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ABSTRACT

In the present dissertation, a team-based coverage control is proposed that aims at deploying

groups of agents to an environment with a probability distribution function representing the likeli-

hood of an event in different regions. The proposed approach can handle the deployment of hetero-

geneous teams agents each of which pursing a different objective or assigned task. The presented

approaches are then implemented on a set of numerical examples to asses their performance. As

the next task and in a different domain, the development of robust nonlinear control techniques

is studied for uncertain systems. Various types of uncertainty is investigated in three major areas;

first, a robust identification approach is proposed for the Linear Parameter Varying (LPV) identifi-

cation of nonlinear systems with uncertain Scheduling variables. Two deterministic and stochastic

techniques are developed and their performance are compared with the previous methods in the lit-

erature. Next, a robust reduced-order model based controller is designed for a system represented

by a parabolic Partial Differential Equation (PDE). The objective is to take into account the varia-

tion of the model parameter and its effect on the reduced-order model. Then, the reduced model is

used to design a robust nonlinear controller to control the main full-order model.

INDEX WORDS: Multi-agent Systems, heterogeneous agents, coverage control, team-based
coverage, Linear Parameter-varying Models, System Identification, Robust
Control, Nonlinear Control
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 LITERATURE SURVEY ON TEAM-BASED COVERAGE CONTROL OF HETEROGENEOUS

MOVING SENSOR NETWORKS

Due to the advantages of the distributed systems such as reliability, speed and economics over the

centralized systems, the distributed deployment algorithms have been proposed for the workload

sharing and partitioning tasks. To this aim, each robot needs to only exchange information col-

lected by its sensors, e.g., position and velocity, with other agents and negotiate its scheduled task

with a number of other agents. Then, each robot locally generates an appropriate control action

using information gathered from its neighbors. For mobile sensing networks, a distributed control

strategy has been proposed in [32, 124] to equally divide an assigned area into subregions, where

each robot is able to obtain locations of its neighbors through, e.g., adjust-communication-radius

algorithm. Then, it computes the associated Voronoi cell and moves toward the centroid of its

Voronoi cell obtained based on the gradient descent method that gives the optimal solution for

equal partitioning problem [1, 37, 126].

The existing approaches for the coverage control are based on the assumption that all agents

belong to a single team [109]. However, this assumption is not realistic in many real-world applica-

tions, as the agents may differ from , e.g., dynamics or communication perspective [135]. A multi-

robot system can generally be considered as a homogeneous or heterogeneous system depending on

the similarities or differences in their properties, e.g., desired performance index, dynamics, etc.,

that is required when coping with various complex assigned tasks [65, 134, 155]. In the present

work, a new coverage strategy is proposed that aims at taking into account the differences in the

robots dynamics by offering a team-based design approach, where, each robot might team up with
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others based on its assigned task, associated dynamics or embedded communication capabilities.

This would make it possible to improve reliability and flexibility of the deployment algorithm. It

should be noted that throughout this work, it is assumed that the structure of the teams and the

agents within each team is known a priori.

The present work introduces a new team-based coverage control scheme which can handle dif-

ferent scenarios in heterogeneous systems of robots. The presented approach addresses the problem

of the agents deployment by considering teams of robots instead of evaluating each agent individ-

ually. The main problem can be defined as a two-level optimization problem, where one problem

is defined inside each team and another is defined among the teams in the overall coverage space.

The agents will move towards the local minima until the optimum configuration is achieved. In

the proposed approach, firstly, a local minimum to the deployment problem is obtained in the team

level. Then, a second optimization problem is solved to guarantee the convergence of the agents to

their optimum location generating their respective Voronoi cells inside the teams. By considering

the nucleus as the associated Voronoi centroid of each team, the optimization problem at the team

level is defined to maximize the performance of the team.

1.2 INTRODUCTION TO ROBUST AND STOCHASTIC METHODS FOR SYSTEMS SUBJECTED

TO UNCERTAINTY

Model identification or control of systems with uncertain or missing inputs or parameters has

attracted the attention of researchers due to their critical applications when dealing with real sys-

tems where measurements and parameter values are prone to noise and error. The inherent level

of difficulty of robust or stochastic techniques obviously depends on the complexity of the system

under study. One can distinguish between the necessity of implementation of either stochastic or

robust methods in different situations, depending on the nature of a particular application. In the

present proposal, we study uncertain systems in three different categories.

First, the model identification of LPV systems is studied when the measured scheduling vari-

ables are uncertain. Identification schemes need to overcome the distortions in the data due to

2



the presence of uncertainty and random stochastic noise. Most of the existing methods for model

identification of linear parameter-varying (LPV) systems consider the scheduling variables to be

noise free. However, the presence of uncertainty, i.e., noise, in the measured data including the

scheduling variables is inevitable and can lead to an inaccurate model identification. Hence, the

precise knowledge of scheduling variables in the presence of uncertainties is a critical issue in both

LPV model identification and LPV control design.

Second, the problem of overcoming the uncertainties is tackled from the control perspective.

The control theory is concerned with influencing systems to realize that certain output quantities

take a desired course in the presence of measurement and parameter uncertainties. These can be

technical systems, like heating a room with output temperature, a boat with the output quantities

heading and speed, or a power plant with the output electrical power. The underlying dynamical

behaviours can be described by differential equations, difference equations or other functional

equations. Among wide variety of the systems governed by partial differential equations, the fluid

systems are of great importance due to their many applications like chemical processes, drug

delivery and many other. In this work, design of a robust sliding mode controller is studied for

fluid systems governed by Burgers’ equation with Neumann boundary conditions in the presence

of model uncertainties. The main objective is to design a reduced-order model based controller

at a nominal value of the system parameter that stabilizes the full order model without the need

for online computation or update of the reduced-order model. Two types of model uncertainties

are resulted from the variation of the parameter ν; first, the error arising from the change in the

state of the full-order model, second, the error associated with the estimated proper orthogonal

decomposition (POD) basis functions at the nominal value of ν0.

Finally, a control problem of a distributed system of agents is studied under presence of uncer-

tainty. The uncertainty represents the probability of desired event happening in the area of interest

that needs to be covered and monitored. This is to say agents should take the uncertainty into

account while performing their assigned tasks. To this end, uncertainty is taken into account as an

incorporated Probability Density Function (PDF) of an event happening in the region in the associ-

3



ated optimization problem. In this work, we study a new team-based approach when dealing with

multiple regions of interest with various probability distribution functions. Therefore, agents divide

the main region among themselves to achieve the optimal coverage from the team perspective to

deal with multiple levels of uncertainty in the region.

In the following section, we take a look at the existing state of the art in the LPV identification

and control of uncertain systems literature pertaining to developing robust and stochastic methods

for systems subjected to uncertainty.

1.3 LITERATURE SURVEY ON LPV SYSTEM IDENTIFICATION WITH UNCERTAIN SCHEDULING

PARAMETERS

Accurate knowledge of scheduling signals is a critical assumption in both LPV system identifi-

cation and LPV control design. The previous works [75, 146] that use the kernel-based SVM for

“model learning” assumes the perfect knowledge of the scheduling signal during the system iden-

tification process. The questions that we address in this work are: (i) how is the performance of the

LPV system identification procedure affected in the presence of such uncertainties? and (ii) how

can we improve the LPV system identification when such uncertainties exist? We will examine the

first question through simulation studies. Also, to address the latter question, we model such uncer-

tainties in LPV parameters (that we refer to as “error in variables”) and include them in the cost

function associated with the underlying optimization problem. In conjunction with SVM, the pro-

posed objective function finds the LPV model structure and the corresponding model coefficients

in the presence of error in the variables. This is done using the so-called kernel trick approach

instead of explicitly defining the feature maps (i.e., basis functions) involved [146].

Support vector machines are supervised learning tools originated in modern statistical learning

theory that can effectively provide a non-parametric estimation of the dependency structure for

linear regression based LPV models [91,147]. The supervised learning method was originally pro-

posed by [131, 147] to rebuild the inherent functional relationships and structures in the data [22].
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This non-parametric functional dependence estimation is more successful in coping with the bias-

variance trade-off than semi-parametric approaches like dispersion functions methods [146]. Also,

considering l2 loss functions in the LS-SVM approach gives a variation of the original SVM

method that presents an effective model structure learning in the LPV setting. Finding compu-

tationally efficient and unique solution of the linear problem are the advantages of these slightly

different approaches like LS-SVM over original SVM method. Hence our aim in this work is to

employ an effective variation of the LS-SVM method combined with a cost function that focuses

not only on prediction error, but also weighs possible uncertainties in the system variables.

Gaussian process (GP) models generalize the Gaussian probability distribution to the func-

tion space that is essential for black-box regression problems. They can be seen as the Bayesian

version of the well-known support vector machines (SVMs) that provide probabilistic approaches

to learning with reproducing kernel Hilbert spaces. Nonparametric Gaussian process models have

been widely used in model identification of nonlinear dynamic systems. The predictive perfor-

mance of GPs has been evaluated in [118] and compared to other modeling approaches like neural

networks or local learning methods. In [47], a k-step ahead forecasting of a discrete-time non-

linear and LTI dynamic system is performed using repeated one-step ahead predictions. In the LPV

system identification framework, the authors have introduced a Bayesian framework for identifica-

tion of the coefficients in finite impulse response (FIR) dynamic structures in [49]. In this paper, an

extension of the standard GP method is formulated to identify the dependency of the LPV model

coefficients on the scheduling variables while they are corrupted with a Gaussian noise process.

1.4 LITERATURE SURVEY ON REDUCED-ORDER MODEL BASED CONTROL OF BURGERS

EQUATION UNDER MODEL UNCERTAINTIES

Computational modeling, simulation and control of nonlinear turbulent systems is a challenging

task due to the complexity of the fluid mechanics problems. There are handful of researches tar-

geting the control problem of linear, semi-linear and nonlinear parabolic and hyperbolic partial

differential equations (PDEs). In [52], stabilization of a semi-linear parabolic partial differential
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equation, in which the heat source depends on the temperature of the whole space, is considered by

using boundary control. The adaptive boundary stabilization and control has been investigated for a

class of systems described by first-order hyperbolic PDEs with unknown spatially varying param-

eter in [153]. Also, the predictive control of linear parabolic partial differential equations (PDEs)

with state and control constraints was studied in [38]. The Navier-Stokes equation describes many

of the underlying phenomena in fluid mechanics. This equation is simplified to Burgers’ equation

when flow is considered to be incompressible and with the pressure term removed. The Burgers’

equation can also be viewed as an intermediate step to capture very critical nonlinear convective

behaviors that can model shock waves, some boundary layer problems and traffic flow problems

among many others [6, 20].

Over the past three decades, Burgers’ equation has been used to gain a better understanding

of turbulence and few other complex phenomena in fluid systems. This nonlinear parabolic partial

differential equation (PDE) provides a mathematical model that can be used for boundary control

and distributed feedback control design purposes. In the present study, we consider this nonlinear

PDE with Neumann boundary conditions to develop a reduced order, control-oriented model. To

this end, we first approximate this nonlinear PDE with a large number of ordinary differential

equations (ODEs) using finite element model (FEM), and then reduce it to the state-space form

using proper orthogonal decomposition (POD) method.

The use of reduced-order models can introduce a source of uncertainty imposed by the order of

the reduced model. In addition to this, there are other types of uncertainty, i.e., varying parameter,

that might affect the accuracy of the extracted reduced model [16, 57, 153]. Hence, the objective

is to obtain an accurate reduced-order representation of the original system while ensuring the

robustness to uncertainties. An approach based on a dictionary of solutions is developed by [6] as

an alternative to using a truncated reduced basis based on proper orthogonal decomposition. The

elements of this dictionary are solutions computed for varying values of time and the associated

parameter. In [56], a sensitivity analysis is carried out to include the flow and shape parameters

influenced during the basis selection process to develop more robust reduced order models for
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varying viscosity, changing orientation and shape definition of bodies. In the present research, the

model uncertainties are classified in two categories and a robust nonlinear controller is proposed for

a trajectory tracking problem. First, the model uncertainties arising from the approximation of the

full-order model by the reduced-order one are investigated. Furthermore, the error associated with

the varying parameter is studied when the POD basis functions extracted at the nominal parameter

ν0 are used to estimate the full-order model at the new value of the viscosity ν. A nonlinear control

strategy based on the reduced-order sliding mode control is then proposed to tackle different kinds

of uncertainties arising from parametric and modeling imprecisions in the reduced-order nonlinear

model of Burgers’ equation.

1.5 DISSERTATION AIMS AND ORGANIZATION

The aim of this dissertation is to design control algorithm for the deployment of agents on a given

environment with an assigned probability distribution function as a measure of uncertainty level

in different regions of the environment. The objective is to design a control paradigm that can

handle various scenarios where heterogeneous groups of agents can be deployed each of which

can handle different assigned tasks. The presented framework can cope with complexities arising

from existence of various sources of uncertainty associated every assigned coverage task.

As the next task, we develop new algorithms, using tools from machine learning (ML), to

address the problems of model reduction, identification and control in the presence of uncer-

tainty. The present task studies the following three problems, first, the system Identification of

nonlinear systems using linear parameter varying approach is studied in the presence of uncertainty

in scheduling parameters. This is due to the fact that in real world problems the measurement are

prone to noise/uncertainty. the reduce-order model based robust nonlinear control of PDE systems

are studied for the case where the reduced-model is subjected to model uncertainties. The objec-

tive of this work is to design a robust nonlinear control by investigating the different sources of

uncertainty and studying the boundedness of the model discrepancies.
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The dissertation is organized as follows: Chapter 2 addresses the coverage problem in environ-

ments, where several regions of interest exist. To this purpose, a heterogeneous group of robots

are deployed to minimize a cost function defined with respect to various spatial probability density

functions, each of which describes a desired area for a different group of robots. In Chapter 3, the

coverage optimization problem is studied for mobile sensing networks from a team-based perspec-

tive. The objective is to locate robots in a given environment so as to minimize the serving cost

based on a given density function defining the probability of events in the environment. Chapter 4

defines the main coverage problem as a general optimization over all the teams and their associ-

ated agents, where the cost function for each team is defined over the Voronoi of each team with

dynamic boundaries. As an application of the proposed team-based method, we study formation

control problem within the same framework. Chapter 5 studies the coverage problem in surface

flow fields, where it is desired to cover a long region by moving within the boundaries of the flow

stream. To this purpose, a group of autonomous mobile sensors are deployed aiming to minimize

a sensing cost function. The coverage area, considered to be a region with changing boundaries, is

directed to move along the boundaries of the flow until it reaches to the final destination. Chapter 6

introduces a support vector machine approach for system identification of linear parameter varying

in presence of error-in-variables (EIV). In conjunction with SVM, the proposed objective func-

tion finds the LPV model structure and the corresponding model coefficients in the presence of

error in the variables. Chapter 7 proposes a new system identification approach for input-output

LPV models is presented in this paper based on Gaussian Process (GP) to compensate for the

errors in the scheduling variables. The proposed approach uses a linear approximation to capture

the effect of scheduling variables noise on the evaluated coefficient functions on the observed

scheduling variables. Chapter 8 focuses on the continuous POD (as opposed to snapshot POD)

method and its application for the model order reduction of the forced Burgers’ equation, which

has characteristics similar to the Navier-Stokes equations. The objective of this work is to take

advantage of the underlying characteristics of the continuous POD method to reduce the original

model to a number of ODEs that would then be represented in the state-space form. In Chapter 9,
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the reduced-order model developed in Chapter 8 is used for the design of a sliding mode controller

on the basis of the sliding surfaces defined according to the reduced-order model. Chapter 10 pro-

poses a robust sliding mode controller for dynamic systems governed by Burgers’ equation with

Neumann boundary conditions in the presence of parameter variations. The main objective is to

design a reduced-order model based controller at a nominal value of the system parameter that sta-

bilizes the full order model while being robust with respect to model uncertainties in the obtained

reduced-order model. Finally, concluding remarks about the contribution of the dissertation and

possible future tracks of research are laid out in Chapter 11.
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CHAPTER 2

COVERAGE CONTROL OF MOVING SENSOR NETWORKS IN A COMPLEX ENVIRONMENT

WITH MULTIPLE REGIONS OF INTEREST 1

1F. Abbasi, A. Mesbahi and J. Mohammadpour: Coverage Control of Moving Sensor Networks in a
Complex Environment with Multiple Regions of Interest. 2016. Submitted to the American Control Confer-
ence.
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ABSTRACT

This paper addresses the coverage problem in environments, where several regions of interest exist.

To this purpose, a heterogenous group of robots are deployed to minimize a cost function defined

with respect to various spatial probability density functions, each of which describes a desired

area for a different group of robots. Each region of interest is assigned to a group of robots with

respect to their dynamics and sensing capabilities. A distributed coverage scheme is proposed to

allow adjusting to the environment with several important areas in a collaborative way. The regions

with higher importance would be covered with a required number of robots. The proposed method

also allows for a better allocation of robots to guarantee the desired coverage over the region.

Two numerical examples are finally given to examine the proposed coverage approach in case of

multiple regions of interest that may need to be covered by certain number of robots.

2.1 INTRODUCTION

Analytical methods have been developed for deployment of a group of robots to perform assigned

tasks, such as coverage, in an environment known a priori. Typical applications of the coverage

problem include search, surveillance, target detection and rescue operations, sensing, and data

collection [78,80,81,151]. The major question in coverage problem is how to share the workload in

a reliable and efficient way while performing in a distributed way. The distributed method proposed

in [32] finds a locally optimal coverage in an environment with a homogenous group of robots

based on the Voronoi diagram framework, where each robot implements a control law designed

based on the gradient descent method that minimizes the coverage cost in space and time leading

to an optimal partitioning.

The underlying optimization problem for coverage control using multiple robots is known to

lead to a non-deterministic polynomial-time (NP)-hard problem [46]. Existing methods hence seek

for a local solution to this complex optimization problem while ensuring the desired convergence

performance. The local solution depends on a given spatial probability density function describing
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the likelihood of an event taking place in the environment [99, 124]. The robots concentrate on

more important regions in the environment captured by a given density function. If the density

function is the sum of two or more probability density functions, the final local solution would

then be heavily dependent on the initial positions of the robots. In this case, it is possible that the

number of robots assigned to each region does not meet the desired concentration on regions with

higher importance. In other words, it is likely that a fewer number of robots are deployed to an area

with a wider region of interest which translates to a higher final cost.

A multi-robot system can generally be considered as a homogeneous or heterogeneous system

deployed to perform assigned tasks [12,14,87]. The generalized Voronoi diagrams depending on a

set of weights are used to handle the heterogenous groups of robots as presented in [102,111,126].

Furthermore, due to the need for collecting various types of data from a given region, robots may be

equipped with different types of sensors to measure the environmental parameters with different

rates and precision [53, 87, 141, 143]. It is also possible that a sensor installed on a robot has

a particular operational characteristics, and hence, it may be more suitable to be deployed in a

certain part of the region. The present work considers the case, where there are more than one

important region in the environment, where each important region is assigned to a set of robots

that will cover the area using their equipped sensors.

Existing coverage control approaches plan a local optimal path for each robot to address the

coverage problem neglecting the possible differences in the dynamics of the robots [116]. For

instance, a heterogeneous group of unmanned aerial vehicles (UAVs) and unmanned ground vehi-

cles (UGVs) were deployed in [50,140] to cover large areas, where it was shown that the dynamical

differences may lead to several issues. For example, the UGVs are not able to move as fast as UAVs,

but they can be equipped with highly accurate sensors [50,116]. Hence, it is realistic in many prac-

tical applications to take into account the dynamics of the robots in planning the optimal path. This

paper also attempts to present a distributed approach that enables the robots to be deployed with

respect to their dynamics. The agents with similar dynamics can be assigned to the same region

to accomplish the coverage task in a more efficient way. A long-distance important region, with
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respect to the initial positions of robots, is assigned to a group of robots that have the dynamic

capabilities to move faster than others. For instance, in the UAV/UGV example given above, the

UAVs are desired to cover the regions far from the locations they are initially deployed while the

UGVs pursue tasks close to their initial deployed position.

A team-based coverage control scheme has been introduced in [2] to facilitate the deployment

of a heterogeneous group of robots. The proposed algorithm uses heterogenous teams of robots

to handle the coverage of the given environment, but the number of teams and team members

are assumed to be independent of the environment. The present work introduces a new coverage

control scheme that can allow deploying groups of heterogeneous robots in order to handle the

coverage problem in an environment that consists of multiple important regions. Each important

region is assigned to a group of robots by taking into account their dynamics and sensing capabil-

ities. To this aim, the density function associated with each robot may differ from its neighbors to

reflect the difference in their associated regions of interest. Each robot might team up with others

based on its density function, associated dynamics, or sensing characteristics. Therefore, the pro-

posed coverage strategy would make it possible to improve reliability, accuracy, and flexibility

of the deployment algorithm by taking into account the differences in the embedded sensors and

dynamics of robots through offering an alternative solution method for the underlying sensing cost

function. In the proposed formulation, the importance functions associated with the neighboring

agents may differ form each other. This implies that, unlike the previous coverage control algo-

rithms, there will be an additional term in the control law that takes into account the potential

difference in the importance function of the robots sharing boundaries. Each robot can calculate

its Voronoi cell by knowing not only the position of the neighboring robots, but also a data set

associated with the difference in their density functions. The required information for calculating

the Voronoi cells is obtained through the adjust-communication radius algorithm first developed

in [32].

The remainder of this paper is structured as follows. Definitions and the problem statement are

provided in Section II. Section III introduces a new optimization problem suited for the coverage
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problem in the presence of several regions of interest. The asymptotic convergence of the group

of agents imposing the proposed control law is proven through the use of the Barbalat’s lemma.

Section IV presents simulation results to illustrate the proposed solution method for the coverage

problem in the environment with multiple regions of interest with different degrees of importance.

NOTATIONS

We use N, R, and R+ to denote the sets of natural, real, and nonnegative real numbers. Also, Ir

denotes r×r identity matrix. We define Q as a convex polytope in R2 and let Q = {Q1,Q2, . . . ,QN}

be a partition of Q as a collection of closed subsets with disjoint interiors. The boundary of Q is

shown by Q B. The shared edge of the Voronoi cell Vm with Voronoi cell Vs is shown by V B
ms that is

V B
m ∩ V B

s . Moreover, the so-called distribution density function (importance function) is denoted

by ϕ, where ϕ : Q → R+ represents the probability of some phenomenon occurring over space

Q . The function ϕ is assumed to be measurable and absolutely continuous. The Euclidean distance

function is denoted by ‖ · ‖ and |Q | represents the Lebesgue measure of convex subset Q . With pi

defined as the location of the ith agent, the vector set P = (p1, p2, . . . , pN) denotes the location of

N agents in the space Q .

2.2 PRELIMINARIES AND PROBLEM STATEMENT

The objective of the coverage related tasks is to ensure a high sensing performance for a mobile

network of sensors. This is formulated as an optimization problem that aggregates the sensing

performance of all the robots into a so-called sensing cost function. This section gives an overview

of the sensing cost function and the necessary modifications to cope with the complexity of the

problem at hand.
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2.2.1 UNDERLYING OPTIMIZATION PROBLEM

The following locational optimization function has been defined in the literature as a measure of

sensing performance

H(P,Q ) =
N∑
i=1

∫
Wi

f(‖q − pi‖)ϕ(q)dq, (2.1)

where N is the number of agents, P is the set of all agents, and it is assumed that ith agent is

assigned to the regionWi. The cost function H is minimized by finding the optimum locations of

the agents and their assigned regionsWi whose union is Q . As expected, the sensing performance

of the agents decays as we move away from their location, and hence, sensing performance can

be evaluated as a function of distance from the agent, i.e., f(‖q − pi‖), where q ∈ Q . In this

context, all the agents are assigned a region over the space assuming that they are homogenous

agents equipped with the same sensing devices and pursing the same task over a region. However,

due to the possible difference in the agents sensing capabilities, it is likely that the agents can carry

different sensors. This is addressed in the present work by introducing an alternative formulation

of the coverage problem for heterogenous agents pursuing various tasks in a region characterized

by different importance functions.

2.2.2 VORONOI PARTITIONS

This paper aims at addressing the problems of agents deployment and partitioning to efficiently

handle multiple tasks. The main objective of this work is to adopt the multi tasking concept in

the agents deployment problem and partitioning framework. To do so, we first need to define an

optimization problem that can handle the partitioning and deployment within the defined poly-

tope Q . The optimization problem should consider various importance functions representing the

difference in the received sensory data or the assigned task in the context of coverage control.

We first partition the polytope Q into a set of Voronoi cells V(P) = {V1, V2, . . . , VN} that

are known to provide the optimal partitioning for a set of agents with fixed locations at a given

space [32] as

Vm = {q ∈ Q | ‖q − pm‖ ≤ ‖q − pr‖, r = 1, . . . , N, r 6= m}, (2.2)
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where pm denotes the location of mth agent in Q and m ∈ {1, . . . , N}. The importance function

associated with one agent can differ from another; such a difference can well represent hetero-

geneity in their embedded sensing devices or assigned tasks in the distributed system of agents.

We recall the basic characteristics of the Voronoi partitions including their associated mass, cen-

troid, and polar moment of inertia defined as [32].

MVm =

∫
Vm

ϕm(q)dq, CVm =
1

MVm

∫
Vm

q ϕm(q)dq,

JVm,pm =

∫
Vm

‖q − pm‖2ϕm(q)dq,
(2.3)

where ϕm(q) represents the importance function associated with mth agent.

2.3 COVERAGE CONTROL IN AN ENVIRONMENT WITH MULTIPLE REGIONS OF INTEREST

The deployment task of interest in this paper can be addressed by solving an optimization problem

that represents the agents with various regions of interest collectively. The optimization problem

seeks to achieve the optimal deployment over the convex polytope Q , where each agent’s region

needs to be determined. Hence, the following cost function is defined

G(P ,Q) =
N∑
m=1

∫
Qm
‖q − pm‖2ϕm(q)dq, (2.4)

in which the sensing performance is considered as f(‖q − pm‖) = ‖q − pm‖2 for the mth agent

with the importance function of ϕm. The solution to minimizing G in (2.4) gives a local minimum

to the deployment problem, where agents are collaborating and heterogenous. It can be shown

that among different partitioning schemes, the Voronoi partitions are optimum in the sense of

minimizing defined cost function (2.4) [32]. Hence, for a given set of agents position P ∈ Q and a

partition Q of Q , it satisfies

G(P ,V(P)) ≤ G(P ,Q), (2.5)

which implies that the Voronoi cells represent the optimum partitioning. To obtain the optimum

configuration of the agents, we need to solve the problem of minimizing (2.4). In order to avoid
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the complexity involved in obtaining the global minimum of an NP-hard (Non-deterministic

Polynomial-time hard) problem, the local minimum of the cost function is sought for by taking the

derivative of the sensing cost function with respect to the agents position as

∂G
∂pm

=
∂

∂pm

N∑
r=1

∫
Vr

‖q − pr‖2ϕr(q)dq, m = 1, . . . , N. (2.6)

The solution to this problem differs from the conventional sensing cost functions due to various

importance functions involved that represent heterogeneity. The derivative with respect to the coor-

dinates of agent pm is obtained as

∂G
∂pm

=

∫
Vm

∂

∂pm
‖q − pm‖2ϕm(q)dq +

N∑
r=1

∫
V Br

‖q − pr‖2ϕr(q)
∂V B

r

∂pm
Nrdq, (2.7)

where V B
r represents the boundary of the Voronoi cell Vr. As it can be inferred from the definition

of the Voronoi partitioning, the boundary of the Voronoi cell Vr that is in the neighborhood of mth

robot is dependent on pm.

Remark 2.1 The agents whose Voronoi cells do not share any edges with the Voronoi cell associ-

ated with pm are independent of pm. This implies that ∂V
B
r

∂pm
= 0 for any r = 1, . . . , N that pr /∈ Npm

where Npm represents the set of agents that share boundaries with mth agent.

Remark 2.2 The integral on each boundary shared with neighboring agents is the same for agents

on both sides except that the normals have opposite signs, i.e., Nsm = −Nms, where Nms is the

normal vector for the edge of the Voronoi cell Vm, i.e., V B
ms, that is shared with another Voronoi

cell Vs.

The last term in (2.7) can be rewritten as follows

N∑
r=1

∫
V Br

‖q − pr‖2ϕr(q)
∂V B

r

∂pm
Nrdq =

∑
pr∈Npm

∫
V Br

‖q − pr‖2ϕr(q)
∂V B

r

∂pm
Nrdq+

∑
pr /∈Npm

∫
V Br

‖q − pr‖2ϕr(q)
∂V B

r

∂pm
Nrdq. (2.8)
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According to Remark 2.1, the last term is reduced to the integral on the boundary of the agent mth

agent. Then, we obtain the following

N∑
r=1

∫
V Br

‖q − pr‖2ϕr(q)
∂V B

r

∂pm
Nrdq =

∑
pr∈Npm

∫
V Br

‖q − pr‖2ϕr(q)
∂V B

r

∂pm
Nrdq+∫

V Bm

‖q − pm‖2ϕm(q)
∂V B

m

∂pm
Nmdq =

∑
pr∈Npm

∫
V Brm

‖q − pr‖2ϕr(q)
∂V B

rm

∂pm
Nrmdq+

∑
pr∈Npm

∫
V Bmr

‖q − pm‖2ϕm(q)
∂V B

mr

∂pm
Nmrdq. (2.9)

Using Remark 2.2 and the following equality

∂V B
mr

∂pm
=
∂V B

rm

∂pm
, (2.10)

it can be concluded that

N∑
r=1

∫
V Br

‖q − pr‖2ϕr(q)
∂V B

r

∂pm
Nrdq =

∑
pr∈Npm

∫
V Bmr

(‖q − pm‖2ϕm(q)−

‖q − pr‖2ϕr(q))
∂V B

mr

∂pm
Nmrdq. (2.11)

From the definition of the Voronoi cell (2.2), we have ‖q − pm‖ = ‖q − pr‖ for any r ∈ Npm .

Hence, the following is obtained
N∑
r=1

∫
V Br

‖q−pr‖2ϕr(q)
∂V B

r

∂pm
Nrdq =

∑
pr∈Npm

∫
V Bmr

‖q−pm‖2
(
ϕm(q)−ϕr(q)

)∂V B
mr

∂pm
Nmrdq. (2.12)

It is noted that each agent might also be the neighbor of other agents that pursue a similar task

through the same importance function. If that is the case, then the result of (2.12) is equal to zero.

However, this is not the case in general and hence, we need to evaluate the integral on the given

boundaries.

The line to which the points on the agents boundaries belong can be described by

(Nmr)>(q − pr + pm
2

) = 0, q ∈ V B
mr, (2.13)

where V B
mr is the shared boundary between agents m and r. The normal vector Nmr associated

with V B
mr is obtained by

Nmr =
pr − pm
‖pr − pm‖

. (2.14)
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The partial derivative of (2.13) with respect to pm is obtained as follows

∂Nmr
∂pm

(q − pr + pm
2

) + (
∂V B

mr

∂pm
− 1

2
)Nmr = 0, (2.15)

where
∂Nmr
∂pm

=
Nmr(Nmr)> − I2

‖pr − pm‖
. (2.16)

By substituting (2.16) into (2.15), we obtain

∂V B
mr

∂pm
Nmr =

Nmr(Nmr)> − I2

‖pr − pm‖
(
pr + pm

2
− q) +

1

2
Nmr, q ∈ V B

mr. (2.17)

Substituting (2.17) back into (2.12) leads to

N∑
r=1

∫
V Br

‖q − pr‖2ϕr(q)
∂V B

r

∂pm
Nrdq =

∑
pr∈Npm

Nmr(Nmr)> − I2

‖pr − pm‖

∫
V Bmr

(
‖q − pm‖2(ϕm(q)−

ϕr(q))
pr + pm

2
−‖q− pm‖2

(
ϕm(q)−ϕr(q)

)
q

)
dq+

1

2
Nmr

∫
V Bmr

‖q− pm‖2
(
ϕm(q)−ϕr(q)

)
dq.

(2.18)

By rearranging the terms in (2.18), we obtain

N∑
r=1

∫
V Br

‖q − pr‖2ϕr(q)
∂V B

r

∂pm
Nrdq =

∑
pr∈Npm

(
Nmr(Nmr)> − I2

‖pr − pm‖
pr + pm

2
+

1

2
Nmr

)
∫
V Bmr

‖q − pm‖2
(
ϕm(q)− ϕr(q)

)
dq − Nmr(Nmr)

> − I2

‖pr − pm‖

∫
V Bmr

‖q − pm‖2
(
ϕm(q)− ϕr(q)

)
qdq.

(2.19)

The derivative (2.7) can then be rewritten as

∂G
∂pm

=

∫
Vm

∂

∂pm
‖q − pm‖2ϕm(q)dq +

∑
pr∈Npm

(
Nmr(Nmr)> − I2

‖pr − pm‖
pr + pm

2
+

1

2
Nmr

)
∫
V Bmr

‖q − pm‖2
(
ϕm(q)− ϕr(q)

)
dq − Nmr(Nmr)

> − I2

‖pr − pm‖

∫
V Bmr

‖q − pm‖2
(
ϕm(q)− ϕr(q)

)
qdq.

(2.20)
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Further simplification of (2.20) using the equations of mass and centroid (2.3) results in

∂G
∂pm

= −2MVm(CVm − pm) +
∑

pr∈Npm

(
Nmr(Nmr)> − I2

‖pr − pm‖
pr + pm

2
+

1

2
Nmr

)
∫
V Bmr

‖q − pm‖2
(
ϕm(q)− ϕr(q)

)
dq − Nmr(Nmr)

> − I2

‖pr − pm‖

∫
V Bmr

‖q − pm‖2
(
ϕm(q)− ϕr(q)

)
qdq.

(2.21)

Considering the following notations

Gmr =

∫
V Bmr

‖q − pm‖2
(
ϕm(q)− ϕr(q)

)
dq, (2.22)

Lmr =

∫
V Bmr

‖q − pm‖2(ϕm(q)− ϕr(q))qdq, (2.23)

equation (2.21) can be written as

∂G
∂pm

= −2MVm(CVm − pm) +
∑

pr∈Npm

(Nmr(Nmr)> − I2

‖pr − pm‖
pr + pm

2
+

1

2
Nmr

)
Gmr−

(Nmr(Nmr)> − I2

‖pr − pm‖
)
Lmr. (2.24)

As observed from (2.24), we need to obtain the integral on the boundaries of the agents’ Voronoi

for Gmr and Lmr that take into account the effect of the difference in the importance function of

the neighboring agents.

2.3.1 CONTROLLER DESIGN

The gradient-decent based control law is utilized here to guarantee the convergence of the agents

to their equilibrium point while pursing various objectives. The following dynamics is imposed on

each agent

ṗm = um =
Km

2MVm

(
− ∂G
∂pm

)
=

Km

2MVm

(
2MVm(CVm − pm)− γm

)
, m = 1, . . . , N, (2.25)

where Km is a positive scalar and

γm =
∑

pr∈Npm

(Nmr(Nmr)> − I2

‖pr − pm‖
pr + pm

2
+

1

2
Nmr

)
Gmr −

(Nmr(Nmr)> − I2

‖pr − pm‖
)
Lmr. (2.26)
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By dividing Km by varying 2MVm , the control input is normalized to distribute the effect of both

terms in the controller design. As expected, the first term drives the agent towards its centroid while

the second term is associated with various regions of interest when multiple agents collaborate. In

other words, the above control law ensures that the agents move to their optimum location while

taking into account the difference in importance functions.

2.3.2 COMPUTATION OF THE VORONOI CELLS

The Voronoi cells associated with each agent require a set of information to be computed over

time. Based on the algorithm presented in [32], the agents are able to compute their Voronoi cells

by communicating with the neighboring agents. In order to obtain the control law for each agent in

the proposed approach of this paper, the agents need to receive the integral of ‖q − pr‖ϕr(q) and

‖q − pr‖ϕr(q)q on the edge shared with other agents from the neighboring agents. Even though

this increases the amount of data to be exchanged through the communication link, however, it

eliminates the need for equipping all the agents with the same sensing devices in practical appli-

cations. In fact, the proposed distributed approach enables a group of heterogenous agents capable

of accomplishing the coverage task while acquiring certain information from their neighbors.

2.3.3 CONVERGENCE OF THE PROPOSED CONTROLLER

The proposed controller drives the agents to their centroid while taking the heterogeneity of the

agents into account. To ensure the convergence of the agents to their collective local optimum, the

following lemma is proposed.

Lemma 2.3.1 The agents converge to a local minimum by imposing the control law (2.25). That

is,

lim
τ→∞

∥∥∥∥− 2MVm(τ)(CVm(τ)− pm(τ)) + γm(τ)

∥∥∥∥ = 0, (2.27)

for ∀m ∈ {1, . . . , N}.
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Proof 1 The asymptotic behavior cannot be proved through invoking the invariant set theorem for

time-varying systems; we hence use the Barbalat’s lemma to prove the asymptotic convergence of

the group of agents when each agent follows an optimal configuration. To this aim, the Lyapunov-

like function associated with each team is defined as

V = G(·, ·). (2.28)

The derivative of this function is obtained as

V̇ =
N∑
m=1

(
∂pm
∂τ

)>
∂G
∂pm

. (2.29)

Substituting (2.21) and (2.25) into (2.29), we obtain

V̇ = −
N∑
m=1

Km

2MVm

(
− 2MVm(CVm − pm) + γm

)>(
− 2MVm(CVm − pm) + γm

)
. (2.30)

Since MVm and Km are positive scalars, it can be concluded that the derivative (2.30) is non-

positive, V̇ ≤ 0. Due to the positivity of the cost function G, it is also concluded that the Lyapunov-

like function (2.28) is non increasing and hence lower bounded. As shown in [124], V̈ (τ) is uni-

formly bounded that results in uniform continuity of the V̇ (τ). Now, due to the boundedness of

V (τ) and the continuity of V̇ (τ), it is concluded by Barbalat’s lemma that

lim
τ→∞

V̇ (τ) = 0 =⇒ lim
τ→∞
‖ − 2MVm(τ)(CVm(τ)− pm(τ)) + γm(τ)‖ = 0, (2.31)

for ∀m ∈ {1, . . . , N}.

2.4 SIMULATION RESULTS AND DISCUSSION

Simulation results are shown here to examine the efficiency of the proposed coverage control

approach. The objective is to determine the coverage configuration and the path taken by each

robot to yield the optimal deployment. In the first scenario, three different importance functions

are assigned to three groups, each composed of six robots. As an initial configuration, the robots are

deployed randomly to accomplish their associated coverage task while communicating with agents
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Figure 2.1: Initial (top) and final configurations (bottom) for three groups of six agents, each of
which pursues a different coverage task.

pursuing a different task. This illustrates the heterogeneity of the agents in terms of the underlying

coverage density function that represents the potential differences in the dynamics or sensing capa-

bilities of the robots. As shown in Figure 2.1, the robots collaborate to ultimately converge to their

assigned region of interest. It is noted that the controller gain is chosen to be Km = 0.073 for the

first example. Furthermore, the convergence of the sensing cost function is shown in Figure 2.2.

As the second scenario, three groups composed of 8, 4, and 6 robots are deployed to cover a given

region. The goal here is to demonstrate how the proposed coverage control method works for there

multiple regions of interest with various degrees of importance (various values of the variance).

Hence, the proposed method enables us to deploy different number of robots to each region with

respect to the complexity of the underlying sensing or coverage tasks. The control gain for this

scenario is chosen to be Km = 0.012. It is also noted that throughout this work, it is assumed that

the importance functions are known a priori. As the simulation results show, the ultimate goal is

achieved, where the larger regions are assigned to a higher number of agents or the agents with

better sensing performance are given a larger region to cover. The convergence of the sensing cost

function for the second scenario is shown in Figure 2.4.
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Figure 2.2: Convergence of the sensing cost for the first scenario.

Figure 2.3: Initial (top) and final configurations (bottom) for three groups of 8, 4, and 6 agents, each
of which is deployed to cover a region of interest. The results show the flexibility of the proposed
approach to cope with problems, where there is a need to assign various number of robots to
different regions.

2.5 CONCLUDING REMARKS

In this paper, a coverage control approach is proposed for adapting to environments with several

important regions. The proposed algorithm enables the deployment of a group of heterogeneous
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Figure 2.4: Convergence of the sensing cost for the second scenario.

robots with potentially different dynamics and sensing capabilities to perform a desired task while

minimizing the sensing cost. Each region of interest is allocated to a group of agents based on

the similarity in sensing capabilities and dynamics. Also, the number of robots that need to be

deployed over the regions of interest is decided based on the number of importance functions

and their associated degree of importance. Robots can compute their Voronoi cells relying on

a distributed communication algorithm with their neighbor robots. The proposed approach is an

attempt to modify and improve existing methods in a way that several groups of heterogeneous

robots can divide the region among themselves based on their capabilities.
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CHAPTER 3

TEAM-BASED COVERAGE CONTROL OF MOVING SENSORS NETWORK 1

1F. Abbasi, A. Mesbahi, J. Mohammadpour: Team-based Coverage Control of Moving Sensors Network.
2016. In Proc. of the American Control Conference, Boston, MA: pp. 5691-5696. c©2016 IEEE. Reprinted
here with permission of the publisher.
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ABSTRACT

In this paper, the coverage optimization problem is studied for mobile sensing networks from a

team-based perspective. The objective is to locate robots in a given environment so as to minimize

the serving cost based on a given density function defining the probability of events in the environ-

ment. A team concept is introduced here to allow adjusting to the changes in the environment or

the assigned task in a collaborative way as a team. Firstly, an optimization problem is solved in the

team level in order to assign a sub-region to each team. The region assigned to each team is then

divided among its members to minimize a locational cost. A distributed communication algorithm

is also given, in which each team member, e.g., robot can access the information of its neighbors in

order to compute the associated region. Finally, a numerical simulation is given to demonstrate the

effectiveness of the presented approach. The results indicate that agents in both teams and agents

level try to minimize the cost function in order to reach the optimal configuration considering the

given density function.

3.1 INTRODUCTION

There have been advances in the deployment techniques for a group of robots in a given environ-

ment to perform the assigned distributed tasks examples of such tasks include surveillance, search

and rescue operations, sensing, and data collection [78, 85, 151]. The core problem can be seen as

a work load sharing task to assign the share of each agent from the total work load. Assuming that

the agents are identical, the partitioning task is carried out to divide the space among the agents

equally in space and time leading to an optimal partitioning [14,101]. The underlying optimization

problem is a NP-hard (Non-deterministic Polynomial-time hard) [46], and hence, local minimiza-

tion of the cost function is desired. This is the major goal behind the controller design that is

discussed later.

The concept of Voronoi partition and generalized Voronoi partitions plays a fundamental role in

the optimal space partitioning problem. Among different feasible type of partitionings, the Voronoi
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cells are considered as the optimal partitioning for the space sharing tasks [32]. Depending on

the way the partitioning is defined, there are various kinds of Voronoi cells like power diagrams,

additively-weighted and multiplicatively-weighted Voronoi partitions as introduced in [11, 126].

Due to the advantages of the distributed systems such as reliability, speed and economics over

the centralized systems, the distributed deployment algorithms have been proposed for the work

load sharing and partitioning tasks. To this aim, each robot should only exchange information

collected via its sensors, e.g., position and velocity, with other agents and negotiate its scheduled

task with a number of other agents. Then, each robot locally generates an appropriate control action

using the gathered information from its neighbors. For mobile sensing networks, a distributed

control strategy has been presented in [32] to equally divide an assigned area into subregions

where each robot is able to obtain locations of its neighbors through the adjust-communication-

radius algorithm. Then, it computes the associated Voronoi cell and moves toward the centroid

of its Voronoi cell based on the gradient descent method that gives the optimal solution for equal

partitioning problem [37].

The defined objective function represents the performance measure of the agents. In essence,

the solution to the optimization problem maximizes the performance index in a way that the agents

are deployed in the most optimum way. In other words, the distance from each agent to the points

inside its allocated area is minimized in the coverage problem that results in a higher sensing

performance for each agent [32]. This algorithm has been extended for power diagrams so that not

only equitable partitions can be obtained in a spatially distributed manner, but also equitable and

median Voronoi diagrams are acquired [111].

The existing approaches on the coverage control are based on the assumption that all robots

belong to one team. However, this assumption is not realistic in many real-world applications, as

the agents may differ from dynamics and communication perspective. A multi-robot system can

generally be considered as a homogeneous or heterogeneous system that translates to deploying

a variety of robots with respect to the assigned task. In the present work, an alternative coverage

strategy is presented that aims at taking the differences in the robots dynamics into account by

28



proposing the team concept. Each robot might team up with other ones based on its assigned

task, associated dynamics or embedded communication system. Therefore, it would be possible to

increase reliability and flexibility of the deployment algorithm.

The present work introduces a new team-based coverage control scheme which can handle dif-

ferent scenarios in heterogeneous systems of robots. The presented approach addresses the problem

of the agents deployment by considering teams of robots instead of evaluating each agent individ-

ually. The main problem can be defined as a two level optimization problem, where one is defined

inside each team and another optimization is defined among the teams in the overall coverage

space. The agents where will keep move towards the local minima until the optimum configura-

tion is achieved. In the proposed approach, firstly, a local minimum to the deployment problem is

obtained in the team level. Then, a second optimization problem is solved to guarantee the conver-

gence of the agents to their optimum location generating their respective Voronoi cells inside the

teams. By considering the nucleus as the associated Voronoi centroid of each team, the optimiza-

tion problem is defined at the team level by maximizing the performance of the team.

The agents in each team can be classified into two groups of interior members and members on

the boundaries based on whether they share a boundary with the agents belonging to other teams

or not. Each interior member is able to compute its own Voronoi cell by only knowing the location

of its neighbors. The location of the neighbors are obtained by using a modification of the adjust-

communication-radius algorithm which has been presented in [32]. However, this does not hold

for the members on the boundaries. These members need not only the location of neighbor robots

in their associated team, but also the nucleuses of the neighboring teams with their team Voronoi

cell. The agents on the boundaries can obtain the nuclei of neighboring teams by the proposed

communication algorithm in Section IV.

The remainder of this paper is structured as follows. Definitions and the problem statement

are provided in Section II. Section III introduces a two-level optimization problem. An extended

version of the classic Lloyd algorithm is applied to ensure the coverage properties. The agents com-
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munication characteristics and protocols are discussed in Section IV. Section V presents numerical

simulation results to illustrate the team-based partitioning.

3.1.1 NOTATIONS

We use N, R and R+ to denote the sets of positive natural, real, and nonnegative real numbers. The

closed circle centered at c ∈ R2 with radius r ∈ R+ is defined by B(c, r) := {x ∈ R2|‖x− c‖ ≤ r}.

We define Q as a convex polytope in R2 and let Q = {Q1,Q2, . . . ,Qt} be a partition of Q as a

collection of t closed subsets with disjoint interiors. Moreover, the so-called distribution density

function is denoted by ϕ where ϕ : Q → R+ represents the probability of some phenomenon

happening over space Q . The function ϕ is assumed to be measurable and absolutely continuous.

The Euclidean distance function is denoted by ‖ · ‖ and |Q | represents the Lebesgue measure of

convex subset Q . The vector set Pt = (pt1, pt2, . . . , ptnt) is the location of nt agents belonging to

tth team moving in the space Qt. As expected, the sensing performance of the agents decay as we

move away from their location, and hence, sensing performance can be evaluated as a function of

distance from the agent, i.e., f(‖q − ptm‖) where q ∈ Q .

3.2 A TEAM-BASED OPTIMIZATION SCHEME

3.2.1 OPTIMIZATION PROBLEM

In the literature, the locational optimization function is presented in the following form that is

translated to maximizing the sensing performance.

H(P,Q ) =
N∑
i=1

∫
Qi
f(‖q − pi‖)ϕ(q)dq, (3.1)

where for n number of teams, N =
∑n

t=1 nt, and P is the set of all agents. It is assumed that ith

agent is assigned to the region Qi and the cost function H is minimized by finding the optimum

locations of the agents and their assigned regions Qi. In this context, all the agents are assigned over

the space Q no matter how the agents can collaborate or coordinate with each other in more local
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platform. This is addressed in the present work by introducing a team-based partition of the agents

that considers agents as a collection of multiple team pursuing their assigned task or objective.

3.2.2 VORONOI PARTITIONS

The core objective is to adopt the team concept in the agents deployment and partitioning frame-

work. To do so, we first need to define an optimization problem that can handle not only the

deployment partitioning and tasks inside teams but also the partitioning inside the defined poly-

tope Q . This can be done by breaking the optimization problem into two interconnected functions

in a way that the solution to each problem represents the optimum configuration of the teams and

their associated agents.

To start with, we define the set of teams by L = (l1, l2, . . . , ln) where each lt, t = 1 : n,

represents the nucleus of team t that is a function of the agents position in the associated team

lt = g(pt1, pt2, . . . , ptnt). The function dependency of lt on the position of the agents is discussed

later. Now, we can partition the polytope Q into a set of Voronoi cells V(L) = {V1, V2, . . . , Vn}

considered as the optimal partitioning for a fixed set of agents location at a given space as

Vt = {q ∈ Q | ‖q − lt‖ ≤ ‖q − ls‖}. (3.2)

The obtained Voronoi cells associated with the nuclei of the teams are then considered as the

convex polytopes set to deploy their associated agents. Therefore, the sub-partitions are defined on

the basis of the Voronoi cells Vt obtained from the team level partitioning. The Voronoi partitions

Vt(Pt) = {Vt1, Vt2, . . . , Vtnt} generated by the agents (pt1, pt2, . . . , ptnt) belonging to tth team are

defined as

Vtm = {q ∈ Vt| ‖q − ptm‖ ≤ ‖q − ptr‖}, (3.3)

where ptm denotes location of mth agent in tth team such that m ∈ {1, . . . , nt}.
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We recall the basic characteristics of the Voronoi partitions including their associated mass,

centroid and polar moment of inertia as [32]

MVtm =

∫
Vtm

ϕ(q)dq, CVtm =
1

MVtm

∫
Vtm

q ϕ(q)dq,

JVtm,ptm =

∫
Vtm

‖q − ptm‖2ϕ(q)dq.
(3.4)

In addition to the defined parameters for the Voronoi cells of each agent inside the teams, we also

need to define the characteristics of the teams’s Voronoi cells. According to the definition of the

Voronoi partitions, it can be deduced that

MVt =
nt∑
m=1

MVtm , CVt =
1

MVt

∫
Vt

q ϕ(q)dq. (3.5)

The nucleus of the team that is a function of the agents position is defined as

lt =

∑nt
m=1MVtmptm∑nt
m=1MVtm

. (3.6)

As described earlier, the nucleus is a representative of the agents position in the team and can be

considered as the collective position of the agents for drawing the Voronoi diagram of the teams Vt.

The agents formation is called centroidal Voronoi configuration if it satisfies lt = CVt , ptm = CVtm

for both interior agents and nuclei of the teams.

3.2.3 LOCAL OPTIMIZATION PROBLEM

The deployment task in the presented team-based scheme can be addressed by solving a two level

optimization problem. At first, we need to define an optimization problem that can guarantee the

optimum configuration and partitioning of the convex polytope Q while applying the nuclei of the

teams as functions of the agent position. Hence, the cost function for the nuclei of the teams is

written in the following form

G(L,Q) =
n∑
t=1

∫
Qt
‖q − lt‖2ϕ(q)dq, (3.7)

where the sensing performance is considered as f(‖q− lt‖) = ‖q− lt‖2. The solution to (3.7) gives

the local minimum to the deployment problem in the teams level. Once the optimum partitioning
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is achieved at the teams level, we need to define a second optimization problem to guarantee the

convergence of the agents inside the teams to their optimum location generating their respective

Voronoi cells. We define a set of polygons Qt = {Qt1,Qt2, . . . ,Qtnt} with disjoint interiors whose

union is Vt. The following cost function is defined for each team as a function of the position of its

associated agents

Gt(Pt,Qt) =
nt∑
m=1

∫
Qtm
‖q − ptm‖2ϕ(q)dq. (3.8)

It is proven that among different partitioning schemes the Voronoi partitions are optimum in

the sense of minimizing both individually defined cost functions (3.7) and (3.8) [19,1 in Nowzari

work]. Hence, for a given set of nuclei L ∈ Q , agents position Pt ∈ Vt, a partition Q of Q and a

partition Qt of Vt, it satisfies

G(L,V(L)) ≤ G(L,Q), (3.9)

Gt(Pt,Vt(Pt)) ≤ Gt(Pt,Qt). (3.10)

This concludes that the Voronoi cells represent the optimum partitioning. Furthermore, for any

L′ = (l′1, l
′
2, . . . , l

′
n) ∈ Q and P ′t = (p′t1, p

′
t2, . . . , p

′
tnt) ∈ Vt satisfying ‖l′t −CVt‖ ≤ ‖lt −CVt‖ and

‖p′tm − CVtm‖ ≤ ‖ptm − CVtm‖, respectively, we have

G(L′,Q) ≤ G(L,Q), (3.11)

Gt(P ′t,Qt) ≤ Gt(Pt,Qt). (3.12)

In other words, the given cost function is minimized when agents are at the centroids of their

corresponding Voronoi cells.

3.3 A TWO-STEP OPTIMIZATION PROBLEM

The problem of deploying teams of robots can be broken into two optimization problems. The first

function to be minimized represents the cost function associated with partitioning the main space

into partitions related to the teams of agents. This is followed by another optimization problem that

is solved inside each team. The solution to the second optimization problem result in deploying
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the agents in an optimum way inside the teams. To achieve this, we assume that both functions G

and Gt in (3.7) and (3.8) are smooth and continuous over their regions. Then, the derivatives of the

cost functions are obtained as [37]

∂G
∂lt

= MVt(lt − CVt), (3.13)

∂Gt
∂ptm

= MVtm(ptm − CVtm). (3.14)

It can be seen that if the teams nucleus and agents position move to the centroid of their Voronoi

cells, the local minimum is achieved. Accordingly, the critical partitions and points for G and Gt

are called centroidal Voronoi partitions.

3.3.1 EQUIVALENCE OF AGENTS AND TEAMS LEVEL OPTIMIZATION

As discussed earlier, we need to first assign the optimum partitions to the teams of agents and

then deploy the robots in the assigned regions to their associated teams. In this section, we show

that these two optimization problems are interrelated. In fact, it is shown that the solution to the

second optimization problem can lead to the solution to the first problem considering the given

dependence of the nucleus on the agents position.

Theorem 3.3.1 If the agents are in the critical points of the function Gt, then with respect to the

defined teams nucleus lt in (3.6), it is concluded that the function G is minimized.

Proof 2 According to (3.14), the function Gt is minimized when ptm = CVtm . Assuming that all

the agents inside the teams are in the centroid of their respective Voronoi cells, the nucleus of the

teams can be found as

lt =

∑nt
m=1MVtmCVtm∑nt

m=1MVtm

. (3.15)

Substituting the centroid of the agents Voronoi in (3.4), we have

lt =

∑nt
m=1MVtm

∫
Vtm

q ρ(q)dq/MVtm∑nt
m=1MVtm

. (3.16)
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Since the density distribution function is positive on Q , each Voronoi cell has a nonzero measure,

i.e., MVtm 6= 0 for m = {1, 2, . . . , nt}. Hence, we obtain

lt =

∑nt
m=1

∫
Vtm

q ρ(q)dq∑nt
m=1MVtm

. (3.17)

Considering that the Voronoi cells share no interior space with each other and also due to the

continuity of the density function ρ over Q , it can be concluded that

lt =

∑nt
m=1

∫
Vtm

q ρ(q)dq

MVt

=

∫
Vt
q ρ(q)dq

MVt

= CVt . (3.18)

Therefore, it was shown that when agents are in their respective centroids, the nucleus of team also

is in the centroid of the team’s Voronoi cell.

3.3.2 TEAM-BASED LLOYD ALGORITHM

To minimize the cost functions G and Gt over time, an extension of Lloyd algorithm [32, 37] is

proposed here. The proposed algorithm should consider updating the team Voronoi cells while

evolving the positions and partitions of the agents inside the teams. According to Theorem 3.3.1, if

the agents move towards the centroid of their Voronoi cells, the nucleus of each team also evolves

towards its associated centroid. Hence, the two level optimization problem can be seen as the

problem of assigning agents to their associated regions inside a Voronoi cell with changing bound-

aries. The following dynamics is enforced on the agents

ṗtm = utm (3.19)

Considering the cost function Gt as a Lyapunov function guarantees the stability of the agents by

moving them to their associated local minima [32]. This results in the following control law

utm = −k(ptm − CVtm), (3.20)

where k is a positive gain and the Voronoi cells are being updated continuously over time.
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Corollary 3.3.1.1 For the closed-loop system obtained by controller (3.20), the sets of centroidal

Voronoi configurations are subspaces of Q and Qt. If the set of centroidal Voronoi configurations

on Q is finite, the teams nucleus and agents location converge to centroidal Voronoi configurations.

Proof 3 By applying the control law (3.20), the agent positions converge asymptotically to the set

of critical points of Gt according to Proposition 3.1 in [32], ptm → CVtm . It is concluded that

lt → CVt by considering ptm → CVtm in equation (3.6) with a similar argument as in the proof of

Theorem 3.3.1. Therefore, the teams nucleus and agents locations converge to the sets of centroidal

Voronoi configurations. If the set of centroidal Voronoi configurations on Q is finite, the limit of

Pt is unique and equals to one of the centroidal Voronoi configurations. Consequently, the teams

nucleus converges to a centroidal Voronoi configuration according to Theorem 3.3.1.

Remark 3.1 The region assigned to each team changes over time. Since the assigned region is

time-varying, there may exist robots which are located outside the assigned region of their team.

Consequently, there might be empty Voronoi cells which belonged to the outside agents. In this

case, the outside agents move towards to the centroids of their Voronoi cells by using the controller

(3.20).

Remark 3.2 According to Remark 3.1, there is a possibility that an agent can be located in a

region covered by another team. While this agent is moving toward the assigned region of its

team, it may collide with agents of another team. We consider the coverage problem without the

possibility of agents colliding with each other.

3.4 MODELING A DISTRIBUTED NETWORK OF AGENTS

The agents need to be modeled with respect to their actions including sensing, communication,

computation and control. The behavior of the agents in a given network are then describable as the

interaction of the agents to perform the assigned task. In essence, the communication network and

the data flow in the system of agents based on the proposed algorithms need to be investigated.

The agents communication characteristics and protocols are discussed in this section.
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3.4.1 CHARACTERISTICS OF THE AGENTS COMMUNICATION

An agent in the given framework is introduced here as the mth element of the tth team in a given

network. Each agent is equipped with processor that is capable of allocating the state of the system

and performing the required operations. For the agent that is located at ptm and can move over the

space at any time for any period of time δttm ∈ R+ following the enforced first order dynamics

(3.19). The processor has access to both agent position ptm and its associated team nucleus lt that

is received through the communication with the neighboring agents. The processor also computes

the control pair (δttm, utm) for the robot at ptm. The agents on the borders of teams also receive

the information for the nucleus of the neighboring teams. This information is provided by com-

municating with the neighboring agents belonging to the neighboring teams. Furthermore, it can

detect the neighboring agents within the radius Rtm of the agent at ptm. In addition to this, the

processor is able to send/receive information to/from the other agents within the communication

radius Rtm ∈ R+. It is also assumed that the processor can adjust the radius Rtm regarding the

minimum required communication radius in a limited communication bandwidth.

3.4.2 TEAM AND AGENT’S VORONOI MAINTENANCE

In order to calculate the Voronoi partition, each agent needs to know the position of the other agents

in its neighborhood and also the agents on the borders require the nucleus of the neighboring teams

to calculate the borders of the teams. To this end, the designed communication network should pro-

vide the motion control scheme with the required information. In this section, the Voronoi compu-

tation and maintenance is handled by the proposed algorithm for the asynchronous communication

to maintain the data flow inside each team and among the teams.

To initialize, it is assumed that all the agents have the nucleus of their associated team and

other agents position at the initial time. The agents employ an adjustable communication radius

based algorithm as presented in Algorithm 1 to receive the position information for computing the

Voronoi cells. It should be mentioned that since, the agents on the boundaries need the nuclei of the

other teams to compute their Voronoi cells, Algorithm 1 guarantees a proper communication radius
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to receive the information from the neighboring teams while making sure that the interior agents

will not be increasing their communication radius unnecessarily. To this aim, two communication

radiuses are defined, first, the interior agents communicate by an adjustable radius Rc1 to receive

the data from the neighboring agents belonging to the same team. Then, if an agent detects the

agents belonging to the neighboring teams, it means the associated agent is on the boundaries,

therefore, the communication radius is adjusted to Rc2 to gather the nucleus of the neighboring

teams. Finally, when the two Voronoi cells are obtained by (3.2) and (3.3) then the intersection of

the two cells is computed as the final Voronoi cell for the agents on the boundaries.

Due to the nature of the team based communication and considering the fact that agents need to

know the nucleus of the team, the communication network is designed to transfer data throughout

each team’s network towards the nucleus. Then, the updated nucleus is distributed among the

agents of each team.

To maintain the Voronoi cells, the nucleus of the team needs to be updated. To do so, we

propose Algorithm 2 based on the greedy forwarding strategy presented in [28] that sends the

data pocket that contains information regarding mass of the Voronoi cells and the positions of the

robots towards the nucleus of the team. The information pocket that is sent is consisted of two data

strings, the first one contains the summation over the multiplication of the mass and the location

of each agent and the second string represents the summation over the multiplication of the mass

of the Voronoi cells that the data pocket has been passed through. In other words, the algorithm is

designed in a way that each agent sends the information to the agent closest to the nucleus in its

neighborhood.

Every agent that receives the data pocket sums up all the received data and forwards it towards

nucleus.

Every node in the network performs the forwarding process until the time based stopping cri-

teria is satisfied that is defined by multiplying the number of agents in each team by the maximum

operating period of time max{δtt1, . . . , δttnt} for tth team. The agent closest to the nucleus per-

forms sums up all the received data and calculates the new nucleus of the team.
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Algorithm 1 Sensing algorithm for teams of robots, inspired from [32]
1: initialize sensing radius Rtm

2: detect all agents ptm in the same team and all nucleus lt of the neighboring team’s agents
within the radius Rtm

3: update Pm(tm) and Lm(tm) to compute Q (ptm, Rtm) and Q (lmt , Rtm)
4: Rc1 = maxq∈Q (ptm,Rtm) ‖ptm − q‖
5: if detect neighboring team’s agents then
6: Rc2 = maxq∈Q (lmt ,Rtm) ‖lmt − q‖
7: else
8: Rc2 = 0
9: end if

10: while Rtm ≤ 2 max{Rc1, Rc2} do
11: Rtm = 2 max{Rc1, Rc2}
12: detect all agents ptm in the same team and all nucleus lt of the neighboring team’s agents

within the radius Rtm

13: update Pm(tm) and Lm(tm)
14: compute Q (ptm, Rtm) and Q (lmt , Rtm)
15: Rc1 = maxq∈Q (ptm,Rtm) ‖ptm − q‖
16: if detect neighboring team’s agents then
17: Rc2 = maxq∈Q (lmt ,Rtm) ‖lmt − q‖
18: else
19: Rc2 = 0
20: end if
21: end while
22: Rtm = 2 max{Rc1, Rc2}
23: Vtm = Q (lmt , Rtm) ∩ Q (ptm, Rtm)

As soon as the agent closest to the nucleus calculates the updated nucleus, it disseminates the

data pocket over the team network by the communication radius that has been already calculated in

the Voronoi computation. Each agent that receives the new nucleus also runs the same data transfer

algorithm until the data pocket reaches to the borders. To realize whether agents are sharing bound-

aries with other teams, each agent can run a quick check to see if any of its boundaries has been

drawn by using the teams nucleus or not. This is considered as the stopping criterion for the mes-

sage routing. Now, the agents have been informed about the new nucleus of the team, and hence,

the ones on the border communicate with the agents belonging to the other teams that they share
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Algorithm 2 The greedy forwarding algorithm for nucleus calculation inspired by [28]
Require: given δtt1, . . . , δttnt

1: agent m detects agent m′ as the neighbor closed agent towards the nucleus lt
2: if m′ 6= m then
3: send the pair (MVtmptm,MVtm) to the agent m′

4: else(αt, βt) = (MVtmptm,MVtm)
5: end if
6: Tm = δttm
7: while Tm < nt max{δtt1, . . . , δttnt} do
8: Tm ← Tm + δttm
9: if receives data pocket then

10: sum up all the received data
11: if m′ 6= m then
12: send the summation to the agent m′

13: end if
14: if m′ = m then
15: (αt, βt)← (αt, βt)+ the summation of all the received data pockets
16: end if
17: end if
18: end while
19: if m′ = m then
20: compute the update nucleus by (3.6) as lt = αt/βt.
21: end if

boundaries with to get their team nucleus to draw their Voronoi cells. The algorithm for drawing

the associated Voronoi regions of the agents that might require communication with other teams is

given in Algorithm 1. Now that the team boundary has been updated, the agents need to repartition

their associated space.

3.5 SIMULATION AND RESULTS

In this section, the presented team based partitioning is illustrated through two simulation exam-

ples. 50 agents are deployed on a 5 × 10 rectangular in five teams with equal number of agents.

To illustrate the case that there are multiple important regions, two Gaussian functions with 3 and

5 picks are chosen respectively. The density function is chosen as a Gaussian function represented
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Figure 3.1: Gaussian density function with chosen centers as (2, 2), (5, 1.5) and (8, 1.5).

by

ϕ(x) =

np∑
i=1

exp(−(x− ai)2 + (y − bi)2

2σ2
), (3.21)

where np is the number of centers, (ai, bi) represents the coordinate of the centers and σ is the

variance.

EXAMPLE 1

The first density function is chosen as a Gaussian function given by (3.21) where np = 3 and

σ = 0.25. Figure 3.1 illustrates the density function over the given space. A random configuration

is chosen as the initial configuration of the nucleus of the teams. Then, the robots are deployed in

the region associated with each team. As the proposed control law moves the agents to the centroid

of their Voronoi cells, the teams nucleus also moves towards their centroid. Figure 3.2 shows the

solution to the coverage problem. It can be seen that along with partitioning in the team level the

agents also divide the region assigned for each team considering the given density function. Also,

regarding the interdependency of teams and their interior agents, the teams spread over the given

space to provide the optimum coverage while their interior agents also partition each team Voronoi

cell into smaller partitions considering the main density function. The trend shows that the teams

also tend to concentrate on the region given by the density function, hence, the team partitioning

divides the space among the teams collaboratively. As it can be seen in Figure 3.4c, the teams on
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Figure 3.2: The change from the initial to the final configuration is shown from (a) to (c) for
example 1.

the left and in the middle divide the region in a way that they optimize their associated sensing

function according to the defined cost function both in the team level (3.7) and agents level (3.8)

for the best coverage. The traversed path by each agent to reach to the optimum configuration is

shown in Figure 3.4c.
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Figure 3.3: Gaussian density function with chosen centers as (2, 2), (5, 1.5) and
(8, 1.5), (8, 4), (2, 4.5).

EXAMPLE 2

As the second example, a different density function is chosen to study the presented team based

coverage when there are higher number of equally important regions. The Gaussian function is

chosen as given in (3.21) where np = 5 and σ = 0.25. Figure 3.3 illustrates the Gaussian function

with 5 centers that represent the regions with high importance in the coverage context. The results

for the coverage problem is shown in Figure 3.4 where the initial, transient and final states of the

agents are illustrated. The simulation results indicate that the proposed coverage approach can cope

with complexity of the problem arising from the higher number of the significant regions. This can

represent the flexibility of the team based coverage to deal with multiple assigned tasks.

3.6 CONCLUDING REMARKS

To adapt with the complexity of the coverage problems in real life applications, a team-based

coverage approach is presented. The proposed approach solves the problem in a more local way

meaning that the main region is divided into multiple subregions associated with multiple deployed

teams to handle the tasks that require a more diverse group of robots regarding its complexity. This

is to say that due to the diversity of the coverage problems the need for deploying robots with

different dynamics or communication characteristics might be inevitable, hence, the team based
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Figure 3.4: The change from the initial to the final configuration is shown from (a) to (c) for
example 2.

approach is an attempt to modify present methods in a way that the teams of robots can divide

the region among themselves based their capabilities. This provides the means for autonomous

deployment of multiple teams of robots when there is need for different types of robots form both

communication and dynamics perspective.
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CHAPTER 4

A TEAM-BASED APPROACH FOR COVERAGE CONTROL OF MOVING SENSOR NETWORKS 1

1F. Abbasi, A. Mesbahi and J. Mohammadpour: A Team-based Approach for Coverage Control of
Moving Sensor Networks. 2016. Submitted to Automatica, Under the Second Round of Revision.
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ABSTRACT

In this paper, the coverage control problem is examined for mobile sensor networks from a team-

based perspective. The objective is to deploy a group of robotic teams aiming at minimizing the

serving cost based on a given density function that defines the probability of events in the envi-

ronment. A team-based approach is introduced here to formulate a coverage scheme for the case

where, for a variety of reasons, e.g., heterogeneity in their embedded communication capabilities

or the dynamics, the robots are required to be kept in the same team with other similar agents. This

also allows for adjusting to the changes in the environment or the assigned task(s) in a collaborative

way as a team. The main cost function is defined as the total sensing cost for the agents that form

the teams. The immediate consequence of this formulation is that dynamics on the boundary of the

teams must be taken into account for the agents that share boundaries with their neighboring teams.

A gradient decent-based control law is developed to ensure the optimal deployment of the agents

within each team while making sure that the team dynamics also take part in the final optimal solu-

tion. To further elaborate on the use of the presented formulation, a formation problem is defined

for the teams of agents with either the same or different formation structures. It is shown that

the optimal desired formation comes with the cost of sacrificing the sensing performance. Finally,

numerical results are presented to illustrate the effectiveness of the team-based partitioning and

formation methods that enable the distributed deployment of the heterogeneous teams of agents.

4.1 INTRODUCTION

There have been advancements in developing techniques for deploying a group of robots in a given

environment to perform assigned distributed tasks. Examples of such tasks include surveillance,

search and rescue operations, sensing, and data collection [10, 78, 85, 151]. The core problem can

be seen as a workload sharing task to allocate the share of each agent from the total workload. The

underlying optimization problem is NP-hard (Non-deterministic Polynomial-time hard) [46], and

hence, finding a local minimizer is desired. For instance, assuming that the agents are identical, the

46



partitioning task is carried out to divide the area of interest among the agents equally in space and

time, which leads to an optimal partitioning in case of both deterministic [14, 101] and uncertain

data [97]. Among different feasible types of partitioning, the Voronoi cells offer the optimal solu-

tion for the space sharing tasks [32]. Depending on the way the partitioning is defined, there are

various kinds of Voronoi cells such as power diagrams, additively-weighted and multiplicatively-

weighted Voronoi partitions as introduced in [11, 126].

The existing approaches for the coverage control are based on the assumption that all agents

belong to a single team [109]. However, this assumption is not realistic in many real-world applica-

tions, as the agents may differ from , e.g., dynamics or communication perspective [135]. A multi-

robot system can generally be considered as a homogeneous or heterogeneous system depending on

the similarities or differences in their properties, e.g., desired performance index, dynamics, etc.,

that is required when coping with various complex assigned tasks [65, 134, 155]. In the present

work, a new coverage strategy is proposed that aims at taking into account the differences in the

robots dynamics by offering a team-based design approach, where, each robot might team up with

others based on its assigned task, associated dynamics or embedded communication capabilities.

This would make it possible to improve reliability and flexibility of the deployment algorithm. It

should be noted that throughout this work, it is assumed that the structure of the teams and the

agents within each team is known a priori.

The present work introduces a new team-based coverage control scheme which can handle dif-

ferent scenarios in heterogeneous systems of robots. The proposed approach addresses the problem

of agents deployment by considering teams of robots instead of evaluating each agent individu-

ally. The main problem can be defined as a general optimization problem over all the teams and

their associated agents, where the cost function for each team is defined over the Voronoi of each

team with dynamic boundaries. The agents will move towards their local minima until the optimal

configuration is achieved. In the proposed approach, firstly, a local minimum to the deployment

problem is obtained within each team to generate the Voronoi cells of the agents inside the team.

Then, the nucleus of the team is calculated through the defined weighted mean formula that gen-
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erates the Voronoi cell associated with each team. By considering the dependency of the team

nucleus on the position of agents in that team, it is proven that both agents and their respective

team’s nucleus essentially converge to their optimum configuration.

The agents in each team can be classified into two groups of interior members and members

on the boundaries based on whether or not they share a boundary with the agents belonging to

other teams. Each interior member is able to compute its own Voronoi cell by only knowing the

location of its neighbors. The location of the neighbors is obtained through a modified adjust-

communication-radius algorithm which has been presented in [32]. However, this does not hold

true for the members on the boundaries. These members need not only the location of the neighbor

robots in their associated team, but also the nuclei of the neighboring teams with their team Voronoi

cells. The agents on the boundaries can obtain the nuclei of neighboring teams through the use of

the communication algorithm proposed in [3].

As an application of the proposed team-based method, we study formation control problem.

The formation control methods can be generally divided into three categories: behavior-based,

virtual structure formation, and leader-follower formation [89, 100, 139]. In the latter category of

leader-follower formation, one agent is designated as the leader and the others as followers [62].

The follower agents essentially follow the leader agent with a desired distance and separation

bearing angle. The formation of agents around a certain virtual point considered as the virtual

leader has been studied in nature-inspired flocking schemes under the leader-follower framework in

[103,136]. To ensure certain dynamic behaviors such as moving with the same speed as the leader,

the agents take a certain formation and stay in a relatively close distance to their nearby agents.

In this paper, the presented team-based scheme is shown to offer the ability to impose certain

formations on the agents belonging to each team while pursuing the main coverage task. The basic

idea is to adjust the distance of agents to the nucleus of their associated team by introducing an

additional formation term in the main coverage sensing function. The additional term ensures a

certain distance from the nucleus by changing the formation factor. This can be viewed as a factor
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that enforces the agent to either expand or compress with respect to the desired formation. Different

formations can be also achieved through selection of various formation factors.

The contributions of the present work are threefold. First, incorporating the concept of

team into the sensing coverage through defining a team-based sensing performance function pro-

vides a flexible formulation for coverage related tasks to deploy heterogenous teams of robots and

assign various tasks. Second, the proposed team-based approach enables forming various teams

consisting of (possibly) different number of agents within the main coverage framework that can

be translated to deploying more robots to the regions with higher degree of importance. Finally, by

giving a group of robots a team entity, they can maintain certain configurations due to a number

of constrains or objectives, e.g., the limited communication radius or acquiring a better coverage

by maintaining a certain formation while ensuring an optimal coverage through collaborating with

other teams.

The remainder of this paper is structured as follows. Definitions and the problem statement are

provided for the team-based coverage control in Section II. Section III introduces an approach for

formation control of teams of agents. Section IV presents numerical simulation results to illustrate

the team-based partitioning and proposed formation control.

4.1.1 NOTATIONS

We use N, R, and R+ to respectively denote the sets of natural, real, and nonnegative real numbers.

Throughout the paper, Ir denotes r × r identity matrix. We define Q as a convex polytope in

R2 and let Q = {Q1,Q2, . . . ,Qt} be a partition of Q as a collection of t closed subsets with

disjoint interiors. The boundary of Q is denoted by ∂Q . Moreover, the so-called distribution density

function is denoted by ϕ where ϕ : Q → R+ represents the probability of some phenomenon

occurring over space Q . The function ϕ is assumed to be measurable and absolutely continuous.

The Euclidean distance function is denoted by ‖ · ‖, and |Q | represents the Lebesgue measure of

convex subset Q . The vector set Pt = (pt1, pt2, . . . , ptnt) is the location of nt agents belonging to

tth team.
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4.2 A TEAM-BASED APPROACH FOR COVERAGE CONTROL

In the coverage control literature, the locational cost function is defined as a measure of the sensing

performance. In this work, we present a modified version of the locational function that is suitable

for the proposed team-based method. The function is defined as

H(P,Q ) =
N∑
i=1

∫
Wi

f(‖q − pi‖)ϕ(q)dq, (4.1)

where for n teams,N =
∑n

t=1 nt, nt is the number of agents belonging to the tth team, and P is the

set of all agents. Assuming that ith agent is assigned to the regionWi, the objective is to minimize

the cost function H by finding the optimal locations of the agents and their assigned regions Wi

whose union is Q . The sensing performance of the agents should decay as we move away from

their location, and hence, sensing performance can be evaluated as a function of distance from the

agent, i.e., f(‖q − pi‖), where q ∈ Q . In this context, all the agents are assigned over the space

no matter how the agents can collaborate or coordinate with each other locally. The team-based

partitioning of the agents introduced in this paper addresses this by dividing agents into multiple

teams pursuing assigned tasks.

4.2.1 VORONOI PARTITIONS

The main objective of this work is to adopt a team-based concept in the agents deployment and

partitioning framework. To achieve this, we first need to define an optimization problem that can

handle not only the deployment and partitioning tasks inside teams but also the partitioning inside

the defined polytope Q . This optimization problem should consider the agents individual cost func-

tion, as well as their accumulated cost within their teams. To start with, we define the set of teams

by L = (l1, l2, . . . , ln) where lt, t = 1 : n, represents the nucleus of the tth team team t that is a

function of the agents position in the associated team, i.e., lt = g(pt1, pt2, . . . , ptnt). The depen-

dency of lt on the position of the agents is discussed later. Next, we partition the polytope Q into

a set of Voronoi cells V(L) = {V1, V2, . . . , Vn} considered as the optimal partitioning for a set of
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agents with fixed locations at a given area as

Vt = {q ∈ Q | ‖q − lt‖ ≤ ‖q − ls‖, s = 1, . . . , n; s 6= t}. (4.2)

The obtained Voronoi cells associated with the nuclei of the teams are then considered as the

convex polytope set to deploy their associated agents. Therefore, the sub-partitions are defined on

the basis of the Voronoi cells Vt obtained from the team level partitioning. The Voronoi partitions

Vt(Pt) = {Vt1, Vt2, . . . , Vtnt} generated by the agents (pt1, pt2, . . . , ptnt) belonging to the tth team

are defined as

Vtm = {q ∈ Vt| ‖q − ptm‖ ≤ ‖q − ptr‖, r = 1, . . . , nt, r 6= m}, (4.3)

where ptm denotes the location of mth agent in tth team for m ∈ {1, . . . , nt}.

The agents in each team are divided into two subgroups, boundary and interior groups, where

the cells associated with each group require a different set of data, i.e., their neighbors’ position, to

be maintained. The interior group represents the agents that share boundaries only with the agents

belonging to the same team while the agents in the boundary group have neighbors not only in

the same team but also in the neighboring teams-they may also share boundaries with the convex

polytope Q . In general, the boundary associated with each agent ∂Vtm is either an edge shared with

the agents within the same team or edges shared with the teams in the neighborhood depending on

the position of the agent within the team. The agents in the boundary group share at least one edge

with other teams. An edge that is shared with the neighboring agent f in the same team is shown

by ∂Vtm,f . The edges associated with the agents in the boundary group that are shared with the

neighboring team k and main convex polytope Q are represented by ∂V k
tr and ∂V 0

tr, respectively.

Figure 4.1 illustrates the boundaries and their normal vectors for Voronoi Vtm. It is noted that the

agents in the boundary group may share boundaries with the agents in the interior group where the

same notation as the boundaries of the interior agents is used to represent these edges.
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Figure 4.1: An illustrative example of team-based Voronoi partitioning, where the boundaries and
their associated normal vectors for the Voronoi cell Vtm are shown for the edges shared with both
team k in its neighborhood and agent tf , i.e., f th agent in the tth team, in the same team in addition
to the edge ∂V 0

t shared with the main region Q .

We recall the basic characteristics of the Voronoi partitions including their associated mass,

centroid, and polar moment of inertia defined as [32]

MVtm =

∫
Vtm

ϕ(q)dq, CVtm =
1

MVtm

∫
Vtm

q ϕ(q)dq,

JVtm,ptm =

∫
Vtm

‖q − ptm‖2ϕ(q)dq.
(4.4)

In addition to the parameters defined for the Voronoi cells of each agent inside the teams, we also

need to define the characteristics of the teams’s Voronoi cells. According to the definition of the

Voronoi partitions, it can be deduced that

MVt =
nt∑
m=1

MVtm , CVt =
1

MVt

∫
Vt

q ϕ(q)dq. (4.5)

The nucleus of the team that is a function of the agents position is defined as

lt =

∑nt
m=1MVtmptm∑nt
m=1MVtm

. (4.6)

As described earlier, the nucleus is a representative of the agents position in the team and can be

considered as the collective position of the agents that is needed for the computation of the Voronoi

diagram of the teams, i.e., Vt.
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4.2.2 FORMULATION OF THE LOCAL OPTIMIZATION PROBLEM

The deployment task in the presented team-based framework can be addressed by solving an opti-

mization problem over the convex polytope Q where each team’s region needs to be optimized in

the sense of its associated sensing function. Hence, the following cost function is considered

G(L,Q) =
n∑
t=1

Gt(Pt,Qt), (4.7)

where Gt is the cost function associated with the sensing performance of the agents belonging to

the tth team. The sensing performance is considered as f(‖q−ptm‖) = ‖q−ptm‖2 for themth agent

belonging to the tth team. The solution to (4.7) gives a local minimum to the deployment problem

where agents are considered as the members of various collaborating teams. We define a set of

polygons as Qt = {Qt1,Qt2, . . . ,Qtnt}, with disjoint interiors, whose union is Vt. The following

cost function is defined for each team as a function of the position of its associated agents

Gt(Pt,Qt) =
nt∑
m=1

∫
Qtm
‖q − ptm‖2ϕ(q)dq. (4.8)

Remark 4.1 It is proven that among different partitioning schemes, the Voronoi partitions are

optimum (for a single team) in the sense of minimizing the defined cost function (4.8) [32]. Hence,

for a given set of agents with position Pt ∈ Vt and a partition Qt of Vt, we have

Gt(Pt,Vt(Pt)) ≤ Gt(Pt,Qt), (4.9)

which implies that the Voronoi cells represent the optimum partitioning of the area associated with

each team.

The next step is to obtain (locally optimum) location of the agents and the nucleus of their associ-

ated team. The derivative of the cost function (4.7) associated with n teams, each of which consists

of nt agents is

∂G
∂psm

=
∂

∂psm

n∑
t=1

nt∑
r=1

∫
Vtr

‖q − ptr‖2ϕ(q)dq, s = 1, . . . , n, m = 1, . . . , nt. (4.10)

The solution to this optimization problem differs from that to the conventional sensing cost func-

tions due to the previously defined dependency of the boundaries of the boundary agents on their
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associated nuclei that are functions of agents position. The derivative with respect to the coordi-

nates of agent in psm is obtained as

∂G
∂psm

=

∫
Vsm

∂

∂psm
‖q − psm‖2ϕ(q)dq +

n∑
t=1

( nit∑
r=1

∫
∂V tr

‖q − ptr‖2ϕ(q)
∂∂Vtr
∂psm

Ntrdq+

nbt∑
r=1

∫
∂V tr

‖q − ptr‖2ϕ(q)
∂∂Vtr
∂psm

Ntrdq
)
, (4.11)

where nit is the number of the interior agents, and nbt is the number of agents in the boundary

group in the tth team. It can be inferred from the team-based partitioning that the boundaries of

the Voronoi cell Vtr are either directly or indirectly dependent on ptm. The direct dependency is

obviously resulted from the definition of the interior Voronoi cells (4.3). We note that Vtm and the

voronoi cells in its neighborhood are directly dependent on ptm. The indirect dependency can be

seen in the boundary agents, where they share at least one edge with the agents in the neighboring

teams (or contribute at least one edge to the boundary of the team).

Remark 4.2 The boundaries shared with other teams are indirectly dependent on ptm via the defi-

nition of the nucleus of the team lt. Also, the Voronoi cells of the interior agents in other teams are

independent of ptm leading to ∂∂Vtr
∂psm

= 0 for t 6= s.

Hence, the term associated with the interior agents in (4.11) can be reduced to the integral on

the boundaries of the agent ptm and the ones that it shares boundaries with as follows

nis∑
r=1

∫
∂V sr

‖q − psr‖2ϕ(q)
∂∂Vsr
∂psm

Nsrdq =
∑
f∈F

∫
∂V sm,f

‖q − psm‖2ϕ(q)
∂∂Vsm,f
∂psm

Nsm,fdq+

∑
f∈F

∫
∂V sf,m

‖q − psr‖2ϕ(q)
∂∂Vsf,m
∂psm

Nsf,mdq, (4.12)

where Nsf,m is the normal vector associated with the edge ∂Vsf,m, and F = {f |psf ∈ Npsm} with

Npsm representing the set of agents that share boundaries with agent psm.

Remark 4.3 The integral on each boundary shared with the neighboring agents is identical for

agents on both sides expect that the normals will have opposite signs, i.e., Nsm,f = −Nsf,m.
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Hence, we have

∑
f∈F

∫
∂V sm,f

‖q − psm‖2ϕ(q)
∂∂Vsm,f
∂psm

Nsm,fdq = −
∑
f∈F

∫
∂V sf,m

‖q − psr‖2ϕ(q)
∂∂Vsf,m
∂psm

Nsf,mdq.

(4.13)

Using Remark 4.3, the second term in (4.11) is equal to zero. Moreover, the boundaries shared

with ∂Q have no dynamics which results in ∂∂V 0
tr

∂psm
= 0. Therefore, considering Remark 4.2, the

third term in (4.11) can be written as

n∑
t=1

nbt∑
r=1

∫
∂V tr

‖q − ptr‖2ϕ(q)
∂∂Vtr
∂psm

Ntrdq =
∑
f∈F

∫
∂V sm,f

‖q − psm‖2ϕ(q)
∂∂Vsm,f
∂psm

Nsm,fdq+

∑
f∈F

∫
∂V sf,m

‖q − psm‖2ϕ(q)
∂∂Vsf,m
∂psm

Nsf,mdq+

∑
t∈{s,g|lg∈Nls}

nbt∑
r=1,k∈K

∫
∂V ktr

‖q − ptr‖2ϕ(q)
∂∂V k

tr

∂psm
N k
trdq, (4.14)

where K = {0, g|lg ∈ Nlt} and Nlt is the set of teams neighboring with team t. Also, N k
tr in (4.14)

denotes normal vector associated with the edge ∂V k
tr. The first two terms in the right hand side

of (4.14) represent the integral on the shared boundaries of the Vsm with the agents belonging to

the same team. Hence, it can be concluded from Remark 4.3 that these terms cancel each other

out. Moreover, the boundaries shared with ∂Q have no dynamics that results in ∂∂V 0
tr

∂psm
= 0. Due

to the dependency of the team boundaries on the nucleus, only the boundaries of the agents in

the boundary group shared with their associated team should be considered for the integration.

Substituting (4.13) and (4.14) into (4.11) results in

∂G
∂psm

=

∫
Vsm

∂

∂psm
‖q − psm‖2ϕ(q)dq +

∑
t∈{s,g|lg∈Nlt}

nbt∑
r=1,k∈K′

∫
∂V ktr

‖q − ptr‖2ϕ(q)
∂∂V k

tr

∂psm
N k
trdq,

(4.15)

where K′ = {s|ls ∈ Nlt}. Next, to calculate the derivative terms apperaing because of the depen-

dency of the exterior boundaries on the nucleus, the chain rule can be applied as follows

∂∂V k
tr

∂psm
=

∂ls
∂psm

∂∂V k
tr

∂ls
, (4.16)
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where using (4.6) and (4.16), we obtain

∂

∂psm

(
ls

∫
Vs

ϕ(q)dq)
)

=
∂

∂psm

( ns∑
r=1

psr

∫
Vsr

ϕ(q)dq
)
, (4.17)

∂ls
∂psm

((∫
Vs

ϕ(q)dq
)
I2 +

(∑
k∈K′

∫
∂Vs

ϕ(q)
∂∂V k

s

∂ls
N k
s dq
)
l>s

)
=

( ∫
Vsm

ϕ(q)dq
)
I2 +

ns∑
r=1

( ∫
∂V sr

ϕ(q)
∂∂Vsr
∂psm

Nsrdq
)
p>sr. (4.18)

The last term is again divided into two groups of the interior and boundary agents. Among the

interior agents, only the Voronoi cells associated with agent located at psm and its neighbors are

dependent on psm. From (4.18) and using the chain rule, we obtain

∂ls
∂psm

((∫
Vs

ϕ(q)dq
)
I2 +

(∑
k∈K′

∫
∂Vs

ϕ(q)
∂∂V k

s

∂ls
N k
s dq
)
l>s −

nbs∑
r=1,k∈K′

( ∫
∂V ksr

ϕ(q)
∂∂V k

sr

∂ls
N k
srdq

)
p>sr

)
=
( ∫

Vsm

ϕ(q)dq
)
I2+

∑
psr∈{psm,Npsm}

( ∫
∂V sr

ϕ(q)
∂∂Vsr
∂psm

Nsrdq
)
p>sr, (4.19)

where nbs is the number of the boundary agents in the sth team. The effect of the moving boundaries

with respect to the variation of the team nucleus is shown by the following notations

Mk
∂Vsr =

∫
∂V ksr

ϕ(q)
∂∂V k

sr

∂ls
N k
srdq, (4.20)

M∂Vs =

n′bs∑
r=1,k∈K′

Mk
∂Vsr , (4.21)

and the changing boundary of the interior agents due to the agents dynamics is represented by

M∂Vsr =

∫
∂V sr

ϕ(q)
∂∂Vsr
∂psm

Nsrdq. (4.22)

Using these notations results in the following

∂ls
∂psm

=

(
MVsmI2 +

∑
psr∈{psm,Npsm}

M∂Vsrp
>
sr

)(
MVsI2 +M∂Vsl

>
s −

n′bs∑
r=1,k∈K′

Mk
∂Vsrp

>
sr

)−1

. (4.23)
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The line that the points on the team boundaries belong to can be represented by

(N k
s )>(q − lk + ls

2
) = 0, q ∈ ∂V k

s , (4.24)

where ∂V k
s is the boundary shared between teams s and k. The normal vector N k

s associated with

∂V k
s is obtained by

N k
s =

lk − ls
‖lk − ls‖

. (4.25)

The partial derivative of (4.24) with respect to ls is obtained as

∂N k
s

∂ls
(q − lk + ls

2
) + (

∂∂V k
s

∂ls
− 1

2
)N k

s = 0, (4.26)

where
∂N k

s

∂ls
=
N k
s (N k

s )> − I2

‖lk − ls‖
. (4.27)

Substituting (4.27) into (4.26), we have

∂∂V k
s

∂ls
N k
s =
N k
s (N k

s )> − I2

‖lk − ls‖
(
lk + ls

2
− q) +

1

2
N k
s , q ∈ ∂V k

s . (4.28)

Because of the following equality that holds for the variation of the boundary edge ∂V k
tr with

respect to the variation of the nucleus ls

∂∂V k
tr

∂ls
N k
tr =

∂∂V k
t

∂ls
N k
t , (4.29)

the derivative (4.15) can be rewritten as

∂G
∂psm

=

∫
Vsm

∂

∂psm
‖q−psm‖2ϕ(q)dq+

∑
t∈{s,g|lg∈Nls}

nbt∑
r=1,k∈K′

∫
∂V ktr

‖q−ptr‖2ϕ(q)
∂ls
∂psm

∂∂V k
t

∂ls
N k
t dq.

(4.30)

Substituting (4.28) into (4.30) and the derivative of the first term lead to

∂G
∂psm

= −2

∫
Vsm

(q − psm)ϕ(q)dq+

∂ls
∂psm

( nbs∑
r=1,k∈K′

(
N k
s (N k

s )> − I2

‖ls − lk‖

∫
∂V ksr

‖q − psr‖2ϕ(q)(
lk + ls

2
− q)dq+

1

2
N k
s

∫
∂V ktr

‖q−psr‖2ϕ(q)dq
)

+
∑

t∈{g|lg∈Nls}

(
I2 −N s

t (N s
t )>

‖lt − ls‖

∫
∂V str

‖q−ptr‖2ϕ(q)(
ls + lt

2
−q)dq+

1

2
N s
t

∫
∂V str

‖q − ptr‖2ϕ(q)dq
))

. (4.31)
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Further simplification of (4.31) using equations of mass and centroid (4.4) results in

∂G
∂psm

= −2MVsm(CVsm − psm)+(
MVsmI2 +

∑
ptr∈{psm,Npsm}

M∂Vsrp
>
sr

)(
MVsI2 +M∂Vsl

>
s −

nbs∑
r=1,k∈K′

Mk
∂Vsrp

>
sr

)−1

( nbs∑
r=1,k∈K′

(
N k
s (N k

s )> − I2

‖ls − lk‖

∫
∂V ksr

‖q−psr‖2ϕ(q)(
lk + ls

2
−q)dq+

1

2
N k
s

∫
∂V ktr

‖q−psr‖2ϕ(q)dq
)

+

∑
t∈{g|lg∈Nls}

(
I2 −N s

t (N s
t )>

‖lt − ls‖

∫
∂V str

‖q−ptr‖2ϕ(q)(
ls + lt

2
−q)dq+

1

2
N s
t

∫
∂V str

‖q−ptr‖2ϕ(q)dq
))

.

(4.32)

As it can be seen, the boundaries of each team and its neighboring teams may vary with respect to

the variation of the agent’s location psm. This accounts for the sensitivity of the team boundaries

with respect to any change in the nucleus of its associated team or the neighboring teams resulted

from a change in agents’ position. The term associated with the integration on the team boundaries

in (4.32) is the same for all the agents in the tth team. In fact, at every time step, it will be calculated

just once for all the agents r ∈ {1, . . . , nbt} with exterior boundaries shared with the neighboring

teams.

4.2.3 COMPUTATION OF THE VORONOI CELLS

The Voronoi cells associated with each agent and team require a set of information to be computed

online. As described before, the agents in the interior group are able to compute the Voronoi cell

by communicating with the neighboring agents within the same team. However, the agents on

the boundary group need the position of the nucleus of their team, as well as the nuclei of their

neighboring teams. A greedy algorithm that provides the required data flow within each team and

between the so-called leaders of different teams has been proposed in our recent work [3]. This is

achieved at the cost of communicating with agents that are further away from each other; however,

it allows the deployment of the agents without requiring the continuous communication among all

the agents, which translates to less data exchange among the agents.
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4.2.4 CONTROLLER DESIGN

A gradient decent-based control law is proposed here to guarantee the convergence of the teams of

agents to their equilibrium point. The following dynamics is imposed on each agent

ṗsm = usm =
Ksm

2MVsm

(
− ∂G
∂psm

)
=

Ksm

2MVsm

(
2MVsm(CVsm − psm)− γsm

)
, (4.33)

where s = 1, . . . , n, m = 1, . . . , ns, Ksm is a positive scalar and

γsm =

(
MVsmI2 +

∑
psr∈{psm,Npsm}

M∂Vsrp
>
sr

)(
MVsI2 +M∂Vs l

>
s −

nbs∑
r=1,k∈K′

Mk
∂Vsrp

>
sr

)−1

( nbs∑
r=1,k∈K′

(
N k
s (N k

s )> − I2

‖ls − lk‖

∫
∂V ksr

‖q − psr‖2ϕ(q)(
lk + ls

2
− q)dq +

1

2
N k
s

∫
∂V ktr

‖q − psr‖2ϕ(q)dq
)

+
∑

t∈{g|lg∈Nls}

(
I2 −N s

t (N s
t )>

‖lt − ls‖

∫
∂V str

‖q−ptr‖2ϕ(q)(
ls + lt

2
−q)dq+

1

2
N s
t

∫
∂V str

‖q−ptr‖2ϕ(q)dq
))

.

(4.34)

By dividing Ksm by the varying term 2MVsm , the control input is normalized to distribute the

effect of both 2MVsm(CVsm − psm) and γsm in the controller design. While the first term drives

the agent towards its centroid, the second term is associated with the changing boundaries of the

teams of agents. In other words, the above control law ensures that the agents are confined within

the given dynamic boundaries of their team.

4.2.5 CONVERGENCE OF THE PROPOSED CONTROLLER

The proposed controller drives the agents to their optimum location while taking into account the

moving boundaries. To ensure the convergence of the agents to their collective local optimum, the

following lemma is proposed.

Lemma 4.2.1 The agents with the assigned dynamics (4.33) converge to a local minimum by

imposing the control law proposed in (4.33). That is,

lim
τ→∞

∥∥− 2MVsm(τ)(CVsm(τ)− psm(τ)) + γsm(τ)
∥∥ = 0, ∀s ∈ {1, . . . , n},∀m ∈ {1, . . . , nt}.

(4.35)
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Proof 4 The asymptotic behavior cannot be proved through invoking standard invariant set theo-

rems for time-varying systems. We hence use the Barbalat’s lemma to show the asymptotic conver-

gence of the system when each agent follows an optimal configuration. To this aim, the Lyapunov-

like function associated with each team is defined as

V = G. (4.36)

The derivative of this function is obtained as

V̇ =
n∑
s=1

ns∑
m=1

(
∂psm
∂τ

)>
∂G
∂psm

. (4.37)

Substituting (4.32) and (4.33) into (4.37), we obtain

V̇ = −
n∑
s=1

nt∑
m=1

Ksm

2MVsm

(
−2MVsm(CVsm−psm)+γsm

)>(
−2MVsm(CVsm−psm)+γsm

)
. (4.38)

Since MVsm and Ksm are positive scalars, it can be concluded that the derivative (4.37) is non-

positive, V̇ ≤ 0. Due to the positivity of the cost function G, it is also concluded that the Lyapunov-

like function (4.36) is non increasing and hence lower bounded. As shown in [125], V̈ (τ) is uni-

formly bounded that results in the uniform continuity of V̇ (τ). Next, since V (τ) is bounded and

due to the continuity of V̇ (τ), it is proven by Barbalat’s lemma that

lim
τ→∞

V̇ = 0 =⇒ lim
τ→∞
‖ − 2MVsm(τ)(CVsm(τ)− psm(τ)) + γsm(τ)‖ = 0, (4.39)

for ∀s ∈ {1, . . . , n}, ∀m ∈ {1, . . . , nt}.

Due to the dependency of the nucleus of the tth team on the position of its agents, lt(pt1, . . . , ptm),

Theorem 4.2.2 below guarantees the convergence of the nucleus of teams.

Theorem 4.2.2 According to (4.6) and the dynamics of the nuclei lt, it can be inferred from Lemma

4.2.1 that the nuclei of the agents will also converge to the local minimum of the team level opti-

mization problem with the cost function defined as in (4.7).

Proof 5 The dynamics imposed on the nuclei of the teams are indirectly resulted from the dynamics

obtained from (4.33). This can be seen by taking the time derivative of (4.6) as

∂ls
∂τ

=
ns∑
m=1

∂ls
∂psm

ṗsm. (4.40)
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Substituting (4.23) into (4.40), we obtain

∂ls
∂τ

=
ns∑
m=1

(
MVsmI2 +

∑
psr∈{psm,Npsm}

M∂Vsrp
>
sr

)(
MVsI2 +M∂Vsl

>
s −

nbs∑
r=1,k∈K′

Mk
∂Vsrp

>
sr

)−1

ṗsm.

(4.41)

It can be seen that when the agents inside a team converge to their associated local minima

according to Lemma 4.2.1, the nuclei of the teams will also asymptotically converge to their local

minima as

lim
τ→0

∥∥∥∥ ns∑
m=1

(
MVsm(τ)I2 +

∑
psr∈{psm,Npsm}

M∂Vsr(τ)p>sr(τ)

)(
MVs(τ)I2 +M∂Vs(τ)l>s (τ)−

nbs∑
r=1,k∈K′

Mk
∂Vsr(τ)p>sr(τ)

)−1

ṗsm(τ)

∥∥∥∥ = 0. (4.42)

4.3 FORMATION CONTROL OF THE TEAMS OF AGENTS

The idea of team-based partitioning relies on forming teams of agents with respect to their capa-

bilities and dynamics. It is highly likely that agents require to take different formations within their

confined region while performing the assigned coverage task(s). A major factor in changing the

formation of the agents is to change their relative distances. We introduce a formation term within

each team while aiming at achieving the main partitioning task. The following cost function is

defined to ensure that the agents can maintain a certain formation throughout their mission

Gt(Pt,Qt) =
nt∑
m=1

( ∫
Vtm

‖q − ptm‖2ϕ(q)dq + αtm‖ptm − lt‖2
)
, (4.43)

in which the formation factor αtm is a positive scalar. To solve the associated optimization problem,

the derivative of (4.43) is obtained as

∂G
∂psm

=

∫
Vsm

∂

∂psm
‖q−psm‖2ϕ(q)dq+

∑
t∈{s,g|lg∈Nls}

nbt∑
r=1,k∈K′

∫
∂V ktr

‖q−ptr‖2ϕ(q)
∂ls
∂psm

∂∂V k
t

∂ls
N k
t dq+

2αsm(I2 −
∂ls
∂psm

)(psm − ls). (4.44)

Solving this optimization problem follows the same lines as those in the previous section except

that there is now an extra term representing the formation of the agents. Employing (4.32) and
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(4.34), we have

∂G
∂psm

= −2MVsm(CVsm − psm) + γsm+

2αsm

(
I2−

(
MVsmI2 +

∑
ptr∈{psm,Npsm}

M∂Vtrp
>
tr

)(
MVsI2 +M∂Vs l

>
s −

nbs∑
r=1,k∈K′

Mk
∂Vsrp

>
sr

)−1
)

(psm− ls).

(4.45)

The gradient decent method results in the following expression for the agents dynamics assigned

to maintain a certain formation through the given formation factor

ṗsm = usm = Ksm

(
− ∂G
∂psm

)
= Ksm

(
2MVsm(CVsm−psm)−γsm−2αsmΛsm(psm−ls)

)
, (4.46)

where

Λsm = I2−
(
MVsmI2 +

∑
ptr∈{psm,Npsm}

M∂Vtrp
>
tr

)(
MVsI2 +M∂Vsl

>
s −

nbs∑
r=1,k∈K′

Mk
∂Vsrp

>
sr

)−1
. (4.47)

Remark 4.4 The convergence of the agents position to their local optima by using the proposed

formation control law in (4.46) and (4.47) is ensured by considering the Lyapunov function as

V = G. The proof follows the same lines as those in Theorem 4.2.2.

Remark 4.4 implies that the agents converge to their associated local minima while maintaining

a desired formation. In fact, changing the formation factor can change the relative distance of the

agents from their respective nuclei resulting in a different formation of the agents within each team.

As an extension of the present work and in a more generic scenario, the time-varying formation

factor might be considered to represent any change in the formation due to, e.g., the changing

environment or the assigned tasks.

4.4 SIMULATION RESULTS AND DISCUSSION

To examine the capabilities of the proposed approaches, the team-based partitioning is validated

using numerical examples. First, the proposed team-based partitioning is used to deploy four teams

each consisting of five agents. The designed algorithm deploys the teams of agents in the main
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Figure 4.2: Initial (left) and final configurations (right) for 4 teams of five agents; each marker
represents the agents belonging to different teams.

(0,0) 4

4

(0,0) 4

4

Figure 4.3: Initial (left) and final configurations (right) for 4 teams of five agents maintaining the
desired flocking formation for agents belonging to different teams.

region while optimizing the underlying deployment problem within each team. As seen from

Figure 4.2, the proposed approach can successfully deploy the teams of agents in order to obtain

the optimal coverage on the given area. The importance function is considered to be

ϕ(x, y) = exp(−(x− 3)2 + (y − 2.5)2

2σ2
), (4.48)
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Figure 4.4: The convergence of the total coverage cost function illustrating the local optimum
solution to the team based deployment (left) and the team based formation control (right).

where the variance is σ2 = 0.3, and the controller parameter chosen as Ksm = 0.012. As expected,

the coverage cost function decreases through the deployment process. Figure 4.4 (left) demon-

strates the convergence of the cost function over time.

Next, to examine the effectiveness of the proposed formation control, a constant formation

coefficient is chosen for all the teams. The teams of agents and their final formation is shown in

Figure 4.3, where agents take a specific formation within the Voronoi of their associated team

to fulfill the desired objective such as a required communication radius to ensure a consistent

communication for agents inside each team or any other formation-related task. The controller

parameter and the formation control coefficient are chosen as Ksm = 0.015 and αsm = 2.5,

respectively. The convergence of the total cost function is shown in Figure 4.4 (right). As expected,

the desired formation comes with a higher coverage cost. This can be seen in the final values of the

two convergence plots in Figure 4.4, where the cost value in the formation control is higher.

Another numerical example is illustrated here to study a more generic case where each team

takes a different formation due to its assigned task. This can be seen as a potential representation of

heterogeneity when deploying a number of agents that pursue different objectives because of their

coverage capabilities. The configuration shown in Figure 4.5 is achieved by choosing different

formation coefficients αtm for each agent within each team. The gradient-decent based control
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Table 4.1: Formation coefficients for the four teams of agents shown in Figure 4.5.
α11 α12 α13 α14 α15

0.6 0.6 0.9 4 0.6

α31 α32 α33 α34 α35 α36

0.8 3 3 0.9 5 0.8

α41 α42 α43 α44 α45 α46 α47 α48

0.3 0.3 1 0.9 1 0.3 0.5 0.9

α21 α22 α23 α24 α25 α26 α27 α28 α29

0.7 0.7 0.2 0.7 0.2 0.2 0.2 0.2 0.2

gain is chosen as Ksm = 0.01. Table 4.1 shows the formation coefficients of each agent belonging

to different teams. The agents tend to converge to a certain formation due to the relative impact

of the associated coverage and formation terms. This relative impact is controlled by choosing a

relatively lower or higher formation coefficient to enforce the agents to stay closer to or further

away from the nucleus of their team. The higher formation term implies a stronger tendency to

bring the agents towards the nucleus of the team by increasing the formation coefficient while the

coverage term attempts to scatter them over the teams’ associated Voronoi.

(0,0) 4

4

(0,0) 4

4

Figure 4.5: Initial (left) and final configurations (right) for four teams of 5 (asterisk), 9 (star),
6 (square) and 8 (circle) agents, where each marker represents the agents belonging to different
teams.
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4.5 CONCLUDING REMARKS

To adapt to the complexity of the coverage problems in real world applications, a team-based

coverage approach is presented in this paper. The proposed approach solves the problem in a

more local way leading to the partitioning of the main region into multiple subregions associated

with multiple deployed teams. This is beneficial to handle tasks that require a more diverse group

of robots due to their complexity. Due to the diversity of the coverage problems, the need for

deploying robots with different dynamics or communication characteristics might be inevitable,

and hence, the proposed team-based approach is an attempt to modify and improve existing

methods in a way that the teams of robots can divide the region among themselves based on their

capabilities. This provides the means for autonomous deployment of multiple teams of robots when

there is a need for different types of robots form both communication and dynamics perspectives.
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CHAPTER 5

COVERAGE CONTROL OF MOVING SENSOR NETWORKS IN SURFACE FLOW FIELDS 1

1F. Abbasi, A. Mesbahi and J. Mohammadpour: Coverage Control of Moving Sensor Networks in Sur-
face Flow Fields. 2016. Submitted to IEEE Transactions on Control Systems Technology.
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ABSTRACT

This paper addresses the coverage problem in surface flow fields, where it is desired to cover

a long region by moving within the boundaries of the flow stream. To this purpose, a group of

autonomous mobile sensors are deployed aiming to minimize a sensing cost function. The coverage

area, considered to be a region with changing boundaries, is directed to move along the boundaries

of the flow until it reaches to the final destination. Throughout this process, the agents adapt to

the varying coverage area by imposing the dynamics of the boundaries on their respective control

law. The presented control law ensures that the agents move toward the centroid of their respective

Voronoi cell while taking into account the effect of the moving boundaries. The proposed coverage

scheme is examined via two numerical examples that use sections of Colorado and Ohio rivers. The

proposed algorithm deploys the agents within the boundaries of the river and ensures the optimum

partitioning for the moving coverage area.

5.1 INTRODUCTION

There have been advancements on developing techniques for deployment of a group of agents in

a given environment to perform assigned distributed tasks [54, 55, 110]. The core problem can be

seen as a workload sharing task to assign the share of each agent from the total workload. The

underlying optimization problem is NP-hard (Non-deterministic Polynomial-time hard) [46], and

hence, finding a local minimum of the cost function is desired. The Voronoi partitions and the

Lloyd’s algorithm are proposed as solutions to the coverage problem [83]. The centroid of agents’

Voronoi cells is considered as the optimal sensor location at each step to design decentralized

control laws [32]. In this strategy, the given environment is partitioned into Voronoi subregions

and each agent drives toward the centroid of its Voronoi cell. The existing methods are developed

to deploy agents in a given and invariant environment and may not address the case where for

various reasons the coverage area has dynamics.
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The fresh water resources such as rivers are the main sources for supplying water for daily

usage and irrigation that are also used for recreational activities. The rivers can be negatively

impacted by various factors, including human activities, heavy metals, nitrogen, phosphorus and

acid mine [107]. Monitoring of the quality of the surface water in rivers plays a critical rule in

conserving water resources [107, 128]. Several monitoring methods have been introduced, e.g.,

in [107, 128] based on human activities or monitoring stations. However, the existing methods are

not suitable for real-time monitoring of a long section of large rivers [40]. Recently, autonomous

mobile sensors have been employed for real-time monitoring and data collection in rivers [7, 26,

63, 98]. In [39, 41], an autonomous surface vehicle (ASV) is used for measuring a range of water

quality properties and greenhouse gas emissions while avoiding obstacles.

In several real world applications, a non-autonomous network of mobile sensors are employed

to monitor flow fields while moving along the streamline [34, 77]. A proximity metric of gen-

eralized Voronoi diagram in a flow field has been used in [137] to compute the shortest time to

move from one point to another in the presence of constant drift. However, the computation of the

Voronoi diagram is difficult due to the existence of singularities in the equi-distant curves [92,93].

As it is expected from the flow dynamics, it is more efficient due to the preserved energy consump-

tion when the mobile sensors do not move in the opposite direction of the flow in the coverage

problem [69]. Additionally, the available actuation of mobile sensors is limited and might not

compensate for the opposite flow velocity to generate the desired speed in fast flow fields [71]. To

avoid this, a group of mobile sensors are deployed to cover the maximum area in a fixed time using

Snell’s law of refraction while they cannot move in the opposite of the flow direction [69, 70].

To solve the coverage problem in constant flow fields by taking into account both energy con-

sumption and traveling time, a refined approximated Voronoi diagram is used to deploy a group of

agents in [123]. Even though the presented approach is a detailed study that considers the energy

factor, it does not account for the changing flow fields where it is needed to move along the flow

while maintaining optimal coverage. Although it is assumed that the flow is constant along the
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streamline in [69, 70, 123], it may change along the environment in many real world applica-

tions [142, 144, 148].

In this paper, we study the coverage control problem for continuous and potentially long flow

fields. In this work, it is desired to move along the flow direction to preserve energy consumption;

however, by providing enough power the presented method can also be implemented to move

upstream. This is motivated by the fact that an efficient coverage strategy should use properties of

the flow fields, such as the velocity and the direction of the flow. Therefore, it would be possible to

improve reliability and energy consumption of the deployment algorithm.

Throughout this paper, the flow field is modeled by two curved lines indicating the boundaries

of any flow stream as river borders. Our objective is to cover whole environment by deploying

agents into a moving region in the flow field. The agents move within the boundaries of the river

and converge to an optimum configuration within their respective coverage area and are able to

change their area by expanding or compressing due to changing flow conditions. The speed of the

coverage region along the flow determines the collective speed of the agents within their region.

Two virtual guidance points are introduced to control the dynamics of the moving covered region.

The imposed dynamics on the guidance points affect the boundaries of the associated moving

coverage region that in turn changes the dynamics of the agents. These guidance points are located

in the back and front areas of the moving region which respectively determine the front and the rear

boundaries of the group of agents while moving along the flow field. As an immediate use of these

points, one can assign different dynamics to these points to achieve a compressed or expanded

coverage area.

The remainder of this paper is structured as follows. Definitions and the problem statement are

provided for the coverage control for a flow field in Section II. Section III introduces an approach

for optimal voronoi partitioning and controller Design. Section IV presents numerical simulation

results to illustrate the optimal coverage for flow type problems.
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5.1.1 NOTATIONS

We use N, R, and R+ to respectively denote the sets of natural, real, and nonnegative real numbers.

Throughout the paper, Ir denotes r × r identity matrix. We define Q as a polytope in R2 and let

Q = {Q1,Q2, . . . ,Qt} be a partition of Q as a collection of t closed subsets with disjoint interiors.

The boundary of Q is denoted by ∂Q . Moreover, the so-called distribution density function is

denoted by ϕ where ϕ : Q → R+ represents the probability of some phenomenon occurring over

space Q . The function ϕ is assumed to be measurable and absolutely continuous. The Euclidean

distance function is denoted by ‖ ·‖, and |Q | represents the Lebesgue measure of the convex subset

Q . The vector set Pt = (pt1, pt2, . . . , ptnt) is the location of nt agents belonging to tth team.

5.2 UNDERLYING OPTIMIZATION PROBLEM

In the coverage control literature, the locational cost function is defined as a measure of the sensing

performance. In this work, we present a modified version of the locational function that is suitable

for the proposed coverage method for n number of agents belonging to P , which is the set of

all agents. Assuming that ith agent is assigned to the region Wi, the objective is to minimize the

sensing cost function by finding the optimal locations of the agents and their assigned regionsWi

whose union is Q . In the flow framework, it is desired to keep the sensing performance as high as

possible while the region associated with agent is changing due to the changing boundaries of the

main region. The sensing performance is evaluated as a function of the distance from the agent, i.e.,

f(‖q−pi‖), where q ∈ Q . In this context, the density function is set to be constant to represent the

uniform coverage and all the agents are assigned over the moving space along the given area. The

dynamic partitioning approach is introduced in this paper to address the problem of the coverage

for flow related problems, where the agents need to move along the boundaries of the region to

perform the desired coverage task.
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5.2.1 VORONOI PARTITIONS

The main objective of this work is to adopt a dynamic coverage area within the agents deploy-

ment and partitioning framework. To achieve this, we need to define an optimization problem that

accounts for the changing boundaries of the associated region in a way that it ensures the optimal

coverage for a number of moving agents. This optimization problem should consider the agents,

individual cost function defined within the dynamic boundaries of the region associated with all

the agents. We first define the collective position of the team by the centroid l as a function of

the agents position in the associated team, i.e., l = g(p1, p2, . . . , pn). The dependency of l on the

position of the agents is discussed later. Next, we partition the changing polytope Q into a set of

Voronoi cells Vt(P) = {V1, V2, . . . , Vn} generated by the agents (p1, p2, . . . , pn) as

Vm = {q ∈ Q | ‖q − pm‖ ≤ ‖q − pr‖, r = 1, . . . , n, r 6= m}, (5.1)

where pm denotes the location of mth agent for m ∈ {1, . . . , n}.

Depending on the position of the agents, they might require a different set of data, i.e., their

neighbors’ position, to be maintained. Some agents share boundaries only with other agents while

the agents on the boundaries of the region are neighbors not only with other agents but they may

also share edges with the polytope Q . In general, the edges associated with each agent ∂Vm are

either an edge shared with other agents or edges shared with the dynamic region of the team of

agents depending on the position of the agent within the team. An edge that is shared with the

neighboring agent f in the same team is shown by ∂Vm,f . The edges associated with the agents on

the boundaries that are shared with the main polytope Q , the boundaries of the rear and front lines

confining the region are represented by ∂V B
m , ∂V F

m and ∂V R
m , respectively. Also, ∂V B

1 and ∂V B
2

indicate the fixed boundaries of the region forming the main stream of the flow that are shown by

smooth splines. Figure 5.1 illustrates the boundaries and their normal vectors for Voronoi Vm. We

recall the basic characteristics of the Voronoi partitions including their associated mass, centroid,
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Figure 5.1: An illustrative example of the Voronoi partitioning in a flow field, where the boundaries
and their associated normal vectors for the Voronoi cell Vm are shown for the edges shared with
f th agent, in addition to the edge ∂V B

m shared with the main region Q .

and polar moment of inertia defined as [32]

MVm =

∫
Vm

ϕ(q)dq, CVm =
1

MVm

∫
Vm

q ϕ(q)dq,

JVm,pm =

∫
Vm

‖q − pm‖2ϕ(q)dq.
(5.2)

The centroid of the team that is a function of the agents position is defined as

l =

∑n
m=1 MVmpm∑n
m=1 MVm

. (5.3)

As described earlier, the centroid l is a representative of the agents position in the team and can

be considered as the collective position of the agents that is needed for the computation of the

dynamic boundaries of the region Q .

5.2.2 FORMULATION OF THE LOCAL OPTIMIZATION PROBLEM

The deployment task in the proposed flow framework can be addressed by solving an optimization

problem over the polytope Q where the team’s region needs to be optimized in the sense of its
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associated sensing function. Hence, the following cost function is considered

G(P ,Q) =

∫
QR

‖q − pR‖2ϕ(q)dq +
n∑

m=1

∫
Qm
‖q − pm‖2ϕ(q)dq +

∫
QF

‖q − pF‖2ϕ(q)dq, (5.4)

where G is the collective cost function associated with the sensing performance of the agents in the

set P . Also, pF and pR represent the front and rear guidance points, respectively. The sensing per-

formance is considered as f(‖q−pm‖) = ‖q−pm‖2 for themth agent. The solution to (5.4) gives a

local minimum to the deployment problem where agents are considered as the members of a collab-

orating team sweeping through the region. We define a set of polygons as Q = {Q1,Q2, . . . ,Qn},

with disjoint interiors, whose union is Q .

Remark 5.1 It is proven that among different partitioning schemes, the Voronoi partitions are

optimum in the sense of minimizing the defined cost function (5.4) [3, 32]. Hence, for a given set

of agents with position P ∈ Q and a partition Q of Q , we have

G(P ,V(P)) ≤ G(P ,Q), (5.5)

which implies that the Voronoi cells represent the optimum partitioning of the area associated with

dynamic region of the agents.

We first need to define the dynamic boundaries of the region Q . For this purpose, two virtual points

lR and lF called guidance points are assigned before and after the group of agents, respectively.

The locations of these points are assumed to be on the trajectory representing the mean of the

fixed side boundaries of the main region that is obtained by ∂V a =
∂V B1 +∂V B2

2
. In other words,

these points always have the same distance from the fixed boundaries. The lines representing the

dynamic boundaries of the region that confine the coverage area are described by

(Ni)>(q − l + pi
2

) = 0, q ∈ ∂V i
r , (5.6)

where i ∈ {F,R} and the normal vector Ni associated with ∂V i
r is obtained by

Ni =
pi − l
‖pi − l‖

. (5.7)
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5.3 OPTIMAL VORONOI PARTITIONING AND CONTROLLER DESIGN

The dynamics on the guidance points dictate the speed and direction in which the sensing coverage

is carried out on the given area. The next step is to obtain (locally optimum) location of the agents.

The derivative of the cost function (5.4) associated with n agents is

∂G
∂pm

=
∂

∂pm

(∫
QR

‖q − pR‖2ϕ(q)dq +
n∑
r=1

∫
Qr
‖q − pr‖2ϕ(q)dq+∫

QF

‖q − pF‖2ϕ(q)dq
)
, m = 1, . . . , n. (5.8)

The solution to this optimization problem differs from that to the conventional sensing cost func-

tions due to the previously defined dependency of the edges of the agents shared with the bound-

aries on imposed dynamics of the guidance points. The derivative with respect to the coordinate of

agent pm is obtained as

∂G
∂pm

=

∫
Vm

∂

∂pm
‖q − pm‖2ϕ(q)dq +

( n∑
r=1

∫
∂V r

‖q − pr‖2ϕ(q)
∂∂Vr
∂pm

Nrdq+∫
∂V F
‖q − pF‖2ϕ(q)

∂∂V F

∂pm
NFdq +

∫
∂V R
‖q − pR‖2ϕ(q)

∂∂V R

∂pm
NRdq

)
, (5.9)

where ∂V F = ∂Q ∩ ∂QF and ∂V R = ∂Q ∩ ∂QR. It can be inferred from the proposed partitioning

that the boundaries of the Voronoi cell Vr are either directly or indirectly dependent on pm. The

direct dependency is obviously resulted from the definition of the Voronoi cells (5.1). We note that

Vm and the voronoi cells in its neighborhood are directly dependent on pm. The indirect dependency

can be seen in the shared boundaries with the guidance agents, where they share at least one edge

with the guidance agents (or contribute at least one edge to the boundary of the group of agents).

Remark 5.2 The integral on each boundary shared with the neighboring agents is identical for

agents on both sides except that the normals will have opposite signs, i.e.,Nm,f = −Nf,m. Hence,

we have

∑
f∈F

∫
∂Vm,f

‖q − pm‖2ϕ(q)
∂∂Vm,f
∂pm

Nm,fdq = −
∑
f∈F

∫
∂V f,m

‖q − pr‖2ϕ(q)
∂∂Vf,m
∂pm

Nf,mdq,

(5.10)
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where Nf,m is the normal vector associated with the edge ∂Vf,m, and F = {f |pf ∈ Npm} with

Npm representing the set of agents that share boundaries with agent pm. According to Remark 5.2,

the terms associated with shared boundaries with other neighbouring agents will cancel out and we

have

∂G
∂pm

=

∫
Vm

∂

∂pm
‖q − pm‖2ϕ(q)dq +

( nb∑
r=1,i∈{F,R}

∫
∂V ir

‖q − pr‖2ϕ(q)
∂∂V i

r

∂pm
Nidq+∫

∂V F
‖q − pF‖2ϕ(q)

∂∂V F

∂pm
NFdq +

∫
∂V R
‖q − pR‖2ϕ(q)

∂∂V R

∂pm
NRdq

)
, (5.11)

where nb is the number of agents sharing edges with ∂QF and ∂QR. Next, to calculate the derivative

terms apperaing because of the dependency of the shared edges with dynamic boundaries on the

nucleus, the chain rule can be applied as follows

∂∂V i
r

∂pm
=

∂l

∂pm

∂∂V i
r

∂l
, (5.12)

where using (5.3) and (5.12), we obtain

∂

∂pm

(
l

∫
Q
ϕ(q)dq)

)
=

∂

∂pm

( n∑
r=1

pr

∫
Vr

ϕ(q)dq
)
, (5.13)

∂l

∂pm

((∫
Q
ϕ(q)dq

)
I2 +

( ∑
i∈{F,R}

∫
∂Q
ϕ(q)

∂∂V i

∂l
Nidq

)
l>
)

=

( ∫
Vm

ϕ(q)dq
)
I2 +

n∑
r=1

( ∫
∂V r

ϕ(q)
∂∂Vr
∂pm

Nrdq
)
p>r . (5.14)

The last term can be discussed in two groups of edges; the ones shared with neighboring agents

and the shared edges with dynamic boundaries. It should be noted that only the Voronoi cells

associated with the agent located at pm and its neighbors are dependent on pm. From (5.14) and

using the chain rule, we obtain

∂l

∂pm

((∫
Q
ϕ(q)dq

)
I2+

( ∑
i∈{F,R}

∫
∂Q
ϕ(q)

∂∂V i

∂l
Nidq

)
l>−

nb∑
r=1,i∈{F,R}

( ∫
∂V ir

ϕ(q)
∂∂V i

r

∂l
Nidq

)
p>r

)
=
( ∫

Vm

ϕ(q)dq
)
I2 +

∑
pr∈{pm,Npm}

( ∫
∂V r

ϕ(q)
∂∂Vr
∂pm

Nrdq
)
p>r . (5.15)
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The effect of the moving boundaries with respect to the variation of the centroid of the group of

agents is shown by the following notations

M i
∂Vr =

∫
∂V ir

ϕ(q)
∂∂V i

r

∂l
Nidq, (5.16)

M∂Q =

nb∑
r=1,i∈{F,R}

M i
∂Vr , (5.17)

and the changing boundary of the interior agents due to the agents dynamics is represented by

M∂Vr =

∫
∂V r

ϕ(q)
∂∂Vr
∂pm

Nrdq. (5.18)

Using these notations results in the following

∂l

∂pm
=

(
MVmI2 +

∑
pr∈{pm,Npm}

M∂Vrp
>
r

)(
MQ I2 +M∂Q l

> −
nb∑

r=1,i∈{F,R}

M i
∂Vrp

>
r

)−1

. (5.19)

The partial derivative of (5.6) with respect to l is obtained as

∂Ni
∂l

(q − pi + l

2
) + (

∂∂V i
s

∂l
− 1

2
)N i = 0, (5.20)

where
∂Ni
∂l

=
Ni(Ni)> − I2

‖pi − l‖
. (5.21)

Substituting (5.21) into (5.20), we have

∂∂V i
s

∂l
Ni =

Ni(Ni)> − I2

‖pi − l‖
(
pi + l

2
− q) +

1

2
Ni, q ∈ ∂V i

s . (5.22)

Because of the following equality that holds for the variation of the boundary edge ∂V i
r with respect

to the variation of the nucleus l
∂∂V i

r

∂l
Ni =

∂∂V i

∂l
Ni, (5.23)

the derivative (5.9) can be rewritten as

∂G
∂pm

=

∫
Vm

∂

∂pm
‖q − pm‖2ϕ(q)dq +

nb∑
r=1,i∈{F,R}

∫
∂V ir

‖q − pr‖2ϕ(q)
∂l

∂pm

∂∂V i
r

∂l
Nidq+∫

∂V F
‖q − pF‖2ϕ(q)

∂∂V F

∂pm
NFdq +

∫
∂V R
‖q − pR‖2ϕ(q)

∂∂V R

∂pm
NRdq. (5.24)
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Substituting (5.22) into (5.24) and using (5.23), we have

∂G
∂pm

= −2

∫
Vm

(q − psm)ϕ(q)dq +
∂l

∂pm

( nb∑
r=1,i∈{F,R}

(
Ni(Ni)> − I2

‖l − pi‖

∫
∂V ir

‖q − pr‖2ϕ(q)

(
pi + l

2
− q)dq +

1

2
Ni
∫
∂V ir

‖q − pr‖2ϕ(q)dq
)

+

∑
i∈{F,R}

(
Ni(Ni)> − I2

‖l − pi‖

∫
∂V i
‖q − pi‖2ϕ(q)(

pi + l

2
− q)dq +

1

2
Ni
∫
∂V i
‖q − pi‖2ϕ(q)dq

))
.

(5.25)

Further simplification of (5.25) using equations of mass and centroid (5.2) results in

∂G
∂pm

= −2MVm(CVm − pm) +

(
MVmI2 +

∑
pr∈{pm,Npm}

M∂Vrp
>
r

)
(
MQ I2 +M∂Q l

> −
nb∑

r=1,i∈{F,R}

M i
∂Vrp

>
r

)−1( nb∑
r=1,i∈{F,R}

(
Ni(Ni)> − I2

‖l − pi‖

∫
∂V ir

‖q − pr‖2ϕ(q)

(
pi + l

2
− q)dq +

1

2
Ni
∫
∂V ir

‖q − pr‖2ϕ(q)dq
)

+

∑
i∈{F,R}

(
Ni(Ni)> − I2

‖l − pi‖

∫
∂V i
‖q − pi‖2ϕ(q)(

pi + l

2
− q)dq +

1

2
Ni
∫
∂V i
‖q − pi‖2ϕ(q)dq

))
.

(5.26)

As the agents move, the change in their position affects the collective centroid l and the boundaries

∂Q accordingly. This represents the expected sensitivity of the boundaries of the region Q on the

position of pm. The integral on the boundaries of Q is calculated once for all the agents at each time

step and is applied to obtain the derivative of the cost function associated with different agents.

5.3.1 COMPUTATION OF THE VORONOI CELLS

The Voronoi cells associated with each agent may require a different set of information to be

computed online. As described before, the agents with edges shared only with other agents are

able to compute the Voronoi cell by communicating with the neighboring agents within their group.

However, the agents with edges shared with the boundaries ∂Q need the position of the collective

centroid of the group, as well as the position of the guidance points pR and pF that are known a
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Figure 5.2: Initial (left) and final (right) configurations for a team of five robots maintaining the
desired coverage throughout the illustrated section of the Colorado river at Teapot Canyon, the
tributary forming rapid 21. Dashed lines depict the traversed trajectory by robots.

priori. We can implement two alternative communication algorithms; first, it is assumed that all

agents communicate with each other meaning that each agent has the location of the other agents.

Even though this is not an efficient approach, it can be applied for a small number of agents that

are in a relatively close neighborhood of other agents due to the nature of the flow problems.

These assumptions are realistic due to the fact that the width of the coverage area is limited by the

boundaries of the flow and length of the area can be controlled by the relative distance of pF and

pR.

In an alternative and more efficient communication approach, a greedy algorithm that provides

the required data flow within each team and between the so-called leaders of different teams has

been proposed in our recent work [3]. To ensure the required data flow, the position of the collective

centroid of the group of agents is communicated. This can be implemented when there is a large

number of agents covering a large area in some special cases.
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5.3.2 CONTROLLER DESIGN

A gradient decent-based control law is proposed here to ensure the optimal coverage in the sense

of minimizing the sensing cost function at each time step. The following dynamics is imposed on

each agent

ṗm = um =
Km

2MVm

(
− ∂G
∂pm

)
=

Km

2MVm

(
2MVm(CVm − pm)− γm

)
, m = 1, . . . , n, (5.27)

where Km is a positive scalar and

γm =

(
MVmI2 +

∑
pr∈{pm,Npm}

M∂Vrp
>
r

)(
MQ I2 +M∂Q l

> −
nb∑

r=1,i∈{F,R}

M i
∂Vrp

>
r

)−1

( nb∑
r=1,i∈{F,R}

(
Ni(Ni)> − I2

‖l − pi‖

∫
∂V ir

‖q − pr‖2ϕ(q)(
pi + l

2
− q)dq +

1

2
Ni
∫
∂V ir

‖q − pr‖2ϕ(q)dq
)

+

∑
i∈{F,R}

(
Ni(Ni)> − I2

‖l − pi‖

∫
∂V i
‖q − pi‖2ϕ(q)(

pi + l

2
− q)dq +

1

2
Ni
∫
∂V i
‖q − pi‖2ϕ(q)dq

))
. (5.28)

By dividing Km by the varying term 2MVm , the control input is normalized to distribute the effect

of both 2MVm(CVm − pm) and γm in the controller design. While the first term drives the agent

towards its centroid, the second term is associated with the changing boundaries of the coverage

area Q . In other words, the above control law ensures that the agents are confined within the given

dynamic boundaries of Q . Also, as discussed earlier, the guidance points are required to move

along the trajectory representing the mean of the boundaries of the river. Hence, the following

dynamics are imposed on the guidance points

ṖR = KR(∂V a − PR), ṖF = KF (∂V a − PF ), (5.29)

where KF and KR are positive scalars. Due to the dynamics of the boundaries of the moving

coverage area, the imposed dynamics on the guidance points and the agents has to ensure the

convergence to the optimal configuration from the coverage perspective. To this end, the time step

associated with the varying guidance points that imposes the dynamics on the boundaries and

moves the region Q along the flow field needs to be larger than the time step of the dynamics of the

agents. Regardless of the chosen time step, after converging to the first optimal configuration, the
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next convergence to new optimal configurations is expected to be faster. It is mainly because each

optimal configuration is considered as the initial condition for the next configuration associated

with the new Q and hence the location of the agents are near optimal at each time step associated

with the guidance points.

5.4 SIMULATION RESULTS AND DISCUSSION

The proposed approach is evaluated using numerical examples that investigate the capability of the

proposed method in providing an optimal coverage for flow type problems. As the first example, a

section of the river at Teapot Canyon, the tributary forming rapid 21 [86] is chosen to implement the

monitoring agents along the main stream of the river. Five robots are deployed to move along the

river and gather the required information while maintaining the desired coverage at each portion

of the river. As described before, at each iteration the agents are near the optimal location in their

respective new coverage area. Hence, as the coverage area moves along the river’s streamline, the

agents reach their associated optimal position. Finally, as shown in Figure 5.2 the agents converge

to a final configuration as the moving coverage area arrives at the final region through the defined

trajectory for the guidance points. The dynamics of the agents is obtained through choosing Km =

0.21 and also in this case KR = KF = 0.13 that allows for a uniform coverage throughout the

region.

To evaluate the proposed approach on a different example, a section of Ohio river is used

for the coverage purpose as in Figure 5.3. The river is located on the border line of the states

of Illinois and Kentucky and is considered to be a wildlife preserve. The given section of the

river that is located in a hard-to-access area is chosen to deploy the agents to perform the assigned

monitoring task. The results indicate that the agents are capable of moving within the boundaries of

the river. The presented results are obtained for Km = 0.82 and we also assign KR = KF = 0.31.

As mentioned before, this approach allows for either expanding or compressing the covered area

through changing the relative distance of the guidance points. This can be seen in the Figures 5.4,

where the results are shown for both cases. Due to the nature of the coverage task, it is very likely
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Figure 5.3: Initial (left) and final (right) configurations for a team of five robots maintaining
optimum coverage throughout a section of the Ohio river. Dashed lines show the paths of the
robots.

that a portion of the river requires a more accurate monitoring. The proposed approach provides

a flexible tool by assigning a smaller or larger area to each agent to achieve a stronger or more

moderate sensory coverage, respectively. The dynamics on the guidance points are imposed by

KR = 0.26, KF = 0.16 and KR = 0.22, KF = 0.33 for the compression and expansion examples,

respectively.

5.5 CONCLUDING REMARKS

To cope with the complexity of the coverage problems in real world applications, a coverage

approach for flow fields is presented in this paper. The proposed approach ensures the optimum

coverage over the flow surface in a local way leading to the partitioning of the dynamic region by

dividing it into multiple subregions associated with multiple deployed agents. This is beneficial to

handle tasks where it is required to cover a long environment like rivers. Hence, as the coverage
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Figure 5.4: Compressed (left) and expanded (right) configurations for a team of five robots main-
taining an optimum coverage. Dashed lines show the paths of the robots.

area moves within the boundaries of the desired environment, the agents provide the optimal cov-

erage for each dynamic region. The developed scheme also allows for compressing or expanding

the coverage area. This is particularly useful when it is required to gather more accurate data in

a section of the river or a larger area needs to be covered at that specific section of the river. In

essence, the proposed approach provides the means to monitor long rivers located in remote areas

via the proposed control laws that can guarantee the optimum coverage.

83



CHAPTER 6

A SUPPORT VECTOR MACHINE-BASED METHOD FOR LPV-ARX IDENTIFICATION WITH

NOISY SCHEDULING PARAMETERS 1

1F. Abbasi, J. Mohammadpour, R. Tóth, and N. Meskin. A Support Vector Machine-based Method for
LPV-ARX Identification with Noisy Scheduling Parameters. 2014. In Proc. 13th European Control Confer-
ence, Strasbourg, France: pp. 2744-2749. c©2014 IEEE. Reprinted here with permission of the publisher.
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ABSTRACT

In this paper, we present a method that utilizes support vector machines (SVM) to identify linear

parameter-varying (LPV) auto-regressive exogenous input (ARX) models corrupted by not only

noise, but also uncertainties in the LPV scheduling variables. The proposed method employs SVM

and takes advantage of the so-called “kernel trick” to allow for the identification of the LPV-ARX

model structure solely based on the input-output data. The objective function, as defined in this

paper, allows to consider uncertainties related to the LPV scheduling parameters, and hence results

in a new formulation that provides a more accurate estimation of the LPV model in the presence

of scheduling uncertainties. We further demonstrate the viability of the proposed LPV identifi-

cation method through numerical examples, where we show that higher best fit rate (BFR) can

be achieved under realistic noise conditions using the proposed method compared to the method

initially proposed in [146].

6.1 INTRODUCTION

Identification of linear parameter-varying (LPV) systems has attracted the attention of many

researchers within the control systems community (see [145] and many references therein).

The basic idea in identifying an LPV model is to introduce a parametrization of the underlying

dependency of the model on the scheduling variables in terms of a priori chosen set of basis

functions. The very first works on LPV system identification assumed a prior knowledge of the

basis functions and focused on the identification of the unknown parameters [13, 138]. In those

early works, the problem of finding unknown parameters was simply formulated as a least-squares

(LS) problem. Making the assumption that the model structure is known is sometimes valid since

the LPV model can be derived directly from the nonlinear system equations; however, this is

not always the case and hence additional efforts must be devoted to identify the basis functions.

Also, inaccurate selection of the basis functions leads to structural bias while over-parametrization
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results in a variance increase of the estimates. To resolve the high computational load and bias-

variance trade-off arising from over-parameterizations based techniques for least-squares based

model estimation, a semi-parametric identification approach based on least-squares support vector

machines (LS-SVM) was introduced for a class of nonlinear regression models [27, 48, 74]. Some

recent works have been done to address a similar problem for LPV model identification using

LS-SVM [75, 146].

Support vector machines are supervised learning tools originated in modern statistical learning

theory that can effectively provide a non-parametric estimation of the dependency structure for

linear regression based LPV models [91,147]. The supervised learning method was originally pro-

posed by [131, 147] to rebuild the inherent functional relationships and structures in the data [22].

This non-parametric functional dependence estimation is more successful in coping with the bias-

variance trade-off than semi-parametric approaches like dispersion functions methods [146]. Also,

considering l2 loss functions in the LS-SVM approach gives a variation of the original SVM

method that presents an effective model structure learning in the LPV setting. Finding compu-

tationally efficient and unique solution of the linear problem are the advantages of these slightly

different approaches like LS-SVM over original SVM method. Hence our aim in this work is to

employ an effective variation of the LS-SVM method combined with a cost function that focuses

not only on prediction error, but also weighs possible uncertainties in the system variables.

Accurate knowledge of scheduling signals is a critical assumption in both LPV system identifi-

cation and LPV control design. The previous works [22,75,146] that use the kernel-based SVM for

“model learning” assumes the perfect knowledge of the scheduling signal during the system iden-

tification process. The questions that we address in this work are: (i) how is the performance of the

LPV system identification procedure proposed in [146] affected in the presence of such uncertain-

ties? and (ii) how can we improve the LPV system identification when such uncertainties exist? We

will examine the first question through simulation studies. Also, to address the latter question, we

model such uncertainties in LPV parameters (that we refer to as “error in variables”) and include

them in the cost function associated with the underlying optimization problem. In conjunction with
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SVM, the proposed objective function finds the LPV model structure and the corresponding model

coefficients in the presence of error in the variables. This is done using the so-called kernel trick

approach instead of explicitly defining the feature maps (i.e., basis functions) involved [146].

The rest of this paper is organized as follows: Section II describes the basic formulation for the

LPV model identification problem studied here. Sections III presents the proposed identification

method (that we refer to as EIV-SVM). Simulation results are shown in Section IV and finally,

concluding remarks will be made.

6.2 IDENTIFICATION OF LPV INPUT/OUTPUT MODELS

We assume that the following SISO deffrence equation defines the behaviour of the data generating

system,

y(t) =
na∑
i=1

ai(p(t))y(t− i) +

nb∑
j=0

bj(p(t))u(t− j) + e(t), (6.1)

where t represents the discrete time, y and u are the outputs and inputs of the system, and e repre-

sents a white stochastic noise process. We further assume that the coefficients ai and bj are depen-

dent on the time-varying scheduling variable(s) p(t). Note that (6.1) defines an auto regressive

with exogenous input (ARX) dynamic structure. For identification of system (6.1), we will adapt

the same model structure where the orders of na and nb are assumed to be known. Commonly,

in the LPV system identification, when the number of coefficient functions ai and bj is decided,

then the dependence of the coefficients on p(t) is parameterized as a linear combination of a finite

number of basis functions with static dependence on p chosen a priori

ai(p(t)) =

ng∑
r=1

αi,rψi,r(p(t)) i = 1, ..., na

bj(p(t)) =

ng∑
r=1

βj,rψj,r(p(t)) j = 0, ..., nb,

where {ψi,r}na,ngi=1,r=1 and {ψj,r}nb,ngj=0,r=1 are basis functions of the system coefficients. As described

earlier in the paper, since improper selection of basis functions can cause structural bias, best

choice of these functions is crucial. Our aim in this paper is to employ the so-called kernel trick
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in order to avoid the difficulties arising from choosing basis functions in a non-systematic way. As

described later in the paper, tuning the kernel function parameters has a significant impact on the

accuracy of the identified LPV model. In fact, the bias-variance trade-off is tuned, which means

achieving a higher accuracy by tuning the parameters causes more sensitivity to noise. We next

describe all the coefficients and basis functions in a compact LPV-ARX form and put them in a

matrix form. To do so, we first define x(t) as an ng = na + nb + 1 dimensional vector containing

all the outputs and inputs as

x(t) =
[
y(t− 1) . . . y(t− na) u(t) . . . u(t− nb)

]>
,

and [
a1 . . . ana b0 . . . bnb

]
=[

ρ>1 φ1(p(t)) . . . ρ>ngφng(p(t))

]
,

where φi(p(t)) is a nonlinear vector map from the scheduling signal space P to an nH-dimensional

space. ρi is a parameter in RnH . Theoretically, nH can be infinite, except in parametric LPV identi-

fication, where the number of basis functions is set a priori. Employing the aforementioned setup,

the LPV-ARX model of (6.1) can be written in a compact form as

y(t) =
[
ρ>1 φ1(p(t)) . . . ρ>ngφng(p(t))

]
x(t) + e(t),

or

y(t) = ρ>Φ + e(t), (6.2)

where

Φ =
[
φ1(p(t))x1(t) . . . φng(p(t))xng(t)

]>
. (6.3)

6.3 LPV MODEL IDENTIFICATION USING LS-SVM

Least-squares (LS)-based algorithms have been widely utilized for system identification of linear

and nonlinear systems in a regression form [82]. In addition, they have been applied for LPV I/O
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model identification with linear predictors using a priori specified parametrization of the depen-

dencies [29, 35]. With the use of LS-SVM for LPV model identification, first proposed in [146],

the dependence of the basis functions on the LPV parameters is assumed to be unspecified. The

idea behind the work by Tóth et al. [75,146] is that the time-varying coefficients of the LPV model

described in an input/output form can be estimated using the so-called kernel trick method without

assigning specific basis functions. In fact, inherent nonlinearity of the coefficient dependencies can

be “learned” efficiently in a projected high-dimensional feature space [146].

6.3.1 AN LS-SVM ESTIMATOR UNDER UNCERTAIN/NOISY SCHEDULING

In this paper, we extend the work in [75,146] to develop an SVM-based identification method that

can cope with observation/measurement errors in the scheduling variable p(t). To this purpose,

we represent the LPV model in a regression form that is appropriate within the SVM setting, as

follows

y(t) =

ng∑
i=1

[ρ>i φi(p(t)) + ∆vi(p(t))]xi(t) + e(t), (6.4)

where ∆vi represents the uncertainties in the ith coefficient function caused by errors by, e.g.,

the measurement process. The purity ratio of distillation columns that is used as the scheduling

parameter in the LPV identification of the process, is an example of roughly measured scheduling

variables that always contain some observation/measurement error. We note that ∆vi is naturally

different than the environmental noise e(t) that is directly added to the system output. The error-in-

variable terms ∆vi, captured in (6.4), can negatively affect the LPV system identification since the

data collected from the system, i.e., xi(t), are based on noise-free scheduling trajectory actually

influencing the system, while the measured scheduling trajectory obtained for the model identifi-

cation purposes is noisy. To model the impact of error in variables in the SVM formulation, we add

these uncertainties directly to the coefficient functions to be identified as

y(t) = [a1 + ∆a1 . . . ana + ∆ana b0 + ∆b0 . . . bnb + ∆bnb ]x(t) + e(t).
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Using the basis function formulation of the model coefficients, we have

y(t) = [ρ>1 φ1(p(t)) + ∆v1 . . . ρ
>
ngφng(p(t)) + ∆vng ]x(t) + e(t) (6.5)

or

y(t) = ρ>Φ + ∆V >x(t) + e(t),

where Φ was defined by (6.3) and the error in variables are lumped into a vector ∆V defined by

∆V > =
[
∆v1 . . . ∆vng

]
.

Note that ∆V is considered to be stochastic with E{∆V } = 0.

6.3.2 SVM REGRESSION WITH ERROR IN VARIABLES

To characterize an estimate for the model presented in (6.4), we propose the following cost function

J(ρ, e,∆V ) =
γ

2

∥∥ [∆V e

] ∥∥
F

+
1

2

ng∑
i=1

ρ>i ρi, (6.6)

which is inspired by the standard cost function used in the total least-squares (TLS) method, that

can cope with both error-in-variables and measurement noise [79, 88, 121]. In the cost function

above, γ is the regularization parameter. We then expand the matrices and the Frobenius norm and

assign different weights (regularization parameters) to ∆V and e resulting in

J(ρ, e,∆V ) =
γ1

2

N∑
t=1

ng∑
i=1

∆v>i (t)∆vi(t) +
γ2

2

N∑
t=1

e2(t) +
1

2

ng∑
i=1

ρ>i ρi. (6.7)

where γ1 and γ2 expresses the trade-off between te l2-loss (prediction error) and l2-coefficient

deviation and regularization in this multi-objective cost function. Note that ∆vi decouples from

e(t) due to its correlation with γ in (6.6).

6.3.3 CONSTRAINED OPTIMIZATION PROBLEM

The optimization problem described earlier in this section is solved using the Lagrangian method

considering the LPV model in the regression form as the problem constraint. The overall objective
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Figure 6.1: LPV system coefficients corrupted by noise

is now to solve the following problem

min
{ρ,e,∆V }

J(ρ, e,∆V ) =
γ1

2

N∑
t=1

ng∑
i=1

∆v>i (t)∆vi(t) +
γ2

2

N∑
t=1

e2(t) +
1

2

ng∑
i=1

ρ>i ρi

s.t. y(t) =

ng∑
i=1

[ρ>i φi(p(t)) + ∆vi(p(t))]xi(t) + e(t).

The error function variables can be determined by setting the Lagrangian for this constrained opti-

mization problem as

L(ρ, e,∆V, α) = J(ρ, e,∆V )−
[ N∑
t=1

αt

ng∑
i=1

[ρ>i φi(p(t)) + ∆vi(p(t))]xi(t) + e(t)− y(t)
]
,

where αt’s are the Lagrangian multipliers. We then employ the Karush-Kuhn-Tucker (KKT) condi-

tion to find the saddle point of Lwhich under the zero-duality gap corresponds also to the optimum

of J ,

∂L

∂∆vi
= 0 → ∆vi(t) =

αt
γ1

xi(t)

∂L

∂e(t)
= 0 → ei(t) =

αt
γ2

∂L

∂ρi
= 0 → ρi =

ng∑
i=1

αtφi(t)xi(t)

∂L

∂αt
= 0 → e(t) = y(t)−

ng∑
i=1

[ρ>i φi(t) + ∆vi(t)]xi(t). (6.8)
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Substituting the obtained variables back into (6.8) results in

y(t) =

ng∑
i=1

{
[
N∑
j=1

αjxi(j)φ
>
i (j)]φi(t) + αtγ

−1
1 xi(t)

}
xi(t) + γ−1

2 αt.

By collecting the related terms together, we have

y(t) =

ng∑
i=1

N∑
t=1

αj xi(j)φ
>
i (j)φi(t)xi(t)︸ ︷︷ ︸

[Ω]ij,t

+γ−1
1 αtxi(t)xi(t) + γ−1

2 αt, (6.9)

where we then define

[Ω]j,t =

ng∑
i=1

[Ω]ij,t =

ng∑
i=1

xi(j)φ
>
i (j)φi(t)xi(t). (6.10)

that can allow us to write (6.9) in the matrix form considering the discrete time instants t =

1, . . . , N . This leads to the following expression

Y = (Ω + γ−1
1 diag(

ng∑
i=1

x2
i (1), ... ,

ng∑
i=1

x2
i (N)) + γ−1

2 IN)α. (6.11)

Writing the first term of (6.11) in the kernel form as in [146] yields a systematic way to cope

with the basis functions complexity. In fact, this new formulation is based on the kernel trick that

estimates the inner product of the feature maps in a lower dimensional space without any need to

directly define these functions. The elements of the matrix Ω are defined by

[Ω]ij,t = xi(j)φ
>
i (j)φi(t)xi(t)

= xi(j)〈φ>i (j), φi(t)〉xi(t)

= xi(j)(K
i(p(j), p(t)))xi(t).

where Ki is a positive definite kernel function that satisfies Mercer’s conditions in the inner

product 〈φi(j), φi(t)〉 space without explicitly calculating the mapping. In fact, the kernel trick

only requires the calculation of the modified inner product using every pair of data points and the

kernel function’s value instead of knowing the basis functions. Although, choosing the most appro-

priate kernel highly depends on the problem at hand and fine tuning of its parameters can easily

become a tedious and cumbersome task, the choice of a particular kernel can be very intuitive
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and straightforward depending on what kind of information we are expecting to extract from the

data. Among various possible choices for kernel functions, the use of radial basis function (RBF),

polynomial, and sigmoid function is appealing due to their ability to represent the nonlinearities

in different types of data [131]. In this paper, we use the above three kernel functions and their

performance is compared in the next section. The following equation represents the RBF kernel

function

Ki(p(j), p(t)) = exp
(
− ‖p(j)− p(t)‖

2
2

2σ2
i

)
, (6.12)

where σi is an adjustable parameter. The polynomial kernels are represented by

Ki(p(j), p(t)) =
(
1 +

p(t)>p(j)

c

)d
, (6.13)

where adjustable parameters are the slope c and the polynomial degree d. Finally, the implemented

sigmoid kernel function is

Ki(p(j), p(t)) = tanh
(
λp(t)>p(j) + β

)
, (6.14)

where λ and β are the tuning parameters.

After substitution of the chosen kernel function into Eq. (6.11), the solution to this linear equa-

tion is given by

α = (Ω + γ−1
1 diag(

ng∑
i=1

x2
i (1), ... ,

ng∑
i=1

x2
i (N)) + γ−1

2 IN )−1Y.

Using the obtained expression for α and the kernel trick approach, coefficients of the LPV-ARX

model estimate are calculated as

ai(·) = ρ>i φi(·) + ∆vi(t) =

N∑
t=1

αtxi(t)K
i(p(t), ·) +

αt
γ1
xi(t),

bj(·) = ρ>j φj(·) + ∆vj(t) =
N∑
t=1

αtxj(t)K
j(p(t), ·) +

αt
γ1
xj(t).

where N is the number of the measurements.
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6.4 SIMULATION RESULTS

In order to evaluate the efficiency of the proposed LS-SVM-based LPV model identification

method (that we hereby refer to as “EIV-SVM”) when the LPV parameters are corrupted by

noise, we apply it to the example in [146]. The following LPV model, in an input/output form is

considered:

y(t) = a1(p(t))y(t− 1)) +
1∑
i=0

bi(p(t))u(t− i) + e0(t), (6.15)

where p(t) ∈ [−1 1]. To generate data for identifying the system described by (6.15), N = 1500

samples of data points have been simulated using u(t) = sin(π
2
t), p(t) = sin( t

4
) and independent

and identically distributed (i.i.d.) e0 with e0 ∼ U(−1, 1). We also assume that instead of p(t)

only p∗(t) = p(t) + w(t) is available to be measured in the system where w is also i.i.d. and

w(t) ∼ η × U(−1, 1) where η is a coefficient to control the noise level in the scheduling variable.

In the following example, η is assigned 0.05 and 0.1 for the first and second cases, respectively. It

should be noted that to avoid clipping of the distribution of η here p∗(t) is allowed to deviate from

[−1 1].

Table 6.1: The MSE and BFR of the EIV-SVM and LS-based SVM methods over 100 runs
LS-SVM (RBF) EIV-SVM (RBF) EIV-SVM (polynomial) EIV-SVM (sigmoid)

Noise Level MSE BFR MSE BFR MSE BFR MSE BFR

Case I Mean 5.4905e-04 0.8326 4.9695e-04 0.8867 5.4534e-04 0.8785 6.1577e-04 0.8723

Std 7.4846e-06 0.0031 6.9000e-06 0.0032 6.5217e-06 0.0035 7.1842e-6 0.0042

Case II Mean 7.7970e-04 0.7660 6.2417e-04 0.8128 6.6442e-4 0.8046 7.1246e-4 0.8026

Std 7.3813e-05 0.0068 5.2667e-05 0.0056 6.3196e-4 0.0064 5.9834e-6 0.0062

The coefficients of the LPV system above are considered to have the following nonlinear depen-

dencies on the scheduling variable

b0(p(t)) =


+0.5 if p(t) > 0.5

p(t) if − 0.5 < p(t) < 0.5

−0.5 if p(t) < −0.5
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Figure 6.2: Comparison of LPV model identification using the proposed method in this paper and
that in [146]: LS and EIV-SVM, respectively, represent the LS-SVM based method in [146], and
the LS-SVM based method proposed in this paper to cope with the error in variables.

b1(p(t)) = −0.2× p2
t

a1(p(t)) = −0.1× sin(π2p(t))

π2p(t)
.

We illustrate two sets of simulation results. First, we compare the accuracy of the LPV model

identification approach in this paper with that in [146] considering an RBF kernel function for both

cases. As described earlier, in addition to a white Gaussian noise added to the system output with

signal to noise ratio of 30dB, another white Gaussian noise is directly added to the scheduling

parameter that affects the three LPV model coefficients, as depicted in Figure 1. The results of

one run of simulations using the noisy scheduling parameter p∗(t) are illustrated in Figure 2. As

observed from the three subplots, the proposed method in this paper outperforms the LS-SVM

method in [146] in identifying the three parameter-varying coefficients b0, b1 and a1. It is noted

that the hyperparameters γ1, γ2, used for the model learning have been tuned with a trial-and-error.

In the second set of simulation results, we compare the three kernel functions described in

the previous section to evaluate the performance of the proposed SVM-based model identification

approach in the presence of error in variable. To examine the accuracy of the proposed identifi-

cation method and compare it with the previous work of Tóth et al. [146], we consider two error
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Figure 6.3: Estimated LPV model coefficients using RBF, polynomial, and sigmoid kernels: The
results illustrate that for the data generated from the given LPV system, the RBF kernel outper-
forms the other two kernel functions in terms of accurately calculating the coefficient functions.

measures of mean square error (MSE) and best fit rate (BFR) defined as

MSE =
1

N

N∑
t=1

(y(t)− ŷ(t))2,

BFR = max
{

0, 1− ‖ y(t)− ŷ(t) ‖2

‖ y(t)− ȳ ‖2

},

where ȳ is the mean of the output in the validation data set, y(t), and ŷ(t) is the simulated output.

Similar to the first simulation, measurements are corrupted by white Gaussian noise and also a

white Gaussian noise directly added to the scheduling variable that affects the three LPV model

coefficients (as shown in Figure 1). The comparative analysis is done for two different noise levels

added to the scheduling parameter p(t). In the two cases examined, noise signals are generated

by U(−1, 1) multiplied by 0.05 (case I) and 0.1 (case II), respectively. A Monte-Carlo simulation

study is performed for a numerical illustration of the identification algorithms through changing

random white Gaussian noise in the scheduling variable. In addition, we employ three kernels

described in the previous section to evaluate the performance of the proposed SVM-based model

identification approach. The regularization parameters are selected through trial and error as γ1 =

1200 and γ2 = 6000. Also, the parameters associated with each one of the three kernel functions

were tuned by cross-validation.
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The results of 100 runs are analyzed and the mean and standard variations of the BFR and

MSE values are shown in Table 6.1 indicating that the proposed EIV-SVM method of this paper

leads to a better approximation of the LPV model coefficients. In addition, the subplots in Figure

3 illustrate the estimates of the three LPV model coefficients as a function of the LPV parameter

p(t) for three kernel functions with the proposed EIV-SVM method. We note that the same error in

variable approach, as in the first set of simulations, is considered here. Also, the presented results

in Table 6.1 and Figure 3 indicate that the RBF kernel (with the tuned parameters σ1 = σ2 = σ3 =

0.5) outperforms the other two kernels due to its capability to characterize nonlinearities in the

collected data from the LPV model.

To summarize the simulation results, the plots demonstrate that, in the presence of noise in the

scheduling variables, the proposed EIV-SVM method exhibits an improved capability of identify

the structure of the coefficient functions compared to the LS-SVM method proposed first in [146].

The Monte-Carlo simulation results also showed that the proposed EIV-SVM method not only

increases the BFR of the estimated output, but also lowers the standard deviation.

6.5 CONCLUDING REMARKS

We presented in this paper new results on the extension of LS-SVM as a powerful machine learning

tool for model identification of LPV systems in input/output form. The problem was formulated in

a way to yield a solution that can handle errors in the scheduling variables. The cost function we

defined in the SVM setting included an additional term associated with the errors in variables. This

allowed the kernel-based identification method to partially compensate for the error in p to avoid

misestimating of the system parameters and lead to a set of new expressions (compared to [146])

for LPV model coefficients by changing the basis functions.
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CHAPTER 7

A BAYESIAN APPROACH FOR MODEL IDENTIFICATION OF LPV SYSTEMS WITH UNCERTAIN

SCHEDULING VARIABLES 1

1F. Abbasi, J. Mohammadpour, R. Tóth, and N. Meskin: A Bayesian Approach for Model Identification
of LPV Systems with Uncertain Scheduling Variables. 2015. In Proc. of 54th IEEE Conference on Decision
and Control, Osaka, Japan: pp. 789-794. c©2015 IEEE. Reprinted here with permission of the publisher.
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ABSTRACT

This paper presents a Gaussian Process (GP) based Bayesian method that takes into account the

effect of additive noise on the scheduling variables for identification of linear parameter-varying

(LPV) models in input-output representation form. The proposed method approximates the noise-

free coefficient functions by a local linear expansion on the observed scheduling variables. There-

fore, additive noise on the scheduling variables is reconstructed as a corrective term added on

the output noise that is proportional to the squared gradient obtained from the posterior of the

Gaussian Process. An iterative procedure is given such that the obtained solution converges to the

best estimation of the coefficient functions according to the given measure of fitness. Moreover,

the expectation and covariance functions estimated by GP are modified for the noisy scheduling

variable case to include noise contribution on the estimated expectation and covariance functions.

The model training procedure identifies noise level in the measurements including outputs and

scheduling variables by estimating the noise variances, as well as the other defined hyperparam-

eters. Then, the identified distribution of noise signals on the scheduling variables is utilized to

denoise the associated scheduling variable signals using a time-domain kernel function. Finally,

the performance of the proposed method is compared to the standard GP through two numerical

examples.

7.1 INTRODUCTION

Most of the existing methods for model identification of linear parameter-varying (LPV) systems

consider the scheduling variables to be noise free. However, the presence of uncertainty, i.e., noise,

in the measured data including the scheduling variables is inevitable and can lead to an inaccu-

rate model identification. Hence, the precise knowledge of scheduling variables in the presence of

uncertainties is a critical issue in both LPV model identification and LPV control design.

Several identification methods have been recently proposed to cope with noisy scheduling

variables corresponding to the so-called error-in-variables problem in the context of linear time-
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invariant (LTI) systems [61, 132, 154]. Unlike the LTI framework, nonlinear dependency of the

LPV model coefficients on the scheduling variables is considered to be the main source of com-

plexity in coping with the noise corrupted scheduling variables. There are very few works exam-

ining the model identification of LPV systems considering noise corrupted scheduling variables.

The previous works [23–25] have focused on the identification of LPV input/output (LPV-IO)

models using set-membership and instrumental variable (IV) based methods. More specifically, a

convex relaxation approach is proposed in [25] under the assumption that all the noisy observations

including outputs and scheduling variables are bounded. Moreover, the IV-based method presented

in [23] is capable of coping with noisy scheduling variables assuming that the instrument is uncor-

related with the scheduling variable noise and the scheduling dependency is linear. More recently,

a bias-corrected, IV-based method has been developed for the identification of LPV models from

noise corrupted measurements of the outputs and the scheduling variables [113]. While, the recent

works have offered significant improvement for the identification of LPV systems, they, however,

have assumed that the dependency on the scheduling variables is a priori known. The present

work introduces a Bayesian-based approach assuming a priori unknown dependency, character-

ized in terms of prior distribution, on the noise corrupted scheduling variables. The Bayesian-

based approaches provide a rich variety of a priori kernels that can effectively characterize such

distributions and hence identify structural characteristics of the systems under study [30,114,115].

The Bayesian formulation is based on the expression of the beliefs about the prior information

or measurements through specification of a priori knowledge before observing new data. The pre-

dictions are made by averaging over all possible predictive distributions while they are weighted by

their respective posterior probability. Unlike the Bayesian methods, non-Bayesian schemes select

a specific parameter or data over others by some predefined criterion [119]. In addition, according

to the Bayesian inference as an effective statistical inference, the probability of a hypothesis is

updated as a new evidence is captured.

Gaussian process (GP) models generalize the Gaussian probability distribution to the func-

tion space that is essential for black-box regression problems. They can be seen as the Bayesian
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version of the well-known support vector machines (SVMs) that provide probabilistic approaches

to learning with reproducing kernel Hilbert spaces. Nonparametric Gaussian process models have

been widely used in model identification of nonlinear dynamic systems. The predictive perfor-

mance of GPs has been evaluated in [118] and compared to other modeling approaches like neural

networks or local learning methods. In [47], a k-step ahead forecasting of a discrete-time non-

linear and LTI dynamic system is performed using repeated one-step ahead predictions. In the LPV

system identification framework, the authors have introduced a Bayesian framework for identifica-

tion of the coefficients in finite impulse response (FIR) dynamic structures in [49]. In this paper, an

extension of the standard GP method is formulated to identify the dependency of the LPV model

coefficients on the scheduling variables while they are corrupted with a Gaussian noise process.

Throughout this paper, notationA�B is used to represent the Hadamard product of the matrices

A and B of the same dimension such that [A � B]ij = [Aij] · [Bij]. In addition, IN , R, Z and Rn

denote the N × N identity matrix, the set of real numbers, the set of integer numbers and the set

of n-dimensional vector space with real elements, respectively, and (.)> represents the transpose

of the associated vector or matrix.

The rest of the paper is organized as follows. Section II describes the LPV model formulation.

Section III explains the principles of the Gaussian processes. The formulation of the error in the

scheduling variables problem is given in Section IV. Section V provides the proposed two-step

estimation procedure for LPV model identification. Finally, simulation results are shown in Section

VI, and concluding remarks are provided in Section VII.

7.2 LPV INPUT-OUTPUT MODELS

We consider a single-input single-output (SISO) linear parameter-varying (LPV) system in the

auto-regressive form with exogenous input (ARX) described by

y(k) = −
na∑
i=1

ai(p(k))y(k − i) +

nb∑
i=0

bi(p(k))u(k − i) + e(k), (7.1)

where k ∈ Z denotes the discrete time, y : Z → R is the system output and u : Z → R

is the system input. Also, p : Z → P is the so-called scheduling variable with P ⊆ Rnp and
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e(k) is an independent and identically distributed (i.i.d.) white stochastic noise process that is

independent of u and p. The coefficients ai(p(k)), bi(p(k)) are assumed to be bounded possibly

nonlinear functions over P that fully characterize the LPV model (7.1). To estimate the structure of

the model coefficient functions usually requires the parametrization of ai and bi in terms of a priori

known basis functions. To avoid difficulties arising from an inappropriate selection of the basis

functions, nonparametric approaches have been proposed in the literature [131]. This can favor the

LPV modeling of time-varying or nonlinear systems specially in case of the dynamic dependencies

of the model coefficients on the scheduling variables, i.e., dependency on p(k), p(k − 1), . . . .

Both parametric and nonparametric approaches for LPV model identification aim at describing

the underlying dependencies of the model coefficients on the scheduling variables. However, often

only a measured version of p(k) is available, polluted by noise, that the dependencies of the coeffi-

cient functions on the scheduling variables often leads to bias of the estimated coefficient functions,

referred to as an error-in-variables problem. The present work is an effort to identify and compen-

sate for the error in the scheduling variables by a modified Bayesian approach. The model (7.1)

can be represented in a more compact form by introducing the following notations:

xi(k) = −y(k − i), i = 1, . . . , na, (7.2)

xna+j+1(k) = u(k − j), j = 0, . . . , nb, (7.3)

x(k) = [x1(k) x2(k) . . . xna+nb+1(k)]>. (7.4)

Additionally, the coefficient function vector is defined as

g(k) = [g1(k) . . . gng(k)] = [a1 . . . ana b0 . . . bnb ], (7.5)

with ng = na + nb + 1, and

y(k) = g(p(k))x(k) + e(k). (7.6)

Equation (7.6) can be rewritten as

y(k) =

ng∑
i=1

gi(p(k))xi(k) + e(k), (7.7)

where xi(k) indicates the i-th entry of the vector x(k) and gi is the i-th entry of the vector g.
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7.3 INTRODUCTION TO GAUSSIAN PROCESSES

Gaussian process (GP) has been introduced to capture functional maps from observations and find

the posterior distributions of the underlying functional dependencies over the observed data. The

GP regression model in the dynamic case can be described as

y(k) = F(D(k)) + e(k), (7.8)

whereD(k) is the vector of the observations, and e is an i.i.d. noise process with e(k) ∼ N (0, σ2
e),

denoting a normal distribution with zero mean and variance σ2
e . In the LPV context, the GP method

is adopted to estimate the model coefficients g and their dependencies on p assuming that F is

describable as a particular realization of a Gaussian process with a zero-mean prior function and a

previously chosen symmetric positive definite covariance function K(·, ·) as

F(·) = GP
(
0,K(·, ·)

)
, (7.9)

where GP denotes the Gaussian process [119]. Accordingly, the joint distribution of the output

data y (conditioned) w.r.t. a given data set D and a test output data F∗ is y
F∗

 = N
(

0,

K(D,D) + σ2
eIN K(D,D∗)

K(D∗,D) K(D∗,D∗)

), (7.10)

where D∗ is a given set of test points and D is the given set of observations. It should be noted that

if there are N∗ test points and N training data, then the covariance matrix K(D,D∗) would be an

N × N∗ matrix. Hence, to obtain the posterior distribution over functions, the joint distribution is

conditioned on the observations. The following predictive equations can be obtained by deriving

the conditional distributions [119]

F∗|(D, y,D∗) ∼ N (F̄∗,Cov(F∗)), (7.11)

F̄∗ , E[F∗|(D, y,D∗)] = K(D∗,D)[K(D,D) + σ2
eIN ]−1y, (7.12)

Cov(F∗) = K(D∗,D∗)−K(D∗,D)[K(D,D) + σ2
eIN ]−1K(D,D∗). (7.13)

The mean and covariance functions obtained from (7.12)-(7.13) can statistically characterize the

coefficients of the LPV model (7.7).
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7.4 FORMULATION OF THE ERROR IN SCHEDULING VARIABLES

Gaussian processes have been successfully applied to a variety of applications in the context of

dynamic systems and proven that they can accurately capture the underlying mapping of the input

space to the output space. However, there are some limitations due to the assumptions made about

the noise conditions. The standard GP algorithm is based on the assumption that the input data

are noise free and the output data are corrupted by white (stationary) Gaussian noise. However,

it is very likely – specially in industrial processes – that the input data are also corrupted by

signal-independent sensor noise. As described earlier, in the present work, the scheduling vari-

ables are assumed to be corrupted with an i.i.d. Gaussian noise, in which the proposed identifica-

tion approach can estimate the LPV coefficients in the presence of noise in the observations, i.e.,

noisy scheduling variables and outputs. Let p denote the np-dimensional scheduling variable vector

defined as

p̆k = pk + εp(k), (7.14)

where εp ∼ N (0,Σp) is white Gaussian noise that is independent of u and e. p is the noise-free

scheduling variable that actually affects the underlying system. To simplify the notation, pk is used

instead of p(k). It is assumed that the scheduling variables are independently corrupted by noise,

and hence the noise variance Σp is a diagonal matrix. In the LPV model (7.7), the coefficients are

functions of the noisy scheduling variables and calculating the posterior distribution is intractable

using the standard GP framework. We employ the first order approximation of the model coeffi-

cients obtained using Taylor’s series expansion on the observed data as

gi(p̆k − εp(k)) ≈ gi(p̆k)− ε>p
∂gi(p̆k)

∂p
+ · · · . (7.15)

Since the derivative of a Gaussian process is itself another Gaussian process [133], the previous

assumptions still hold true for the Taylor’s expansion of the coefficients. However, one might argue

that these functions are not available and need to be identified, which will be later examined in this

section. Approximation in (7.15) gives a good estimation of the effect of scheduling variables

noise on the function evaluation. We note that additional terms can also be kept beyond the affine
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approximation in (7.15) at the expense of more complexity eventually leading to a much higher

computational load. Substituting (7.15) into (7.7) and considering the derivative of the expectation

(mean) of the LPV model coefficients obtained by Gaussian process, we have

y(k) =

ng∑
i=1

gi(p̆k)xi(k)−
ng∑
i=1

ε>p
∂ḡi(p̆k)

∂p
xi(k) + e(k), (7.16)

where ḡi(p̆k) represents the mean value of the LPV model coefficients at an observed scheduling

variable. The obtained heteroscedastic model considers the errors in both noisy output and noisy

scheduling variables. Hence, the new error term can be considered as

ẽ(k) = −
ng∑
i=1

ε>p
∂ḡi(p̆k)

∂p
xi(k) + e(k) (7.17)

According to (7.16) and (7.17), the probability of the output y given the functions gi, i = 1, . . . , ng,

and data set D = {p̆(k), y(k), u(k)}Nk=1 can be obtained as

P (y| (g,D)) = N
(
E(y),

ng∑
i=1

xi(m)
∂ḡi(p̆m)

∂p

>

Σp
∂ḡi(p̆n)

∂p
xi(n) + σe

2
)
, (7.18)

E(y) =

ng∑
i=1

gi(p̆k)xi(k). (7.19)

This can be seen as an equivalent formulation to considering the given scheduling variables as

deterministic and adding a corrective term to the output error term. To obtain the posterior distri-

bution, the prior is considered as the standard GP (7.8)

P
(
gi(pk)xi(k)|D

)
= N

(
0,Ki(D,D)

)
, (7.20)

where Ki(D,D) is the N ×N symmetric covariance matrix defined as

K(Dm,Dn) =

ng∑
i=1

xi(m)ki(p̆m, p̆n)xi(n), (7.21)

ki(p̆m, p̆n) = λi exp

(
(p̆m − p̆n)>W−1

i (p̆m − p̆n)

)
, (7.22)

whereWi is the diagonal matrix of characteristic length-scale, and λi is a positive scalar factor rep-

resenting the value of the covariance function when p̆m and p̆n are very close. Using the (approx-

imation) LPV model in (7.16), the gradient term can be considered as a secondary error term to
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compensate for the error in the scheduling variables and its effect on the output. Hence, similar to

the variance of the output error, only the elements on the diagonal are kept for calculating the joint

covariance matrix. The associated diagonal matrix is defined as

Di(n, n) = xi(n)
∂ḡi(p̆n)

∂p

>

Σp
∂ḡi(p̆n)

∂p
xi(n), (7.23)

for n = 1, . . . , N . The calculated probabilities (7.18) and (7.20) are combined to obtain the fol-

lowing posterior distribution y

gi(P∗)

 = N
(

0,

K(D,D) + σ2
eIN + D κi(D,P∗)

κi(P∗,D)> ki(P∗,P∗)

), (7.24)

where P∗ = p̆∗i , i = 1, . . . , N∗, is a test point and κi(D,P∗) is defined as follows

κi(P∗,D) = κi(D,P∗) =



xi(1)ki(p̆1,P∗)

xi(2)ki(p̆2,P∗)
...

xi(N)ki(p̆N ,P∗)


, (7.25)

and D is the N ×N matrix of the derivatives calculated as

D =

ng∑
i=1

Di, (7.26)

and Cov(gi(p̆m),gi(p̆n)) = ki(p̆m, p̆n) is the covariance or kernel function given by (7.22).

According to (7.24), the predictive posterior mean and covariance are obtained as

ḡi = E[gi(P∗)|D,P∗] = κi(P∗,D)
[
K(D,D) + σ2

eIN + D
]−1Y , (7.27)

Cov[gi(P∗)] = ki(P∗,P∗)− κi(P∗,D)
[
K(D,D) + σ2

eIN + D
]−1

κi(D,P∗), (7.28)

where Y = [y(1), y(2), . . . , y(N)]>. To simplify the notation we define α as

α =

(
K(D,D) + σ2

eIN + D

)−1

Y . (7.29)

As observed, ḡi is dependent on its derivative, and hence an analytical solution does not exist to

the resulting equations. Hence, an iterative procedure is proposed here. To this purpose, we first
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calculate α using standard GP, i.e., from (7.29) without the derivative term D . Then, the Di’s

are obtained by substituting α into (7.30). D would then be computed from (7.26) and replaced

in (7.29) to find α. This procedure is repeated until it converges to the best estimation of the

system output through estimating the coefficient functions of the LPV model. The measure of the

fitness along with more technical details are explained later in this section. After calculating the

derivatives, substituting them in (7.23) and defining P = {p̆1, p̆2, . . . , p̆N}, we obtain

Di(n, n) = xi(n)α>
(
2∆n � κi(p̆n,P)>

)>W−>i ΣpW−1
i

(
2∆n � κi(p̆n,P)>

)
αxi(n), (7.30)

where ∆n is defined as ∆n = [p̆n− p̆1, p̆n− p̆2, . . . , p̆n− p̆N ]> and κi(p̆n,P) is a vector defined as

κi(p̆n,P) =

[
xi(1)ki(p̆n, p̆1)) , · · · , xi(N)ki(p̆n, p̆N)

]
. (7.31)

It should be noted that for calculating the covariance matrix, the coefficient functions are assumed

to be mutually independent and hence their associated derivatives are also mutually indepen-

dent [133]. The added diagonal matrix D to the output noise variance in (7.24) is a corrective

term that compensates for the error in the scheduling variables by taking into account the effect

of the gradient of the mean function as a measure of sensitivity to noise-corrupted scheduling

variables. Since, the corrective term D needs to be found to calculate the expectation of the LPV

model coefficients, an iterative procedure is defined. First, the gradient of the estimated coefficients

ḡi(pk) by the standard GP are calculated and substituted in (7.24). In fact, we find the derivative

of the coefficients from the mean function obtained via the standard GP at the training points. The

obtained gradient is used to calculate the corrective additive term to update the probability distribu-

tion (7.24). Next, the updated distribution is used to estimate the coefficient functions and system

output accordingly. Then, the hyperparameters including the noise variance of np scheduling vari-

ables and that of the output are tuned through trial and error to maximize the so-called best fit ratio

(BFR) defined by

BFR := 100% ·max
(

1− ‖y(k)− ŷ(k)‖l2
‖y(k)− ȳ‖l2

, 0

)
, (7.32)

which is considered to be the fitness score. In (7.32), ŷ is the simulated output of the estimated

model, y is the true output and ȳ represents the mean of the true output y. Next, the gradient of the
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estimated posterior mean ḡi(pk) is used to update the corrective term and retrain the process. The

procedure is iterative and continues until the maximum BFR is achieved.

7.4.1 LEARNING WITH UNCERTAIN SCHEDULING VARIABLES

The expectation (7.27) and covariance (7.28) of the coefficient functions obtained by GP are mod-

ified to include the scheduling variables noise contribution. To this aim, the expectation of the

modified mean and covariance are obtained by integrating over the scheduling variables distribu-

tion [47]. In the present work, the test points are assumed to be a set of Gaussian distributions, and

hence, the integral is analytically tractable. It should be noted that the true scheduling variables are

not observable; however, we have access to their distributionN (P∗,Σp), where P∗ is the observed

test point [33,117]. Therefore, the noise-free scheduling variables are assumed to be Gaussian dis-

tributed P̃∗ ∼ N (P∗,Σp), where P̃∗ = p∗i , i = 1, . . . , N∗. According to the given distribution on

the scheduling variables, the expectation of the covariance function (7.22) is obtained as

ki∗(P∗, p̆k) = EP̃∗ [k
i(P̃∗, p̆k)|P∗,Σp] =

∫ +∞

−∞
ki(P̃∗, p̆k)P (P̃∗|P∗,Σp)dP̃∗. (7.33)

Eventually, we have

ki∗(P∗, p̆k) = λi | I +W−1
i Σp |−

1
2 exp

(
− (P∗ − p̆k)>(Wi + Σp)

−1(P∗ − p̆k)
)
. (7.34)

The expected value of the LPV model coefficients given the observed scheduling variables is

obtained from (7.24) and (7.33) as

EP̃∗ [gi(P̃
∗) | (P∗,D)] = ḡi(P∗) = κi∗(P∗,D)>

(
K(D,D) + σ2

eIN + D

)−1

Y , (7.35)

where Y = [y(1) y(2) . . . y(N)] and κi∗(P∗,D) is as defined in (7.25) considering the expectation

of the covariance function ki∗(P∗, p̆k) instead of the previously defined ki(P∗, p̆k). To calculate the

predictive covariance, the total covariance law is implemented (see [31]), where

Cov[gi(P̃∗) | (P∗,D)] = EP̃∗ [Cov[gi(P̃∗) | (P∗,D)]] + CovP̃∗ [ḡi(P̃
∗)]. (7.36)
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The covariance and mean are calculated from the distribution described by (7.24). Then, the total

covariance law results in the following

Cov[gi(P̃∗) | (P∗,D)] = EP̃∗ [k
i(P̃∗, P̃∗)]−EP̃∗ [κ

i(P̃∗,D)
>(K(D,D)+σ2

eI+D
)−1

κi(D, P̃∗)]

+ EP̃∗ [ḡi(P̃
∗)ḡi(P̃∗)>]− EP̃∗ [ḡi(P̃

∗)]EP̃∗ [ḡi(P̃
∗)]>. (7.37)

After substituting the predictive mean in (7.37), the predictive covariance function for a given test

point P∗ is obtained as

Cov[gi(P̃∗) | (P∗,D)] = EP̃∗ [k
i(P̃∗, P̃∗)]−EP̃∗ [κ

i(P̃∗,D)>
(
K(D,D)+σ2

eIN+D
)−1

κi(D, P̃∗)]

+ EP̃∗ [κ
i(P̃∗,D)>

(
K(D,D) + σ2

eIN + D

)−1

YY>
(
K(D,D) + σ2

eIN + D

)−1

κi(P̃∗,D)]

−EP̃∗ [κ
i(P̃∗,D)>

(
K(D,D)+σ2

eIN+D

)−1

Y ]×EP̃∗ [κ
i(P̃∗,D)>

(
K(D,D)+σ2

eIN+D

)−1

Y ].

(7.38)

This can be rewritten in the following form

Cov[gi(P∗)] = λi −
N∑
n=1

N∑
m=1

SmnEP̃∗ [κ
i(P̃∗,Dm)κi(Dn, P̃∗)]

+ Y>SEP̃∗ [κ
i(P̃∗,D)κi(P̃∗,D)>]SY − ḡi(P∗)2, (7.39)

where

S =
(
K(D,D) + σ2

eIN + D
)−1

, (7.40)

and

EP̃∗[κ
i(P̃∗,D)κi(P̃∗,D)>] =

∫ +∞

−∞
κi(P̃∗,D)κi(P̃∗,D)>P (P̃∗|P∗,Σp)dP̃∗. (7.41)

The integration over the given distribution leads to the following expression for the corresponding

elements of (7.41)

EP̃∗ [κ
i(P̃∗,D)κi(P̃∗,D)>]m,n = EP̃∗ [κ

i(P̃∗,Dm)κi(P̃∗,Dn)] = λi | 2W−1
i Σp + I |−

1
2

xi(m)ki(P∗,Dm)xi(n)ki(P∗,Dn)× exp
(
− (P∗ − p̆m + p̆n

2
)>(Wi +

1

2
WiΣ

−1
p Wi)

−1

(P∗ − p̆m + p̆n
2

)

)
. (7.42)
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Substituting (7.42) back into (7.39), the predictive covariance of the LPV model coefficients is

obtained. Therefore, (7.35) together with (7.39) form the basis for one-step ahead prediction of the

system output by the obtained predictive distribution over the given uncertain scheduling variables.

7.5 TWO-STEP PROCEDURE FOR LPV MODEL IDENTIFICATION WITH SCHEDULING VARI-

ABLES DENOISING

A two-step training procedure is proposed here such that the kernels are first trained by the given

validation data. The outcomes of the first step are the estimated hyperparameters including the

noise variances σ2
e and Σp and the associated kernel parameters. As described later, the variance

Σp is used to denoise the scheduling variables as the second step in the training process. In fact, the

same estimated hyperparameters along with the adjusted kernel parameters are used to estimate the

noise-free scheduling variables in time domain. The second step provides an accurate estimation of

the scheduling variables that are implemented for approximating the system output and coefficient

functions of the LPV model for the future test data.

DENOISING THE SCHEDULING VARIABLES

The LPV scheduling variables are considered to be a noise corrupted time sequence signal. Con-

sidering (7.14), covariance of the noise corrupted scheduling variables is calculated as

Cov(p̆(m), p̆(n)) = Cov(p(m), p(n)) + Σp, (7.43)

where p̆(m) and p(m) denote the noisy and noise-free scheduling variables at given snapshot m,

respectively. Also, Σp is the variance of the scheduling variables obtained in the previous section

as one of the trained hyperparameters. We define a covariance kernel in time domain as

Cov(pi(m), pi(n)) = C(tm, tn) = exp

(
‖tm − tn‖2

σ2
i

)
, (7.44)

where i = 1, 2, . . . , np, m,n ∈ {1, 2, . . . , N} and tm, tn are m-th and n-th time snapshots, respec-

tively. The posterior distribution of the scheduling variables is obtained as

p∗i , E[p∗i |(t, p̆i, t∗)] = C(t∗, t)[C(t, t) + σ2
pi
IN ]−1pi, (7.45)
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where t∗ is the time snapshot associated with the test point p∗i . The kernel in (7.44) is tuned with by

the same training data used for estimating the hyperparameters. The estimation of the scheduling

variables from (7.45) is then utilized to estimate the model coefficients at the given test points. The

estimated coefficients are used to estimate the output considering the same fitness score as given

in (7.32) to realize the accuracy of the obtained estimation. It should be noted that the parameter

σi is tuned to maximise the BFR as the measure of fitness.

7.6 SIMULATION RESULTS AND DISCUSSION

In this section, two numerical examples are provided to examine the capability of the proposed

approach in coping with uncertainties in the scheduling variables. Performance of the proposed

approach in this paper is compared to the standard GP in the presence of a high level of noise in

both scheduling variables and output measurements.

7.6.1 EXAMPLE 1

An LPV system described by a finite impulse response (FIR) model and a nonlinear dynamic

dependency on the scheduling variables is considered here. The model is described as

y(k) =
2∑
i=0

bi(pk−i)u(k − i) + e0(k), (7.46)

with

b0(pk) = − exp(−pk), b1(pk−1) = 1 + pk−1,

b2(pk−2) = tan−1(pk−2),

where e0 is a zero mean stochastic noise process with a Gaussian distribution N (0, σ2), σ = 0.05.

The scheduling variable is generated by pk = sin( π
30
k) and an additive noise εp with a Gaussian

distribution N (0,Σp), Σp = 0.1 is simulated to corrupt the scheduling variable resulting in p̆k =

pk + εp(k),. A data set D = {p̆k, y(k), u(k)}Nk=1 with N = 400 snapshots is collected from the
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Figure 7.1: The estimated covariance functions by employing the proposed method.

system (7.46) by considering a periodic input u(k) as

u(k) =


1 if k = 1

0 if k = 2, 3.

(7.47)

As mentioned before, the training data set contains the noise corrupted scheduling variables and

noisy output as the measurement data. The robustness of the proposed approach to the noise in

variables is examined here and the results are compared to the standard GP. The hyperparam-

eters including the RBF kernel parameters are obtained through the training process as W1 =

1.17, W2 = 1.17, W3 = 1.17 and λ1 = 1.2, λ2 = 4.5, λ3 = 5.6; the output and scheduling

variable’s noise variance are also estimated as σe = 0.048 and Σp = 0.98, respectively. In addition,

the time domain kernel in the denoising process is tuned with σ1 = 4.3. The estimated covariance

function for every coefficient using the proposed method and the standard GP are shown in figures

7.1 and 7.2, respectively.

As observed from the figures, the proposed approach provides a very good estimate of the

level of uncertainty in the system with a much higher accuracy compared to the standard GP-based

LPV model identification developed in [49]. The proposed approach offers promising results in

estimating the uncertainty level by presenting a wider confidence region that contains the uncertain

data, as well as the true coefficients, whereas the confidence regions obtained by the standard GP
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Figure 7.2: The estimated covariance functions using the standard GP as elaborated in [49].
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Figure 7.3: Estimated coefficient functions by the proposed method and standard GP.

do not include the true coefficients in various sections of the plots. This error can be justified due to

the inability of standard GP in adapting to the presence of uncertainty in the scheduling variables.

Furthermore, the estimated coefficient functions using the two approaches are shown in Figure 7.3.

The best fit ratio (BFR) and mean square error (MSE) are used to quantify the estimated model

accuracy and the results are shown in Table 7.1. The results illustrate that the proposed method

in this paper can effectively provide an accurate estimation of the LPV model coefficients to cope

with the uncertainty in the data.
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Table 7.1: Example 1: The MSE and BFR of the estimated LPV model coefficient functions using
the proposed LPV identification approach and the one in [49].

Standard GP [49] Proposed GP
Coefficient MSE BFR MSE BFR

b0 0.09 62.35% 0.0132 85.56%

b1 0.0608 64.96% 0.0086 86.85%

b2 0.0396 65.89% 0.0062 86.52%

7.6.2 EXAMPLE 2

An LPV data generating model in the ARX form is considered here to assess the performance

of the proposed approach for rather more difficult nonlinearities to approximate. The system is

described by

y(k) = −a1(p(k))y(k − 1) +
1∑
i=0

bi(pk)u(k − i) + e0(k), (7.48)

with

b0(p(k)) =


+0.5 if p(k) > 0.5

p(k) if − 0.5 < p(k) < 0.5

−0.5 if p(k) < −0.5

b1(p(k)) = −0.2 p2(k),

a1(p(k)) = sin(p(k)),

where e0 is a zero mean stochastic noise process with a Gaussian distributionN (0, σ2), σ = 0.005.

The generated scheduling variable by pk = sin( π
101
k) is corrupted by an additive noise εp with a

Gaussian distribution N (0,Σp), Σp = 0.01. A data set with N = 600 data points is generated by

the system (7.48) with the periodic input u(k) generated by (7.47). The hyperparameters are tuned

by trial and error as W1 = 2.7, W2 = 1.6, W3 = 2.8 and λ1 = 1.2, λ2 = 1.5, λ3 = 1.6.

Moreover, the output and scheduling variable’s noise variances are estimated as σe = 0.0052 and
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Figure 7.4: The estimated covariance function by the proposed method for Example 2.

Σp = 0.011. The estimated covariance functions that illustrate the associated confidence regions

are shown in figures 7.4 and 7.5, for the presented GP and the standard GP in [49], respectively.

The estimated coefficient functions are illustrated in Figure 7.6. Finally, Table 7.2 shows the BFR

and MSE of the estimated LPV coefficients for the proposed LPV model identification approach

and the one using the standard GP [49].

Table 7.2: Example 2: The MSE and BFR of the LPV model coefficients.
Standard GP [49] Proposed GP

Coefficients MSE BFR MSE BFR

a1 0.0081 83.02% 0.0009 94.78%

b0 0.0032 84.97% 0.0011 92.15%

b1 0.0064 73.72% 0.0016 90.9%

7.7 CONCLUDING REMARKS

A new system identification approach for input-output LPV models is presented in this paper based

on Gaussian Process (GP) to compensate for the errors in the scheduling variables. The proposed

approach uses a linear approximation to capture the effect of scheduling variables noise on the eval-

uated coefficient functions on the observed scheduling variables. This leads to acquiring a better
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Figure 7.5: The estimated covariance function by the standard GP for Example 2.
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Figure 7.6: Coefficient functions in Example 2 estimated using the proposed method and the stan-
dard GP.

understanding of the uncertainties in data through more accurate formulation of the noise effect on

the LPV model coefficients compared to the standard GP. The results indicate that the proposed

method gives a more accurate estimation of the LPV model coefficient functions in the presence

of both noisy measurement outputs and erroneous scheduling variables. The simulation results

demonstrate that the proposed approach can effectively cope with uncertainties in the scheduling

variables by estimating the variance of the noise due to the scheduling variables error and attempt

to approximate the noise-free scheduling variables by implementing the time domain kernel func-

tions.

116



CHAPTER 8

NONLINEAR MODEL ORDER REDUCTION OF BURGERS’ EQUATION USING PROPER

ORTHOGONAL DECOMPOSITION 1

1F. Abbasi, J. Mohammadpour: Nonlinear Model Order Reduction of Burgers’ Equation Using Proper
Orthogonal Decomposition. 2015. In Proc. of the American Control Conference, Chicago, IL: pp. 583-588.
c©2015 IEEE. Reprinted here with permission of the publisher.
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ABSTRACT

In this paper, we examine a model order reduction approach for dynamic systems governed by

Burgers’ equation with Neumann boundary conditions. The proper orthogonal decomposition

(POD) method is employed here that provides a reliable and accurate modeling approach, while

the temporal discretization of the continuous error function leads to a more accurate estimation of

the defined cost function. We will investigate the accuracy of the reduced-order model compared to

the finite element (FE) model by choosing an adequate number of basis functions for the approx-

imating subspace. The derived lumped-parameter model for Burgers’ equation is then described

by a nonlinear state-space model. We finally demonstrate the accuracy of the reduced-order model

through a numerical example, where we show that a 7-dimensional POD can accurately estimate

the system output.

8.1 INTRODUCTION

Computational modeling and simulation of nonlinear complex, turbulent systems implementing

the standard discretization schemes like finite element or finite difference, may require a large

number of degrees of freedom to accurately describe the fluid flows. Consequently, the spatial

discretization leads to scarce, but substantial nonlinear systems of ordinary differential equations

(ODEs) that approximate the solution of the given system. However, with respect to both storage

and computing time, these methods are inefficient. This can be crucial when the real-time solutions

of complex systems in feedback control synthesis are required. As a remedy, the reduced-order

modeling was introduced to describe the original mathematical model by a smaller model in a way

that it can still represent certain significant aspects of the system or process with a good accuracy,

depending on the order of the reduced model. That is to say, in implementing different model

order reduction schemes, the lowest order of the reduced model, which accurately approximates

the original system is desired. To achieve this, the original system or process should be described

by a number of basis functions that are extracted from the expected solution of the system.
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The proper orthogonal decomposition (POD), also known as the Karhunen-Loeve decomposi-

tion, can provide us with an effective tool based on projecting the dynamical system onto subspaces

of basis elements that express characteristics of the given system. This is in contrast to, e.g., finite

element techniques, where the elements are not correlated to the physical properties of the system

they approximate [72, 105].

The implementation of the model order reduction approaches was originally developed by

[94–96] in the framework of the structural simulation and later in simulation of incompressible

viscous flows [149]. Among several commonly used model reduction techniques like balanced

truncation and singular value decomposition based methods, the POD has received much attention

in recent years as a tool to analyze complex physical systems [68,122]. It was adopted by [129] to

study turbulent flows. Another application of POD has been in the field of time-dependent partial

differential equations (PDEs), where the snapshots are taken on a certain grid of time instants. It

has been also successfully applied in different fields including signal analysis and pattern recog-

nition [45], fluid dynamics and coherent structures [129], and more recently in optimal control of

evolution problems [68].

The basis functions extracted by POD can be used in a collocation formulation of Galerkin

projection that leads to a finite dimensional system with the smallest possible degrees of freedom.

Therefore, the POD Galerkin technique is well suited in optimal control synthesis and the estima-

tion of parameters in systems described by PDEs [67, 108]. The POD Galerkin scheme has been

also extended separately for elliptic PDEs in [66]. Moreover, the application of POD Galerkin

schemes for the spatial approximation has been substantially studied in [60, 64].

In the present work, we focus on the continuous POD (as opposed to snapshot POD) method

and its application for the model order reduction of the forced Burgers’ equation, which has char-

acteristics similar to the Navier-Stokes equations. The objective of this work is to take advantage

of the underlying characteristics of the continuous POD method to reduce the original model to a

number of ODEs that would then be represented in the state-space form.
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Throughout the paper, unless otherwise specified, we use the notation
〈
., .
〉

to show the inner

product of the given basis functions in the finite element method, representing the spatial domain

integration of the product of the given basis functions. Also,W l
i represents the ith Fourier coeffi-

cient of the reduced model of the order l and Rm is anm-dimensional Euclidean space. In addition,

we define A ◦B as the Hadamard product of the matrices A and B, of the same dimension, m× n

such that [A ◦B]ij = [Aij][Bij].

The rest of the paper is organized as follows: Section II describes the characteristics of the

Burgers’ PDE. Section III explains FEM and primary discretization of the system. The continuous

POD and the fundamental idea behind it will be described in Section IV. Section V provides the

obtained reduced-order models and their state-space representation. Finally, the simulation results

for the given numerical example are discussed in section VI.

8.2 NONLINEAR PARABOLIC MODEL OF BURGERS’ EQUATION

Over the past three decades, Burgers’ equation has been used for the better understanding of tur-

bulence and other nonlinear phenomena as the very important parts of complex systems. This

nonlinear parabolic partial deferential equation (PDE) provides a precise model for investigating

different control problems such as boundary and distributed parameter feedback control problems.

In the present study, we consider this nonlinear PDE model with Neumann boundary conditions

aiming at developing a reduced-order and control-oriented model. In fact, we reduce this nonlinear

PDE model to a number of ordinary differential equations (ODE), and then represent the system in

state-space form using proper orthogonal decomposition (POD) method and finite element models

(FEMs).

Suppose that Ω represents the spatial interval (0, L) and that for T > 0, we set Q = (0, T )×Ω.

For a given velocity w(t, x) and viscosity ν, the governing viscous Burgers’ PDE and the initial

120



and boundary conditions are

∂w(t, x)

∂t
+ w(t, x)

∂w(t, x)

∂x
− ν ∂

2w(t, x)

∂x2
= f(t, x), (8.1)

I.C : w(0, x) = w0(x), (8.2)

B.C : wx(0, t) = u1(t), wx(L, t) = u2(t) (8.3)

where (t, x) ∈ Q, u1(t) and u2(t) are the changing boundary conditions or the system inputs, and

the viscosity ν is considered as 1/Re, where Re represents the Reynolds number. The function f

is the forcing term that is assumed to be square integrable in space and time. We define the Hilbert

space of Lebesgue square integrable functions as H = L2(Ω). We note that the function f is in H

if it satisfies ∫ T

0

‖f(t, x)‖2
Hdt <∞. (8.4)

8.3 ORDER REDUCTION OF BURGERS’ EQUATION WITH FINITE ELEMENT METHOD

The finite element method (FEM) is considered as a general method to approximate partial defer-

ential equations with lumped-parameter (ODE) models. An advantage of this technique over other

methods is that if PDE is time dependent, then it can be reduced to a system of ODEs which can

be integrated using existing techniques. Having a system of linear or nonlinear ODEs can allow

to represent the system in the linear or nonlinear state-space form, which would be helpful for the

control synthesis purposes.

FEM REPRESENTATION OF THE BURGERS’ EQUATION

In order to discretize the Burgers’ equation in the spatial domain, the interval is divided into N

subintervals [xj, xj+1] and we define hj = xj+1− xj . We assume all the elements are of equal size

(uniformly spaced mesh) and hence h1 = . . . = hN = h. Therefore, the FEM basis functions are

defined as [42]

121



(i) for elements ej, j = 1 : N − 1,

Nj(x) =



x−xj−1

h
, xj−1 ≤ x ≤ xj

xj+1−x
h

, xj ≤ x ≤ xj+1

0 otherwise

(8.5)

(ii) for element e0,

N0(x) =


x1−x
h
, 0 ≤ x ≤ x1

0 otherwise
(8.6)

(iii) for element eN

NN(x) =


x−xN−1

h
, xN−1 ≤ x ≤ xN

0 otherwise.
(8.7)

The approximation of w(t, x) in the space spanned by the piecewise linear basis functions is given

by

wN(t, x) =
N∑
i=0

Wi(t)Ni(x), (8.8)

where Wi(t) is the nodal value, i.e., w(t, xi) at the ith node and time t [42]. The weak solution

approach is employed by multiplying both sides of (8.1) by a piecewise smooth test function v(x)

and integrating in the spatial variable’s domain [19]. Taking the integral from both sides and also

substituting the second order derivative term by the chain rule results in

∫ L

0

(
wt(t, x) +

1

2
[w2(t, x)]x

)
v(x) dx− ν

[
u2(t)v(L)− u1(t)v(0)−

∫ L

0

wx(t, x)v′(x) dx

]
=

∫ L

0

f(t, x)v(x) dx. (8.9)

Using the group finite element (GFE) method proposed in [44], nonlinear term can be approxi-

mated as

w2(t, x) ≈
N∑
i=0

W2
i (t)Ni(x). (8.10)
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Since v(x) is arbitrary and piecewise smooth, we let v(x) = Nj(x), for j = 0, 1, . . . , N . Using

Galerkin method and substituting (8.10) into (8.9) yields

N∑
i=0

Ẇi(t)

∫ L

0

Ni(x)Nj(x) dx+
1

2

N∑
i=0

W2
i (t)

∫ L

0

N ′i (x)Nj(x) dx−ν
[
u2(t)Nj(L)−u1(t)Nj(0)

]

− ν
N∑
i=0

Wi(t)

∫ L

0

N ′i (x)N ′j(x) dx =

∫ L

0

f(t, x)Nj(x) dx.

We consider the following notation

Mij =
〈
Ni(x),Nj(x)

〉
, Sij =

〈
N ′i (x),N ′j(x)

〉
,

Fj(t) =
〈
f(t, x),Nj(x)

〉
. (8.11)

For the nonlinear term, we represent it as

(N(W(t)))j =
1

2

N∑
i=0

W2
i (t)

∫ L

0

N ′i (x)Nj(x),

Kij =
〈
N ′i (x),Nj(x)

〉
,

Therefore

N(W(t)) =
1

2
KW2(t), (8.12)

whereW2(t) = [W2
0 (t) . . . W2

N(t)]>. Finally, the reduced-order model with input vector U(t) =

[u1(t) u2(t)]> is described as a set of N + 1 ordinary differential equations

MẆ(t) + νSW(t) +
1

2
KW2(t)− νLU(t) = F (t), (8.13)

where

L =

 −1 0 . . . 0 0

0 0 . . . 0 1

>
(N+1)×2

.

To solve this set of nonlinear ODEs, we need to specify the initial condition. To do so, the given

initial condition should be described in the space spanned by the basis functions, i.e.,

w0(x) ≈ wN(0, x) =
N∑
i=0

Wi(0)Ni(x). (8.14)
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By multiplying both sides of the equality by the test function and again using the weak solution

approach, we obtain

N∑
i=0

Wi(0)

∫ L

0

Ni(x)Nj(x) =

∫ L

0

w0(x)Nj(x), j = 0, . . . , N. (8.15)

This can be represented in the matrix form as

MW(0) = P , (8.16)

where Pj =
〈
w0(x),Nj(x)

〉
. This linear equation gives the initial conditions for the N + 1 ODEs

described by (8.13).

8.4 PROPER ORTHOGONAL DECOMPOSITION METHOD

The fundamental idea behind proper orthogonal decomposition (POD) is to optimally rep-

resent the system in a mean-squared error sense using an orthonormal basis of rank l. Let

Y = [y1, . . . , yn]m×n be a real data matrix containing the n snapshot vectors of m spatial data

points. The POD basis of rank l is optimal in the sense of representing the columns {yj}nj=1 of Y

as a linear combination by an orthonormal basis of rank l [72]. We endow the Euclidean space Rm

with the weighted inner product as

〈u, ũ〉W = uTWũ = 〈u,Wũ〉Rm = 〈Wu, ũ〉Rm for u, ũ ∈ Rm (8.17)

where W ∈ Rm×m is a symmetric, positive-definite matrix. Note that the vector y(t), t∈ [0, T ],

now represents a function in Ω evaluated at m grid points. Therefore, we should supply Rm by a

weighted inner product representing a discretized inner product in an appropriate function space.

Since, the mass matrix in (8.13) is symmetric, real and positive definite, it can be considered as

the weight matrix in the predefined inner product. The goal is to determine a POD basis of rank

l ≤ n that gives the best estimate of the entire trajectory νy = span{y(t)|t ∈ [0, T ]} ⊂ Rm. The

optimality is achieved by minimizing the error between the data and its projection onto the basis
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set [64]

J = min
∫ T

0

‖y(t)−
l∑

i=1

〈y(t), ũi〉M ũi‖2
M dt (8.18)

s.t. 〈ũi, ũj〉M = δij for 1 ≤ i, j ≤ l.

Since the entire trajectory is not available in practical computation, we suppose that we know the

solution of (8.13) at the given time instants tj , j = 1, . . . , n. This translates to minimizing the

following cost function J while the constraints are met [66]

J = min
n∑
j=1

αj‖yj −
l∑

i=1

〈yj, ũi〉M ũi‖2
M (8.19)

s.t. 〈ũi, ũj〉M = δij for 1 ≤ i, j ≤ l,

where αj’s denote the non-negative trapezoidal weights defined by

α1 =
∆t

2
, αj = ∆t for 2 ≤ j ≤ n− 1, αn =

∆t

2
. (8.20)

To solve the above constrained optimization problem, first-order necessary optimality condition is

applied. Therefore, the associated Lagrange functional is described as

L : Rm × . . .× Rm︸ ︷︷ ︸
l−times

×Rl×l

L(u1, . . . , ul,Λ) =
n∑
j=1

αj‖yj −
l∑

i=1

〈yj, ui〉Mui‖2
M +

l∑
i=1

l∑
j=1

Λij(1− 〈ui, uj〉M), (8.21)

where u1, . . . , ul ∈ Rm and Λ ∈ Rl×l. First-order necessary optimality condition gives

∆uiL(u1, . . . , ul,Λ) = 0 in Rm, 1 ≤ i ≤ l. (8.22)

Also noting that

〈ui, uj〉M = δij for 1 ≤ i, j ≤ l, (8.23)

the following is derived from the optimality condition (8.22)

Y DY TMui = λiui for i = 1, . . . , l, (8.24)
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where D = diag(α1, . . . , αn) ∈ Rn×n. By defining ui = M−1/2ūi in (8.24) and multiplying it by

M1/2 from left, we obtain

M1/2Y DY TM1/2ūi = λiūi for i = 1, . . . , l. (8.25)

Considering (8.23), we have

〈ūi, ūj〉Rm = ūTi ūj = uTi Muj = 〈ui, uj〉M = δij for 1 ≤ i, j ≤ l. (8.26)

Defining Ȳ = M1/2Y D1/2 ∈ Rm×n and knowing that MT = M and DT = D, the solution to the

optimization problem (8.19) is obtained by solving the symmetric m×m eigenvalue problem

Ȳ Ȳ T ūi = λiūi, 1 ≤ i ≤ l,

〈ūi, ūj〉Rm = δij, 1 ≤ i, j ≤ l.

(8.27)

The choice of the number of basis functions l, leading to an accurate description of the original

model, is certainly of critical importance for applying POD. There is no general rule for the selec-

tion of l; it is rather based on heuristic considerations along with observing the captured relative

energy by the basis functions [21], which is expressed by

E(l) =

∑l
i=1 λi∑d
i=1 λi

. (8.28)

where d = rank(Ȳ ).

8.5 DEVELOPMENT OF THE REDUCED-ORDER MODEL USING POD

In this section, the derivation of the reduced order model of the Burgers’ equation using POD

method is described. To obtain a control-oriented model, we use the approximation of w(t, x) in

the space spanned by the POD basis functions ψi(x), i = 1, . . . , l as

w(t, x) =
l∑

i=1

〈w(t, x), ψi(x)〉Mψi(x). (8.29)

By setting

W l
i(t) = 〈w(t, x), ψi(x)〉M , (8.30)
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we have the Galerkin form of the projection to the POD space, which is

w(t, x) =
l∑

i=1

W l
i(t)ψi(x), (8.31)

where the Fourier coefficients W l
i , 1 ≤ i ≤ l, are functions mapping [0, T ] onto R. Since for

l = m, we have w(t, x) = wl(t, x), it can be deduced that wl(t, x) gives an approximation of

w(t, x) provided that l ≤ m.

We recall the weak solution approach described earlier for Burgers’ equation that led to

∫ L

0

(
wt(t, x) +

1

2
[w2(t, x)]x

)
v(x) dx− ν

[
u2(t)v(L)− u1(t)v(0)−

∫ L

0

wx(t, x)v′(x) dx

]
=∫ L

0

f(t, x)v(x) dx. (8.32)

Since v(x) is arbitrary and piecewise smooth, we let v(x) = ψj(x), j = 1, 2, ..., l and use POD

Galerkin projection that results in

l∑
i=1

Ẇ l
i(t)

∫ L

0

ψi(x)ψj(x) dx+
1

2

∫ L

0

([ l∑
i=1

W l
i(t)ψi(x)

]2)
x

ψj(x) dx

− ν
[
u2(t)ψj(L)− u1(t)ψj(0)

]
+ ν

l∑
i=1

W l
i(t)

∫ L

0

ψ′i(x)ψ′j(x) dx =

∫ L

0

f(t, x)ψj(x) dx.

Considering the following notation

M l
ij =

〈
ψi(x), ψj(x)

〉
, Slij =

〈
ψ′i(x), ψ′j(x)

〉
,

F l
j(t) =

〈
f(t, x), ψj(x)

〉
,

(N l(W l(t)))j =
1

2

∫ L

0

N
(
w(t, x)

)
ψj(x) dx,

reduced order model becomes

M lẆ l(t) + νSlW l(t) +N l(W l(t))− νLlU = F l(t). (8.33)

It is noted that when the basis functions are orthonormal, M l = Ir. Matrix Sl in the reduced-order

model can also be obtained from the original full-order matrices by expanding the POD basis
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Figure 8.1: The extracted eigenvalues corresponding to the POD eigenvectors (left); The energy
captured by different chosen number of eigenvalues (right).

functions as

Slij =
〈
ψ′i(x), ψ′j(x)

〉
=

∫ L

0

ψ′i(x)ψ′j(x) dx

=

∫ L

0

N∑
k=0

ΨkiN ′k(x)
N∑
m=0

ΨmjN ′m(x) dx

=
N∑
k=0

N∑
m=0

ΨkiΨmj

∫ L

0

N ′k(x)N ′m(x) dx.

(8.34)

This can be written in the following matrix form

Sl = (Ψl)>SΨl. (8.35)

Hence, we have characterized matrix Sl in terms of full order matrix S and the POD basis func-

tions. Same procedure can be implemented to represent the nonlinear term in the reduced-order

model in terms of the full order matrices. To archive this, we first need to find the relationship

between the coefficients W1(t), . . . ,WN(t) and W l
1(t), . . . ,W l

l (t). Considering the fact that the

solution w can be expressed in either l-dimensional reduced-order space or N +1-dimensional full

order system, we have

w(t, x) ≈
l∑

i=1

W l
i(t)ψi(x) ≈

N∑
i=0

Wi(t)Ni(x). (8.36)
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As described earlier, the POD basis functions can be written as a linear combination of the FE

basis functions, and hence

N∑
i=0

Wi(t)Ni(x) ≈
l∑

i=1

W l
i(t)

N∑
m=0

ΨmiN ′m(x). (8.37)

This describes the Fourier coefficients in the compact form as

W(t) ≈ ΨlW l(t). (8.38)

Substituting (8.38) in (8.12) and using Hadamard product, we obtain

N l(W l(t)) =
1

2
(Ψl)>K(ΨlW l(t)) ◦ (ΨlW l(t)). (8.39)

We further define

F l(t) = (Ψl)>F (t), Ll = (Ψl)>L, (8.40)

and hence the reduced order model is described by

Ẇ l(t) + νSlW l(t) +
1

2
(Ψl)>K(ΨlW l(t)) ◦ (ΨlW l(t))− νLlU = F l(t). (8.41)

STATE-SPACE REPRESENTATION

After deriving the reduced-order model for the Burgers’ PDE in the form of N + 1 ordinary differ-

ential equations in (8.13) using finite element method, we can describe the system of ODEs in the

state-space form with N + 1 states as

Ẇ(t) = AW(t) + h(t,W(t), U(t)), (8.42)

where

A = −νM−1S, h(t,W(t), U(t)) = −1

2
M−1KW2(t) +M−1F (t) + νM−1LU(t).

The reduced order state-space model is then represented by

Ẇ l(t) = AlW l(t) + g(t,W l(t), U(t)), (8.43)

where

Al = −νSl, g(t,W l(t), U(t)) = − 1

2
(Ψl)>K(ΨlW l(t)) ◦ (ΨlW l(t)) + F l(t) + νLlU(t).
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8.6 SIMULATION RESULTS AND DISCUSSIONS

In order to assess the performance of the presented model reduction method, an example of a vis-

cous Burgers’ equation is discussed in this section. Our goal is to determine whether the reduced-

order model can accurately estimate the full-order FE model. In this example, the forcing term in

(8.1) is considered to be zero that translates to the so-called viscous Burgers’ equation. The initial

condition is also assumed to be

w0(x) =


100(sin(8πx)− 2x), if x ∈ (0, 1

4
]

0, otherwise.

(8.44)

It is also assumed that the boundary conditions, i.e., inputs to the state-space models, are sinusoidal

functions as

u1(t) = 0.8sin(3t), u2(t) = 0.5sin(3t). (8.45)

As the first step, the eigenvalues corresponding to the POD method are extracted. Figure 8.1 shows

the eigenvalues in a descending order. Also, the percentage of the total energy captured by the

chosen number of eigenvalues is shown in Figure 8.1. In order to investigate the accuracy of the

implemented model order reduction approach, FEM and 7-dimensional POD solution of Burgers’

equation is shown in Figure 8.2. According to Figure 8.1, the first 7 eigenvalues capture more than

99% of the system’s total energy. This is observed in Figure 8.2, where the POD solution closely

matches the FEM solution.

The reduced and full-order open-loop models are simulated for a given viscosity ν = 0.01 (or

Re = 100) to gauge the performance of the model reduction approach for a class of physical flows.

Figures 8.3 illustrates the output of the FE and reduced order POD models for a sinusoidal input

signal in the given example. It is observed that by increasing the number of basis functions to 7, we

can achieve a very close match between the output of both models. Finally, to quantify the model

accuracy, we consider the Best Fit Rate (BFR) defined as

BFR = max
(

1− ‖yi(k)− ŷi(k)‖l2
‖yi(k)− ȳi‖l2

, 0

)
, (8.46)
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Figure 8.2: Finite element solution for 32 spatial points (left), and POD solution with 7 basis
functions (right) both with ν = 0.01.

where yi and ŷi represent the ith output of the FEM and POD state-space models, respectively, and

ȳi is the mean value of the ith output of the FEM model. In fact, the obtained BFR measures the

matching between the output of the reduced order models and the output of the FE model. Table

8.1 shows the BFR of the reduced order models. Also shown in Table 8.1 is the mean-squared error

(MSE) between the reduced-order model output and the original FE model output.

Table 8.1: The MSE and BFR of the output signal of the reduced order models

with sinusoidal inputs

POD (3 Bases) POD (5 Bases) POD (7 Bases)

Output MSE BFR MSE BFR MSE BFR

y1 0.0021 0.0886 2.1836e-04 0.7042 1.3275e-05 0.9271

y2 1.0203e-04 0.4909 6.7584e-06 0.8690 4.2925e-06 0.8956
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different number of basis functions.

8.7 CONCLUDING REMARKS

In this paper, we presented results on developing a reduced-order state-space model for a nonlinear

parabolic PDE to overcome several drawbacks arising from implementing the full-order model spe-

cially for real-time applications. The model obtained used POD Galerkin method, and guaranteed

a highly accurate approximation of the original model. We showed that the combination of POD

and the weak solution approach can lead to an accurate reduced-order model. The results demon-

strated that increasing the number of chosen eigenvalues would represent the original system with

a higher accuracy. We are currently examining the design of robust nonlinear controllers based on

the reduced-order nonlinear model derived in this paper.
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CHAPTER 9

REDUCED ORDER MODEL-BASED SLIDING MODE CONTROL OF DYNAMIC SYSTEMS

GOVERNED BY BURGERS’ EQUATION 1

1F. Abbasi, J. Mohammadpour: Reduced Order Model-based Sliding Mode Control of Dynamic Systems
Governed by Burgers’ Equation. 2015. Proc. of the 54th IEEE Conference on Decision and Control, Osaka,
Japan: pp. 7380-7385. c©2015 IEEE. Reprinted here with permission of the publisher.
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ABSTRACT

In this paper, we use the reduced-order nonlinear model of dynamic systems governed by Burgers’

equation with Neumann boundary conditions – recently developed by the authors in [4] – to define

low order sliding mode surfaces. While keeping the system states moving on the defined surface,

the imposed control law guarantees the stability of the full-order model obtained using a finite

element (FE) approximation of the Burgers’ equation. The accuracy of the applied reduced-order

model obtained from proper orthogonal decomposition (POD) method compared to the FE model is

investigated by determining an adequate number of basis functions for the approximating subspace.

The reduced-order model is then used to design a sliding mode controller, which is implemented

on the FE model demonstrating that the obtained reduced model is suitable for both stabilization

of the full-order model and trajectory tracking.

9.1 INTRODUCTION

The implementation of the standard discretization methods such as finite element or finite differ-

ence methods may require a large number of degrees of freedom to accurately describe complex

nonlinear partial differential equations (PDEs) like Burgers’ equation. Accordingly, the control

design task based on those discretized full-order models would be cumbersome. This can also be

crucial when the real-time solutions for feedback control of complex systems are sought. As a

remedy, the reduced-order modeling was introduced to approximate the original dynamic model

by a simpler one so it could still represent certain significant aspects and dominant dynamics of

the system or process with an acceptable accuracy depending on the complexity of the reduced-

order model. That is to say in implementing different model order reduction schemes, a model

with the lowest order, which accurately approximates the original full-order model is desired. To

achieve this, the original process should be initially described by a number of basis functions

extracted from the expected solution of the system. The development of the model order reduc-
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tion approaches was proposed in [94] in the framework of the structural simulation and later for

simulation of incompressible viscous flows [149].

Recent emergence of data analysis techniques have seen an increased use of tools like prin-

cipal component analysis (PCA) [120] and proper orthogonal decomposition (POD) for devel-

oping control-oriented reduced models of nonlinear systems; a recent example of this is our earlier

work [4] that developed a reduced-order model of Burgers’ equation using continuous POD. The

developed reduced-order model forms the basis for the design of a robust controller in this paper,

that is capable of handling possible model uncertainties. Hence, a nonlinear control strategy based

on the reduced-order sliding mode is proposed here to tackle different kinds of uncertainties arising

from parametric and modeling imprecisions in the reduced-order nonlinear model of Burgers’

equation. Sliding mode control (SMC) is a nonlinear feedback control scheme that can effec-

tively apply a high-frequency switching control to alter the dynamics of a nonlinear system [112].

Switching from one continuous mode to another considering the system’s current position in state

space can guarantee the convergence of the trajectories towards a switching surface that eventually

slides along the boundaries of the control structures [36]. For the design of a sliding mode con-

troller, Lyapunov stability theory is utilized to guarantee the stability of the full-order nonlinear

model by defining the reduced-order sliding surfaces. The model order reduction methods can be

crucial in coping with high order models, in which the measurements of the system states are

required. This translates to high computational complexity in both controller and observer design.

More specifically, the high dimensional matrix operations including inversion involved in higher

order models can considerably increase the run time [17].

In the present work, we employ the POD-based reduced-order model of the Burger’s equa-

tion developed recently by the authors in [4] for the design of a sliding mode controller that can

guarantee the stability of the full-order finite element (FE) model. The closed-loop performance

achieved by the reduced-order model based sliding mode controller in the presence of modeling

uncertainties demonstrates that the designed nonlinear controller can effectively manipulate the

135



full-order model. This can significantly decrease the computational load to control the high order

model.

Throughout the paper, unless otherwise specified, notation
〈
., .
〉

represents the inner product of

the given basis functions in the finite element method, which is the spatial domain integration of the

product of the given basis functions. Also,W l
i represents the ith Fourier coefficient of the reduced-

order model of order l and Rm is the m-dimensional Euclidean space. Moreover, Kronecker delta,

δij , returns zero for i 6= j and 1 for i = j. Finally, we define A ◦B as the Hadamard product of the

matrices A and B of the same dimension such that [A ◦B]ij = [Aij][Bij].

The rest of the paper is organized as follows. Section 9.2 describes the Burgers’ PDE and its

finite element modeling and discretization. The continuous POD and the fundamental idea behind

it will be reviewed in Section 9.3. The design of a sliding mode controller and the proof of closed-

loop system stability and reference tracking is given in Section 9.4. This section also provides a

discussion on the observer design for state estimation of the reduced-order model needed for the

sliding mode control design. The simulation results are shown in Section 9.5, and the concluding

remarks are finally made in Section 9.6.

9.2 APPROXIMATION OF BURGERS’ EQUATION WITH FINITE ELEMENT METHOD

In the present study, we consider this nonlinear PDE model with Neumann boundary conditions to

develop a reduced order, control-oriented model. To this end, we first approximate this nonlinear

PDE model with a large number of ordinary differential equations (ODEs) using finite element

models (FEMs), and then reduce it to the state-space form using proper orthogonal decomposition

(POD) method.

Suppose that Ω denotes the spatial interval (0, L), and for T > 0, we define Q = (0, T ) × Ω.

For a given velocity w(t, x) and viscosity ν, the governing viscous Burgers’ PDE and the initial

and boundary conditions are described by

∂w(t, x)

∂t
+ w(t, x)

∂w(t, x)

∂x
− ν ∂

2w(t, x)

∂x2
= f(t, x), (9.1a)

I.C. : w(0, x) = w0(x), (9.1b)
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B.C. : wx(t, 0) = u1(t), wx(t, L) = u2(t), (9.1c)

where (t, x) ∈ Q, u1(t) and u2(t) are the varying boundary conditions (i.e., the system inputs)

that specify the flux condition on the boundaries. The viscosity is defined as ν = 1
Re

, where Re

represents the Reynolds number. The function f in (9.1a) is the forcing term assumed to be square

integrable in space and time. We define the Hilbert space of Lebesgue square integrable functions

as H = L2(Ω). Note that the function f ∈ H if it satisfies∫ T

0

‖f(t, x)‖2
Hdt <∞. (9.2)

The finite element method is a powerful tool to approximate PDEs with lumped-parameter

ordinary differential equation (ODE) models. An advantage of this technique is that, unlike other

methods, if the PDE is time dependent, then it can be reduced to a system of ODEs which can be

integrated. Having a system of linear or nonlinear ODEs can allow to represent the model in the

linear or nonlinear state-space form, which would be helpful for control synthesis purposes.

FEM REPRESENTATION OF THE BURGERS’ EQUATION

The FE modeling of Burgers’ equation is based on approximating w(t, x) in the space spanned by

N piecewise linear basis functions Ni(x), i = 1, . . . , N defined in [4] as

w(t, x) =
N∑
i=0

Wi(t)Ni(x), (9.3)

where Wi(t) is the nodal value at the ith node and time t, i.e., w(t, xi) [42]. The weak solution

approach is employed here by multiplying both sides of (9.1a) by a piecewise smooth test function

Nj(x) and integrating in the spatial variable domain [19]. As described in [4], the reduced-order

model with the input vector U(t) = [u1(t) u2(t)]> is eventually obtained as the following set of

N + 1 ordinary differential equations

MẆ(t) + νSW(t) +N(W(t))− νLU(t) = F (t), (9.4)
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whereW2(t) = [W2
0 (t) . . . W2

N(t)]> and

L =

 −1 0 . . . 0 0

0 0 . . . 0 1

>
(N+1)×2

,

and

[M ]ij =
〈
Ni(x),Nj(x)

〉
, [S]ij =

〈
N ′i (x),N ′j(x)

〉
,

Fj(t) =
〈
f(t, x),Nj(x)

〉
, (9.5)

where (.)′ denotes the differentiation operator, and

N(W(t)) =
1

2
KW2(t), (9.6)

represents the nonlinear term in the ODEs, where

[K]ij =
〈
N ′i (x),Nj(x)

〉
.

The initial condition must be specified in order to solve this set of nonlinear ODEs. To do so, the

given initial condition is described in the space spanned by the basis functions, i.e.,

w0(x) ≈ w(0, x) =
N∑
i=0

Wi(0)Ni(x). (9.7)

By multiplying the two sides of (9.7) by the test function Nj(x) and again employing the weak

solution approach, this can be represented in the matrix form as [4]

MW(0) = P , (9.8)

where Pj =
〈
w0(x),Nj(x)

〉
. The solution to the linear equation (9.8) gives the initial conditions

needed to solve the set of ODEs in (9.4).

9.3 PROPER ORTHOGONAL DECOMPOSITION METHOD AND ITS APPLICATION TO BURGERS’

EQUATION

Let Y = [y1, . . . , yn]m×n be a real-valued data matrix containing n temporal snapshot vectors of

m spatial data points. The POD basis of rank l is optimal in the sense of representing the columns
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of Y , i.e., {yj}nj=1, as a linear combination of orthonormal bases of rank l [72]. The optimality is

achieved by minimizing the continuous error function between the data and its projection onto the

basis set {ψi}li=1, ψi ∈ Rm [64]

J =

∫ T

0

∥∥∥∥ y(t)−
l∑

i=1

〈y(t), ψi〉Mψi
∥∥∥∥2

M

dt (9.9)

s.t. 〈ψi, ψj〉M = δij for 1 ≤ i, j ≤ l.

As described in [4], the solution to the above constrained optimization problem leads to the fol-

lowing eigenvalue problem

Rnψi = λiψi for i = 1, . . . , l, (9.10)

where the linear, bounded and self-adjoint operator Rn : Rm → Rm is defined according to the

optimality condition in [4].

Next, the derivation of the reduced-order model for the Burgers’ equation using POD method is

described. To this purpose, we use the approximation of w(t, x) in the space spanned by the POD

basis functions ψi(x), i = 1, . . . , l, as

w(t, x) =
l∑

i=1

〈w(t, x), ψi(x)〉Mψi(x). (9.11)

By setting

W l
i(t) = 〈w(t, x), ψi(x)〉M , (9.12)

we obtain the Galerkin projection onto the POD space, that is

w(t, x) =
l∑

i=1

W l
i(t)ψi(x), (9.13)

where the Fourier coefficients W l
i , 1 ≤ i ≤ l, are functions mapping [0, T ] onto R. Since for

l = m, we have w(t, x) = wl(t, x), it can be deduced that wl(t, x) gives an approximation of

w(t, x) provided that l ≤ m. In our previous work [4], we showed that the weak solution approach

with the piecewise smooth test function ψj(x), j = 1, 2, . . . , l along with the application of POD

Galerkin projection would result in the following reduced-order model

M lẆ l(t) + νSlW l(t) +N l(W l(t))− νLlU = F l(t), (9.14)
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where

[M l]ij =
〈
ψi(x), ψj(x)

〉
, [Sl]ij =

〈
ψ′i(x), ψ′j(x)

〉
,

F l
j(t) =

〈
f(t, x), ψj(x)

〉
,

(N l(W l(t)))j =
1

2

∫ L

0

N
(
w(t, x)

)
ψj(x) dx, (9.15)

and

F l(t) = (Ψl)>F (t), Ll = (Ψl)>L. (9.16)

where Ψl = [ψ1, ψ2, . . . , ψl]. It is noted that when the basis functions are orthonormal, M l = Ir

and matrix Sl in the reduced-order model can be obtained from the original full-order matrices by

expanding the POD basis functions as

Sl = (Ψl)>SΨl. (9.17)

The POD basis functions can be written as a linear combination of the FE basis functions, and

hence

N∑
i=0

Wi(t)Ni(x) =
l∑

i=1

W l
i(t)

N∑
m=0

ΨmiNm(x). (9.18)

This describes the Fourier coefficients in a compact form as

W(t) = ΨlW l(t). (9.19)

Substituting (9.19) into (9.15) and using Hadamard product notation, we obtain

N l(W l(t)) =
1

2
(Ψl)>K(ΨlW l(t)) ◦ (ΨlW l(t)), (9.20)

and hence the reduced-order model is described by

Ẇ l(t) + νSlW l(t) +
1

2
(Ψl)>K(ΨlW l(t)) ◦ (ΨlW l(t))− νLlU(t) = F l(t). (9.21)
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STATE-SPACE REPRESENTATION OF THE REDUCED-ORDER MODELS

A state-space representation with N + 1 states for the ODE model obtained from finite element

method, i.e., (9.4), can be determined as

Ẇ(t) = AW(t) + h(t,W(t), U(t)), (9.22)

where

A = −νM−1S,h(t,W(t), U(t)) = −1

2
M−1KW2(t) +M−1F (t) + νM−1LU(t).

Also, the state-space equivalent of the reduced-order model (9.21) can be represented as

Ẇ l(t) = AlW l(t) + g(t,W l(t), U(t)), (9.23)

where

Al = −νSl, g(t,W l(t), U(t)) = −1

2
(Ψl)>K(ΨlW l(t)) ◦ (ΨlW l(t)) + F l(t) + νLlU(t).

9.4 SLIDING MODE CONTROL DESIGN USING THE REDUCED-ORDER MODEL

The use of a high order controller for real-time control of complex systems is not practical due

to the computational complexities involved in both control design process and its implementation.

Therefore, the need for a low-order controller is inevitable. The “reduce then design” approach

employs the reduced-order state space model given by (9.23) with an adequately small value of l

for control design purposes. In this section, we will explain in detail how a sliding mode controller

is designed on the basis of the POD-based reduced order model leading to a stable closed-loop

system for the original full-order model.

9.4.1 SLIDING MODE CONTROL DESIGN

To design a sliding mode controller, a sliding surface should be defined first. To this end, we refer

to the state-space representation of the system in (9.22) accompanied with the full-order system
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model outputs (or the measurement equations) as

Ẇ(t) = AW(t) + h(t,W(t), U(t))

Y (t) = CW(t),

(9.24)

where W(t) represents the state vector of the full-order model. Also, C represents the system

measurement matrix. We assume that only the velocities on the boundaries are measurable, and

hence

C =

 1 0 . . . 0 0

0 0 . . . 0 1


2×(N+1)

.

The reduced-order model can be described in the state-space form as

Ẇ l(t) = AlW l(t) + g(t,W l(t), U(t)),

Y (t) = C lW l(t),

(9.25)

where W l(t) represents the state vector of the reduced-order model. The reduced measurement

matrix C l is obtained by

C l = CΨl. (9.26)

The objective of the control synthesis is to stabilize the closed-loop system and guarantee a refer-

ence trajectory tracking while being robust to uncertainties. The sliding surface to ensure that the

tracking is eventually achieved is defined on the full-order model as

S(t) = Y (t)− r(t) = CW(t)− r(t), (9.27)

where S(t) = [S1(t) S2(t)]>, Y (t) = [y1(t) y2(t)]> is the system output and r(t) =

[r1(t) r2(t)]> is the reference signal. The sliding mode controller (SMC) needs an on-line

access to the reduced-order model states. Thus, a nonlinear low-order functional observer is

designed using the method proposed in [5] to estimate the states of the reduced-order model. The

design of the observer will be described at the end of this section. The SMC law usually includes

a switching control law and an equivalent control law [112]. A switching control law is employed

to drive the system states towards a predefined sliding surface while the equivalent control law
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guarantees that the system states remain around the sliding surface and converge to the surface.

The control law is considered as

U(t) = ueq(t) + usw(t), (9.28)

where ueq(t) and usw(t) represent the equivalent control and the switching control laws, respec-

tively. To construct the equivalent dynamics, the full-order model is considered while the states are

sliding on the defined surface. In fact, only when the system states are on the surface, the equivalent

control provides an action. Taking the derivative of (9.27) results in

Ṡ = CẆ(t)− ṙ(t) = C

(
AW(t)− 1

2
M−1KW2(t) +M−1F (t) +νM−1Lueq(t)

)
− ṙ(t). (9.29)

9.4.2 STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM WITH THE PROPOSED SLIDING

MODEL CONTROLLER

In order to investigate the asymptotic stability of the closed-loop system with the sliding mode

control law, following Lyapunov function is considered

V (t) =
1

2
S>S, (9.30)

where S is the sliding surface defined in (9.27). The stability of the system given by (9.24) is

guaranteed for the sliding surface (9.27) if

dV (t)

dt
< 0 or S>Ṡ < 0 (9.31)

in a neighborhood of the surface given by S(W) = 0. Substituting (9.29) into (9.31) and using

(9.22), we have

S>Ṡ =
(
CW(t)− r(t)

)>(
CẆ(t)− ṙ(t)

)
=W>C>C

(
AW(t)− 1

2
M−1KW2(t) +M−1F (t)

+νM−1LU(t)

)
−W>C>ṙ−r>C

(
AW(t)+AW(t)−1

2
M−1KW2(t)+M−1F (t)+νM−1LU(t)

)
+ r>ṙ. (9.32)
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As observed from (9.32), the defined surface is a function of the states of the full-order model.

However, the main goal is to implement the control law obtained from the reduced-order model

instead of using the full-order one. To this end, the reduced-order model will be used in the defined

surface to find the equivalent control law as

S(t) = Y (t)− r(t) = C lW l(t)− r(t). (9.33)

The model dynamics while on the sliding surface can be obtained from

Ṡ(t) = Ẏ (t)− ṙ(t) = C lẆ l(t)− ṙ(t) = 0. (9.34)

Solving this equation for ueq by substituting (9.25) into (9.34) gives

ueq = (νC lLl)−1

[
ṙ(t)− C l

(
AlW l(t)− 1

2
(Ψl)>K(ΨlW l(t)) ◦ (ΨlW l(t)) + F l(t)

)]
. (9.35)

Finally, substituting (9.28) and (9.35) into (9.32) results in the following

dV (t)

dt
= S>

[
C

(
AW(t)− 1

2
M−1KW2(t) +M−1F (t)

)
− (νCM−1L)(νC lLl)−1C l

(
AlW l(t)

− 1

2
(Ψl)>K(ΨlW l(t)) ◦ (ΨlW l(t)) + F l(t)

)]
+ S>

[
(νCM−1L)(νC lLl)−1 − I2×2

]
ṙ(t)

+ S>(νCM−1L)usw < 0. (9.36)

The latter equation can be represented in a simpler form by rewriting the reduced-order model

matrices in terms of the full-order ones using (9.16) and (9.26) as

νC lLl = νCΨl(Ψl)>L. (9.37)

On the other hand, the definition of the weighted product and orthonormality of the basis functions

leads to

M l = (Ψl)>MΨl = Ir. (9.38)

After some matrix manipulations, we obtain the following expression for the matrix M ,

M =
(
Ψl(Ψl)>

)−1
. (9.39)
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Combining (9.37) and (9.39), we obtain

νC lLl = νCΨl(Ψl)>L = νCM−1L. (9.40)

Furthermore, the reduced-order model matrices in (9.36) can be written in terms of the full-order

model matrices using the equations (9.17), (9.19) and (9.26) as

C l

(
AlW l(t)− 1

2
(Ψl)>K(ΨlW l(t)) ◦ (ΨlW l(t)) + F l(t)

)
= CΨl(−ν(Ψl)>SΨl)W l(t)

− 1

2
CΨl(Ψl)>K(ΨlW l(t)) ◦ (ΨlW l(t)) + CΨl(Ψl)>F (t)

= C(−νM−1S)W(t) +
1

2
CM−1KW(t) ◦W(t) + CM−1F (t)

= C

(
AW(t)− 1

2
M−1KW2(t) +M−1F (t)

)
. (9.41)

By substituting (9.41) back into (9.36), we have

S>(νCM−1L)usw < 0, (9.42)

which implies that the switching control law only needs to satisfy the inequality condition (9.42).

Considering (9.40) and the fact that the system under study is a multi-input multi-output system,

the switching control law corresponding to the defined surfaces can be written as

usw(t) = −(νC lLl)−1

 λ1S1 + ξ1sat(S1)

λ2S2 + ξ2sat(S2)

 , (9.43)

where λ1, λ2, ξ1 and ξ2 are positive constants and sat(.) is the saturation function with the upper

limit of 1 and lower limit of −1. These constants, which are chosen by trial and error considering

the trade-off between the reaching time and chattering, can be considered large enough when the

trajectory is far from the switching surface (so that the reaching time is short), and then as small as

desired in order to limit the chattering.

9.4.3 FUNCTIONAL OBSERVER DESIGN

A functional observer can be designed to estimate the states of the reduced-order model instead

of the full-order one. Hence, the computational cost would be much lower compared to the full-

order state observer. The reduced-order model described by (9.23) is obtained from the discretized
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Burgers’ equation with a locally Lipschitz nonlinearity with respect toW l in a region D, i.e., for

anyW l
1(t),W l

2(t) ∈ D [5]

‖g(W l
1, U

∗)− g(W l
2, U

∗)‖ ≤ γd‖W l
1 −W l

2‖, (9.44)

where ‖ . ‖ represents the induced 2-norm, U∗ is an admissible control sequence and γd is the

nonnegative Lipschitz constant. If the nonlinear function g(., .) globally satisfies the Lipschitz

continuity condition in Rl, then the global stability of the observer is guaranteed [5]. The proposed

observer takes the following form

˙̂W l(t) = AlŴ l(t) + g(Ŵ l(t), U(t)) + L(Y (t)− C lŴ l(t)), (9.45)

where Ŵ l is the estimate of W l and L is the observer matrix gain chosen such that the observer

error system is asymptotically stable. As shown in [5], a sufficient linear matrix inequality (LMI)

condition can be determined to maximize γd while a stabilizingL is obtained. The observer of order

l in (9.45) is used to estimateW l considering that the quadratic nonlinearities in the reduced-order

model described by (9.23) are locally Lipschitz.

9.5 SIMULATION RESULTS AND DISCUSSION

In this section, we illustrate some of the results of our numerical studies and further provide a

discussion on the accuracy of the derived reduced-order models, as well as the high performance of

the closed-loop system achieved from the implementation of the designed sliding mode controller.

9.5.1 OPEN-LOOP SYSTEM SIMULATION RESULTS TO EXAMINE THE REDUCED-ODER

MODEL ACCURACY

In order to assess the performance of the presented model reduction method, an example of a

viscous Burgers’ equation is examined here. The forcing term in (9.1a) is considered to be zero,
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which translates to the so-called viscous Burgers’ equation. The initial condition is assumed to be

w0(x) =


100(sin(8πx)− 2x), for x ∈ (0, 1

4
]

0, otherwise.

It is also assumed that the boundary conditions, i.e., inputs to the state-space models, are sinusoidal

functions as

u1(t) = 0.8sin(2t), u2(t) = 0.5sin(t). (9.46)

The reduced and full-order open-loop models are simulated for a given viscosity ν = 0.01 (or Re

= 100) to gauge the performance of the model reduction approach for a class of physical flows. It

is observed that by increasing the number of basis functions to 7, a very close match between the

outputs of the two models can be achieved (see [4]). Finally, to quantify the model accuracy, we

consider the Best Fit Rate (BFR) as implemented in [4]. Table 9.1 shows the BFR of the reduced-

order models. Also shown in Table 9.1 is the mean-squared error (MSE) between the reduced-order

model output and the original FE model output.

Table 9.1: The MSE and BFR of the output signal of the reduced order models
with sinusoidal inputs (9.46)

POD (3 Bases) POD (5 Bases) POD (7 Bases)
Output MSE BFR MSE BFR MSE BFR

y1 0.0021 0.0886 2.1836e-04 0.7042 1.3275e-05 0.9271

y2 1.0203e-04 0.4909 6.7584e-06 0.8690 4.2925e-06 0.8956

9.5.2 CLOSED-LOOP SIMULATION RESULTS WITH THE DESIGNED SLIDING MODE CON-

TROLLER

The discretized full-order model obtained from FEM is used to validate the designed sliding mode

controller (SMC) consisting of equivalent and switching control laws in tracking a given reference

trajectory. From the fluid mechanics point of view, this can be seen as the problem of controlling

the flux on the boundaries to reach the desired flow velocity at the desired points. The viscous
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Burgers’ equation with the same initial condition as given in the previous section is used to validate

the proposed SMC design approach. The two components of the SMC laws are obtained from

the 7th order reduced model. As described before, the measurement devices are considered to be

placed on the boundaries to collect the flow velocity as the system output. A sinusoidal signal

is considered as the reference input and the system output and control input are shown for the

reference input. The tracking performance and control inputs for a given sinusoidal reference
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Figure 9.1: System outputs and the reference inputs for the given sinusoidal function.

signal are shown in Figures 9.1 and 9.2. The corresponding sliding mode controller parameters are

tuned as λ1 = 1.3×104, λ2 = 1.95×104, ξ1 = 1.4×103 and ξ2 = 1.3×103. The simulation result

of the full-order model is shown in Figure 9.3. As observed from Figure 9.1, the proposed SMC

law illustrates a high tracking performance in the presence of model uncertainties. Uncertainties in

the problem in hand are primarily due to the discrepancy between the full-order and reduced-order

models, where the number of the eigenfunctions chosen to find the POD bases dictates the level of

uncertainties. The switching control in the SMC law works in favor of keeping the trajectory on

the defined sliding surface in the presence of the aforedescribed uncertainties.

9.6 CONCLUDING REMARKS

In this paper, the developed reduced-order model in [4] has been used for the design of a sliding

mode controller on the basis of the sliding surfaces defined according to the reduced-order

model. Due to the need for state estimates required by the sliding mode controller, implementing
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Figure 9.2: The control inputs from the proposed SMC law to track a sinusoidal function.
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Figure 9.3: Velocity response of the full-order model with the proposed SMC law to track a sinu-
soidal function.

the reduced-order model significantly decreased the computational load for both controller and

observer design. Finally, numerical studies have demonstrated promising results by using the

proposed reduced-order model and controller to achieve a high performance tracking of dif-

ferent reference trajectories. This overall proved the practicality of the proposed control-oriented

modeling and model-based nonlinear control design approach for complex systems governed by

nonlinear PDEs.
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CHAPTER 10

ROBUST NONLINEAR CONTROL DESIGN FOR SYSTEMS GOVERNED BY BURGERS’

EQUATION SUBJECTED TO PARAMETER VARIATION 1

1F. Abbasi, J. Mohammadpour: Robust Nonlinear Control Design for Systems Governed by Burgers’
Equation Subjected to Parameter Variation. 2016. Submitted to International Journal of Control.
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ABSTRACT

In this paper, a robust sliding mode controller is proposed for dynamic systems governed by

Burgers’ equation with Neumann boundary conditions in the presence of parameter variations.

The main objective is to design a reduced-order model based controller at a nominal value of the

system parameter that stabilizes the full order model while being robust with respect to model

uncertainties in the obtained reduced-order model. The model uncertainties resulted from the vari-

ation of the parameter ν are discussed under two categories; first, the error arising from the change

in the states of the full-order model, and second, the error associated with the estimated proper

orthogonal decomposition (POD) basis functions at the nominal value of ν0. In the present work,

the boundedness of the error functions is studied and an estimation of these bounds is obtained in

terms of the reduced-order model and matrices of the full-order system that are known a priori.

Next, the bounds on the error functions is used to design a reduced-order sliding mode controller

that guarantees the stability of the full-order model obtained via a finite element approximation of

the Burgers’ equation for a trajectory tracking problem.

10.1 INTRODUCTION

Computational modeling, simulation and control of nonlinear turbulent systems is a challenging

task due to the complexity of the fluid mechanics problems. There are handful of researches tar-

geting the control problem of linear, semi-linear and nonlinear parabolic and hyperbolic partial

differential equations (PDEs). In [52], stabilization of a semi-linear parabolic partial differential

equation, in which the heat source depends on the temperature of the whole space, is considered by

using boundary control. The adaptive boundary stabilization and control has been investigated for a

class of systems described by first-order hyperbolic PDEs with unknown spatially varying param-

eter in [153]. Also, the predictive control of linear parabolic partial differential equations (PDEs)

with state and control constraints was studied in [38]. The Navier-Stokes equation describes many

of the underlying phenomena in fluid mechanics. This equation is simplified to Burgers’ equation
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when flow is considered to be incompressible and with the pressure term removed. The Burgers’

equation can also be viewed as an intermediate step to capture very critical nonlinear convective

behaviors that can model shock waves, some boundary layer problems and traffic flow problems

among many others [6, 20].

There are a handful of discretization methods that can be employed to solve complex non-

linear partial differential equations like Burgers’ equation [59]. However, the implementation of

the standard discretization schemes such as finite element or finite difference methods may require

a large number of degrees of freedom to accurately describe the fluid flows. Additionally, the con-

trol design task based on the full-order model would be cumbersome. However, with respect to

both storage and computational time, these methods are inefficient. This can also be crucial when

the real-time solutions for feedback control of complex systems are sought [15]. As a remedy, the

reduced-order modeling was introduced to approximate the original mathematical model by a sim-

pler one so it could still represent certain significant aspects and dominant dynamics of the system

with an acceptable accuracy depending on the complexity of the reduced-order model [18, 73].

The use of reduced-order models can introduce a source of uncertainty imposed by the order of

the reduced model. In addition to this, there are other types of uncertainty, i.e., varying parameter,

that might affect the accuracy of the extracted reduced model [16, 57, 153]. Hence, the objective

is to obtain an accurate reduced-order representation of the original system while ensuring the

robustness to uncertainties. An approach based on a dictionary of solutions is developed by [6] as

an alternative to using a truncated reduced basis based on proper orthogonal decomposition. The

elements of this dictionary are solutions computed for varying values of time and the associated

parameter. In [56], a sensitivity analysis is carried out to include the flow and shape parameters

influenced during the basis selection process to develop more robust reduced order models for

varying viscosity, changing orientation and shape definition of bodies.

The proper orthogonal decomposition (POD), also known as the Karhunen-Loeve decomposi-

tion, has proven to be an efficient tool for model reduction [72,90]. POD extracts a number of basis

functions that would be used in a collocation formulation of Galerkin projection resulting in a finite
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dimensional system with a low number of degrees of freedom. The generated POD basis functions

solving the underlying eigenvalue problem are dependent on a set of parameters may not give an

accurate estimation of the full-order model associated with a different set of parameters [9,58]. The

POD bases must be regenerated for each set of parameters to determine an accurate reduced-order

estimation of the perturbed problem which is a computationally inefficient process [8].

In the present paper, the model uncertainties are classified in two categories and a robust non-

linear controller is proposed for a trajectory tracking problem. First, the model uncertainties arising

from the approximation of the full-order model by the reduced-order one are investigated. Fur-

thermore, the error associated with the varying parameter is studied when the POD basis func-

tions extracted at the nominal parameter ν0 are used to estimate the full-order model at the new

value of the viscosity ν. A nonlinear control strategy based on the reduced-order sliding mode

control is then proposed to tackle different kinds of uncertainties arising from parametric and

modeling imprecisions in the reduced-order nonlinear model of Burgers’ equation. Sliding mode

control (SMC) is a nonlinear feedback control scheme that can effectively apply a high-frequency

switching control to alter the dynamics of a nonlinear system [127]. Switching from one continuous

mode to another considering the system’s current position in state space can guarantee the conver-

gence of the trajectories towards a switching surface that eventually slides along the boundaries of

the control structure.

The advantages of the presented approach are twofold. First, the obtained reduced model is

calculated once and the model uncertainties are bounded with the reduced and full-order models in

the nominal viscosity ν0. In other words, instead of cumbersome calculation of the basis functions

associated with different values of the parameter, the reduced-order model is computed once and an

accurate estimation of the associated model uncertainties is obtained. Second, a robust controller

is designed taking into account the bounds on uncertainties to capture uncertain reduced model at

the nominal parameter to ensure the desired tracking of the reference trajectory for the full-order

model at any viscosity around ν0. The results of this paper demonstrate that the reduced-order

model based sliding mode controller can effectively control the full-order model in the presence of
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modeling uncertainties. This can significantly decrease the computational load for real-time control

of the large order model of Burgers’ equation.

Throughout this paper, unless otherwise specified, notation
〈
., .
〉

represents the inner product of

the given basis functions in the finite element method, which is the spatial-domain integration of the

product of the given basis functions. Also,W l
i represents the ith Fourier coefficient of the reduced-

order model of order l and Rm is the m-dimensional Euclidean space. Moreover, Kronecker delta,

δij , returns zero for i 6= j and 1 for i = j. Finally, we define A ◦B as the Hadamard product of the

matrices A and B of the same dimension such that [A ◦B]ij = [A]ij[B]ij .

The rest of the paper is organized as follows. Section II describes the Burgers’ PDE and its

finite element modeling along with the continuous POD and the extracted reduced-order model.

This section also discusses the process of obtaining reduced-order model of Burgers’ equation

using POD. The error estimates and sliding mode control design using reduced-order model for a

reference tracking problem is introduced in Section III. The simulation results are shown in Section

IV, and the concluding remarks are finally made in Section V.

10.2 APPROXIMATION OF BURGERS’ EQUATION WITH FINITE ELEMENT AND PROPER

ORTHOGONAL METHODS

Over the past three decades, Burgers’ equation has been used to gain a better understanding of

turbulence and other complex phenomena in fluid systems. This nonlinear parabolic partial differ-

ential equation (PDE) provides a mathematical model that can be used for boundary control and

distributed feedback control design purposes. In the present study, we consider this nonlinear PDE

with Neumann boundary conditions to develop a reduced order, control-oriented model. To this

end, we first approximate this nonlinear PDE with a large number of ordinary differential equa-

tions (ODEs) using finite element method (FEM), and then reduce it to the state-space form using

proper orthogonal decomposition (POD) method.

Suppose that Ω represents the spatial interval (0, L) and that for T > 0, we define Q =

(0, T ) × Ω. Denoting the fluid velocity by w(t, x; ν) that is dependent on the viscosity ν as the
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characteristic parameter, the governing viscous Burgers’ PDE and the initial and boundary condi-

tions are described by

∂wν(t, x)

∂t
+ wν(t, x)

∂wν(t, x)

∂x
− ν ∂

2wν(t, x)

∂x2
= f(t, x), (10.1a)

I.C. : wν(0, x) = w0(x), (10.1b)

B.C. : wν,x(t, 0) = u1(t), wν,x(t, L) = u2(t), (10.1c)

where (t, x) ∈ Q, u1(t) and u2(t) are the varying boundary conditions (i.e., controlled inputs) that

specify the flux condition on the boundaries. Also, wν,x represents the spatial derivative of wν . The

viscosity is defined as ν = 1
Re

, where Re denotes the Reynolds’ number. The function f in (10.1a)

is the force term assumed to be square integrable in space and time. We define the Hilbert space of

Lebesgue square integrable functions asH = L2(Ω). The function f is said to be inH if it satisfies∫ T

0

∥∥f(t, x)
∥∥2

H
dt <∞.

10.2.1 STATE-SPACE REPRESENTATION OF BURGERS’ PDE VIA FINITE ELEMENT METHOD

The finite element method (FEM) is a powerful tool to approximate PDEs with lumped parameter

ordinary differential equations (ODEs). An advantage of this method over other methods is that if

the PDE is time dependent, then it can be reduced to a system of ODEs and then integrated. Having

a system of linear or nonlinear ODEs can allow to represent the model in the linear or nonlinear

state-space form, which would be helpful for control synthesis purposes.

if we Let V = H1(Ω) be the associated Sobolev space as introduced in [43] and define the

set of square integrable functions belonging to the associated Banach space as v ∈ L2(0, T ;V )

and vt ∈ L2(0, T ;V ), where vt represents the time derivative of v. Furthermore, assuming that the

given initial conditionw0(x) and the forcing term f(t, x) belong to the space of essentially bounded

functions, i.e., w0(x) ∈ L∞(Ω) and f(t, x) ∈ L∞(Q), we introduce the Banach space P =

L2(0, T ;V )
⋂
L∞(Q). Hence, there exists a unique weak solution to (10.1) such that w(t, x) ∈ P .
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The weak solution approach is employed here by multiplying both sides of (10.1a) by a piece-

wise smooth test function v(x) and integrating in the spatial variable domain [51]. Taking the inte-

gral from both sides and substituting the second order derivative term by its equivalent obtained by

using the chain rule results in∫ L

0

(
wν,t(t, x) +

1

2
[w2

ν(t, x)]x

)
v(x) dx−ν

[
u2(t)v(L)−u1(t)v(0)−

∫ L

0

wν,x(t, x)v′(x) dx

]
=∫ L

0

f(t, x)v(x) dx, (10.2)

where v′(x) = dv
dx

and wν,t = ∂wν
∂t

.

In order to discretize in the spatial domain, the spatial variable interval is divided into N subin-

tervals [xj, xj+1]. We define hj = xj+1 − xj and assume that all the elements, denoted by e, are of

equal size (uniformly spaced mesh) and hence h1 = . . . = hN = h. The FEM basis functions are

hence defined as follows [84]

(i) for element e0,

N0(x) =


x1−x
h
, 0 ≤ x ≤ x1

0, otherwise

(ii) for element ej, j = 1 : N − 1,

Nj(x) =



x−xj−1

h
, xj−1 ≤ x ≤ xj

xj+1−x
h

, xj ≤ x ≤ xj+1

0, otherwise

(iii) for element eN

NN(x) =


x−xN−1

h
, xN−1 ≤ x ≤ xN

0, otherwise.

The approximation of wν(t, x) in the space spanned by the piecewise linear basis functions is given

by

wν(t, x) =
N∑
i=0

Wν,i(t)Ni(x), (10.3)

156



whereWν,i(t) is the nodal value at the ith node and time t, i.e., wν(t, xi).

Lemma 10.2.1 Assume that there exists a weak solution to (10.1). Then, a state-space represen-

tation of (10.1) enforcing initial and Neumann boundary conditions for the given input vector

U(t) = [u1(t) u2(t)]> and Fourier coefficientsWν(t) = [Wν,0(t) . . . Wν,N(t)]> is determined to

be

Ẇν(t) = M−1AWν(t) +M−1h(t,Wν(t), U(t)), (10.4)

where

A = −νS, hν(t,Wν(t), U(t)) = −1

2
K(Wν(t) ◦Wν(t)) + F (t) + νLU(t),

with

L =

 −1 0 . . . 0 0

0 0 . . . 0 1

>
(N+1)×2

,

[M ]ij =
〈
Ni(x),Nj(x)

〉
, [S]ij =

〈
N ′i (x),N ′j(x)

〉
,

Fj(t) =
〈
f(t, x),Nj(x)

〉
, [K]ij =

〈
N ′i (x),Nj(x)

〉
,

(10.5)

and with the initial condition represented in the matrix form as

MWν(0) = I, (10.6)

where Ij =
〈
w0(x),Nj(x)

〉
.

Proof 6 Since the given Galerkin approximation of wν(t, x), i.e., equation (10.3), belongs to the

Banach space of the weak solutions L2(0, T ;V )
⋂
L∞(Q), hence, it can be substituted in equation

(10.2). Also, the arbitrary and piecewise smooth function v(x) is substituted by the piecewise

linear basis function of the FEM, Nj(x), for j = 0, 1, . . . , N . To cope with the nonlinear term,

the group finite element (GFE) method is used, which is an alternative approach for to FEM for

solving nonlinear elliptic, parabolic, and hyperbolic problems [130, 152]. The nonlinear term is

represented using GFE as

w2
ν(t, x) =

N∑
i=0

W2
ν,i(t)Ni(x), (10.7)
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(N (Wν(t)))j =
1

2

N∑
i=0

W2
ν,i(t)

∫ L

0

N ′i (x)Nj(x).

Defining

[K]ij =
〈
N ′i (x),Nj(x)

〉
yields the following quadratic form

N (Wν(t)) =
1

2
K(Wν(t) ◦Wν(t)). (10.8)

Using Galerkin method and substituting (10.7) into (10.2) results in

N∑
i=0

Ẇν,i(t)

∫ L

0

Ni(x)Nj(x) dx+
1

2

N∑
i=0

W2
ν,i(t)

∫ L

0

N ′i (x)Nj(x) dx−ν
[
u2(t)Nj(L)−u1(t)Nj(0)

]

+ ν
N∑
i=0

Wν,i(t)

∫ L

0

N ′i (x)N ′j(x) dx =

∫ L

0

f(t, x)Nj(x) dx.

We consider the notations defined in (10.5) to form the matrix representation of the previous equa-

tion

MẆν(t) + νSWν(t) +
1

2
K(Wν(t) ◦Wν(t))− νLU(t) = F (t). (10.9)

Rewriting this equation results in the space-space representation (10.4). The given initial condition

(10.1b) is described in the space spanned by the basis functions as

wν(0, x) =
N∑
i=0

Wν,i(0)Ni(x). (10.10)

By enforcing the initial condition (10.1b) and multiplying it by the test function Nj(x) from both

sides and again employing the weak solution approach, we obtain

N∑
i=0

Wν,i(0)

∫ L

0

Ni(x)Nj(x) =

∫ L

0

w0(x)Nj(x), j = 0, . . . , N.

This can be represented in the matrix form as (10.6). The solution to this linear equation gives the

initial conditions required for the set of ODEs in (10.9).
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10.2.2 REDUCED-ORDER MODEL OF BURGERS’ PDE USING PROPER ORTHOGONAL DECOM-

POSITION

The fundamental idea behind proper orthogonal decomposition (POD) is to optimally represent

a given data set in a mean-squared error sense using an orthonormal basis of rank l. Let Wν =

[Wν,1, . . . ,Wν,n](N+1)×n be a real-valued data matrix containing n snapshot vectors of N + 1

spatial data points obtained for parameter ν, where for j th time snapshot tj , we have Wν,j =

[Wν,0(tj),Wν,1(tj), . . . ,Wν,N+1(tj)]
>. The POD basis of rank l is optimal in the sense of rep-

resenting the columns of W , i.e., {Wj}nj=1, as a linear combination of orthonormal bases of rank

l [72]. We endow the Euclidean space RN+1 with the weighted inner product defined as

〈ψ, ψ̃〉W = ψTWψ̃ = 〈ψ,Wψ̃〉RN+1

= 〈Wψ, ψ̃〉RN+1 for ψ, ψ̃ ∈ RN+1,

where W ∈ R(N+1)×(N+1) is a symmetric, positive-definite matrix. Note that the vector W (t), t∈

[0, T ], now represents a function in Ω evaluated atm grid points. Therefore, we should supply RN+1

with a weighted inner product representing a discretized inner product in an appropriate function

space. Since the mass matrix in (10.9) is symmetric, real and positive definite, it can be considered

as the weight matrix (i.e., W ) in the aforedescribed inner product. The goal is to determine a POD

basis of rank l < n that gives the best estimate of the entire trajectory %W = span{Wν(t)|t ∈

[0, T ]} ⊂ RN+1. The optimality is achieved by minimizing the continuous error function between

the data and its projection onto the basis set {ψν,i}li=1, ψi ∈ RN+1 that is obtained for a parameter

value ν

J =

∫ T

0

∥∥∥∥ Wν(t)−
l∑

i=1

〈Wν(t), ψν,i〉Mψν,i
∥∥∥∥2

M

dt (10.11)

s.t. 〈ψν,i, ψν,j〉M = δij for 1 ≤ i, j ≤ l,

where projection operator associated with the space spanned by {ψν,i}li=1 can be defined as

P lψνWν(t) =
l∑

i=1

〈Wν(t), ψν,i〉Mψν,i. (10.12)
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Next, let Ȳ = M1/2Y D1/2 ∈ R(N+1)×n. Then, the solution to the optimization problem (10.11)

can be obtained by solving the following eigenvalue problem

Ȳ Ȳ T ψ̄ν,i = λν,iψ̄ν,i, 1 ≤ i ≤ l,

〈ψ̄ν,i, ψ̄ν,j〉RN+1 = δij, 1 ≤ i, j ≤ l,

(10.13)

whereD = diag(α1, . . . , αn) ∈ Rn×n and αj’s denote the non-negative trapezoidal weights defined

by

α1 =
∆t

2
, αj = ∆t for 2 ≤ j ≤ n− 1, αn =

∆t

2
, (10.14)

with ∆t = tj − tj−1 [106].

The choice for the number of basis functions l, that can lead to an accurate reduced-order

representation of the original model, is certainly of critical importance when applying POD. There

is no general rule for selecting l; it is rather heuristic and based on the captured relative energy

defined by [76]

E(l) =

∑l
i=1 λν,i∑d
i=1 λν,i

, (10.15)

where d = rank(Ȳ ).

Next, the derivation of the reduced-order model for the Burgers’ equation using POD method

is described. To this purpose, we use the approximation of wν(t, x) in the space spanned by the

POD basis functions ψν,i(x), i = 1, . . . , l, as

wν(t, x) =
l∑

i=1

〈wν(t, x), ψν,i(x)〉Mψν,i(x).

By setting

W l
ν,i(t) = 〈wν(t, x), ψν,i(x)〉M ,

we obtain the Galerkin form of the projection onto the POD space to approximate wν(t, x) as

wν(t, x) =
l∑

i=1

W l
ν,i(t)ψν,i(x), (10.16)

where the Fourier coefficientsW l
i , 1 ≤ i ≤ l, are functions mapping [0, T ] onto R.
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Lemma 10.2.2 The state-space representation of the reduced-order model satisfying the given

initial condition and Neumann boundary conditions is determined as

Ẇ l
ν(t) = AlνW l

ν(t) + gν(t,W l
ν(t), U(t)), (10.17)

where

Alν = −νSlν , (10.18)

gν(t,W l
ν(t), U(t)) = (Ψl

ν)
>hν(t,Ψl

νW l
ν(t), U(t)) =

− 1

2
(Ψl

ν)
>K(Ψl

νW l
ν(t)) ◦ (Ψl

νW l
ν(t)) + F l

ν(t) + νLlνU(t),

with

M l
ν = Ir, F l

ν(t) = (Ψl
ν)
>F (t), Llν = (Ψl

ν)
>L, (10.19)

Slν = (Ψl
ν)
>SΨl

ν , N l
ν(W l

ν(t)) =
1

2
(Ψl

ν)
>K(Ψl

νW l
ν(t)) ◦ (Ψl

νW l
ν(t)). (10.20)

Proof 7 We recall the weak solution approach described earlier for Burgers’ equation that led to

∫ L

0

(
wν,t(t, x) +

1

2
[w2

ν(t, x)]x

)
v(x) dx−ν

[
u2(t)v(L)−u1(t)v(0)−

∫ L

0

wν,x(t, x)v′(x) dx

]
=∫ L

0

f(t, x)v(x) dx.

Since v(x) is arbitrary and piecewise smooth, we now choose v(x) = ψν,j(x), j = 1, 2, . . . , l, and

use POD Galerkin projection that results in

l∑
i=1

Ẇ l
ν,i(t)

∫ L

0

ψν,i(x)ψν,j(x) dx+
1

2

∫ L

0

([ l∑
i=1

W l
ν,i(t)ψν,i(x)

]2)
x

ψν,j(x) dx−

ν

[
u2(t)ψν,j(L)− u1(t)ψν,j(0)

]
+ ν

l∑
i=1

W l
ν,i(t)

∫ L

0

ψ′ν,i(x)ψ′ν,j(x) dx =

∫ L

0

f(t, x)ψν,j(x) dx.
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Considering the notations introduced in (10.19) and (10.20), it is straightforward to show that

[M l
ν ]ij =

〈
ψν,i(x), ψν,j(x)

〉
, [Slν ]ij =

〈
ψ′ν,i(x), ψ′ν,j(x)

〉
,

Fν
l
,j(t) =

〈
f(t, x), ψν,j(x)

〉
,

(N l
ν(W l

ν(t)))j =
1

2

∫ L

0

([ l∑
i=1

W l
ν,i(t)ψν,i(x)

]2)
x

ψν,j(x) dx,

where wν(t, x) is approximated by (10.16). According to the orthogonality property of the basis

functions, we have M l
ν = Ir. On the other hand, the definition of the weighted product and

orthonormality of the basis functions leads to

M l = (Ψl)>MΨl = Ir.

Also, matrix Slν in the reduced-order model can be obtained from the original full-order matrices

by expanding the POD basis functions as

[Slν ]ij =
〈
ψ′ν,i(x), ψ′ν,j(x)

〉
=

∫ L

0

ψ′ν,i(x)ψ′j(x; ν) dx

=

∫ L

0

N∑
k=0

Ψν
kiN ′k(x)

N∑
m=0

Ψν
mjN ′m(x) dx

=
N∑
k=0

N∑
m=0

Ψν
kiΨ

ν
mj

∫ L

0

N ′k(x)N ′m(x) dx,

which can be represented in the matrix form (10.20). Hence, the matrix Slν has been characterized

in terms of the full-order matrix S and the POD basis functions. Same procedure can be followed

to represent the nonlinear term in the reduced-order model in terms of the full-order matrices. The

Fourier coefficients are described in a compact form as

W̃ν(t) = Ψl
νW l

ν(t). (10.21)

Substituting (10.21) in (10.8) and using Hadamard product notation, we obtain

N l
ν(W l

ν(t)) =
1

2
(Ψl

ν)
>K(Ψl

νW l
ν(t)) ◦ (Ψl

νW l
ν(t)),

and hence the reduced-order model is described by

Ẇ l
ν(t) + νSlνW l

ν(t) +
1

2
(Ψl

ν)
>K(Ψl

νW l
ν(t)) ◦ (Ψl

νW l
ν(t))− νLlνU(t) = F l

ν(t), (10.22)

which concludes the proof.
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10.3 ERROR ESTIMATES AND SLIDING MODE CONTROL DESIGN USING REDUCED-ORDER

MODEL

The use of a high-order controller for real-time control of a complex system is not practical due

to the computational complexity involved in both control design process and its implementation.

Therefore, the need for a low-order controller is inevitable. The “reduce then design” approach

employs the reduced-order state space model given by (10.17) with an adequately small value of

l for control design purposes while considering model variations. In this section, we explain in

detail how a sliding mode controller is designed on the basis of the POD-based reduced-order

model determined at the viscosity ν0 to guarantee stability of the closed-loop interconnection of

the sliding mode controller and the original full-order model for varying viscosity ν.

10.3.1 PRELIMINARIES FOR SLIDING MODE CONTROL DESIGN

To design a sliding mode controller, a sliding surface should be defined first. To this end, we refer

to the state-space representation of the system in (10.4) accompanied with the full-order system

model outputs (or the measurement equations) as

Ẇν(t) = AWν(t) + hν(t,Wν(t), U(t))

Yν(t) = CWν(t),

(10.23)

whereWν(t) represents the state vector of the full-order model, and C represents the system mea-

surement matrix. For a nominal value of the system parameter, i.e., the viscosity ν0, the set of basis

functions Ψl
ν0

is used to obtain the nominal reduced-order model in the state-space form as

Ẇ l
ν0

(t) = Alν0W
l
ν0

(t) + gν0(t,W
l
ν0

(t), U(t)),

Yν0(t) = C l
ν0
W l

ν0
(t),

(10.24)

where W l
ν0

(t) represents the state vector of the nominal reduced-order model. The reduced mea-

surement matrix C l
ν0

is obtained as

C l
ν0

= CΨl
ν0
. (10.25)
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The control objective is to track a reference trajectory via a reduced-order model based sliding

surface designed in a priori known nominal value of the system parameter ν0. The idea here is to

design a reduced-order model based control law associated with the nominal value ν0 that ensures

the desired reference tracking for the full order model while the parameter ν changes over time.

A sliding surface is introduced to ensure the output tracking by defining the surface via dynamics

of the full-order model where the control input is imposed via the dynamics of the reduced order

model. The sliding surface on the dynamics of the full-order model is defined as

S(t) = Yν(t)− r(t) = CWν(t)− r(t), (10.26)

where S(t) = [S1(t) S2(t)]>, Yν(t) = [yν,1(t) yν,2(t)]> is the system output, and r(t) =

[r1(t) r2(t)]> is the reference signal. The sliding surface is described by the reduced-order model

as

Sl(t) = CΨl
ν0
W l

ν0,ν(t) + Cδνν0W − r(t), (10.27)

where δνν0W = Wν(t) − Ψl
ν0
W l

ν0,ν(t). The sliding mode controller (SMC) needs to have real-

time access to the reduced-order model states. Thus, a nonlinear low-order functional observer

is designed using the method proposed in [5] to estimate the states of the reduced-order model.

The design of the observer will be described at the end of this section. SMC law usually includes

a switching control law and an equivalent control law [127]. The switching control law that is

designed with respect to the definition of the reduced-order surface drives the system states towards

a predefined sliding surface in the presence of model uncertainties. It will be shown that the

switching control law that implements the dynamics on the reduced-order surface effectively sta-

bilizes the main system. Furthermore, the equivalent control law guarantees that the system states

keep sliding on the sliding surface and converge to the surface. The general control law is consid-

ered as

U(t) = ueq(t) + usw(t), (10.28)

where ueq(t) and usw(t) represent the equivalent control and the switching control laws, respec-

tively. To construct the equivalent dynamics, the full-order model is considered while states are
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sliding on the defined surface. In fact, the equivalent control provides an action only when the

system states are on the surface. Taking the derivative of (10.26) results in

Ṡ(t) = Ẏν(t)− ṙ(t) = CẆν(t)− ṙ(t). (10.29)

Since we do not have online access to the states of the full-order model for varying viscosity ν, the

dynamics of the sliding surface is defined in terms of the states of the reduced-order model as

Ṡl = C lẆ l
ν0,ν(t) +

(
CẆν(t)− C lẆ l

ν0,ν(t)
)
− ṙ(t) = CAΨl

ν0
W l

ν0,ν
(t) + ∆ν

ν0
W−

1

2
CM−1K(Ψl

ν0
W l

ν0,ν
(t)) ◦ (Ψl

ν0
W l

ν0,ν
(t)) + ∆ν

ν0
f + CM−1F (t) + νCM−1LU(t)− ṙ(t),

(10.30)

where the terms representing uncertainties are represented as

∆ν
ν0
W = CA

(
Wν(t)−Ψl

ν0
W l

ν0,ν
(t)

)
, (10.31)

and

∆ν
ν0

f = f(Wν(t))−f(Ψl
ν0
Wν0,ν(t)) = −1

2
CM−1K

(
(Wν(t)◦Wν(t))−(Ψl

ν0
W l

ν0,ν
(t))◦(Ψl

ν0
W l

ν0,ν
(t))

)
.

(10.32)

The nonlinear term described by (10.32) is assumed to be locally Lipschitz with respect to

Ψl
ν0
W l

ν0,ν
andWν in a region D, i.e., for anyWν(t),Ψ

l
ν0
W l

ν0,ν
(t) ∈ D [5]

∥∥f(Wν)− f(Ψl
ν0
W l

ν0,ν
)
∥∥ ≤ γh

∥∥Wν −Ψl
ν0
W l

ν0,ν

∥∥,
where ‖ . ‖ represents the 2-norm and γh is the non-negative Lipschitz constant. Hence, two model

uncertainty terms are represented in terms of the states of the full-order and reduced-order models.

10.3.2 ERROR ESTIMATES FOR A VARIATION OF THE VISCOSITY

The uncertainty terms are inherently resulted from the sensitivity of the POD method with respect

to the variation in the system parameter ν. The main challenge is to represent the confidence region

as a function of the changing parameter. The following analysis is carried out to present a priori
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estimate for the squared error in the Hilbert space for the reference set of POD basis functions Ψl
ν0

.

The error caused by any variation in the parameter value ν can be written as

∥∥Wν −Ψl
ν0
W l

ν0,ν

∥∥ =
∥∥Wν −Wν0 +Wν0 −Ψl

ν0
W l

ν0
+ Ψl

ν0
W l

ν0
−Ψl

ν0
W l

ν0,ν

∥∥. (10.33)

After applying CauchySchwarz inequality multiple times, we obtain

∥∥Wν−Ψl
ν0
W l

ν0,ν

∥∥2 ≤ 2
∥∥Wν−Wν0

∥∥2
+4
∥∥Wν0−Ψl

ν0
W l

ν0

∥∥2
+4
∥∥Ψl

ν0
W l

ν0
−Ψl

ν0
W l

ν0,ν

∥∥2
. (10.34)

As seen from the right hand side of the inequality above, the boundedness of the each error term

needs to be investigated to essentially evaluate the bound on
∥∥Wν −Ψl

ν0
W l

ν0,ν

∥∥.

Lemma 10.3.1 The estimation error representing the variation in the states of the full-order model

associated with changing ν in a given time interval (0, T ) is bounded by

∥∥Wν −Wν0

∥∥2

M
≤ Ω|ν − ν0|2, (10.35)

where

Ω =

(∥∥M−1S
∥∥ 1

4η
k2 + 1

4η
γ2

∥∥M−1L
∥∥)T

γ1 + ηγ2

∥∥M−1L
∥∥ exp

((
2γ1 + 2ηγ2

∥∥M−1L
∥∥)T − 1

)
, (10.36)

where γ1 and γ2 are non-negative Lipschitz constants and k =
∥∥Wν0

∥∥
L∞

.

Proof 8 We start by subtracting the full-order models associated with the nominal and new param-

eters ν and ν0 as

Ẇν − Ẇν0 = −νM−1SWν + ν0M
−1SWν0 + f(Wν)− f(Wν0) + (ν − ν0)M−1LU(t). (10.37)

By multiplying both sides byWν −Wν0 , the following is obtained〈
Ẇν −Ẇν0 ,Wν −Wν0

〉
M

=

〈
−M−1S

(
ν(Wν −Wν0) + (ν− ν0)Wν0

)
+ f(Wν)− f(Wν0)+

(ν − ν0)M−1LU(t),Wν −Wν0

〉
M

. (10.38)
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This can be rewritten in the following form using M induced norm

1

2

d
dt

∥∥Wν −Wν0

∥∥2

M
≤
∥∥M−1S

∥∥(− ν∥∥Wν −Wν0

∥∥2

M
+ |ν − ν0|

∥∥Wν0

∥∥
L∞

∥∥Wν −Wν0

∥∥
M

)
+∥∥f(Wν)− f(Wν0)

∥∥∥∥Wν −Wν0

∥∥
M

+
∥∥M−1L

∥∥∥∥(ν − ν0)U(t)
∥∥∥∥Wν −Wν0

∥∥
M

(10.39)

where the matrix norm induced by the vector norm
∥∥ · ∥∥

M
is defined as

∥∥B∥∥ = max
∥∥Bu∥∥

M
,∥∥u∥∥

M
= 1. For any admissible control input U(t) and a locally Lipschitz nonlinearity f in

Wν ,Wν0 ∈ D, (10.39) results in

1

2

d
dt

∥∥Wν −Wν0

∥∥2

M
≤
∥∥M−1S

∥∥(− ν∥∥Wν −Wν0

∥∥2

M
+ |ν − ν0|

∥∥Wν0

∥∥
L∞

∥∥Wν −Wν0

∥∥
M

)
+

γ1

∥∥Wν −Wν0

∥∥2

M
+ γ2

∥∥M−1L
∥∥|ν − ν0|

∥∥Wν −Wν0

∥∥
M
, (10.40)

Applying Youngs inequality results in

1

2

d
dt

∥∥Wν−Wν0

∥∥2

M
≤
∥∥M−1S

∥∥(−ν∥∥Wν−Wν0

∥∥2

M
+
ζ

2
|ν−ν0|2

∥∥Wν0

∥∥2

L∞
+

1

2ζ

∥∥Wν−Wν0

∥∥2

M

)
+

γ1

∥∥Wν −Wν0

∥∥2

M
+

1

2
γ2

∥∥M−1L
∥∥(ζ|ν − ν0|2 +

1

ζ
‖Wν −Wν0

∥∥2

M

)
. (10.41)

By choosing ζ = 1
2η

, where η ∈ R is close to zero, it is ensured that−ν+ 1
2ζ
≤ 0. Hence, we obtain

d
dt

∥∥Wν −Wν0

∥∥2

M
≤
(

2γ1 + 2ηγ2

∥∥M−1L
∥∥)∥∥Wν −Wν0

∥∥2

M
+

(∥∥M−1S
∥∥ 1

2η
k2+

1

2η
γ2

∥∥M−1L
∥∥)|ν − ν0|2. (10.42)

Using the Gronwall lemma over an interval (0, t) ⊂ (0, T ), we have

∥∥Wν−Wν0

∥∥2

M
≤

(∥∥M−1S
∥∥ 1

4η
k2 + 1

4η
γ2

∥∥M−1L
∥∥)|ν − ν0|2T

γ1 + ηγ2

∥∥M−1L
∥∥ exp

((
2γ1+2ηγ2

∥∥M−1L
∥∥)T−1

)
.

(10.43)

and this concludes the proof for the boundedness of
∥∥Wν −Wν0

∥∥2

M
.

Lemma 10.3.2 The POD-Galerkin error
∥∥Wν0 −Ψl

ν0
W l

ν0

∥∥ is bounded by

∥∥Wν0 −Ψl
ν0
W l

ν0

∥∥2

M
≤
(
1 + ξν2

b

∥∥Ψl
ν0

(Ψl
ν0

)>S
∥∥2

+ γ2
1

∥∥Ψl
ν0

(Ψl
ν0

)>
∥∥2)

T

N∑
i=l+1

λν0,i+

∥∥M−1 −Ψl
ν0

(Ψl
ν0

)>
∥∥G2. (10.44)
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Proof 9 The POD-Galerkin error is broken into the Galerkin projection error
∥∥Wν0 −P lψν0Wν0

∥∥
and

∥∥P lψν0Wν0 − Ψl
ν0
W l

ν0

∥∥. The first error term was proven in [150] to be bounded on the time

interval (0, T ) as ∥∥Wν0 − P lψν0Wν0

∥∥ ≤ T
N∑

i=l+1

λν,i. (10.45)

To investigate the boundedness of the POD-Galerkin error ‖P lψν0Wν0 − Ψl
ν0
W l

ν0
‖, the projection

operator P lψν0 is written in the matrix form as Ψl
ν0

(Ψl
ν0

)>M where Ψl
ν0

= {ψlν0,1, ψ
l
ν0,2

, . . . , ψlν0,l}.

From the models (10.4) and (10.17), we obtain

〈 d
dt

(Wν0 − P lψν0W
l
ν0) +

d
dt

(P lψν0Wν0 −Ψl
ν0W

l
ν0),P lψν0Wν0 −Ψl

ν0W
l
ν0〉M =〈

Ψl
ν0(Ψl

ν0)>Aν0(Wν0−Ψl
ν0W

l
ν0)+(M−1Aν0−Ψl

ν0(Ψl
ν0)>Aν0)Wν0+(M−1−Ψl

ν0(Ψl
ν0)>)hν(t,Wν0(t), U(t))+

Ψl
ν0(Ψl

ν0)>
(

hν0(t,Wν0(t), U(t))− hν0(t,Ψl
ν0Wν0(t), U(t))

)
,P lψν0Wν0 −Ψl

ν0W
l
ν0

〉
M

. (10.46)

Using the commutativity of the time derivative and the projection operator P lψν0 remote space, it

is concluded that

〈 d
dt

(Wν0 − P lψν0W
l
ν0

),P lψν0Wν0 −Ψl
ν0
W l

ν0
〉M = 0. (10.47)

For an admissible and bounded control input U(t), the full-order model (10.23) is bounded by

G =
∥∥Aν0Wν0(t) + hν0(t,Wν0(t), U(t))

∥∥
∞ [150]. Next, using the properties of the weighted inner

product and applying the Young’s inequality considering locally Lipschitz nonlinearity hν0 , we

obtain

1

2

d
dt

∥∥P lψν0Wν0−Ψl
ν0W

l
ν0

∥∥2

M
≤
(
ξ

2
ν2

0

∥∥Ψl
ν0(Ψl

ν0)>S
∥∥2∥∥Wν0−P lψν0Wν0

∥∥2

M
+

1

2ξ

∥∥P lψν0Wν0−Ψl
ν0W

l
ν0

∥∥2

M
−

ν0

∥∥Ψl
ν0(Ψl

ν0)>S
∥∥∥∥P lψν0Wν0−Ψl

ν0W
l
ν0

∥∥2

M

)
+

(
1

2

∥∥M−1−Ψl
ν0(Ψl

ν0)>
∥∥2
G2+

1

2

∥∥P lψν0Wν0−Ψl
ν0W

l
ν0

∥∥2

M

)
+(

1

2
γ2

1

∥∥Ψl
ν0(Ψl

ν0)>
∥∥2∥∥Wν0−P lψν0W

l
ν0

∥∥2

M
+

1

2

∥∥P lψν0Wν0−Ψl
ν0W

l
ν0

∥∥2

M
+γ1

∥∥Ψl
ν0(Ψl

ν0)>
∥∥∥∥P lψν0Wν0−Ψl

ν0W
l
ν0

∥∥2

M

)
.

(10.48)
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After rearranging (10.48), we obtain

d
dt

∥∥P lψν0Wν0 −Ψl
ν0
W l

ν0

∥∥2

M
≤
(
ξν2

0

∥∥Ψl
ν0

(Ψl
ν0

)>S
∥∥2

+

γ2
1

∥∥Ψl
ν0

(Ψl
ν0

)>
∥∥2
)∥∥Wν0 − P lψν0Wν0

∥∥2

M
+
∥∥M−1 −Ψl

ν0
(Ψl

ν0
)>
∥∥G2+(

− 2ν0

∥∥Ψl
ν0

(Ψl
ν0

)>S
∥∥+

1

ξ
+ 2 + 2γ1

∥∥Ψl
ν0

(Ψl
ν0

)>
∥∥)∥∥P lψν0Wν0 −Ψl

ν0
W l

ν0

∥∥2

M
. (10.49)

Using (10.45) and the Gronwall lemma, the following inequality is obtained

∥∥P lψν0Wν0 −Ψl
ν0
W l

ν0

∥∥2

M
≤
((
ξν2

0

∥∥Ψl
ν0

(Ψl
ν0

)>S
∥∥2

+ γ2
1

∥∥Ψl
ν0

(Ψl
ν0

)>
∥∥2)

T

N∑
i=l+1

λν,i+

∥∥M−1 −Ψl
ν0

(Ψl
ν0

)>
∥∥G2

)
exp

((
− 2ν0

∥∥Ψl
ν0

(Ψl
ν0

)>S
∥∥+

1

ξ
+ 2 + 2γ1

∥∥Ψl
ν0

(Ψl
ν0

)>
∥∥)t

)
.

(10.50)

To ensure the negativity of the term inside the exponential function, the following inequality should

hold

ν0 >

1
ξ

+ 2 + 2γ1

∥∥Ψl
ν0

(Ψl
ν0

)>
∥∥∥∥Ψl

ν0
(Ψl

ν0
)>S

∥∥ . (10.51)

If inequality (10.51) holds true for ν0 = νb, we can obtain the bound on the error as follows

∥∥P lψν0Wν0−Ψl
ν0W

l
ν0

∥∥2

M
≤
(
ξν2
b

∥∥Ψl
ν0(Ψl

ν0)>S
∥∥2

+γ2
1

∥∥Ψl
ν0(Ψl

ν0)>
∥∥2)

T

N∑
i=l+1

λν0,i+
∥∥M−1−Ψl

ν0(Ψl
ν0)>

∥∥G2.

(10.52)

By combining (10.53) and (10.45), we obtain

∥∥Wν0−Ψl
ν0W

l
ν0

∥∥2

M
≤
(
1+ξν2

b

∥∥Ψl
ν0(Ψl

ν0)>S
∥∥2

+γ2
1

∥∥Ψl
ν0(Ψl

ν0)>
∥∥2)

T
N∑

i=l+1

λν0,i+
∥∥M−1−Ψl

ν0(Ψl
ν0)>

∥∥G2.

(10.53)

This concludes the proof for the boundedness of the POD-Galerkin error.

Remark 10.1 The bound on the last term of the error in (10.34),
∥∥Ψl

ν0
W l

ν0
− Ψl

ν0
W l

ν0,ν

∥∥2, is

obtained as ∥∥Ψl
ν0
W l

ν0
−Ψl

ν0
W l

ν0,ν

∥∥2

M
≤ Ω̄|ν − ν0|2, (10.54)

where

Ω̄ =

(∥∥Ψl
ν0

(Ψl
ν0

)>S
∥∥ 1

4ν0

k̄2 +
1

4ν0

γ2

∥∥Ψl
ν0

(Ψl
ν0

)>L
∥∥)|ν − ν0|2T. (10.55)

The proof follows the same procedure as presented in Lemma 10.3.1.
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The following theorem ensures the boundedness of the model uncertainties A∆ν
ν0
W and ∆ν

ν0
g.

Theorem 10.3.3 The error caused by the estimation of the full-order state W through a priori

chosen sequence of the POD eigenvalues {λi}li=1 and basis functions Ψl
ν0

at the nominal viscosity

parameter ν0 can be estimated and bounded with respect to the variation of ν as

∥∥Wν(t)−Ψl
ν0
W l

ν0,ν
(t)
∥∥ ≤ 2

(
1 + ξν2

b

∥∥Ψl
ν0

(Ψl
ν0

)>S
∥∥2

+ γ2
1

∥∥Ψl
ν0

(Ψl
ν0

)>
∥∥2)

T

N∑
i=l+1

λν0,i+

∥∥M−1 −Ψl
ν0

(Ψl
ν0

)>
∥∥G2 + (2Ω + 4Ω̄)|ν − ν0|2. (10.56)

Proof 10 From (10.34), Lemma 10.3.1 and Lemma 10.3.2, we obtain the inequality (10.56).

Inequality (10.56) gives an estimate of the error associated with the model reduction and varying

parameter described by the POD basis functions at the nominal viscosity ν0. As seen from (10.56),

the first two terms will vanish for an N th order reduced model. In fact, the first two terms represent

the error associated with the reduced-order model and the last term takes into account the effect

of the changing parameter ν.

Remark 10.2 The model uncertainties ∆ν
ν0

f and ∆ν
ν0
W associated with the estimation of the POD

bases Ψν0 at the nominal viscosity ν0 are bounded by variation of the system parameter ν and a

priori known set of system matrices as described in Theorem 10.3.3,
∥∥∆ν

ν0
W
∥∥ < B1 and

∥∥∆ν
ν0

f
∥∥ <

B2. The error bound is calculated offline with respect to the reduced and full-order models at the

nominal value ν0.

10.3.3 STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM WITH THE PROPOSED SLIDING

MODEL CONTROLLER

An SMC law is synthesized here to drive the system trajectories onto the predefined sliding surface

(10.26) in a finite time while taking into account the model uncertainties due to the changing

parameter ν. The main objective can be stated as designing a control law using the reduced-order

model at the nominal viscosity ν0 with the bounded model uncertainties as obtained in the previous
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section. The following theorem gives an SMC law to guarantee the stability of the full-order model.

Theorem 10.3.4 The asymptotic stability of the system described by (10.23) is guaranteed for the

sliding surface (10.26) with the following sliding mode control law

u(t) = (CM−1L)−1

(
ṙ(t)−C

(
AΨl

ν0W
l
ν0,ν(t)−1

2
M−1K(Ψl

ν0W
l
ν0,ν(t))◦(Ψl

ν0W
l
ν0,ν(t))+M−1F (t)

))
−

(CM−1L)−1(λ1S
l + λ2(B1 + B2) sign(Sl)), (10.57)

where λ1 > 0 and λ2 > 1 are the sliding mode parameters and sign(·) is the sign function.

Proof 11 In order to investigate the asymptotic stability of the closed-loop system with the sliding

mode control law in (10.57), following Lyapunov function is considered

V (t) =
1

2
Sl
>
Sl, (10.58)

where Sl is the sliding surface defined in (10.27). For the chosen Lyapunov function, we should

have

dV (t)

dt
< 0 or Sl

>
Ṡl < 0, (10.59)

in a neighborhood of the surface given by Sl = 0. Substituting (10.27) and (10.30) into (10.59),

we obtain

Sl
>
Ṡl = Sl

>(
CΨl

ν0Ẇ
l
ν0,ν(t) + Cδνν0Ẇ − ṙ(t)

)
= Sl

>
(
− λ1S

l + (∆ν
ν0f + ∆ν

ν0W)− λ2(B1 + B2) sign(Sl)

)
.

(10.60)

According to Remark 10.2,
∥∥∆ν

ν0
f + ∆ν

ν0
W
∥∥ < (B1 + B2), and hence, we have

Sl
>
(

∆ν
ν0

f + ∆ν
ν0
W − λ2(B1 + B2) sign(Sl)

)
< 0, (10.61)

where λ2 is a diagonal matrix with λ11 > 1 and λ22 > 1. This concludes the negativity of the time

derivative of Lyapunov function V̇ < 0.
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As observed from (10.60), the defined surface is a function of the states of the reduced-order

model. Therefore, the reduced-order controller is capable of stabilizing the full-order model in the

presence of the model uncertainties arising from both model reduction and changing parameter

ν. The constants in the proposed SMC law are chosen by trial and error considering the trade-off

between the reaching time and chattering. These constants can be considered large enough when

the trajectory is far from the switching surface (so that the reaching time is short), and then as small

as desired in order to limit the chattering.

10.3.4 FUNCTIONAL OBSERVER DESIGN

The linear functionals of the full-order model states can be estimated by a functional observer. The

states of the reduced-order model can be written as linear functionals of the full-order model states

(FE model states), and hence, a functional observer can be designed to estimate the states of the

reduced-order model leading to a reduced computational cost.

The reduced-order model described by (10.17) is obtained from the discretized Burgers’

equation with a locally Lipschitz nonlinearity with respect to W l
ν in a region D, i.e., for any

W l
ν,1(t),W l

ν,2(t) ∈ D [5]

∥∥g(W l
ν,1, U

∗)− g(W l
ν,2, U

∗)
∥∥ ≤ γd

∥∥W l
ν,1 −W l

ν,2

∥∥,
where ‖ . ‖ represents the 2-norm, U∗ is an admissible control sequence and γd is the nonnegative

Lipschitz constant. The proposed observer takes the following form

˙̂W l
ν(t) = AlŴ l

ν(t) + g(Ŵ l
ν(t), U(t)) + Lo(Y (t)− C lŴ l

ν(t)), (10.62)

where Ŵ l
ν is the estimate ofW l

ν and Lo is the observer matrix gain chosen such that the observer

error system defined by (10.63)-(10.64) is asymptotically stable

el(t) =W l
ν(t)− Ŵ l

ν(t), (10.63)

and

ėl(t) = (Al − LoC l)el(t) + g(W l
ν(t), U(t))− g(Ŵ l

ν(t), U(t)). (10.64)
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As shown in [5], a linear matrix inequality (LMI)-based sufficient condition can be determined

to maximize γd while a stabilizing Lo is obtained. The observer of order l in (10.62) is used to

estimateW l
ν considering that the quadratic nonlinearities in the reduced-order model described by

(10.17) are locally Lipschitz.

10.3.5 SUMMARY OF THE PROPOSED SMC-BASED CONTROL DESIGN APPROACH

The implementation of the developed model reduction approach and sliding model controller is

summarized below:

1. Find the equivalent lumped-parameter model of the Burgers’ PDE as in (10.9) by using FE

method.

2. Develop the reduced-order model by utilizing the continuous POD approach, and then

describe it in the state-space form (10.17) in parameter value ν0.

3. Design a functional observer as in (10.62) to estimate the states of the reduced-order model

for ν0.

4. Estimate the bounds on the model errors as given in (10.56) and Remark 10.2 for varying

parameter ν.

5. Design the sliding mode controller based on the reduced-order model by

(a) defining the sliding surface for the reduced-order model as in (10.27) and finding equiv-

alent control law ueq, and

(b) finding the control law usw + ueq as in (10.57) to guarantee the closed-loop system

stability.
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10.4 SIMULATION RESULTS AND DISCUSSION

In this section, we illustrate some of the simulation results of our numerical studies and further

provide a discussion on the accuracy of the derived reduced-order models, as well as the perfor-

mance of the closed-loop system achieved from the implementation of the designed sliding mode

controller.

10.4.1 OPEN-LOOP SYSTEM SIMULATION RESULTS TO EVALUATE THE REDUCED-ODER

MODEL ACCURACY

In order to assess the accuracy of the presented model reduction method, an example of a viscous

Burgers’ equation is considered here. The forcing term in (10.1a) is considered to be

f(t, x) = − exp(−t) sin(πx). (10.65)

The initial condition is assumed to be

w0(x) =


0.45− 0.5 cos(8πx)− 0.05 cos(16πx), for x ∈ (0, 1

4
]

0, otherwise.

Also, a set of sinusoidal boundary conditions covering frequencies up to 75Hz are used to simu-

late a rich snapshot matrix that is later used to obtain the POD basis vectors. Running this kind

of boundary regime excites a reasonably large number of dynamical constituents of the Burgers

system [104]. Also, for the simulation purposeN is chosen as 160. As the first step, the eigenvalues

corresponding to the POD method are extracted for the nominal value of ν0 = 0.01 and shown in a

descending order in Figure 10.1. As observed, the first seven eigenvalues capture more than 99% of

the system’s total energy. Also, the percentage of the total energy captured by the chosen number of

eigenvalues introduced in (10.15) is shown in Figure 10.1. The numerical simulation of the open-

loop system by both FEM and 7th POD approach are illustrated for ν = 0.01. As seen in Figure

10.2, the POD approach represents a close match with the solution by finite element method. In

order to observe the difference between the behavior of the models with varying viscosity, Figure
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Figure 10.1: The extracted eigenvalues corresponding to the POD eigenvectors (left); The per-
centage of the energy captured by different numbers of chosen eigenvalues (right).

10.3 shows the open-loop simulation result of the Burgers’ equation for ν = 0.1 and the simulated

response with the extracted eigenvectors at ν0 = 0.01. The simulated response using POD shows

a different profile of the flow due to the discrepancy between true eigenvectors at ν and extracted

basis at ν0.

10.4.2 CLOSED-LOOP SIMULATION RESULTS USING THE PROPOSED SLIDING MODE CON-

TROLLER

The discretized full-order model obtained from FEM is utilized to validate the designed robust

sliding mode controller (SMC) consisting of equivalent and switching control laws in order to

examine the performance of the proposed SMC law in tracking a given reference trajectory in

the presence of the model uncertainties. From the fluid mechanics point of view, this can be seen

as the problem of controlling the flux on the boundaries to reach the desired flow velocity at the

desired points while the model uncertainties exist due to the varying viscosity and uncertainty in

the reduced-order model. It is assumed that the viscosity changes from the nominal value ν0 = 0.01

to ν = 0.1. The Burgers’ equation with the same initial condition as given in the previous section
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Figure 10.2: Finite element solution for 160 spatial points (left), and POD solution with 7 basis
functions (right) for ν = 0.01.

Figure 10.3: Finite element solution for 160 spatial points (left), and POD solution with 7 basis
functions extracted at ν0 = 0.01 (right) for ν = 0.1.
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Figure 10.4: (a) System outputs and reference inputs for a ramp reference function; (b) The absolute
error signals associated with the system outputs.
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Figure 10.5: The control inputs generated by the proposed SMC law to track a ramp function.

is used to validate the proposed SMC design approach. The two components of the SMC laws

are obtained from the 7th order reduced model. Control outputs in flow control problems are typi-

cally close to the boundaries, hence, the measurement devices are considered to be placed on the
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Figure 10.6: Velocity response of the full-order model with the proposed SMC law to track a ramp
function.
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Figure 10.7: (a) System outputs and the reference inputs for the given sinusoidal function; (b) The
absolute error signals associated with the system outputs.

points near boundaries at y1 = 0.895 and y2 = 0.074 to collect the flow velocity measurement.

Two different functions are considered as reference inputs, a ramp and a sinusoidal function. Fig-
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Figure 10.8: The control inputs generated by the proposed SMC law to track a sinusoidal function.

ures 10.4 and 10.5 illustrate the tracking performance and the control inputs for a ramp function,

respectively. As described earlier, the constant parameters of the switching control law in (10.57)

are chosen by trial and error in a way that a reasonable trade-off between chattering and reaching

time can be achieved. After trying different combinations of the switching control parameters,

the best results are obtained using the parameters λ11 = 4.3 and λ22 = 9.3 given the ramp ref-

erence signal. The simulation result of the full-order model implementing the SMC is shown in

Figure 10.6. The tracking performance and control inputs for a given sinusoidal reference signal

are shown in figures 10.7 and 10.8, respectively. The corresponding sliding mode controller param-

eters are tuned as λ1 = 9.6 and λ2 = 19.8. The simulation result of the full-order model is shown

in Figure 10.9. As observed from figures 10.4 and 10.7, the proposed SMC law illustrates a very

good tracking performance in the presence of model uncertainties. Uncertainties in the problem in

hand are primarily due to the discrepancy between the full-order and reduced-order models, where

the eigenfunctions obtained at ν0 to find the reduced-order model at the viscosity ν dictate the level

of uncertainties. The switching control in the SMC law works in favor of keeping the trajectory on

the defined sliding surface in the presence of the aforedescribed uncertainties.
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Figure 10.9: Velocity response of the full-order model with the proposed SMC law to track a
sinusoidal function.

10.5 CONCLUDING REMARKS

In this paper, we derived and validated a reduced-order model for Burgers’ equation with Neumann

boundary conditions, where the reduced-order model was obtained by utilizing a combination of

the POD-Galerkin method and weak solution approach. It was shown that extracting the POD

bases associated with the reduced-order model only once at the nominal value of the viscosity

parameter ν0 is a source of uncertainty in the case of varying viscosity. It was proven that the

error terms associated with the model reduction and changing viscosity is bounded in terms of

the system matrices at the nominal value of viscosity ν0. The developed reduced-order model was

then used for the design of a robust sliding mode controller on the basis of the sliding surfaces

defined according to the reduced-order model at ν0. Due to the need for state measurements or

estimates for the sliding mode controller, implementing the calculated reduced model only once at

the nominal value of the viscosity significantly decreases the computational load for both controller

and the observer design. The reduced-order model-based controller requires the computation of the

reduced model for the varying parameter ν; however, the proposed robust sliding mode controller

implements the obtained reduced model at ν0 and guarantees the desired tracking performance of
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the full-order model at the new parameter ν. Finally, numerical studies demonstrated promising

results by using the proposed reduced-order model and controller to achieve a high performance

in reference trajectory tracking. The results proved the practicality of the proposed reduced order

modeling and control design approaches for fluid systems governed by Burgers’ equation.

181



CHAPTER 11

CONCLUDING REMARKS

In the present dissertation, a distributed control approach has been designed to handle the sce-

narios associated with deployment of heterogeneous groups of agents in a given uncertain envi-

ronment. First, a team-based approach has been developed to divide the region among multiple

groups of agents where each team may seek a different objective. The team-based approach is

further enhanced by considering the changing boundaries of the teams. The formation control has

been proposed within the team framework to fulfill the underlying constraints in the deployment

of the agent. The mathematical framework associated with the dynamic boundaries has been used

to develop a coverage approach for environments with changing boundaries like rivers. Last but

not least, the heterogeneity in the underlying assigned set of tasks has been formulated in deploy-

ment of teams of agents when different agents pursue different set of objectives. The developed

approaches are implemented and studies through a set of numerical simulations where it is shown

that the proposed methods can be successfully used to handle heterogeneity in an uncertain envi-

ronment.

As the next task in this dissertation, two deterministic and stochastic approaches are proposed

for identification of LPV systems. In the deterministic method, the problem has been formulated

in a way to yield a solution that can handle errors in the scheduling variables. This allowed the

kernel-based identification method to partially compensate for the error in p to avoid misestimating

of the system parameters and lead to a set of new expressions for LPV model coefficients by

changing the basis functions. On the other hand, the stochastic approach leads to acquiring a better

understanding of the uncertainties in data through more accurate formulation of the noise effect on

the LPV model coefficients compared to the standard GP. The results indicate that the proposed
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method gives a more accurate estimation of the LPV model coefficient functions in the presence

of both noisy measurement outputs and erroneous scheduling variables.

The proposed robust nonlinear control approach can effectively cope with the uncertainty in the

model parameters. First, a reduced-order model has been developed for a parabolic PDE to capture

the dynamics of the full-order model. Then, a reduced-order model based sliding mode controller

is designed to ensure the stability of the full-order model. As the next step, a sensitivity analysis

is carried out on the effect of the varying parameters on the extracted reduced-order model. The

boundedness of the error terms have investigated and a robust controller is designed accordingly.

The approach has been evaluated via a numerical example.

11.1 FUTRUE RESEARCH DIRECTIONS

Development of robust and stochastic techniques for system identification and control of nonlinear

systems is of great importance with increasing use of such approaches in real world applications.

Although, it has been attempted to focus on three major areas of uncertain nonlinear systems

throughout this dissertation, there are many more open problems that can be addressed as the

future direction of this research. Possible future directions include:

• To enhance the identification results by introducing a more accurate estimation of the effect

of uncertain scheduling variables rather than the linear estimation.

• To develop a robust technique by assumption of noisy measurements used for extracting the

reduced-order model.

• To implement the multi-tasking within the team framework.

• To develop a performance based partitioning method, i.e., power diagrams, to get a more

realistic coverage approach.
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1998.

192



[83] S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,

28(2):129–137, Mar 1982.

[84] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential

equations by the finite element method: The FEniCS book, volume 84. Springer Science &

Business Media, 2012.

[85] A. Macwan, G. Nejat, and B. Benhabib. Optimal deployment of robotic teams for

autonomous wilderness search and rescue. In IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), pages 4544–4549, Sept. 2011.

[86] Christopher S Magirl, Jeffrey W Gartner, Graeme M Smart, and Robert H Webb. Water

velocity and the nature of critical flow in large rapids on the Colorado river, Utah. Water

Resources Research, 45(5):454–459, 2009.

[87] H. Mahboubi, K. Moezzi, A. G. Aghdam, and K. Sayrafian-Pour. Distributed deployment

algorithms for efficient coverage in a network of mobile sensors with nonidentical sensing

capabilities. IEEE Transactions on Vehicular Technology, 63(8):3998–4016, Oct 2014.

[88] Ivan Markovsky and Sabine Van Huffel. Overview of total least-squares methods. Signal

processing, 87(10):2283–2302, 2007.

[89] Fabio Morbidi, Francesco Bullo, and Domenico Prattichizzo. Visibility maintenance via

controlled invariance for leader–follower vehicle formations. Automatica, 47(5):1060–1067,

2011.

[90] Swathi M Mula and Charles E Tinney. A study of the turbulence within a spiralling vortex

filament using proper orthogonal decomposition. Journal of Fluid Mechanics, 769:570–589,

2015.

[91] K-R Muller, Sebastian Mika, Gunnar Ratsch, Koji Tsuda, and Bernhard Scholkopf. An

introduction to kernel-based learning algorithms. IEEE transactions on neural networks,

12(2):181–201, 2001.

193



[92] Tetsushi Nishida and Kokichi Sugihara. Algorithms and Computation: 14th International

Symposium, ISAAC 2003, Kyoto, Japan, December 15-17, 2003. Proceedings, chapter

Voronoi Diagram in the Flow Field, pages 26–35. Springer, Berlin Heidelberg, 2003.

[93] Tetsushi Nishida, Kokichi Sugihara, and Masato Kimura. Stable marker-particle method for

the voronoi diagram in a flow field. Journal of Computational and Applied Mathematics,

202(2):377 – 391, 2007.

[94] Ahmed K Noor. Recent advances in reduction methods for nonlinear problems. Computers

& Structures, 13(1):31–44, 1981.

[95] Ahmed K Noor and Jeanne M Peters. Reduced basis technique for nonlinear analysis of

structures. Aiaa journal, 18(4):455–462, 1980.

[96] Ahmed K Noor, JM Peters, and CM ANDERSEN. Reduced basis technique for collapse

analysis of shells. AIAA Journal, 19(3):393–397, 1981.

[97] Cameron Nowzari and Jorge Cortés. Self-triggered coordination of robotic networks for

optimal deployment. Automatica, 48(6):1077–1087, 2012.

[98] Stephen Nuske, Sanjiban Choudhury, Sezal Jain, Andrew Chambers, Luke Yoder, Sebastian

Scherer, Lyle Chamberlain, Hugh Cover, and Sanjiv Singh. Autonomous exploration and

motion planning for an unmanned aerial vehicle navigating rivers. Journal of Field Robotics,

32(8):1141–1162, 2015.

[99] J. Le Ny and G. J. Pappas. Adaptive deployment of mobile robotic networks. IEEE Trans-

actions on Automatic Control, 58(3):654–666, March 2013.

[100] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-agent forma-

tion control. Automatica, 53:424–440, 2015.

[101] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations: Concepts and

Applications of Voronoi Diagrams. John Wiley & Sons, Inc., New York, NY, USA, 1992.

194



[102] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations: Concepts and

Applications of Voronoi Diagrams. John Wiley & Sons, Inc., New York, NY, USA, 1992.

[103] R. Olfati-Saber. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE

Transactions on Automatic Control, 51(3):401–420, March 2006.
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