
  

 

 

GENETIC ANALYSIS OF MALE AND FEMALE FERTILITY USING LONGITUDINAL 

BINARY DATA 

by 

TRAVIS AVERILL 

(Under the Direction of Romdhane Rekaya) 

ABSTRACT 

  A permanent effect and two random regression models were used to analyze 

insemination events. In all three cases, longitudinal threshold models were implemented. In the 

first study, outcomes of insemination events in the first 250 d after calving were analyzed using a 

permanent effect model. The posterior mean (SD) of additive, service sire and permanent effect 

variance was 0.034 (0.006), 0.009 (0.001) and 0.171 (0.013), respectively.  The PM (SD) of the 

estimated heritability was 0.028 (0.005).  In the second study, all insemination events were used 

and a quadratic function and Ali -Schaeffer model were employed to model the additive genetic 

effects. With random regression models, genetic variance and heritability for insemination 

success increased with time. Genetic correlations between successive inseminations were 

positive and high and decreased with the increase of the interval between inseminations. Model 

comparison based on Bayes factor showed a slight superiority of the quadratic regression model.   
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CHAPTER 1 

INTRODUCTION 

 Long time selection for production responses has deteriorated some secondary or non-

production traits such as fertility or health conditions as a result of their antagonist relationships. 

These traits are not only of economic interest but also of environmental and animal welfare 

importance. Thus, improvement in or at least the maintenance of herd fertility has become a 

major objective in genetic improvement programs worldwide.  Poor fertility and cows with low 

milk yield are the two major reasons for voluntary culling.  Further, milk production depends at 

least in part on fertility, because the more frequently a cow calves, the greater the amount of milk 

produced in her lifetime.   

 The outcome of an insemination event depends on both male and female fertility, and it 

has been well documented that several factors, such as herd management, heat detection 

practices, and genetics can improve reproductive performance of dairy cows.   Although the 

heritability of fertility traits is generally low, ranging from one to ten percent depending on 

definition of the trait and the methodology used for analysis, there is a consensus that sufficient 

genetic variability exists and can be exploited to improve reproductive performance.  Several 

types of traits are used in fertility evaluation, ranging from binary (discrete) responses to 

continuous or interval traits.  Consequently, depending on the trait definition, different models 

and methodologies have been developed and implemented to analyze reproductive performances.   

Current models and techniques used in fertility studies have concentrated on evaluating 

female and male fertility separately.  More importantly, not all sources of variation are accounted 
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for using any of the three types of traits mentioned before. Especially, there is no easy way to 

account appropriately for the service bull effect or male fertility. In the majority of cases, cows 

need more than one insemination per conception and at best, it is only possible to account for the 

last service bull used ignoring previous ones. Furthermore, it has been reported that almost 50% 

of the usable data is being discarded by considering only first service data because at least half of 

the cows have repeat insemination data available. Additionally, a high proportion of fertility data 

is usually discarded as a result of the inconsistencies in data recording that necessitate stringent 

editing. Thus, including the repeated records will increase the amount of information leading to 

more accurate sire evaluations.  

 Another issue of interest is the sequence of service sires used for cows having more than 

one insemination. For two cows having the same number of inseminations and sired by the same 

bulls but in different order is not accounted for with actual models, which may bias the 

prediction of both male and female fertility. However, by using all insemination events, all 

service sires and the order they were used can be accommodated easily.   For a cow that 

conceived after 3 inseminations, her vector of responses will be (0, 0, 1). Similarly, a cow that 

conceived after 1 insemination will have a vector of binary response of (1).  An alternative idea 

consists in modeling all insemination events for each cow as repeated binary responses allowing 

on one hand to use all available information and on another hand to account properly for male 

and female fertility.   

 The main objective of this study was to develop and implement a longitudinal threshold 

model for analysis of the binary outcome of all insemination events. Repeatability and random 

regression based models will be implemented and compared using Bayesian Information criteria. 
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CHAPTER 2 

REVIEW OF LITERATURE 

During the last few decades, the dairy industry has changed dramatically in the United 

States and worldwide.  According to the USDA (National Agricultural Statistics Service, 2004), 

a 41% decrease in the number of dairy operations occurred between 1993-2002, yet the number 

of dairy cows decreased only by four percent from 1994-2003.  During the same period, total 

milk production increased by 11%, which translates to 16% increase in milk production per cow.  

The increase of milk production was the result of a combination of improved management and 

nutrition, intense genetic selection and biotechnology (Rajala-Schultz and Frazer, 2003).  

However, during the same period, little attention has been given to health and fertility traits 

(Pryce et al., 2004), which has led to serious deterioration of these traits due to their antagonist 

relationships with milk yield (A-Ranberg et al., 2003).  Poor reproductive performance has led to 

substantial economic losses as a result of prolonged calving intervals, increased insemination and 

veterinary costs, higher culling rates, and increased replacement costs (A-Ranberg et al., 2003).  

Freeman (1984) reported that reproductive failures account for approximately 16% of disposals 

of all dairy cows in the United States. Thus, maintaining reasonable reproductive efficiency for 

dairy cows is becoming a challenging problem of great importance for the profitability of the 

dairy industry (Hayes et al., 1992; Britt, 1985).   

Poor reproductive efficiency is a worldwide problem affecting the dairy industry. 

Although some attempts were made to link poor reproductive efficiency to the increase of 

Holstein genes in dairy populations, the high conception rates of non-lactating Holstein heifers 
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(70-80%), during a period when milk production per cow increased by 218%, indicates that the 

problem is more complex and that milk yield plays a major role (Beam and Butler, 1999).   

Many studies have reported an antagonistic relationship between fertility traits and milk 

production (Abdallah and McDaniel, 2000; Roxstrom et al., 2001; A-Ranberg et al., 2003). In 

fact, their estimated genetic correlation ranged from 0.4 to 0.8. Thaller (1998) concluded that an 

expected decrease of three percent in reproductive efficiency per generation is due to the 

antagonistic relationship with milk yield.  However, milk yield is not the only factor affecting 

reproductive efficiency. In fact, Lucy (2001) concluded that inbreeding has increased 

substantially in the United States Holsteins population since 1980 and might play a crucial role 

in fertility.  Additionally, Wolfenson et al. (2000) argued that reproductive performance in 

lactating dairy cows is extremely sensitive to heat stress. Oseni et al. (2004) reported similar 

results.  

Until recently, fertility traits were not seriously accounted for in most breeding programs 

for several reasons including the lack of unified definition for reproductive performance, lack of 

efficient recording system, and the theoretical and computational complexity in modeling and 

analyzing such data. Pryce et al. (2004) stated that the limitation in using insemination data is, in 

part, because of the considerable variation in the recording quality. 

 The outcome of an insemination depends on both male and female fertility, and it has 

been well documented that several factors, including herd management, heat detection practices, 

and genetics play a major role in reproductive performance.  Although the heritability of fertility 

traits are low, ranging from one to ten percent depending on the definition of the trait and the 

methodology used for analysis, there is consensus that sufficient genetic variability exists, and it 

can be exploited to improve reproductive performances.   
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 For the joint evaluation of male and female fertility, the definition of the trait is crucial. 

Consequently, it is appropriate to discuss the most frequent definitions used to assess fertility. 

Basically there are three type of traits used for reproductive performance evaluation: interval 

traits, discrete traits and count traits. Depending on the trait definition, different models and 

methodologies have been developed and implemented to analyze reproductive performance. 

Interval traits 

Interval or continuous traits are most commonly used for fertility evaluation, in part 

because their simplicity and availability at a large scale. Further, their analysis can be 

accommodated easily using existing standard tools, particularly mixed linear model 

methodology.  Most interval traits such as days to first service (DFS), calving interval (CI), and 

days open (DO) are likely to be biased by management decisions influenced by the potential 

yield or season of calving of individual cows (Stott et al., 1999; Butler and Smith, 1989; 

Darwash et al., 1997).  For the interval from first insemination to conception, high producing 

cows tend to have more opportunities for re-insemination in the case of failure of conception.  

Mayne et al. (2002) reported that herds with high heat detection rate had significantly shorter 

calving intervals and significantly lower 305-day protein yields, less body condition loss after 

calving, and significantly smaller negative energy balance. They concluded that calving interval 

shorter than 380 days is achievable by minimizing negative energy balance in early lactation, 

good heat detection, and early insemination of cows after calving.   

Given the non-uniformity and the effects of management decisions, interval traits (e.g. 

calving interval, days to first insemination, days open) tend to have low heritabilities (0.003 to 

0.12), however, most estimates were around 0.04, which makes the identification of more fertile 

genotypes difficult and have consequently negated selection for fertility (Darwash et al. 1997). 
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Interval from calving to first breeding is regarded as one of the most important practical 

measures of reproductive performances.  It was argued that economic losses due to poor fertility 

are the result of prolonged calving interval, increased insemination cost, reduced returns from 

calves born and forced replacement in the event of culling (Esselmont and Peeler, 1993).  Using 

calving interval as a measure of fertility presents a problem because only animals that survive to 

the next lactation have a calving interval.  Therefore, evaluation based on this trait alone could be 

biased as a result of culling of low fertility cows. To deal with the culling problem, it was 

recommended (Roxstrom and Strandberg, 2002; Olori et al. 2002) that calving interval should be 

treated as a censored trait and analyzed jointly with survival scores to take into account the 

nonrandom scoring of calving interval.   

Weller (1989) used a large data set from the Israeli Holstein population to estimate the 

genetic parameters of days to first breeding in the first and second parities. Heritability of days to 

first breeding was 0.048 and 0.031 for first and second parity, respectively.  The genetic and 

environmental correlation between days to first breeding in the first and second parity was 0.732 

and 0.061, respectively. The genetic correlation between days to first breeding and production 

traits ranged between 0.2 and 0.3.  However, these results have to be interpreted with caution 

because the nonrandom selection applied to the data (only cows with records in both parities 

were considered). 

Using Holstein data from New Zealand, the heritability for calving interval was 0.017 

(Grosshans et al. 1996). This estimate is relatively low compared with other estimates. However, 

it is still within the range of reported estimates for the trait. The genetic correlations with 

production traits ranged from 0.026 to 0.22.  Although lower than reported estimates, it still 

reflects the antagonistic relationship between reproductive performance and production traits. In 
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a more recent study, Olori et al. (2002) used single and multiple-trait models to analyze calving 

interval, survival rate and milk yield. The estimated heritability for calving interval in the three- 

trait model was 0.04 and the genetic correlation with milk yield was 0.4.  The distribution of 

calving interval proofs from the single and multiple-trait models were relatively similar.  

However, a left shift on the distribution of calving interval proves suggests that analyzing 

calving interval alone, or along with survival rate without correcting for milk yield may result in 

overestimation of breeding values for calving interval. Furthermore, the trend indicated a steady 

increase in calving interval at the rate of 0.14 days per year from 1984 to 1995. 

Hansen et al. (1983) stated that the relationships between 305-day yield and days open 

are largely due to the influence of gestation length on yield.  However, voluntary delay of 

breeding has a major impact on DO leading to some unreasonable values for the trait. Thus, large 

DO reflect not only the reproductive performance but also preferential husbandry. Conceptually, 

observed DO values cannot be used directly for fertility genetic evaluation. In fact, several 

restrictions based on truncation or thresholds have been developed to minimize the impact of 

management decisions on the trait. Currently, the USDA uses a threshold on large DO at 250 

days. Oseni et al. (2004) showed that different values for the threshold have resulted in major 

changes in the estimated genetic parameters. On the other hand, DO present several advantages 

compared to other fertility measurements. DO is a continuous trait for which analysis tools are 

widely available, it is easy and cost effective to measure on a large scale and has a higher 

heritability. Moore et al. (1990) argued that days open would be preferred due to the lack of 

correlation with age and weight at calving, higher heritability and more variation than days to 

first breeding. 
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Heritability estimates for days to first breeding and days open are relatively higher than 

other reproductive traits. Available estimates ranged from almost zero to 0.15 and even higher. 

However, the majority of estimates ranged between 0.03 and 0.05 (Brotherstone et al. 2002; 

Raheja et al. 1989a; Dematawewa et al. 1998; Hoeschele 1991). 

Oseni et al. (2004) studied DO using five different upper bounds (150, 200, 250, 300, 365 

days). A large data set including DO records from several states was used. By relaxing the upper 

bound from 150 to 365 days, DO mean increased by 25 to 50% depending on the state. Similarly, 

the residual and genetic variances for DO increased with the increase of the upper bound. The 

estimated heritability ranged from 0.03 to 0.06. Genetic correlations between days open and 

production traits appear to be antagonist with estimates ranging for close to zero (Weller 1989; 

Raheja et al., 1989a; Raheja et al., 1989b) to relatively high 0.53-0.68 (Dematawewa and Berger 

1998). In addition, Marti et al. (1994) studied the effect of milk yield and parity on DO. The 

regression coefficient of days open on milk production indicated an increase of around one and 

half days in DO for each additional 100 Kg in milk yield.   

Binary traits 

 The recent theoretical and computational developments in the analysis of discrete and 

binary data have made the use of these traits for reproductive performance evaluation possible. 

Although these traits were analyzed for a period of time as continuous responses using existing 

mixed linear methodology, in clear violation of their distributional assumptions, the threshold 

liability model is becoming the standard tool for discrete data analysis especially after the papers 

by Best et al. (1995) and Sorensen et al. (1995). There are several binary traits used as a measure 

of fertility. However, conception rate (CR) and non-return rate (NRR) after a fixed number of 

days (e.g. 70 or 90 days) and success or failure of an insemination were the most widely used 
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binary traits found in the literature. All these traits are in some sense connected and tend to have 

lower heritability especially when analyzed using mixed linear models. Compared to interval 

traits, binary responses are usually measured early during the breeding season which will reduce 

the impact of environmental and management effects and allow for early genetic evaluation 

(Thaller, 1998). Non-return rate has mostly been used as a measure of male fertility, and it 

depends on complete recording of all subsequent inseminations.  Furthermore, a calving date is 

not required. More recently, Weigel and Rekaya (2000) used non-return at day 70 (NR70) and 90 

(NR90) for the joint evaluation of male and female fertility. The cow being inseminated was 

considered as the additive genetic effect (female fertility) and the service bull (male fertility) was 

considered as a random environmental effect (representing a combination of genetic and 

permanent environmental effects). They used a linear and threshold model for estimating genetic 

parameters for NR and confirmed pregnancy at day 60 and 90 in dairy herds in California and 

Minnesota. The linear model estimates were lower than the threshold model estimates except for 

phenotypic variance in Minnesota herds.  They argued that the phenotypic variance in Minnesota 

herds could the result of small herd size in Minnesota compared to California herds and to the 

use of herd-season as contemporary group instead of herd-month.  The correlations between NR 

and confirmed pregnancy at day 60 (CP60) were high, ranging from 0.88 to 0.92 and lower 

between NR and CP90 (0.66 to 0.84) indicating a potential error (misclassification) of pregnancy 

status. Further, the lowest NR was observed in winter (November to February) and the highest in 

spring (May to June).  Schnyder and Stricker (2002) used a bivariate linear animal model to 

estimate variance components for days to first breeding and non-return rate in three breeds 

(Holsteins, Red and Whites, and Brown Swiss). The estimated genetic variance and service sire 

variance ranged from 0.007 to 0.011 and 0.0013 to 0.0023, respectively. Heritability estimates 
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were less than four percent for all three breeds with the lowest of 0.03 for the Red and Whites 

breed. The genetic and residual correlation between NR and interval from calving to first 

insemination ranged from 0.22 to 0.31 and –0.06 to 0.04, respectively.  A-Ranberg (2002) 

reported a 3.7 and 2.8% increase in NR rate for heifers and first lactation cows, respectively 

during a twenty-year period (1979-2000).  His estimates of service sire variance were practically 

null (0.0005 – 0.0008), and the obtained heritabilities were much smaller (0.012 – 0.015) than 

those reported by Schnyder and Stricker (2002). 

The major problem with NR as a measure of reproductive performance was highlighted 

by Mayne et al. (2002) who reported that the average conception rate to first AI was 37.1% or 

16% less than the CR estimated from the 60 day NRR in the same herds.  The difference 

illustrates the unreliability of accepting the 60 day NRR as proof of a successful mating. Taylor 

et al. (1985) used conception rate as a measure of fertility performance and found that both the 

additive (0.016) and service sire (0.005) variances were low compared to those obtained using 

NR. Further, their results suggest higher conception rate in fall months compared with winter 

months, and the largest difference, 6.1% was observed between October and January.   

 Jansen (1986) used a linear model to estimate genetic parameters for NR56 and 

conception rate for heifers and cows.  Heritability estimates were relatively similar for NR56 and 

CR, although few discrepancies were observed.  NR56 heritability ranged from 0.1 to 2.3%.  

Parity one had the highest heritability for NR56 and parity two had the highest heritability for 

CR.  Hodel et al. (1995) analyzed NR on heifers and cows using a bivariate model and reported 

higher service sire variance, additive variance and heritability using cow data. They concluded 

that the maximum fertility appears to be achieved approximately 120 days after calving and that 

inseminating cows before 45 days after calving is not advisable, because the uterus requires a 
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longer recovery period.  Clay and McDaniel (2001) reported that cows bred within 50 days after 

calving are expected to have 5.5% greater chance of being rebred within 70 days than cows bred 

between days 70 to 79 after calving.  Similarly, cows bred at more than 139 days were expected 

to have 3.3% less chance of being rebred within 70 days than cows bred at 70 to 79 days.   

Count Traits 

The only count trait used, as a measurement of fertility, was the number of services to 

conception (NS). If inseminations are conducted at regular intervals, it reflects the ability of the 

cow to start cycling after calving and her potential of becoming pregnant. However, it is seldom 

the case that inseminations are carried out at regular intervals. Furthermore, censoring is a major 

problem when analyzing NS as too many cows have incomplete records. Additionally, NS is not 

a continuous trait and its analysis requires special methodology (poison models) and software. 

As a result, only a few studies have looked at this trait. Raheja et al. (1989a) reported that NS 

ranged from 1.54 to 1.55 for the first three lactations. Heritability estimates increased with 

lactation number from 0.03 to 0.06 for first and third lactation, respectively. In another study, 

Raheja et al. (1989b) used a mixed linear model to analyze NS as a measure of female fertility 

and NR as a measure of male fertility. The estimated genetic and phenotypic correlation between 

these two traits was -0.09 and -.012, respectively.   

Dematawewa and Berger (1998) used a repeatability model for NS across lactations and 

reported estimates of heritability of 0.028 and repeatability of 0.083. Heritability estimates from 

across parity analyses ranged from 0.01 (second lactation) to 0.11.  

 Foulley et al. (1987) were first in developing a poisson model for analysis of count data. 

Tempelman and Gianola (1996) used such a model for analysis of NS in Holstein heifers.  They 

reported an estimated heritability of 2.6%, similar to estimates of other discrete fertility traits.  
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Longitudinal analysis of all insemination events 

Longitudinal analysis of all insemination events during a breeding season was never 

implemented to the best of our knowledge. With respect to analysis of the three type of traits 

mentioned earlier, not all sources of variation are accounted for by the various models employed. 

Especially, there is no easy way to account appropriately for the service sire effect or male 

fertility. In the majority of cases, cows need more than one insemination per conception and at 

best, it is only possible to account for the last service sire used ignoring previous ones. For many 

years, DRMS Raleigh has provided a regional evaluation for male fertility through the Expected 

Relative Conception Rate (ERCR) system using only 70-day nonreturn of first breedings (Clay 

and McDaniel, 2001; Weigel, 2000). However, Weigel (2000) reported that almost 50% of the 

usable data is discarded by considering only first service data because at least half of the cows 

have repeat insemination data available. The same author concluded that the use of such 

information is desirable. Furthermore, a high proportion of the fertility data is usually discarded 

as a result of the inconsistencies in data recording that necessitate stringent editing. Thus, 

including repeated records will increase the amount of information leading to more accurate sire 

evaluations. Another issue of interest is the sequence of service sires used for cows having more 

than one insemination. For two cows having the same number of inseminations and sired by the 

same bulls but in different order, such sequence of sires used is not accounted for with actual 

models, which may bias the prediction for both male and female fertility. For a cow that 

conceived after 3 inseminations, her vector of responses will be (0, 0, 1). Similarly, a cow that 

conceived after 1 insemination will have a vector of binary response of (1). An alternative idea 

consists in modeling the number of inseminations per cow as repeated binary responses allowing 

the use all available information to account properly for the male and female fertility.   
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CONCLUSION 

 Fertility is a complex trait that is becoming more and more important for many genetic 

improvement programs in dairy cattle worldwide. Long-term single trait selection for increased 

milk production had a negative impact on several secondary traits including fertility.    

 Most interval traits used as a measure of fertility are influenced by management decisions 

and production level, which potentially could lead to non-ignorable bias. Some discrete or binary 

traits are less affected by management decisions and could potential help improve reproductive 

performances in dairy cattle. However, the theoretical and computational complexities associated 

with their use and the non-availability of nation wide recording of those traits could limit their 

extensive use. 

 Reproductive performance depends on male and female fertility. As such, these two 

components have been modeled jointly. Unfortunately, neither the interval traits nor the binary 

traits can accommodate these two components in a joint analysis. Therefore, longitudinal data is 

the only choice available now for the joint analysis of male and female fertility. 

REFERENCES 

Abdallah, J. M., and B. T. McDaniel.  2000.  Genetic parameters and trends of milk, fat, days 

open and body weight after calving in North Carolina experimental herds.  J. Dairy Sci.  

83:1364-1370. 

A.-Ranberg, I. M., G. Klemetsdal, B. Heringstad, M. Svendsen, and T. Steine.  2002.  Breeding 

values for daughter fertility in Norwegian dairy cattle; data quality and model validation.  

INTERBULL Bulletin 29:200-204. 

13 



  

A.-Ranberg, I. M., B. Heringstad, G. Klemetsdal, M. Svendsen, and T. Steine.  2003. Heifer 

fertility in Norwegian dairy cattle: Variance components and genetic change.  J. Dairy 

Sci.  86:2706-2714. 

Beam, S. W., and W. R. Butler.  1999.  Effects of energy balance on follicular development and 

first ovulation in postpartum dairy cows.  J. Reprod. Fert. Suppl.  54:411-424. 

Best, N. G., M. K. Cowles, and S. K. Vines.  1995.  CODA Manual version 0.30.  MRC 

Biostatistics Unit, Cambridge, UK.  41pp. 

Britt, J. H.  1985.  Enhanced reproduction and its economic implications.  J. Dairy Sci.  68:1585-

1592. 

Brotherstone, S., G. Banos, and M. P. Coffey.  2002.  Evaluation of yield traits for the 

development of a UK fertility index for dairy cattle.  7th World Congress on Genetics 

Applied to Livestock Production.  01-28. 

Butler, W. R. and R. D. Smith.  1989.  Interrelationships between energy balance and postpartum 

reproductive function in dairy cattle.  J. Dairy Sci.  72:767-783. 

Clay, J. S., and B. T. McDaniel.  2001.  Computing mating bull fertility from DHI nonreturn 

data.  J. Dairy Sci.  84:1238-1245. 

Darwash, A. O., G. E. Lamming, and J. A. Woolliams.  1997.  Estimation of genetic variation in 

the interval from calving to postpartum ovulation of dairy cows.  J. Dairy Sci.  80:1227-

1234. 

Dematawewa, C. M. B., and P. J. Berger.  1998.  Genetic and phenotypic parameters for 305-day 

yield, fertility, and survival in Holsteins.  J. Dairy Sci.  81:2700-2709. 

Esslemont, R. J., and E. J. Peeler.  1993.  The scope for raising margins in dairy herds by 

improving fertility and helath.  British Veterinary J.  149:537-547. 

14 



  

Foulley, J. L., D. Gianola, and S. Im.  1987.  Genetic evaluation of traits distributed as Poisson-

binomial with reference to reproductive characters.  Theoretical and Applied Genetic.  

73:870-877. 

Freeman, E. A.  1984.  Sire selection.  Secondary traits: sire evaluation and the reproductive 

complex.  J. Dairy Sci.  67:449. 

Grosshans, T., Z. Z. Xu, L. J. Burton, and D. L. Johnson.  1996.  Genetic parameters for fertility 

traits in seasonal dairy cattle.  Dairy Cattle Breeding in New Zealand. 

Hansen, L. B., A. E. Freeman, and P. J. Berger.  1983.  Variances, repeatabilities, and age 

adjustments of yield and fertility in dairy cattle.  J. Dairy Sci.  66:281-292. 

Hayes, J. F., R. I. Cue, and H. G. Monardes.  1992.  Estimates of repeatability of reproductive 

measures in Canadian Holsteins.  J. Dairy Sci.  75:1701-1706. 

Hodel, F., J. Moll, and N. Kuenzi.  1995.  Analysis of fertility is Swiss Simmental cattle – 

Genetic and environmental effects on female fertility.  Livest. Prod. Sci.  41:95-103. 

Hoeschele, I.  1991.  Additive and nonadditive genetic variance in female fertility of Holsteins.  

J. Dairy Sci.  74:1743-1752. 

Jansen, J.  1986.  Direct and maternal genetic parameters of fertility traits in Friesian cattle.  

Livest. Prod. Sci.  15:153-164. 

Lucy, M. C.  2001.  Reproductive loss in high-producing dairy cattle: where will it end?  J. Dairy 

Sci.  84:1277-1293. 

Marti, C. F., and D. A. Funk.  1994.  Relationship between production and days open at different 

levels of herd production.  J. Dairy Sci.  77:1682-1690. 

15 



  

Mayne, C. S., M. A. McCoy, S. D. Lennox, D. R. Mackey, M. Verner, D. C. Catney, W. J. 

McCaughey, A. R. G. Wylie, B. W. Kennedy, F. J. Gordon.  2002.  Fertility of dairy 

cows in Northern Ireland.  Veterinary Record.  150:707-713. 

Moore, R. K., B. W. Kennedy, L. R. Schaeffer, and J. E. Moxley.  1990.  Relationships between 

reproduction traits, age and body weight at calving, and days dry in first lactation 

Ayrshires and Holsteins.  J. Dairy Sci.  73:835-842. 

National Agricultural Statistics Service  2004.  USDA-NASS Milk production and milk cows.  

Online: http://www.usda.gov/nass/aggraphs/milk1.htm. 

Olori, V. E., T. H. E. Meuwissen, and R. F. Veerkamp.  2002.  Calving interval and survival 

breeding values as measure of cow fertility in a pasture-based production system with 

seasonal calving.  J. Dairy Sci.  85:689-696. 

Oseni, S., I. Misztal, S. Tsuruta, and R. Rekaya.  2004(submitted).  Genetic parameters for days 

open and pregnancy rate for US Holsteins using different editing criteria.  J. Dairy Sci.   

Pryce, J. E., M. D. Royal, P. C. Garnsworthy, and I. L. Mao.  2004.  Fertility in the high-

producing dairy cow.  Livest. Prod. Sci.  86:125-135. 

Raheja, K. L., E. B. Burnside, and L. R. Schaeffer.  1989a.  Relationships between fertility and 

production in Holstein dairy cattle in different lactations.  J. Dairy Sci.  72:2670-2678. 

Raheja, K. L., K. Nadarajah, and E. B. Burnside.  1989b.  Relationship of bull fertility with 

daughter fertility and production traits in Holstein dairy cattle.  J. Dairy Sci.  72:2679-

2682. 

Rajala-Schultz, P. J., and G. S. Frazer.  2003.  Reproductive performance in Ohio dairy herds in 

the 1990s.  Anim. Reprod. Sci.  76:127-142. 

16 



  

Roxstrom, A., E. Strandberg, B. Berglund, U. Emanuelson and J. Philipsson.  2001.  Genetic and 

environmental correlations among female fertility traits, and between the ability to show 

oestrus and milk production in dairy cattle.  Acta. Agric. Scand., Sect. A, Anim. Sci.  

51:192-199. 

Roxstrom, A., and E. Strandberg.  2002.  Genetic analysis of functional, fertility-, mastitis-, and 

production-determined length of productive life in Swedish dairy cattle.  Livest. Prod. 

Sci.  74:125-135. 

Schnyder, U., and C. Stricker.  2002.  Genetic evaluation for female fertility in Switzerland.  

INTERBULL Bulletin.  29:138-141. 

Sorensen, D. A., S. Andersen, D. Gianola, and I. Korsgaard.  1995.  Bayesian inference in 

threshold using Gibbs sampling.  Genet. Sel. Evol.  27:229-249. 

Stott, A. W., R. F. Veerkamp, and T. R. Wassell.  1999.  The economics of fertility in the dairy 

herd.  Anim. Sci.  68:49-57. 

Taylor, J. F., R. W. Everett, and B. Bean.  1985.  Systematic environmental, direct, and service 

sire effects on conception rate in artificially inseminated Holstein cows.  J. Dairy Sci.  

68:3004-3022. 

Tempelman, R. J. and D. Gianola.  1996.  A mixed effects model for overdispersed count data in 

animal breeding.  Biometrics.  52: 265-279. 

Thaller, G. 1998.  Genetics and breeding for fertility.  INTERBULL Bulletin.  18:55-61.  

Weigel, K. A.  2000.  Toward national fertility evaluations.  Proc 18th Technical Conference on 

Artificial Insemination and Reproduction. 

Weigel, K. A. and R. Rekaya.  2000.  Genetic parameters for reproductive traits of Holstein 

cattle in California and Minnesota.  J. Dairy Sci.  83:1072-1080. 

17 



  

Weller, J. I.  1989.  Genetic analysis of fertility traits in Israeli dairy cattle.  J. Dairy Sci.  

72:2644-2650. 

Wolfenson, D., Z. Roth, and R. Meidan.  2000. Impaired reproduction in heat-stressed cattle: 

basic and applied aspects.  Anim. Reprod. Sci.  60-61:535-547. 

 

 

18 



  

 

 

CHAPTER 3 

 

GENETIC ANALYSIS OF MALE AND FEMALE FERTILITY USING LONGITUDINAL 

BINARY DATA11 

 

Averill, T., R. Rekaya, and K. Weigel 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 Averill, T., R. Rekaya, and K. Weigel.  Submitted to J. Dairy Science (2004). 

19 



  

ABSTRACT 

 A longitudinal Bayesian threshold analysis of insemination events during the first 250 d 

after calving of first parity Holsteins was carried out.  The outcome of an insemination event was 

treated as a binary response of either a success (1) or a failure (0). Thus, all breeding information 

for a cow, including all service sires, was included, thereby allowing for a joint evaluation of 

male and female fertility.   An edited data set of 297,827 insemination records from 151,758 first 

lactation cows was used.  On the liability scale, the model included the systematic effects of 

herd-year of insemination, technician, month of insemination, and regressions on age of service 

sire, three test days in the first 100 days of lactation (early milk yield) and days in milk at 

insemination. The random effects in the model were the additive breeding value, the permanent 

effect of the cow and the service sire effect. Posterior mean (SD) of the dispersion parameters in 

the model were 0.034 (0.006), 0.009 (0.001) and 0.171 (0.013) for the additive, service sire and 

permanent environmental variances, respectively.  The residual variance was fixed to one, as a 

result of the non-identifiability of the threshold model. The posterior mean (SD) of heritability 

was 0.028 (0.005). This point estimate of heritability is well within the range of available 

estimates for the trait. Thus, these estimates suggest that some genetic variation exists that can 

potentially be used to improve, or at least avoid further deterioration of reproductive 

performance. The estimate of the regression coefficient on age of service sire was 0.001 

indicating better fertility among older bulls. However, this result has to be interpreted with 

caution given the preferential use of proven bulls on well-managed cows (as opposed to problem 

breeders).  The estimate of the regression coefficient was negative (-0.005) for early milk yield, 

as expected, and positive (0.003) for days in milk at insemination. This suggests that high 

producing cows are less likely to conceive at the beginning of lactation.  
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INTRODUCTION 

 The main goal of dairy producers is to maximize returns from milk production while 

minimizing costs (Freeze et al., 1992).  This forces dairy producers to maintain reproductive 

performance while obtaining a high level of milk production.  However, long-term selection for 

milk yield has caused deterioration in some non-production or “secondary” traits as a result of 

antagonist genetic relationships. As a result, more cows are being culled involuntarily as a 

consequence of poor fertility (Hansen et al., 1983; Lopez-Gatius et al., 2002; Weller, 1989). This 

decline in fertility has become a major problem in the dairy industry, causing significant 

economic losses (Clay et al., 2001; Taylor et al. 1985; Olori et al., 2002) due to additional 

insemination costs, decreased milk production per day of herd life, and decreased intensity of 

selection (Hodel et al., 1995).  Thus, improvement in, or at least the maintenance of, herd fertility 

has become a major objective in genetic improvement programs worldwide. The outcome of an 

insemination depends on both male and female fertility, and it has been well documented that 

several factors, such as herd management, heat detection practices, and genetics can improve 

reproductive performance. Although the heritability of fertility is low, ranging from one to ten 

percent depending on definition of the trait and the methodology used for its analysis, there is a 

consensus that sufficient genetic variability exists, and this can be exploited to improve 

reproductive performance.  

 Several types of traits are used in fertility evaluation, ranging from binary (discrete) 

responses to continuous or interval traits.  Consequently, depending on the trait definition, 

different models and methodologies have been implemented to analyze reproductive 

performance.  Raheja et al. (1989b) used a mixed linear model to study the relationships between 
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bull fertility with daughter fertility and production traits in Holstein cattle. Three fertility traits 

(days from calving to first breeding, days open, and number of AI services per conception) and 

three production traits (breed class average-milk, breed class average-fat, and breed class 

average-fat %) in the first two lactations were used.  Breed Class Average (BCA) is an index 

combining milk, fat and protein used by all milk recording programs across Canada.  It consists 

of comparing a cow’s actual or projected 305 day production to the BCA standard for a cow of 

the same breed, age at calving and month of calving.  The estimated genetic correlations (based 

on the correlations of estimated breeding values) between female fertility, male fertility, and 

production traits ranged between –0.56 to 0.13.   Weigel and Rekaya (2000) estimated genetic 

parameters associated with male and female fertility traits using linear and threshold models. 

Non-return rate and confirmed pregnancy after 60 and 90 days defined as binary traits were 

considered. The proportion of phenotypic variance explained by service bull effect ranged from 

0.005 to 0.008. In all cases, estimates based on a threshold model were higher. Heritability 

estimates for female fertility (i.e., the proportion of variance due to the animal being 

inseminated) ranged from 1.4 to 3.1%. In a recent study, Brotherstone et al. (2002) investigated 

the relationships between three fertility traits (calving interval, number of inseminations, and 

conception rate to first insemination) and nine production traits (daily milk, fat plus protein, or 

milk energy yield at the 3rd test; daily milk, fat plus protein, or milk energy yield at the test 

nearest to the body condition score date, and, 305-d lactation milk, fat plus protein, and milk 

energy yield).  They concluded that heritabilities of fertility traits were very similar and ranged 

from 0.03 to 0.04. However, the genetic correlations between fertility and production traits were 

antagonist, ranging from -0.34 to 0.43. The genetic correlation between calving interval and 305-
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d milk energy yield (0.43) suggests that an increase in 305-d milk yield is associated with an 

increase in calving interval. 

Grosshans et al. (1996) used a sire model and restricted maximum likelihood 

methodology to analyze eleven fertility traits and three production traits (milk yield, fat yield, 

and protein yield) and concluded that the heritability of fertility traits ranged from 0.007 (number 

of service per conception) to 0.134 (age at calving).  Genetic correlations between milk 

production and fertility traits, except age at first calving, were low (–0.248 to 0.289).  However, 

the correlations of age at calving with production traits were higher and positive (antagonist) 

being 0.209, 0.447, and 0.704 with milk yield, fat yield and protein yield, respectively, indicating 

an increase in age at calving with an increase in milk production.     

Kadarmideen et al. (2000) estimated genetic parameters for various disease traits and 

conception after first insemination in UK dairy population using linear and threshold models.  

They concluded that the threshold model yields slightly higher estimates. In fact, the heritability 

of the fertility trait was 0.01 and 0.012 using linear and threshold models, respectively. 

Most of the previous research on dairy cattle fertility has focused on separate analyses of 

female and male fertility.  More importantly, not all sources of variation are accounted for in 

many analyses, particularly when only one record per cow is used.  Weigel (2000) reported that 

almost 50% of the usable data is discarded by considering only first services, because at least 

half of the cows have repeated insemination data available.  The same author concluded that the 

use of such information is desirable.  Furthermore, a high proportion of the fertility data is 

usually discarded as a result of inconsistencies in data recording that necessitate stringent editing.  

Thus, including the repeated records will increase the amount of information leading to more 

accurate sire evaluations.  However, when using a single record per cow, there is no easy way to 
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account appropriately for the service sire effect because only one service sire will be accounted 

for.  In the majority of cases, cows need more than one insemination per conception, and it is 

inappropriate to account for one of the service bulls and ignore all others.  Another issue of 

interest is the sequence of service sires for cows having more than one insemination.  For two 

cows having the same number of inseminations to the same bulls (but in a different sequence), 

differences in sequence are not accounted for with most models, and this may bias the prediction 

of both male and female fertility.  An alternative method consists of modeling the number of 

inseminations per cow as repeated binary responses, thereby allowing the use of all available 

information and accounting properly for all factors affecting male and female fertility.  

The objective of this study was to develop and implement a longitudinal binary model for 

the genetic evaluation of male and female fertility while making use of all available information.  

MATERIALS AND METHODS 

The data consisted of insemination records from dairy herds in California, generated 

between 2002 and 2003 and provided by AgriTech Analytics.  The trait of interest was the 

outcome of all insemination events (1 = success, 0 = failure). Thus, if a cow conceived after 

three inseminations, her response vector was (0, 0, 1).  If a cow conceived after one 

insemination, her response vector was (1).  Only first parity cows were included in the analysis 

of 297,823 records. Data editing consisted of keeping only pregnant cows (those with a 

successful insemination as verified by a veterinary pregnancy examination) and non-pregnant 

cows that had at least three insemination events within an opportunity period of 250 days after 

calving. Further, cows with inconsistent identification, more than one successful insemination 

per lactation, or an unrealistic interval between consecutive inseminations were removed. After 

editing, the data consisted of a total of 151,758 cows with 297,823 records, averaging 1.96 
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inseminations per cow.  The data also included a total of 2179 technicians, 3190 AI service sires, 

and 990 herd-year contemporary groups. The averages for number of inseminations per 

technician and service sire were 137 and 93, respectively. A more detailed summary of the data 

is presented in Table 3.1.   

The pedigrees of these cows had a high proportion of missing or unknown sires, due to a 

high percentage of cows in California having missing sire identification.  After matching the 

identification numbers in the data and pedigree files provided by AgriTech Analytics with the 

sire pedigrees from the National Association Animal Breeders, the international sire 

identification numbers were determined and used in building the pedigree. In general, the 

pedigree file was of poor quality and consisted of 159,250 animals.  

Statistical model and implementation 

The basic latent variable model for the analysis of cross-sectional binary responses in an 

animal breeding context has been available for more than twenty years (Gianola, 1982). The 

longitudinal threshold model, as presented by Gianola and Rekaya (2000) and Heringstad et al. 

(2001), is an extension of the cross-sectional model. As with the basic threshold model, it 

consists of postulating the existence of unobserved continuous random variable that relates to the 

observed binary or discrete response.  

Let yi = (yit1, yit2,...,yiti)’ be a nix1 vector of binary responses for animal, (i = 1, 2,…,q) 

observed at times t1, t2, …, tni.  As in the cross-sectional analysis, the binary response observed at 

a time tj related to an underlying random variable satisfying: 



 >

=
otherwise   0

 if     1 Tl
y ij

ij  
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where the subscript represents time  and will be used as such from here on, and T is a 

threshold value. Further, it is assumed that  

j jt

),(~ 2
eijij Nl σµ     [1] 

The probability of observing a positive case (success) is:  
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where Φ is the cumulative distribution function of standard normal.  It is clear from [2] that it is 

not possible to infer separately ijµ , T and .  Hence, some restrictions are placed on two of the 

three model parameters.  A common choice is to set T=0, and =1, leading to:  

2
eσ

2
eσ

)()(1)( ijijijijij Tlprp µµµ Φ=−Φ−=>=    [3] 

where ijµ can be linearly related to a set of systematic and random effects. 

 Furthermore, a mixed linear model can be used to express the relationship between 

liability and ijµ . In matrix notation, the model can be written as: 

   l=Xβ + Zu + W1p + W2s + e   

where l is a vector of unobserved liabilities; β is the vector of systematic effects (herd-year of 

insemination, technician, month of insemination and regression coefficients on age of service 

sire (months), early milk yield (mean of test day records within the first 100 days of lactation) 

and days in milk to insemination); u is vector of additive breeding value; p is vector of 

permanent effects; s is vector of service sires; e is the vector of residual terms, and X, Z, W1, W2 

are known incidence matrices with the appropriate dimensions.   
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The reason for using herd-year instead of herd-year-month as contemporary group was 

the small number of records in the latter and, consequently, the large number of classes 

containing all successes or all failures.  

 Based on the assumptions made earlier, the conditional distribution of liabilities given the 

model parameters was: 

  p(l|β,u,p,s)~N(Xβ + Zu + W1p + W2s,I) [4] 

 For a full Bayesian implementation of [4], prior distributions for the model parameters 

are required. To avoid a potentially improper posterior distribution, the following priors were 

assumed: 

 A normal distribution with mean zero and a large variance was assumed as a prior for the 

systematic effects, : β

)10,0(~)( 4Np iβ        [5] 

 Multivariate normal distributions were assumed for all random effects in the model: 

),(~)|( 22
uu Np σσ A0u  

),(~)|( 22
pp Np σσ I0p       [6] 

),(~)|( 22
ss Np σσ I0s  

where , and were the additive, permanent environmental, and service sire variances, 

respectively. 

2
uσ 2

pσ 2
sσ

 For the three variances, a flat bounded prior was assumed: 

]1,0[~)( 2 Up kσ  

where U(.) is the uniform distribution and k  },,{ spu=
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The augmented joint posterior distribution is obtained as the product of densities in [4]-

[6], and all conditional posterior distributions follow easily. Albert and Chib (1993) and 

Sorensen et al. (1995) give all needed conditional distributions. The fully conditional posterior 

distributions of β ,u , , , l, , and are all in closed form, being normal for p s 2
uσ 2

sσ 2
pσ β , , , , 

truncated normal for each l , and scaled inverted chi-square for , and . A detailed 

derivation of these conditional distributions can be found in Heringstad et al. (2001) and Rekaya 

et al. (2000). 

u p s

i
2
uσ 2

sσ 2
pσ

 Convergence diagnostics were assessed using the method of Raftery and Lewis (1992) 

and visual inspection of parameter trace plots. The required length of the burn-in period was less 

than 6,000 iterations for all parameters. Thus, a total single chain length of 100,000 iterations of 

the Gibbs sampler was used, with a conservative burn-in period of 25,000 iterations. The 

remaining 75,000 iterations were retained without thinning for post-Gibbs analysis.   

RESULTS AND DISCUSSION 

  A summary of the posterior distributions of the variance components and heritability of 

insemination success is presented in Table 3.2.  The posterior mean (SD) of the additive variance 

was 0.034 (0.006). Although small, the posterior mean of the genetic variance indicates the 

presence of some genetic variability between cows that can be used to improve, or at least to 

avoid further deterioration of, the reproductive performance of Holstein cows. Weigel and 

Rekaya (2000), in a study of nonreturn rate at 60 and 90 days after insemination used a threshold 

model and obtained similar estimates.   

 The posterior mean (SD) of the service sire variance was 0.009 (0.001).  This point 

estimate tends to be slightly higher than those reported in the majority of fertility studies (Hodel 

et al., 1995, Taylor et al., 1985). A.-Ranberg et al. (2003) using a multiple trait mixed linear 
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model for 56-day nonreturn rate in heifers, reported estimates for service sire variance close to 

zero (lower than 0.0005). Although their estimates are not directly comparable with those 

obtained in this study, it seems that a higher service sire variance is obtained when repeat 

services, as well as the order in which they occur, are considered in the model. This is in part 

because service bulls have different potential of making cows pregnant as indicated by the 

service bull variance. Further, the order in which bulls were used can lead to different outcome 

of insemination events and subsequently to the variation in the data.  Hansen et al. (1983) 

concluded that service sire variance was less than one percent for most of the fertility traits 

considered in their study. These estimates indicate some differences between service sires on 

their ability to make cows pregnant. Furthermore, given the binary nature of a large number of 

fertility traits, a small difference in service sire fertility could be the reason for a successful (or 

failed) insemination event.  

 The posterior mean of the permanent environmental variance was 0.171 (0.013).  To the 

best of our knowledge, no previous longitudinal study of insemination events has been 

conducted, so estimates of the permanent environmental variance cannot be compared with 

literature values.  This point estimate is higher than the additive and service sire estimates in this 

study.      

The posterior mean of the heritability was 0.028 (0.005).  Although relatively low, this 

estimate is within the range of reported values for this parameter in fertility studies. The 

literature estimates ranged from 0.026 to 0.04 for fertility traits measured as number of services 

per conception (Bar-Anan et al., 1985, Raheja et al., 1989a).  Together with the estimate of the 

genetic variance, it seems that selection for a successful outcome of an insemination event is 

possible.  
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 The estimate of the regression coefficient on age of the service sire was 0.001, indicating 

a higher fertility for older (proven) bulls.  However, this result has to be interpreted with caution 

given the preferential use of older bulls.  Thus, young bulls tend to be mated with less fertile 

cows due to lower semen prices.  Furthermore, there is the potential of a non-linear relationship 

between insemination success and age of the service sire that cannot be accommodated by a 

simple regression.    

The posterior mean of the regression coefficient on early milk yield was -0.005. Although 

expected, (cows with higher milk production have a lower chance of a successful insemination) 

this estimate was contradictory to the results found by Weigel and Rekaya (2000), who 

concluded that milk yield had no effect on 60-day nonreturn rate. Dematawewa and Berger 

(1998) found positive correlations of 0.53 and 0.63 between milk yield and days open and 

number of services per conception, respectively.  This antagonistic relationship between milk 

yield and fertility traits was not supported by Weller (1989) who reported no correlation between 

conception status and milk yield. 

 The estimate of the regression coefficient on days in milk at insemination was 0.003.  

This positive regression indicates that cows being bred shortly after calving are less likely to 

become pregnant. Weigel and Rekaya (2000) reported a similar result for the effect of milk yield 

on 60-day nonreturn rate. In addition, it is possible that the ability of a cow to get pregnant could 

vary over time. Thus, a random regression model that contemplates a more complex relationship 

between days in milk and insemination success is more appropriate. 

CONCLUSIONS 

 The use of a longitudinal model allows for the inclusion of all breeding information 

within an opportunity period. It avoids the elimination of useful information and makes possible 
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the joint analysis of male and female fertility. Furthermore, it accounts for all service sires, as 

well as the order in which they were used, leading to potentially more precise estimates. 

Estimates of genetic parameters indicate the possibility of genetic improvement of reproductive 

performance through selection. This study is being extended to handle incomplete or “censored” 

records, including breeding events of non-pregnant cows after 250 days, using a random 

regression model. Such a model will also allow for better modeling of the effects of age of 

service sire and days in milk on the insemination outcome. Furthermore, it will allow the 

derivation of new selection criteria other than the single breeding value, such as time to 

conception and number of inseminations to conception. Finally, although survival analysis can 

handle the kind of data used in this study, we believe that a longitudinal model is practically 

more appropriate, because it allows the use of an animal model and can be incorporated into a 

joint genetic evaluation with other traits in the selection index in a straightforward manner.   

INTERPRETATIVE SUMMARY 

The heritability of successful insemination (conceived or not conceived) and variance 

components were estimated with data collected from AgriTech Analytics from the years 2002 to 

2003.  Hence heritability of successful insemination was estimated to be 0.028, and 0.034 for 

additive effect, 0.009 for service sire effect and 0.171 for permanent environment effect.  

Survival analysis can handle the kind of data used in this study, and a longitudinal model is 

practically more appropriate, because it allows the use of an animal model and can be 

incorporated into a joint genetic evaluation with other traits in the selection index in a 

straightforward manner.   
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Table 3.1: A descriptive summary of the edited data. 

  Number       

Cows 151,758 Inseminations 
Records 297,823 1st 2nd 3+* 
Successful 128,889 73,207 34,966 20,716 
Failed  168,934 78,551 43,585 46,798 
   Mean SD 
Service sires 3,190  93.36 229.75 
Technicians 2,179   136.68 279.63 

* 3rd and subsequent inseminations
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 Table 3.2.  Summary of posterior distributions of the variance components and heritability for  
insemination success.  
 
Parameter Mean SD

σa
2 0.034 0.006 0.023 0.045

σs
2 0.009 0.001 0.007 0.011

σp
2 0.171 0.013 0.145 0.198

h2 0.028 0.005 0.019 0.037

HPD (95%)

 

σa
2 = additive genetic variance; σs

2 = service sire variance; σp
2 = permanent environmental 

variance; h2 = σa
2/(σa

2 + σs
2 + σp

2 + 1); HPD (95%) = Lower and upper bounds of highest 

probability density interval.   
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ABSTRACT 

 Longitudinal Bayesian threshold analysis of insemination success was carried out using 

two random regression models with three (M1) and five (M2) parameters to model the additive 

genetic values at the liability scale. All insemination events of first parity Holstein cows were 

used. The outcome of an insemination event was treated as a binary response of either a success 

(1) or a failure (0). Thus, all breeding information for a cow, including all service sires, was 

included, thereby allowing for a joint evaluation of male and female fertility.   An edited data set 

of 369,353 insemination records from 210,373 first lactation cows was used.  On the liability 

scale, both models included the systematic effects of herd-year of insemination, technician, 

month of insemination, and regressions on age of service sire, and on milk yield during the first 

100 days of lactation. The random effects in the model were the three or five random regression 

coefficients specific to each cow, the permanent effect of the cow and the service sire effect. 

Using M1, the estimated heritability of insemination success decreased from 0.035 at day 50 to 

0.032 at day 140 and then increased continuously with days in milk. The genetic correlations for 

insemination success at different time points ranged from 0.83 to 0.99. Their magnitude 

decreased with the increase of the interval between inseminations. A similar trend was observed 

for heritability and genetic correlations using M2. However, the average estimate of heritability 

was much higher (0.058) than those obtained using M1 or a repeatability model. In addition, the 

genetic correlations flowed the same trend as M1, but were lower and with a higher rate of 

decrease when the interval between inseminations increased. Posterior mean of service sire 

variance was 0.01 for both models and permanent effect variance was 0.05 and 0.02 for models 1 

and 2, respectively.  Model comparison based on Bayes factor indicated that M1 was more 

plausible given the data. 
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INTRODUCTION 

 In the last three decades, the dairy industry in the United States has experienced 

substantial changes.  Royal et al. (2000) reported that in twenty years (1975-1997) pregnancy 

rates in Holstein cows decreased by 0.45% per year (Butler and Smith, 1989; Beam and Butler, 

1999).  The impaired fertility can be partially attributed to unfavorable genetic relationships 

between fertility and production traits. Although several traits are being used for genetic 

evaluation of reproductive performance, the outcome of an insemination event is becoming a 

trait of choice as it is measured early in the breeding season and hence has less environmental 

influences. Similar to other reproductive traits, success/failure of an insemination depends on 

both male and female fertility. 

 The current models and techniques used in fertility studies have concentrated on 

evaluating female and male fertility separately.  Further, not all insemination events during a 

breeding season are being considered. In fact, traits such as success for first insemination, non-

return rate (NR), and conception rate (CR) use only one record per cow. Thus, breeding 

information for cows having more than one insemination are not being considered leading to a 

loss of information. More importantly, with one record per cow there is no easy way to account 

properly for male fertility, as only one service bull will be considered.  Consequently, the 

resulting service sire effects and female fertility could be biased. To account properly for service 

sire effect and female fertility in a joint analysis, all insemination events must be considered 

within the framework of a longitudinal threshold model.  

 In recent years, there has been an increased interest in using test-day models.  Schaeffer 

(2004) reported that random regression models are being used to analyze conformation traits, 
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body condition scores, feed intake, heart girth measures in dairy cattle, weights and back fat 

thickness in swine and beef cattle, fork length and weights in rainbow trout, litter size in swine 

and production traits among others.  In dairy cattle, random regression models were primarily 

used to analyze production traits (Marti and Funk 1994; Veerkamp and Goddard 1998; Swalve 

2000; Jensen 2001; Heringstad et al. 2003) and health related traits such as mastitis 

(Kadarmideen et al. 2000, Heringstad et al. 2001, and Rekaya et al. 2003).  Several random 

coefficient models including random regression, Legendre polynomials, and splines have been 

implemented and compared (White et al. 1999; Pool et al. 2000).  The basic idea underlying all 

these models consists in modeling the additive genetic values (and/or other random effects in the 

model) as a function of an observed dependent variable (i.e. time, weight) through a set of 

random coefficients. Theoretical and biological advantages of random regression based models 

for longitudinal data compared to cross sectional models are numerous and have been repeatedly 

and extensively reported in the literature (Meyer 1998, Huisman et al. 2002).   

Rekaya et al. (1998) were the first in proposing a longitudinal threshold model for 

analysis of a sequence of binary responses. Additionally to the advantages of the random 

regression model using continuous data, longitudinal threshold models offers the possibility of 

computing quantities of interest to animal breeders that could not be obtained using cross 

sectional analyses, such as the probability of observing a success/ failure event within period of 

time. Heringstad et al. (2001) applied the proposed model for the analysis of mastitis incidence 

in the Norwegian red and white dairy population. The estimated heritability ranged from 0.01 to 

0.18 with the maximum being by the middle of the lactation. Furthermore, quantities including 

the expected number of mastitis episodes per lactation, the number of days without mastitis, and 

the probability of having at least one mastitis episode during a given period of time were 
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developed and used as an alternative to the single breeding value for sire selection. Kadarmideen 

et al. (2001) used a similar approach to analyze mastitis data in the UK Holstein population. 

Jakobsen et al. (2003) used a bivariate longitudinal threshold-continuous model for analysis of 

health and production traits in the Danish dairy population. Their model yielded interesting 

results such as the susceptibility to diseases and the shape of the lactation curve, the relationship 

between the level of production at the peak of lactation and its timing and the incidence of 

mastitis.  

In this study, the repeatability threshold model proposed by Averill et al. (2004) for 

analysis of insemination outcome records in first lactation is extended via random coefficients 

based models with the specific objectives to 1) use all available breeding information for the 

joint evaluation of male and female fertility 2) implement and compare two random coefficient 

functions on time for modeling the additive breeding value using Bayesian information criteria, 

and 3) develop new selection criteria other than the single breeding value.  

MATERIALS AND METHODS 

The data consisted of insemination records from first parity dairy cows generated 

between 2002 and 2003 and provided by AgriTech Analytics.  The trait of interest was the 

outcome of all insemination events 1’s (success) and 0’s (failure).  Data editing consisted of 

keeping herd-year contemporary groups and technicians with at least five and ten records, 

respectively. All extreme case problem (ECP) classes for contemporary groups and technicians 

were removed.  Further, cows with inconsistent identification, more than one successful 

insemination per lactation, or an unrealistic interval between consecutive inseminations were 

removed. After editing, the data consisted of a total of 210,373 cows with 369,353 records, 
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averaging 1.76 inseminations per cow.  The data also included a total of 1582 technicians, 3210 

service sires, and 967 herd-year contemporary groups.   

The pedigree had a high proportion of missing or unknown sires, due to a high percentage 

of cows in California with missing sire identification.  After matching the identification numbers 

in the data and pedigree files provided by AgriTech Analytics with the sire pedigrees from the 

National Association Animal Breeders, the international sire identification numbers were 

determined and used in building the pedigree. The pedigree file consisted of 218,706 animals.  

Before describing the longitudinal setting, a basic latent variable model for a cross-

sectional binary response is described.  Assume the observed binary response yi related to a 

continuous underlying variable li satisfying: 





≤
>

=
Tlif0
Tlif1

y
i

i
i          (1) 

where l ),(~ 2
eii N σµ and T is a threshold value.  The probability of observing a successful 

insemination (success) is: 

)TΦ(1

)|Tpr(l1)|Tpr(lP

i

iiiii

eσ
µ
µµ

−−=

>−=>=
      (2) 

where Φ is the cumulative standard normal distribution function.  As such, the model is not 

identifiable and iµ , T and  2
eσ could not be inferred separately.  Thus, at least two restrictions 

are need. In this study, T and 2
eσ were set to zero and one, respectively leading to: 

Pi = pr(li > T | µi ) = 1 – Φ (µi) = Φ(µi )      (3) 
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Furthermore, iµ  can be linearly related to a set of systematic and random effects as: 

uzβx ii +=iµ  

where xi and zi are known incidence row vectors, and β and u are unknown location parameters 

corresponding to systematic and random effects, respectively.  

The implementation of this model in a Bayesian analysis using data augmentation 

became feasible after Albert and Chib (1993) and Sorensen et al. (1995).  All pertinent posterior 

distributions needed for Bayesian implementation via Markov Chain Monte Carlo methods are in 

closed form.  

In a longitudinal situation, let y  be a n)'y,...,y,(y
in21 itititi = ix1 vector of binary 

responses for animal i  observed at times t),...,2,1( qi = 1, t2,…, t .  As in the case of cross-

sectional analysis, the binary response observed at a time t

in

j related to a normally distributed 

underlying variable satisfying (1): 

lij ~ N(µij,1) 

where µij is now some function of time.  In this study, two functional forms were used to model 

µij. 

Quadratic linear function (M1): A quadratic regression on the time elapsed between 

calving and insemination date was used to mode the additive breeding value of the inseminated 

cow.  Thus, 

ik
2
ij2iij1i0iijkm pszazaafixed +++++=µ   

where  
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µijkm = conditional mean for cow i at time j; 

fixed = includes herd-year, technician, month of insemination, regression on age of service sire, 

and regression on early milk yield (first 100 days of lactation): 

ui = [a0i,a1i,a2i] is a 3x1 vector to random regressions specific to cow i; 

sk = effect of service sire k; 

pi = environmental effect peculiar to all ni records of cow i; 

365
icowforjmilkindayszij =  

Ali-Schaeffer function (M2): This is a five parameters function and was used to model the 

additive genetic values. Thus, 

ikijiiji pszaza +++++++= −− 21
4

1
3

2
ij2iij1i0iijkm )][ln()ln(zazaafixedµ  

where ijkmµ , fixed, , and are as before and uks ip i = [a0i,a1i,a2i,a3i,a4i] is a 5x1 vector to random 

regression specific to cow i. 

To complete the Bayesian implementation, prior distributions for all unknown parameters 

in the model have to be specified. It was assumed that: 

β ~ U[βmin, βmax]; 

u|G0 ~ N(0,A⊗G0); 

where G0 is a 3x3 and 5x5 genetic (co)variances matrix for M1 and M2, respectively. 

p|σ ~ N(0,Iσ  ) 2
p

2
p

s ~ N(0,Iσ ) 2
s
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U[0,1]~2
sσ  

U[0,1]~2
pσ  

where U(.) is the uniform distribution, A is the additive relationship matrix and βmin and βmax 

were set to –100 and 100, respectively. 

The vector of unknown parameters was augmented with the liabilities as suggested by 

Sorensen et al. (1995). The resulting joint posterior distribution and the conditional distributions 

needed for the implementation of Gibbs sampler were in closed form, being normal for the 

systematic and random effects, truncated normal for the liabilities and scaled inverted Whishart 

and scaled inverted chi square for G0, and  and , respectively.  For both models, a unique 

chain of 75,000 iterations was implemented with a burn-in period of 25,000 iterations. 

2
sσ

2
pσ

The Bayes factor, as defined by Newton and Raftery (1994), was used to assess the 

plausibility of postulated models.  The marginal density of the data under each of the models was 

estimated from the harmonic means of likelihood values evaluated at the posterior draws: 

∑
=

−−=
N

1j

11
i

(j)
i })]M,|[p(

N
1{)M|(p̂ θyy  

where y is the vector of observed binary responses and θ(j) is the Gibbs sampling sample of j of 

parameters under model Mi.  The estimated Bayes factor between models Mi and Mj is: 

)M|(p̂
)M|(p̂B

j

i
M,M ji y

y
=  
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Genetic (co)variances and heritabilities 

The genetic (co)variances and heritabilities of success/failure of insemination at the 

liability scale are a function of time and are easily obtained. For model M1, the genetic 

covariance between success/failure of inseminations at times, ti and tj is given by: 

cov(ti,tj) = V’(ti)G0V(tj) 

where G0 is a 3x3 genetic (co)variances for the random regression parameters and  

V’(ti) = [1 zti  zti
2 ] 

Similarly, for M2 the genetic covariance is given by: 

cov(ti,tj) = W’(ti)G0W(tj) 

where G0 is a 5x5 genetic (co)variances matrix and  

W’(ti) = [1 zti zti
2 ln(zti

-1) ln(zti
-1)2 ] 

Heritabilities at the liability scale at time t are defined as: 

1(t)(t)'
(t)(t)'

h 2
s

2
p0

02
t +++
=

σσVGV
VGV

 (M1) 

1(t)(t)'
(t)(t)'

h 2
s

2
p0

02
t +++
=

σσWGW
WGW

 (M2) 

Bayesian analysis via Markov Chain Monte Carlo techniques of longitudinal binary data 

allows, in a straightforward manner, the calculation of quantities of interest for selection 

decisions. In fact, criteria such as the probability of conception after first insemination, 

probability of conception within 365 days, probability of no conception within 365 days, and 

probability of no conception in the first three inseminations are computed as a by product of the 
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sampling process and can be used together with the estimated breeding values for making 

breeding decisions.  The following selection criteria were computed in this study: 

a) Probability of conception after first insemination (tj=75 days) 

)(0)p(y11)p(y i75i75i75 µΦ==−==  

b) Probability of conception within 365 days 

 p  ∏
=

−−=
in

1j
iji )]Φ(µ[11(1)

c) Probability of no conception within 365 days 

(1)p1(0)p ii −=  

d) Probability of no conception in the first three inseminations (tj=75, tj=96, and  tj=117)  

0)0)p(y0)p(yp(y0)y0,y0,p(y i117i96i75i117i96i75 =======  

RESULTS AND DISCUSSION 

Table 4.1 presents the summary of the posterior distributions of the genetic (co)variances 

between the three parameters of model M1, and permanent and service sire variances. The 

intercept (first parameter of the quadratic function) explains over 87% of the total genetic 

variance for insemination success at the liability scale when t = 110 days. The third parameter 

explains only 1% of the total variance (at t = 110 days) indicating its limited effect on the ability 

of predicting a cow becoming pregnant after an insemination. The genetic correlations between 

the three parameters of model M1 (Table 4.2) indicates moderate to low negative correlations 

between the second parameter and the other two. However, the genetic correlation between first 

and third parameters was positive and high. These correlations indicate that for low/moderate 

values of t (days between calving and insemination), the second parameter of the function plays a 
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role in decreasing the genetic variance for success/failure at the liability scale as a result of its 

negative correlation with the intercept and the limited effect of the third parameter because the 

covariable, 2)
365

t( , is very small for low/moderate t. For large values to t, the contribution of the 

third parameter increases and offsets the decrease induced by the negative correlation between 

the first and second parameters. This trend is clearly evident in Table 4.3 (diagonal). The genetic 

variance decreases continuously from day 70 to approximately day 150 after calving and then 

increases with time. The change over time of the heritability of insemination success (Figure 4.1) 

shows the same trend observed for the genetic variance. It decreases at the beginning of the 

lactation to a minimum (0.032) between day 155 and 176 and then increases continuously to the 

end of lactation. However, the range of variation of heritability over time is small 0.032 to 0.041 

with an average of 0.034.  The latest, although higher than the estimate obtained using the 

repeatability model, is still within the range of estimates reported in the literature (Bar-Anan et 

al. 1985; Raheja et al. 1989).  The genetic correlations for insemination success at different time 

points are positive and high and ranged from 0.787 to 0.998. The magnitude of these correlations 

decreases with the increase of the interval between inseminations. In fact, the correlation was 

0.998 between t = 70 and t = 100 and dropped to 0.787 between t = 70 and t = 365.  This result 

suggests that if a cow fails to get pregnant in a given insemination, her chances of becoming 

pregnant increases with the increase of the interval between the failed insemination and 

consecutive inseminations. Furthermore, these correlations have to be interpreted with caution 

given that cows getting pregnant in a given insemination have all their “hypothetical” future 

inseminations assumed by the model as if they were successful. In other words, for these 

pregnant cows, the genetic correlation between “hypothetical” future inseminations is equal to 
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one. Consequently, the true genetic correlation between an unsuccessful insemination and future 

insemination is smaller than the values presented in (Table 4.3).   

The point estimate of the service sire variance (0.01) is slightly higher than the one 

obtained using the repeatability model (0.009) but in the range of reported estimates for male 

fertility (Hansen et al. 1983; Taylor et al. 1985; A-Ranberg et al 2003). The permanent effect 

variance was substantially smaller (0.05) than the estimate obtained by Averill et al. (2004) using 

the repeatability model (0.17). Furthermore, the new estimate is more realistic indicating perhaps 

a better modeling using a random regression model that accounts for the variation in the genetic 

variance over time.  

Table 4.4 presents the summary of the posterior distributions of the genetic (co)variances 

between the five parameters of M2, and permanent and service sire variances. As with M1, the 

intercept explains a large portion of the total variance. The genetic correlations (Table 4.5) for 

the fourth and fifth parameters with the other three parameters were negative except for the 

correlation between the fourth and second parameters (0.11).  All the genetic correlations 

between the first three parameters and between the fourth and fifth parameters were positive and 

ranged from 0.12 (first with second) to 0.60 (fourth and fifth). Although a detailed dissection of 

the effect of each parameter on the genetic variance of insemination success is more complex 

and less evident than with model M1 because the larger number of parameters in M2, in general 

it is seems that the fourth and fifth parameters have a more pronounce effect on the genetic 

variance at the beginning of the lactation as a result of the their negative correlation with the 

intercept and the magnitude of the covariables )
t

365log(  and 2)
t

365log(  for small values of t.  As 

soon as t reaches a value around 90 days, the contribution of the second and third parameters 
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(positively correlated with the intercept) exceeds the decrease induced by the fourth and fifth 

parameters and the genetic variance of insemination success increases sharply. Change of 

heritability over time is presented in Figure 4.2. Similarly to the genetic variance, the heritability 

decreases to a minimum around day 90 and than increases continuously to reach estimates 

greater than 0.08 by day 300. The average estimate of heritability is much higher than those 

obtained using M1 (0.034) and the repeatability model (0.028) using the same data set with 

different editing criteria (Averill et al. 2004).  

The genetic correlations for insemination success at different time points are positive but 

of smaller magnitude than those obtained using model M1 (Table 4.6). As with model M1, the 

magnitudes of these correlations decrease with the increase of the interval between 

inseminations. For two inseminations realized at an interval of less than 100 days, the genetic 

correlation was always greater than 0.90, except for between day 70 and 150 (Table 4.5). 

However, the decrease in the magnitude of the genetic correlation with the increase of the 

interval between inseminations is more pronounce than with M1 (Table 4.3). In fact, the 

correlation was 0.90 between t = 70 and t = 100 and dropped to 0.44 between t = 70 and t = 365.  

The point estimate of the service sire variance was similar to the one obtained using M1 

(0.01) and a repeatability model (0.009). However, the permanent effect variance was smaller 

(0.02) than the estimate obtained using model M1 (0.05) and a repeatability model (0.17).  

Based on Bayes factor, model M1 was more plausible than M2 given data. This result 

suggests that M2 has too many parameters to fit a data with limited number of records per cows. 

In fact, the average number of records per cow was 1.76 with 37% of cows have only one record. 

Furthermore, this result helps explain the non-expected estimates of heritabilities, genetic 

correlation between insemination events and permanent effect variance. We stress that holding 
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the permanent effect variance constant over time could be part of the problem as it has been the 

case in analyzing milk yield data using test-day models. However, increasing the number of 

parameters by including random regression coefficients to model the permanent effect could be 

counter productive given the limited number of records per cow in the data used in this study. 

The ranking of animals based on the three new selection criteria provides an extra tool for 

selection. Table 4.7 presents the top and bottom five cows based on the defined three 

probabilities using model 1. The five best cows have a very high probability of conception after 

first insemination and consequently low probabilities for not being pregnant after 3 

inseminations or after 365 days. In fact, all five cows got pregnant on their first insemination. 

The worst five cows have an almost null probability of conception after first insemination and 

very high  and . Based on their phenotypic data, all five cows were empty after more than 

300 days since calving.  

2p 3p

CONCLUSION 

The use of longitudinal models allows for the inclusion of all breeding information over a 

period of time.  It avoids the elimination of useful information and makes possible the joint 

analysis of male and female fertility.  Longitudinal models account for all service sires, as well 

as the order in which they were used, leading to potentially more precise estimates.  In this study, 

two random regression models with different parameter functions, a quadratic linear model 

(model 1) and Ali-Schaeffer model (model 2) were implemented and compared.  The two model 

estimates of genetic parameters indicate the possibility of genetic improvement of reproductive 

performances through selection.  Furthermore, random regression models account for the 

variation in the genetic variance for insemination success over time leading potentially to more 

realistic modeling compared with repeatability model. Estimates of genetic parameters were 
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quite different between the two random regression models. The estimates of heritability using 

model 2 were higher than those expected for fertility traits, especially by the end of the lactation. 

Comparison between the two models based on Bayes factor indicated that model 1 was more 

plausible given the data  
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Table 4.1: Summary of posterior distributions of the genetic  
(co)variances between the three random coefficients, and permanent  
and service sire variances: Model 1   
 
Component1 Mean SD HPD (95%) 

g00 0.0422 0.0049  0.0329 0.0506 
g11 0.0294 0.0065  0.0187 0.0455 
g22 0.0010 0.0002  0.0008 0.0013 
g01  -0.0169 0.0009     -0.0031    -0.0004 
g02 0.0056 0.0006  0.0044 0.0067 
g12  -0.0013 0.0001 -0.0003 8.5E-6 
σ2

p 0.0519 0.0294  0.0122 0.1009 
σ2

s 0.0101 0.0012  0.0078 0.0125 
1 gij is the genetic (co)variance between random coefficients i and j 
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Table 4.2:  Posterior means of genetic correlations between random  
coefficients (above diagonal) and associated standard errors  
(below diagonal): Model 1   
 
Random coefficient a0 a1 a2 

a0  -0.4592 0.8479 
a1 0.2097       -0.2357 
a2 0.0671 0.1722  
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Table 4.3:  Posterior means of genetic variances (SD) of insemination success (diagonal),  
genetic correlations between specific time points (above diagonal), and associated 
standard deviations (below diagonal): Model 1 
 
Time points 70 100 150 250 300 365 

70 0.0371 
(0.0039) 

0.9977 0.9824 0.9097 0.8582 0.7867 

100 0.0005 0.0359 
(0.0042) 

0.9929 0.9358 0.8909 0.8264 

150 0.0048 0.0022 0.0350 
(0.0054) 

0.9710 0.9383 0.8868 

250 0.0317 0.0246 0.0126 0.0374 
(0.0086) 

0.9937 0.9713 

300 0.0530 0.0441 0.0279 0.0032 0.0408 
(0.0104) 

0.9918 

365 0.0828 0.0724 0.0521 0.0148 0.0043 0.0474 
(0.0128) 
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Figure 4.1:  Heritability of insemination success as a function of time using model 1. 
 

 

59 



  

Table 4.4: Summary of posterior distributions of the genetic (co)variances  
between the five random coefficients, and permanent and service sire variances:  
Model 2   
 

Component1 Mean SD HPD (95%) 
g00 0.0970 0.0175 0.0627 0.1174 
g11 0.0011 0.0002 0.0007 0.0013 
g22 0.0007 4.5E-5 0.0006 0.0008 
g33 0.0207 0.0061 0.0097 0.0283 
g44 0.0008 9.2E-5 0.0007 0.0010 
g01 0.0009 0.0037    -0.0048 0.0048 
g02 0.0041 0.0012 0.0023 0.0055 
g03     -0.0342 0.0162    -0.0507    -0.0017 
g04     -0.0070 0.0007    -0.0081    -0.0055 
g12 0.0003 0.0002    -0.0002 0.0007 
g13 0.0007 0.0016    -0.0013 0.0031 
g14     -7.1E-5 0.0002    -0.0004 0.0004 
g23     -0.0012 0.0008    -0.0023 0.0002 
g24     -3.3E-5 6.6E-5    -0.0001 0.0001 
g34 0.0025 0.0012    -9.0E-6 0.0038 
σ2

p 0.0212 0.0086 0.0080 0.0376 
σ2

s 0.0101 0.0012 0.0077 0.0125 
      1gij is the genetic (co)variance between random coefficients i and j 
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Table 4.5: Posterior means of genetic correlations between random coefficients  
(above diagonal) and associated standard errors (below diagonal): Model 2 
 

Random coefficient a0 a1 a2 a3 a4 
a0  0.1176 0.4993   -0.7073   -0.7947 
a1 0.3662  0.3013 0.1145 -0.0715 
a2 0.1042 0.2841    -0.3047 -0.0474 
a3 0.2646 0.3119 0.1871    0.5969 
a4 0.022 0.2532 0.0909 0.2581  
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Table 4.6: Posterior means of genetic variances (SD) of insemination success (diagonal),  
genetic correlations between specific time points (above diagonal), and associated  
standard deviations (below diagonal): Model 2 
 
Time points 70 100 150 250 300 365 

70 0.0321 
(0.0128) 

0.9028 0.7043 0.5211 0.4758 0.4366 

100 0.04662 0.0343 
(0.0122) 

0.9397 0.8318 0.8001 0.7707 

150 0.1239 0.0224 0.0481 
(0.0079) 

0.9704 0.9549 0.9382 

250 0.1612 0.0440 0.0045 0.0782 
(0.0056) 

0.9982 0.9933 

300 0.1626 0.0454 0.0065 0.0006 0.0921 
(0.0097) 

0.9984 

365 0.1597 0.0440 0.0099 0.0026 0.0008 0.1093 
(0.0152) 
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Figure 4.2: Heritability of insemination success as a function of time using model 2.   
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Table 4.7: Probability of conception after first insemination, probability of no conception after 3 
inseminations and probability of no conception after 365 days for the best and worst five cows: 
Model 1 
 

Cow 1
1p  

2
2p  3

3p  Successful Insemination 

Best 5 cows 
1 
2 
3 
4 
5 
 

Worst 5 cows 
1 
2 
3 
4 
5 

 
0.993 
0.991 
0.991 
0.990 
0.990 

 
 

0.03 
0.03 
0.04 
0.06 
0.06 

 
0.04 
0.04 
0.04 
0.05 
0.05 

 
 

0.995 
0.994 
0.994 
0.993 
0.993 

 
0.01 
0.01 
0.01 
0.01 
0.01 

 
 

0.992
0.992
0.992
0.991
0.991

 
1 
1 
1 
1 
1 
 
 

Open 
Open 
Open 
Open 
Open 

1 Probability of conception after first insemination (tj=75 days) 
2 Probability of no conception in the first three inseminations (tj=75, tj=96, and tj=117) 
3 Probability of no conception within 365 days 
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CHAPTER 5 

CONCLUSIONS 

 Long time selection for production responses has caused deterioration of some secondary 

or non-production traits such as fertility or health conditions as a result of their antagonist 

relationships. Thus, improvement in or at least the maintenance of herd fertility has become a 

major objective in genetic improvement programs worldwide.  Although the heritability of 

fertility traits is generally low, ranging from one to ten percent depending on definition of the 

trait and the methodology used for analysis, there is a consensus that sufficient genetic variability 

exists and can be exploited to improve reproductive performance. Further, current models and 

techniques used in fertility studies have concentrated on evaluating female and male fertility 

separately. 

Longitudinal data analysis offers an opportunity for joint genetic evaluation of male and 

female fertility. It accounts for all services sires used to inseminate a cow during a breeding 

season as well as the order in which they were used. Furthermore, it avoids eliminating useful 

information, leading potentially to more precise estimates. 

Outcome of insemination events scored as binary traits were analyzed longitudinally 

using a repeatability model and two random regression models. In both studies, the estimated 

genetic parameters indicate the existence of sufficient genetic variability, which can be used for 

genetic improvement of male and female fertility. Based on the results of both studies, it seems 

that a random regression model with limited number of random coefficients is more appropriate 

to analyze longitudinal fertility data given the small number of records available per cow. 

65 



  

Allowing for the permanent effects to change over time could lead potentially to a more realistic 

model. However, it is not clear that it is going to lead to more accurate results with fertility data 

given the large number of cows with only one record. 
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