ROLE OF AKT IN MYOFIBROBLAST DIFFERENTIATION LEADING TO PULMONARY VASCULAR REMODELING AND IDIOPATHIC PULMONARY FIBROSIS

by

MAHA MAHMOUD ABDALLA

(Under the Direction of Somanath P.R. Shenoy)

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an incurable, chronic and progressive lung disease with severely poor prognosis. The presence of pulmonary hypertension (PH) secondary to IPF is an independent risk factor for increased mortality. Alarmingly, there are no effective pharmacologic treatments for IPF, and lung transplantation remains the only effective option. Therefore, identification of novel therapeutic targets is critical in the hopes of devising new treatments. Persistent myofibroblasts (MFs) differentiation and excess extracellular matrix (ECM) accumulation are hallmark features of IPF. Recently, it has been shown that Akt is upregulated in IPF patients; however whether Akt is necessary for MFs remains unclear. This dissertation sought to 1) identify the role of Akt in MF differentiation leading to IPF, and 2) investigate the safety and efficacy of triciribine (TCBN), a selective Akt inhibitor, as a potential therapeutic option for IPF. The work presented in this thesis has been conducted using a combined approach of pharmacological, genetics, and functional assays. We first identified that Akt is a critical determinant of pathological MF differentiation and ECM expression as evident by lossand gain- of function studies, both in vitro and in vivo. Mechanistically, we found that Akt1 transcriptionally regulates αSMA synthesis, independent of mTOR. Furthermore, TCBN reversed TGFβ (pro-fibrotic cytokine) - and hypoxia-induced pulmonary fibrosis and vascular remodeling, compared to placebo and rapamycin. In contrast, rapamycin, which targets mTOR downstream of Akt, exacerbated fibrosis and vascular remodeling as evident by worsening interstitial fibrosis, micro-hemorrhage, and increased peripheral vascular rarefaction. Collectively, research efforts associated with this thesis 1) identified Akt as a novel target as it is crucial for MFs - central orchestrators of IPF; 2) determined novel anti-fibrotic and anti-remodeling properties of Triciribine; and 3) determined that rapamycin activates Akt via feedback mechanisms, which sheds light on the observed detrimental effects of everolimus, a rapamycin derivative, in IPF patients. In conclusion, our study is the first to determine the crucial role of Akt1 in IPF and associated vascular remodeling. Thus, selective Akt inhibition, not mTOR, may serve as a favorable therapeutic strategy in IPF.

INDEX WORDS:

Idiopathic pulmonary fibrosis, vascular remodeling, myofibroblast, extracellular matrix, Akt, mTOR, triciribine, rapamycin, chronic hypoxia, TGFβ

ROLE OF AKT IN MYOFIBROBLAST DIFFERENTIATION LEADING TO PULMONARY VASCULAR REMODELING AND IDIOPATHIC PULMONARY FIBROSIS

by

MAHA MAHMOUD ABDALLA
Pharm.D, MCPHS University, 2010

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA 2014

© 2014

Maha Mahmoud Abdalla

All Rights Reserved

ROLE OF AKT IN MYOFIBROBLAST DIFFERENTIATION LEADING TO PULMONARY VASCULAR REMODELING AND IDIOPATHIC PULMONARY FIBROSIS

by

MAHA MAHMOUD ABDALLA

Major Professor: Somanath P.R. Shenoy

Committee: Susan C. Fagan

Adviye Ergul Lakshman Segar Aaron Beedle

Electronic Version Approved:

Julie Coffield Interim Dean of the Graduate School The University of Georgia August 2014

DEDICATION

I dedicate this thesis to the Almighty God, my father, Mahmoud Abdalla, my mother, Magda Hussein, and my brothers, Mohamed and Mostafa, for being my pillars of support, my source of refuge, and my guiding light.

My parents have always been my foremost role models. They have instilled in us that, no matter the obstacles and challenges, persistence is the key to achieve your dreams and aspirations. They lead by example. Not succumbing to "what's meant to be," at the age of 6, my father was a young entrepreneur. In his early twenties, he traveled abroad and combined his business knowledge with his background as an agriculture engineer to design innovative farming techniques, which catapulted him to be a consultant.

Determined to break cultural norm at a time where girls did not continue their education and marry at a young age, my mother fought through social and cultural challenges.

Rain or shine, she was determined to attend every class. Ultimately, she went to college and became a lawyer. They have taught us that so long as you tried, took risks, embraced your failures and turned them into success, and did not settle for "what's meant to be," you will reach your dreams and live life with no regrets.

They have sacrificed so much to secure our future. They've taught us the meaning of family, discipline, independence, integrity, and ingenuity. They push us to look past any challenges that we may face as there is always a solution. "You just have to use your brain, and keep at it!" In essence, this is not just my Ph.D., but my family's Ph.D. "If you can imagine it, you can dream it. Dream it and you can become it."

ACKNOWLEDGEMENTS

The accomplishment of this dissertation is the result of approximately four years of work whereby I have been supported by many people. First, I sincerely thank my advisor, Dr. Somanath Shenoy, for guiding my development as a researcher, honing in my critical thinking skills, and for providing me with ample support and encouragement to grow as we developed and established new fields of study (pulmonary fibrosis and pulmonary vascular remodeling) in his laboratory. Thank you for giving me the opportunity to be part of your team, I have learned so much and I look forward to future collaborations. I would like to extend my appreciation to the members of the Shenoy Lab, especially Alanna Pruitt for her assistance and support. I also would like to especially thank Dr. Anna Goc for guiding and training me during my rotation in Dr. Shenoy's lab, and for being an exceptional colleague and a collaborator over the course of my Ph.D.

I am grateful to my committee members, Drs. Susan Fagan, Adviye Ergul, Lakshman Segar, and Aaron Beedle for their tremendous support and systematic guidance, excellent technical support, constructive criticism, and invaluable advice and encouragement throughout the course of my graduate career. I would like to thank the members of their labs for teaching me unique vascular assessment techniques, especially Dr. Roshini Prakash, Ma Handong, Dr. Mohammed Abdelsaid, and Dr. Rajkumar Pyla.

I would like to acknowledge my deep sense of gratitude and indebtedness to Drs. Carroll-Ann Goldsmith, Keith Foster, Abir Kanaan, Paul Belliveau, Susan Fagan, and

Azza El-Remessy for their invaluable mentorship and their "you can do it" attitude and encouragements; exemplary role models. Their dedication and passion for their work and students are qualities that I truly admire and hope to emulate as I progress in my career.

I would like to acknowledge my pharmacy students whom I have had the privilege of mentoring (LeeAnn, Erin, Samantha, Jessica, Bobby, Uvette, and Brian). Working with them was one of the most enjoyable experiences during my graduate studies, they have helped me become a better teacher and a mentor, and I was truly proud of them and to see the fruit of their labor as they presented posters at conferences including ACCP.

I thank Dr. Ahmed Alhusban for his continued support and motivation and invaluable advice. Through our scientific discussions, we constantly challenge each other to think outside the box and excel; it is a privilege to call him a friend.

I would like to thank my family and my extended family (Dolores, John, Heather, and Dayana), friends, and the MCPHS University and CET family for their support.

TABLE OF CONTENTS

Pa	ge
ACKNOWLEDGEMENTS	v
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	X
CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW	1
CHAPTER 2. AKT1 MEDIATES ALPHA-SMOOTH MUSCLE ACTIN EXPRESSION	
AND MYOFIBROBLAST DIFFERENTIATION VIA MYOCARDIN AND	
SERUM RESPONSE FACTOR	37
CHAPTER 3. TRICIRIBINE, A SELECTIVE AKT INHIBITOR, AMELIORATES TGF $\beta\text{-}$	
AND HYPOXIA INDUCED PULMONARY FIBROSIS AND VASCULAR	
REMODELING	81
CHAPTER 4. INTEGRATED DISCUSSION	29
CHAPTER 5. SUMMARY AND CLINICAL SIGNIFICANCE1	40
APPENDICES	45

LIST OF FIGURES

	Pa	ge
1-1	Akt1 mediated pathways	18
1-2	A schematic representation of our hypothesis	19
2-1	Akt1 is critical for αSMA expression in response to TGFβ	63
2-2	Akt1 is differentially utilized by TGFβ and bFGF in fibroblast to MF differentiation	n.
		65
2-3	TGFβ-induced αSMA expression is Akt1-dependent through SRF, independent	
	of mTOR	67
2-4	bFGF-induced αSMA down-regulation is mTOR dependent	69
2-5	Akt1 induces MF differentiation through enhanced expression of myocardin	
	and SRF	71
2-6	siRNA-mediated knockdown of myocardin and SRF ablates Akt1-induced SMA	
	expression and MF differentiation	73
2-7	Akt1-mediated expression αSMA and ED-A FN in response to TGF β is	
	independent of mTOR activity.	75
2-8	Akt inhibition reverses TGFβ-mediated contraction of fibroblast-populated	
	collagen lattices	77
3-1	Akt1 deficiency protects against hypoxia-induced pulmonary fibrosis and	
	remodeling, while its hyperactivation induces severe focal pulmonary fibrosis 1	07

3-2	Targeting Akt, not mTOR, attenuates MF differentiation and fibronectin	
	expression in human lung fibroblasts.	109
3-3	Triciribine ameliorates TGFβ-induced pulmonary fibrosis in vivo	111
3-4	Triciribine reverses TGF β -induced matrix protein expression and α SMA	
	synthesis.	113
3-5	Triciribine reverses hypoxia-induced pulmonary fibrosis and vascular	
	remodeling	115
3-6	Triciribine reverses hypoxia-induced right ventricular remodeling and hepatic	
	injury	117
3-7	Triciribine prevents hypoxia- and adTGFβ- induced vascular rarefaction	119
4-1	Schematic representation of the novel findings of this thesis	144
SUPF	PLEMENTARY FIGURES	
S2-1	Degree of gene silencing of SRF and Myocradin in myr-Akt1 NIH 3T3	79
S2-2	Schematic representation of the working hypothesis	80
S3-1	Akt2 partially compensated for genetic deletion of Akt1	121
S3-2	MF differentiation occurs at 72 h in TGFβ-stimulated human lung fibroblasts,	
	and gene expression changes due to Akt1 inactivation in MFs and IPF	
	fibroblasts	123
S3-3	Effect of Triciribine and rapamycin on organ and body weight during	
	hypoxia	125
S3-4	Effect of adTGFβ on the vasculature over a period of 4 and 8 days	127

LIST OF ABBREVIATIONS

4E-BP1 4E binding protein 1

adTGFβ Adenovirus transforming growth factor-β

αSMA Alpha-smooth muscle cell actin
bFGF Basic fibroblast growth factor

CFA Cryptogenic fibrosing alveolitis

CMC Carboxymethylcellulose

CTGF Connective tissue growth factor

DMEM Dulbecco's modified eagle's medium

DNA-PK DNA-dependent protein kinase

ECM Extracellular matrix

ED-A FN Fibronectin

EMT Epithelial to mesenchymal transition

FBS Fetal bovine serum

FDA Food and drug administration

FHLFs Fibrotic human lung fibroblasts

FOXO Forkhead family of transcription factors

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

GSK3 Glycogen synthase kinase 3

HLFs Human lung fibroblasts

IIP Idiopathic interstitial pneumonia

ILK1 Integrin-linked kinase 1

IPF Idiopathic pulmonary fibrosis

MF Myofibroblast

MAPK Mitogen activated protein kinase

MEFs Mouse embryonic fibroblasts

MPAP Mean pulmonary artery pressure

mTOR Mammalian target of rapamycin

NIH 3T3 Mouse embryonic fibroblasts cell line

p70S6K1 p70 ribosomal protein S6 kinase 1

PAH Pulmonary arterial hypertension

PDK1 Phosphoinositide-dependent kinase 1

PH Pleckstrin homology

PI3K Phosphatidylinositol-3 kinase

PIP2 Phosphatidylinositol-4,5-biphosphate

PIP3 Phosphatidylinositol-3,4,5-triphosphate

PKB (Akt) Protein kinase B

PP2A Protein phosphatase 2A

PRAS40 Proline-rich Akt substrate of 40 kDa

Rapa Rapamycin

Ras Rat sarcoma virus

RBD Ras binding domain

Src Steroid receptor co-activator

SRF Serum response factor

TCBN Triciribine

TGFβ Transforming growth factor-β

TSC Tuberous sclerosis protein

TSP1 Thrombospondin-1

UIP Usual interstitial pneumonia

VSMCs Vascular smooth muscle cell

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

IDIOPATHIC PULMONARY FIBROSIS

Idiopathic pulmonary fibrosis (IPF) is a progressive condition with severely poor prognosis. It is by definition a disease of unknown causes. It is categorized as a subgroup of idiopathic interstitial pneumonias (IIPs), and represents the most common and lethal form compared to other lung diseases [1, 2]. It is distinguished from other diseases by distinct histological hallmark feature of fibroblastic foci formation. Fibroblastic foci are characterized by aberrant fibroblast accumulation and activation into myofibroblasts, and excessive matrix deposition and remodeling leading to aberrant hypertrophic scarring of the lung tissue. The consequent loss of alveolar function and destruction of normal lung architecture leads to respiratory failure [1, 3-5].

There is no gold standard diagnostic test for IPF, where it remains a diagnosis of exclusion. Lung biopsy is one of the best diagnostic methods revealing a pattern that has been termed "usual interstitial pneumonia" (UIP). This was first recognized by Dr. Averil Liebow and colleagues of Yale University [6]. Furthermore, the pathogenesis of IPF remains elusive resulting in a lack of effective pharmacological options and treatments that have been shown to be either ineffective or worsen outcome in some patients. Lung transplant is the only effective approach and is limited to a select number of patients. Despite extensive research, the major reason for difficulties in identifying effective therapeutics is due to evolving concepts in IPF pathogenesis [1, 3, 4, 6-8].

Historical Perspective

In 1866, Dr. Austin Flint reported a condition termed "chronic pneumonitis" observed in one patient and described the rapid deterioration in health, the bulbous form of the fingertips, and noted that this condition terminated fatally [9]. This was probably the first recorded case of IPF, also formerly known as *cryptogenic fibrosing alveolitis* (CFA).

It was not until 1944 that the topic of chronic interstitial pneumonia and the pathogenesis of IPF were revisited after case reports of four patients with IPF, also coined the Hamman-Rich Syndrome. These descriptions were published by Drs. Louis Hamman and Arnold Rich who described the clinical, radiographic, and pathologic features of four patients who succumbed to pulmonary insufficiency between 1931 and 1943 at Johns Hopkins Hospital [10, 11].

They described that the duration of the disease ranged from one to six months and described that at autopsy the sections showed "diffuse thickening of the alveolar walls, and there were also small scars which had obliterated the architecture entirely." They also noted pathogenic mediators and implicated the presence of "wandering cells" including fibroblasts and presence of collagen fibers. For the next, approximately, five decades, most clinicians associated this syndrome with IPF. However, the fundamental reason there has been a lot of controversies surrounding this syndrome and diagnosis of IPF is the duration of this disease (the first three cases were seen in the 1930s exhibited symptoms for fairly short duration of one to two months, the fourth case was described 10 years later and the patient complained of symptoms of four months duration)[10, 11]. Furthermore, many have faced challenges in trying to understand,

diagnose, and correlate different histopathologic features and symptoms to this syndrome. It was not until the mid to late 1960s, also known as "modern era of interstitial lung disease," that interstitial pneumonia was classified into five categories based on histopathologic features by Liebow and Carrington which included usual, bronchiolitis, desquamative, lymphoid, and giant cell interstitial pneumonias. During this era, Dr. Scadding coined the term "alveolitis" and along with Liebow and colleagues became the first to correlate the histologic pattern of honeycomb with poor prognosis in UIP. Finally, after 46 years, the Hamman-Rich Syndrome is now reclassified as an acute interstitial pneumonia rather than the previous misclassification of UIP or IPF. Then, in 2002 the American Thoracic Society, reclassified interstitial pneumonia and added a new category IIP and categorized IPF as a subgroup [1, 6, 12]

The most influential period that catapulted the pursuit to understand the molecular and overall pathogenesis of IPF was generated in 1970s and 80s. Dr. Ron Crystal and colleagues proposed the "inflammation theory" where IPF began as alveolitis and progressed to interstitial fibrosis based on the results from samples collected from patients with interstitial lung disease at the Pulmonary Branch of the National Heart, Lung, and Blood Institute. They strongly recommended that therapeutic interventions should be targeted at the inflammatory phase rather than the fibrotic one. They further confirmed that by discussing the success of corticosteroid in patients under the study of Dr. Carrington and colleagues [6, 12].

However, this study is limited by the fact that it was not a randomized, placebocontrolled study, and patients enrolled had early stage IPF. Furthermore, patients with advanced IPF and/or UIP failed to respond to corticosteroid therapy. As for the hypothesis, it has since fallen out of favor for multiple reasons. Mainly, patients with early stage IPF do not exhibit evidence of significant interstitial or alveolar inflammation. Furthermore, Fleischman and colleagues (1971) and Adamson and Bowden (1984) were the first to show that PF exhibits spatial heterogeneity and varying degrees of inflammation. More importantly, Adamson and Bowden suggested that inflammation and lung fibrosis are not invariably linked and demonstrated an association between fibrosis and enhanced synthesis of extracellular matrix (ECM) proteins, collagen and elastin [13, 14]. Later, Munger and colleagues confirmed that fibrosis and inflammation are two independent events [15]. Moreover, the presence of fibrotic zones, termed fibroblastic foci which is composed of excess myofibroblast accumulation and ECM deposition, has been identified as a major histo-pathological hallmark and a chief diagnostic criterion of IPF and correlates with poor prognosis [16, 17]. Collectively, there has been a shift in our understanding of IPF pathogenesis and that abnormal wound healing and fibrosis constitute primary events in addition to chronic inflammation [3, 8].

Epidemiology

IPF has the worst mortality and represents the most common and lethal form of interstitial lung diseases. It is associated with high mortality of 50% within 3 to 5 years after diagnosis. In cases of acute exacerbations, ineffective therapeutics, or IPF complicated with pulmonary arterial hypertension, the mortality rate has been reported at 80% after diagnosis. Furthermore, it has worse survival rate compared to other cancers including breast, prostate, and colon cancers, with median survival rate of 2 to 3 years [2, 5, 18].

Due to the lack of uniform definition and classification of IPF over the years, defining an exact prevalence and incidence rate has been a challenge. Estimated to affect 5 million people worldwide, it is prevalent in approximately 80,000 people in the United States (U.S). The incidence was estimated to be 10.7 cases per 100,000 in men and 7.4 cases per 100,000 in women in the U.S. Another study estimated the incidence to be between 6.8 and 16.3 per 100,000 people in U.S. A study from the United Kingdom estimated the incidence between 4.6 and 7.4 per 100,000 and estimated an annual increase of 11% between 1991 and 2003; it was not attributed to aging [1]. Those at risk include smokers, those exposed to environmental and occupational factors such as asbestos, and those with infections. IPF is more common in men where it is attributed with rapid progression and worse survival than women. IPF is also common in patients between the ages of 40 to 70 years. Mortality is greater among Caucasians than African American or Hispanics, and the risk of death increases with age [1, 5].

Diagnosis

Since the definition of IPF has been refined, the diagnostic criteria have changed several times in the past decade. However, there is no gold standard diagnostic method; it remains an exclusion diagnosis. Even more challenging, the clinical manifestations in IPF are general and can often be misdiagnosed for other pulmonary and heart conditions. IPF patients often present with progressive dyspnea, dry-hacking cough, fatigue and malaise, chest pain, cyanosis, and digital clubbing [1].

The diagnosis of IPF requires 1) the exclusion of other causes of pulmonary disease based on chest X-ray and patient history including medical, social, and occupational history, (2) the presence of UIP pattern, specifically, honeycombing changes (which is a cyst-like space surrounded by fibrotic tissue predominately in lower lobes) which can be detected in high-resolution computed tomography (HRCT), and (3) the presence of fibroblasts foci (areas of highly myofibroblasts accumulation with positive alpha smooth muscle like actin (αSMA) staining which is detected in surgical lung biopsy [1, 8, 19]. This histological characteristic has led to the new era of myofibroblasts and abnormal wound healing as a driving force in IPF [20, 21].

COMPLICATION: PULMONARY ARTERIAL HYPERTENSION

The presence of pulmonary arterial hypertension (PH) secondary to IPF is an independent risk factor for increased mortality [1]. It is prevalent in 32% to 85% of IPF patients. PH is a rapidly progressive, incurable and fatal disease that is characterized by progressive vascular remodeling and proliferation leading to severe vascular occlusion resulting in right ventricular-heart failure. PH is defined as mean pulmonary arterial pressure (MPAP) of ≥ 25 mm HG and is associated with marked loss of peripheral pulmonary arteries on pulmonary angiogram. It is associated with poor prognosis that is usually fatal within 3 years post diagnosis. Despite the improvements in its management, mortality rate remains high; 5-year mortality rate of 50%, that is worsened secondary to IPF [22, 23]. The diagnosis of PH in IPF patients poses a great challenge as there is no gold standard to diagnose it and clinical manifestations usually resemble those of other pulmonary and heart diseases. However, the most reliable diagnosis is right heart catheterization. Although there have been major strides in understanding its

pathogenesis and symptomatic therapies, there is still a need for an effective therapy to either prevent or reverse PH progression [23, 24].

The pathogenesis of PH is complex and multifactorial and remains largely undefined. A hallmark of PH is plexiform lesions (PLs) characterized by pulmonary vascular remodeling with features of medial hypertrophy, intimal fibrosis, adventitial proliferation of SMCs and SMC-like cells (myofibroblasts) and thickening leading to marked occlusion of pulmonary arteries (PAs) [25, 26]. Histological features show marked vascular remodeling as evident by peripulmonary artery adventitial thickening and muscularization and hypertrophy of smooth muscle cells in distal pulmonary arterioles. A potent contributor to vascular remodeling is the persistent differentiation of myofibroblasts and accumulation in all three layers (intima, media, and adventitia) [26-29]. Furthermore, vascular regression usually occurs in areas of dense fibrosis in IPF lung [24, 30]. Similar to IPF, there is a lack of curative pharmacologic options [31]

IPF TREATMENT

Currently, there is a lack of FDA approved pharmacologic treatments for IPF with proven beneficial effects on survival [1, 5]. Conventional therapies such as corticosteroids were the first line for more than four decades, but are of unproven efficacy and are associated with significant toxicities and worsened outcomes in most IPF patients [32-34]. Other therapies including azathioprine [35, 36] and cyclophosphamide [37] provide only marginal and temporary benefit or no benefit in most patient. Notably, conventional therapeutics (anti-inflammatories) were based on studies that had major limitations such as lack of randomized placebo-controls,

variations in diagnoses and classifications, and variations in disease severity. Thus, the nature of the disease being investigated was critiqued. Recent trials with novel drugs such as etanercept, imatinib, interferon-gamma, and acetylcysteine have shown no significant effect on disease progression or survival and in some studies, have even worsened outcome especially when combined with prednisone [5]. Noteworthy, clinical trials investigating the safety and efficacy of pirfenidone, an anti-fibrotic, antiinflammatory, and anti-oxidant agent that targets TGFB, have demonstrated promising results leading to its approval in Japan, Europe, China, and Mexico and is pending approval in the United States [139-142]. Recently, a Phase 3 randomized placebocontrolled trial involving 555 patients with IPF demonstrated the efficacy of pirfenidone as evident by reduced disease progression, improved lung function, exercise tolerance and progression free survival [139]. Furthermore, nintedanib, a multi-target tyrosine kinase that modulates vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) signaling, has also shown beneficial effects in IPF [143-144]. In INPULSIS trials (phase 3, randomized, double-blind, placebo controlled trials involving 1066 patients), nintedanib treated IPF patients showed significantly improved forced vital capacity over the 52-week trial period [144].

Lung transplantation remains the only non-medicinal therapy with proven effect on survival in patients with IPF refractory to medical therapy, severe functional impairment, or oxygen dependency [1]. Lung transplantation reduced the risk of death by 75% and improved quality of life. The 5-year survival rate is between 40% and 60% [38, 39]. Unfortunately, there are major limitations such as high mortality rate on the waiting list. Waiting on transplant list may take up to 3 years due to shortage of donor

organs and many IPF patients succumb to the disease while awaiting transplantation [40].

PATHOGENESIS

Despite extensive research and improvement in our knowledge, IPF and PH pathogenesis remains elusive, controversial, and failed to provide a curative therapeutics to this deadly diseases since it was first reported in 1860s [7, 28].

One of the fundamental hypotheses in IPF pathogenesis is the deregulated response to lung injury in which the alveolar epithelium undergoes pathological deregulation by myofibroblasts, ultimately leading to fibrosis [8, 21]. Physiological reconstruction of connective tissue following lung injury is composed of distinct phases (1) activation of coagulation pathways and fibrin and ECM deposition, (2) inflammatory cell migration to the site of injury and release cytokines and chemokines (TGFβ and CTGF among others), (3) recruits fibroblasts migration and activation into myofibroblasts to secrete ECM, (4) resolution by termination of stress response signal which, although unclear, occurs in part by massive apoptosis of myofibroblasts that occurs after physiological tissue repair and re-epithelialization [41].

On the other hand, in IPF, persistent myofibroblast differentiation and hypertrophic scar tissue formation is found under a layer of type II alveolar epithelial cells (AECs) leading to loss of lung elasticity and severely impaired gas exchange, ultimately severe decline in lung function. In IPF, repetitive alveolar wall injury results in abnormal re-epithelialization, continuous AEC apoptosis releases chemotactic factors and mitogens that contribute to persistent fibroblast migration and proliferation,

myofibroblast differentiation, and excessive ECM deposition leading to abnormal alveolar remodeling and scarring. In advanced stage IPF, the alveolar structure is completely replaced with proliferative fibroblast, myofibroblasts, and ECM components such as collagen and fibronectin. This ultimately leads to destruction of lung architecture and terminal dysfunction [4, 41-43].

MYOFIBROBLASTS AND THEIR ROLE IN IPF AND PH

Myofibroblasts (MFs) are the central orchestrators of this disease and its complication. MFs are instrumental in the deposition of excessive extracellular matrix, leading to hypertrophic scar tissue formation [21, 42-44]. Furthermore, they are potent contributors to the vascular remodeling that occurs in the adventitial, medial, and intimal layers of pulmonary arteries [45]. The source of MFs in lung is still debatable, but mounting evidence has demonstrated the heterogeneous origin of MFs. They can originate from resident fibroblasts, fibrocytes, VSMCs, endothelial cells, pericytes, and mesenchymal stem cells. Mounting evidence has shown that, in IPF and PH, transforming growth factor-β (TGFβ) expression is significantly up-regulated in the microenvironment and plays a major role in triggering fibrogenesis by stimulating fibroblasts to differentiate into MFs, which are more contractile and have more profibrotic potential than their originators [15, 28, 46]. MFs differentiate by altering their morphology through the formation of alpha-smooth muscle like actin (αSMA) positive stress fibers; this has also been shown in hypoxia animal models [47]. Thus, MFs exhibit a contractile VSMC-like phenotype, excess ECM protein production (collagen type I, III, IV, V, and VI, fibronectin, specifically, fibronectin splice variant ED-A), and resistance to apoptosis. These constitute key components of a vicious cycle where

ECM secretion infers MF differentiation, in part, via sheer mechanical stress or activation of latent TGF β found in assembled fibronectin. MFs promote their continuous differentiation and excessive ECM deposition, resistance to apoptosis, in part, by upregulating survivin and PI3K/Akt pathway and lacking the fas ligand thus evading the immune response. Furthermore, MFs induce apoptosis, deregulated proliferation and ineffective migration of AECs. Collectively, this leads to the rampant formation of MFs, replacing the alveolar interstitium, which leads to impaired gas exchange and ultimately fibrosis [20, 21, 42, 44, 45].

Currently, the focus has been geared toward understanding molecular mechanisms governing α SMA synthesis in order to the apeutically modulate MF differentiation. Numerous studies have extensively characterized Rho-dependent α SMA synthesis in VSMCs and myofibroblasts, and demonstrated that Rho regulates the transcriptional activation of SRF encoding α SMA synthesis [5, 28, 48] [49]. However, the role of Akt has yet to be established in MFs.

THE ROLE OF TGFβ1 SIGNALING IN PHYSIOLOGY AND DISEASE

Transforming growth factor $\beta1$ (TGF $\beta1$) is a key mediator in wound repair and IPF pathogenesis. TGF $\beta1$ is a pleiotropic cytokine and a member of the TGF β superfamily, which is a highly conserved group of cytokines, and is ubiquitously expressed by all cells and tissues. It is essential in activating a myriad of signaling cascades that modulate diverse cellular processes in embryonic development and adult tissue homeostasis (reviewed in [50]). During wound healing, TGF β promotes epithelial apoptosis [51], epithelial-to-mesenchymal transition (EMT) [52], migration [53], ECM

production [54], fibroblast to myofibroblast differentiation [21, 55]. In IPF, TGF β is markedly upregulated in IPF patients and murine models [56-58]. Overexpression of TGF β induced severe persistent fibrosis [59, 60], while blocking its signaling ameliorates pulmonary fibrosis in murine models ([61, 62]. Modulating TGF β signaling is currently under evaluation in clinical trials. Although a phase I study of GC1008, an antibody against TGF β , has been completed in IPF patients, the results are not yet available (Clinicaltrials.gov identifier NCT00125385). A second trial, currently in recruiting phase, aims to evaluate the effects of a humanized monoclonal antibody against $\alpha\nu\beta6$ integrin, a key activator of TGF β , in IPF patients (clinicaltrials.gov identifier NCT01371305).

THE ROLE OF PI3K/AKT PATHWAY IN PHYSIOLOGY AND DISEASE

PI3K

Phosphatidylinositol 3 kinases (PI3Ks) are a family of intracellular lipid kinases divided into three classes (I-III) according to their structure and substrate specificity. The prototypical class I PI3K is a dimeric enzyme that consists of catalytic and regulatory subunits. Class IA is mainly comprised of p110 α , p110 β and p110 δ catalytic subunit that forms a heterodimer with p85 regulatory subunit [63, 64], PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity}. Class IB consists of p110 γ catalytic subunit and regulatory subunits p84 and p101. It has been shown that, in addition to the ubiquitously expressed p110 α and p110 β , p110 δ and p110 γ are functionally expressed in human lung fibroblasts and play a role in sustaining TGF β -induced proliferation and differentiation [65], Inhibition of PI3K prevents the proliferation

and differentiation of human lung fibroblasts into myofibroblasts: the role of class I P110 isoforms}. Pl3Ks can be activated by extracellular stimuli by hormones or cytokines such as TGF β , and transmit signals from G-protein-coupled receptors as well as receptor tyrosine kinases. Intracellular proteins such as Ras and Rho family small GTPases can also activate Pl3K pathway. Ras has been shown to directly activate the lipid kinase activity of p110 α [66, 67], p110 γ [68, 69], and p110 δ [70] by mechanism including binding to N-terminal Ras binding domain (RBD) and modulating the regulatory p101 subunit. Rac and CDC42, members of The Rho family GTPases, have been shown to directly activate lipid kinase activity of p110 β via its RBD [71].

Akt activation

Since its discovery as an oncogene of transforming murine leukemia virus AKT8 [72-74], Akt has emerged as one of the most important and versatile protein kinases at the core of physiological processes and disease pathogenesis. Thus, it is the most studied signaling molecule downstream of PI3K due to its regulatory role on a plethora of cellular functions. Activated PI3Ks catalyze the phosphorylation of their substrate PIP2 (phosphatidylinositol-4,5-biphosphate) into its triple-phosphorylated form PIP3 (phosphatidylinositol-3,4,5-triphosphate). PIP3, an important second messenger molecule, recruits proteins containing pleckstrin homology domains to the plasma membrane. Thus, PIP3 serves as a docking site for 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt, where the former phosphorylates Akt at Thr308 leading to partial activation of Akt [75, 76].

Partial activation of Akt is sufficient to activate mTORC1 via direct phosphorylation and inactivation of tuberous sclerosis protein 2 (TSC2), and proline-rich Akt substrate of 40 kDa (PRAS40). TSC2 modulates protein translation and cell growth by negatively regulating mTORC1 when it forms a physical and functional complex with TSC1 [77-79]. TSC1-TSC2 complex inhibits p70 ribosomal protein S6 kinase 1 (p70S6K1) and activates eukaryotic initiation factor 4E binding protein 1 (4E-BP1) [80]; both are substrates of mTORC1. Phosphorylation and subsequent inactivation of TSC2 by Akt destabilizes its interaction with TSC1, thereby activating mTORC1 pathway. Similarly, PRAS40, which is a component and a substrate of mTORC1, is a negative regulator of mTORC1 activity [81-83]. Phosphorylation of PRAS40 by Akt or mTORC1 leads to its dissociation from raptor, thereby removing the inhibitory constraint on mTORC1 activity [84].

Full activation of Akt requires phosphorylation at Ser473 via autophosphorylation [85], mTORC2 [86], DNA-dependent protein kinase (DNA-PK) [87, 88], integrin-linked kinase 1 (ILK1) [89], or mitogen-activated protein kinase-activated protein kinase 2 [90]. Once active, Akt phosphorylates and modulates a complex network of substrates such as GSK-3, mTOR, TSC, FOXO as well as cross-talk with other signaling pathways such as p38 MAPK and Rac –PAK [91-97]. Subsequently, Akt regulates a plethora of cellular processes including survival, cell cycle progression, cell growth, proliferation, and migration, metabolism, and angiogenesis (**Figure 1**) [86, 98-102].

Regulating Akt activation is a complex and finely tuned process. Several groups have shown that inhibiting protein phosphatase 2A (PP2A) resulted in increased Akt phosphorylation and activation (Sato 2000; Ugi 2004; Liao 2004; Trotman 2006;

Vereshchagina 2008; Padmanabhan 2009). PP2A directly represses Akt signaling by maintaining Akt in an inactive state through preferential dephosphorylation at Thr308 and Ser473 [103-107]. Newton's group identified that Akt is a direct substrate of PH domain and leucine rich repeat protein phosphatases (PHLPP) family [108, 109]. In addition to identifying that PHLPP regulates Akt on Serine residue not Thr308, they have also identified that PHLPP1 and PHLPP2 differently regulate the phosphorylation state of specific Akt isoforms. While both can modulate Akt3, PHLPP1 regulates Akt2, and PHLPP2 regulates Akt1 [109]. The lipid protein phosphatase and tensin homologue on chromosome ten (PTEN) is a potent regulator of Akt activation. PTEN indirectly inactivates Akt by dephosphorylating PIP3 into PIP2, thereby switching off PI3K/PIP3 mediated phosphorylation and activation of Akt [106, 110, 111].

Akt isoforms

Akt, also known as protein kinase B (PKB), is a multi-functional protein kinase that consists of three mammalian isoforms Akt1 (PKBα), Akt2 (PKBβ), and Akt3 (PKBγ) encoded for by three different genes AKT1, AKT2, and AKT3. Their structure is highly conserved and shares three functional domains: an amino terminal pleckstrin homology (PH) domain, a kinase domain, and a carboxy terminal regulatory domain [98].

The diversity of Akt signaling may in part be due to the isoform-specific functions. Genetic ablation of Akt1 in mice results in increased perinatal mortality, decreased body weight by 20 to 30%, growth retardation, and decreased organ size [112-114]. We have previously shown that Akt1 deficient mice exhibit vascular fragility and ECM abnormalities in the skin as well as impaired ECM remodeling [115]. Akt2 deficient mice

exhibit insulin resistance and type II diabetes like syndrome, whereas Akt1 deficient mice maintain normal glucose homeostasis [112, 116]. Conversely, Akt3 has been shown to play a critical role in postnatal brain development. Akt3 deficient mice exhibit a reduction in brain size and weight, which is partially due to decreased cell size and number, but maintain body weight and glucose homeostasis [117, 118]. This suggests all three isoforms have differential and non-redundant functions.

Interestingly, combined ablation of Akt isoforms is detrimental as evident by the embryonic lethality in Akt1/Akt3 null mice [119]. Similarly, Akt1/Akt2 ablation results in neonatal mortality, dwarfism, defects in skin, bone and skeletal muscle development, and impaired adipogenesis [120]. This suggests functional redundancy and overlap between isoforms. Interestingly, maintaining Akt1 despite combined genetic ablation of Akt2 and Akt3 (either in Akt2^{-/-} /Akt3^{-/-} null mice or in Akt1^{+/-} Akt2^{-/-} Akt3^{-/-} mice) did not result in mortality or organ dysfunction [121]. This suggests that Akt1 plays a more dominant role in embryonic development and survival.

PI3K/Akt pathway in disease

The PI3K/Akt pathway is deregulated in fibrotic diseases including IPF. Akt is upregulated in fibroblastic foci of IPF lung tissue [122] and in IPF fibroblasts [123]. Increased Akt activation correlated with increased TGFβ signaling [124, 125] and deregulated regulatory pathways such as decreased PTEN function. After wound healing, PTEN activity is maintained to suppress PI3K/Akt signaling which is an effective physiologic mechanism to restrain fibroblast proliferation after injury thereby avoiding hypertrophic scar formation [126]. However, pathologic fibroblast proliferation,

differentiation, resistance to apoptosis, and increased matrix deposition correlated with Akt activation and aberrant PTEN activity [127-136]. Moreover, inhibiting PI3K or Akt activation abolished bleomycin-induced fibroblast proliferation and ECM production [137]. Interestingly, Conte and colleagues demonstrated that PI3K p110 γ is upregulated in fibroblastic foci and in fibroblasts of IPF patients [138], and that PI3K plays a major role in sustaining TGF β -mediated increase in cell proliferation and differentiation, and ECM production, independent of Akt. Compared to Akt inhibition, silencing PI3K p110 α /p110 γ gene expressions markedly reduced TGF β -induced proliferation, differentiation, and collagen production without affecting Akt Ser473 phosphorylation state [65]. Thus, whether Akt plays a contributory or a causal role in mediating fibroblast activation and differentiation and IPF progression requires further examination.

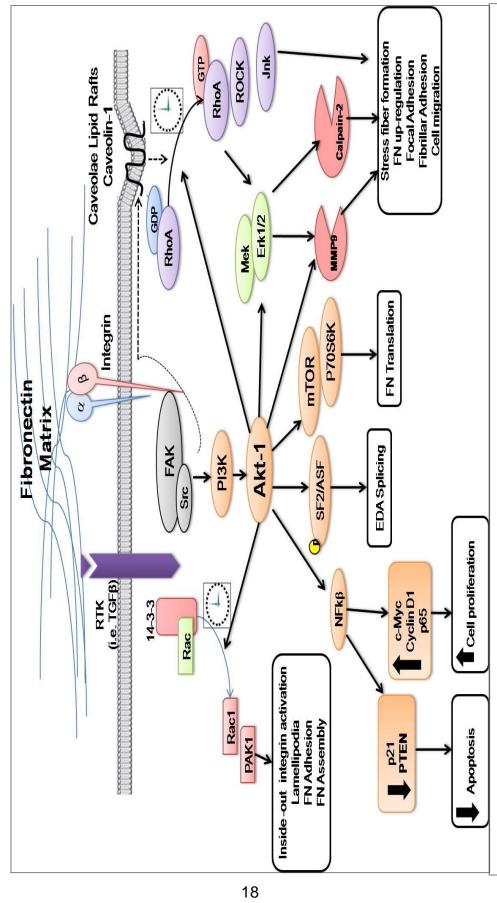
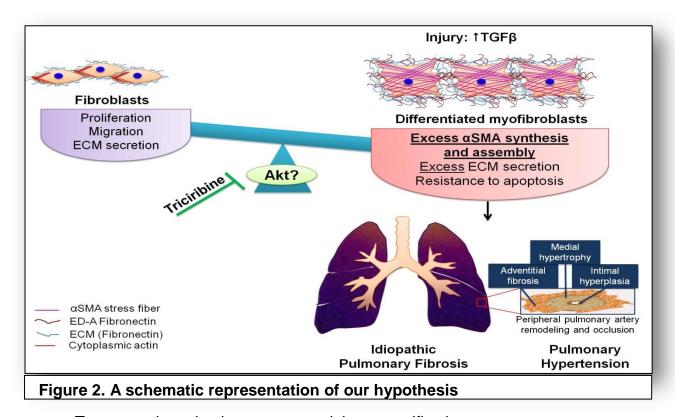



Figure 1. Akt1 mediated pathways. Adapted from Abdalla M et al. Pathways Regulating the Secretion and Assembly of Fibronectin Matrix: an Update. Book Chapter 7. NOVA (Nova Science Publishers); 2012; pp. 155-190.

Hypothesis and Aims of the Thesis

The overall aims of this thesis are to 1) identify the role of Akt in MF differentiation leading to IPF and secondary PH, and 2) investigate the efficacy of Triciribine, a selective Akt inhibitor, as a potential therapeutic option for IPF and PH.

To test our hypothesis, we proposed three specific aims:

- Test the hypothesis that Akt mediates αSMA expression in MF differentiation through transcription factor SRF in vitro
- 2. Test the hypothesis that Akt is integral for hypoxia-induced pulmonary remodeling *in vivo*
- 3. Test the hypothesis that Triciribine inhibits the progression of IPF in response to chronic hypoxia and adenovirus-TGFβ *in vivo*

REFERENCES

- 1. Raghu, G., et al., *An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management.*Am J Respir Crit Care Med, 2011. **183**(6): p. 788-824.
- 2. du Bois, R.M., An earlier and more confident diagnosis of idiopathic pulmonary fibrosis. Eur Respir Rev, 2012. **21**(124): p. 141-6.
- 3. Datta, A., C.J. Scotton, and R.C. Chambers, *Novel therapeutic approaches for pulmonary fibrosis*. Br J Pharmacol, 2011. **163**(1): p. 141-72.
- 4. du Bois, R.M., Strategies for treating idiopathic pulmonary fibrosis. Nat Rev Drug Discov, 2010. **9**(2): p. 129-40.
- 5. Rafii, R., et al., *A review of current and novel therapies for idiopathic pulmonary fibrosis*. J Thorac Dis, 2013. **5**(1): p. 48-73.
- 6. Noble, P.W. and R.J. Homer, *Back to the future: historical perspective on the pathogenesis of idiopathic pulmonary fibrosis.* Am J Respir Cell Mol Biol, 2005. **33**(2): p. 113-20.
- 7. Selman, M., T.E. King, and A. Pardo, *Idiopathic pulmonary fibrosis: prevailing* and evolving hypotheses about its pathogenesis and implications for therapy.

 Ann Intern Med, 2001. **134**(2): p. 136-51.
- 8. King, T.E., Jr., A. Pardo, and M. Selman, *Idiopathic pulmonary fibrosis*. Lancet, 2011. **378**(9807): p. 1949-61.
- 9. Flint, A., A Treatise on the Principles and Practice of Medicine. Philadelphia Henry C. Lea 1866. Chapter 5: p. 170 -171.

- Hamman, L. and A.R. Rich, Fulminating Diffuse Interstitial Fibrosis of the Lungs.
 Trans Am Clin Climatol Assoc, 1935. 51: p. 154-63.
- 11. Hamman, L. and A. Rich, *Acute diffuse interstitial fibrosis of the lungs.* Bull Johns Hopkins Hosp 1944. **74**: p. 177 212.
- 12. Kim, R. and K.C. Meyer, *Therapies for interstitial lung disease: past, present and future.* Ther Adv Respir Dis, 2008. **2**(5): p. 319-38.
- 13. Fleischman, R.W., et al., *Bleomycin-induced interstitial pneumonia in dogs*.

 Thorax, 1971. **26**(6): p. 675-82.
- 14. Adamson, I.Y., *Drug-induced pulmonary fibrosis*. Environ Health Perspect, 1984.55: p. 25-36.
- 15. Munger, J.S., et al., The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 1999. **96**(3): p. 319-28.
- 16. Nicholson, A.G., et al., *The relationship between individual histologic features* and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2002. **166**(2): p. 173-7.
- 17. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med, 2000.

 161(2 Pt 1): p. 646-64.
- Schwartz, D.A., et al., Determinants of survival in idiopathic pulmonary fibrosis.
 Am J Respir Crit Care Med, 1994. 149(2 Pt 1): p. 450-4.

- 19. Flaherty, K.R., et al., *Radiological versus histological diagnosis in UIP and NSIP:* survival implications. Thorax, 2003. **58**(2): p. 143-8.
- 20. Hinz, B. and G. Gabbiani, *Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives.* F1000 Biol Rep, 2010. **2**: p. 78.
- 21. Hinz, B., et al., Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol, 2012. **180**(4): p. 1340-55.
- 22. O'Callaghan, D.S. and M. Humbert, *A critical analysis of survival in pulmonary arterial hypertension*. Eur Respir Rev, 2012. **21**(125): p. 218-22.
- 23. McLaughlin, V.V., et al., ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol, 2009. **53**(17): p. 1573-619.
- 24. Pitsiou, G., D. Papakosta, and D. Bouros, *Pulmonary hypertension in idiopathic pulmonary fibrosis: a review.* Respiration, 2011. **82**(3): p. 294-304.
- 25. Smith, P. and D. Heath, *Electron microscopy of the plexiform lesion*. Thorax, 1979. **34**(2): p. 177-86.
- 26. Morrell, N.W., et al., Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol, 2009. **54**(1 Suppl): p. S20-31.
- 27. Schermuly, R.T., et al., *Mechanisms of disease: pulmonary arterial hypertension.*Nat Rev Cardiol, 2011. **8**(8): p. 443-55.

- 28. Archer, S.L., E.K. Weir, and M.R. Wilkins, *Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies.*Circulation, 2010. **121**(18): p. 2045-66.
- 29. Sitbon, O. and N. Morrell, *Pathways in pulmonary arterial hypertension: the future is here.* Eur Respir Rev, 2012. **21**(126): p. 321-7.
- 30. Farkas, L., et al., *Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors.* Am J Respir Cell Mol Biol, 2011. **45**(1): p. 1-15.
- 31. Smith, J.S., et al., *Pulmonary Hypertension and Idiopathic Pulmonary Fibrosis-A Dastardly Duo.* Am J Med Sci, 2013.
- 32. Douglas, W.W., J.H. Ryu, and D.R. Schroeder, *Idiopathic pulmonary fibrosis: Impact of oxygen and colchicine, prednisone, or no therapy on survival.* Am J

 Respir Crit Care Med, 2000. **161**(4 Pt 1): p. 1172-8.
- Davies, H.R., L. Richeldi, and E.H. Walters, Immunomodulatory agents for idiopathic pulmonary fibrosis. Cochrane Database Syst Rev, 2003(3): p. CD003134.
- 34. Gay, S.E., et al., *Idiopathic pulmonary fibrosis: predicting response to therapy and survival.* Am J Respir Crit Care Med, 1998. **157**(4 Pt 1): p. 1063-72.
- 35. Raghu, G., et al., Azathioprine combined with prednisone in the treatment of idiopathic pulmonary fibrosis: a prospective double-blind, randomized, placebo-controlled clinical trial. Am Rev Respir Dis, 1991. **144**(2): p. 291-6.

- 36. Winterbauer, R.H., et al., *Diffuse interstitial pneumonitis. Clinicopathologic correlations in 20 patients treated with prednisone/azathioprine.* Am J Med, 1978. **65**(4): p. 661-72.
- 37. Johnson, M.A., et al., Randomised controlled trial comparing prednisolone alone with cyclophosphamide and low dose prednisolone in combination in cryptogenic fibrosing alveolitis. Thorax, 1989. **44**(4): p. 280-8.
- 38. Neurohr, C., et al., Potential functional and survival benefit of double over single lung transplantation for selected patients with idiopathic pulmonary fibrosis.

 Transpl Int, 2010. **23**(9): p. 887-96.
- 39. Thabut, G., et al., Survival benefit of lung transplantation for patients with idiopathic pulmonary fibrosis. J Thorac Cardiovasc Surg, 2003. **126**(2): p. 469-75.
- 40. Timmer, S.J., et al., *Predicting survival of lung transplantation candidates with idiopathic interstitial pneumonia: does PaO(2) predict survival?* Chest, 2002. **122**(3): p. 779-84.
- 41. Wynn, T.A., Integrating mechanisms of pulmonary fibrosis. J Exp Med, 2011. **208**(7): p. 1339-50.
- 42. Scotton, C.J. and R.C. Chambers, *Molecular targets in pulmonary fibrosis: the myofibroblast in focus.* Chest, 2007. **132**(4): p. 1311-21.
- 43. Fernandez, I.E. and O. Eickelberg, New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet, 2012. **380**(9842): p. 680-8.

- 44. Tomasek, J.J., et al., *Myofibroblasts and mechano-regulation of connective tissue remodelling.* Nat Rev Mol Cell Biol, 2002. **3**(5): p. 349-63.
- 45. Forte, A., et al., Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm. Cardiovasc Res, 2010. **88**(3): p. 395-405.
- 46. Fernandez, I.E. and O. Eickelberg, *The impact of TGF-beta on lung fibrosis: from targeting to biomarkers.* Proc Am Thorac Soc, 2012. **9**(3): p. 111-6.
- 47. Firth, A.L., I.W. Choi, and W.S. Park, *Animal models of pulmonary hypertension:*Rho kinase inhibition. Prog Biophys Mol Biol. **109**(3): p. 67-75.
- 48. Sandbo, N., et al., *Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-beta.* Am J Respir Cell Mol Biol, 2009. **41**(3): p. 332-8.
- 49. Raja, S.G., Evaluation of clinical efficacy of fasudil for the treatment of pulmonary arterial hypertension. Recent Pat Cardiovasc Drug Discov, 2012. **7**(2): p. 100-4.
- 50. Massagué, J., *TGFβ signalling in context*. Nat Rev Mol Cell Biol, 2012. **13**(10): p. 616-30.
- 51. Hagimoto, N., et al., *TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells.* J Immunol, 2002. **168**(12): p. 6470-8.
- 52. Kim, K.K., et al., Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A, 2006. **103**(35): p. 13180-5.
- 53. Yu, H., et al., *Transgelin is a direct target of TGF-beta/Smad3-dependent epithelial cell migration in lung fibrosis.* FASEB J, 2008. **22**(6): p. 1778-89.

- 54. Mukherjee, S., et al., *Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts.* Am J Respir Cell Mol Biol, 2012. **46**(6): p. 757-64.
- 55. Leask, A. and D.J. Abraham, *TGF-beta signaling and the fibrotic response*. FASEB J, 2004. **18**(7): p. 816-27.
- 56. Coker, R.K., et al., *Transforming growth factors-beta 1, -beta 2, and -beta 3* stimulate fibroblast procollagen production in vitro but are differentially expressed during bleomycin-induced lung fibrosis. Am J Pathol, 1997. **150**(3): p. 981-91.
- 57. Coker, R.K., et al., Localisation of transforming growth factor beta1 and beta3 mRNA transcripts in normal and fibrotic human lung. Thorax, 2001. **56**(7): p. 549-56.
- 58. Margaritopoulos, G.A., et al., *Recent advances in the pathogenesis and clinical evaluation of pulmonary fibrosis.* Eur Respir Rev, 2012. **21**(123): p. 48-56.
- 59. Sime, P.J., et al., Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest, 1997. **100**(4): p. 768-76.
- 60. Liu, J.Y., et al., *Transforming growth factor-beta(1) overexpression in tumor necrosis factor-alpha receptor knockout mice induces fibroproliferative lung disease.* Am J Respir Cell Mol Biol, 2001. **25**(1): p. 3-7.
- 61. Bonniaud, P., et al., *Progressive transforming growth factor beta1-induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor.* Am J Respir Crit Care Med, 2005. **171**(8): p. 889-98.

- 62. Bonniaud, P., et al., *TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis*. J Immunol, 2005. **175**(8): p. 5390-5.
- 63. Carpenter, C.L., et al., *Purification and characterization of phosphoinositide 3-kinase from rat liver.* J Biol Chem, 1990. **265**(32): p. 19704-11.
- 64. Dhand, R., et al., PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J, 1994. **13**(3): p. 522-33.
- 65. Conte, E., et al., Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts: the role of class I P110 isoforms. PLoS One, 2011. **6**(10): p. e24663.
- 66. Rodriguez-Viciana, P., et al., *Phosphatidylinositol-3-OH kinase as a direct target of Ras.* Nature, 1994. **370**(6490): p. 527-32.
- 67. Rodriguez-Viciana, P., et al., *Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation.* EMBO J, 1996. **15**(10): p. 2442-51.
- 68. Pacold, M.E., et al., Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell, 2000. **103**(6): p. 931-43.
- 69. Suire, S., et al., Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)Kgamma signalling in neutrophils. Nat Cell Biol, 2006. **8**(11): p. 1303-9.
- 70. Vanhaesebroeck, B., et al., *P110delta, a novel phosphoinositide 3-kinase in leukocytes.* Proc Natl Acad Sci U S A, 1997. **94**(9): p. 4330-5.
- 71. Fritsch, R., et al., RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell, 2013. **153**(5): p. 1050-63.

- 72. Staal, S.P., Molecular cloning of the akt oncogene and its human homologues

 AKT1 and AKT2: amplification of AKT1 in a primary human gastric

 adenocarcinoma. Proc Natl Acad Sci U S A, 1987. **84**(14): p. 5034-7.
- 73. Bellacosa, A., et al., *A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.* Science, 1991. **254**(5029): p. 274-7.
- 74. Jones, P.F., et al., Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A, 1991. **88**(10): p. 4171-5.
- 75. Alessi, D.R., et al., Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol, 1997. **7**(4): p. 261-9.
- 76. Stephens, L., et al., *Protein kinase B kinases that mediate phosphatidylinositol* 3,4,5-trisphosphate-dependent activation of protein kinase B. Science, 1998. **279**(5351): p. 710-4.
- 77. Hahn-Windgassen, A., et al., Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem, 2005. **280**(37): p. 32081-9.
- 78. Zhang, H., et al., Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest, 2003. **112**(8): p. 1223-33.
- 79. Huang, J., et al., *The TSC1-TSC2 complex is required for proper activation of mTOR complex 2.* Mol Cell Biol, 2008. **28**(12): p. 4104-15.

- 80. Inoki, K., et al., *TSC2 is phosphorylated and inhibited by Akt and suppresses*mTOR signalling. Nat Cell Biol, 2002. **4**(9): p. 648-57.
- 81. Fonseca, B.D., et al., *PRAS40* is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem, 2007. **282**(34): p. 24514-24.
- 82. Wang, L., T.E. Harris, and J.C. Lawrence, Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem, 2008. **283**(23): p. 15619-27.
- 83. Wang, L., et al., *PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding.* J Biol Chem, 2007. **282**(27): p. 20036-44.
- 84. Vander Haar, E., et al., Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol, 2007. **9**(3): p. 316-23.
- 85. Toker, A. and A.C. Newton, *Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site.* J Biol Chem, 2000. **275**(12): p. 8271-4.
- 86. Sarbassov, D.D., et al., *Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.* Science, 2005. **307**(5712): p. 1098-101.
- 87. Feng, J., et al., *Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase.* J Biol Chem, 2004. **279**(39): p. 41189-96.
- 88. Bozulic, L., et al., PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell, 2008. **30**(2): p. 203-13.

- 89. Persad, S., et al., Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem, 2001. **276**(29): p. 27462-9.
- 90. Alessi, D.R., et al., *Mechanism of activation of protein kinase B by insulin and IGF-1.* EMBO J, 1996. **15**(23): p. 6541-51.
- 91. Manning, B.D. and L.C. Cantley, AKT/PKB signaling: navigating downstream.

 Cell, 2007. 129(7): p. 1261-74.
- 92. Somanath, P.R., et al., *Akt1 in endothelial cell and angiogenesis.* Cell cycle, 2006. **5**(5): p. 512-8.
- 93. Dong, L.Q. and F. Liu, *PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle.* American journal of physiology. Endocrinology and metabolism, 2005. **289**(2): p. E187-96.
- 94. Danen, E.H. and K.M. Yamada, *Fibronectin, integrins, and growth control.*Journal of cellular physiology, 2001. **189**(1): p. 1-13.
- 95. Accili, D. and K.C. Arden, FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell, 2004. **117**(4): p. 421-6.
- 96. Kandel, E.S. and N. Hay, *The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB.* Experimental cell research, 1999. **253**(1): p. 210-29.
- 97. Pankov, R., et al., Specific beta1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. The Journal of biological chemistry, 2003. **278**(20): p. 18671-81.

- 98. Hanada, M., J. Feng, and B.A. Hemmings, *Structure, regulation and function of PKB/AKT--a major therapeutic target.* Biochim Biophys Acta, 2004. **1697**(1-2): p. 3-16.
- 99. Datta, S.R., A. Brunet, and M.E. Greenberg, *Cellular survival: a play in three Akts.* Genes Dev, 1999. **13**(22): p. 2905-27.
- 100. Falasca, M., PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des, 2010. **16**(12): p. 1410-6.
- 101. Vanhaesebroeck, B., et al., *The emerging mechanisms of isoform-specific PI3K signalling.* Nat Rev Mol Cell Biol, 2010. **11**(5): p. 329-41.
- 102. Somanath, P.R., J. Chen, and T.V. Byzova, *Akt1 is necessary for the vascular maturation and angiogenesis during cutaneous wound healing.* Angiogenesis, 2008. **11**(3): p. 277-88.
- 103. Sato, S., N. Fujita, and T. Tsuruo, *Modulation of Akt kinase activity by binding to Hsp90*. Proc Natl Acad Sci U S A, 2000. **97**(20): p. 10832-7.
- 104. Ugi, S., et al., Protein phosphatase 2A negatively regulates insulin's metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol Cell Biol, 2004. **24**(19): p. 8778-89.
- 105. Liao, Y. and M.C. Hung, A new role of protein phosphatase 2a in adenoviral E1A protein-mediated sensitization to anticancer drug-induced apoptosis in human breast cancer cells. Cancer Res, 2004. **64**(17): p. 5938-42.
- 106. Trotman, L.C., et al., *Identification of a tumour suppressor network opposing nuclear Akt function.* Nature, 2006. **441**(7092): p. 523-7.

- 107. Andrabi, S., et al., *Protein phosphatase 2A regulates life and death decisions via Akt in a context-dependent manner.* Proc Natl Acad Sci U S A, 2007. **104**(48): p. 19011-6.
- 108. Gao, T., F. Furnari, and A.C. Newton, *PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth.* Mol Cell, 2005. **18**(1): p. 13-24.
- 109. Brognard, J., et al., *PHLPP* and a second isoform, *PHLPP2*, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell, 2007. **25**(6): p. 917-31.
- 110. Shay, K.P. and T.M. Hagen, Age-associated impairment of Akt phosphorylation in primary rat hepatocytes is remediated by alpha-lipoic acid through PI3 kinase, PTEN, and PP2A. Biogerontology, 2009. 10(4): p. 443-56.
- 111. Cantley, L.C. and B.G. Neel, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A, 1999. **96**(8): p. 4240-5.
- 112. Cho, H., et al., Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem, 2001. **276**(42): p. 38349-52.
- 113. Yang, Z.Z., et al., *Protein kinase B alpha/Akt1 regulates placental development and fetal growth.* J Biol Chem, 2003. **278**(34): p. 32124-31.
- 114. Chen, W.S., et al., *Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene.* Genes & development, 2001. **15**(17): p. 2203-8.

- 115. Chen, J., et al., *Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo.* Nat Med, 2005. **11**(11): p. 1188-96.
- 116. Garofalo, R.S., et al., Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest, 2003. **112**(2): p. 197-208.
- 117. Easton, R.M., et al., Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol, 2005. **25**(5): p. 1869-78.
- 118. Tschopp, O., et al., Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development, 2005. **132**(13): p. 2943-54.
- 119. Yang, S.F., et al., *Increased plasma levels of urokinase plasminogen activator* and matrix metalloproteinase-9 in nonsmall cell lung cancer patients. Clinica chimica acta; international journal of clinical chemistry, 2005. **354**(1-2): p. 91-9.
- 120. Peng, X.D., et al., *Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2.* Genes Dev, 2003. **17**(11): p. 1352-65.
- 121. Dummler, B., et al., Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies.

 Mol Cell Biol, 2006. **26**(21): p. 8042-51.
- 122. Xia, H., et al., *Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis.* J Exp Med, 2008. **205**(7): p. 1659-72.

- 123. Xia, H., et al., *Pathologic caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis*. Am J Pathol, 2010. **176**(6): p. 2626-37.
- 124. Wilkes, M.C., et al., *Transforming growth factor-beta activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2.* Cancer Res, 2005. **65**(22): p. 10431-40.
- 125. Martin, M.M., et al., TGF-beta1 stimulates human AT1 receptor expression in lung fibroblasts by cross talk between the Smad, p38 MAPK, JNK, and PI3K signaling pathways. Am J Physiol Lung Cell Mol Physiol, 2007. 293(3): p. L790-9.
- 126. Nho, R.S., et al., *PTEN regulates fibroblast elimination during collagen matrix contraction.* J Biol Chem, 2006. **281**(44): p. 33291-301.
- 127. Fagone, E., et al., Resveratrol inhibits transforming growth factor-β-induced proliferation and differentiation of ex vivo human lung fibroblasts into myofibroblasts through ERK/Akt inhibition and PTEN restoration. Exp Lung Res, 2011. 37(3): p. 162-74.
- 128. Kulasekaran, P., et al., Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol, 2009. **41**(4): p. 484-93.
- 129. Horowitz, J.C., et al., Combinatorial activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts.

 Cell Signal, 2007. **19**(4): p. 761-71.
- 130. Brunet, A., et al., Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 1999. **96**(6): p. 857-68.

- 131. Goc, A., et al., *TGFβ-* and bleomycin-induced extracellular matrix synthesis is mediated through Akt and mammalian target of rapamycin (mTOR). J Cell Physiol, 2011. **226**(11): p. 3004-13.
- 132. White, E.S. and A.F. Muro, Fibronectin splice variants: understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life, 2011. **63**(7): p. 538-46.
- 133. Guo, C.J., et al., Changes in microRNAs associated with hepatic stellate cell activation status identify signaling pathways. The FEBS journal, 2009. **276**(18): p. 5163-76.
- 134. He, Z., Y. Zhu, and H. Jiang, Toll-like receptor 4 mediates lipopolysaccharide-induced collagen secretion by phosphoinositide3-kinase-Akt pathway in fibroblasts during acute lung injury. J Recept Signal Transduct Res, 2009. 29(2): p. 119-25.
- 135. Jun, J.B., et al., Scleroderma fibroblasts demonstrate enhanced activation of Akt (protein kinase B) in situ. J Invest Dermatol, 2005. **124**(2): p. 298-303.
- 136. Shi-Wen, X., et al., Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell, 2004. **15**(6): p. 2707-19.
- 137. Lu, Y., et al., *Phosphatidylinositol-3-kinase/akt regulates bleomycin-induced fibroblast proliferation and collagen production.* Am J Respir Cell Mol Biol, 2010. **42**(4): p. 432-41.

- 138. Conte, E., et al., PI3K p110γ overexpression in idiopathic pulmonary fibrosis lung tissue and fibroblast cells: in vitro effects of its inhibition. Lab Invest, 2013. 93(5): p. 566-76.
- 139. King T.E., Jr., Bradford W.Z., Castro-Bernardini S., Fagan E.A., Glaspole I., Glassberg M.K., Gorina E., Hopkins P.M., Kardatzke D., Lancaster L., et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014;370:2083–2092.
- 140. Valeyre D, Albera C, Bradford WZ, Costabel U, King TE Jr, Leff JA, Noble PW, Sahn SA, du Bois RM. Comprehensive assessment of the long-term safety of pirfenidone in patients with idiopathic pulmonary fibrosis. Respirology. 2014 Jul;19(5):740-7
- 141. Takeda Y, Tsujino K, Kijima T, Kumanogoh A. Efficacy and safety of pirfenidone for idiopathic pulmonary fibrosis. Patient Prefer Adherence. 2014 Mar 21;8:361-70.
- 142. Noble P.W., Albera C., Bradford W.Z., Costabel U., Glassberg M.K., Kardatzke D., King T.E., Jr., Lancaster L., Sahn S.A., Szwarcberg J., et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): Two randomised trials. Lancet. 2011;377:1760–1769.
- 143. Richeldi L, Costabel U, Selman M, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med 2011;365:1079-1087
- 144. Richeldi L, Bois RM du, Raghu G et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014;370:2071–2082

CHAPTER 2

AKT1 MEDIATES ALPHA-SMOOTH MUSCLE ACTIN EXPRESSION AND MYOFIBROBLAST DIFFERENTIATION VIA MYOCARDIN AND SERUM RESPONSE FACTOR

Abdalla M, Goc A, Segar L, Somanath P.R. Akt1 Mediates alpha-Smooth Muscle Actin Expression and Myofibroblast Differentiation via Myocardin and Serum Response Factor. J Bio. Chem. 2013; 288(46):33483-93

Reprinted here with permission of the publisher.

ABSTRACT

Myofibroblast (MF) differentiation, marked by the de novo expression of smooth muscle α-actin (αSMA) stress fibers, plays a central role in wound healing and its persistence is a hallmark of fibrotic diseases. We have previously shown that Akt1 is necessary for wound healing through matrix regulation. However, the role of Akt1 in regulating MF differentiation with implications in fibrosis remains poorly defined. Here, we show that sustained activation of Akt1 was associated with a 6-fold increase in αSMA expression and assembly; an effect that is blunted in cells expressing inactive Akt1 despite TGFB stimulation. Mechanistically, Akt1 mediated TGFβ-induced αSMA synthesis through the contractile gene transcription factors myocardin and serum response factor (SRF), independent of mammalian target of rapamycin in mouse embryonic fibroblasts and fibroblasts overexpressing active Akt1. Akt1 deficiency was associated with decreased myocardin, SRF, and αSMA expressions in vivo. Furthermore, sustained Akt1-induced αSMA synthesis markedly decreased upon RNA silencing of SRF and myocardin. In addition to its integral role in αSMA synthesis, we also show that Akt1 mediates fibronectin splice variant expression, which is required for MF differentiation, as well as total fibronectin, which generates the contractile force that promotes MF differentiation. In summary, our results constitute evidence that sustained Akt1 activation is crucial for TGFβ-induced MF formation and persistent differentiation. These findings highlight Akt1 as a novel potential therapeutic target for fibrotic diseases.

INTRODUCTION

Since its discovery in the early 1970s [1, 2], the myofibroblast (MF) has emerged as a central orchestrator of wound repair and pathologic hypertrophic scar formation characteristic of fibrotic diseases [3-6]. Differentiated from fibroblasts, MFs exhibit a contractile phenotype marked by de novo expression of α -smooth muscle cell like actin (α SMA) stress fibers [7] and are primarily responsible for excessive extracellular matrix (ECM) production, cell to matrix adhesion, and resistance to apoptosis [3, 8-10]. It is well established that accumulation of transforming growth factor β 1 (TGF β) is a major inducer of MF differentiation during wound healing and fibrosis [8, 11-13]. Interestingly, basic fibroblast growth factor (bFGF) has been shown to control the extent of TGF β -induced effects via stimulating de-differentiation of MFs [14, 15]. This shows the intricate balance between these two cytokines in mediating physiological and pathophysiological fibrogenic responses.

Synthesis of αSMA, a principal component of MFs, is a highly regulated process that is controlled by TGFβ, splice variant ED-A fibronectin (ED-A FN), and mechanical tension [3, 5]. Numerous lines of evidence indicate that the transcription of αSMA is reliant on RhoA-mediated activation and nuclear translocation of transcription factor serum response factor (SRF) [16-24]. Furthermore, the interaction between the recently discovered myocardin, a transcription co-factor restricted to cardiac and smooth muscle cells, and SRF has been characterized in orchestrating contractile gene expression [22, 25-27]. However, defining signaling pathways that regulate this transcription network in the hopes of devising targeted therapeutics remain incompletely understood.

Research from our laboratory has established the pivotal role of protein kinase B α (Akt1) in wound healing, ECM remodeling, and vascular maturation [28]. Furthermore, we have shown that Akt1 is instrumental for normal cellular processes including fibroblasts migration, proliferation, and cytoskeletal remodeling [29], and assembly of ECM proteins including fibronectin [30, 31]. However, the precise role of Akt in MF differentiation remains unclear. Several studies have reported a possible positive correlation between Akt and α SMA [32-35], and have established its role in anoikis resistance [11, 36]. Because Akt1 is the predominant isoform in fibroblasts, these studies suggest a role for Akt1 in MF differentiation. Collectively, this has prompted us to postulate that Akt1 modulates α SMA synthesis through myocardin and SRF leading to MF differentiation.

In the present study, our results demonstrate that Akt1 is critical for α SMA synthesis in MF differentiation. Our studies constitute evidence of a novel signaling cascade that links Akt1 to α SMA synthesis through enhanced expression of myocardin and SRF, a previously uncharacterized link in MFs. We also demonstrate the dual role of Akt1 in mediating α SMA synthesis and ED-A FN splice variant along with total fibronectin. In conclusion, our studies suggest that Akt1 is a potential therapeutic target in fibrotic diseases.

EXPERIMENTAL PROCEDURES

Cell Lines and Cell Culture

NIH 3T3 fibroblasts were obtained from ATCC (Manassas, VA) and stable transfected through retroviral infections using control pBabe plasmids and those expressing constitutively active CA-Akt1-GFP fusion (90 kDa) (also known as myristoylated-Akt1

(myr-Akt1), or DN-Akt1 (Akt1 K179M) vectors with puromycin resistance. Selection with antibiotic was carried out until 100% transfection efficiency was confirmed by GFP staining. To examine the role of Akt1: NIH 3T3, transfected with stable empty vector, myr-Akt1, or DN-Akt1 vector, were cultured on 6-well plates. After reaching 70% confluence, cells were subjected to serum starvation in the presence or absence of 100 pM TGFβ (a pre-determined dose [30]) for 72 h, a standardized time point that is associated with maximum MF differentiation. Cells were subjected to Western analyses and immunocytochemistry as described below. For the mechanistic pharmacologic inhibition studies: after reaching 70% confluence, NIH 3T3 and myr-Akt1 cells were treated with bFGF (20 ng/ml (29)) or TGFβ (100 pM) for 48 h. This was followed by cotreatment for 24 h (total 72 h) with inhibitors of PI3 kinase (25 μM LY294002), Akt (10 nM triciribine), mammalian target of rapamycin (mTOR) (25 nM rapamycin), or SRF/Rho (1 μM CCG1423). Cells were subjected to Western analyses as described below.

Antibodies

Anti-αSMA (catalog number SAB2500963) and anti-fibronectin (catalog number F6140) antibodies were purchased from Sigma. GAPDH (catalog number 2118), phospho-Akt (Ser-473) (catalog number 9271), and anti-SRF (catalog number 5147) antibodies were purchased from Cell Signaling (Boston, MA). Anti-myocardin (catalog number MAB 4028) antibodies were purchased from R&D Systems (Minneapolis, MN). Anti-ED-A-fibronectin (catalog number 6328) and anti-αSMA (catalog number 5694) antibodies were purchased from Abcam (Cambridge, MA).

Western Blot Analysis

Cell lysates were prepared using lysis buffer (20 mM Tris-HCl, pH 7.4, 1% Triton X-100, 3 mM EGTA, 5 mM EDTA, phosphatase inhibitors (10 mM sodium pyrophosphate, 5 mM sodium orthovanadate, 5 mM sodium fluoride, and 10 µMokadaic acid), protease inhibitor mixture (Roche Diagnostics) and 1 mM PMSF). SDS-PAGE and Western blotting were performed as described previously [30].

siRNA Transfection

For myocardin siRNA (100 nM) and SRF siRNA (150 nM), a pool of two target-specific siRNAs (Qiagen) were designed to knockdown mouse myocardin and SRF gene expression, respectively. A non-silencing oligonucleotide sequence (non-silencing siRNA) that does not recognize any known homology to mammalian genes was obtained as a negative control. NIH 3T3 and myr-Akt1 fibroblasts were transfected with siRNAs using a FuGENE transfection kit (Qiagen) for 24–48 h with TGFβ (100 pM) treatment for 72 h (supplemental Fig. S1). Cells were subjected to Western analyses and immunocytochemistry to detect αSMA expression and assembly, respectively.

Three-dimensional Collagen Gel Contraction Assay

Prior to preparing collagen gels as described below, fibroblasts were detached by 0.05% trypsin in 0.53 mM EDTA and suspended in 10 ml of serum-free DMEM containing soybean trypsin inhibitor. The cell number was then counted with Coulter Counter. Collagen gels were prepared according to the manufacturer's protocol (Cytoskeleton, CO) by mixing rat tail tendon collagen, distilled water, 4× DMEM, and cells. The final concentration was 1× DMEM, 0.75 mg/ml of collagen, and fibroblasts

were present at 3 × 105 cells/ml. Following this, 500 μ l of the mixture was cast into each well of a 24-well culture plate. The solution was then allowed to polymerize for 1 h. After polymerization, the gels were allowed to remain attached to the plates for 48 h to form stress in the presence of DMEM without FBS, then gels were gently released from the plates to mimic free-floating. The optimum concentrations of bFGF, TGF β , and triciribine were standardized in the laboratory. The area of each gel was measured daily and imaged. Data are expressed as the percentage of area compared with the initial gel area.

Immunocytochemistry

Immunofluorescence staining was performed as described previously (29). Briefly, NIH 3T3, transfected with stable empty vector, myr-Akt1, or DN-Akt1 vector, were plated on 8-well chamber slides. After reaching 70% confluence, cells were subjected to serum starvation in the presence or absence of TGFα for 72 h. Next, cells were fixed with 4% paraformaldehyde in 1× PBS followed by permeabilization with 0.1% Triton X-100 in 1× PBS. The nonspecific staining was blocked with 2% BSA for 1 h at room temperature. The fixed and permeabilized cells were incubated with primary anti-αSMA antibody (Abcam) (dilution 1:1000) overnight at 4 °C and washed. Secondary Alexa Fluor 488-labeled antibody was applied for 1 h followed by standardized dilution of Alexa Fluor 555-labeled phalloidin (Invitrogen) for 40 min. The slides were mounted with Vectashield (Vector Laboratories, PA), and imaged by a Zeiss fluorescent microscope.

Animals

All experiments were performed with approval by the Charlie Norwood Veterans Affairs

Medical Center Institutional Animal Care and Use Committees. Akt1-/-mice were

generated as previously described (28) and were maintained in the C57BL/6 background. Sex and age-matched wild-type and Akt1-/- were randomized to normobaric hypoxia (10% O2) (Biospherix, New York) or room air. To establish the hypoxic environment, the chamber was flushed with nitrogen. The chamber was opened once per week for no more than 1 h to clean the cages and replenish food and water supplies. After 14 days, mice were euthanized; lungs were isolated and subjected to Western analyses.

Statistical Analysis

All data are presented as mean ± S.D. To determine significant differences between treatment and control values, we used the Student's two-tailed t test. The significance was set at 0.05 levels (marked with symbols wherever data are statistically significant).

RESULTS

Akt1 Inactivation Abolishes TGFβ-induced Myofibroblast Differentiation

We first determined that 72 h is the optimal time for TGF β -induced MF differentiation in NIH 3T3 fibroblasts, as measured by a 5-fold increase in α SMA expression. To examine whether Akt1 activation is required for α SMA expression, the marker for MF differentiation, fibroblasts transfected with constitutively active Akt1 (myr-Akt1) and inactive dominant-negative-Akt1 (DN-Akt1; Akt1 K179M), respectively, were serum starved and treated with control PBS or TGF β (100 pM) for 72 h. The results showed that despite the absence of TGF β stimulation, sustained hyperactivation of Akt1 significantly enhanced α SMA expression (\sim 6-fold) and assembly compared with control fibroblasts; this effect was further amplified with TGF β stimulation (Fig. 1, A and B). In

contrast, inactivation of Ak1 blunted the stimulatory effects of TGF β on α SMA expression and assembly (Fig. 1, A and B). Thus, the absence of Akt1 impedes TGF β -induced α SMA expression, implying that Akt1 is an important modulator of MF differentiation.

Because physiological modulators of fibroblasts such as bFGF also activate Akt1 (Fig. 2A), we examined the effect of bFGF on α SMA expression and MF differentiation. To do

Akt1-mediated Dynamic Switch between Fibroblast and MFs Is Stimuli Dependent

this, we subjected control and myr-Akt1 expressing fibroblasts to serum starvation and treated the fibroblasts with control PBS, TGF β (100 pM), or bFGF (20 ng/ml). In contrast to the stimulatory effect of TGF β , bFGF was associated with diminished α SMA expression in control and myr-Akt1 expressing NIH 3T3 fibroblasts (Fig. 2B). This suggested a molecular see-saw of bFGF and TGF β , clearly demonstrating a reciprocal regulation of physiological and pathological fibrogenic events by these two cytokines via

differential regulation of Akt1 activity (Fig. 2, A and B).

This differential regulation of α SMA expression by bFGF and TGF β prompted us to investigate whether Akt1 is involved in the de-differentiation effect of bFGF. Because maximum MF differentiation occurred at 72 h, to study the de-differentiation effect, we treated control and myr-Akt1 NIH 3T3 fibroblasts with bFGF (or control PBS) for 24 h after 72-h TGF β stimulation (total 96 h). Although treatment with bFGF partially, but significantly, inhibited TGF β -induced α SMA expression in fibroblasts (Fig. 2C), it did not show any discernible de-differentiation in myr-Akt1 expressing cells (Fig. 2D). Interestingly, although bFGF treatment increased Akt phosphorylation in NIH 3T3 cells, in combination with TGF β , it decreased the TGF β -induced Akt phosphorylation (Fig. 2,

C and E). Furthermore, although myr-Akt1 expressing cells were resistant to bFGF-induced de-differentiation, a decrease in endogenous Akt phosphorylation was observed in these cells (Fig. 2, D and F), thus indicating that the resistance to bFGF treatment in these cells was purely due to the expression of myr-Akt1. Together, these data indicate the need for sustained Akt1 activation in fibroblasts to drive αSMA synthesis and MF differentiation. This supports our previous findings that, whereas transient activation of Akt1 in response to bFGF mainly regulates fibroblast proliferation, matrix adhesion, and assembly (29), sustained Akt1 activation promotes TGFβ-induced MF differentiation.

Akt1 Modulates TGFβ-induced MF Differentiation through SRF

Once we identified Akt1 as a key modulator of α SMA expression, we sought to define and characterize the mechanisms by which Akt1 mediates TGF β -induced α SMA expression and MF differentiation. Because studies have shown that the transcription factor SRF is integral for α SMA synthesis, we explored whether SRF is also a potential target of the PI3K/Akt/mTOR pathway during MF differentiation. To investigate this, we utilized inhibitors of PI3K (25 μ MLY294002), Akt (10 nM triciribine), mTOR (25 nM rapamycin), and Rho signaling-responsive SRF (1 μ M CCG1423) (Calbiochem) in control and myr-Akt1 expressing fibroblasts stimulated with TGF β , and determined α SMA and SRF expressions, and Akt phosphorylation.

TGF β -induced α SMA expression was correlated with elevated SRF expression and phosphorylation of Akt in NIH 3T3 cells (Fig. 3, A–D) and myr-Akt1 cells (Fig. 3,E–H). Although inhibiting PI3K resulted in a moderate decrease in α SMA, SRF, and Akt phosphorylation compared with TGF β -treated NIH 3T3 cells, targeting Akt abolished

TGFβ-induced αSMA expression and was associated with a marked decrease in SRF expression and Akt phosphorylation (Fig. 3, A–D). TGFβ-stimulated myr-Akt1 expressing fibroblasts while exhibiting resistance upon PI3K inhibition, inhibiting Akt resulted in a significant decrease in αSMA and SRF expression, as well as Akt phosphorylation compared with TGFβ-treated myr-Akt1 fibroblasts (Fig. 3, E–H). Inhibiting RhoA produced a modest but significant inhibition of αSMA that was associated with a significant reduction of SRF expression and Akt phosphorylation compared with TGFβ-treated fibroblasts in NIH 3T3 (Fig. 3, A–D) and myr-Akt cells (Fig. 3, E–H). However, a significant effect of mTOR inhibitor rapamycin on αSMA expression was not observed (Fig. 3, A, B, E, and F). Interestingly, in bFGF-stimulated cells, inhibiting mTOR promoted αSMA and SRF expressions, implying that mTOR is a key factor in maintaining fibroblast stability under bFGF and suppress its differentiation to MFs (Fig. 4, A–H). Taken together, these results show that TGFβ-induced αSMA expression is mediated by the PI3K/Akt/SRF pathway, independent of mTOR.

Akt1 Regulates αSMA Synthesis through SRF and Myocardin

Because SRF is ubiquitous, not contractile gene specific, and because myocardin is a critical transcriptional co-activator of smooth muscle cell genes [37], we considered whether the regulatory effect of Akt1 on α SMA expression is mediated through myocardin in conjunction with SRF. We first evaluated the expression of myocardin and SRF in relationship to TGF β -induced α SMA expression during MF differentiation. The results show that at 72 h, α SMA expression correlates with a significant increase in myocardin and SRF levels (\sim 6- and \sim 3-fold, respectively) in NIH 3T3 cells (Fig. 5, A–D). Interestingly, in the absence of TGF β stimulation, myr-Akt1-induced α SMA

expression correlated with a 3.5-fold increase in myocardin and a 1.8-fold increase in SRF expressions, compared with control fibroblasts (Fig. 5, E–H).

We argued that if Akt1 acts at least in part through myocardin and SRF, then silencing either protein should result in reduced aSMA. To test this, we performed gene knockdown experiments with myocardin siRNA and SRF siRNA. NIH 3T3 and myr-Akt1 fibroblasts were transfected with control vector, myocardin, or SRF siRNA (siMyoc and siSRF, respectively) for 48 h in the absence or presence of TGFβ; cells were pretreated with TGFβ to promote MF differentiation. Although sustained activation of Akt1 resulted in increased αSMA expression and assembly, knockdown of myocardin and SRF significantly reduced aSMA levels in myr-Akt1 expressing fibroblasts both in the absence (Fig. 6, B and E) and presence of TGFβ (Fig. 6, D and F). To validate our in vitro observations, we utilized a chronic hypoxia model as it has been shown to induce fibroblast to MF differentiation in animal models thus playing a major role in fibrotic response [38, 39]. Hence, as a proof of concept and further confirm the role of Akt1 in αSMA synthesis in vivo, we subjected wild-type (WT) and Akt1 null (Akt1-/-) mice to continuous hypoxia exposure for 14 days and lung tissues were subjected for Western analysis. As expected, Akt1-/- mice had significantly lower αSMA, myocardin, and SRF expressions in the lung tissue compared with WT mice (Fig. 6,G and H). Taken together, our data demonstrate that Akt1 plays a crucial permissive role in αSMA synthesis mediated, in part, by regulating myocardin and SRF expressions.

Akt1 Plays a Dual Role as a Modulator of TGFβ-induced αSMA and Fibronectin

Because both MF differentiation and excess ECM secretion constitute key hallmark events of deregulated tissue remodeling that occurs in fibrotic conditions such as

idiopathic pulmonary fibrosis and cirrhosis [3, 9, 33, 40, 41] and having seen that Akt1 is crucial for αSMA synthesis, we asked whether it could be involved in pathologic ECM regulation as well. We have previously shown that Akt1 regulates the synthesis of ECM proteins such as fibronectin via activation of mTOR pathway [30]. Fibronectin splice variant ED-A FN, which is not typically expressed in undifferentiated fibroblasts, is mandatory for TGFβ-induced αSMA synthesis and MF differentiation [3]. Furthermore, total fibronectin, which is secreted excessively by differentiated MFs, also exerts mechanical tension on MFs as part of a positive feedback loop [3]. Therefore, to determine whether Akt1 is involved in expression of the ED-A FN splice variant in the regulation of MF differentiation, we subjected control and myr-Akt1 expressing fibroblasts to TGFB for 48 h and co-treated with inhibitors of Akt1 and mTOR for an additional 24 h. Expression of αSMA, ED-A FN, total fibronectin and phosphorylated Akt was determined. Inhibiting Akt significantly reduced the stimulatory effect of TGFβ on αSMA, ED-A FN, and fibronectin expressions. However, treatment with the mTOR inhibitor rapamycin only inhibited total fibronectin expression with no discernible decrease in αSMA expression in both control NIH 3T3 (Fig. 7, A-D) and myr-Akt1 expressing fibroblasts (Fig. 7, A and E-G). It is noteworthy that rapamycin reduced ED-A FN expression only in myr-Akt1 cells implying that under physiological conditions mTOR does not regulate its expression. Herein, we demonstrate that whereas both Akt1 and mTOR are needed for total fibronectin synthesis [30], Akt1 also modulates the expression of specialized ED-A FN, which sheds light on the mechanisms underlying the dynamic reciprocal mechanical interactions between cells and the ECM during MF differentiation.

Targeted Akt Inhibition Reverses TGFβ-mediated Contraction of Fibroblast-populated Collagen Lattices

To validate the observation with regards to the functional characteristics of myofibroblasts, we performed a collagen gel contraction assay and examined the degree of contraction of a three-dimensional collagen lattice, an accepted model system of MF contractility [42]. We compared the de-differentiation effect of inhibiting Akt using triciribine to bFGF in TGF β -stimulated gels. Control and bFGF-treated lattice exhibited a slight contraction as a result of physiological proliferation of the fibroblasts, but the effects were not significant. At 96 h, the marked TGF β -induced contraction, whereas moderately reduced by bFGF treatment, was markedly ameliorated upon Akt inhibition (Fig. 8, A and B). It is noteworthy that compared with the contractility baseline at 72 h, bFGF had no discernible effect on gel contraction (Fig. 8C) suggesting that TGF β -mediated Akt activation is necessary for the contractile force generated by MFs. Collectively, these morphological, biochemical, and functional data confirm a role of Akt1 in mediating, at least in part, TGF β effects on MF differentiation.

DISCUSSION

In the present study, we provide the first conclusive evidence on the significance of sustained Akt1 activation in persistent MF differentiation with potential pathophysiological implications in tissue fibrosis. First, whereas sustained activation of Akt1 mimicked TGF β stimulation and induced a \sim 6-fold increase in α SMA, inactivation of Akt1 blunted TGF β -induced α SMA expression and assembly. Second, Akt1 mediates α SMA synthesis, in part, through modulation of myocardin and SRF expression, independent of mTOR, a novel and previously uncharacterized link in MFs. Third, in

addition to its control on total fibronectin, Akt1 induces ED-A FN expression, which is mandatory for MF differentiation. Fourth, TGF β -mediated Akt1 activation is necessary for the functional contractile force generated by MFs. Collectively, our study identifies the critical role of Akt1 and defines novel mechanisms by which it mediates MF differentiation, and sheds light on the dynamic mechanical interactions between the MF and ECM. Together, this creates a deregulated continuous positive feedback loop resulting in persistent TGF β -induced MF differentiation with implication in progression of fibrotic diseases (supplemental Fig. S2).

Several lines of evidence have identified and characterized multiple inter-cellular networks dictating MF differentiation. However, defining key signaling pathways leading to MF differentiation with the hope of devising targeted therapeutics remains elusive. Thus far, extensive research has been geared toward RhoA-mediated αSMA synthesis in smooth muscle cells and MFs. Literature also suggests a correlation between Akt activation and αSMA expression during MF differentiation [32-35]. Additionally, it has been shown that deficiency in phosphatase and tensin homologue deleted on chromosome 10 that normally inactivate Akt resulted in a markedly high proliferation rate and increase in αSMA and collagen expressions [43]. This led us to investigate the role of Akt, Akt1 in particular, as a mediator of persistent MF differentiation. We show that inactivation of Akt1 abolished TGFβ-induced αSMA expression. Noteworthy, by conducting our studies in NIH 3T3 fibroblasts treated with TGFβ, fibroblasts expressing myr-Akt1 with sustained (constitutively active) Akt1 activity, fibroblasts expressing DN-Akt1 (inactive), and Akt1 knock-out mice, we confirm our findings and demonstrate the

clinical relevance of the association between Akt1 and MF differentiation with implications in fibrotic diseases.

RhoA-dependent signaling has been shown to involve SRF, which plays a major role in αSMA synthesis [4, 16-24, 26, 44, 45]. Notably, SRF, a ubiquitous transcription factor, is not smooth muscle-specific. Furthermore, Olson and colleagues [27] discovered that myocardin, the transcription co-activator of SRF, is a critical master activator of αSMA gene expression. Although fibroblasts are not reported to constitutively express myocardin, which is assumed to be specific to cardiac and smooth muscle cells, forced expression of myocardin has been demonstrated to drive the expression of αSMA in fibroblasts [46]. Our studies showed that the expression of both SRF and myocardin were up-regulated during TGFβ-induced MF differentiation in NIH 3T3 fibroblasts. Interestingly, we observed a positive correlation between Akt1 activity and expression levels of SRF and myocardin. To further delineate this potential molecular cross-talk between Akt1 and SRF-myocardin complex in αSMA synthesis and MF differentiation, we utilized an siRNA-mediated gene knockdown approach to target myocardin and SRF. Our studies revealed that in un-stimulated myr-Akt1 fibroblasts, myocardin and SRF knockdown resulted in ~50% attenuation of αSMA synthesis and MF differentiation. Additionally, genetic ablation of Akt1 correlated with decreased SRF and myocardin in vivo, which further confirms this association. Earlier, our experiments utilizing the RhoA/SRF inhibitor CCG-1423 exhibited ~50% decrease in MF differentiation, which led us to postulate that Akt1 and RhoA, two parallel signaling pathways might reconcile their effects in modulating TGFβ-induced αSMA synthesis. The results from the myocardin and SRF siRNA studies lend support to our hypothesis

that both Akt1 and RhoA cooperate in the regulation of α SMA synthesis, the former regulating the expression of SRF and myocardin, and the latter leading to phosphorylation and nuclear translocation of the SRF-myocardin complex. Further investigation into this signaling network will likely shed light on the intricate dynamic network governing this phenotypic behavior.

Another intriguing finding from our studies is the paradoxical utilization of Akt1 in modulating α SMA synthesis. We have previously demonstrated that Akt1 promotes bFGF-induced migration and proliferation [29]. Indeed, Greenberg et al. [47] have demonstrated that bFGF negatively regulates TGF β -induced α SMA synthesis thus maintaining fibroblast phenotype and promoting MF de-differentiation. The interesting finding that sustained Akt1 activation is sufficient to drive a marked increase in α SMA expression and resistance to bFGF-induced de-differentiation reflects the preferential effect of Akt1 in mediating cell differentiation as opposed to proliferation. The differential utilization of Akt1, in addition to being dictated by growth factors, appears to also be dependent on the strength and duration of the stimuli and, importantly, the cooperation of Akt1 with RhoA in response to TGF β , but not with bFGF, thereby highlighting the importance of Akt1 in physiologic regulation and, importantly, pathologic differentiation deregulation.

We have previously shown that the Akt1-mTOR pathway regulates FN translation and ECM secretion and assembly [29, 30]. Recent studies have suggested that Akt can modulate alternative splicing of FN extra domain III (ED-A FN), which plays a major role in promoting MF differentiation [48-50]. We found that unlike Akt1, targeting mTOR did not infer discernible effects on TGFβ-induced αSMA synthesis. This prompted us to

investigate their effects on total FN and ED-A FN in MFs. Our data show that, in addition to its profound effects on aSMA expression and assembly, targeting Akt markedly decreased both ED-A FN and total FN, which further highlights the prodifferentiation potential of the Akt1 pathway. Interestingly, targeting mTOR did not influence ED-A FN (or did so marginally), which suggests that mTOR primarily regulates total FN as part of ECM regulation not MF differentiation per se. However, in the presence of robust sustained activation of Akt1 along with TGFβ stimulation, rapamycin treatment did infer some effect on ED-A FN in addition to total FN in myr-Akt1 fibroblasts. The results from NIH 3T3 studies are in line with recent reports that suggested that rapamycin, whereas primarily blocks FN translation via regulation of S6K, can enhance the activity of Akt1 via a positive feedback loop [48, 51, 52]. It has been suggested that elevated basal levels of Akt can directly mediate alternative splicing of ED-A FN [48, 51]. However, our findings in myr-Akt1 fibroblasts that rapamycin modestly affects both ED-A FN and FN raise the possibility that constitutive activation of Akt1 may, partly, engage mTOR in the translational regulation of ED-A FN. Further studies are warranted to confirm this hypothesis.

In conclusion, we identify Akt1 as an integral modulator of αSMA synthesis, and found it to be mediated, in part, through interaction with myocardin and SRF, independent of mTOR activity. Moreover, we shed light on the dual and functional role of Akt1 in regulating ECM fibronectin as well as ED-A FN splice variant driving persistent MF differentiation and contractile force generation. We also characterize the paradoxical use of Akt1 in differentially mediating physiological and pathological effects in response

to bFGF and TGF β up-regulation, respectively. Collectively, these findings highlight the importance of Akt1 as a novel therapeutic target for fibrotic diseases.

REFERENCES

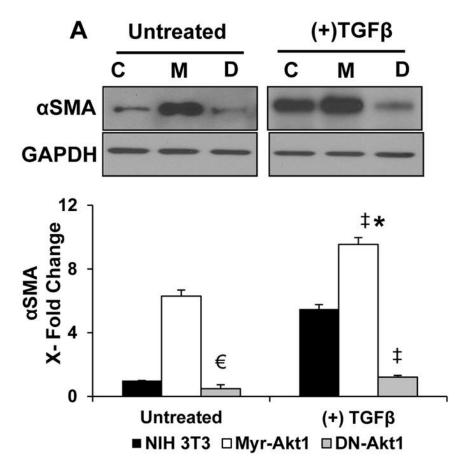
- 1. Gabbiani, G., G.B. Ryan, and G. Majne, *Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction.* Experientia, 1971. **27**(5): p. 549-50.
- 2. Majno, G., et al., Contraction of granulation tissue in vitro: similarity to smooth muscle. Science, 1971. **173**(3996): p. 548-50.
- 3. Tomasek, J.J., et al., *Myofibroblasts and mechano-regulation of connective tissue remodelling.* Nature reviews. Molecular cell biology, 2002. **3**(5): p. 349-63.
- 4. Hinz, B. and G. Gabbiani, *Mechanisms of force generation and transmission by myofibroblasts*. Curr Opin Biotechnol, 2003. **14**(5): p. 538-46.
- 5. Hinz, B., et al., Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol, 2012. **180**(4): p. 1340-55.
- 6. Hinz, B., Formation and function of the myofibroblast during tissue repair. The Journal of investigative dermatology, 2007. **127**(3): p. 526-37.
- 7. Hinz, B., et al., *Alpha-smooth muscle actin expression upregulates fibroblast contractile activity.* Molecular biology of the cell, 2001. **12**(9): p. 2730-41.
- 8. Zhang, H.Y. and S.H. Phan, *Inhibition of myofibroblast apoptosis by transforming growth factor beta(1).* American journal of respiratory cell and molecular biology, 1999. **21**(6): p. 658-65.
- 9. Darby, I.A. and T.D. Hewitson, *Fibroblast differentiation in wound healing and fibrosis*. Int Rev Cytol, 2007. **257**: p. 143-79.
- 10. Phan, S.H., *The myofibroblast in pulmonary fibrosis*. Chest, 2002. **122**(6 Suppl): p. 286S-289S.

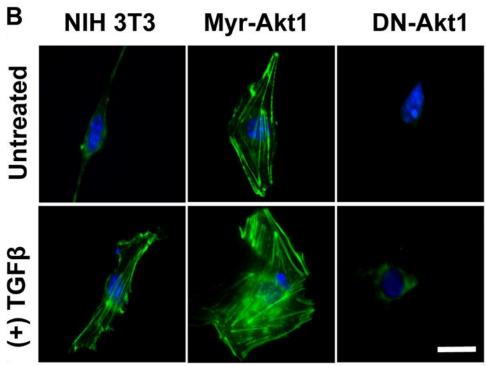
- 11. Thannickal, V.J., et al., Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. The Journal of biological chemistry, 2003. **278**(14): p. 12384-9.
- 12. Desmouliere, A., et al., *Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts.* The Journal of cell biology, 1993. **122**(1): p. 103-11.
- 13. Ronnov-Jessen, L. and O.W. Petersen, *Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia.* Laboratory investigation; a journal of technical methods and pathology, 1993. **68**(6): p. 696-707.
- 14. Mattey, D.L., et al., *Transforming growth factor beta 1 and interleukin 4 induced alpha smooth muscle actin expression and myofibroblast-like differentiation in human synovial fibroblasts in vitro: modulation by basic fibroblast growth factor.*Ann Rheum Dis, 1997. **56**(7): p. 426-31.
- 15. Maltseva, O., et al., *Fibroblast growth factor reversal of the corneal myofibroblast phenotype.* Investigative ophthalmology & visual science, 2001. **42**(11): p. 2490-5.
- 16. Sandbo, N., et al., *Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-beta.* American journal of physiology. Lung cellular and molecular physiology, 2011. **301**(5): p. L656-66.

- 17. Sandbo, N., et al., Regulation of serum response factor-dependent gene expression by proteasome inhibitors. Molecular pharmacology, 2005. **67**(3): p. 789-97.
- 18. Qiu, P., X.H. Feng, and L. Li, *Interaction of Smad3 and SRF-associated complex mediates TGF-beta1 signals to regulate SM22 transcription during myofibroblast differentiation.* Journal of molecular and cellular cardiology, 2003. **35**(12): p. 1407-20.
- 19. Jeon, E.S., et al., Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. Journal of cell science, 2006. **119**(Pt 23): p. 4994-5005.
- 20. Miralles, F., et al., *Actin dynamics control SRF activity by regulation of its coactivator MAL.* Cell, 2003. **113**(3): p. 329-42.
- 21. Fan, L., et al., Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Molecular biology of the cell, 2007. **18**(3): p. 1083-97.
- 22. Wang, D.Z., et al., Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(23): p. 14855-60.
- 23. Akhmetshina, A., et al., *Rho-associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts.*Arthritis and rheumatism, 2008. **58**(8): p. 2553-64.

- 24. Zhao, X.H., et al., Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. Journal of cell science, 2007. **120**(Pt 10): p. 1801-9.
- 25. Liu, Z.P., et al., *Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin.* Developmental cell, 2005. **9**(2): p. 261-70.
- 26. Small, E.M., et al., *Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction.* Circulation research, 2010. **107**(2): p. 294-304.
- 27. Wang, D., et al., Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell, 2001. **105**(7): p. 851-62.
- 28. Chen, J., et al., *Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo.* Nature medicine, 2005. **11**(11): p. 1188-96.
- 29. Somanath, P.R. and T.V. Byzova, 14-3-3beta-Rac1-p21 activated kinase signaling regulates Akt1-mediated cytoskeletal organization, lamellipodia formation and fibronectin matrix assembly. Journal of cellular physiology, 2009. 218(2): p. 394-404.
- 30. Goc, A., et al., *TGFbeta- and bleomycin-induced extracellular matrix synthesis is mediated through Akt and mammalian target of rapamycin (mTOR).* Journal of cellular physiology, 2011. **226**(11): p. 3004-13.
- 31. Somanath, P.R., et al., *Akt1 signaling regulates integrin activation, matrix recognition, and fibronectin assembly.* The Journal of biological chemistry, 2007. **282**(31): p. 22964-76.

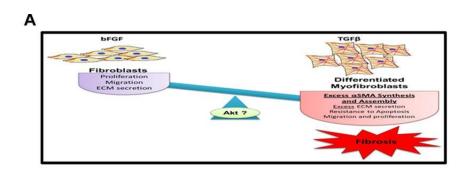
- 32. He, Z., Y. Zhu, and H. Jiang, *Toll-like receptor 4 mediates lipopolysaccharide-induced collagen secretion by phosphoinositide3-kinase-Akt pathway in fibroblasts during acute lung injury.* J Recept Signal Transduct Res, 2009. **29**(2): p. 119-25.
- 33. Guo, H., et al., *Non-viral Smad7 gene delivery and attenuation of postoperative peritoneal adhesion in an experimental model.* The British journal of surgery, 2009. **96**(11): p. 1323-35.
- 34. Jun, J.B., et al., Scleroderma fibroblasts demonstrate enhanced activation of Akt (protein kinase B) in situ. J Invest Dermatol, 2005. **124**(2): p. 298-303.
- 35. Shi-Wen, X., et al., Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell, 2004. **15**(6): p. 2707-19.
- 36. Horowitz, J.C., et al., Combinatorial activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts.

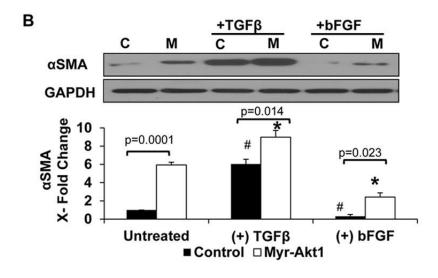

 Cell Signal, 2007. **19**(4): p. 761-71.
- 37. Wang, Z., et al., *Myocardin is a master regulator of smooth muscle gene expression.* Proceedings of the National Academy of Sciences of the United States of America, 2003. **100**(12): p. 7129-34.
- 38. Short, M., et al., *Hypoxia induces differentiation of pulmonary artery adventitial fibroblasts into myofibroblasts.* American journal of physiology. Cell physiology, 2004. **286**(2): p. C416-25.


- 39. Stenmark, K.R., K.A. Fagan, and M.G. Frid, *Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms*. Circ Res, 2006. **99**(7): p. 675-91.
- 40. Nicholson, A.G., et al., *The relationship between individual histologic features* and disease progression in idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine, 2002. **166**(2): p. 173-7.
- 41. Abdalla, M., A. Goc, and P.R. Somanath, *Pathways Regulating the Secretion and Assembly of Fibronectin Matrix: an Update*, in *Fibronectin: Current Concepts in Structure, Function and Pathology*, J. Beattie, Editor. 2012, Nova Science Publishers: New York. p. 155-190.
- 42. Meyer-Ter-Vehn, T., et al., p38 inhibitors prevent TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Investigative ophthalmology & visual science, 2006. **47**(4): p. 1500-9.
- 43. White, E.S., et al., Negative regulation of myofibroblast differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on chromosome 10). American journal of respiratory and critical care medicine, 2006. **173**(1): p. 112-21.
- 44. Anderson, S., et al., *Rho-mediated assembly of stress fibers is differentially regulated in corneal fibroblasts and myofibroblasts.* Experimental cell research, 2004. **298**(2): p. 574-83.
- 45. Sandbo, N., et al., *Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-beta.* American journal of respiratory cell and molecular biology, 2009. **41**(3): p. 332-8.

- 46. Pipes, G.C., E.E. Creemers, and E.N. Olson, *The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis.* Genes & development, 2006. **20**(12): p. 1545-56.
- 47. Greenberg, R.S., et al., *FAK-dependent regulation of myofibroblast differentiation.* The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2006. **20**(7): p. 1006-8.
- 48. White, E.S., et al., Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway. Experimental cell research, 2010. **316**(16): p. 2644-53.
- 49. Blaustein, M., et al., Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol, 2005. **12**(12): p. 1037-44.
- 50. Kohan, M., et al., EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling. The FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 2010. 24(11): p. 4503-12.
- 51. Karni, R., et al., *The splicing-factor oncoprotein SF2/ASF activates mTORC1.*Proceedings of the National Academy of Sciences of the United States of America, 2008. **105**(40): p. 15323-7.
- 52. White, E.S. and A.F. Muro, Fibronectin splice variants: understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life, 2011. **63**(7): p. 538-46.

FIGURE 1.


Akt1 is critical for αSMA expression in response to TGFβ. *A*, control vector (pBabe-Puro), myr-Akt1, and DN-Akt1 expressing NIH 3T3 fibroblasts grown to 80% confluence were subjected to serum-free medium in the presence and absence of 100 pM TGFβ for 72 h. Lysates were prepared and subjected to Western analyses with antibodies against αSMA (n = 3) (C, control NIH 3T3; M, myr-Akt1; D, DN-Akt1) (* , p = 0.0001 and * , p = 0.02 compared with control untreated NIH 3T3; * , compared with myr-Akt1 control; * , compared with TGFβ-treated NIH 3T3 cells). B, cells, subjected to serum-free medium in the presence and absence of 100 pM TGFβ for 72 h, were fixed using 4% paraformaldehyde and stained using anti-αSMA antibodies. Fluorescent images of αSMA assembly were visualized using a fluorescence microscope and photographed. *Scale bar*, 50 μM.



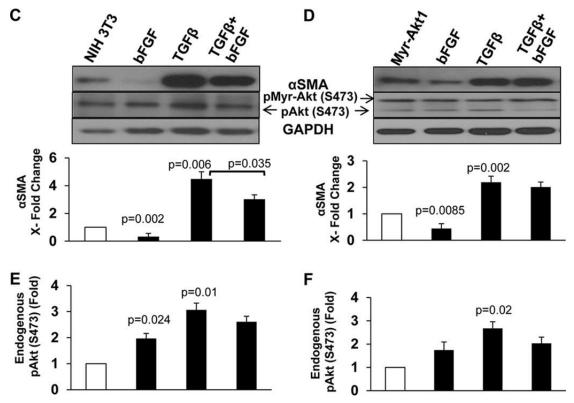
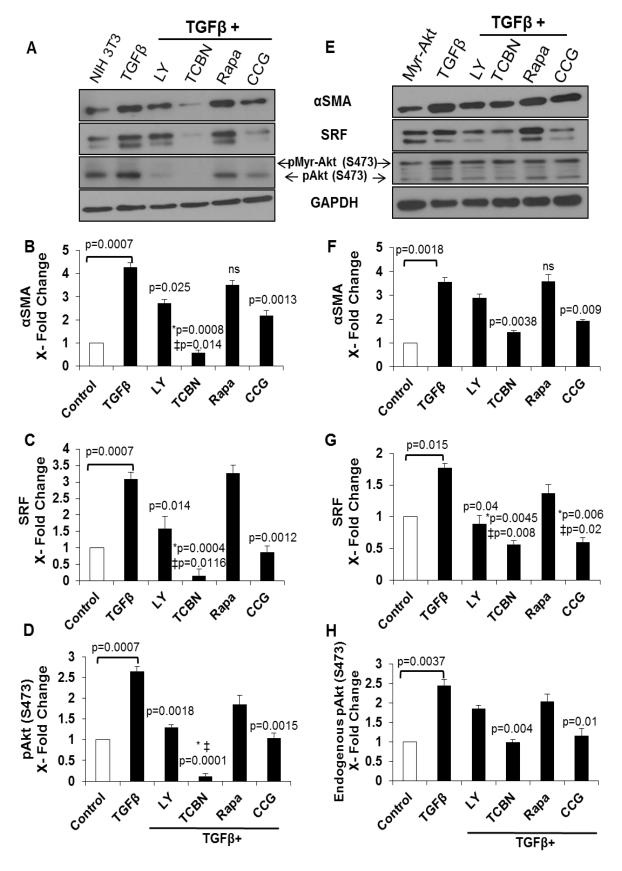
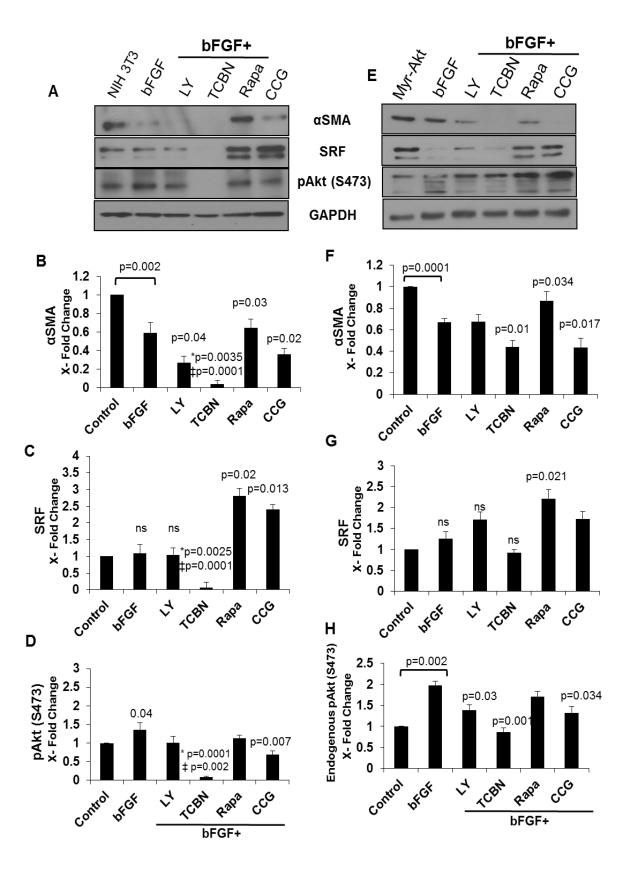


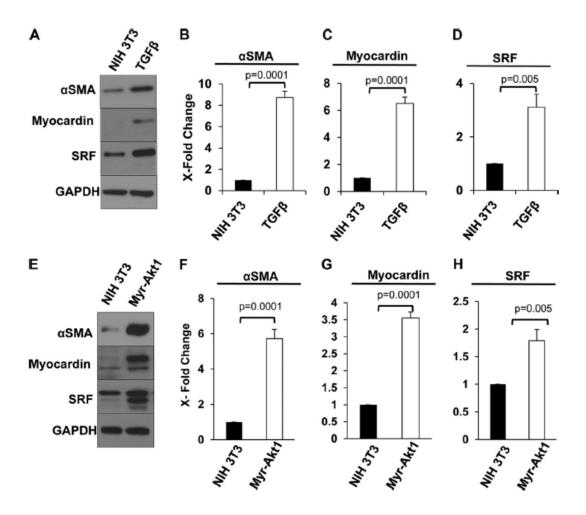
FIGURE 2.

Akt1 is differentially utilized by TGFβ and bFGF in fibroblast to MF differentiation. A, a schematic representation of the hypothesis that the stimulidependent dynamic switch between fibroblasts (bFGF) and MFs (TGFβ) is mediated by Akt1. Control vector (B) and myr-Akt1 (C) (M) expressing fibroblasts were subjected to serum starvation alone or plus treatment with 20 ng/ml of bFGF or 100 pM TGFβ for 72 h. Lysates were prepared and subjected to Western analyses with antibodies against αSMA (n = 3) (C, control NIH 3T3; M, myr-Akt1; D, DN-Akt1) (*, compared with myr-Akt1 control; #, compared with control; •, bFGF compared with TGFβ). C-F, to examine the de-differentiation potential, control and Myr-Akt1 expressing NIH 3T3 cells were treated with TGFβ for 72 h plus bFGF (for an additional 24 h) for a total of 96 h. Lysates were prepared and subjected to Western analyses with antibodies against αSMA and phospho-Ser-473 Akt (n = 3).

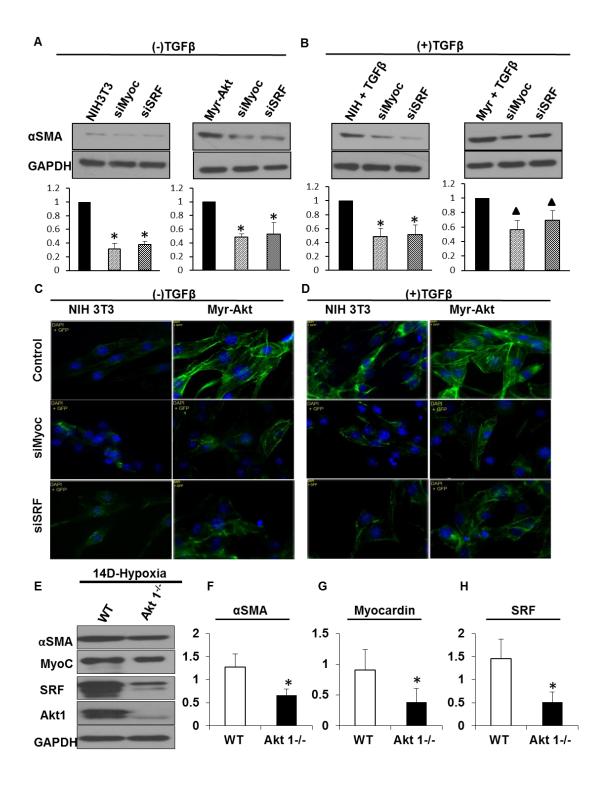



FIGURE 3.

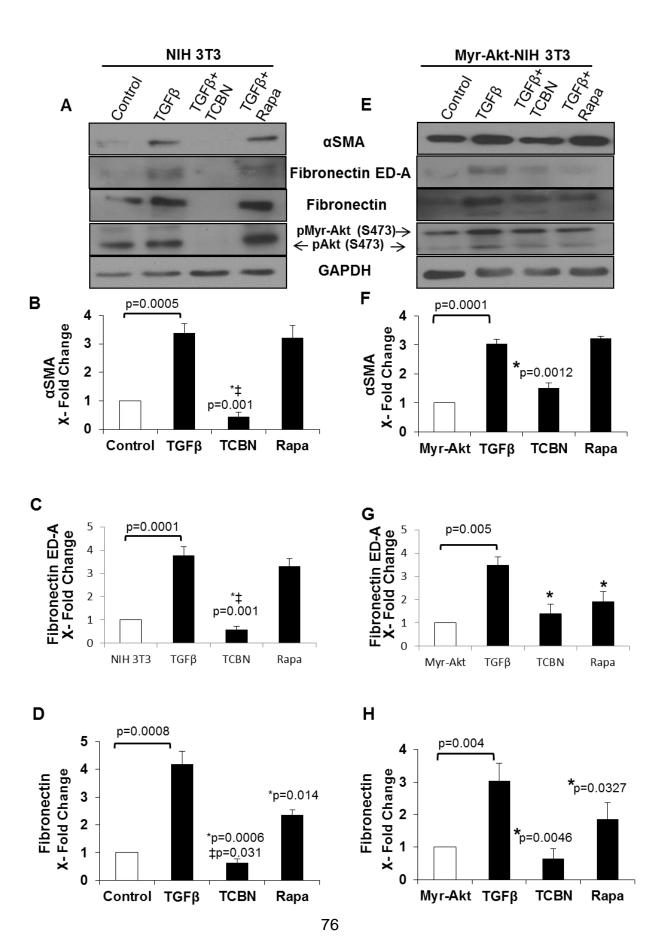
TGFβ-induced α**SMA** expression is Akt1-dependent through SRF, independent of mTOR. NIH 3T3 fibroblasts (A–D) and myr-Akt1 expressing fibroblasts (E–H) grown to 70% confluence were treated with TGFβ for 72 h in the absence of FBS. To examine pathways governing MF differentiation, inhibitors were applied before significant differentiation occurred: cells were treated with TGFβ for 48 h and then co-treated with inhibitors for an additional 24 h targeting the PI3K/Akt/mTOR pathway and responsive SRF pathway (LY294002, triciribine (TCBN), rapamycin, and CCG1423, respectively). Lysates were prepared and subjected to Western analyses with antibodies against αSMA (B and F), SRF (C and G), and pAkt (Ser-473) (D and H) (n = 4). *, compared with TGFβ; ‡, compared with control untreated cells.


FIGURE 4.

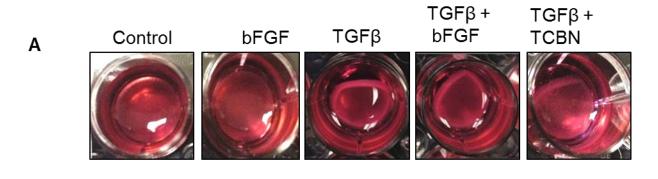
bFGF-induced α **SMA down-regulation is mTOR dependent.** NIH 3T3 fibroblasts (A–D) and myr-Akt1 expressing fibroblasts (E–H) grown to 70% confluence were treated with bFGF for 72 h in the absence of FBS. To examine pathways governing bFGF-mediated effects on MF differentiation, cells were treated with bFGF for 48 h and then co-treated with inhibitors for an additional 24 h targeting the PI3K/Akt/mTOR pathway and responsive SRF pathway (LY294002, triciribine (TCBN), rapamycin, and CCG1423, respectively). Lysates were prepared and subjected to Western analyses with antibodies against α SMA (B and F), SRF (C and G), and pAkt (Ser-473) (D and H) (n = 4). *, compared with bFGF; ‡, compared with control untreated cells.

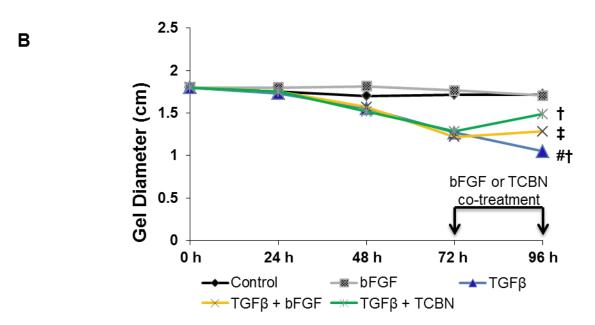

FIGURE 5.

Akt1 induces MF differentiation through enhanced expression of myocardin and SRF. NIH 3T3 fibroblasts treated with TGF β for 72 h (A–D) and myr-Akt1 fibroblasts (E–H) were subjected to Western analysis for SMA, myocardin, and SRF expression (n = 4).


FIGURE 6.

siRNA-mediated knockdown of myocardin and SRF ablates Akt1-induced SMA expression and MF differentiation. Control NIH 3T3 fibroblasts (A and C) and myr-Akt1 fibroblasts (B and D) were transfected with control, myocardin, or SRF siRNA (siMyoc, 100 nM and siSRF, 150 nM), and 24 to 48 h later, cells were treated with 100 pM TGFβ for 72 h. Lysates were prepared and subjected to Western analyses, quantification was normalized to control (*, p < 0.001, p < 0.01) (n = 3). E and E, cells were fixed using 4% paraformaldehyde and stained using anti-αSMA antibodies. Fluorescent images of αSMA assembly were visualized using a fluorescence microscope and photographed. E Scale E bar, 50 μM. E and E as a proof of concept, wild type (WT) Akt null (E Akt1E microscope were subjected to chronic hypoxia (a well-established model of pulmonary hypertension that induces marked MF differentiation). After 14 days of continuous exposure to 10% oxygen, mice were euthanized and whole lungs collected, homogenized, and analyzed using Western blotting for αSMA, myocardin, SRF, and Akt1 expressions. Data were normalized to GAPDH (E = 4–5).


FIGURE 7.


Akt1-mediated expression α SMA and ED-A FN in response to TGF β is independent of mTOR activity. Control NIH 3T3 (A–D) and myr-Akt1 expressing fibroblasts (E–H) grown to 70% confluence were subjected to serum-free medium and treated with TGF β for 72 or 48 h and then co-treated with inhibitors for an additional 24 h targeting the Akt/mTOR pathway (triciribine (TCBN) and rapamycin, respectively). Lysates were prepared and subjected to Western analyses with antibodies against α SMA, ED-A FN, total fibronectin, and pAkt(Ser-473) (n = 3). *, compared with TGF β ; ‡, compared with control untreated cells.

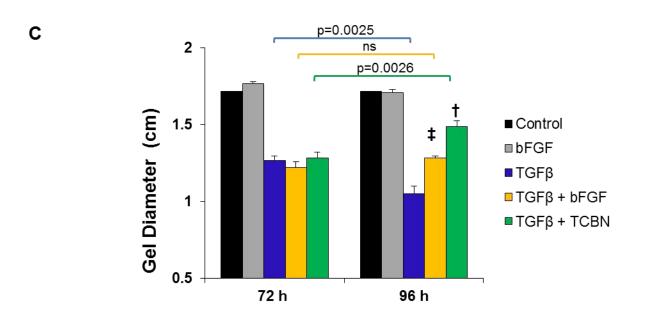
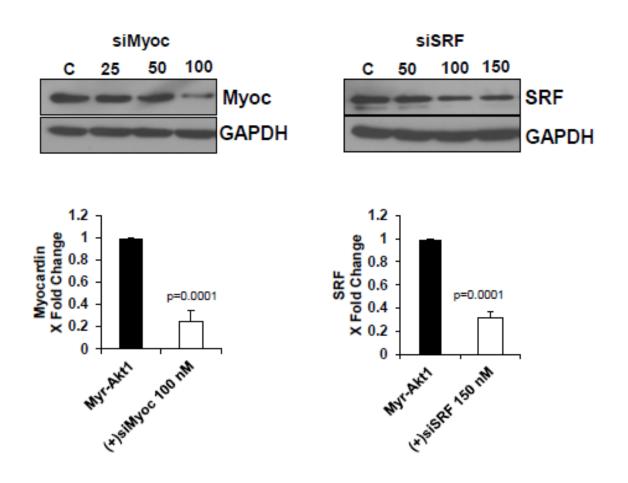
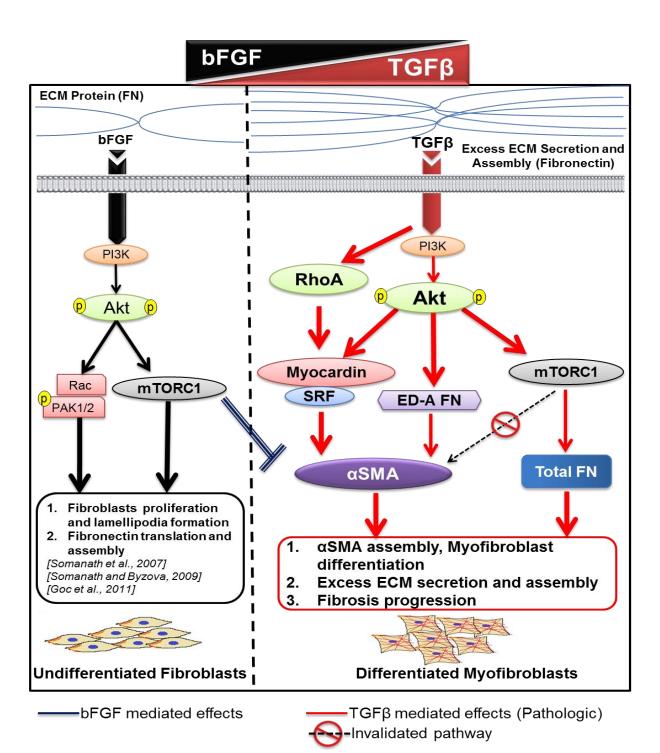


FIGURE 8.

Akt inhibition reverses TGFβ-mediated contraction of fibroblast-populated collagen lattices. *A*, after seeding NIH 3T3 fibroblasts in neutralized collagen solution, cells were serum starved and incubated with bFGF or TGFβ for 96 h or TGFβ for 72 h, and co-treated with bFGF or triciribine (*TCBN*) for an additional 24 h (total 96 h) to examine the de-differentiation effect. Degree of gel contraction was assessed daily. *B*, degree of contraction was compared at 96 h between groups. *C*, degree of dedifferentiation/relaxation compared with 72 h (n = 3). #, compared with control; †, p = 0.0001 compared with TGFβ; ‡, p = 0.001 compared with TGFβ.





Supplemental Figure 1: Degree of gene silencing of SRF and Myocradin in myr-

Akt1 NIH 3T3. MyrAkt1 expressing cells, which expresses higher concentrations of SRF and Myocardin were utilized for the standardization of SiRNAs. Optimum knockdown was observed at 100 nM of SiMyocardin and 150 nM of SiSRF. Approximately 70% knockdown was obtained with each of the SiRNAs. Upper panel shows representative Western blots and the lower panel shows densitometry OD values (n=3).

The line thicknesses reflects degree of the effect

CHAPTER 3

TRICIRIBINE, A SELECTIVE AKT INHIBITOR, AMELIORATES TGFβ- AND HYPOXIA-INDUCED PULMONARY FIBROSIS AND VASCULAR REMODELING

Abdalla M, Prakash R, Ergul A, Pruitt A, Fagan S.C., Somanath P.R. Triciribine, a Selective Akt Inhibitor, Ameliorates TGFβ- and Hypoxia Induced Pulmonary Fibrosis and Vascular Remodeling. 2014 (To be submitted to Circulation Research)

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an incurable, chronic and progressive disease with severely poor prognosis and often leads to pulmonary hypertension (PH). Myofibroblast (MFs), marked by de novo expression of αSMA stress fibers, are central orchestrators of IPF and associated vascular remodeling. We have previously shown that Akt1 is necessary for MF differentiation. Recently, it has been shown that Akt, a major survival protein, is upregulated in IPF patients; however its role remains unclear. Here we investigated 1) whether Akt isoform 1 mediates the pathogenesis of IPF; and 2) the efficacy of Triciribine (TCBN), a selective Akt inhibitor as a potential therapeutic option for IPF compared to the mTOR inhibitor rapamycin in two rodent models of the disease and in IPF fibroblasts. Our results show that Akt1 deficient mice are protected from hypoxia induced pulmonary fibrosis and remodeling. In contrast, hyperactivation of Akt1 induced severe focal fibrosis. TCBN reversed adTGFβ- and hypoxia-induced IPF and vascular remodeling, respectively, compared to Rapamycin. Mice treated with TCBN had markedly lower tissue dense infiltration and fibrosis, lower adventitial and medial remodeling, lower αSMA and ECM expression. Conversely, Rapamycin exacerbated IPF, pulmonary vascular remodeling and right ventricular remodeling and was associated with exacerbated hepatotoxicity. Mechanistically, rapamycin induced Akt activation and was associated with elevated thrombospondin-1 expression. Collectively, we identify Akt1 as a novel target as it is crucial in mediating IPF and associated vascular remodeling. Thus, targeting Akt, not mTOR, may serve as a favorable therapeutic strategy in advanced stage IPF.

INTRODUCTION

Idiopathic Pulmonary fibrosis (IPF) is an incurable, chronic and progressive lung disease with severely poor prognosis and limited therapeutic options [1]. Lung transplantation remains the only non-medicinal therapy with proven efficacy on survival in IPF patients [2, 3]. Thus, identification of novel therapeutic targets is critical in the hopes of devising new treatments. IPF is characterized by proliferating myofibroblasts and excess deposition of extracellular matrix (ECM) proteins leading to progressive hypertrophic scar formation [4]. Most IPF patients develop secondary pulmonary hypertension, which is an independent risk factor for increased mortality in IPF and is characterized by obliterative vascular remodeling [1, 5]. It has been shown that IPF patients exhibit hyperactivation of Akt in IPF lung [6]. However, whether Akt is critical for the pathogenesis of IPF and associated vascular complication remains unclear.

Recently, we have established the crucial role of Akt1 in myofibroblast differentiation [7]. We have also demonstrated that Akt1 is necessary for, ECM regulation [7, 8] and vascular integrity [9]. Furthermore, it has been shown that mice deficient in phosphatase and tensin homologue (PTEN), which normally inactivates Akt pathway, developed fibroproliferative response consistent with fibrosis [6]. Since several features of IPF resemble deregulated Akt-mediated processes, we sought to investigate the contributory role of Akt, Akt1 in particular, in IPF and associated vascular remodeling. Recent clinical report on everolimus, a rapamycin derivative that targets mTOR downstream of Akt, exacerbated IPF and was associated with worsened outcome [10]. Thus, we also set out to investigate the therapeutic implications of targeting Akt using the selective inhibitor Triciribine [11] compared to targeting mTOR using rapamycin.

Herein, we report three major novel findings on the role of Akt1 in IPF pathogenesis and as a therapeutic target to manage the disease. The results of our study 1) identified Akt as a novel target as it is crucial for hypoxia-induced pulmonary fibrosis and vascular remodeling, and its hyperactivation induced severe focal pulmonary fibrosis; 2) determined novel anti-fibrotic and anti-remodeling properties of Triciribine. Thus, it can potentially be a therapeutic option for IPF; 3) determined that rapamycin induces severe pulmonary and hepatic toxicities through feedback activation of Akt1/TSP1 axis. This also sheds light on the observed detrimental effects of everolimus, a rapamycin derivative, in IPF patients.

EXPERIMENTAL PROCEDURES

Antibodies

Anti-αSMA (cat# SAB2500963) and anti-fibronectin (cat#F6140) antibodies were purchased from Sigma (St Louis, MO). GAPDH (cat#2118), phospho-Akt (s473) (cat#9271), phosphoT389-p70S6K (cat#9205), phosphoT37/46-4E-BP1 (CAT#2855), and anti-SRF (cat# 5147) antibodies were purchased from Cell signaling (Boston, MA). Antimyocardin (cat# MAB 4028) antibodies were purchased from R&D (Minneapolis, MN). Collagens type I and III antibodies were purchased from Rockland (Gilbertsville, PA). Anti-ED-A fibronectin (cat# 6328), anti-Collagen VI (ab6588), and anti- αSMA (cat#5694) antibodies were purchased from Abcam (Cambridge, MA).

Cell Culture

Normal and fibrotic human lung fibroblasts (HLFs) were purchased from Lonza. Normal HLFs were cultured on a 6-well plate. After reaching 70% of confluence, cells were

subjected to serum starvation in the presence or absence of 100 pM TGF β (a predetermined dose (Goc et al, 201)) for 48 h. This was followed by co-treatment for 24 h (total 72 h) with inhibitors of Pl3Kinase (25 μ M LY294002), Akt (10 nM triciribine), mTOR (25 nM rapamycin), or SRF/Rho (1 μ M CCG1423). Cells were subjected to western analyses as described below. For fibrotic HLFs, cells were cultured in serum starvation in a 6-well plate and treated with inhibitors of Akt (10 nM triciribine) or mTOR (25 nM rapamycin) for 24 h. Cells were subjected to western analyses as described below

Western blot analysis

Cell lysates were prepared using lysis buffer (20mM Tris- HCl, pH7.4; 1% Triton X-100, 3mM EGTA, 5mM EDTA, phosphatase inhibitors [10mMsodium pyrophosphate, 5mM sodium orthovanadate, 5mM sodium fluoride, and 10µM okadaic acid], protease inhibitor cocktail [Roche Diagnostics, Basel,Switzerland] and 1mM PMSF). SDS-PAGE and western blotting were performed.

Animals

All experiments were performed with approval by the Charlie Norwood VAMC Institutional Animal Care and Use Committees. Akt1^{-/-} mice were generated as previously described [9] and were maintained in the C57BL/6 background. Age-matched wild-type and Akt1^{-/-} were utilized in two models of the disease as described below.

Animal models

To study the degree of pulmonary fibrosis, WT mice were subjected to intra-tracheal adenovirus control or TGFβ at day 0. After 7 days, saline, TCBN, or Rapa was

administered IP daily for 3 additional days (n=6-8 mice/group). To assess fibrosis accompanied with vascular remodeling, mice were subjected to normoxia or hypoxia (10% O2) (Biospherix, New York, NY) for 14 days, followed by IP administration of saline, TCBN, or Rapa for 7 days under the same oxygen conditions. TCBN was dissolved in carboxymethylcellulose and PEG-400, and Rapamycin in 100% Ethanol. Both were then diluted (1:1000) in PBS. Total daily IP injection is 100 ul (TCBN: 0.5 mg/kg/day; Rapa: 1.5 mg/kg/day). Pharmacological inhibitors were administered daily while the mice were maintained in hypoxia chamber to minimize exposure to air and spontaneous reversal of vascular remodeling. To establish the hypoxic environment, the chamber was flushed with nitrogen. The chamber was opened once per week for no more than 1 hour to clean the cages and replenish food and water supplies. After 21 days, mice were euthanized; lungs were isolated and subjected to analyses (n=6-8 mice/group).

We conducted a drug-drug comparison of TCBN vs Rapa and drug-placebo comparison to provide a more comprehensive and clinically relevant study. Following completion of these studies, mice were euthanized by C1-C2 cervical dislocation. After lung isolation, the left lung was subjected to histology for H&E, Mason Trichrome, and immuno-fluorescence staining, and the right lung was subjected to western analyses.

Pulmonary vascular casting

Mice were anesthetized with ketamine/xylazine, then microfil casting agent (Flowtech, 1:2 dilution + 3.2% curing agent) was infused into the pulmonary artery through the right ventricle. Lungs were fixed in 4% paraformaldehyde overnight, and then cleared with

ethanol-methylsalicylate per the manufacturer's instructions. Peripheral vasculatures were imaged using light microscopy. (n=4-8 mice/group; 6 groups/disease model)

Fibrosis Score – Quantitative and semi-quantitative (Ashcroft Score) methods

IPF Classification: quantitative evaluation of fibrotic changes (Ashcroft scale) was obtained as follows, 1) the severity of the fibrotic changes in each lung section was given as the mean score from the observed microscopic fields; 2) 8-10 fields/lung section were quantified, and each field was assessed individually for severity and allotted a score from 0 (normal) to 8 (total fibrosis) (6-8 mice/group); 3) In ImageJ, the threshold (severity score) for each field were averaged and are presented as the average for each lung section; 4) the mean of their individual scores (both based on threshold and Ashcroft Scale) was taken as the fibrotic score

Histologic and immunohistochemical assessments

Left lung lobe, heart, and liver tissues were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned at 5 µm thickness. The severity of pulmonary fibrosis was scored (0-8 scale) in lung sections stained for collagen with Masson's trichrome stains using the grading system described by Ashcroft et al. (Ashcroft et al. 1988). The sections were stained with H&E to determine inflammatory cell infiltration. Immunostaining for αSMA and fibronectin was performed and validated by western analyses. Furthermore, for vascular remodeling studies, sections from each animal were stained with hematoxylin and eosin and Masson's trichrome and examined by digital photomicroscopy at various magnifications to determine the severity of the disease. We analyzed 10 to 15 peripheral pulmonary vessels/lung/mouse/group and determined medial wall/lumen diameter ratio. Immunohistochemical/

immunofluorescence for αSMA and fibronectin were confirmed with western analyses. We have measured the right ventricular wall thickness in heart section (average of 8-10 measurements/animal/group. Finally, liver sections we assessed semiquantitatively using the threshold/ImageJ (as described above in Fibrosis Score section) and the percent area in 8-10 sections/liver section/mouse/group was assessed.

Statistical analysis

Data are presented as means ± SD. We performed all the analyses using two-way ANOVA on the ranks of the data were used to compare control, insult (hypoxia or adTGFβ), and control/insult plus TCBN or Rapamycin for all variables. T-tests with a two-tailed distribution were used to compare control and Akt1 deficient mice on all variables. Statistical significance was determined at alpha=0.05.

RESULTS

Akt1^{-/-} mice are resistant to chronic hypoxia-induced pulmonary remodeling

We previously showed that Akt1 is necessary for myofibroblast differentiation, ECM assembly, and maintaining vascular integrity. Since several of these events are deregulated in IPF, we hypothesized that Akt1 modulates fibrogenesis leading to pulmonary fibrosis and secondary vascular remodeling.

To investigate whether Akt signaling is a requisite for the development of pulmonary fibrosis and vascular remodeling, we examined the patterns of morphological changes of Akt1 knockout mice subjected to hypoxia over a period of 2 weeks compared to *WT* mice. Interestingly, normoxic Akt1 deficient mice exhibited morphological features similar to 14 d-hypoxic *WT* mice (Figure 1 A - C). We postulated that this could be due

to a compensatory response possibly through Akt2. Indeed, Akt2 expression was significantly increased in Akt1 deficient mice compared to *WT* mice (Supplemental Figure 1).

We first examined the course of morphological alteration due to hypoxia over a period of 7 days and 14 days. Wild type mice subjected to hypoxia developed patterns consistent with disease progression as evident by patchy fibrotic lesions and mild vessel luminal narrowing and medial thickening at day 7 that progressed to diffuse fibrosis, increased collagen deposition and marked vascular remodeling at day 14 (Figure 1A). In contrast, hypoxic Akt1^{-/-} mice showed improved histopathological patterns consistent with disease regression as evident by decreased fibrotic lesions, collagen deposition, and vascular remodeling at days 7 and 14 (Figure 1A).

We then evaluated the degree of tissue fibrosis and vascular remodeling of 14d-hypoxic $Akt1^{-/-}$ compared to WT mice. Despite chronic hypoxia exposure, $Akt1^{-/-}$ mice had minimal fibronectin accumulation in the interstitial space, which was confirmed with western analyses and indicates resistance to tissue fibrosis (Figure 1B and D). Furthermore, 14d-hypoxic $Akt1^{-/-}$ mice had normal appearing pulmonary arterioles as evident by the absence of medial thickening and luminal narrowing, decreased αSMA assembly, and decreased fibronectin deposition (Figure 1C).

Several lines of evidence have demonstrated that the matricellular protein thrombospondin-1 (TSP1), a potent activator of TGFβ, is an important mediator of tissue fibrosis, matrix assembly, and vascular remodeling and pruning. We have previously shown that Akt1 directly regulates the expression of TSP1. Accordingly, we hypothesized that the protective effects observed in hypoxic Akt1 deficient mice is due

to decreased TSP1 expression. Indeed, western analyses revealed that the increased TSP1 expression in hypoxic *WT* mice is blunted in 14D-hypoxic Akt1^{-/-} mice (Figure 1E). Collectively, our results demonstrate that the absence of Akt1 impedes chronic hypoxia-induced pulmonary fibrosis and remodeling through TSP1.

Sustained activation of Akt1 induces severe focal pulmonary fibrosis

To further confirm the causal role of Akt1 in pulmonary fibrosis, we subjected WT mice to a two-hit intratracheal administration of adenovirus gene transfer of control vector, TGFβ (major pro-fibrotic cytokine in IPF), or constitutively active Akt1 (myr-Akt1), as described in Methods. We found that sustained hyperactivation of Akt1 induced severe focal fibrosis with honeycomb formation similar to that observed in TGFβ treated mice (Figure 1F). Collectively, by utilizing two rodent models of the disease, our data demonstrate that Akt1 is necessary for the onset and progression of pulmonary fibrosis and associated remodeling.

Triciribine, a selective Akt inhibitor, attenuates myofibroblast differentiation in TGFβstimulated human lung fibroblasts

Once we identified Akt1 as a critical mediator of pulmonary fibrosis, we set out to investigate the therapeutic potential of targeting Akt pathway in myofibroblasts (MFs), which are the central orchestrators of IPF. Persistent myofibroblasts (MFs) differentiation, marked by *de novo* expression of α SMA, leads to progressive deposition of excess ECM; both events are cardinal features in IPF. We previously showed that Akt1 is necessary for MF differentiation and persistence in mouse embryonic fibroblasts (Abdalla et al, 2013); herein we aimed to delineate its role in lung specific fibroblasts isolated from normal subjects and IPF patients. We first determined that 72 h is the

optimal time for TGFβ-induced MF differentiation in primary normal human lung fibroblasts (HLFs), as measured by increased αSMA expression, and was associated with elevated fibronectin expression and Akt phosphorylation (Supplemental Figure 2 A-D). We and others have shown that αSMA synthesis is transcriptionally regulated by serum response factor (SRF) and its co-activator, myocardin. Thus, to determine the role of Akt pathway on αSMA synthesis, we subjected normal HLFs to serum starvation in the presence or absence of TGFB stimulation for 48 h, and co-treated for an additional 24 h with inhibitors of PI3K (25 µM LY294002), Akt (10 nM triciribine (TCBN)), mTOR (25 nM rapamycin) and Rho signaling-responsive SRF (1 μM CCG1423). As expected, TGFβ stimulation induced a significant increase in αSMA expression compared to unstimulated HLFs, indicating MFs differentiation; this was associated with increased myocardin and SRF expressions (Figure 2A-D). The stimulatory effects of TGF\$\beta\$ significantly decreased upon inhibiting PI3K and Rho-responsive SRF. Notably, while targeting Akt using TCBN abolished αSMA-myocardin-SRF expressions, targeting mTOR using rapamycin did not induce any discernible effect on their expressions (Figure 2A-D). Together, our results demonstrate that αSMA synthesis and MF differentiation is mediated by PI3K/Akt pathway, independent of mTOR. Importantly, the observed difference between TCBN and rapamycin suggests that rapamycin may have unfavorable therapeutic consequences.

Triciribine, not rapamycin, downregulates both MF differentiation and fibronectin in IPF fibroblasts

In view of clinical reports that the rapamycin derivative, everolimus, exacerbated disease progression in IPF patients along with our findings that MF differentiation is

mediated by unrestrained Akt signaling independent of mTOR, prompted us to conduct a drug-drug comparison in fibrotic human lung fibroblasts (FHLFs) isolated from IPF patient. We subjected FHLFs to serum starvation and treated with 10 nM TCBN or 25 nM rapamycin for 24 h, and analyzed αSMA, fibronectin, and TSP1 expression levels. Targeting Akt using TCBN significantly reduced αSMA, fibronectin, and TSP1 expressions in FHLFs (Figure 2 E-H). We confirmed further confirmed the regulatory role of Akt on TSP1 by conducting a gene silencing study in FHLFs and TGFβ-stimulated mouse embryonic fibroblasts. Inactivating Akt1 resulted in decreased TSP1 gene expression in both cell types (Supplemental Figure 2 E).

In contrast, rapamycin did not modulate their expressions (Figure 2E-H). This supports our previous studies and demonstrates that although rapamycin targets ECM proteins, MF differentiation still occurs via unopposed transcriptional activation of αSMA. Consequently, MFs produce excess ECM resulting in persistent differentiation and abnormal ECM accumulation. On the other hand, TCBN exhibits dual role by targeting both MF differentiation and the ECM. This suggests that targeting Akt, not mTOR, may serve as a favorable therapeutic strategy in IPF.

Triciribine ameliorates TGFβ1-induced pulmonary fibrosis, while rapamycin induces severe structural abnormalities in vivo

The distinct opposing effects of TCBN and rapamycin observed *in vitro*, led us to investigate their therapeutic implications *in vivo* utilizing disease mouse model of adenovirus TGFβ-induced PF. It is well established that TGFβ1 is a pro-fibrotic master cytokine in IPF. In addition to the canonical pathway, TGFβ also elicits signaling responses through non-canonical activation of Akt signaling. Notably, Akt has been

shown to be hyperactivated in fibrotic foci in IPF lung. Therefore, we hypothesized that TCBN may effectively manage pulmonary fibrosis by disrupting TGFβ/Akt signaling, compare to rapamycin. To test our hypothesis, we established an experimental severe focal pulmonary fibrosis model induced by TGFβ1 overexpression using intratracheal adenoviral gene transfer. Mice were subjected to a one time intratracheal administration of either control empty vector or adenovirus TGFβ1 (adTGFβ), then, on day 7, both control and adTGF\$\beta\$ mice were treated daily for 3 days (total study duration: 10 days) with PBS (saline), TCBN (0.5 mg/kg/day), or rapamycin (Rapa; 1.5 mg/kg/day). Noteworthy, a recent study reported that DMSO exerts anti-fibrotic properties. Thus, to exclude false positive results, TCBN was dissolved in carboxymethylcellulose (CMC) and PEG-400 solution and Rapa in 100% ethanol. Both were then diluted in PBS (1:1000). To ensure that the solvents do not affect the outcome of our studies, mice were injected IP for 3 days with CMC/PEG and 100% ethanol both diluted in PBS (1:1000). Examination of lung sections from both groups showed normal histology similar to control group (data not shown).

AdTGFβ administration induced marked destruction of normal pulmonary architecture that correlated with an Ashcroft fibrosis score of ~7.6, and resulted in heterogeneous pattern (both spatial and temporal) consistent with advanced stage IPF (Figure 3A-C). TGFβ induced substantial interstitial fibrosis, extensive deposition of fibrillar collagen, loss of alveolar parenchyma, microscopic honeycomb foci, as indicated by H&E and Masson's trichrome staining, and % fibrosed area. This was also associated with marked increase in fibronectin and αSMA assembly as demonstrated by immunofluorescence staining (Figure 3 A-F). Strikingly, TCBN administration reversed

the adTGFβ-induced pathological structural changes, and correlated with an Ashcroft fibrosis score of ~1.2 (categorized as minimal fibrosis) (Figure 3F). This is evident by markedly decreased fibrotic lesions, deposition of collagen fibers, fibronectin, and αSMA (Figure 3A-D).

The functional role for TCBN in the blockade of adTGF β -induced pulmonary fibrosis was further demonstrated at the protein levels by western blot analysis. TCBN significantly decreased the stimulatory effects of adTGF β on α SMA and its transcription factors (Figure 4A), TSP1 and other ECM protein expression (collagen I, III, and VI, and fibronectin splice variant (ED-A FN)) (Figure 4B). These effects were associated with decreased phosphorylation of Akt, P70S6K1, and 4EBP1 (Figure 4C and D). Noteworthy, TCBN increased the phosphorylation of β Catenin (Figure 4C and D). This suggests that in addition to targeting the ECM and the transcriptional regulation of α SMA, flagging the pro-fibrotic β Catenin signaling for degradation may constitute another mechanism by which TCBN exerts its anti-fibrotic effects.

In contrast, although rapamycin treatment correlated with decreased fibrotic lesions and improved Ashcroft fibrosis score of ~5 (Figure 3B and F), it induced thickening of the alveolar space, diffuse alveolar microhemorrhage, capillary congestion, and dense inflammatory infiltrates as evident by H&E and Masson's trichrome staining (Figure 3A and B). Notably, even in the absence of adTGFβ, control mice treated with rapamycin, exhibited similar pulmonary toxicity effects (Figure 3A-F). Western analyses revealed that although rapamycin markedly decreased collagen I expression, it did not modulate collagen III, VI, or ED-A FN (Figure 4B). Importantly, rapamycin alone induced increased TSP1 expression to the same extent as adTGFβ; this effect was amplified in

adTGF β stimulated mice. This further supports the notion of unopposed Akt activation in response to rapamycin. Additionally, no discernible effect was observed on α SMA and its transcription factors (Figure 4A). Although rapamycin significantly decreased mTOR pathway signaling, it did not modulate the stimulatory effects of adTGF β on Akt phosphorylation (Figure 4C). Even in the absence of adTGF β , Akt phosphorylation is increased with rapamycin treatment (Figure 4C). This suggests that rapamycin activates a pro-fibrotic feedback loop as a result of switching off the inhibitory effect of S6K1 on TGF β signaling. This is further amplified by the accumulation and activation of the profibrotic β Catenin pathway (Figure 4D). Collectively, our results reveal novel anti-fibrotic properties of TCBN in pulmonary fibrosis marked by upregulated TGF β signaling *in vivo*, whereas rapamycin attains a potentially detrimental pulmonary toxicity profile through feedback activation of Akt/TSP1 axis.

Triciribine ameliorates chronic hypoxia-induced pulmonary vascular remodeling, while rapamycin induces severe structural abnormalities in vivo

Since IPF is often accompanied by vascular remodeling, which contributes to the development of secondary complications such as pulmonary hypertension, we sought to investigate the therapeutic effects of TCBN compared to rapamycin in modulating these vascular complications. To do this, we utilized the well-established model of chronic hypoxia-induced pulmonary vascular remodeling. Mice were subjected to 21 days of hypoxia (10% oxygen) or normoxia, and treated from days 14 to 21 with PBS (Saline), TCBN (0.5 mg/kg/day), or Rapa (1.5 mg/kg/day) IP daily under the same conditions (normoxia or continuous hypoxia). Chronic hypoxia induced marked vascular remodeling as evident by increased medial thickness of peripheral pulmonary arterioles

(Figure 5D and E), which correlated with increased collagen, fibronectin, and αSMA deposition as demonstrated by H&E, Masson's trichrome, and immunofluorescence staining (Figure 5 B-D). This was also confirmed at the protein level where hypoxia increased the levels of αSMA and its transcription factors (SRF and myocardin) (Figure 5F), and ECM proteins (Figure 5G). TCBN treatment reversed vascular remodeling as it markedly reduced the stimulatory effects of hypoxia as evident by immunohistochemistry and western analyses (Figure 5A-G). On the other hand, rapamycin exacerbated hypoxia-induced pulmonary vascular remodeling and resulted in alveolar hemorrhage and congestion (Figure 5A-G). Noteworthy, under normoxic conditions, rapamycin alone induced dense inflammatory infiltration and vascular remodeling (5A-D). Collectively, these findings reveal novel anti-remodeling effects of TCBN, whereas rapamycin is likely to exacerbate vascular remodeling.

Triciribine reverses hypoxia-induced right ventricular remodeling and hepatotoxicity

The hypoxia-induced pulmonary vasculopathies often lead to right ventricular hypertrophy. Thus, we next determined the effects of TCBN compared to rapamycin on right ventricular wall thickness in mice subjected to 21 d hypoxia or normoxia. Under normoxic conditions, neither TCBN nor rapamycin induced any discernible effects on wall thickness (Figure 6A and B). Hypoxia induced a modest but significant increase in right ventricular wall thickness compared to normoxic mice, which was reversed by TCBN treatment (Figure 6 A and B). However, rapamycin treatment was associated with enlarged heart (Supplemental Figure 3) and increased right-sided wall thickness (Figure 6A and B).

Next, we assessed the safety profile of both drugs in the liver of mice subjected to chronic hypoxia. Compared to TCBN, chronic rapamycin treatment was associated with significantly enlarged liver weight (Supplemental Figure 3). Liver histology revealed that TCBN improved hypoxia-induced hepatic injury. In contrast, rapamcyin resulted in pronounced liver toxicity. This is evident by marked degeneration and atrophy of hepatic cords and sinusoidal dilation (Figure 6 C and D).

Triciribine prevents hypoxia- and adTGFβ- induced vascular rarefaction, while rapamycin exacerbates them

The above findings prompted us to examine the aberrant vascularization that occurs during pulmonary fibrosis, and determine the effects of TCBN and rapamycin on the vascular tree. To do this, we utilized arterial casting to visualize the vascular tree of mice subjected hypoxia or normoxia. Compared to the diffuse vascular blush observed in normoxic mouse lung, hypoxia resulted in severe vascular pruning as demonstrated by binary images and high magnification of peripheral vessels (Figure 7A and C). TCBN prevented progressive pruning of the vasculature, which supports our previous finding that TCBN alleviates vessel occlusion (Figure 7A and C). In contrast, rapamycin treatment was associated with severely reduced vascular density and marked small-vessel pruning as evident by high magnification images. Noteworthy, while TCBN did not modulate vascular density in normoxic mice, rapamycin was associated with decreased vascular filling and increased vessel pruning (Figure 7A and C).

To further confirm the above findings, we studied the vascular bed of adTGFβ-induced pulmonary fibrosis. To do this, we subjected mice to either adenovirus control vector or adTGFβ and treated with TCBN, Rapa, or saline from days 3 to 7; on day 8, lungs were

casted and isolated. To assess the drug response, we also isolated lungs of adTGFβ mice on day 4 (24 hours post saline treatment). AdTGFβ markedly reduced pulmonary vascularization and was associated with severe pruning of small vessels on day 8 compared to control (Figure 7B and D) and to 4d adTGFβ (Supplemental Figure 4).TCBN treatment maintained the vasculature (Figure 7B and D and Supplemental Figure 4), whereas rapamycin treated mice showed blunting of the vasculature (Figure 7B and D). Collectively, these results demonstrate the therapeutic efficacy of TCBN in reversing the progression of pulmonary fibrosis and remodeling, whereas rapamycin is likely to exacerbate disease progression and the development of secondary complications.

DISCUSSION

Although it has been shown that Akt is hyperactivated in fibroblastic foci of IPF lung, a causal link has not been established. Here, we report several novel observations: (1) Akt1 is a crucial mediator of pulmonary fibrosis and vascular remodeling; (2) the specific Akt inhibitor Triciribine is a novel therapeutic option to reverse/halt progressive TGFβ-and hypoxia- induced pulmonary fibrosis and vascular remodeling and rarefaction; (3) targeting mTOR using rapamycin induces Akt/TSP1 activation and is associated with severe side effect profile consisting of pulmonary toxicity, exacerbated vascular and cardiac remodeling, and severe hepatotoxicity; this sheds light on the observed detrimental effects of everolimus, a rapamycin derivative, in IPF patients.

The pathologic hallmarks of IPF include persistent myofibroblasts differentiation and excess matrix deposition. Additionally, vascular remodeling and occlusion often takes

place during tissue fibrosis. We and others have shown that Akt is necessary for MF differentiation, ECM secretion and assembly, apoptosis, fibroblast migration and proliferation, and vascular integrity [8, 12-16]. Since events in IPF and vascular complication are consistent with deregulated Akt-mediated cellular and molecular processes, we investigated the contributory role of Akt in IPF. In addition to utilized normal and fibrotic human lung fibroblasts, we also utilized two animal models: chronic hypoxia- [17] and adenovirus TGFβ- [18] induced severe pulmonary fibrosis.

The results showed that Akt1 deficient mice are protected from hypoxia-induced vascular remodeling and fibrosis as evident by markedly reduced interstitial collagen, fibronectin, and αSMA deposition, reduced luminal space and medial thickening of pulmonary arterioles. Interestingly, it has been shown that thrombospondin1 deficiency protect against hypoxia-induced pulmonary hypertension [19]. This prompted to postulate that the observed decrease in ECM and overall fibrotic response is due to decreased TSP1 activation. Indeed, we found that hypoxic Akt1 deficient mice had blunted TSP1 expression which correlated with fibronectin expression. Similarly, silencing Akt1 activation in TGFβ-stimulated mouse embryonic fibroblasts, and in fibrotic human lung fibroblasts resulted in decreased TSP1 gene expression. This supports our previous finding that Akt1 control TSP1 [12] and corroborates previous reports on the regulatory role of TSP1 on fibronectin and the ECM [20-22]. Finally, we found that sustained hyperactivation of Akt1 resulted in focal severe fibrosis that resembled adTGFβ-induced pulmonary fibrosis consistent with IPF. Collectively, our results provide direct evidence on the causal role of Akt1 in disease onset and progression in pulmonary fibrosis.

Next, we set out to investigate the therapeutic implication of targeting Akt pathway using the pharmacological agent Triciribine (TCBN). Currently in phase trials in various cancers, the role of TCBN in fibrosis is unknown [11]. The observation that fibrotic human lung fibroblasts isolated from IPF patient were resistant to mTOR inhibition using rapamycin as evident by the lack of discernible effect on αSMA, fibronectin, and TSP1 expression, supports our previous finding that MF differentiation (potent producers of ECM) is Akt-dependent, independent of mTOR [7]. Thus, this prompted us to conduct a drug- drug study and investigate the efficacy and safety of TCBN and Rapamycin in adTGFβ- and hypoxia-induced pulmonary fibrosis and remodeling.

Our results identify novel anti-fibrotic and anti-remodeling properties of the specific Akt inhibitor Triciribine as evident by markedly reduced fibrotic lesions, myofibroblast and matrix accumulation, decreased medial thickening of pulmonary arterioles, and reduced vascular pruning, and right ventricular thickening. Mechanistically, we found that in addition to the transcriptional regulation of α SMA synthesis, TCBN also mediates its effects by targeting Akt/TSP1 axis, mTOR pathway, and increased phosphorylation of β Catenin (induces pro-fibrotic gene transcription [23]) flagging it for degradation. As for safety profile, TCBN markedly improved the hypoxia-induced cardiac remodeling and hepatic injury,

In contrast, rapamycin exacerbated the progression of pulmonary fibrosis and vascular remodeling and was associated with marked increase in alveolar congestion and microhemorrhage, severe pulmonary vascular rarefaction, right ventricular thickening and hepatotoxicity. The effects of rapamycin in fibrosis appear is controversial. Although studies have previously shown anti-fibrotic and anti-remodeling effects of rapamycin in

murine models [24-26], this could be attributed to the use of the dissolving agent DMSO, which is a potent anti-fibrotic compund [27], intermittent exposure to hypoxia which has been shown to reverse the vascular remodeling [28], or utilizing a high dose rapamycin that exceeds the maximum tolerated dose in humans. However, our results are consistent with clinical reports of pulmonary toxicities associated with rapamycin derivatives, sirolimus and everolimus [29-33]. Importantly, this finding sheds light on adverse effects observed of everolimus in IPF patients [10].

Mechanistically, we found that the adverse effects of rapamycin are attributed, at least in part, to increased Akt activation due to blocking the inhibitory effect of S6K1 on signal transduction, this also correlated with increased TSP1 expression. This corroborates previous reports of the rapamycin-induced activation of Akt [34-37]. Increased TSP1 has been shown to promote vascular rarefaction [38], and rapamycin has been reported to increase TSP1 activation [39]. Thus, this supports our results that observed rapamycin-induced severe vascular remodeling and pruning is mediated, at least, in part by TSP1 activation.

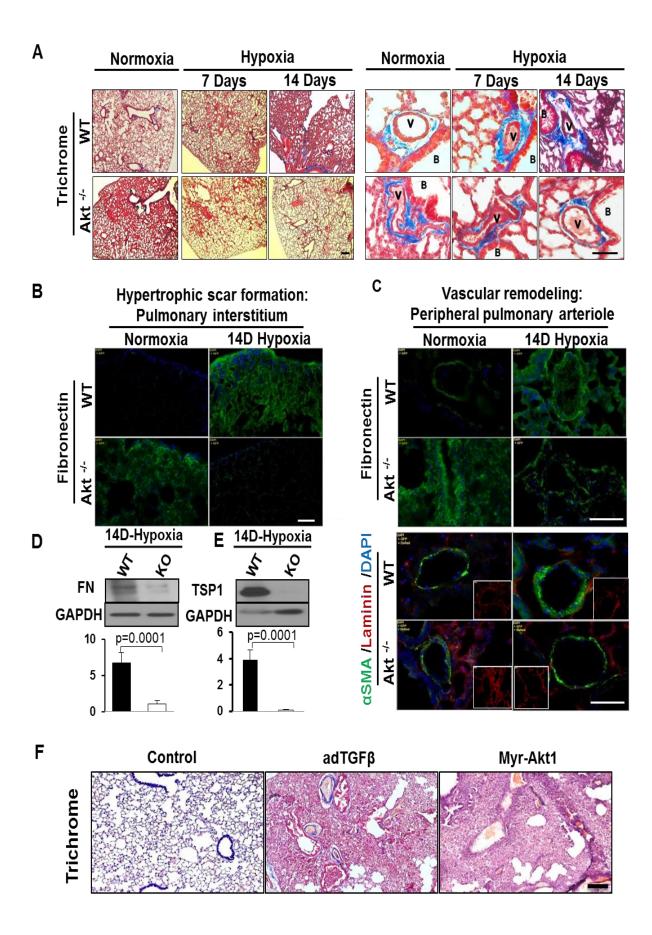
We also found that rapamycin does not transcriptionally regulate αSMA synthesis leading to MF differentiation and ECM production. This supports our previous studies [7] and demonstrates that although rapamycin targets ECM protein translation [8], MF differentiation still occurs via unopposed transcriptional activation of αSMA . Consequently, MFs produce excess ECM resulting in persistent differentiation and abnormal ECM accumulation leading to IPF progression. On the other hand, TCBN exhibits dual role by targeting both MF differentiation and the ECM. This suggests that targeting Akt, not mTOR, may serve as a favorable therapeutic strategy in IPF.

REFERENCES

- 1. Raghu, G., et al., *An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management.*Am J Respir Crit Care Med, 2011. **183**(6): p. 788-824.
- 2. Rafii, R., et al., A review of current and novel therapies for idiopathic pulmonary fibrosis. J Thorac Dis, 2013. **5**(1): p. 48-73.
- 3. Thabut, G., et al., Survival benefit of lung transplantation for patients with idiopathic pulmonary fibrosis. J Thorac Cardiovasc Surg, 2003. **126**(2): p. 469-75.
- 4. Hinz, B., et al., Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol, 2012. **180**(4): p. 1340-55.
- McLaughlin, V.V., et al., ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol, 2009. 53(17): p. 1573-619.
- 6. Xia, H., et al., *Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis.* J Exp Med, 2008. **205**(7): p. 1659-72.
- Abdalla, M., et al., Akt1 mediates α-smooth muscle actin expression and myofibroblast differentiation via myocardin and serum response factor. J Biol Chem, 2013. 288(46): p. 33483-93.

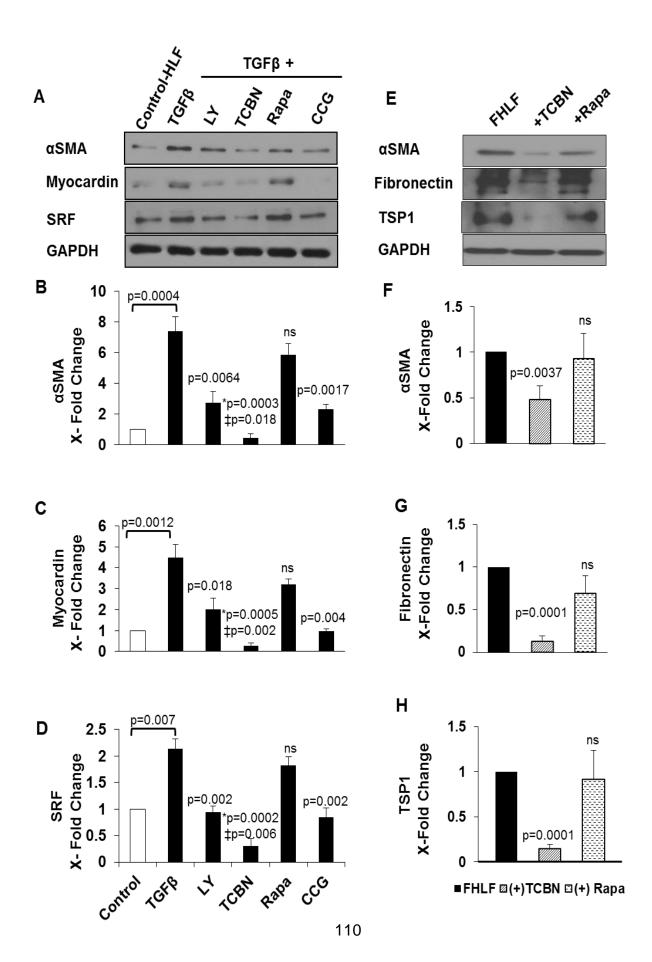
- 8. Goc, A., et al., *TGFbeta- and bleomycin-induced extracellular matrix synthesis is mediated through Akt and mammalian target of rapamycin (mTOR).* Journal of cellular physiology, 2011. **226**(11): p. 3004-13.
- 9. Chen, J., et al., Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nature medicine, 2005. **11**(11): p. 1188-96.
- Malouf, M.A., et al., An investigator-driven study of everolimus in surgical lung biopsy confirmed idiopathic pulmonary fibrosis. Respirology, 2011. 16(5): p. 776-83.
- 11. Garrett, C.R., et al., Phase I pharmacokinetic and pharmacodynamic study of triciribine phosphate monohydrate, a small-molecule inhibitor of AKT phosphorylation, in adult subjects with solid tumors containing activated AKT. Invest New Drugs, 2011. **29**(6): p. 1381-9.
- 12. Chen, J., et al., *Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo.* Nat Med, 2005. **11**(11): p. 1188-96.
- 13. Somanath, P.R. and T.V. Byzova, 14-3-3beta-Rac1-p21 activated kinase signaling regulates Akt1-mediated cytoskeletal organization, lamellipodia formation and fibronectin matrix assembly. Journal of cellular physiology, 2009. 218(2): p. 394-404.
- 14. Somanath, P.R., et al., *Akt1 signaling regulates integrin activation, matrix recognition, and fibronectin assembly.* The Journal of biological chemistry, 2007. **282**(31): p. 22964-76.
- 15. Shi-Wen, X., et al., Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is

- essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell, 2004. **15**(6): p. 2707-19.
- Kulasekaran, P., et al., Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol, 2009. 41(4): p. 484-93.
- 17. Stenmark, K.R., K.A. Fagan, and M.G. Frid, *Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms*. Circ Res, 2006. **99**(7): p. 675-91.
- 18. Moeller, A., et al., *Models of pulmonary fibrosis*. 2006, Drug Discov Today Dis Models. p. 243-8.
- 19. Ochoa, C.D., et al., *Thrombospondin-1 null mice are resistant to hypoxia-induced pulmonary hypertension.* J Cardiothorac Surg, 2010. **5**: p. 32.
- 20. Spinale, F.G., *Cell-matrix signaling and thrombospondin: another link to myocardial matrix remodeling.* Circ Res, 2004. **95**(5): p. 446-8.
- 21. Tada, H. and S. Isogai, *The fibronectin production is increased by thrombospondin via activation of TGF-beta in cultured human mesangial cells.*Nephron, 1998. **79**(1): p. 38-43.
- 22. Lahav, J., M.A. Schwartz, and R.O. Hynes, *Analysis of platelet adhesion with a radioactive chemical crosslinking reagent: interaction of thrombospondin with fibronectin and collagen.* Cell, 1982. **31**(1): p. 253-62.
- 23. Lam, A.P. and C.J. Gottardi, *beta-catenin signaling: a novel mediator of fibrosis* and potential therapeutic target. Current opinion in rheumatology, 2011. **23**(6): p. 562-7.

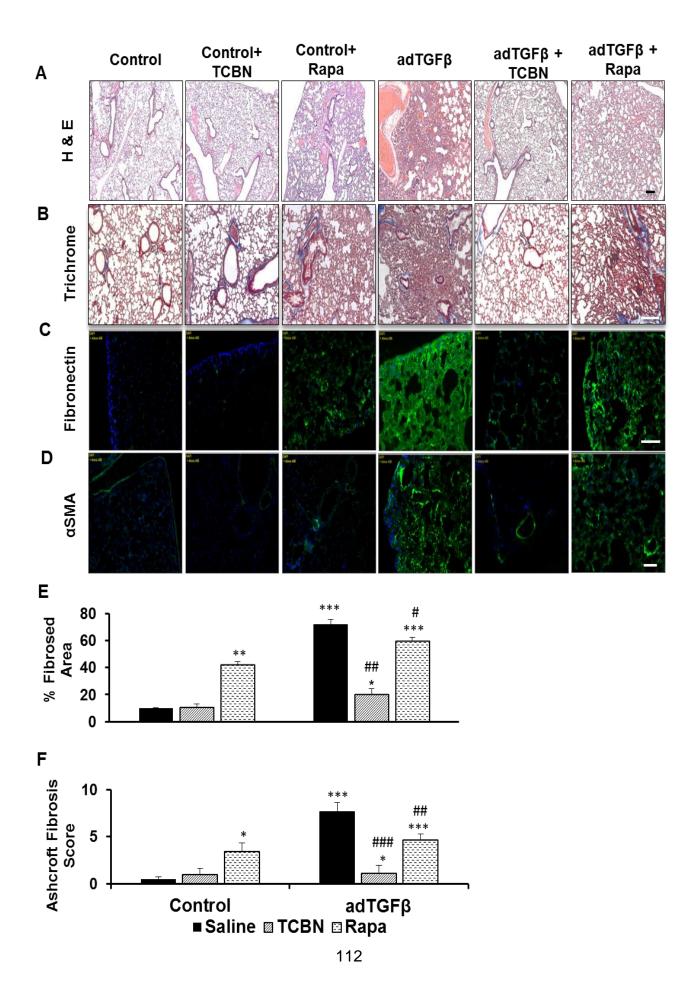

- 24. Paddenberg, R., et al., Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice. Respir Res, 2007.

 8: p. 15.
- 25. Korfhagen, T.R., et al., *Rapamycin prevents transforming growth factor-alpha-induced pulmonary fibrosis*. Am J Respir Cell Mol Biol, 2009. **41**(5): p. 562-72.
- 26. Simler, N.R., et al., *The rapamycin analogue SDZ RAD attenuates bleomycin-induced pulmonary fibrosis in rats.* Eur Respir J, 2002. **19**(6): p. 1124-7.
- 27. Dmitriev, Y.V., et al., Cardioprotective properties of dimethyl sulfoxide during global ischemia-reperfusion of isolated rat heart. Bull Exp Biol Med, 2012. **154**(1): p. 47-50.
- 28. Weisel, F., et al., Vascular reverse remodeling in the mouse model of hypoxiainduced pulmonary hypertension – role of AMD-1. 2011: Pneumologie
- 29. Depuydt, P., et al., *Fatal acute pulmonary injury associated with everolimus*. Ann Pharmacother, 2012. **46**(3): p. e7.
- 30. Feagans, J., et al., Interstitial pneumonitis in the transplant patient: consider sirolimus-associated pulmonary toxicity. J La State Med Soc, 2009. **161**(3): p. 166, 168-72.
- 31. Khalife, W.I., P. Kogoj, and B. Kar, *Sirolimus-induced alveolar hemorrhage*. J Heart Lung Transplant, 2007. **26**(6): p. 652-7.
- 32. Damas, C., A. Oliveira, and A. Morais, [Lung toxicity induced by rapamycin]. Rev Port Pneumol, 2006. **12**(6): p. 715-24.
- 33. Buhaescu, I., H. Izzedine, and A. Covic, *Sirolimus--challenging current perspectives*. Ther Drug Monit, 2006. **28**(5): p. 577-84.

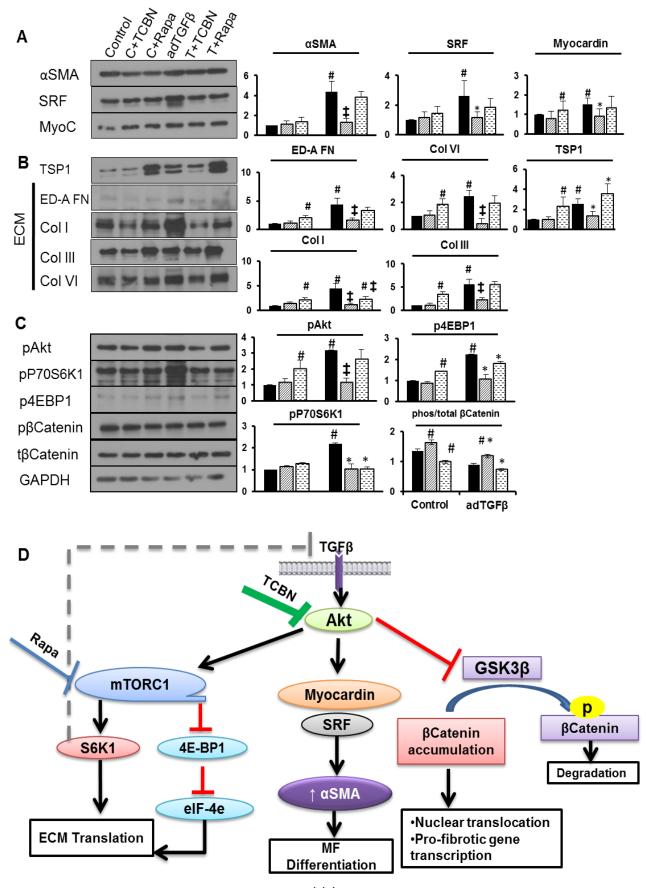
- 34. Soares, H.P., et al., Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One, 2013. **8**(2): p. e57289.
- 35. Zakikhani, M., et al., *Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells.* Breast Cancer Res Treat, 2010. **123**(1): p. 271-9.
- 36. Breuleux, M., et al., Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Mol Cancer Ther, 2009. **8**(4): p. 742-53.
- 37. Sun, J.F., et al., *Microvascular patterning is controlled by fine-tuning the Akt signal.* Proceedings of the National Academy of Sciences of the United States of America, 2005. **102**(1): p. 128-33.
- 38. Gonzalez-Quesada, C., et al., Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation. Circ Res, 2013. **113**(12): p. 1331-44.
- 39. Bussolati, B., et al., The proangiogenic phenotype of human tumor-derived endothelial cells depends on thrombospondin-1 downregulation via phosphatidylinositol 3-kinase/Akt pathway. J Mol Med (Berl), 2006. **84**(10): p. 852-63.


FIGURE 1.

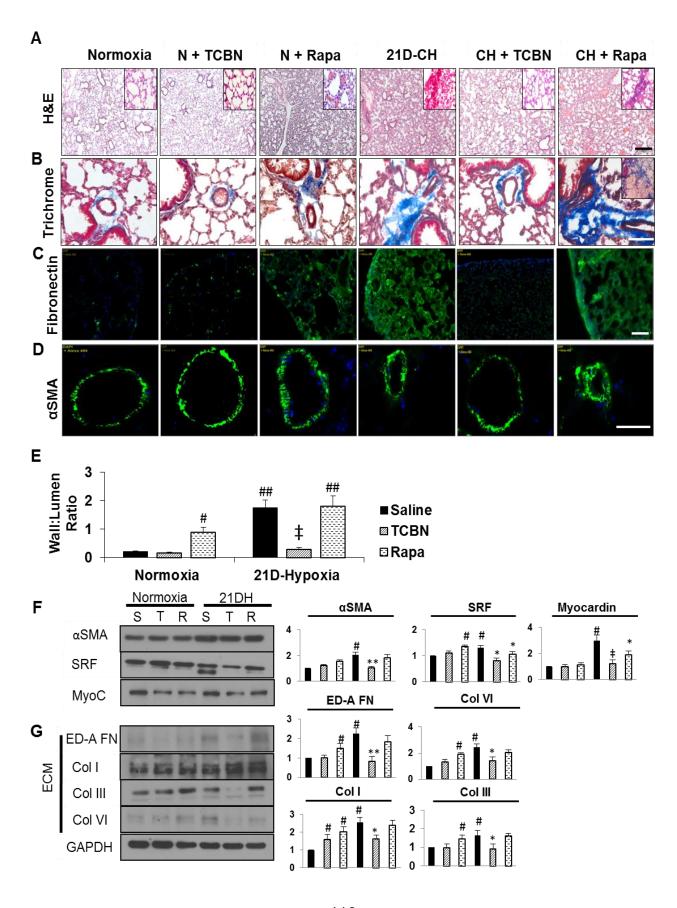
Akt1 deficiency protects against hypoxia-induced pulmonary fibrosis and remodeling, while its hyperactivation induces severe focal pulmonary fibrosis. (A) Masson's trichrome stained section of the pulmonary interstitium and peripheral pulmonary arterioles of *WT* and Akt1^{-/-} mice subjected to normoxia or chronic hypoxia for 7 and 14 days (n=3-5 mice/group). Scale bar: 200 and 50 μM. (B and C) Fibronectin, αSMA, and laminin immunofluorescence staining in pulmonary interstitium and small pulmonary arteries of normoxic and 14d-hypoxic *WT* and Akt1^{-/-} mice (n=4-5 mice/group). Scale bar: 100 and 25 μM. (D) Western blot analysis of total fibronectin and thrombospondin-1 expression levels in 14d-hypoxic *WT* and Akt1^{-/-} mice (n=4-5 mice/group). Relative expression values obtained by densitometric analysis was normalized to GAPDH. (F) Masson's trichrome staining of *WT* mouse lung harvested 14 days after intratracheal adenovirus gene transfer of control vector, TGFβ, or myr-Akt1 (constitutive active Akt1) (n=3 mice/group). Scale bar: 100 μM


FIGURE 2.

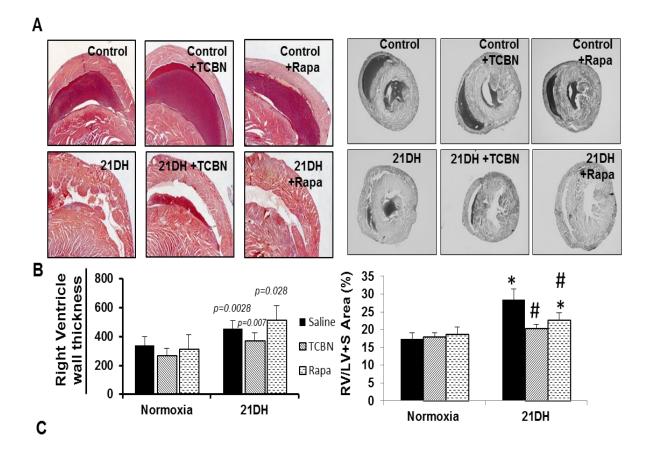
Targeting Akt, not mTOR, attenuates MF differentiation and fibronectin expression in human lung fibroblasts. (A-D) normal human lung fibroblasts grown to 70% confluence were treated with TGF β for 72 h in the absence of FBS. To examine pathways governing MF differentiation, inhibitors were applied before significant differentiation occurred: cells were treated with TGF β for 48 h and then co-treated with inhibitors for an additional 24 h targeting the PI3K/Akt/mTOR pathway and responsive SRF pathway (LY294002, triciribine (TCBN), rapamycin, and CCG1423, respectively). Lysates were prepared and subjected to western analyses with antibodies against α SMA (B), myocardin (C), SRF (D) (n = 4). *, compared with TGF β ; ‡, compared with control untreated cells. (E-H) fibrotic human lung fibroblasts grown to 70% confluence in the absence of FBS were treated TCBN or rapamycin for 24 h. Lysates were prepared and subjected to western analyses with antibodies against α SMA (F), fibronectin (G), thrombospondin-1 (H) (n = 3).


FIGURE 3.

Triciribine ameliorates TGFβ-induced pulmonary fibrosis *in vivo*. (A) Hematoxylin and eosin staining, (B) Masson's trichrome staining, (C) fibronectin immunofluorescence staining, and (D) αSMA immunofluorescence staining of lung sections. (E-F) to assess the degree of fibrosis we calculated percent fibrosed area (by quantifying area intensity using ImageJ of 5-10 fields/lung section/mouse/group; n=6-8 mice/group), and the Aschroft fibrosis score for grading pulmonary fibrosis. P < 0.05, P < 0.01, P < 0.001 versus saline-treated control mice; P < 0.05, P < 0.01 versus adTGFβ-treated mice. Scale bar = (A) 500 μm, (B, C) 100 μm, (D) 200 μm.


FIGURE 4.

Triciribine reverses TGFβ-induced matrix protein expression and αSMA synthesis. Western analysis of (A) αSMA and its transcription factors SRF and myocardin, (B) ECM proteins including thrombospondin-1, ED-A FN, Collagen types I, III, and VI, (C) Akt mediated signaling pathways. (D) Schematic representation of proposed mechanism of TCBN compared to rapamycin. # compared with saline-treated control mice; * p< 0.01 compared with TGFβ-treated mice; \ddagger p < 0.001 compared with TGFβ-treated mice. (n=6-8 mice/group).


FIGURE 5.

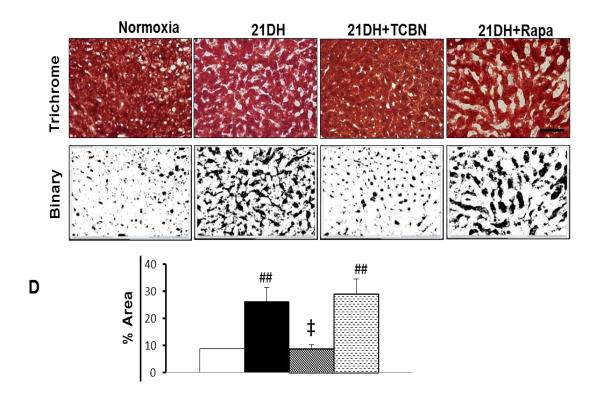
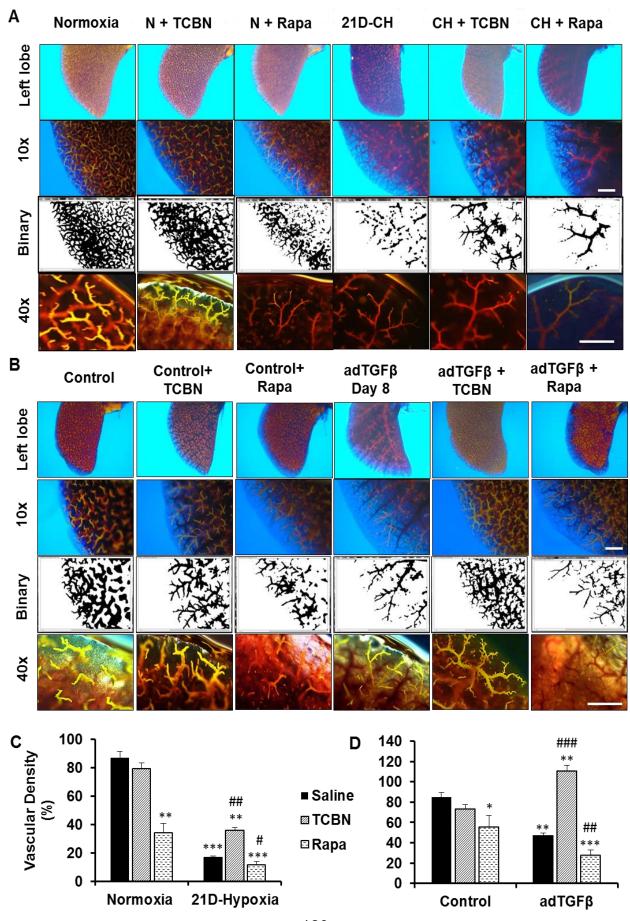
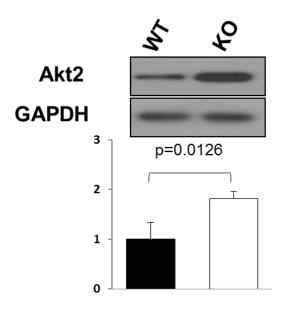
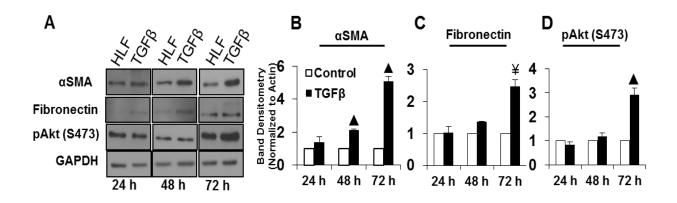

hypoxia-induced pulmonary **Triciribine** reverses fibrosis and vascular remodeling. (A) Hematoxylin and eosin staining, (B) Masson's trichrome staining, (C) fibronectin immunofluorescence staining, and (D) αSMA immunofluorescence staining of lung sections. (E) To quantify vascular remodeling, we measured the ration of small pulmonary artery vessel wall thickness to lumen diameter (6-10 vessels/lung section/mouse/group). Western analysis of (F) αSMA and its transcription factors SRF and myocardin, (G) ECM proteins including ED-A FN, Collagen types I, III, and VI. #p< 0.01 and ##p< 0.001 compared with saline-treated normoxic mice; * p< 0.05 and ** p< 0.01 compared with hypoxic mice; **t**p < 0.001 compared with hypoxic mice. S: saline, T: TCBN, R: Rapamycin. (n=6-8 mice/group). Scale bar = (A and C) 200 µm, (B) 100 µm, (D) 50 µm.

FIGURE 6.

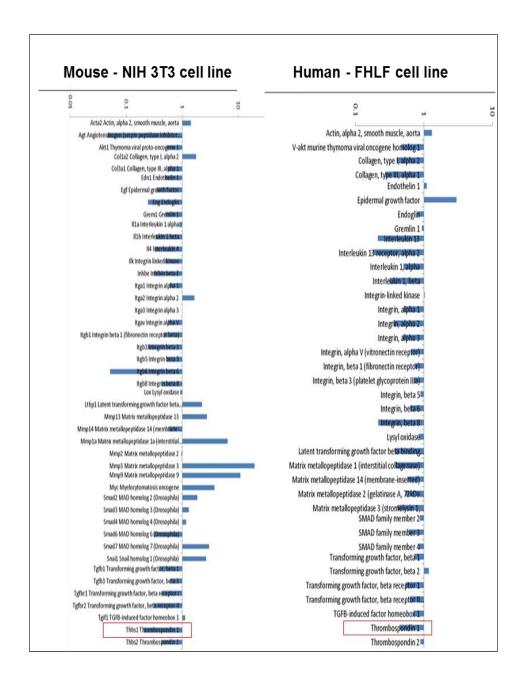

Triciribine reverses hypoxia-induced right ventricular remodeling and hepatic injury. (A) Masson's trichrome staining of the right ventricle. (B) Quantification of wall thickness (we took 6-10 measurements/heart tissue/mouse; n=6-8 mice/group). (C) Masson's trichrome staining and binary images (using ImageJ Software) of liver sections. (D) Quantification of percent area based on binary images. We measured 6-10 fields/liver tissue/mouse; n=6-8 mice/group. ##p< 0.001 compared with saline-treated normoxic mice; $\ddagger p < 0.001$ compared with 21D-hypoxic mice. Scale bar = (A) 200 μ m and (C) 100 μ m.


FIGURE 7.

Triciribine prevents hypoxia- and adTGFβ- induced vascular rarefaction. Representative images showing vascular branching of the left lobe after microfil casting of mice subjected to (A) normoxia or chronic hypoxia and (B) control vector or adTGFβ, and treated with saline, TCBN, or rapamycin. (C and D) percent vascular density calculated in both disease model; n=3-5 mice/group. $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$ versus saline-treated normoxic mice; $^*P < 0.05$, $^{**}P < 0.01$ $^{***}P < 0.001$ versus hypoxic- or adTGFβ-treated mice. Scale bar in order 500 μm, 200 μm, and 50 μm.

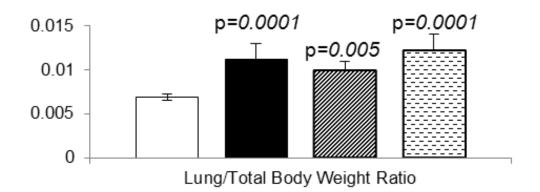

Supplemental Figure 1

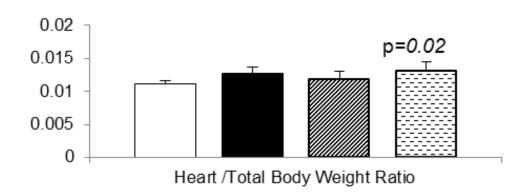
Akt2 partially compensated for genetic deletion of Akt1. Western blot analysis of Akt2 in normoxic *WT* and Akt1^{-/-} mice (n=4-5 mice/group). Relative expression values obtained by densitometric analysis were normalized to GAPDH.

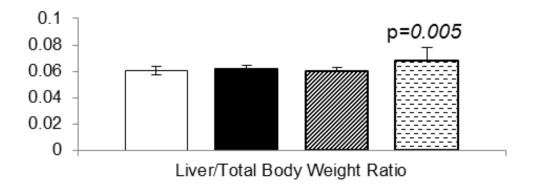


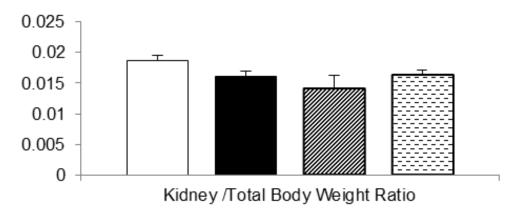
Supplemental Figure 2.

MF differentiation occurs at 72 h in TGF β -stimulated human lung fibroblasts, and gene expression changes due to Akt1 inactivation in MFs and IPF fibroblasts. (A) Representative western blots of cells treated with 100 pM TGF β for 24, 48, and 72 h in serum free conditions. Quantified expression levels of (B) α SMA, (C) fibronectin, and (D) phosphorylated Akt. (E) Effect of inactivating Akt on fibrotic gene expression in TGF β -stimulated mouse embryonic fibroblasts and IPF fibroblasts.

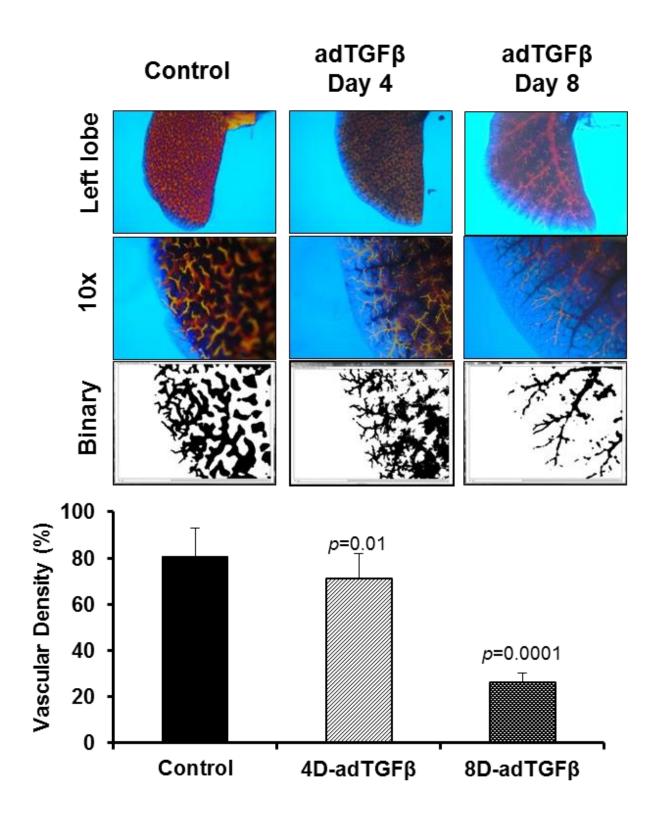







Supplemental Figure 3.

Effect of Triciribine and rapamycin on organ and body weight during hypoxia. The ratio of organ to body weight was calculated for the lung, heart, liver, and kidney (n=6-8 mice/group).



□Normoxia ■21DH 221DH+TCBN □21DH+Rapa 126

Supplemental Figure 4

Effect of adTGF β on the vasculature over a period of 4 and 8 days. Representative images showing vascular branching of the left lobe after microfil casting of mice subjected to control vector or adTGF β for 4 days and 8 days.

CHAPTER 4

INTEGRATED DISCUSSION

Effective therapeutic interventions for IPF have remained limited largely due to incomplete understanding of the molecular and cellular mechanisms underlying its pathogenesis [1, 2]. Although several lines of evidence demonstrated a correlation between hyperactivation of Akt pathway and fibrosis progression, relatively little was known about the causal link between Akt and IPF. Thus, the aim of this thesis was to determine the role of Akt in persistent myofibroblast differentiation and its subsequent implications in IPF.

The main findings of this dissertation can be categorized and summarized as follows, (1) Akt1 and its the pathological role in fibrosis: (a) Akt1 is necessary for the induction and persistence of MF differentiation as it mediates αSMA synthesis, specialized and total fibronectin expression, and the contractile force generated by MFs; these effects are independent of mTOR downstream of Akt. (b) Sustained activation of Akt1 mimicked TGFβ-induced pulmonary fibrosis in vivo. Furthermore, Akt1 deficiency protects against hypoxia-induced pulmonary fibrosis and remodeling.

(2) The therapeutic effects of targeted Akt inhibition to manage IPF and associated complications: (a) Selective Akt inhibition using Triciribine (TCBN) attenuates αSMA synthesis and fibronectin expressions in fibrotic human lung fibroblasts; (b) TCBN reverses TGFβ- and hypoxia-induced pulmonary fibrosis, vascular remodeling, cardiac

hypertrophy, and halts vascular rarefaction; (C) Rapamycin, targets mTOR, exacerbated TGFβ- and hypoxia-induced pulmonary and cardiac remodeling and was associated with hepatic injury.

Fibroblastic foci are hallmark of IPF and are characterized by clusters of proliferative fibroblasts, differentiated myofibroblasts and excessive ECM accumulation [3, 4]. The myofibroblast (MF) has emerged as a central orchestrator of IPF as it is a major source of ECM proteins, thus, promoting matrix stiffness and distortion of lung architecture. MF differentiation from fibroblasts, marked by de novo expression of αSMA stress fibers, plays a central role in physiological wound repair, while its persistence and resistance to apoptosis is characteristic of deregulated tissue repair and fibrosis.

Identifying the similarities and differences between physiological and hypertrophic tissue repair is a critical aspect in understanding the pathogenesis of IPF. While the former is a temporary process terminated when MFs undergo apoptosis [5], the latter is a permanent process marked by sustained production of TGFβ1, persistent fibroblasts migration and proliferation, MF differentiation and resistance to apoptosis, excess ECM accumulation, and aberrant reepithelialization [6]. The seminal report by Selman and colleagues [1] showing that PF results from abnormal wound repair in the absence of inflammation led to the paradigm shift in our understanding of it pathogenesis. This sheds light on the clinical failure of anti-inflammatory therapies. Importantly, this highlights the need for therapeutic strategies aimed at the fibroproliferative responses to halt fibrosis progression.

It is well established that TGFβ1, a pro-fibrotic cytokine, is a potent mediator of MF differentiation and the ECM in IPF [7-9]. It exert its pro-fibrotic effects through the

canonical Smad pathway and non-canonical Akt pathway [10-14]. Additionally, studies correlated the resistance to apoptosis and deregulated ECM production, characteristic of fibrotic MFs, to the activation of PI3K/Akt pathway [15-18]. Importantly, Xia and colleagues showed that Akt is hyperactivated in the fibroblastic foci of IPF lung [19].

Research from our laboratory established the central role of Akt in the regulation of fibroblast proliferation and migration, ECM secretion and assembly, and maintaining vascular integrity [20-24]. Interestingly, the effects of deregulated Akt signaling closely resemble the pathological events in IPF. Collectively, these observations identified a gap in our knowledge and raise the question as to what role the activation of Akt signaling plays in MF differentiation and IPF progression.

Myofibroblast differentiation is characterized by de novo expression of α SMA stress fibers [25-27]. We and others have previously shown that Akt pathway translationally regulates the ECM [16, 28]; however it was unclear whether Akt is necessary for α SMA synthesis. Our results showed that sustained activation of Akt1 mimicked TGF β stimulation and induced a \sim 6-fold increase in α SMA. Importantly, inactivation of Akt1 blunted TGF β -induced α SMA expression and assembly in mouse embryonic fibroblasts, and decreased fibrotic gene expression in IPF fibroblasts. Mechanistically, we found that Akt1 mediates α SMA synthesis, in part, through modulation of the transcription factors myocardin and SRF, independent of mTOR, a novel and previously uncharacterized link in MFs.

MFs are potent producers of pro-fibrotic cytokines and the ECM including fibronectin splice variant (ED-A), which further promotes αSMA synthesis. Noteworthy, the sheer mechanical stress of the ECM on MFs promotes persistent differentiation; a positive

feedback loop [6, 27]. Our results showed that in addition to its control on total fibronectin, Akt1 induces ED-A FN expression, which is mandatory for MF differentiation. Functionally, we demonstrated that TGFβ-mediated Akt1 activation is necessary for the functional contractile force generated by MFs.

Due to lack of clear evidence of Akt isoform 1 and its role in pulmonary fibrosis, we investigated the pathologic effects of chronic hypoxia in Akt1 null and wild type mice. Chronic hypoxia is well established model of pulmonary fibrosis and associated vascular remodeling [29, 30]. Mice were subjected to 14 day chronic exposure to 10% oxygen or normoxia. Interestingly, hypoxic Akt1 deficient mice were protected from hypoxia induced fibrosis and vascular remodeling as evident by decreased fibronectin accumulation and decreased peripheral pulmonary artery wall thickness. To further verify the pathological role of Akt1, we administered constitutively active Akt1 or adenovirus TGFβ intratracheally. Remarkably, sustained activation of Akt1 induced severe focal fibrosis similar to TGFβ.

Once we established the pathological role of Akt1, we sought to identify whether targeting Akt is an effective therapeutic strategy. Our results identify novel anti-fibrotic and anti-remodeling properties of Triciribine (TCBN), a selective Akt inhibitor currently in phase trials for different types of cancer [31]. TCBN markedly attenuated α SMA synthesis and ECM expression in TGF β -stimulated mouse embryonic and human lung fibroblasts, and in IPF fibroblasts. TCBN reversed fibrotic lesions, honeycomb, and vessel wall remodeling and preserved the vasculature.

Clinical evidence has shown that the rapamycin derivative, everolimus, worsened outcomes in IPF patients [32]. Additionally, everolimus and sirolimus have been shown

to be associated with severe pulmonary toxicities [33-37]. In agreement, our results of rapamycin treatment in two experimental models of PF demonstrated increased pulmonary toxicity, increased fibrotic lesions and dense infiltration, marked vascular thickening and rarefied vasculature, and was associated with cardiac remodeling and hepatic injury. Interestingly, these effects correlated with increased Akt activation, which supports previous reports of rapamycin-mediated feedback activation of Akt pathway [38-42]. Furthermore, Lamoullie and colleague reported that while rapamycin attenuated TGFβ-induced translational regulation on cell size, it did not modulate epithelial-tomesenchymal transition (EMT) nor did it affect fibronectin expression and assembly [43]. This suggests that rapamycin may also exacerbate abnormal re-epithelialization and persistent differentiation, thus contributing to disease progression. However, this will require further studies to confirm this process.

Collectively, this dissertation demonstrates a causal link between Akt1 and IPF and illustrates the importance of fine-tuning Akt pathway to maintain homeostasis. Sustained hyperactivation of Akt1 induced MF differentiation and excess ECM expression *in vitro*, and severe focal pulmonary fibrosis *in vivo*. We determined that targeting Akt pathway using TCBN reverses pulmonary fibrosis and vascular remodeling. Conversely, we identified that targeting mTOR using rapamycin worsened disease progression due to feedback activation of Akt signaling. Our results offer pre-clinical evidence of the critical role of Akt in IPF pathogenesis. Therefore, targeting Akt, not mTOR, may serve as a favorable therapeutic strategy in IPF.

REFERENCES

- Selman, M., T.E. King, and A. Pardo, Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy.
 Ann Intern Med, 2001. 134(2): p. 136-51.
- 2. Rafii, R., et al., *A review of current and novel therapies for idiopathic pulmonary fibrosis*. J Thorac Dis, 2013. **5**(1): p. 48-73.
- 3. Wynn, T.A. and T.R. Ramalingam, *Mechanisms of fibrosis: therapeutic translation for fibrotic disease*. Nature medicine, 2012. **18**(7): p. 1028-40.
- 4. Hinz, B., et al., Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol, 2012. **180**(4): p. 1340-55.
- 5. Desmouliere, A., et al., *Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar.* The American journal of pathology, 1995. **146**(1): p. 56-66.
- 6. Tomasek, J.J., et al., *Myofibroblasts and mechano-regulation of connective tissue remodelling.* Nature reviews. Molecular cell biology, 2002. **3**(5): p. 349-63.
- 7. Desmouliere, A., et al., *Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts.* The Journal of cell biology, 1993. **122**(1): p. 103-11.
- 8. Sime, P.J., et al., Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest, 1997. **100**(4): p. 768-76.

- 9. Ask, K., et al., *Progressive pulmonary fibrosis is mediated by TGF-beta isoform 1*but not TGF-beta3. Int J Biochem Cell Biol, 2008. **40**(3): p. 484-95.
- 10. Coker, R.K., et al., Localisation of transforming growth factor beta1 and beta3 mRNA transcripts in normal and fibrotic human lung. Thorax, 2001. **56**(7): p. 549-56.
- 11. Evans, R.A., et al., *TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins.* Experimental cell research, 2003. **282**(2): p. 90-100.
- 12. Ghosh Choudhury, G. and H.E. Abboud, *Tyrosine phosphorylation-dependent PI*3 kinase/Akt signal transduction regulates *TGFbeta-induced fibronectin*expression in mesangial cells. Cellular signalling, 2004. **16**(1): p. 31-41.
- 13. Hubchak, S.C., et al., Rac1 promotes TGF-beta-stimulated mesangial cell type I collagen expression through a PI3K/Akt-dependent mechanism. American journal of physiology. Renal physiology, 2009. **297**(5): p. F1316-23.
- 14. Kulkarni, A.A., et al., PPAR-gamma ligands repress TGFbeta-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: implications for therapy of fibrosis. PloS one, 2011. **6**(1): p. e15909.
- 15. Horowitz, J.C., et al., Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. The Journal of biological chemistry, 2004. **279**(2): p. 1359-67.

- 16. White, E.S., et al., Negative regulation of myofibroblast differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on chromosome 10). American journal of respiratory and critical care medicine, 2006. **173**(1): p. 112-21.
- 17. Kulasekaran, P., et al., Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol, 2009. **41**(4): p. 484-93.
- 18. Lu, Y., et al., *Phosphatidylinositol-3-kinase/akt regulates bleomycin-induced fibroblast proliferation and collagen production.* Am J Respir Cell Mol Biol, 2010. **42**(4): p. 432-41.
- 19. Xia, H., et al., *Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis.* J Exp Med, 2008. **205**(7): p. 1659-72.
- 20. Goc, A., et al., *TGFβ-* and bleomycin-induced extracellular matrix synthesis is mediated through Akt and mammalian target of rapamycin (mTOR). J Cell Physiol, 2011. **226**(11): p. 3004-13.
- 21. Chen, J., et al., *Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo.* Nature medicine, 2005. **11**(11): p. 1188-96.
- 22. Somanath, P.R., et al., *Akt1 signaling regulates integrin activation, matrix recognition, and fibronectin assembly.* The Journal of biological chemistry, 2007. **282**(31): p. 22964-76.
- 23. Somanath, P.R., J. Chen, and T.V. Byzova, *Akt1 is necessary for the vascular maturation and angiogenesis during cutaneous wound healing.* Angiogenesis, 2008. **11**(3): p. 277-88.

- 24. Somanath, P.R. and T.V. Byzova, 14-3-3beta-Rac1-p21 activated kinase signaling regulates Akt1-mediated cytoskeletal organization, lamellipodia formation and fibronectin matrix assembly. J Cell Physiol, 2009. **218**(2): p. 394-404.
- 25. Gabbiani, G., G.B. Ryan, and G. Majne, *Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction.* Experientia, 1971. **27**(5): p. 549-50.
- 26. Majno, G., et al., Contraction of granulation tissue in vitro: similarity to smooth muscle. Science, 1971. **173**(3996): p. 548-50.
- 27. Hinz, B., Formation and function of the myofibroblast during tissue repair. The Journal of investigative dermatology, 2007. **127**(3): p. 526-37.
- 28. Goc, A., et al., *TGFbeta- and bleomycin-induced extracellular matrix synthesis is mediated through Akt and mammalian target of rapamycin (mTOR).* Journal of cellular physiology, 2011. **226**(11): p. 3004-13.
- 29. Stenmark, K.R., K.A. Fagan, and M.G. Frid, *Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.* Circ Res, 2006. **99**(7): p. 675-91.
- 30. Farkas, L., et al., *Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors.* American journal of respiratory cell and molecular biology, 2011. **45**(1): p. 1-15.
- 31. Garrett, C.R., et al., Phase I pharmacokinetic and pharmacodynamic study of triciribine phosphate monohydrate, a small-molecule inhibitor of AKT

- phosphorylation, in adult subjects with solid tumors containing activated AKT. Invest New Drugs, 2011. **29**(6): p. 1381-9.
- 32. Malouf, M.A., et al., *An investigator-driven study of everolimus in surgical lung biopsy confirmed idiopathic pulmonary fibrosis*. Respirology, 2011. **16**(5): p. 776-83.
- 33. Depuydt, P., et al., *Fatal acute pulmonary injury associated with everolimus*. Ann Pharmacother, 2012. **46**(3): p. e7.
- 34. Feagans, J., et al., Interstitial pneumonitis in the transplant patient: consider sirolimus-associated pulmonary toxicity. J La State Med Soc, 2009. **161**(3): p. 166, 168-72.
- 35. Khalife, W.I., P. Kogoj, and B. Kar, *Sirolimus-induced alveolar hemorrhage*. J Heart Lung Transplant, 2007. **26**(6): p. 652-7.
- 36. Damas, C., A. Oliveira, and A. Morais, [Lung toxicity induced by rapamycin]. Rev Port Pneumol, 2006. **12**(6): p. 715-24.
- 37. Buhaescu, I., H. Izzedine, and A. Covic, *Sirolimus--challenging current perspectives*. Ther Drug Monit, 2006. **28**(5): p. 577-84.
- 38. Soares, H.P., et al., Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One, 2013. **8**(2): p. e57289.
- 39. Zakikhani, M., et al., *Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells.* Breast Cancer Res Treat, 2010. **123**(1): p. 271-9.

- 40. Breuleux, M., et al., Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Mol Cancer Ther, 2009. **8**(4): p. 742-53.
- 41. Guertin, D.A. and D.M. Sabatini, *Defining the role of mTOR in cancer*. Cancer cell, 2007. **12**(1): p. 9-22.
- 42. Sun, S.Y., et al., Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res, 2005. **65**(16): p. 7052-8.
- 43. Lamouille, S. and R. Derynck, *Cell size and invasion in TGF-beta-induced* epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. The Journal of cell biology, 2007. **178**(3): p. 437-51.

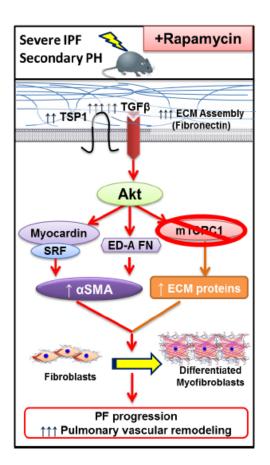
CHAPTER 5

SUMMARY AND CLINICAL SIGNIFICANCE

SUMMARY

Idiopathic Pulmonary fibrosis (IPF) is an incurable, chronic and progressive lung disease with severely poor prognosis. The presence of pulmonary hypertension (PH) secondary to IPF is an independent risk factor for increased mortality. Alarmingly, there are no effective pharmacologic treatments for IPF, and lung transplantation remains the only non-medicinal therapy with proven efficacy on survival. Therefore, identification of novel therapeutic targets is critical in the hopes of devising new treatments. Persistent myofibroblasts (MFs) differentiation and excess extracellular matrix (ECM) accumulation are hallmark features of IPF. Differentiated from fibroblasts, MFs are marked by de novo expression of α-smooth muscle like actin (αSMA) stress fibers, and are potent producers of ECM proteins. Recently, it has been shown that Akt, a major survival protein, is upregulated in IPF patients; however whether Akt is necessary for MFs remains unclear. This dissertation sought to 1) identify the role of Akt in MF differentiation leading to IPF, 2) investigate the safety and efficacy of triciribine (TCBN), a selective Akt inhibitor, as a potential therapeutic option for IPF and 3) characterize the underlying mechanisms. The work presented in this thesis has been conducted using a combined approach of pharmacological, genetics, and functional assays. We first identified that Akt is a critical determinant of pathological MF differentiation and ECM expression as evident by loss- and gain- of function studies, both in vitro and in vivo.

Mechanistically, we found that Akt1 mediates αSMA through direct interaction with contractile gene transcription factors myocardin and SRF, independent of mTOR. Furthermore, in vivo, TCBN reversed TGFβ (pro-fibrotic cytokine) - and hypoxia-induced fibrosis, respectively, compared to placebo and rapamycin. Mice treated with TCBN had decreased tissue, dense infiltration and fibrosis, lower adventitial and medial remodeling, decreased vascular loss, lower αSMA and specialized ECM synthesis and assembly. Conversely, rapamycin, which targets mTOR downstream of Akt, exacerbated IPF and vascular remodeling as evident by worsening interstitial fibrosis, micro-hemorrhage, and increased peripheral vascular loss. Collectively, research efforts associated with this thesis 1) identified Akt as a novel target as it is crucial for MFs central orchestrators of IPF; 2) determined novel anti-fibrotic properties of Triciribine. Thus, it can potentially be a therapeutic option for IPF; 3) determined that while rapamycin regulates some ECM proteins, MF differentiation still occurs via unopposed transcriptional activation of αSMA and specialized ECM proteins resulting in persistent differentiation and abnormal ECM deposition. This also sheds light on the observed detrimental effects of everolimus, a rapamycin derivative, in IPF patients.


CLINICAL SIGNIFICANCE

Importance of this problem: IPF is a progressive and incurable disease with poor prognosis for which therapeutic options are limited. PF complicated with vascular remodeling (PAH) is a predictor of poor prognosis. Lung transplant is the only effective approach. **Gap in knowledge:** The role of Akt in mediating myofibroblast differentiation remains unclear

This dissertation 1) identified a novel, and previously uncharacterized, interaction between Akt and αSMA synthesis. Our results indicate for the first time to our knowledge that Akt1 is an integral mediator of MF differentiation via modulation of αSMA synthesis and fibronectin in vitro leading to IPF progression in vivo. Mice deficient in Akt1 were protected from chronic hypoxia-induced PF and vascular remodeling; 2) Determined a previously unknown anti-fibrotic and anti-remodeling properties of Triciribine, a selective inhibitor of Akt activation currently utilized in cancer studies, and at a dose that is half of that utilized in cancer studies. Our results identify a novel interaction between Akt and thrombospondin-1 leading to IPF and secondary PH that is modulated by Triciribine; 3) we shed light the on the detrimental effects observed with rapamycin derivative in IPF patients. Our results show that rapamycin activates PI3K pathway via inhibiting the regulatory S6K-feedback loop (Figure 1).

Translational impact: drug repurposing of Triciribine, a potent Akt inhibitor currently utilized in cancer studies. We are the first group to demonstrate the anti-fibrotic and anti-remodeling properties of Triciribine at a dose 50% less than that utilized in in vivo cancer studies. This dose equates to 2 mg/m2 (maximum tolerated dose in patients is 40 mg/m2). Herein we also demonstrate the superior effect of Triciribine compared to

rapamycin in attenuating IPF with vascular remodeling complications. Our findings may likely impact the therapeutic approach to this fatal disease by identifying novel target leading to effective therapeutics as opposed to conventional symptomatic relief.

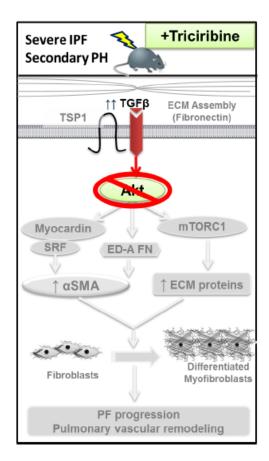


Figure 1. Schematic representation of the novel findings of this thesis. Akt is a novel target as it is crucial for mediating myofibroblasts differentiation and ECM deposition; both constitute two key components driving IPF-PH. Compared to rapamycin, Triciribine has novel anti-fibrotic and anti-remodeling properties and can potentially be an effective therapeutic option for IPF and secondary vascular remodeling.

APPENDIX

Includes 1 unpublished manuscript, 4 published manuscripts, and 2 book chapters

Akt1 Mediates alpha-Smooth Muscle Actin Expression and Myofibroblast
 Differentiation via Myocardin and Serum Response Factor.

Abdalla M, Goc A, Segar L, Somanath P.R.

J Bio. Chem. 2013; 288(46):33483-93

2. Dasatinib Regulates TGFβ-Induced Myofibroblast Differentiation through Src Pathway: Potential Role in Pulmonary Fibrosis

Abdalla M, Thompson L, Burke S, Gurly E, Newsome R, Somanath P.R. In preparation for submission. 2014

3. Pathways Regulating the Secretion and Assembly of Fibronectin Matrix: An Update.

Abdalla M, Goc A, Somanath PR.

Fibronectin: Current Concepts in Structure, Function and Pathology. Nova Science Publishers Inc, New York; 2012; Chapter 7, pp. 155- 190

4. Methods to Study Fibronectin Secretion and Matrix Assembly by Fibroblasts *in vitro* and *in vivo*.

Goc A, Abdalla M, Somanath PR.

Fibronectin: Current Concepts in Structure, Function and Pathology. Nova

Science Publishers Inc, New York; Chapter 6, pp141-154

5. Rac1 activation driven by 14-3-3ζ dimerization promotes prostate cancer cell-matrix interactions, motility and transendothelial migration.

Goc A, Abdalla M, Al-Azayzih A, Somanath PR.

PLoS One. 2012; 7(7):e40594.

6. P21 activated kinase-1 (Pak1)promotes prostate tumor growth and microinvasion via inhibition of transforming growth Factor-βexpression and enhanced matrix metalloprotease-9 secretion.

Goc A, Al-Azayzih A, Abdalla M, Al-Husein B and Somanath PR.

J Biol Chem. 2012; 288(5):3025-35

7. Cerebrovascular Complications of Diabetes: Focus on Stroke

Ergul A, Kelly-Cobbs A, Abdalla M, Fagan SC.

Journal of Endocrine, Metabolic & Immune Disorders-Drug Targets (EMID-DT).

Jan 2012

Akt1 Mediates α -Smooth Muscle Actin Expression and Myofibroblast Differentiation via Myocardin and Serum Response Factor* *

Received for publication, July 22, 2013, and in revised form, September 24, 2013. Published, JBC Papers in Press, October 8, 2013, DOI 10.1074/jbc.M113.504290

Maha Abdalla⁺⁵, Anna Goc⁺⁵, Lakshman Segar⁺⁵, and Payaningal R. Somanath⁺⁵¹

From the [†]Center for Pharmacy and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912, the [§]Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, and the [¶]Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia

Background: Significance of Akt1 in myofibroblast differentiation is unknown.

Results: Akt1 mediates myofibroblast differentiation via serum response factor (SRF) and myocardin signaling leading to α -smooth muscle synthesis.

Conclusion: Akt1-myocardin-SRF signaling induces myofibroblast differentiation.

Significance: The role of Akt1 on myofibroblast differentiation highlights it as a potential target for the treatment of fibrotic diseases.

Myofibroblast (MF) differentiation, marked by the de novo expression of smooth muscle α -actin (α SMA) stress fibers, plays a central role in wound healing and its persistence is a hallmark of fibrotic diseases. We have previously shown that Akt1 is necessary for wound healing through matrix regulation. However, the role of Akt1 in regulating MF differentiation with implications in fibrosis remains poorly defined. Here, we show that sustained activation of Akt1 was associated with a 6-fold increase in αSMA expression and assembly; an effect that is blunted in cells expressing inactive Akt1 despite TGFβ stimulation. Mechanistically, Akt1 mediated TGFβ-induced αSMA synthesis through the contractile gene transcription factors myocardin and serum response factor (SRF), independent of mammalian target of rapamycin in mouse embryonic fibroblasts and fibroblasts overexpressing active Akt1. Akt1 deficiency was associated with decreased myocardin, SRF, and aSMA expressions in vivo. Furthermore, sustained Akt1-induced aSMA synthesis markedly decreased upon RNA silencing of SRF and myocardin. In addition to its integral role in aSMA synthesis, we also show that Akt1 mediates fibronectin splice variant expression, which is required for MF differentiation, as well as total fibronectin, which generates the contractile force that promotes MF differentiation. In summary, our results constitute evidence that sustained Akt1 activation is crucial for TGF\$\beta\$-induced MF formation and persistent differentiation. These findings highlight Akt1 as a novel potential therapeutic target for fibrotic diseases.

Since its discovery in the early 1970s (1, 2), the myofibroblast (MF)2 has emerged as a central orchestrator of wound repair and pathologic hypertrophic scar formation characteristic of fibrotic diseases (3-6). Differentiated from fibroblasts, MFs exhibit a contractile phenotype marked by de novo expression of α -smooth muscle cell like actin (α SMA) stress fibers (7) and are primarily responsible for excessive extracellular matrix (ECM) production, cell to matrix adhesion, and resistance to apoptosis (3, 8-10). It is well established that accumulation of transforming growth factor $\beta 1$ (TGF β) is a major inducer of MF differentiation during wound healing and fibrosis (8, 11-13). Interestingly, basic fibroblast growth factor (bFGF) has been shown to control the extent of TGFβ-induced effects via stimulating de-differentiation of MFs (14, 15). This shows the intricate balance between these two cytokines in mediating physiological and pathophysiological fibrogenic responses.

Synthesis of α SMA, a principal component of MFs, is a highly regulated process that is controlled by TGF β , splice variant ED-A fibronectin (ED-A FN), and mechanical tension (3, 5). Numerous lines of evidence indicate that the transcription of α SMA is reliant on RhoA-mediated activation and nuclear translocation of transcription factor serum response factor (SRF) (16–24). Furthermore, the interaction between the recently discovered myocardin, a transcription co-factor restricted to cardiac and smooth muscle cells, and SRF has been characterized in orchestrating contractile gene expression (18, 25–27). However, defining signaling pathways that regulate this transcription network in the hopes of devising targeted therapeutics remain incompletely understood.

Research from our laboratory has established the pivotal role of protein kinase B α (Akt1) in wound healing, ECM remodeling, and vascular maturation (28). Furthermore, we have shown

²The abbreviations used are: MF, myofibroblast; Akt, protein kinase B; αSMA, α-smooth muscle like actin; TGFβ, transforming growth factor β; bFGF, basic fibroblast growth factor, DN-Akt, dominant-negative Akt; Myoc, myocardin; myr-Akt, myristoylated (active) Akt; SRF, serum response factor, mTOR, mammalian target of rapamycin; FN, fibronectin.

^{*}This work was supported, in whole or in part, by National Institutes of Health Grant R01HL 103952, American Heart Association Scientist Development Grant 0830326N (to P. R. S.), American Heart Association Predoctoral Fellowship 13PRE17100070 (to M. A.), and grants from the University of Georgia Research Foundation, University of Georgia College of Pharmacy Dean's Foundation (to P. R. S.).

This article contains supplemental Figs. S1 and S2.

¹ To whom correspondence should be addressed: Center for Pharmacy and Experimental Therapeutics, College of Pharmacy, University of Georgia, HM1200, Georgia Regents University, Augusta, GA 30912. Tel.: 706-721-4250; Fax: 706-721-3994; E-mail: sshenoy@gru.edu.

Dasatinib Regulates TGFβ-Induced Myofibroblast Differentiation through Src Pathway: Potential Role in Pulmonary Fibrosis

Maha Abdalla^{1,2,*}, LeeAnn Thompson^{1,*}, Erin Gurley^{1,*}, Samantha Burke¹, Jessica Ujjin¹, Robert Newsome¹, and Payaningal R. Somanath^{1,2,3,#}

- 1 Center for Pharmacy and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912,
- 2 Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia,
- 3 Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia

Abstract

Persistent myofibroblast differentiation is hallmark of fibrotic diseases including pulmonary fibrosis. Myofibroblasts are characterized by neo-expression of alpha smooth muscle actin (αSMA) and producing excess extracellular matrix (ECM) fibronectin deposition. Identifying effective anti-fibrotic therapeutic intervention remains a constant challenge. Recently studies have shown promising effects of tyrosine kinase inhibitors such as dasatinib and sorafinib on inhibiting transforming growth factor β (TGFβ) signaling, a well-established trigger of fibrosis. Here, we investigated the role of Src in mediating myofibroblast differentiation and explore the therapeutic potential of dasatinib. a multi-targeted tyrosine-kinase inhibitor currently in cancer therapy. Maximum TGFBinduced myofibroblast differentiation occurred at 72hr as evident by marked increase in αSMA expression that was associated with increased fibronectin. Interestingly, targeted Src inhibition using PP2 mimicked dasatinib effect and attenuated myofibroblast differentiation as evident by blunted aSMA, however, modest inhibition of fibronectin was observed in NIH 3T3 and FHLFs. Mechanistically, our data suggests that dasatinib modulates αSMA synthesis through Src via the transcription factor SRF, independent of GSK pathway. Collectively, our results show that myofibroblast differentiation is mediated through Src pathway. Dasatinib could potentially be a therapeutic option in patients with IPF.

^{*}These authors contributed equally to this work

Address for correspondence: Payaningal R. Somanath, PhD - Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, HM1200, Georgia Health Sciences University, Augusta, GA 30912. Tele: 706-721-4250; Fax: 706-721-3994. Email: sshenoy@gru.edu.

Chapter 7

PATHWAYS REGULATING THE SECRETION AND ASSEMBLY OF FIBRONECTIN MATRIX: AN UPDATE

Maha Abdalla^{1,2}, Anna Goc^{1,2} and Payaningal R. Somanath^{1,2,3}

¹Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, GA, US ²Charlie Norwood VA Medical Center, Augusta, GA, US ³Department of Medicine, Georgia Health Sciences University, Augusta, GA, US

ABSTRACT

Fibronectin (FN) is an essential extracellular matrix (ECM) protein that plays an important role in tissue repair both physiologically and pathophysiologically. The polymerization of FN into the matrix is a highly regulated process to ensure ECM accurately regulates various cellular functions including adhesion, differentiation, proliferation, migration and apoptosis and that it relays accurate signals intracellularly. FN, which is synthesized and secreted by different cell types, is organized into a fibrillar network through a highly regulated process termed fibrillogenesis. This process requires direct interaction with cell-surface adhesion receptors such as integrins and exertion of mechanical force to induce FN conformational change from the soluble, compact and non-functional state to the insoluble, extended and highly adhesive state. This process is mediated through the binding of the activated cell surface integrins, primarily α5β1 integrin, to the RGD (Arg-Gly-Asp) cell-binding domain on FN. In integrating the extracellular environment with the interior of the cell, integrins have a unique ability to transduce signals via "outside-in" and "inside-out" signaling. Growth factors, particularly transforming growth factor beta (TGFB), modulate integrin activation in fibroblasts. TGFB controls the transcription of genes encoding integrins via binding to its receptor, leading to the phosphorylation of intracellular effector proteins Smad2 and 3 and activation of downstream signaling and translocation to the nucleus. The crosstalk between integrin and TGFB is essential for FN matrix assembly; however, the molecular mechanisms underlying FN secretion and assembly are not well known. Studies have shown that modulation of focal adhesion kinase (FAK), Rho-GTPases, protein kinase Bα (Akt1), mammalian target of rapamycin (mTOR), and MAP kinase pathways are among the regulatory mechanisms that play an integral role in FN secretion and assembly. Abnormalities in the crosstalk between integrins, growth factors and FN are characterized by excessive differentiation and ECM remodeling resulting in aberrant response to tissue injury and contributing to a variety of pathological processes.

The aim of this review is to describe the mechanisms and consequences of FN secretion and matrix assembly, and provide a brief overview of its clinical impact. First, we describe FN structure and the important features responsible for interaction with integrins and subsequent cell functioning. Next, we focus on the matrix assembly and essential mechanisms underlying this process. Finally, we discuss how FN can drive pathophysiological processes in fibrosis and cancer.

Address for correspondence: Payaningal R. Somanath, PhD - Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, HM1200, Georgia Health Sciences University, Augusta, GA 30912. Tele: 706-721-4250; Fax: 706-721-3994. Email: sshenoy@georgiahealth.edu.

Chapter 6

METHODS TO STUDY FIBRONECTIN SECRETION AND MATRIX ASSEMBLY BY FIBROBLASTS IN VITRO AND IN VIVO

Anna Goc^{1,2}, Maha Abdalla^{1,2} and Payaningal R. Somanath^{1,2,3,*}

¹Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, ²Charlie Norwood VA Medical Center, Augusta, GA, ³Department of Medicine, Georgia Health Sciences University, Augusta, GA

ABSTRACT

Fibronectin (FN) is a high molecular weight glycoprotein composed of two structurally similar monomers forming a dimer linked by a pair of disulfide bonds. It is the product of a single FN gene, undergoing alternative splicing leading to 20 potential isoforms. Fibronectin exists in two forms: soluble (major component of blood plasma) and insoluble (major component of the extracellular matrix). It is secreted by many different cell types including endothelial cells, keratinocytes and monocytes. However, fibroblasts are the major source of fibronectin synthesis in a variety of tissues, which not only secrete fibronectin, but also assemble the soluble dimers into an insoluble matrix enabling a remodeling process in many tissues including such aspects as cell-cell communication, cell-to-basement-membrane attachment, and regulation of inflammation as well as maintaining tissue integrity. Through regulation of cell adhesion, growth, migration, and differentiation, fibronectin plays a crucial role in various essential processes such as embryogenesis, nerve regeneration, wound healing, angiogenesis, and cancer metastasis. Altered fibronectin synthesis, secretion, degradation, and organization have been associated with a number of pathological conditions, including fibrosis and cancer. Thus, it is important to better understand the significance of this multifunctional protein in both physiological and pathological events. In this chapter, we summarize the methods used to study the synthesis and assembly of fibronectin in vitro and in vivo, and may also provide useful tools to investigate various aspects of matrix biology.

_

^{*} Corresponding author: Payaningal R. Somanath, PhD, Assistant Professor. Tel: 706-721-4250; Fax: 706-721-3994. Email: sshenoy@georgiahealth.edu.

Rac1 Activation Driven by 14-3-3ζ Dimerization Promotes Prostate Cancer Cell-Matrix Interactions, Motility and Transendothelial Migration

Anna Goc1,2, Maha Abdalla1,2, Ahmad Al-Azayzih1,2, Payaningal R. Somanath1,2,3*

1 Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America, 2 Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America, 3 Department of Medicine, Georgia Health Sciences University, Augusta, Georgia, United States of America

Abstract

14-3-3 proteins are ubiquitously expressed dimeric adaptor proteins that have emerged as key mediators of many cell signaling pathways in multiple cell types. Its effects are mainly mediated by binding to selective phosphoserine/threonine proteins. The importance of 14-3-3 proteins in cancer have only started to become apparent and its exact role in cancer progression as well as the mechanisms by which 14-3-3 proteins mediate cancer cell function remain unknown. While protein 14-3-3σ is widely accepted as a tumor suppressor, 14-3-3ζ, β and γ isoforms have been shown to have tumor promoting effects. Despite the importance of 14-3-3 family in mediating various cell processes, the exact role and mechanism of 14-3-3\(\zeta\) remain unexplored. In the current study, we investigated the role of protein 14-3-3\(\zeta\) in prostate cancer cell motility and transendothelial migration using biochemical, molecular biology and electric cell-substrate impedance sensing approaches as well as cell based functional assays. Our study indicated that expression with wild-type protein 14-3-3\(\circ\) significantly enhanced Rac activity in PC3 cells. In contrast, expression of dimer-resistant mutant of protein 14-3-3\(\zeta\) (DM-14-3-3) inhibited Rac activity and associated phosphorylation of p21 activated kinase-1 and 2. Expression with wild-type 14-3-3ζ or constitutively active Rac1 enhanced extracellular matrix recognition, lamellipodia formation, cell migration and trans-endothelial migration by PC3 cells. In contrast, expression with DM 14-3-3 or DN-Rac1 in PC3 cells significantly inhibited these cell functions. Our results demonstrate for the first time that 14-3-3 \(\text{enhances prostate cancer} \) cell-matrix interactions, motility and transendothelial migration in vitro via activation of Rac1-GTPase and is an important target for therapeutic interventions for prostate cancer.

Citation: Goc A, Abdalla M, Al-Azayzih A, Somanath PR (2012) Rac1 Activation Driven by 14-3-3ζ Dimerization Promotes Prostate Cancer Cell-Matrix Interactions, Motility and Transendothelial Migration. PLoS ONE 7(7): e40594. doi:10.1371/journal.pone.0040594

Editor: Ming Tat Ling, Queensland University of Technology, Australia

Received March 14, 2012; Accepted June 11, 2012; Published July 13, 2012

Copyright: © 2012 Goc et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funds were provided by the University of Georgia Research Foundation, Wilson Pharmacy Foundation and UGA College of Pharmacy through intramural grants to PRS, and in part by the National Institutes of Health grant (R01HL103952) and American Heart Association Scientist Development Grant (0830326N) to PRS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sshenoy@georgiahealth.edu

P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of TGFβ
expression and enhanced MMP9 secretion*

Anna Goc^{1,2}, Ahmad Al-Azayzih^{1,2}, Maha Abdalla^{1,2}, Belal Al-Husein^{1,2}, Sravankumar Kavuri^{2,3}, Jeffrey Lee^{2,3}, Kelvin Moses^{2,3} and Payaningal R. Somanath^{1,2,44}

Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA
Charlie Norwood VA Medical Center, Augusta, GA

³Department of Surgery, Georgia Health Sciences University, Augusta, GA
⁴Department of Medicine and Vascular Biology Ctr., Georgia Health Sciences University, Augusta, GA

*Running Title: Pakl in prostate cancer

To whom correspondence should be addressed: Payaningal R. Somanath, Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, HM1200 – Georgia Health Sciences University, Augusta, GA 30912, Phone: 706-721-4250; Fax: 706-721-3994; E-mail: sshenoy@georgiahealth.edu

Key words: Prostate cancer; Pakl; Pak6; microinvasion; MMP9; TGFB.

Background: The significance of Pakl in prostate cancer remains unclear.

Results: Pak1 knockdown impaired prostate tumor growth via increased expression of TGFβ and reduced secretion of MMP9.

Conclusions: We demonstrated that Pakl is a more potent mediator of prostate cancer cell migration and tumor growth than Pak6, the predominant isoform in the prostate.

Significance: A novel role of Pakl in prostate cancer is identified.

SUMMARY

P21 activated kinases (Paks) are major effectors downstream of small Rho family of GTPases. Among the six isoforms, Pakl is the most ubiquitous and the best characterized member. Previous studies have shown that inhibition of Pak6, which is predominantly present in the prostate compared to other tissues, inhibit prostate tumor growth in vivo. Even though Pakl has been identified in normal prostatic epithelial cells and cancer cells, its specific role in the development of prostate cancer remains unclear. We report here that highly invasive prostate cancer cells express significantly higher levels of Pakl protein compared to non-invasive prostate cancer cells. Furthermore, prostate tumor tissues and prostate cancer metastasized to lungs showed higher expression of Pakl compared to normal tissues. Interestingly, Pak6 protein expression levels did

not change with the invasive/metastatic potential of the cancer cells or tumors. While inhibition of Pakl, and not Pak6, resulted in impaired PC3 cell migration, the effects of Pakl knockdown on transendothelial migration (microinvasion), tumor growth and tumor angiogenesis was higher compared to Pak6 knockdown. Finally, gene array data revealed reduced expression of MMP9 with the ablation of either Pakl or Pak6 gene expression in PC3 cells, whereas protein levels of TGFB was significantly elevated with specific modulation of Pakl activity or ablation of Pakl gene. Our observations suggest that although some level of functional redundancy exists between Pak1 and Pak6 in prostate cancer cells, targeting Pak1 is a potential option for the management of prostate tumor growth, microinvasion and metastasis.

INTRODUCTION

P21 activated kinases (Paks) are a family of six serine-threonine kinases which are categorized into Group-I and Group-II Paks based on their mechanism of activation (1). Group-I Paks differ from their Group-II counterparts on their activation by small Rho GTPases such as Rac and cdc42 (2) as well as their specific involvement in inducing cytoskeletal changes, lamellipodia and filopodia formation in mammalian cells in the promotion of cell motility (1, 3). Group-II Paks lack the auto inhibitory domain, acidic and Pixbinding regions as well as Rac/cdc42 binding CRIB domain, which are present in all Group-I Pak isoforms (4-6).

Cerebrovascular Complications of Diabetes: Focus on Stroke

Adviye Ergul, Aisha Kelly-Cobbs, Maha Abdalla and Susan C. Fagan*

Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Charlie Norwood VA Medical Center and Departments of Neurology and Physiology, Georgia Health Sciences University, Augusta, GA

Abstract: Cerebrovascular complications make diabetic patients 2-6 times more susceptible to a stroke event and this risk is magnified in younger individuals and in patients with hypertension and complications in other vascular beds. In addition, when patients with diabetes and hyperglycemia experience an acute ischemic stroke they are more likely to die or be severely disabled and less likely to benefit from the one FDA-approved therapy, intravenous tissue plasminogen activator. Experimental stroke models have revealed that chronic hyperglycemia leads to deficits in cerebrovascular structure and function that may explain some of the clinical observations. Increased edema, neovascularization and protease expression as well as altered vascular reactivity and tone may be involved and point to potential therapeutic targets. Further study is needed to fully understand this complex disease state and the breadth of its manifestation in the cerebrovasculature.

Keywords: Cerebral vasculature, diabetes, hemorrhage, ischemia, stroke, targets.

INTRODUCTION

The steadily increasing prevalence of obesity in developed nations has contributed to the alarming rate of diagnoses of type 2 diabetes (T2D) and prediabetes, even in children [1]. In addition, there is an equally alarming increase in the number of younger patients diagnosed with type 1 diabetes (T1D) [2-4]. Given the mortality and morbidity due to cardiovascular diseases (CVD) associated with diabetes, this increase in the incidence of diabetes will have an avalanche effect in health care. Hyperglycemia ravages all vascular beds in the human body, and in the brain, this has devastating consequences. A growing body of literature indicates that the cerebrovascular sequelae of diabetes may play an important role in the pathogenesis of cerebral complications of diabetes including stroke [5, 6] and other neurological diseases including Alzheimer's Disease and Vascular Cognitive Impairment [7, 8]. Since diabetes is the fastest growing risk factor for stroke globally, this review will focus on stroke as a complication of diabetes and readers are referred to recent reviews for the neurodegenerative complications of diabetes [8-11]. While traditionally stroke is considered a macrovascular complication of diabetes, there is increasing evidence that the microvasculature of the brain is severely affected in both forms of diabetes [7, 8]. In the following review, we will present the mechanisms and of both T1D and T2D [12]. In fact, although T2D patients make up the vast majority of diabetic stroke (97% in the Nurses' Health Study), [13] the relative risk is actually greater in T1D, with more than 4 fold higher rates of stroke at all ages of the disease [13]. This is magnified at younger ages, with T1D patients between 15 and 34 years of age having stroke rates more than 16 times that of the general population [14]. Other vascular complications, in particular, diabetic nephropathy, predicted even greater risk of up to 75 times that of the stroke rate of aged matched controls [14]. Nevertheless, most diabetic stroke occurs in T2D and most epidemiologic and prevention data reflects this bias.

A prospective population based study, with approximately 20 year follow-up, evaluated the effect of T2D alone on CVD in 13,105 subjects. The study showed an increased relative risk for developing stroke of 1.5 to 2 fold in men and 2 to 6.5 fold in women [15]. This increased risk is seen even early after diagnosis. In a short term study conducted to evaluate 5-year risk of stroke in newly treated T2D patients, the relative risk of stroke was 2.1 (95% CI, 1.8 to 2.3) in the T2D group, compared to the general population. Additionally, younger patients (30 to 44 years old) had higher relative risk for stroke compared to older patients [16].

PATHWAYS REGULATING THE SECRETION AND ASSEMBLY OF FIBRONECTIN MATRIX: AN UPDATE

Maha Abdalla^{1,2}, Anna Goc^{1,2} and Payaningal R. Somanath^{1,2,3,*}

¹Clinical and Experimental Therapeutics, College of Pharmacy,
University of Georgia, GA, US

²Charlie Norwood VA Medical Center, Augusta, GA, US

³Department of Medicine, Georgia Health Sciences
University, Augusta, GA, US

ABSTRACT

Fibronectin (FN) is an essential extracellular matrix (ECM) protein that plays an important role in tissue repair both physiologically and pathophysiologically. The polymerization of FN into the matrix is a highly regulated process to ensure ECM accurately regulates various cellular functions including adhesion, differentiation, proliferation, migration and apoptosis and that it relays accurate signals intracellularly. FN, which is synthesized and secreted by different cell types, is organized into a fibrillar network through a highly regulated process termed fibrillogenesis. This process requires direct interaction with cell-surface adhesion receptors such as integrins and exertion of mechanical force to induce FN conformational change from the soluble, compact and non-functional state to the insoluble, extended and highly adhesive state. This process is mediated through the binding of the activated cell surface integrins, primarily $\alpha 5\beta 1$ integrin, to the RGD (Arg-Gly-Asp) cell-binding domain on FN.

In integrating the extracellular environment with the interior of the cell, integrins have a unique ability to transduce signals via "outside-in" and "inside-out" signaling. Growth factors, particularly transforming growth factor beta (TGF β), modulate integrin activation in fibroblasts. TGF β controls the transcription of genes encoding integrins via

^{*} Address for correspondence: Payaningal R. Somanath, PhD - Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, HM1200, Georgia Health Sciences University, Augusta, GA 30912. Tele: 706-721-4250; Fax: 706-721-3994. Email: sshenoy@georgiahealth.edu.

binding to its receptor, leading to the phosphorylation of intracellular effector proteins Smad2 and 3 and activation of downstream signaling and translocation to the nucleus. The crosstalk between integrin and TGF β is essential for FN matrix assembly; however, the molecular mechanisms underlying FN secretion and assembly are not well known. Studies have shown that modulation of focal adhesion kinase (FAK), Rho-GTPases, protein kinase B α (Akt1), mammalian target of rapamycin (mTOR), and MAP kinase pathways are among the regulatory mechanisms that play an integral role in FN secretion and assembly.

Abnormalities in the crosstalk between integrins, growth factors and FN is characterized by excessive differentiation and ECM remodeling resulting in aberrant response to tissue injury and contributing to a variety of pathological processes. The aim of this review is to describe the mechanisms and consequences of FN secretion and matrix assembly, and provide a brief overview of its clinical impact. First, we describe FN structure and the important features responsible for interaction with integrins and subsequent cell functioning. Next, we focus on the matrix assembly and essential mechanisms underlying this process. Finally, we discuss how FN can drive pathophysiological processes in fibrosis and cancer.

ABBREVIATIONS

Akt	protein kinase B
ARF	ADP-ribosylation factor
Cav-1	caveolin-1
Cdc42	cell division cycle 42
EC	endothelial cell
ECM	extracellular matrix
EGF	epidermal growth factor
EMT	epithelial mesenchymal transitions
ERK	extracellular signal regulated kinase
FAT	focal adhesion targeting,
FGF	fibroblast growth factor
FN	fibronectin
FAK	focal adhesion kinase
GAP	GTPase-activating protein
GEF	GDP-GTP exchange factor
GSK3β	glycogen synthetase kinase 3 type β
JNK	jun N-terminal kinase
MAPK	mitogen activated protein kinase
MEF	mice embryonic fibroblast
MLC	myosin light chain
MLCP	myosin light chain phosphatase
mTOR	mammalian target of rapamycin
MMP	matrix metalloproteinase
Src	steroid receptor co-activator
PAK	p21-activated kinase
PDGF	platelet derived growth factor
PI3K	phosphatidylinositol-3 kinase

PP2A	protein phosphatase 2A
PTEN	phosphatase and tensin homologue deleted on chromosome ten
PTKs	protein tyrosine kinases
PYK2	Proline-rich tyrosine Kinase 2
RGD	Arg-Gly-Asp cell-binding sequence
ROCK	Rho-associated kinase
RTK	tyrosine kinase receptor
Smurf	Smad –ubiquitination regulatory factor
TGFβ	Transforming growth factor β
VEGF	vascular endothelial growth factor

Introduction

The fundamental importance of the extracellular matrix (ECM) protein fibronectin (FN) can be inferred by its ubiquitous presence in tissues and by the non-viability of FN-deficient embryos. Under normal conditions, the ECM, specifically FN, is an important determinant of biological functions as illustrated by its high efficiency in promoting anchorage dependent cell cycle progression [1] and cell survival and proliferation [2]. Of the ECM proteins, adhesion to FN specifically stimulates cell cycle progression by the activation of RhoA in addition to growth factor mediated activation of Ras/MAPK signaling [1]. More interestingly, adhesion to FN decreases growth factor requirement for DNA synthesis by up to 1000-fold [3, 4] and selectively desensitizes specific growth factor stimulation in fibroblasts [5].

A principal component of the ECM, FN is especially abundant in tissues undergoing development or wound healing [6]. FN is critical for embryogenesis and is instrumental in various physiologic and pathologic processes. FN-rich matrices serve as regulators of cellular processes including proliferation, survival and differentiation, and provide structural support for cell adhesion and migration in ECM remodeling and tissue organization [6, 7]. Given the complexity and variability of its roles in basic cellular processes and binding partners, FN is involved in a large number of critical events including embryogenesis [8] where it has been shown to be pivotal for development as demonstrated by early embryonic lethality in mice with null mutation in FN gene.

Furthermore, FN is critical in wound healing processes, such as tissue morphogenesis [8, 9] thrombosis [10] and inflammation [11], and maintenance of normal tissue architecture [12, 13]. Abnormalities in FN, such as increased matrix deposition and assembly, have also been associated with several pathologies, including tumorigenesis and metastasis [14], fibrosis [15], and atherosclerosis [11]. Chronically elevated TGF β 1 levels are associated with excessive fibrosis which is characterized by increased FN deposition [16-19]. The hallmark of fibrotic disease is increased ECM protein synthesis by fibroblasts persistently stimulated by TGF β 1.

FN is a multi-domain adhesive glycoprotein that is multifunctional and is expressed and secreted by different cell types, particularly fibroblasts. FN regulates cell-ECM contact and cell-cell interactions by binding to different components of the ECM and to the membrane bound cell surface receptors, particularly integrins. FN that is secreted from a variety of cells is assembled into matrix by integrins, mainly $\alpha 5\beta 1$, which is the primary integrin for FN

matrix assembly [20]. Furthermore, cross talk between integrins and TGF β is an important modulator of FN transcription and assembly through a complex network of signaling pathways such as MAP Kinases and PI3K-Akt pathways [21].

Dynamic alterations in the structure and composition of the ECM, termed ECM remodeling, occur at different stages of development, during tissue repair and remodeling, and as a result of many pathologies and malignancies [22, 23]. Cells are continually integrating a plethora of signals to determine cell fate, survival and proliferation. It is in this light that the PI3K-Akt pathway can be considered as a central integrator of a tangled web of signaling networks with direct and indirect effects on each other. Thus, better understanding of FN regulatory mechanisms is crucial in order to develop novel therapeutics.

Although extensive research has established the role of MAP kinases in regulating FN mediated cell processes, we are only just beginning to understand the pivotal role of Akt [24-26]. Numerous studies have implicated the essential role of Akt, however the mechanisms by which Akt mediates and modulates FN induced signaling are just beginning to be explored. Thus, the purpose of this review is to explore the molecular mechanisms mediating FN synthesis and matrix assembly, focusing on Akt, a major intracellular signaling protein.

STRUCTURE OF FN

FN is considered a novel, highly conserved, multi-domain glycoprotein. While encoded by a single FN gene, *FNI* on chromosome 2q35, alternative splicing can generate as many as 20 isoforms in humans [17, 27]. FN is found in two different forms: "plasma FN or pFN", a soluble dimer in the circulation which is secreted by hepatocytes directly, and "cellular FN or cFN" which is synthesized locally in tissues by many cell types including fibroblasts and endothelial cells [19, 28]. A key distinctive feature of cFN is the inclusion of variable amounts of either or both extra-domain (ED)-A and ED-B, Type III modules subject to alternative splicing by exon skipping, also termed exon shuffling. Additionally, almost all cFN subunits contain the variable, V region (also termed Type III connecting segment (IIICS) element. In contrast, pFN lacks ED-A and ED-B and only one of its subunits contains the V region [17]. Embryos that lack both ED-A and ED-B show cardiovascular defects due to altered FN functions [29].

ED-A is suggested to play a central role in the differentiation of fibroblasts to myofibroblasts [30, 31]. Indeed, the importance of the EDA domain in wound healing and fibrosis were shown in EDA null mice, which demonstrated abnormal wound healing [32] and an absence of pulmonary fibrosis despite bleomycin treatment [15]. Thus, EDA cFN plays a critical role in fibroblasts activation and mediating fibrotic disease.

FN is secreted as a soluble dimeric glycoprotein linked by inter-chain disulfide bonds near the C-terminus. Each FN monomer, 220-250 kDa, is folded into five or six domains connected by a flexible polypeptide chain. Each domain is composed of a mosaic of secondary structure modular repeats: 12 type I modules (FN-I), 2 type II modules (FN-II) and 15 to 17 type III modules (FN-III), and a variable sequence (v) [16].

Within each fragment, there are several discrete domains responsible for the binding versatility of FN. C-terminal FN- I_{10-12} is a FN binding domain, also known as an assembly domain, necessary for FN – FN interaction and initiation of FN assembly.

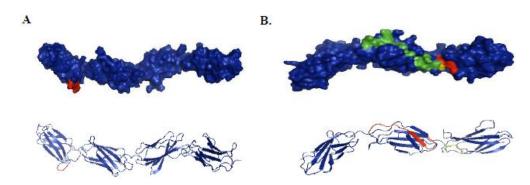


Figure 1. RGD site and integrin binding sites in human FN: A. RGD sequence (residues 1493–1496) (red). B. Integrin $\alpha_{IIIb}\beta3$ (green) and $\alpha4\beta1$ (red) binding motif, and binding motif containing Asp184 residue (yellow).

The cell binding domain of FN is composed of FN- III_{1-11} , including the alternatively spliced ED-A and ED-B modules, specifically FN- III_{10} and FN- III_{9} . Several sites within this domain play a role in FN matrix assembly and/or interact with integrin. FN- III_{10} contains the most critical and primary cell binding domain, Arg-Gly-Asp (RGD). This sequence is necessary for mediating the interaction between FN and $\alpha 5\beta 1$ integrin; FN is the only adhesion molecule recognized by $\alpha 5\beta 1$ integrin, which play an integral role in FN polymerization and matrix assembly [33-35]. FN also binds to other integrins including $\alpha \nu \beta 1$, $\alpha \nu \beta 3$ and $\alpha IIb\beta 3$ integrins, but with a lower affinity [36, 37].

In addition, FN- III₉ is also important for interaction with certain integrins through the amino acid sequence 'Pro-His-Ser-Arg-Asn (PHSRN)' [37]. This sequence is known as a "synergy site", and is unique to FN [38] as it further enhances the binding affinity of $\alpha 5\beta 1$ integrin for FN [39] (Figure 1). FN Type III₁ has self-association activities and a cryptic heparin binding sites [40]. The exposure of that matricryptic site is necessary for matrix FN to localize to lipid rafts, caveolae, where it regulates cytoskeletal organization and cell growth [41]. The variable composition of FN molecules facilitates a diversity of interactions with cell surface receptors that suggest a role beyond the structural considerations of the extracellular matrix.

SECRETION, POLYMERIZATION AND ASSEMBLY OF FN

FN is synthesized and secreted by different cell types including fibroblasts, one of the most ubiquitous cell types in the body, along with endothelial cells and macrophages. Following FN protein translation, FN is folded, dimerized and glycosylated in the endoplasmic reticulum [42, 43]. FN then is secreted as a soluble compact globular dimer, a process mediated by electrostatic interaction, a regulatory mechanism likely to prevent intermolecular interactions and cell aggregation prior to assembly [44]. Emerging evidence indicates that the polymerized insoluble FN is functionally distinct from soluble protomeric FN. FN matrix assembly regulates cell growth, contractility, cell migration. FN-null mice embryonic fibroblasts (MEFs) fail to spread or proliferate on type I collagen gel, while addition of FN to these cells results in increased cell proliferation and micro-tissue formation

[45]. FN matrix assembly plays an important role in preserving the structural integrity of blood vessels. FN regulates the composition and organization of the ECM. FN deposition regulates tenascin C fibrils, and the deposition of fibulin and fibrinogen in the ECM. Notably, FN secretion and FN polymerization regulate both the deposition and maintenance of collagen types I and III [46].

Cells exert mechanical force on their surroundings, and the mechanism varies according to stimuli, environment, morphology and differentiated state of cells. FN undergoes cell mediated assembly to form insoluble, elastic matrix fibrils. Cells can apply cytoskeleton-generated tension to unfold FN leading to changes in cell morphology, cell signaling and proliferation [38]. This mechanical force permit cells to change biochemical signals received from the environment, in a force- and time-dependent manner, by altering molecular recognition through unfolding and extending FN. This is achieved by exposing cryptic sites for FN-FN binding; changing the spatial positions of the RGD and synergy sites altering $\alpha 5\beta 1$ integrin binding selectivity and signaling pathways; a tensile molecular recognition switch achieved by unraveling of modules such as FN-III₁₀, which was shown to straighten the RGD loop, thus, reducing accessibility and affinity to cell surface integrins. FN-III₁₀ is the first module to unfold in FN-III module repeats due to its low mechanical stability [38]. Cell mediated assembly of FN into fibrils is essential to fully exploit the mechano-chemical characteristics of FN to regulate cell signaling.

FN also exhibits mechanical properties that allow the coupling of cytoskeletal generated tension to modulate fiber directionality and extension during polymerization. The mechanical coupling to the cytoskeleton exposes cryptic sites on FN that affect its affinity and selectivity to different members of the integrin family. Unmasking of previously unrecognizable receptor-binding sites may result from conformational changes due to proteolytic cleavage within a domain of an ECM molecule. Different molecular effects resulting from proteolytic cleavage of an ECM protein by matrix metalloproteinase 9 (MMP9) may lead to the exposure of a previously hidden, or 'cryptic', binding site for integrin receptors, such as an RGD-containing binding site for a β1 integrin receptor [47].

FN matrix assembly regulates cell morphology and functions by regulating the interaction of integrin with the actin cytoskeleton. The translocation and formation of $\alpha 5\beta 1$ integrin-containing fibrillar adhesion requires FN matrix assembly [46] and occurs via a tensin-dependent mechanism [48]. Early FN fibrillogenesis requires $\alpha 5\beta 1$ integrin translocation from focal contacts to the ECM contacts a process dependent on tensin, a primary cytoskeletal component of ECM contacts and which is also an actin binding protein.

It has been suggested that loss of cell-substrate adhesion does not result in loss of FN matrix. Several studies have observed that despite disrupting FN matrix, cells remained attached and spread, and expressed well-developed stress fiber and focal contacts [46]. Studies have shown FN matrix turnover process to involve the release of proteases into the ECM and may also include FN endocytosis [49]. Changes in cytoskeletal dynamics are suggested to be critical for FN matrix turnover. Indeed, a dynamic, reciprocal relationship exists, where disruption of actin cytoskeleton disrupts FN matrix organization, and FN polymerization regulates actin cytoskeletal assembly.

FN mechanically couples the ECM of cells to the cytoskeleton via integrin; mechanical forces are among the cues that determine cell shape and ultimately gene expression and eventual fate [38]. Integrin mediated anchorage to the ECM is required for cell proliferation

by initiating signaling pathways that are co-regulated by growth factors. Integrins mediate a "dynamic reciprocity" between cell-cell and cell-ECM [77].

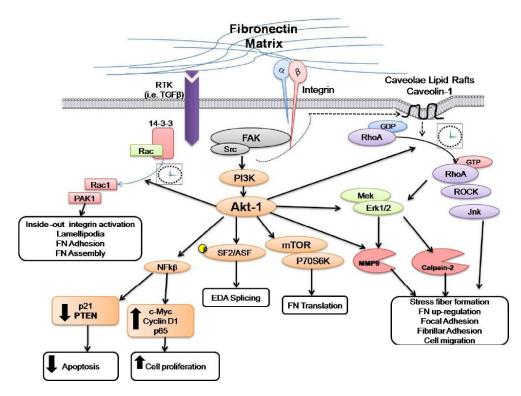


Figure 2. Schematic representation of the role of Akt1 in mediating the dynamic reciprocity between FN and integrins: Upon integrin- and/or RTK-mediated cell-FN attachment, FN induces integrin activation and clustering into focal adhesions, a process that requires the presence of FAK-Src complex. FAK/Src complexes serve as mechanosensors that converge extracellular signaling into the cytoskeleton by cross-linking signaling from integrins and RTKs, via proximal interactions. In certain cells (e.g. embryonic stem cells), activation of caveolin-1 by FN/integrin/FAK-Src is necessary for cell survival and proliferation. PI3K/Akt dynamically regulates FN-integrin interaction. FN ligation can induce the activation of Akt1, outside-in signaling, through β1 integrin cytoplasmic domain and FAK-Src complex. Conversely, Akt1 mediates FN synthesis and matrix assembly via inside-out signaling pathways. FN stimulates its own synthesis and matrix assembly. Akt1 enhances FN translation and ED-A alternative splicing via the activation of mTOR/P70S6k pathway and direct phosphorylation of SF2/ASF, respectively. FN is exported to ECM where it binds integrins, and Akt1 enhances inside-out activation and accumulation of integrins in focal adhesion through its cross talk with RhoA (contraction in lagging edge) and Rac (protrusion in leading edge) at different stages during cell motility and integrin clustering, simultaneously. Thus, enhanced integrin affinity for FN generates mechanical forces that reveal cryptic sites on FN necessary for FN matrix assembly. Furthermore, FN regulates cell survival and proliferation through Akt1 mediated down-regulation of PTEN and up-regulation of c-Myc and cyclin D1. FN regulates matrix turnover. FN binding to integrin activates Akt1 and Erk pathways that up-regulate calpain-2 and MMP9 that are necessary for de-adhesion during cell motility and matrix degradation.

MOLECULAR MECHANISMS REGULATING SECRETION AND ASSEMBLY OF FN MATRIX

Although the molecular mechanisms governing FN secretion and assembly are not fully understood, a hierarchy is evident in the assembly process. FN interaction with integrins and polymerization into the ECM is influenced by several growth factors and signaling proteins [50]. Transforming growth factor β (TGF β), an extracellular growth factor, enhances secretion of ECM proteins including FN, increases the number of matrix assembly sites and enhances assembly of fibronectin matrix [51]. Conversely, an increase in intracellular cAMP levels decreases the number of assembly sites and inhibits FN polymerization [52]. Other signaling molecules that have been implicated in the regulation of FN matrix assembly include Src kinase, phosphatidylinositol 3-kinase [50], other growth factors [51], and protein kinase C [53].

Growth factors such as TGF β [54-56] and cytokines [57] can regulate FN synthesis at the transcriptional level and translational level, through modulation of mRNA stability or translational efficiency. Regulation of FN synthesis also occurs at the level of protein degradation. Turnover of the FN matrix *in vivo* occurs relatively quickly, with as much as half of labeled FN that was incorporated into the ECM being lost within 24 hours [58]. ECM degradation and turnover can be mediated by many proteases, including plasmin, plasminogen activators, and MMPs [59], and by caveolin-dependent endocytosis [60] and intracellular proteolysis [61].

Integrin-FN Interactions in Cellular Adhesion and Assembly of FN Matrix

Integrins, α - β heterodimeric transmembrane molecules, are the principal receptors for ECM [34]. The α5β1 integrins, "classic" FN receptor, is the major integrin receptor responsible for initiating FN matrix assembly. Other integrins can bind FN but do not induce FN assembly [48]. In the absence of RGD-α5β1 integrin interaction, some FN matrices can still be assembled, however less efficiently, by interacting with α_v integrins, such as $\alpha v \beta 3$, or αΙΙbβ3 [18]. Binding of FN induces integrin clustering, further increasing their affinity to FN [18, 48]. More generally, an individual integrin will recognize several distinct proteins [34]; for example, the ανβ3 integrin has been reported to bind collagen VI, laminin, FN, vitronectin, thrombospondin, Von Willebrand factor, and fibrinogen [62]. The β cytoplasmic domain is essential for integrins recruitment to focal contact as evident by impaired recruitment due to its truncation/mutation. The β cytoplasmic domain alone, expressed as a fusion chimera with another membrane protein, has been shown to be sufficient for focal contact localization [63, 64]. The α cytoplasmic domain serves as an auto-inhibitor of certain functions of the β cytoplasmic domain such as focal contact recruitment. Ligand binding induces conformation changes that relieve this auto-inhibition [18, 48]. Furthermore, the β cytoplasmic domain is important in signal transduction, particularly integrin activation of FAK whereas truncation or mutation of the α cytoplasmic domain does not impact this process [65].

Integrin $\alpha 5\beta 1$ is critically important in vertebrate development, as demonstrated by the early embryonic lethality of null mice [66]. Notably, this phenotype is even more severe and occurs at an earlier stage than that observed in FN-null mice. Interestingly, $\alpha 5$ knock-out mice are embryonic lethal despite their ability to develop normal FN matrix [67, 68]. This suggests that $\alpha 5\beta 1$ -FN interaction conveys critical signals in development that are not compensated by other integrins including αv , thus further illustrating the importance of this integrin and FN in

embryogenesis . Furthermore, different cell types depend on different integrins for survival. For example, $\alpha 5\beta 1$ integrin promotes survival in fibroblasts, endothelial cells (ECs) and epithelial cells [69, 70], and $\alpha \nu \beta 3$ integrin is important for angiogenic ECs survival [71]. It has also become apparent that integrin mediated signaling pathways can be integrin specific. Whereas $\alpha 5\beta 1$ integrin mediated adhesion to FN supports cell survival by up-regulating Bcl-2 and inhibiting Bad, caspase-9, and p53 through activation of FAK, PI3K/Akt, and CAMK IV signaling [69, 72-74], $\alpha \nu \beta 1$ is inefficient in supporting FN matrix assembly and cell migration [75]. Cell adhesion is essential for embryonic development and tissue function and repair following injury [76] and is essential for maintenance of tissue integrity and polarity. Integrin mediated adhesions are known to undergo dynamic changes in structure and molecular composition from focal complexes to early focal adhesions- stress fiber associated focal contacts.

Integrins drive early FN fibrillogenesis, thus providing direct "dynamic reciprocity" [77] between the ECM and the cytoskeleton [48]. Inactive integrins, which are diffusely distributed in the plasma membrane, are recruited into focal contacts where they can be reactivated [18]. Cytoskeletal generated tension can occur through two types of integrin-containing structures, focal contact and focal/fibrillar adhesions [48, 78]. Focal contact mediates transmembrane linkage between the ECM and the cytoskeleton, and is composed of structural, cytoskeletal, and signaling proteins, where talin and α -catenin bind the β -integrin cytoplasmic tail domain. Soluble, compact FN dimer selectively binds to integrin via the RGD and synergy sites simultaneously, thus, initiating FN polymerization and fibril matrix assembly [46].

Integrins modulate the activity and localization of Rho-GTPases and their effector proteins that in turn regulate actin cytoskeletal dynamics that govern the morphological changes during cell adhesion and spreading on ECM [79]. Rac1 and Cdc42 stimulate the formation of "focal complexes", small cell matrix adhesions, associated with lamellipodia and filopodia [80]. RhoA stimulates actin stress fibers formation and the maturation of focal complexes to focal contacts and fibrillar adhesions [81, 82].

Fibrillar adhesions, also termed cell-matrix adhesions, contain tensin and $\alpha 5\beta 1$ integrins, and co-localize with FN fibrils [46, 83]. Tensin is one of the major cytoskeletal proteins in fibrillar adhesions [78, 84]. Tensin has multiple actin-binding sites [85] and associates directly with the $\beta 1$ integrin cytoplasmic tail via its phosphotyrosine-binding domain [86, 87]. There is evidence that suggests tensin is required for the formation of fibrillar adhesions [48]. In addition, when FN matrix assembly is blocked, fibrillar adhesions are not generated and tensin resides in focal adhesion plaques [46], suggesting that fibronectin regulates the distribution of tensin.

In addition to mediating adhesion to ECM, integrins are important in ECM assembly. Integrin connection to the actin cytoskeleton is essential for FN fibrillogenesis. FN fibrillogenesis requires integrin-mediated binding to soluble FN dimers and conformation changes in FN mediated by Rho-dependent cytoskeletal contractility to stretch integrin-bound FN molecules exposing cryptic FN binding sites [88-90]. The specific translocation of $\alpha 5\beta 1$ integrin together with tensin from focal contacts to another cell-matrix adhesion "fibrillar adhesions" is of critical importance in FN matrix assembly [48, 78]. A fragment of tensin inhibits both the translocation of $\alpha 5\beta 1$ integrin and FN fibrillogenesis without affecting focal

contacts [48], thus demonstrating that the high efficiency with which $\alpha 5\beta 1$ modulates FN is partly due to its association with tensin.

Cell-cell adhesion is mediated by an analogous process but with different players which include tight junctions and adherens junctions, which include cadherin mediated adhesion [91]. The adhesive functions of both integrins and cadherins are well established and are known to require cytoskeletal interactions [92]. However the dynamic interplay between them is not well understood. Lefort and colleagues have recently identified $\alpha 5\beta 1$ integrin and tensin as novel components of N-cadherin adhesion complexes and demonstrated the regulatory role of matrix FN on cell-cell and cell-ECM dynamics. In the absence of FN, $\alpha 5\beta 1$ integrin and tensin localize to cell-cell adhesion complexes Ligation of FN to $\alpha 5\beta 1$ integrin triggers the dissociation of tensin from N-cadherin and promotes tensin association with $\alpha 5\beta 1$ integrin. The $\alpha 5\beta 1$ integrin and tensin complex then translocates to the ECM fibrillar adhesions [93]. Thus, FN matrix assembly coordinates the interaction between cell-ECM and cell-cell adhesion.

Integrin-mediated adhesion to matrix proteins such as FN and collagen results in activation of complex pro-survival signal transduction pathways. Cross linking of different integrin heterodimers initiates different signaling pathways [94]. Mutual and cooperative crosstalk of integrins with growth factor receptors such as TGF β R regulates intracellular signaling pathways such as FAK/Src, MAPK, PI3K signaling and the activity of Rho family of small GTPases [95].

Integrin-Growth Factor Cross-Talk in the Assembly of FN Matrix and Fibrogenesis

Integrins can also regulate cell-ECM interaction through their association with growth factor receptors [96]. There is extensive cross-talk between integrins and growth factors that modulate mitogenic signaling; For example, whereas an acute and robust activation of Erk-MAPK signaling occurs in response to growth factor stimulation, FN adhesion leads to milder Erk activation with slower kinetics [79, 97].

Several integrins can regulate $TGF\beta$ signaling directly by $TGF\beta$ activation, or indirectly through regulating SMAD dependent and independent signaling. The importance of the synergy between growth factors and integrin has been demonstrated best in cell migration through FAK/Src signaling. FAK (focal adhesion kinase) a non-receptor tyrosine kinase, has been shown to act as a receptor proximal regulatory protein that directly integrates growth factor and integrin signals.

FAK binds though its C-terminus, to the ECM-ligated integrins induces autophosphorylation at tyrosine 397 (Y397) which leads to binding to another tyrosine kinase, Src, which in turn phosphorylates FAK at tyrosine 861 (Y861). In addition to the localization through the C-terminus into the integrin adhesion complex, FAK proximally regulates and directly interacts with the cytoplasmic domain of cognate growth factor receptors, thus conveying both integrin and growth factors mediated signaling [98].

TGFβ Signaling in FN Secretion and Matrix Assembly

TGF β is crucial due to its important role as a transcriptional regulator where it stimulates the production of ECM proteins including FN and tissue inhibitors of metalloproteinases, and decreases the synthesis of FN degrading MMPs.

TGF β superfamily ligands are secreted morphogenes, some of which are crucial regulatory cytokines that are essential in activating myriad of signaling cascades that modulate diverse cellular processes in embryonic development and adult tissue homeostasis [99]. The source of the activity was identified as two distinct factors, TGF- α and $-\beta$ Roberts [100-102]of which TGF- α belongs to the epidermal growth factor (EGF) family of growth factors. In mammals, TGF β has three different isoforms TGF β -1, -2, and -3 that are known to function as modulators of ECM proteins by induction of both gene activation and protein formation. Studies showed that mechanical strain/loading/stretch induces TGF β expression and FN interaction.

TGFβ 1, the prototypical cytokine, acts primarily through the SMAD protein to stimulate fibroblast activation and fibronectin deposition. Mature TGFβ remains associated with latency associated peptide (LAP), thus inhibiting TGF\u03c3 activation [103]. Upon release from the latent complex, mature dimeric TGFβ ligand binds to a serine-threonine transmembrane kinase, TGFβ Receptor type II (TGFβRII), which is intrinsically active. This is followed by the recruitment and phosphorylation of TGFBR type I (TGFBRI) kinase resulting in the formation of a heterodimeric serine/threonine kinase receptor complex and propagation of signal cascade via downstream Smad proteins. Activated TGFBRI initiates the canonical signaling pathway where it directly phosphorylates and activates effector proteins Smad 2 and Smad 3, also known as receptor-regulated Smad (R-Smad) which are regulators of transcription. Smad-2 and -3 are anchored by the cytoskeletal protein filamin A. Phosphorylated Smad 2/3 undergo conformational changes through unfolding and subsequently forming a heterotrimeric complex with Co-Smad4 and translocating into the nucleus. Smad4 is not crucial for TGFB activity [104], and nuclear import of Smads does not require Smad4. The TGFβR complex remains active for at least 3 to 4 hours after ligand binding and continuous receptor stimulation maintains Smad complex accumulation in the nucleus where they regulate gene transcription. Smads interacts with transcriptional coactivators such as CBP, p300 or ARC105 to regulate the expression of target genes. Smad proteins can mediate the activation or repression of target genes, including those that encode integrins; a process regulated by cell type and Smad protein associated partners [99, 105, 106]. Initially, studies have identified Smad target specific genes through direct binding to DNA. However, it has become apparent that Smads act as transcriptional co-modulators and require the association with other transcription factors such as ATF/CREB, AP-1, FAST and SP1 to mediate transcriptional activation or repression of different genes [107-110].

TGF β signaling is negatively regulated by inhibitory Smads (I-Smad), Smad 6/7, which compete with R-Smads for TGF β RI or Co-Smad complex formation. I-Smads regulate the transcription of Smurf (Smad –ubiquitination regulatory factor) proteins, which promotes the degradation of TGF β RI through proteosomal pathways [106, 111].

More recently, it has been shown that ligand-activated TGF β receptors can stimulate signaling through non-canonical (Smad-independent) signaling predominantly via PI3K/

Akt/mTOR, RhoGTPases and MAPK pathways. This in turn controls a variety of cellular responses which modify cell growth and survival. Some of these pathways have been shown to also cross-talk and regulate Smad activation and signaling, including JNK and p38 MAPK pathways [112].

In wound healing, TGF β suppresses the inflammatory response and promotes the formation of granulation tissue by inducing fibroblast proliferation and differentiation. TGF β induces the expression of FN and different integrins including $\alpha1\beta1$ and $\alpha2\beta1$, which mediate fibroblast contraction, and αv integrins that activate latent TGF β . Additionally, $\alpha v\beta3$ can suppress TGF β signaling by inhibiting TGF β R expression. Over-expression of the $\alpha5\beta1$ integrin leads to up-regulation of TGF β R expression and establishes a growth inhibitory autocrine loop for TGF β [113]. Conversely, TGF β treatment of NRK fibroblasts leads to upregulation of $\alpha5\beta1$ expression and a loss of anchorage dependence of growth [114]. Additionally, latent forms of TGF β are ligands of $\alpha v\beta6$ and $\alpha v\beta1$ integrins, and the association of TGF β with $\alpha v\beta6$ leads to spatially restricted activation of TGF β .

Interestingly, the transcriptional control exerted by TGF β leads to regulation of integrin activation and function in a feedback loop. TGF β regulates integrin expression and activation via 'inside-out' mechanisms, it also regulates the expression of integrin ligands, including FN and tenascin, and integrin associated proteins, such as paxilin and ILK. (Fransvea et al 2009, Pechkovsky et al, 2008). Cell adhesion and spreading, migration, survival and proliferation all depend on integrin signaling through FAK, PI3K activated downstream of growth factor stimulation and ECM attachment [50].

FAK/Src Pathway Regulating Assembly of FN Matrix

Mounting evidence lends its weight to a critical role of Focal adhesion kinase (FAK) in FN-integrin mediated signaling. Immunoprecipitation studies demonstrated that FAK undergoes enhanced tyrosine phosphorylation in response to FN [115] [116], and its tyrosine kinase activity in NIH 3T3 fibroblasts increases 2 to 3 folds and is further enhanced in v-Src transfected cells [115]. It is ubiquitously expressed in mammalian cells, and the targeting and localization of FAK to the focal adhesion has been demonstrated in a variety of cells including fibroblasts, ECs, keratinocytes, and osteoclasts. Following its discovery as a focal adhesion protein that was phosphorylated in response to Src transformation [117, 118], extensive research has revealed that FAK plays an important role in normal development and has been implicated in diseases including cancer. Germ line deletion of FAK results in embryonic lethality as demonstrated in FAK deficient mice, embryos showed gastrulation abnormalities mesodermal deficiency similar to those found in the FN-deficient mouse [8, 119]. Furthermore, FAK-/- cells showed a dramatic reduction in cell motility, survival and migration due to the inability to turnover adhesion complexes [119]. Further studies showed poor vascularization and defects in the fusion of cardiac plates [120].

Due to the lack of enzymatic activity of the short integrin cytoplasmic tails, recruitment of adaptor and signaling proteins are essential for effector functions [83]. Activation of FAK and Src family protein tyrosine kinases (PTKs) and subsequent protein tyrosine phosphorylation is a prominent event in integrin outside-in signaling [121]. Hence, the activation of the non-receptor protein tyrosine kinases, FAK and Src, are the best characterized key coordinators of integrin signaling.

FAK plays a central role in integrin signaling and is essential for fibroblast assembly of FN fibrils [120]. FAK is a unique member of the FA-PTK family, which also contains PYK2. Unlike other non-receptor tyrosine kinases, FAK does not contain SH2 or SH3 domains. Instead, it contains a central catalytic domain flanked by large non- catalytic domains, the N-terminal FERM homology domain that interacts with b1-containing integrins, and a C-terminal domain containing a focal adhesion targeting (FAT) sequence [117, 118]. These contain multiple binding sites for proteins including Src and paxillin and PI3K; Tyr-397 on FAK serves as a binding site for PI3K. Tyrosine phosphorylation of FAK is regarded as not only important in integrin mediated signaling, but also in integrin-independent signaling.

The activity of FAK can be influenced by diverse input signals, from integrins to growth factors. Thereby, the multiple tyrosine residues of FAK act as a platform for many different interaction proteins and because of this, FAK plays an indispensable role in multiple signal transduction pathways. It has been clearly shown, that FAK is necessary for cells to survive and resist anoikis, a term describing apoptosis as a result of loss of adherence. Moreover, FAK is indispensable in various aspects of cell motility. Due to its very upstream position in signaling, it is still unknown in which way certain signal inputs lead to specific and well-timed arrangements of FAK-protein complexes and to very distinct downstream effects.

Cell-ECM attachment induces FAK auto-phosphorylation at Tyr397, which correlates with increased catalytic activity, either directly through integrin clustering or indirectly through Src [122, 123]. Upon integrin clustering, FAK is recruited to the focal adhesion complex. In the inactive form, FAK is in a closed conformation in which the N-terminal FERM domain, auto-inhibitor, directly binds and inhibits the catalytic domain rendering tyrosine sites inaccessible. Upon competitive binding of integrin with the FERM domain, FAK unfolds and undergoes rapid auto-phosphorylation at Tyr397, which creates high affinity binding for Src through its SH2 domain. Although integrin ligation is the main activator of FAK, FAK can also be activated by growth factors, mechanical stimuli and GPCR agonists.

FAK and paxillin localize to focal complexes - a process mediated by Rho family members Rac and Cdc42, not RhoA by itself. The interaction with actin cytoskeleton and Rho modulated actino-myosin tension regulates the maturation of focal complexes into focal adhesions. Rho also mediates FA turnover. Paxilin, which is phosphorylated following integrin activation, serves as a scaffold protein to mediate downstream integrin-signaling. Germ line deletion of paxilin showed results in a similar phenotype as the deletion of FAK and FN. In ex vivo studies, paxillin null cells showed deficient focal adhesion formation, migration and localization of FAK to focal adhesion complexes. Therefore, paxillin is considered to be a critical transducer of FN signals in development [124].

Rho Pathway in FN Matrix Assembly and Fibrogenesis

RhoA was isolated by Richard Axel's group in 1985 and was the first member of Rho/Rac family identified [125, 126]. Of the six subfamilies, we will focus on Rho, Rac, and Cdc42 owing to their essential role as molecular switches in regulating cellular responses such as cytoskeletal changes, microtubule dynamics, cell polarity and cell cycle progression [127].

Renand and colleagues [128] developed as assay to detect GTP-Rho and reported initial observations that underscored the importance of these molecular switches and laid the foundation for extensive studies aimed at understanding Rho regulation. Utilizing direct measurement of Rho activity, they reported that Rho can be activated upon ECM ligation or by soluble factors such as LPA and that the protein exhibits a biphasic regulation during cell spreading on FN. The initial phase is associated with a period of low Rho activity that corresponds with rapid spreading on FN with cells showing small focal complexes at periphery with minimal stress fiber or focal adhesions. This is followed by a transient increase in Rho activity leading to integrin clustering and formation of focal adhesions and stress fibers. Furthermore, cell adhesion to FN down-regulates growth factor induced Rho activation whereas in suspended cells its activity and MLC phosphorylation remain elevated. They suggested the existence of a negative-feedback loop following Rho-dependent focal adhesion formation that serves the dual purpose of preventing excessive formation of focal adhesion and contraction, and regulating focal adhesion disassembly necessary for cell migration.

Rho activation generates contractile force through phosphorylation of myosin light chain (MLC) on Ser19 [129] and inhibition of MLC phosphatase (MLCP) through the action of Rho-associated kinase (ROCK). Furthermore, RhoA can mediate $TGF\beta$ -induced matrix accumulation. For example, $TGF\beta$ -induced RhoA activation correlates with fibronectin upregulation in mesangial cells [110].

The initial cell attachment and spreading over a substrate is accompanied by reduced activity of the GTPase RhoA and simultaneous activation of the GTPases Rac1 and cell division cycle 42 (Cdc42), which suppresses actomyosin contractility and enhances actin-mediated protrusion. During early stages of cell spreading, α5β1 integrins inhibit RhoA activity through a Src-dependent tyrosine phosphorylation of p190RhoGAP [130]. Integrins also activate Rac1 and Cdc42 by activating FAK-Src-mediated tyrosine phosphorylation of p130CAS [130, 131]. The FAK–Src complex also phosphorylates paxillin, which recruits ADP-ribosylation factor (ARF)–GTPase-activating protein (GAP), as well as recruiting Rho guanine nucleotide exchange factor 7 (ARHGEF7; also termed β-PIX), the GDP–GTP exchange factor (GEF) for Cdc42 and Rac1 activation. Through a direct interaction within focal adhesions and membrane ruffles, ARHGEF7 recruits and activates Rac1 [132]. Thus, integrin signaling through the Src family kinases and FAK regulates the localization and activity of GEFs and GAPs to coordinate actin cytoskeleton stabilization with membrane protrusion thus mediating cell matrix adhesion and migration.

Adhesion to FN stimulates "outside-in" signaling through integrins that triggers a complex network of intracellular signaling events. For instance, fibroblasts plated on FN induce the activation of MAPK [133-135]. In converging adhesive signals between the ECM with cytoskeleton, integrins stimulates certain pathways that are critical for the initiation and maintenance of matrix assembly. FAK [120] and PI3K [50] are essential for assembly of FN fibrils. Members of the Src kinase family are essential for maintaining matrix association with the cell. FN matrix assembly was delayed in SYF cells (which lack Src family kinases Src, Yes, and Fyn) but not eliminated and this delay is overcome following increased Src expression and activity [131]. This suggests that Src plays an important supportive role in matrix assembly dynamics. After matrix accumulation, inhibition of Src activity causes rapid loss of matrix [136]. Consequently, these pathways are essential for cell adhesion, spreading, migration survival and proliferation.

PI3K/Akt Cascade in FN Secretion, Assembly and Fibrogenesis

Perhaps the most pivotal mediator and modulator of FN activity is protein kinase B (Akt), a serine/threonine kinase. Akt, a major effector downstream of PI3K, is a key survival kinase and is a multi-functional protein that regulates a plethora of cellular functions including survival, proliferation, and transcription, integrin trafficking and recycling, actin organization, angiogenesis and apoptosis. Although not fully understood, mounting evidence suggests that the versatility of Akt activity is associated with the complex network formed between Akt and its substrates such as GSK-3, mTOR, TSC, FOXO as well as cross-talk with other signaling pathways such as p38 MAPK and Rac –PAK [137-143].

The Akt family consists of three highly homologous isoforms that are transcribed from independent genes and have overlapping but distinct functions [138, 144]. Of the three Akt isoforms, we identified Akt1 as the predominant isoform that accounts for approximately 75% of total Akt activity in vascular cells [145].

It has been shown that owing to its complexity in regulating a variety of cell responses, Akt signaling is very fine-tuned. Prolonged Akt signaling is associated with embryonic lethality, edema and vascular malformation and remodeling abnormalities [146]. Loss of the Akt1 gene leads to growth retardation accompanied by a decrease in size of multiple organs and increased cell apoptosis [147]. Environmental cues including growth factors, cytokines, and ECM regulate the highly orchestrated multistep process of cell migration involving Akt [148].

Research from our laboratory has established the central role of Akt in the regulation of integrin activation in ECs and fibroblasts, ECM assembly, tissue remodeling and angiogenesis [56, 145, 149-152]. Several *in vivo* studies have shown the crucial role of Akt1 in wound healing and vascular maturation [151]. We previously reported several interesting features of an Akt1 knock-out mouse model including impaired migration, impaired secretion and assembly of ECM proteins and enhanced angiogenesis resulting in vascular leakage and skin abnormalities [145]. Akt mediates VEGF induced integrin activation in ECs [153, 154].

Specifically, VEGF-165 was shown to activate integrin ανβ3 leading to enhanced adhesion and migration of ECs a process that involves PI3K and Akt. Integrin activation is important for EC and fibroblast adhesion and migration by regulating ECM assembly. ECs isolated from Akt1-/- mice exhibited impaired integrin activation which was associated with impaired migration on matrix proteins including FN, and impaired ECM assembly in skin and vascular basement membrane of Akt1-/- mice [145]. Additionally, genetic ablation of Akt1 but not Akt2, leads to impaired wound healing characterized by a reduced vascular area and impaired vascular maturation, further demonstrating the importance of Akt1[151]. These finding suggests that Akt1 is essential for inside-out integrin signaling.

The tryptophan residue at position 775 of $\beta 1$ integrin cytoplasmic domain was shown to be a specific regulator of Akt activation by repressing the activity of the protein phosphatase 2A (PP2A) in ECM assembly [143]. Mutation of Trp775 (W775A) in $\beta 1$ integrin specifically suppresses Akt activation and fibroblast survival without interfering with other integrinmediated signaling pathways. This has been shown to be due to rapid Akt de-phosphorylation through increased local activation of PP2A, which was 2.5 times higher compared to $\beta 1$ WT

in response to PDGF [143]. A subsequent study demonstrated similar results and further illustrated the importance of two distinct amino acid residues on β 1 integrin cytoplasmic domain, Trp-775 and Argenine-760 (Arg-760)in modulating cell spreading and FN matrix assembly. Trp-775 and Arg-760 differentially modulate FN assembly and cell spreading through talin and Akt-1 respectively. While both Trp-775 and Arg-760 exhibit overlapping roles in regulating FN assembly through recruiting talin to the β 1 integrin cytoplasmic complex, Trp-775 selectively regulates Akt1 signaling in cell spreading on FN. W775A mutation disrupts Akt1 and talin activity leading to impaired cell adhesion and spreading, and defects in FN matrix assembly and fibrillar adhesion. Although over-expression of Akt1 in W775A mutant cells rescues cell spreading activity, it does not reverse impaired FN fibrillogenesis. This suggests that Akt specifically regulates cell spreading not matrix assembly, although the effect of Akt knockdown on FN assembly in β 1WT integrin cells was not investigated directly. Thus the role of Akt in mediating inside-out FN assembly remains unclear [155].

Originally, it was thought that Akt mediates cellular functions in response to outside-in signaling induced by ECM-integrin ligation [156]. However, recent studies have emphasized the role of Akt in regulating integrin activity and, subsequently, mediating inside-out signaling [138, 145, 154].

FN matrix assembly is impaired in Akt1-/- fibroblasts [150]. Akt1over-expression results in significant increase in integrin activation, while Akt deletion impairs integrin activation and, in turn, impairs EC and fibroblast adhesion and migration [150]. Fibroblasts are necessary for effective repair in tissue injury and are known to express $\alpha 5\beta 1$ integrin, while $\alpha \nu \beta 3$, which mainly binds vitronectin, is expressed to a lower extent [89]. Deletion of Akt in fibroblasts significantly impairs adhesion to FN without affecting integrin expression in the presence and absence of growth factor stimulation; implying that Akt regulates integrin functional activity and FN recognition. Although Akt -/- and WT fibroblasts adhere to vitronectin to the same extent, it was to a much lower level compared to FN for both WT and Akt-/- cells. Similarly, Akt1-/- fibroblasts show a significant decrease in migration on FN compared to vitronectin [150].

Additionally, bFGF, not VEGF, induces PI3K dependent Akt phosphorylation and activation in fibroblasts. In addition to impaired FN matrix recognition, Akt deficiency – Akt1-/-, PI3K inhibitor, or Akt inhibitor (SH-5) - results in impaired FN matrix assembly in fibroblasts. Treatment with integrin β 1blocking antibody significantly blunted FN assembly in Akt1-/- and Akt1+/+ fibroblasts. Notably, exogenous β 1 integrin activation, using TS2/16, rescues the defect on FN assembly caused by SH5. Similarly, restoration of Akt activity by reconstitution of Akt in Akt-/- ECs and fibroblasts rescues the defect in FN assembly and leads to enhanced migration. Thus, demonstrating that, in the absence of Akt1, impaired FN assembly is due to impaired ability of β 1 integrin to recognize FN. Collectively, we demonstrate the essential role of Akt1 in regulating inside-out activation of integrins, specifically β 1 integrin, FN recognition and matrix assembly in fibroblasts and ECs [150]. Furthermore, while α 5 β 1 and α v β 3 internalization and transport to the recycling compartment are Akt-independent, PI3K and Akt regulate the trafficking and recycling of integrins back to the plasma membrane by regulating GSK-3 [157].

Numerous studies demonstrate that FN stimulates cytoskeletal remodeling, cell growth, survival, and migration via the PI3K/Akt/mTOR pathway [7, 158-160]. However, evidence of PI3K/Akt induced FN expression is not fully understood. Our previous findings indicate that

impaired adhesion and migration of Akt -/- fibroblasts results in impaired FN assembly in vitro [150] and in vivo [145, 151]. Akt1 regulates FN assembly through the activation of $\alpha 5\beta 1$ integrin. We proposed that Akt1 also regulates FN synthesis and secretion [56]. Indeed, in TGF β stimulated fibroblasts, FN synthesis and secretion in the conditioned media increases in a dose and time dependent manner; an effect that is further enhanced with over expression of Akt and impaired in Akt deficient cells. This suggests that Akt can modulate FN expression possibly through mTOR, known to be involved in protein translation and control of the overall rate of protein synthesis. Specific inhibition of mTOR results in diminished growth factor mediated FN synthesis and secretion.

Interestingly, we observed that mTOR regulates FN at translational not transcriptional level through activation of P70S6Kinase and S6Ribosomal Protein, both of which are downstream effectors of mTOR [56]. Similar results are observed in bleomycin stimulated fibroblasts; bleomycin is known to induce fibrosis potentially through TGFβ signaling pathways. Notably, we observed that mTOR is involved in transcriptional repression of several proteins including α4 and β3 integrins, matrix metalloprotease-8, -10, -11, and laminin. All together, we conclude that PI3K/Akt/mTOR regulates FN by controlling protein levels at translational level. A recent study supported this finding and also showed that Akt enhances EDA alternative splicing by directly phosphorylating and activating SF2/ASF [161]. To date, evidence for the mechanism of transcriptional regulation by mTOR has not been clearly illustrated this area requires further investigation. Collectively these data suggests a reciprocal dynamic regulation between FN and the Akt pathway.

FN-MEDIATED REGULATION OF DIRECTIONAL CELL MIGRATION THROUGH AKT SIGNALING PATHWAY

Recent studies have demonstrated caveolin-1 (cav-1) can serve as a scaffold protein that plays an important role in sequestering and modulating signaling pathways (reviewed in [162]) as evident in TGF β R internalization and degradation [163, 164] and association with β integrins to promote cell growth [165] and proliferation [166, 167]. In cav-1 deficient cells, TGF β -mediated RhoA-activation is repressed, and cav-1 is required for TGF β 1 mediated FN expression [110]. Absence of cav-1 correlates with loss of membrane anchorage and cell cycle arrest [168]. A novel dynamic regulatory function between FN and cav-1 was recently illustrated by two groups. First, it was shown that FN stimulates cell proliferation, in part, by initiating and maintaining the proximal association between β 1 integrin/FAK-Src and cav-1, and phosphorylation of cav-1 is necessary to activate RhoA-PI3K/Akt-Erk1/2 pathways [169]. This study also suggested that the localization of RhoA to the caveolae microdomain is necessary for mediating cell functions. Indeed, another study demonstrated that the cav-1-Rho-GTPase interaction is crucial for α 5 integrin expression and the activation of Src, Ras and Erk [170].

The Rho family of GTPases (namely, Rho, Rac and Cdc42) acting downstream of integrins, are critical regulators of the cytoskeletal dynamics involved in cell morphology, cell polarization and directed migration, and ECM assembly in vascular cells [81, 171-174]. Additionally, activation and localization of Rac and Cdc42 activate p21-activated kinase (PAK) auto-phosphorylation, a major downstream effector [175, 176] which is responsible

for myosin light chain phosphorylation which regulates cytoskeletal organization and cell migration. The process of cell migration and cell guidance migratory mechanisms has been extensively investigated [148, 177]. PAK1 is the major isoform of the PAK family, which contains seven isoforms, and which was recently identified as a substrate of Akt [178].

Although most studies on Rho have illuminated its role in stress fiber and focal adhesion formation in fibroblasts, it has become apparent that Rho also plays an important role in physiological cell migration and invasion in tumors.

The process of tread milling (please explain this term) and directed migration is a highly regulated step wise process. Chemo-attractants activate RhoA and Rac/Cdc24 and localize them to the trailing edge and leading edge, respectively. Cdc42 induces actin spikes and promotes filopodia extension leading to directional sensing, and establishment of cell polarity during adhesion [179]. Rac is required for F-actin formation and promotes lamellipodia and membrane ruffles formation leading to protrusion and extension of the leading edge. Rho activation is required for focal adhesion assembly, actin stress fiber formation which inhibits protrusion while promoting attachment and contraction at the trailing edge [180]. Contraction at the lagging end can in turn push the membrane at the other side outwards forming polarized directed migration. There exists a localized incompatibility of the two actin cytoskeletal responses, actin-myosin and actin polymerization, due to the ability of Rho and Rac to inhibit signals that promotes the other. Thus, each actin assembly gradually segregates spatially to the lagging or leading edge of the cell and, simultaneously, promotes the other's activity at a distance [181]. PI3K is necessary for localization of Rac- Cdc42/PAK1 signaling at the leading edge. Simultaneously, active PAK1 regulates PTEN and F-actin localization to the trailing edge [182].

Much attention has been focused on identifying the downstream signaling proteins of PI3K involved in regulating cell morphology and motility. It is known that PI3K is required for growth factor, and integrin mediated cell migration and is involved in actin filament remodeling induced by growth factors, integrins [183] and Ras. For example, whereas insulin stimulated cells exhibit rapid actin filament reorganization which is correlated with PI3K recruitment and activation in that region, PI3K inhibition abolishes insulin induced actin remodeling and membrane ruffling. Similarly, inhibiting actin filament formation disrupts PI3K distribution and signal transduction [184-187]. Furthermore, inhibition of actin filament formation also results in attenuated PI3K- and Akt-mediated cell migration [158]. This suggests an important crosstalk between RhoGTPases such as Rac and PI3K/Akt signaling pathways.

Previous studies have revealed the importance of Akt in modulating Rac-PAK activity and subsequent actin cytoskeleton reorganization and cell migration [178, 188-190]. Through an SH3 binding domain, PAK is localized in focal adhesions via the adaptor proteins Nck and PIX. Akt directly phosphorylates serine 21 on PAK, releasing it from Nck. PAK then translocates to the cytosol, therefore facilitating PAK activity in directed cell migration [178]. The cross-talk between PI3K and Rho-GTPase family is complex, since PI3K can act both up- and down-stream of the GTPases.

'AKT-INTEGRIN-FN' PARADIGM

Akt1 regulates inside-out activation of integrins, cell adhesion and migration and FN matrix assembly through cross talk with 14-3-3 β -Rac1-PAK [152]. Rac1 localization is Akt1 dependent; Akt1 activity correlates with the formation of lamellipodia, but not with filopodia or stress fibers. In Akt-/- fibroblasts and ECs, lamellipodia formation and directional migration on FN is impaired.

In both cell types over-expression of Akt results in Rac1 translocation to membrane ruffles and enhanced Rac1 activity and PAK phosphorylation, which is blunted by treatment with inhibitors of PI3K and Akt, but not GSK-3, or in cells over expressing inactive Akt. These findings emphasize the strong regulatory role of Akt on Rac1-Pak signaling [152].

The14-3-3 proteins are a family of regulator molecules expressed in all eukaryotic cells. These adaptor proteins bind a multitude of functionally diverse signaling proteins; hence 14-3-3 is implicated in a wide range of vital cellular processes. Akt substrates, such as Gsk-3, FOXO, and cRaf, are known to interact with 14-3-3 [191]. Also, 14-3-3 mediates Rac1 localization. This suggests that Akt modulates Rac1 activity through 14-3-3. Indeed, enhanced Rac1 localization and formation of lamellipodia, adhesion to FN, and FN assembly are observed in fibroblasts over-expressing 14-3-3 and inhibited with co-expression of inactive Akt (DN-Akt). Furthermore, lamellipodia formation and cell adhesion and spreading on FN is enhanced in DN-Akt fibroblasts co-expressing active- Rac1 or -PAK1, and inhibited in fibroblasts over-expressing Akt with inactive-Rac1 or -PAK1. This indicates that lamellipodia formation and cell adhesion, as discussed above is through Akt mediated inside-out activation of integrins and is regulated by 14-3-3-Rac-Pak signaling downstream of Akt1 [152].

Notably, the defect in Akt-/- fibroblast to adhere to FN is rescued by co-expression of active-Rac1 or PAK1, but not 14-3-3. Interestingly, constitutively active myristoylated Akt (myr-Akt) fibroblasts co-expressing inactive-Rac1 or -PAK1 show impaired FN assembly. In contrast, impaired FN matrix assembly in DN-Akt and Akt null fibroblasts is rescued with co-expression of active-Rac1 or -Pak1 [152]. Collectively, we identified a novel cross talk between 14-3-3-Rac-Pak and Akt in regulating inside-out integrin activation, cell-FN adhesion, FN matrix assembly.

FN IN DISEASE

Under normal physiological conditions, signaling pathways are highly regulated resulting in dynamic and finely orchestrated intra- and inter-molecular interactions to modulate a wide range of cellular functions [169, 192-196]. However, in tumorigenesis [197, 198] and fibrogenesis [31, 199, 200], many essential pathways are de-regulated and dynamic interaction between pathways is perturbed. FN expression is up-regulated in several cancers, especially in non-small cell lung carcinoma (NSCLC) [201]. FN stimulates NSCLC cell growth and resistance to apoptosis through the activation of $\alpha 5\beta 1$ integrin and inhibition of cyclin-dependent kinase inhibitor p21 gene expression; hence FN is implicated in drug

resistance [202]. Notably, these effects are specific to FN and are not shared by other ECM proteins such as type I collagen.

Mutations in Smad proteins, specifically Smad4, were found in a wide range of human cancers. Recently it has been shown that Smad4 C324Y mutation plays an important role in metastasis of papillary thyroid carcinoma. Such mutation leads to the acquisition of transformed and invasive phenotype through significant activation of $TGF\beta$ signaling, lengthening of nuclear localization with R-Smads survival and growth in anchorage independent conditions and decreased adhesion to FN and levels of E-cadherin, which is crucial for the EMT process [203].

FN stimulates fibroblast proliferation and differentiation into myofibroblasts in many fibrotic diseases including pulmonary fibrosis. Excess myofibroblasts in fibroblast foci represent the hallmark lesions of IPF. They are responsible for increased ECM deposition which leads to impaired gas exchange and ultimately fibrosis. Glomerular sclerosis of diverse etiologies is characterized by excess matrix accumulation mediated by up-regulation of $TGF\beta$ and FN as an important pathogenic factor [110].

FN-mediated aberrant activation of the classic PI3K/Akt and MAP Kinase cascades has been implicated in signaling toward pro-oncogenic outcomes in many malignancies including prostate cancer [18, 204, 205] as well as in fibrotic disease [18, 206, 207]. Transformed cells are characterized by their ability to survive in the absence of matrix adhesion [208]. For example, PI3K/Akt is a key mediator of survival of both primary and Ras transformed cells in the presence or absence of matrix adhesion [209]. One important implication of this observation is that activated Ras can induce cell survival in the absence of integrin signaling, thus contributing to tumor cell survival.

Several studies have demonstrated that up-regulation of both PI3K/Akt and MAPK is required for metabolic transformation, thus, initiating oncogenic transformation in oncoproteins such as Ras, Src, Akt, Raf, and c-Myc [198, 210]. This creates a dysregulated continuous positive feedback loop leading to sustained growth, proliferation and metastasis. Additionally, loss of tumor suppressor genes encoding p53 and PTEN, and secretion of MMPs are involved in this process [198]. Furthermore, induction of epithelial-mesenchymal transition has been identified as a maker of aggressive phenotypes in certain cancers and fibrotic diseases. EMT has been shown to be PI3K-Rho dependent or MAPK-Smad dependent [99, 211-215].

The observation of increased plasma levels of MMP9 in NSCLC patients suggests that the metastatic and invasive capability of tumor cells correlates with enhanced MMP9 expression [201, 216].

Indeed, a study showed that, in lung cancer cells, FN induces the activation of the FAK-Src complex that subsequently activates PI3K/Akt and Erk1/2 pathways. Further, FN induces cell invasion through enhanced expression of MMP9 that degrades matrix components. FN also induces cell de-adhesion and migration via enhanced expression of calpain proteases, specifically calpain-2, and RhoA, respectively [49].

In fibrosis excessive synthesis and matrix assembly of FN induces cell differentiation towards a contractile phenotype as evident in fibroblast to myofibroblast differentiation [31, 217]. Also, sustained FN accumulation mediates sustained activation of myofibroblasts, resistance to apoptosis, and deposition of excessive collagen through Akt-mTOR-PTEN pathways in various fibrotic diseases including lung [218, 219] and liver fibrosis [220, 221].

Therapeutic targeting of PI3K and Akt has proven more difficult and the progress of a number of compounds has been limited by specificity and / or toxicity. This is disappointing as Akt is often activated in response to FN adhesion in the *in vitro* setting and inhibiting this pathway with the laboratory based agents' wortmannin and/or LY294002 has been shown to have a beneficial effect in combination with radiation in many cell systems [222]. mTOR, however, which is downstream of Akt and controls the translation of proteins for cell cycle progression and cell proliferation, is perhaps a more promising target. mTOR inhibitors are currently under evaluation, particularly in endometrial cancer, glioblastoma and pulmonary fibrosis, all of which commonly possess mutations in PTEN [223]. Identifying the principal elements of the Akt-mTOR-PTEN signaling network and determining the dynamic with FN will improve our understanding of cancer and fibrosis pathogenesis and lead to the rational development of novel therapeutics.

Acknowledgements: Research in the laboratory is supported by funding from the National Institutes of Health (R01HL103952), American Heart Association (0830326N) and University of Georgia Research Foundation to PRS.

REFERENCES

- [1] Danen EH, Sonneveld P, Sonnenberg A, Yamada KM. Dual stimulation of Ras/mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression. *The Journal of cell biology*. 2000 Dec 25;151(7):1413-22.
- [2] Kuwada SK, Li X. Integrin alpha5/beta1 mediates fibronectin-dependent epithelial cell proliferation through epidermal growth factor receptor activation. *Molecular biology of the cell*. 2000 Jul;11(7): 2485-96.
- [3] Asthagiri AR, Nelson CM, Horwitz AF, Lauffenburger DA. Quantitative relationship among integrin-ligand binding, adhesion, and signaling via focal adhesion kinase and extracellular signal-regulated kinase 2. *The Journal of biological chemistry*. 1999 Sep 17;274(38): 27119-27.
- [4] Asthagiri AR, Reinhart CA, Horwitz AF, Lauffenburger DA. The role of transient ERK2 signals in fibronectin- and insulin-mediated DNA synthesis. *Journal of cell science*. 2000 Dec;113 Pt 24:4499-510.
- [5] Galownia NC, Kushiro K, Gong Y, Asthagiri AR. Selective desensitization of growth factor signaling by cell adhesion to fibronectin. *The Journal of biological chemistry*. 2007 Jul 27;282(30): 21758-66.
- [6] Hynes RO. The dynamic dialogue between cells and matrices: implications of fibronectin's elasticity. *Proceedings of the National Academy of Sciences of the United States of America*. 1999 Mar 16; 96(6):2588-90.
- [7] Hay N. The Akt-mTOR tango and its relevance to cancer. *Cancer cell.* 2005 Sep; 8(3):179-83.
- [8] George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. *Development* (Cambridge, England). 1993 Dec;119(4):1079-91.
- [9] Sakai T, Johnson KJ, Murozono M, Sakai K, Magnuson MA, Wieloch T, et al. Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal

- cerebral ischemia but is not essential for skin-wound healing and hemostasis. *Nature medicine*. 2001 Mar; 7(3): 324-30.
- [10] Dixit VM, Haverstick DM, O'Rourke K, Hennessy SW, Broekelmann TJ, McDonald JA, et al. Inhibition of platelet aggregation by a monoclonal antibody against human fibronectin. *Proceedings of the National Academy of Sciences of the United States of America*. 1985 Jun;82(11):3844-8.
- [11] Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. *Nature*. 1993 Apr 29;362(6423):801-9.
- [12] Ruoslahti E, Engvall E. Integrins and vascular extracellular matrix assembly. *The Journal of clinical investigation*. 1997 Dec 1;100(11 Suppl):S53-6.
- [13] Wang JH, Thampatty BP, Lin JS, Im HJ. Mechanoregulation of gene expression in fibroblasts. *Gene*. 2007 Apr 15;391(1-2):1-15.
- [14] Han S, Ritzenthaler JD, Sitaraman SV, Roman J. Fibronectin increases matrix metalloproteinase 9 expression through activation of c-Fos via extracellular-regulated kinase and phosphatidylinositol 3-kinase pathways in human lung carcinoma cells. *The Journal of biological chemistry.* 2006 Oct 6;281(40):29614-24.
- [15] Muro AF, Moretti FA, Moore BB, Yan M, Atrasz RG, Wilke CA, et al. An essential role for fibronectin extra type III domain A in pulmonary fibrosis. *American journal of respiratory and critical care medicine*. 2008 Mar 15;177(6):638-45.
- [16] Pankov R, Yamada KM. Fibronectin at a glance. *Journal of cell science*. 2002 Oct 15;115(Pt 20):3861-3.
- [17] White ES, Baralle FE, Muro AF. New insights into form and function of fibronectin splice variants. *The Journal of pathology*. 2008 Sep; 216(1): 1-14.
- [18] Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. *Annu. Rev. Cell Dev. Biol.* Nov 10;26:397-419.
- [19] To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. *Fibrogenesis and tissue repair*. 2011;4:21.
- [20] Hynes RO. Integrins: bidirectional, allosteric signaling machines. *Cell.* 2002 Sep 20; 110 (6): 673-87.
- [21] Hocevar BA, Brown TL, Howe PH. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. *The EMBO Journal*. 1999 Mar 1; 18 (5): 1345-56.
- [22] Larsen M, Artym VV, Green JA, Yamada KM. The matrix reorganized: extracellular matrix remodeling and integrin signaling. *Current opinion in cell biology*. 2006 Oct; 18(5): 463-71.
- [23] Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. *Annual review of cell and developmental biology*. 2006;22: 287-309.
- [24] Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. *Journal of cell science*. 2004 Sep 15;117(Pt 20):4619-28.
- [25] Glading A, Chang P, Lauffenburger DA, Wells A. Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. *The Journal of biological chemistry*. 2000 Jan 28; 275(4): 2390-8.

- [26] Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. *Pharmacological reviews*. 2008 Sep;60(3):261-310.
- [27] ffrench-Constant C. Alternative splicing of fibronectin--many different proteins but few different functions. *Experimental cell research*. 1995 Dec; 221(2):261-71.
- [28] Ohashi T, Kiehart DP, Erickson HP. Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. *Proceedings of* the National Academy of Sciences of the United States of America. 1999 Mar 2;96(5): 2153-8.
- [29] Astrof S, Crowley D, Hynes RO. Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. *Developmental biology*. 2007 Nov 1; 311(1): 11-24.
- [30] Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. *The Journal of cell biology*. 1998 Aug 10; 142(3): 873-81.
- [31] Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. *Nature reviews Molecular cell biology*. 2002 May;3(5): 349-63.
- [32] Muro AF, Chauhan AK, Gajovic S, Iaconcig A, Porro F, Stanta G, et al. Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. *The Journal of cell biology*. 2003 Jul 7;162(1):149-60.
- [33] Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. *Nature*. 1984 May 3-9; 309 (5963): 30-3.
- [34] Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. *Cell.* 1992 Apr 3; 69(1):11-25.
- [35] Magnusson MK, Mosher DF. Fibronectin: structure, assembly, and cardiovascular implications. *Arteriosclerosis, thrombosis, and vascular biology.* 1998 Sep; 18 (9): 1363-70.
- [36] Guan JL, Trevithick JE, Hynes RO. Retroviral expression of alternatively spliced forms of rat fibronectin. *The Journal of cell biology*. 1990 Mar;110(3):833-47.
- [37] Redick SD, Settles DL, Briscoe G, Erickson HP. Defining fibronectin's cell adhesion synergy site by site-directed mutagenesis. *The Journal of cell biology*. 2000 Apr 17; 149 (2): 521-7.
- [38] Vogel V, Baneyx G. The tissue engineeting puzzle: a molecular perspective. *Annual review of biomedical engineering*. 2003;5:441-63.
- [39] Aota S, Nomizu M, Yamada KM. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. *The Journal of biological chemistry*. 1994 Oct 7;269(40): 24756-61.
- [40] Hocking DC, Sottile J, McKeown-Longo PJ. Fibronectin's III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. *The Journal of biological chemistry*. 1994 Jul 22;269(29):19183-7.

- [41] Hocking DC, Kowalski K. A cryptic fragment from fibronectin's III1 module localizes to lipid rafts and stimulates cell growth and contractility. *The Journal of cell biology*. 2002 Jul 8;158(1):175-84.
- [42] Hynes RO, Yamada KM. Fibronectins: multifunctional modular glycoproteins. *The Journal of cell biology*. 1982 Nov; 95(2 Pt 1): 369-77.
- [43] Wierzbicka-Patynowski I, Schwarzbauer JE. The ins and outs of fibronectin matrix assembly. *Journal of cell science*. 2003 Aug 15;116(Pt 16):3269-76.
- [44] Johnson KJ, Sage H, Briscoe G, Erickson HP. The compact conformation of fibronectin is determined by intramolecular ionic interactions. *The Journal of biological chemistry*. 1999 May 28; 274(22): 15473-9.
- [45] Sevilla CA, Dalecki D, Hocking DC. Extracellular matrix fibronectin stimulates the self-assembly of microtissues on native collagen gels. *Tissue engineering Part A.* 2010 Dec; 16(12):3805-19.
- [46] Sottile J, Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. *Molecular biology of the cell*. 2002 Oct; 13 (10): 3546-59.
- [47] Dityatev A, Schachner M, Sonderegger P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. *Nature reviews Neuroscience*. 2010 Nov; 11(11): 735-46.
- [48] Pankov R, Cukierman E, Katz BZ, Matsumoto K, Lin DC, Lin S, et al. Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. *The Journal of cell biology*. 2000 Mar 6; 148(5):1075-90.
- [49] Meng XN, Jin Y, Yu Y, Bai J, Liu GY, Zhu J, et al. Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. *British journal of cancer*. 2009 Jul 21;101(2): 327-34.
- [50] Wierzbicka-Patynowski I, Schwarzbauer JE. Regulatory role for SRC and phosphatidylinositol 3-kinase in initiation of fibronectin matrix assembly. *The Journal* of biological chemistry. 2002 May 31;277(22): 19703-8.
- [51] Allen-Hoffmann BL, Crankshaw CL, Mosher DF. Transforming growth factor beta increases cell surface binding and assembly of exogenous (plasma) fibronectin by normal human fibroblasts. *Molecular and cellular biology*. 1988 Oct;8(10):4234-42.
- [52] Allen-Hoffmann BL, Mosher DF. Matrix assembly sites for exogenous fibronectin are decreased on human fibroblasts after treatment with agents which increase intracellular cAMP. The Journal of biological chemistry. 1987 Oct 15;262(29):14361-5.
- [53] Somers CE, Mosher DF. Protein kinase C modulation of fibronectin matrix assembly. *The Journal of biological chemistry*. 1993 Oct 25; 268(30): 22277-80.
- [54] Blatti S, Foster D, Ranganathan G, Moses H, Getz M. Induction of fibronectin gene transcription and mRNA is a primary response to growth-factor stimulation of AKR-2B cells. *Proc. Natl. Acad. Sci. USA*. 1988 85(4):1119-23.
- [55] Liu C, Yao J, Mercola D, Adamson E. The transcription factor EGR-1 directly transactivates the fibronectin gene and enhances attachment of human glioblastoma cell line U251. The Journal of biological chemistry. 2000 Jul 7;275(27):20315-23.
- [56] Goc A, Choudhary M, Byzova TV, Somanath PR. TGFbeta- and bleomycin-induced extracellular matrix synthesis is mediated through Akt and mammalian target of rapamycin (mTOR). *Journal of cellular physiology*. 2011 Nov;226(11):3004-13.

- [57] Diaz A, Jimenez SA. Interferon-gamma regulates collagen and fibronectin gene expression by transcriptional and post-transcriptional mechanisms. *The international journal of biochemistry and cell biology.* 1997 Jan;29(1):251-60.
- [58] Rebres RA, McKeown-Longo PJ, Vincent PA, Cho E, Saba TM. Extracellular matrix incorporation of normal and NEM-alkylated fibronectin: liver and spleen deposition. *The American journal of physiology*. 1995 Dec;269(6 Pt 1):G902-12.
- [59] Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. *Annual review of cell and developmental biology*. 2001; 17: 463-516.
- [60] Sottile J, Chandler J. Fibronectin matrix turnover occurs through a caveolin-1-dependent process. *Molecular biology of the cell.* 2005 Feb;16(2):757-68.
- [61] Rotundo RF, Vincent PA, McKeown-Longo PJ, Blumenstock FA, Saba TM. Hepatic fibronectin matrix turnover in rats: involvement of the asialoglycoprotein receptor. *The American journal of physiology*. 1999 Dec;277(6 Pt 1):G1189-99.
- [62] Kuhn K, Eble J. The structural bases of integrin-ligand interactions. *Trends in cell biology*. 1994 Jul;4(7):256-61.
- [63] LaFlamme SE, Akiyama SK, Yamada KM. Regulation of fibronectin receptor distribution. *The Journal of cell biology*. 1992 Apr;117(2): 437-47.
- [64] Rosales C, Gresham HD, Brown EJ. Expression of the 50-kDa integrin-associated protein on myeloid cells and erythrocytes. *J. Immunol.* 1992 Oct 15;149(8):2759-64.
- [65] Tahiliani PD, Singh L, Auer KL, LaFlamme SE. The role of conserved amino acid motifs within the integrin beta3 cytoplasmic domain in triggering focal adhesion kinase phosphorylation. *The Journal of biological chemistry*. 1997 Mar 21;272(12):7892-8.
- [66] Yang JT, Rayburn H, Hynes RO. Embryonic mesodermal defects in alpha 5 integrindeficient mice. *Development* (Cambridge, England). 1993 Dec;119(4):1093-105.
- [67] Bouvard D, Brakebusch C, Gustafsson E, Aszodi A, Bengtsson T, Berna A, et al. Functional consequences of integrin gene mutations in mice. *Circulation research*. 2001 Aug 3;89(3):211-23.
- [68] Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, et al. The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. The Journal of cell biology. 2007 Jul 2; 178(1):167-78.
- [69] Zhang Z, Vuori K, Reed JC, Ruoslahti E. The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. *Proceedings of the National Academy of Sciences of the United States of America*. 1995 Jun 20;92(13):6161-5.
- [70] Lee JW, Juliano RL. alpha5beta1 integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B-dependent pathway. *Molecular biology of the cell*. 2000 Jun;11(6):1973-87.
- [71] Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. *Cell.* 1994 Dec 30; 79(7):1157-64.
- [72] Ilic D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. *The Journal of cell biology*. 1998 Oct 19;143(2):547-60.
- [73] Matter ML, Ruoslahti E. A signaling pathway from the alpha5beta1 and alpha(v)beta3 integrins that elevates bcl-2 transcription. *The Journal of biological chemistry*. 2001 Jul 27; 276(30):27757-63.

- [74] Lee BH, Ruoslahti E. alpha5beta1 integrin stimulates Bcl-2 expression and cell survival through Akt, focal adhesion kinase, and Ca2+/calmodulin-dependent protein kinase IV. *Journal of cellular biochemistry*. 2005 Aug 15;95(6):1214-23.
- [75] Zhang Z, Morla AO, Vuori K, Bauer JS, Juliano RL, Ruoslahti E. The alpha v beta 1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin. *The Journal of cell biology*. 1993 Jul; 122(1):235-42.
- [76] Hynes RO, Zhao Q. The evolution of cell adhesion. The Journal of cell biology. 2000 Jul 24;150(2):F89-96.
- [77] Roskelley CD, Bissell MJ. Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function. *Biochemistry and cell biology = Biochimie et biologie cellulaire*. 1995 Jul-Aug;73(7-8):391-7.
- [78] Zamir E, Katz BZ, Aota S, Yamada KM, Geiger B, Kam Z. Molecular diversity of cell-matrix adhesions. *Journal of cell science*. 1999 Jun; 112 (Pt 11):1655-69.
- [79] Schwartz MA, Shattil SJ. Signaling networks linking integrins and rho family GTPases. *Trends in biochemical sciences*. 2000 Aug; 25(8): 388-91.
- [80] Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. *Cell.* 1995 Apr 7;81(1):53-62.
- [81] Cernuda-Morollon E, Ridley AJ. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. *Circulation research*. 2006 Mar 31; 98(6): 757-67.
- [82] Ridley AJ. Rho proteins: linking signaling with membrane trafficking. *Traffic* (Copenhagen, Denmark). 2001 May;2(5):303-10.
- [83] Geiger B, Bershadsky A. Assembly and mechanosensory function of focal contacts. *Current opinion in cell biology*. 2001 Oct;13(5):584-92.
- [84] Lo SH. Tensin. The international journal of biochemistry and cell biology. 2004 Jan; 36(1):31-4.
- [85] Lo SH, Janmey PA, Hartwig JH, Chen LB. Interactions of tensin with actin and identification of its three distinct actin-binding domains. *The Journal of cell biology*. 1994 Jun; 125(5):1067-75.
- [86] Calderwood DA, Fujioka Y, de Pereda JM, Garcia-Alvarez B, Nakamoto T, Margolis B, et al. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. *Proceedings of the National Academy of Sciences of the United States of America*. 2003 Mar 4;100(5): 2272-7.
- [87] McCleverty CJ, Lin DC, Liddington RC. Structure of the PTB domain of tensin1 and a model for its recruitment to fibrillar adhesions. *Protein Sci.* 2007 Jun;16(6):1223-9.
- [88] Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. *Nature reviews Molecular cell biology*. 2001 Nov; 2(11):793-805.
- [89] Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix biology: *Journal of the International Society for Matrix Biology*. 2005 Sep;24(6):389-99.

- [90] Zhong C, Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM, Burridge K. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. *The Journal of cell biology*. 1998 Apr 20;141(2):539-51.
- [91] Fukata M, Kaibuchi K. Rho-family GTPases in cadherin-mediated cell-cell adhesion. *Nature reviews.* 2001 Dec;2(12):887-97.
- [92] Chen X, Gumbiner BM. Crosstalk between different adhesion molecules. *Current opinion in cell biology*. 2006 Oct;18(5):572-8.
- [93] Lefort CT, Wojciechowski K, Hocking DC. N-cadherin cell-cell adhesion complexes are regulated by fibronectin matrix assembly. *The Journal of biological chemistry*. Jan 28; 286(4):3149-60.
- [94] Jewell K, Kapron-Bras C, Jeevaratnam P, Dedhar S. Stimulation of tyrosine phosphorylation of distinct proteins in response to antibody-mediated ligation and clustering of alpha 3 and alpha 6 integrins. *Journal of cell science*. 1995 Mar;108 (Pt3): 1165-74.
- [95] Miao H, Li S, Hu YL, Yuan S, Zhao Y, Chen BP, et al. Differential regulation of Rho GTPases by beta1 and beta3 integrins: the role of an extracellular domain of integrin in intracellular signaling. *Journal of cell science*. 2002 May 15;115(Pt 10):2199-206.
- [96] Borges E, Jan Y, Ruoslahti E. Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. *The Journal of biological chemistry*. 2000 Dec 22;275(51):39867-73.
- [97] Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. *Science*. 1995 Apr 14;268(5208):233-9.
- [98] Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, et al. FAK integrates growth-factor and integrin signals to promote cell migration. *Nature cell biology*. 2000 May;2(5):249-56.
- [99] Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P. TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. *Journal of cell science*. 1999 Dec; 112 (Pt 24):4557-68.
- [100] Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. *Proceedings of the National Academy of Sciences of the United States of America*. 1986 Jun;83(12):4167-71.
- [101] Anzano MA, Roberts AB, Sporn MB. Anchorage-independent growth of primary rat embryo cells is induced by platelet-derived growth factor and inhibited by type-beta transforming growth factor. *Journal of cellular physiology*. 1986 Feb;126(2):312-8.
- [102] de Caestecker MP, Piek E, Roberts AB. Role of transforming growth factor-beta signaling in cancer. *Journal of the National Cancer Institute*. 2000 Sep 6; 92 (17): 1388-402.
- [103] Gentry LE, Lioubin MN, Purchio AF, Marquardt H. Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. *Molecular and cellular biology*. 1988 Oct;8(10):4162-8.
- [104] Sirard C, Kim S, Mirtsos C, Tadich P, Hoodless PA, Itie A, et al. Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor

- beta-related signaling. *The Journal of biological chemistry*. 2000 Jan 21; 275 (3): 2063-70.
- [105] Whitman M. Smads and early developmental signaling by the TGFbeta superfamily. *Genes and development*. 1998 Aug 15;12(16):2445-62.
- [106] Massague J, Chen YG. Controlling TGF-beta signaling. *Genes and development.* 2000 Mar 15;14(6):627-44.
- [107] Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. *Cell.* 1998 Sep 4;94(5):585-94.
- [108] Attisano L, Wrana JL. Smads as transcriptional co-modulators. *Current opinion in cell biology*. 2000 Apr;12(2):235-43.
- [109] Hassane S, Leonhard WN, van der Wal A, Hawinkels LJ, Lantinga-van Leeuwen IS, ten Dijke P, et al. Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. *The Journal of pathology*. 2010 Sep; 222(1): 21-31.
- [110] Peng F, Zhang B, Wu D, Ingram AJ, Gao B, Krepinsky JC. TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. *American Journal of physiology Renal physiology*. 2008 Jul;295(1):F153-64.
- [111] Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. *Journal of cell science*. 2001 Dec;114(Pt 24): 4359-69.
- [112] Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. *Development* (Cambridge, England). 2009 Nov;136(22): 3699-714.
- [113] Wang D, Sun L, Zborowska E, Willson JK, Gong J, Verraraghavan J, et al. Control of type II transforming growth factor-beta receptor expression by integrin ligation. *The Journal of biological chemistry*. 1999 Apr 30;274(18):12840-7.
- [114] Dalton SL, Scharf E, Davey G, Assoian RK. Transforming growth factor-beta overrides the adhesion requirement for surface expression of alpha(5)beta(1) integrin in normal rat kidney fibroblasts. A necessary effect for induction of anchorage-independent growth. *The Journal of biological chemistry*. 1999 Oct 15;274(42):30139-45.
- [115] Guan JL, Shalloway D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. *Nature*. 1992 Aug 20; 358 (6388): 690-2.
- [116] Kornberg L, Earp HS, Parsons JT, Schaller M, Juliano RL. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. *The Journal of biological chemistry*. 1992 Nov 25;267(33):23439-42.
- [117] Hanks SK, Calalb MB, Harper MC, Patel SK. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. *Proceedings of the National Academy of Sciences of the United States of America*. 1992 Sep 15; 89(18): 8487-91.
- [118] Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. *Proceedings of the National Academy of Sciences of the United States of America*. 1992 Jun 1;89(11):5192-6.
- [119] Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. *Nature*. 1995 Oct 12; 377 (6549): 539-44.

- [120] Ilic D, Kovacic B, Johkura K, Schlaepfer DD, Tomasevic N, Han Q, et al. FAK promotes organization of fibronectin matrix and fibrillar adhesions. *Journal of cell science*. 2004 Jan 15;117(Pt 2):177-87.
- [121] Jiang G, Giannone G, Critchley DR, Fukumoto E, Sheetz MP. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. *Nature*. 2003 Jul 17; 424(6946):334-7.
- [122] Calalb MB, Polte TR, Hanks SK. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. *Molecular and cellular biology*. 1995 Feb;15(2):954-63.
- [123] Toutant M, Costa A, Studler JM, Kadare G, Carnaud M, Girault JA. Alternative splicing controls the mechanisms of FAK autophosphorylation. *Molecular and cellular* biology. 2002 Nov; 22(22): 7731-43.
- [124] Turner CE. Paxillin and focal adhesion signalling. *Nature cell biology*. 2000 Dec; 2(12):E231-6.
- [125] Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. *Nature reviews Cancer*. 2003 Jun;3(6):459-65.
- [126] Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. *BioEssays: news and reviews in molecular, cellular and developmental biology.* 2007 Apr;29(4):356-70.
- [127] Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. *Journal of cell science*. 2005 Mar 1;118(Pt 5):843-6.
- [128] Ren XD, Kiosses WB, Schwartz MA. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. *The EMBO Journal*. 1999 Feb 1;18(3):578-85.
- [129] Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). *The Journal of biological chemistry*. 1996 Aug 23; 271 (34): 20246-9.
- [130] Bass MD, Morgan MR, Roach KA, Settleman J, Goryachev AB, Humphries MJ. p190RhoGAP is the convergence point of adhesion signals from alpha 5 beta 1 integrin and syndecan-4. *The Journal of cell biology*. 2008 Jun 16;181(6):1013-26.
- [131] Huveneers S, Danen EH. Adhesion signaling crosstalk between integrins, Src and Rho. *Journal of cell science*. 2009 Apr 15;122(Pt 8): 1059-69.
- [132] ten Klooster JP, Jaffer ZM, Chernoff J, Hordijk PL. Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. *The Journal of cell biology*. 2006 Feb 27;172(5):759-69.
- [133] McNamee HP, Ingber DE, Schwartz MA. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. *The Journal of cell biology*. 1993 May;121(3):673-8.
- [134] Zhu X, Assoian RK. Integrin-dependent activation of MAP kinase: a link to shape-dependent cell proliferation. *Molecular biology of the cell*. 1995 Mar;6(3):273-82.
- [135] Chen Q, Kinch MS, Lin TH, Burridge K, Juliano RL. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. *The Journal of biological chemistry*. 1994 Oct 28;269(43):26602-5.
- [136] Wierzbicka-Patynowski I, Mao Y, Schwarzbauer JE. Continuous requirement for pp60-Src and phospho-paxillin during fibronectin matrix assembly by transformed cells. *Journal of cellular physiology*. 2007 Mar;210(3):750-6.

- [137] Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. *Cell.* 2007 Jun 29;129(7):1261-74.
- [138] Somanath PR, Razorenova OV, Chen J, Byzova TV. Akt1 in endothelial cell and angiogenesis. *Cell cycle*. 2006 Mar;5(5):512-8.
- [139] Dong LQ, Liu F. PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle. *American Journal of physiology Endocrinology and metabolism.* 2005 Aug;289(2):E187-96.
- [140] Danen EH, Yamada KM. Fibronectin, integrins, and growth control. *Journal of cellular physiology*. 2001 Oct;189(1):1-13.
- [141] Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. *Cell.* 2004 May 14; 117 (4):421-6.
- [142] Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. *Experimental cell research*. 1999 Nov 25; 253(1):210-29.
- [143] Pankov R, Cukierman E, Clark K, Matsumoto K, Hahn C, Poulin B, et al. Specific beta1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. *The Journal of biological chemistry*. 2003 May 16;278(20):18671-81.
- [144] Bellacosa A, Testa JR, Moore R, Larue L. A portrait of AKT kinases: human cancer and animal models depict a family with strong individualities. *Cancer biology and therapy*. 2004 Mar;3(3):268-75.
- [145] Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P, et al. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. *Nature medicine*. 2005 Nov;11(11):1188-96.
- [146] Sun JF, Phung T, Shiojima I, Felske T, Upalakalin JN, Feng D, et al. Microvascular patterning is controlled by fine-tuning the Akt signal. *Proceedings of the National Academy of Sciences of the United States of America*. 2005 Jan 4;102(1):128-33.
- [147] Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. *Genes and development*. 2001 Sep 1;15 (17): 2203-8.
- [148] Le Clainche C, Carlier MF. Regulation of actin assembly associated with protrusion and adhesion in cell migration. *Physiological reviews*. 2008 Apr;88(2):489-513.
- [149] Chen YL, Law PY, Loh HH. Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. *Current medicinal chemistry Anti-cancer agents*. 2005 Nov; 5(6):575-89.
- [150] Somanath PR, Kandel ES, Hay N, Byzova TV. Akt1 signaling regulates integrin activation, matrix recognition, and fibronectin assembly. *The Journal of biological chemistry*. 2007 Aug 3;282(31): 22964-76.
- [151] Somanath PR, Chen J, Byzova TV. Akt1 is necessary for the vascular maturation and angiogenesis during cutaneous wound healing. *Angiogenesis*. 2008;11(3):277-88.
- [152] Somanath PR, Byzova TV. 14-3-3beta-Rac1-p21 activated kinase signaling regulates Akt1-mediated cytoskeletal organization, lamellipodia formation and fibronectin matrix assembly. *Journal of cellular physiology*. 2009 Feb;218(2):394-404.
- [153] Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ, et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. *Molecular cell*. 2000 Oct;6(4):851-60.

- [154] Byzova TV, Goldman CK, Jankau J, Chen J, Cabrera G, Achen MG, et al. Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. *Blood*. 2002 Jun 15;99(12): 4434-42.
- [155] Green JA, Berrier AL, Pankov R, Yamada KM. beta1 integrin cytoplasmic domain residues selectively modulate fibronectin matrix assembly and cell spreading through talin and Akt-1. *The Journal of biological chemistry*. 2009 Mar 20;284(12):8148-59.
- [156] Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. *Circulation research.* 2002 Jun 28;90(12):1243-50.
- [157] Roberts MS, Woods AJ, Dale TC, Van Der Sluijs P, Norman JC. Protein kinase B/Akt acts via glycogen synthase kinase 3 to regulate recycling of alpha v beta 3 and alpha 5 beta 1 integrins. *Molecular and cellular biology*. 2004 Feb;24(4):1505-15.
- [158] Qian Y, Corum L, Meng Q, Blenis J, Zheng JZ, Shi X, et al. PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration. *American Journal of physiology Cell physiology*. 2004 Jan;286(1):C153-63.
- [159] Efeyan A, Sabatini DM. mTOR and cancer: many loops in one pathway. *Current opinion in cell biology*. 2010 Apr;22(2):169-76.
- [160] Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S. Mammalian target of rapamycin: a central node of complex signaling cascades. *International journal of clinical and experimental pathology*. 2011 Jun 20;4(5):476-95.
- [161] White ES, Sagana RL, Booth AJ, Yan M, Cornett AM, Bloomheart CA, et al. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway. *Experimental cell research*. 2010 Oct 1;316(16):2644-53.
- [162] Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. *Physiological reviews*. 2004 Oct;84(4): 1341-79.
- [163] Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. *Nature cell biology*. 2003 May; 5(5): 410-21.
- [164] Razani B, Woodman SE, Lisanti MP. Caveolae: from cell biology to animal physiology. *Pharmacological reviews*. 2002 Sep;54(3):431-67.
- [165] Heiser LM, Wang NJ, Talcott CL, Laderoute KR, Knapp M, Guan Y, et al. Integrated analysis of breast cancer cell lines reveals unique signaling pathways. *Genome biology*. 2009;10(3):R31.
- [166] Illario M, Cavallo AL, Monaco S, Di Vito E, Mueller F, Marzano LA, et al. Fibronectin-induced proliferation in thyroid cells is mediated by alphavbeta3 integrin through Ras/Raf-1/MEK/ERK and calcium/ CaMKII signals. *The Journal of clinical endocrinology and metabolism.* 2005 May;90(5):2865-73.
- [167] Matthews LC, Taggart MJ, Westwood M. Modulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I. *Endocrinology*. 2008 Oct;149(10):5199-208.
- [168] Cerezo A, Guadamillas MC, Goetz JG, Sanchez-Perales S, Klein E, Assoian RK, et al. The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. *Molecular and cellular biology*. 2009 Sep; 29(18): 5046-59.

- [169] Park SY, Shin HW, Lee KB, Lee MJ, Jang JJ. Differential expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in thioacetamide-induced chronic liver injury. *Journal of Korean medical science*. 2010 Apr;25(4):570-6.
- [170] Arpaia E, Blaser H, Quintela-Fandino M, Duncan G, Leong HS, Ablack A, et al. The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. *Oncogene*. Jul 18.
- [171] Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. *Cell.* 2007 Jun 1;129(5): 865-77.
- [172] Linseman DA, Loucks FA. Diverse roles of Rho family GTPases in neuronal development, survival, and death. Frontiers in bioscience: *a Journal and virtual library*. 2008;13:657-76.
- [173] Mammoto A, Mammoto T, Ingber DE. Rho signaling and mechanical control of vascular development. *Current opinion in hematology*. 2008 May;15(3):228-34.
- [174] Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. *Nature reviews Molecular cell biology*. 2010 May;11(5):366-78.
- [175] Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. PAK1 as a therapeutic target. *Expert opinion on therapeutic targets*. 2010 Jul; 14(7): 703-25.
- [176] Kiosses WB, Daniels RH, Otey C, Bokoch GM, Schwartz MA. A role for p21-activated kinase in endothelial cell migration. *The Journal of cell biology*. 1999 Nov 15; 147(4): 831-44.
- [177] Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. *Circulation research.* 2007 Mar 30;100(6):782-94.
- [178] Zhou GL, Zhuo Y, King CC, Fryer BH, Bokoch GM, Field J. Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. *Molecular and cellular biology*. 2003 Nov;23(22):8058-69.
- [179] Benard V, Bohl BP, Bokoch GM. Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. *The Journal of biological chemistry.* 1999 May 7;274(19):13198-204.
- [180] Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. *Cancer metastasis reviews*. 2009 Jun;28(1-2):65-76.
- [181] Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. *Cell.* 2003 Jul 25;114(2):201-14.
- [182] Li Z, Hannigan M, Mo Z, Liu B, Lu W, Wu Y, et al. Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. *Cell.* 2003 Jul 25;114(2):215-27.
- [183] Mercurio AM, Rabinovitz I. Towards a mechanistic understanding of tumor invasion-lessons from the alpha6beta 4 integrin. *Seminars in cancer biology*. 2001 Apr; 11(2): 129-41.
- [184] Defilippi P, Olivo C, Venturino M, Dolce L, Silengo L, Tarone G. Actin cytoskeleton organization in response to integrin-mediated adhesion. *Microscopy research and technique*. 1999 Oct 1; 47 (1): 67-78.

- [185] Tsakiridis T, Tong P, Matthews B, Tsiani E, Bilan PJ, Klip A, et al. Role of the actin cytoskeleton in insulin action. *Microscopy research and technique*. 1999 Oct 15; 47(2): 79-92.
- [186] Aoki M, Blazek E, Vogt PK. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. *Proceedings of the National Academy of Sciences of the United States of America*. 2001 Jan 2;98(1):136-41.
- [187] Khayat ZA, Tong P, Yaworsky K, Bloch RJ, Klip A. Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. *Journal of cell science*. 2000 Jan; 113 Pt 2:279-90.
- [188] Pankov R, Endo Y, Even-Ram S, Araki M, Clark K, Cukierman E, et al. A Rac switch regulates random versus directionally persistent cell migration. *The Journal of cell biology*. 2005 Aug 29;170(5):793-802.
- [189] Guo F, Debidda M, Yang L, Williams DA, Zheng Y. Genetic deletion of Rac1 GTPase reveals its critical role in actin stress fiber formation and focal adhesion complex assembly. *The Journal of biological chemistry*. 2006 Jul 7;281(27):18652-9.
- [190] Vandermoere F, El Yazidi-Belkoura I, Demont Y, Slomianny C, Antol J, Lemoine J, et al. Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Molecular and cellular proteomics: *MCP*. 2007 Jan;6(1):114-24.
- [191] Wilker E, Yaffe MB. 14-3-3 Proteins--a focus on cancer and human disease. *Journal of molecular and cellular cardiology*. 2004 Sep;37(3): 633-42.
- [192] Mattson MP. Pathways towards and away from Alzheimer's disease. *Nature*. 2004 Aug 5;430(7000):631-9.
- [193] Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. *Cell.* 2002 Apr;109 Suppl: S97-107.
- [194] Patel K, Thompson AJ, Chuang WL, Lee CM, Peng CY, Shanmuganathan G, et al. Insulin resistance is independently associated with significant hepatic fibrosis in Asian chronic hepatitis C genotype 2 or 3 patients. *Journal of gastroenterology and hepatology*, 2011 Jul;26(7):1182-8.
- [195] Zubilewicz A, Hecquet C, Jeanny J, Soubrane G, Courtois Y, Mascarelli F. Proliferation of CECs requires dual signaling through both MAPK/ERK and PI 3-K/Akt pathways. *Investigative ophthalmology and visual science*. 2001 Feb;42(2):488-96.
- [196] Rossi DJ, Jamieson CH, Weissman IL. Stems cells and the pathways to aging and cancer. *Cell*. 2008 Feb 22;132(4):681-96.
- [197] Singh S, Upadhyay AK, Ajay AK, Bhat MK. p53 regulates ERK activation in carboplatin induced apoptosis in cervical carcinoma: a novel target of p53 in apoptosis. *FEBS letters*. 2007 Jan 23;581(2): 289-95.
- [198] Fritz V, Fajas L. Metabolism and proliferation share common regulatory pathways in cancer cells. *Oncogene*. 2010 Aug 5;29(31): 4369-77.
- [199] Wynn TA. Integrating mechanisms of pulmonary fibrosis. *The Journal of experimental medicine*. 2011 Jul 4:208(7):1339-50.
- [200] Hinz B, Gabbiani G. Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. *F1000 biology reports*. 2010; 2:78.
- [201] Yang SF, Hsieh YS, Lin CL, Hsu NY, Chiou HL, Chou FP, et al. Increased plasma levels of urokinase plasminogen activator and matrix metalloproteinase-9 in nonsmall

- cell lung cancer patients. Clinica chimica acta; *international Journal of clinical chemistry*. 2005 Apr; 354(1-2):91-9.
- [202] Rintoul RC, Sethi T. Extracellular matrix regulation of drug resistance in small-cell lung cancer. *Clinical science*. 2002 Apr;102(4):417-24.
- [203] D'Inzeo S, Nicolussi A, Donini CF, Zani M, Mancini P, Nardi F, et al. A Novel Human SMAD4 Mutation Is Involved In Papillary Thyroid Carcinoma Progression. *Endocrine-related cancer*. 2011 Nov 22.
- [204] Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. *Oncogene*. 2005 Nov 14;24(50):7455-64.
- [205] Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. *Cancer gene therapy*. 2006 Feb;13(2):115-24.
- [206] Price PM. Diabetes: caught in the Akt? Kidney international. 2007 May; 71(9):839-41.
- [207] Parapuram SK, Shi-wen X, Elliott C, Welch ID, Jones H, Baron M, et al. Loss of PTEN expression by dermal fibroblasts causes skin fibrosis. *The Journal of investigative* dermatology. 2011 Oct;131(10):1996-2003.
- [208] Stoker M, O'Neill C, Berryman S, Waxman V. Anchorage and growth regulation in normal and virus-transformed cells. *International Journal of cancer Journal international du cancer*. 1968 Sep 15;3(5):683-93.
- [209] Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. *The EMBO Journal*. 1997 May 15; 16(10): 2783-93.
- [210] Yang YA, Han WF, Morin PJ, Chrest FJ, Pizer ES. Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. *Experimental cell research*. 2002 Sep 10;279(1):80-90.
- [211] Horowitz JC, Lee DY, Waghray M, Keshamouni VG, Thomas PE, Zhang H, et al. Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. *The Journal of biological chemistry*. 2004 Jan 9;279(2):1359-67.
- [212] Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. *Genes and development*. 1996 Oct 1;10(19):2462-77.
- [213] Oft M, Akhurst RJ, Balmain A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. *Nature cell biology*. 2002 Jul; 4(7): 487-94.
- [214] Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. *Molecular biology of the cell*. 2001 Jan;12(1):27-36.
- [215] Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor betamediated epithelial to mesenchymal transition and cell migration. *The Journal of biological chemistry*. 2000 Nov 24; 275 (47): 36803-10.
- [216] Bjorklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. *Biochimica et biophysica acta.* 2005 May 25; 1755(1): 37-69.

- [217] Garcia-Gonzalez E, Selvi E, Balistreri E, Lorenzini S, Maggio R, Natale MR, et al. Cannabinoids inhibit fibrogenesis in diffuse systemic sclerosis fibroblasts. *Rheumatology*. 2009 Sep;48(9):1050-6.
- [218] Lu Y, Azad N, Wang L, Iyer AK, Castranova V, Jiang BH, et al. Phosphatidylinositol-3-kinase/akt regulates bleomycin-induced fibroblast proliferation and collagen production. *American journal of respiratory cell and molecular biology*. Apr; 42(4): 432-41.
- [219] Goodwin A, Jenkins G. Role of integrin-mediated TGFbeta activation in the pathogenesis of pulmonary fibrosis. *Biochemical Society transactions*. 2009 Aug; 37 (Pt 4):849-54.
- [220] Huang JF, Chuang YH, Dai CY, Yu ML, Huang CF, Hsiao PJ, et al. Hepatic Akt expression correlates with advanced fibrosis in patients with chronic hepatitis C infection. *Hepatol. Res.* May;41(5):430-6.
- [221] Osna NA. An annual topic highlight: alcohol and liver, 2011. World Journal of gastroenterology: WJG. 2011 May 28;17(20):2455.
- [222] Graham K, Olson MF. The ras signalling pathway as a target in cancer therapy. *Recent results in cancer research Fortschritte der Krebsforschung*. 2007;172:125-53.
- [223] Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. *J. Clin. Oncol.* 2004 Jul 15; 22(14): 2954-63.