtct −
∑

t

(F t)TM t

=
1

2
(c)TKc − (F)TM.

So the idea is to minimize J under the constraints in (5.12). This leads to the

existence of Lagrange multipliers λ1 and λ2 such that

Kc +HTλ1 +RTλ2 = MF,

Hc = 0,

Rc = G.
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We assemble this into an equation
HT RT K

0 0 H

0 0 R



λ1

λ2

c

 =


MF

0

G,


where we used the symmetry of K and M . We computed a least squares solution

of Ax − b = 0 where A =


HT RT K

0 0 H

0 0 R

 and b =


MF

0

G

. The way we have

arranged the system turns out to be more efficient on MATLAB than the natural

way which would follow from the system of equations.

5.1.3 Spline approximations of the Neumann problem

The treatment of the Neumann boundary conditions is similar in ideas to the treat-

ment of the previous section. Equivalently, the problem is to minimize

K(u) =
1

2

∫
Ω

|∇u|2 −
∫

Ω

fu−
∫

∂Ω

gu

over

W = {w ∈ H1(Ω),

∫
Ω

w = 0}.

Notice that the Neumann boundary condition is implicitly contained in the varia-

tional formulation. We indicate how to approximate the terms
∫

Ω
w = 0 and

∫
∂Ω
gu.

On a tetrahedron t, for p =
∑

i+j+k+l=d cijklB
d
ijkl,

∫
t
p =

∑
i+j+k+l=d cijkl. One

then sums over all tetrahedra to get
∫

Ω
p for an approximant p of w. We show

explicitly how to compute
∫

f
gu for the boundary face face = 〈v1, v2, v3〉 of t =

〈v1, v2, v3, v4〉. Although g and u|∂Ω are functions of 3 variables, they can be repre-

sented as bivariate splines on a face as described in [Lai and Schumaker]. Let then

u|∂Ω =
∑

i+j+k=d

cijkB
d
ijk
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and

g =
∑

i+j+k=d

bijkB
d
ijk,

with m =
(

d+2
2

)
, we can write

∫
face

gu =
m∑

α=1,β=1

cαbβ

∫
face

Bd
αB

d
β

= BTMbC0,

where B encodes the B-net of g, C0 the B-net of u|∂Ω and Mb = (
∫

face
Bd

αB
d
β)α,β=1,... ,m

and the Bd
α’s are bivariate Bernstein polynomials. On the other hand, if C encodes

the B-net of u on t, we have RC = C0 for some matrix R. Therefore∫
face

gu = BTMbRC.

5.1.4 Numerical results

We simply required the solution to be globally continuous for the Dirichlet and

Neumann problem. We used two different kind of domains and give the errors in

the L∞ norm of the exact solution against the computed solution.

Domain 1: It is formed by the union of two tetrahedra which share a common

face.

Domain 2: This is a cube of volume one which has been subdivided into six

tetrahedra.
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Dirichlet problem

We used three different functions referred here as Case 1, Case 2 and Case 3.

Case 1

g =
1

(1 + x+ y + z)

Case 2

g = exp(x+ y + z)

Case 3

g = x(1 − x)y(1 − y)z(1 − z)

Case 1 on Domain 1

Tetrahedra d=1 d=2 d=3 d=4

2 1.7843e-01 4.5769e-02 1.3600e-02 4.1600e-03

2*8=16 8.5714e-02 1.3333e-02 2.4341e-03 4.8623e-04

16*8=128 3.3333e-02 2.9091e-03 2.4242e-04 1.2929e-05

Tetrahedra d=5 d=6

2 1.3840e-03 4.7872e-04

2*8=16 8.8778e-05 1.4836e-05

16*8=128 8.7533e-07 1.0004e-07

Case 1 on Domain 2

Tetrahedra d=1 d=2 d=3 d=4

6 2.4970e-01 8.8714e-02 3.0960e-02 9.9400e-03

6*8=48 1.2840e-01 2.8725e-02 6.6883e-03 1.4325e-03

48*8=384 5.6960e-02 7.2349e-03 7.1840e-04 7.3832e-05
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Tetrahedra d=5 d=6

6 3.5671e-03 1.1280e-03

6*8=48 2.1880e-04 4.8372e-05

Case 2 on Domain 1

Tetrahedra d=1 d=2 d=3 d=4

2 1.5133e+00 2.1341e-01 2.6450e-02 3.0118e-03

2*8=16 5.7198e-01 3.9187e-02 2.4344e-03 1.4138e-04

16*8=128 1.7646e-01 5.9955e-03 1.5414e-04 2.1317e-06

Tetrahedra d=5 d=6

2 2.9148e-04 2.7069e-05

2*8=16 6.2745e-06 2.1893e-07

16*8=128 .0073e-08 9.4241e-10

Case 2 on Domain 2

Tetrahedra d=1 d=2 d=3 d=4

6 6.4017e+00 1.3922e+00 2.3880e-01 3.2070e-02

6*8=48 2.7623e+00 2.9100e-01 2.5136e-02 1.7554e-03

48*8=384 9.5226e-01 4.9066e-02 1.5654e-03 5.0882e-05

Tetrahedra d=5 d=6

6 4.0221e-03 3.9298e-04

6*8=48 7.9726e-05 4.6256e-06
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Case 3 on Domain 1

Tetrahedra d=1 d=2 d=3 d=4

2 1.5625e-02 5.9040e-03 4.2236e-03 1.4040e-03

2*8=16 8.7891e-03 2.2748e-03 5.9727e-04 1.8647e-04

16*8=128 3.2971e-03 4.7640e-04 6.0321e-05 3.5633e-06

Tetrahedra d=5 d=6

2 1.0287e-03 2.6021e-17

2*8=16 1.4766e-05 7.4593e-17

16*8=128 1.3051e-07 2.2465e-16

Case 3 on Domain 2

Tetrahedra d=1 d=2 d=3 d=4

6 1.5625e-02 7.1057e-03 5.3931e-03 1.2742e-03

6*8=48 9.8141e-03 2.0937e-03 5.6773e-04 1.2085e-04

48*8=384 4.4806e-03 4.7148e-04 4.6600e-05 4.6553e-06

Tetrahedra Size d=5 d=6

6 6.4223e-04 1.5451e-16

6*8=48 9.5319e-06 3.5388e-16

Neumann problem

We used three different functions for the Neumann problem referred here as Case 1,

Case 2 and Case 3.
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Case 1

g = x(1 − x)y(1 − y)z(1 − z)

Case 2

g =
1

(1 + x+ y + z)

Case 3

g = exp(x+ y + z)

Case 1 on Domain 1

Tetrahedra 2 16 128

d=2 6.0156e-03 2.9306e-03 6.7992e-04

d=3 8.9427e-03 7.9836e-04 6.8210e-05

d=4 1.7623e-03 1.9041e-04 8.0530e-06

d=5 8.5063e-04 1.3493e-05 2.1078e-07

Case 1 on Domain 2

Tetrahedra 6 48

d=2 6.9085e-03 4.3158e-03

d=3 1.0547e-02 1.0358e-03

d=4 3.5039e-03 3.1497e-04

d= 5 1.4400e-03 2.3231e-05

Case 2 on Domain 1

Tetrahedra 2 16 128

d=2 8.5733e-02 2.4247e-02 5.2087e-03

d=3 2.5626e-02 4.6303e-03 5.9077e-04

d=4 7.6899e-03 8.5796e-04 5.7704e-05

d=5 2.0860e-03 1.5101e-04 5.5329e-06
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Case 2 on Domain 2

Tetrahedra 6 48

d=2 2.9245e-01 5.9019e-02

d=3 6.6962e-02 1.4796e-02

d=4 3.6261e-02 3.6754e-03

d= 5 8.6099e-03 8.7173e-04

Case 3 on Domain 1

Tetrahedra 2 16 128

d=2 6.7937e-01 8.6980e-02 1.1454e-02

d=3 4.1252e-02 2.9073e-03 2.3591e-04

d=4 8.5352e-03 2.6622e-04 8.5578e-06

d=5 3.9107e-04 5.5686e-06 1.1284e-07

Case 3 on Domain 2

Tetrahedra 6 48

d=2 3.6439e+00 6.1377e-01

d=3 3.6204e-01 3.6476e-02

d=4 1.0515e-01 4.1420e-03

d= 5 7.1862e-03 1.7644e-04

We have presented numerical evidence that our scheme is convergent. We now

continue with the biharmonic equation.
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5.2 The Case of the biharmonic Equation

Let Ω be an open bounded subset of R3 with a Lipschitz continuous boundary ∂Ω.

We will study the boundary value problem
∆2u = f in Ω

u = g on ∂Ω

∂u
∂n

= h in ∂Ω,

where u : Ω → R is the unknown and f : Ω → R, are given with h and g defined on

∂Ω with values in R satisfying the following compatibility condition: There exists

u0 : Ω → R such that

u0 = g on ∂Ω,

∂u0

∂n
= h.

We have

∆2u =
∂4u

∂x4
+
∂4u

∂y4
+
∂4u

∂z4
+ 2

∂4u

∂x2∂y2
+ 2

∂4u

∂x2∂z2
+ 2

∂4u

∂y2∂z2
.

Let’s first assume that the solution u is smooth and multiply the PDE by a test

function v ∈ D(Ω). We get after integrating over Ω,∫
Ω

∆2u v =

∫
Ω

f v.

By Green’s formula, we have∫
Ω

∆2u v =

∫
Ω

∆(∆u) v

= −
∫

Ω

∇(∆u) · ∇v +

∫
∂Ω

∂∆u

∂n
v

= −
∫

Ω

∇(∆u) · ∇v as v = 0 on ∂Ω

=

∫
Ω

∆u ∆vdx+

∫
∂Ω

∂v

∂n
∆u.
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since v has compact support in Ω, ∂v
∂n

= 0 in a neighborhood of ∂Ω. So∫
Ω

∆2u =

∫
Ω

∆u ∆v.

We therefore have ∫
Ω

∆u ∆vdx =

∫
Ω

f v, ∀v ∈ D(Ω). (5.13)

Recall that H2
0 (Ω) is the closure of D(Ω) in H2(Ω) and

H2
0 (Ω) = {u ∈ H2(Ω), u = 0 on ∂Ω,

∂u

∂n
= 0 on ∂Ω},

where u = 0 on ∂Ω and ∂u
∂n

= 0 on ∂Ω are to be understood in the trace sense.

By approximation, (5.13) holds for all v in H2
0 (Ω). We notice that u−u0 satisfies

homogeneous boundary values, i.e.

u− u0 = 0 on ∂Ω and

∂(u− u0)

∂n
= 0 on ∂Ω

On the other hand, ∫
Ω

∆(u− u0)∆v =

∫
Ω

∆u∆v −
∫

Ω

∆u0∆v

=

∫
Ω

fv − ∆u0v.

We introduce

a(u, v) =

∫
Ω

∆u ∆v, ∀u, v ∈ H2
0 (Ω),

and assume f ∈ H−2(Ω), u0 in H2(Ω). We denote

〈f, v〉 =

∫
Ω

f v. (5.14)

We are lead to consider the problem:

(P ) Find w ∈ H2
0 (Ω)

a(w, v) = 〈f, v〉 − a(u0, v), ∀v ∈ H2
0 (Ω).
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Then u = w + u0 solves the problem. Notice that we have reduced the problem to

finding the solution in H2
0 (Ω). In view of the Lax-Milgram lemma, we need to show

that a is continuous and elliptic on H2
0 (Ω). We have

|a(u, v)| = |
∫

Ω

∆u ∆v| ≤ ||∆u||L2(Ω)||∆v||L2(Ω)

and

||∆u||L2(Ω) ≤ ||∂
2u

∂x2
||L2(Ω) + ||∂

2u

∂y2
||L2(Ω) + ||∂

2u

∂z2
||L2(Ω)

≤ ||u||H2
0(Ω),

so

|a(u, v)| ≤ ||u||H2
0(Ω)||v||H2

0 (Ω).

On the other hand, for v ∈ D(Ω),

||∆v||2L2(Ω) =

∫
Ω

|∂
2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
|2

=

∫
Ω

(
∂2u

∂x2
)2 + (

∂2u

∂y2
)2 + (

∂2u

∂z2
)2

+ 2
∂2u

∂x2

∂2u

∂y2
+ 2

∂2u

∂y2

∂2u

∂z2
+ 2

∂2u

∂x2

∂2u

∂z2
.

(5.15)

Using Green’s formula and interchanging derivatives, we have∫
Ω

∂2u

∂x2

∂2u

∂y2
= −

∫
Ω

∂u

∂x

∂3u

∂x∂y2

=

∫
Ω

∂2u

∂x∂y

∂2u

∂x∂y

and similar treatments for the terms with mixed derivatives in (5.15). This gives

||∆v||2L2(Ω) = |v|22,Ω, ∀v ∈ D(Ω).

By density, this is true for all v ∈ H2
0 (Ω). Since ||v||2,Ω and |v|2,Ω are two equivalent

norms on H2
0 (Ω), there’s a constant M > 0 such that

a(v, v) = ||∆v||2L2(Ω) ≥M ||v||22,Ω.
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We conclude that the problem (P ) has a unique solution w0 = u− u0 in H2(Ω). By

the corollary (4.2.2) of the Lax-Milgram lemma, w0 minimizes the functional

J(w) =
1

2
a(w,w) − 〈f, w〉 + a(u0, w)

over H2
0 (Ω). We show that u minimizes the functional

L(v) =
1

2
a(v, v) − 〈f, v〉

over V = {v ∈ H2(Ω), v − u0 ∈ H2
0 (Ω)}. This type of argument has been fully

explained when we dealt with the Dirichlet problem for the Poisson equation.

For v ∈ V , v = u0 + w for some w ∈ H2
0 (Ω). We have

L(v) = L(u0 + w) = J(w) + L(u0),

which shows that the minimum of L is reached for u0 + w0 = u.

5.2.1 Spline Approximations of the biharmonic Equation

We seek to replace the problem of minimizing L(v) over V by a minimization problem

over a subset of V . Recall that

Sr
d(Ω) = {p ∈ Cr(Ω), p|t ∈ Pd, ∀t ∈ ∆},

where ∆ is a tetrahedral decomposition of Ω.

For r ≥ 1, we have

Sr
d(Ω) ⊆ S1

d(Ω) ⊂ H2(Ω).

Next, we want to construct a subset of Sr
d(Ω) whose elements satisfy the boundary

conditions u = g and ∂u
∂n

= h on ∂Ω. If a tetrahedral partition is fixed, let nth be

the number of tetrahedra and nbf the number of boundary faces. Recall that the

boundary interpolation operator Πd
b is defined as follows:

Πd
b : C0(∂Ω) → Rnbf∗dbf ,
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with dbf =
(

d+2
2

)
.

On the other hand, there’s a matrix B such that given the B-net c of an element

u of Sr
d(Ω)

Bc = Πd
b(u|∂Ω).

To satisfy the boundary condition ∂u
∂n

= h, we look at the cijk1, i+ j + k = d− 1.

If n is the unit normal to the boundary face face = 〈v1, v2, v3〉 with T -coordinates

(a1, a2, a3, a4) with respect to 〈v1, v2, v3, v4〉 and if

p =
∑

i+j+k+l=d

cijklB
d
ijkl

on 〈v1, v2, v3, v4〉 then

∂p

∂n
= d

∑
i+j+k+l=d−1

c
(1)
ijklB

d−1
ijkl ,

with c
(1)
ijkl(a1, a2, a3, a4) = a1ci+1,j,k,l + a2ci,j+1,k,l + a3ci,j,k+1,l + a4ci,j,k,l+1.

To simplify the discussion, let’s consider only one boundary face face =

〈v1, v2, v3〉. If we write Πd−1
b (∂u0

∂n
) = {dijk, i+ j + k = d− 1} then

dijk = dc
(1)
ijk0,

so

dijk

d
= a1ci+1,j,k,0 + a2ci,j+1,k,0 + a3ci,j,k+1,0 + a4ci,j,k,1.

Now a4 	= 0 otherwise n is in the face (v1, v2, v3) and the cijk0 can be computed from

Πd
b(u0) so

cijk1 =
dijk

d
− a1ci+1,j,k,0 − a2ci,j+1,k,0 − a3ci,j,k+1,0.

The cijk1, i + j + k = d − 1 can be associated to a layer of coefficients along the

boundary face face = 〈v1, v2, v3〉. This process can be repeated along each boundary
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face defining a layer of coefficients along the boundary L(u0,
∂u0

∂n
). Therefore there’s

a matrix N such that

Nc = L(u0,
∂u0

∂n
).

Identifying a spline with its B-net, with n=dimPd, we approximate V by

S = {c ∈ Rn∗nth, Hc = 0, Bc = Πd
b(u|∂Ω), Nc = L(u0,

∂u0

∂n
)}.

For simplicity, we write

Πd
b(u|∂Ω) = G1,

L(u0,
∂u0

∂n
) = G2.

We now proceed to give the expression of the functional L on elements of S. Iden-

tifying again a spline with its B-net, let u =
∑

t

∑n
γ=1 c

t
γB

d
γ be an element of

Sr
d(Ω) and Π(f) =

∑
t

∑n
α=1 f

t
αB

d
α where Π is the global interpolation operator.

We represent the B-net of Π(f) by F. We also introduce the local mass matrix

M t = (
∫

t
Bd

αB
d
β)α,β=1,... ,n and denote by M the corresponding global mass matrix.

Kt = (
∫

t
∆Bd

α∆Bd
β)α,β=1,... ,n is the local bending matrix and we denote by K the

global bending matrix. L is written as

L(c) =
1

2

∫
Ω

|∆u|2 −
∫

Ω

fu

=
1

2

∑
t

∫
t

|∆u|2 −
∑

t

∫
t

fu

=
1

2

∑
t

n∑
α=1,β=1

ctαc
t
β

∫
t

∆Bd
α∆Bd

β −
∑

t

n∑
α=1,β=1

f t
αc

t
β

∫
t

Bd
αB

d
β

=
1

2

∑
t

(ct)TKtct −
∑

t

(F t)TM t

=
1

2
(c)TKc − (F)TM.

We seek to minimize L on Rn∗nth under the constraints Hc = 0, Bc = G1 and

Nc = G2. This leads to the existence of Lagrange multipliers λ1, λ2, and λ3 such
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that

Kc +HTλ1 +BTλ2 +NTλ3 = MF,

Hc = 0,

Bc = G1,

Nc = G2.

This can be assembled into an equation

HT BT NT K

0 0 0 H

0 0 0 B

0 0 0 N





λ1

λ2

λ3

c


=



MF

0

G1

G2


,

where we used the symmetry of K and M . The matrix A =



HT BT NT K

0 0 0 H

0 0 0 B

0 0 0 N


is in general singular so the solution may not be unique. We compute a least squares

solution of Ax − b = 0, where b =



MF

0

G1

G2


. When ||Ax − b|| is sufficiently close

to 0, we conclude that the least squares solution is sufficiently close to the unique

solution of the problem.

5.2.2 Numerical results

These are numerical solutions for the 3D biharmonic equation which are continu-

ously differentiable across tetrahedral elements which do not share a face with the
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boundary. The domains we considered are

Domain 1: It is formed by the union of two tetrahedra which share a common

face.

Domain 2: This is a cube of volume one which has been subdivided into six

tetrahedra.

Domain 3: The domain here is a cube of volume one subdivided into twelve

tetrahedra.

We used three different functions referred here as Case 1, Case 2 and Case 3.

Case 1

g = exp(−x2 − y2 − z2)

Case 2

g =
1

(1 + x+ y + z)

Case 3

g = x(1 − x)y(1 − y)z(1 − z)

Case 1 on Domain 1

Tetrahedra 2 16 128

d=2 1.0670e-01 2.0087e-02 5.3872e-003

d=3 4.7370e-02 4.3863e-03 4.6657e-004

d=4 7.2332e-03 9.5736e-04 1.9150e-004

d=5 2.5899e-03 2.3387e-04 Out of memory
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Case 1 on Domain 2

Tetrahedra 6 48

d=2 1.5571e-01 5.9921e-02

d=3 6.4337e-02 9.1870e-03

d=4 1.0803e-02 5.9974e-03

d=5 1.2830e-02 Out of memory

Case 1 on Domain 3

Tetrahedra 12 96

d=2 9.4943e-02 1.5165e-02

d=3 1.3830e-02 3.9260e-03

Case 2 on Domain 1

Tetrahedra 2 16 128

d=2 6.2603e-02 2.5915e-02 5.4551e-003

d=3 3.0805e-02 4.2892e-03 5.4194e-004

d=4 7.2832e-03 8.4560e-04 2.5875e-004

d=5 2.5425e-03 1.6797e-04 Out of Memory

Case 2 on Domain 2

Tetrahedra 6 48

d=2 1.2833e-01 8.2672e-02

d=3 1.0845e-01 1.5910e-02

d=4 2.3205e-02 6.2875e-03

d=5 2.1838e-02 Out of memory
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Case 2 on Domain 3

Tetrahedra 12 96

d=2 1.1648e-01 3.4038e-02

d=3 2.0580e-02 3.4276e-03

Case 3 on Domain 1

Tetrahedra 2 16 128

d=2 9.0998e-03 5.1188e-03 1.2035e-003

d=3 9.4522e-03 1.3539e-03 2.0061e-004

d=4 3.1107e-03 3.1121e-04 1.6199e-004

d=5 1.8457e-03 1.4199e-04 Out of memory

Case 3 on Domain 2

Tetrahedra 6 48

d=2 1.5625e-02 7.3145e-03

d=3 1.3468e-02 1.9666e-03

d=4 5.1264e-03 1.6385e-03

d=5 8.4341e-03 Out of memory

Case 3 on Domain 3

Tetrahedra 12 96

d=2 1.5625e-02 5.0647e-03

d=3 5.1140e-03 1.5260e-03



Chapter 6

The Navier-Stokes Equations

In this chapter we derive the Navier-Stokes equations from physical considerations,

then we consider approximations of the Stokes equations and the Navier-Stokes

equations.

6.1 Derivation of The Equations

We give a heuristic derivation of the Navier-Stokes equations describing the motion of

an incompressible viscous Newtonian fluid in R3. The derivation is based on [Doering

and Gibbon’95]. We’ll use three considerations: material properties, Newton’s second

law and conservation of mass.

The viscosity of the fluid describes its tendency to resist shearing motions. In

mechanics, shearing forces are described by the stress tensor S. The component Sij

of the stress tensor is the force per unit area in the jth direction acting across an

area element whose normal is in the ith direction. Forces in the direction of the

normal to an area element, (Sii), are associated to the pressure and those that act

in the plane of the element are associated with shear stresses. We have the following

decomposition of the stress tensor into portions due to the pressure P and the shear

stress tensor Tij ,

Sij = −δijP + Tij . (6.1)

71
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Since the fluid is Newtonian, the shear stress tensor T is a linear function of the rate

of strain tensor Uij = ∂ui

∂xj
+

∂uj

∂xi
, i.e.

T = αU, (6.2)

where α is a material parameter, the viscosity of the fluid. We are using here

∂
∂xi
, i = 1, 2, 3 to represent respectively ∂

∂x
, ∂

∂y
and ∂

∂z
. The rate of the strain tensor

characterizes the deviation of the fluid motion from a rigid body motion.

The dependent variables in the description of the motion of the fluid are the

density of the fluid ρ(x, t), the velocity vector field u(x, t), and the pressure P (x, t)

for x = (x, y, z) in R3.

We consider an infinitesimal element of the fluid of volume δV and mass δm

located at position x at time t moving with the velocity u(x, t). The forces that

act on the fluid depend on the direction of the force and the orientation of the area

across which the forces act. So if we consider a rectangular shaped portion of fluid

centered at x with side lengths (δx, δy, δz), the net force on the fluid in the jth

direction is

δFj = (S1j(x+
δx

2
, y, z) − S1j(x−

δx

2
, y, z))δyδz

+ (S2j(x, y +
δy

2
, z) − S2j(x, y −

δy

2
, z))δxδz

+ (S3j(x, y, z +
δz

2
) − S3j(x, y, z −

δz

2
))δxδz.

Using a Taylor expansion around x and keeping only the first order terms, we get

δFj = (
∂S1j(x, y, z)

∂x
+
∂S2j(x, y, z)

∂y
+
∂S3j(x, y, z)

∂z
) δxδyδz.

Hence,

δF = ∇ · S δV, (6.3)



73

where for a tensor Sij , ∇ · S is the vector of components (
∂S1j

∂x
+

∂S2j

∂y
+

∂S3j

∂z
). Using

(6.1) and (6.2), we have

∇ · S = −∇P + α∇ · U. (6.4)

Letting f encode the external body forces per unit mass e.g. gravity and δF encode

the internal forces, Newton’s second law for the element of fluid mass δm at position

δx is

d

dt
(δm u(x, t)) = δF + δmf . (6.5)

Here d
dt

refers to the convective derivative defined as the rate of change with respect

to an observer moving with the fluid. To be precise, for a function f(x, t),(
df(x, t)

dt

)
fixed position

= lim
δ→0

f(x, t+ δt) − f(x, t)

δt
=
∂f(x, t)

∂t

and (
df(x, t)

dt

)
moving

= lim
δ→0

f(x + uδt, t+ δt) − f(x, t)

δt

=
∂f(x, t)

∂t
+ u · ∇f(x, t).

(6.5) gives

dδm

dt
u(x, t) + δm

du(x, t)

dt
= δF + δmf . (6.6)

We now use the consideration that mass is conserved:

dδm

dt
= 0.

Therefore (6.6) implies

δm(
∂u(x, t)

∂t
+ u · ∇u(x, t)) = δF + δmf = ∇ · S δV + δmf ,
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so

∂u(x, t)

∂t
+ u · ∇u(x, t) =

1

ρ(x, t)
∇ · S + f

=
1

ρ(x, t)
(−∇P + α∇ ·U) + f ,

(6.7)

where ρ(x, t) = δm
δV

is the density of the fluid. As the fluid is incompressible its

volume does not change under motion. Therefore since the mass is conserved so is

the density. Therefore dρ
dt

= 0 and ρ(x, t) =constant. We write ρ(x, t) = ρ. On the

other hand, as mass is conserved

dρ

dt
=

d

dt

δm

δV
= − δm

(δV )2

dδV

dt
(6.8)

and

δV = δxδyδz,

so

dδV

dt
=

dδx

dt
δyδz + δx

dδy

dt
δz + δxδy

dδz

dt
.

For an observer moving with the fluid, the length elements δx, δy and δz increase or

decrease according to the relative velocity of their endpoints. So

dδx

dt
= u1(x+

δx

2
, y, z, t) − u1(x−

δx

2
, y, z, t) =

∂u1

∂x
δx

and likewise for the other components. We then get

dδV

dt
= (∇ · u)δV,

so using (6.8)

dρ

dt
= −δm

δV
∇ · u.

Since dρ
dt

= 0 we see that mathematically the condition of incompressibility is simply

∇ · u = 0.
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A consequence of the incompressibility condition is a simplification of the term ∇·U,

the divergence of the rate of strain tensor; ∇ · U is the vector of components

3∑
j=1

∂

∂xj

(∂ui

∂xj
+
∂uj

∂xi

)
=

3∑
j=1

∂2ui

∂x2
j

+

3∑
j=1

∂2ui

∂xj∂xi

= ∆ui +
∂

∂xi
(∇.u)

= ∆ui.

We now rewrite (6.7) as

∂u(x, t)

∂t
+ u · ∇u(x, t) = −∇P

ρ
+
α

ρ
∆u + f (6.9)

We set p = P
ρ

and ν = α
ρ
. Here, p is the kinematic pressure and ν the kinematic

viscosity which will be called in the sequel for simplicity pressure and viscosity

respectively. The Navier-Stokes equations are
∂u(x,t)

∂t
− ν∆u + u · ∇u(x, t) + ∇p = f

∇ · u = 0.

We shall consider in this dissertation two simplifications of the equations. We’ll deal

with the stationary case

∂u

∂t
= 0

and we shall investigate the situation where the velocity is sufficiently small to ignore

the nonlinear term u · ∇u(x, t), the so-called Stokes equations.

6.2 Spline Approximations of the Stokes Equations

We consider numerical approximations of the 3D Stokes equations in velocity-

pressure formulation. The pressure is eliminated from the equations by using a set

of velocity fields which are divergence free. The later is discretized by means of

splines of arbitrary degree and arbitrary smoothness. We then minimized the energy
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functional associated with the variational problem over the set of splines to get the

velocity vector. The pressure term is computed by solving a Poisson problem with

Neumann boundary conditions.

6.2.1 Existence and uniqueness of solution

The Stokes equations are a linearized version of the Navier-Stokes equations. For an

incompressible viscous fluid in a bounded domain Ω of R3, the Stokes equations are
−ν∆u + ∇p = f in Ω

div u = 0 in Ω

u = g on ∂Ω.

(6.10)

The unknowns here are the velocity u = (u1, u2, u3)
T of the fluid and the pressure p;

ν is the kinematic viscosity, f = (f1, f2, f3) represents the externally applied forces

(e.g. gravity) and g = (g1, g2, g3) the velocity at the boundary. We immediately

notice using the divergence theorem that

0 =

∫
Ω

div u =

∫
∂Ω

g · n.

g must therefore satisfy the compatibility condition
∫

∂Ω
g · n = 0.

Let V0 be the closure in H1
0 (Ω)3 of

{v ∈ D(Ω)3, such that div v = 0}.

Since Ω is assumed to have piecewise planar boundary,

V0 = {v ∈ H1
0 (Ω)3 such that div v = 0},

[cf. Galdi’94]. If we take the inner product of the first equation in (6.10) with v ∈

D(Ω)3 satisfying div v = 0 and by a density argument, we get a weak form of the

equations

ν

∫
Ω

∇u · ∇v =

∫
Ω

f · v, ∀v ∈ V0
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since ∫
Ω

∇p · v = −
∫

Ω

p div v = 0.

On the other hand, since the equations involve ∇p, the pressure will be unique up to

an additive constant. To have uniqueness, one can prescribe the value of the pressure

at a point or require it to have zero mean. We therefore introduce

L2
0(Ω) = {p ∈ L2(Ω),

∫
Ω

p = 0}.

We have the following existence and uniqueness results, [Girault and Raviart’86]:

Theorem 6.2.1 Let Ω be a bounded and connected open subset of R3 with a Lip-

schitz continuous boundary ∂Ω. For f ∈ H−1(Ω)3 and g ∈ H
1
2 (∂Ω)3 satisfying∫

∂Ω

g · n = 0,

the problem: Find (u, p) ∈ H1(Ω)3 × L2
0(Ω) such that

−ν ∆u + ∇p = f in Ω

div u = 0 in Ω

u = g on ∂Ω

has a unique solution. (Here the first two equations should be interpreted in the sense

of distributions and the last one in the trace sense.) Moreover letting

V = {u ∈ H1(Ω)3,u = g on ∂Ω, div u = 0 in Ω},

the velocity u is the unique minimizer in V of the functional

J(u) =
ν

2

∫
Ω

∇u · ∇u−
∫

Ω

f · u.

Proof : Recall that the weak form of the equations is:

(P ) Find u ∈ V such that ν

∫
Ω

∇u · ∇v =

∫
Ω

f · v, ∀v ∈ V0.
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Let a(u,v) = ν
∫

Ω
∇u · ∇v. The bilinear form a is continuous on V . Since

a(v,v) = ν

∫
Ω

|∇v|2 = ν|v|2(H1
0 (Ω))3 ,

where |v|2
(H1

0 (Ω))3
= |v1|2 + |v2|2 + |v3|2 defines a norm on H1

0 (Ω)3. By Poincare’s

inequality, a is V0 elliptic.

Now, there’s u0 ∈ (H1(Ω))3 such that div u0 = 0 in Ω and u0 = g on ∂Ω, [Girault

and Raviart’86]. Let w = u− u0. For u ∈ V , w ∈ V0 satisfies

a(w,v) =

∫
Ω

f · v + a(u0,v), ∀v ∈ V0.

By the Lax-Milgram lemma, such a problem has a unique solution w. As a conse-

quence problem (P ) has a unique solution u = w + u0.

Since a is symmetric, by the corollary (4.2.2) of the Lax-Milgram lemma, w = u−u0

is the unique minimizer over V0 of

K(v) =
1

2
a(v,v) −

(∫
Ω

f · v + a(u0,v)

)
.

We show that u is the unique minimizer in V of

J(v) =
1

2
a(v,v) −

∫
Ω

f · v.

Notice that V = V0 + u0. For v ∈ V0,

J(v + u0) = K(v) + J(u0).

Since w minimizes K , w + u0 = u minimizes J in V . Such a minimizer is unique

since it is a solution of problem (P ). This completes the proof.

Let u ∈ V be a solution of (P ). We have

ν

∫
Ω

∇u · ∇v =

∫
Ω

f · v, ∀v ∈ D(Ω)3 such that div v = 0.

Using Green’s formula, this gives∫
Ω

(−ν∆u − f)v = 0, ∀v ∈ D(Ω)3 such that div v = 0.
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This implies the existence of p ∈ L2(Ω) such that

−ν∆u − f = −∇p,

as elements of D(Ω)′, [Girault and Raviart’86]. This shows the existence of (u, p)

satisfying (6.10).

6.2.2 Spline approximations

We first consider approximations of the velocity vector field and then we approximate

the pressure using a Neumann equation that couples the pressure and the velocity

on the boundary.

Approximation of the velocity

We now construct a finite dimensional approximation of V . We denote by pi, 1 ≤

i ≤ 3 an approximant of ui and ci the B-net of pi. We therefore have

pi|t =

n∑
s=1

cti,sB
d
s , i = 1, 2, 3. (6.11)

cti encodes the B-net of pi on t and ci its B-net on ∆. Let

S = {(p1, p2, p3) ∈ Sr
d(Ω)3, (p1|∂Ω, p2|∂Ω, p3|∂Ω) = (Πd

b(g1),Π
d
b(g2),Π

d
b(g3)),

∂p1

∂x1

+
∂p2

∂x2

+
∂p3

∂x3

= 0 in each t ∈ ∆}

where Πd
b is the boundary interpolation operator. Recall that there’s a matrix R

such that

Rci = Πd
b(pi|∂Ω), ∀i = 1, 2, 3.

We will denote Πd
b(gi) by Gi. On the other hand, there are matrices Di such that Dici

is the B-net of ∂pi

∂xi
. Di has size (m ∗ nth, n ∗nth), with n =dimPd and m =dimPd−1.

For example, let

p =
∑

α+β+γ+δ=d

cαβγδB
d
αβγδ



80

be the B-form of a polynomial of degree d on t = 〈v1, v2, v3, v4〉. If (a1, a2, a3, a4) are

the T -coordinates of the unit vector of the xi axis with respect to t, then

∂pi

∂xi

=
∑

α+β+γ+δ=d−1

c
(1)
αβγδ(a1, a2, a3, a4)B

d−1
αβγδ

with

c
(1)
αβγδ(a1, a2, a3, a4) = d(a1cα+1,β,γ,δ + a2cα,β+1,γ,δ + a3cα,β,γ+1,δ

+ a4cα,β,γ,δ+1).

For d = 2, the B-net of p is

(c2000, c1100, c0200, c1010, c0110, c0020, c1001, c0101, c0011, c0002)
T

and the one of ∂pi

∂xi
is

(c
(1)
1000, c

(1)
0100, c

(1)
0010, c

(1)
0001)

T

and Di has form 

a1 a2 0 a3 0 0 a4 0 0 0

0 a1 a2 0 a3 0 0 a4 0 0

0 0 0 a1 a2 a3 0 0 a4 0

0 0 0 0 0 0 a1 a2 a3 a4


.

With a fixed triangulation of nth tetrahedra, identifying a spline with its B-net, S

can be described as

S = {(c1, c2, c3) ∈ (Rn∗nth)3, Hci = 0, i = 1, 2, 3,

Rci = Gi, i = 1, 2, 3, D1c1 +D2c2 +D3c3 = 0}.

We now show that J still has a unique minimizer in S. Let

S0 = {(p1, p2, p3) ∈ Sr
d(Ω)3, (p1|∂Ω, p2|∂Ω, p3|∂Ω) = (0, 0, 0),

∂p1

∂x1

+
∂p2

∂x2

+
∂p3

∂x3

= 0 in each t ∈ ∆}.
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We have S0 ⊂ (H1
0 (Ω))3, and a is also S0- elliptic. Therefore K has a unique mini-

mizer in S0. Now

S0 + ((Πd
b(g1),Π

d
b(g2),Π

d
b(g3))) = S

and arguing as in the continuous case we see that J has a unique minimizer in S

which is solution of the variational problem:

Find u ∈ S such that a(u,v) = 〈f ,v〉 ∀v ∈ S.

We now give an explicit expression of J in terms of the B-nets of elements of S. we

have

J(u) =
ν

2

∑
t

∫
t

|∇u|2 −
∑

t

∫
t

f · u

=
ν

2

3∑
j=1

∑
t

∫
t

|∇uj|2 −
3∑

j=1

∫
t

fjuj.

Let u = (p1, p2, p3) with the pi as defined in (6.11). We write Πd
b(fi|t) = F t

i which can

also be written Πd
b(fi|t) =

∑n
α=1 f

t
i,αB

d
α and Πd

b(fi) = Fi. We also introduce the local

mass matrix M t = (
∫

t
Bd

αB
d
β)α,β=1,... ,n and denote by M the corresponding global

mass matrix. Kt = (
∫

t
∇Bd

α∇Bd
β)α,β=1,... ,n is the local stiffness matrix and we denote

by K the global stiffness matrix. We have

J(u) = J(c1, c2, c3) =
ν

2

3∑
j=1

∑
t

n∑
α=1,β=1

ctj,αc
t
j,β

∫
t

∇Bd
α∇Bd

β

+

3∑
j=1

∑
t

n∑
α=1,β=1

f t
j,αc

t
j,β

∫
t

Bd
αB

d
β

=
ν

2

3∑
j=1

∑
t

n∑
α=1,β=1

(ctj)
TKtctj +

3∑
j=1

∑
t

(F t
j )M

tctj

=
ν

2

3∑
j=1

(cj)
TKcj +

3∑
j=1

(Fj)
TMcj .

We now introduce a few more notations. Let

c = (c1, c2, c3)
T , F = (F1, F2, F3)

T , G = (G1, G2, G3)
T
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and

M =


M 0 0

0 M 0

0 0 M

 , K =


K 0 0

0 K 0

0 0 K

 ,

H =


H 0 0

0 H 0

0 0 H

 , R =


R 0 0

0 R 0

0 0 R

 .

We finally introduce

D =
[
D1 D2 D3

]
,

where I is the identity matrix of Rm∗nth with m =dimPd−1. With these notations

J(c) = J(c1, c2, c3) =
ν

2
cTKc + FTMc

and

S = {c = (c1, c2, c3) ∈ (Rn∗nth)3, Hc = 0, Rc = G, Dc = 0}.

The problem of minimizing J over S is equivalent to that of minimizing J over

(Rn∗nth)3 under the constraints

Hc = 0, Rc = G, and Dc = 0.

We recall that this problem has a unique solution c. On the other hand there are

Lagrange multipliers λ1, λ2 and λ3 such that

νKc +H
T
λ1 +R

T
λ2 +DTλ3 = MF,

Hc = 0,

Rc = G,

Dc = 0.
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This can be written as an equation

Ax = b

with

A =



H
T

R
T

DT νK

0 0 0 H

0 0 0 R

0 0 0 D


x =



λ1

λ2

λ3

c


b =



MF

0

G

0


.

The equation can be solved using the matrix iterative algorithm or directly by seeking

for a least squares solution.

Approximation of the pressure

The pressure is computed by using an approximation of the velocity. Assuming that

u is smooth and taking the divergence of the first equation in(6.10), we get

−∆p = −div f

since div u = 0. This equation is supplied with Neumann boundary conditions

∂p

∂n
= ∇p · n = f · n + ν(∆u) · n, on ∂Ω.

We check the compatibility condition for this Neumann problem.∫
Ω

−div f +

∫
∂Ω

f · n + ν(∆u) · n =

∫
∂Ω

ν(∆u) · n

=

∫
Ω

ν div∆u

= ν

∫
Ω

∆ div u

= 0,

using the divergence theorem.
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6.2.3 Numerical results

For the following numerical results, the approximations of the velocity vector field

have continuous components over the domain and the pressure is globally continuous

with derivative continuously differentiable across tetrahedra which do not share a

face with the boundary.

Domain 1: This domain is formed by the union of two tetrahedra which share

a common face.

Domain 2: We consider a cube of volume one which has been subdivided into

six tetrahedra.

We consider three different vector fields g = (g1, g2, g3) with a corresponding

pressure p.

Case 1:

g1 = −exp(x+ 2y + 3z)

g2 = 2 exp(x+ 2y + 3z)

g3 = −exp(x+ 2y + 3z)

p = exp(x+ y + z)

Case 2:

g1 = 1/(1 + x+ y + z)

g2 = 1/(1 + x+ y + z)

g3 = −2/(1 + x+ y + z)

p = exp(x+ y + z)
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Case 3:

g1 = x(1 − x)y(1 − y)z(1 − z)

g2 = x(1 − x)y(1 − y)z(1 − z))

g3 = 1
6
z2(y + x− 1)(−x+ 2xy − y)(2z − 3)

p = exp(x+ y + z)

Case 1 on Domain 1 with d = 3

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 1.1233e+00 2.7279e+00 1.6173e+00 3.9290e+02

16 2.4754e-01 3.4290e-01 2.7805e-01 1.7609e+02

Case 1 on Domain 1 with d = 4

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 6.1316e-01 5.4653e-01 7.1343e-01 9.7319e+01

16 3.9387e-02 4.1184e-02 4.4533e-02 1.2710e+01

Case 1 on Domain 1 with d = 5

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 1.0361e-01 1.0863e-01 9.8393e-02 1.3007e+01

16 3.6605e-03 3.7574e-03 4.3928e-03 1.5159e+00

Case 1 on Domain 1 with d = 6

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 1.9113e-02 1.8891e-02 2.1345e-02 2.9372e+00

16 3.0237e-04 3.1482e-04 3.7262e-04 9.7706e-02
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Case 1 on Domain 2 with d = 3

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 3.3633e+01 5.9431e+01 4.0397e+01 1.3466e+03

48 1.5083e+01 1.8709e+01 1.5222e+01 4.4382e+02

Case 1 on Domain 2 with d = 4

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 1.7010e+01 4.4374e+01 3.5368e+01 3.8562e+02

48 9.4142e-01 2.2094e+00 1.8373e+00 3.5278e+01

Case 1 on Domain 2 with d = 5

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 2.3804e+00 7.3711e+00 5.9629e+00 9.8470e+01

Case 1 on Domain 2 with d = 6

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 3.9620e-01 1.2238e+00 1.0311e+00 2.7404e+01

Case 1 on Domain 2 with d = 7

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 6.7456e-02 1.9789e-01 1.6260e-01 6.8411e+00
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Case 2 on Domain 1 with d = 3

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 1.0605e-02 1.4174e-02 1.9953e-02 1.2741e+00

16 2.5841e-03 2.3599e-03 3.5273e-03 2.1682e-01

Case 2 on Domain 1 with d = 4

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 4.1169e-03 3.8110e-03 6.6898e-03 6.4602e-01

16 5.0246e-04 3.9061e-04 8.0557e-04 6.4369e-02

Case 2 on Domain 1 with d = 5

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 1.5548e-03 1.2819e-03 2.1008e-03 1.1806e-01

16 1.2103e-04 6.5984e-05 1.6800e-04 8.7476e-03

Case 2 on Domain 1 with d = 6

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 5.8664e-04 3.8984e-04 7.4313e-04 7.1244e-02

16 2.9003e-05 1.1554e-05 3.6974e-05 3.2856e-03

Case 2 on Domain 2 with d = 3

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 3.2488e-02 3.6178e-02 5.4013e-02 2.4606e+00

48 2.2367e-02 2.2244e-02 2.8100e-02 6.8163e-01
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Case 2 on Domain 2 with d = 4

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 2.9860e-02 2.9388e-02 5.5366e-02 6.8644e-01

48 2.8115e-03 2.7051e-03 4.4312e-03 9.8769e-02

Case 2 on Domain 2 with d = 5

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 7.1485e-03 6.9051e-03 1.3065e-02 2.4031e-01

Case 2 on Domain 2 with d = 6

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 2.0444e-03 1.9881e-03 3.6732e-03 1.0345e-01

Case 2 on Domain 2 with d = 7

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 6.0114e-04 5.6334e-04 1.0620e-03 4.1101e-02

Case 3 on Domain 1 with d = 3

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 5.4823e-03 5.1512e-03 4.8780e-03 2.9874e-01

16 1.2800e-03 1.1522e-03 1.5770e-03 1.6408e-01
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Case 3 on Domain 1 with d = 4

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 2.6458e-03 2.3774e-03 2.1849e-03 2.9295e-01

48 4.2214e-04 2.3788e-04 3.7809e-04 5.8393e-02

Case 3 on Domain 1 with d = 5

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 2.1517e-03 1.0184e-03 1.9192e-03 3.1441e-01

16 4.0894e-05 3.0021e-05 3.6268e-05 9.4051e-03

Case 3 on Domain 1 with d = 6

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 3.9761e-09 2.3460e-09 3.9761e-09 1.5114e-03

16 5.2753e-11 5.3180e-11 5.2753e-11 3.9759e-05

Case 3 on Domain 2 with d = 3

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 1.4097e-02 1.6179e-02 1.9143e-02 1.9427e+00

48 1.7650e-03 1.8291e-03 3.4444e-03 5.5009e-01

Case 3 on Domain 2 with d = 4

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 3.4925e-03 3.6196e-03 8.8974e-03 2.5283e-01

48 3.7584e-04 3.7287e-04 4.4346e-04 9.3024e-02
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Case 3 on Domain 2 with d = 5

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 2.5998e-03 2.5998e-03 2.8143e-03 6.5884e-02

Case 3 on Domain 2 with d = 6

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 2.5384e-07 2.5384e-07 2.5384e-07 1.3852e-02

Case 3 on Domain 2 with d = 7

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 2.3598e-08 2.3598e-08 2.3598e-08 2.6995e-03

6.3 Spline Approximations of the Navier-Stokes Equations

The Navier-Stokes equations which govern the motion of an incompressible viscous

fluid in a bounded domain Ω of R3 are −ν ∆u +
∑3

j=1 uj
∂u
∂xj

+ ∇p = f in Ω,

div u = 0 in Ω.
(6.12)

The unknowns here are the velocity u = (u1, u2, u3)
T of the fluid and the pressure p.

The kinematic viscosity ν and f = (f1, f2, f3) which represents the externally applied

forces (e.g. gravity) are given. The stress on the fluid is encoded in the nonlinear

term.
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6.3.1 The continuous problem

We shall deal with the Dirichlet boundary condition. To prescribe the velocity on

the boundary ∂Ω of Ω, we set u = g on ∂Ω. In view of the divergence theorem, g

must satisfy the compatibility condition∫
∂Ω

g · n = 0 (6.13)

where n is the unit outer normal to ∂Ω.

Formally, by taking the scalar product of equation (6.12) with v ∈ H1
0 (Ω) satis-

fying div v = 0, we get a weak form of the Navier-Stokes equations: Find u ∈ H1(Ω)3

such that

ν

∫
Ω

∇u · ∇v +
3∑

j=1

∫
Ω

uj
∂u

∂xj

· v =

∫
Ω

f · v ∀v ∈ V0 (6.14)

div u = 0 in Ω (6.15)

u = g on ∂Ω, (6.16)

where

V0 = {v ∈ H1
0 (Ω)3, div v = 0}.

Let

L2
0(Ω) = {u ∈ L2(Ω),

∫
Ω

u = 0} and

H
1
2 (∂Ω) = {τ(u), u ∈ H1(Ω)},

where by τ(u), we mean the trace of u on ∂Ω. We have the following well-known

existence and uniqueness results, (cf. [Girault and Raviart’86]).

Theorem 6.3.1 Let Ω be a bounded connected open subset of R3 with a Lipschitz

continuous boundary. For f ∈ H−1(Ω)3 and g ∈ H
1
2 (∂Ω)3 satisfying∫

∂Ω

g · n = 0,
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the problem: find (u, p) ∈ H1(Ω)3 × L2
0(Ω) such that

−ν ∆u +
∑3

j=1 uj
∂

∂xj
u + ∇p = f in Ω

div u = 0 in Ω

u = g on ∂Ω,

has a solution which is unique provided that ν is sufficiently large. (Here the first

two equations should be interpreted in the sense of distributions and the last one in

the trace sense.)

Unlike the linear case, this problem cannot be cast directly as a minimization

problem. In [Gunzburger’86] a procedure to reduce this problem to the solution

of a sequence of Stokes problems is described. Here we shall derive an algorithm

which withstands our tests.

6.3.2 Spline approximations

We first compute the velocity vector field and then the pressure term. The difference

with the previous section is the presence of the nonlinear term.

Approximations of the velocity

Let us fix the tetrahedral partition T , and let n = dimPd. If nth is the number of

tetrahedra in T , the B-net of an element p of Sr
d(Ω) has length N = n ∗ nth. We

denote by pi, 1 ≤ i ≤ 3 an approximant of ui and ci the B-net of pi. We therefore

have

pi|t =

n∑
s=1

cti,sB
d
s i = 1, 2, 3.

We will consider a subspace W of the space of test functions. We’ll use

W = {(v1, v2, v3) ∈ Sr
d(Ω)3, (Πb

d(v1),Π
d
b(v2),Π

b
d(v3)) = (0, 0, 0),

∂v1

∂x1

+
∂v2

∂x2

+
∂v3

∂x3

= 0},
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where Πd
b is the boundary interpolation operator which when acting on splines of

degree d is simply the restriction on the boundary.

Let di encode the B-net of vi. Thus, if (v1, v2, v3) is in W we have

D1d1 +D2d2 +D3d3 = 0, (6.17)

Hd1 = Hd2 = Hd3 = 0, (6.18)

Rd1 = Rd2 = Rd3 = 0, (6.19)

where H is the smoothness matrix, R is a matrix realization of Πb
d, i.e. Rdi is the

B-net of vi on the boundary for all i = 1, 2, 3, and Di is a discrete derivative. If p

has B-net c, Dic is the B-net of ∂u
∂xi

. Let also Gi, i = 1, 2, 3 denote the B-net of the

components gi of g. It is convenient to use c =


c1

c2

c3

 and d =


d1

d2

d3

. We also

write G =


G1

G2

G3

 and therefore have

Hd
def
=


H 0 0

0 H 0

0 0 H

d = 0,

Rd
def
=


R 0 0

0 R 0

0 0 R

d = 0, and

D d =
(
D1 D2 D3

)
d = 0,
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where I is the identity matrix of Rm∗nth with m=dimPd−1. With these notations,

(6.17), (6.18) and (6.19) are written

Dc = 0, (6.20)

Hc = 0, (6.21)

Rc = 0. (6.22)

We now proceed to the discretization of the equations. Equation (6.15) and (6.16)

are discretized as

Dc = 0, (6.23)

Rc = G, (6.24)

with (p1, p2, p3) ∈ Sr
d(Ω)3 giving

Hc = 0. (6.25)

Equation (6.14) can also be written

ν
∑

t

∫
t

∇u∇v +

3∑
j=1

∑
t

∫
t

uj
∂u

∂xj
· v =

∑
t

∫
t

f · v =
∑

t

3∑
j=1

∫
t

fjvj.

Let’s write Πd(fj)|t =
∑n

α=1 f
t
j,αB

d
α for the interpolation of fj and vj|t =

∑n
β=1 d

t
j,βB

d
β

and let F t
j , Fj, d

t
j and dj encode the B-net of fj|t, fj , vj|t and vj respectively.

Let M t = (
∫

t
Bd

αB
d
β)α,β=1,... ,n and M the corresponding mass matrix. We have

∑
t

∫
t

Πd
b(fj)vj =

∑
t

n∑
α=1,β=1

f t
j,αd

t
j,βB

d
αB

d
β

=
∑

t

(F t
j )

TM tdt
j

= (Fj)
TMdj .
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Let M =


M 0 0

0 M 0

0 0 M

 and F =


F1

F2

F3

. We have

∫
Ω

f · v = (F1)
TMd1 + (F2)

TMd2 + (F3)
TMd3 = FTMd

Similarly we introduce the local and global stiffness matrix

Kt = (

∫
t

∇Bd
α · ∇Bd

β)α,β=1,... ,n

and K. We write K =


K 0 0

0 K 0

0 0 K

 and we have

∫
Ω

∇u · ∇v =

3∑
j=1

∫
Ω

∇uj · ∇vj

= cT1Kd1 + cT2Kd2 + cT3Kd3

= cTKd.

Thus if we define the form a0 by

a0(u,v) =

∫
Ω

∇u · ∇v, (6.26)

the discrete version of a0 would be

a0(u,v) = cTKd

in the sense that c and d encode the B-net of u and v respectively.

Let’s also introduce

a1(w;u,v) =

3∑
j=1

∫
Ω

wj
∂u

∂xj
· v. (6.27)
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We have ∫
Ω

wj
∂u

∂xj
· v =

3∑
i=1

∫
Ω

wj
∂ui

∂xj
vi =

3∑
i=1

∑
t

∫
Ω

wj
∂ui

∂xj
vi.

Let’s write

ui|t =

n∑
α=1

cti,αB
d
α, vi|t=

n∑
β=1

dt
i,βB

d
β, wj|t =

n∑
γ=1

et
j,γB

d
γ

so ∫
Ω

wj
∂ui

∂xj
vi =

∑
t

n∑
α,β,γ=1

et
j,γc

t
i,αd

t
i,β

∫
t

Bd
γ

∂Bd
α

∂xj
Bd

β.

Let Matt
jβ =

(∫
t
Bd

γ
∂Bd

α

∂xj
Bd

β

)
α,γ=1,... ,n

so that

∫
t

wj
∂ui

∂xj

vi =
n∑

β=1

dt
i,β(et

j)
T Matt

jβc
t
i = Bt

ji(e, c)dt
i,

where Bt
ji(e, c) =

[
(et

j)
T Matt

j1c
t
i, . . . , (e

t
j)

T Matt
jnthc

t
i

]
and if we let Bji assembled

with the Bt
ji, we can write ∫

Ω

uj
∂ui

∂xj
vi = Bji(e, c)di

with Bji(e, c) = [B1
ji(e, c), . . . , Bnth

ji (e, c)].

Finally, we have

3∑
j=1

∫
Ω

wj
∂u

∂xj
· v =

3∑
i,j=1

∫
Ω

wj
∂ui

∂xj
vi =

3∑
i,j=1

Bji(e, c)di

=
3∑

i=1

(
3∑

j=1

Bji(e, c))di.

Therefore

a1(w;u,v) =

[
3∑

j=1

Bj1(e, c)
3∑

j=1

Bj2(e, c)
3∑

j=1

Bj3(e, c)

]
d.

Now since

3∑
j=1

∫
Ω

uj
∂u

∂xj

· v = a1(u;u,v),
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equation (6.14) is discretized as

νcTKd +

[
3∑

j=1

Bj1(c, c)
3∑

j=1

Bj2(c, c)
3∑

j=1

Bj3(c, c)

]
d = FTMd.

If one considers the following linear functional in d,

J(d) =

(
νcTK +

[
3∑

j=1

Bj1(c, c)

3∑
j=1

Bj2(c, c)

3∑
j=1

Bj3(c, c)

]
− FTM

)
d,

J(d) = 0 for all d satisfying (6.20), (6.21) and (6.22). A fortiori, taking the derivative

with respect to d we must have:

νcTK +

[
3∑

j=1

Bj1(c, c)

3∑
j=1

Bj2(c, c)

3∑
j=1

Bj3(c, c)

]

+λT
1H + λT

2R + λT
3D = FTM

for some Lagrange multipliers λ1, λ2, λ3.

This added with (6.23), (6.24) and (6.25) provided the non-linear equations which

were solved. We consider two methods for solving the non-linear system of equations,

using a simple iteration algorithm and using Newton’s method . The equations are

νKc +

[
3∑

j=1

Bj1(c, c)

3∑
j=1

Bj2(c, c)

3∑
j=1

Bj3(c, c)

]T

+H
T
λ1 +R

T
λ2 +DTλ3 = MF,

Hc = 0,

Rc = G,

Dc = 0.
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Notice that

Bt
ji(e, c)T =


(et

j)
T Matt

j1c
t
i

...

(et
j)

T Matt
j,nthc

t
i

 (6.28)

=


(et

j)
T Matt

j1

...

(et
j)

T Matt
j,nth

 cti (6.29)

def
= Bt

j(e)cti. (6.30)

And after assembling, we may write

Bji(e, c)T = Bj(e)ci, (6.31)

with Bj(e) having the size of K and(
3∑

j=1

Bj1(e, c)
3∑

j=1

Bj2(e, c)
3∑

j=1

Bj3(e, c)

)T

=


∑3

j=1Bj1(e, c)T∑3
j=1Bj2(e, c)T∑3
j=1Bj3(e, c)T



=


∑3

j=1Bj(e)c1∑3
j=1Bj(e)c2∑3
j=1Bj(e)c3



=


∑3

j=1Bj(e) 0 0

0
∑3

j=1Bj(e) 0

0 0
∑3

j=1Bj(e)




c1

c2

c3


def
= B(e)c,
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where

B(e) =
3∑

j=1

Bj(e)

and B(e) is defined analogous to the definition of H. With these notations,

a1(w;u,v) = (B(e)c)Td (6.32)

and the nonlinear equations to be solved are

νKc +B(c)c +H
T
λ1 +R

T
λ2 +DTλ3 = MF

Hc = 0

Rc = G

Dc = 0.

(6.33)

The algorithms

A simple iteration algorithm:

Let (c0, λ0
1, λ

0
2, λ

0
3) be the solution of the linear problem (i.e. the associated Stokes

equations) and define (cn+1, λn+1
1 , λn+1

2 , λn+1
3 ) as the solution of

νKcn+1 +B(cn)cn+1 +H
T
λn+1

1 +R
T
λn+1

2 +DTλn+1
3 = MF

Hcn+1 = 0

Rcn+1 = G

Dcn+1 = 0.

We would like to point out that Theorem 4.4.1 can be applied to solve the previous

systems. This follows from the properties of the forms a0 and a1.

Newton’s method

It is convenient to consider a mapping

Γ : (c, λ1, λ2, λ3) �→ (νKc +B(c)c +H
T
λ1 +R

T
λ2 +DTλ3 −MF, Hc, Rc − G, Dc).
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We seek to solve Γ(c, λ1, λ2, λ3) = 0. We write Xn = (cn, λn
1 , λ

n
2 , λ

n
3). Let X0 be the

solution of the linear problem and define Xn+1 such that

Γ
′
(Xn)(Xn+1 −Xn) = −Γ(Xn). (6.34)

The main difficulty in evaluating Γ
′
(Xn) is to establish formulas for the Frechet

derivative of the mapping

c �→ B(c)c =


∑3

j=1Bj(c)c1∑3
j=1Bj(c)c2∑3
j=1Bj(c)c3

 .

It is enough to consider the mapping

c �→
3∑

j=1

Bj(c)ci

which is assembled from the mappings

c �→ Bt
ji(c, c)T =


(ctj)

T Matt
j1c

t
i

...

(ctj)
T Matt

j,nthc
t
i

 .

We therefore introduce the bilinear mapping, for i, j fixed

(u,v) �→ γji(u,v) =


(uj)

T Matj1vi

...

(vj)
T Matj,nthvi


for a series of matrices Matk=1,... ,nth. The derivative of

βji : c �→ γji(c, c)

is

β ′
ji(c)(h) = γji(c,h) + γji(h, c)
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for h = (h1, h2, h3). As a consequence, if γ denotes the mapping c �→ B(c)c,

γ′(c)(h) =


∑3

j=1Bj(c)h1∑3
j=1Bj(c)h2∑3
j=1Bj(c)h3

+


∑3

j=1Bj(h)c1∑3
j=1Bj(h)c2∑3
j=1Bj(h)c3


with Bj(c)hi defined as in (6.31). In a more compact form,

γ′(c)(h) = B(c)h +B(h)c.

We therefore have explicitly

Γ′(Xn)(Xn+1 − Xn) = (νK(cn+1 − cn) +B(cn)(cn+1 − cn) +B(cn+1 − cn)cn

+H
T
(λn+1

1 − λn
1 ) +R

T
(λn+1

2 − λn
2 ) +DT (λn+1

2 − λn
2)

H
T
(cn+1 − cn), R(cn+1 − cn), D(cn+1 − cn)).

The equation (6.34) therefore implies

νKcn+1 +B(cn)cn+1 +B(cn+1 − cn)cn

+H
T
λn+1

1 +R
T
λn+1

2 +DTλn+1
3 = MF

(6.35)

along with

Hcn+1 = 0, Rcn+1 − G = 0, and Dcn+1 = 0 (6.36)

We now show that B(cn+1 − cn)cn can be written B̃(cn)(cn+1 − cn) with B̃(cn)cn =

B(cn)cn. We turn back to (6.31) and (6.30).

Bt
ji(c, c)T =


(ctj)

T Matt
j1c

t
i

...

(ctj)
T Matt

j,nthc
t
i


def
= Bt

j(c)cti
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can also be written

Bt
ji(c)T =


(cti)

T (Matt
j1)

T ctj
...

(cti)
T (Matt

j,nth)
T ctj


def
= B̃t

i(c)ctj,

and after assembling

Bji(c, c)T = Bj(c)ci = B̃i(c)cj ,

which gives the announced relations.

(6.35) can then be written

νKcn+1 +B(cn)cn+1 + B̃(cn)cn+1 +H
T
λn+1

1 +R
T
λn+1

2 +

DTλn+1
3 = MF +B(cn)cn.

(6.37)

This equation along with (6.36) provide the equations solved for the Newton’s

method iteration. Theorem 4.4.1 can also be applied to solve the above systems

because B(c(n)) is anti-symmetric and K+ B̃(c(n)) (and consequently its symmetric

part) is positive definite with respect to L = (H
T
, R

T
, DT )T for ν sufficiently large.

Indeed for a spline with B-coefficients encoded in x which satisfy Lx = 0,

xTKx + xT B̃(c(n))x ≥ νC||x||2H1(Ω)3 − C1||c(n)||H1(Ω)3 ||x||2H1(Ω)3 .

But since the sequence (c(n)) is bounded (we prove its convergence below), there’s

C2 > 0 for which ||c(n)||H1(Ω)3 ≤ C2, so

xTKx + xT B̃(c(n))x ≥ (νC − C1C2)||x||2H1(Ω)3 ,

which proves what was claimed.
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Convergence of the algorithms

ide a starting point for Newton’s method which converges In this section, we study

only the homogeneous problem, i.e. g = 0 or G = 0. The arguments presented here

follow classical arguments (cf, [Girault and Raviart’86]) and [Karakashian’82]. (In

the later, Lagrange multipliers are used to enforce only the divergence free condition.)

First let’s give some properties of the form a0 defined in (6.26) and a1 defined in

(6.27) with their discrete counterparts.

a0 is H1
0 (Ω) elliptic, i.e.

a0(v,v) ≥ C||v||H1
0(Ω)3

for some constant C > 0.

For v in Sr
d(Ω)3 with B-net d satisfying Rd = 0,

||v||2H1
0(Ω)3 =

∫
Ω

|v|2 +

∫
Ω

|∇v|2

= dTMd + dTKd,

so the ellipticity condition says that if d satisfies Hd = 0 and Rd = 0 then

dTKd ≥ C||d||2H1
0(Ω)3 = C(dTMd + dTKd).

The form a1 satisfies the following important property

a1(w;v,v) = 0.

when v,w are in H1(Ω)3 with div w = 0 and w ·n|∂Ω = 0. In particular if e satisfies

De = 0, He = 0, and Re = 0 (6.38)

which can also be written

Le = 0,
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with L =


H

R

D

, and d satisfies Hd = 0, we have

(B(e)d)T d = 0 (6.39)

using the expression of a1 in (6.32). We also point out that the trilinear form a1 is

continuous on H1(Ω)3 ×H1(Ω)3 ×H1(Ω)3, that is there is C1 > 0 such that

|a1(w;u,v) = |(B(e)c)Td| ≤ C1||e||H1(Ω)3 ||c||H1(Ω)3 ||d||H1(Ω)3 .

These results can be found in [Girault and Raviart’86].

We derive an a priori error estimate of a solution of (6.33). We rewrite it as

νKc +B(c)c + LTλ = MF

Lc = 0,

(6.40)

with λ =
(
λ1, λ2, λ3

)T

. We multiply the first of (6.40) on the left by cT and

get

νcTKc = cTMF.

Using the ellipticity of a0, we have

νC||c||2H1(Ω)3 ≤ ||c||L2(Ω)3 ||F||L2(Ω)3 ,

so

||c||H1(Ω)3 ≤
1

νC
||F||L2(Ω)3 . (6.41)

Uniqueness of the discrete velocity

We shall prove that there’s a unique vector c solution of (6.33). The Lagrange

multipliers λ1, λ2 and λ3 may not be unique.
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Let (u1, λ1, λ2, λ3) and (u2, β1, β2, β3) be two solutions of (6.33). Put ε = u1−u2.

We have

νKε+B(u1)u1 −B(u2)u2 +H
T
(λ1 − β1) +R

T
(λ2 − β2) +DT (λ3 − β3) = 0

Hc = 0

Rc = 0

Dc = 0.

Multiplying the first of these equations on the left by εT , we get

νεTKε+ εTB(u1)ε+ εTB(ε)u2 = 0,

or

νεTKε+ εTB(ε)u2 = 0.

Using (6.41), the ellipticity of a0 and the continuity of a1 we get

νC||ε||2H1(Ω)3 ≤ C1||ε||2H1(Ω)3 ||u2||H1(Ω)3

≤ C1

νC
||F||L2(Ω)3 ||ε||2H1(Ω)3 .

So

(νC − C1

νC
||F||L2(Ω)3)||ε||2H1(Ω)3 ≤ 0.

We conclude that if ||F||L2(Ω)3 is sufficiently small, i.e.

||F||L2(Ω)3 ≤ (νC)2

C1
,

the discrete equations have a unique solution c.

To prove existence of a solution to (6.40), we shall need one additional lemma

which can be found in [Temam’84].
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Lemma 6.3.2 (Brouwer fixed point theorem) Let H be a finite-dimensional Hilbert

space with inner product (.,.) and norm ||.||. Let the map g : H → H be continuous.

Suppose there exists η > 0 such that (g(x), x) > 0 for each x such that ||x|| = η.

Then there exists x∗ ∈ H, with ||x∗|| ≤ η such that g(x∗) = 0.

With c fixed let us consider the mapping J defined on

S0 = {d ∈ (R)3N , Ld = 0}

by

J(d) = dT
(
νKc +B(c)c −MF

)
.

Owing to the continuity property of the trilinear form b, J is continuous on S0

equipped with the norm of H1
0 (Ω)3. Let (.,.) denote the associated inner product.

By the Riesz representation theorem, there is a function µ : S0 → S0 such that

(d, µ(c)) = J(d).

We have by (6.39),

(c, µ(c)) = J(c) = νcTKc − cTMF

≥ νC||c||2H1
0 (Ω)3 − ||c||H1

0(Ω)3CM ||F||L2(Ω)3

= ||c||H1
0(Ω)3

(
νC||c||H1

0(Ω)3 − CM ||F||L2(Ω)3

)
,

where CM is the L2 norm of the mass matrice M . Therefore for

||c||H1
0(Ω)3 = 2

CM ||F||L2(Ω)3

νC
=: r,

we have (c, µ(c)) > 0. It follows from the Brouwer fixed point theorem that, there

is e with ||e||H1
0 (Ω)3 ≤ r such that µ(e) = 0. This implies that J(d) = 0 on S0. By

the Lagrange multiplier method, there is λ for which J(d) + dTLTλ = 0. This gives

after simplification (6.40).



107

We have proved the following theorem:

Theorem 6.3.3 (6.33) has a unique solution c provided the (vector) spline encoded

in F has a sufficiently small L2 norm or ν is small enough.

Convergence of the simple iteration algorithm

The problem is to show convergence of the solution cn+1 of

νKcn+1 +B(cn)cn+1 + LTλn+1 = MF

Lcn+1 = 0,

(6.42)

to the solution c of (6.40) where we put λn+1 =
(
λn+1

1 , λn+1
2 , λn+1

3

)T

. We have

the following theorem

Theorem 6.3.4 (6.42) has a unique solution cn+1 and the unique solution c of

(6.33) is such that

||cn+1 − c||H1(Ω)3 ≤ γ1||cn − c||H1(Ω)3 ,

for a constant γ1 < 1. As a consequence cn+1 converges to c.

First let’s show that (6.42) has a unique solution cn+1. Let dn+1 be another solution

and βn+1 the associated Lagrange multiplier. Put εn+1 = cn+1 − dn+1. Also put

τn+1 = λn+1 − βn+1. We have

Lεn+1 = 0 (6.43)

and

νKεn+1 +B(cn)εn+1 + LT τn+1 = 0.

Multiplying this last relation by (εn+1)T on the right and using (6.43) and (6.39),

we get

(εn+1)TKεn+1 = 0
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and εn+1 satisfies Hεn+1 = 0 and Rεn+1 = 0. Therefore εn+1 = 0 since if v is smooth,

zero on the boundary and
∫

Ω
|∇v|2 = 0, v = 0. This proves uniqueness. Existence

can be proven as in the proof of Theorem (6.3.3).

Now, put εn+1 = cn+1 − c and τn+1 = λn+1 − λ. We have

νKεn+1 +B(cn)cn+1 − B(c)c + LT τn+1 = 0,

Lεn+1 = 0,

so

νKεn+1 +B(cn)εn+1 + (B(cn) −B(c))c + LT τn+1 = 0,

Lεn+1 = 0.

Multiplying on the left by (εn+1)T , after simplifications, we get

ν(εn+1)TKεn+1 + (εn+1)T (B(cn) − B(c)c) = 0.

We notice that

B(cn) −B(c) = B(cn − c) = B(εn).

It is actually convenient when necessary to use the forms a0 and a1 up to an identi-

fication of the splines with their B-forms. The previous relations then reads

νa0(ε
n+1, εn+1) = −a1(ε

n; c, εn+1)

which joined with the continuity of the form a1 and the ellipticity of a0 yields

Cν||εn+1||2H1(Ω)3 ≤ C1||εn||H1(Ω)3 ||εn+1||H1(Ω)3 ||c||H1(Ω)3 . (6.44)

So

||εn+1||2H1(Ω)3 ≤
C1

Cν
||εn||H1(Ω)3 ||c||H1(Ω)3

≤ γ1||εn||H1(Ω)3 ,
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where γ1 =
C1||F||L2(Ω)3

(νC)2
. We have γ < 1 under the assumption that ||F||L2(Ω)3 is

sufficiently small.

Convergence of Newton’s iterations

We are interested in the sequence cn+1 defined by

νKcn+1 +B(cn)cn+1 + B̃(cn)cn+1 + LTλn+1 = MF +B(cn)cn

Lcn+1 = G.

(6.45)

We have the following convergence result

Theorem 6.3.5 There exists r > 0 such that if ||c−c0||H1(Ω)3 < r, there is a unique

cn+1 solution of (6.45) and ||c − cn||H1(Ω)3 < r for all n with ||c − cn+1||H1(Ω)3 ≤
1
r
||c − cn||2H1(Ω)3. Moreover, if there’s η < 1 such that ||c − c0||H1(Ω)3 = rη, then cn

converges to c.

Proof The existence of cn+1 in (6.45) can be proven as in the proof of Theorem

(6.3.3). We prove first uniqueness. Given cn, let dn+1 be another solution of (6.45)

and βn+1 the associated Lagrange multiplier. Put εn+1 = cn+1 − dn+1. We have:

νKεn+1 +B(cn)εn+1 + B̃(cn)εn+1 + LTλn+1 = 0

Lεn+1 = 0.

Therefore

0 = ν(εn+1)TKεn+1 + (εn+1)TB(εn+1)cn

≥ ||εn+1||2H1(Ω)3(νC − C1||cn||H1(Ω)3)

≥ ||εn+1||2H1(Ω)3

(
νC − C1||c− cn||H1(Ω)3 − C1||c||2H1(Ω)3

)
.

Using the a priori error estimate (6.41), this gives

0 ≥ ||εn+1||2H1(Ω)3

(
νC − C1||c− cn||H1(Ω)3 −

C1

νC
||F||L2(Ω)3

)
.
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We want to show that

νC − C1||c − cn||H1(Ω)3 −
C1

νC
||F||L2(Ω)3 ≥ 0,

which is equivalent to

||c − dn||H1(Ω)3 ≤
−C1||F||L2(Ω)3 + ν2C2

νCC1
.

We therefore let r = 1
2

−C1||F||L2(Ω)3 )+ν2C2

νCC1
and prove by induction that if ||c −

c0||H1(Ω)3 < r, then ||c − cn||H1(Ω)3 < r for all n. This will show that εn+1 = 0 and

that the solution of (6.45) is unique. Notice that r > 0 under the assumption that

||F||L2(Ω)3 is sufficiently small. That assumption is actually needed to guarantee the

uni queness of the discrete solution.

Let en+1 = cn+1 − c and τn+1 = λn+1 − λ. We have

νKen+1 +B(cn)cn+1 +B(cn+1)cn − B(c)c + LT τn+1 = B(cn)cn

Len+1 = 0,

which gives

νKen+1 +B(cn)en+1 +B(en)c +B(cn+1)cn = B(cn)cn,

or

νKen+1 +B(cn)en+1 +B(en)c +B(en+1)cn − B(en)cn = 0.

We multiply this equation on the left by (en+1)T , and get

ν(en+1)TKen+1 = (en+1)TB(en)en − (en+1)TB(en+1)cn.

We therefore have

νC||en+1||H1(Ω)3 ≤ C1

(
||en||2H1(Ω)3 + ||en+1||H1(Ω)3 ||cn||H1(Ω)3

)
≤ C1

(
||en||2H1(Ω)3 + ||en+1||H1(Ω)3(||en||H1(Ω)3 + ||c||H1(Ω)3)

)
.
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Using the a priori estimate (6.41) and the induction hypothesis, we have(
νC − C1r − C1

||F||L2(Ω)3

νC

)
||en+1||H1(Ω)3 ≤ C1||en||2H1(Ω)3 .

A tedious computation yields

C1

νC − C1r − C1
||F||L2(Ω)3

νC

=
1

r
.

So

||en+1||H1(Ω)3 ≤
1

r
||en||2H1(Ω)3 ≤ r

completing the induction argument.

We have proved that ||c− cn+1||H1(Ω)3 ≤ 1
r
||c− cn||2H1(Ω)3 . It follows that

||c− cn||H1(Ω)3 ≤
n∏

k=1

1

r2k−1 ||c− c0||2n

H1(Ω)3

≤ 1

r
�n

k=1 2k−1 ||c− c0||2n

H1(Ω)3

≤ 1

r2n−1
||c− c0||2n

H1(Ω)3 ,

for n = 1, 2, . . . This shows that if there’s η < 1 such that ||c− c0||H1(Ω)3 = rη, then

cn converges to c. Indeed in that case, we have

||c− cn||H1(Ω)3 ≤ rη2n

, n = 1, 2, . . .

Approximations of the pressure

It is known that the pressure satisfies a Poisson equation which is obtained by taking

the divergence of the first equation in (6.12). We have

−∆p = −div f + div (u · ∇)u

since div u = 0. This equation is supplied with Neumann boundary conditions

∂p

∂n
= ∇p · n = f · n + ν(∆u) · n − ((u · ∇)u) · n

and is solved numerically for p using the techniques described in the section on the

Poisson equation.
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6.3.3 Numerical results

We have experimented the code on different tetrahedral partitions with different

smoothness and different degrees. We choose known vector fields which are diver-

gence free and compute the errors in the infinite norm. We first list numerical results

corresponding to continuous vector fields and pressure of class C1 across tetrahedral

elements which do not share a face with the boundary. This demonstrates the

choice we have in selecting which amount of smoothness can be required of the

approximant. Typically one would construct piecewise continuous approximations

of the pressure. Here the viscosity is set to 1.

Domain 1: This domain is formed by the union of two tetrahedra which share

a common face.

Domain 2: We consider a cube of volume one which has been subdivided into

six tetrahedra.

We consider three different vector fields g = (g1, g2, g3) with a corresponding

pressure p on the previous domains.

Case 1:

g1 = 2 (y − z)exp(x2 + y2 + z2)

g2 = −2 (x− z)exp(x2 + y2 + z2)

g3 = 2 (x− y)exp(x2 + y2 + z2

p = exp(x+ y + z)
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Case 2:

g1 = x(1 − x)y(1 − y)z(1 − z)

g2 = x(1 − x)y(1 − y)z(1 − z))

g3 = 1
6
z2(y + x− 1)(−x+ 2xy − y)(2z − 3)

p = exp(x+ y + z)

Case 3:

g1 = 1/(1 + x+ y + z)

g2 = 1/(1 + x+ y + 2 ∗ z)

g3 = −1/(1 + x+ y + z) − 1
2
1/(1 + x+ y + 2z)

p = exp(x+ y + z)

These functions have been chosen so that the nonlinear term in the Navier-Stokes

equations do not vanish. In the following tables, Error 1, Error 2 and Error 3 are

the errors made in computing f1, f2 and f3 respectively. We also indicate the error

on the pressure term. The first time a domain appears, the size of the matrix which

was solved is listed.

Case 1 on Domain 1 with d = 3

Tetrahedra Size Error 1 Error 2 Error 3 Pressure

2 290 × 290 7.9188e-01 1.8725e-01 8.8710e-01 3.4535e+01

16 2680 × 2680 3.9973e-01 1.0744e-01 3.9027e-01 1.5749e+01

Case 1 on Domain 1 with d = 4

Tetrahedra Size Error 1 Error 2 Error 3 Pressure

2 505 × 505 2.9228e-01 8.8375e-02 3.4786e-01 1.4645e+01

16 4580 × 4580 6.3349e-02 2.6866e-02 6.2141e-02 2.2879e+00
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Case 1 on Domain 1 with d = 5

Tetrahedra Size Error 1 Error 2 Error 3 Pressure

2 805 × 805 2.8805e-01 1.8885e-01 2.8456e-01 5.9541e+00

16 7196 × 7196 8.4794e-03 3.9548e-03 8.5251e-03 6.7550e-01

Case 1 on Domain 1 with d = 6

Tetrahedra Size Error 1 Error 2 Error 3 Pressure

2 1204 × 1204 5.4170e-02 5.0070e-02 5.2498e-02 2.0899e+00

16 10640 × 10640 1.3485e-03 6.6982e-04 1.1929e-03 1.5991e-01

Case 1 on Domain 2 with d = 3

Tetrahedra Size Error 1 Error 2 Error 3 Pressure

6 960 × 960 5.3508e-01 6.8599e-01 6.8599e-01 3.9479e+01

48 8400 × 8400 3.6084e-01 3.6084e-01 3.6084e-01 9.2745e+00

Case 1 on Domain 2 with d = 4

Tetrahedra Size Error 1 Error 2 Error 3 Pressure

6 1650 × 1650 9.9685e-01 9.9685e-01 9.9685e-01 1.1079e+01

48 14280 × 14280 7.1163e-02 7.1163e-02 7.1163e-02 1.8966e+00

Case 1 on Domain 2 with d = 5

Tetrahedra Size Error 1 Error 2 Error 3 Pressure

6 2604 × 2604 1.9913e-01 1.9913e-01 1.9913e-01 4.2036e+00
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Case 1 on Domain 2 with d = 6

Tetrahedra Size Error 1 Error 2 Error 3 Pressure

6 3864 × 3864 4.6539e-02 4.6539e-02 4.6539e-02 1.2909e+00

Case 1 on Domain 2 with d = 7

Tetrahedra Size Error 1 Error 2 Error 3 Pressure

6 5472 × 5472 1.0646e-02 1.0646e-02 1.0646e-02 6.8582e-01

For the next test vector fields the approximations of the velocity vector field are

better and hence we get more accurate approximations of the pressure.

Case 2 on Domain 1 with d = 3

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 5.4823e-03 5.1512e-03 4.8780e-03 2.9863e-01

16 1.2800e-03 1.1522e-03 1.5770e-03 1.6411e-01

Case 2 on Domain 1 with d = 4

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 2.6458e-03 2.3774e-03 2.1849e-03 2.9286e-01

16 4.2213e-04 2.3787e-04 3.7811e-04 5.8395e-02

Case 2 on Domain 1 with d = 5

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 2.1518e-03 1.0184e-03 1.9193e-03 3.1441e-01

16 4.0893e-05 3.0022e-05 3.6272e-05 9.4046e-03
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Case 2 on Domain 1 with d = 6

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 1.4059e-08 1.3591e-08 1.4851e-08 1.5114e-03

16 3.2372e-10 3.1183e-10 6.7459e-10 3.9750e-05

Case 2 on Domain 2 with d = 3

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 1.4097e-02 1.6179e-02 1.9143e-02 1.9430e+00

48 1.7648e-03 1.8289e-03 3.4440e-03 5.5006e-01

Case 2 on Domain 2 with d = 4

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 3.4929e-03 3.6200e-03 8.8970e-03 2.5272e-01

48 3.7583e-04 3.7285e-04 4.4346e-04 9.3031e-02

Case 2 on Domain 2 with d = 5

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 2.6001e-03 2.6001e-03 2.8142e-03 6.5987e-02

Case 2 on Domain 2 with d = 6

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 3.0414e-07 3.0414e-07 2.7326e-07 1.3856e-02
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Case 2 on Domain 2 with d = 7

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 3.4135e-08 3.4135e-08 4.2451e-08 2.6998e-03

Case 3 on Domain 1 with d = 3

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 1.3220e-02 2.8758e-02 2.2337e-02 2.5579e+00

16 5.9963e-03 6.1040e-03 4.7915e-03 9.4864e-01

Case 3 on Domain 1 with d = 4

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 7.2904e-03 9.0516e-03 8.8195e-03 1.3839e+00

16 7.7037e-04 1.4633e-03 1.2568e-03 2.4490e-01

Case 3 on Domain 1 with d = 5

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 2.2836e-03 4.0212e-03 3.0422e-03 2.7893e-01

16 2.1804e-04 3.2009e-04 3.0179e-04 5.4180e-02

Case 3 on Domain 1 with d = 6

Tetrahedra Error 1 Error 2 Error 3 Pressure

2 1.0482e-03 1.5710e-03 1.3561e-03 1.8802e-01

16 6.2463e-05 6.3539e-05 6.7752e-05 2.1708e-02
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Case 3 on Domain 2 with d = 3

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 3.3312e-02 4.0606e-02 5.0388e-02 2.9399e+00

48 2.3622e-02 2.4789e-02 3.0950e-02 1.2750e+00

Case 3 on Domain 2 with d = 4

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 3.0671e-02 3.7226e-02 6.6432e-02 9.4831e-01

48 3.0258e-03 4.1415e-03 6.4099e-03 1.9938e-01

Case 3 on Domain 2 with d = 5

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 7.5366e-03 9.6083e-03 1.7657e-02 3.7409e-01

Case 3 on Domain 2 with d = 6

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 2.1930e-03 3.0274e-03 5.7868e-03 1.9517e-01

Case 3 on Domain 2 with d = 7

Tetrahedra Error 1 Error 2 Error 3 Pressure

6 7.5139e-04 1.1032e-03 1.8545e-03 7.0576e-02
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Table 6.1: Accuracy of the velocity and pressure, r = 0

Tetrahedra Size Error 1 Error 2 Error 3 Pressure
6 961 × 960 1.4097e-002 1.6179e-002 1.9143e-002 3.4500e-001
12 2101 × 2100 1.4561e-003 1.4561e-003 1.7462e-003 4.1284e-001
24 4291 × 4290 1.4511e-003 1.4190e-003 1.5752e-003 2.3806e-001
48 8401 × 8400 1.0339e-003 1.0308e-003 1.5299e-003 1.6460e-001
96 16441 × 16440 9.0358e-004 9.0346e-004 6.6460e-004 1.6278e-001
192 31621 × 31620 1.5348e-004 1.5121e-004 2.3278e-004 5.1888e-002

We proceed to give additional numerical results for Case 2 on Domain 2. Now, on

a cube initially subdivided into six sub-tetrahedra, we used the matrix iterative

algorithm. The bisection method of refinement was used. The purpose of displaying

these results is to show several level of refinements. We fixed the degree of the

splines to 3 and vary the smoothness. We set r = 0, 1 and 2. However the pressure

is only continuous. We also display here how accurate the divergence condition,

the boundary conditions and smoothness conditions are. Although the reduced

algorithm was used, we give here the size the matrices that are solved when using

the other methods. The real size was simply 20 times the number of tetrahedra

where 20 is the dimension of the space of polynomials of total degree 3. Error 1,

Error 2 and Error 3 denote the errors on the first, second and third component

of the velocity respectively. Where we judged necessary, we also display the max-

imum shape measure σ of the tetrahedral partition. The variations of σ is certainly

the reason of oscillations in some of the approximations. Note that if a uniform

refinement in eight tetrahedra is used, the approximations behave in a monotone way.
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Table 6.2: Accuracy of the smoothness conditions, r = 0

Tetrahedra Sigma Error 1 Error 2 Error 3
6 4.1815 6.4152e-003 6.4152e-003 6.4152e-003
12 4.4142 2.0286e-003 2.0286e-003 4.5644e-004
24 3.8284 5.2176e-004 5.2176e-004 2.0871e-004
48 4.1815 4.4773e-004 4.4773e-004 2.9773e-004
96 4.4142 6.5638e-004 6.5638e-004 2.1166e-004
192 3.8284 4.2883e-005 4.2883e-005 2.0618e-005

Table 6.3: Accuracy of the boundary conditions, r = 0

Tetrahedra Sigma Error 1 Error 2 Error 3
6 4.1815 6.4152e-003 6.4152e-003 7.3923e-003
12 4.4142 8.8082e-004 8.8082e-004 1.2172e-003
24 3.8284 4.0930e-004 4.0930e-004 4.0930e-004
48 4.1815 4.4773e-004 4.4773e-004 4.4773e-004
96 4.4142 3.2819e-004 3.2819e-004 3.2819e-004
192 3.8284 3.6039e-005 3.6039e-005 3.6039e-005

6.4 Numerical simulation of fluid flows

Our final numerical experiment is the calculation of a flow in a cavity. The cavity

domain Ω is the unit cube and the flow is caused by a tangential velocity applied to

the side y = 1. We assume that all external forces vanish. Since they are independent

of time, the flow limits to a steady state modelled by (6.12). For the boundary

conditions, we take g = (g1, g2, g3) with g2 = g3 = 0 and g1 = 0 except on the side

y = 1 where g1 = 1. We have displayed the configuration of the flow for Reynolds

number 400, in the center plane z = 1
2

using the first and second component of

the velocity, in the center plane x = 1
2

using the second and third components and

finally in the center plane y = 1
2

using the first and third components. We used
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Table 6.4: Accuracy of the divergence free condition, r = 0

Tetrahedra Divergence
6 2.3303e-003
12 4.4041e-004
24 1.0435e-004
48 7.4622e-005
96 5.4698e-005
192 4.2883e-006

Table 6.5: Accuracy of the velocity and pressure, r = 1

Tetrahedra Sigma Error 1 Error 2 Error 3 Pressure
6 4.1815 6.0223e-003 6.2017e-003 1.2326e-002 3.0920e-001
12 4.4142 2.3063e-003 2.2623e-003 1.5898e-003 3.7065e-001
24 3.8284 1.7874e-003 1.8019e-003 1.4641e-003 2.8609e-001
48 4.1815 1.1168e-003 1.1432e-003 1.4807e-003 1.9697e-001
96 4.4142 1.6100e-003 1.6127e-003 7.5146e-004 1.2666e-001

Table 6.6: Accuracy of the smoothness conditions, r = 1

Tetrahedra Sigma Error 1 Error 2 Error 3
6 4.1815 8.5805e-003 7.0732e-003 1.2994e-002
12 4.4142 2.1879e-003 2.2069e-003 1.6728e-003
24 3.8284 8.7277e-004 8.7071e-004 9.0578e-004
48 4.1815 1.0591e-003 1.0608e-003 1.1549e-003
96 4.4142 6.7895e-004 6.9228e-004 6.1978e-004

Table 6.7: Accuracy of the boundary conditions, r = 1

Tetrahedra Sigma Error 1 Error 2 Error 3
6 4.1815 1.0924e-002 1.1170e-002 1.1592e-002
12 4.4142 2.6329e-003 2.3176e-003 2.8183e-003
24 3.8284 2.3098e-003 2.1577e-003 2.0573e-003
48 4.1815 1.0022e-003 9.3040e-004 1.2877e-003
96 4.4142 4.9163e-004 4.8677e-004 8.2081e-004
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Table 6.8: Accuracy of the divergence free condition, r = 1

Tetrahedra Divergence
6 3.9109e-003
12 7.3256e-004
24 3.3587e-004
48 1.8103e-004
96 8.3684e-005

Table 6.9: Accuracy of the velocity and pressure, r = 2

Tetrahedra Sigma Error 1 Error 2 Error 3 Pressure
6 4.1815 6.0223e-003 6.2017e-003 1.2326e-002 3.0920e-001
12 4.4142 2.2747e-003 2.2683e-003 1.5856e-003 3.7023e-001
24 3.8284 1.8173e-003 1.8082e-003 1.4962e-003 2.8492e-001
48 4.1815 1.0874e-003 1.1067e-003 1.4351e-003 1.8918e-001
96 4.4142 1.4268e-003 1.4084e-003 7.5803e-004 1.3249e-001

Table 6.10: Accuracy of the smoothness conditions, r = 2

Tetrahedra Sigma Error 1 Error 2 Error 3
6 4.1815 8.5805e-003 7.0732e-003 1.2994e-002
12 4.4142 2.1342e-003 2.1335e-003 1.7477e-003
24 3.8284 9.2243e-004 9.3067e-004 9.2330e-004
48 4.1815 1.0547e-003 1.0749e-003 1.2324e-003
96 4.4142 6.2688e-004 5.7562e-004 7.8092e-004

Table 6.11: Accuracy of the boundary conditions, r = 2

Tetrahedra Error 1 Error 2 Error 3
6 1.0924e-002 1.1170e-002 1.1592e-002
12 2.7720e-003 2.6273e-003 2.8825e-003
24 2.3418e-003 2.1429e-003 2.0910e-003
48 9.3480e-004 9.2857e-004 1.3968e-003
96 5.0745e-004 4.9045e-004 8.4306e-004
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Table 6.12: Accuracy of the divergence free condition, r = 2

Tetrahedra Divergence
6 3.9109e-003
12 7.3900e-004
24 3.5634e-004
48 2.0256e-004
96 1.2620e-004

continuous splines of degree 7 over the cube subdivided in six tetrahedra. These

results agree with the ones of [Wang and Sheu’97] who used quadratic polynomials

on cubic elements.
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Figure 6.1: Fluid profile in the x− y plane
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Figure 6.2: Fluid profile in the y − z plane
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Figure 6.3: Fluid profile in the x− z plane



Chapter 7

Concluding Remarks

We have in this dissertation numerically solve various PDE’s using multivariate

splines, B-nets and smoothness conditions. Three dimensional problems typically

require a lot of memory for computation and this study does not make an exception

to this rule. The approximations seem to be very sensitive to the maximum shape

measure of the tetrahedral partition. We have identified a refinement strategy and

indicate some of its properties suggested by numerical results. When triangulating

the unit cube, this algorithm gives the same results as the one in [Ong’94]. The

numerical part of this dissertation took a lot of time. When one mistake is made,

the programs which already take time to run have to be launched again. Various work

can follow this study. We plan to extend these ideas to time-dependent problems,

consider the Navier-Stokes equations in stream function formulation and numerically

solve the Navier-Stokes equations on an exterior domain.
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