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Abstract

The Generalized Extreme Value (GEV) model’s relevance to the extremes of a
distribution, and the Generalized Pareto (GP) model’s relevance to the exceedences
above a threshold in a distribution are equivalent to the Gaussian model’s relevance
to the center of a distribution. Limit theorems are presented which unify the extreme
values of samples from sufficiently smooth distributions under the GEV model, and
similarly unify exceedences under the GP model. These models are fit (via maximum
likelihood estimation of model parameters) to radiocesium body-burden data in a
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the Frechet EV family best quantifies maxima from this dataset. Return levels are
estimated, and a formula for estimating tolerance limits is developed from the GEV
functional form.
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Chapter 1

An Introduction to Extreme Value Theory

1.1 Extreme Value Theory Takes Familiar Concept to New Limits!

The Extreme Value (EV) model’s relevance to the maxima or minima of a distribu-

tion, and the Generalized Pareto (GP) model’s relevance to the exceedences above a

threshold in a distribution are similar to the Gaussian (Normal) model’s relevance to

the center of a distribution. That is, limit theorems exist which unify the maximum

values of samples from sufficiently smooth distributions under the EV models, and

unify exceedences under the GP model. These parametric models prove rich enough

to characterize the extremes of a very wide range of stochastic distributions.

Many traditional statistical analyses are concerned with the central tendencies

of a data sample collected from some physical process, and rely on a bevy of Cen-

tral Limit Theorems to characterize the convergence of a distribution’s center (upon

multiple sampling) to the Gaussian distribution. In such analyses, observed values

that deviate too far from the sample mean are often considered outliers, and efforts

are made to justify the removal of these data points from the analysis. In an extreme

value analysis, attention is instead focused on those values occurring far above or

below the average (i.e., those events that constitute the tail of the underlying, or

parent distribution). While the study of extreme events dates back to 1709, when

Nicolas Bernoulli considered the mean longest distance from the origin when points

are scattered at random on a line of fixed length, limit theorems attributed to Fisher

1
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and Tippet (1928), and Balkema and de Haan (1974) are essential in character-

izing the behavior of a distribution’s tail. These limit theorems provide a framework

to support statistical techniques and models for the estimation and prediction of

unusual, or rare events in an observed physical process, based on historical data.

Inherent in the definition of extreme value is the concept of scarcity: estimates of

processes at levels far above those typically observed are often of the most interest.

For example, this paper examines extreme radiological body burden measurements

in a population of deer that is at an increased risk of exposure to contamination.

Comparing the frequency and intensity of maximum exposures to regulatory limits,

which exceed every observation in the dataset, is of particular interest. Typically,

one is cautioned against extrapolating in the manner described - from observed to

unobserved (or scarcely populated) levels - in any statistical estimation procedure.

With that in mind, one must be cautious when interpreting EV model predictions,

and pay particular attention to accurately reflecting the inherent uncertainty of

extrapolated predictions. That being said, there are no competitive models or theo-

ries for this increasingly important field of study - first applied in engineering fields

to assess stress loads on building materials and structures in the 1940’s, and more

recently being applied in arenas as diverse as actuarial science, genetics and quantum

mechanics.

Extreme value analysis is frequently of particular interest in the biological sci-

ences. Specific ecological applications include modeling extreme natural events like

floods, windstorms, earthquakes and drought conditions; the study of species inno-

vation, disease outbreak or any other rare event of importance; and the analysis

of high concentrations of harmful substances in biological systems. In any context

where the frequency and intensity of events from the tail of a distribution are of

interest, extreme value analysis comprises the necessary statistical tools.
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1.2 The Definitive Models of Extreme Behavior

To formalize the concept of extreme value analysis, we seek models to describe the

statistical behavior of the sample maxima:

Mn:n = max{X1 . . .Xn}

where the Xi’s, i = 1 . . . n, form a sequence of independent random variables from a

common distribution function F , which describes data obtained from some physical

process. The development of models to characterize the minimum values of such a

process is similar to that leading to the models for maximum values. For explicit

development of the parametric models for minima, see Coles (2001), Reiss & Thomas

(1997), or just about any other introductory text on extreme value analysis.

Alternatively, any analysis of minima can be transformed to an analysis of

maxima. If one is concerned with the smallest values of a sequence of negative

variables:

Mn:1 = min{X1, . . . , Xn : Xi ≤ 0}

then also:

Mn:1 = −max{−X1, . . . ,−Xn : Xi ≤ 0}

so that by simply negating the original data, the problem is reduced to an analysis of

maximum values. If instead one is concerned with the smallest values of a sequence

{X1, . . . , Xn : −∞ < Xi < +∞}, first shifting the data so that all values are less than

zero then negating the shifted data, once again reduces the problem to a maximum

value analysis. Regardless of the transformation required, its inverse is applied to

model predictions to obtain results in the context of the problem which originally

motivated the minimum value analysis. Since this paper concerns the estimation of

maximal values, little further will be said about the analysis of minimum values.

Henceforth, the terms extreme and maximal are used interchangeably.
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Of course, the theory of order statistics permits the derivation of the exact distri-

bution of Mn:n for any value of n, assuming knowledge of the underlying distribution

function F :

P{Mn:n ≤ x} = P{Xi ≤ x ∀ i = 1, . . . , n}

=
n
∏

i=1

P{Xi ≤ x}

= [F (x)]n, Xi ∼ F, i.i.d. (1.1)

As a means of data analysis this line of pursuit is fraught with complications,

foremost of which is the fact that in most any practical application, the underlying

(or parent) distribution function F is frightfully complicated if it is known at all.

Although standard techniques can be used to derive an estimate F̂ of F , and hence

of [F (x)]n, the multiplicative form magnifies the tiniest error in the estimation of F ,

leading to unsatisfactory discrepancies for even moderate values of n. Furthermore,

for any value of x less than x+, the upper endpoint of F , (the smallest value in the

domain of F such that P{X ≤ x} = 1 is denoted x+ = inf{x : F (x) = 1}), the

theoretically exact distribution of Mn:n degenerates to a point-mass. That is, for any

fixed value of x, it is clear that in the limit of [F (x)]n as n → ∞ one obtains a

degenerate distribution:

lim
n→∞

[F (x)]n =















1, F (x) = 1

0, F (x) < 1

The results of Fisher and Tippet (1928) overcome these problems associated with

the limiting distribution of the variable Mn:n. They demonstrated that if there exist

normalizing sequences of constants {an > 0} and {bn} that stabilize the location and

scale of sample maxima as sample size increases, then the limiting distribution of the

normalized variable M∗
n:n = (Mn:n − bn)/an will necessarily converge to a member of

one of three parametric models. That is, if Mn:n can be transformed as described,
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so that the limiting distribution of the new random variable M∗
n:n is non-degenerate,

the functional form of that limiting distribution is given by the Extremal Types

Theorem.

Extremal Types Theorem (THM1):

If there exist sequences of constants {an > 0} and {bn} such that

lim
n→∞

P

{

Mn:n − bn

an
≤ x

}

= G(x)

where G is a non-degenerate distribution function, then G is necessarily a member

of one of the three families:

GI(x) = exp{−e−(x−µ

σ
)}, −∞ < x < ∞

GII(x) =















0, x ≤ µ

exp{−(x−µ
σ

)−α}, x > µ

GIII(x) =















exp{−[−(x−µ
σ

)]α}, x < µ

1, x ≥ µ

with scale parameter σ > 0, location parameter µ, and in the case of GII and GIII ,

shape parameter α > 0.

While distributions GI , GII and GIII are collectively called the extreme value

distributions, respectively they are known as the Gumbel, Frechet and Weibull dis-

tributions. Their functional similarity is striking, and together they comprise a wide

range of heavy-tailed, bell shaped curves. The simple reparameterization ξ = 1/α

unifies these distributions in a single three-parameter model jointly attributed to

von-Mises and Jenkinson, and hereafter referred to as the Generalized Extreme

Value distribution (GEVD). The reparameterization also permits the interpreta-

tion of the Gumbel (GI) model as the limit of the Frechet (GII) and Weibull (GIII)

distributions. For convenience, the parametric form of the GEVD is presented in the

following restatement of the Extremal Types Theorem.
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Extremal Types Theorem Redux (THM2):

If there exist sequences of constants {an > 0} and {bn} such that

lim
n→∞

P

{

Mn:n − bn

an

≤ x

}

= G(x)

where G is a non-degenerate distribution function, then G is necessarily a member

of the GEVD family

G(x) = exp
{

−[1 + ξ(
x− µ

σ
)]−1/ξ

}

and G is defined on {x : 1 + ξ(x−µ
σ

) > 0} with scale parameter σ > 0, location

parameter µ and shape parameter −∞ < ξ < ∞.

Now, a little algebra employing the limiting definition of e:

lim
ξ→0

(1 + ξx)1/ξ = ex

demonstrates that as ξ → 0 the functional form of G(x) in THM2 attains that of

GI(x) in THM1. Furthermore, GII(x) and GIII(x) correspond respectively to values

of ξ > 0 and ξ < 0 in the GEVD parameterization. Hence the right-skewed Gumbel

distribution (ξ = 0) serves as the central model in the sense that as ξ approaches

zero the Frechet and Weibull models approach the Gumbel. As ξ > 0 increases,

the Frechet model becomes increasingly right-skewed, and as ξ < 0 decreases, the

Weibull model changes from left to right-skewed, with a symmetric shape nearly

indistinguishable from a normal distribution when ξ = −0.28 (corresponding to

α = −3.6 in THM1). While both Gumbel tails are infinite, the Frechet model has

an infinite right tail and the Weibull has an infinite left tail. The location parameter

gives the left endpoint of the Frechet model, and the right endpoint of the Weibull

model. The primary difference between the three extreme value models is the rate

of decay of the upper distributional tail: while the Weibull model always has a finite

upper endpoint, the Gumbel model tails decrease exponentially and Frechet’s upper

tail decreases polynomially.
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When the underlying distribution F , leads to extremes that are described well by

a particular member of the extreme value model family G, then F is said to be in the

domain of attraction of the limiting distribution G, denoted F ∈ D(G). Extremes

extracted from the Uniform distribution, together with the minima extracted from a

very wide range of parent distributions all converge to the Weibull distribution. The

Pareto and Cauchy distributions reside in the Frechet maxima domain of attraction.

The Gumbel model proves truly attractive: the Gaussian, log-normal, exponential

and gamma distributions all reside in the Gumbel domain of attraction. In general,

the rate of decay of the parent distribution’s tail determines the extreme domain of

attraction.

Only the most concocted distributions give rise to extremes that can not be made

to converge to one of the three non-degenerate distributions in THM1. For example,

let E1, E2, E3, . . . be i.i.d standard exponential random variables with density func-

tion FE. Then, FE ∈ D(GI); however the random variables defined by:

Xi := e⌊Ei⌋, i = 1, 2, 3, . . .

where ⌊Ei⌋ is the integral part of Ei prove insufficiently smooth in distribution to

yield extremes that converge to any member of the GEVD family (Dietrich et al,

2002). Fortunately, such examples remain theoretical curiosities, as overwhelming

empirical evidence has demonstrated the applicability of the extreme value models

to data extracted from physical and biological processes.

One can thus replace [F (x)]n in Equation 1.1 with the appropriate G(x) from

THM1 to achieve an estimate for sufficiently large n, essentially considering a string

of maximum values extracted from multiple samples of equal size as independent

realizations of a random variable distributed according to G(x). Extremes from

a very wide range of parent distributions can now be treated as realizations of a

random variable having an EV distribution whose parameters must be estimated.
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Coles’ (2001) S-Plus routines permit the practitioner to calculate maximum likeli-

hood estimates of GEVD and GPD parameters from a dataset and make inference

into the extreme behavior of the physical process being modeled.

1.2.1 The Pareto Model for Exceedences

Another approach to modeling extreme behavior in a physical process is to consider

some threshold of relevance, and consider measurements that exceed that threshold.

When confronted with data from some parent distribution F , the idea is to model

the conditional distribution of:

P{X > u + y|X > u} =
P{X > u + y}

P{X > u}

=
1 − F (u + y)

1 − F (u)
, y > 0 (1.2)

where u is some value suggested by the data, above which the random variable

X|X > u converges to a non-degenerate distribution as the sample size increases.

This approach is a more efficient use of data, since several of the upper-most values

are used, instead of just the most extreme occurrence in each sample. The value u

ideally reflects a threshold relevant in the context of the problem. There are also three

models to which these random variables, commonly refered to as exceedences, will

converge in distribution. For completeness, these distributions are listed below, but

without location and scale parameters. Note that the simple analytic relationship:

W (x) = 1 + log G(x), if log G(x) > −1

links the three extreme value densities G, from THM1 with the following three

exceedence limiting distributions, W .

Exceedance Limiting Distributions:

WI(x) = 1 − e−x, x ≥ 0
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WII(x) = 1 − x−α, x ≥ 1

WIII(x) = 1 − (−x)−α, − 1 ≤ x < 0

These distributions are the standard exponential, standard Pareto, and a subclass

of the full Beta family of distributions, respectively. These three seperate models

can also be unified, via a reparameterization, into a three-parameter model called

the Generalized Pareto Distribution (GPD). The parametric form is given in the

following theorem, which also highlights the relationship between the GEVD and

the GPD.

Exceedance Types Theorem (THM3):

Suppose F satisfies THM2 so that Mn:n converges to a member of the GEVD,

G(x) indexed by some µ, σ, ξ. Then for large enough u, the distribution of the

exceedance random variables X − u|X > u converges to

H(y) = 1 −
(

1 +
ξy

σ̃

)−1/ξ

defined on {y : y > 0 and (1 + ξy
σ̃

) > 0} with σ̃ = σ + ξ(u − µ).

Just as in the case of the GEVD, the shape parameter ξ determines the behaviour

of the GPD. That is, by taking the limit of H(y) in THM3 as ξ → 0, one obtains

the unbounded exponential distribution WI(x). The cases ξ > 0, ξ < 0 correspond

repsectively to the unbounded Pareto distribution WII(x), and the Beta sub-family

WIII(x) with an upper endpoint of u − σ̃/ξ.

Once again, note that knowledge of the parent distribution F is not assumed.

Were F directly estimable then Equation 1.2 could be used to calculate the exact

distribution of exceedences. Instead one employs THM3, using the data to estimate

the parameters of the appropriate GPD model, which proves to be the only possible

limiting distribution of exceedences extracted from a very wide range of population

distributions.
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Section 1.3 delves deeper into the theoretical foundations of the GEVD and GPD

models, so those reading to obtain an algorithm for the modeling of extreme events

may skip to Section 1.4, wherein the discussion of useful estimation procedures and

inferences begins.

1.3 Deeper Theoretical Foundations of EV Models

That the three distributions in THM1 constitute the only possible limiting distribu-

tions in the extreme value context completes the analogy to central limit theory. The

sequences {an > 0} and {bn} are analogous to the sequences of means and standard

deviations used to normalize data and thus obtain a member of the Gaussian model

as the limiting distribution of sample means (or other measures of a distribution’s

central tendency). Unlike central limit theory, the stabilizing sequences in an extreme

value analysis are not unique. Appropriate sequences {an > 0} and {bn} have been

identified for a wide array of underlying distributions, leading to the aforementioned

list of distributions residing within each extremal domain of attraction. Recall how-

ever, that in most applications knowledge of the underlying distribution is negligible

at best. Two problems are now apparent: identifying appropriate norming sequences

from a list of candidates; and, relating the distribution of the transformed maxima

to that of the maxima themselves. Both problems are easily resolved for all practical

purposes.

First, suppose that there exist sequences {an > 0}, {bn} and {a′
n > 0}, {b′n}

such that for a common parent distribution F , THM1 is satisfied with each set of

sequences. Then we denote the two non-degenerate limiting (n → ∞) distributions

of the two series of random variables by:

Mn:n − bn

an
→ G and

Mn:n − b′n
a′

n

→ G′



11

By a classic result of Khintchine (1938) on sequences of random variables, we then

know:

an

a′
n

→ α and
bn − b′n

an
→ β

where G′(αx+β) = G(x), and hence G and G′ are identical but for location and scale

parameters. That is, the limiting distributions of the random variables obtained by

transforming maxima with either set of sequences will have a common shape param-

eter, with possibly different location and scale parameters. The issue of non-unique

norming sequences is thus resolved, as every appropriate sequence will lead to the

same family of extreme value model (G1, GII , or GIII) given a parent distribution,

F .

Next, assume that THM1 is satisfied, so the transformed maxima converge in

distribution to one of the three extreme value distributions, and for large n we have:

P{(Mn:n − bn)/an ≤ x} ≈ G(x)

This in turn implies that:

P{(Mn:n ≤ x} ≈ G{(x − bn)/an} = G∗(x)

where G∗ is another member of the same extreme value model family. Thus, we

see that when the distribution of the transformed extremes can be approximated

by a GEVD model, the distribution of the extremes themselves is also estimable

by a different member of the same GEVD model. Because the parameters of these

limiting distributions are to be estimated, their equivalence for large enough n makes

moot the fact that the parameters of G and G∗ differ. Consequently, the apparent

problems associated with the stabilizing sequences in the extreme value context can

be ignored in practical applications.

We now consider an informal justification of the extremal types theorem that

highlights a characterizing feature of the GEVD. Once again assume that the limiting
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distribution of (Mn:n − bn)/an is the non-degenerate extreme value distribution G,

so that:

P{(Mn:n − bn)/an ≤ x} ≈ G(x)

Now consider the random variable Mnk:nk, k ∈ N and n sufficiently large, repre-

senting extremes extracted from the same parent distribution arranged in blocks of

size nk. Since nk is also large it must be that these extremes can also be rescaled

such that:

P{(Mnk:nk − bnk)/ank ≤ x} ≈ G(x) (1.3)

Furthermore, since each Mnk:nk is also the maximum of k random variables each

having the same distribution as Mn:n, the theory of order statistics permits:

P{(Mnk:nk − bnk)/ank ≤ x} = [P{(Mn:n − bnk)/ank ≤ x}]k

=

[

P

{(

Mn:n − bn

an
+

bn − bnk

an

)

(

an

ank

)

≤ x

}]k

=

[

P

{

Mn:n − bn

an

≤
(

ank

an

)

x − bn − bnk

an

}]k

≈ Gk(αkx + βk) (1.4)

where ank/an → αk and (bnk − bn)/an → βk.

From Equations 1.3 & 1.4 one arrives at the following approximate equivalence:

G

(

x − bnk

ank

)

≈ P{Mnk:nk ≤ x} ≈ Gk

(

αk

[

x − bn

an

]

+ βk

)

and concludes that G and Gk are once again identical apart from location and scale

parameters. Note that αk and βk provide the new location and scale respectively.

This property, where the operation of extracting sample maxima from differently

sized blocks of a single parent distribution has lead to limiting distributions from

the same GEVD family (though they may differ in scale and location), is known

as max- stability. The heuristic argument above demonstrates that max-stability is

naturally expected in the extreme value context. In fact, this property characterizes
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the GEVD and it is well-known that a distribution is max-stable if, and only if, it is

a generalized extreme value distribution. An example involving the Frechet model

GII(x), is illustrative.

Consider GII(x) = exp{−x−α} for x > 0. Then it is known that {an > 0} =

{n1/α} and {bn} = 0. Then:

ank

an
=

(nk)1/α

n1/α
→ k1/α = αk

bnk − bn

an
= 0 → 0 = βk

so that according to Equation 1.4:

Gk(αkx + βk) = Gk(k1/αx) = [exp{(−k1/αx)−α}]k

= [exp{−k−1x−α}]k

= exp

{

−k

k
x−α

}

= GII(x)

Thus we see that the Frechet model is indeed max-stable, as one expects in the

extreme value context. The Gumbel and Weibull distributions are similarly seen to

be max-stable, though the proof of the converse (that these are the only max-stable

distributions), involves functional analysis beyond the scope of this study.

There is an analogous result called peaks-over-threshold (POT) stability that

characterizes the GPD models. A full discussion of POT stability can be found

in Reiss & Thomas (1997). Suffice it for our purposes to roughly summarize the

work of Pickands (1975), who demonstrated that F ∈ D(G) necessitates a good

approximation for the conditional distribution:

F [u](x) =
F (u + y) − F (u)

1 − F (u)

by a shifted GPD, assuming that u is large. That is, a parent distribution F , lies in

the domain of attraction of a specific GEVD, G if, and only if, its upper tail can be

appropriately approximated by a shifted GPD. The GPD models essentially zoom
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in on the tail behaviour of the underlying distribution, while the GEVD models seek

to describe only block extremes. It is the application of these models to real data,

estimation procedures and inference to which we now turn our attention.

1.4 Parameter Estimation in the EV Distributions

The arguments of Sections 1.2 & 1.3 suggest the following algorithm for modelling

the extremes from a series of independent observations. First, the data are blocked

into contiguous sequences of equal and sufficiently large length, n. Then, a series

of block maxima are extracted and a member of the GEVD family is fit to this

series. More will be said in Section 2.3 with regard to the selection of an appropriate

block length, though typically the block length is chosen to correspond to a certain

fixed time period so the resulting maxima may, for example, represent monthly or

annual extremes. Alternatively, one may define extreme events by identifying a high

threshold u, and denoting by x(1), . . . , x(k) those {xi : xi > u}. Then, the random

variables (called threshold exceedances):

yj = x(j) − u, j = 1, . . . , k

are regarded as independent observations from a distribution likely to converge to,

and hence well estimated by, a member of the GPD family.

The history of estimation procedures for fitting GEVD and GPD models to

data parallels that of most any other statistical estimation problem, and is outlined

extensively in the monograph by Kotz and Nadarajah (2000). Ongoing efforts have

included method of moments procedures; simple, unbiased and asymptotically unbi-

ased linear estimators; ranked set estimation; and a method employing probability-

weighted moments. With more recent advances in computing power, there is strong

preference for the maximum likelihood estimation (MLE) procedure. This is espe-

cially true when seeking to estimate all three unknown parameters in the GEVD
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model from a complete dataset. While each method has its niche, the overall adapt-

ability of MLE methods to complex model-building make this technique very useful.

The fact that the GEVD model endpoints are functions of the parameters actu-

ally violates regularity conditions that ensure the asymptotic validity of the MLEs.

However, the range of shape parameter values for which MLEs are unobtainable

(ξ < −1) correspond to distributions with a very short bounded upper tail that

are very rarely encountered in contexts calling for extreme value modelling (Smith,

1985). This theoretical limitation proves no obstacle in the modelling of extreme

behaviour in the SREL deer dataset discussed in Section 3.1.

Stuart Coles has implemented MLE estimation procedures in S-Plus, and his

text (Coles, 2001) outlines in detail the form of the log-likelihood functions for

the seperate cases of ξ = 0 and ξ 6= 0 in both the GEVD model of THM2, and

the GPD model of THM3. With a fairly straightforward optimization routine, the

MLEs (µ̂, σ̂, ξ̂) are obtained. Subject to the limitations alluded to on the permissable

values of ξ, the MLEs have an approximately multivariate normal distribution with

mean (µ, σ, ξ) and variance-covariance matrix obtained by inverting the observed

information matrix evaluated at the MLEs. This leads directly to calculations of

confidence intervals, profile likelihood confidence intervals on any combination of

parameters, inference on return levels, and the construction of tolerance limits for the

extreme value distributions. Since both kinds of confidence interval are fundamental

to any maximum likelihood procedure, we focus instead on inference involving return

level and tolerance limit estimation, as they are indeed particular to the extreme

value modelling context.
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1.5 Return Level Plots and Diagnostics for GEVD Models

For convenience, assume that a GEVD model has been successfully fit to a series of

annual maxima. We seek, to a reasonable degree of accuracy, the value zp that is

exceeded, on average, once every 1/p years. 1/p is called the return period associated

with the return level zp. In other words, zp is the data value that is exceeded by an

annual maxima in any particular year with probability p. In general, long return

periods (i.e., large 1/p and hence small p) are of the most interest because they

are associated with the most extreme observations and model predictions. Again,

caution is necessary when making such extrapolations. It is generally accepted that

in extrapolations beyond about four times the span of the data being modelled,

the compromised asymptotics of the GEVD model parameters break down. It is

important also to distinguish between the return level zp, where we are requiring

G(zp) = 1− p with 0 < p < 1, and the usual definition of quantiles where we’d have

G(zp) = p.

Estimates of the extreme quantiles zp are obtained by inverting the parametric

form of the GEVD in THM2:

G(zp) = 1 − p ⇒ zp =















µ − σ
ξ
[1 − {− log(1 − p)}−ξ], ξ 6= 0

µ − σ log{− log(1 − p)}, ξ = 0

Since we’ve assumed that the MLE’s (µ̂, σ̂, ξ̂) have been obtained, we substitute

these into this expression and make the simplifying definition yp = − log(1 − p) to

yield:

zp =















µ̂ − σ̂
ξ̂
[1 − y−ξ̂

p ], ξ̂ 6= 0

µ̂ − σ̂ log yp, ξ̂ = 0

Now, it is apparent that if zp is plotted against log yp the resulting plot is: linear

in the case ξ = 0; convex with asymptotic limit (as p → 0) at µ − σ/ξ in the case

ξ < 0; and concave with no finite bound in the case ξ > 0. Because the logarithmic
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scale condences the tail of the distribution, the effect of extrapolation is highlighted.

Furthermore, Coles adds empirical quantile estimates and confidence intervals to

account for sampling error in these return level plots. If the model is suitable for the

data, then the empirical and model based quantile estimates should be in agreement,

with all empirical points falling within the model’s confidence bands. There are two

methods for obtaining confidence interval estimates for zp. First, the delta method

permits the approximation:

V ar(ẑp) ≈ ∆zT
p × V × ∆zp

where V is the variance-covariance matrix of (µ̂, σ̂, ξ̂) and

∆zT
p =

[

δzp

δµ
,
δzp

δσ
,
δzp

δξ

]

=

[

1,
−(1 − y−ξ

p

ξ−1
,
σ(1 − y−ξ

p )

ξ−2
− σy−ξ

p log yp

ξ−1

]

evaluated at (µ̂, σ̂, ξ̂). While all necessary estimates are provided by Coles S-Plus

procedures, a simple spreadsheet or Matlab program is required to perform the

actual calculation of ∆zT
p , and hence obtain the approximate standard error of zp.

An alternative, and usually slightly more accurate method of return-level con-

fidence interval estimatation is via the profile likelihood method. Coles has imple-

mented the minimization of the negative log-likelihood function expressed as a func-

tion of (zp, σ, ξ), and obtains a direct estimate of zp. A 100%(1−α) confidence limit

estimate for the return period is obtained by noting the parameter values on the

x-axis corresponding to points of intersection with the horizontal line drawn at a

height of 0.5 × c1,α below the maximum, where c1,α is the 100%(1 − α) quantile of

the χ2
1 distribution.

For shorter return periods, confidence interval estimates obtained by the profile

likelihood method are similar to those from the delta method. For longer return

periods the methods do not produce similar results. The asymmetry of the profile
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log-likelihood surface increases with the return period, and is responsible for this

discrepency. Since the data provide only limited information about high levels of

the physical process being modelled, this asymmetry is to be expected. Although

the GEVD model is supported by mathematical argument, parameter estimates

and measures of precision are based on the assumption that the model is correct.

Strictly speaking, all model inference and particulary that associated with long

return periods, should be considered lower bounds since measures of precision would

increase if model uncertainty were accounted for. Here is a potential application of

Bayseian techniques where uncertainty due to model correctness is quantifiable in

some manner.

The profile likelihood estimates generally produce more accurate results than the

delta method. For the practitioner interested in obtaining results quickly, the profile

likelihood method permits a shortcut to comparing nested models via the likelihood

ratio test. The calculation of the deviance statistic and its comparison for significance

against the χ2
1 distribution is operationally equivalent to observing whether or not 0

lies in the profile likelihood interval for the relevent model parameter. Hence, testing

the Gumbel model (e.g., ξ = 0) which is nested in the Frechet model (e.g., ξ = −0.2)

motivated by data-based MLE is achieved simply by noting if 0 lies in the estimated

profile likelihood confidence interval for ξ in the Frechet model. While Coles’ S-Plus

functions produce graphs of the profile log-likelihood function, a more user friendly

implementation is provided in the EVIS, Version 4 S-Plus library by Alexander J.

McNeil (2001). The EVIS library includes a function that returns the confidence

interval endpoints, eliminating the subjectivity in reading coordinates from Coles’

plots. This function borrows Coles’ optimization routine, so the equivalence of the

two implementaions is assured.

The Coles S-Plus functions also include other diagnostic plots: the standard

quantile and probability plots; and a visual comparison of the fitted model’s den-
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sity function with a data histogram. The quantile plot compares the ordered data

values and the fitted model’s quantile function. Departures from linearity between

the two sets of quantiles indicate a lack of model fit. The probability plot checks for

linearity between the empirical and fitted distribution functions; however, observe

that as extreme values increase, both distribution functions necessarily approach 1,

assuring an increasingly linear plot. In the extreme modelling context, we are most

concerned with model accuracy for these large extreme values. Hence, the probability

plot yields the least information in the data region of greatest interest. Finally, the

density/histogram plot is actually the least informative. A histogram provides an

empirical estimate of the density function; however, different choices of grouping

intervals when constructing the histogram can lead to significantly different plots,

so that comparisons with the model-based density estimate are subjective at best.

1.6 Tolerance Limit Estimation

In ecological applications, one may be concerned with identifying a limit associated

with dangerous concentrations of substances in biological systems. For example,

excessive ozone concentrations contribute to global warming, and extreme radioce-

sium concentrations in the SREL deer population could lead to a hunting morato-

rium.

A direct method for calculating tolerance limits for extreme value distributions

from fitted parameter estimates is presented by Dasgupta and Bhaumik (1995). They

deal with the three extreme value models seperately. Below, the upper tolerance

limits for the Frechet and Gumbel distributions are developed using the unified

GEVD model. For the Frechet distribution G, we seek an upper bound such that

a high percentage (100β%) of future observations from the parent distribution F ,

will fall below that bound with a very high probability, γ. This β-content tolerance
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limit is denoted M(n)δ, where M(n) is the maximum of the i.i.d. variables from F

(i.e., the maximum observed value used to fit the Frechet model). For some future

observation Y ∼ G, we require for δ > 0:

PM(n)
{PG[Y ≤ M(n)δ] ≥ β} = γ.

From this equation, we have:

⇒ PM(n)
{G(M(n)δ) ≥ β} = γ

⇒ PM(n)
{M(n) < G−1(β)/δ} = 1 − γ

⇒ Gn[G−1(β)/δ] = 1 − γ

⇒ G−1(β)/δ = G−1[(1 − γ)1/n]

⇒ δ =
G−1(β)

G−1[(1 − γ)1/n]

Now, for the Frechet distribution we use the inverse as defined in Section 1.5 to

obtain:

δ(µ, σ, ξ) =
µ − σ

ξ
[1 − (− log β)−ξ]

µ − σ
ξ
[1 − (− 1

n
log(1 − γ))−ξ]

Finally, substituting the MLE estimates M(n)δ(µ̂, σ̂, ξ̂), provides the desired upper

tolerance limit for the Frechet distribution and predetermined percentages β and γ.

Similarly, the upper tolerance limit for the Gumbel distribution is provided by:

δ(µ, σ) =
µ − σ log(− log β)

µ − σ log[− 1
n

log(1 − γ)]

and the subsequent estimate is again given by M(n)δ(µ̂, σ̂).

These point-estimates of the β-content tolerance limits do not yet reflect the

uncertainty associated with the selection of a specific EV model. The delta method

again permits the estimation of model uncertainty and leads to β-content tolerance

limit confidence intervals. In the Frechet model, let d̂ = δ(µ̂, σ̂, ξ̂) ≈ δ(µ, σ, ξ), and

approximate the variance of d̂ by:

V ar(d̂) ≈ ∆d̂ × V × ∆d̂
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where V is again the variance-covariance matrix of the model estimates (µ̂, σ̂, ξ̂) and

∆d̂ =

[

δd

δµ
,
δd

δσ
,
δd

δξ

]

is the vector of partial derivatives of the tolerance limit multiplier δ(µ, σ, ξ), evaluated

at (µ̂, σ̂, ξ̂).

To simplify the evaluation of this approximation, first let

a = 1 − (log β)−ξ

b = 1 −
(

−1

n
log(1 − γ)

)−ξ

T = µ − σ

ξ
× a

B = µ − σ

ξ
× b

so that d̂ = T
B

. Thus we may proceed:

δd̂

δµ
=

B − T

B2
=

σ (a − b)

ξ · B2

then

δd̂

δσ
=

−1
ξ
· a · B + 1

ξ
· b · T

B2

=
−1

ξ · B2

[(

aµ − ab
σ

ξ

)

−
(

bµ − ab
σ

ξ

)]

=
−µ (a − b)

ξ · B2

=
−µ

σ
· δd̂

δµ

and finally

δd̂

δξ
=

1

B2

{

−
[

−σa

ξ2
+

σ

ξ
· δa

δξ

]

B +

[

−σb

ξ2
+

σ

ξ
· δb

δξ

]

T

}

=
1

B2

{

−B · σ

ξ

[

(− log β)−ξ · ln(− log β) − a

ξ

]

+ T · σ

ξ

[

(−1

n
log(1 − γ)

)−ξ

· ln
(−1

n
log(1 − γ)

)

− b

ξ

]}

=
1

B2
· σ

ξ

{

T

[

(1 − b) ln
(−1

n
log(1 − γ)

)

− b

ξ

]

− B

[

(1 − a) ln(− log β) − a

ξ

]}
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Next the estimated variance is used to quantify model uncertainty in the tolerance

limit point estimates M(n)δ(µ̂, σ̂, ξ̂), by constructing confidence intervals. Observe

that V ar(M(n)δ(µ̂, σ̂, ξ̂)) = M2
(n) · V ar(δ(µ̂, σ̂, ξ̂)), so that

M(n)δ(µ̂, σ̂, ξ̂) ± 1.96 · M(n) ·
√

V ar(δ(µ̂, σ̂, ξ̂))

provides a 95% confidence interval for M(n)δ(µ̂, σ̂, ξ̂). A simple Matlab program is

used to calculate these confidence intervals for a given model and plot them over a

range of β and γ in Section 3.2.

1.7 Finding the Domain of Attraction for nearly every Extreme

To gain insight into the highest feasible contamination levels in a population, one

naturally looks to the upper tail of the distribution of observed levels. In fact, the

distributional properties of extremes are governed by the underlying distribution. It

is well known in Extreme Value Theory that if the underlying population distribution

yielding the maxima under consideration satisfies mild regularity conditions, then

the distribution of exceedences over a specified threshold in the data will converge

(as the threshold approaches the endpoint of the parent distribution) to one of the

three types of the generalized Pareto distribution (GPD). In this case, the population

density is said to be in the domain of attraction of the specified GPD. Similarly, the

distribution of the maximum value extracted from a sample will converge (as the

sample size approaches infinity) to one of the three types of generalized extreme

value distributions (GEVD), and the population density is said to be in the domain

of attraction of the specified GEVD.

The problem of identifying the domain of attraction of the parent distribution has

received much attention in the literature, and three strategies have been developed

for statistical inference in the extreme value context. The first strategy selects the

type of EV model to be fit (Frechet, Weibull or Gumbel) based on evidence gleaned
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from hypothesis tests and/or expert knowledge, and then determines the best fitting

model within the assumed type. Wang (1995) offers a modified Greenwood statistic

based on the largest order statistics in a sample to test for each domain of attraction

separately. The second approach determines the best model from the unified GEVD

(or GPD) family, whose shape parameter (ξ) determines the specific extreme value

model. Dietrich, De Haan and Husler (2002) formalize a test based on an asymp-

totic expansion of the tail version of a statistic comparing the inverse population and

empirical distribution functions, and determine the domain of attraction without first

specifying the shape parameter. Their method is motivated by the familiar Cramer-

von Mises statistic. The first approach makes no effort to capture the uncertainty

inherent in the initial selection of the EV model to be fit, and the second suffers

from the reduction of the Gumbel model to a single point (ξ = 0) in continuous

parameter space (µ, σ), meaning that the probability of selecting the Gumbel model

via maximum likelihood techniques is zero. However, the unified parametric models

do lend themselves nicely to likelihood ratio testing techniques, which can be used

to give satisfactory consideration to all possible models. A third approach champi-

oned by Stephenson and Tawn (2001) applies Bayesian inference to account for each

EV model in an extreme value analysis, and thus addresses the deficiencies of the

previous methods.

The curvature method for identifying the EV domain of attraction was formal-

ized by Castillo, Galambos and Sarabvia (1989). The upper tail of the empirical

distribution is shown to imitate the shape of that EV limiting distribution that

attracts it, and this result used to develop both a visual selection method and a test

for significance based on the curvature of the empirical distribution function in the

tail. As emphasized by Castillo et. al., it is important to consider only the upper

quantiles of the empirical distribution function (the 50th and up are suggested) when

determining the curvature in these plots, because the convergence of the empirical
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tail to the tail of the limiting distribution which attracts it is established for only

the upper quantiles. This is another example of the second approach to selecting the

domain of attraction, but the visual selection method does allow for the consider-

ation of the Gumbel model. Several other visual methods are commonly employed

to allow the data to suggest the extremal domain of attraction of the population

distribution. These generally include identifying characteristic behaviour in plots of

estimated mean excess, survival, hazard or loss functions. Coles’ (2001) development

of return level plots as discussed in Section 1.5 is yet another example of a graphical

method to assess model fit.



Chapter 2

Getting to Know the SRS Deer Data

2.1 Preliminary Analysis leads to Investigation of Extreme Deer

The data used in this extreme value analysis are a univariate series (n = 29519) of

radiocesium concentrations in single muscle plugs taken from each deer harvested

from the Savannah River Site (SRS) in Aiken, South Carolina during the fall deer-

hunting seasons between 1965 and 1995. The number of observations varies from

year to year. Measurement units are Becquerels per kilogram (Bq/kg) and have a

minimum value of 37 occurring 2452 times, a maximum value of 3626 occurring

twice, and increments occurring in multiples of 37 except for data from two years

when measurements were taken at a finer scale and increments occur in multiples

of 18.5. To reduce the scale of subsequent results, all radiocesium measurements

were divided by 37 and thus converted to picocurries per kilogram (pCi/kg). The

resulting data range from 1 to 98 with increments of either 0.5 or 1 and are used in

all subsequent analyses. Primarily, interest lies in characterizing the frequency and

magnitude of the maximum pCi/kg radiocesium body burden in the deer data.

It should be noted that the nature of the data implies a true maximum body

burden measurement must exist in the SRS deer population. It is unreasonable to

expect that radiation concentration can be infinite in an organism. In the interest

of achieving the most accurate model, which incorporates scientific knowledge in a

sound statistical analysis, consideration should be given to restricting the domain

of attraction to those models that restrict upper quantiles to reasonable values. In

25
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fact, was one able to quantify a reasonable range of upper limits (i.e., assign a prior

distribution to more and less likely parameter values in the GEVD or GPD), the

SRS deer data could provide a nice application of Stephenson and Tawn’s (2001)

Bayesian inference scheme, designed to reduce uncertainty in parametric estimates

by integrating expert knowledge with the Extreme Value Theorems.

With the goal of identifying a population density model for which the extreme

value domain of attraction is known, the pCi/kg sample density is examined in

Figures 2.1 and 2.2. It has been observed that radiation exposure in animal pop-

ulations frequently conforms to a lognormal distribution, implying that maximum

values taken from these populations converge to a Gumbel distribution. Clearly,

Figure 2.1 shows that the body burden histogram does not resemble a typical log-

normal density (the best fitting density is superimposed), nor does the ln(pCi/kg)

histogram conform to a suitable normal density as it should if the body burden data

were indeed lognormal. Specifically, the familiar QQ-Plot in Figure 2.2 illustrates

that the empirical distribution has a lighter left tail (due to the concentration of

minimum values at 1) and a heavier right tail than any normal distribution. Here

a tail is heavy (light) in the sense that more (less) values are more (less) extreme

in that tail’s direction. Since the density of the deer data is not easily identified,

further analysis using the tools of Extreme Value Theory is carried out in Chapter

3.

2.2 Implications of Time taken Seriously, but Ruled Out

Each measurement in the dataset is accompanied by a date; however, the dates mark

when measurements were recorded in the dataset and not when each measurement

was physically collected. Data entries are grouped every 3 or 4 days (indicating

twice weekly compilation of daily harvest measurements) during the fall deer-hunting
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seasons from 1965 to 1995 (either September or October through mid December).

Though the individual measurements cannot be considered a true time series, the

inherent and somewhat arbitrary data grouping justifies sub-dividing the data into

less arbitrary and more informative blocks, the maxima of which will be treated as

a traditional time series to check for any underlying time-dependent variability.

Prior to delving into the methods used to determine suitable extreme value

models for the maxima, a closer look at the deer data will highlight any serial struc-

ture. Figures 2.3 and 2.4 show a new graphical technique to summarize and visually

analyze extreme values taken from contiguous blocks of the entire dataset. The first

graph blocks the data according to the year in which observations were recorded,

while the second graph blocks the data into lengths of n = 984, the average number

of observations per year indicated on the first graph by a solid straight line. In each

graph: the top three broken lines indicate the magnitude and frequency of the first,

second and third highest order statistics in each block; the three dashed red lines

and the gray line at bottom track three quantiles (98th, 95th & 50th and the mean

of the radiocesium measurements in each block, respectively; finally, the bar graph

illustrates the number of observations in each block.

Figure 2.3 highlights a few oddities worth mentioning. Data collection was sparse

in the first five years, yet 1969 yields the second highest maximum value of 3071

Bq/kg despite having the fifth lowest number of observations overall. Similarly, sev-

eral other years with below average block sizes give rise to high maximum values

(e.g., 1970-71, 1978-80, 1987-88). Conversely, those years with above average block

size do not seem to give rise to higher maximum values. Finally, the mean exposure

line does not indicate any significant trend across blocks. These observations indicate

that neither time related, nor block-size dependent variability exists in the magni-

tude of extreme values in the body burden data. A potential ecological hypothesis

to explain the seeming lack of any trend in the extreme value summaries follows.
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Perhaps a sub-population of deer with elevated (i.e. far above average) radiocesium

exposure does exist on site, and is as likely to be harvested as any other deer on site.

If harvest numbers in general were suitably small compared to the total deer popula-

tion on site, then you would not necessarily expect increased (decreased) occurrence

of elevated exposures from blocks of slightly above (below) average size.

Figure 2.4 conforms more closely to traditional extreme value theory in that

blocks of equal size are considered. The plots across blocks of each statistic under

consideration show at least slight improvement in smoothness over the unequal block

case discussed above. Further, no significant trend or seasonality becomes apparent

in the series of maximum values, nor in the mean exposure. However, this second

graph does highlight one potentially interesting data anomaly. In the 18th block,

exposures seem to decrease markedly for the remaining 13 blocks. This block begins

with observation number 16728, collected in mid 1983: the same year in the previous

graph exhibits a somewhat similar drop. It may be of interest to build separate

models for the first 17 and last 13 blocks (or years) to quantify differences and seek

an ecological explanation.

Finally, two additional methods of assessing the serial dependence structure of

the series of maxima from each block size are available. First, the partial autocor-

relation functions are graphed for each series of maxima (block sizes of 500, 987,

1000), and checked for any indication that univariate autoregression (AR) models

are appropriate. Diagnostic tools produced using the S-Plus acf functions show that

AR models do not fit well to sequences of maxima extracted from the SREL deer

data. Had a time-dependant trend been indicated, standard likelihood ratio testing

techniques would assess if non-stationary EV models achieved an improvement in

model fit sufficient to justify increasing model complexity by including extra param-

eters to capture any serial tendencies in the maxima.
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2.3 Blocking Schemes carefully Considered

It is evident from the statement of the EV Theorem that the limiting distribution to

which extreme values converge is dependent on the sample, or block size (n) through

the standardizing series {an} and {bn}. As demonstrated in Section 1.3, one need

not be concerned with identifying the appropriate standardizing series since they

are essentially absorbed in the procedure for estimating the GEV and GPD model

parameters. The fixed block size is necessary for accurate estimation of return level

plots and tolerance limits. In experimentally driven data collection, it is likely that

the block size in an extreme value analysis will correspond to the repeated sample size

in the experiment, or to some inherent time-frame (e.g., minimum breaking strengths

of materials from multiple batches of fixed size; maximum monthly wind speeds or

atmospheric ozone concentrations). Figure 2.3 demonstrates that no natural block

size is evident in the SRS deer data - such is frequently the case when considering

data collected in an observational, as opposed to experimental, manner. However, the

relative constancy of the quantiles depicted in Figure 2.3 does suggest that arranging

the data into equally sized contiguous blocks is not inappropriate. On average there

are 984 observations in each of the 30 years of data; hence, contiguous blocks of size

n = 984 (obtaining 30 extreme observations, with the last being the maximum of

983 observations) are used in the initial fitting of the GEV distribution via Coles’

maximum likelihood estimation routines in S-Plus. While this blocking method is

a nicely intuitive approach, basing a model on blocks of size 1000 will facilitate

the communication of statistical results to the scientists to whom this discussion is

targeted. In the interest of simplifying discourse, the initial model is compared to

the GEV model fit to 29 maxima obtained from contiguous blocks of size n = 1000.

The arbitrary manner in which block sizes must be established in any similar

observational data analysis raises questions as to the effect on model parameters
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when the block size is changed. The choice of block size given a fixed total sample

size is essentially a trade-off between bias and variance. The larger the block size

from which maxima are extracted, the better the estimate of truly extreme values in

the total sample, and hence the lower the bias when estimating extremes; however,

this coincides with fewer observed extremes, and hence a higher variance results from

fitting a model to fewer data points. As the number of blocks is increased and the

variance of estimates is reduced, truly extreme values are diluted, thereby increasing

the bias of these estimates. At present, this bias-variance trade-off has not been

the subject of much formal investigation, but it remains an important consideration

when devising an intuitive blocking method for observational data.
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Figure 2.3: Extreme value summary plot of raw body-burden dataset.
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Figure 2.4: Extreme value summary plot of body-burden dataset arranged in con-
tiguous blocks of 984 observations.



Chapter 3

Results and Conclusion

3.1 Maximum Radiocesium Body-Burdens in the SREL Deer Data

As discussed earlier, we assume the pattern of variation in the body-burden measure-

ments is relatively constant over the 30-year observation period, and consequently

model the series of maxima extracted from different block sizes as independent obser-

vations from the GEVD distribution.

The first model is fit to the maximum observations from contiguous blocks of

size n = 984, the average number of observations in each year. Maximization of the

GEVD log-likelihood for these data result in the parameter estimates:

(µ̂, σ̂, ξ̂) = (36.74, 16.676, 0.0322)

with approximate standard errors given respectively by (3.530, 2.643, 0.165), and

corresponding log-likelihood of −132.454. From these results, we obtain approximate

95% confidence intervals for each parameter via the familiar formula MLE ±1.96×

s.e.:

µ̂ 7→ (29.82, 43.66)

σ̂ 7→ (11.50, 21.86)

ξ̂ 7→ (−0.29, 0.36)

Note that since ξ̂ > 0, these data suggest that an unbounded Frechet model is

appropriate. However, the ξ̂ confidence interval is very nearly centered on zero,
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indicating that the data do not provide strong evidence in support of the Frechet

extreme value distribution.

Return levels are calculated based on the block size. In the theoretical develop-

ment of return levels, we assumed a model built from truly annual maxima. In the

current example, we’ve modelled block maxima as opposed to annual maxima, so

return times are expressed as multiples of the block size. For example, when inter-

preting a “3-year” return level from this model, one is actually estimating the level

expected to be exceeded on average once every 3 blocks, or 3 × 984 = 2952 obser-

vations. Clearly, these results are neither intuitive nor easy to communicate and

when possible, one would prefer either a model based on annual maxima, or a nice

round block size. To that end, we now consider a second model fit to the maximum

observations from contiguous blocks of size n = 1000.

Maximization of the GEVD log-likelihood for these data result in the parameter

estimates:

(µ̂, σ̂, ξ̂) = (35.90, 16.287, 0.0669)

with approximate standard errors given respectively by (3.496, 2.668, 0.178), and cor-

responding log-likelihood of −132.335. Again, we obtain approximate 95% confidence

intervals for each parameter:

µ̂ 7→ (29.05, 42.75)

σ̂ 7→ (11.06, 21.52)

ξ̂ 7→ (−0.28, 0.42)

Figure 3.1 depicts histograms overlayed with the fitted density curves for both

these models. It is clear from the similarity between both sets of parameter estimates

and between the panels of Figure 3.1 that the two models are almost indistinguish-

able. Hence, the n = 1000 model is adopted as the basis for calculating return times

and tolerance limits and is used in hierarchical model testing against the reduced



35

Gumbel model and models allowing for time trends in either the location or scale

parameters.

Recall also that an alternative formulation of confidence intervals is available from

a profile likelihood analysis. In fact, increased accuracy usually results from exam-

ining the profile log-likelihood function. Coles’ S-plus routines produced Figure 3.2,

from which the approximate 95% confidence interval for ξ is obtained: (−0.22, 0.49).

This interval is only a little different from the previous calculation, being shifted

subtly to the right. Hence, slightly stronger evidence is garnered in support of the

Frechet model for these maxima.

Note that the best estimate of the confidence interval for ξ still includes zero,

and extends well into negative values of ξ. Thus, the appropriateness of replacing

the Frechet model with the Gumbel model should be assessed. To do this, the log-

likelihood of the Gumbel model (ξ = 0) is maximized, leading to the parameter

estimates (µ̂, σ̂) = (36.495, 16.75) with standard errors given by (3.216, 2.46). The

corresponding maximized log-likelihood is −132.411, which is slightly worse than

that of the Frechet model. Consequently, no ratio testing is required to determine

that the Gumbel model is in fact inferior to the Frechet in capturing the behaviour

of extremes from this dataset. Observe that the approximate standard errors in the

Gumbel model also exceed those of the Frechet model. However, the two models are

certainly comparable, and the Gumbel model may still seem advantagous given its

simpler form. The most important difference between these two models is evident

from a comparison of the diagnostic plots for each (see Figures 3.3 & 3.4). Observe

that the return levels for the Gumbel model have significantly narrower confidence

bands than for the Frechet model. While this reduction of uncertainty is desirable,

and the data do suggest the plausibility of the Gumbel model, this does not imply

that other members of the GEVD family should be disregarded. Due consideration

must be given to the maximum likelihood estimate within the Frechet family, and
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given the uncertainty evident in this discussion of the two models, the conservative

and safe option is to give preference to inference based on the Frechet model. In so

doing, we are more realistically quantifying the inherent uncertainty of extrapolated

predictions. This, of course, is reflected in the Frechet model’s wider confidence

intervals for return levels.

Return level inference is obtained by determining return periods of interest and

setting p accordingly in the calculations outlined in Section 1.5. The Frechet model

is used to estimate the body-burden level that is expected to be exceeded on average

once every 10 blocks (n = 1000) in the SREL deer population by setting p = 1/10

and calculating ẑp=1/10 = 75.457. Confidence intervals are obtained by estimating

the variance via the delta or profile-likelihood method. The delta method yields

Var(ẑ0.1) = 80.733 and hence the 95% confidence interval is estimated by 75.457 ±

1.96 ×
√

80.733 = [57.846, 93.067]. More accurate estimates come from the profile-

likelihood method which yields the confidence interval of [62.881, 108.747] for ẑ0.1.

The most precise and accurate interpretation of this return level result follows: the

block maximum in any particular block will exceed ẑ0.1 = 75.457 with probability

p = 10%, and 19 times out of 20 ẑ0.1 will fall in the interval [62.881, 108.747]. Table

3.1 includes estimates from both methods for return periods of 30, 45 and 60 blocks.

These correspond to extrapolations up to twice as far into future observations as

the SREL dataset provides information for (i.e., 29 blocks of size n = 1000). Figures

3.5 to 3.8 highlight that profile log-likelihood surfaces will increase in assymetry as

the return period increases, explaining the difference between confidence interval

estimates from the two methods.
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3.2 Tolerance Limits for the SREL Deer Data

The delta method is applied to obtain 95% confidence intervals for upper β-content

tolerance limits in the Frechet (n = 1000) model of the SREL deer dataset. Figure

3.9 summarizes two sets of tolerance limit estimates and confidence intervals for the

range 75% ≤ β ≤ 99%. The solid line on the left (right) maps the upper boundary of

body-burden measurements that (100β)% of future observations will fall below with

probability γ = 90% (γ = 99.5%). To interpret these results, identify a β-content

level on the x-axis and read the body-burden tolerance limit estimates from the y-

axis. For example, with probability γ = 90% at least β = 95% of future radiocesium

137 observations will fall below 55.477 pCi/kg, and the interval (25.004, 85.949) forms

a 95% confidence band to capture model uncertainty (these points are indicated

by arrows in Figure 3.9). Similarly, as γ increases to 99.5% at most 5% of future

measurements will register above 63.438 pCi/kg, and 19 times out of 20 this value

will fall in the interval (38.545, 88.332).
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Figure 3.1: Comparison of GEVD densities for different block sizes in the
SREL body-burden data. For n = 984 (left), parameter estimates are
(µ̂, σ̂, ξ̂) = (36.74, 16.676, 0.0322). For n = 1000 (right), estimates are (µ̂, σ̂, ξ̂) =
(35.90, 16.287, 0.0669).
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Figure 3.3: Diagnostic plots for GEVD fit to SREL body-burden data (n = 1000).
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Figure 3.7: Profile likelihood for 45-block return level: ẑp=1/45 = 106.280 in the
n = 1000 Frechet model.
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Return Period 1/p Method Lower 95% c.i. ẑp Upper 95% c.i.
10 Delta 57.846 75.457 93.067
10 Prof lkhd 62.881 108.747
15 Delta 60.689 83.588 106.488
15 Prof lkhd 68.960 131.813
30 Delta 62.422 97.764 133.107
30 Prof lkhd 78.211 184.248
45 Delta 61.620 106.280 150.940
45 Prof lkhd 82.899 224.824
60 Delta 60.229 112.440 164.651
60 Prof lkhd 85.455 257.315

Table 3.1: Return Level Inference from the n = 1000 Frechet model
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Chapter 4

Future Considerations

4.1 New Theory on the Block

It is clear that our assumption of equal block sizes is one of convenience. While return

levels and tolerance limits are expressed in terms of thousands of observations, it is

evident from Figure 2.3 that it may take as little as half a hunting season or as many

as two hunting seasons to actually collect the next 1000 observations. Suppose that

it is known that in the next hunting season the deer harvest from the SRS will be

fixed at some level nq 6= 1000 via a system of restricted hunting licenses or imposed

quotas. Then it becomes of interest to determine the best way to use the historical

data to predict the highest contamination levels observed in the predicted sample

of size nq. An immediate approach is to simply reorganize the data into contiguous

blocks of the appropriate size and proceed to fit any EV model. This method is a

little labor intensive if several estimated sample sizes are being considered, and is

also subject to the bias-variance trade-off.

Instead, the ratio nq/n may be incorporated in the maximization routine to

obtain estimates for the sample size nq, from the model developed assuming blocks

of size n. In fact, Coles’ S-Plus functions may be recoded to accept the ratio as an

input and provide return-level estimates adjusted for a block size under question

that differs from the block size upon which the model is based.
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4.2 SREL’s Good Data

The Savannah River Site is a former U.S. Department of Energy nuclear produc-

tion facility. The continual monitoring of, and data collection from resident wildlife

populations provide extensive datasets to assess the effects of radiological concentra-

tions on animal species. In particular, when compared to similar datasets from non-

exposed populations, statistically and scientifically significant differences between

the populations may be identified and studied. For example, in addition to radioce-

sium concentration, data is compiled on the age, sex, mass, lactation (for does) and

antler points (for bucks) of each harvested deer in the SRS dataset. If a suitable model

were found to predict radiocesium concentration from these potential explanatory

variables, it could be compared to a similar model fitted to non-exposed populations

and any differences highlighted for study.
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