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ABSTRACT

The Generalized Extreme Value (GEV) model’s relevance to the extremes of a
distribution, and the Generalized Pareto (GP) model’s relevance to the exceedences
above a threshold in a distribution are equivalent to the Gaussian model’s relevance
to the center of a distribution. Limit theorems are presented which unify the extreme
values of samples from sufficiently smooth distributions under the GEV model, and
similarly unify exceedences under the GP model. These models are fit (via maximum
likelihood estimation of model parameters) to radiocesium body-burden data in a
population of deer at increased risk of exposure. Analysis suggests that a member of
the Frechet EV family best quantifies maxima from this dataset. Return levels are
estimated, and a formula for estimating tolerance limits is developed from the GEV
functional form.
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CHAPTER 1

AN INTRODUCTION TO EXTREME VALUE THEORY

1.1 EXTREME VALUE THEORY TAKES FAMILIAR CONCEPT TO NEwW LIMITS!

The Extreme Value (EV) model’s relevance to the maxima or minima of a distribu-
tion, and the Generalized Pareto (GP) model’s relevance to the exceedences above a
threshold in a distribution are similar to the Gaussian (Normal) model’s relevance to
the center of a distribution. That is, limit theorems exist which unify the maximum
values of samples from sufficiently smooth distributions under the EV models, and
unify exceedences under the GP model. These parametric models prove rich enough
to characterize the extremes of a very wide range of stochastic distributions.

Many traditional statistical analyses are concerned with the central tendencies
of a data sample collected from some physical process, and rely on a bevy of Cen-
tral Limit Theorems to characterize the convergence of a distribution’s center (upon
multiple sampling) to the Gaussian distribution. In such analyses, observed values
that deviate too far from the sample mean are often considered outliers, and efforts
are made to justify the removal of these data points from the analysis. In an extreme
value analysis, attention is instead focused on those values occurring far above or
below the average (i.e., those events that constitute the tail of the underlying, or
parent distribution). While the study of extreme events dates back to 1709, when
Nicolas Bernoulli considered the mean longest distance from the origin when points

are scattered at random on a line of fixed length, limit theorems attributed to Fisher
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and Tippet (1928), and Balkema and de Haan (1974) are essential in character-
izing the behavior of a distribution’s tail. These limit theorems provide a framework
to support statistical techniques and models for the estimation and prediction of
unusual, or rare events in an observed physical process, based on historical data.

Inherent in the definition of extreme value is the concept of scarcity: estimates of
processes at levels far above those typically observed are often of the most interest.
For example, this paper examines extreme radiological body burden measurements
in a population of deer that is at an increased risk of exposure to contamination.
Comparing the frequency and intensity of maximum exposures to regulatory limits,
which exceed every observation in the dataset, is of particular interest. Typically,
one is cautioned against extrapolating in the manner described - from observed to
unobserved (or scarcely populated) levels - in any statistical estimation procedure.
With that in mind, one must be cautious when interpreting EV model predictions,
and pay particular attention to accurately reflecting the inherent uncertainty of
extrapolated predictions. That being said, there are no competitive models or theo-
ries for this increasingly important field of study - first applied in engineering fields
to assess stress loads on building materials and structures in the 1940’s, and more
recently being applied in arenas as diverse as actuarial science, genetics and quantum
mechanics.

Extreme value analysis is frequently of particular interest in the biological sci-
ences. Specific ecological applications include modeling extreme natural events like
floods, windstorms, earthquakes and drought conditions; the study of species inno-
vation, disease outbreak or any other rare event of importance; and the analysis
of high concentrations of harmful substances in biological systems. In any context
where the frequency and intensity of events from the tail of a distribution are of

interest, extreme value analysis comprises the necessary statistical tools.



1.2 THE DEFINITIVE MODELS OF EXTREME BEHAVIOR

To formalize the concept of extreme value analysis, we seek models to describe the

statistical behavior of the sample maxima:
My, = max{X; ... X, }

where the X;’s, i = 1...n, form a sequence of independent random variables from a
common distribution function F', which describes data obtained from some physical
process. The development of models to characterize the minimum values of such a
process is similar to that leading to the models for maximum values. For explicit
development of the parametric models for minima, see Coles (2001), Reiss & Thomas
(1997), or just about any other introductory text on extreme value analysis.
Alternatively, any analysis of minima can be transformed to an analysis of
maxima. If one is concerned with the smallest values of a sequence of negative

variables:

Mn:l = ITliIl{Xl, N ,Xn . )(Z S 0}

then also:

M1 = —max{—X;,...,— X, : X; <0}

so that by simply negating the original data, the problem is reduced to an analysis of
maximum values. If instead one is concerned with the smallest values of a sequence
{X1,..., X, —00 < X; < 400}, first shifting the data so that all values are less than
zero then negating the shifted data, once again reduces the problem to a maximum
value analysis. Regardless of the transformation required, its inverse is applied to
model predictions to obtain results in the context of the problem which originally
motivated the minimum value analysis. Since this paper concerns the estimation of
maximal values, little further will be said about the analysis of minimum values.

Henceforth, the terms extreme and maximal are used interchangeably.
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Of course, the theory of order statistics permits the derivation of the exact distri-
bution of M,,., for any value of n, assuming knowledge of the underlying distribution

function F':

P{M,., <z} = P{X;<z Vi=1,...,n}

= ﬁP{Xi <z}

— [F(2)]", X;~F, iid. (1.1)

As a means of data analysis this line of pursuit is fraught with complications,
foremost of which is the fact that in most any practical application, the underlying
(or parent) distribution function F is frightfully complicated if it is known at all.
Although standard techniques can be used to derive an estimate F of F, and hence
of [F(x)]", the multiplicative form magnifies the tiniest error in the estimation of F,
leading to unsatisfactory discrepancies for even moderate values of n. Furthermore,
for any value of x less than ", the upper endpoint of F', (the smallest value in the
domain of F such that P{X < z} = 1 is denoted zt = inf{z : F(x) = 1}), the
theoretically exact distribution of M,,., degenerates to a point-mass. That is, for any
fixed value of x, it is clear that in the limit of [F(z)]" as n — oo one obtains a

degenerate distribution:

1, Flx)=1
Tim [F(x)]" = @

0, F(z)<1

The results of Fisher and Tippet (1928) overcome these problems associated with
the limiting distribution of the variable M,,.,. They demonstrated that if there exist
normalizing sequences of constants {a,, > 0} and {b, } that stabilize the location and
scale of sample maxima as sample size increases, then the limiting distribution of the
normalized variable M} = (M,., —b,)/a, will necessarily converge to a member of

one of three parametric models. That is, if M,., can be transformed as described,
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so that the limiting distribution of the new random variable M. is non-degenerate,
the functional form of that limiting distribution is given by the Extremal Types

Theorem.

Extremal Types Theorem (THM1):

If there exist sequences of constants {a, > 0} and {b,} such that

lim P{M < x} = G(x)

n—00 ap,

where GG is a non-degenerate distribution function, then G is necessarily a member

of one of the three families:

Gi(z) = exp{—e (%)}, —c0o<z< o0
0, T <
G[[(ZL‘) =
exp{~(2)}, o> p
exp{—[~(ZE)1}, ¢ <
Gri(z) =
L, T 2>

with scale parameter ¢ > 0, location parameter p, and in the case of Gj; and Gy,
shape parameter a > 0.

While distributions G, Gy and Gy are collectively called the extreme value
distributions, respectively they are known as the Gumbel, Frechet and Weibull dis-
tributions. Their functional similarity is striking, and together they comprise a wide
range of heavy-tailed, bell shaped curves. The simple reparameterization £ = 1/«
unifies these distributions in a single three-parameter model jointly attributed to
von-Mises and Jenkinson, and hereafter referred to as the Generalized Extreme
Value distribution (GEVD). The reparameterization also permits the interpreta-
tion of the Gumbel (G;) model as the limit of the Frechet (G;;) and Weibull (G/;;)
distributions. For convenience, the parametric form of the GEVD is presented in the

following restatement of the Extremal Types Theorem.



Extremal Types Theorem Redux (THM2):

If there exist sequences of constants {a, > 0} and {b,} such that

lim P{M < x} = G(x)

n—00 an,
where G is a non-degenerate distribution function, then G is necessarily a member

of the GEVD family

G(z) = exp {—[1 + §(¥)]1/£}

and G is defined on {z : 1 + {(*3#) > 0} with scale parameter o > 0, location

parameter p and shape parameter —oo < € < 00.

Now, a little algebra employing the limiting definition of e:
. 1/ _ z
%1_{1(1) (14 &) e

demonstrates that as £ — 0 the functional form of G(z) in THM2 attains that of
G(z) in THM1. Furthermore, G;(x) and Grr(z) correspond respectively to values
of ¢ > 0 and £ < 0 in the GEVD parameterization. Hence the right-skewed Gumbel
distribution (£ = 0) serves as the central model in the sense that as & approaches
zero the Frechet and Weibull models approach the Gumbel. As £ > 0 increases,
the Frechet model becomes increasingly right-skewed, and as £ < 0 decreases, the
Weibull model changes from left to right-skewed, with a symmetric shape nearly
indistinguishable from a normal distribution when ¢ = —0.28 (corresponding to
a = —3.6 in THM1). While both Gumbel tails are infinite, the Frechet model has
an infinite right tail and the Weibull has an infinite left tail. The location parameter
gives the left endpoint of the Frechet model, and the right endpoint of the Weibull
model. The primary difference between the three extreme value models is the rate
of decay of the upper distributional tail: while the Weibull model always has a finite
upper endpoint, the Gumbel model tails decrease exponentially and Frechet’s upper

tail decreases polynomially.
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When the underlying distribution F', leads to extremes that are described well by
a particular member of the extreme value model family G, then F' is said to be in the
domain of attraction of the limiting distribution G, denoted F' € D(G). Extremes
extracted from the Uniform distribution, together with the minima extracted from a
very wide range of parent distributions all converge to the Weibull distribution. The
Pareto and Cauchy distributions reside in the Frechet maxima domain of attraction.
The Gumbel model proves truly attractive: the Gaussian, log-normal, exponential
and gamma distributions all reside in the Gumbel domain of attraction. In general,
the rate of decay of the parent distribution’s tail determines the extreme domain of
attraction.

Only the most concocted distributions give rise to extremes that can not be made
to converge to one of the three non-degenerate distributions in THM1. For example,
let Ey, Fs, Fs, ... be i.i.d standard exponential random variables with density func-

tion Fg. Then, Fg € D(Gy); however the random variables defined by:
X, =elBil =123, ...

where | E;]| is the integral part of E; prove insufficiently smooth in distribution to
yield extremes that converge to any member of the GEVD family (Dietrich et al,
2002). Fortunately, such examples remain theoretical curiosities, as overwhelming
empirical evidence has demonstrated the applicability of the extreme value models
to data extracted from physical and biological processes.

n

One can thus replace [F(z)]” in Equation 1.1 with the appropriate G(z) from
THM1 to achieve an estimate for sufficiently large n, essentially considering a string
of maximum values extracted from multiple samples of equal size as independent
realizations of a random variable distributed according to G(x). Extremes from

a very wide range of parent distributions can now be treated as realizations of a

random variable having an EV distribution whose parameters must be estimated.
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Coles’ (2001) S-Plus routines permit the practitioner to calculate maximum likeli-
hood estimates of GEVD and GPD parameters from a dataset and make inference

into the extreme behavior of the physical process being modeled.

1.2.1 THE PARETO MODEL FOR EXCEEDENCES

Another approach to modeling extreme behavior in a physical process is to consider
some threshold of relevance, and consider measurements that exceed that threshold.
When confronted with data from some parent distribution F', the idea is to model

the conditional distribution of:

P{X >u+y}
P{X > u}

1—F(u+vy)
1— F(u)

P{X >u+y|X >u}

, y>0 (1.2)

where u is some value suggested by the data, above which the random variable
X|X > u converges to a non-degenerate distribution as the sample size increases.
This approach is a more efficient use of data, since several of the upper-most values
are used, instead of just the most extreme occurrence in each sample. The value u
ideally reflects a threshold relevant in the context of the problem. There are also three
models to which these random variables, commonly refered to as exceedences, will
converge in distribution. For completeness, these distributions are listed below, but

without location and scale parameters. Note that the simple analytic relationship:
W(z) =1+logG(z), if logG(x) > —1

links the three extreme value densities G, from THM1 with the following three

exceedence limiting distributions, W.

Exceedance Limiting Distributions:

Wizx) = 1—¢e® x>0



Wirf(z) = 1—-27% x2>1

W]]](ZL‘) = 1- (—l')_a, —1<x<0

These distributions are the standard exponential, standard Pareto, and a subclass
of the full Beta family of distributions, respectively. These three seperate models
can also be unified, via a reparameterization, into a three-parameter model called
the Generalized Pareto Distribution (GPD). The parametric form is given in the
following theorem, which also highlights the relationship between the GEVD and
the GPD.

Exceedance Types Theorem (THMS3):
Suppose F' satisfies THM2 so that M,., converges to a member of the GEVD,
G(z) indexed by some p,0,&. Then for large enough wu, the distribution of the

exceedance random variables X — u|X > u converges to

~1/¢
H(y)=1- <1+%>

defined on {y : y > 0 and (1+%y) > 0} with 6 = 0 + &{(u — ).

Just as in the case of the GEVD, the shape parameter £ determines the behaviour
of the GPD. That is, by taking the limit of H(y) in THM3 as £ — 0, one obtains
the unbounded exponential distribution W;(x). The cases £ > 0, £ < 0 correspond
repsectively to the unbounded Pareto distribution Wj;(x), and the Beta sub-family
Wirr(z) with an upper endpoint of u — 6 /¢.

Once again, note that knowledge of the parent distribution F' is not assumed.
Were F' directly estimable then Equation 1.2 could be used to calculate the exact
distribution of exceedences. Instead one employs THM3, using the data to estimate
the parameters of the appropriate GPD model, which proves to be the only possible
limiting distribution of exceedences extracted from a very wide range of population

distributions.
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Section 1.3 delves deeper into the theoretical foundations of the GEVD and GPD
models, so those reading to obtain an algorithm for the modeling of extreme events
may skip to Section 1.4, wherein the discussion of useful estimation procedures and

inferences begins.

1.3 DEEPER THEORETICAL FOUNDATIONS OF EV MODELS

That the three distributions in THM1 constitute the only possible limiting distribu-
tions in the extreme value context completes the analogy to central limit theory. The
sequences {a, > 0} and {b,} are analogous to the sequences of means and standard
deviations used to normalize data and thus obtain a member of the Gaussian model
as the limiting distribution of sample means (or other measures of a distribution’s
central tendency). Unlike central limit theory, the stabilizing sequences in an extreme
value analysis are not unique. Appropriate sequences {a, > 0} and {b,} have been
identified for a wide array of underlying distributions, leading to the aforementioned
list of distributions residing within each extremal domain of attraction. Recall how-
ever, that in most applications knowledge of the underlying distribution is negligible
at best. Two problems are now apparent: identifying appropriate norming sequences
from a list of candidates; and, relating the distribution of the transformed maxima
to that of the maxima themselves. Both problems are easily resolved for all practical
purposes.

First, suppose that there exist sequences {a, > 0}, {b,} and {a!, > 0}, {¥}
such that for a common parent distribution F', THMI1 is satisfied with each set of
sequences. Then we denote the two non-degenerate limiting (n — oo) distributions

of the two series of random variables by:

_ Y

Qn, al,
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By a classic result of Khintchine (1938) on sequences of random variables, we then

know:

/
an b, —b
— —a and —2

/
al, a,

— 0
where G'(ax+ ) = G(z), and hence G and G’ are identical but for location and scale
parameters. That is, the limiting distributions of the random variables obtained by
transforming maxima with either set of sequences will have a common shape param-
eter, with possibly different location and scale parameters. The issue of non-unique
norming sequences is thus resolved, as every appropriate sequence will lead to the
same family of extreme value model (G, Gy, or Gyyr) given a parent distribution,
F.

Next, assume that THM]1 is satisfied, so the transformed maxima converge in

distribution to one of the three extreme value distributions, and for large n we have:
P{(Mp., —by)/a, <z} =~ G(x)
This in turn implies that:
P{( My <} = G{(z = by)/an} = G*()

where G* is another member of the same extreme value model family. Thus, we
see that when the distribution of the transformed extremes can be approximated
by a GEVD model, the distribution of the extremes themselves is also estimable
by a different member of the same GEVD model. Because the parameters of these
limiting distributions are to be estimated, their equivalence for large enough n makes
moot the fact that the parameters of G and G* differ. Consequently, the apparent
problems associated with the stabilizing sequences in the extreme value context can
be ignored in practical applications.

We now consider an informal justification of the extremal types theorem that

highlights a characterizing feature of the GEVD. Once again assume that the limiting
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distribution of (M,,., — b,)/a, is the non-degenerate extreme value distribution G,

so that:

P{(Mp., —by)/a, <z} =~ G(x)
Now consider the random variable M.k, & € N and n sufficiently large, repre-
senting extremes extracted from the same parent distribution arranged in blocks of

size nk. Since nk is also large it must be that these extremes can also be rescaled

such that:

Furthermore, since each M., is also the maximum of k& random variables each

having the same distribution as M,,.,, the theory of order statistics permits:

P{(Myknk — bng) fank <} = [P{( M — bur)/@nr < x}]k

Pl =
oG

~ G*apr + Br) (1.4)

where ani/a, — o and (b — b,)/an, — Gk

From Equations 1.3 & 1.4 one arrives at the following approximate equivalence:

—b —-b
Ank G

and concludes that G and G* are once again identical apart from location and scale

parameters. Note that ay and (5 provide the new location and scale respectively.
This property, where the operation of extracting sample maxima from differently
sized blocks of a single parent distribution has lead to limiting distributions from
the same GEVD family (though they may differ in scale and location), is known
as max- stability. The heuristic argument above demonstrates that max-stability is

naturally expected in the extreme value context. In fact, this property characterizes
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the GEVD and it is well-known that a distribution is max-stable if, and only if, it is
a generalized extreme value distribution. An example involving the Frechet model
Grr(z), is illustrative.

Consider Gy(x) = exp{—z~} for x > 0. Then it is known that {a, > 0} =

{n'/*} and {b,} = 0. Then:

Ak (k) e
o = e R =
bnk — bn

G

so that according to Equation 1.4:

Gk((xkx + Gr) = Gk(kl/o‘:c) = [exp{(—kl/o‘x)_“}]k

= [exp{-k""a7}*

- o)

Thus we see that the Frechet model is indeed max-stable, as one expects in the
extreme value context. The Gumbel and Weibull distributions are similarly seen to
be max-stable, though the proof of the converse (that these are the only max-stable
distributions), involves functional analysis beyond the scope of this study.

There is an analogous result called peaks-over-threshold (POT) stability that
characterizes the GPD models. A full discussion of POT stability can be found
in Reiss & Thomas (1997). Suffice it for our purposes to roughly summarize the
work of Pickands (1975), who demonstrated that F© € D(G) necessitates a good

approximation for the conditional distribution:

Flu+y)— F(u)
1 — F(u)

Fl (x) =

by a shifted GPD, assuming that wu is large. That is, a parent distribution F, lies in
the domain of attraction of a specific GEVD, G if, and only if, its upper tail can be

appropriately approximated by a shifted GPD. The GPD models essentially zoom
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in on the tail behaviour of the underlying distribution, while the GEVD models seek
to describe only block extremes. It is the application of these models to real data,

estimation procedures and inference to which we now turn our attention.

1.4 PARAMETER ESTIMATION IN THE EV DISTRIBUTIONS

The arguments of Sections 1.2 & 1.3 suggest the following algorithm for modelling
the extremes from a series of independent observations. First, the data are blocked
into contiguous sequences of equal and sufficiently large length, n. Then, a series
of block maxima are extracted and a member of the GEVD family is fit to this
series. More will be said in Section 2.3 with regard to the selection of an appropriate
block length, though typically the block length is chosen to correspond to a certain
fixed time period so the resulting maxima may, for example, represent monthly or
annual extremes. Alternatively, one may define extreme events by identifying a high
threshold w, and denoting by z(),...,zu) those {x; : #; > u}. Then, the random

variables (called threshold exceedances):
yi =z —u, j=1,...,k

are regarded as independent observations from a distribution likely to converge to,
and hence well estimated by, a member of the GPD family.

The history of estimation procedures for fitting GEVD and GPD models to
data parallels that of most any other statistical estimation problem, and is outlined
extensively in the monograph by Kotz and Nadarajah (2000). Ongoing efforts have
included method of moments procedures; simple, unbiased and asymptotically unbi-
ased linear estimators; ranked set estimation; and a method employing probability-
weighted moments. With more recent advances in computing power, there is strong
preference for the maximum likelihood estimation (MLE) procedure. This is espe-

cially true when seeking to estimate all three unknown parameters in the GEVD
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model from a complete dataset. While each method has its niche, the overall adapt-
ability of MLE methods to complex model-building make this technique very useful.
The fact that the GEVD model endpoints are functions of the parameters actu-
ally violates regularity conditions that ensure the asymptotic validity of the MLEs.
However, the range of shape parameter values for which MLEs are unobtainable
(¢ < —1) correspond to distributions with a very short bounded upper tail that
are very rarely encountered in contexts calling for extreme value modelling (Smith,
1985). This theoretical limitation proves no obstacle in the modelling of extreme
behaviour in the SREL deer dataset discussed in Section 3.1.

Stuart Coles has implemented MLE estimation procedures in S-Plus, and his
text (Coles, 2001) outlines in detail the form of the log-likelihood functions for
the seperate cases of £ = 0 and £ # 0 in both the GEVD model of THM2, and
the GPD model of THM3. With a fairly straightforward optimization routine, the
MLEs (&, 6, f ) are obtained. Subject to the limitations alluded to on the permissable
values of £, the MLEs have an approximately multivariate normal distribution with
mean (u,0,&) and variance-covariance matrix obtained by inverting the observed
information matrix evaluated at the MLEs. This leads directly to calculations of
confidence intervals, profile likelihood confidence intervals on any combination of
parameters, inference on return levels, and the construction of tolerance limits for the
extreme value distributions. Since both kinds of confidence interval are fundamental
to any maximum likelihood procedure, we focus instead on inference involving return
level and tolerance limit estimation, as they are indeed particular to the extreme

value modelling context.
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1.5 RETURN LEVEL PLOTS AND DiAGNOSTICS FOR GEVD MODELS

For convenience, assume that a GEVD model has been successfully fit to a series of
annual maxima. We seek, to a reasonable degree of accuracy, the value z, that is
exceeded, on average, once every 1/p years. 1/p is called the return period associated
with the return level z,. In other words, z, is the data value that is exceeded by an
annual maxima in any particular year with probability p. In general, long return
periods (i.e., large 1/p and hence small p) are of the most interest because they
are associated with the most extreme observations and model predictions. Again,
caution is necessary when making such extrapolations. It is generally accepted that
in extrapolations beyond about four times the span of the data being modelled,
the compromised asymptotics of the GEVD model parameters break down. It is
important also to distinguish between the return level z,, where we are requiring
G(%,) =1 —pwith 0 < p < 1, and the usual definition of quantiles where we’d have
G(z) =p.

Estimates of the extreme quantiles z, are obtained by inverting the parametric

form of the GEVD in THMZ2:

p—[1—{=log(l1-p)}°], £#0
p—olog{—log(l-p)}, §=0

Glzp)=1—-p = 2z,=

Since we've assumed that the MLE’s (ﬂ,&,é) have been obtained, we substitute
these into this expression and make the simplifying definition y, = —log(1 — p) to

yield:
ﬂ_é‘[l_yp_ja 57&0

ji—clogy, £=0

Zp:

Now, it is apparent that if z, is plotted against logy, the resulting plot is: linear
in the case £ = 0; convex with asymptotic limit (as p — 0) at 4 — 0/& in the case

¢ < 0; and concave with no finite bound in the case £ > 0. Because the logarithmic
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scale condences the tail of the distribution, the effect of extrapolation is highlighted.
Furthermore, Coles adds empirical quantile estimates and confidence intervals to
account for sampling error in these return level plots. If the model is suitable for the
data, then the empirical and model based quantile estimates should be in agreement,
with all empirical points falling within the model’s confidence bands. There are two
methods for obtaining confidence interval estimates for z,. First, the delta method

permits the approximation:
Var(z,) = Azl x V x Az,

where V' is the variance-covariance matrix of (f, 4, &) and

op’ do’ o6&
_ [ 2=yt ol—y,6) oy, logy,
- ) g1 ) £-2 o 1

evaluated at ([L,&,f). While all necessary estimates are provided by Coles S-Plus
procedures, a simple spreadsheet or Matlab program is required to perform the
actual calculation of Azg , and hence obtain the approximate standard error of z,.

An alternative, and usually slightly more accurate method of return-level con-
fidence interval estimatation is via the profile likelihood method. Coles has imple-
mented the minimization of the negative log-likelihood function expressed as a func-
tion of (z,, 0,€), and obtains a direct estimate of z,. A 100%(1 — «) confidence limit
estimate for the return period is obtained by noting the parameter values on the
x-axis corresponding to points of intersection with the horizontal line drawn at a
height of 0.5 X ¢1 4 below the maximum, where ¢; , is the 100%(1 — «) quantile of
the x? distribution.

For shorter return periods, confidence interval estimates obtained by the profile

likelihood method are similar to those from the delta method. For longer return

periods the methods do not produce similar results. The asymmetry of the profile
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log-likelihood surface increases with the return period, and is responsible for this
discrepency. Since the data provide only limited information about high levels of
the physical process being modelled, this asymmetry is to be expected. Although
the GEVD model is supported by mathematical argument, parameter estimates
and measures of precision are based on the assumption that the model is correct.
Strictly speaking, all model inference and particulary that associated with long
return periods, should be considered lower bounds since measures of precision would
increase if model uncertainty were accounted for. Here is a potential application of
Bayseian techniques where uncertainty due to model correctness is quantifiable in
some manner.

The profile likelihood estimates generally produce more accurate results than the
delta method. For the practitioner interested in obtaining results quickly, the profile
likelihood method permits a shortcut to comparing nested models via the likelihood
ratio test. The calculation of the deviance statistic and its comparison for significance
against the y? distribution is operationally equivalent to observing whether or not 0
lies in the profile likelihood interval for the relevent model parameter. Hence, testing
the Gumbel model (e.g., £ = 0) which is nested in the Frechet model (e.g., £ = —0.2)
motivated by data-based MLE is achieved simply by noting if 0 lies in the estimated
profile likelihood confidence interval for ¢ in the Frechet model. While Coles’ S-Plus
functions produce graphs of the profile log-likelihood function, a more user friendly
implementation is provided in the EVIS, Version 4 S-Plus library by Alexander J.
McNeil (2001). The EVIS library includes a function that returns the confidence
interval endpoints, eliminating the subjectivity in reading coordinates from Coles’
plots. This function borrows Coles’ optimization routine, so the equivalence of the
two implementaions is assured.

The Coles S-Plus functions also include other diagnostic plots: the standard

quantile and probability plots; and a visual comparison of the fitted model’s den-
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sity function with a data histogram. The quantile plot compares the ordered data
values and the fitted model’s quantile function. Departures from linearity between
the two sets of quantiles indicate a lack of model fit. The probability plot checks for
linearity between the empirical and fitted distribution functions; however, observe
that as extreme values increase, both distribution functions necessarily approach 1,
assuring an increasingly linear plot. In the extreme modelling context, we are most
concerned with model accuracy for these large extreme values. Hence, the probability
plot yields the least information in the data region of greatest interest. Finally, the
density/histogram plot is actually the least informative. A histogram provides an
empirical estimate of the density function; however, different choices of grouping
intervals when constructing the histogram can lead to significantly different plots,

so that comparisons with the model-based density estimate are subjective at best.

1.6 TOLERANCE LIMIT ESTIMATION

In ecological applications, one may be concerned with identifying a limit associated
with dangerous concentrations of substances in biological systems. For example,
excessive ozone concentrations contribute to global warming, and extreme radioce-
sium concentrations in the SREL deer population could lead to a hunting morato-
rium.

A direct method for calculating tolerance limits for extreme value distributions
from fitted parameter estimates is presented by Dasgupta and Bhaumik (1995). They
deal with the three extreme value models seperately. Below, the upper tolerance
limits for the Frechet and Gumbel distributions are developed using the unified
GEVD model. For the Frechet distribution GG, we seek an upper bound such that
a high percentage (1006%) of future observations from the parent distribution F,

will fall below that bound with a very high probability, v. This -content tolerance
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limit is denoted M,)d, where M, is the maximum of the ii.d. variables from F
(i.e., the maximum observed value used to fit the Frechet model). For some future

observation Y ~ G, we require for 6 > 0:
Pry A FPclY < Mwyd] > B} = 1.

From this equation, we have:

= Py, {G(Mwn)o) > B} =~
= P {iMuy <G7H(B)/0} =1~
= G'G'(B))8)=1—~
= GYB)/6 =G (1 -
_ G~1(B)
= 0= G

Now, for the Frechet distribution we use the inverse as defined in Section 1.5 to

obtain:
=gl = (~log5)~*
= g[1 = (= log(1 — 7))~

Finally, substituting the MLE estimates M)d(f, o, é), provides the desired upper

6(p,0,8) =

tolerance limit for the Frechet distribution and predetermined percentages (5 and ~.

Similarly, the upper tolerance limit for the Gumbel distribution is provided by:

p — o log(—log )
pt — o log[—7 log(1 — )]

o(p,0) =

and the subsequent estimate is again given by M,)d(j, 7).

These point-estimates of the [-content tolerance limits do not yet reflect the
uncertainty associated with the selection of a specific EV model. The delta method
again permits the estimation of model uncertainty and leads to (3-content tolerance
limit confidence intervals. In the Frechet model, let d=4¢ (i1, 0, é) ~ 6(p,0,€), and

approximate the variance of d by:

Var(d) ~ Ad x V x Ad
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where V' is again the variance-covariance matrix of the model estimates (i, 7, ) and

A&::[

o od_dd
o1’ 60 O€

is the vector of partial derivatives of the tolerance limit multiplier d(u, o, §), evaluated
at (i1, ).

To simplify the evaluation of this approximation, first let

a = 1-(logf)~*
—£
b = 1—(—%1055(1—7))
T = u—gxa
;
B = M_EXb

so that d = %. Thus we may proceed:

6d B-T o(a—b)

ou B B
then
5 1 1
od _ —¢a-B+g-b-T
oo B?
—1 o o
- e | ()~ ()
_ —ple—b)
- B?
_ ok
o bu
and finally

od 1 —oa o da —ob o 0b
e ﬁHe *zﬂ“%*fﬁw
- g {B L] ren o - ¢

+T.%K%%%u—vﬁf'm(%“%ﬂ_w _q}

_ 2%.%{IWE1—bﬂn(%}k%U-—VO'—E]_ngl_a)mC_bgﬁ)_%]}
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Next the estimated variance is used to quantify model uncertainty in the tolerance
limit point estimates M0 (f, 0, é ), by constructing confidence intervals. Observe

that Var(Mu)o(f, o, £)) = M(2n) Var(5(f1,6,€)), so that

Mid(it6,€) £ 1.96 - Moy -/ Var(5(s, 6, €))

provides a 95% confidence interval for M, 0(f, &, é) A simple Matlab program is
used to calculate these confidence intervals for a given model and plot them over a

range of # and v in Section 3.2.

1.7 FINDING THE DOMAIN OF ATTRACTION FOR NEARLY EVERY EXTREME

To gain insight into the highest feasible contamination levels in a population, one
naturally looks to the upper tail of the distribution of observed levels. In fact, the
distributional properties of extremes are governed by the underlying distribution. It
is well known in Extreme Value Theory that if the underlying population distribution
yielding the maxima under consideration satisfies mild regularity conditions, then
the distribution of exceedences over a specified threshold in the data will converge
(as the threshold approaches the endpoint of the parent distribution) to one of the
three types of the generalized Pareto distribution (GPD). In this case, the population
density is said to be in the domain of attraction of the specified GPD. Similarly, the
distribution of the maximum value extracted from a sample will converge (as the
sample size approaches infinity) to one of the three types of generalized extreme
value distributions (GEVD), and the population density is said to be in the domain
of attraction of the specified GEVD.

The problem of identifying the domain of attraction of the parent distribution has
received much attention in the literature, and three strategies have been developed
for statistical inference in the extreme value context. The first strategy selects the

type of EV model to be fit (Frechet, Weibull or Gumbel) based on evidence gleaned
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from hypothesis tests and/or expert knowledge, and then determines the best fitting
model within the assumed type. Wang (1995) offers a modified Greenwood statistic
based on the largest order statistics in a sample to test for each domain of attraction
separately. The second approach determines the best model from the unified GEVD
(or GPD) family, whose shape parameter (£) determines the specific extreme value
model. Dietrich, De Haan and Husler (2002) formalize a test based on an asymp-
totic expansion of the tail version of a statistic comparing the inverse population and
empirical distribution functions, and determine the domain of attraction without first
specifying the shape parameter. Their method is motivated by the familiar Cramer-
von Mises statistic. The first approach makes no effort to capture the uncertainty
inherent in the initial selection of the EV model to be fit, and the second suffers
from the reduction of the Gumbel model to a single point (£ = 0) in continuous
parameter space (p, o), meaning that the probability of selecting the Gumbel model
via maximum likelihood techniques is zero. However, the unified parametric models
do lend themselves nicely to likelihood ratio testing techniques, which can be used
to give satisfactory consideration to all possible models. A third approach champi-
oned by Stephenson and Tawn (2001) applies Bayesian inference to account for each
EV model in an extreme value analysis, and thus addresses the deficiencies of the
previous methods.

The curvature method for identifying the EV domain of attraction was formal-
ized by Castillo, Galambos and Sarabvia (1989). The upper tail of the empirical
distribution is shown to imitate the shape of that EV limiting distribution that
attracts it, and this result used to develop both a visual selection method and a test
for significance based on the curvature of the empirical distribution function in the
tail. As emphasized by Castillo et. al., it is important to consider only the upper

oth

quantiles of the empirical distribution function (the 50"" and up are suggested) when

determining the curvature in these plots, because the convergence of the empirical
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tail to the tail of the limiting distribution which attracts it is established for only
the upper quantiles. This is another example of the second approach to selecting the
domain of attraction, but the visual selection method does allow for the consider-
ation of the Gumbel model. Several other visual methods are commonly employed
to allow the data to suggest the extremal domain of attraction of the population
distribution. These generally include identifying characteristic behaviour in plots of
estimated mean excess, survival, hazard or loss functions. Coles’ (2001) development
of return level plots as discussed in Section 1.5 is yet another example of a graphical

method to assess model fit.



CHAPTER 2

GETTING TO KNOW THE SRS DEER DATA

2.1 PRELIMINARY ANALYSIS LEADS TO INVESTIGATION OF EXTREME DEER

The data used in this extreme value analysis are a univariate series (n = 29519) of
radiocesium concentrations in single muscle plugs taken from each deer harvested
from the Savannah River Site (SRS) in Aiken, South Carolina during the fall deer-
hunting seasons between 1965 and 1995. The number of observations varies from
year to year. Measurement units are Becquerels per kilogram (Bq/kg) and have a
minimum value of 37 occurring 2452 times, a maximum value of 3626 occurring
twice, and increments occurring in multiples of 37 except for data from two years
when measurements were taken at a finer scale and increments occur in multiples
of 18.5. To reduce the scale of subsequent results, all radiocesium measurements
were divided by 37 and thus converted to picocurries per kilogram (pCi/kg). The
resulting data range from 1 to 98 with increments of either 0.5 or 1 and are used in
all subsequent analyses. Primarily, interest lies in characterizing the frequency and
magnitude of the maximum pCi/kg radiocesium body burden in the deer data.

It should be noted that the nature of the data implies a true maximum body
burden measurement must exist in the SRS deer population. It is unreasonable to
expect that radiation concentration can be infinite in an organism. In the interest
of achieving the most accurate model, which incorporates scientific knowledge in a
sound statistical analysis, consideration should be given to restricting the domain

of attraction to those models that restrict upper quantiles to reasonable values. In
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fact, was one able to quantify a reasonable range of upper limits (i.e., assign a prior
distribution to more and less likely parameter values in the GEVD or GPD), the
SRS deer data could provide a nice application of Stephenson and Tawn’s (2001)
Bayesian inference scheme, designed to reduce uncertainty in parametric estimates
by integrating expert knowledge with the Extreme Value Theorems.

With the goal of identifying a population density model for which the extreme
value domain of attraction is known, the pCi/kg sample density is examined in
Figures 2.1 and 2.2. It has been observed that radiation exposure in animal pop-
ulations frequently conforms to a lognormal distribution, implying that maximum
values taken from these populations converge to a Gumbel distribution. Clearly,
Figure 2.1 shows that the body burden histogram does not resemble a typical log-
normal density (the best fitting density is superimposed), nor does the In(pCi/kg)
histogram conform to a suitable normal density as it should if the body burden data
were indeed lognormal. Specifically, the familiar QQ-Plot in Figure 2.2 illustrates
that the empirical distribution has a lighter left tail (due to the concentration of
minimum values at 1) and a heavier right tail than any normal distribution. Here
a tail is heavy (light) in the sense that more (less) values are more (less) extreme
in that tail’s direction. Since the density of the deer data is not easily identified,
further analysis using the tools of Extreme Value Theory is carried out in Chapter

3.

2.2  IMPLICATIONS OF TIME TAKEN SERIOUSLY, BUT RULED OUT

Each measurement in the dataset is accompanied by a date; however, the dates mark
when measurements were recorded in the dataset and not when each measurement
was physically collected. Data entries are grouped every 3 or 4 days (indicating

twice weekly compilation of daily harvest measurements) during the fall deer-hunting
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seasons from 1965 to 1995 (either September or October through mid December).
Though the individual measurements cannot be considered a true time series, the
inherent and somewhat arbitrary data grouping justifies sub-dividing the data into
less arbitrary and more informative blocks, the maxima of which will be treated as
a traditional time series to check for any underlying time-dependent variability.

Prior to delving into the methods used to determine suitable extreme value
models for the maxima, a closer look at the deer data will highlight any serial struc-
ture. Figures 2.3 and 2.4 show a new graphical technique to summarize and visually
analyze extreme values taken from contiguous blocks of the entire dataset. The first
graph blocks the data according to the year in which observations were recorded,
while the second graph blocks the data into lengths of n = 984, the average number
of observations per year indicated on the first graph by a solid straight line. In each
graph: the top three broken lines indicate the magnitude and frequency of the first,
second and third highest order statistics in each block; the three dashed red lines
and the gray line at bottom track three quantiles (98th, 950 & 50th and the mean
of the radiocesium measurements in each block, respectively; finally, the bar graph
illustrates the number of observations in each block.

Figure 2.3 highlights a few oddities worth mentioning. Data collection was sparse
in the first five years, yet 1969 yields the second highest maximum value of 3071
Bq/kg despite having the fifth lowest number of observations overall. Similarly, sev-
eral other years with below average block sizes give rise to high maximum values
(e.g., 1970-71, 1978-80, 1987-88). Conversely, those years with above average block
size do not seem to give rise to higher maximum values. Finally, the mean exposure
line does not indicate any significant trend across blocks. These observations indicate
that neither time related, nor block-size dependent variability exists in the magni-
tude of extreme values in the body burden data. A potential ecological hypothesis

to explain the seeming lack of any trend in the extreme value summaries follows.
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Perhaps a sub-population of deer with elevated (i.e. far above average) radiocesium
exposure does exist on site, and is as likely to be harvested as any other deer on site.
If harvest numbers in general were suitably small compared to the total deer popula-
tion on site, then you would not necessarily expect increased (decreased) occurrence
of elevated exposures from blocks of slightly above (below) average size.

Figure 2.4 conforms more closely to traditional extreme value theory in that
blocks of equal size are considered. The plots across blocks of each statistic under
consideration show at least slight improvement in smoothness over the unequal block
case discussed above. Further, no significant trend or seasonality becomes apparent
in the series of maximum values, nor in the mean exposure. However, this second
graph does highlight one potentially interesting data anomaly. In the 18th block,
exposures seem to decrease markedly for the remaining 13 blocks. This block begins
with observation number 16728, collected in mid 1983: the same year in the previous
graph exhibits a somewhat similar drop. It may be of interest to build separate
models for the first 17 and last 13 blocks (or years) to quantify differences and seek
an ecological explanation.

Finally, two additional methods of assessing the serial dependence structure of
the series of maxima from each block size are available. First, the partial autocor-
relation functions are graphed for each series of maxima (block sizes of 500, 987,
1000), and checked for any indication that univariate autoregression (AR) models
are appropriate. Diagnostic tools produced using the S-Plus acf functions show that
AR models do not fit well to sequences of maxima extracted from the SREL deer
data. Had a time-dependant trend been indicated, standard likelihood ratio testing
techniques would assess if non-stationary EV models achieved an improvement in
model fit sufficient to justify increasing model complexity by including extra param-

eters to capture any serial tendencies in the maxima.
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2.3 BLOCKING SCHEMES CAREFULLY CONSIDERED

It is evident from the statement of the EV Theorem that the limiting distribution to
which extreme values converge is dependent on the sample, or block size (n) through
the standardizing series {a,} and {b,}. As demonstrated in Section 1.3, one need
not be concerned with identifying the appropriate standardizing series since they
are essentially absorbed in the procedure for estimating the GEV and GPD model
parameters. The fixed block size is necessary for accurate estimation of return level
plots and tolerance limits. In experimentally driven data collection, it is likely that
the block size in an extreme value analysis will correspond to the repeated sample size
in the experiment, or to some inherent time-frame (e.g., minimum breaking strengths
of materials from multiple batches of fixed size; maximum monthly wind speeds or
atmospheric ozone concentrations). Figure 2.3 demonstrates that no natural block
size is evident in the SRS deer data - such is frequently the case when considering
data collected in an observational, as opposed to experimental, manner. However, the
relative constancy of the quantiles depicted in Figure 2.3 does suggest that arranging
the data into equally sized contiguous blocks is not inappropriate. On average there
are 984 observations in each of the 30 years of data; hence, contiguous blocks of size
n = 984 (obtaining 30 extreme observations, with the last being the maximum of
983 observations) are used in the initial fitting of the GEV distribution via Coles’
maximum likelihood estimation routines in S-Plus. While this blocking method is
a nicely intuitive approach, basing a model on blocks of size 1000 will facilitate
the communication of statistical results to the scientists to whom this discussion is
targeted. In the interest of simplifying discourse, the initial model is compared to
the GEV model fit to 29 maxima obtained from contiguous blocks of size n = 1000.

The arbitrary manner in which block sizes must be established in any similar

observational data analysis raises questions as to the effect on model parameters
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when the block size is changed. The choice of block size given a fixed total sample
size is essentially a trade-off between bias and variance. The larger the block size
from which maxima are extracted, the better the estimate of truly extreme values in
the total sample, and hence the lower the bias when estimating extremes; however,
this coincides with fewer observed extremes, and hence a higher variance results from
fitting a model to fewer data points. As the number of blocks is increased and the
variance of estimates is reduced, truly extreme values are diluted, thereby increasing
the bias of these estimates. At present, this bias-variance trade-off has not been
the subject of much formal investigation, but it remains an important consideration

when devising an intuitive blocking method for observational data.
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SREL Deer CsBq Data

Maximum Extreme Value Summary: Block=Year
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Figure 2.3: Extreme value summary plot of raw body-burden dataset.
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Figure 2.4: Extreme value summary plot of body-burden dataset arranged in con-
tiguous blocks of 984 observations.



CHAPTER 3

RESULTS AND CONCLUSION

3.1 MaxiMuM RADIOCESIUM BODY-BURDENS IN THE SREL DEER DATA

As discussed earlier, we assume the pattern of variation in the body-burden measure-
ments is relatively constant over the 30-year observation period, and consequently
model the series of maxima extracted from different block sizes as independent obser-
vations from the GEVD distribution.

The first model is fit to the maximum observations from contiguous blocks of
size n = 984, the average number of observations in each year. Maximization of the

GEVD log-likelihood for these data result in the parameter estimates:
(A,ﬁ,f) = (36.74,16.676,0.0322)

with approximate standard errors given respectively by (3.530,2.643,0.165), and
corresponding log-likelihood of —132.454. From these results, we obtain approximate
95% confidence intervals for each parameter via the familiar formula MLE 41.96 x

S.e.:

i — (29.82,43.66)
& +— (11.50,21.86)

£ — (—0.29,0.36)

Note that since f > 0, these data suggest that an unbounded Frechet model is

appropriate. However, the & confidence interval is very nearly centered on zero,
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indicating that the data do not provide strong evidence in support of the Frechet
extreme value distribution.

Return levels are calculated based on the block size. In the theoretical develop-
ment of return levels, we assumed a model built from truly annual maxima. In the
current example, we've modelled block maxima as opposed to annual maxima, so
return times are expressed as multiples of the block size. For example, when inter-
preting a “3-year” return level from this model, one is actually estimating the level
expected to be exceeded on average once every 3 blocks, or 3 x 984 = 2952 obser-
vations. Clearly, these results are neither intuitive nor easy to communicate and
when possible, one would prefer either a model based on annual maxima, or a nice
round block size. To that end, we now consider a second model fit to the maximum
observations from contiguous blocks of size n = 1000.

Maximization of the GEVD log-likelihood for these data result in the parameter

estimates:

(i, 6,€) = (35.90, 16.287, 0.0669)

with approximate standard errors given respectively by (3.496, 2.668,0.178), and cor-
responding log-likelihood of —132.335. Again, we obtain approximate 95% confidence

intervals for each parameter:
o — (29.05,42.75)
o +— (11.06,21.52)
£ — (—0.28,0.42)
Figure 3.1 depicts histograms overlayed with the fitted density curves for both
these models. It is clear from the similarity between both sets of parameter estimates
and between the panels of Figure 3.1 that the two models are almost indistinguish-

able. Hence, the n = 1000 model is adopted as the basis for calculating return times

and tolerance limits and is used in hierarchical model testing against the reduced
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Gumbel model and models allowing for time trends in either the location or scale
parameters.

Recall also that an alternative formulation of confidence intervals is available from
a profile likelihood analysis. In fact, increased accuracy usually results from exam-
ining the profile log-likelihood function. Coles” S-plus routines produced Figure 3.2,
from which the approximate 95% confidence interval for £ is obtained: (—0.22,0.49).
This interval is only a little different from the previous calculation, being shifted
subtly to the right. Hence, slightly stronger evidence is garnered in support of the
Frechet model for these maxima.

Note that the best estimate of the confidence interval for £ still includes zero,
and extends well into negative values of £. Thus, the appropriateness of replacing
the Frechet model with the Gumbel model should be assessed. To do this, the log-
likelihood of the Gumbel model (¢ = 0) is maximized, leading to the parameter
estimates (f1,6) = (36.495,16.75) with standard errors given by (3.216,2.46). The
corresponding maximized log-likelihood is —132.411, which is slightly worse than
that of the Frechet model. Consequently, no ratio testing is required to determine
that the Gumbel model is in fact inferior to the Frechet in capturing the behaviour
of extremes from this dataset. Observe that the approximate standard errors in the
Gumbel model also exceed those of the Frechet model. However, the two models are
certainly comparable, and the Gumbel model may still seem advantagous given its
simpler form. The most important difference between these two models is evident
from a comparison of the diagnostic plots for each (see Figures 3.3 & 3.4). Observe
that the return levels for the Gumbel model have significantly narrower confidence
bands than for the Frechet model. While this reduction of uncertainty is desirable,
and the data do suggest the plausibility of the Gumbel model, this does not imply
that other members of the GEVD family should be disregarded. Due consideration

must be given to the maximum likelihood estimate within the Frechet family, and
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given the uncertainty evident in this discussion of the two models, the conservative
and safe option is to give preference to inference based on the Frechet model. In so
doing, we are more realistically quantifying the inherent uncertainty of extrapolated
predictions. This, of course, is reflected in the Frechet model’s wider confidence
intervals for return levels.

Return level inference is obtained by determining return periods of interest and
setting p accordingly in the calculations outlined in Section 1.5. The Frechet model
is used to estimate the body-burden level that is expected to be exceeded on average
once every 10 blocks (n = 1000) in the SREL deer population by setting p = 1/10
and calculating Z,—1/10 = 75.457. Confidence intervals are obtained by estimating
the variance via the delta or profile-likelihood method. The delta method yields
Var(Z1) = 80.733 and hence the 95% confidence interval is estimated by 75.457 +
1.96 x /80.733 = [57.846,93.067]. More accurate estimates come from the profile-
likelihood method which yields the confidence interval of [62.881,108.747] for 2y ;.
The most precise and accurate interpretation of this return level result follows: the
block maximum in any particular block will exceed Zy; = 75.457 with probability
p = 10%, and 19 times out of 20 Zy; will fall in the interval [62.881, 108.747]. Table
3.1 includes estimates from both methods for return periods of 30, 45 and 60 blocks.
These correspond to extrapolations up to twice as far into future observations as
the SREL dataset provides information for (i.e., 29 blocks of size n = 1000). Figures
3.5 to 3.8 highlight that profile log-likelihood surfaces will increase in assymetry as
the return period increases, explaining the difference between confidence interval

estimates from the two methods.
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3.2 TOLERANCE LIMITS FOR THE SREL DEER DATA

The delta method is applied to obtain 95% confidence intervals for upper 3-content
tolerance limits in the Frechet (n = 1000) model of the SREL deer dataset. Figure
3.9 summarizes two sets of tolerance limit estimates and confidence intervals for the
range 75% < 3 < 99%. The solid line on the left (right) maps the upper boundary of
body-burden measurements that (1005)% of future observations will fall below with
probability v = 90% (v = 99.5%). To interpret these results, identify a [-content
level on the x-axis and read the body-burden tolerance limit estimates from the y-
axis. For example, with probability v = 90% at least 5 = 95% of future radiocesium
137 observations will fall below 55.477 pCi/kg, and the interval (25.004, 85.949) forms
a 95% confidence band to capture model uncertainty (these points are indicated
by arrows in Figure 3.9). Similarly, as 7 increases to 99.5% at most 5% of future
measurements will register above 63.438 pCi/kg, and 19 times out of 20 this value

will fall in the interval (38.545,88.332).
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Figure 3.1: Comparison of GEVD densities for different block sizes in the
SREL body-burden data. For n = 984 (left), parameter estimates are
(1,6.€) = (36.74,16.676,0.0322). For n = 1000 (right), estimates are (ji,5,&) =
(35.90, 16.287,0.0669).
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Figure 3.2: Profile likelihood for € in the n = 1000 Frechet model.
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Figure 3.3: Diagnostic plots for GEVD fit to
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Figure 3.5: Profile likelihood for 15-block return level: 2,15 = 83.588 in the n =
1000 Frechet model.
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Figure 3.6: Profile likelihood for 30-block return level: 2,_;/30 = 97.764 in the n =
1000 Frechet model.



41

Profile Log-likelihood
-133.5 -133.0 -132.5

-134.0

-134.5
1

-135.0

100 150 200 250

Return Level

Figure 3.7: Profile likelihood for 45-block return level: Z,—;/45 = 106.280 in the
n = 1000 Frechet model.
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Figure 3.8: Profile likelihood for 60-block return level: Z,_;/60 = 112.440 in the
n = 1000 Frechet model.



Return Period 1/p | Method | Lower 95% c.i. Zp Upper 95% c.i.
10 Delta 57.846 75.457 93.067
10 Prof 1khd 62.881 108.747
15 Delta 60.689 83.588 106.488
15 Prof 1khd 68.960 131.813
30 Delta 62.422 97.764 133.107
30 Prof 1khd 78.211 184.248
45 Delta 61.620 106.280 150.940
45 Prof 1khd 82.899 224.824
60 Delta 60.229 112.440 164.651
60 Prof 1khd 85.455 257.315

Table 3.1: Return Level Inference from the n = 1000 Frechet model

Beta—content Tolerance Limits w. delta—method 95% C.1.
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Figure 3.9: Delta-method confidence intervals for v = 90% (indicated by arrows)
and v = 99.5% [-content tolerance limits.



CHAPTER 4

FUTURE CONSIDERATIONS

4.1 NEgEw THEORY ON THE BLOCK

It is clear that our assumption of equal block sizes is one of convenience. While return
levels and tolerance limits are expressed in terms of thousands of observations, it is
evident from Figure 2.3 that it may take as little as half a hunting season or as many
as two hunting seasons to actually collect the next 1000 observations. Suppose that
it is known that in the next hunting season the deer harvest from the SRS will be
fixed at some level n, # 1000 via a system of restricted hunting licenses or imposed
quotas. Then it becomes of interest to determine the best way to use the historical
data to predict the highest contamination levels observed in the predicted sample
of size n,. An immediate approach is to simply reorganize the data into contiguous
blocks of the appropriate size and proceed to fit any EV model. This method is a
little labor intensive if several estimated sample sizes are being considered, and is
also subject to the bias-variance trade-off.

Instead, the ratio n,/n may be incorporated in the maximization routine to
obtain estimates for the sample size n,, from the model developed assuming blocks
of size n. In fact, Coles’ S-Plus functions may be recoded to accept the ratio as an
input and provide return-level estimates adjusted for a block size under question

that differs from the block size upon which the model is based.
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4.2 SREL’s Goop DAtTA

The Savannah River Site is a former U.S. Department of Energy nuclear produc-
tion facility. The continual monitoring of, and data collection from resident wildlife
populations provide extensive datasets to assess the effects of radiological concentra-
tions on animal species. In particular, when compared to similar datasets from non-
exposed populations, statistically and scientifically significant differences between
the populations may be identified and studied. For example, in addition to radioce-
sium concentration, data is compiled on the age, sex, mass, lactation (for does) and
antler points (for bucks) of each harvested deer in the SRS dataset. If a suitable model
were found to predict radiocesium concentration from these potential explanatory
variables, it could be compared to a similar model fitted to non-exposed populations

and any differences highlighted for study.
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