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Abstract

A discrete tensegrity framework can be thought of as a graph in Euclidean n-space

where each edge is of one of three types: an edge with a fixed length (bar) or an edge

with an upper (cable) or lower (strut) bound on its length. Roth and Whiteley, in

their 1981 paper “Tensegrity Frameworks”, showed that in certain cases, the struts

and cables can be replaced with bars when analyzing the framework for infinitesimal

rigidity. In that case we call the tensegrity bar equivalent. In specific, they showed

that if there exists a set of positive weights, called a positive stress, on the edges such

that the weighted sum of the edge vectors is zero at every vertex, then the tensegrity

is bar equivalent.

In this paper we consider an extended version of the tensegrity framework in

which the vertex set is a (possibly infinite) set of points in Euclidean n-space and the

edgeset is a compact set of unordered pairs of vertices. These are called continuous

tensegrities. We show that if a continuous tensegrity has a strictly positive stress, it

is bar equivalent and that it has a semipositive stress if and only if it is partially bar

equivalent. We also show that if a tensegrity is minimally bar equivalent (it is bar

equivalent but removing any open set of edges makes it no longer so), then it has a

strictly positive stress.



In particular, we examine the case where the vertices form a rectifiable curve and

the possible motions of the curve are limited to local isometries of it. Our methods

provide an attractive proof of the following result: There is no locally arclength

preserving motion of a circle that increases any antipodal distance without decreasing

some other one.

Index words: Bar Equivalence, Dissertation, Framework, Infinitesimal Motion,
Infinitesimal Rigidity, Stress, System of Inequalities, Tensegrity,
Theorem of the Alternative
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Chapter 1

Introduction: Tensegrity

1.1 A History

Stone is strong. Good quality stone can withstand amazing compressive forces. But

in tension it is not nearly as strong. Similarly, brick and concrete are much stronger

under compression than under tension (Table 1.1 gives some representative numbers).

And wood, while fairly strong under tension parallel to the grain, can’t compare to

the durability of stone. So for millenia, buildings were designed to be continuous

frameworks of members in compression (Pugh, 1976; Girvin, 1944; Forest Products

Laboratory, 1999).

Table 1.1: Ultimate stresses for certain materials. Numbers have been converted
to consistent units and rounded. Bending stress given for wood is actually modulus
of rupture. Values for bone are from (Martin et al., 1998) and are given for interest,
since tensegrity theory is used to understand the musculoskeletal system (see, for
example, Chen and Ingber (1999)). Values marked a are from Forest Products
Laboratory (1999); those marked b are from Girvin (1944), and those marked c

come from MatWeb (2007).

Average Ultimate Stress (lb/in2)

Material Compression Tension Bending

Granite 14,000–45,000c 1,020–3,630c 1,600b

Brick 10,000b 200b 600b

Steel 60,000-72,000b 60,000-72,000b 60,000-72,000b

Concrete 2,030–10,200c — —
Sugar Maple (para. to grain) 8,000a 15,700a 16,000a

Pin Oak (para. to grain) 7,000a 16,300a 14,000a

Human bone (longitudinal) 28,000 19,000 30,000
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The middle of the nineteenth century saw a number of major advances in the

creation of steel, including the discovery of its microstructure and the resulting devel-

opment of the science of metallurgy (Grun, 1979). This provided a building material

with excellent tensile strength (see, for example, Shackleford and Alexander (2001)).

In 1965, Kenneth D. Snelson patented what he called “Continuous Tension,

Discontinuous Compression Structures” (Snelson, 1965) (see Figure 1.1.1 and

Figure 1.5.2). His new creations had cables under tension running throughout

and then, at intervals along the cables, steel struts under compression.

Figure 1.1.1: A figure from patent 3,169,611 by Kenneth Snelson (1965).

Buckminster Fuller recognized in Snelson’s idea new possibilities in Architecture

that would allow for much lighter, more efficient structures. He termed the con-

cept “Tensional Integrity” or “Tensegrity”. Since then, Tensegrity has been used in

fields as diverse as Architecture, Cellular Biology, Dairy Science, Dance, Ornithology,

Robot Kinematics and the studies of sleep disorders and the musculoskeletal system.

(Pugh, 1976; Eaves, 2004; Volokh et al.; Farrell et al.; Franklin, 1996; Jeong et al.,

Jan. 2007; Maina, 2007; Lenarc̆ic̆ and Gallettti, 2004; Roth, Apr. 2005; Chen and

Ingber, 1999).
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1.2 Tensegrity in Mathematics

In 1981, Ben Roth and Walter Whiteley wrote “Tensegrity Frameworks” (Roth and

Whiteley, 1981) in which they showed how to extend the tools of rigidity analysis on

bar frameworks (n-dimensional graphs in which the edge lengths are fixed) to certain

tensegrity frameworks. This was one of the earliest works treating tensegrities in the

mathematical realm and will be a central motivator in what we do here.

For us, a tensegrity will consist of four sets and a map. First, there will be a set

V of vertices. We will want these to be points in Euclidean n-space, but we’ll also

want to be able to think about these points moving, so we’ll take V to be an abstract

set accompanied by a 1-1 continuous map p:V → Rn that places the elements of V

in space. Next, there are three sets of edges connecting various pairs of vertices, with

the understanding that at most one edge connects any given pair.

These edge sets are the set of struts, S, the set of cables, C, and the set of bars, B.

Two vertices connected by a strut are never allowed to move any closer together than

they already are, though they may move farther apart. Two vertices connected by a

cable cannot move farther apart but may move nearer. And two vertices connected

by a bar must stay exactly as far apart as they currently are.

If the only edges a tensegrity has are bars, we may call the tensegrity a bar

framework .

To date, tensegrities have been finite affairs, with a finite number of finite elements.

But the time has come to look outside that realm. We will take V to be an arbitrary

set. That will open the door to having continuous families of edges and so we will

call our new constructions “continuous tensegrities”.
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1.3 Prestressed Concrete

Concrete, like stone, is fairly strong in compression and not nearly so strong in tension

(Girvin, 1944, p. 213). Unfortunately, a large slab of concrete supported only at the

edges, such as might form the floor of a parking garage or the roadway of a bridge,

experiences a bending load that puts the lower portion of the concrete in tension

(see Figure 1.3.1) (Girvin, 1944, pp. 81–82).

Figure 1.3.1: A concrete beam or slab supported only at the ends will experience
tension below and compression above.

Prestressed concrete is a method of dealing with that problem. Steel rods or

cables are installed under tension in the concrete. Their tension puts the concrete

in compression (see Figure 1.3.2). Now, up to a certain load, the concrete remains

under compression, functioning in its ideal realm (Wikipedia, 2007a).

Figure 1.3.2: Forces in a prestressed concrete slab. The tension in the steel rods
pulls inward on the faceplates, while the compression in the concrete pushes outward,
placing them at equilibrium. As a tensegrity, the concrete acts like a strut and the
rods like a cable, while the faceplates serve as vertices. This diagram is of post-
tensioned prestressed concrete, where the tension is added to the rods after the
concrete has hardened. In pre-tensioning, the concrete is poured around and bonds
to rods that are already in tension. The forces then act all along the rods instead
of only at the ends.

The prestressed concrete is a tensegrity framework with a stress, that is, a set of

compressions on its struts (the concrete) and tensions on its cables (the rods) that

gives a net zero force at every vertex (faceplate).

A main result in “Tensegrity Frameworks” (Roth and Whiteley, 1981) is that if

(and only if) a tensegrity can be stressed in this fashion, then it functions no longer



5

as if it had cables and struts but rather as if all of its elements were bars. Moving

this theorem into the realm of continuous tensegrities is our primary goal.

1.4 Mathematical Context

Let’s look, for a moment, at a few places where this type of theorem has been used

to good effect.

In recent years, two teams have settled the Carpenter’s Rule Problem, which asks,

given a polygonal arc with fixed-length edges in the plane, whether it is always possible

to straighten the arc without it intersecting itself during the process (Connelly et al.,

2003; Rote et al., 2003).

Connelly, Demaine and Rote (2003) not only settle the question in the affirmative

but also answer the related question of whether a closed, simple polygon with fixed-

length edges in the plane can be made convex through some motion that, again, avoids

self intersections. In fact, they show that there is a flow of the polygon or arc that

accomplishes the purpose and during which all of the distances between nonadjacent

vertices are strictly increasing.

Their work uses a theorem very much like Roth & Whiteley’s. They turn the

polygon into a tensegrity and show that if it has no “weak stress”, then it has a

strictly expansive motion. John Pardon (private communication) has made signifi-

cant progress in extending this to smooth curves, showing that for a simple, closed,

nonconvex curve, there exists a homotopy that takes it to a convex curve, during

which all of the self-distances on the curve are nondecreasing.

In our second example, Connelly applies Roth & Whiteley’s theorem to provide

an additional proof for the following lemma, which he credits to Cauchy (Connelly,

1982) (see Figure 1.4.1).

Lemma 1.4.1. If, in a convex planar or spherical polygon ABCDEF , all the sides

AB, BC, CD, . . . , FG, with the exception of only AG, are assumed invariant, one
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may increase or decrease simultaneously the angles B, C, D, E, F included between

these same sides; the variable side AG increases in the first case, and decreases in

the second.

Proof. See (Connelly, 1982, p. 30).

A G

F

E

DC

B

Figure 1.4.1: Increasing (resp. decreasing) angles B through F lengthens (resp.
shortens) side AG. A lemma of Cauchy reproven by Connelly (1982).

In his discussion, Connelly notes that this is the polygonal equivalent of Schur’s

Theorem, which says that if we have a C2 convex plane arc and we decrease its

curvature at some place or places and do not increase it anywhere, then the distance

between its ends increases (see, for example, do Carmo (1976, p. 406)).

Our final example comes from Roth & Whiteley themselves. Grünbaum and Shep-

hard, in their “Lectures on Lost Mathematics” (Grünbaum and Shephard) introduce

a class of tensegrities that Roth & Whiteley call the “Grünbaum polygons”. These

are convex, planar (not necessarily regular) polygons made of struts that have cables

joining a select vertex to all nonadjacent vertices and one further cable joining the

two vertices adjacent to the chosen one (see Figure 1.4.2 on the next page).

Roth and Whiteley (1981, p. 437) show that the Grünbaum polygons are infinites-

imally rigid in R2. As the number of edges in the Grünbaum polygons increases, they

seem to approach a smooth convex curve. So it seems not unreasonable that the limit

of such a family would be . . .
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Figure 1.4.2: The first three regular Grünbaum polygons, introduced in
(Grünbaum and Shephard). Struts are represented by thick lines, cables by thin
ones, vertices by circles.

. . . a convex curve in R2 that is not allowed to shrink locally to first order (but may

stretch) and . . .

. . . which has a continuous family of upper bounds on the distances between one

distinguished point on the curves and all the others and . . .

. . . some sort of curvature requirement at that point,

and that this limiting curve would be infinitesimally rigid.

Here we have three situations in which Tensegrity Theory has been used to solve

problems in Discrete Geometry, problems that have analogs in Differential Geometry.

Furthermore Cantarella, Fu, Kusner, Sullivan and Wrinkle (2006) borrow terms and

ideas from Tensegrity Theory to answer questions in Thick Knot Theory, distinctly a

Differential Geometry field.

One can hardly avoid the feeling that these and other problems would benefit from

having tensegrity tools brought from the discrete realm into the continuous, and we

begin that project with this work.
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1.5 A Road Map

Here in Chapter 1, we’ve given a history, both structural and mathematical, placing

this work in context. In Chapter 2 we build up the background for the main theorems.

Section 2.1 uses the setting of a specific example tensegrity to introduce the notation

and terms we will need in the rest of the paper. For example, we here meet the

variations (Definition 2.1.3 on page 17), the possible ways of moving the vertices;

the (infinitesimal) motions (Definition 2.1.7 on page 18), the variations that respect

all of the edge constraints; and the loads (Definition 2.1.8 on page 19), the effects of

variations on the edges of the tensegrity. We’ll discover that there are strictly positive

motions, which increase the lengths of all struts and decrease the lengths of all cables

and the semipositive ones, which increase the length of at least one strut or decrease

the length of at least one cable.

We also find out about infinitesimally rigid tensegrities, whose only motions are

rigid motions of space and about bar equivalent tensegrities, which act as if they

were made entirely of bars, and partially bar equivalent tensegrities, which have bar

equivalent pieces (Definitions 2.1.9 on page 20 and 2.1.12 on page 21).

We will take, as the variations of interest, a subspace, X , of the space of variations,

called the design variations (Definition 2.1.6 on page 18). If X doesn’t contain all

of the variations, we’ll use the terms X -infinitesimally rigid , X -bar equivalent and

partially X -bar equivalent .

Finally, we’ll meet the stresses (Definition 2.1.16 on page 22), sets of tensions on

the cables and compressions on the struts that, like those in the prestressed concrete,

put the tensegrity in equilibrium. These also come in strictly positive (positive values

on all the edges) and semipositive (a positive value on at least one edge).

In Section 2.2 we work the example we have set up in Section 2.1. Section 2.3

covers the mathematical background needed for the proofs in Section 2.4. Then in
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Section 2.4, we state and prove Roth & Whiteley’s key lemma, which we reformulate

as follows:

Lemma 2.4.3 (p. 35). Let G(p) be a (finite) tensegrity framework with rigidity

matrix Y . Then G(p) is bar equivalent if and only if G(p) has a strictly positive

stress.

Chapter 3 holds our main results. In Section 3.1 we talk about a class of theorems

called “Theorems of the Alternative”. Our main theorems resemble these. In fact, in

Appendix B, we will show how to prove a weaker version of our first main theorem

using a Theorem of the Alternative by Theodore S. Motzkin.

Next we launch into the task of moving the things we have defined in Chapter 2

into the continuous realm. Section 3.2 builds a metric and a topology on the vertex

set V and the edgeset E . Section 3.3 takes on C(E ) and C∗(E ) (the set of continuous

functions on E and its topological dual), giving them norms and topologies and then

exploring their natures in some depth. In Section 3.4 we address Vf(V ) and Y .

Then, in Section 3.5 we reach our first main theorem:

Theorem 3.5.2 (p. 65). The tensegrity G(p) is partially X -bar equivalent if and only

if G(p) has a semipositive stress.

We explore the theorem with a couple of examples. Then we move, in Section 3.6,

to our second main theorem:

Theorem 3.6.1 (p. 68). If a tensegrity has a strictly positive stress, then it is X -bar

equivalent.

But we only have one direction of the desired theorem and we do some looking at

why the other direction is difficult.

Section 3.7 is an excursion into example land. We take on a couple of examples

of tensegrities in which X is not the whole of Vf(V ).
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We discover that the example called the “circle of struts” is bar equivalent. In

this example, a circle of vertices is filled with antipodal struts (see Figure 1.5.1) and

we only allow variations which are local isometries on the curve. When we apply the

Figure 1.5.1: The circle-of-struts example of Section 3.7.

first main theorem to this example, we get the following proposition:

Proposition 3.7.18 (p. 83). There is no locally arclength preserving motion of a

circle that increases all antipodal distances.

When we apply the second main theorem, that becomes:

Proposition 3.7.19 (p. 83). There is no locally arclength preserving motion of a

circle that increases any antipodal distance without decreasing some other one.

The circle acts like a water balloon. Pulling it out somewhere results in it being

pulled in elsewhere.

In Section 3.8 we again attempt to provide the “other half” of the second main

theorem. By restricting our attention to tensegrities that are X -bar equivalent and

that cease to be so upon the removal of any open set of edges, we get

Theorem 3.8.3 (p. 86). If G(p) is minimally X -bar equivalent, G(p) has a strictly

positive stress.

After proving the theorem, we talk about what minimally X -bar equivalent tenseg-

rities are like. Then, in Section 3.9, we show that if a tensegrity is (at least mostly)
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covered by subtensegrities which have strictly positive stresses, then the tensegrity

itself has a strictly positive stress:

Theorem 3.9.2 (p. 90). If G(p) is countably covered by subtensegrities that have a

strictly positive stress, then G(p) has a strictly positive stress.

We end by conjecturing that either

Conjecture 3.9.3 (p. 91). Every X -bar equivalent continuous tensegrity is countably

covered by minimally X -bar equivalent subtensegrities.

or at least

Conjecture 3.9.4 (p. 92). Every X -bar equivalent tensegrity has a strictly positive

stress.

Chapter 4 is full of examples of continuous tensegrities. In Section 4.1 we analyze

a tensegrity that is not only bar equivalent but also infinitesimally rigid. Section 4.2

through Section 4.8 are a theme and variations. First we start by taking a circle of

vertices and setting struts antipodally on it and cables connecting vertices a fixed skip

around. That works so well that we move up one dimension and build the equivalent

tensegrity on the sphere, thus providing ourselves with an example of a tensegrity

whose vertex set is two-dimensional. Then we try to relax the circle into other vertex

curves, with varying amounts of success. In particular, Section 4.8 shows that bar

equivalence can survive affine transformations of the tensegrity.

Our last example (Section 4.9) is designed to remind us that the intuition we get

about subspaces and closed convex cones from thinking about R2 and R3 may be

faulty and to make a little clearer why showing that every bar equivalent tensegrity

has a strictly positive stress is so difficult.

Finally, in Chapter 5, we wrap things up. We remind the reader of the situations

we mentioned above where continuous tensegrities might bring some of the successes
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of Discrete Geometry into Differential Geometry and we also point out some other

places for further exploration. We close with two appendices. Appendix A covers rigid

motions of space and the variations which are induced from them, and Appendix B

proves a special-case version of the first main theorem using Motzkin’s Transposition

Theorem.
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Figure 1.5.2: A collection of pictures of the works of Kenneth D. Snelson from his
website www.kennethsnelson.net, used by permission.

www.kennethsnelson.net


Chapter 2

The Roth-Whiteley Theorem

2.1 Setting up a Roth & Whiteley Example

We need to start by understanding Roth & Whiteley’s original theorem. To that

end, we’ll first look at an example, and then work through their proof. However,

we have another task to accomplish as well. There are numerous symbols and terms

we’ll want to have available when we get into the thick of the mathematics. As we

work through the example, we’ll define the terms and symbols, relating them to the

example. Afterward we’ll give a summary list of the symbols we have defined.

Let’s get a little general notation out of the way first. In what follows, 0 will

denote the origin of the various vector spaces we encounter. The symbol 0 will be

reserved for the real additive identity. 〈·, ·〉 will denote the inner product for any

vector space. If the space is Euclidean n-space (denoted Rn), we may use dot product

notation (e.g. v · w) for the same purpose.

If X and Y are two sets, then X \ Y will denote the set of elements that are in X

but not in Y . That is,

X \ Y := {x ∈ X :x /∈ Y }.

We’ll also want some idea of positivity for vectors and vector fields in Rn.

Definition 2.1.1. A vector v ∈ Rn is said to be strictly positive, written v > 0, if

every coordinate of v is strictly positive. v is said to be nonnegative, written v > 0,



15

if every coordinate of v is nonnegative. Finally, v is said to be semipositive, written

v 	 0 if v > 0 and v 6= 0.

A vector field V is termed strictly positive (resp. nonnegative), also written V > 0

(resp. V > 0), if every value of V is strictly positive (resp. nonnegative) as a vector.

V is termed semipositive (also written V 	 0) if V > 0 and V is not the “zero vector

field”, that is, V 6= 0.

Now we can turn our attention to the example. Figure 2.1.1(a) shows a simple

tensegrity. In our illustrations, struts will be shown as thick lines, cables as thin ones

1

34

2

(a) The crossed square.

1

34

2

(b) The crossed square’s bar
framework.

Figure 2.1.1: The crossed-square example with its bar framework. Note that the
two struts (thick lines in (a)) and the two center bars (double lines crossing in (b))
pass through each other without touching.

and bars as double lines. Vertices may be shown as circles, as in Figure 2.1.1, or as

dotted lines, as in Figure 1.5.1 on page 10.

Using the notation introduced on page 3, we see that the crossed square has

V = {1, 2, 3, 4} S = {{1, 3}, {2, 4}}

B = ∅ C = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}

We need to place the elements of V in space, so we define p:V → R2 by

p(v) =






(0, 0), v = 1

(1, 0), v = 2

(1, 1), v = 3

(0, 1), v = 4
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We’ll call the tensegrity G(p) = {V ; S, C, B; p}. Figure 2.1.1(b) shows the the same

tensegrity but with all the struts and cables replaced by bars. The bar framework

constructed from tensegrity G(p) in this fashion will be called G(p).

Bars are a problem. They give us equations instead of inequalities. One might

argue that we prefer equations to inequalities and perhaps that’s true. However, in

general, we can’t turn inequalities into equalities. But we can turn an equation into

a pair of inequalities by thinking of a bar as a strut-cable pair. That way the cable in

the pair keeps the vertices from moving apart and the strut keeps them from moving

together.

To make it clear that we are thinking of bars no longer as bars but as strut-cable

pairs, we’ll define the sets of “functional struts” and “functional cables”:

S := S ∪ B C := C ∪ B

and deliberately refer to the elements of S as “struts” and the elements of C as

“cables”. We’re ready now to give a name to the set of edges, which will contain no

bars, only (functional) struts and cables:

Definition 2.1.2. The edgeset E is defined as a set by

E = S t C

(where t indicates disjoint union as opposed to the ∪ indicating union above). E

is endowed with a topology which we will describe in Section 3.2 on page 39 and

required to be compact.

Here is a quick preview of how we make V and E into topological spaces. We

induce a metric on V from Rn via p. We then take the maximum of two distances in

V to give us a distance in V × V . We use that metric on V × V to create a metric

on the identification space (V × V )�∼ of unordered pairs of elements of V . Finally

we create a metric on E from the metric on (V × V )�∼.
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Now that we have metrics for V and E , we put the associated metric topologies

on them. These turn out to be familiar topologies (Subsection 3.2.2 on page 43) and

when the two sets are finite, both of the topologies are discrete (Proposition 3.2.12

on page 52). Of course, in that case both sets are compact simply because they are

finite, but in the general case we require E to be compact and discover that V might

as well be, too (Subsection 3.2.3 on page 47).

The possible motions of G(p) can be described by putting vectors on the vertices.

We’ll call the space of all continuous vector fields on the vertices Vf(V ) and note

that in this case it is R8. Of course, only some of the elements of Vf(V ) respect the

edge constraints. We’ll reserve the term “motion” to apply to those. If we want to

talk generally about the elements of Vf(V ), we’ll refer to them as “variations” or just

call them vector fields.

Definition 2.1.3. The variations of G(p) are the continuous vector fields V : V → Rn

and the space of variations is denoted Vf(V ).

Now the variations are of different kinds. Some of the vector fields in Vf(V ) can

be induced from rigid motions of Rn. They do things like translating G(p) or rotating

it, but they do not change its shape (see Appendix A on page 129 for more on rigid

motions and the vector fields that are induced by them).

Definition 2.1.4. T (p) is the set of all elements of Vf(V ) that can be induced from

rigid motions of Rn. We’ll term these Euclidean motions .

We need to know how a given vector field interacts with the constraints given by

the edges. If the positions of the vertices vary differentiably with time and ∂
∂t

p(v, t) =

V (v) for a given vector field V , then V yields a vector of real numbers, which are the

values of the derivatives of the lengths of the edges.

Here we have 6 edges, so that vector lies in R6, but since E has the discrete

topology on it, we can (and will want later to) call it a “continuous function on E ”
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and the space it inhabits C(E ). We’ll call the functions we can generate this way

loads . In a moment we’ll want to talk about the nonnegative orthant of C(E ). We’ll

name that C(E )+, and the nonpositive orthant we’ll call C(E )−.

Formally, loads are computed via the the rigidity operator :

Definition 2.1.5. Y :Vf(V ) → C(E ) is given by

(Y V )({v1, v2}) :=






(V (v1) − V (v2)) · (p(v1) − p(v2)), {v1, v2} ∈ S

−(V (v1) − V (v2)) · (p(v1) − p(v2)), {v1, v2} ∈ C .

(2.1)

The signs here were chosen so that Y V > 0 when V expands struts and contracts

cables. It would certainly be possible to do the work that follows using a Y which

is defined the same for all parts of the edgeset. But we would do so at the cost of

working in an orthant of C(E ) that has no natural name and of repeatedly saying

“where Y V (e) > 0 on struts and Y V (e) 6 0 on cables”.

In some cases we will not want to consider all possible vector fields. For example,

we may have a curve of vertices and be interested only in variations that are local

isometries of the curve. We will call the variations of interest design variations.

Definition 2.1.6. The design variations form a subspace X ⊂ Vf(V ) with the one

requirement that the Euclidean motions be included in the design variations. That

is, T (p) ⊂ X .

With Y defined as above, for V ∈ X , the statement Y V ∈ C(E )+ means that V

is a variation on V that respects all of its constraints. As these are variations, they

are really infinitesimal motions, but by a slight abuse of the language, we’ll call them

simply motions.

Definition 2.1.7. A motion is a variation V ∈ X such that Y V ∈ C(E )+. The set

of all motions is denoted I(p). A motion is termed strictly positive or semipositive as

Y V is strictly positive or semipositive.
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So a strictly positive motion would increase the lengths of all struts and decrease

the lengths of all cables, while a semipositive one would change the length of at least

one edge.

And now we’re prepared to formally define the term “load”.

Definition 2.1.8. The loads for a given tensegrity are the elements of the set Y (X ) :

= {Y V :V ∈ X}. A load is strictly positive if Y V > 0 and semipositive if Y V 	 0.

A quick note on sign. This definition of “load” is related to the idea of loads in

Engineering, but it differs in sign. For example, an engineer would consider the edges

in Figure 2.1.2 to be bearing (positive) loads. We agree that they are bearing loads,

but, for historical reasons, give them a negative sign.

Figure 2.1.2: Edges bearing negative loads.

Some tensegrities possess motions that, while not being Euclidean motions, still

don’t change the length of any edges (see Figure 2.1.4 on the following page for an

example of such a tensegrity). Since such a motion changes no edge lengths, it respects

the constraints not only of G(p) but also of G(p).

So, similar to I(p), we’ll define I(p) to consist of the vector fields in X that

respect the constraints of G(p). Because the constraints of G(p) are all equalities,

any element V ∈ I(p) must give us Y V = 0.1 Clearly, T (p) ⊂ I(p) ⊂ I(p), but the

reverse inclusions are not guaranteed, as Figure 2.1.3 and Figure 2.1.4 demonstrate.

1In passing, we note that since Y is linear in V , any positive multiple of an element of
I(p) still maps by Y into C(E )+ and the same is true of convex combinations of elements
of I(p), so I(p) is a convex cone.

In contrast, all linear combinations of elements of I(p) must still map to 0, so I(p) is a
subspace of Vf(V ).
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Figure 2.1.3: Evidence that I(p) 6= I(p) in general. The tensegrity on the left has
a strut between the vertices, which allows them to move away from each other. The
associated bar framework on the right does not allow that motion.

Figure 2.1.4: A two-bar tensegrity with a motion that is in I(p) but not in T (p).

Since this tensegrity is made only of bars, I(p) = I(p) naturally.

Now, for some tensegrities, we do have that I(p) = I(p) or I(p) = T (p) or even

I(p) = T (p). If I(p) = T (p), then the only motions of G(p) are the Euclidean motions

(and similarly for I(p) = T (p)). There are no motions that change the shape of G(p)

(or G(p)). On the other hand, if I(p) = I(p), then the only motions of G(p) are also

motions of G(p). That is, the tensegrity acts as if it were made only of bars.

Definition 2.1.9. If I(p) = T (p) (resp. I(p) = T (p)), then we say that G(p) (resp.

G(p)) is infinitesimally rigid with respect to X or X -infinitesimally rigid .

If I(p) = I(p), we call G(p) bar equivalent with respect to X or X -bar equivalent .

In the case where X = Vf(V ) (as it is in Roth & Whiteley’s work), we can drop

the X and use the terms infinitesimally rigid and bar equivalent .

This leads to a quick proposition.

Proposition 2.1.10. Any tensegrity that is infinitesimally rigid with respect to X is

bar equivalent with respect to X .

Proof. X -infinitesimal rigidity means that I(p) = T (p), but it is always true that

T (p) ⊂ I(p) ⊂ I(p), so we must have I(p) = I(p), that is, that G(p) is X -bar

equivalent.
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There are three seemingly different ways of saying “bar equivalent”. They really

all mean the same thing, however.

Proposition 2.1.11. Let G(p) be a tensegrity with motions I(p), bar framework G(p)

and I(p) the motions of G(p). Then the following are equivalent:

1. G(p) has no semipositive motions.

2. Y (X ) ∩ C(E )+ = {0}.

3. I(p) = I(p).

Proof. (1 ⇔ 2). Let V ∈ X . Then V is a semipositive motion if and only if Y V ∈

C(E )+ and Y V 6= 0.

(2 ⇔ 3). Y V ∈ Y (X ) ∩ C(E )+ and Y V 6= 0 if and only if V ∈ I(p) and

V /∈ I(p).

There is notion which is similar to, though weaker than, “bar equivalence”. Some

tensegrities have semipositive motions, but no strictly positive ones (that is, Y (X ) ∩

int C(E )+ = ∅, see Lemma 3.3.2 on page 53).

Definition 2.1.12. If G(p) has semipositive motions but no strictly positive motions,

we call G(p) partially X -bar equivalent .

In Corollary 3.6.2 on page 69 we show that if G(p) is partially X -bar equivalent,

then some portion of G(p) is X -bar equivalent.

There’s one more concept we’ll need and that is the concept of stress. Remem-

bering the prestressed concrete of Section 1.3 on page 4, we can see that this is a set

of tensions on the cables and compressions on the struts that give a net zero force

at each vertex. That works well for discrete tensegrities, but we’ll need a slightly

more general definition in the future, so we’ll define stresses to be certain elements of

C∗(E ), the topological dual of C(E ).
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Definition 2.1.13. If X is a vector space, then its topological dual ,2 denoted X∗, is

the space of all continuous linear functionals on X.

The nonnegative orthant of C∗(E ) will play a role later, so we’ll give it the

name C∗(E )+.

Definition 2.1.14. If S is a set of elements in the vector space X, then the annihi-

lator of S is the set

S⊥ = {µ ∈ X∗ :µ(s) = 0, ∀s ∈ S}.

Definition 2.1.15. If S is a set of elements in the vector space X, then the dual

cone of S is the set

S∗ = {µ ∈ X∗ : µ(s) > 0, ∀s ∈ S}.

Definition 2.1.16. A stress is an element µ ∈ C∗(E ) such that µ ∈ Y (X )⊥. A

strictly positive stress is a stress µ with µ(f) > 0 for all nonzero f ∈ C(E )+. A

semipositive stress is a nonzero stress µ with µ(f) > 0 for all f ∈ C(E )+.

This choice of definition for “strictly positive” and “semipositive” is explained

more fully by Proposition 3.3.17 on page 58.

Let’s take a moment to see that this definition of stress matches our intuitive

understanding in the finite case.

Proposition 2.1.17. If G(p) is a finite tensegrity with rigidity operator Y and X =

Vf(V ), and µ ∈ C∗(E ), then µ is a stress (in the sense of Definition 2.1.16) if and

only if Y >µ = 0.

2This dual is “topological” in that it uses continuity, which requires a topology, in its
definition. The algebraic dual , by contrast, is the set of all linear functionals on X.
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Proof. Suppose, first, that µ is a stress. That is, µ(Y V ) = 0 for all V ∈ X = Vf(V ).

Then (Y >µ)V = 0 for all V . But for Y >µ to have zero dot product with all V ∈

Vf(V ), it must be the zero vector.

Conversely, suppose Y >µ = 0. Then µ(Y V ) = (Y >µ)V = 0 · V = 0.

With our definitions in place, we can say concisely what Roth and Whiteley

proved. The essence of their result is that having a strictly positive stress is the

same as being bar equivalent (see Lemma 2.4.3 on page 35).

Definition 2.1.18. Here is a list of all the entities we have defined, in alphabetical

order.

B, C, and S Three pairwise-disjoint sets of two-element subsets of V . Ele-
ments of B (bars) require their vertices to stay a fixed distance
apart. Elements of S (struts) and C (cables) serve as lower
and upper bounds on their vertices’ distances respectively.

C and S C := C ∪ B and S := S ∪ B.

C(E ) Continuous functions from E to R. The loads, Y (X ), are a
subspace of C(E ).

C(E )+ {f ∈ C(E ) : f(e) > 0, ∀e ∈ E }

C(E )− {f ∈ C(E ) : f(e) 6 0, ∀e ∈ E }

C∗(E ) Continuous linear functionals on C(E ), tensions and compres-
sions on the edges.

C∗(E )+ {µ ∈ C∗(E ) : µ(f) > 0, ∀f ∈ C(E )+}.

E S t C . The edgeset. It receives its topology from Rn via V ,
V × V and (V × V )�∼ (see Section 3.2 on page 39) and is
required to be compact.

G(p) {V ; S, C, B; p}. A tensegrity.

G(p) {V ; B; p}. The bar framework created by replacing all of
G(p)’s edges with bars. That is, elements of B are bars and
B = S ∪ C ∪ B.

I(p) {V ∈ Vf(V ) : Y V ∈ C(E )+}. Motions of G(p).

continued on the next page
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continued from the previous page

I(p) {V ∈ Vf(V ) : Y V = 0}. Motions of G(p).

p A 1-1 map from V to Rn.

T (p) The Euclidean motions. These can be induced from rigid
motions of Rn and do not change the shape of the tensegrity
(see Appendix A).

V The vertices of G(p). A set with the topology induced from
Rn via p. When V is a curve rather just a general set, we
may call it γ.

Vf(V ) Continuous vector fields on V , the variations. Those varia-
tions which produce nonnegative loads are called motions.

X The design variations. A subspace of Vf(V ) containing T (p).

Y :Vf(V ) → C(E ) ±(V (v1) − V (v2)) · (p(v1) − p(v2)) with the sign being + for
struts and − for cables. The rigidity operator. Used to cal-
culate the load for a given variation.

2.2 Working the Crossed-square Example

Figure 2.2.1 has our example again, this time with the edges numbered. The time

has come to see what we can learn about it. We start by building the rigidity operator

1

4

6

3

1

2

34

5

2

Figure 2.2.1: The crossed-square example with its edges numbered.
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and choosing a stress:

Y =





1 0 −1 0 0 0 0 0

−1 −1 0 0 1 1 0 0

0 1 0 0 0 0 0 −1

0 0 0 1 0 −1 0 0

0 0 1 −1 0 0 −1 1

0 0 0 0 −1 0 1 0





and µ =





1

1

1

1

1

1





Then Y >µ = 0, so (by Proposition 2.1.17 on page 22) µ is a strictly positive stress.

By Lemma 2.4.3 on page 35, then, G(p) is bar equivalent. It will be infinitesimally

rigid or not as G(p) is.

Even though our main concern here is with bar equivalence, this example is simple

enough that we can calculate whether G(p) is infinitesimally rigid or not. Since the

primary value of bar equivalence is tied to knowing whether the bar framework is

infinitesimally rigid, it seems worth the time to calculate it for this example. In Sec-

tion 4.8 on page 108 we dig even deeper, showing that for this example, the image of

Y is a hyperplane in C(E ).

Suppose that V is a motion of the bar framework G(p), that is, V ∈ I(p). Then

Y V = 0. But we have

Y V =





1 0 −1 0 0 0 0 0

−1 −1 0 0 1 1 0 0

0 1 0 0 0 0 0 −1

0 0 0 1 0 −1 0 0

0 0 1 −1 0 0 −1 1

0 0 0 0 −1 0 1 0









vx,1

vy,1

vx,2

vy,2

vx,3

vy,3

vx,4

vy,4





=





vx,1 − vx,2

−vx,1 − vy,1 + vx,3 + vy,3

vy,1 − vy,4

vy,2 − vy,3

vx,2 − vy,2 − vx,4 + vy,4

−vx,3 + vy,4




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A little calculation gives us that any motion of the bar framework must look like

V =
[
vx,1 vy,1 vx,1 vy,2 (vx,1 + vy,1 − vy,2) vy,2 (vx,1 + vy,1 − vy,2) vy,1

]>

We’d like to know whether this variation is a Euclidean motion or whether it

changes the shape of the bar framework. We can remove any translation from V by

setting the sum of the horizontal components to zero and the sum of the vertical

components to zero. That is we require that

vx,1 + vx,2 + vx,3 + vx,4 = 0 and vy,1 + vy,2 + vy,3 + vy,4 = 0.

If we do that, we get

V =
[
vx,1 −vx,1 vx,1 vx,1 −vx,1 vx,1 −vx,1 −vx,1

]>
,

which is simply a rotation around the center of the figure (see Figure 2.2.2). So every

1

34

2

(vx,1,−vx,1)

(vx,1, vx,1)

(−vx,1, vx,1)

(−vx,1,−vx,1)

Figure 2.2.2: Every motion of the crossed-square bar framework is a Euclidean
motion.

element of I(p) is an element of T (p). That makes G(p) infinitesimally rigid and by

Theorem 2.4.4 on page 35, G(p) is infinitesimally rigid.

2.3 The Mechanics

In their proof, Roth and Whiteley make use of two theorems of Rockafellar, but he

uses some terms we haven’t seen before, so we’ll mention them first.
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Rockafellar uses the term “relative interior”. The idea is useful in a vector space

when dealing with objects that would fit within proper subspaces of the vector space.

For example, when looking at a line segment in R3, it is clear that there are two

endpoints and many “non-end” points. However, a line segment in R3 has no 3-

dimensional interior. That is where “relative interior” comes in handy. Those “non-

end” points form the relative interior of the line segment (in the case of a single point,

the point itself is the relative interior).

Let’s define that more rigorously. Our first two definitions differ in the bounds

on λ.

Definition 2.3.1 (Rockafellar (1970, p. 10)). A subset C of Rn is called a convex set

if (1 − λ)x + λy ∈ C whenever x, y ∈ C and λ ∈ (0, 1).

Definition 2.3.2 (Rockafellar (1970, p. 3)). A subset M of Rn is called an affine set

if (1 − λ)x + λy ∈ M whenever x, y ∈ M and λ ∈ R.

Definition 2.3.3 (Rockafellar (1970, p. 6)). The affine hull of a set S ⊂ Rn is the

intersection of the collection of affine sets M such that M ⊃ S.

Definition 2.3.4 (Rockafellar (1970, p. 44)). The relative interior of a convex set

C ⊂ Rn is the set of points x in the affine hull of C for which there exists an ε > 0

such that y ∈ C whenever y is in the affine hull of C and d(x, y) 6 ε.

For the sake of understanding, let’s apply these definitions to the line segment S

running from (0, 0, 0) to (0, 0, 1) in R3.

Proposition 2.3.5. The relative interior of the line segment {(0, 0, z) : z ∈ [0, 1]} is

the open set {(0, 0, z) : z ∈ (0, 1)}.

Proof. The affine sets that contain S are the z-axis, any plane containing the z-axis

and R3. The affine hull of S, then, is the intersection of those set, or simply the

z-axis. Then, for any point (0, 0, z), one of three things is true:
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1. z > 1 or z < 0. In this case (0, 0, z) itself is outside S, so no epsilon neighbor-

hood of it in the affine hull could be completely contained within S.

2. z = 0 or z = 1. Here (0, 0, z) is inside S, but for no positive ε is the neighborhood

completely inside S, so these points are also not in the relative interior.

3. z > 0 and z < 1. In this case, setting ε = min{1 − z, z − 0} gives us a

neighborhood in the affine hull that is also in S. These are the points of the

relative interior.

While we’re on the topic, let’s support that offhand comment about the relative

interior of a point.

Proposition 2.3.6. The relative interior of a point is the point itself.

Proof. Let x ∈ Rn. Now the smallest (in terms of set inclusion) affine set containing

x (and thus the affine hull of x) is x itself. But then, if y is in the affine hull, y must

be x, so d(x, y) = 0 6 ε for any ε > 0.

Let’s get back to definitions.

Definition 2.3.7 (Rockafellar (1970, p. 170)). A polyhedral set set is one that is the

intersection of a finite number of closed half-spaces.

Definition 2.3.8 (Rockafellar (1970, p. 162)). A face of a convex set C is a convex

subset C ′ of C such that every (closed) line segment in C with a relative interior

point in C ′ has both endpoints in C ′.

Proposition 2.3.9. For a cube in R3, the faces are: the 6 squares that form the

boundary, the 12 edges of the squares and the 8 corners as well as the entire cube and

the empty set.
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Proof. Clearly the empty set is trivially a face, as it contains no line segments. Sim-

ilarly, the entire cube is a face as any closed line segment in the cube has both ends

in the cube.

The 8 corners are faces in much the same fashion. They can hold endpoints of

line segments, but the only way they can hold relative interior points of line segments

is if those line segments are the zero-length ones which are the corners themselves,

and in that case both endpoints are certainly in. No other single point can be a face,

though, as any other point can be a relative interior point of some line segment that

passes through it.

The 12 edges are faces, as any line segment that has a relative interior point in

an edge must lie entirely in that edge. No other segment in the cube can be a face

since it will be crossed by some other segment that it does not contain.

Finally, any segment with a relative interior point in one of the boundary squares

of the cube must lie entirely in that square, but any other plane passing through the

cube can be intersected transversely with some other segment in the cube, so those

squares are the only 2-dimensional faces.

In considering unbounded convex sets, Rockafellar introduces a type of “point at

infinity”. An unbounded convex set (not necessarily conic), he notes, must contain

some entire half-line or it wouldn’t be an unbounded set. However, that half-line

might point in any direction. So the directions in which the half-lines lie can be

thought of as “horizon points” or points at infinity. Formally,

Definition 2.3.10 (Rockafellar (1970, p. 60)). A direction of Rn is an equivalence

class of the collection of all closed half-lines of Rn under the equivalence relation

“half-line L1 is a translate of half-line L2.”

Definition 2.3.11 (Rockafellar (1970, p. 12)). The convex hull of a set S ⊂ Rn is

the intersection of all convex sets containing S.
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Definition 2.3.12 (Rockafellar (1970, p. 170)). A finitely generated convex set is the

convex hull of a finite set of points and directions.

As an example, the convex hull in R2 of the two points (0, 0) and (1, 0) and the

direction of the vector (1, 1) is the area shown in Figure 2.3.1.

Figure 2.3.1: The convex set generated by the points (0, 0) and (1, 0) and the
direction of the vector (1, 1).

Now we are ready for the theorems. The first is a separation theorem and the

second gives an equivalence between attributes of a convex set.

Theorem 2.3.13. Let X be a closed convex cone in Rn and x0 ∈ Rn\X. Then, since

the relative interiors of X and {x0} are disjoint, there exists a hyperplane separating

X and {x0} properly.

Proof. See Rockafellar (1970, Theorem 11.3, p. 97).

Theorem 2.3.14. The following properties of a convex set C are equivalent:

(a) C is polyhedral;

(b) C is closed and has only finitely many faces;

(c) C is finitely generated.

Proof. See Rockafellar (1970, Theorem 19.1, p. 171).

We also have two more objects that will be of value to us. Suppose we have some

set X of vectors in Rn. It seems natural to consider the set of vectors that are normal
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to all of our vectors. This is the finite-dimensional analogue of the annihilator, so we

use the same notation:

X⊥ = {v ∈ Rn : v · x = 0 for all x ∈ X}

Similarly, the set of vectors that “point in the same general direction” as ours is the

analog of the dual cone:

X∗ = {v ∈ Rn : v · x > 0 for all x ∈ X}.

Lemma 2.3.15. For any set X ⊂ Rn, X∗ is a closed convex cone.

Proof. If x1, x2 ∈ X∗, then, for any x ∈ X,

((1 − λ)x1 + λx2) · x = (1 − λ)x1 · x + λx2 · x > 0

whenever λ ∈ [0, 1]. Also, αx1 · x > 0 whenever α > 0, so X∗ is a convex cone. If y

lies outside X∗, then by the definition of X∗ there must be some x− ∈ X such that

y · x− < 0. Let z ∈ Rn with ‖y − z‖ < −y·x−

‖x−‖ . Then we have

z · x− = (z − y + y) · x− = (z − y) · x− + y · x−

6 (z − y) · (z − y)
‖x−‖

‖z − y‖ + y · x− = ‖y − z‖‖x−‖ + y · x−

< −y · x− + y · x− = 0.

That is, z is also outside X∗. So X∗ is closed.

Here’s a corollary to Theorem 2.3.13 that will prove useful.

Corollary 2.3.16. If X is a closed convex cone in Rn and x0 ∈ Rn \ X, then there

exists µ ∈ X∗ with µ · x0 < 0.
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Proof. By Theorem 2.3.13 there exists a hyperplane, h, with x0 lying strictly on one

side of it and X in the half-space on the other side. The normal to h pointing into

the half-space with X has nonnegative dot product with all the elements of X and

hence is in X∗, but it has negative dot product with x0.

Here are a few more attributes of X∗:

Proposition 2.3.17.

(i) for Z ⊂ Rn and X a closed convex cone in Rn, Z ⊂ X if and only if X∗ ⊂ Z∗.

(ii) for Z ⊂ Rn, Z∗∗ = (Z∗)∗ is the smallest closed convex cone in Rn that con-

tains Z.

(iii) if Z = {z1, . . . , zk} is a finite subset of Rn, then the convex cone

{
k∑

i=1

λizi : λi > 0 for 1 6 i 6 k

}

generated by Z is closed in Rn (and therefore equals Z∗∗).

Proof.

(i) Suppose that X is some closed convex cone in Rn and we have some Z ⊂ Rn.

If Z ⊂ X, then certainly any vector that has a positive dot product with

everything in X must have a positive dot product with everything in Z, hence

X∗ ⊂ Z∗. What about the other way around? If there is some z ∈ Z, z /∈ X,

then by Corollary 2.3.16 on the preceding page, there is some µ ∈ X∗ such that

µ · z < 0. But that means that µ /∈ Z∗.

(ii) Z∗∗ is a closed convex cone by Lemma 2.3.15. Furthermore, if z ∈ Z, then z

has a positive dot product with everything in Z∗, so Z ⊂ Z∗∗. Suppose that

some closed convex cone C ⊃ Z but that there were some ẑ ∈ Z∗∗ and ẑ /∈ C.

Then, by Corollary 2.3.16, there must be an element µ of C∗ that separates
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ẑ and C. Now by Item (i), C∗ ⊂ Z∗, so µ ∈ Z∗ and yet µ · ẑ < 0. That

contradicts the definition of Z∗∗. Hence Z∗∗ must be the smallest closed convex

cone containing Z.

(iii) Finally, if Z is a finite subset of Rn, then the convex cone

Zc =

{
k∑

i=1

λizi : λi > 0 for 1 6 i 6 k

}

is finitely generated (being generated by the origin and the directions of the zi)

and hence, by Theorem 2.3.14 on page 30, it is closed. Now any positive linear

combination of the zi must have positive dot product with any vector in Z∗, so

Zc ⊂ Z∗∗. Since it is a closed convex cone it must, by Item (ii), equal Z∗∗.

One lemma remains that we will want in the next section.

Lemma 2.3.18. Let X = {x1, . . . , xk} ∈ Rn. Then X∗ = X⊥ implies that X∗∗ is a

subspace.

Proof. Let α ∈ R and v1, v2 ∈ X∗∗. We want to show that v1 + v2 ∈ X∗∗ and that

αv1 ∈ X∗∗.

v1, v2 ∈ X∗∗ ⇒ v1 · x∗
> 0 and v2 · x∗

> 0, ∀x∗ ∈ X∗

⇒ (v1 + v2) · x∗ = v1 · x∗ + v2 · x∗
> 0, ∀x∗ ∈ X∗

⇒ (v1 + v2) ∈ X∗∗

Now if α > 0, then we easily have that (αv1) ·x∗ = αv1 ·x∗ > 0 for all x∗ ∈ X∗. But if

α < 0, we need to be a little more clever. In that case, we have αv1 ·x∗ = |α|v1 · −x∗,

so we are fine if x∗ ∈ X∗ ⇒ −x∗ ∈ X∗. But

x∗ ∈ X∗ ⇒ x∗ · x = 0, ∀x ∈ X, because X∗ = X⊥ by hypothesis

⇒ −x∗ · x = 0, ∀x ∈ X

⇒ −x∗ ∈ X∗

and we have that X∗∗ is a subspace.
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2.4 Key Lemma and Theorem

We now reach the key lemma (Roth and Whiteley, 1981, Lemma 5.1, p. 426). This

is the engine that Roth & Whiteley use to establish bar equivalence for a tensegrity

so that they can analyze the infinitesimal rigidity of the bar framework instead of

the tensegrity. It is the predecessor to our main theorem. The proof we give here is

essentially that of Roth & Whiteley.

Lemma 2.4.1. Suppose X = {x1, . . . , xk} ⊂ Rn. Then X∗ = X⊥ if and only if there

exist positive scalars λ1, . . . , λk with
∑k

i=1 λixi = 0.

Proof. By Item (iii) of Proposition 2.3.17, X∗∗ =
{∑k

i=1 λixi : λi > 0 for 1 6 i 6 k
}

.

Suppose that X∗ = X⊥. Then, by Lemma 2.3.18, X∗∗ is a subspace. Since every

xj ∈ X is also in X∗∗ we can write

−xj =

k∑

i=1

λixi

for some set of λi > 0. But then we have

λ1x1 + · · ·+ (1 + λj)xj + · · ·+ λkxk = 0.

Adding up k such expressions gives a linear dependency of x1, . . . , xk with all positive

coefficients.

Conversely, if there is some set λi > 0 for which
∑k

i=1 λixi = 0 and if x∗ ∈ X∗,

then

0 = x∗ · 0 = x∗ ·
k∑

i=1

λixi =

k∑

i=1

λi(x
∗ · xi).

Since x∗ ·xi > 0 and λi > 0 for all i, we must have x∗ ·xi = 0 for all i, so x∗ ∈ X⊥.

Roth & Whiteley’s lemma is very much in the world of finite-dimensional

Euclidean spaces. We need to reformulate it in preparation for the move to more

general spaces.
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Lemma 2.4.2. Let Y be an m × n matrix with elements in R. Then exactly one of

the following is true:

(I) There exists V ∈ Rn such that Y V 	 0.

(II) There exists µ ∈ Rm with µ > 0 such that Y >µ = 0.

Proof. Let X = {xi} be the set of row vectors of Y . Then those V for which Y V = 0

make up X⊥ and those V for which Y V has no negative coordinates make up X∗.

Case (I) is false if and only if X∗ = X⊥. By Lemma 2.4.1, X∗ = X⊥ if and only

if there exist positive scalars λ1, . . . , λm such that
∑m

i=1 λixi = 0. And by defining

µ =

[ λ1

...
λm

]
we have that the λi’s exist if and only if Case (II) is true.

Lemma 2.4.2 resembles the “Theorem of the Alternative” we talk about in Sec-

tion 3.1, but it doesn’t provide a lot of geometric insight. Let’s recast it yet one more

time.

Lemma 2.4.3. Let G(p) be a (finite) tensegrity framework with rigidity matrix Y .

Then G(p) is bar equivalent if and only if G(p) has a strictly positive stress.

Proof. Let G(p) be bar equivalent. Then there is no V for which Y V 	 0, so we

are not in Case (I) of Lemma 2.4.2. Hence we must be in Case (II), i.e., G(p) has a

strictly positive stress.

Conversely, let G(p) have a strictly positive stress. We are again in Case (II), so

there can be no V like that described in Case (I), and G(p) is bar equivalent.

Finally, as an application of Lemma 2.4.3, we prove Roth and Whiteley’s theorem

(1981, Theorem 5.2, p. 427).

Theorem 2.4.4. Suppose G(p) is a (finite) tensegrity framework in Rn and G(p) the

associated bar framework. Then G(p) is infinitesimally rigid if and only if G(p) is

infinitesimally rigid and there exists a strictly positive stress of G(p).
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Proof. (⇒). Suppose that G(p) is infinitesimally rigid. Then I(p) = I(p) = T (p)

by Definition 2.1.9 on page 20. So G(p) is infinitesimally rigid (again by Definition

2.1.9) and G(p) is bar equivalent by Proposition 2.1.10. By Lemma 2.4.3, G(p) has a

strictly positive stress.

(⇐). Conversely, suppose that G(p) is infinitesimally rigid and that G(p) has a

strictly positive stress. By Lemma 2.4.3, G(p) is bar equivalent. Infinitesimal rigidity

of G(p) gives us I(p) = T (p) and bar equivalence of G(p) gives us I(p) = I(p), so

I(p) = T (p) and thus G(p) is infinitesimally rigid.



Chapter 3

Main Theorems

3.1 Under the Hood: Theorems of the Alternative

Having seen what Roth & Whiteley accomplished, we’d like to get a better grasp of

what makes their theorem work, so that we can extend it to continuous tensegrities.

Let’s take another look at Lemma 2.4.2 on page 35. The statement that Y >µ = 0

implies that (Y >µ)V = 0 for all V ∈ Vf(V ). That’s the same as saying that µ>Y V =

0 for all V or that µ ∈ (im Y )⊥.

With that understanding, we can see Lemma 2.4.2 as saying, “either im Y inter-

sects the nonnegative orthant somewhere other than the origin, or else (im Y )⊥ inter-

sects the interior of the nonnegative orthant, but not both” (see Figure 3.1.1).

x

y

im Y

(im Y )⊥

Figure 3.1.1: A Theorem of the Alternative in R2.

It turns out that this is one of many “Theorems of the Alternative” (also sometimes

called “Theorems on the Alternative”), in which exactly one of two alternative systems
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of inequalities or equalities is shown to have a solution. In his Nonlinear Programming,

Olvi Mangasarian has a wonderful chapter where he catalogs no fewer than 11 of these

theorems (Mangasarian, 1969, ch. 2). Mangasarian indicates that the one we have

in hand is the one from Stiemke’s 1915 paper (Stiemke, 1915).1 It is very similar to

a theorem he credits to Paul Gordan (1873). Here are Mangasarian’s statements of

the two, using our notation.

Theorem 3.1.1 (Stiemke 1915). For a given matrix Y , either

(I) Y V 	 0 has a solution V

or

(II) Y >µ = 0, µ > 0 has a solution µ

but never both.

Theorem 3.1.2 (Gordan 1873). For a given matrix Y , either

(I) Y V > 0 has a solution V

or

(II) Y >µ = 0, µ 	 0 has a solution µ

but never both.

The difference between those two is in which case is true when both im Y and

(im Y )⊥ lie on the boundar of the nonnegative orthant. That difference will appear

again later in our main theorems. Before we get there, though, we need to go back

through the various entities listed in Definition 2.1.18 on pages 23–24 and see how

they change during the move to the continuous world.

1The papers of Stiemke, Gordan and Motzkin (see Appendix B) are all in German, so,
due to time constraints, I have not verified Mangasarian’s analysis of them.
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3.2 Turning Sets into Spaces: V and E

3.2.1 New Topologies via Metrics

We will need E to be a compact metric space, so we set out to provide a metric on

the set. Now E is, by definition, a disjoint union of two sets. Each of those sets is

a subset of the quotient space (V × V )�∼ formed from the direct product V × V

by the identification (v1, v2) ∼ (v2, v1). We’ll work our way through these spaces in

creating the desired metric.

Definition 3.2.1. The space V is the set of vertices, the metric induced by its

embedding into Rn:

dV (v1, v2) := ‖p(v1) − p(v2)‖

and the topology defined by dV .2

Now, a metric has three attributes. It must be positive definite and symmetric,

and it must satisfy the triangle inequality. Of course dV has those attributes naturally,

but we’ll need to check them for the metrics yet to come.

We give V × V the metric

dV ×V ((v1, v2), (v3, v4)) := max{dV (v1, v3), dV (v2, v4)}.

This has the decided advantage that the basic open sets are the basic open sets of the

product topology. For example, if we take the basic open set of size ε around (v1, v2),

then the points inside it are the edges (v3, v4) where dV (v1, v3) < ε and dV (v2, v4) < ε.

Proposition 3.2.2. dV ×V is a metric.

Proof. Now dV ×V ((v1, v2), (v3, v4)) is clearly nonnegative and is zero only when v1 =

v3 and v2 = v4. Its symmetry comes from the nature of max. So we only need to

check the triangle inequality.

2That is, the topology whose basic open sets are the open balls dV (v1, v2) < ε for all
v1, v2 ∈ V , ε > 0. See, for example Munkres (2000, p. 119).
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If (v1, v2), (v3, v4), (v5, v6) ∈ V × V , then

dV ×V ((v1, v2), (v5, v6)) = max{dV (v1, v5), dV (v2, v6)}.

Now, if dV (v1, v5) > dV (v2, v6), we have

dV (v2, v6) 6 dV (v1, v5) 6 dV (v1, v3) + dV (v3, v5)

6 max{dV (v1, v3), dV (v2, v4)} + max{dV (v3, v5), dV (v4, v6)}.

Otherwise, we have

dV (v1, v5) 6 dV (v2, v6) 6 dV (v2, v4) + dV (v4, v6)

6 max{dV (v1, v3), dV (v2, v4)} + max{dV (v3, v5), dV (v4, v6)}.

So, either way, we have

dV ×V ((v1, v2), (v5, v6)) 6 dV ×V ((v1, v2), (v3, v4)) + dV ×V ((v3, v4), (v5, v6)).

Thus dV ×V is a metric.

Now we come to (V × V )�∼.

Proposition 3.2.3. The function

d(V ×V )�∼({v1, v2}, {v3, v4}) := min
i6=j∈{3,4}

{dV ×V ((v1, v2), (vi, vj))}

is a metric for (V × V )�∼.

Proof. Let {v1, v2}, {v3, v4}, and {v5, v6} be in (V × V )�∼.

(a) d(V ×V )�∼({v1, v2}, {v3, v4}) is the smaller of two nonnegative numbers and hence

nonnegative. Furthermore, as dV ×V is a metric, d(V ×V )�∼ will only return 0

when either (v1, v2) = (v3, v4) or (v1, v2) = (v4, v3). That is, only when the two

are in the same equivalence class in (V × V )�∼.
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(b) We need symmetry of the metric:

d(V ×V )�∼({v1, v2}, {v3, v4}) = min
i6=j∈{3,4}

{dV ×V ((v1, v2), (vi, vj))}

= min
i6=j∈{3,4}

{dV ×V ((vi, vj), (v1, v2))}

= min
i6=j∈{1,2}

{dV ×V ((v3, v4), (vi, vj))}

= d(V ×V )�∼({v3, v4}, {v1, v2})

(c) Finally, we need to check the triangle inequality:

d(V ×V )�∼({v1, v2}, {v5, v6}) = min
i6=j∈{5,6}

{dV ×V ((v1, v2), (vi, vj))}

6 min
s 6=t∈{3,4}
i6=j∈{5,6}

{dV ×V ((v1, v2), (vs, vt)) + dV ×V ((vs, vt), (vi, vj))}

= min
s 6=t∈{3,4}

{dV ×V ((v1, v2), (vs, vt))} + min
i6=j∈{5,6}

{dV ×V ((v3, v4), (vi, vj))}

= d(V ×V )�∼({v1, v2}, {v3, v4}) + d(V ×V )�∼({v3, v4}, {v5, v6}).

So d(V ×V )�∼ is a metric for (V × V )�∼ and also for S and C as subsets of (V × V )�∼.

We’ve nearly achieved our goal, but we have a decision to make. How far apart

should a strut be from a cable? Both S and C are subsets of (V × V )�∼, so we

could simply define the distance from strut s to cable c to be d(V ×V )�∼(s, c).

At first glance this seems a wise idea. After all, suppose we have a tensegrity in

which the struts or the cables alone do not form a compact set, but the two together

do (such a construction may be seen in Figure 3.2.1 on the following page).3 If we

3Since E is Hausdorff, we know that if S and C were compact, they would be closed
(see, for example, Munkres (2000, p. 165)). But the sequence of struts at angles π− 1

2n and
the sequence of cables at angles − 1

2n show that we would need a strut at π and a cable at
0 for closure.

On the other hand, V is compact as a p(V ) is a closed, bounded subset of R2, so V ×V

is compact. Now S ∪ C is closed, so if π : V × V → (V × V )�∼ is the quotient map,

then π−1(S ∪ C ) is a closed subset of V × V and hence compact. But then S ∪ C is the
continuous image of a compact set and thus also compact (Munkres, 2000, p. 165–167).
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Struts

Cables

Figure 3.2.1: A tensegrity with noncompact S and C but compact S ∪ C .

make the distance between struts and cables simply the d(V ×V )�∼ distance, then this

edgeset will be compact and our results here will apply to it.

However, if we do that and B is nonempty, we run into trouble. If bs is a bar in S

and bc is the same bar in C , then d(V ×V )�∼(bs, bc) would be zero. Putting the metric

topology on E in this situation would mean that there would be no open sets which

would separate bs and bc. E would no longer be Hausdorff. As we certainly need E

to be Hausdorff, we’ll look for other options (and we’ll circle around later and talk

for a bit about why excluding this example doesn’t trouble us greatly).

Since having a strut and cable too close together was a problem, perhaps we should

define them to be far apart. To do this, we could find out how far apart any two

struts or cables are and then make all struts farther away from all cables than that.

This is not difficult, but it seems clearer to use what Tabor and Tabor (2002) call an

“extended metric” (they credit this to Covitz and Nadler (1970), who pass the credit

on to Luxemburg (1958)).
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An extended metric differs from a normal metric only in that it is allowed to

take the value ∞ (to readers interested in the properties of metrics are recommended

Wikipedia (2007b) and Munkres (2000, p. 119)).

Proposition 3.2.4. The set S t C is a metric space with (extended) metric dE

defined as:

dE (e1, e2) =






d(V ×V )�∼(e1, e2), if e1, e2 ∈ S or e1, e2 ∈ C , and

∞ otherwise.

Proof. Let e1, e2 and e3 be in S tC . Then, if e1 and e2 are both struts or both cables,

we get that dE (e1, e2) > 0 with equality only if e1 = e2 and that dE (e1, e2) = dE (e2, e1),

both from the nature of d(V ×V )�∼. If they are different, then dE (e1, e2) = dE (e2, e1) =

∞ > 0. So we are left with the triangle inequality to check.

Again, if all three edges are of the same type,

dE (e1, e2) + dE (e2, e3) > dE (e1, e3) (3.1)

due to that being true for d(V ×V )�∼. Otherwise, at least two differ in type. If e1

differs from e3, then the right side of Equation (3.1) is ∞, but one of the terms on the

left must be as well (e1 and e3 are different, so e2 must differ from one or the other).

On the other hand, if e1 and e3 are of the same type, the right side is finite and both

of the terms on the left are infinite. We see that the triangle inequality holds for dE .

So dE is a metric on S t C .

Definition 3.2.5. The edgeset E is the space formed by endowing the set S t C

whith the metric dE and the associated metric topology.

3.2.2 Familiar Topologies

Now that we have topologies on V and E , let’s see what we can learn about them.
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Proposition 3.2.6. The topology on V , TV is same as the topology, Tp(V ), which V

would have if we put the subspace topology on p(V ) and then mapped all of the open

sets back to V via p.

Proof. We need to show that the basic open sets in each topology are open in the

other topology.

Basic open sets in TV are induced by the intersection with p(V ) of open balls in

Rn centered at points of p(V ). Basic open sets in Tp(V ) are induced by the intersection

with p(V ) of open balls in Rn centered anywhere, so TV ⊂ Tp(V ).

To show the converse, let B be a basic open set in Tp(V ) containing the vertex v, and

let r ∈ (0,∞) and c ∈ Rn be the radius and center, respectively, of an n-ball which,

when intersected with p(V ) gives p(B). Since v ∈ B, we know that ‖c − p(v)‖ < r,

so the intersection with p(V ) of the open n-ball of radius r − ‖c − p(v)‖ centered at

p(v) induces an open set in TV (by definition) which contains v (by design) and is

contained in B because if x ∈ Rn with ‖p(v) − x‖ < r − ‖c − p(v)‖ we have

‖c − x‖ = ‖c − p(v) + p(v) − x‖ 6 ‖c − p(v)‖ + ‖p(v) − x‖ < r

(see Figure 3.2.2).

•
p(v)

•c
r

Figure 3.2.2: Open sets in Tp(V ) are open in TV .

So the topology in V is familiar. What about the one on E ? Let TS and TC be

the topologies on S and C which come from seeing each of those spaces as a subspace
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of a quotient space of V × V . Then let

Tsqp = {US t UC : US ∈ TS , UC ∈ TC } .

Proposition 3.2.7. Tsqp is a topology.

Proof. We need to show that Tsqp contains the empty set, the set E , and that it is

closed under arbitrary unions and finite intersections.

We note that the empty set is in Tsqp as it is the union of the empty set in TS

and the empty set in TC . Similarly, the set E is in Tsqp as it is the union of the sets

S ∈ TS and C ∈ TC . If {US α t UCα} is a collection of elements of Tsqp, then

⋃
{US α t UC α} =

⋃
US α t

⋃
UC α

is also and Tsqp. Likewise, if {US 1 t UC 1, . . . , US n t UC n} is a finite collection of

elements of Tsqp, then

⋂
{US i t UC i} =

⋂
US i t

⋂
UC i

is in Tsqp as well. So Tsqp is a topology for E .

Proposition 3.2.8. TE equals Tsqp.

Proof. We note that the basic open sets of Tsqp consist of all edges in E whose ends

fall within open sets in V , U1 and U2. We’ll call such a set U1×U2/∼.

Let U1 be an open set in TE containing edge e1 = {v11, v12}. Without loss of

generality, we can take e1 ∈ S . Then there is a basic open set, B1, centered at e1

and of radius 0 < r1 < ∞ that is contained in U1. Since r1 is finite, we know that the

elements of B1 are also in S .
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Let B11 and B12 be open balls in V centered at v11 and v12, respectively, both of

radius r1. Then, if e2 = {v21, w22} ∈ B11×B12/∼, we have

dE (e1, e2) = d(V ×V )�∼(e1, e2)

= min
i6=j∈{1,2}

{dV ×V ((v11, v12), (v2i, v2j))}

6 dV ×V ((v11, v12), (v21, v22))

= max{dV (v11, v21), dV (v12, v22)} < r1.

so e2 ∈ B1. That is, the open set B11×B12/∼ ∩ E is contained in B1. So B1 is open

in Tsqp.

Conversely, let Usqp be an open set in Tsqp and let e1 = {v11, v12} ∈ Usqp. Once

again, we take e1 to be in S . Then there is some basic open set U11×U12/∼, centered

at e1, that lies inside Usqp. Let, B11 (centered at v11) and B12 (centered at v12) be

open balls in V of equal radius, r, contained within U11 and U12 respectively.

Let e2 = {v21, v22} ∈ E with dE (e1, e2) < r (which of course means that e2 is also

in S ). Then

r > dE (e1, e2)

= d(V ×V )�∼(e1, e2)

= min
i6=j∈{1,2}

dV ×V ((v11, v12), (v2i, v2j))

= min
i6=j∈{1,2}

max {dV (v11, v2i), dV (v12, v2j)} .

That means that either v21 ∈ B11 and v22 ∈ B12 or the other way around (or both).

Either way, e2 ∈ B11×B12/∼, so there is an open dE ball completely contained within

Usqp around every point in Usqp. Thus Usqp is open in TE .

That’s good news because it wasn’t at all obvious that we could simply take

two open sets on V and know that the edges whose ends fall into those open sets

themselves form open sets on S and C .
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3.2.3 Compactness of V

Now that we have topologies on V and E , let’s talk for a moment about V . Consider

the tensegrity shown in Figure 3.2.3. This tensegrity is our (bar equivalent) crossed-

Figure 3.2.3: A tensegrity with “free vertices”.

square plus four extra vertices. What effect do those extra vertices have on the bar

equivalence of this tensegrity? None whatsoever.

Claim 3.2.9. Adding or removing vertices which have no edges connected to them

does not change the X -bar equivalence of a tensegrity.

Proof. X -bar equivalence and partial X -bar equivalence are conditions about Y (X ).

Adding or removing vertices, so long as it does not change the edgeset, cannot

change Y (X ).

So, when it is convenient, we will consider V to have only vertices to which edges

are attached. That will give us an additional attribute for V .

Claim 3.2.10. If V consists only of vertices to which edges in E are attached, then

V is compact.

Proof. Suppose every vertex in V has an edge attached to it. Let {Uα} be an open

cover of V . Then, by the work we’ve done above, the sets Uα1
×Uα2/∼ ∩ E (where Uα1

and Uα2
are in {Uα}) are open sets on S and C . Since every edge has to connect to
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vertices at both ends, these open sets cover E . Since E is compact, a finite number

of them, Uα11
×Uα21/∼, . . . , Uα1n

×Uα2n/∼ will suffice to cover E .

We want to show that the open sets Uα11
, . . . , Uα1n

, Uα21
, . . . , Uα2n

cover V . Sup-

pose v1 ∈ V . Then, since all vertices of V have edges connected, there must be some

e = {v1, v2} in E . But then there must be some Uα1i
×Uα2i/∼ which contains e. So

either v1 ∈ Uα1i
or v1 ∈ Uα2i

.

So the Uα11
, . . . , Uα1n

, Uα21
, . . . , Uα2n

cover V . Hence V is compact.

Thus, while we never require that V be compact, we discover that if E is compact,

then V is effectively compact as well.

3.2.4 The New Topologies made Visible

Let’s take a moment to look at a specific example. Suppose we have the tensegrity

shown in Figure 3.2.4 on the following page(b), whose the vertex curve is shown in

Figure 3.2.4(a). The vertex curve consists of two connected components: a central

segment running from (0, 0) to (0, 2) and a stadium curve running at distance 2 around

that segment. Struts are connected orthogonally to the curve. Cables are connected

in the piecewise linear fashion shown in Figure 3.2.5 on page 50 (essentially, endpoints

on the curves move with one fixed speed and endpoints on the straight segments with

another).

In Figure 3.2.5, we show the sets S and C for the stadium curve tensegrity. These

two sets are subsets of the space (V × V )�∼. If we plot V ×V as a square, the space

(V × V )�∼ can be viewed as either the triangle above the diagonal or the one below.

We’ve used one of each for the sake of space.

The parameter for V , as it runs along the edge of the square, first sweeps out

the component whose vertices lie along the center segment (from bottom to top) and

then covers the outer curve, starting at the point marked in Figure 3.2.4 and running

in the direction of the arrow around the outside.
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(0, 0)

(2, 0)

b a•

(a) The vertex curve, with basic open sets a
and b of Rn shown (dashed lines), delineating
basic open sets of V (shaded regions). The
edge (strut/cable) on which the open sets in
Figure 3.2.5 will be centered is shown as a
“double helix”.

(b) The tensegrity
with struts and cables.
Edges in the open sets
shown in Figure 3.2.5
are shaded.

Figure 3.2.4: The stadium-curve tensegrity.

The open sets a and b of V are shown marked along the edges of the square. The

struts are plotted in the upper triangle, while the cables are shown in the lower one.

We’ve marked two basic open sets (in both cases, a ball of radius
√

5 around the edge

shown in Figure 3.2.4(a)).

3.2.5 About non-compact edgesets

Let’s talk again for a moment about the example from Figure 3.2.1 on page 42. Why

doesn’t it trouble us to exclude this case? Frankly, because it is indistinguishable from

the case shown in Figure 3.2.6 on page 51. Here, the strut at 0 and the cable at π have
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Figure 3.2.5: Here we show the sets S and C for the stadium-curve tensegrity
of Figure 3.2.4 on the previous page with one basic open set for each connected
component of E (shaded, with dashed outlines). See the text for a more complete
description of this figure.

been replaced with bars. Now, both S and C are compact4 and all of our results

hold.

This tensegrity, however, works exactly as the one in Figure 3.2.1 did, because the

elements of Vf(V ) are continuous. Any vector field which expanded the strut at 0,

s0, would have had to expand all edges in an open set around s0. But any such open

set contains cables, which cannot expand.

Thus s0 cannot change length and it might as well be a bar. By the same type of

argument, the cable at π is effectively a bar as well.

4As we noted in the footnote on page 41, V ×V is compact and since S and C are now
closed, their preimages in V × V are compact and hence they are themselves compact.
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Figure 3.2.6: The tensegrity of Figure 3.2.1 “compactified”. Bars have been added
at 0 and π. Now S and C are both compact.

Proposition 3.2.11. For any V ∈ Vf(V ), Y V ∈ C(E )+ \ {0} if and only if YcV ∈

C(Ec)
+ \ {0}, where Ec is the disjoint union of the closures of S and C (that is,

Ec = S t C ), and Yc is the rigidity operator which results from replacing E with Ec.

Proof. If YcV ∈ C(Ec)
+, then Y V , which is the restriction of YcV to E , must be

in C(E )+. If YcV 6= 0, then there must be some edge ec ∈ Ec for which YcV (ec) > 0.

But because YcV is continuous, there is some open set on which YcV > 0, and that

open set must intersect E (as ec is in the closure of either S or C ). So Y V must also

be nonzero. That’s one direction.

Conversely, assume that Y V ∈ C(E )+. Then its image must be contained in the

interval [0,∞). We want to show that the im YcV is also contained in that interval.

Suppose, to the contrary, there is some edge en such that YcV (en) < 0. Now en is

either in S or in C . Without loss of generality, take it to be in S .

Since YcV is continuous, there must be an open set U− containing en on which YcV

is strictly negative. But since en ∈ S , we must have U−∩S 6= ∅, and Yc > 0 on S , so

it cannot be strictly negative on U−. That contradiction shows that imYcV ∈ [0,∞).
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Also, if Y V 6= 0, then on some e ∈ E , Y V (e) 6= 0 and hence YcV (e) 6= 0, so

YcV 6= 0.

3.2.6 Discrete Topologies

Just to finish things off well, let’s end this section by showing that in the finite case,

the topologies on V and E are discrete.

Proposition 3.2.12. If V and E are finite sets, the topologies on them are discrete.

Proof. If V is a finite set, then p(V ) is a finite set of points in Rn. Since p is 1-1, if

v1 6= v2, then dV (v1, v2) = ‖p(v1)− p(v2)‖ > 0, so open balls in V centered on v1 and

v2 and having radius less than half of dV (v1, v2) separate v1 and v2. For any given

vertex, v, the (finite) intersection of all such balls is an open set which contains v and

no other element of V . Thus we have the discrete topology on V .

Similarly, if e1, e2 ∈ E , then either they are both struts (or both cables) or there

is one of each. Since the sets S, C and B are pairwise disjoint, no two struts connect

the same pair of vertices and no two cables connect the same pair of vertices. So if e1

and e2 are of the same type, they are some positive distance apart. But if they are

of different type, that is even more true. Using the same process as we did for V , we

see that this topology is also discrete.

3.3 C(E ) and C∗(E )

Since C(E ) and C∗(E ) are no longer finite vector spaces, the Euclidean norm will

no longer serve. We’ll put the sup norm on C(E ) and the operator norm on C∗(E ).

That is, for f ∈ C(E ) and µ ∈ C∗(E ), we have

‖f‖ = sup
e∈E

|f(e)| and

‖µ‖ = sup
‖f‖=1

|µf |.
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We can induce a metric on each by considering ‖x− y‖ to be the distance between x

and y and establish on each the associated metric topology.

One quick definition:

Definition 3.3.1 (see, for example, Folland (1999, p. 132)). If X is a topological

space, the support of a function f : X → R, denoted supp f , is the smallest closed set

S ⊂ X such that f is zero everywhere on the complement X \ S. In other words, S

is the closure of the set of all points x ∈ X for which f(x) 6= 0.

And now we’re prepared to talk about the interiors of C(E )+ and C(E )−.

Lemma 3.3.2. The interiors of the nonnegative and nonpositive orthants of C(E ),

that is int C(E )+ and int C(E )−, consist of the strictly positive and strictly negative

continuous functions from E to R, respectively.

Proof. We will prove here that int C(E )+ consists of the strictly positive elements

of C(E ). The proof for int C(E )− is identical except for sign. We need to establish

our result using the Euclidean norm for the finite case and the sup norm for the

general case.

Let f be a strictly positive, continuous function on E . Then, since E is compact,

f achieves a (strictly positive) minimum on E . Now let g ∈ C(E ) with ‖f − g‖ =

d < min f . Of course g also achieves a minimum on E at some edge e. Then, under

either norm,

min g = g(e) = f(e) − (f(e) − g(e)) > f(e) − ‖f − g‖ > min f − d > 0,

so g is strictly positive. Thus f is in int C(E )+.

Conversely, let f ∈ int C(E )+. Then there exists some δ > 0 such that g ∈ C(E )+

for all ‖f − g‖ < δ. Let e ∈ E be where f achieves its minimum. Suppose f(e) < δ.

In the finite case, let g = f everywhere except at e and set g(e) = f(e)−δ
2

. In the

infinite case, select an open set U containing e and let ge ∈ C(E )+ with sup ge =
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ge(e) = f(e)−δ
2

and supp ge ⊂ U , and set g = f − ge. Then in both cases, we have

‖f − g‖ = f(e)+δ
2

∈ (0, δ), but g(e) = f(e)−δ
2

< 0. That contradiction means that we

must have f(e) = min f > δ > 0, and f is strictly positive.

Next we turn our attention from C(E ) to its topological dual, C∗(E ), which, we

remember, consists of the continuous linear functionals on C(E ) (Definition 2.1.13 on

page 22). We’ll want to relate the elements of C∗(E ) not only to C(E ) but also to E

itself.

First, we should note that for linear functionals, “continuous” (Definition 3.7.4 on

page 76) and “bounded” (Definition 3.4.1 on page 60) are connected:

Theorem 3.3.3. For a linear transformation Λ of a normed linear space X into a

normed linear space Z, each of the following three conditions implies the other two:

(a) Λ is bounded.

(b) Λ is continuous.

(c) Λ is continuous at one point of X.

Proof. See Rudin (1987, p. 96).

Next, a quick definition.

Definition 3.3.4 (Rudin (1987, p. 47)). A measure is called regular if, for any

measurable set E,

µ(E) = inf{µ(U) :E ⊂ U, U open}

and

µ(E) = sup{µ(K) :K ⊂ E, K compact}.

And now we’re ready for a theorem that will allow us to understand the elements

of C∗(E ) not only as continuous linear functionals on C(E ), but also as measures

on E .



55

Theorem 3.3.5 (Riesz Representation Theorem). If X is a compact Hausdorff space,

then every bounded linear functional Φ on C(X) is represented by a unique regular

Borel measure µ, in the sense that

Φf =

∫

X

f dµ

for every f ∈ C(X).

Proof. See Rudin (1987, p. 130). Rudin actually gives the theorem for locally compact

spaces and requires the functions to be in C0(X) (the continuous functions which

vanish at infinity), but for a compact set, C0(X) = C(X). Also, he returns a regular

complex measure ν, but our µ = |ν|, the total variation of ν, which is regular since ν

is regular (Rudin, 1987, pp. 70, 116–117, 130).

Since we are dealing in measures, we’ll want to talk about “strictly positive mea-

sures” and “semipositive measures”, and since the Riesz Representation theorem gives

it to us, we’ll expect regularity. We’ll take the following definitions.

Definition 3.3.6. A strictly positive measure is a regular measure µ on a set X

such that for every nonempty, open U ⊂ X, µ(U) > 0. A semipositive measure is a

nonzero regular measure µ on a set X such that for every nonempty, open U ⊂ X,

µ(U) > 0.

Following general practice, we will use the term positive measure to refer to what

might more accurately be called “nonnegative measure”. The regular positive mea-

sures differ from the semipositive measures only in that the zero measure is considered

a regular positive measure.

It seems now that we have competing definitions for “strictly positive” and “semi-

positive” for those measures that are stresses of our tensegrity (in Definition 2.1.16 on

page 22 they were defined in terms of µ(f) rather than µ(U)). In Proposition 3.3.17

on page 58, we’ll show that the definitions are equivalent, but we have some work to

do before we get there.
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First, we need to define the support of a measure.

Definition 3.3.7 (see, for example, Morrison (2001, p. 152)). If µ is a measure on

a set X (with its associated σ-algebra), then the support of µ, denoted supp µ is the

set of x ∈ X such that |µ(U)| > 0 for all open neighborhoods U of x.

There are a few lemmas about supports we will want. The proof for the first was

found on Wikipedia (2006).

Lemma 3.3.8. The support of a measure µ on a topological set X is a closed set.

Proof. Let µ be a measure on a topological set X and let {xi ∈ supp µ} be a sequence

which approaches some limit x ∈ X. If U ⊂ X is any open set which contains x,

then, since x is the limit of the xi, U must intersect {xi}. But that means U is an

open set containing some element of supp µ and hence |µ(U)| > 0. So x ∈ supp µ.

Lemma 3.3.9. If µ is a regular positive measure on a topological set X and A is an

open subset of X such that supp µ ∩ A = ∅, then µ(A) = 0.

Proof. We note first that if x ∈ A, then x /∈ supp µ, so there must be some open

neighborhood Ux of x with measure 0. If K is any compact subset of A, then K can

be covered by a finite number of these Ux. So 0 6 µ(K) 6
∑

x∈K µ(Ux) = 0. But

since µ is regular, µ(A) = sup{µ(K) :K ⊂ A, K compact}, so µ(A) = 0.

Now we can show how positivity relates to the support of a measure.

Lemma 3.3.10. µ is a strictly positive measure on E if and only if µ is a regular

positive measure with supp µ = E .

Proof. Let µ be strictly positive and let e ∈ E . Then, for every neighborhood U of e,

µ(U) > 0 (after all, µ is strictly positive), so e ∈ supp µ.

Conversely, let µ be a regular positive measure on E with supp µ = E and let

U ⊂ E be nonempty and open. Then U ∩ supp µ = U 6= ∅, so µ(U) > 0.
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Lemma 3.3.11. µ is a semipositive measure on E if and only µ is a regular positive

measure with supp µ 6= ∅.

Proof. Let µ be semipositive. Suppose, to the contrary, that supp µ = ∅. Then, E

is an open set disjoint from supp µ, so by Lemma 3.3.9, µ(E ) = 0 and since µ is

semipositive, we must have µ(U) = 0 for every U ⊂ E . This contradiction shows that

supp µ 6= ∅.

Conversely, let µ be a regular positive measure on E with supp µ 6= ∅ and let

e ∈ supp µ. Then, since µ is positive, µ(U) > 0 for all U ⊂ E . Furthermore, E is an

open set which contains e and hence µ(E ) > 0.

We’ll need to know about the Jordan decomposition of a measure, which allows

a signed measure to be “split” into positive and negative parts and the Urysohn

Lemma, which allows us to create certain continuous maps. Here are the details:

Definition 3.3.12 (Folland (1999, p. 87)). Two signed measures µ and ν on a measur-

able space (X,M) are mutually singular if there exist E, F ∈ M such that E∩F = ∅,

E ∪ F = X, E is null for µ and F is null for ν. We denote this µ ⊥ ν.

Theorem 3.3.13 (Jordan Decomposition Theorem). If ν is a signed measure, there

exist unique positive measures ν+ and ν− such that ν = ν+ − ν− and ν+ ⊥ ν−.

Proof. See Folland (1999, p. 87).

Definition 3.3.14 (Munkres (2000, p.195)). A space X is said to be normal if, for

each pair A, B of disjoint closed sets of X, there exist disjoint open sets containing

A and B, respectively.

Lemma 3.3.15. Every metric space is normal.

Proof. For this proof, we’ll take some guidance from a hint in Lawson (2003, p. 52).

We let X be a metric space with metric d and let A and B be disjoint closed subsets
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of X. For each a ∈ A, we know that since B is closed and A and B are disjoint, a is

not in the closure of B. So there must be some strictly positive infimal distance da

between a and all of B. Let Ua be the open ball of radius da/2 centered at a. Clearly,

Ua ∩ B = ∅. Furthermore, the collection of all such Ua covers A. Similarly, we can

cover B with Ub where the radius of a given Ub is half the minimum distance between

b and all of A.

Now let UA =
⋃

Ua and UB =
⋃

Ub. We’d like to show that UA ∩ UB = ∅.

Suppose, to the contrary, that some element x ∈ X lies in both UA and UB. Since x

is in a union of sets, it must be in one of the sets. That is, there must be some a ∈ A

and some b ∈ B such that x ∈ Ua ∩Ub. Let da be the infimal distance between a and

B and db the infimal distance between b and A. Then the distance between the two

points d(a, b) has to be at least as large as da and db. But by the triangle inequality

max{da, db} 6 d(a, b) 6 d(a, x) + d(x, b) <
da

2
+

db

2
6 2

max{da, db}
2

= max{da, db}.

That contradiction shows us that there can be no such x and hence UA and UB are

disjoint. So every metric space is normal.

Theorem 3.3.16 (Urysohn Lemma). Let X be a normal space; let A and B be

disjoint closed subsets of X. Let [a, b] be a closed interval in the real line. Then

there exists a continuous map f :X → [a, b] such that f(x) = a for every x in A, and

f(x) = b for every x in B.

Proof. See, for example, Munkres (2000, p. 207).

Proposition 3.3.17. Let µ ∈ C∗(E ) with µ 6= 0. Then µ(f) > 0 (resp. µ(f) > 0)

for all nonzero f ∈ C(E )+ if and only if µ(U) > 0 (resp. µ(U) > 0) for all nonempty,

open U ⊂ E .

Proof. We’ll start by showing that if µ(f) > 0 for all f ∈ C(E )+, then µ(U) > 0 for

all open U ⊂ E.
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Let µ ∈ C∗(E )+ such that µ 6= 0 and µ(f) > 0 for all f ∈ C(E )+. Let µ =

µ+ − µ− be the Jordan decomposition of µ. By Lemma 3.3.8, supp µ+ is closed, so

Us = E \ supp µ+ is open. If Us = ∅, then by Lemma 3.3.10, µ+ is a strictly positive

measure. Since µ+ ⊥ µ− in the Jordan decompositions, then the set F from Definition

3.3.12 must be the empty set. So µ− is the zero measure and µ is strictly positive as

well and we are done.

Suppose, then, that Us 6= ∅ and, further, that there exists some U− ⊂ E such

that µ(U−) < 0. If U− were completely contained in supp µ+, we’d have µ+(U−) > 0

and µ−(U−) = 0 and thus µ(U−) > 0. Since that isn’t the case, we know that U−

reaches (or lies completely) outside of supp µ+. That is, Ui = U− ∩ Us 6= ∅ and

µ(Ui) = −µ−(Ui) < 0.

Since −µ−(Ui) < 0, Ui must intersect the support of µ− nontrivially (by

Lemma 3.3.9 on page 56) , so define Ei = supp µ− ∩Ui, which means that µ(Ei) < 0.

Now Ei and supp µ+ are disjoint closed sets in the metric (hence normal, by Lemma

3.3.15) space E , so by the Urysohn Lemma, there is a continuous function f which

takes the value 1 on Ei and the value 0 on supp µ+ and whose values lie in the interval

[0, 1] elsewhere. Clearly f ∈ C(E )+.

So now we have µ(f) =
∫

E
f dµ =

∫
supp f

f dµ. But by design, supp f ∩ supp µ+ =

∅, so we have µ(f) = −
∫
supp f

f dµ− 6 −
∫

Ei
f dµ− = µ−(Ei) < 0.

That contradicts our hypothesis that µ(f) > 0 for all f ∈ C(E )+, so there can be

no such U−. Hence µ(U) > 0 for all U ⊂ E .

Next we show that if µ(f) > 0 for all nonzero f ∈ C(E )+, then µ(U) > 0 for all

nonempty, open U ⊂ E .

Let µ ∈ C∗(E )+ such that µ(f) > 0 for all nonzero f ∈ C(E )+. Now we know (by

the work we just finished) that µ(U) > 0 for all nonempty, open U ⊂ E , but suppose

that for one such set, µ(U) = 0. Select any nonnegative, continuous function fU on

E with |fU | = 1 and supp fU ⊂ U .
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Then, defining 1 to be the constant function 1(e) ≡ 1 on E , we have

0 < µ(fU) =

∫

E

fU dµ =

∫

supp fU

fU dµ 6

∫

supp fU

1 dµ 6 µ(U) = 0.

That contradiction show that there can be no such U .

Finally, we work the other direction. The material given here is for the strict

inequalities, but it works a fortiori if they are not strict.

Let µ ∈ C∗(E )+ such that µ(U) > 0 for all nonempty, open U ⊂ E and let f be a

nonzero element of C(E )+. Since f is nonzero, there must be some e+ ∈ E such that

f(e+) > 0. As f is continuous U+ = f−1((f(e+)/2,∞)) is nonempty and open. Thus

µ(f) =

∫

supp f

f dµ >

∫

U+

f dµ >

∫

U+

f(e+)

2
dµ =

f(e+)

2
µ(U+) > 0.

3.4 Vf(V ) and Y

Vf(V ) consists of the continuous vector fields from V to Rn. We’ll want it to be

a topological space, so we’ll give it the sup norm. That is, for V ∈ Vf(V ),

‖V ‖ = sup
v∈V

‖V (v)‖.

Then we’ll use the norm to give us a metric and endow Vf(V ) with the associated

metric topology.

When we first met Y , back on page 18, we defined it as a map from Vf(V ) to

C(E ), but much of what we have done since then has thought of Y simply as a matrix.

That was fine for the finite world, but we need to get back to thinking of Y as a map.

As a map, Y has some nice attributes.

Definition 3.4.1 (Rudin (1987, p. 96)). Consider a linear transformation Λ from a

normed linear space X into a normed linear space Z, and define its norm by

‖Λ‖ = sup{‖Λx‖ :x ∈ X, ‖x‖ 6 1}.
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If ‖Λ‖ < ∞, then Λ is called a bounded linear transformation.

In a moment we’ll see that our map ‖Y ‖ is bounded. First, though, we have a

lemma about edge lengths.

Lemma 3.4.2. The edge length ‖p(v1) − p(v2)‖ is continuous in e ∈ E .

Proof. Let ε > 0. Select δ = ε/2. Then, whenever e1 = {v11, v12}, e2 = {v21, v22} ∈ E

with dE (e1, e2) < δ, we have either

‖p(v11) − p(v21)‖ < δ and ‖p(v12) − p(v22)‖ < δ (3.2)

or

‖p(v11) − p(v22)‖ < δ and ‖p(v12) − p(v21)‖ < δ. (3.3)

But then

∣∣‖p(v11) − p(v12)‖ − ‖p(v21) − p(v22)‖
∣∣ 6

∣∣‖p(v11) − p(v12) − p(v21) + p(v22)‖
∣∣

6 ‖p(v11) − p(v21)‖ + ‖p(v22) − p(v12)‖

(3.4)

and also

∣∣‖p(v11) − p(v12)‖ − ‖p(v21) − p(v22)‖
∣∣ =

∣∣‖p(v11) − p(v12)‖ − ‖p(v22) − p(v21)‖
∣∣

6
∣∣‖p(v11) − p(v12) − p(v22) + p(v21)‖

∣∣

6 ‖p(v11) − p(v22)‖ + ‖p(v21) − p(v12)‖.

(3.5)

Since both Equation (3.4) and Equation (3.5) are true, and either Equation (3.2) or

Equation (3.3) is true as well, we have

∣∣‖p(v11) − p(v12)‖ − ‖p(v21) − p(v22)‖
∣∣ 6 δ + δ = ε

and we are done.

Proposition 3.4.3. For any rigidity operator Y , ‖Y ‖ < ∞.
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Proof. Let V ∈ Vf(V ) with ‖V ‖ 6 1. Then supv∈V ‖V (v)‖ 6 1. So for any given

edge, e = {v1, v2}, we have ‖V (v1) − V (v2)‖ 6 2. By Lemma 3.4.2, edge length is

a continuous function on E , and E is compact, so there is some edge eL of longest

length L < ∞. Thus, whenever ‖V ‖ 6 1, we have

‖Y V ‖ = sup
{v1,v2}∈E

|(V (v1) − V (v2)) · (p(v1) − p(v2))| 6 2L.

Since ‖Y ‖ is defined as

‖Y ‖ = sup{‖Y V ‖ :V ∈ Vf(V ), ‖V ‖ 6 1},

we have ‖Y ‖ 6 2L < ∞.

We’d like to show that Y is a continuous map from Vf(V ) to C(E ). To do that

we’ll need a little machinery. We need a theorem about continuity in quotient spaces

and a lemma about a continuous function on V × V .

Theorem 3.4.4. Let π: X → W be a quotient map. Let Z be a space and let g:X → Z

be a map that is constant on each set π−1(w), for w ∈ W . Then g induces a map

f :W → Z such that f ◦ π = g. The induced map f is continuous if and only if g is

continuous.

X

π

��

g

  A
AA

AA
AA

A

W
f

// Z

Proof. See Munkres (2000, p. 142).

Lemma 3.4.5. If f(v) is a continuous function from V to Rn, then f(v1)− f(v2) is

a continuous function from V × V to Rn.

Proof. Let ε > 0. Since f(v) is continuous, there exists some δ > 0 such that

whenever v1 and v2 are in V with dV (v1, v2) < δ, we have ‖f(v1)−f(v2)‖ < ε/2. Now,
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whenever (v1, v2) and (v3, v4) are in V × V with dV ×V ((v1, v2), (v3, v4)) < δ, we have

dV (v1, v3) < δ and dV (v2, v4) < δ. But then

‖(f(v1) − f(v2)) − (f(v3) − f(v4))‖ = ‖f(v1) − f(v2) − f(v3) + f(v4)‖

= ‖(f(v1) − f(v3)) + (f(v4) − f(v2))‖

6 ‖f(v1) − f(v3)‖ + ‖f(v4) − f(v2)‖

<
ε

2
+

ε

2
= ε.

Now we can state and prove our proposition.

Proposition 3.4.6. The rigidity operator Y is a continuous linear map from Vf(V )

to C(E ).

Proof. We have two things to accomplish. First, we need to show that continuous

vector fields get mapped to continuous functions under Y . Second, we need to show

that Y is a continuous linear map.

Remembering that Y V is the pointwise dot product of the functions V (v1)−V (v2)

and p(v1) − p(v2), we note that

(V (v1) − V (v2)) · (p(v1) − p(v2)) = (V (v2) − V (v1)) · (p(v2) − p(v1)).

So if π is the quotient map from V ×V → (V × V )�∼, we see that (V (v1)−V (v2)) ·

(p(v1) − p(v2)) is constant on π−1({v1, v2}).

Now V is continuous, since it is an element of Vf(V ), and p is continuous because

the topology on V is defined by it. So by Lemma 3.4.5, V (v1)−V (v2) and p(v1)−p(v2)

are both continuous on V × V . Hence (V (v1)− V (v2)) · (p(v1)− p(v2)) is continuous

on V × V . But by Theorem 3.4.4, then, Y V = (V (v1) − V (v2)) · (p(v1) − p(v2)) is

continuous on (V × V )�∼ and thus on E .
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So we’ve shown that Y maps from Vf(V ) to C(E ). Let’s show that it does so in

a continuous fashion. We could do that by invoking Theorem 3.3.3 on page 54, but

doing the work ourselves is not difficult.

Let U be an open set of functions in C(E ). If im Y ∩ U = ∅, then Y −1U = ∅,

which is open. Otherwise, let V1 ∈ Y −1U . Now there is a basic open set B around

Y V1 contained in U with radius r > 0. Let V2 ∈ Vf(V ) with ‖V1−V2‖ < r/‖Y ‖ (which

is well defined, thanks to Proposition 3.4.3 on page 61). Then

‖Y V1 − Y V2‖ = ‖Y (V1 − V2)‖

6 ‖Y ‖‖V1 − V2‖, by the definition of ‖Y ‖

< ‖Y ‖ r

‖Y ‖ = r

So there is an open ball of radius r/‖Y ‖ around V1 contained in Y −1U . That is, Y −1U

is open. Thus Y is a continuous map.

3.5 First Main Theorem

3.5.1 Statement and Proof

We’re almost ready to state and prove our first main theorem. Before we do, though,

we’ll need another of the fundamental results from Functional Analysis, the Hahn-

Banach Theorem. Morrison, in his well-written book on Functional Analysis (2001),

works through various versions of the Hahn-Banach Theorem. This is the extension

form, which allows us to extend a linear functional on a subspace of C(E ) to all

of C(E ).

Theorem 3.5.1 (Hahn-Banach Theorem, Extension Form). Suppose X is a real

linear space and S is a linear subspace of X and p: X → R is

Subadditive (that is, p(x1 + x2) 6 p(x1) + p(x2) for all x1, x2 ∈ X)
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Nonnegatively subhomogeneous (i.e., p(λx) 6 λp(x) for all λ > 0 and

x ∈ X).

Let f :S → R be a linear functional that satisfies f(s) 6 p(s) for all s ∈ S. Then f

may be extended in a linear fashion to a functional F defined on all of X in such a

manner that the extension satisfies F (x) 6 p(x) for all x ∈ X.

Proof. See Morrison (2001, p. 65).

Theorem 3.5.2 (First Main Theorem). The tensegrity G(p) is partially X -bar equiv-

alent if and only if G(p) has a semipositive stress.

Proof. Let us begin by assuming that G(p) has a semipositive stress, µ. We wish to

show that G(p) has no strictly positive motion. Let V ∈ X be such that Y V ∈ C(E )+.

Since µ is a stress, we know that

0 = µ(Y V ) =

∫

E

Y V dµ =

∫

supp µ

Y V dµ.

So we must have Y V = 0 almost everywhere on supp µ, a set which, by Lemma 3.3.11

on page 57, is nonempty due to µ being semipositive.

Conversely, let us assume that G(p) is partially X -bar equivalent. Then Y (X ) ∩

int C(E )+ = ∅ (by definition). So Y (X ) contains no strictly positive motions, that

is, for any motion V ∈ X , there must be some eV ∈ E such that Y V (eV ) = 0.

We also note that since X is a subspace, Y (X ) must be a subspace of C(E ), so

Y (X ) ∩ int C(E )− = −(−Y (X ) ∩ int C(E )+) = −(Y (X ) ∩ int C(E )+) = ∅.

Let s: C(E ) → R by s(f) = sup f for all f ∈ C(E ). We note that if f1 and f2 are

in C(E ) and a ∈ (0,∞), then

s(f1 + f2) = sup
e∈E

{(f1 + f2) (e)} 6 sup
e∈E

{f1(e)} + sup
e∈E

{f2(e)} = s(f1) + s(f2),

and

s(af1) = sup
e∈E

{af1(e)} = a sup
e∈E

{f1(e)} = as(f1),
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so s is subadditive and nonnegatively subhomogeneous.

Now, by Lemma 3.3.2 on page 53, 1 ∈ int C(E )+, so, by hypothesis, 1 /∈ Y (X ).

We can define µ̂: span{Y (X ), 1} → R by µ̂(Y V + α1) = α. What can we say about

µ̂? First, it is clearly linear. Secondly, it is certainly zero on all of Y (X ). How does it

compare to s? Well, we know that any element Y V of Y (X ) must be zero somewhere

(so as to avoid being in either int C(E )+ or int C(E )−), so at that point Y V + α1

equals α. That gives us that s(Y V + α1) > α = µ̂(Y V + α1). Hence µ̂ is dominated

by s.

By the Hahn-Banach theorem (Theorem 3.5.1 on page 64), then, we can extend

µ̂ to some linear functional µ on all of C(E ) that is also dominated by s.

Let’s calculate

‖µ‖ = sup
‖f‖=1

|µ(f)|

Remembering that ‖f‖ = supe∈E |f(e)|, we see that if ‖f‖ = 1, we must have s(f) 6 1

and s(−f) 6 1. Since s dominates µ, then, we must have µ(f) 6 s(f) 6 1 and

µ(−f) 6 s(−f) 6 1, giving us (by the linearity of µ) µ(f) = −µ(−f) > −1. So

‖µ‖ 6 1. Since µ is linear and bounded, by the Riesz Representation Theorem

(Theorem 3.3.5 on page 55), µ is a regular measure on E . We need to show that

µ(f) > 0 for all f ∈ C(E )+ and that µ 6= 0.

Suppose that f ∈ C(E )+. Then 0 > s(−f) > µ(−f). But µ(−f) 6 0 implies that

µ(f) > 0 by the linearity of µ. Since µ(1) = 1, µ is nonzero, and since µ(f) > 0 for

all f ∈ C(E )+, µ is (at least) a semipositive measure. Finally, as µ(Y V ) = 0 for all

V ∈ Y (X ), µ is a semipositive stress and our proof is complete.

3.5.2 An Example

Perhaps we could benefit from an example. Suppose we have a tensegrity like the one

in Figure 3.5.1 on the following page. In the figure, we have a semipositive stress for
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Figure 3.5.1: A tensegrity with a semipositive stress (shown) but no strictly posi-
tive one.

this tensegrity, so there is no motion that strictly increases the lengths of all struts

and decreases the lengths of all cables.

On the other hand, if we were to put a positive weight on the two edges which are

currently marked 0, there would be no way to get a zero vector sum at the vertices

they touch. As we saw in Proposition 2.1.17 on page 22, that says there is no strictly

positive stress. So the tensegrity is partially X -bar equivalent (each of the squares is

X -bar equivalent), but it is not X -bar equivalent as a whole.

Now, Theorem 3.5.2 doesn’t seem particularly helpful if there are bars in the

tensegrity. After all, one could create a semipositive stress by putting equal positive

weights on the strut and cable portions of one of the bars and zeros everywhere else.

That is true, but there are a couple of points worth noting. First, there are many

continuous tensegrities which do not have bars. Connelly et al. (2003), for example,

used just such a theorem on a tensegrity which had no bars.

Secondly, in some cases we can narrow X down to variations which would not

change the bars, and then remove the bars and analyze the tensegrity without them.

This has to be done carefully, as removing the bars may destroy the compactness of E

(it would, for example, for the tensegrity in Figure 3.2.6 on page 51), but it is useful

in other cases.
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Figure 3.5.2: A tensegrity that has no semipositive stress (and hence has a strictly
positive motion) if X only contains the variations that do not change the length of
the bar.

As an example, the tensegrity in Figure 3.5.2 has no motion that strictly shortens

all cables and lengthens all struts, because that would require both lengthening and

shortening the bar. But if X excludes those variations that would change the length

of the bar, the tensegrity has no semipositive stress. By Theorem 3.5.2, then, there

is a strictly positive motion of the other edges.

3.6 Second Main Theorem

Our original goal was to move Roth & Whiteley’s lemma into the continuous world.

We haven’t quite accomplished it. The difference between what we have and what

we were after is the same as the difference between Gordan’s theorem and Stiemke’s

(shown on page 38). Let’s take another pass at it.

3.6.1 One Direction

One direction of the theorem is easy to do.

Theorem 3.6.1 (Second Main Theorem). If a tensegrity has a strictly positive stress,

then it is X -bar equivalent.

Proof. Let G(p) be a tensegrity. G(p) having a strictly positive stress means that

there exists some strictly positive measure µ ∈ Y (X )⊥.
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Let V be any element of X such that Y V ∈ C(E )+. Since µ ∈ Y (X )⊥, we must

have µ(Y V ) = 0. On the other hand, µ is strictly positive and Y V ∈ C(E )+, so

µ(Y V ) = 0 implies Y V = 0.

3.6.2 Partially X -bar equivalent

Let’s pause for a moment to defend the choice of “partially X -bar equivalent” as a

term.

Corollary 3.6.2. If G(p) is partially X -bar equivalent, then some subtensegrity of

G(p) is X -bar equivalent.

Proof. Let G(p) be partially X -bar equivalent. By Theorem 3.5.2, G(p) has a semi-

positive stress µ. Then supp µ is nonempty, by Lemma 3.3.11, and closed, by Lemma

3.3.8, (and hence compact as the closed subspace of a compact space, see, for example

Munkres (2000, p. 165)) and has positive measure, since µ 6= 0.

So let S(p) be the subtensegrity we get from G(p) by keeping the vertex set V

intact but by restricting the edgeset to supp µ. Lemma 3.3.10 gives us that µ is a

strictly positive measure for S(p), so we need only show that it is a stress. But since

µ is a stress for G(p), we already have

0 = µ(Y V ) =

∫

supp µ

Y V,

so µ is a stress for S(p) as well. Hence, by Theorem 3.6.1, S(p) is X -bar equivalent.

We note, in passing, that Figure 3.2.1 on page 42 does not give us a counterexample

to this theorem, as E in that case is not compact.

3.6.3 The Other Direction

We have that having a strictly positive stress implies X -bar equivalence. Showing

that the converse is true for continuous tensegrities is surprisingly difficult. Here’s a
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little idea of why. Figure 3.6.1 shows a tensegrity which resembles the crossed square

of Section 2.2. This one differs, however, in that it has a bar in place of one of the

1

34

2

Figure 3.6.1: A non-minimal crossed square.

struts. We already know that the crossed square is bar equivalent, what effect does

“extra cable” of the bar have? In Section 2.2, we found that giving a weight of 1 to

every edge provided a strictly positive stress. By inspecting Y > (on page 25), we can

discover that elements of its kernel must have the same weight on every edge, so our

µ is, up to scaling, the only strictly positive stress for the crossed square.

By changing that strut to a bar, though, we changed Y . It now has another row

corresponding the new “cable”.

Ŷ =





1 0 −1 0 0 0 0 0

−1 −1 0 0 1 1 0 0

0 1 0 0 0 0 0 −1

0 0 0 1 0 −1 0 0

0 0 1 −1 0 0 −1 1

0 0 0 0 −1 0 1 0

0 0 −1 1 0 0 1 −1





A little arithmetic and we find that the kernel of Ŷ > is now a family of stresses which

look like
[
a a a a b a (b − a)

]>
. There is now an interval’s worth of strictly

positive stresses. For any given positive value of b, a can take on any value in the

interval (0, b).
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In Subsection 3.8.2 on page 89, we’ll return to this example and see what that

says about the tensegrity, but at the moment we’re more interested in what it says

about µ.

While the values a ∈ (0, b) give us strictly positive stresses, the values a = 0 and

a = b give us semipositive stresses, which lie on the boundary of C∗(E )+. We could

turn those semipositive stresses into strictly positive ones by “rotating” the stress

into the interior of C∗(E ). In the continuous case, Theorem 3.5.2 on page 65 gives

us semipositive stresses, so why not do something similar and “rotate” those stresses

into the interior of C∗(E )+? The answer is fairly fundamental: In the infinite case,

C∗(E )+ has no interior.

Suppose X is any compact Hausdorff space and let C(X), C∗(X) and C∗(X)+

be defined for X just as C(E ), C∗(E ) and C∗(E )+ are defined for E for continuous

tensegrities. Then,

Theorem 3.6.3. C∗(X)+ has interior if and only if X is finite.

Proof. Suppose X is finite. The elements of C(X) and C∗(X) are scalar fields on X.

Let µ ∈ C∗(X)+ with µ(x) > 0 for all x ∈ X and let x0 denote some element of X on

which µ takes its smallest value. Now let η ∈ C∗(X) with ‖η − µ‖ < µ(x0), that is,

sup
‖f‖=1

|(η − µ)(f)| < µ(x0).

Then certainly |(η − µ)(f)| < µ(x0) for all f of norm 1, including those functions

which map one element of X to 1 and all of the others to 0. So for every x ∈ X, we

have

|(η − µ)(x)| < µ(x0) ⇒ −µ(x0) < η(x) − µ(x) < µ(x0)

⇒ µ(x) − µ(x0) < η(x) < µ(x) + µ(x0)

and since µ(x) > µ(x0) for all x, we have η(x) > 0 for all x ∈ X. Thus in the finite

case, C∗(X)+ has nonempty interior — the strictly positive elements of C∗(X) form

its interior.
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Let’s consider the general case. Suppose µ ∈ int C∗(X)+. At the very least that

means that µ(X) > 0, so by scaling we can assume that µ(X) = 1. Since C∗(X) has

the metric topology, µ being in the interior of C∗(X)+ also means that there must be

some δ > 0 such that whenever η ∈ C∗(X) with ‖µ − η‖ < δ, we have η ∈ C∗(X)+.

Now either there exists some ε > 0 such that µ(U) > ε for every nonempty open

U ⊂ X, or not.

Let us assume first that such an ε exists. Then any collection of nonempty,

pairwise-disjoint open sets on X must have at most b1/εc members (where bxc desig-

nates the greatest integer less than or equal to x).

Let m be the maximum number of sets in any such collection and let U1, . . . , Um

be a collection with that maximal number of members. Now the union of the closures

of the Ui,
m⋃

i=1

Ui

must contain all of X. Otherwise X \⋃Ui would be another open set disjoint from

each of the Ui, contradicting the maximality of m.

There are only finitely many Ui, so if there are infinitely many elements in X,

then by the Pigeon-hole Principle (see, for example, Landau (1958, p. 78)), at least

one of the Ui must contain infinitely many of them. Without loss of generality, we’ll

take that set to be Um.

Let x1 and x2 be two distinct elements in Um. Since X is Hausdorff, there exist

disjoint open sets S1 and S2 which separate them. Since x1 and x2 are in the closure of

Um, it must be true that S1∩Um 6= ∅ and S2∩Um 6= ∅. Hence, by removing Um from

the collection and replacing it with S1 ∩Um and S2 ∩Um, we have a new collection of

nonempty, pairwise-disjoint open sets with m + 1 elements, again contradicting the

maximality of m.

Thus, if there exists such an ε, there are only a finite number of elements in X.
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On the other hand, suppose that there is no such ε. Then we can select some U0

such that µ(U0) < δ/4 and let µδ be a semipositive measure such that µδ(U0) = δ/2,

but µδ(U) = 0 whenever U ⊂ X with U ∩U0 = ∅ (for example, since U0 is nonempty,

µ(U0) > 0, so select any x ∈ U0 and put an atom of size δ/2 on it and zeros everywhere

else). We note that since (X \ U0) ∩ U0 = ∅, µδ(X) = µδ(U0) = δ/2. And, since µδ is

semipositive,

‖µδ‖ = sup
‖f‖=1

µδ(f) = µδ(1) = µδ(U0) = δ/2.

Now consider η := µ − µδ. By construction,

‖µ − η‖ = ‖µ − (µ − µδ)‖ = ‖µδ‖ = δ/2 < δ,

so η lies with in a ball of radius δ about µ. But

η(U0) = µ(U0) − µδ(U0) < δ/4 − δ/2 = −δ/4 < 0

so η /∈ C∗(X)+.

Thus C∗(X)+ has interior if and only if X is finite.

As that route to a strictly positive stress has proved unproductive, let’s briefly

set aside our quest to show that X -bar equivalent tensegrities have strictly positive

stresses and take a look at the results of what we have accomplished so far.

3.7 Two Examples

3.7.1 The setup

We can explore the new theorems with a couple of examples. In the first, shown

in Figure 3.7.1 on the following page, the vertices form a unit circle and struts are

placed antipodally at all points. Our design variations will be only those variations

which do not even locally stretch or shrink the curve of vertices. Since the circle

cannot stretch or shrink, this example certainly appears to be X -infinitesimally rigid

and so we would expect it to be X -bar equivalent.
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Figure 3.7.1: The circle-of-struts example.

We get the second example by removing a little more than half the struts of the

first example (see Figure 3.7.2). We’ll leave those struts that touch the circle from

ε to π/2 − ε for some ε ∈ (0, π/4). That should allow enough freedom to establish a

strictly positive motion, even with our requirement about maintaining length locally

on the vertex set.

Figure 3.7.2: The almost-half-a-circle-of-struts example.

In both cases, we can parameterize V and E by angle (since angle and arclength

are the same on a unit circle). The values for V will lie in R�2π and for E in R�π.
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3.7.2 A New X

Much of our preparation for this example will center around the set of design varia-

tions, X . Specifically, we need to identify those variations which are local isometries

of the vertex curve (to remind us that it is a curve, we’ll call it γ instead of V ).

For a little while, we’ll even forget that our examples have circles for vertex curves,

and see how general we can let γ and X be.

We need to be able to define length. To do that, we approximate γ with inscribed

polygons or polygonal lines and take its length to be the supremum of the lengths of

all such approximations. Here’s a more rigorous definition:

Definition 3.7.1 (Strichartz (1995, p. 611)). The length of a continuous curve

γ: [a, b] → Rn is the sup of
∑N

j=1 ‖γ(tj) − γ(tj−1)‖ taken over all partitions a =

t0 < t1 < · · · < tN = b of the interval [a, b], where ‖γ(tj) − γ(tj−1)‖ is the distance

between the points γ(tj) and γ(tj−1) in Rn. If the length is finite, we say the curve is

rectifiable.

We’ll require that p(γ) be a simple, rectifiable curve with a finite number of

connected components and total length ` < ∞.

One advantage of a rectifiable curve is that we can give it a nice parameterization.

Using our definition of length, we can define:

Definition 3.7.2. An arclength parameterization of a curve γ: [a, b] → Rn of length

` is a continuous map t(s): [0, `] → [a, b] such that at any point s ∈ [0, `], the length

of γ from γ(t(0)) = γ(a) to γ(t(s)) is equal to s.

Proposition 3.7.3. Every rectifiable curve admits an arclength parameterization.

Proof. See, for example, Strichartz (1995, p. 616) or Burago et al. (2001, p. 46).

Now suppose we have some arclength parameterized γ: [0, `] → Rn. What more

can we say about γ? It turns out we can say some strong things about continuity.

Here are four different types of continuity, each stronger than the previous:
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Definition 3.7.4 (see, for example, Royden (1968, p. 44)). A function f(x) is con-

tinuous if, for every ε > 0 and every x, there exists a δ > 0 such that whenever

|x − y| < δ, |f(x) − f(y)| < ε.

Definition 3.7.5 (see, for example, Royden (1968, p. 135)). A function f(x) is

uniformly continuous if, for every ε > 0 there exists a δ > 0 such that for every x,

whenever |x − y| < δ, |f(x) − f(y)| < ε.

Definition 3.7.6 (see, for example, Folland (1999, p. 105)). A function f(x) is

absolutely continuous if, for every ε > 0 there exists a δ > 0 such that for every

finite collection of pairwise-disjoint intervals (xi, yi) with
∑ |xi − yi| < δ we have

∑
|f(xi) − f(yi)| < ε.

Definition 3.7.7 (see, for example, Folland (1999, p. 108) or Conway (1990, p.

25)). A function f is Lipschitz continuous (or just Lipschitz ) if there exists some

constant k > 0 (called the Lipschitz constant) such that for all x and y, we have

|f(x) − f(y)| 6 k|x − y|.

We claimed that each of the types of continuity was stronger than the previous.

Here’s proof of that relationship for the last two:

Proposition 3.7.8. If a map f is Lipschitz, it is absolutely continuous.

Proof. Let ε > 0 be given. Select δ = ε/k where k is the Lipschitz constant of f .

Then, for every finite collection of intervals, (xi, yi), with
∑

|xi − yi| < δ, we have

that

∑
|f(xi) − f(yi)| 6

∑
k|xi − yi| since f is Lipschitz

= k
∑

|xi − yi| < kδ = ε.

Now the converse of Proposition 3.7.8 is not generally true. Here’s a case in which

it is not.
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Claim 3.7.9. The function
√

x is absolutely continuous but not Lipschitz continuous

on [0, 1].

Proof. Consider the function
√

x. Let’s show that
√

x is absolutely continuous.

For any given ε > 0, we can select δ = ε2. Now
√

x has monotonically decreasing

derivative on (0,∞). So the worst-case collection of intervals of total length less than

δ will be the single interval (0, ρ) for any ρ < δ. But then |
√

0−√
ρ| <

√
δ =

√
ε2 = ε.

On the other hand,
√

x is not Lipschitz continuous, since the expression
|√0−√

x|
|0−x| =

√
x

x
= 1√

x
can be made arbitrarily large by getting x near enough to 0.

John Sullivan, in his survey paper, “Curves of Finite Total Curvature”, gives the

following proposition.

Proposition 3.7.10. A curve is rectifiable if and only if it admits a Lipschitz param-

eterization.

Proof. See Sullivan (2006, p. 3).

What he is noting, in the “only if” portion of his proof, is that an arclength

parameterized curve, while not necessarily differentiable, is Lipschitz (with Lipschitz

constant 1). So we have both Lipschitz continuity and absolute continuity of γ simply

due to its being rectifiable. What more can we get?

Lemma 3.7.11. If f : [a, b] → Rn is absolutely continuous, then f is rectifiable.

Proof. Here we flesh out a proof of Royden (1968, p. 105). Since f is absolutely

continuous, there exists some δ > 0 such that for every collection of pairwise-disjoint

intervals (xi, yi) with
∑ |xi−yi| < δ, we have

∑ ‖f(xi)−f(yi)‖ < 1. Let m =
⌊

b−a
δ

⌋
.

Given any partition a < t0 < t1 < · · · < tN = b, we can split the intervals (ti, ti+1) (if

necessary) and group them in such a way that we have m + 1 groups: m whose total

length falls in the range (δ − 1
m

δ, δ) and 1 with total length less than m 1
m

δ = δ.
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By the triangle inequality, splitting intervals in a partition will never decrease the

value of
N∑

j=1

‖f(tj) − f(tj−1)‖

so we know that for any partition, that sum is at most (m + 1)(1) = m + 1, so the

length is also bounded above by m + 1 < ∞.

Wait a moment. How can it be true that rectifiable implies Lipschitz implies abso-

lutely continuous implies rectifiable and yet absolutely continuous is not equivalent

to Lipschitz?

The answer is that rectifiability is an attribute of the trace of a curve in space,

while Lipschitz and absolute continuity are attributes of the function mapping out

that trace. An absolutely continuous function maps out a curve which admits a

Lipschitz parameterization, but it may not itself be that parameterization. In our

example, the trace of the function x 7→ √
x is the interval [0,∞). And this certainly

admits a Lipschitz parameterization, namely the function x 7→ x (for x ∈ [0,∞)),

which is Lipschitz with Lipschitz constant 1.

What else do we know?

Theorem 3.7.12. If f is absolutely continuous, then f has a derivative almost every-

where.

Proof. See, for example, Royden (1968, p. 105).

So we get derivatives almost everywhere. That allows us to look at the (Lebesgue)

integral

L(γ) =

∫ b

a

‖γ′(s)‖ ds.

Then we have

Theorem 3.7.13. The function L(γ) gives the arclength of γ (as defined using

inscribed polygons) from a to b.
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Proof. See Burago et al. (2001, p. 57).

We are finally ready to look for those vector fields which preserve length. We need

γ to remain rectifiable throughout, so we will restrict ourselves to vector fields which

are absolutely continuous.

Let’s summarize: γ is a simple, rectifiable curve with a finite number of connected

components and total length ` < ∞ and V : [0, `] → Rn is an absolutely continuous

vector field that moves γ while locally preserving γ’s arclength to first order. What

can we say about V ?

Proposition 3.7.14. If γ(s) is a simple, rectifiable, arclength parameterized curve

with length ` and V (s) is an absolutely continuous variation of γ(s) which locally pre-

serves the arclength of γ(s) to first order, then 〈V ′(s), γ′(s)〉 = 0 almost everywhere.

We’ll jump into the proof in a moment, but before we start we’ll need a result

about Lebesgue integrals.

Theorem 3.7.15 (Dominated Convergence Theorem). Let {fn} be a sequence of

integrable functions such that

(a) fn → f almost everywhere and

(b) there exists a nonnegative, integrable function g such that |fn| 6 g almost every-

where for all n.

Then f is integrable and
∫

f = limn→∞
∫

fn.

Proof. See, for example, Folland (1999, p. 54)

Now we’re ready for that proof.

Proof of Proposition 3.7.14. For any a, b ∈ [0, `] and ε > 0, we know that the length

of the section of γ(s) + εV (s) between a and b is given by

∫ b

a

∥∥∥∥
d

ds
(γ(s) + εV (s))

∥∥∥∥ ds =

∫ b

a

‖γ′(s) + εV ′(s)‖ ds.
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If V is to be locally arclength preserving to first order, we must have that
[

d

dε

∫ b

a

‖γ′(s) + εV ′(s)‖ ds

]

ε=0

= 0

for every choice of a, b ∈ [0, `].

Applying the definition of the derivative, we get

0 = lim
ε→0

∫ b

a
‖γ′(s) + εV ′(s)‖ ds −

∫ b

a
‖γ′(s) − (0)V ′(s)‖ ds

ε − 0

= lim
ε→0

∫ b

a

‖γ′(s) + εV ′(s)‖ − ‖γ′(s)‖
ε

ds

Now if we let {εn} be a sequence of positive values approaching 0, we see that the

functions

fn(s) =
‖γ′(s) + εnV ′(s)‖ − ‖γ′(s)‖

εn

approach

f(s) =

[
∂

∂ε
‖γ′(s) + εV ′(s)‖

]

ε=0

wherever γ′(s) and V ′(s) are both defined (which is almost everywhere). Now either

‖γ′(s) + εnV ′(s)‖ > ‖γ′(s)‖ or not. If it is, then

0 6 ‖γ′(s) + εnV ′(s)‖ − ‖γ′(s)‖

6 ‖γ′(s) + εnV ′(s) − γ′(s)‖ = ‖εnV ′(s)‖ = εn‖V ′(s)‖.

Otherwise, we have

0 6 ‖γ′(s)‖ − ‖γ′(s) + εnV ′(s)‖

6 ‖γ′(s) − γ′(s) − εnV ′(s)‖ = ‖ − εnV ′(s)‖ = εn‖V ′(s)‖.

So, by the triangle inequality,
∣∣∣∣
‖γ′(s) + εnV ′(s)‖ − ‖γ′(s)‖

εn

∣∣∣∣ 6
∣∣∣∣
εn‖V ′(s)‖

εn

∣∣∣∣ = ‖V ′(s)‖

for all n. Since ‖V ′(s)‖ is nonnegative and integrable, the Dominated Convergence

Theorem tells us that
[

d

dε

∫ b

a

‖γ′(s) + εV ′(s)‖ ds

]

ε=0

=

∫ b

a

[
∂

∂ε
‖γ′(s) + εV ′(s)‖

]

ε=0

ds.
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Since this is true for any choice of a and b, it must be the case that

[
∂

∂ε
‖γ′(s) + εV ′(s)‖

]

ε=0

= 0

almost everywhere.

Now

[
∂

∂ε
‖γ′(s) + εV ′(s)‖

]

ε=0

=

[
∂

∂ε
〈γ′(s) + εV ′(s), γ′(s) + εV ′(s)〉1/2

]

ε=0

=

[
2 〈V ′(s), γ′(s) + εV ′(s)〉

2 ‖γ′(s) + εV ′(s)‖

]

ε=0

=
〈V ′(s), γ′(s)〉

‖γ′(s)‖

= 〈V ′(s), γ′(s)〉,

so we need V ′(s) and γ′(s) to be orthogonal almost everywhere.

Our X , then, is the space of absolutely continuous vector fields V on γ with

V ′(s) ⊥ γ′(s) for almost all s ∈ [0, `].

We will need to check that X is a subspace of Vf(γ).

Proposition 3.7.16. X is a subspace of Vf(γ).

Proof. Let V, W ∈ X and α, β ∈ R. Then αV + βW is absolutely continuous, and

here’s why. Let ε > 0. Then (by the absolute continuity of V and W ) there exists δV

and δW such that whenever (xi, yi) is a finite collection of pairwise-disjoint intervals

we have
∑

|xi − yi| < δV ⇒
∑

‖V (xi) − V (yi)‖ <
ε

2|α|
and

∑
|xi − yi| < δW ⇒

∑
‖W (xi) − W (yi)‖ <

ε

2|β| .
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But then, whenever
∑ |xi − yi| < min{δV , δW}, we have

∑
‖(αV + βW )(xi) − (αV + βW )(yi)‖

=
∑

‖α(V (xi) − V (yi)) + β(W (xi) − W (yi))‖

6
∑

|α|‖V (xi) − V (yi)‖ + |β|‖W (xi) − W (yi)‖

< |α| ε

2|α| + |β| ε

2|β| = ε.

That gives us absolute continuity. We need to check the orthogonality condition. But

(αV + βW )′(s) · γ′(s) = αV ′(s) · γ′(s) + βW ′(s) · V ′(s) = 0

almost everywhere, so αV + βW ∈ X , and X is a subspace.

3.7.3 The Circle of Struts

Now that we have a grasp on X , let’s return to our examples. For both examples,

γ′ is made up of unit vectors tangent to the circle and pointing counter-clockwise

around it. Any vector field V ∈ X , then, must have V ′ pointing radially outward or

inward on the circle. So everything in X will be of the nature

V (s) =

∫ s

0

(f(t) cos t, f(t) sin t) dt

(where f : R�π → R is not necessarily continuous and only need be defined almost

everywhere). But why should we believe that every such V (s) is absolutely contin-

uous?

Theorem 3.7.17. A function f is an indefinite integral if and only if it is absolutely

continuous.

Proof. See, for example, (Royden, 1968, p. 106).

Since we also need absolute continuity at 0, we’ll have the additional requirement

that V (2π) = V (0). That is,

∫ 2π

0

(f(t) cos t, f(t) sin t) dt = 0.
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For the circle-of-struts example, let’s try building a stress. The simplest option

would be to take the measure dθ, which is uniform on R�π (that is, on the struts), and

integrates to π. Let’s suppose that V is some variation in X and see what happens.

Now Y V (θ) = (V (θ) − V (θ + π)) · (cos θ, sin θ). So we get

∫ π

0

Y V (θ) dθ =

∫ π

0

(V (θ) − V (θ + π)) · (cos θ, sin θ) dθ

=

∫ π

0

V (θ) · (cos θ, sin θ) dθ +

∫ 2π

π

V (θ) · (cos θ, sin θ) dθ

=

∫ 2π

0

V (θ) · (cos θ, sin θ) dθ,

which we can integrate by parts to get

= V (θ) · (sin θ,− cos θ)
∣∣2π

0
−
∫ 2π

0

V ′(θ) · (sin θ,− cos θ) dθ.

Since we require that V (0) = V (2π), that first term is zero, so we get

=

∫ 2π

0

V ′(θ) · (− sin θ, cos θ) dθ.

On the other hand, (− sin θ, cos θ) = γ′(θ) and since V ∈ X , we know that V ′(θ) ·

γ′(θ) = 0 almost everywhere, so we have
∫

V ′(θ) · γ′(θ) = 0. Hence dθ ∈ Y (X )⊥.

So dθ is a stress. But taking any nonempty, open set of edges and integrating by

dθ will give a positive value, so dθ is a strictly positive stress. The circle of struts is

X -bar equivalent. If we were to apply Theorem 3.5.2, we would have:

Proposition 3.7.18. There is no locally arclength preserving motion of a circle that

increases all antipodal distances.

But Theorem 3.6.1 gives us the stronger:

Proposition 3.7.19. There is no locally arclength preserving motion of a circle that

increases any antipodal distance without decreasing some other one.
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3.7.4 Almost half a circle of struts

Now let’s consider our other example. In this case, we’d like to show that there is no

semipositive stress.

Let’s choose a “good” element of X , one in T (p) \ I(p). Remember that our

tensegrity has less than half the struts that the circle-of-struts example had, so we

should be able to expand along those and contract elsewhere, keeping the curve of

vertices unstretched. Let’s try

Vg =

(
sin θ

2
+

sin 3θ

6
,
cos θ

2
− cos 3θ

6

)
,

which is shown in Figure 3.7.3.

Figure 3.7.3: The almost-half-a-circle-of-struts example with the “good”
motion Vg.

Now, Y Vg is nonnegative on all of E . In specific,

p(θ) − p(θ + π) = (cos θ, sin θ) − (cos(θ + π), sin(θ + π))

= (cos θ, sin θ) − (− cos θ,− sin θ)

= (2 cos θ, 2 sin θ)

and similarly,

Vg(θ) − Vg(θ + π) =

(
sin θ +

sin 3θ

3
, cos θ − cos 3θ

3

)
,
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so

Y Vg(θ) = (Vg(θ) − Vg(θ + π)) · (p(θ) − p(θ + π))

= 4 sin θ cos θ +
2 sin 3θ cos θ − 2 cos 3θ sin θ

3

= 2 sin 2θ +
2 sin 2θ

3
=

8

3
sin 2θ,

which is strictly positive on the edgeset, that is on θ ∈ [ε, π/2 − ε]. But that strict

positivity means that for any semipositive µ, we would have µY Vg greater than zero.

So there is no semipositive µ ∈ Y (X )⊥.

3.7.5 Any open set will do

Our success in showing that the almost-half-a-circle-of-struts example is not X -bar

equivalent leads to the next question: If we remove any arbitrary open set of edges

from the circle of struts, is the result no longer X -bar equivalent? The answer is yes.

Proposition 3.7.20. The circle of struts with any nontrivial open set of edges

removed is no longer X -bar equivalent.

Proof. As before, we consider the set E to be parameterized by θ ∈ R�π. Let

U ⊂ R�π represent the open set of edges removed from our example, and let

fU be any continuous function that is positive on E = R�π \ U and for which
∫ 2π

0
(fU(θ) cos θ, fU(θ) sin θ) dθ = 0.

Now define a variation VU(θ) =
∫ θ

0
(fU(t) cos t, fU(t) sin t) dt. We claim that no

semipositive measure, µ, is in Y (X )⊥. After all,

Y VU(θ) = (fU(θ)(cos θ, sin θ) − fU(θ + π)(cos(θ + π), sin(θ + π)))·

((cos θ, sin θ) − (cos(θ + π), sin(θ + π)))

= (fU(θ) + fU(θ + π))(cos θ, sin θ) · 2(cos θ, sin θ)

= 4fU(θ)
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But, by definition, fU(θ) > 0 on E . So for any semipositive measure µ on E ,

[4] µY VU > 0.

3.8 Minimal X -bar Equivalence

3.8.1 Definition and example

All we lack to complete our results now is a theorem which says that any X -bar

equivalent tensegrity has a strictly positive measure. We don’t have such a theorem

for the general case, but there is a class of tensegrities for which we do get the desired

result.

Definition 3.8.1. We term a tensegrity G(p) minimally X -bar equivalent if it is X -

bar equivalent but no nonempty subtensegrity formed by removing an open set of

edges from it is X -bar equivalent.

Lemma 3.8.2. A minimally X -bar equivalent tensegrity G(p) admits no semipositive

stress that is not also strictly positive.

Proof. By Corollary 3.6.2 on page 69, if the tensegrity admits a semipositive (but not

strictly positive) stress µ, then the subtensegrity whose edgeset is supp µ is X -bar

equivalent, and E − supp µ is nonempty and open, so G(p) is not minimally X -bar

equivalent.

Theorem 3.8.3 (Third Main Theorem). If G(p) is minimally X -bar equivalent, G(p)

has a strictly positive stress.

Proof. By Theorem 3.5.2, G(p) has a semipositive stress, and by Lemma 3.8.2, that

stress must be strictly positive.

Having seen that a minimally X -bar equivalent tensegrity cannot admit a (solely)

semipositive stress, it seems tempting to conjecture:
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Conjecture 3.8.4. A tensegrity is minimally X -bar equivalent if and only if it admits

only one semipositive stress, up to scaling. Furthermore, that stress is strictly positive.

What sort of tensegrity is minimally X -bar equivalent? Subsection 3.7.5 on page 85

showed that the circle of struts is.

Interestingly enough, if we make the circle into a square filled with either antipodal

struts or with struts parallel to the edges (the left and right pictures in Figure 3.8.1),

the tensegrity ceases to be X -bar equivalent (X is still the motions that are local

isometries on γ).

The center picture of Figure 3.8.1 shows a motion that induces a semipositive

load on E . In the first case, that load is zero only on the diagonals and in the second

case it is zero only on the outermost struts. So any strictly positive stress µ will give

Figure 3.8.1: Two squares of struts and a semipositive motion that works for
either.

µY V > 0 for this motion. On the other hand, the semipositive stress that just assigns

an atom to each diagonal (resp. each outermost strut) annihilates Y (X ), as we will

show below.

Now X contains those vector fields for which V ′(v) · γ′(v) = 0 except on a set of

measure zero. So along the top and bottom lines of vertices, the horizontal component

of V (v) cannot vary, while along the sides, its vertical component cannot vary. That

means that

(V ((1, 0)) − V ((0, 0))) · (1, 0) = 0 (V ((0, 1)) − V ((0, 0))) · (0, 1) = 0

(V ((1, 1)) − V ((0, 1))) · (1, 0) = 0 (V ((1, 1)) − V ((1, 0))) · (0, 1) = 0



88

So taking µ to be an atom of size 1 on each outermost strut of the right hand

tensegrity, we get

µY V =(V ((1, 0)) − V ((0, 0))) · (1, 0) + (V ((1, 1)) − V ((1, 0))) · (0, 1)+

(V ((0, 1)) − V ((0, 0))) · (0, 1) + (V ((1, 1)) − V ((0, 1))) · (1, 0) = 0.

On the other hand, taking µ to give an atom of size 1 on each diagonal strut of the

left hand tensegrity, we get

µY V = (V ((1, 1)) − V ((0, 0))) · (1, 1) + (V ((1, 0)) − V ((0, 1))) · (1,−1)

= (V ((1, 1)) − V ((1, 0)) + V ((1, 0)) − V ((0, 0))) · (1, 1)

+ (V ((1, 0)) − V ((1, 1)) + V ((1, 1)) − V ((0, 1))) · (1,−1)

= (V ((1, 1)) − V ((1, 0))) · (1, 0) + (V ((1, 0)) − V ((0, 0))) · (0, 1)

+ (V ((1, 0)) − V ((1, 1))) · (1, 0) + (V ((1, 1)) − V ((0, 1))) · (0,−1)

= (V ((1, 0)) − V ((0, 0))) · (0, 1) + (V ((1, 1)) − V ((0, 1))) · (0,−1)

= (V ((1, 0)) − V ((0, 0)) + V ((0, 1)) − V ((1, 1))) · (0, 1)

= (V ((1, 0)) − V ((1, 1))) · (0, 1) + (V ((0, 1)) − V ((0, 0))) · (0, 1) = 0

So in each case we have a semipositive stress and the two are partially X -bar equiv-

alent. Alternatively, that semipositive stress is a strictly positive stress on supp µ, so

the subtensegrities (shown in Figure 3.8.2) consisting of γ and the mentioned edges

are X -bar equivalent.

Figure 3.8.2: The X -bar equivalent subtensegrities of the squares of struts.
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3.8.2 Finite is not minimal

It is worth a moment to remember, prior to jumping into the next section, that not all

finite tensegrities are minimal. The crossed square with one of the struts replaced with

a bar (Figure 3.6.1 on page 70) is just such an example. We saw, in Subsection 3.6.3,

that the stresses of that tensegrity look like
[
a a a a b a (b − a)

]>
where a ∈

[0, b].

If we set a = 0, we get a stress which is strictly positive on the bar but zero

everywhere else. If we set a = b, we get a stress which is strictly positive on the

usual crossed square and zero on that new “cable” (see Figure 3.8.3). But these two

subtensegrities are the only minimally bar equivalent subtensegrities in this example.5

1

34

2

a → 0

1

34

2

a → 3

1

34

2

Figure 3.8.3: The non-minimal crossed square with its minimal subtensegrities.

We note that while the tensegrity itself is not minimally bar equivalent, every

edge in it belongs to a minimally bar equivalent subtensegrity. Perhaps that is key

to having a strictly positive stress.

3.9 Covered Tensegrities

Let’s consider tensegrities which are covered by minimal subtensegrities. Better yet,

let’s consider tensegrities which are almost covered by them.

5We can see this by looking at the vertices. If any edge is removed from vertex 1 or
vertex 3, all three edges must be removed. That leaves the bar to deal with. If we remove
the strut portion of the bar, we must remove all of the other edges at 4 and 2 (and hence
also at 1 and 3).
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Definition 3.9.1. We say that a tensegrity is countably covered by some class of

subtensegrities, if there exists a countable, dense subset {en} ⊂ E such that every en

belongs to a subtensegrity of that class.

Having a countable, dense subset is not an unreasonable thing to ask, as E is

compact and metrizable and hence second countable.6

Theorem 3.9.2 (Fourth Main Theorem). If G(p) is countably covered by subtenseg-

rities that have a strictly positive stress, then G(p) has a strictly positive stress.

Proof. Let {en} be the countable, dense subset of edges from the definition of “count-

ably covered”. For each en select a subtensegrity Gn with edgeset En of which en is

a member and which has a strictly positive stress (in the case where en belongs to

infinitely many subtensegrities, this may involve the Axiom of Choice).

Scale that stress so that its norm is 1
2n and call it µ̂n. Finally, extend µ̂n to be a

stress on the entire G(p) by setting, for each open U ⊂ E , µn(U) = µ̂n(U ∩ En).

Now we can construct

µ =
∞∑

n=1

µn.

What do we know about µ? Well, if V ∈ X , then every µn(Y V ) = 0 since µn is

0 outside En and takes Y V to zero on En, so µ(Y V ) = 0. That makes µ a stress.

Furthermore, if U ⊂ E is open and nonempty, then it must contain at least one of

the en. But then, by construction, µn(U) > 0 and so µ(U) > 0.

So if we have a tensegrity which is countably covered either by minimally X -

bar equivalent subtensegrities or by finite, X -bar equivalent subtensegrities (just use

the stress from Roth and Whiteley (1981) to build an atomic measure) or by some

6This is an exercise (with hint) in Munkres (2000, p. 194). If X is metrizable and
compact, then for each positive integer n, we can cover X with balls of size 1/n. Since X
is compact, each such cover has a finite subcover, An. The union of all of the An forms a
countable basis for the (metric) topology on X and the centers of the balls give a countable,
dense subset of X.
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combination of the two, then our tensegrity has a strictly positive stress and thus is

X -bar equivalent.

What might such a creature look like? One simple example would be to move

the circle-of-struts example “up a dimension”. A “cylinder of struts” is represented

in Figure 3.9.1. As with the circle of struts, our design variations are those which are

Figure 3.9.1: A cylinder filled with antipodal struts.

local isometries on the surface of the cylinder.

Of course, any given strut in the cylinder of struts is part of a circle of struts. So

every strut is contained in a minimally X -bar equivalent subtensegrity and our tenseg-

rity is (more than) countably covered in minimally X -bar equivalent subtensegrities.

By Theorem 3.9.2, the tensegrity is X -bar equivalent.

Chapter 4 contains a number of tensegrities which are countably covered by finite

subtensegrities.

Now, the “countably covered tensegrities” are a subset of all the X -bar equivalent

tensegrities, but how large a subset is it? That’s not a settled question, but it may

be all of them:

Conjecture 3.9.3. Every X -bar equivalent continuous tensegrity is countably covered

by minimally X -bar equivalent subtensegrities. 7

7The matching conjecture, that every X -bar equivalent continuous tensegrity is count-
ably covered by finite, X -bar equivalent subtensegrities, is false. One counterexample is
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Of course, if that turns out not to be true, we can retreat to the weaker claim:

Conjecture 3.9.4. Every X -bar equivalent tensegrity has a strictly positive stress.

the “on a circle” example of Section 4.2 on page 97 when the cable ends are an irrational
fraction of the circle circumference apart.



Chapter 4

Examples

Here we have a collection of examples that shed light on various aspects of the subject.

Unless stated otherwise, X = Vf(V ) for these examples.

4.1 Rectangle

We start with an example that is simple enough to analyze pretty thoroughly. As we

are primarily interested in bar equivalence in this paper, we usually give only passing

attention to infinitesimal rigidity. But this example is infinitesimally rigid and we

take the time to prove it.

The rectangle example lies in R2 and its has vertices arranged along two intervals,

say (0, 0) to (2, 0) and (0, 1) to (2, 1). Each vertex is connected to one directly

opposite it by a strut. Every vertex is also connected to the two opposite endpoints

by cables (that means that the corner vertices are connected vertically by strut-cable

pairs, which is to say, bars). Finally, the two upper corner vertices and the two lower

corner vertices are connected by horizontal struts (see Figure 4.1.1 on the next page).

Remember that the horizontal struts only connect the corner vertices. They pass

through, but do not affect, the other vertices.

We can think of the possible vector fields as four continuous functions from [0, 2]

to R, one for the vertical direction and one for the horizontal on each interval. Let’s

call them fvt (vertical top), fvb, fht and fhb. Then im Y is as shown in Table 4.1

(where we’ve omitted scaling factors since we will only be concerned with signs).
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(0, 1) (2, 1)

(x, 0)

Figure 4.1.1: The rectangle example.

Table 4.1: The values of Y V for the different edges of the rectangle tensegrity.

Edge Value

(x, 0) → (x, 1) (strut) fvt(x) − fvb(x)
(x, 0) → (0, 1) (cable) −x(fhb(x) − fht(0)) + fvb(x) − fvt(0)
(x, 0) → (2, 1) (cable) (2 − x)(fhb(x) − fht(2)) + fvb(x) − fvt(2)
(x, 1) → (0, 0) (cable) −x(fht(x) − fhb(0)) − fvt(x) + fvb(0)
(x, 1) → (2, 0) (cable) (2 − x)(fht(x) − fhb(2)) − fvt(x) + fvb(2)
(0, 0) → (2, 0) (strut) fhb(0) − fhb(2)
(0, 1) → (2, 1) (strut) fht(0) − fht(2)

So what are the implications? We’ll first examine the associated bar framework.

As we work through the families of constraints above, we’ll call them struts and

cables, but in every case we’ll be treating them as equalities, as if they were bars.

Because of the vertical struts, we must have fvt(x) = fvb(x). We can eliminate

the Euclidean motions by requiring that fvb(0) = fhb(0) = fht(0) = 0. That results in

having fvt(0) = 0, since fvt(0) = fvb(0). Our first family of cables then gives us that

fvb(x) = xfhb(x) (4.1)
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and the third set means that

fvt(x) = −xfht(x). (4.2)

Since we have changed all edges to bars, the final two struts give us fhb(2) = fht(2) =

0. Now using the second and fourth cable families with x = 0, we get

2(fhb(0) − fht(2)) + fvb(0) − fvt(2) ⇒ fvt(2) = 0

and also fvb(2) = 0. For other values of x these give

fvb(x) = −(2 − x)fhb(x) and fvt(x) = (2 − x)fht(x). (4.3)

So if we combine Equation (4.1) through Equation (4.3), for all values of x we get

−xfht(x) = (2 − x)fht(x) ⇒ 2fht(x) = 0 ⇒ fht(x) = 0

and similarly fhb(x) = 0 and thus immediately that fvt(x) = fvb(x) = 0.

So the bar framework is infinitesimally rigid. Its only motions are the Euclidean

motions of R2. If we can exhibit a strictly positive stress, we’ll have that the tensegrity

is bar equivalent and hence also infinitesimally rigid. Define µ as follows.

e1
e3

e2

x 2 − x

Figure 4.1.2: The edges connecting to an internal vertex in the rectangle.

At any internal point, there are only three edges touching, so we must have some-

thing that looks like Figure 4.1.2. Using e1, e2 and e3 as shown in the figure, we

get

µ(e2) =
µ(e1)√
1 + x2

+
µ(e3)√

1 + (2 − x)2
from the vertical stresses, and (4.4)

x√
1 + x2

µ(e1) =
(2 − x)√

1 + (2 − x)2
µ(e3) from the horizontal ones. (4.5)
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If we let m(e) be Lebesgue measure on the edges, inherited from Lebesgue measure

on the vertices, and decide that µ(e2) = m(e2), we get

µ(e1) =
√

1 + x2

(
m(e2) −

µ(e3)√
1 + (2 − x)2

)
from Equation (4.4)

and

µ(e1) =
(2 − x)

√
1 + x2

x
√

1 + (2 − x)2
µ(e3) from Equation (4.5).

Setting these expressions equal results in

(2 − x)µ(e3)

x
√

1 + (2 − x)2
= m(e2) −

µ(e3)√
1 + (2 − x)2

⇒ µ(e3) =
x
√

1 + (2 − x)2

2
m(e2)

and directly that

µ(e1) =
(2 − x)

√
1 + x2

2
m(e2).

That takes care of all but the endpoints. There are infinitely many cables ending

at each corner, but we can integrate to find out how much force is being exerted on

those corners.

The forces on the upper left-hand corner all come from those e1’s above. The e1

forces resolve into horizontal

x√
1 − x2

µ(e1) =
(2 − x)x

2
m(e2)

and vertical

1√
1 − x2

µ(e1) =
2 − x

2
m(e2).

By symmetry, these are the horizontal and vertical forces at every corner.

Integrating these gives us ∫ 2

0

x(2 − x)

2
dm

for a total horizontal force of 2/3 at each corner and

∫ 2

0

2 − x

2
dm
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for a total vertical force of 1 at each corner. So to balance things out, there is an

atom of size 4/3 on the two horizontal struts and an atom of size 2 on the two bars.

We have a strictly positive stress and the rectangle is infinitesimally rigid. Alter-

natively, we could state it thus:

Proposition 4.1.1. Any (non-Euclidean) motion of two parallel line segments does

at least one of the following:

1. Moves two corresponding points on the segments closer together,

2. Shortens one or both of the segments, or

3. Moves a point on one of the segments farther from one of the endpoints of the

opposite segment.

4.2 On a Circle

Figure 4.2.1: Two examples of the on-a-circle example.

We next consider a family of examples. Each of these has a unit circle for its vertex

set with antipodal points connected by struts. Cables are connected from every point

to the two points h units in arc length around the circle from it. If the cable connection

distance is a rational fraction of the circumference, the tensegrity consists of infinitely

many unconnected finite subtensegrities. If the distance is irrational, it is a single

connected tensegrity (see Figure 4.2.1).
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We let m be Lebesgue measure on the edges. Then we create a measure µ on

the edges by letting µ = m for all struts and µ = αm for all cables. Let’s look at

the angles involved (see Figure 4.2.2). If the cables stretch h units around the circle

h

π−h
2

Figure 4.2.2: The angles involved in the on-a-circle example.

(where 0 < h < π), then the cables make an angle of π−h
2

with the strut meeting at

the same vertex.

We want equilibrium at every vertex. The situation is symmetrical across the

strut, so we need only check the sum along the strut. If we set α = 1
cos π−h

2

, we get

2 dm − 2α

(
cos

π − h

2

)
dm = 0 dm

at every vertex.

So we have

µ(Y V ) =

∫

E

Y V dµ =

∫

v∈V

V (v) · (0, 0) dm = 0.

Thus µ is a strictly positive stress for the tensegrity. Every one of these tensegrities

is bar equivalent.

It is worthy of note that if h → 0, α → ∞, so we cannot turn this into the example

from Section 3.7 on page 73 by a simple limiting process.

4.3 On a Sphere

Let’s move that example up into three dimensions. We start by examining an octa-

hedral tensegrity that has three struts and twelve cables (see Section 4.3).
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Figure 4.3.1: The octahedron tensegrity.

If we place a compression of unit size on each strut and a tension of
√

2/2 on each

cable, then the net force at vertex is zero. So this octahedron is bar equivalent. Now,

imagine this octahedron embedded within a sphere as represented in Figure 4.3.2.

If we connect every point on a sphere with its antipode by a strut, and connect

Figure 4.3.2: Octahedra cover the spherical tensegrity.

each point to every point on its associated equator by a cable, we’ll have a three-

dimensional tensegrity that is covered by octahedra as above and which is thus bar

equivalent.

4.4 On a General Curve

Both of the previous two examples have had a lot of symmetry on which we could

depend. What if we were to consider something less symmetric? Let’s take as our

vertex set any simple closed curve in R2 and perform the same construction we did in

Section 4.2. It will be easier, though to think of the cable skip (h in that section) not as

a length, but rather as a fraction of the arclength of the vertex curve (see Figure 4.4.1

for two examples with a skip of 1/5 of the total arclength).
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Figure 4.4.1: The on-a-circle example with more general curves.

It seems complicated. Perhaps we should set our sights a little lower at first and

see what we can learn.

4.5 Understanding a Quadrilateral

Suppose we have some quadrilateral that has struts for the diagonals and cables for

the edges. In the calculations that follow, we’ll use the symbol −→eij to mean the unit

vector pointing from vertex i toward vertex j (so −→eij = −−→eji) and wij to mean the

value of the stress on the edge connecting vertices i and j. What do we know?

w13

w24

1
w12

2

w23

3

w34

4

w14

Figure 4.5.1: A general quadrilateral tensegrity.

For one thing, we know that at any vertex, the weighted sum of the cable vectors

must equal the weighted strut vector. So the negative of the strut vector must lie in

the cone generated by the cable vectors. That is, the angle between the cables must
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be less than π on the side where the strut lies and the strut must lie between them.

So the quadrilateral must be convex.

Putting the above equalities into symbols, we get

w12
−→e12 + w14

−→e14 + w13
−→e31 = 0 w12

−→e21 + w23
−→e23 + w24

−→e42 = 0

w23
−→e32 + w34

−→e34 + w13
−→e13 = 0 w14

−→e41 + w34
−→e43 + w24

−→e24 = 0

Let’s change the signs so that the subscripts are in ascending order:

w12
−→e12 + w14

−→e14 − w13
−→e13 = 0 (4.6)

−w12
−→e12 + w23

−→e23 − w24
−→e24 = 0 (4.7)

−w23
−→e23 + w34

−→e34 + w13
−→e13 = 0 (4.8)

−w14
−→e14 − w34

−→e34 + w24
−→e24 = 0 (4.9)

Since −→e13 must lie between −→e12 and −→e14, it splits the plane into two half-planes, each

containing one of those vectors. There are two candidates for “the vector normal to

−→e13”. We’ll choose the one that lies in the same half-plane as −→e14.

Equation (4.6) can be thought of as two equations in three variables:

w12
−→e12 · −→e13 + w14

−→e14 · −→e13 − w13 = 0 (4.10)

w12
−→e12 · −→e13

⊥ + w14
−→e14 · −→e13

⊥ = 0. (4.11)

We note that the two dot products in Equation (4.10) are both positive, while our

choice of −→e13
⊥ makes −→e14 · −→e31

⊥ positive and −→e12 · −→e31
⊥ negative.

We can solve this system of equations:

w12 =
−→e14 · −→e13

⊥

−−→e12 · −→e13
⊥w14 ⇒ w13 =

[
(−→e12 · −→e13)

−→e14 · −→e13
⊥

−−→e12 · −→e13
⊥ + −→e14 · −→e13

]
w14.

Letting θjik be the angle between −→eij and −→eik we can rewrite these in terms of sines

and cosines:

w12 =
sin θ314

sin θ213
w14

w13 =

[
cos θ213

sin θ314

sin θ213
+ cos θ314

]
w14 =

sin θ214

sin θ213
w14
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But since 0 < θ213, θ314, θ214 < π we know that w12, w13 and w14 will all have the same

sign (and can certainly be positive).

Similar calculations on Equation (4.8) give us that

w23 =
sin θ134

sin θ132

w34 and w13 =
sin θ234

sin θ132

w34,

again with the same sign. So we have a one-parameter family of solutions:

w12 =
sin θ314

sin θ214
w13 w14 =

sin θ213

sin θ214
w13 w23 =

sin θ134

sin θ234
w13 w34 =

sin θ132

sin θ234
w13

There are some points worth noting about this. First, the “double arrow” consisting

of a strut and the four cables to which it connects (like the ones shown in Figure 4.6.2

on page 104) seems a good basic unit to use in the analysis. Once w13 is set, all of

the cable weights follow. Second, the weight on a given cable is a function not only of

the angle between it and its strut but also the angle between its neighbor cable and

their shared strut. That will turn out to be significant later.

Now both Equation (4.7) and Equation (4.9) on the preceding page claim to be

able to tell us what w24 is. Suppose we call the Equation (4.7) answer w24 and the

Equation (4.9) answer ŵ24. How do they relate?

ŵ24
−→e24 = w14

−→e14 + w34
−→e34 (Equation (4.9))

= w13
−→e13 − w12

−→e12 + w23
−→e23 − w13

−→e13 (Equation (4.6) & Equation (4.8))

= w23
−→e23 − w12

−→e12 = w24
−→e24 (Equation (4.7))

That’s rather exciting news.1 That compatibility shows that we can establish a

strictly positive stress on any such convex quadrilateral.

Suppose that we have any convex curve of vertices. If we put struts between every

pair of antipodal (by arc length) points and cables between every pair of points whose

distance is 1/4 of the length of the curve, the resulting tensegrity is covered by convex

quadrilaterals and so it has a strictly positive stress and is bar equivalent.

1News that can be established also using the law of sines on the quadrilateral.
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But there are two hypotheses that seem like they could be removed. First, surely

1/4 isn’t the only fraction of the curve length that works. Secondly, is it really necessary

to have a convex curve?

4.6 Other Fractions

Let’s start by trying other fractions. We started with 1/4 because the quadrilateral

is pretty straightforward. Of course, if we use the fraction 1/2n for any n > 1, we

get a closed 2n-gon of cables with struts connecting opposite points. As before, we

certainly need each strut to fall in the cone generated by its cables. Also as before,

we can generate families of positive solutions for each “double arrow”. We need only

establish that those solutions can be compatible with each other. Figure 4.6.1 shows

a curve with one of the hexagonal tensegrities coming from a skip of 1/6 of the curve

length.

1

2

3

4

5

6

Figure 4.6.1: A more general hexagon.

Now suppose that we have two “adjacent” struts (shown in Figure 4.6.2 on the

following page) along with their associated cables. These two struts will share one

cable on each end. Certainly we can scale the answers for the two “double arrows” so

that the weights match on one of the shared cables, but it’s not at all clear that we can

make both ends match. And it turns out that in general it doesn’t work. Figure 4.6.3

on the next page shows a set of vectors that increase all strut lengths and decrease all

cable lengths for this particular example, and since none of the angles are straight,
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1 1

2
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4

5

6

Figure 4.6.2: Two of the struts from the hexagonal tensegrity above, along with
their associated cables. The two cables they share are shaded.

there will be an open set of neighbor hexagons that also have a motion. So this

tensegrity is not bar equivalent.

1

2

3

4

5

6

Figure 4.6.3: The hexagon with a motion.

What does work? Well, certainly any regular figure (where the construction at

each vertex is identical to that at all of the others). Figure 4.6.4 on the following page

shows two regular figures that could arise.

But other figures can provide bar equivalence. Suppose, for example, that we have

the non-regular hexagon shown in Figure 4.6.5 on the next page. It turns out that

a stress of 2 units on each of the cables and 1 unit each on the struts will put this

in equilibrium, so it is bar equivalent, and this suggests a family of bar equivalent



105

Figure 4.6.4: Two regular figures that arise with this construction.

(2, 0)

(1, 1)(−1, 1)

(−2, 0)

(−1,−1) (1,−1)

Figure 4.6.5: A bar equivalent tensegrity that is a nonregular hexagon.

hexagons. Figure 4.6.6 on the following page gives another, with the weights shown

on the edges: Now these are simply example hexagons. We have not addressed how

much stranger they can get, whether they can actually arise while building tensegrities

from curves in that fashion, nor whether, if they should arise, there must also be non-

bar-equivalent subtensegrities in the same construction. This seems a field worth

more exploration in the future. For now, let’s see if we can settle something about

non-convexity.

4.7 Non-convexity

Figure 4.7.1 on page 107 shows two non-convex vertex curves with antipodal struts

and fixed-skip cables. The skip in the first case is 1/4 of the curve length, and in the

second it is 1/6. The resulting tensegrity is, in each case, covered with regular sub-
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1

3

3

6

3.6

6

6

3.6

6

(1, 0)

(0.6, 0.6)

(−1, 0)

(0, 1)

(−0.6,−0.6)

(0,−1)

Figure 4.6.6: Another in the family of nonregular, bar equivalent hexagons.

tensegrities, all of which are bar equivalent. So each tensegrity is itself bar equivalent

(though neither is infinitesimally rigid, since a vector field with the same rotational

symmetry will move the subtensegrities with respect to each other).

What’s going on here? As we have seen above, what we need is for the two cables

meeting at each vertex of each subtensegrity to form a cone that contains the strut.

That will happen if, for a given vertex, the strut intersects the line that connects the

two “distant” cable ends (the dashed lines in the Figure 4.7.1 and Figure 4.7.2). Or

to put it differently, if the curve has length L and the cables connect points αL apart,

then the tensegrity will be bar equivalent if all segments connecting points 2αL apart

lie entirely within the curve (see Figure 4.7.2 on the following page).

For a given non-convex curve, then, there is a minimum distance below which the

cables must not go. This distance can be found in the following fashion. For each

vertex v, have two points start at the antipode and move, one in each direction at

equal speeds around the curve toward v.

If, at some point, the segment between them no longer lies entirely within the

curve, stop. Call that distance dv. Otherwise, dv = 0. Now, to get a bar equivalent

tensegrity, the cable skip distance must be strictly greater than maxv∈V dv.
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Figure 4.7.1: Here are two examples of bar-equivalent tensegrities that arise from
nonconvex curves. One subtensegrity is shown for each. The dashed lines are
explained in the text.

Possibly
bar equivalent

Not bar equivalent

Figure 4.7.2: How the relationship between the vertex curve and the “double skip”
tells on the bar equivalence of the subtensegrities.

This is not always possible. Figure 4.7.3 on the next page shows a vertex curve

with one of its struts. If cables are attached with a skip anything less than 1/2 of the

overall length, the two associated cables will both end on the same side of the strut,

so the strut will not lie in the cone they create.
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Figure 4.7.3: A vertex curve and a strut that cannot balanced by fixed-skip cables.

4.8 Affine Transformations

4.8.1 Deeper into the Crossed Square

In Section 2.2 on page 24, we found that the crossed square (also shown in

Figure 4.8.1(a)) is bar equivalent. Let’s find how its set of loads, Y (X ), looks.

(0, 0)
1

(1, 0)

4

(1, 1)
6

(0, 1)

3

1

2

34

5

2

(a) The crossed square
with edges numbered.

(0, 0) 1

(a, b)

4

(a + b, b + c)6

(b, c)

3

1

2

3

4

5

2

(b) The crossed square after
transformation.

Figure 4.8.1: The crossed-square example, both the original and after being trans-

formed by the matrix L>L =
[

a b
b c

]
.
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Suppose V = (x1, y1, x2, y2, x3, y3, x4, y4) ∈ Vf(V ). Then, letting the edges be e1

through e6 (as numbered in the figure), we have

Y V (e1) = −(x2 − x1) Y V (e4) = −(y3 − y2)

Y V (e2) = x3 − x1 + y3 − y1 Y V (e5) = x2 − x4 − (y2 − y4)

Y V (e3) = −(y4 − y1) Y V (e6) = −(x3 − x4)

But then

6∑

i=1

Y V (ei) = (−x2 + x1) + (x3 − x1 + y3 − y1) + (−y4 + y1)

+ (−y3 + y2) + (x2 − x4 − y2 + y4) + (−x3 + x4) = 0

So im Y is contained in the hyperplane
∑6

i=1 Y V (ei) = 0. On the other hand,

given any six real numbers r1, . . . , r6 with r1 + · · · + r6 = 0, the vector field

(r1, r3, 0, r4, r1 + r2 + r3, 0,−r4 − r5, 0)

is one of (infinitely) many for which Y V (ei) = ri, i ∈ {1, . . . , 6}.

So im Y is the hyperplane
∑6

i=1 Y V (ei) = 0 and from that equation, it is clear to

see that im Y ∩ C(E )+ = {0} (whenever one of the Y V (ei) is positive, another must

be negative to offset it). We note that the hyperplane is 5-dimensional, a reasonable

thing since Vf(V ) is 8-dimensional and there are three degrees of freedom given to

rigid motions of the plane (one rotational and two translational) that, of course, lie

in the kernel of Y .

Now suppose that we apply the linear transformation whose matrix is L to our

example. How will im Y change? Well, Y is defined by taking the dot product of
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vectors. We note that

(LV (v1) − LV (v2)) · (Lp(v1) − Lp(v2))

= L(V (v1) − V (v2)) · L(p(v1) − p(v2))

= (V (v1) − V (v2))
>L>L(p(v1) − p(v2))

= (V (v1) − V (v2)) · L>L(p(v1) − p(v2)).

(4.12)

So we can accomplish the same purpose by transforming p by L>L and leaving V

alone. A simple calculation shows that L>L is always symmetric (with nonnegative

entries on the diagonal), so we’ll write it as

L>L =



a b

b c





and see what effect it has (one possibility is shown in Figure 4.8.1(b)).

Now we get (using Ŷ for the rigidity operator after transformation)

Ŷ V (e1) = −a(x2 − x1) − b(y2 − y1)

Ŷ V (e2) = (a + b)(x3 − x1) + (b + c)(y3 − y1)

Ŷ V (e3) = −b(x4 − x1) − c(y4 − y1)

Ŷ V (e4) = −b(x3 − x2) − c(y3 − y2)

Ŷ V (e5) = (a − b)(x2 − x4) + (b − c)(y2 − y4)

Ŷ V (e6) = −a(x3 − x4) − b(y3 − y4).

The arithmetic is only touch more complicated, but the result is the same, im Y is

the hyperplane
∑6

i=1 Y V (ei) = 0. So the crossed square remains bar equivalent under

linear transformation.

This is far from obvious. Linear transformation does not, in general, preserve dot

product. So a vector field that is in the kernel of Y before transformation is not

necessarily in the kernel of Ŷ afterward (see Figure 4.8.2 on the next page for an

example). This bears more exploration.
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1

34

2 1

3

4

2

Figure 4.8.2: The crossed-square, original and transformed, with a motion (rota-

tion around the marked point) that is in kerY before transformation by L =
[

3/4 1/4
1/8 7/8

]

and not in ker Ŷ afterward.

4.8.2 Triangles again

Let’s look at one more example and see if we can figure out what is going on.

In Figure 4.8.3 we find a tensegrity that looks like the one in Figure 3.5.2 on page 68,

but we are going to treat it differently. This time we are going to define X to be those

21

3

21

3

[ 1 1
0 1 ]

Figure 4.8.3: A tensegrity that is X -bar equivalent before transformation by [ 1 1
0 1 ]

but not afterward. The motion shown, moving only vertex 3, results in a load that
has negative components for the lefthand tensegrity, but is semipositive for the right.

variations that do not change the length of the cables (to first order). That means

X = {(x1, y1, x2, y2, x3, y3) ∈ Vf(V ) :x1 = x2, y1 = y3}

The bar functions as a strut and a cable, so C(E ) is a 4-dimensional space. Taking

the edges in the order “1-2 cable, 1-3 cable, 2-3 cable, 2-3 strut”, the elements of Y (X )

turn out to all be of the form

(0, 0,−(y3 − y2) − (x2 − x3), (y3 − y2) + (x2 − x3))
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so Y (X ) ∩ C(E )+ = {0} and the tensegrity is X -bar equivalent.

On the other hand, if we transform the tensegrity with L = [ 1 1
0 1 ], then we get

LX = {(x1, y1, x2, y2, x3, y3) ∈ Vf(V ) :x1 + y1 = x2 + y2, y1 = y3}

and so the elements of Ŷ (LX ) are

(y2 − y1, x1 − x3, y1 − y2, y2 − y1).

Now Ŷ (LX )∩C(E )+ contains functions that are zero except on the “newly diagonal”

cable, the edge running from vertex 1 to vertex 3. On that edge, they can be strictly

positive.

Since there is a semipositive stress, namely (1, 0, 2, 1), our transformed tensegrity

is partially LX -bar equivalent, but it is not fully so.

4.8.3 Conclusion

So what is the difference between the two preceeding examples? X .

To be a little clearer, let’s think back to Equation (4.12) on page 110 in which we

showed that for two vectors v and p, Lv · Lp = v · L>Lp. We could have gone the

other direction and we would have gotten

(LV (v1) − LV (v2)) · (Lp(v1) − Lp(v2)) = L>L(V (v1) − V (v2)) · (p(v1) − p(v2)).

That equation gives the answer to the question. In our first example, L>L was an

automorphism of X (which, after all, was all of Vf(V )). In the second it was not. So

that suggests a proposition.

Proposition 4.8.1. Let G(p) be an X -bar equivalent tensegrity in Rn, L a linear

transformation on Rn and t ∈ Rn. Define A by Ax = Lx + t for all x ∈ Rn. Then

G(Ap) is AX -bar equivalent if L>LX ⊂ X .
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Proof. Let AV ∈ AX . Then, for any {v1, v2} ∈ E we have

Ŷ (AV )({v1, v2}) = ±(LV (v1) + t − LV (v2) − t) · (Lp(v1) + t − Lp(v2) − t)

= ±(LV (v1) − LV (v2)) · L(p(v1) − p(v2))

= ±L>(LV (v1) − LV (v2)) · (p(v1) − p(v2))

= ±(L>LV (v1) − L>LV (v2)) · (p(v1) − p(v2))

= Y (L>LV )({v1, v2})

(where the choice of sign depends on the type of edge). But since L>LX ⊂ X , we

have Ŷ (AV ) ∈ Y (X ). So Ŷ (AX ) ⊂ Y (X ), which means that

Ŷ (AX ) ∩ C(E )+ ⊂ Y (X ) ∩ C(E )+ = {0}

and G(Ap) is AX -bar equivalent.

Note that the proposition and proof still stand if “X -bar equivalent” is replaced

by “partially X -bar equivalent”, “C(E )+” is replaced with “int C(E )+” and “{0}”

by “∅”.

Remembering that “bar equivalent” means “Vf(V )-bar equivalent”, we immedi-

ately get a corollary.

Corollary 4.8.2. If G(p) is a bar equivalent tensegrity in Rn and A is an affine

transformation on Rn, then G(Ap) is bar equivalent.

Proof. Note that for any linear transformation L, L>LVf(V ) ⊂ Vf(V ), and apply

Proposition 4.8.1.

In the case of an invertible transformation (for which we only need that L is

invertible, since A−1x = L−1(x − t)), we can say something more.

Proposition 4.8.3. Let G(p) be an X -bar equivalent tensegrity in Rn, L an invertible

linear transformation and t ∈ Rn. Define A by Ax = Lx+t. Then G(Ap) is (L>)−1X -

bar equivalent.
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Proof. Let (L>)−1V ∈ (L>)−1X . Then, for any {v1, v2} ∈ E , we have

Ŷ ((L>)−1V )({v1, v2}) = ((L>)−1V (v1) − (L>)−1V (v2)) · (Ap(v1) − Ap(v2))

= (L>)−1(V (v1) − V (v2)) · (Lp(v1) + t − Lp(v2) − t)

= (L>)−1(V (v1) − V (v2)) · L(p(v1) − p(v2))

= L>(L>)−1(V (v1) − V (v2)) · (p(v1) − p(v2))

= (V (v1) − V (v2)) · (p(v1) − p(v2))

= Y V ({v1, v2})

So Ŷ ((L>)−1V ) = Y V ∈ Y (X ) and we already know that Y (X ) ∩ C(E )+ = {0}.

Once again, the proposition and proof are true, mutatis mutandis for partially

(L>)−1X -bar equivalent.

4.8.4 More Circles

So what does this say about the on-a-circle example of Section 4.2? Since X =

Vf(V ), Corollary 4.8.2 says that any affine transformation of the on-a-circle example

is still bar equivalent. Note that this is different from what one would get by first

transforming the circle of vertices and then applying the on-a-circle construction (see

figure Figure 4.8.4).

Figure 4.8.4: Two ways to build elliptical tensegrites. Two different subtensegrities
have been shown. In both cases the picture on the left is the result of building a
circular tensegrity and then transforming it and the picture on the right is the result
of building the tensegrity on an ellipse.



115

4.9 A Corner Case

What might it look like to have an example where not every subtensegrity is bar

equivalent? Let’s try to build such a creature. Consider the family of tensegrities

represented in Figure 4.9.1. For the first triangle (where each side is length 2), a stress

Figure 4.9.1: Representatives of our family of triangular tensegrities.

which has weight 3 on all of the cables and weight 1 on each of the struts will suffice

to show that it is bar equivalent. As the top comes down to meet the midpoint, the

weights on the upper two cables must rise (or all of the others fall) until, when the

top strut either touches or runs below the midpoint, the tensegrity is no longer bar

equivalent.

Let’s group together a lot of the bar equivalent ones and slip one that isn’t bar

equivalent in amongst them. We can choose a family of such tensegrities with the

top strut approaching the center point, as shown in Figure 4.9.2 (we’ve removed the

struts from the picture for visibility’s sake).

Figure 4.9.2: Triangle subtensegrities with varying top angle forming a continuous
tensegrity. The outer strut triangles are not shown.
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Now in three dimensions, even those subtensegrities that previously were infinites-

imally rigid are no longer so, as they have no way to resist variations normal to their

planes of definition. However, as Proposition 4.9.1 tells us, they remain bar equiva-

lent.

Proposition 4.9.1. A finite tensegrity that is bar equivalent in Rn is bar equivalent

in Euclidean space of all dimensions higher than n.

Proof. Let G(p) be a finite, bar equivalent tensegrity in Rn. By Lemma 2.4.3 on

page 35, that tensegrity has a strictly positive stress, that is, a positive linear depen-

dence among the row vectors of the rigidity matrix. Moving to a higher dimension

will change those vectors, but only by adding columns of zeros for the new dimension,

so it doesn’t change that linear dependence. Since G(p) continues to have a positive

stress, it continues to be bar equivalent.

So our continuous family is countably covered by bar equivalent subtensegrities

and hence must be bar equivalent itself. That means, of course, that Y (X )∩C(E )+ =

{0}, which is to say, no matter which V we pick, Y V must have some negative values.

That’s true, but there’s something a little strange going on here. It turns out that

the image of Y , while intersecting the nonnegative orthant only at the origin, gets

arbitrarily close to it elsewhere. Let’s see if we can watch that happen.

Take the vertical cable in each subtensegrity. We can shrink this cable by putting a

length-1 vector pointing directly downward at the central node and balancing it with

a length 1/3 upward-pointing vector at each of the other three nodes (see Figure 4.9.3

on the following page).

This set of vectors will have no effect whatsoever on the struts. It will produce a

value of 4/3 on the vertical cable, and it will produce a force on the other two cables

that depends on their angle (see Figure 4.9.4 on the next page).
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Figure 4.9.3: Balancing forces placed on a subtensegrity.

y

1

Figure 4.9.4: The forces present on one “arm” of the subtensegrity.

In every case, the horizontal length of each of those cables is 1. If the vertical length

is y, then the rigidity operator will take our set of vectors to the value −2/3
y√
1+y2

.

Now when y = 0, this value is 0. That makes sense, since the forces are now acting

orthogonally to the edge, but we can use that fact to our advantage.

Suppose, now, that we identify our family of subtensegrities with the interval

[−1, 1] in such a way that if x ∈ [−1, 1] gives a certain subtensegrity, then y = x2

for that tensegrity (this is function used in Figure 4.9.2). Now we take a family of

vector fields on our vertices. For every value i ∈ Z, we let Vi(x) be the zero vector

for x /∈ [−1
i
, 1

i
] and then have vectors in the ratios we’ve discussed increasing linearly

from 0 at x = −1
i

to 1 at x = 0 and back down to 0 at x = 1
i

(the case i = 2 is shown

in Figure 4.9.5 on the following page).

Now Y Vi is a function that is strictly positive on the center subtensegrity. After

all, it shrinks that center cable, and since it acts orthogonally to them, it doesn’t
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Figure 4.9.5: The tensegrity with the vector field described.

change the lengths of the other cables, to first order. Of course, Y Vi is negative on

the upper cables of those tensegrities surrounding the center one–we knew it had to

be negative somewhere since the tensegrity is bar equivalent.

For each Vi, we can define fi(e) = max{Y Vi(e), 0}. Then fi ∈ C(E )+, and

as i gets large, the distance ‖Y Vi − fi‖ gets arbitrarily small. On the other hand

‖Y Vi‖ = 1 = ‖fi‖ for all i, so we have a subspace, im Y that, at a distance 1 from

the origin, gets arbitrarily close to the nonnegative orthant and yet which intersects

that orthant only at the origin.



Chapter 5

Conclusion and Future Directions

So where are we and where do we go from here?

We set out to take the theorem “A tensegrity is bar equivalent if and only if it has

a strictly positive stress” into the new world of continuous tensegrities. We’ve come

close to accomplishing that. We have:

i) A tensegrity is partially bar equivalent if and only if it has a semipositive stress.

ii) A tensegrity is bar equivalent if it has a strictly positive stress.

iii) A tensegrity is minimally bar equivalent only if it has a strictly positive stress.

iv) If a tensegrity is countably covered with subtensegrities that have strictly pos-

itive stresses, then it has a strictly positive stress.

If we want to show that a tensegrity has a motion, showing that it has no semipositive

stress gives a very strong result. On the other hand, if we wish to show that a

tensegrity has no motion, showing that it has a strictly positive stress gives a strong

result and showing that it has a semipositive stress still gives a valuable result. We

can handle all of these situations — but only when E is compact.

That is not always a given. For example, Connelly et al. (2003) find a flow

of any nonconvex polygon in R2 that “convexifies” the polygon and in which all

non-adjacent vertices are constantly moving away from each other. Moving into the

continuous realm (see Figure 5.0.1 on the next page), we find that for each vertex,

we get a “fan” of struts.
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Figure 5.0.1: Moving the “convexifying polygons” problem in to the continuous
world. In the continuous picture, the struts from only one vertex are shown.

Within that fan, we can find a sequence of struts which limits to the “zero-length

strut” connecting the vertex to itself. If we exclude those “zero-length struts”, the

edgeset is not compact. If we include them, the load on those struts will have to be

zero, so any motion is semipositive at best. On the other hand, perhaps it could be

shown that the motion, though semipositive, is strictly positive on all of the struts

connecting distinct points.

In the work here, we have not addressed the question of infinitesimal rigidity.

A bar equivalent continuous tensegrity is infinitesimally rigid if the associated bar

framework is, but determining whether a continuous bar framework is infinitesimally

rigid is not always simple. Roth (1981) gives a “rigidity predictor” for bar frameworks.

Perhaps it could be extended to continuous bar frameworks and thence to continuous

tensegrities.

Any work on infinitesimal rigidity of continuous bar frameworks is likely to be

informed by the literature on continuous families of linear equalities. That is a real-

ization which may well be exceedingly fruitful. What we have done here is valuable

in its own right in solving problems with continuous tensegrities, but the statement

that Y V ∈ C(E )+ is really just an infinite family of linear inequalities. By modi-
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fying Y , the theory could be applied to other situations. For example, Ashton et al.

(in revision) use both struts and kinks (places where the vertex curve has reached a

curvature constraint) to build the rigidity operator. A similar idea could perhaps be

employed to provide an alternate proof of Schur’s Theorem (page 6).

As another example, consider moving the differential version of the “convexifying”

task up one dimension. In this realm, we could still seek to have all vertex-vertex

distances increase, or we could instead build our rigidity operator using the volumes

of the tetrahedra determined by sets of 4 points on the surface, and we could require

that those volumes be strictly increasing. Or, with careful choice of rigidity oper-

ator, perhaps our results can provide new proofs for various of the Theorems of the

Alternative (see Section 3.1 and Appendix B).

Speaking of Theorems of the Alternative, at the end of Appendix B, we relate

stresses of a tensegrity to variations lying in X⊥. It would be interesting to know how

those variations relate to the “curvature force” of Cantarella et al. (2006). For that

matter, there is plenty of work yet to be done to understand exactly which variations

thus arise. In fact, at this point, the circle-of-struts example is the only bar equivalent

tensegrity we have whose design variations are local isometries of the vertex curve.

In the world where all variations are design variations, there is exploration that

could be done into which tensegrities that arise from the antipodal strut/fixed-skip

cable technique are bar equivalent (see Section 4.6 on page 105). Also, the continuous

analog of the Grünbaum polygons from page 6 waits to be found.

Finally, there are those conjectures from pages 87 and 91:

Conjecture 3.8.4. A tensegrity is minimally X -bar equivalent if and only if it admits

only one semipositive stress, up to scaling. Furthermore, that stress is strictly positive.

Conjecture 3.9.3. Every X -bar equivalent continuous tensegrity is countably covered

by minimally X -bar equivalent subtensegrities.

Conjecture 3.9.4. Every X -bar equivalent tensegrity has a strictly positive stress.
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With regard to that last one, having the strictly positive loads in the interior

of C(E )+ and the semipositive ones on the boundary seems appropriate but that

C∗(E )+ has no interior is surprising. Perhaps a different topology on C(E ) would

give an interior to C∗(E )+ and place the strictly positive stresses in that interior and

the semipositive ones along the boundary. Or perhaps one of the other Theorems

of the Alternative, such as those of Tucker (1956) or Slater (1951) could solve the

problem with the topology as it stands.
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Stiemke, Erich. 1915. Über positive Lösungen homogener linearer Gleichungen,

Mathematische Annalen 76, 340–342.

Strichartz, Robert S. 1995. The Way of Analysis, Jones and Bartlett Pub. Intl., Bostan,

MA.



128

Sullivan, John M. 2006. Curves of Finite Total Curvature, lecture notes, available at

arXiv:math/0606007v1.
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Appendix A

Euclidean Motions: Infinitesimal Rigid Motions of Space

A.1 The Special Orthogonal Group: SOn and son

As we mentioned on page 17, the vector fields in Vf(V ) vary in nature. Figure A.1.1

shows three different vector fields on the same tensegrity. We are here interested in

identifying which vector fields, like the first two of those in the figure, can arise from

rigid motions of space.

Figure A.1.1: Three different vector fields on a square made of cables. The left
hand one would result in a simple translation of the tensegrity. The center one
indicates a rotation around the marked point. The right field is the only one which
would change the shape of the tensegrity. The first two are elements of T (p), the
third is in I(p) but not in I(p) or T (p).

In the work we do here we will look for inspiration to Murray et al. (1994), who

much of the same work, though primarily in R3.

Intuitively, a rigid motion of space is a continuous movement of Rn which preserves

all distances and angles. More formally, Ht is a rigid motion of space if

Ht: [0, 1] → Aut Rn

(where Aut Rn is the set of automorphisms of Rn) such that H0 is the identity map

on Rn and for all v, w ∈ Rn and t ∈ [0, 1],

〈Ht(v), Ht(w)〉 = 〈v, w〉.
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We will call a map g: Rn → Rn a rigid transformation if there is some rigid motion

of space, Ht such that g = H1.

Clearly, any such transformation must take an orthonormal basis for Rn to an

orthonormal basis for Rn, so we can describe it by telling where the origin goes and

how the new set of coordinates is oriented with respect to the old. That is, it will

consist of a translation and a “reorientation”. That reorientation may be a rotation

(in fact, must be in R2 and R3) or a composition of rotations (Artin, 1991, p. 125).

We’ll look first at the reorientation and then see what it takes to include the

translation. Taking as our original basis for Rn the traditional orthonormal basis

consisting of unit vectors in the coordinate directions, e1, . . . , en, we can describe a

reorientation by taking the vectors ê1, . . . , ên of the new coordinate axes and building

a reorientation matrix

R = [ê1 · · · ên].

Now since the ê1, . . . , ên form an orthonormal basis and hence are mutually orthogonal

and of unit length, we have

R>R = RR> =





1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1





= I (the identity matrix).

Then, since

1 = det I = det R>R = det R> det R = (det R)2, (A.1)

we have that det R = ±1. Now if we think of the set of all n × n matrices as the

space Rn2

, then the determinant is a continuous function from that space into R. But

the set {−1, 1} has two connected components, so the set of matrices described by

Equation (A.1) must have at least two connected components.1 Furthermore, since

1It turns out to be exactly two (see Artin (1991, p. 124)), but we don’t need that
information here.
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the rigid motions provide a path between the identity transformation and the reorien-

tation in question, all of the reorientations which play into our rigid transformations

must lie in the connected component in which the identity has its home.

That means that we have det R = 1 for every reorientation R. So our reorienta-

tions are contained in the set of “special orthogonal matrices”, which we can write

formally as

SOn =
{
R ∈ Rn×n : R>R = I and det R = 1

}

(see, for example, Artin (1991, p. 124)).

On the other hand, if R ∈ SOn, then for any v, w ∈ Rn,

〈Rv, Rw〉 = v>R>Rw = v>w = 〈v, w〉,

and we can produce a rigid motion of space by taking the rotations which make

up R and varying their angles from 0 through the angle desired. Hence our set of

reorientations is SOn.

However, we’re not really interested in SOn, per se. We want the “infinitesimal

reorientations”, the directions in the space of n× n matrices in which a rigid motion

of space can leave the origin – the tangent space to SOn at the identity (more on that

in a moment).

Now the n × n matrices form a normed linear space using the Frobenius norm

(see, for example, Artin (1991, p. 153)), which is essentially the Euclidean norm with

the matrices thought of as vectors in Rn2

.

SOn is a subset of that space of n×n matrices (not a subspace, since, for example,

scaling a matrix changes its determinant), but it is more than that. It is a Lie group,

which is to say, a group that is also a smooth manifold. So its tangent space at the

identity is well-defined. This tangent space to SOn at the identity is usually called

son (Sharpe, 1997, pp. 12,64).

Now the elements of a tangent space to a surface at a given point provide us the

best linear approximation to that surface at that point. So if our surface is defined
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as the level curve of some function f(x) = c, the elements of the tangent space are

precisely those vectors v for which f(x+εv)−c is proportional to ε2 rather than to ε.

In our case, SOn is defined by the equation2 R>R = I, so we can see it as the

level curve f(R) = 0 for f(R) = ‖R>R − I‖.

Then dR ∈ son if and only if d
dε

f(I + εdR)
∣∣
ε=0

= 0. That is,

0 =
d

dε
f(I + εdR)

∣∣∣∣
ε=0

=
d

dε
‖(I + εdR)>(I + εdR) − I‖

∣∣∣∣
ε=0

=
d

dε
‖I>I + εdR>I + I>εdR + ε2dR>dR − I‖

∣∣∣∣
ε=0

=
d

dε
‖εdR> + εdR + ε2dR>dR‖

∣∣∣∣
ε=0

.

=
d

dε
ε‖dR> + dR + εdR>dR‖

∣∣∣∣
ε=0

.

= ‖dR> + dR + εdR>dR‖ + ε
d

dε
‖dR> + dR + εdR>dR‖

∣∣∣∣
ε=0

.

If we knew that d
dε
‖dR> +dR+ εdR>dR‖ was finite, we’d know that that entire term

is zero at ε = 0. Well, denoting the entry of dR in the ith row and jth column by dij

and the equivalent entry in dR>dR by cij gives us

= ‖dR> + dR + εdR>dR‖ + ε

∑n
i=1

∑n
j=1(dji + dij + εcij)cij

‖dR> + dR + εdR>dR‖

∣∣∣∣∣
ε=0

.

= ‖dR> + dR‖ =⇒ dR> + dR = 0 =⇒ dR = −dR>.

So dR ∈ son if and only if dR is a skew-symmetric matrix. That means that

the entries above the diagonal may be arbitrary but then the rest of the matrix is

determined, so son is n(n−1)
2

-dimensional. Since the dimension of a tangent space is

the same as the dimension of the manifold (see, for example, Kolář et al. (1993, p.

2There is also the determinant requirement, but that simply selects which connected
component we are concerned with. As we are asking for the tangent space at the identity,
we will get the same results if we think of just the component in hand or of both components
together.
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7)), that tells us also the dimension of SOn. However, there’s an intuitive argument

for the same value.

Thinking back, we remember that the columns of any element of SOn form an

orthonormal basis for Rn. So we start with n2 degrees of freedom and apply n

constraints to make the column vectors unit length. Then, for any pair of vectors,

we add another constraint to make them orthogonal. That’s
(

n
2

)
= n(n−1)

2
more

constraints for a total of n(n+1)
2

degrees of freedom gone and n(n−1)
2

remaining.

A.2 The Special Euclidean Group: SEn and sen

Now that we’ve seen what the reorientations are like, we’d like to add in the transla-

tions. Of course, since any linear transformation on Rn takes the origin to the origin,

translations are outside that realm. But by moving up one dimension, we can return

to the world of linear transformations.

To do so we will take a point in Rn, p = [ p1 p2 ··· pn ]> and move it into Rn+1 by

adding a coordinate and setting its value to 1, thus: [ p1 ··· pn 1 ]>. So then, if R ∈ SOn

tells how we wish to reorient the axes and t ∈ Rn tells where the origin should go, we

can find the new location of the point p by the linear transformation:



p̂

1



 =



R t

0 1







p

1



 =



Rp + t

1



 (A.2)

The matrices [ R t
0 1 ] form the Special Euclidean Group SEn (sometimes called just

the Euclidean Group, Eucn). If we label the (n + 1)× (n + 1) matrices in the fashion

[ R t
c d ] (where R is an n×n matrix, t is an n-coordinate column vector, c an n-coordinate

row vector and d a scalar), then SEn is the subset of that space defined by R>R = I,

c = 0 and d = 1.

Since we can pair any reorientation with any translation, SEn appears to be

isomorphic to SOn × Rn and so would be of dimension n(n+1)
2

, and that’s close to

true. The dimension is right, but the group law is wrong.
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Reorientations and translations don’t commute. From Equation (A.2) on the

preceding page we can see that an element of SEn first applies the reorientation and

then the translation, so suppose we have two elements of SEn, say

a = (Ra, ta): “rotate around the origin by π/3 and then move right 1 unit”, and

b = (Rb, tb): “rotate around the origin by π/6 and then move right 1 unit”.

(Rb, tb)

(R
a
, t

a
)

(a) The effect of applying (Rb, tb)
and then (Ra, ta).

(R
aR

b , ta +
tb )

(b) The effect of applying (RaRb, ta+tb).

Figure A.2.1: SEn is not isomorphic to SOn×Rn, since the operations of rotating
around the origin and translating do not commute.

Then, as Figure A.2.1 shows, the operations (Ra, ta)(Rb, tb) and (RaRb, ta+tb) are not,

in general, the same. However, the reorientations are automorphisms of Rn and the

translations are Rn. So we can think of the reorientations acting on the translations

and define a group operation thus:

(R1, t1)(R2, t2) = (R1R2, t1 + (R1t2)).

The group thus formed is known as the semidirect product of SOn and Rn, denoted

SOn n Rn (see, for example, Rotman (1995, p. 167) or Gaal (1973, p. 236), for more

information about semidirect products).

Proposition A.2.1. SOn n Rn is a group and is isomorphic to SEn.
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Proof. Let R1, R2, R3 ∈ SOn and t1, t2, t3 ∈ Rn. Then

(R1, t1)((R2, t2)(R3, t3)) = (R1, t1)(R2R3, t2 + R2t3)

= (R1R2R3, t1 + R1t2 + R1R2t3)

= (R1R2, t1 + R1t2)(R3, t3)

= ((R1, t1)(R2, t2))(R3, t3)

so we have associativity. The element (I, 0) is clearly the identity, so we only need

inverses. Since SOn is a group, we have inverses for all of its elements. Using these

we can build the inverses we need:

(R1, t1)(R
−1
1 ,−R−1

1 t1) = (R1R
−1
1 , t1 + R1(−R−1

1 t1))

= (I, t1 − t1) = (I, 0).

So SOn n Rn is a group. Consider the map f :SOn n Rn → SEn by (R, t) 7→ [ R t
0 1 ].

Then

f((R1, t1))f((R2, t2)) =



R1 t1

0 1







R2 t2

0 1





=



R1R2 R1t2 + t1

0 1



 = f((R1, t1)(R2, t2)).

So the two groups are homomorphic. Furthermore, f is onto and has trivial kernel,

by inspection, so SOn n Rn and SEn are isomorphic.

It turns out that SEn is a Lie group, just as SOn was (Sharpe, 1997, p. 64), which

is good, as we are still interested in the tangent space, sen. Since the elements of

SEn look like [ R t
c d ], the elements of sen look like [ dR dt

dc dd ]. We already know that dR

must be in son and we can simply take differentials of the other two equations to give

us dc = 0 and dd = 0. So the elements of sen look like [ dR dt
0 0 ] where dR ∈ son and

dt ∈ Rn.
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All that remains is, then, is to figure out which vector fields correspond to the

elements of sen. To find those, we take the points in p(V ) and apply the elements of

sen to them. In the next subsection, we give an example.

A.2.1 Examples

Consider the crossed-square example from Figure 2.1.1 on page 15, shown also

in Figure A.2.2. We’ve shown that the elements of se2 look like
[

0 a x
−a 0 y
0 0 0

]
. For the

crossed square, p(2) = (1, 0), so we multiply




0 a x

−a 0 y

0 0 0









1

0

1




=





x

−a + y

0




.

Thus we have V (2) = (x, y − a). Following through the rest of the arithmetic gives

us that the vector fields in T (p) look like

V (v) =






(x, y), v = 1

(x, y − a), v = 2

(x + a, y − a), v = 3

(x + a, y), v = 4.

For example, the two vector fields in Figure A.2.2 (which are the same as the first

1 2

34

{a = 0, x = 0.3, y = 0.1}
1 2

34

{a = −0.4, x = 0.3, y = −0.1}

Figure A.2.2: Two vector fields in T (p) on the crossed square.

two in Figure A.1.1 on page 129) are given by {a = 0, x = 0.3, y = 0.1} and {a =

−0.4, x = 0.3, y = −0.1} respectively.



Appendix B

Motzkin’s Theorem

B.1 Preparing to use Motzkin’s Theorem

B.1.1 Background

In Section 3.1 on page 37, we talked about Theorems of the Alternative and how our

main theorem relates to them. Here we will use one of them to give an alternate proof

for the first main theorem. The new version actually has stronger hypotheses, so it’s

not as strong a theorem, but we include it here because the technique is interesting.

The theorems of Stiemke (3.1.1) and Gordan (3.1.2) in Section 3.1 are for finite-

dimensional Euclidean space. We need them extended to more general spaces. Unfor-

tunately, a literature search failed to locate generalized versions.

However, Mangasarian (1969) proves Stiemke’s theorem using a theorem from

Theodore Motzkin’s dissertation (1936) commonly known as Motzkin’s Transposition

Theorem. And B. D. Craven (1978) gives a version of Motzkin’s Theorem for normed

linear spaces.

The theorem reads as follows (here L(X, W ) denotes the space of continuous linear

maps from X to W and AT is Craven’s notation for the adjoint of A):

Theorem B.1.1 (Motzkin Transposition Theorem). Let X, W , Z be normed spaces;

let S ⊂ W be a convex cone, with int S 6= ∅; let T ⊂ Z be a closed convex cone; let

A ∈ L(X, Z) and B ∈ L(X, W ). If the convex cone AT (T ∗) is weak-* closed, then

exactly one of the two following systems has a solution:

(I) −Ax ∈ T , −Bx ∈ int S (x ∈ X);
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(II) p ◦ B + q ◦ A = 0, q ∈ T ∗, 0 6= p ∈ S∗.

Proof. See Craven (1978, p. 32).

X∗ X
A

{{ww
ww

ww
ww

w
B

$$H
HHHHHHHH

T ∗ ⊂ Z∗

AT

88qqqqqqqqqqq

T ⊂ Z W ⊃ S

Figure B.1.1: The diagram for the Motzkin Transposition Theorem.

Figure B.1.1 shows the diagram for Motzkin’s theorem. We know that C(E )+ is

a convex cone with nonempty interior, so it seems reasonable to set S = C(E )+ and,

of course, W = C(E ). In that case, if we made B be the negative of our rigidity

operator and set X = Vf(V ), then −Bx ∈ int S would mean Y V ∈ int C(E )+, that

is, V is a strictly positive motion.

That seems promising, but what are T and Z? Well, that −Ax ∈ T could allow

us to implement the design variations. If T = X (which, of course, means that

Z ∈ Vf(V )) and A = −Id, the negative of the identity map, then −Ax ∈ T becomes

V ∈ X .

How does that work out with the other alternative? Using the definitions we have

put forth, we get Case (II) as −pY − q = 0, where 0 6= p ∈ C∗(E )+ and q ∈ X ∗. So

we could take p as our stress µ and (so long as X is a subspace so that X ∗ = X⊥),

we get the statement Y ∗µ ∈ X⊥. That is, there exists a semipositive stress. So this

seems a good match for our needs. Our only concerns are about having X⊥ be closed

and the weak-* closure of T ∗. To make those easier to answer, we’ll make Vf(V ) into

a Hilbert space.
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B.1.2 γ and Vf(γ)

In what follows, we will work exclusively with tensegrities whose vertices lie along a

simple, rectifiable (in fact, arclength parametrized) curve (again called γ) with finitely

many connected components and total length `.

We want Vf(γ) to be a Hilbert space, so we need to endow it with an inner product.

In doing this, we’ll follow the lead of John Pardon (private communication). We’ll

redefine Vf(γ) to be a subset of the absolutely continuous functions and establish the

inner product 〈V1, V2〉 =
∫

V ′
1 · V ′

2 ds on it.

For that inner product to be finite, we’ll need
∫
|V ′|2 ds < ∞ for all V ∈ Vf(γ),

and that to get completeness, we’ll want the derivative map on Vf(γ) to be 1-1.

Pardon accomplishes that last task by requiring that V (0) = 0, but we take a

different route. We would like
∫ `

0
V (s) ds = 0, that is, we want the “center of mass”

of the variation to be at 0. This will have the effect that V (s) as a variation will give

γ no net translation. In summary:

Definition B.1.2. The space of variations on γ, Vf(γ) will consist of all absolutely

continuous vector fields V on γ which satisfy
∫
|V ′|2 < ∞ and

∫
V = 0.

It may help to have a more explicit definition for elements of Vf(γ).

Proposition B.1.3. Vf(γ), as defined in Definition B.1.2 consists of those vector

fields on γ which satisfy
∫
|V ′|2 < ∞ and

V (s) =

∫ s

0

V ′(t) dt − 1

`

∫ `

0

∫ t

0

V ′(r) dr dt. (B.1)

Proof. By Theorem 3.7.17 on page 82, vector fields which satisfy Equation (B.1) are

absolutely continuous, so we need only show that this is the equation which gives us
∫

V = 0. We know that V (s) =
∫ s

0
V ′(t) dt + V (0). So

∫ `

0

V (s) ds =

∫ `

0

∫ s

0

V ′(t) dt ds +

∫ `

0

V (0) ds =

∫ `

0

∫ s

0

V ′(t) dt ds + `V (0)
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To get
∫ `

0
V (s) ds = 0, then, we need

V (0) = −1

`

∫ `

0

∫ s

0

V ′(t) dt ds.

Now we are ready to establish the nature of our new Vf(γ).

Proposition B.1.4. Vf(γ) is a Hilbert space under the inner product 〈V1, V2〉 =
∫

V ′
1 · V ′

2 ds.

Proof. First we need to establish that 〈V1, V2〉 as we’ve defined it really is an inner

product. We have three things to check:

(i) Symmetry:

〈V1, V2〉 =

∫
V ′

1 · V ′
2 ds =

∫
V ′

2 · V ′
1 ds = 〈V2, V1〉

(ii) Positive definiteness:

〈V, V 〉 =

∫
V ′ · V ′ ds > 0

We note that 〈V, V 〉 = 0 only when V ′ = 0 almost everywhere. So V must be

constant. But because
∫

V = 0, this only happens when V = 0. Also, by our

definition of Vf(γ),
∫
‖V ′‖2 < ∞, so 〈V, V 〉 is finite.

(iii) Linearity in the first position:

〈aV1 + bV2, V3〉 =

∫
(aV ′

1 + bV ′
2) · V3 ds

= a

∫
V ′

1 · V ′
3 + b

∫
V ′

2 · V ′
3 ds = a〈V1, V3〉 + b〈V2, V3〉

(for all a, b ∈ R and V1, V2, V3 ∈ Vf(γ)).

So 〈V1, V2〉 is an inner product.

Next we need to show that our space is complete with the norm ‖V ‖ = 〈V, V 〉 1

2 .
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Suppose that there is a Cauchy sequence {Vn} of elements of Vf(γ). That is, for

any ε > 0, there exists some positive integer N such that whenever m, n > N , we

have

ε > ‖Vm − Vn‖ =

(∫
‖V ′

m − V ′
n‖2

)1/2

.

But we recognize that final term as ‖V ′
m−V ′

n‖2, the L2 norm of V ′
m−V ′

n. L2 is complete

under its norm (see, for example, Folland (1999, p. 183)), so there is some V ′ ∈ L2

such that V ′
n → V ′. With that in hand we can calculate V (s) from Equation (B.1)

on page 139. The result is an absolutely continuous (by Theorem 3.7.17 on page 82)

vector field for which
∫
|V ′

n|2 < ∞ and
∫

V = 0. Thus V is an element of Vf(γ). And

so Vf(γ) with our inner product is a Hilbert space.

One delightful aspect of Hilbert spaces is that every linear functional on a Hilbert

space is given by inner product with some element of the space. This is the result

of another theorem also called the “Riesz Representation Theorem”, which we give

below. This allows us to think of elements of a Hilbert space and its dual as lying in

the same space.

Theorem B.1.5 (Riesz Representation Theorem for Hilbert Spaces). Let X be a

Hilbert space. Then, for every f ∈ X∗, there exists a unique element p ∈ X such that

f(x) = 〈x, p〉 for all x ∈ X and ‖f‖ = ‖p‖.

Proof. See Ponnusamy (2002, p. 430).

B.1.3 X and X⊥

Having established a new Vf(γ), we choose our “design variations” X as follows:

X = {V ∈ Vf(γ) :V ′(s) · γ′(s) = 0 almost everywhere } . (B.2)

We will need to check that X is a subspace of our new Vf(γ). Furthermore, we’ll

need X to be closed. In proving that it is, we’ll make use of the Cauchy-Schwarz

inequality:
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Theorem B.1.6 (Cauchy-Schwarz Inequality). For all x, y in a Hilbert space,

〈x, y〉 6 ‖x‖‖y‖.

Proof. See Royden (1968, p. 210).

Lemma B.1.7. X , as defined in Equation (B.2), is a closed subspace of Vf(γ).

Proof. First we’ll dispose of the subspace portion. Let V, W ∈ X and α, β ∈ R. Then

(αV + βW )′(s) · γ′(s) = αV ′(s) · γ′(s) + βW ′(s) · V ′(s) = 0

almost everywhere, putting αV + βW ∈ X . Now for closure.

Let {Vn} ∈ X be a sequence of vector fields that limits to some vector field

V ∈ Vf(γ). Then

∫
(V ′(s) · γ′(s))

2
ds =

∫
(V ′(s) · γ′(s) − V ′

n(s) · γ′(s))
2

ds since Vn ∈ X

=

∫
((V ′(s) − V ′

n(s)) · γ′(s))
2

ds

6

∫
‖V ′(s) − V ′

n(s)‖2‖γ′(s)‖2 ds by Cauchy-Schwarz

=

∫
‖V ′(s) − V ′

n(s)‖2 ds since γ is unit speed

= ‖V − Vn‖2

But Vn → V , so for any ε > 0, there is a positive integer N such that ‖V − Vn‖ <

√
ε ⇒ ‖V −Vn‖2 < ε. That means that

∫
(V ′(s) · γ′(s))2 is nonnegative, but less than

every positive number. Hence,

∫
(V ′(s) · γ′(s))2 ds = 0

and thus V ′(s) · γ′(s) = 0 almost everywhere. So V ∈ X , and X is closed.

Lemma B.1.8. The dual cone of a subspace X is its annihilator. That is, if X is a

subspace, X∗ = X⊥.
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Proof. Let µ ∈ X∗. Then µ · x > 0 by definition. However, since X is a subspace,

x ∈ X ⇒ −x ∈ X, so µ · (−x) = −µ · x must also be nonnegative. But that means

that µ · x = 0. That is, µ ∈ X⊥.

Conversely, let η ∈ X⊥. Then, for all x ∈ X, we have η ·x = 0 > 0, so η ∈ X∗.

Lemma B.1.9. Since X is a subspace, X⊥ and Y (X ) are subspaces.

Proof. Let α, β ∈ R and V1, V2 ∈ X⊥. Then, for all V ∈ X , we have

(αV1 + βV2) · V = αV1 · V + αV2 · V = 0,

so X⊥ is a subspace.

Similarly, if Y V, Y W ∈ Y (X ), then αV + βW ∈ X (since X is a subspace) and

αY V + αY W = Y (αV + αW ). So Y (X ) is a subspace.

B.2 Motzkin’s Theorem Applied

We are now ready to apply the Motzkin Transposition Theorem to our setup. For

clarity, Figure B.2.1 shows the Motzkin Diagram and our situation given as a parallel

diagrams.

X
A

{{ww
ww

ww
ww

w
B

##G
GG

GG
GG

GG

T ⊂ Z Y ⊃ S

Vf(γ)
−Id

xxqqqqqqqqqq −Y

''OOOOOOOOOOO

X ⊂ Vf(γ) C(E ) ⊃ C(E )+

Figure B.2.1: The Motzkin diagram and our matching situation.

We need to understand what “AT (T ∗) is weak-* closed” means in our situation.

For us, A and AT are both negative identity functions, one on Vf(γ) and the other

on Vf∗(γ), which, thanks to the Riesz Representation Theorem for Hilbert Spaces

(Theorem B.1.5 on page 141), we can identify with Vf(γ).

We showed, in Lemma B.1.8, that X ∗ = X⊥, so AT (T ∗) is simply −X⊥, which

(by Lemma B.1.9) is just X⊥. Now for the theorem.
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Theorem B.2.1. A tensegrity G(p) is partially X -bar equivalent if and only if G(p)

has a semipositive stress.

Proof. Vf(γ) and C(E ) are normed spaces, C(E ) with the sup norm and Vf(γ) with

the norm arising from its inner product. So we have the right kind of spaces for

Motzkin’s Theorem (B.1.1 on page 137). For its hypotheses, we need the following

to be true:

(a) C(E )+ is a convex cone with nonempty interior,

(b) X is a closed convex cone and

(c) X⊥ is closed.

If those are true, then exactly one of the follow systems has a solution:

(I) V ∈ X , Y V ∈ int C(E )+;

(II) Y ∗µ = V , −V ∈ X⊥, 0 6= µ ∈ C∗(E )+.

That is, G(p) has either a strictly positive motion (I) or a semipositive stress (II).

X is not only a closed convex cone, but moreover a closed subspace, by Lemma

B.1.7, so Item (b) is satisfied. Since Vf(γ) is a Hilbert space, the subspace X⊥ (since

it is defined by orthogonality to a set) is closed (see, for example, Folland (1999, p.

173)). That takes care of Item (c).

It remains only to show that C(E )+ is a convex cone with nonempty interior.

Certainly, if f is a nonnegative continuous function from E to R, then αf is as well,

for any α > 0. Likewise, if f, g ∈ C(E )+, then any convex combination of f and g is

also in C(E )+, so C(E )+ is a convex cone. Furthermore, by Lemma 3.3.2 on page 53,

int C(E )+ contains all of the strictly positive functions (and thus is nonempty).

By applying Motzkin’s theorem, we have our result.
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B.3 Motzkin on the Other Hand

Having had such success with that direction, it seems only natural to see if we can

get anything more out of Motzkin’s Theorem. What we’ve proven is

there is no strictly positive motion ⇔ there is a semipositive stress.

Can we use the Motzkin Transposition Theorem to show that

there is no semipositive motion ⇔ there is a strictly positive stress?

The natural thing would be to try to require that our measures fall in the interior

of C∗(E )+. But we saw in Theorem 3.6.3 on page 71 that when E is infinite, C∗(E )+

has no interior. So any success along these lines must be limited to the finite case.

Let’s give it a try.

We need int S to be int C∗(E )+, but in our basic setup, Y ∗ maps from C∗(E )+ and

nothing maps to it. So that’s where we’ll send our identity function (see Figure B.3.1).

C∗(E )
−Id

''PPPPPPPPPPPP

Y ∗

wwppppppppppp

X⊥ ⊂ Vf∗(V ) C∗(E ) ⊃ C∗(E )+

Figure B.3.1: Our new use of the Motzkin theorem.

Now, we need C∗(E )+ to have non-empty interior, which it does. We need X⊥ =

{0} to be a closed convex cone, which it is. Finally, we need

Y ∗∗((X⊥)∗) = Y (Vf(V ))

to be weak-* closed. But Y is a finite-dimensional linear map and so its image is a

subspace of the finite-dimensional C(E ) and thus it is closed.

Now we can apply Motzkin’s theorem and get that exactly one of these two systems

has a solution:
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(I) −Y ∗µ = 0, µ ∈ int C∗(E )+

(II) Y V = f , V ∈ Vf(V ), 0 6= f ∈ C(E )+.

That is, “either there is a strictly positive stress or else there is a semipositive motion”.

Thus we have a new proof of Roth and Whiteley’s theorem.

B.4 Stresses as Variations

One somewhat surprising effect of making Vf(γ) into a Hilbert space is that any given

stress µ has a variation, Vµ ∈ X⊥ associated with it. That is because Y ∗µ ∈ X⊥ ⊂

Vf∗(γ) and Vf(γ) and Vf∗(γ) can be identified with each other, thanks to the Riesz

Representation Theorem for Hilbert Spaces (Theorem B.1.5 on page 141).

For example, in the case of the circle of struts, we found a stress dθ, which was

uniform on the struts. Y ∗ dθ, then corresponds to some variation Vdθ in such way

that

〈Vdθ, V 〉 = (Y ∗ dθ)V = dθ(Y V ) =

∫ π

0

Y V dθ

=

∫ π

0

(V (θ) − V (θ + π)) · ((cos θ, sin θ) − (cos(θ + π), sin(θ + π))) dθ

=

∫ π

0

(V (θ) − V (θ + π)) · 2(cos θ, sin θ) dθ

=

∫ π

0

V (θ) · 2(cos θ, sin θ) dθ −
∫ π

0

V (θ + π) · 2(cos θ, sin θ) dθ

=

∫ π

0

V (θ) · 2(cos θ, sin θ) dθ −
∫ 2π

π

V (θ) · 2(cos(θ − π), sin(θ − π)) dθ

=

∫ π

0

V (θ) · 2(cos θ, sin θ) dθ +

∫ 2π

π

V (θ) · 2(cos θ, sin(θ) dθ

=

∫ 2π

0

V (θ) · 2(cos θ, sin θ) dθ.

(B.3)

On the other hand, our inner product on Vf(γ) says that

〈Vdθ, V 〉 =

∫ 2π

0

V ′
dθ(s) · V ′(s) ds.
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We can integrate this by parts to get

〈Vdθ, V 〉 = V ′
dθ(s) · V (s)

∣∣2π

0
−
∫ 2π

0

V ′′
dθ(s) · V (s) ds. (B.4)

Now, 0 and 2π are the same point on our domain, so that first term is zero. We can

combine Equation (B.3) and Equation (B.4) to get

−
∫ 2π

0

V ′′
dθ(s) · V (s) ds. =

∫ 2π

0

V (θ) · 2(cos θ, sin θ) dθ,

which must be true for all V ∈ Vf(γ). Since s = θ on the unit circle, that gives us

that −V ′′
dθ(θ) = 2(cos θ, sin θ) or

Vdθ(θ) = 2(cos θ, sin θ),

which is shown in Figure B.4.1.

Figure B.4.1: The circle of struts with the vectors of Vdθ.

Thinking back to our original definition of stress, this might seem the obvious

thing. After all, it just looks to be the weighted edge vectors at each vertex. However,

on second glance it seems less obvious. After all, this example has a high degree of

symmetry. We were able to transform an integral on the edges into an integral on

the vertices in the form
∫

V · (something) which we could then relate to our inner

product.

This is an area which bears further investigation, both in identifying the variation

for a given stress and in understanding the interplay between that and the “curvature

force” of Cantarella et al. (2006).
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