

MODELING THE TEMPERATURE DEPENDANCE OF PKA AND INTEGRATION OF

CHEMICAL PROCESS MODELS USING SPARC

by

SARAVANARAJ NALLAGOUNDEN AYYAMPALAYAM

(Under the Direction of Lionel A. Carreira)

ABSTRACT

SPARC (SPARC Performs Automated Reasoning in Chemistry) is a computer program

developed to mimic an expert chemist in estimating chemical reactivity parameters and physical

properties. SPARC strictly uses structural information of molecules to calculate these properties

for a broad range of organic compounds. SPARC currently calculates the following chemical

reactivity parameters for organic compounds: ionization pKa, molecular speciation in gaseous,

aqueous and non-aqueous medium, hydration constants, hydrolysis constants, and tautomeric

equilibrium constants.

A temperature dependence of pKa model was implemented to enhance the existing pKa

model. The temperature dependence of pKa is modeled using Van’t Hoff’s equation. The Van’t

Hoff’s coefficients for the different reaction centers are determined by plotting observed pKa

versus the inverse of temperature. The slope of the line is the enthalpic coefficient and the

intercept is the entropic coefficient. The temperature dependence was determined and modeled

for most of SPARC’s pKa reaction centers. However for reaction centers like amine acting as an

acid, the temperature dependence was not modeled due to lack of sufficient experimental

temperature dependence data.

In the natural environment there are many chemical processes acting on a molecule. In

order to model the fate of compounds in nature, the chemical process models in SPARC were

integrated. The integrated chemical process model includes hydration, tautomer network and

molecular speciation models. This integration was challenging because of the enormous increase

in the number of calculations that needed to be performed and the amount of data generated.

Intelligent filters, based on the reliability of the calculations performed and identification of

unproductive paths, were designed and implemented.

In the process of implementing cis-trans isomer and chirality information decoders for

SMILES string handling in SPARC, the weakness and incompleteness of the SMILES encoding /

decoding rules were discovered. A set of rules for encoding / decoding such information in

SMILES was developed and implemented in SPARC. These new rules will be published and a

request to collaboratively develop a complete standard for the encoding / decoding SMILES will

be made.

INDEX WORDS: SPARC, Temperature Dependence, pKa, Tautomer, Chemical Fate,

SMILES

MODELING THE TEMPERATURE DEPENDANCE OF PKA AND INTEGRATION OF

CHEMICAL PROCESS MODELS USING SPARC

by

SARAVANARAJ NALLAGOUNDEN AYYAMPALAYAM

B.Tech, Madurai Kamarajar University, India, 1998

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2004

© 2004

Saravanaraj Nallagounden Ayyampalayam

All Rights Reserved

MODELING THE TEMPERATURE DEPENDANCE OF PKA AND INTEGRATION OF

CHEMICAL PROCESS MODELS USING SPARC

by

SARAVANARAJ NALLAGOUNDEN AYYAMPALAYAM

Major Professor: Lionel A. Carreira

Committee: John Stickney
James Anderson
Allen D. King

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2004

DEDICATION

I dedicate this work to my wonderful family. My father who taught me to always aim

high, believe in people and treat everybody justly. My mother who taught me kindness, patience

and to have an open mind in life. My sister for always being there for me and supporting my

decisions. Thanks Mom and Dad.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Butch Carreira for being a friend, philosopher and

guide. I also thank Dr. John Stickney, Dr. Allen King and Dr. James Anderson for all their help

and support. I would also like to thank Dr. Said Hilal for all the help, support and friendship he

gave me. I thank my friends Tad Whiteside, Madhivanan Muthuvel and Dinesh Pillai for their

support and friendship.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...v

LIST OF TABLES... ix

LIST OF FIGURES ...x

CHAPTER

1 Introduction..1

1.1 Introduction ...1

1.2 History of property prediction...2

1.3 SPARC ..5

1.4 Current SPARC Capabilities ...6

1.5 SPARC Computational Procedure ..8

1.6 SPARC pKa calculation models..9

1.7 Structural Input in SPARC ..14

2 Temperature Dependence of pKa ..15

2.1 Introduction ...15

2.2 Theory ...16

2.3 Procedure...18

2.4 Discussion ...20

2.5 Conclusion...21

vi

3 SPARC Chemical Process Integration...23

3.1 Introduction ...23

3.2 Molecular Speciation...24

3.3 Tautomer Equilibrium Constants ..27

3.4 Hydration...32

3.5 SPARC Process Integration...34

3.6 Conclusion...47

4 Interpretation of Cis-trans isomer information in SMILES representation49

4.1 Introduction ...49

4.2 SMILES Grammar Review ...52

4.3 Conjugated ring systems ...53

4.4 Approach to solve cis-trans specification across ring breaks............................55

4.5 Influence of Cis-trans on Unique SMILES string generation58

4.6 Summary ...59

5 Development of Tools for SPARC ..60

5.1 Introduction ...60

5.2 SPARC Server Manager..60

5.3 Multiple Remote Training Utility..65

5.4 Conclusion...66

REFERENCES ..67

APPENDICES ...69

A Code Listing for SPARC Server Manager...69

B Code Listing for SPARC Remote Training Program ..107

vii

LIST OF TABLES

Page

Table 2.1: List of Van’t Hoff’s coefficients for various SPARC pKa reaction centers.................20

Table 2.2: Comparison of Van’t Hoff's Co-efficient B of some select compounds and their

reaction centers..20

Table 3.1: Table listing the micro and macro constants for N-Phenyl Glycine.............................26

Table 3.2: A list of Observed and SPARC Calculated tautomeric equilibrium constants (pKT) ..31

Table 3.3: Output from SPARC Tautomer Network Model..38

Table 3.4: Results of integrated tautomer network model without hydration40

Table 3.5: Results of the integrated tautomer network model with hydration...............................41

Table 4.1: SMILES strings and its interpretation by different software..51

viii

LIST OF FIGURES

Page

Figure 1.1: SPARC pKa performance plot of 4076 pKa calculations in water13

Figure 2.1: Plot of pKa Vs 1/T for methyl amine ..19

Figure 2.2: Plot of pKa Vs 1/T for sulphuric acid ...19

Figure 2.3: Plot of Observed Vs Calculated pKa’s at different temperature to show the

performance of SPARC temperature models ..22

Figure 3.1: Plot of species fraction as a function of pH for N-Phenyl Glycine.............................27

Figure 3.2: SPARC thermodynamic loop to calculate the tautomeric equilibrium constant.........30

Figure 3.3: Plot of Observed vs SPARC Calculated tautomeric equilibrium values.....................32

Figure 3.4: Plot of Observed vs SPARC Calculated hydration constants34

Figure 3.5: Flow Diagram for Determining Tautomer Networks..37

Figure 3.6: SPARC generated tautomer map for acetyl acetone ...39

Figure 3.7: Plot of species fraction as a function of pH for 2-Aceto-Cyclohexanone...................44

Figure 4.1: Representing rings in SMILES string ...53

Figure 4.2: 18-Annulene ..54

Figure 4.3: Trans 2-butene. Illustrating the cis-trans nomenclature. ...55

Figure 4.4: The two isomers of cycloocta-1, 3, 5, 7-tetraene ..58

Figure 5.1: SPARC Web Application Integration Diagram ..61

ix

Chapter 1

Introduction

1.1 Introduction

In these modern industrial times the use of chemicals has increased by leaps and bounds. In

this context it has become very important to regulate and monitor the usage of these chemicals,

and to study the impact of these chemicals on the environment. Most industrial countries have

monitoring and control agencies which are responsible for regulating the use of these chemicals.

As the number of potentially hazardous substances increases, maximizing the efficiency for

assessment of these chemicals becomes important.

The major differences between behavior profiles of organic molecules in the environment

are attributable to their physicochemical properties. Although considerable progress has been

made in process elucidation and modeling for chemical and physical processes, determination of

the values for the fundamental thermodynamic and physicochemical properties (i.e.,

rate/equilibrium constants, Henry’s constant, solubility, etc.) have been achieved for only a small

number of molecular structures. For most chemicals only fragmentary knowledge exists about

those properties which determine their fate in the environment. The physical and chemical

properties have actually been measured for only about one percent of the chemicals in the Office

of Toxic Substances (OTS) inventory. These properties, in most instances, must be obtained

from measurements or from the judgment of expert chemists. The cost of measuring the required

properties of these chemicals is very high and time consuming. In any case, trained personnel

 1

and adequate facilities are not available for measurement efforts involving the tens of thousands

of chemicals introduced each year.

After 1990 the philosophy of pollution control changed. The philosophy dictated that the

pollution should be controlled at the source. This meant that the manufactures and users of these

chemicals have to switch over to less toxic and less polluting chemicals. New chemicals have to

be developed to replace the existing ones and there will be a large development and screening

process to find these replacements. In the process, many of the physical and chemical properties

of these chemicals have to be determined costing a lot of money for the manufacturers. Property

estimation can play a pivotal role in this process. It will make the process of screening faster and

much cheaper.

For these reasons, during the past four decades, considerable effort has been made to

develop empirical and non-empirical methods that will enable us to accurately and rapidly

estimate physicochemical properties for organic molecules. Most of the property estimation

methods developed during this period are based on empirical structure-activity relationship

(SAR) models. The disadvantage of SAR models are that the relationships hold only for a limited

family of chemical and are specific to a particular property query. They fail miserably when

faced with novel compounds.

1.2 History of property prediction

Since the early 20th century it has been known that the property of a compound is

determined by its chemical structure and the structure of the system with which it is interacting.

It has been noted that a change in the substituent property (the electronegativity for example) in a

compound brings about a change in the compound’s property itself. It has been established by

the work of Hammett that the effect a substituent has on a reaction, reaction1, will also be seen in

 2

another reaction, reaction2, where the same substituent is present, except the magnitude may be

different depending on the different substrates1.

These observations led Hammett to propose a general quantitative relation between the

nature of the substituent, S, and the reactivity of the side chain, C. This relation has become

known as the Hammett equation, and is widely applied in this form

Where σ is a substituent constant which depends solely on the nature and the position of

the substituent and is independent of the reaction. It is sum of the total electrical field (resonance

and electrostatic) effects. ρ is the susceptibility of the reaction to electrical fields, determined by

K denotes the ionization equilibrium constants for the substituted compound, K denotes a

statistical quantity corresponding approximately to the equilibrium constants of the unsubstituted

s

R

the reaction and its conditions (e.g., solvent, temperature, etc.) and is independent of substituent.

s

compound. Hammett developed the equations specifically for benzoic acid and ρ R for benzoic

acid was set as 1. Others have modified the parameters and used the relationship for other

The expression on the left-hand side of equation 1 is proportional to the differences in the

Redefining equation 1.1 in terms of free energy change, it can be rewritten as equation 1.2.

compounds.

free energies of substituted and unsubstituted compounds as indicated in the next equation. For

this reason equation 1.1 is often referred to as a “linear free-energy relationship” (LFER)2.

 ρσ Rs
s =

K
K log 1.1

 1.2)G - G(= G - G ooo
0''00 ∆∆∆∆ ρ

 3

Where and 0
oG∆ are the free energy changes for dissociation for a substituted and un-

substituted compound. In the case of benzoic acid, ∆ and 0'
oG∆ are the free energy of

dissociation for substituted and un-substituted benzoic acid; - 0'
oG gives the value of σ

0G∆

0'G

t.

0'G∆ ∆ s,

the substituent constan

Scientists were very successful in applying Hammett’s approach to meta and para

substituted compounds. But when it was applied to ortho substituted compounds the approach

failed2. Ortho substituted compounds have more complicated interactions and effects.

Interactions like hydrogen bonding and the orientation of dipoles have a very pronounced effect

on the rates.

Later, using LFER, Taft and co-workers developed parameters based on the separation of

substituent effects depending on the type of effects like electronegativity, field, polarizablity and

resonance2. These parameters were successful in corelating a number of physicochemical

properties involving solute/solvent interactions. LFER also led to the development of QSAR

(Qualitative Structure Activity Relationships) an empirically determined correlation between

structure and the compound’s activity.

QSAR is widely used to estimate properties of compounds based on their structure. QSAR

based predections perform adequately when the compound is analogous to the compounds that

were used to determine the QSAR parameters. Most often when a new compound is seen by the

system it does a poor job of estimating its property. Unfortunately, most of these calculational

methods are based on the Hammett relation or LFER. They are purely empirical in nature and are

usually only good with a particular class of compounds1.

Dewar and his coworkers proposed a general treatment of substituent effects, based on the

assumption that a substituent can affect a distant reaction center either by direct electrostatic

 4

interactions across space (the direct field effect) or by polarization of intervening π electrons

(mesomeric and π-inductive). Using a point charge model to calculate the field effect, and a

simple Hückel Molecular Orbital (HMO) treatment of π polarization, a general treatment of

substituent effects (direct field-indirect field effects) was developed2. This allowed for the

calculation of many kinds of conjugated molecules in terms of just two parameters per

substituent and one ρ constant for each type of reaction center.

The disadvantage of most of these estimation techniques was that they were based heavily

on pattern matching and correlational inferencing in predictive strategy. They fell short of

implementing actual scientific theory. SPARC has been developed to address this problem. It is

an expert system that embeds theoretical knowledge as well as calculation algorithms. It

implements scientific theory when calculating interactions.

1.3 SPARC

Chemical properties describe molecules in transition, that is, the conversion of a reactant

molecule to a different state or structure. For a given chemical property, the transition of interest

may involve electron redistribution within a single molecule or bimolecular union to form a

transition state or distinct product. The behavior of chemicals depends on the differences in

electronic properties of the initial state of the system and the final state of interest. For example,

in chemical equilibrium, ionization chemical equilibrium constants depend on the energy

differences between the protonated state and unprotonated state of the molecule. Reaction rates,

on the other hand, may depend on the energies of a transition state relative to either reactants or

products.

In every case, these differences are usually small compared to the overall energy of the

molecule. Ab initio methods calculating absolute energies have a difficult time in predicting the

 5

small energy differences between the chemical states of interest. Approaches based on LFER and

QSAR methods have proven to offer good prediction within a limited number of molecules and

within a particular class of molecules, but failed to predict either chemical or physical properties

for a large number of molecules. In most cases the number of data does not exceed the number of

parameters by as large an amount as would be desired.

Perturbation methods, however, can be used to compute differences in reactivity. These

methods treat the final state as a perturbed initial state and the energy differences then are

determined by quantifying the perturbation. These perturbation methods are ideally suited for

expert system application due to their extreme flexibility and computational simplicity. The

requisite conditions for applicability, as well as the selection of appropriate reference structures

or reactions, can be easily built into the computation control portion of the expert system.

The SPARC program is a prototype computer system and it uses computational algorithms

based on fundamental chemical structure theory to estimate chemical reactivity parameters and

physical properties strictly from molecular structure for a broad range of organic molecules.

SPARC stands for Sparc Performs Automated Reasoning in Chemistry.

The ultimate goal for SPARC is to develop mechanistic models to predict physicochemical

properties for the universe of organic molecules strictly from molecular structure. Hence,

SPARC mechanistic models are designed and parameterized so as to be portable, in principle, to

any type of physical/chemical property or molecular structure.

1.4 Current SPARC Capabilities

 SPARC as a result of its multiuse mechanistic toolbox design is quite capable of

calculating many of the physical and chemical reactivity properties of molecules. Following is a

list of SPARC capabilities:

 6

I. Chemical Reaction Properties

A. Ionization pKa

1. Gas phase, aqueous and non-aqueous pKa

2. Temperature dependent pKa

3. Full molecular speciation as a function of pH

4. Full abundance calculation at given pH

5. Calculate iso-electric point for a molecule

6. Macroscopic and microscopic pKa

B. Tautomerization

1. Intelligent algorithm to determine all favorable tautomers

2. Calculate the tautomeric equilibrium constants for all possible tautomers

C. Hydrolysis

1. Acid, Base and Neutral catalyzed ester hydrolysis rate constants

D. Hydration

E. Integrated chemical process models

II. Physical Properties

A. Condensed phase properties

1. Solvent properties for mixed and user defined solvents

2. Solubility, concentration dependent activity, Henry’s constant, distribution

coefficients and GC/LC retention time (all as function of T or P)

B. Gas phase properties

1. Vapor pressure, boiling point, heat of vaporization, heats of formation and

diffusion coefficient (all as function of T or P)

 7

2. Molecular descriptors: Density, polarizablity, index of refractions and hydrogen

bonding

1.5 SPARC Computational Procedure

SPARC does not do "first principles" computation. SPARC computes physical and

chemical reactivity properties solely based on chemical structure. It does rigorous structural

analysis of the compound based on the type of query from the user. SPARC tries to analyze the

compound like an expert chemist. The intermolecular interactions are computed based on

structure and are expressed by a set of molecular descriptors (density-based volume, molecular

polarizability, molecular dipole and H-bonding parameters). For chemical reactivity the molecule

is separated into the reaction center (the smallest molecule that can take part in a similar

reaction) and the perturber (rest of the molecule). The perturbation of the reaction center with an

intrinsic reactivity is calculated. The impact on reactivity of the reaction center due to the

appended molecular structure (perturber) is quantified using mechanistic perturbation models3.

For physical properties, intermolecular interactions are expressed as a summation over all the

interaction forces between molecules (i.e, dispersion, induction, dipole and H-bonding). Each of

these interaction forces are expressed in terms of a set of molecular descriptors (density based

volume, molecular polarizability, molecular dipole, and H-bonding parameters). SPARC

calculates molecular descriptors for the molecule and uses them in interaction models to

calculate a physical property of interest.

A "toolbox" of mechanistic perturbation models has been developed that can be

implemented where needed for a specific reactivity query. Resonance models were developed

and calibrated on light absorption spectra whereas electrostatic models were developed on

ionization equilibrium constants. Solvation models (i.e. dispersion, induction, H-bonding, dipole,

 8

etc.) have been developed on physical properties (i.e. vapor pressure, solubilities, distribution

coefficient, gas chromatographic retention times, etc.).

SPARC is a combination of LFER, SAR and Perturbed Molecular Orbital (PMO) methods.

It uses LFER to calculate thermodynamic properties and PMO to calculate quantum effects such

as resonance and polarization of π electrons. In reality, all chemical properties involve both

quantum and thermodynamic contributions and require the use of both perturbation methods for

prediction.

1.6 SPARC pKa calculation models

As described earlier, in the SPARC calculator molecular structures are broken into two

functional units called the reaction center and the perturber. The reaction center is the smallest

unit of the molecule that can undergo the ionization. The rest of the molecule forms the

perturber. The reference pKa of the reaction center is a standard value for that reaction center

and is inferred from measured values. The reference pKa of the reaction center (pKa)c is adjusted

based on the differential perturbation effects of the substituents δp(pKa)c. The pKa can be

calculated using equation 1.3.

cpc pKapKapKa)()(δ+= 1.3

δp(pKa)c is the differential perturbation effect. The two differential states are the ionized and

unionized reaction center. The perturbations are calculated as the difference in the interaction of

the perturber with the ionized and unionized state of the reaction center. δp(pKa)c can be broken

down into individual contributions as:

δp(pKa)c = δele pKa + δres pKa + δsol pKa + … 1.4

 9

where δele pKa, δres pKa, δsol pKa describe the differential electrostatic, resonance and solvation

effects of the perturber with the initial and final states of the reaction center. Additional effects other

than those listed include hydrogen bonding to the reaction center from the rest of the molecule.

The SPARC approach to pKa modeling is based on perturbation models. Any compound

can be represented in the following format S—iRj—C, where S-iRj is the perturber structure

attached to the reaction center, C. S is the substituent group that perturbs the reaction center3.

The perturbation could be in the form of electric effects and/or resonance effects. R is the

conductor network that conducts the perturbation. i and j denote the connection positions for S

and C to the R network, respectively.

SPARC has a database of parameters describing the characteristics of all reaction centers

and substituents. The term substituents are applied to all non-carbon atoms and aliphatic carbon

atoms that are contiguous to the reaction center or a π-unit. There are some groups like (-NO2,

-C≡N, -C=O, -CO2H, -NCO) which are treated as one whole unit. These groups are self

contained structurally and electronically. Their properties, with respect to the rest of the structure

of the molecule and their interactions, are also defined by SPARC after inferring them from

observed data.

All perturbations in SPARC pKa models can be factored into three independent

components.

1. Substituent strength, which describes the potential of a particular substituent to exert

an effect.

2. Molecular network conduction, which describes the conduction properties of the

molecular network, R, connecting S and C for a particular effect.

 10

3. Reaction center susceptibility, which described the extent to which a reaction center is

affected by a particular interaction.

Each of the above mentioned components are independent of each other. The potential of a

substituent is gauged independent of the reaction center and the molecular network it is attached

to. This is done by studying the effect of a particular substituent’s effect on different reaction

centers. Similarly, the parameters for the molecular network are determined by varying the

substituents and reaction centers. Reaction center susceptibility is a differential value, which

quantifies the differential response of the initial and final state for a particular effect.

1.6.1 Field Effects Model

The direct field effect for charged and dipolar substituents interacting with the reaction

center is expressed as a multipole expansion, equation 1.5.

cs 1.5
ecsecsecsecs DrDrDrDr

Where q

cssccssccsscsc
field

qqqq
E 3

'
2'2'

coscoscoscos
)(

ΘΘ
+

Θ
+

Θ
+=∆

µδµδµµδδ
δ

ed; and rcs (rcs
’) is the distance from the substituent dipole (charge)

center to the reaction center.

1.6.2

determined by the type of reaction center and substituent. Resonance in SPARC pKa model is a

s is the charge on the substituent, approximated as a charge located at point 's ; µs is the

substituent dipole located at point s; δqc (δµc) is the charge (dipole moment) change at the reaction

center accompanying the reaction, both are assumed to be located at point c; Θcs is the angle the

dipole subtends to the reaction center; De is the effective dielectric constant for the medium through

which the effect is propagat

Resonance Effects Model

Resonance involves the de-localization of charge between the reaction center and the π

system, and between the substituent and the π system. The direction of charge movement is

 11

differential effect. The difference in the delocalization in the initial and the final state gives the

final perturbation to the pKa. If the initial state is more delocalized than the final then the pKa is

increased, and visa versa.

SPARC uses PMO theory to determine the distribution of charge in a π system. To model

this distribution, SPARC moves charge out of the reaction center after replacing it with a CH2
-

ion. All reaction center susceptibilities are expressed as a differential quantity compared to the

CH2
- ion. The resonance perturbation of the initial versus the final state for a reaction center is

given by: equation 1.6.

crescres qpKa)()(∆= ρδ 1.6

Where (∆q)c is the fraction of NBMO charge lost from the surrogate reaction center (CH2
-).

ρres is the susceptibility of a given reaction center to resonance interactions. It quantifies the

differential donor capability of the two states of the reaction center relative to the reference

donor. Resonance strength (ability to receive or donate) is defined for all substituents; resonance

susceptibility for all reaction centers is also defined in SPARC. Figure 1.1 shows a plot of

SPARC’s pKa performance. The test consists of about 4000 pKas. A R2 value of 0.9876 is

observed for the whole set.

 12

SPARC pKa performance

R2 = 0.9876

-15

-10

-5

0

5

10

15

20

25

-10 -5 0 5 10 15 20 25

Observed pKa

C
al

cu
la

te
d

pK
a

Figure 1.1 SPARC pKa performance plot of 4076 pKa calculations in water

 13

1.7 Structural Input in SPARC

SPARC uses SMILES (Simplified Molecular Line Entry System) as the final form of

input. SMILES was developed by David Weininger for EPA as a simple form of molecular

structure input. It is a linear representation of a molecular structure using atomic symbols and

special characters (=,-,#) to represent a molecular structure. SMILES is fully capable of

specifying molecular structures. SMILES encoding grammar is very simple; hence it is easy for

any chemist to encode it without using computer software.

SMILES has its own disadvantages, one of which is that there is no published and accepted

standard which governs the rules for encoding it. Another problem is that SMILES does not

provide absolute 3-D structural information i.e. it does not provide ways to specify 3-D

coordinates. It does provide rules to encode structural isomer information (cis-trans, tetrahedral

chirality).

An excellent tutorial on the rules of SMILES encoding is available at

http://www.daylight.com/smiles/

 14

http://www.daylight.com/smiles

Chapter 2

Temperature dependence of pKa

2.1 Introduction

The effect of temperature on the equilibrium of chemical systems is well known. SPARC

pKa models are used to predict the ionization states of chemicals in the environment. The

temperature in the earth’s environment varies from about 0o C to 30o C, hence a model to

calculate temperature dependent pKa is very important. In chemical processes, ionization plays a

very important role. In coupled processes, a small change in the equilibrium rate constant could

bring about an enormous change in the products. In chemical industries, reactions are performed

in large scale using large quantities of energy to heat to cool the reaction chambers. To run such

systems efficiently a chemical process engineer would want to study the effects of temperature

on the reactions. For reactions involving ionizations, this SPARC model would be an invaluable

tool in the hands of a chemical process engineer.

Temperature dependence models for pKa are very useful for drug designers. Modern drug

technologies utilize the concept of controlled release. An active drug compound is released in a

controlled manner by attaching long chained molecules with multiple ionization sites to control

the overall pKa of the structure to maintain a thermodynamic equilibrium at a specific pH. By

varying the pKa they can control the abundance of the active molecule in the blood stream. The

disadvantage of this technique is the precipitation of the molecule out of the solution before

injection into the body. There is a quite a difference between the storage temperature of the drug

and the body temperature. The designers of these drugs have to make sure that their drugs can

 15

stay in the proper form over this temperature range. Since pKa plays an important part in keeping

the molecule soluble, it is important to know the temperature effect on the pKa for these

molecules. In the preliminary phase of drug research SPARC models can be used to determine

such relationships to aid in refining the wide selection of drugs.

2.2 Theory

For any thermodynamic equilibrium process the rate of change of free energy change with

respect to temperature is represented by Van’t Hoff’s equation2 (Eqn 2.1).

R
HKd ∆

− 2.1
Td

=
ln

Integrating the above equation we get equation 2.2.

)/1(

C
RT

HpKa +
∆

= 2.2

Rewriting as a linear function of 1/T w get it of the form

303.2

)(ConsantonContributiEntropictheasknownisCand

By plotting equation 2.3 as pKa vs 1/T we can get the slope (M) and the intercept (C) and

develop the relationship for a compound.

SPARC’s approach to modeling temperature dependence of pKa is to model the reaction

center temperature dependence and the perturbation effects separately. In SPARC, for most

reaction centers, the perturbations effects are assumed to be enthalpic and that the reaction center

encapsulates the entropic contributions. However,

303.2
tcoefficienenthalpicthecalledis

R
 2.3

for reaction centers which have a large

susceptibility to perturbation effects, the perturbations are split into enthalpic and entropic

HMHere

C
T
MpKa

∆
=

+=

 16

contributions. Equations 2.4 is a combination of the temperature effect model for reaction center

and perturbations, to give the pKa of the compound.

onscontributinpertubatio
enthalpicandentropicareand δδ

centerreactionthefortscoefficienHofftVan
enthalpicandentropictheareBandAWhere

T
EB

EApKa

hs

cc

chc
csc

δ
δ

'

)(
)(

∆+
+∆+=

 Eq 2.4

ns into enthalpic and entropic parts is introduced for methyl acid. For the rest of the

reacti

tions. It is known that methyl acids are very

slow in reaching equilibrium. Therefore the observed data could actually be measuring the

abundances before the system reached equilibrium.

The Van’t Hoff coefficients can be determined from temperature dependent pKa data for

reaction center or inferred from a simple structure with minimal perturbations. The temperature

dependence of enthalpic contribution of perturbations are calculated by an equation of the form

y=mx + c assuming ‘c’ the entropic contribution to be zero. This assumption works well for

almost all reaction centers. But in molecules where the reference pKa and the perturbations are

high, for example the reaction center methyl acid has a reference pKa of 48 for the reference

molecule methyl. In compounds where the methyl acid pKa are measurable like 2,4 pentadione

(pKa 8.9) the perturbations have to about 39 pKa units. From temperature dependence data for

methyl acids we can infer that all of the perturbation cannot be enthalpic. A factor to split the

perturbatio

on centers, the factor does not do much and perturbations are assumed to be purely

enthalpic.

After splitting methyl acid perturbations into enthalpic and entropic parts to match the

slope from the observed data, the enthalpic part was found to be 1% of the total perturbation.

99% of the perturbation cannot be entropic contribu

 17

2.3 Procedure

To determine the Van’t Hoff’s coefficients, a large set of temperature dependent pKa data

for each of the SPARC defined reaction centers were gathered and plotted Vs 1/T. The slope of

the relation is calculated from the best-fit line. This slope and a first guess of Bc, Ac is used to

train the SPARC model parameters to apply temperature correction on the reference value for

that particular reaction center. The entropic contributions are assumed to be captured by the

reaction center, Ac, and the perturbations are assumed to be all enthalpic (δH) with negligible

entropic contribution (δS=0). This is the model we use to estimate the temperature correction for

the perturbation contributions. Figure 2.1 and 2.2 show plot of pKa Vs 1/T for methyl amine and

sulphuric acid.

A list of Van’t Hoff’s coefficients for a number of SPARC pKa reaction centers is given in

Table 2.1. The amount of perturbation on the reaction center determines the temperature

dependence of a compound. For example, the compound 2-nitro-aniline has a smaller slope

compared to the slope of its reaction center (amine). This change in slope can go either way,

perturbation can increase the slope or decrease the slope. Table 2.2 lists the ‘B’ Van’t Hoff’s

coefficient of interesting molecules and their corresponding reaction centers.

 18

Temperature dependence of pKa for Methyl Amine

y = 2851.8x + 1.0561

9.5

10

10.5

11

11.5

12

0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037

1/T

pK
a

Figure 2.1 Plot of pKa Vs 1/T for methyl amine

 Temperature dependence of pKa for Sulphuric Acid

y = -1100.8x + 5.6882

0

0.5

1

1.5

2

2.5

0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037

1/T kelvin-1

pK
a

Figure 2.2 Plot of pKa Vs 1/T for sulphuric acid

 19

Table 2.1 List of Van’t Hoff’s coefficients for various SPARC pKa reaction centers

Reaction Center Bc Ac
Amines (nr2) 2682.06 0.8345
Hydroxy (oh) 2775.91 4.987

Carboxlic Acid (co2h) 108.62 3.386
Thio (sh) 804.502 4.64

Carbon Acid (methyl_a) 783.452 45.55
Sulphonic (so3h) -1729.26 5.708

Aromatic Nitrogen (n) 489.48 1.07

Table 2.2 Comparison of Van’t Hoff's Co-efficient B of some select compounds and their
reaction centers

Molecule SMILES B Bc

2-nitro aniline Nc1c(N(=O)(=O))cccc1 366.76 2682.06

2-chloro Phenol c1(O)c(Cl)cccc1 900.02 2775.91

4-Amino Pyridine n1ccc(N)cc1 2457.6 489.48

2.4 Discussion

Using the temperature dependent pKa data of selected molecules the Van’t Hoff

coefficients were determined for seven of SPARC’s pKa reaction centers. This enables SPARC

to calculate pKa’s at any temperature for these reaction centers. There are other reaction centers

in SPARC for which the temperature dependence could not be calculated, the reason being that

sufficient temperature dependent pKa data are not available for those reaction centers. These

include neth (C=N), nethR (neth as part of a ring), nr2_a (amine acting as acid) to list a few.

 20

The factor to split the perturbations into enthalpic and entropic contributions was

determined for methyl acting as an acid. The SPARC determined enthalpic factor for the methyl

acid reaction center is 0.0108 and is set to 1 for the rest of the reaction centers. Figure 2.3 plots

the performance of SPARC’s temperature dependence model for pKa. The calculated values

used for plotting have been corrected for the deviation of pKa values calculated by the pKa

model. This correction projects only the performance of the temperature dependence model and

takes the error from the base pKa models out of it.

2.5 Conclusion

A model for calculating temperature dependence of pKa was developed and implemented

into SPARC. The model was not implemented for some reaction centers, nr2_a (amine acting as

acid) for example, as there are no temperature dependent pKa data for such ionizations.

Moreover these molecules are difficult to measure like methyl acids and are some times very

unreliable.

Future work in this area would be to find measured enthalpy of ionizations for molecules

which have not been addressed in this model. This enthalpy can be used to model the

temperature dependence of pKa.

 21

Performance of Temperature dependence of pKa

-2

0

2

4

6

-5 0 5 10 15

C
al

ul

8

10

12

14

Observed

c
at

ed Methyl as an acid
Amines as base
Hydroxy acid

Figure 2.3 Plot of Observed vs Calculated pKa’s at different temperature to show the
performance of SPARC temperature models.

 22

Chapter 3

SPARC Chemical Process Integration

3.1 Introduction

All chemical processes occurring in natural environments are a complex mixture of

g the compound of interest. For predicting the fate of compounds in

the en

s or

gain o

function of pH, from

which

multiple processes involvin

vironment, it is essential to take into account all the processes affecting the fate of the

compound. For chemicals that speciate or exist in multiple forms (ions, zwitterions, tautomers,

hydrates), observed chemical behavior may reflect integration over discrete chemical species or

processes.

It is convenient to designate as ‘macro’, the observed equilibrium or kinetic constants, and

designate as ‘micro’, a constant for a single chemical event (which may or may not be resolved

experimentally). As an example, for ionization, a micro constant describes the loss or gain of a

proton at a site whereas a macro constant may involve poly-protonic events relating to (1) los

f protons from different sites on separate molecules that are integrated in the measurement,

or (2) synchronous loss/gain of protons from different sites on the same molecule resulting in

one unit change in total charge (e.g., gain of one and loss of two protons)4.

SPARC currently has the molecular speciation, tautomer and hydration processes modeled.

The speciation model determines the single and multiple ionization events occurring in a

compound. It computes the abundance of each species at equilibrium as a

 the macro constants, which are observed by experiments, can be determined. The tautomer

model determines intelligently all possible tautomers of a compound and then computes the

 23

tautomeric equilibrium constant for each tautomer. The tautomer model is a combination of the

SPARC’s chemical and physical process models.

The combination of these models will form the chemical fate prediction model in SPARC.

Here I present the results of integration of the speciation, tautomer and hydration models. Further

progress would be to incorporate the solid partition model, Henry’s constant model, vapor

pressure and solubility model to have a complete fate prediction model.

3.2 Molecular Speciation

Compounds with multiple ionization sites exist in various charged states in the

environment. The charges on a molecule are dependent on the nature of the ionization sites and

the environment in which the molecule exists. In a molecule with multiple ionization sites, the

state of ionization of a site, affects the pKa of other ionizable sites. Hence it is important to know

the state of all reaction sites in such molecules. In order to fully understand the molecular

speciation in a given system, a complete calculation of all microscopic equilibrium constants has

to be performed. The SPARC speciation model can intelligently determine all possible ionization

species for a compound and determine the equilibrium constants for the individual reactions.

The reaction equilibrium constants for these individual reactions are known as micro

constants. In molecules with a complex mix of such micro constants, simple experiments might

not be able to measure or see these constants since there might be other dominating reactions.

The name macro constants are assigned to measurable equilibrium constants. These macro

micro constants or micro steps. In the end,

epending on the application, the user may want micro or macro constants.

For example, let’s consider the compound N-Phenyl-Glycine (c1ccccc1NCC(=O)O), the

xperimentally observed pKas for the molecule are 2.1 and 4.4. Logically we would assume that

constants may be a combination of one or more

d

e

 24

the pKa at 2.1 is due to the OH group in the carboxlic acid ionizing, and that the pKa at 4.4 is the

bas a ine, both reactions taki on the neutral molecule. But in reality there

are four distinct ionization events taking place. They are, the neutral molecule ionizing at the

carb lic atively cha amine carryin sitive

cha , lo the the sam iv rged

mo ule id to f e c n the

mo mine loosing on the

negatively charged repres by a micro

constant. ivid al reactions and their micro constants are listed in

Table 3.1. The observed macro constants are a combination of the two or more micro constants,

grouped by similar change in charge. SPARC also calculates the species fraction as a function of

pH. F

y summing the

individual species curves of similar charge, and the intersection points of these summed curves

determines the macro pKas4.

ic pK of the am ng place

ox acid to form the neg rged ion, the protonated g a po

rge osing the proton to form neutral molecule and e posit ely cha

lec ionizing at the carboxlic ac orm the zwitter ion (having z ro total harge o

lecule) and lastly the protonated a in the zwitter ion form its prot to form

 molecule. Each of these individual reactions is ented

For N-Phenyl Glycine the ind u

igure 3.1 plots the species fraction as a function of pH for all species possible from N-

Phenyl-Glycine. The micro constants can be inferred from the intersection of the reactant and

product species curves5.

For any molecule with N ionization sites there will be 2N species possible and N macro

constants (Macro pKas). The number of individual pKa calculations needed to generate all the

micro constants is N*(2)N-1 calculations. SPARC calculates the macro pKa b

 25

Table 3.1 Table listing the micro and macro constants for N-Phenyl Glycine

Rxn

Type

Reactant Product pKa pKa

1 c1ccccc1NCC(=O)O c1ccccc1NCC(=O)[O-1] 3.953 micro

2 c1ccccc1[N+1]CC(=O)[O-1] c1ccccc1NCC(=O)[O-1] 4.158 micro

3 c1ccccc1[N+1]CC(=O)O c1ccccc1NCC(=O)O 2.555 micro

4 c1ccccc1[N+1]CC(=O)O c1ccccc1[N+1]CC(=O)[O-1] 2.364 micro

5 c1ccccc1[N+1]CC(=O)O c1ccccc1NCC(=O)O

c1ccccc1[N+1]CC(=O)[O-1]

2.051 macro

6 c1ccccc1NCC(=O)O

c1ccccc1[N+1]CC(=O)[O-1]

c1ccccc1NCC(=O)[O-1]

4.381 macro

To obtain the fraction of each species as a function of pH from the calculated micro

constants, the system needs to calculate the total abundance of all species at that pH. SPARC

assum

constants for all species and the pH, SPARC uses equation 3.1 to determine the total abundance

species and can be used to calculate it, and finally calculate the species fraction.

es that the neutral molecule has an abundance of 1 at equilibrium. Given all micro

of all species at that pH. Each individual term in the equation represents the abundance of a

!

][......
...

][1
Hk

D

L
kijijiijkiji

L
ijiijiii ≠≠≠ ++++= Eq 3.1

D is the total abundance of all species in solution at a pH. K

!2

][

!1!0

...

N

HkkkHkk kijijiL ΣΣΣΣΣΣ

ant of

species of state ij. Lij is the total charge on the molecule at state ij. [H] hydrogen ion

concentration is determined by the pH of the solution. The factorial is number of different

pathways that lead to that particular state4.

ij is the equilibrium const

 26

Figure 3.1 Plot of species fraction as a function of pH for N-Phenyl Glycine

Tautomers play a very important role in terms of a compounds ability to exhibit a particular

chemical reactivity6. It is important in the study of biological activity of chemicals and

3.3 Tautomer Equilibrium Constants

Tautomers are rapidly converting isomers of a structure. Tautomerism is a chemical

process in which the double bonds in a molecule are rearranged with synchronized hydrogen

atom shift to form an isomer. The most common form of tautomerism is the keto-enol tautomers.

 27

researchers have been studying tautomerism in nucleic acids as for an explanation for self

mutation in RNA.

3.3.1 SPARC Tautomer Models

SPARC does not calculate absolute energies of molecular structures. To calculate

tautomeric equilibrium constants, SPARC uses its pKa and Henry’s constant models to calculate

K using a thermodynamic loop. The model is illustrated in figure 3.2, where the tautomeric

equilibrium is calculated for 2-amino-1H-Indole.

The process flow in modeling tautomer equilibrium constants can be expressed as follows7 :

1) Analyze the molecule and determine possible tautomers

2) Generate all the necessary structural information for representing all the tautomers of

the starting molecule

3) Select a tautomer product and determine the atom to be ionized in the reactant to get the

ionized structure. Apply similar logic to determine the atom to be ionized in the product

4) Calculate the pKa of both the ionizations

Tautomerism is a two step process; first the molecule is attacked by an acid or base for the

gain or loss of a proton respectively and a double bond rearrangement. Second step is the loss or

the gain of the proton from the first step6. Hence it is catalyzed by acid or base. This makes the

process dependent on the solvent properties.

To model the tautomeric equilibrium constant (KT), the energy difference between the two

isomeric structures, the ketone forms and the enol form has to be modeled. SPARC operates as a

perturbation calculator to a reference structure, hence cannot directly model the tautomer

equilibrium constant. Rather SPARC uses an indirect thermodynamic loop to calculate KT.

T

 28

5) Calculate the energy required to move the ions into vacuum (Using Henry’s Constant

model)

6) Rearrange the reactant ion to form the product ion (zero energy)

7) Sum all the energies to determine the pKT

In the process of modeling tautomer equilibrium constants using experimentally observed

data, it was realized that the solvation energy difference between the two ionic forms is

negligible and is within the noise range of the system. So under normal operation circumstances

the differential Henry’s energy term would be ignored. Tautomeric equilibrium models can also

calculate the equlibrium constants in various arbitrary solvents. This is also done using the

Henry’s constant calculator to calculate the difference in the solvation of the reactant and the

product.

One effect of integrating multiple process models is the dramatic increase in the number of

calculations performed and the large quantities of data generated. To make sense of the data and

to reduce the use of computational power, the output information needs to be filtered. In the

grand scheme of things, a filter for the tautomer calculations was designed and implemented. The

filter is designed to filter unproductive tautomeric pathways and to ignore un-reliable pKT

calcu

the product of the reliabilities of the two pKa calculations involved in its calculation. The filter,

lations. In order to decide un-reliable calculations a scoring system was developed and

implemented. Every pKa calculation was given a reliability score based on the type of the

reaction center. Currently the reliability for a carbon acid calculation is set as 0.5 and for the rest

it is set to 1, the reason being the RMS value of the SPARC carbon acid model (1.1 pKa Units) is

high compared to other reaction centers. The reliability of a tautomer equilibrium calculation is

 29

filters the tautomeric equilibrium calculations with reliability less than 0.15 from being included

when averaging the equilibrium constants for a tautomer states, this filter is only applied to

utomer states with more than one pathway.

ta

N
+

N

NH2 NH-

-

N

-

H+

N
NHNH

N

-

N

-
NHNH

N

-

N

-
NH NH

N

-
+

N

NH H+ NH

N N

NH2 NH

water water

water

wate

waterwater

water

gas

gas gas

gas

rwater

pKa N

-log H1

0

log H2

-pKa C

log KT

Figure 3.2 SPARC thermodynamic loop to calculate the tautomeric equilibrium constant

 30

A list of SPARC calculated tautomeric equilibrium constants and the observed values are

listed

large margin of error in the

obser

Table 3.2 A list of Observed and SPARC Calculated tautomeric equilibrium constants

Reactant u Observed Calculated

 in Table 3.27,8. A plot of the observed and calculated pKT values is given in the form of

Figure 3.3. Based on the very small number of published experimental investigations of the

tautomeric properties of chemicals, the R2 value for the plot at 0.895 is not bad. The effect of

other processes involving the compounds of interest bring about a

ved data available in literature. When such coupled processes are involved simple

experiments fail to measure these equilibrium constants accurately.

(pKT)

Prod ct
CC=O C=CO 4.66 3.57839607
CCC=O CC=CO 3.9 2.74232143
CCCC=O CCC=CO 5.2 3.09963287
CC(C)C=O O 2.8 2.86012091 CC(C)=C
CC(=O)C C=C(O)C 8.22 8.2798407
CCC(=O)C 7.32422166C CC=C(O)CC 7.44
CC(C)C(= C(C)C 7.52 7.39685563O)C(C)C CC(C)=C(O)
CC(=O)CC 8.76 8.2823295 C=C(O)CC
CC(=O)CC CC(O)=CC 7.51 7.32239305
CC(=O)C(C)C C=C(O)C(C)C 8.61 8.2823295
CC(=O)C(C)C CC(O)=C(C)C 7.33 7.39469495
CC(=O)C(C)(C)C C=C(O)C(C)(C)C 8.76 8.2823295
c1cc(OC)ccc1C(=O)C c1cc(OC)ccc1C(O)=C 7.31 6.77728353
c1cc(C)ccc1C(=O)C c1cc(C)ccc1C(O)=C 6.95 6.74714697
c1ccccc1C(=O)C c1ccccc1C(O)=C 6.63 6.84466396
c1cc(Cl)ccc1C(=O)C c1cc(Cl)ccc1C(O)=C 7.77 7.01818139
c1ccc(Cl)cc1C(=O)C c1ccc(Cl)cc1C(O)=C 7.57 7.01322827
c1ccc(C(F)(F)F)cc1C(=O)C c1ccc(C(F)(F)F)cc1C(O)=C 7.55 7.24412514
c1ccc(N(=O)=O)cc1C(=O)C c1ccc(N(=O)=O)cc1C(O)=C 7.13 7.23358715
c1cc(N(=O)=O)ccc1C(=O)C c1cc(N(=O)=O)ccc1C(O)=C 6.95 7.3205721
c1(C)cc(C)cc(C)c1C(=O)C c1(C)cc(C)cc(C)c1C(O)=C 6.92 6.66554625
c1ccccc1C(=O)C(C)C c1ccccc1C(O)=C(C)C 6.48 6.1408617

 31

SPARC Tautomer Model Performance

R2 = 0.8952

5

6

7

9

ul
at

0

1

2

3

4

8

0 2 4 6 8 10

Observed

C
al

c
ed

Figure 3.3 Plot of Observed vs SPARC Calculated tautomeric equilibrium values

3.4 Hydration

Hydration is the process of adding a water molecule across a pi-electron functional group.

The two structural units where this is known to occur are the carbonyl and imine functional

groups. Hydration follows the Markovnikov’s rule of addition. In each case, a hydroxyl group

 As described previously, in the SPARC modeling approach these functional groups will be

action centers and any molecular structure(s) appended thereto designated perturber structure.

P-Ci → P-Cf

attaches to the base carbon and a hydrogen atom to the heteroatom6.

re

 32

In the case of hydration, differential solvation of the two species will play a major role. In

this c

C=O (l) → P-C(OH)2 (l) ∆Ghydration(l)

ase we will start with the following thermodynamic cycles to model the reaction.

P-C=O (g) → P-C(OH)2 (g) ∆Ghydration(g)

P-C(OH)2 (g) → P-C(OH)2 (l) ∆Gtransfer(O)

P-C=O (l) → P-C=O (g) -∆Gtransfer(=O)

P-

The top reaction will be modeled using the usual SPARC perturbation approach.

)G(+)G(=G chydrationpchydrationhydration ∆∆∆ δ Eq. 3.2

where the reaction center ∆G (in this case formaldehyde) is perturbed by appended

molecular structure. This perturbation is further factored into mechanistic components such as:

...+G+G+G=)G(hydrationsterichydrationreshydrationelechydrationp ∆∆∆∆ δδδδ Eq. 3.3

 pi

group. Also, it is known that functional groups

sigma induction (decrease), resonance 9

From structure theory of organic chemistry, it is known that nucleophilic addition reactions

across pi bonds are sensitive to inductive and steric effects from atoms contiguous to the

containing non-bonded electrons (-oh, -or, -nr2)

attached to the base carbon will prohibit hydration (via induction and resonance). This model can

confirm the failure of esters, amides, ureas, and carboxylic acids to hydrate and can project other

structures to be readily hydrated. The biggest perturbations are the direct field effect (increase),

(decrease) and steric (decrease) . SPARC hydration

models now calculate the hydration of ketones, aldehydes and quinazolines. A performance plot

of observed vs calculated for SPARC hydration models is shown in figure 3.4.

 33

SPARC Hydration Model

8

Performance

R2 = 0.9701

0

2

4

6

-6

-4

-2
-6 -4 -2 0 2 4 6 8

Observed

C
al

cu
la

te
d

Figure 3.4 Plot of Observed vs SPARC Calculated hydration constants

3.5 SPARC Process Integration

The above sections explained the implementation of the various chemical process models

modeled in SPARC. One of the main problems associated with the integration of these individual

processes is the number of computations needed to determine all the various combinations of

pathways. Another by-product of all these calculations is the amount of data that is generated by

the calculators. To bring some sort of meaning and control to the whole system a set of filters

were implemented.

 34

The filters are based on the cumulative reliability of the calculations along the path and the

cumulative equilibrium constant at that point. The first step in reducing the amount of

information generated is to reduce the number of unwanted / unproductive reaction pathways

from the network. The logic behind deciding unproductive / unwanted reaction pathways is the

cumulative equilibrium constant, it provides a way of deciding whether a particular node in the

network would be present in sufficient quantity to warrant a progression along that direction.

This n the cumulative equilibrium constant after just one step.

SPAR n from the initial state.

ibrium constants of the initial compound and its hydrated product are determined, the pKa

ionization / speciation model is used to determine their speciation products and the combined

equilibrium constants. The speciation model calculates the species fractions as a function of pH,

determines the macro constants and the coupled micro constants for all the species.

3.5.1 Building Tautomer Network

The SPARC tautomer model is used to recursively determine all possible tautomers from

the starting compound and tautomers of the tautomers themselves, thereby creating a tautomer

decision cannot be taken based o

C only applies this rule after two or more steps have been take

The reliability of calculations in a pathway is very important, as, the equilibrium constants

are averaged for each tautomer form. As discussed before, a reliability value is assigned to all

tautomeric equilibrium calculation. In the case of a pKT calculation with low reliability the

pathway is not included in the equilibrium constant averaging for that node.

The first step in building an integrated process model is to use the hydration model to

determine the hydration constant and the hydrated product. The next step would be to find all

possible tautomers of the starting compound and its hydrated product, if any, and determine the

combined equilibrium constant for all the different products. After all the tautomeric forms and

equil

 35

network map with the different tautomer forms forming nodes and the equilibrium constants

between these nodes are computed. A doubly recursive algorithm is used to perform these

calculations and the progression down the network is of the depth first search type. This

algorithm enables SPARC to identify all tautomer forms and their equilibrium constants

irrespective of the starting compound. Once again filters are applied based on reliabilities and

cumulative equilibrium constants for nodes more than two steps away from the start. The current

threshold reliability value for tautomer equilibrium constant for inclusion into averaging is 0.15.

The logic based filter evaluates the aggregate KT for reaction pathways two or more steps long.

Filtering decisions are based on a threshold value, anything below threshold is filtered as an

unproductive pathway. This threshold is set at 2E-06 for the tautomer network model. This helps

in the reduction of the number of calculations by removing unproductive reaction pathways.

Figure 3.5 is a flow diagram illustrating the logic behind determining tautomer network

pable of producing multiple

utomers. The accuracy of the calculated tautomer equilibrium would go down as the network

grows, but the numbers give a very good idea about the feasibility of that tautomer forms

existing. Sample output of the tautomer network model for acetyl acetone is provided in the form

of table 3.3 and is illustrated as a mapped network in figure 3.6. The table lists the different

tautomeric forms and their fraction at equilibrium assuming, acetyl acetone (‘CC(=O)CC(=O)C’)

the starting point has a concentration of 1. In the column for individual equilibrium constants, the

equilibrium constant for each tautomeric step taken to reach the current node is listed as a dashed

pair with its reliability value. Let’s consider the tautomer no 4 (CC(O)=CC(=O)C), the list of

individual equilibriums for this form are

1) [0.1348436469935751-0.5,1-1]

2) [11303823096407.127-0.25,3.1711564854704756E-08-0.5,1-1]

maps. This model has been tested using complex compounds ca

ta

 36

 37

The 1st path consists of one step with a KT value of 0.134 and a reliability of 0.5, 1-1 is the

entry for the initial starting point and does not count as a step. The 2nd path has two steps with KT

for the first step 3.17E-08 0.5 and 1.13E+13 with reliability of 0.25 for the

second step. The combined reliability for the 2nd path is the product of the reliabilities of the

individual steps and is listed as path reliability. The total path reliability for the second path is

0.125. The observed tautom constant for tautomer 4 is 0.16 An example for

filtering based on aggregated K th rm compound IV

(aggregate KT = 1.13E-16 very low 06) in the example illustrated in figure

3.6.

Figure 3.5 Flow Diagram for Determining Tautomer Netw

 with a reliability of

er equilibrium

T is

er than threshold of 2E-

e te ination of reaction progression from

orks

Parse starting molecule

Identify possible tautom

Generate SMILE string for all ta ers

Use tautomer t mode

erization sites

utom

l to calculate k

Identify the nex el tom
 and generate S

t lev
MILE strings fo

 tau er sites
r them

Appl
unproductiv

y filters to filter out
e paths

Identify the next level tautomer sites
 and generate SMILE strings for them

Gather all ulated Kt’s
determine th undances

Use er culate kt
mers

tautom
for all n

model to cal
ew tauto

 calc
e ab
tautomerof each

Table 3.3 Output from SPARC Tautomer Network Model

No. Compound Species
Fraction Individual Equlibrium Constants and Reliabilities Path

Reliability

1 C=C(O)CC(O)=C 1.1391 E-16 [6.091130108395312E-08-0.5, 3.1711 E-08-0.5,1-1] 0.25

[0.001272564344873305-0.5, 3.1711 E-08-0.5,1-1] 0.25
2 C=C(O)C=C(O)C 1.9505 E-08

[6.107683459346353E-08-0.5, 0.13484364-0.5,1-1] 0.25

3 C=C(O)CC(=O)C 3.1711 E-08 [3.1711 E-08-0.5,1-1] 0.5

[1.13E+13-0.25, 3.1711 E-08-0.5,1-1] 0.125
4 CC(O)=CC(=O)C 0.1348436

[0.1348436-0.5,1-1] 0.5

5 CC(=O)CC(=O)C 1 [[1-1] 1

 38

39

Figure 3.6 SPARC generated taut for acetyl acetone. The equilib m
with the reliability of the calculation

riu constants are indicated next to the arrows omer map

CH3

O

O

CH3

CH2

OH

O

CH3

CH2

OH

OH

CH2

3.171 E-08 Rel: 0.5

3.592 E-09 Rel: 0.25

CH3

OH

CH2

OH

C3H H

O

C 3

OH

0.134 Rel: 0.5

1.13E+13 Rel: 0.125. Will

2.85 E-
Rel: 0

Com dpoun III

07
.25

be ignored

Path filtered out.

0.0179 Rel: 0

Compound IV

Compound V

Compound I

.25

Compound II

3.5.2 Integration of Hydration and Tautomerization

The hydration m s of the starting molecule and

determine their hydration constants. These molecules and their respective equilibrium constants

are combined and fed into the tautomer network model to determine the possible tautomer and

their integrated constants.

et us use the model to determine the reaction pathways of 2-Aceto-Cyclohexanone. To

illust e effect of coupling hydration to Tautomerization, two different calculations, one

witho

ater as solvent.

odel is used to generate all the hydrated form

L

rate th

ut hydration and one with hydration, is reported. Table 3.4 lists the output of the model

without hydration. Table 3.5 lists the output of the model with hydration turned on. Both

calculations are performed in w

Table 3.4 Results of integrated tautomer network model without hydration

No Tautomer Relative
Abundance Molecule

1 C1(O)=CCCCC1C=O 7.35E-07

2 C1(O)=CCCCC1=CO 2.00E-03

3 C1(CCCCC1C=O)=O 1.00E+00

 40

4 C1(O)=C(C=O)CCCC1 4.25E+00

5 C1(C(=CO)CCCC1)=O 4.66E+01

From e resu -keto for d to be the most stable tautomeric

form in water. This is justified as the double bond conjugation stabilizes the molecules better

than the di-carbonyl form.

Table 3.5 Results of the integrated tautomer network model with hydration

N Relative
A Molecule

 th lts, the conjugated enol ms are foun

o Tautomer bundance

1 C1(O)=CCCCC1C=O 7.35E-07

2 C1(O)=CCCCC1C(O)O 5.85E-06

3 C1(O)=C(C(O)O)CCCC1 9.57E-05

 41

4 C1(O)=CCCCC1=CO 2.00E-03

5 C1(O)(C(=CO)CCCC1)O 3.53E-03

6 C1(CCCCC1C=O)=O 1.00E+00

7 C1(O)=C(C=O)CCCC1 4.25E+00

8 C1(O)(CCCCC1C=O)O 9.94E+00

9 C1(CCCCC1C(O)O)=O 2.44E+01

10 C1(C(=CO)CCCC1)=O 4.66E+01

 42

Compared to the results without hydration we see more species present in significant

quantities. The relative stabilities of two hydrated forms 8, 9 are explained by the ease of

hydration of the aldehyde versus that of the ketone. These species are present in significant

quantities to affect chemical behavior.

3.5.3 Integration of Speciation, Hydration and Tautomer Network

Using the hydration coupled tautomer network model the equilibrium constants for the

neutral species has been developed. The next step is to determine all the different ionization

process as applied to these molecules and determine their pKas.

A full speciation calculation is performed on the different species from the tautomer

network model. The respective equilibrium constants of the tautomer forms are integrated used

to determine the final species fraction as a function of pH. The molecular speciation model is the

same model used for pKa speciation; hence it provides a wealth of information to the user. It

calculates the macro constant and micro constants for all the involved chemical process and

determines species fraction as a function of pH.

Let us analyze the results of the fully integrated chemical process model using the same

compound. The plot of the species fraction as a function pH if shown in figure 3.7. From the plot

we see that below pH 9 the dominant species are the exo-enol form (species 3) and the di-hydro

form (species 2) with a little bit of the other di-hydro form (species 1). At about pH 9 these three

species disappear and the ionized form of the di-carbonyl form, and the two keto-enol forms

dominate (species 6,7,8). The species number is the order in which they are listed in the figure.

As the pH increases the concentration of the di-hydro form is reduced, the force that drives

rn drives

equilibrium of hydration in favor of the reactant, thus decreasing the concentration of the

this reduction is the ionization of the tautomer of the un-hydrated form which in tu

 43

hydrated forms. This compound is a very good test for coupled reaction models and is

performing very well. A list of the reactions together with the micro constants is listed below. A

total of 59 micro constants and one macro constant were determined by the speciation calculator.

Figure 3.7 Plot of species fraction as a function of pH for 2-Aceto-Cyclohexanone

 44

3.5.4 Thermodynamic Loops

A solution to fix the low reliability p

u

low reliability. When t

energy b

known as thermodynamic loops. In order to infer these constants and use them

parameters the rest of the calculations involved in the loo

certain pathways were

[11303823096407.127-0.2

tautomerization of compound II ‘C=C(O)CC(=O)C’ to

unreliable. Using thermodynamic loops and

d

roblem in the tautomeric equilibrium calculations is to

se thermodynamic loops to infer the actual equilibrium constants for those calculations with

here is more than one path to a species / tautomer form the change in free

eing independent of path taken should be the same for both pathways, such loops are

 to train SPARC

p has to be reliable.

For example, in the calculation of the tautomer network for acetyl acetone we saw that

rejected due to poor reliability of 0.125 (i.e. path with KT

5, 3.1711564854704756E-08-0.5, 1-1]). This is due to the KT for the

compound III ‘CC(O)=CC(=O)C’ being

assuming that the first step is reliable we can

etermine that the K for the second step should be 5E+06 rather than 1.13E+13. This value will

bserver pKas taking part in the calculation for that tautomer

ions

icroscopic reactions and their equilibrium constants:

)(C(=CO)CCCC1)O

)(CCCCC1C=O)O

)=C(C(O)O)CCCC1

CCCCC1C(O)O)=O

T

be used to infer the involved, un-o

equilibrium constant.

3.5.5 Microscopic React

Listed below is a list of m

Micro reactions and constants:
C1(CCCCC1C=O)=O -> C1(O
Kt is 0.0035310905141420637

C1(CCCCC1C=O)=O -> C1(O
Kt is 9.941725439243926

C1(CCCCC1C=O)=O -> C1(O
Kt is 9.569754217721239E-05

C1(CCCCC1C=O)=O -> C1(
Kt is 24.37683088627839

 45

C
Kt is 0.0020005816586784316

C
Kt is 46.62888703024625

C
Kt is 4.247989918782148

C
Kt is 1.0

C
pKa is 11.290990995289015

C

1(CCCCC1C=O)=O -> C1(O)=CCCCC1=CO

1(CCCCC1C=O)=O -> C1(C(=CO)CCCC1)=O

1(CCCCC1C=O)=O -> C1(O)=C(C=O)CCCC1

1(CCCCC1C=O)=O -> C1(CCCCC1C=O)=O

1(O)(C(=CO)CCCC1)O -> C1(O)(C(=C[O-1])CCCC1)O

1(O)(C(=CO)CCCC1)[O-1] -> C1(O)(C(=C[O-1])CCCC1)[O-1]
23611669241

C1(O)=C(C([O-1])O)CCCC1 -> C1([O-1])=C(C([O-1])O)CCCC1
0407976

C1(O)=C
pKa is

pKa is 13.055136185567525

C1(O)=CCCCC1C([O-1])[O-1] -> C1([O-1])=CCCCC1C([O-1])[O-1]

C1(O)=CCCC
pKa is

pKa is 12.934205115884826

C1(O)=CCCCC1=CO -> C1(O)=CCCCC1=C[O-1]

C1(O)=C(C=O)CCCC1 -> C1([O-1])=C(C=O)CCCC1
pKa is 8.1391494458693

pKa is 13.024

C1(O)=C(C(O)O)CCCC1 -> C1([O-1])=C(C(O)O)CCCC1
pKa is 12.223746259259778

pKa is 13.97435757

(C(O)[O-1])CCCC1 -> C1([O-1])=C(C(O)[O-1])CCCC1
 13.974357570407976

C1(O)=CCCCC1C(O)O -> C1([O-1])=CCCCC1C(O)O
pKa is 10.92533207205689

C1(O)=CCCCC1C([O-1])O -> C1([O-1])=CCCCC1C([O-1])O

pKa is 14.73343604534849

C1C(O)[O-1] -> C1([O-1])=CCCCC1C(O)[O-1]
 13.055136185567525

C1(O)=CCCCC1=CO -> C1([O-1])=CCCCC1=CO
pKa is 11.402019238648172

C1([O-1])=CCCCC1=CO -> C1([O-1])=CCCCC1=C[O-1]

pKa is 11.164266323173813

C1(O)=CCCCC1=C[O-1] -> C1([O-1])=CCCCC1=C[O-1]
pKa is 12.948329205548161

C1(C(=CO)CCCC1)=O -> C1(C(=C[O-1])CCCC1)=O
pKa is 9.179621017995222

 46

C1(O)=CCCCC1C=O -> C1(O)=CCCC[C-1]1C=O

C1(O)=CCCC[C-1]1C=O -> C1([O-1])=CCCC[C-1]1C=O

pKa is 12.980583901142545

C1(CCCCC1C=O)=O -> C1(CCCC[C-1]1C=O)=O

Macro pKa:

C1(C(=CO)CCCC1)=O, C1(O)=C(C=O)CCCC1, C1(O)(CCCCC1C=O)O, C1(CCCCC1C(O)O)=O,

The three chemical process models, hydration, tautomerization and speciation models were

integrated. Filters were designed and implemented to reduce the complexity of the calculations,

the filters are based on threshold values deciding productive paths based on aggregated

equilibrium constants. The reliability of the calculations are computed and unreliable

calculations are ignored.

The lack of through quantitative analysis of complex coupled process is a major stumbling

block to modeling such systems. SPARC’s models do a very good job at qualitative analysis of

these systems. For modeling tautomers one of the important pKas is the carbon acid pKa. Due to

the magnitude of the perturbations the RMS of the model is high compared to other pKa reaction

models. Another way to test these models is to let the researcher use the system and report any

error they find. A web based interface for the integrated process models has also been

implemented and will be available for public use in December of 2004.

pKa is 11.807832985774404

pKa is 12.815532631320009

C1(O)=CCCCC1C=O -> C1([O-1])=CCCCC1C=O
pKa is 10.780590232640959

C1([O-1])=CCCCC1C=O -> C1([O-1])=CCCC[C-1]1C=O

pKa is 7.510965968450897

C1(CCCCC1C=O)=O ----> C1(CCCC[C-1]1C=O)=O, C1([O-1])=C(C=O)CCCC1, C1(C(=C[O-1])CCCC1)=O
Macro Pka = 8.969012

3.6 Conclusion

 47

The speciation models in SPARC are very well tuned and are getting even better. Recently

Pfizer Chemical have started using the more current version of SPARC, in doing so they have

started to compare and benchmark SPARC models llection of pKa data they

ha s

in SPARC pKa models has been the complete rewrite of the nitrogen models. This was done

after feedback from Pfizer researchers, who provided us with information, which convinced us to

handle nitrogen in rings in a different manner.

The next phase of this research would be to integrate more physical process models like

Henry’s constant, solubility and vapor pressure models into this existing coupled process.

Models for auto tautomerization (tautomerization in itself) have to be developed and tested.

with the large co

ve accumulated. They are collaborating with us to improve SPARC; one of the recent change

 48

Chapter 4

Interpretation of Cis-trans isomer information in SMILES representation

4.1 Introduction

SMILES (Simplified Molecular Input Line Entry System) was developed by David

Weininger as a method to encode chemical molecules based on simple grammar and is capable

of specifying complete structural information10, 11, 12. This representation is based on expressing

the molecule by atomic symbols and other symbols to represent bonds and other features in a

linear fashion11 . As a result of its simple grammar, it proved to be easy to encode by hand as

well as easy for computer programs to interpret. This led to its usage in a number of computer

programs and also as a way to store chemical structures in computer databases.

The SMILES encoding rules do not place any restriction on the starting point in a molecule

when encoding it. This leads to multiple ways of encoding a molecule in SMILES. This poses a

problem when SMILES notation is used to identify the molecule by a simple string comparison.

The solution is to generate a unique SMILES notation10. A unique SMILES is a unique way of

encoding a molecule in SMILES. The uniqueness is due to the weighting of the atoms in the

molecule based on their connectivity and nature of the atoms themselves. This process is known

as the generation of a unique SMILES for that molecule. The simplicity of SMILES specification

rules led to its adaptation as a form of molecular input/output for chemistry software. One of the

side effects of this adaptation is the development of incompatible specification rules for

interpretation of cis-trans isomer information. The atom weighting system for the molecules to

 49

generate unique SMILES is also not standardized. This leads to the generation of different

unique SMILES depending on the software and weighting system used13, 14, 15.

 internally. Hence we

ave to con ther form o ar repr MILE In the

form SPARC did not use structural isomerism info n to model p l and che

property. B e heat of fo n calculator ARC specificati

double bond isomerism and tetrahedral chirality beca e very important. In the process of

incorporating structural isomer models we discovered several problems with SMILES notation

and set out to fix them.

The SMILES grammar in its published state was sufficient in defining simple cis-trans and

tetrahedral chirality. However when applied to complex ring systems with multiple conjugations

of doub 8-Annu this grammar fails to represent all structural information.

Specification of cis-trans across a ring break also was not addressed in the originally published

gramma pted to w out the rules to y complete s ural inform

using SM ering to t inal symbols.

 table 4.1 a few SMILES and their interpretation by different chemistry software are

given. The table illustrates that all the software follow the basic cis-trans interpretation rules as

specif

In SPARC models SMILES notation is used to represent the molecule

h vert all o f molecul esentation into S S notation. initial

rmatio hysica mical

ut when th rmatio was added to SP the on of

m

le bonds such as (1 lene),

r. We have attem ork specif truct ation

ILES while adh he orig

In

ied by the daylight specification. This is illustrated by the molecules trans-2-butene and

cis-2-butene. The SMILES representation of the other four molecules involves the specification

of cis-trans isomer information through a ring break. In the case of these molecules, it is possible

to write a SMILES representation without passing through a ring break, but to illustrate the

issues with interpretation rules we have written them as such. For the four ring compounds

ChemDraw, ACD/ChemSketch and depict seem to ignore the cis-trans specification. The

 50

interpretation rules of Marvin and SPARC interpret in some case, opposite of each other and the

same for the other.

Table 4.1 SMILES strings and its interpretation by different software
 SMILES MARVIN ACD/ChemSketch ChemDraw SPARC Molecule Depict

trans-2-
butene Trans C\C=C\C Trans Trans Trans Trans

trans-2-
butene Trans C(/C)=C\C Trans Trans Trans Trans

cis-2-
butene C\C=C/C Cis Cis Cis Cis Cis

cis-2-
butene Cis Cis Cis Cis Cis C(\C)=C\C

Trans-1-
methyl-
octene

Trans C\C1CCCCCC/C=1 Cis Trans Trans Trans

cis-1-
methyl-
octene

C/C1CCCCCC/C=1 Trans Trans Trans Cis Trans

trans
octene C1=C\CCCCCC\1 Cis Cis Cis Cis Cis

cis
octene C1=C\CCCCCC/1 Trans Cis Cis Trans Cis

The above example clearly illustrates the need for a more compressive and standard cis-

trans interpretation rules for SMILES. The interpretation rules developed for SPARC have been

tested for over a 1000 compounds containing cis-trans information. All these compounds were

downloaded from NIST Webook as MDL mol files and SMILES strings were encoded for

them. These SMILES strings were then interpreted according to the same rules and were verified

to be self consistent. A standard weighting scheme for the generation of unique SMILES also

need to be developed. The algorithm used by SPARC is based on the original algorithm

16

 51

published by David Weininger. This algorithm is by no means efficient. A standard algorithm

will help the developers of software use a more portable chemical information database. In the

generation of unique SMILES for molecules with cis-trans and tetrahedral chirality we had to

impose some restriction on the use of symbols. Specifically the restriction determines the sense

of the

4.2 SMILES Grammar Review

Let us review some SMILES grammars that are important for understanding the problems

in specification of cis-trans isomerism for complex rings. A simple compound like 2-butene is

represented in SMILES by ‘CC=CC’. No information about the orientation of the molecule (cis

or trans) is specified here. The orientation of atoms around a double bond is specified in

SMILES using the characters ‘/’ or ‘\’. The slashes represent directional single bonds connecting

the anchor atoms. In this paper we will be using the terms “anchor atoms” and “other atoms”.

Anchor atoms are the atoms that form the double bonds and other atoms are the atoms which

specify the configuration and are connected to their respective anchor atoms. For example cis-2-

butene will be repre =C\C’. For the cis

conformation the two slashes are pointing up from the anchor atoms. Likewise, for the trans

conformation, one single bonds is pointing up, one is pointing down.

Since SMILES encodes molecules as a linear string of characters, rings have to be broken

into linear representations. This is achieved by breaking the ring and tagging the ring-break-

atoms with numbers (ring-tags) and writing them in linear fashion. For example cyclohexane is

represented by ‘C1CCCCC1’. When decoding this SMILES string we have to join the atoms

 first slash used in specifying an isomer. When developing a standard this area also has to

be addressed. In the following pages we attempt to propose a set of standard rules which needs to

be examined and tested and worked into an acceptable standard.

sented by ‘C\C=C/C’ and trans-2-butene by ‘C\C

 52

with the same ring tags to get the actual representation. When generating unique SMILES for

rings, the occurrence of ring breaks cannot be predetermined. The ring break is determined by

the order of atoms in the string. The order is determined by the weights calculated for individual

atoms in the process of generating a unique SMILES string.

In Figure 4.1 the unique SMILES notation are given for cyclohexane, cyclohexene and 4-

chlorocyclohexene. All three compounds are ring compounds and the ring-break atoms are

labeled by number 1 in the notation. This example illustrates the change in the ring break atoms

in the molecules with the addition of a substituent. As already stated, the change in ring-break

position is due to the change in the calculated weights of the atoms. Since the same algorithm

must be applied to all molecules in the generation of unique SMILES strings, the ring-break

selection is independent of user control.

Cl

C(CCC1)CC1 C(=CCC1)CC1 ClC(CC=C1)CC1

cyclohexane cyclohexene 4-chlorocyclohexene

Figure 4.1 Representing rings in SMILES string

4.3 Conjugated ring systems

When specifying isolated cis-trans isomers in a molecule the sense of slashes are

independent from the influence of other slashes that might be used to specify other isomers. In

 53

the case of conjugated ring systems once the sense of the first slash is set, the sense of all o

slashes involved in that conjugated s

ther

ystem is also fixed. This can be observed in figure 4.2. 18-

 observer that every slash is

respo

g a large number of molecules listed in the NIST Webbook

and building 3D models6, we did not find an example of trans double bond configuration in a

ring smaller than eight atoms. From our own 3D models it appears molecules do not have the

bond angles necessary to form trans double bonds in rings smaller than eight atoms. Hence we

assume the default configuration for all double bonds in a ring smaller than eight atoms to be

“cis”. New rules have been developed for the interpretation o cis-trans information for

conjugated ring systems. In combination with o r weighting system for the atoms we can write

self-consistent SMILES representations for conjugated ring systems.

anulene is shown with its SMILES notation. In the notation you can

nsible for defining two isomer specifications. This type of slash usage is common and by

itself is not a problem; but in case of conjugated rings it could cause a conflict, where the

specification of the last double bond in the conjugated system cannot be specified correctly. The

reason is that the senses of the two slashes for that double bond are already fixed and cannot be

changed with out disturbing all the other specifications. This conflict cannot be resolved based

on the current rules. After processin

f

u

 54

Figure 4.2 18-Annulene. A completely conjugated molecule with a mix of cis and trans

representation of this molecule.
isomers. “C(=C\C=C\C=C\C=C/C=1)\C=C\C=C\C=C/C=C/C1” is the SMILES

4.4 Approach to solve cis-trans specification across ring breaks

Our goal was the development of a rule set which will enable self consistent encoding /

decoding of cis-trans isomer information across ring breaks. In order to represent the information

in a computationally facile way, we have defined some terms to identify the participants. The

two anchor atoms forming the double bond are identified anchor1 and anchor2. The atoms

attached to the anchor atoms and which define conformation, are identified as other1 and other2.

An example is given in Figure 4.3.

HH3C

CH3H

Other2

AnchOther1 or2

Anchor1

Figure 4.3 Trans 2-butene. Illustrating the cis-trans nomenclature.

ngle bond, which in this case is pointing away

from the other1 atom and hence representing the trans conformation. As a general rule, when

C\C=C\C

The rules are based on the projection of the smiles in 3-D space before interpreting the

conformation. Let us consider a simple molecule, trans-2-butene. The simple way to write the

SMILES representation is to start from one end of the molecule and proceed to the other end.

The SMILES is ‘C\C=C\C’. We start from the other1 atom (Methyl) and use a back slash to

represent the direction of the single bond to the anchor1 atom. The forward slash after the

anchor2 atom is representing the direction of the si

 55

both

s conformation.

The

the molecule count that

the mole

complicates

complication

leads to two of the isomer configuration, the apparent sense that we get

from

 be

“C(\C

 position of

other1 atom is after anchor1 atom, which when projected in 3D will show the other1 atom away

from the other2 atom.

slashes are of the same “sense”, they represent a trans conformation and when they are

different, they represent ci

 example that we saw above was written in a simple straightforward way. Whenever

 is encoded with branching and or ring breaks the user has to take into ac

cule is basically turning at the branch point or ring break as the case may be. This

the cis-trans specification through the branch or ring break in such molecules. The

 is due to the change in progression of the atoms involved in the specification. This

different interpretations

interpreting the conformation just from the sense of the slashes and the real (actual) sense

that we interpret taking into account the direction of progression of the molecule. After

considering all possible ways of writing a SMILES representation of a double bond we have two

cases where the real sense is an inverse of the apparent sense.

 There are two cases where the apparent conformation has to be inversed to get the actual

conformation. The reason behind this reversal is the relative position of the other atom with

respect to its anchor atom. When they are not in the regular order

(Other1/Anchor1=Anchor2\Other2) the sense of the slash (single bond) might have to be

reversed to get the actual orientation. For example let us consider trans-2-butene now written

with the relative position of anchor1 and other1 atoms reversed. The SMILES string would

)=C/C”. When decoding the SMILES string to get the right conformation, the sense of the

first slash has to be reversed before interpreting the conformation. This is because the

 56

The rules for reversing the apparent sense of slashes are given below with examples

illustrating the situations.

1) When the other1 atom and anchor1 atom positions are reversed, the apparent sense

should be reversed. For example trans-2-butene written as “C(\C)=C/C”

2) When there is a ring break between anchor1 and anchor2 atoms and the other2

atom comes before the anchor2 atom in the SMILES string, the apparent sense has

to be reversed. For example trans-1-methyl-cyclooctene can be written as

“C\C

For all cases other than the two described above, the real sense is the same as the apparent

sense. The above rules have been tested on a large set of SMILES representations and can handle

all possible ways of writing a cis-trans specification across a ring break except in the case of

completely conjugated rings. The reason, as described above, is the conjugation which “locks

down” the sense of the slashes in the string once one of the double bond in the conjugation is

specified. This could pose a problem where the user might not be able to specify the correct

isomer for the last double bond in the conjugated system. One way to resolve this deadlock is to

prevent a ring-break from occurring across a double bond in the conjugated system and use two

slashes to specify the isomer for both double bonds. These two slashes will be the leading and

re of this idea.

1CCCCCC/C=1”

trailing slashes of the single bond. The example below will give a clearer pictu

Let us consider Cycloocta-1,3,5,7-tetraene’s two isomers for encoding into SMILES. The

first isomer is the one with two trans double bonds and the other is the all cis isomer.

 57

C(\C=C/C=C/1)=C/C=C\1 C(\C=C/C=C\1)=C\C=C/1

CIS

ers of cycloocta-1, 3, 5, 7-tetraene.

The SMILES strings for the two isomers are given under each picture. In the first molecule

there are two trans and two cis isomers. The conformation of the second double bond and the

ed through a ring break and since this is a fully conjugated system a leading and

trailin

4.5 Influence of Cis-trans on Unique SMILES string generation

In the original algorithm for the generation of unique SMILES strings, neither cis-trans

isomers nor tetrahedral chirality was taken into account when weighting the atoms in the

molecule. After working with many molecules we decided that change in the weights of the

atoms due to cis-trans or other structural specification was not the best way to generate unique

SMILES. We feel that the molecules should be similarly ordered (similarly weighted)

TRANS
CIS

Figure 4.4 The two isom

fourth is specifi

g slash is used to separate the specification of the two double bonds. The leading and

trailing slashes are both associated with the ring break. For this system to work, the ring break

should not be a double bond. When unique SMILES are generated for this kind of systems, the

algorithm to generate them has to take this rule into account.

 58

irrespective of their structural conformations, as this will help the user in identifying similar

molecules.

But the question of generating unique SMILES with structural information still remains.

To generate unique SMILE the use of symbols has to

be developed. In the case of cis-trans a standard encoding procedure would define selection rules

to choose atoms to use in the definition of the isomer. It also defines a standard sense of the slash

to be used when writing the very first conformation. We use two rules to determine the atoms

participating in the isomer specification.

1) If there is a choice for the selection of the other atom the higher weighted of the

two should be selected as the other atom.

2) If possible cis-trans specification through ring breaks should be avoided

conjugated system. Ideas for

the development of an algorithm to generate unique SMILES involving cis-trans and chirality

were also stated. Hopefully this improvement to SMILES will bring about an increase in its

adoption as a standard molecular representation method.

S with structural information, a standard for

4.6 Summary

The rules for complete structural specification in SMILES string were not defined very

well in the original SMILES specification. This has led to the development of various

implementations of the SMILES parser, each with its own set of rules. In the case of specifying

cis-trans information, interpretation rules have been modified to allow proper and consistent

interpretation. The problem with conjugated rings has also been addressed and rules developed to

properly specify conformation for all double bonds involved in the

 59

Chapter 5

Development of Tools for SPARC

5.1 Introduction

One of the goals of the SPARC group is to provide free access to the research community

to perform calculations using SPARC. It is not feasible to distribute a SPARC calculator to every

person who wants to use it. Hence, a client, acting as a bridge to the actual SPARC server was

designed and built. SPARC clients were built for the Sun Solaris and Windows operating

systems. These clients are distributed to researchers wanting to use SPARC. Because of the

chore of maintaining client releases for different versions of operating systems and for unifying

access to SPARC, a web client application for SPARC was developed. Communication to

SAPRC servers was handled by a custom protocol riding over the TCP/IP communication

protocol. A Windows COM object was designed as a bridge to interface the web application

server and SPARC server. This COM object was written in Visual Basic. As new calculators are

added to SPARC, the communication protocol has to be expanded to add support for these new

applications. This new protocol has to then be implemented in the COM object. Figure 5.1 is a

visual illustration of the integration of the SPARC web application.

5.2 SPARC Server Manager

The SPARC website is capable of handling ultiple users at one time. Although SPARC

serve

m

r are “blocking” when doing a calculation (does not respond to other requests) a mechanism

to handle multiple users at the same time was designed and implemented inside the web

 60

application server. This method was not very portable and could not be expanded to provide this

management capability to other web servers. A Server Manager was designed and implemented

to handle the assignment of calculations to a free server and in a way “load balance” the

calculation requests.

Figure 5.1 SPARC Web Application Integration Diagram

When designing the server manager, it was decided to make the system an “active”. It is

known as “active” because it probes its list of SPARC servers to determine the state of each

 61

process and notifies the administrator in case of server failure. An authentication mechanism for

access to the server manager was implemented based on the client addresses. The server was also

responsible for furnishing login information for the clients. The server continuously maintains a

list of

vers and to force an emergency rescan the status of

all the

5.2.1 Implementation

dows service so it can be started without

user i ActiveX Control (NTSVC.OCX) was used to implement

it as a service. one using TCP/IP protocol and the queries and replies are

all in plain Eng

The inter he server information is handled by a custom data structure

called “resourc ted, the server and client information is read from an

initialization fi ay of the “resource” data structure is filled. A submodule is

then called wit to determine the status of the SPARC servers by performing

a login operation. The result of the login operation is then stored back in the resource structure.

When a client logs on to the server manager and requests a connection by asking for a

“password”, which is the protocol for requesting a server to perform calculations, the task is

assigned to another submodule to perform. This looks at the list of resources and finds a free

server, it then tests the connection by performing a test login operation using the correct

username. If it is successful, it then sends the client the information for connecting to the free

server and adds an entry in the resources structure that a server has been assigned to that

 all active connections to its servers and the clients who are using it. A special protocol was

developed to communicate and negotiate a server request for all clients. A mechanism was also

included to enquire about the status of the ser

 SPARC servers.

The server manager was designed to run as a Win

ntervention. A Microsoft supplied

All communication is d

lish.

nal representation of t

e”. When the service is star

le (.ini file) and an arr

h the list of resources

 62

particular client. After the client is done using the services of the SPARC server, a call is made to

the server manag

server manager t

The q a ring buffer until the worker process is ready to

process them. T

conditions when handling the resource data.

A complete listing of code for this program and its client code piece is listed in Appendix

A.

 Machine As String * 16

 Operational As Boolean

 User As String * 16

 Tries As Integer

 start_time As String

Client Communication Protocol:

• Request for status of all server:

Client sends “status”

Server sends back a formatted list of data in resource data structure

• Request for a free resource (SPARC Server)

Client first sends the type of SPARC server it needs (“new” or “old”)

er and requests the release of the server resource that was assigned to it. The

hen marks the SPARC server as a free resource.

 re uests from clients are queued in

he worker was designed to be a single threaded application to avoid race

5.2.2 Data Structures and Communication Protocol

Definition of resources structure:

Public Type resources

 Status As Boolean

 Port As Integer

 Client As String * 16

 Type As String

End Type

 63

Client sends “password”

SPARC has always been of interest to pharmaceutical companies and other commercial

ventures. These industries are very particular about privately maintaining their research

information. Therefore, they do not want to use the SPARC Web Interface over the internet.

Currently Pfizer is using the latest version of SPARC for calculating pKas, and would like to use

it on their internal network to provide access to all Pfizer personnel. In these cases the SPARC

server has to communicate with their web server. It is impossible for them to implement the

whole SPARC communication protocol; the ideal situation would be to provide them an

interface like the COM object which is currently used in SPARC web interface, implemented in

a universal and platform independent language like Java. This would also require that the server

manager be rewritten in Java.

In future versions, dynamically scalable SPARC servers will be very desirable. This would

enable the server manager to dynamically spawn new SPARC servers on remote Unix machines

based on the user load. Currently the SPARC sever resource is limited and is a fixed number and

in the case of a heavy load it would be unable to handle it.

Server sends back “**password” and a comma delimited string with a unique

connection id, IP address of the server, port number and user name

• Request for releasing a resource

Client sends “release,” followed by a comma separated list of connection ids it

wants released

5.2.3 Scope for Future Improvements

 64

5.3 Multiple Remote Training Utility

SPARC’s mechanistic toolbox models are based on parameters that define the properties of

reaction groups, substituents and reactophores. These parameters are calculated based on

observed functions using a process known as training. In training these parameters are fitted

using a least-squares method to fit the observed data. The training sets are designed to optimize a

batch of parameters using molecules that are affected by these parameters. The number of

calculation increase proportionally to the product of the number of parameters and the number of

molecules in a training set. In training large sets of parameters, the number of calculations is very

large and in order to speed up the training a split training process was designed. In this split

traini

mated version. The design goal was to provide a fully Windows based tool to

ated split training. Since the SPARC servers are based on a Unix machine a

program was written that would in collaboration with the Windows client will perform the

necessary operations on the Unix side.

The information about the servers that are part of this training cluster is stored in a .ini file.

This file also contains all the user information the program need to login and perform file

transfers. Other information about the current training is collected from the user. This

information contains the type of training to be performed, i.e. pKa, property, hydrolysis, Heats of

ng process the training set is divided into smaller sets with a part of the parameters and all

of the molecules. The smaller training sets are then sent to different machines and the co-variant

matrices are calculated at the same time, this reduces training time. The training data, i.e. the

results of the training, are then combined and a least squares fit is done.

The multiple split training was first done manually and was a tedious process. Hence it was

decided to automate it. Based on a previous program that split the training files we, set out to

write a fully auto

perform fully autom

 65

Formation training, the multipliers, if any, used o scale training data, and other options which

switch on/off particular pieces of code. ining module has mechanisms to store

training d

h

param

functionality

ized in

the firs

able parameters in chronological order in a MySQL Database. This would let the

SPARC developers to go back a e. A side

effect of this database based storage of param

of parameters, etc. Developers could also write parameter

constraints so when a param

5.4 C

ode snippets were written to enhance research methods

and p

 SPARC to calculate the properties for chemicals used

in the

 t

The SPARC tra

ata and output into separate directories in the user area for each training cycle. This

enables users to train multiple passes without intervention and later look at the change in eac

eter for each cycle. The multiple training client was also designed to take advantage of this

. After each pass the system combines the data from all servers in the cluster and

after performing the least-squares fit stores the data in a subfolder on each machine in the cluster.

In doing so, the system can perform another training cycle based on the parameters optim

t cycle.

The next phase of development in a remote training utility is to design an interface to store

all the train

nd take a look at the parameters as a function of tim

eter is a chance to use this data to write analysis

tools to look at the behavior

eter exceeds set boundaries, the system can monitor this and notify

the developers.

onclusion

Multiple tools and miscellaneous c

rovide access to the SPARC severs. A new version of a standalone pKa client is being

developed for industries interested in using

ir research. A new Java version of the client will soon be developed to facilitate the client

to be platform independent.

 66

References

1. Said H. Hilal. 1992. Prediction of Physical Properties and Chemical Reactivity

Param

2. Neil Isaacs. 1996. Physical Organic Chemistry

eters From Molecular Structure by SPARC. PhD diss., The University of Georgia. .

. England: Addison Wesley Longman, .

mical

Reactiv

Quantita

3. S. H. Hilal, L. A. Carreira and S. W. Karickhoff. 1994. Estimation of Che

ity Parameters and Physical Properties of Organic Molecules Using SPARC. Chap. in

tive Treatments of Solute / Solvent Interactions. 291. New York: Elsevier, .

4. S. H. Hilal, S. W. Karickhoff, L. A. Carreira. 1999. Estimation of Microscopic, Zwitter

Ionization Constants, Isoelectric Point and Molecular Speciation of Organic Compounds. Talanta

50: 827.

5. L. A. Carreira. Discussion. Athens, Ga.: Dept. of Chemistry.

6. Robert T. Morrison and Robert N. Boyd. 1963. Organic Chemistry. Boston: Allyn and

Bacon, Inc., .

7. Souad A. M. Shaaban. 1998. Prediction of Keto - Enol Equilibrium Constants by

Computer. M.S. thesis, The University of Georgia. .

8. J. Toullec. 1990. Keto-Enol Equilibrium Constants. Chap. in The Chemistry of Enols.

New York: John Weily and Sons Ltd., .

9. S. H. Hilal, L. L. Bornander and L. A. Carreira. Calculation of Hydration Constants

Using SPARC. Submitted for Publication.

10. David, Arthur Weininger and Joseph L. Weininger. 1989. Smiles, 2. Algorithm for

Generation of Unique SMILES Notation. Journal of Chemical Information and Computer

Sciences, 29: 97.

 67

11. David Weininger. 1988. Smiles, A Chemical Language and Information System. 1.

Introduction to Methodology and Enc ical Information and oding Rules. Journal of Chem

Computer Sciences, 28: 31.

ninger. http://www.daylight.com: Daulight Chemical Information Systems,

Systems, Inv..

://webbook.nist.gov: NIST.

12. David Wei

Inv..

13. Chemdraw. http://www.cambridgesoft.com: Cambridgesoft Corporation.

14. Depict. http://www.daylight.com/depict: Daylight Chemical Information

15. MarvinSketch. http://www.chemaxon.com/marvin: ChemAxon, Ltd..

16. NIST Webbook. http

 68

Appendix A

Code Listing for SPARC Server Manager

1-CBC2DA68BF6C}#1.0#0; ntsvc.ocx

s
.bas

'' File SSM.vbp
Type=Exe
Reference=*\G{00020430-0000-0000-C000-
000000000046}#2.0#0#C:\WINNT\System32\Stdole2.tlb#OLE Automation
Object={33335123-F789-11CE-86F8-0020AFD8C6DB}#2.0#0; IPDAEM35.Ocx
Object={33335113-F789-11CE-86F8-0020AFD8C6DB}#2.0#0; IPPORT35.Ocx

CE-86F8-0020AFD8C6DB}#2.0#0; SMTP35.Ocx Object={33335233-F789-11
Object={E7BC34A0-BA86-11CF-84B
Form=Main_frm.frm

aModule=INISET; Iniset.b
Module=Worker; Worker
IconForm="Main_frm"
Startup="Main_frm"
HelpFile=""
Title="Server Manager"
ExeName32="SSM.exe"
Command32="-debug"
Name="SSM"
HelpContextID="0"
CompatibleMode="0"

tibleEXE32="SSM.dll" Compa
MajorVer=3
MinorVer=0
RevisionVer=16
AutoIncrementVer=1

upportFiles=0 ServerS
VersionCompanyName="UGA"
CompilationType=0
OptimizationType=2
FavorPentiumPro(tm)=0
CodeViewDebugInfo=0
NoAliasing=0
BoundsCheck=0
OverflowCheck=0
FlPointCheck=0
FDIVCheck=0

dedFP=0 Unroun
StartMode=0
Unattended=0
Retained=0

 69

ThreadPerObject=0
MaxNumberOfThreads=1

9-11CE-86F8-0020AFD8C6DB}#2.0#0"; "IPDAEM35.Ocx"
9-11CE-86F8-0020AFD8C6DB}#2.0#0"; "IPPORT35.Ocx"
9-11CE-86F8-0020AFD8C6DB}#2.0#0"; "SMTP35.Ocx"
A86-11CF-84B1-CBC2DA68BF6C}#1.0#0"; "ntsvc.ocx"

frm
rver Manager"
050
5

25
rm1"

Width = 6225

alse

 'False
t = 2520

ervice NTService1

tentX = 741
ExtentY = 741

ager"
M"

 Begin VB.Timer rescan_timer
lse

[MS Transaction Server]
AutoRefresh=1

'' File main_frm.frm
VERSION 5.00
Object = "{33335123-F78
Object = "{33335113-F78
Object = "{33335233-F78
Object = "{E7BC34A0-B
Begin VB.Form Main_
 Caption = "Se
 ClientHeight = 4
 ClientLeft = 346
 ClientTop = 3765
 ClientWidth = 62
 LinkTopic = "Fo
 ScaleHeight = 4050
 Scale
 Begin VB.Timer res_timer
 Enabled = 0 'F
 Interval = 60000
 Left = 3480
 Top = 2880
 End
 Begin VB.Timer Timer
 Enabled = 0
 Lef
 Top = 1800
 End
 Begin NTService.NTS
 Left = 840
 Top = 600
 _Version = 65536
 _Ex
 _
 _StockProps = 0
 DisplayName = "Sparc Server Man
 ServiceName = "SparcSS
 StartMode = 3
 End

 Enabled = 0 'Fa

 70

 Left = 1320
 Top = 3000

1320

Top = 3120

_ExtentY = 741
MailServer = ""

c = ""

eText = ""

rtLib.IPPort IPPort1
 = 5400

 = ""

aemon1

tY = 741
 = -1 'True

nd

e
ibute VB_Creatable = False

ate Sub Form_Load()

 End
 Begin VB.Timer Timer1
 Left = 5400
 Top =
 End
 Begin SMTPLib.SMTP SMTP1
 Left = 2520

 _ExtentX = 741

 From = ""
 To = ""
 Cc = ""
 BC
 ReplyTo = ""
 Date = ""
 Subject = ""
 Messag
 End
 Begin IPPo
 Left
 Top = 1920
 _ExtentX = 741
 _ExtentY = 741
 RemoteHost = ""
 Linger = -1 'True
 EOL
 End
 Begin IPDaemonLib.IPDaemon IPD
 Left = 5400
 Top = 600
 _ExtentX = 741
 _Exten
 Linger
 E
End
Attribute VB_Name = "Main_frm"
Attribute VB_GlobalNameSpace = Fals
Attr
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Priv

 71

On Error GoTo Err_Load
 Me.Hide
 Dim a$
 a$ = App.Path & "\server.log"

1
trDisplayName As String

ayName = NTService1.DisplayName

 with desktop

hen
ameters", "TimerInterval", "150")

fully"

ox strDisplayName & " failed to install"
If

ommand = "-uninstall" Then
 If NTService1.Uninstall Then

= "-debug" Then
Service1.Debug = True

" Then

rvice1.GetSetting("Parameters", "TimerInterval", "150")

ue. Must be set before StartService

 Open a$ For Append As #1
 Print #1, Date$
 'Close #
 Dim s
 Dim bStarted As Boolean

 strDispl

 If Command = "-install" Then
 ' enable interaction
 NTService1.Interactive = False

 If NTService1.Install T
 Call NTService1.SaveSetting("Par
 MsgBox strDisplayName & " installed success
 Else
 MsgB
 End
 End
 ElseIf C

 MsgBox strDisplayName & " uninstalled successfully"
 Else
 MsgBox strDisplayName & " failed to uninstall"
 End If
 End
 ElseIf Command
 NT
 ElseIf Command <> "
 MsgBox "Invalid command option"
 End
 End If

 Dim parmInterval As String
 parmInterval = NTSe
 Timer.Interval = CInt(parmInterval)

 ' enable Pause/Contin
 ' is called or in design mode
 NTService1.ControlsAccepted = svcCtrlPauseContinue

 72

 ' connect service to Windows NT services controller

.Number & "] " & Err.Description

ogEvent(svcMessageError, svcEventError, "[" & Err.Number & "] " &

ode As Integer,
ing)

eject connection from clients based on valid IP address
Daemon1.RemoteHost(ConnectionID)

o numClients

If
 Next i

ataIn(ConnectionID As Integer, Text As String, EOL As Integer)

) Then 'This is a request for release of resources
e index and put it in Value$

 Trim(Text)
status" 'Client is asking for status of resources

ActionPointer) = "status!" & Trim(Str(ConnectionID))
nPointer

g for a reset of resources
set!" & Trim(Str(ConnectionID))

er
scan" 'Client has requested for a rescan of all resource and validation

r) = "rescan!" & Trim(Str(ConnectionID))
 IncActionPointer

ld" 'Client has requested for a old server
 ActionQ(ActionPointer) = "old!" & Trim(Str(ConnectionID))

 NTService1.StartService
 Exit Sub
Err_Load:
 If NTService1.Interactive Then
 MsgBox "[" & Err
 End
 Else
 Call NTService1.L
Err.Description)
 End If
End Sub

Private Sub IPDaemon1_Connected(ConnectionID As Integer, StatusC
Description As Str
 'Accept / R
 a$ = IP
 For i = 1 T
 If Trim(Clients(i)) = Trim(a$) Then
 IPDaemon1.EOL(ConnectionID) = Chr$(10)
 Exit Sub
 End

 IPDaemon1.Connected(ConnectionID) = False
End Sub

Private Sub IPDaemon1_D
On Error GoTo err_data_in
If InStr(Trim(Text), "release"
 j = InStr(Trim(Text), ",") 'Filter all resourc
 Value$ = Mid$(Trim(Text), j + 1)
 Text = "release"
End If
Select Case
 Case "
 ActionQ(
 IncActio
 Case "emergency_reset" 'Client is askin
 ActionQ(ActionPointer) = "emergency_re
 IncActionPoint
 Case "re
 ActionQ(ActionPointe

 Case "o

 IncActionPointer

 73

 Case "new" 'Client has requested for a new server
ointer) = "new!" & Trim(Str(ConnectionID))

 "password" 'Client has requested for a valid resource
Pointer) = "password!" & Trim(Str(ConnectionID))
r

 requested a release of the resource it had used
ase!" & Trim(Str(ConnectionID)) & "!" & Value$

logoff" 'Client is disconnecting
emon1.Connected(ConnectionID) = False

 Case Else

ent(svcEventInformation, svcMessageInfo, a$)

rr_data_in:
re in Data in " & Err.Number & " " & Err.Description

1.LogEvent(svcEventInformation, svcMessageInfo, a$)

rivate Sub IPDaemon1_Disconnected(ConnectionID As Integer, StatusCode As Integer,

ed the plug
 False

Str$(ConnectionID)
o ConnectionList.ListCount - 1

nectionList.List(i%) = a$ Then
List.RemoveItem i%

For

ts
ectionList.ListCount < 1 Then

 Debug.Print "Disconnect from ipdaemon"

b IPPort1_Connected(StatusCode As Integer, Description As String)

 ActionQ(ActionP
 IncActionPointer
 Case
 ActionQ(Action
 IncActionPointe
 Case "release" 'Client has
 ActionQ(ActionPointer) = "rele
 IncActionPointer
 Case "
 IPDa

 a$ = "Unknown request from client: " & Trim(Text)
 'Call NTService1.LogEv
 logMsg (a$)
End Select
Exit Sub
e
 a$ = "General Failu
 'Call NTService
 logMsg (a$)
End Sub

P
Description As String)
 'Dim x As Long
 'Client pull
' Timer1.Enabled =
' a$ =
' For i% = 0 T
' If Con
' Connection
' Exit
' End If
' Next
' DoEvents
' DoEven
' If Conn
'
' x = Disconnect
' End If
' Timer1.Enabled = True

End Sub

Private Su

 74

 If StatusCode = 0 Then
ade a connection

pleted login Flags are set in ReadyToSend event

 'connection failed

Login from ipport1 failed"
tInformation, svcMessageInfo, a$)

rivate Sub IPPort1_DataIn(Text As String, EOL As Integer)
n_proc$, c$, flag%

his piece of code filters the header for the lines sent and

t is reading.

 End If

 If EOL And flag% Then

 = Text

 "" Then

 If Asc(Right$(a$, 1)) = 13 Then
 a$ = Mid$(a$, 1, Len(a$) - 1)

 "**" Then

read = 0
 read_level = 0

 'End If

 'm
 'testlogin and com
 Else

 testLogin = False
 completedLogin = False
 a$ = "
 'Call NTService1.LogEvent(svcEven
 End If
End Sub

P
 Static i
'T
'sends it as a seperate variable to a sub calles parse_sock
'it also sets lags for the line number that i

 If EOL = False Then
 c$ = c$ + Text
 flag% = True
 Exit Sub

 a$ = c$ + Text
 c$ = ""
 flag% = False
 Else
 a$
 End If
'Debug.Print a$
 ' for nt
 If a$ <>

 End If
 End If

 'check this out for traps
 'If Left$(a$, 2) =
 ' If Mid$(a$, 3, 2) <> "SS" And Mid$(a$, 3, 2) <> "tw" And in_sock_read Then
 ' in_sock_
 '
 ' End If

 75

' Debug.Print A$

 in_proc$

 a$)
lse

Trim$(a$))

t1_Disconnected(StatusCode As Integer, Description As String)
socket disconnected by choice or error

ext = "Not Connected to Server but" & vbCrLf & _
 "Status will still work!"

rayIcon = Image1(2).Picture

IPPort1_ReadyToSend()
st time connect and process a request

Login Then

 testLogin = False 'set flag to break out of loop
tedLogin = True 'set flag that says that the connect was successfull

End If

Service1_Continue(Success As Boolean)
oTo Err_Continue

 Call NTService1.LogEvent(svcEventInformation, svcMessageInfo, "Service continued")

b

 safe$ =

 If in_sock_read Then
 Call parse_sock(safe$,
 E
 in_proc$ = LTrim$(R
 in_sock_read = True
 read_level = 0
 End If

End Sub

Private Sub IPPor
 '
 ' Text1.T
 '
 not_first_time = False
 HostConnected = False
' Set cSysTray1.T

End Sub

Private Sub
 'fir
 If Not test
 Exit Sub
 Else

 comple

End Sub

Private Sub NT
On Error G

 Timer.Enabled = True
 Success = True

 Exit Su

Err_Continue:

 76

 Call NTService1.LogEvent(svcMessageError, svcEventError, "[" & Err.Number & "] " &

ss As Boolean)

t(svcEventError, svcMessageError, "Service paused")
ue

:
 Call NTService1.LogEvent(svcMessageError, svcEventError, "[" & Err.Number & "] " &

nabled = True
uccess = True

er.Enabled = True
 Exit Sub

TService1.LogEvent(svcMessageError, svcEventError, "[" & Err.Number & "] " &
rr.Description)

op()
r_Stop

or, "[" & Err.Number & "] " &

esource

Err.Description)

End Sub

Private Sub NTService1_Pause(Succe
On Error GoTo Err_Pause

 Timer.Enabled = False
 Call NTService1.LogEven
 Success = Tr
 Exit Sub

Err_Pause

Err.Description)

End Sub

Private Sub NTService1_Start(Success As Boolean)
On Error GoTo Err_Start
 Call getReady
 Timer.E
 S
 res_tim

Err_Start:
 Call N
E

End Sub

Private Sub NTService1_St
On Error GoTo Er
 Close #1
 Unload Me

Err_Stop:
 Call NTService1.LogEvent(svcMessageError, svcEventErr
Err.Description)

End Sub

Private Sub res_timer_Timer()
 For i = 0 To Total_R

 77

 If Res(i).Operational And Res(i).Status And (Trim(Res(i).start_time) <> "") Then
 If (DateDiff("s", Trim(Res(i).start_time), Now) > 600) Then

t DateDiff("s", Res(i).start_time, Now)

Tries + 1
nQ(ActionPointer) = "verify!" & Trim(Str(i))

)

perational Then
 = "verify!" & Trim(Str(i))

e
r GoTo timer_error

ActionPointer Then
arseString(ActionQ(CurrentPointer), "!", MyArray)

 Select Case MyArray(1)
status"

tus")

sStatus(Val(MyArray(2)))

 'Debug.Prin
 Res(i).Client = ""
 Res(i).Status = False
 Res(i).Operational = False
 Res(i).start_time = ""
 Res(i).Tries = Res(i).
 'Actio
 'IncActionPointer
 End If
 End If
 Next i
End Sub

Private Sub rescan_timer_Timer(
Dim i As Integer
 For i = 0 To Total_Resource
 If Not Res(i).O
 ActionQ(ActionPointer)
 IncActionPointer
 End If
 Next i

End Sub

Private Sub SMTP1_EndTransfer()
'SMTP1.Action = 2
End Sub

Private Sub Timer_Timer()

Dim MyArray() As String
Dim i As Integer
Dim err_msg As String
 Timer.Enabled = Fals
 On Erro
 If CurrentPointer <>
 i = P

 Case "
 'Call NTService1.LogEvent(svcEventInformation, svcMessageInfo, "sta
 err_msg = "status"
 Call Proces
 Case "rescan"

 78

 'Call NTService1.LogEvent(svcEventInformation, svcMessageInfo, "rescan")
err_msg = "rescan"

 Call setup
al(MyArray(2)))

set"
_Resource

atus = False
 Res(i).Client = ""

 Next
 err_msg = "emergency_reset"
 'Call NTService1.LogEvent(svcEventInformation, svcMessageInfo,

)

 Call ProcessStatus(Val(MyArray(2)))

 err_msg = "password"
svcMessageInfo, "password")

ord(Val(MyArray(2)))

g = "set type"
e("old", Val(MyArray(2)))

et type"
(MyArray(2)))

ase"
ageInfo, "release")

es(MyArray(3))

 Call Verify(Val(MyArray(2)))

t
ug.Print MyArray(1)

 = True

 Err.Description
rr_msg)

 Call ProcessStatus(V
 Case "emergency_re
 For i = 0 To Total
 Res(i).St

"emergency_reset"
 Call setup

 Case "password"

 'Call NTService1.LogEvent(svcEventInformation,
 Call get_passw
 Case "old"
 err_ms
 Call set_typ
 Case "new"
 err_msg = "s
 Call set_type("new", Val
 Case "release"
 err_msg = "rele
 'Call NTService1.LogEvent(svcEventInformation, svcMess
 Call ReleaseR
 Case "verify"
 err_msg = "verify"
 'Call NTService1.LogEvent(svcEventInformation, svcMessageInfo, "verify")

 'Case "releaseall"
 ' Call ReleaseAll(Val)
 End Selec
 'Deb
 IncCurrentPointer
 End If
Timer.Enabled
Exit Sub

timer_error:
 err_msg = err_msg & ": Timer Error " & Err.Number & " " &
 'Call NTService1.LogEvent(svcMessageError, svcEventError, e
 logMsg (err_msg)
 'Debug.Print "General Timer Error"

 79

 Timer.Enabled = True
End Sub

Private Sub Timer1_Timer()

lic Sub getReady()

e port number to listen to from the monitor.ini file

ber to listen on

Service1.Interactive Then
was not found.", vbOKOnly + vbCritical + vbDefaultButton1

tor.ini"
topService

vent(svcMessageError, svcEventError, "Monitor.ini not found")
vice

 priviniregister "general", a$
tString("numclients", B$) 'Get # clients

ring("numservers", B$) 'Get # servers
et # ports

 PrivGetString("numusers", B$) 'Get # users

 Timer1.Enabled = False
 completedLogin = False
 testLogin = False
End Sub

'' File Worker.bas
Attribute VB_Name = "Worker"

Pub

 'load th
 in_sock_read = False
 read_level = 0
 Busy = False
 MustStop = False
 ActionPoiner = 0
 CurrentPointer = 0
 a$ = App.Path & "\monitor.ini"
 priviniregister "machine", a$
 B$ = "not_found_ini"
 LPort$ = PrivGetString("port", B$) 'Get port num
 'see if ini file exists
 If LPort$ = B$ Then
 If Main_frm.NT
 MsgBox "The file monitor.ini
+ _
 vbApplicationModal, "No moni
 Main_frm.NTService1.S
 Exit Sub
 Else
 Call NTService1.LogE
 Main_frm.NTService1.StopSer
 Exit Sub
 End If
 End If

 numClients = PrivGe
 numServers = PrivGetSt
 numPorts = PrivGetString("numports", B$) 'G
 numUsers =

 80

 priviniregister "mail", a$

et # mail to address

ain_frm.SMTP1.WinsockLoaded = True
ain_frm.SMTP1.MailServer = MailServer

lTo

"

i)), B$) 'Get valid clients

.Timer1.Enabled = False
 -1

Loop and fill resource array
o numUsers

 B$)
 1 To numServers

 priviniregister "servers", a$

r_typ = PrivGetString(Trim(Str(k)), B$)

= l + 1
Res(l).Machine = server

 Res(l).Status = False
alse

er_typ

tine to validate all servers

 MailServer = PrivGetString("server", B$) 'Get # mail Server
 MailTo = PrivGetString("mailto", B$) 'G

M
M
Main_frm.SMTP1.To = Mai
Main_frm.SMTP1.From = MailTo
Main_frm.SMTP1.Subject = "Server Failure notice

 priviniregister "clients", a$
 For i = 1 To numClients
 Clients(i) = PrivGetString(Trim(Str(
 Next i

 Main_frm
 l =
 '
 For i = 1 T
 priviniregister "usernames", a$
 uname = PrivGetString(Trim(Str(i)), B$)
 For j = 1 To numPorts
 priviniregister "ports", a$
 Port = PrivGetString(Trim(Str(j)),
 For k =

 server = PrivGetString(Trim(Str(k)), B$)
 priviniregister "server_type", a$
 serve
 l

 Res(l).Operational = F
 Res(l).Port = Port
 Res(l).User = uname
 Res(l).Client = ""
 Res(l).Tries = 0
 Res(l).Type = serv
 Next k
 Next j
 Next i

 Total_Resource = l
 HostConnected = False
 'Call setup subrou
 Call setup

 81

 Main_frm.rescan_timer.Interval = 30000 '''RESET TIMER INTEREVAL TO 60000

ted port

aemon1.KeepAlive = True
frm.IPDaemon1.Linger = True

Main_frm.IPDaemon1.LocalPort = Val(LPort$)

ub

t:

sten." + Chr$(10) + _
nnect to port " & LPort$, vbOKOnly + vbCritical + _

faultButton1 + vbApplicationModal, "Fatal Connection Error"
Main_frm.NTService1.StopService

.LogEvent(svcMessageError, svcEventError, "Fatal Connection Error")
in_frm.NTService1.StopService

 all resources
= True 'Connect wait loop breakup flag

tedLogin = False 'Success Flag

ut in 10 seconds)

d If
False

ion"
nterval = 2500 'Time out interval

ogin = True
rm.IPPort1.WinsockLoaded = True

 Main_frm.rescan_timer.Enabled = True
 B$ = ""

On Error GoTo no_connect
 'start the monitor listening to the selec
 Main_frm.IPDaemon1.WinsockLoaded = True
 Main_frm.IPD
 Main_

 Main_frm.IPDaemon1.Listening = True
 'Timer1.Interval = 2000
 'Timer1.Enabled = True
 Exit S

no_connec
 If Main_frm.NTService1.Interactive Then
 MsgBox "Error establishing a port to li
 "Cannot co
 vbDe

 Exit Sub
 Else
 Call NTService1
 Ma
 Exit Sub
 End If
End Sub

Public Sub Verify(i As Integer)
 'Subroutine to validate
 testLogin
 comple
 'wait until the connection is achieved
 '(timeo
 'If Res(i).Tries > 3 Then
 ' Exit Sub
 'En
'Main_frm.rescan_timer.Enabled =
'Debug.Print "Doing Verificat
 Main_frm.Timer1.I
 testL
 Main_f

 82

 Main_frm.IPPort1.EOL = Chr(10)

1.RemoteHost = Res(i).Machine
"

 True
eepAlive = True

_frm.IPPort1.Connected = True
rm.Timer1.Enabled = True

 Do While testLogin 'Wait for connect or time out
ts

pletedLogin = False

Operational = False

 = False 'disconnect
ort1.Connected

 Loop

rational Then
ue

 Res(i).Tries = 0
lse

es(i).Tries > 32000 Then

.rescan_timer.Enabled = True

ion pointer (Filling pointer) Taken care to reset back to 0 if it reaches

Pointer = 256 Then

 Main_frm.IPPort1.RemotePort = Res(i).Port
 Main_frm.IPPort
 ' IPPort1.RemoteHost = "127.0.0.1
 Main_frm.IPPort1.Linger =
 Main_frm.IPPort1.K
 Main
 Main_f

 DoEven
 Loop

 If completedLogin Then 'If successfull connect
 com
 Res(i).Operational = Login(i) 'Check for login success
 Else
 Res(i).

 End If
 Main_frm.IPPort1.Connected
 Do While Main_frm.IPP
 DoEvents

 If Res(i).Ope
 Res(i).Operational = Tr

 E
 Res(i).Tries = Res(i).Tries + 1
 If Res(i).Tries = 4 Then
 MailMe i
 End If
 If R
 Res(i).Tries = 1
 End If
 End If
'Main_frm
End Sub
Public Sub IncActionPointer()
'Increment Act
'255
ActionPointer = ActionPointer + 1
If Action
 ActionPointer = 0
End If
End Sub

 83

Public Sub IncCurrentPointer()
ocessor reading pointer) Taken care to reset back to

arseString
ctions using a

sections will be returned in an array you
ParseString will also return the number of sections within the

limiter separating the
and a string array in which the string sections will be

s String, strArray() As String)

r

nt)
tCurPos)

ce, (Len(strSource) - (intCurPos - 1)))

intCurPos, intStrLen)
lementCnt)) + Len(strDelim))

 0
ound(strArray)

D As Integer)
rces to the client specified by the connection ID

hine Status Operational Port User Client Tries"
ectionId

'Increment current pointer (pr
'0 if it reaches 255
CurrentPointer = CurrentPointer + 1
If CurrentPointer = 256 Then
 CurrentPointer = 0
End If
End Sub

'P
'ParseString will take a string and divide it into se
'delimiter you specify. The
'provide.
'string.
'Pass it the string you want to parse, the de
'sections,
'returned.

Public Function ParseString(strSource As String, strDelim A
Dim intElementCnt As Integer
Dim intCurPos As Integer
Dim intStrLen As Intege

intElementCnt = 1
intCurPos = 1
intStrLen = Len(strSource)

Do
 ReDim Preserve strArray(1 To intElementC
 intStrLen = (InStr(intCurPos, strSource, strDelim) - in
 If intStrLen < 0 Then
 strArray(intElementCnt) = Right$(strSour
 Else
 strArray(intElementCnt) = Mid$(strSource,
 intCurPos = intCurPos + (Len(strArray(intE
 intElementCnt = intElementCnt + 1
 End If
Loop Until intStrLen <
ParseString = UB
End Function
Public Sub ProcessStatus(ConnectionI
'Sends back the status of resou
Dim a$
send2Client "**status", ConnectionID
'a$ = "ID" & vbTab & "Mac
'send2Client a$, Conn

 84

For i = 0 To Total_Resource

im(Res(i).Machine) & "," & Trim(Res(i).Status) & "," & _
," & Trim(Res(i).User) & "," & _

es)

type(typ As String, ConnectionID As Integer)
)

ssword(ConnectionID As Integer)

nding it.
 ststus as used

urce is free it sends "**error"
er

 To Total_Resource

atus And Res(i).Type = "old" Then
.Interval = 10000

 = True

s(i).Machine
"

e
abled = True

stLogin
ents

 False

in_frm.IPPort1.Connected
vents

 Loop

 a$ = Trim(Str(i + 1)) & "," & Tr
 Trim(Res(i).Operational) & "," & Trim(Res(i).Port) & "
 Trim(Res(i).Client) & "," & Trim(Res(i).Tri
 send2Client a$, ConnectionID
Next i
send2Client "@@done", ConnectionID
End Sub

Public Sub logMsg(Msg As String)
 Print #1, Msg & vbCrLf
End Sub
Public Sub set_
Server_Type(ConnectionID) = Trim(typ
End Sub
Public Sub get_pa
'Look for the next avaliable free resource and send it to the client ID'd by Connection ID
'But got to test for the validity of the resource b4 se
'Then mark the resource
'IF no more reso
Dim i As Integ
 For i = 0
 If Server_Type(ConnectionID) = "old" Then
 If Res(i).Operational And Not Res(i).St
 Main_frm.Timer1
 testLogin = True
 Main_frm.IPPort1.WinsockLoaded
 Main_frm.IPPort1.EOL = Chr(10)
 Main_frm.IPPort1.RemotePort = Res(i).Port
 Main_frm.IPPort1.RemoteHost = Re
 ' IPPort1.RemoteHost = "127.0.0.1
 Main_frm.IPPort1.Linger = True
 Main_frm.IPPort1.KeepAlive = True
 Main_frm.IPPort1.Connected = Tru
 Main_frm.Timer1.En
 Do While te
 DoEv
 Loop
 If completedLogin Then
 completedLogin =
 If Login(i) Then
 Main_frm.IPPort1.Connected = False
 Do While Ma
 DoE

 85

 a$ = Trim(Str$(i)) & "," & Trim(Res(i).Machine) & "," & Trim(Str$(Res(i).Port))
& "," & _
 Trim(Res(i).User)
 send2Client "**password", ConnectionID
 send2Client a$, ConnectionID
 Res(i).Status = True
 Res(i).Client = Main_frm.IPDaemon1.RemoteHost(ConnectionID)
 Res(i).start_time = Now
 Exit Sub
 Else
 Res(i).Operational = False
 Res(i).Tries = 1
 End If
 Else
 Res(i).Operational = False
 Res(i).Tries = 1
 End If
 Main_frm.IPPort1.Connected = False
 Do While Main_frm.IPPort1.Connected
 DoEvents
 Loop
 End If
 Else
 If Res(i).Operational And Not Res(i).Status And Res(i).Type = "new" Then

frm.Timer1.Interval = 10000

insockLoaded = True
 Main_frm.IPPort1.EOL = Chr(10)

 Main_frm.IPPort1.RemotePort = Res(i).Port
.RemoteHost = Res(i).Machine

t1.Linger = True
live = True

n_frm.IPPort1.Connected = True
bled = True

 If completedLogin Then
 completedLogin = False

 If Login(i) Then
_frm.IPPort1.Connected = False

PPort1.Connected

 Main_
 testLogin = True
 Main_frm.IPPort1.W

 Main_frm.IPPort1
 ' IPPort1.RemoteHost = "127.0.0.1"
 Main_frm.IPPor
 Main_frm.IPPort1.KeepA
 Mai
 Main_frm.Timer1.Ena
 Do While testLogin
 DoEvents
 Loop

 Main
 Do While Main_frm.I
 DoEvents
 Loop

 86

 a$ = Trim(Str$(i)) & "," & Trim(Res(i).Machine) & "," & Trim(Str$(Res(i).Port))

.User)
 send2Client "**password", ConnectionID

 Res(i).Status = True
i).Client = Main_frm.IPDaemon1.RemoteHost(ConnectionID)

in_frm.IPPort1.Connected = False
 Do While Main_frm.IPPort1.Connected

 DoEvents

t i

ent "**password", ConnectionID

ub ReleaseRes(a$)
s resources identified by the comma seperated string varaible

rray() As String
= ParseString(a$, ",", MyArray())

Status = False

tart_time = ""

ct wait loop breakup flag
 = False 'Success Flag

 Integer

& "," & _
 Trim(Res(i)

 send2Client a$, ConnectionID

 Res(
 Res(i).start_time = Now
 Exit Sub
 Else
 Res(i).Operational = False
 Res(i).Tries = 1
 End If
 Else
 Res(i).Operational = False
 Res(i).Tries = 1
 End If
 Ma

 Loop
 End If
 End If
 Nex
a$ = "**error"
send2Cli
send2Client a$, ConnectionID
End Sub

Public S
'release
Dim MyA
i
For j = 1 To i
 If Val(MyArray(j)) > -1 Then
 Res(Val(MyArray(j))).
 Res(Val(MyArray(j))).Client = ""
 Res(Val(MyArray(j))).s
 End If
Next j
End Sub
Public Sub setup()
'Subroutine to validate all resources
testLogin = True 'Conne
completedLogin
Dim i As

 87

For i = 0 To Total_Resource
 connection is achieved

 10000 'Time out interval

PPort1.WinsockLoaded = True
ain_frm.IPPort1.EOL = Chr(10)

.IPPort1.RemotePort = Res(i).Port
e

IPPort1.Connected = True
ion time out timer

ime out

ogin Then 'If successfull connect
tedLogin = False
perational = Login(i) 'Check for login success

alse

op

 returns a boolean for success / Failure
Login = False

imer1.Interval = 10000
rm.Timer1.Enabled = True
ile testLogin

 'wait until the
 '(timeout in 10 seconds)

 Main_frm.Timer1.Interval =

 testLogin = True
 Main_frm.I
 M
 Main_frm
 Main_frm.IPPort1.RemoteHost = Res(i).Machin
 ' IPPort1.RemoteHost = "127.0.0.1"
 Main_frm.IPPort1.Linger = True
 Main_frm.IPPort1.KeepAlive = True
 Main_frm.
 Main_frm.Timer1.Enabled = True 'Start Connect
 Do While testLogin 'Wait for connect or t
 DoEvents
 Loop

 If completedL
 comple
 Res(i).O
 Else
 Res(i).Operational = F
 End If
 Main_frm.IPPort1.Connected = False 'disconnect
 Do While Main_frm.IPPort1.Connected
 DoEvents
 Lo
Next i
End Sub

Public Function Login(i As Integer) As Boolean
'tests resource i (res(i)) with a valid user id. And
 completed
 testLogin = True
 'request to log on to server
 Call send2wsk("logon.")
 a$ = Trim(Res(i).User) + "."
 Call send2wsk(a$)
 Main_frm.T
 Main_f
 Do Wh
 DoEvents
 Loop

 88

 Login = completedLogin
End Function
Public Sub send2wsk(a$)

frm.IPPort1.EOL
in_frm.IPPort1.DataToSend = a$
it Sub

en 'would block
m.IPPort1.BytesSent

 'was any sent?
Sent + 1) 'send rest

hile - important!
 and try again!

 'handle other errors here (this has not been tested)
d = False

 Sub send2Client(a$, ConnectionID As Integer)
t

ror
emon1.EOL(ConnectionID)

ataToSend(ConnectionID) = a$

 'would block
 = Main_frm.IPDaemon1.BytesSent(ConnectionID)

 If BytesSent > 0 Then 'was any sent?
= Mid$(a$, BytesSent + 1) 'send rest

 End If
ttle while - important!

 Resume 'go back and try again!

nnectionID) = False

ub
 End If

 'send a line to socket
 On Error GoTo snd_error
 a$ = a$ + Main_
 Ma
 Ex

snd_error:
 If Err = 25036 Th
 BytesSent = Main_fr
 If BytesSent > 0 Then
 a$ = Mid$(a$, Bytes
 End If
 DoEvents 'wait a little w
 Resume 'go back
 Else
 Main_frm.IPPort1.Connecte
 On Error GoTo 0
 Exit Sub
 End If
End Sub
Public
 'send a line to socke
 On Error GoTo snd_er
 a$ = a$ + Main_frm.IPDa
 Main_frm.IPDaemon1.D
 Exit Sub

snd_error:
 If Err = 25036 Then
 BytesSent

 a$

 DoEvents 'wait a li

 Else 'handle other errors here (this has not been tested)
 Main_frm.IPDaemon1.Connected(Co
 On Error GoTo 0
 Exit S

End Sub
Public Sub parse_sock(a$, Msg$)
 'here we just started to receive a

 89

 'message from the host The first line
 'is always **FUNCTION

 Static B$, nowlen%
 'Debug.Print a$ & " " & Msg$

**logon"

 testLogin = False

e(i)

& vbCrLf

ttribute VB_Name = "INISET"
'Total number of resources

 Select Case a$

 'logon to host request
 Case "
 'get hosts response
' in_sock_read = False
 'check hosts response
 If Msg$ = "true" Then
 completedLogin = True
 testLogin = False
 Else
 completedLogin = False
 testLogin = False
 End If
 read_level = 0
 in_sock_read = False

 Case "**getoff"
 'get hosts response
' in_sock_read = False
 'check hosts response
 completedLogin = False

 read_level = 0
 in_sock_read = False
 End Select

End Sub

Sub MailM As Integer

 a$ = Res(i).Machine & " ," & Res(i).Port & " ," & Res(i).User
 Main_frm.SMTP1.MessageText = a$
 Main_frm.SMTP1.Action = 3
End Sub

'' File iniset.bas
A
Global Total_Resource As Integer

 90

Public Type resources 'type structure used for storing resource information

 Status As Boolean
 Operational As Boolean

 User As String * 16
16

e As String

lobal Clients(10) As String ' Holding valid client names read from ini file
e array

ts As Integer ' Total # clients

lobal numPorts As Integer ' Total # ports
mUsers As Integer ' Total # users

lobal testLogin As Boolean ' Flag for breaking out of waiting loop for connecting
ean ' Flag indicating that a succesfull login was done

lobal in_sock_read As Boolean ' Falg for indicating that a sock read in in progress
teger ' Variable for holding the line # for the lines read from sock read

esource array locking variable
6) As String

Pointer As Integer
rrentPointer As Integer

lobal MailServer As String

 As Boolean

tered* from those found in WIN30API.TXT!)
GetPrivateProfileString Lib "kernel32" Alias "GetPrivateProfileStringA"

yVal lpApplicationName As String, ByVal lpKeyName As Any, ByVal lpDefault As String,
ReturnedString As String, ByVal nSize As Long, ByVal lpFileName As String) As

ong
fileString Lib "kernel32" Alias

ritePrivateProfileStringA" (ByVal lpApplicationName As String, ByVal lpKeyName As Any,
, ByVal lpFileName As String) As Long

 Lib "kernel32" (ByVal dwMilliseconds As Long)
riables for [Section] and Ini file names

me As String 'Current section in private Ini file
iFileName As String 'Fully qualified path/name of current private Ini file

im nmPrivInit As Integer 'Flag to indicate that Private.Ini is initialized

 Machine As String * 16

 Port As Integer

 Client As String *
 Tries As Integer
 Type As String
 start_tim
End Type
G
Global Res(25) As resources ' Resourc
Global numClien
Global numServers As Integer ' Total # servers
G
Global nu
G
Global completedLogin As Bool
G
Global read_level As In
Global Busy As Boolean ' R
Global ActionQ(25
Global Action
Global Cu
G
Global MailTo As String
Global MustStop
Global Server_Type(256) As String

'** Windows API calls
'(NOTE: Profile calls *al
 Declare Function kp
(B
ByVal lp
L
 Declare Function kpWritePrivatePro
"W
ByVal lpString As Any
 Public Declare Sub Sleep
'** Module-level va
Dim smSectionNa
Dim smIn
D

'** Constants used to size buffers

 91

Const Max_SectionBuffer = 4096
Const Max_EntryBuffer = 255

itialized
 If Not nmPrivInit Then

t Sub
 End If

 Private.Ini

itePrivateProfileString(smSectionName, sEntryName, 0&, smIniFileName)

nd Sub

ntire* [Section] and all its Entries in Private.Ini
 Dim nRetVal

rofileString(smSectionName, 0&, 0&, smIniFileName)

itialized

 nmPrivInit = False

nd Sub

ublic Function PrivGetSectEntries() As String

 Exit Function

'Entries nul terminated; last entry double-terminated

Public Sub privdeleteentry(sEntryName As String)

 'Bail if not in

 PrivIniNotReg
 Exi

 'Deletes a specific entry in
 Dim nRetVal
 nRetVal = kpWr

E

Public Sub PrivDeleteSection()

 'Bail if not initialized
 If Not nmPrivInit Then
 PrivIniNotReg
 Exit Sub
 End If

 'Deletes an *e

 nRetVal = kpWritePrivateP

 'Now Private.Ini needs to be rein
 smSectionName = ""

E

P

 'Bail if not initialized
 If Not nmPrivInit Then
 PrivIniNotReg

 End If

 'Retrieves all Entries in a [Section] of Private.Ini

 92

 Dim sTemp As String * Max_SectionBuffer

GetPrivateProfileString(smSectionName, 0&, "", sTemp, Len(sTemp),

ctEntries$ = Left$(sTemp, nRetVal + 1)

tString(sEntryName As String, ByVal sDefaultValue As String) As

itialized
it Then

otReg

ing * Max_EntryBuffer

ProfileString(smSectionName, sEntryName, sDefaultValue, sTemp,
niFileName)

en
eft$(sTemp, nRetVal)

Reg()

 and FileName Not Registered in Private.Ini!", 16, "IniFile Logic Error"

iniregister(sSectionName As String, sIniFileName As String)

l values for future reference
e = Trim$(sSectionName)

e = Trim$(sIniFileName)
ue

utstring(sEntryName As String, ByVal sValue As String) As Integer

 Dim nRetVal
 nRetVal = kp
smIniFileName)
 PrivGetSe

End Function

Public Function PrivGe
String

 'Bail if not in
 If Not nmPrivIn
 PrivIniN
 Exit Function
 End If

 'Retrieves Specific Entry from Private.Ini
 Dim sTemp As Str
 Dim nRetVal
 nRetVal = kpGetPrivate
Len(sTemp), smI
 If nRetVal Th
 PrivGetString = L
 End If

End Function

Private Sub PrivIniNot

 'Warn that there's a logic error!
 MsgBox "[Section]

End Sub

Public Sub priv

 'Store module-leve
 smSectionNam
 smIniFileNam
 nmPrivInit = Tr

End Sub

Public Function privp

 93

 'Bail if not initialized

g
 Exit Function

ProfileString(smSectionName, sEntryName, sValue, smIniFileName)

-0000-0000-C000-
\WINNT\System32\stdole2.tlb#OLE Automation

AFD8C6DB}#2.0#0; IPPORT35.Ocx

"

er=1

UGA"

entiumPro(tm)=0

heck=0

 If Not nmPrivInit Then
 PrivIniNotRe

 End If
 Dim temp
 'Write a string to Private.Ini
 temp = kpWritePrivate
 privputstring = temp
End Function

''Client code
'' File Client.vbp
Type=Exe
Form=Form1.frm
Reference=*\G{00020430
000000000046}#2.0#0#C:
Object={33335113-F789-11CE-86F8-0020
IconForm="Form1"
Startup="Form1"
ExeName32="Client.exe
Command32=""
Name="Client"
HelpContextID="0"
CompatibleMode="0"
MajorV
MinorVer=0
RevisionVer=0
AutoIncrementVer=0
ServerSupportFiles=0
VersionCompanyName="
CompilationType=0
OptimizationType=0
FavorP
CodeViewDebugInfo=0
NoAliasing=0
BoundsCheck=0
OverflowCheck=0
FlPointCheck=0
FDIVC
UnroundedFP=0
StartMode=0
Unattended=0
Retained=0
ThreadPerObject=0
MaxNumberOfThreads=1

 94

[MS Transaction Server]

1CE-86F8-0020AFD8C6DB}#2.0#0"; "IPPORT35.Ocx"

for Server Manager"
tHeight = 6600

.frx":0000

rm1"

pPosition = 3 'Windows Default

Index = 13

tMinTime

Index = 12

Timer
alse

t = 6000

tton cmdBang
ng Server Manager"

 = 3240

AutoRefresh=1

'' File Form1.frm
VERSION 5.00
Object = "{33335113-F789-1
Begin VB.Form Form1
 Caption = "Client
 Clien
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 7575
 Icon = "Form1
 LinkTopic = "Fo
 ScaleHeight = 6600
 ScaleWidth = 7575
 StartU
 Begin VB.TextBox Text3
 Height = 375
 Left = 4680
 Tab
 Text = "Text3"
 Top = 5160
 Width = 2295
 End
 Begin VB.TextBox tx
 Height = 495
 Left = 4680
 Tab
 Text = "100"
 Top = 5760
 Width = 2295
 End
 Begin VB.Timer Bang
 Enabled = 0 'F
 Interval = 1500
 Lef
 Top = 4200
 End
 Begin VB.CommandBu
 Caption = "Pi
 Height = 855
 Left = 5400
 TabIndex = 11
 Top

 95

 Width = 2055
 End
 Begin VB.TextBox Text2

"
 = 6120

heck1
LD"

 = 5520

dRelease

 1920

utton cmdLogOff
ff"

ght = 855

tton cmdPassword
word"

ght = 855

 Height = 285
 Left = 1440
 TabIndex = 9
 Text = "ibmlc5
 Top
 Width = 1935
 End
 Begin VB.CheckBox C
 Caption = "O
 Height = 375
 Left = 2040
 TabIndex = 8
 Top
 Width = 1815
 End
 Begin VB.Timer Timer1
 Left = 5040
 Top = 4200
 End
 Begin VB.CommandButton cm
 Caption = "Release"
 Height = 495
 Left =
 TabIndex = 6
 Top = 4800
 Width = 2415
 End
 Begin VB.CommandB
 Caption = "LogO
 Hei
 Left = 360
 TabIndex = 5
 Top = 5040
 Width = 1095
 End
 Begin VB.CommandBu
 Caption = "Pass
 Hei
 Left = 360
 TabIndex = 4
 Top = 4080
 Width = 1095
 End

 96

 Begin VB.CommandButton Command3
can"

t = 1920

utton Command2
Login"

t = 360

1

r New"

harset = 0
 Weight = 400

ue

mmand1

 Left = 1920
 TabIndex = 0
 Top = 3240

r:"

 Caption = "Res
 Height = 495
 Lef
 TabIndex = 3
 Top = 4080
 Width = 2415
 End
 Begin VB.CommandB
 Caption = "
 Height = 855
 Lef
 TabIndex = 2
 Top = 3120
 Width = 1095
 End
 Begin VB.TextBox Text
 BeginProperty Font
 Name = "Courie
 Size = 9
 C

 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 2295
 Left = 120
 MultiLine = -1 'Tr
 TabIndex = 1
 Top = 600
 Width = 7335
 End
 Begin VB.CommandButton Co
 Caption = "Status"
 Height = 495

 Width = 2415
 End
 Begin VB.Label Label2
 AutoSize = -1 'True
 Caption = "Use Serve
 Height = 195
 Left = 480

 97

 TabIndex = 10

40

Not logged on."
t = 495
 = 360

 = 7

t1

 = 3360
 _ExtentX = 741

 = ""
'True

"Form1"
te VB_GlobalNameSpace = False

VB_Creatable = False
ttribute VB_PredeclaredId = True

d As Boolean
ger

an
eger

nnectionNum As Integer
mlc5.chem.uga.edu"

gged_in As Boolean

inTime As Integer

b BangTimer_Timer()

nabled = False
sword_Click

e
nabled = True

 Top = 6120
 Width = 8
 End
 Begin VB.Label Label1
 Caption = "Just started.
 Heigh
 Left
 TabIndex
 Top = 0
 Width = 5175
 End
 Begin IPPortLib.IPPort IPPor
 Left = 4680
 Top

 _ExtentY = 741
 RemoteHost
 Linger = -1
 EOL = ""
 End
End
Attribute VB_Name =
Attribu
Attribute
A
Attribute VB_Exposed = False
Dim in_sock_rea
Dim read_level As Inte
Dim timer_wait As Boole
Dim connections(25) As Int
Dim Co
'Const RemoteMachine = "ib
Dim im_lo
Dim gotPassword As Boolean
Dim m

Private Su

 If Not gotPassword Then
 BangTimer.E
 Call cmdPas
 gotPassword = Tru
 BangTimer.E

 98

 Else
 BangTimer.Enabled = False
 Call resettimer

cmdRelease_Click
 gotPassword = False

nterval = Int((3500 - minTime + 1) * Rnd + minTime)
t = Str(BangTimer.Interval)

Click()
.Enabled

ub

ext = ""
 im_logged_in Then
 Call send2wsk("logoff")

Port1.Connected = False

Sub cmdPassword_Click()
 = ""

k1.Value Then
 Call send2wsk("old")

 Call send2wsk("new")

assword")

lick()

 Call

 BangTimer.Enabled = True
 End If
End Sub
Sub resettimer()
BangTimer.I
Text3.Tex
End Sub
Private Sub cmdBang_
BangTimer.Enabled = Not BangTimer
End S

Private Sub cmdLogOff_Click()
Text1.T
If

End If
IP
im_logged_in = False
Beep
End Sub

Private
Text1.Text
If im_logged_in Then
 If Chec

 Else

 End If
 Call send2wsk("p
Else
 Beep
 MsgBox "You are not logged in."
End If
End Sub

Private Sub cmdRelease_C
Dim i As Integer
Text1.Text = ""
If im_logged_in Then
 a$ = "release,"

 99

 If ConnectionNum < 1 Then
 Text1.Text = "No resources to release"

nNum
tr$(connections(i))

> ConnectionNum Then

ectionNum = 0

x "You are not logged in."
nd If

Sub Command1_Click()
 = ""

send2wsk("status")
 Else

 MsgBox "You are not logged in."

b Command2_Click()
 Text1.Text = ""

 already logged in."

it Sub
 End If

Machine = Trim(Text2.Text)
 Timer1.Interval = 5000

ed = True
r(10)

 Exit Sub
 End If

 For i = 1 To Connectio
 a$ = a$ & S
 If i <
 a$ = a$ & ","
 End If
 Next i
 Conn
 Call send2wsk(a$)
 Text1.Text = "Resources released"
Else
 Beep
 MsgBo
E

End Sub

Private
Text1.Text
 If im_logged_in Then
 Call

 Beep

 End If

End Sub

Private Su

'Login call
 If im_logged_in Then
 MsgBox "You are
 Ex

 Remote

 Timer1.Enabled = True
 timer_wait = True
 IPPort1.WinsockLoad
 IPPort1.EOL = Ch

 100

 IPPort1.RemoteHost = RemoteMachine
otePort = 1250

.Linger = True
 IPPort1.KeepAlive = True

ait

ts

ort1.Connected Then
_in = True

l1.Caption = "Logged into Server Manager at " & RemoteMachine

og into Server Manager at " & RemoteMachine

nd Sub

rivate Sub Command3_Click()

ll send2wsk("rescan")

re not logged in."

oad()

ime.Text)

ate Sub IPPort1_Connected(StatusCode As Integer, Description As String)
de = 0 Then

As Integer)

 IPPort1.Rem
 IPPort1

 IPPort1.Connected = True
 Do While timer_w
 DoEven
 Loop
 If IPP
 im_logged
 Labe
 Else
 im_logged_in = False
 Label1.Caption = "Failed to l
 End If
 Beep
E

P
 Text1.Text = ""
 If im_logged_in Then
 Ca
 Else
 Beep
 MsgBox "You a
 End If

End Sub

Private Sub Form_L
 im_logged_in = False
 gotPassword = False
 minTime = Val(txtMinT
End Sub

Priv
If StatusCo
 timer_wait = False
End If

End Sub

Private Sub IPPort1_DataIn(Text As String, EOL
 Static in_proc$, c$, flag%
 If EOL = False Then
 c$ = c$ + Text

 101

 flag% = True
 Exit Sub
 End If

 If EOL And flag% Then
 a$ = c$ + Text
 c$ = ""
 flag% = False
 Else
 a$ = Text
 End If

13 Then

Len(a$) - 1)

rim$(RTrim$(a$))
ead = True

oTo snd_error

1.DataToSend = a$

n 'was any sent?
+ 1) 'send rest

ested)

 If a$ <> "" Then
 If Asc(Right$(a$, 1)) =
 a$ = Mid$(a$, 1,
 End If
 End If

 safe$ = in_proc$

 If in_sock_read Then
 Call parse_sock(safe$, a$)
 Else
 in_proc$ = LT
 in_sock_r
 read_level = 0
 End If

End Sub

Sub send2wsk(a$)
 'send a line to socket
 On Error G
 a$ = a$ + IPPort1.EOL
 IPPort
 Exit Sub

snd_error:
 If Err = 25036 Then 'would block
 BytesSent = IPPort1.BytesSent
 If BytesSent > 0 The
 a$ = Mid$(a$, BytesSent
 End If
 DoEvents 'wait a little while - important!
 Resume 'go back and try again!
 Else 'handle other errors here (this has not been t
 IPPort1.Connected = False

 102

 On Error GoTo 0
 Exit Sub
 End If
End Sub
Sub parse_sock(a$, msg$)

 a
m the host The first line
FUNCTION

 MyArray() As String
$, nowlen%

"**status"
 'get hosts response

nse
ug.Print Msg$

 If InStr(msg$, "@@done") Then
 read_level = 0

sock_read = False

f read_level = 0 Then
il" & " Port " & "User " &

 128.192.5.71 False True 1203 browser1 ResServer Try

ss_msg(msg$)

r password

 If UCase$(msg$) = "**ERROR" Then
 Text1.Text = "Error. Resources exhausted"

 a$ = "ConnectionID = " & MyArray(1) & vbCrLf

 'here we just started to receive
 'message fro
 'is always **
Dim
 Static B

 Select Case a$
 'logon to host request
 Case

' in_sock_read = False
 'check hosts respo
' Deb

 in_
 Text1.Text = B$
 Exit Sub
 End If
 I
 B$ = "ID " & "CalcServer " & "Used " & " Ava
"SrvManager " & " Try"

'1
 B$ = B$ & process_msg(msg$)
 read_level = 1
 Else
 B$ = B$ & proce

 End If
 'request fo
 Case "**password"

 read_level = 0
 in_sock_read = False
 Else
 numL = ParseString(msg$, ",", MyArray())

 a$ = a$ & "Resource = " & MyArray(2) & vbCrLf
 a$ = a$ & "Port = " & MyArray(3) & vbCrLf

 103

 a$ = a$ & "User = " & MyArray(4)
Text1.Text = a$

 = ConnectionNum + 1
Num) = Val(MyArray(1))

level = 0
 in_sock_read = False
 End If

connected(StatusCode As Integer, Description As String)
ff from Server Manager " & RemoteMachine

ait = False

 and divide it into sections using a
you specify. The sections will be returned in an array you

 return the number of sections within the

ou want to parse, the delimiter separating the
tring array in which the string sections will be

ce As String, strDelim As String, strArray() As String)
 Integer
er

s Integer

tCnt = 1

rce)

 To intElementCnt)
n = (InStr(intCurPos, strSource, strDelim) - intCurPos)

lementCnt) = Right$(strSource, (Len(strSource) - (intCurPos - 1)))

tElementCnt) = Mid$(strSource, intCurPos, intStrLen)
 (Len(strArray(intElementCnt)) + Len(strDelim))

 ConnectionNum
 connections(Connection
 read_

 End Select

End Sub

Private Sub IPPort1_Dis
Label1.Caption = "Logged o
End Sub

Private Sub Timer1_Timer()
 timer_w
End Sub

'ParseString
'ParseString will take a string
'delimiter
'provide. ParseString will also
'string.
'Pass it the string y
'sections, and a s
'returned.

Function ParseString(strSour
Dim intElementCnt As
Dim intCurPos As Integ
Dim intStrLen A

intElemen
intCurPos = 1
intStrLen = Len(strSou

Do
 ReDim Preserve strArray(1
 intStrLe
 If intStrLen < 0 Then
 strArray(intE
 Else
 strArray(in
 intCurPos = intCurPos +

 104

 intElementCnt = intElementCnt + 1

Len < 0
tring = UBound(strArray)

s String) As String

ParseString(msg, ",", myra())
 a$ = vbCrLf & Trim(myra(1)) & " " 'id
 B$ = Trim(myra(2))
 a$ = a$ & B$ 'calcserver
 l = 16 - Len(B$)
 If l > 0 Then
 a$ = a$ & String(l, " ")
 End If
 B$ = Trim(myra(3)) 'inuse
 a$ = a$ & B$ & " "
 l = 5 - Len(B$)
 If l > 0 Then
 a$ = a$ & String(l, " ")
 End If
 B$ = Trim(myra(4)) 'avail
 a$ = a$ & B$ & " "
 l = 5 - Len(B$)
 If l > 0 Then
 a$ = a$ & String(l, " ")
 End If
 B$ = Trim(myra(5)) 'port
 a$ = a$ & B$ & " "
 l = 4 - Len(B$)
 If l > 0 Then
 a$ = a$ & String(l, " ")
 End If
 B$ = Trim(myra(6)) 'user
 a$ = a$ & B$ & " "
 l = 8 - Len(B$)
 If l > 0 Then
 a$ = a$ & String(l, " ")
 End If
 B$ = Trim(myra(7)) 'srvmanager
 a$ = a$ & B$
 l = 16 - Len(B$)
 If l > 0 Then
 a$ = a$ & String(l, " ")

 End If
Loop Until intStr
ParseS
End Function

Public Function process_msg(msg A
 Dim myra() As String
 num =

 105

 End If
 B$ = Trim(myra(8)) 'try
 a$ = a$ & B$

 process_msg = a$
End Function

ange()

Private Sub txtMinTime_Ch
minTime = Val(txtMinTime.Text)
End Sub

 106

Appendix B

ning.vbp

INDOWS\System32\stdole2.tlb#Standard OLE Types
1C-8158-221E4B551F8E}#5.0#0; vsocx32.ocx

E-86F8-0020AFD8C6DB}#2.0#0; IPPORT35.Ocx
E-86F8-0020AFD8C6DB}#2.0#0; FTP35.Ocx

2#0; comdlg32.ocx

ning.exe"

SupportFiles=0

Code Listing for SPARC Remote Training Program

'' File RemoteTrai
Type=Exe
Module=GENERIC; GENERIC.BAS

0-0000-0000-C000-Reference=*\G{0002043
000000000046}#2.0#0#C:\W

-10Object={2037E3AD-18D6
 Form=multipletrain.frm

Form=multiplesetup.frm
Form=PasswdForm.frm
Object={33335113-F789-11C

1CObject={33335173-F789-1
Form=newparam.frm
Form=ftpfrm.frm

1A-A3C9-08002B2F49FB}#1.Object={F9043C88-F6F2-10
Form=Multipliers.frm
Startup="MultipleSetup"
HelpFile=""
ExeName32="remote_trai
Command32=""

g" Name="RemoteTraini
HelpContextID="0"
CompatibleMode="0"
MajorVer=1
MinorVer=0
RevisionVer=0

crementVer=0 AutoIn
rServe

VersionCompanyName="UGA"
CompilationType=0
OptimizationType=0
FavorPentiumPro(tm)=0
CodeViewDebugInfo=0
NoAliasing=0
BoundsCheck=0

eck=0 OverflowCh
FlPointCheck=0
FDIVCheck=0

nroundedFP=0 U
StartMode=0
Unattended=0

 107

Retained=0
ThreadPerObject=0
MaxNumberOfThreads=1

[MS Transaction Server]
AutoRefresh=1

'' File ftpfrm.frm
VERSION 5.00
Object = "{33335173-F789-11CE-86F8-0020AFD8C6DB}#2.0#0"; "FTP35.Ocx"

t = 60
5

lientWidth = 4680
orm1"

ws Default

60

User = ""

ile = ""
 ""

AltFile = ""

se
 False

posed = False
eral form for performing FTP file transfers

r_done As Integer

g

Begin VB.Form ftpfrm
 Caption = "FTPfrm"
 ClientHeight = 3135
 ClientLef
 ClientTop = 40
 C
 LinkTopic = "F
 ScaleHeight = 3135
 ScaleWidth = 4680
 StartUpPosition = 3 'Windo
 Begin FTPLib.FTP FTP1
 Left = 600
 Top = 21
 _ExtentX = 741
 _ExtentY = 741
 RemoteHost = ""

 Password = ""
 RemotePath = ""
 LocalF
 RemoteFile =

 End
End
Attribute VB_Name = "ftpfrm"
Attribute VB_GlobalNameSpace = Fal
Attribute VB_Creatable =
Attribute VB_PredeclaredId = True
Attribute VB_Ex
'This is a gen
Dim transfe
Dim temp$
Dim the_ftp_string As Strin
Dim finished_ftp As Integer

'Main method

 108

' UpLoad true for upload false for download
s full path to local file
e is the remote file (can be but usually is not a path)

t to on machine

 name of the remote machine
if there is a problem
scription of what caused the error
le(UpLoad As Boolean, Localfile As String, _
tefile As String, Port As String, User As String, _
ord As String, Machine As String, _
rror As Boolean, ErrMsg As String)

alse

rams
kLoaded = True

.Remotefile = Remotefile

achine
al(Port)

True
nsferMode = 1 'ASCII transfer used to handle line termination

chine

n
ing a file to the remote machine

ee if local file exists
en

cal file does not exist"
b

 End If

' localfile i
' remotefil
' port to connec
' user on remote machine
' password for user
' machine is the
' was_error set
' errmsg is a de
Public Sub ftpFi
 Remo
 Passw
 was_e

 was_error = F

 'Set up ocx pa
 FTP1.Winsoc
 FTP1
 FTP1.Localfile = Localfile
 FTP1.RemoteHost = M
 FTP1.RemotePort = V
 FTP1.User = User
 FTP1.Password = Password
 FTP1.Passive =
 FTP1.Tra

 'Try to logon to remote ma
 On Error GoTo logfail
 'Logon
 FTP1.Action = 2

 If UpLoad The
 'Upload
 'Check to s
 If Not FileExists(Localfile) Th
 was_error = True
 ErrMsg = "Lo
 Exit Su

 On Error GoTo E2
 transfer_done = False
 FTP1.Action = 5 'upload
 'Wait for completion of transfer
 Do While Not transfer_done

 109

 DoEvents
 Loop
 Beep
 DoEvents
 On Error Resume Next

loading a file...................
 'directory list short

tp_string = ""
 FTP1.Action = 8

While the_ftp_string = ""

r Resume Next
 'See if the file was there to be downloaded

If InStr(a$, "No such") <> 0 Then
rue

hine"

ocal file name and kill it

 On Error Resume Next
 bb$ = Localfile

 download
 On Error GoTo E2

wnload
complete

 Do While Not transfer_done

 FTP1.Action = 3 ' logoff
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 Else
 'down

 the_f

 Do
 DoEvents
 Loop
 a$ = the_ftp_string
 On Erro

 was_error = T
 ErrMsg = "File not found on remote mac
 Exit Sub
 End If

 'set l

 Kill bb$

 'start

 transfer_done = False
 FTP1.Action = 4 'do
 'wait for download to

 110

 DoEvents
 Loop

 DoEvents
vents

 DoEvents
 DoEvents
 DoEvents

nts

vents

 DoEvents

 End If

P1.Action = 3

sg = "Failed to logon with the supplied host/user/password"

2:

 file could not be transferred"

nsfer()

 Beep
 DoEvents
 DoEvents
 On Error Resume Next
 FTP1.Action = 3 ' logoff

 DoE

 DoEve
 DoEvents
 DoE
 DoEvents

 DoEvents
 DoEvents

Exit Sub

logfail:
 FT
 was_error = True
 ErrM
 Exit Sub

E
 FTP1.Action = 3
 ErrMsg = "The
 was_error = True
 Exit Sub

End Sub

Private Sub FTP1_DirList(DirEntry As String)
 temp$ = DirEntry
End Sub

Private Sub FTP1_EndTra
 transfer_done = True
 the_ftp_string = temp$

 111

End Sub

Private Sub FTP1_Error(ErrorCode As Integer, Description As String)

 function experienced an error." & Chr$(13) & Chr$(10) & "The error
rorCode)) & Chr$(13) & Chr$(10) & "The error message is:" &

escription & Chr$(13) & Chr$(10) & "" & Chr$(13) & Chr$(10) &
ur SPARC manager.", 16, "Retrieve File Error"

UE if the specified file exists, or FALSE if it

 to check.

ts(strFileName As String) As Boolean

 = Dir$(strFileName)
 Then

221E4B551F8E}#5.0#0"; "Vsocx32.ocx"
up

le Setup"

ultiplesetup.frx":0000
"

seZOrder

ftElastic VideoSoftElastic1
t = 8610

MsgBox "The file retrieve
number is " & Trim$(str$(Er
Chr$(13) & Chr$(10) & D
"Please report this error to yo

End Sub

'FileExists
'The FileExists function returns a value of TR
doesn't.
'Pass it a string containing the file name

Private Function FileExis
Dim strReturn As String

On Error Resume Next
strReturn
If LTrim(strFileName) = "" Or strReturn = ""
 FileExists = False
Else
 FileExists = True
End If
End Function

'' File multiplesetup.frm
VERSION 5.00
Object = "{2037E3AD-18D6-101C-8158-
Begin VB.Form MultipleSet
 Caption = "Multip
 ClientHeight = 8610
 ClientLeft = 2325
 ClientTop = 2010
 ClientWidth = 3255
 Icon = "m
 LinkTopic = "Form1
 PaletteMode = 1 'U
 ScaleHeight = 8610
 ScaleWidth = 3255
 Begin VsOcxLib.VideoSo
 Heigh

 112

 Left = 0
 TabIndex = 0
 Top = 0
 Width = 3255
 _Version = 327680

kProps = 70

plesetup.frx":030A
tiplesetup.frx":0326
ton Command5

tion = "Set Passwords"

5

ton Command2
tion = "Quit"

5

le

 Sans Serif"
5

alse
e
False

roperty

 _ExtentX = 5741
 _ExtentY = 15187
 _Stoc
 ConvInfo = 1418783674
 Align = 5
 BevelOuter = 0
 CaptionPos = 0
 Picture = "multi
 MouseIcon = "mul
 Begin VB.CommandBut
 Cap
 Height = 375
 Left = 120
 TabIndex = 17
 Top = 240
 Width = 301
 End
 Begin VB.CommandBut
 Cap
 Height = 375
 Left = 120
 TabIndex = 16
 Top = 7920
 Width = 301
 End
 Begin VB.TextBox trafi
 BeginProperty Font
 Name = "MS
 Size = 9.7
 Charset = 0
 Weight = 400
 Underline = 0 'F
 Italic = 0 'Fals
 Strikethrough = 0 '
 EndP
 Height = 375
 Left = 120
 TabIndex = 14
 Top = 5640
 Width = 3015
 End

 113

 Begin VB.CommandButton Command4
mall Training Files"

t = 375

on Command3
on Multiple Machines"

 = 120

5

1
ieve Above Training File"

dex = 7

s "

 = 720

ombo1

ropdown List

ombo1

ropdown List

 Caption = "Send S
 Heigh
 Left = 120
 TabIndex = 9
 Top = 6840
 Width = 3015
 End
 Begin VB.CommandButt
 Caption = "Train
 Height = 375
 Left
 TabIndex = 8
 Top = 7440
 Width = 301
 End
 Begin VB.CommandButton Command
 Caption = "Retr
 Height = 375
 Left = 120
 TabIn
 Top = 6240
 Width = 3015
 End
 Begin VB.Frame Frame1
 Caption = " Training Machine
 Height = 4215
 Left = 120
 TabIndex = 1
 Top
 Width = 3015
 Begin VB.ComboBox C
 Height = 315
 Index = 7
 Left = 360
 Style = 2 'D
 TabIndex = 13
 Top = 3720
 Width = 2295
 End
 Begin VB.ComboBox C
 Height = 315
 Index = 6
 Left = 360
 Style = 2 'D
 TabIndex = 12

 114

 Top = 3240
 Width = 2295
 End
 Begin VB.ComboBox Combo1

 VB.ComboBox Combo1
eight = 315

down List

80
5

 Combo1
eight = 315

x Combo1

 List
 = 4

0
95

 Combo1

dex = 1
Left = 360

 Style = 2 'Dropdown List

 Height = 315
 Index = 5
 Left = 360
 Style = 2 'Dropdown List
 TabIndex = 11
 Top = 2760
 Width = 2295
 End
 Begin
 H
 Index = 4
 Left = 360
 Style = 2 'Drop
 TabIndex = 6
 Top = 22
 Width = 229
 End
 Begin VB.ComboBox
 H
 Index = 3
 Left = 360
 Style = 2 'Dropdown List
 TabIndex = 5
 Top = 1800
 Width = 2295
 End
 Begin VB.ComboBo
 Height = 315
 Index = 2
 Left = 360
 Style = 2 'Dropdown
 TabIndex
 Top = 132
 Width = 22
 End
 Begin VB.ComboBox
 Height = 315
 In

 TabIndex = 3
 Top = 840

 115

 Width = 2295
 End
 Begin VB.ComboBox Combo1

ultiplesetup.frx":0342
0

tup.frx":0344
 Style = 2 'Dropdown List
 TabIndex = 2
 Top = 360

 = 5160
th = 360

d

nter
FFFFFF&

ty Font

 = 12
 0

 Weight = 400
 = 0 'False

Italic = 0 'False
 Strikethrough = 0 'False

Property
 Height = 375

 Width = 2535

nd
ame = "MultipleSetup"

eSpace = False

 Height = 315
 Index = 0
 ItemData = "m
 Left = 36
 List = "multiplese

 Width = 2295
 End
 End
 Begin VB.Label Label2
 AutoSize = -1 'True
 Caption = "MSG"
 Height = 195
 Left = 120
 TabIndex = 15
 Top
 Wid
 En
 Begin VB.Label Label1
 Alignment = 2 'Ce
 BackColor = &H00
 BorderStyle = 1 'Fixed Single
 BeginProper
 Name = "MS Sans Serif"
 Size
 Charset =

 Underline

 End

 Left = 600
 TabIndex = 10
 Top = 5040

 End
 End
E
Attribute VB_N
Attribute VB_GlobalNam

 116

Attribute VB_Creatable = False
e VB_PredeclaredId = True

ttribute VB_Exposed = False
reaks train files to several machines using ssh port forwarding

im temp$

e$, usr$, passwd$, Port$)
rts

r this machines name (e.g. wolf1(2)) and bring back info
RA(i%, 0) Then
 entry now dehex and unencrypt the password

ypt(dehex(dataRA(i, 1)), salt)
t the localhost port to connect to for port forwarding of ftp

 Port$ = dataRA(i, 3)

 End If
ext

$(mach$), " ")
$ = Mid$(mach$, 1, i% - 1)
$ = Mid$(mach$, i% + 2, 1)

1 or 2

n the remote machine

= userRA(1)
lse

userRA(2)
nd If

er_file.txt

n, ErrMsg As String

 none
 mach$ = "None" Then

Attribut
A
'B
Dim transfer_done As Integer
D
Dim lastone As Integer
Dim combo_loaded As Boolean

Sub get_coded_name(mach$, a$, cod
'decodes coded name to retrieve pa
For i% = 1 To num_machines
 'search fo
 If mach$ = data
 'OK found the
 passwd$ = Encr
 'ge

 Exit For

N
i% = InStr(Trim
a
b
'this is the coded name for file storage prefix e.g. wolf12, b$ will be
code$ = a$ & b$
'now get the username o
If b$ = "1" Then
 usr$
E
 usr$ =
E

End Sub

'given the combo control it gets the trainin1.sam template as mast
Private Function getfiles(cmb As Control) As Boolean
Dim was_error As Boolea

'get the machine name
mach$ = cmb.Text

'leave if
If

 117

 Exit Function

e
, Mac$, code$, usr$, passwd$, Port$)

 the ftp method
all ftpfrm.ftpFile(False, Localfile$, _

$, usr$, _
ost", _

 was_error, ErrMsg)

hen

as_error

 Sub Combo1_Click(index As Integer)

aded Then
duplicates(index)

nd If

treives the training file template and breaks it up (locally)
nto machine speed weighted pieces to distribute the computations

achines

ox "You must choose at least one machine", 48, "No Machine Chosen"

End If

Localfile$ = App.Path & "\master_file.txt"

'get all the info for this machin
Call get_coded_name(mach$

'execute
C
 trafile.Text, Port
 passwd$, "localh

'check for errors
If was_error T
 MsgBox ErrMsg
End If

getfiles = Not w

End Function

'this makes sure the user does not set duplicate calculator machines
Private
If combo_lo
 Call check_
E

End Sub

Private Sub Command1_Click()
Dim Denom

'this re
'i
'across several m

If Combo1(0).Text = "None" Then
 MsgB
 Exit Sub
End If

 118

Screen.MousePointer = 11

he template file from the top box
en

eve Failed"

))

Combo1(i).ListIndex, 2))

sam files for each machine as tra0,tra1 etc.

e (the number of machines for this calc)

x <> 0 Then
ne + 1

Index = 0 Then

ct a training file locally as tr0.txt,tr1.txt.......
App.Path & "\tra" & Chr$(48 + k) & ".txt"

 = k + 1

Label1.Caption = "Retrieving file"

'getfiles just gets t
If Not getfiles(Combo1(0)) Th
 Label1 = "Retri
 Screen.MousePointer = 0
 Exit Sub
End If

Screen.MousePointer = 0
Label1 = "File Retrieved"

Denom = 0#
'clean out comments etc...
clean_master
'save the bottom piece
pre_process
'get the relative weights (sum(1/wt
For i = 0 To 7
 If Combo1(i).ListIndex = 0 Then
 Else
 Denom = Denom + 1 / Val(dataRA(
 End If
Next
'Construct the trainin1.
k = 0
starter = 1
numdone = 0

'find laston
lastone = 0
For i = 0 To 7
 If Combo1(i).ListInde
 lastone = lasto
 End If
Next

For i = 0 To 7
 If Combo1(i).List
 Else
 'constru
 a$ =
 k

 119

 Open a$ For Output As #1
olecules

."

 Print #1, " "
egin the parameter list

 #1, "["
 'get the weighted number of params for this machine

Val(dataRA(Combo1(i).ListIndex, 2))) / Denom) + 0.5)
d as big as it can get

- numdone
t it back if it is too big

snum > maxpos Then
 thisnum = maxpos

bsorb any mismatch

ow many we have done
ne + thisnum

 the parameters for this training set
 For ii = starter To starter + thisnum - 1

ii = starter + thisnum - 1 Then
 'last one gets no comma

(ii))
 Print #1, a$

 Print #1, a$

to start next training set
rter = starter + thisnum

 'close the list

 bottoms (the observed data) are the same for each training set
tom_file.txt"

 Open a$ For Input As #2
 Do While Not EOF(2)

ut #2, a$

op

 'num m
 a$ = Trim$(str$(numpts)) & "
 Print #1, a$

 'b
 Print

 thisnum = Int(((numparam /
 'fin
 maxpos = numparam
 'se
 If thi

 End If
 'if we are on the last machine then it must a
 If lastone = k Then
 thisnum = maxpos
 End If
 'set h
 numdone = numdo
 'spit out

 If

 a$ = RTrim$(paramRA

 Else
 a$ = RTrim$(paramRA(ii)) & ","

 End If
 Next
 'where
 sta

 Print #1, "]."
 'all the
 a$ = App.Path & "\bot

 Line Inp
 Print #1, a$
 Lo
 Close
 End If
Next

 120

Label1.Caption = "File retrieved"
Screen.MousePointer = 0

Beep
End Sub

ing window multipletrain.frm
(0).Text = "None" Then

ox "You must choose at least one machine", 48, "No Machine Chosen"

.Show

)

ll the broken up training files (tra0, tra1 etc) back to the training machines
im was_error As Boolean, ErrMsg As String

e" Then
 MsgBox "You must choose at least one machine", 48, "No Machine Chosen"

 = "Sending files"

.MousePointer = 11

or i = 0 To 7
bo1(i).ListIndex = 0 Then

 Else
'generate local file name

 App.Path & "\tra" & Trim$(Chr$(48 + i)) & ".txt"

Private Sub Command2_Click()
 'quit
 On Error Resume Next
 End
End Sub

Private Sub Command3_Click()
 'show the train
 If Combo1
 MsgB
 Exit Sub
 End If
 MultipleTrain
 Me.Hide

End Sub

Private Sub Command4_Click(

'send a
D

If Combo1(0).Text = "Non

 Exit Sub
End If

Label1.Caption
DoEvents
Screen

F
 If Com

 localname$ =
 mach$ = Combo1(i).Text

 121

 'get all the particulars for the machine to send to
Call get_coded_name(mach$, Mac$, code$, usr$, passwd$, Port$)

 always trainin1.sam

 = "Sending " & Mac$ & " " & localname$
abel1.Caption = L$

 the file

 Call ftpfrm.ftpFile(True, localname$, _
 remotename$, Port$, usr$, _

sgBox ErrMsg

 Label1 = "Transfer Error"

 End If

 DoEvents
s

ts
 DoEvents

sume Next
 FTP1.Action = 3 ' logoff

sent"

e we come back in
 & "\last_machine_state.txt"

s #10

10, Combo1(i).ListIndex
t

nable to find the remote host", 16, "Remote Host Error"

 'remote name
 remotename$ = "trainin1.sam"
 L$
 L

 'send

 passwd$, "localhost", _
 was_error, ErrMsg)
 If was_error Then
 M

 Exit Sub

 Beep
 DoEvents

 DoEvent
 DoEven

 DoEvents
 On Error Re

 End If
Next

Label1.Caption = "Files
Screen.MousePointer = 0

'save the machine state for the next tim
a$ = App.Path
Open a$ For Output A
For i = 0 To 7
 Print #
Nex
Print #10, Trim(trafile.Text)
Close #10

Exit Sub

E1:
FTP1.Action = 3
MsgBox "U

 122

End
E2:
FTP1.Action = 3
MsgBox "The file could not be transferred" & Chr$(13) & Chr$(10) & "", 16, "File Transfer

rivate Sub Command5_Click()
e the encrypted passwords

d()

ombo change event quiet during loading
loaded = False

y allows 8 training machines
ill the drop down box

i%)

_machines

d prefill
e_state.txt"

7
ut #1, a$

bo1(i%).ListIndex = Val(a$)
t

Error"
End

End Sub

P
 'show password form to enable user to chang
 PasswdForm.Show
End Sub

Private Sub Form_Loa

 'to keep the c
 combo_

 center Me
 Me.Show

 'this retrieves all the allowed machine info
 get_machines

 'curentl
 'f
 For i% = 0 To 7
 With Combo1(
 .AddItem "None"
 For j% = 1 To num
 .AddItem dataRA(j%, 0)
 Next
 .ListIndex = 0
 End With
 Next

 'see if old machine state exists an
 a$ = App.Path & "\last_machin
 If FileExists(a$) Then
 Open a$ For Input As #1
 For i% = 0 To
 Line Inp
 Com
 Nex

 123

 On Error Resume Next
 Line Input #1, a$

duplicates

Cancel As Integer)

plicates(index As Integer)
o change event

to none then has to be OK so just leave
 = 0 Then

at are not this machine

other machine

ex).ListIndex Then
r

 Then
is is a duplicate"

 none
alse

ex = 0

 trafile.Text = Trim(a$)
 Close #1
 End If

 'now turn on the checking for
 combo_loaded = True

End Sub

Private Sub Form_Unload(
 On Error Resume Next
 Unload ftpfrm
 Unload MultipleTrain
 Unload newparam
 Unload PasswdForm
 Unload Me
End Sub

Public Sub check_du
 'called from the comb

 'if the box was changed
 If Combo1(index).ListIndex
 Exit Sub
 End If

 'loop through all the machines th
 For i% = 0 To 7
 'only go in if it is an
 If i% <> index Then
 'is it the same as another machine?
 If Combo1(i%).ListIndex = Combo1(ind
 'it was so display erro
 If combo_loaded
 MsgBox "Th
 End If
 'now set it back to
 combo_loaded = F
 Combo1(index).ListInd
 combo_loaded = True
 Exit Sub
 End If
 End If
 Next

 124

End Sub

'' File multipletrain.frm

221E4B551F8E}#5.0#0"; "vsocx32.ocx"
1CE-86F8-0020AFD8C6DB}#2.0#0"; "IPPORT35.Ocx"

ain
Train"

p = 2010

000

lastic VideoSoftElastic1

0

fo = 1418783674
 = 5

letrain.frx":030A
ltipletrain.frx":0326

Index = 48

amp

VERSION 5.00
Object = "{2037E3AD-18D6-101C-8158-
Object = "{33335113-F789-1
Begin VB.Form MultipleTr
 Caption = "Multiple
 ClientHeight = 7470
 ClientLeft = 2325
 ClientTo
 ClientWidth = 6675
 ControlBox = 0 'False
 Icon = "multipletrain.frx":0
 LinkTopic = "Form1"
 PaletteMode = 1 'UseZOrder
 ScaleHeight = 7470
 ScaleWidth = 6675
 Begin VsOcxLib.VideoSoftE
 Height = 7470
 Left = 0
 TabIndex = 0
 Top = 0
 Width = 6675
 _Version = 32768
 _ExtentX = 11774
 _ExtentY = 13176
 _StockProps = 70
 ConvIn
 Align
 BevelOuter = 0
 CaptionPos = 0
 Picture = "multip
 MouseIcon = "mu
 Begin VB.Frame Frame3
 Height = 975
 Left = 240
 Tab
 Top = 6360
 Width = 2775
 Begin VB.TextBox D
 Alignment = 2 'Center
 Height = 285
 Left = 1320
 TabIndex = 50
 Text = "1"

 125

 Top = 240
 Width = 495
 End
 Begin VB.OptionButton DoBounding

o Bounding"

9

idth = 1575

 'True

MS Sans Serif"

 = 0 'False
 0 'False

1

idth = 825

tton Command9
d RPFTD"

 = 6720

mPass
'Center

S Sans Serif"

harset = 0

 Caption = " D
 Height = 255
 Left = 240
 TabIndex = 4
 Top = 600
 W
 End
 Begin VB.Label Label8
 AutoSize = -1
 Caption = "Damping"
 BeginProperty Font
 Name = "
 Size = 9.75
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic
 Strikethrough =
 EndProperty
 Height = 360
 Left = 240
 TabIndex = 5
 Top = 240
 W
 End
 End
 Begin VB.CommandBu
 Caption = "Sen
 Height = 375
 Left = 5040
 TabIndex = 47
 Top
 Width = 1335
 End
 Begin VB.TextBox Nu
 Alignment = 2
 BeginProperty Font
 Name = "M
 Size = 9.75
 C
 Weight = 400
 Underline = 0 'False

 126

 Italic = 0 'False
 'False

Index = 46

el
Center

 Sans Serif"
ize = 9.75

'False
'False

 'False

tton Command8
Newparam"

t = 375

5

on Command3
ieve Results"

 = 3360

ton Command7
ultipliers"

 Strikethrough = 0
 EndProperty
 Height = 375
 Left = 5520
 Tab
 Text = "1"
 Top = 120
 Width = 615
 End
 Begin VB.TextBox tlev
 Alignment = 2 '
 BeginProperty Font
 Name = "MS
 S
 Charset = 0
 Weight = 400
 Underline = 0
 Italic = 0
 Strikethrough = 0
 EndProperty
 Height = 375
 Left = 5520
 TabIndex = 45
 Text = "0"
 Top = 600
 Width = 615
 End
 Begin VB.CommandBu
 Caption = "Local
 Heigh
 Left = 4920
 TabIndex = 43
 Top = 2760
 Width = 145
 End
 Begin VB.CommandButt
 Caption = "Retr
 Height = 375
 Left
 TabIndex = 42
 Top = 2760
 Width = 1455
 End
 Begin VB.CommandBut
 Caption = "Set M

 127

 Height = 375
 Left = 3360
 TabIndex = 41

on TrainType
ro"

dex = 40

e2
_init.pro Settings"

 = 5040

hyl_on"

ck1

eft = 240

5

 check1
lc_vol"

eft = 1320

 Top = 6720
 Width = 1455
 End
 Begin VB.OptionButt
 Caption = "Hyd
 Height = 375
 Index = 2
 Left = 4920
 TabIn
 Top = 6000
 Width = 1095
 End
 Begin VB.Frame Fram
 Caption = "Batch
 Height = 1335
 Left = 240
 TabIndex = 33
 Top
 Width = 2775
 Begin VB.CheckBox check1
 Caption = "met
 Height = 255
 Index = 5
 Left = 1320
 TabIndex = 39
 Top = 960
 Width = 1095
 End
 Begin VB.CheckBox che
 Caption = "calc_g"
 Height = 255
 Index = 4
 L
 TabIndex = 38
 Top = 960
 Width = 109
 End
 Begin VB.CheckBox
 Caption = "ca
 Height = 255
 Index = 3
 L
 TabIndex = 37

 128

 Top = 600
 Width = 1095

 check1
lc_pole"

abIndex = 36

check1
aption = "calc_dipole"

5

5

in VB.CheckBox check1

alse

 TrainType
tion = "pKa"

ype

 End
 Begin VB.CheckBox
 Caption = "ca
 Height = 255
 Index = 2
 Left = 240
 T
 Top = 600
 Width = 1095
 End
 Begin VB.CheckBox
 C
 Height = 255
 Index = 1
 Left = 1320
 TabIndex = 3
 Top = 240
 Width = 133
 End
 Beg
 Caption = "calc_ab"
 Height = 255
 Index = 0
 Left = 240
 TabIndex = 34
 Top = 240
 Width = 1095
 End
 End
 Begin VB.Timer Timer2
 Enabled = 0 'F
 Left = 4920
 Top = 7320
 End
 Begin VB.OptionButton
 Cap
 Height = 375
 Index = 1
 Left = 4920
 TabIndex = 32
 Top = 5640
 Width = 735
 End
 Begin VB.OptionButton TrainT

 129

 Caption = "Properties"

 0

True

 VB.Timer Timer1

tton Command6
ume Status Query"

t = 3360

tton Command5
ious Page"

t = 3360

utton Command2
re Results at Level 0"

t9
nter

 'False

 Height = 375
 Index =
 Left = 4920
 TabIndex = 31
 Top = 5280
 Value = -1 '
 Width = 1095
 End
 Begin
 Enabled = 0 'False
 Left = 5400
 Top = 7320
 End
 Begin VB.CommandBu
 Caption = "Res
 Height = 375
 Lef
 TabIndex = 29
 Top = 4200
 Width = 3015
 End
 Begin VB.CommandBu
 Caption = "Prev
 Height = 375
 Lef
 TabIndex = 26
 Top = 4680
 Width = 3015
 End
 Begin VB.CommandB
 Caption = "Sto
 Height = 375
 Left = 3360
 TabIndex = 25
 Top = 3240
 Width = 3015
 End
 Begin VB.TextBox Tex
 Alignment = 2 'Ce
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 9.75
 Charset = 0
 Weight = 400
 Underline = 0

 130

 Italic = 0 'False
 'False

dex = 24

ton Command4
rt Training"

 = 3720

on Command1
rt Training at Level Shown Above"

lecule Number "

t10
Center

ght = 375

0

ext1
enter

ex = 3

 Strikethrough = 0
 EndProperty
 Height = 405
 Left = 5520
 TabIn
 Text = "5"
 Top = 1080
 Width = 615
 End
 Begin VB.CommandBut
 Caption = "Abo
 Height = 375
 Left = 3360
 TabIndex = 11
 Top
 Width = 3015
 End
 Begin VB.CommandButt
 Caption = "Sta
 Height = 375
 Left = 3360
 TabIndex = 10
 Top = 2280
 Width = 3015
 End
 Begin VB.Frame Frame1
 Caption = " Machine/Mo
 Height = 4695
 Left = 120
 TabIndex = 1
 Top = 240
 Width = 3015
 Begin VB.TextBox Tex
 Alignment = 2 '
 Hei
 Left = 1440
 TabIndex = 27
 Text = "?"
 Top = 420
 Width = 735
 End
 Begin VB.TextBox T
 Alignment = 2 'C
 Height = 375
 Ind

 131

 Left = 1440
 TabIndex = 9
 Text = "0"
 Top = 1800

ext1
enter

ex = 2

0

ext1
enter

ex = 1

ext1
 'Center

ex = 7

5

t1
Center

ght = 375

0

 Width = 735
 End
 Begin VB.TextBox T
 Alignment = 2 'C
 Height = 375
 Ind
 Left = 1440
 TabIndex = 8
 Text = "0"
 Top = 132
 Width = 735
 End
 Begin VB.TextBox T
 Alignment = 2 'C
 Height = 375
 Ind
 Left = 1440
 TabIndex = 7
 Text = "0"
 Top = 840
 Width = 735
 End
 Begin VB.TextBox T
 Alignment = 2
 Height = 375
 Ind
 Left = 1440
 TabIndex = 6
 Text = "0"
 Top = 3720
 Width = 73
 End
 Begin VB.TextBox Tex
 Alignment = 2 '
 Hei
 Index = 6
 Left = 1440
 TabIndex = 5
 Text = "0"
 Top = 324
 Width = 735
 End

 132

 Begin VB.TextBox Text1
gnment = 2 'Center

 VB.TextBox Text1
ter

0

00C0&

00C0&

 Ali
 Height = 375
 Index = 5
 Left = 1440
 TabIndex = 4
 Text = "0"
 Top = 2760
 Width = 735
 End
 Begin
 Alignment = 2 'Cen
 Height = 375
 Index = 4
 Left = 1440
 TabIndex = 3
 Text = "0"
 Top = 2280
 Width = 735
 End
 Begin VB.TextBox Text1
 Alignment = 2 'Center
 Height = 375
 Index = 0
 Left = 144
 TabIndex = 2
 Text = "0"
 Top = 360
 Width = 735
 End
 Begin VB.Shape Shape1
 FillColor = &H0000
 FillStyle = 0 'Solid
 Height = 135
 Index = 7
 Left = 2400
 Top = 3840
 Width = 255
 End
 Begin VB.Shape Shape1
 FillColor = &H0000
 FillStyle = 0 'Solid
 Height = 135
 Index = 6
 Left = 2400
 Top = 3360

 133

 Width = 255
 End
 Begin VB.Shape Shape1
 FillColor = &H000000C0&

C0&

0

1
Color = &H000000C0&

5

1
00000C0&

ght = 135

 FillStyle = 0 'Solid
 Height = 135
 Index = 5
 Left = 2400
 Top = 2880
 Width = 255
 End
 Begin VB.Shape Shape1
 FillColor = &H000000
 FillStyle = 0 'Solid
 Height = 135
 Index = 4
 Left = 2400
 Top = 2400
 Width = 255
 End
 Begin VB.Shape Shape1
 FillColor = &H000000C0&
 FillStyle = 0 'Solid
 Height = 135
 Index = 3
 Left = 240
 Top = 1920
 Width = 255
 End
 Begin VB.Shape Shape
 Fill
 FillStyle = 0 'Solid
 Height = 135
 Index = 2
 Left = 2400
 Top = 1440
 Width = 25
 End
 Begin VB.Shape Shape
 FillColor = &H0
 FillStyle = 0 'Solid
 Hei
 Index = 1
 Left = 2400
 Top = 960
 Width = 255

 134

 End
 Begin VB.Shape Shape1

000000C0&
lid

t = 2400

Right Justify
1 'True

tal Molecules"

 = 4320

 Justify
True

abel4"

 = 3840

 Justify
True

abel5"

 = 3360

 Justify
True

abel4"

 FillColor = &H
 FillStyle = 0 'So
 Height = 135
 Index = 0
 Lef
 Top = 480
 Width = 255
 End
 Begin VB.Label Label6
 Alignment = 1 '
 AutoSize = -
 Caption = "To
 Height = 195
 Left = 210
 TabIndex = 28
 Top
 Width = 1125
 End
 Begin VB.Label Label3
 Alignment = 1 'Right
 AutoSize = -1 '
 Caption = "L
 Height = 195
 Index = 7
 Left = 840
 TabIndex = 21
 Top
 Width = 480
 End
 Begin VB.Label Label3
 Alignment = 1 'Right
 AutoSize = -1 '
 Caption = "L
 Height = 195
 Index = 6
 Left = 840
 TabIndex = 20
 Top
 Width = 480
 End
 Begin VB.Label Label3
 Alignment = 1 'Right
 AutoSize = -1 '
 Caption = "L

 135

 Height = 195

 = 2880

 Justify
True

abel4"

 = 2400
idth = 480

t Justify

abel3"

op = 1920

 'Right Justify

bel4"
5

 = 480

el3
 'Right Justify
 'True
bel4"

eight = 195

 Index = 5
 Left = 840
 TabIndex = 19
 Top
 Width = 480
 End
 Begin VB.Label Label3
 Alignment = 1 'Right
 AutoSize = -1 '
 Caption = "L
 Height = 195
 Index = 4
 Left = 840
 TabIndex = 18
 Top
 W
 End
 Begin VB.Label Label3
 Alignment = 1 'Righ
 AutoSize = -1 'True
 Caption = "L
 Height = 195
 Index = 3
 Left = 840
 TabIndex = 17
 T
 Width = 480
 End
 Begin VB.Label Label3
 Alignment = 1
 AutoSize = -1 'True
 Caption = "La
 Height = 19
 Index = 2
 Left = 840
 TabIndex = 16
 Top = 1440
 Width
 End
 Begin VB.Label Lab
 Alignment = 1
 AutoSize = -1
 Caption = "La
 H
 Index = 1

 136

 Left = 840
5

3
ht Justify

-1 'True
aption = "Label3"

l9
gnment = 1 'Right Justify

umber of Passes"

l7
oSize = -1 'True

."
t

S Sans Serif"

'False

 0 'False
Property

 IPPort1

 TabIndex = 1
 Top = 960
 Width = 480
 End
 Begin VB.Label Label
 Alignment = 1 'Rig
 AutoSize =
 C
 Height = 195
 Index = 0
 Left = 840
 TabIndex = 14
 Top = 480
 Width = 480
 End
 End
 Begin VB.Label Labe
 Ali
 AutoSize = -1 'True
 Caption = "N
 Height = 195
 Left = 4110
 TabIndex = 44
 Top = 240
 Width = 1290
 End
 Begin VB.Label Labe
 Aut
 Caption = "I am training..
 BeginProperty Fon
 Name = "M
 Size = 9.75
 Charset = 0
 Weight = 400
 Underline = 0
 Italic = 0 'False
 Strikethrough =
 End
 Height = 240
 Left = 3480
 TabIndex = 30
 Top = 5715
 Width = 1200
 End
 Begin IPPortLib.IPPort

 137

 Index = 3
 Left = 4320
 Top = 7320

 IPPort1

 = 7320

rue

 IPPort1

t = 3360

rue

 = 741

rue

gnment = 1 'Right Justify

utoSize = -1 'True
Caption = "Query Status Interval (sec)"

 _ExtentX = 741
 _ExtentY = 741
 RemoteHost = ""
 Linger = -1 'True
 EOL = ""
 End
 Begin IPPortLib.IPPort
 Index = 2
 Left = 3840
 Top
 _ExtentX = 741
 _ExtentY = 741
 RemoteHost = ""
 Linger = -1 'T
 EOL = ""
 End
 Begin IPPortLib.IPPort
 Index = 1
 Lef
 Top = 7320
 _ExtentX = 741
 _ExtentY = 741
 RemoteHost = ""
 Linger = -1 'T
 EOL = ""
 End
 Begin IPPortLib.IPPort IPPort1
 Index = 0
 Left = 2880
 Top = 7320
 _ExtentX = 741
 _ExtentY
 RemoteHost = ""
 Linger = -1 'T
 EOL = ""
 End
 Begin VB.Label Label5
 Ali
 A

 Height = 195
 Left = 3540
 TabIndex = 23

 138

 Top = 1200
 Width = 1875
 End
 Begin VB.Label Label4
 Alignment = 1 'Right Justify

SG"
 Height = 195
 Left = 3360

'Center
or = &H00FFFFFF&

erStyle = 1 'Fixed Single
eginProperty Font

ns Serif"

 = 400
 = 0 'False

 0 'False
 Strikethrough = 0 'False

eight = 375
 = 3840

 TabIndex = 12

 End

ttribute VB_Name = "MultipleTrain"
lNameSpace = False

 False

 AutoSize = -1 'True
 Caption = "Start at train level"
 Height = 195
 Left = 4080
 TabIndex = 22
 Top = 720
 Width = 1350
 End
 Begin VB.Label Label2
 AutoSize = -1 'True
 Caption = "M

 TabIndex = 13
 Top = 1800
 Width = 360
 End
 Begin VB.Label Label1
 Alignment = 2
 BackCol
 Bord
 B
 Name = "MS Sa
 Size = 12
 Charset = 0
 Weight
 Underline
 Italic =

 EndProperty
 H
 Left

 Top = 1680
 Width = 2535
 End

End
A
Attribute VB_Globa
Attribute VB_Creatable =

 139

Attribute VB_PredeclaredId = True
e VB_Exposed = False

his module carries out the remote training by communicating
r on port 3000 on the

im transfer_done As Integer

s Boolean

im pass_list(8) As String

ad(4) As Integer, read_level(4) As Integer
im waiting_to_finish As Boolean, color_wait As Boolean

trieved As Boolean

p module (see comments there)
(mach$, a$, code$, usr$, passwd$, Port$)

 dataRA(i%, 0) Then
sswd$ = Encrypt(dehex(dataRA(i, 1)), salt)

 Port$ = dataRA(i, 3)
xit For

Trim$(mach$), " ")
$ = Mid$(mach$, 1, i% - 1)

ode$ = a$ & b$

(2)
nd If

d train.dat from the machine identified
l and stores it as a coded_name file

s Control)

rrMsg As String

 cmb.Text
 mach$ = "None" Then

Attribut
'T
'through an ssh port forward with a listene
'training machines
D
Dim temp$
Dim host_connected(4) A
Dim machine_list(8) As String, user_list(8) As String
D
Dim connecting(4) As Boolean
Dim in_sock_re
D
Dim FilesRe
Dim inMultiplePass As Boolean
Dim onPass As Integer

'same as in the setu
Sub get_coded_name
For i% = 1 To num_machines
 If mach$ =
 pa

 E
 End If
Next
i% = InStr(
a
b$ = Mid$(mach$, i% + 2, 1)
c
If b$ = "1" Then
 usr$ = userRA(1)
Else
 usr$ = userRA
E
End Sub

'this routine gets train.wk1 an
'through the combo contro
Sub getfiles(cmb A

Dim was_error As Boolean, E

mach$ =
If

 140

 Exit Sub

info for the specified machine
all get_coded_name(mach$, Mac$, code$, usr$, passwd$, Port$)

ile name
n Error Resume Next
ocalfile$ = App.Path & "\" & code$ & "train.wk1"

, _
, _

d$, "localhost", _
as_error, ErrMsg)

vents

th & "\" & code$ & "train.dat"

rm.ftpFile(False, Localfile$, _
 "train.dat", Port$, usr$, _

sg

End If

'get all the
C

'set local f
O
L

'remove any existing local copy
Kill Localfile$

'get the file
Call ftpfrm.ftpFile(False, Localfile$
 "train.wk1", Port$, usr$
 passw
 w
If was_error Then
 MsgBox ErrMsg
 Label1 = "Error train.wk1"
 Exit Sub
End If

Beep
DoEvents
DoE
DoEvents

'repeat procedure for the train.dat file

'set local file name
On Error Resume Next
Localfile$ = App.Pa
Kill Localfile$

Call ftpf

 passwd$, "localhost", _
 was_error, ErrMsg)
If was_error Then
 MsgBox ErrM
 Label1 = "Error train.dat"
 Exit Sub
End If

 141

Beep
DoEvents
DoEvents
DoEvents

End Sub

'this communicates with the remote listener and starts the trainsparc session going

and1_Click()

Pass.Text) > 1 Then
ultiplePass = True

ass = False

lue = True
 Exit Sub

ListIndex <> 0 Then
bo1(i%).ListIndex - 1) \ 2

t host_connected(j%) Then
ltipleSetup.Combo1(i%).Text & "not connected. Aborting!"

Sub

 "

o 5

Private Sub Comm
If Not inMultiplePass Then
 onPass = 0
 If Val(Num
 inM
 End If
Else
 If onPass >= Val(NumPass.Text) Then
 inMultipleP
 MsgBox "Multiple pass (" & onPass & ") is complete."
 Command8.va

 End If
End If
 Label1 = "Starting sessions..."

 'check that everybody is still connected
 For i% = 0 To 7
 If MultipleSetup.Combo1(i%).
 j% = (MultipleSetup.Com
 If No
 MsgBox Mu
 Exit
 End If
 End If
 Next

 'create and send batch_init.pro
 a$ = App.Path & "\bi.pro"
 Open a$ For Output As #1
 Print #1, "
 'create the batch init entries
 Print #1, "dont_save_this_level."
 For i% = 0 T
 If check1(i%).value = 1 Then

 142

 Select Case i%
 Case 0
 Print #1, "calc_ab."

e 1

se 2
 Print #1, "calc_pole."

 Case 3

 Print #1, "methyl_on."

f the training machines

the multipliers.dat file to each of the training machines

).ListIndex <> 0 Then
 = (MultipleSetup.Combo1(i%).ListIndex - 1) \ 2

 damping factor to be prolog readable
 Call fixit(g!, aaa$)

DoBounding.value Then
 bbb$ = "1"

 bbb$ = "0"

 remote machine for starting the job
 If TrainType(0) Then

ist(i%)) & "," & Trim(str$(Val(tlevel))) & "," &
& aaa$ & "," & bbb$ & "]."

& Trim(str$(Val(tlevel))) & "," &
 & "]."

rthydro," & Trim(user_list(i%)) & "," & Trim(str$(Val(tlevel))) & "," &
 "," & aaa$ & "," & bbb$ & "]."

f
aiting_to_finish = True

 Cas
 Print #1, "calc_dipole."
 Ca

 Print #1, "calc_vol."
 Case 4
 Print #1, "calc_g."
 Case 5

 End Select
 End If
 Next
 Close #1

 'send the batch_init file to each o
 Call send_bi
 'send
 Call send_mult

 For i% = 0 To 7
 If MultipleSetup.Combo1(i%
 j%
 g! = Val(Damp.Text)
 'fix the

 If

 Else

 End If
 'set up string to send to

 a$ = "[startprop," & Trim(user_l
Trim(str(i%)) & ","
 ElseIf TrainType(1) Then
 a$ = "[startpka," & Trim(user_list(i%)) & ","
Trim(str(i%)) & "," & aaa$ & "," & bbb$
 Else
 a$ = "[sta
Trim(str(i%)) &
 End I
 w

 143

 Call send2wsk(j%, a$)

he next one

b progress on each machine
False

rval = 1000 * Val(Text9.Text)
abled = True

ave state of run so that it can prefill on next entry
hine_state2.txt"

$ For Output As #10

lseIf TrainType(0).value Then
 #10, "prop"

 Else

 End If

%).value

 Trim(Damp.Text)
 #10

Command2_Click()

 'store results of last pass by using a remote transfer to /lastX

 'make sure we are connected everywhere

etup.Combo1(i%).ListIndex <> 0 Then
tIndex - 1) \ 2

 If Not host_connected(j%) Then
 MsgBox MultipleSetup.Combo1(i%).Text & "not connected. Aborting!"

 End If

 Next

 Do While waiting_to_finish
 DoEvents
 Loop
 'the remote machine has now started the job so start t
 End If
 Next

 'start query clock to monitor the jo
 Timer1.Enabled =
 Timer1.Inte
 Timer1.En

 's
 a$ = App.Path & "\last_mac
 Open a
 If TrainType(1).value Then
 Print #10, "pka"
 E
 Print

 Print #10, "hydro"

 For i% = 0 To 5
 Print #10, check1(i
 Next
 Print #10,
 Close

End Sub

Private Sub

 Label1 = "Tranfer files..."

 For i% = 0 To 7
 If MultipleS
 j% = (MultipleSetup.Combo1(i%).Lis

 Exit Sub

 End If

 144

 'now give each machine the tranfer command
 For i% = 0 To 7

mbo1(i%).ListIndex - 1) \ 2

rim(user_list(i%)) & "," & Trim(str$(Val(tlevel) + 1)) & "]."
_finish = True

2wsk(j%, a$)

 to next higher
ext) + 1)

b Command3_Click()

error As Boolean, ErrMsg As String
 FilesRetrieved Then

hen
 at least on machine", 48, "No Machine Chosen"

= 11
es"

at from each machine and save as a coded_name file
 To 7
iles(MultipleSetup.Combo1(i%))

ext

d"

 If MultipleSetup.Combo1(i%).ListIndex <> 0 Then
 j% = (MultipleSetup.Co
 a$ = "[transfer," & T
 waiting_to
 Call send
 Do While waiting_to_finish
 DoEvents
 Loop
 End If
 Next

 Label1 = "Done Transfer"
 Beep
 'change the train level
 tlevel.Text = str(Val(tlevel.T

End Sub

Private Su

Dim was_
If
 MsgBox "Can't do this again until another pass is made"
 Exit Sub
End If

If MultipleSetup.Combo1(0).Text = "None" T
 MsgBox "You must choose
 Exit Sub
End If

Screen.MousePointer
Label1.Caption = "Retrieving fil

'get train.wk1 and train.d
For i% = 0
 Call getf
N

Label1.Caption = "Files retrieve

Dim npar(8) As Integer

 145

Label1.Caption = "Processing files"

ow generate the combined final file for reparam input
"\train.wk1"

1(i%).Text
one" Then

ch$, Mac$, code$, usr$, passwd$, Port$)
 code$ & "train.wk1"

aram names trained on this particular machine
a$ For Input As #1

(i%) = npar(i%) + 1
rint #2, a$

ext

file handle for each coded_name train.dat file

i%).Text
n

$, Mac$, code$, usr$, passwd$, Port$)
" & code$ & "train.dat"

 1
op 2 lines

s #j%
Input #j%, a$

ine Input #j%, b$
 End If

h the top 2 lines stripped
t

ut As #10
o last is OK

DoEvents

'n
a$ = App.Path &
Open a$ For Output As #2
For i% = 0 To 7
 npar(i%) = 0
 mach$ = MultipleSetup.Combo
 If mach$ <> "N
 'for each machine open the coded_name file
 Call get_coded_name(ma
 a$ = App.Path & "\" &
 'this has all the p
 Open
 Do While Not EOF(1)
 Line Input #1, a$
 npar
 P
 Loop
 Close #1
 End If
N
Close #2

'now open (and leave open) a
ntotal% = 0
For i% = 0 To 7
 ntotal% = ntotal% + npar(i%)
 mach$ = MultipleSetup.Combo1(
 If mach$ <> "None" The
 Call get_coded_name(mach
 a$ = App.Path & "\
 j% = i% +
 'strip t
 Open a$ For Input A
 Line
 L

Next

'now we have all the appropriate files open wit
'we now combine into train.da
aa$ = App.Path & "\train.dat"
Open aa$ For Outp
'from above same for all files s

 146

Print #10, a$
'print new total number of params

total%

 To 7
h$ = MultipleSetup.Combo1(i%).Text

s used
 If mach$ <> "None" Then

% + 1
rom little file and add to full train.dat
 = 1 To npar(i%)

e Input #j%, a$
t #10, a$

xt in line is the number of molecules
 Input #j%, nobs%
 End If
ext

obs%
 = False

To 7
 MultipleSetup.Combo1(i%).Text
 <> "None" Then

 'file handle for the machine

 'read from small and append to big

 End If

 End If

epeat for next block

).Text

ne

 EOF(j%)

Print #10, n

For i% = 0
 mac
 'see if it i

 'file handle for this machine
 j% = i
 'read f
 For k%
 Lin
 Prin
 Next
 'the ne

N
'write this out
Print #10, n
only_one%

For i% = 0
 mach$ =
 If mach$

 j% = i% + 1

 For k% = 1 To 2 * nobs%
 Line Input #j%, a$
 If Not only_one% Then
 Print #10, a$

 Next
 only_one% = True

Next

'r
For i% = 0 To 7
 mach$ = MultipleSetup.Combo1(i%
 If mach$ <> "None" Then
 'file handle for the machi
 j% = i% + 1
 Do While Not

 147

 Line Input #j%, a$
 Print #10, a$
 Loop
 Close #j%
 End If
ext

abel1.Caption = "Files Processed"

oEvents

ending files"

ts
oEvents
oEvents

t the combined train.wk1 and train.dat files are ready

p machine will get them as this is the machine that will
am to construct all the files needed for the next pass

Combo1(0).Text
c$, code$, usr$, passwd$, Port$)

ocalfile$ = App.Path & "\train.wk1"

ing " & Mac$ & " " & Remotefile$
tion = L$

 train.wk1 to the top machine
.ftpFile(True, Localfile$, _

 Remotefile$, Port$, usr$, _

N
Close #10

L
DoEvents
DoEvents
D
DoEvents
DoEvents
DoEvents
DoEvents

Label1.Caption = "S
DoEvents
DoEven
D
D
DoEvents
DoEvents

'at this poin

'only the to
'do the repar
mach$ = MultipleSetup.
Call get_coded_name(mach$, Ma

Remotefile$ = "train.wk1"
L

L$ = "Send
Label1.Cap

'put the file
Call ftpfrm

 passwd$, "localhost", _
 was_error, ErrMsg)
If was_error Then

 148

 Label1 = "SndErr train.wk1"

n.dat"

= "Sending " & Mac$ & " " & Remotefile$
ion = L$

ile train.dat to the top machine

$, Port$, usr$, _
 passwd$, "localhost", _

en
 Label1 = "SndErr train.dat"

 Exit Sub

ts

oEvents
vents

.FTP1.Action = 3 ' logoff

ent"

ts
ents

oEvents

oEvents

 machine to perform a reparam
1(0).ListIndex - 1) \ 2

0)) & "]."

 MsgBox ErrMsg
 Exit Sub
End If

Remotefile$ = "train.dat"
Localfile = App.Path & "\trai

L$
Label1.Capt

'put the f
Call ftpfrm.ftpFile(True, Localfile$, _
 Remotefile

 was_error, ErrMsg)
If was_error Th

 MsgBox ErrMsg

End If

DoEvents
DoEvents
DoEven
DoEvents
D
DoE

On Error Resume Next
ftpfrm

Label1.Caption = "Files s

DoEven
DoEv
D
DoEvents
D
DoEvents

'now we ask the remote top
j% = (MultipleSetup.Combo
a$ = "[reparam," & Trim(user_list(

 149

waiting_to_finish = True

o_finish

nter = 0
iled to create newparam.sam" & vbCrLf & Label1.Caption & vbCrLf & "Go fix

ub
 If

es from the top machine needed to do an r_t on the other side

 = True

ePointer = 0
MultiplePass Then

ewparam.Show
 If

xit Sub

1:

emote host", 16, "Remote Host Error"

ox "The file could not be transferred" & Chr$(13) & Chr$(10) & "", 16, "File Transfer

Sub Command4_Click()

mote job
.Enabled = False
 = "Aborting sessions..."

Call send2wsk(j%, a$)
Do While waiting_t
 DoEvents
Loop

If InStr(Label1.Caption, "OK") = 0 Then
 Screen.MousePoi
 MsgBox "Fa
it"
 Exit S
End

'get the four base fil
get_base_files

'put these same files into the root area of each training machine
put_base_files

'we are done! Whew!

FilesRetrieved

Screen.Mous
If Not in
 n
End
E

E
ftpfrm.FTP1.Action = 3
MsgBox "Unable to find the r
End
E2:
ftpfrm.FTP1.Action = 3
MsgB
Error"
End

End Sub

Private

 'this aborts a re
 Timer1
 Label1

 150

ed to all the machines

 j% = (MultipleSetup.Combo1(i%).ListIndex - 1) \ 2
onnected(j%) Then

Setup.Combo1(i%).Text & "not connected!"

 End If

 'tell each reote machine to abort its job

.Combo1(i%).ListIndex <> 0 Then
 = (MultipleSetup.Combo1(i%).ListIndex - 1) \ 2

 a$ = "[abort," & Trim(user_list(i%)) & "," & Trim(str$(i%)) & "]."

k(j%, a$)
 While waiting_to_finish

 DoEvents

 End If

nd Sub

rm
 inMultiplePass Then

ble to finish
CrLf & "Do you really want to leave?", vbYesNo, "Do you really want to do

= vbYes Then

nload Me

Me

 'check that we are still connect
 For i% = 0 To 7
 If MultipleSetup.Combo1(i%).ListIndex <> 0 Then

 If Not host_c
 MsgBox Multiple
 Exit Sub
 End If

 Next

 For i% = 0 To 7
 If MultipleSetup
 j%

 waiting_to_finish = True
 Call send2ws
 Do

 Loop

 Next

E

Private Sub Command5_Click()
 'go back to the setup fo
 If
 i = MsgBox("You are running a multiple pass. If you exit now you will not be a
all the passes." & vb
it?")
 If i
 MultipleSetup.Show
 inMultiplePass = False
 U
 End If
 Else
 MultipleSetup.Show
 Unload
 End If
End Sub

 151

Private Sub Command6_Click()
 'when coming back in after remotely submitting a job this will restart the

 on the remote machines

l(Text9.Text)

mand7_Click()
how

mmand9_Click()
_files

ub Form_Activate()
fter form load or upon re-entry

Store Results at Level " & Trim(str(Val(tlevel.Text) + 1))

ombo1(i%).ListIndex <> 0 Then

rocessors but only 4 machines)
).ListIndex - 1) \ 2

 the host_connected array
en

st_connected(j%) = True

ted(j%) = False

 'timer that looks for the molecules completed

 'start query clock
 Timer1.Enabled = False
 Timer1.Interval = 1000 * Va
 Timer1.Enabled = True

End Sub

Private Sub Com
 Multipliers.S
End Sub

Private Sub Command8_Click()
 newparam.Show
End Sub

Private Sub Co
get_base

put_base_files

Command2.value = True
End Sub

Private S
 'a
 FilesRetrieved = True

 Command2.Caption = "
 For i% = 0 To 7
 If MultipleSetup.C

 'get the machine number (8 p
 j% = (MultipleSetup.Combo1(i%

 'fill
 If IPPort1(j%).Connected Th
 ho
 Else
 host_connec
 End If

 152

 'connect if not currently connected

) Then
rt1(j%).WinsockLoaded = True

IPPort1(j%).EOL = Chr$(10)
 Port$ = str(Val(dataRA(MultipleSetup.Combo1(i%).ListIndex, 3)) + 1000)

IPPort1(j%).RemotePort = Val(Port$)
 'for port forwarding

oteHost = "127.0.0.1"
 connecting(j%) = True

ort1(j%).Connected = True
While connecting(j%)

 DoEvents

 red(disconnected) box

 Shape1(i%).FillColor = &HC000&

illColor = &HC0&
 End If

lecules being trained from the top machine
(j%) Then

ser_list(0) & "]."
 Call send2wsk(j%, a$)

d If
 End If
 Next

t_machine_state2.txt"
xists(a$) Then

 Open a$ For Input As #1
 Line Input #1, a$
 If InStr(a$, "pka") > 0 Then
 TrainType(1).value = True
 ElseIf InStr(a$, "prop") > 0 Then
 TrainType(0).value = True

e

 If Not host_connected(j%
 IPPo

 IPPort1(j%).Rem

 IPP
 Do

 Loop
 End If

 'show green(connected)
 If host_connected(j%) Then

 Else
 Shape1(i%).F

 'retrieve the number of mo
 If i% = 0 And host_connected
 a$ = "[get_num_molecules," & u

 En

 'see if old machine state exists and prefill
 a$ = App.Path & "\las
 If FileE

 Else
 TrainType(2).value = Tru
 End If
 For i% = 0 To 5
 Input #1, jj%
 check1(i%).value = jj%

 153

 Next
 Input #1, d
 Damp.Text = Trim(str(d))

rm_Load()

enter Me

achines and 2 processors each
 = 0 To 7

 j% = i% \ 2
 the machine name

 Label3(i).Caption = MultipleSetup.Combo1(i).Text

er lists
 Call fill_lists(i%)

nnected
 False

%).Connected = False
rt1(j%).WinsockLoaded = False

 Next

Cancel As Integer)
 the setup form when this is hidden/unloaded

.Show

b IPPort1_Connected(index As Integer, StatusCode As Integer, Description As String)
 Description <> "OK" Then

re
, 0)

CrLf & "Check your port number " & a$

 Close #1
 End If

End Sub

Private Sub Fo

 c
 Me.Show

 'curently allows 4 training m
 For i%

 'show

 'fill the machine, password and us

 'first time in they are all disco
 host_connected(j%) =
 IPPort1(j
 IPPo

End Sub

Private Sub Form_Unload(
 'show
 MultipleSetup
End Sub

Private Su
 If
 'connection error if he
 a$ = dataRA(2 * index + 1
 If StatusCode = 10061 Then
 MsgBox Description &

 154

 Else
 MsgBox Description & CrLf & "Check your port number?" & a$

f
Box "Connection error: " & Description

 IPPort1(index).Connected = False
(index) = False

lse
 Beep

connected to us

rivate Sub IPPort1_DataIn(index As Integer, Text As String, EOL As Integer)
n_proc$(4), c$(4), flag%(4)

ndex) = c$(index) + Text

 If EOL And flag%(index) Then
 c$(index) + Text

 c$(index) = ""

 a$ = Text

traps
 2) = "**" Then

read(index) = 0

 End I
 'Msg

 host_connected
 connecting(index) = Fa

 Exit Sub
 End If

 'host
 host_connected(index) = True
 connecting(index) = False
 Beep

End Sub

P
 Static i

 If EOL = False Then
 c$(i
 flag%(index) = True
 Exit Sub
 End If

 a$ =

 flag%(index) = False
 Else

 End If

 ' for nt
 If a$ <> "" Then
 If Asc(Right$(a$, 1)) = 13 Then
 a$ = Mid$(a$, 1, Len(a$) - 1)
 End If
 End If

 'check this out for
 If Left$(a$,
 If in_sock_read(index) Then
 in_sock_

 155

 read_level(index) = 0
MsgBox "ipport error"
nd If

ck echo of procedure so save proc name and get
or the next set of returned data

roc$(index) = Trim$(a$)
 in_sock_read(index) = True
 read_level(index) = 0

nected(index As Integer, StatusCode As Integer, Description As

False
lor = &HC0&

se

Sub Timer1_Timer()

k of the clock requests each machine to send the number

 For i% = 0 To 7
(i%).ListIndex <> 0 Then

 Trim(user_list(i%)) & "," & Trim(str$(i%)) & "]."

ish = True
ll send2wsk(j%, a$)

 Do While waiting_to_finish

If

 E
 End If

' Debug.Print A$
 safe$ = in_proc$(index)

 If in_sock_read(index) Then
 'process the data returned
 Call parse_sock(index, safe$, a$)
 Else
 'just got ba
 'ready f
 in_p

 End If

End Sub

Private Sub IPPort1_Discon
String)
 'clean up on disconnect
 IPPort1(index).Connected =
 Shape1(2 * index + 1).FillCo
 host_connected(index) = Fal

End Sub

Private
 Timer1.Enabled = False

 'each tic
 'of molecules done so far

 If MultipleSetup.Combo1
 j% = (MultipleSetup.Combo1(i%).ListIndex - 1) \ 2
 a$ = "[num_done," &
 waiting_to_fin
 Ca

 DoEvents
 Loop
 'the parse routine fills the text box with the number done so far
 End

 156

 Next

al(Text1(i%).Text) = Val(Text10.Text) Then
lecules so paint box green

ape1(i%).FillColor = &HC000&

d If

= total2 Then
 'all boxes are at final number so the run is done

r1.Enabled = False

s + 1

mand2.value = True
 Command1.value = True

.Enabled = True

low was on long enough to see

b tlevel_Change()
 'when tlevel changes this changes caption on the button
 Command2.Caption = "Store Results at Level " & Trim(str(Val(tlevel.Text) + 1))

 total = 0
 total2 = 0
 For i% = 0 To 7
 If MultipleSetup.Combo1(i%).ListIndex <> 0 Then
 total = total + 1
 If V
 'number done is total # mo
 Sh
 total2 = total2 + 1
 End If
 En
 Next

 If total

 Time
 Beep
 FilesRetrieved = False
 If inMultiplePass Then
 onPass = onPas
 Command3.value = True
 Com

 Else
 MsgBox "Your run is finished"
 End If
 Else
 'not all done so restart time to keep asking
 Timer1
 End If
End Sub

Private Sub Timer2_Timer()
 'had to put this in so yel
 Timer2.Enabled = False
 color_wait = False
End Sub

Private Su

End Sub

 157

Public Sub fill_lists(num As Integer)
 'fill the machine, password and user lists

 If MultipleSetup.Combo1(num).ListIndex <> 0 Then

 If (MultipleSetup.Combo1(num).ListIndex Mod 2) = 1 Then

 user_list(num) = userRA(2)

(MultipleSetup.Combo1(num).ListIndex, 1)), salt)
 = Trim(a$)

m) = "none"
 pass_list(num) = "none"
 End If

)

 On Error GoTo snd_error
0)

d_error:
 'would block

ytesSent
sSent > 0 Then 'was any sent?
 Mid$(a$, BytesSent + 1) 'send rest

nts 'wait a little while - important!
e 'go back and try again!
 'handle other errors here (this has not been tested)
x "An error has occurred in" & Chr$(13) & Chr$(10) & "sending data to the host.",

P Send Error"
(index).Connected = False

or GoTo 0
b

nd Sub

ublic Sub get_base_files()

 salt = "asaltstringforencryptingpasswords"

 machine_list(num) = MultipleSetup.Combo1(num).ListIndex \ 2

 user_list(num) = userRA(1)
 Else

 End If
 a$ = Encrypt(dehex(dataRA
 pass_list(num)
 Else
 machine_list(num) = "none"
 user_list(nu

End Sub
Sub send2wsk(index As Integer, a$
 'send a line to tcp/ip socket

 a$ = a$ + Chr$(1
 IPPort1(index).DataToSend = a$
 Exit Sub

sn
 If Err = 25036 Then
 BytesSent = IPPort1(index).B
 If Byte
 a$ =
 End If
 DoEve
 Resum
 Else
 MsgBo
48, "TCP/I
 IPPort1
 On Err
 Exit Su
 End If
E

P

 158

Dim was_error As Boolean, ErrMsg As String

 from the top machine after a reparam

name(MultipleSetup.Combo1(0).Text, Mac$, code$, usr$, passwd$, Port$)

$ = "Getting " & Mac$ & " newparam.sam"

"
et local file name

ext
param.sam"

e$

.ftpFile(False, Localfile$, _
emotefile$, Port$, usr$, _

lhost", _

r Then
 "Error getting newparam.sam"

esume Next
1.Action = 3 ' logoff

oEvents

oEvents

& Mac$ & " train.dat"
abel1.Caption = L$

'this gets the 4 base files

Call get_coded_

L
Label1.Caption = L$

'set remotefile$
Remotefile$ = "newparam.sam
's
On Error Resume N
Localfile$ = App.Path & "\" & "new
Kill Localfil

Call ftpfrm
 R
 passwd$, "loca
 was_error, ErrMsg)

If was_erro
 MsgBox
 Exit Sub
End If

On Error R
ftpfrm.FTP
DoEvents
DoEvents
DoEvents
DoEvents
D
DoEvents
DoEvents
D
DoEvents
DoEvents
DoEvents
DoEvents

L$ = "Getting "
L

 159

'set remotefile$
Remotefile$ = "train.dat"
'set local file name
On Error Resume Next
Localfile$ = App.Path & "\" & "train.dat"

frm.ftpFile(False, Localfile$, _
 Remotefile$, Port$, usr$, _

asswd$, "localhost", _
as_error, ErrMsg)

 "Error getting train.dat"

esume Next
1.Action = 3 ' logoff

oEvents
oEvents

oEvents

= L$

et remotefile$

 "train.out"
ill Localfile$

Kill Localfile$

Call ftp

 p
 w

If was_error Then
 MsgBox
 Exit Sub
End If

DoEvents
DoEvents
On Error R
ftpfrm.FTP
DoEvents
DoEvents
DoEvents
DoEvents
D
D
DoEvents
DoEvents
D
DoEvents
DoEvents
DoEvents

L$ = "Getting " & Mac$ & " train.out"
Label1.Caption

's
Remotefile$ = "train.out"
'set local file name
On Error Resume Next
Localfile$ = App.Path & "\" &
K

 160

Call ftpfrm.ftpFile(False, Localfile$, _
 Remotefile$, Port$, usr$, _

 passwd$, "localhost", _
as_error, ErrMsg)

ut"

esume Next
1.Action = 3 ' logoff

oEvents
oEvents

oEvents

oEvents

= "Getting " & Mac$ & " train.wk1"

th & "\" & "train.wk1"

all ftpfrm.ftpFile(False, Localfile$, _

swd$, "localhost", _
 was_error, ErrMsg)

 w

If was_error Then
 MsgBox "Error getting train.o
 Exit Sub
End If

DoEvents
DoEvents
On Error R
ftpfrm.FTP
DoEvents
DoEvents
DoEvents
DoEvents
DoEvents
D
D
DoEvents
D
DoEvents
D
DoEvents

L$
Label1.Caption = L$

'set remotefile$
Remotefile$ = "train.wk1"
'set local file name
On Error Resume Next
Localfile$ = App.Pa
Kill Localfile$

C
 Remotefile$, Port$, usr$, _
 pas

If was_error Then
 MsgBox "Error getting train.wk1"

 161

 Exit Sub
End If

TP1.Action = 3 ' logoff

s

s
oEvents

ring

 the 4 files from a reparam to each training machine

eSetup.Combo1(i%).ListIndex <> 0 Then
 = (MultipleSetup.Combo1(i%).ListIndex - 1) \ 2

 If Not host_connected(j%) Then
Combo1(i%).Text & "not connected. Aborting!"

 = 0 To 7
bo1(i%).ListIndex <> 0 Then

DoEvents
DoEvents
On Error Resume Next
ftpfrm.F
DoEvents
DoEvents
DoEvents
DoEvents
DoEvent
DoEvents
DoEvents
DoEvents
DoEvents
DoEvent
D
DoEvents

End Sub

Public Sub put_base_files()

Dim was_error As Boolean, ErrMsg As St

'this puts

 'check they are all connected
 For i% = 0 To 7
 If Multipl
 j%

 MsgBox MultipleSetup.
 Exit Sub
 End If
 End If
 Next

 Label1.Caption = "Sending files"
 DoEvents

 For i%
 If MultipleSetup.Com
 mach$ = MultipleSetup.Combo1(i%).Text

 162

 Call get_coded_name(mach$, Mac$, code$, usr$, passwd$, Port$)

emotefile$ = "train.wk1"
 Localfile$ = App.Path & "\" & Remotefile$

 Remotefile$

e, Localfile$, _
 Remotefile$, Port$, usr$, _

 MsgBox "Error putting " & Remotefile$

emotefile$ = "train.dat"
 Localfile$ = App.Path & "\" & Remotefile$

 & " " & Remotefile$

.ftpFile(True, Localfile$, _
emotefile$, Port$, usr$, _
asswd$, "localhost", _
as_error, ErrMsg)

r Then
gBox "Error putting " & Remotefile$

 Exit Sub
 End If

motefile$ = "train.out"
 Localfile$ = App.Path & "\" & Remotefile$

 Mac$ & " " & Remotefile$

, Localfile$, _
motefile$, Port$, usr$, _

 passwd$, "localhost", _
Msg)

gBox "Error putting " & Remotefile$

 R

 L$ = "Sending " & Mac$ & " " &
 Label1.Caption = L$

 Call ftpfrm.ftpFile(Tru

 passwd$, "localhost", _
 was_error, ErrMsg)

 If was_error Then

 Exit Sub
 End If

 R

 L$ = "Sending " & Mac$
 Label1.Caption = L$

 Call ftpfrm
 R
 p
 w

 If was_erro
 Ms

 Re

 L$ = "Sending " &
 Label1.Caption = L$

 Call ftpfrm.ftpFile(True
 Re

 was_error, Err

 If was_error Then
 Ms

 163

 Exit Sub

 Remotefile$ = "newparam.sam"

 L$ = "Sending " & Mac$ & " " & Remotefile$
n = L$

ocalfile$, _

 _
lhost", _

or Then
rror putting " & Remotefile$

.FTP1.Action = 3 ' logoff

 a prolog readable format

en

 End If

 Localfile$ = App.Path & "\" & Remotefile$

 Label1.Captio

 Call ftpfrm.ftpFile(True, L
 Remotefile$, Port$, usr$,
 passwd$, "loca
 was_error, ErrMsg)

 If was_err
 MsgBox "E
 Exit Sub
 End If

 On Error Resume Next
 ftpfrm
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEvents
 End If
 Next

Label1.Caption = "Files sent"

End Sub

Private Sub fixit(g!, a$)
 'makes sure the number is in
 a$ = LTrim$(RTrim$(str$(g!)))
 If Left$(a$, 1) = "." Then
 a$ = "0" + a$
 End If
 If Left$(a$, 1) = "-" Then
 If Mid$(a$, 2, 1) = "." Th
 a$ = "-0" + Mid$(a$, 2)
 End If

 164

 End If
 End Sub

Private Sub parse_sock(index As Integer, safe$, a$)

om the remote machines

molecules"
ed"

)
e

vel(index) = 0
 "start"

 Label1 = a$
 j = InStr(a$, ",")

 in_sock_read(index) = False

 Beep

 Case "abort"

tr(a$, ",")
 k = Val(Mid$(a$, j + 1))

d(index) = False

 Beep

abel1 = "getting num..."

F&
imer2.Interval = 500

rue

d(index) = False
vel(index) = 0

 Text1(k).Text = Click$

 'this processes all the return data fr

 Select Case safe$

 Case "get_num_
 Label1 = "# Molecules Receiv
 Text10.Text = Trim(a$
 in_sock_read(index) = Fals
 read_le
 Case

 k = Val(Mid$(a$, j + 1))

 read_level(index) = 0
 Shape1(k).FillColor = &HC00000

 waiting_to_finish = False

 Label1 = a$
 j = InS

 in_sock_rea
 read_level(index) = 0
 Shape1(k).FillColor = &HC000&
 Text1(k).Text = "0"

 waiting_to_finish = False
 Case "num_done"
 L
 j = InStr(a$, ",")
 Click$ = Mid$(a$, 1, j - 1)
 k = Val(Mid$(a$, j + 1))
 Shape1(k).FillColor = &HFFF
 T
 Timer2.Enabled = T
 color_wait = True
 in_sock_rea
 read_le

 Do While color_wait

 165

 DoEvents
 Loop
 waiting_to_finish = False

FillColor = &HF00000
"

ad(index) = False
index) = 0

ng_to_finish = False
e "transfer"

 in_sock_read(index) = False

 waiting_to_finish = False
lect

aining
chines as batch_init.pro to set calc props

rror As Boolean, ErrMsg As String

 "Send batch_init"

 If MultipleSetup.Combo1(i%).ListIndex <> 0 Then
(i%).Text

 usr$, passwd$, Port$)

file$, _
 Remotefile$, Port$, usr$, _

 "localhost", _

error Then
 MsgBox "Error putting " & Remotefile$

esume Next

 Shape1(k).
 Case "reparam
 in_sock_re
 read_level(
 Label1 = a$
 waiti
 Cas

 read_level(index) = 0

 End Se
End Sub

Public Sub send_bi()

'this just sends the local bi.pro file to each of the tr
'ma

 Dim was_e

 Label1.Caption =
 DoEvents

 For i% = 0 To 7

 mach$ = MultipleSetup.Combo1
 Call get_coded_name(mach$, Mac$, code$,

 Remotefile$ = "batch_init.pro"
 Localfile$ = App.Path & "\bi.pro"

 Call ftpfrm.ftpFile(True, Local

 passwd$,
 was_error, ErrMsg)

 If was_

 Exit Sub
 End If

 On Error R

 166

 ftpfrm.FTP1.Action = 3 ' logoff

ents
oEvents

 DoEvents

 Next

abel1.Caption = "Files sent"

mult()

at file to each of the training
t to set multipliers

olean, ErrMsg As String

ltipliers"

x <> 0 Then
.Combo1(i%).Text

ame(mach$, Mac$, code$, usr$, passwd$, Port$)

ultipliers.dat"
Path & "\multipliers.dat"

Call ftpfrm.ftpFile(True, Localfile$, _

ocalhost", _
or, ErrMsg)

motefile$

End If

on = 3 ' logoff

 DoEvents
 DoEvents
 DoEvents
 DoEvents
 DoEv
 D

 End If

L

End Sub
Public Sub send_

'this just sends the local multipliers.d
'machines as multipliers.da

 Dim was_error As Bo

 Label1.Caption = "Send Mu
 DoEvents

 For i% = 0 To 7
 If MultipleSetup.Combo1(i%).ListInde
 mach$ = MultipleSetup
 Call get_coded_n

 Remotefile$ = "m
 Localfile$ = App.

 Remotefile$, Port$, usr$, _
 passwd$, "l
 was_err

 If was_error Then
 MsgBox "Error putting " & Re
 Exit Sub

 On Error Resume Next
 ftpfrm.FTP1.Acti
 DoEvents
 DoEvents

 167

 DoEvents
 DoEvents
 DoEvents

t"

ers
ultipliers"

tWidth = 5895

5
Windows Default
tton Command3

"

Index = 42

utton Command2
It"

 = 4080

utton Command1
et to defaults"

 DoEvents
 DoEvents
 End If
 Next

Label1.Caption = "Files sen

End Sub

'' File multipliers.frm
VERSION 5.00
Begin VB.Form Multipli
 Caption = "Set M
 ClientHeight = 4605
 ClientLeft = 60
 ClientTop = 345
 Clien
 LinkTopic = "Form1"
 ScaleHeight = 4605
 ScaleWidth = 589
 StartUpPosition = 3 '
 Begin VB.CommandBu
 Caption = "Cancel
 Height = 375
 Left = 4080
 Tab
 Top = 4080
 Width = 1575
 End
 Begin VB.CommandB
 Caption = "Set
 Height = 375
 Left = 2160
 TabIndex = 41
 Top
 Width = 1575
 End
 Begin VB.CommandB
 Caption = "Res
 Height = 375
 Left = 240
 TabIndex = 40

 168

 Top = 4080
 Width = 1575
 End
 Begin VB.TextBox Text1

"

t1

"

t1

t1"

t1

t1"

t1

t1"

 Height = 285
 Index = 19
 Left = 4080
 TabIndex = 39
 Text = "Text1
 Top = 3480
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 285
 Index = 18
 Left = 4080
 TabIndex = 38
 Text = "Text1
 Top = 3120
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 285
 Index = 17
 Left = 4080
 TabIndex = 37
 Text = "Tex
 Top = 2760
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 285
 Index = 16
 Left = 4080
 TabIndex = 36
 Text = "Tex
 Top = 2400
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 285
 Index = 15
 Left = 4080
 TabIndex = 35
 Text = "Tex
 Top = 2040

 169

 Width = 735
 End
 Begin VB.TextBox Text1

5

"

t1
5

"

t1
5

"

t1
5

"

t1
5

"

 Height = 28
 Index = 14
 Left = 4080
 TabIndex = 34
 Text = "Text1
 Top = 1680
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 28
 Index = 13
 Left = 4080
 TabIndex = 33
 Text = "Text1
 Top = 1320
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 28
 Index = 12
 Left = 4080
 TabIndex = 32
 Text = "Text1
 Top = 960
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 28
 Index = 11
 Left = 4080
 TabIndex = 31
 Text = "Text1
 Top = 600
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 28
 Index = 10
 Left = 4080
 TabIndex = 30
 Text = "Text1
 Top = 240
 Width = 735

 170

 End
 Begin VB.TextBox Text1

5

"

t1
5

"

t1
5

t1"

t1
5

t1"

t1
5

t1"

 Height = 28
 Index = 9
 Left = 1320
 TabIndex = 29
 Text = "Text1
 Top = 3480
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 28
 Index = 8
 Left = 1320
 TabIndex = 28
 Text = "Text1
 Top = 3120
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 28
 Index = 7
 Left = 1320
 TabIndex = 27
 Text = "Tex
 Top = 2760
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 28
 Index = 6
 Left = 1320
 TabIndex = 26
 Text = "Tex
 Top = 2400
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 28
 Index = 5
 Left = 1320
 TabIndex = 25
 Text = "Tex
 Top = 2040
 Width = 735
 End

 171

 Begin VB.TextBox Text1
 Height = 285
 Index = 4
 Left = 1320

"

1"

 VB.TextBox Text1

t1"

t1
ght = 285

"

t1

ex = 0

 TabIndex = 24
 Text = "Text1
 Top = 1680
 Width = 735
 End
 Begin VB.TextBox Text1
 Height = 285
 Index = 3
 Left = 1320
 TabIndex = 23
 Text = "Text
 Top = 1320
 Width = 735
 End
 Begin
 Height = 285
 Index = 2
 Left = 1320
 TabIndex = 22
 Text = "Tex
 Top = 960
 Width = 735
 End
 Begin VB.TextBox Tex
 Hei
 Index = 1
 Left = 1320
 TabIndex = 21
 Text = "Text1
 Top = 600
 Width = 735
 End
 Begin VB.TextBox Tex
 Height = 285
 Ind
 Left = 1320
 TabIndex = 20
 Text = "Text1"
 Top = 240
 Width = 735
 End
 Begin VB.Label Label1

 172

 AutoSize = -1 'True
l"

ght = 195

 AutoSize = -1 'True
 Caption = "otheract"
 Height = 195
 Index = 18
 Left = 2880
 TabIndex = 18
 Top = 3120
 Width = 585
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "othersol"
 Height = 195
 Index = 17
 Left = 2880
 TabIndex = 17
 Top = 2760
 Width = 555
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "othervp"
 Height = 195
 Index = 16
 Left = 2880
 TabIndex = 16
 Top = 2400
 Width = 540
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "othersvp"
 Height = 195
 Index = 15
 Left = 2880
 TabIndex = 15

 Caption = "otherdrugso
 Hei
 Index = 19
 Left = 2880
 TabIndex = 19
 Top = 3480
 Width = 870
 End
 Begin VB.Label Label1

 173

 Top = 2040
 Width = 615
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "vol"
 Height = 195
 Index = 14
 Left = 2880
 TabIndex = 14
 Top = 1680
 Width = 210
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "beta"
 Height = 195
 Index = 13
 Left = 2880
 TabIndex = 13
 Top = 1320
 Width = 315
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "alpha"
 Height = 195
 Index = 12
 Left = 2880
 TabIndex = 12
 Top = 960
 Width = 390
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "diff"
 Height = 195
 Index = 11
 Left = 2880
 TabIndex = 11
 Top = 600
 Width = 210
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "hv"

 174

 Height = 195
 Index = 10
 Left = 2880
 TabIndex = 10
 Top = 240
 Width = 180
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "ret"
 Height = 195
 Index = 9
 Left = 120
 TabIndex = 9
 Top = 3480
 Width = 180
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "bp"
 Height = 195
 Index = 8
 Left = 120
 TabIndex = 8
 Top = 3120
 Width = 180
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "hen1"
 Height = 195
 Index = 7
 Left = 120
 TabIndex = 7
 Top = 2760
 Width = 360
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "hen"
 Height = 195
 Index = 6
 Left = 120
 TabIndex = 6
 Top = 2400
 Width = 270

 175

 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "svp"
 Height = 195
 Index = 5
 Left = 120
 TabIndex = 5
 Top = 2040
 Width = 255
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "vp"
 Height = 195
 Index = 4
 Left = 120
 TabIndex = 4
 Top = 1680
 Width = 180
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "dist"
 Height = 195
 Index = 3
 Left = 120
 TabIndex = 3
 Top = 1320
 Width = 240
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "newdrugsol"
 Height = 195
 Index = 2
 Left = 120
 TabIndex = 2
 Top = 960
 Width = 810
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "act"
 Height = 195
 Index = 1

 176

 Left = 120
 TabIndex = 1
 Top = 600
 Width = 225
 End
 Begin VB.Label Label1
 AutoSize = -1 'True
 Caption = "sol"
 Height = 195
 Index = 0
 Left = 120
 TabIndex = 0
 Top = 240
 Width = 195
 End
End
Attribute VB_Name = "Multipliers"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Private Sub Command1_Click()
'Default Button
a$ = App.Path & "\default_mult.txt"
Open a$ For Input As #1
For i = 1 To 20
 Line Input #1, a$
 Text1(i - 1) = Trim(a$)
Next
Close #1

End Sub

Private Sub Command2_Click()
a$ = App.Path & "\multipliers.dat"
b$ = "multiply_property("
aa$ = App.Path & "\last_multipliers.txt"
Open a$ For Output As #1
Open aa$ For Output As #2
For i = 1 To 20
 If Trim(Text1(i - 1).Text) = "" Then
 Close
 MsgBox "Multipliers cannot be empty."
 Exit Sub
 End If
 c$ = b$ & Trim(Label1(i - 1).Caption) & "," & Trim(Text1(i - 1).Text) & ")."

 177

 Print #1, c$
 Print #2, Trim(Text1(i - 1).Text)
Next
Close #1
Close #2
Me.Hide
End Sub

Private Sub Command3_Click()
Me.Hide
End Sub

Private Sub Form_Load()
a$ = App.Path & "\last_multipliers.txt"
Open a$ For Input As #1
For i = 1 To 20
 Line Input #1, a$
 Text1(i - 1) = Trim(a$)
Next
Close #1
End Sub

'' File newparam.frm
VERSION 5.00
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0"; "COMDLG32.OCX"
Begin VB.Form newparam
 Caption = "View Newparam"
 ClientHeight = 7680
 ClientLeft = 60
 ClientTop = 405
 ClientWidth = 10035
 LinkTopic = "Form1"
 ScaleHeight = 7680
 ScaleWidth = 10035
 StartUpPosition = 3 'Windows Default
 Begin VB.CommandButton Command3
 Caption = "View in Notepad"
 Height = 375
 Left = 5760
 TabIndex = 3
 Top = 7080
 Width = 1695
 End
 Begin MSComDlg.CommonDialog CommonDialog1
 Left = 7800
 Top = 7200

 178

 _ExtentX = 847
 _ExtentY = 847
 _Version = 393216
 End
 Begin VB.CommandButton Command2
 Caption = "Print"
 Height = 375
 Left = 3240
 TabIndex = 2
 Top = 7080
 Width = 1935
 End
 Begin VB.CommandButton Command1
 Caption = "Close"
 Height = 375
 Left = 1080
 TabIndex = 1
 Top = 7080
 Width = 1455
 End
 Begin VB.TextBox Text1
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 12
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 6855
 Left = 240
 MultiLine = -1 'True
 ScrollBars = 3 'Both
 TabIndex = 0
 Text = "newparam.frx":0000
 Top = 120
 Width = 9495
 End
End
Attribute VB_Name = "newparam"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
'This form just displays the newparam.sam file after reparam

 179

Private Sub Command1_Click()
 Unload Me
End Sub

Private Sub Command2_Click()
 Dim BeginPage, EndPage, NumCopies, Orientation, i
 ' Set Cancel to True.
 CommonDialog1.CancelError = True
 On Error GoTo ErrHandler
 ' Display the Print dialog box.
 CommonDialog1.ShowPrinter
 ' Get user-selected values from the dialog box.
 BeginPage = CommonDialog1.FromPage
 EndPage = CommonDialog1.ToPage
 NumCopies = CommonDialog1.Copies
 Orientation = CommonDialog1.Orientation
 For i = 1 To NumCopies
 Printer.Print " "
 Printer.Print " "
 Printer.FontSize = 14
 Printer.Print "Newparam Output " & " " & Date & " " & Time
 Printer.Print " "
 Printer.FontSize = 10
 Printer.Print Text1.Text
 Next
 Printer.EndDoc
 Exit Sub
ErrHandler:
 ' User pressed Cancel button.
 Exit Sub

End Sub

Private Sub Command3_Click()
 a$ = "notepad.exe " & App.Path & "\newparam.sam"
 Shell a$, vbNormalFocus

End Sub

Private Sub Form_Load()
 center Me
 'open the file and read it in one big bite
 a$ = App.Path & "\newparam.sam"
 Open a$ For Input As #11
 Text1.Text = Input(LOF(11), 11)

 180

 Close (11)

End Sub

'' File PasswordForm.frm
VERSION 5.00
Begin VB.Form PasswdForm
 Caption = "Set Passwords"
 ClientHeight = 2985
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 4110
 LinkTopic = "Form1"
 ScaleHeight = 2985
 ScaleWidth = 4110
 StartUpPosition = 3 'Windows Default
 Begin VB.CommandButton Command1
 Caption = "Set Password"
 Height = 375
 Left = 1320
 TabIndex = 7
 Top = 2400
 Width = 2295
 End
 Begin VB.TextBox Text2
 Height = 285
 IMEMode = 3 'DISABLE
 Left = 1320
 PasswordChar = "*"
 TabIndex = 6
 Top = 1920
 Width = 2295
 End
 Begin VB.TextBox Text1
 Height = 285
 IMEMode = 3 'DISABLE
 Left = 1320
 PasswordChar = "*"
 TabIndex = 5
 Top = 1560
 Width = 2295
 End
 Begin VB.ComboBox Combo1
 Height = 315
 ItemData = "PasswdForm.frx":0000

 181

 Left = 1320
 List = "PasswdForm.frx":0002
 TabIndex = 1
 Text = "Combo1"
 Top = 1080
 Width = 2295
 End
 Begin VB.Label Label4
 Alignment = 1 'Right Justify
 Caption = "Verify Pass"
 Height = 255
 Left = 240
 TabIndex = 4
 Top = 1934
 Width = 855
 End
 Begin VB.Label Label3
 Alignment = 1 'Right Justify
 Caption = "New Pass"
 Height = 255
 Left = 240
 TabIndex = 3
 Top = 1574
 Width = 855
 End
 Begin VB.Label Label2
 Alignment = 1 'Right Justify
 Caption = "Machine"
 Height = 255
 Left = 240
 TabIndex = 2
 Top = 1110
 Width = 855
 End
 Begin VB.Label Label1
 Alignment = 2 'Center
 Caption = "Change Password"
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 13.5
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty

 182

 Height = 375
 Left = 488
 TabIndex = 0
 Top = 240
 Width = 3135
 End
End
Attribute VB_Name = "PasswdForm"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

'This form is used to set encrypted passwords for the various machines
Private Sub Command1_Click()
 Dim i, a$
 'ensure the newpasswd and its verify are the same
 If Text1.Text = Text2.Text Then
 a$ = App.Path & "\" & "machines.txt"
 Open a$ For Output As #1
 Print #1, "*** DO NOT EDIT THIS FILE ****"
 Print #1, userRA(1)
 Print #1, userRA(2)
 Print #1, Mid$(domain, 2)
 For i = 1 To num_machines
 If Combo1.Text = dataRA(i, 0) Then
 'first encrypt the password
 a$ = Encrypt(Text1.Text, salt)
 'write the data
 Print #1, dataRA(i, 0)
 'this is the hexified encrypted password
 printhex (a$)
 Print #1, dataRA(i, 2)
 Print #1, dataRA(i, 3)
 a$ = Encrypt(a$, salt) 'for debug purposes
 Else
 Print #1, dataRA(i, 0)
 Print #1, dataRA(i, 1)
 Print #1, dataRA(i, 2)
 Print #1, dataRA(i, 3)
 End If
 Next
 Close
 'now refill everything for immediate use
 get_machines
 Beep

 183

 184

 Resp% = MsgBox("Password Set", vbExclamation, "Password Set")
 Else
 Beep
 Resp% = MsgBox("Password entry error", vbExclamation, "Password Mismatch")
 End If

End Sub

Private Sub Form_Load()
 Dim i
 center Me
 Me.Show
 'fill all the data in case it is not yet done
 get_machines
 Combo1.Clear
 'fill the drop down box
 For i = 1 To num_machines
 Combo1.AddItem dataRA(i, 0)
 Next
End Sub

	Raj-Thesis-Full.pdf
	Raj-Thesis-Full.pdf
	Introduction
	History of property prediction
	SPARC
	Current SPARC Capabilities
	SPARC Computational Procedure
	SPARC pKa calculation models
	Field Effects Model
	Resonance Effects Model

	Structural Input in SPARC
	Introduction
	Theory
	Procedure
	Discussion
	Conclusion
	Introduction
	Molecular Speciation
	Tautomer Equilibrium Constants
	SPARC Tautomer Models

	Hydration
	SPARC Process Integration
	Building Tautomer Network
	Integration of Hydration and Tautomerization
	Integration of Speciation, Hydration and Tautomer Network
	Thermodynamic Loops
	Microscopic Reactions

	Conclusion
	Introduction
	SMILES Grammar Review
	Conjugated ring systems
	Approach to solve cis-trans specification across ring breaks
	Influence of Cis-trans on Unique SMILES string generation
	Summary
	Introduction
	SPARC Server Manager
	Implementation
	Data Structures and Communication Protocol
	Scope for Future Improvements

	Multiple Remote Training Utility
	Conclusion

