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In this thesis, we examine the properties that make the expectile a proper candidate for a

measure of risk in finance. Expectiles are the solutions to asymmetric least squares mini-

mization. The expectile is also closely related to two commonly used measures, value at risk

and expected shortfall, which facilitates the extension of the expectile to finance. Using sim-

ulated examples, we investigate characteristics that make the expectile attractive in finance.

The relationship between quantiles and expectiles is featured prominently. In addition, a

method for estimating the time-varying expectile is outlined and applied to an exchange

traded fund of the Dow Jones Industrial Average and the S&P 500 Stock Index.
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Chapter 1

Introduction

Practitioners have long used statistics to augment decision-making within the field of finance.

Analyses of portfolios and financial time series have become highly technical and increasingly

important for investment banks and other financial institutions. Specifically, models that

assess the risk of a financial asset or a portfolio have become the foundation for current

government regulations and allocation decisions within financial firms. Understanding the

innate risk of a financial position is essential for a firm balancing the capacity for losses with

the possibility of profits.

Risk is defined as the potential for an undesirable outcome (i.e. loss of value) resulting

from an action or inaction. In finance, risk is the uncertainty surrounding the future value

of an asset or portfolio of financial instruments. Measuring risk is essential to maintaining

a healthy and efficient financial system. Risk measures serve to rank financial instruments

and positions by the inherent risk, which encourages more efficient allocation of capital in

financial markets. In a regulatory framework, risk measures are used to establish capital

requirements. A good risk measure will balance the potential for catastrophic losses with

the potential for more efficient allocation of investment capital.

Current risk measures, while still popular, have serious shortcomings. The expectile, the

solution to asymmetric least squares regression, resolves many of the issues of previous risk

measures. In addition to addressing the shortcomings of other risk measures such as Value-

at-Risk and Expected Shortfall, expectiles have unique characteristics that make them very
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efficient and informative measures of risk.

Our purpose here is to develop a time-varying expectile that measures the inherent risk of

an asset over time. Before introducing a parametric method for estimating the time-varying

expectile, risk measures and expectiles are expounded upon in the following chapters. The

method for constructing a time-varying expectile is then explained, followed by simulations

and real data analyses. Conclusions and future work complete the thesis.
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Chapter 2

Literature Review

Chapter 2 discusses the background necessary to understand the application of expectiles to

finance. The first section of this chapter defines the context in which we are modeling, as

well as some of the subtleties of financial data. Risk measures are defined and elaborated on

in the next section.

2.1 Financial Time Series

Estimating the risk of a financial asset or position involves utilizing the information from

financial time series. A financial time series, in its raw form, is a series of asset values over

time. However, financial managers are more interested in the returns on an investment or

the changes in price of an asset over time.

If St is the price of a financial asset at time t, then the raw return rt from time t−∆t to

time t is St−St−∆t. This is the first difference of the series of stock prices, St. Instead of the

raw difference, St − St−∆t, we examine the time series of the differences of the log returns

rt = ln(St)− ln(St−∆t).

The series of differenced log returns will be referred to simply as the log returns and

denoted rt. The time period ∆t is generally taken to be 1. The use of log returns is standard

in finance due to their inherent mathematical tractability. Taking the differenced log returns
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stabilizes the variance and should result in a roughly stationary time series. Figure 2.1

illustrates the difference in a time series of raw stock prices and a time series of the log

returns of the same stock prices.

Financial time series tend to have a distinct set of characteristics that together are known

as stylized facts. These intrinsic statistical properties of financial time series make the fore-

casting and estimation of risk complicated. In attempting to model the distribution of

returns, the most important issues are the heavy tails and heteroskedasticity of the return

distribution. Heteroskedasticity in the return distribution primarily presents itself through

the phenomenon of volatility clustering. Volatility is the measure for the variance of the

price of a financial asset over time, denoted here as σt. Volatility clustering is the tendency

of high-volatility events to cluster in time, which is evidenced by positive autocorrelation of

volatility over short periods of time (McNeil et al., 2005; Cont, 2001).
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Figure 2.1: The top graph is a time series of the raw MSFT stock price, while bottom graph
is a graph of the log returns over the same period.
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The problem of estimating the distribution of returns reduces down to addressing the

volatility clustering and heavy tails of the return distribution. The log returns, rt are com-

monly modeled as rt = σtεt, where σt is the time-varying volatility predicted from Ft−1, the

information set up to time t, and εt is a strict white noise process. Estimating σt via GARCH

modeling accounts for much of the heteroskedasticity of the returns distribution. GARCH

innovations εt are generally assumed to be identically and independently distributed N(0, 1).

However, in the case of financial returns, normality is a poor assumption.

2.2 Risk Measures

2.2.1 Definition

Once the distribution of the returns is estimated, we must find a simple numerical summary

that captures the risk of a portfolio. This numerical summary is a risk measure. It must

be simple, easily interpreted, and accurate. Put simply, a risk measure is an estimate for

the amount of capital to be held in reserve for a given financial position with a given level

of risk to insure against substantial losses. Historically, value-at-risk (VaR) has been the

risk measure of choice. More recently, risk measures have been developed that address the

shortcomings of VaR. To better understand the shortcomings of VaR and the advantages of

expectiles, we formally define a measure of risk.

A risk measure ρ is a mapping from L to R, where L is the finite set of all risks (potential

positions) and R represents the set of real numbers. The risks that compose L are random

variables, implying that ρ(X), X ∈ L, is a function of a random variable. If X ∈ L and

ρ(X) > 0, then ρ(X) is the minimum amount of cash that must be added to the position X

for it to be an acceptable position and if ρ(X) < 0, then |ρ(X)| can be withdrawn from the

position X and allocated elsewhere (Artzner et al., 1999).

2.2.2 Coherent Risk Measures

Since the late 1990’s, the focus has turned to a class of risk measures that meet the axioms

of coherence. These coherent risk measures are better defined and have properties that
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satisfy modern theories of finance and investor expectations. There are four axioms that

a risk measure must satisfy to be coherent: translation invariance, monotonicity, positive

homogeneity, and sub-additivity. The four axioms are stated below using the previously

established notation.

Translation Invariance: For all X ∈ L and a ∈ R, ρ(X + a) = ρ(X)− a.

Translation invariance reinforces the intuitive notion that if cash is added to a position

(think of a portfolio), then the position now has less risk since the cash acts as insurance

against a loss in the original position. This axiom specifies that the actual risk will drop by

the amount of cash added to the portfolio.

Monotonicity: If X1, X2 ∈ L and X1 ≤ X2, then ρ(X2) ≤ ρ(X1) for all X1, X2.

If a portfolio X2 always has better values than portfolio X1, then X2 should be less risky

than X1.

Positive Homogeneity: For all a ≥ 0 and X ∈ L, ρ(aX) = aρ(X).

This reflects the idea that position size directly influences risk. If we double the size of

our position, we are exposed to double the amount of risk.

Sub-additivity: If X1, X2 ∈ L, then ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

The axiom of sub-additivity reflects the principle of diversification: the risk of the port-

folio should be less than the sum of the risks of the constituent parts.

While these axioms of coherence are just conventions, they establish a framework for

developing risk measures that capture essential properties of financial markets. Lack of

coherence does not preclude a risk measure from being used. We can use the the concept

of coherence to identify the limitations of a risk measure and to improve it. The following

section discusses two of the more popular risk measures used in finance, Value-at-Risk and

Expected Shortfall.

2.2.3 Value at Risk and Expected Shortfall

Value at Risk (VaR) is the most widely used risk measure by commercial and investment

banks to estimate normal market risk. VaR is very simple and easily interpreted as it is

a quantile of the return distribution. We can state this as follows: V aRα is the value qα
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such that P [rt ≤ qα] = α, where rt is the log return at time t and α ∈ [0, 1]. This can

be interpreted as the minimum potential loss in the α ∗ 100% worst cases for a given time

horizon. Generally, α is taken to be 0.01 or 0.05 and the given time horizon for which the

measure is valid is taken to be 1, 5, or 10 days. For example, we might find that the 1%

5-day VaR is $1 Million, which means that over the next five days there is a 1% chance of

losing $1 Million or more. The quantile-based VaR will be referred to as the VaR in order

to distinguish it from the expectile-based risk measure, EVaR.

VaR leaves out crucial information regarding the potential severity of losses. For instance,

two portfolios could have the same VaR, but the tails of the distributions could be very

different with one portfolio having more severe potential losses. VaR has another glaring

weakness in that it is not necessarily subadditive, which means that VaR is not coherent.

VaR is subadditive, and therefore coherent, when the returns distributions for each asset

considered are jointly distributed normal with one another. (Artzner et al., 1999). VaR

is not subadditive in cases where the distribution of returns is heavy-tailed, which is very

common for financial returns. If a risk measure is not subadditive, it will not necessarily

follow the diversification principle and also can lead to the concentration of risks. The

following example, originally used by Kuan et al. (2009), illustrates the insufficiency of VaR

as a risk measure. Consider the following two return distributions of rt1 and rt2 :

frt1 =


0.30 y ∈ [0, 3]

0.05 y ∈ [−1, 0)

0.025 y ∈ [−3,−1),

frt2 =


0.30 y ∈ [0, 3]

0.05 y ∈ [−1, 0)

0.01 y ∈ [−6,−1).

The 5% and 10% VaR for both distributions are equivalent, but the tail outcomes are very

different. The maximum potential loss for frt2 is −6, which is twice that of the maximum

potential loss for frt1 . The VaR does not accurately reflect the underlying risk because it

only considers the probability of such losses and not the magnitude of the losses themselves.

Expected Shortfall (also known as tail Value at Risk (TVaR), tail conditional expectation

(TCE), and conditional Value at Risk (CVaR)) is an alternative risk measure that addresses

the issues with VaR. Formally introduced by Artzner et al. (1999). Expected shortfall (ES)
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accounts for the information in the tail of the distribution that VaR disregards. Expected

shortfall is the average of the α ∗ 100% worst log returns. We define ES for a continuous

distribution in the following way:

ESα =
1

α

∫ α

0

qudu = E[rt|rt ≤ qα].

ES is an improvement over VaR because it considers the magnitude of the potential losses

in the lower tail, rather than the tail probability alone. ES is a coherent risk measure, imply-

ing that it has the crucial property of subadditivity. Despite its advantages, ES only relies

on the values of the lower tail. Thus, ES has the potential to be too conservative. Capital

requirements are determined by these risk measures so if the measure is too conservative, an

investment bank will have an excess of cash backing a portfolio instead of allocating it more

efficiently to another asset.

The relationship between VaR and ES is best illustrated in Figure 2.2. Figure 2.2 shows

how the VaR is dependent on the tail probability alone, whereas ES is dependent on the tail

values as well as the tail probability. As a result, ES is always more conservative. The VaR

itself is actually the best possible case of the worst 5% of cases, while ES is the average of

the worst 5% of cases.
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Figure 2.2: 5% Value at Risk (labeled VaR) and corresponding Expected Shortfall (labeled
TVaR) for a skewed distribution.
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Chapter 3

Expectiles

Chapter 3 explores the characteristics of expectiles that make them suitable for use as risk

measures in finance. The first section outlines the properties of expectiles. The second

section explains the interpretation of the expectile parameter, τ . The final section explains a

parametric method for generating a time-varying expectile, including underlying assumptions

and issues.

3.1 Properties

The term expectile was coined by Newey and Powell (1987) due to its dependence on the

properties of the expectation of the random variable Y conditional on Y being in a tail of

the distribution. The expectile relies on fundamentally different information to measure risk

since it is dependent on both tails of the distribution. Expected shortfall is sensitive to the

magnitude of the lower tail returns, but only those of the lower tail. As such, it tends to

be more conservative than other risk measures. VaR is not influenced by the magnitude of

lower tail returns at all, increasing the chance that it underestimates the true risk involved.

The expectile relies on more comprehensive information to measure risk.
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The τ th expectile, µ(τ) minimizes

E[|τ − I(Y < m)|(Y −m)2] (3.1)

with respect to m for random variable Y and a given τ ∈ [0, 1]. The solution to the

minimization above, µ(τ), satisfies the expression

1− 2τ

τ
E[(Y − µ(τ))I(Y < µ(τ))] = µ(τ)− E[Y ]. (3.2)

The above expression is the method used to find the parametric expectile for the parametric

EVaR proposed in Section 3.3.

Given (y1, . . . , yn), the τ th sample expectile is found using asymmetric least squares (ALS)

minimization, defined as

min

[ n∑
i=1

τ(yi −m)2
I(yi≥m) + (1− τ)(yi −m)2

I(yi<m)

]
, with respect to m. (3.3)

First introduced by Newey and Powell (1987), this minimization is known as ALS regression

or weighted asymmetric least squares regression (LAWS). Note that if we take τ = 0.5,

LAWS actually reduces to ordinary least squares.

Examining the check-loss function of the expectile reveals many of the properties that

make it an attractive measure of risk. We can see from the check function that it weights

negative deviations using (1−τ) and positive deviations using τ . Weighting the positive and

negative deviations provides information about the symmetry of the distribution. Expectiles

yield more information about the heteroskedasticity of the distribution as well. The quadratic

loss function makes the expectile more sensitive to extreme values, and to the shape of the

distribution in general. As the expectile has the crucial property of subadditivity that the

quantile lacks, its primary advantage is that it is a coherent measure of risk (Satchell, 2010).

Some of the most important work on expectiles arise from the study of quantile regres-

sion. This comes from the relationship between asymmetric least squares regression and

quantile regression. To better understand this relationship, we introduce the check-loss for
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the quantile:

E[|α− I(Y < m)||Y −m|],

where Y is a random variable and α ∈ [0, 1] The value of m that minimizes the expected value

for a given α is the quantile, qα. Quantile regression is similarly defined as the minimization,

with respect to m, of

min
m

[ n∑
1

α|yi −m|+ + (1− α)|yi −m|−
]
.

From this perspective, we can see that ALS is the least squares analog of quantile regression.

Expectile regression has a similar advantage as quantile regression in that it can characterize

the shape of the distribution. The quantile is robust to extreme values, however, while the

expectile is not. This can be beneficial, since if we are measuring potential losses, we want

our measure to be sensitive to extreme tail losses. The expectile depends on the shape of the

entire distribution, while only the shape of the lower tail of the distribution affects quantiles.

One of the primary reasons researchers began to recognize the advantage of using ex-

pectiles was the fact that ALS regression is more computationally efficient than quantile

regression. Computing the expectile is simpler than computing the quantile because the

check-loss function is continuously differentiable.

The relationship between expectiles and quantiles encouraged the expectiles use in fi-

nance. Efron (1991) suggested estimating quantiles by the expectile for which the proportion

of in-sample observations lying below the expectile is τ . The one-to-one mapping between

quantiles and expectiles has been empirically supported by Jones (1994), Abdous and Remil-

lard (1995), and Yao and Tong (1996). Taylor (2008) estimated the nonparametric VaR and

Expected Shortfall via the expectile. The emphasis has generally been placed on the com-

putational efficiency of the expectile as compared to quantile regression, rather than on the

virtues of the expectile as a risk measure. De Rossi and Harvey (2009) were the first to

directly use the expectile by developing a spline-based nonparametric computation method

for the time-varying expectile. Its use was still limited by the difficulty in interpreting the

expectile and its asymmetry parameter. Direct use of the expectile as a risk measure has
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been discouraged by the expectiles lack of interpretation. Kuan et al. (2009) addressed the

issue of interpretability by giving a more intuitive definition for the expectile in a financial

risk setting.

3.2 Interpretation

The most glaring issue with using expectiles is the difficulty in interpretation. This makes

the direct use of the expectile as a risk measure difficult to justify. Recently, however, an

interpretation for the expectile in terms of financial risk has been proposed by Kuan et al.

(2009). They introduced the asymmetry parameter, τ , as the index of prudentiality. Recall

that the margin or capital requirement is the amount of capital to be held in reserve for a

given set of assets. The level of prudentiality relies on the use of risk measures as capital

or margin requirements as it can be thought of as the relative cost of the expected margin

shortfall. This results from the expectile satisfying the expression

∫ µ(τ)

−∞ (y − µ(τ))dF (y)∫ µ(τ)

−∞ (y − µ(τ))dF (y) +
∫∞
µ(τ)

(y − µ(τ))dF (y)
=

∫ µ(τ)

−∞ (y − µ(τ))dF (y)∫∞
−∞(y − µ(τ))dF (y)

= τ, (3.4)

where µ(τ) is the τ th expectile and F (y) is the cumulative distribution of the random variable

Y . The denominator is the sum of
∫ µ(τ)

−∞ (y−µ(τ))dF (y) and
∫∞
µ(τ)

(y−µ(τ))dF (y), which are

the expected margin shortfall and the opportunity cost due to expected margin overcharge,

respectively. Together they are the total expected cost of holding the capital requirement,

µ(τ). Thus, τ is the ratio of the expected margin shortfall to the expected total cost of

the capital requirement. Therefore, it is the relative cost of the expected margin shortfall.

Since the magnitude of µ(τ) represents the margin requirement, the greater the magnitude

of µ(τ), the smaller the expected shortfall, which results in a smaller τ.

Lower values of τ indicate more risk aversion. Kuan et al. (2009) suggest that the EVaR

can be thought of as a flexible VaR, since the tail probability associated with an expectile is

not some static α chosen at the outset, but changes with the underlying distribution. Table

3.1 contains the corresponding α of τ = 0.05 and τ = 0.01 for the Uniform(0,1), N(0,1), and

t(5) distributions. It illustrates that the probability α, associated with the τ th expectile is
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dependent on the underlying distribution.

Table 3.1: τ and corresponding α for several distributions.
Distribution τ α Distribution τ α

Unif(0,1) 0.05 0.187 Unif(0,1) 0.01 0.091
N(0,1) 0.05 0.127 N(0,1) 0.01 0.043
t(df=5) 0.05 0.099 t(df=5) 0.01 0.027

3.3 Time-Varying Expectiles

The previous sections focused on understanding risk measures and expectiles. In addition to

exploring the expectile’s potential as a risk measure, a parametric time-varying expectile was

also developed. The time-varying expectile is denoted as a EVaR for the expectile-based.

VaR refers to the standard quantile based Value-at-Risk.

Since we estimate the time-varying expectile parametrically, there are several critical

assumptions for our model. The most essential, and reasonable, is that rt = σtεt, where

σt is the volatility at time t and εt is the underlying distribution of returns (the return

residuals with respect to rt). The property of volatility clustering or time-varying volatility is

represented through σt, which is simply the time-dependent (conditional) standard deviation.

After the volatility is filtered, we should be left with a time series of independent innovations,

εt for all t. A distribution is fit to the error terms, εt, and the expectile is calculated for the

distribution with estimated parameters. The resulting time-varying expectile can be more

easily referred to as the EVaR for expectile-based Value at Risk.

3.3.1 GARCH model

The importance of a time-varying model lies in its ability to model the change in risk over

time. From looking at any time series of returns, we can see that different time periods

have different levels of risk associated with them. Modeling the change in volatility over

different time periods is essential to producing a risk measure that accurately assesses risk

over a given time period. To model the time-varying expectile, we must first address the
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change in volatility over time, i.e. volatility clustering. The ARCH (autoregressive condi-

tional heteroskedasticity) model was developed by Engle (1982) to model the conditional

heteroskedasticity in financial data sets. Bollerslev (1986) generalized this process to the

GARCH (generalized autoregressive conditional heteroskedasticity). The ARCH(k) process

takes advantage of the autocorrelation that exists between the previous q squared returns.

Autocorrelation among squared returns, but not among simple returns is a common statis-

tical property of financial data sets. The GARCH(p,q) process improves the estimation of

heteroskedasticity by including the conditional variances from the p previous time intervals.

Typically, we assume σt ∼ GARCH(1,1) because of the models simplicity and empirical

performance. Thus, the time-varying volatility is modeled as

σ2
t = ω + β1r

2
t−1 + β2σ

2
t−1, (3.5)

where ω > 0 is a constant, β1 > 0 is the autoregressive coefficient, β2 > 0 is the lagged

conditional variance coefficient, and β1+β2 < 1. By estimating β1, β2, and ω, we can estimate

the time-varying volatility, σt. To test the GARCH(1,1) fit, we examine the plot the squared

GARCH residuals, ε̂2t . The Ljung-Box test is useful for determining if the residuals are

independently distributed. Checking the autocorrelation function of the squared GARCH

residuals and the Ljung-Box test statistic aid in assessing the appropriateness of the GARCH

model.

3.3.2 NIG distribution

After estimating the volatility the returns are devolatized by dividing rt by σ̂t, yielding ε̂t.

If the GARCH model fits well, then the resulting residual should be independently and

identically distributed. Historically, several distributions have been fit to the conditional

returns, including the normal distribution, Student’s t distribution, the skewed Student’s t

distribution, and the generalized hyperbolic distribution with varying success (Cont, 2001;

Hu and Kercheval, 2007). A special case of the generalized hyperbolic, the Normal Inverse

Gaussian(NIG) distribution, seems to model the heavy tails of this distribution well when

compared to previous attempts at distribution fitting (McNeil et al., 2005). The NIG dis-
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tribution has four parameters: µ (location), ξ (shape), β (asymmetry), and δ (scale). A

distribution with additional scale and skewness parameters, such as the NIG, can account

for the heavy tails and asymmetry common to financial returns distributions. Figure 3.1

several instances of the NIG distribution for different combinations of parameters.
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Figure 3.1: NIG distributions with different parameters

Solving (3.2) using the NIG(µ̂, ξ̂, β̂, δ̂) density for a given τ yields µ̂(τ). To model the

EV aR, µ̂t(τ), the time-varying volatility must be factored in, which gives us µ̂t(τ) = σ̂tµ̂(τ).

For reference, the time-varying quantile for a given α ∈ [0, 1] was also calculated using the

fitted NIG distribution. The given quantile of the residual time series is multiplied by the

appropriate volatility at time t to generate the time-varying quantile-based VaR, V aRα.
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Chapter 4 explores the relationship between quantiles and expectiles, compares the afore-

mentioned parametric method for estimating expectiles with the LAWS estimation method,

and provides real examples of the EVaR.
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Chapter 4

Numerical Analysis

Chapter 4 explores the characteristics of expectiles and the EVaR using simulations and

application of the aforementioned EVaR estimation method. The first section consists of the

simulations designed to explore the relationship between the expectile and quantile as well as

general characteristics of the expectile. The second and final section covers the application

of the EVaR to the DIA, an ETF of the Dow Jones Industrial Average.

4.1 Simulation

4.1.1 Parametric Expectile vs. Sample Expectile

The following simulations were designed to test the robustness of the assumption of NIG

errors. The conditional standard deviation portion of the returns was generated by simulating

σt with a GARCH(1,1) model with coefficients ω = 0.05, β1 = 0.2, and β2 = 0.4. The

errors, εt, of the returns were random deviates from either the NIG(0,1,0,1), N(0,1), or

t(df=5). The GARCH(1,1) model was fit to the simulated returns and then the residuals

were used to estimate the parameters for an NIG distribution. The parametric expectile was

calculated using an NIG distribution with the estimated parameters. The sample expectile

was determined using the LAWS method performed on the residuals of the GARCH fit.

The expectile from the true distribution was then subtracted from the expectile estimated

parametrically and the sample expectile. The simulation consisted of 1000 generations of
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1000 returns. The expectile was calculated for τ = 0.01 and τ = 0.05. Box plots of the

deviations from the true expectile were generated for both types of estimation and values of

τ .

The returns for the simulation resulting in Figure 4.1 below were generated using εt ∼

NIG(0, 1, 0, 1). Both methods produced box plots that were fairly accurate (centered around

0) for both values of τ . There is little to no difference between the variance of the deviations

from the LAWS method and the variance in the deviations from the parametric method.

Between values of τ , there is a difference in the variance of the estimates. Specifically, the

estimates of expectiles for the smaller value of τ are more variable. Smaller values of τ

correspond to values further in the tail of the distribution, where values are more sensitive

to the estimate of the shape of the distribution.
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Figure 4.1: Simulations generated using εt ∼ NIG(0, 1, 0, 1).

Figure 4.2 results from the simulation generated using εt ∼ N(0, 1) and Figure 4.3 results

from using εt ∼ t(df = 5). Figures 4.2 and 4.3 yield similar results. The NIG assumption and

estimation method appear to be robust when the underlying distribution is misspecified.
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Figure 4.2: Simulations generated using εt ∼ N(0, 1).
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Figure 4.3: Simulations generated using εt ∼ t(df = 5).
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4.1.2 Sample Quantile vs. Sample Expectile

Given the close relationship between quantiles and expectiles, it is natural to compare them

more closely. As mentioned before, quantiles and expectiles are equivalent for corresponding

values of τ and α. The equation that yields the value of τ for a given α is

τ =
α · q(α)−

∫ q(α)

−∞ y dF (y)

E[Y ]− 2
∫ q(α)

−∞ y dF (y)− (1− 2α)q(α)
. (4.1)

Values for α were given (0.01 and 0.05) and the corresponding values of τ were determined

using 4.1, assuming F is the cumulative function for the NIG(0,1,0,1). Data were generated

from an NIG(0,1,0,1) and the sample expectile (LAWS) and sample quantiles were calculated

for the appropriate values of τ and α, respectively. Figure 4.4 is a box plot of the deviations

of the sample estimates from the true expectile. The leftmost pairing of expectile and

quantile are both q̂α=0.01 and the rightmost pairing correspond to q̂α=0.05. The value of τ in

parentheses for the expectiles is the value of τ that corresponds to the given level of α.
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Figure 4.4: Sample quantiles vs. sample expectiles for corresponding values of τ and α
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The sample quantile and sample expectile were both very accurate. The sample expec-

tile deviations for α = 0.01 are more variable, which is a result of the sample expectile’s

sensitivity to extreme values. Again, we see that as τ and α increase, the variances of the

deviations decrease for both estimators.

4.2 Real Data

4.2.1 Dow Jones Industrial Average

The following analysis consists of 1018 closing day prices the Dow Jones Industrial Average

Exchange Traded Fund (ETF) taken from January 2, 2008 to January 13, 2012. This section

outlines the process used to generate the EVaR.

The GARCH(1,1) fit was assessed using the autocorrelation function (ACF) of the

squared GARCH residuals, in addition to the Box-Ljung test. The NIG fit was evalu-

ated by examining the shape of the histogram of the GARCH residuals, as well as a NIG

QQ-plot and fit plot. Additional figures used to evaluate assumptions and fit of the model

are included in Appendix A.1.

Figure 4.6 consists of the log returns, EVaR for τ = 0.01 and τ = 0.05, and VaR for

α = 0.05. Depending on the level of risk aversion, a level of τ would be chosen corresponding

to an EVaR. The resulting EVaR would serve as a guideline for the amount of capital to be

held in reserve at a given time t. Figure 4.6 illustrates the dynamic nature of a time-varying

risk measure. Building in the change in heteroskedasticity over time results in the adaptive

risk measures seen in Figure 4.6. Note that the V aRα=0.05 is in between the EV aR0.05 and

EV aR0.01. Appendix B covers the EVaR analysis of the S&P 500.
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4.2.2 Backtesting

There are instances when the log returns exceed the EVaR and VaR. These exceedances,

or violations, are failures in the model. The goal is to limit the number of these violations,

which is the concept behind backtesting. Regulatory agencies require the backtesting of

models such as these to protect against large losses. It is also in the best interests of the

financial institution to ensure the accuracy of a financial model. Backtesting procedures

are well-developed for VaR models (Campbell, 2005). This was the primary motivation for

producing a VaR model along with the EVaR model.

Backtesting VaR models centers around α, which is the probability of losing the VaR

or more over a given period. Backtesting consists of testing the number of exceedances, or

VaR violations, and whether they are independent. If the model is adequate, then we would
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expect the proportion of VaR exceedances to be close to α. Testing this idea, known as

unconditional coverage, assumes that the number of violations, N , is binomially distributed

with E[N ] = Tα, where T is the total number of time points. Independence of exceedances

is also desired as it guarantees against clustering of VaR violations. The test statistic for

testing the simultaneous null hypothesis

H0 : E[N ] = Tα,Violations are independent.

can be found in Appendix C (Jeong and Kang, 2009; Hamidi et al., 2010).

The p-value resulting from the test of the above hypothesis for the VaR model is 0.3979.

This indicates that the fit is adequate as we fail to reject the null hypothesis. A summary of

the backtesting parameters is below. A similar summary for the S&P data set can be found

in Appendix B. Currently, there is no backtesting method for assessing the fit of the EVaR,

an issue which is further discussed in the conclusion.

Table 4.1: Backtesting Summary for DJIA ETF series VaR
α N T p̂ p-value

0.05 60 1018 0.0589 0.3979
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Chapter 5

Conclusions and Future Work

Expectiles have great potential in analyzing risk in finance. The expectile exhibits properties

that satisfy the axioms of coherence, an essential given our current understanding of risk.

The ALS estimator is accurate and computationally efficient. The expectile can be used to

directly estimate quantiles and, thus, VaR. The expectile fully characterizes the underlying

distribution and takes advantage of more information than competing risk measures. τ

becomes better understood and backtesting methods are developed, expectiles will become

accepted measures of risk.

The expectile has its share of issues and more research is needed, particularly in the

area of backtesting. Since α is a probability and a proportion, it is relatively simple to

backtest. The level of prudentiality, τ , has an interpretation that does not lend itself to

backtesting. Currently, the lack of a backtesting procedure limits the expectile’s use in

finance to estimating the quantile in VaR models.This is probably why the most promising

work has been in the relationship between the expectile and the quantile.

The relationship between the quantile and expectile is yet to be studied thoroughly. It

is yet to be known whether the sample expectile is more efficient at estimating the sample

quantile in many cases. The remaining work in this area appears to be theoretical rather

than applied.

Even if we concede the lack of backtesting, there is more to be done with expectiles.

Potentially, the expectile can be used to rank portfolios according to risk aversion. The
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expectile could be used in portfolio optimization by selecting for a given level of prudentiality

and returning the portfolio that best fits the desired risk aversion profile.

The field of finance will continue to search for a measure of risk that is coherent, inter-

pretable, efficient, accurate, and robust. The expectile satisfies several of these demands.

Perhaps, with a little work, the expectile will be the primary risk measure of financial insti-

tutions of the future.
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Appendix A

Additional Results for DJIA analysis

Figure A.1 is an autocorrelation (ACF) plot of the squared log returns and the squared

GARCH residuals. The squared log returns exhibit autocorrelation, a property that the

GARCH(1,1) process assumes. The squared residuals show no significant autocorrelation,

indicating the GARCH fit was sufficient. The p-value resulting from the Box-Ljung test

statistic was 0.003, indicating a lack of independence among the residuals. The number of

lags tested in the Box-Ljung test was 1. The GARCH(1,1) estimates for ω, β1, and β2 are

2.27 ∗ 10−6, 0.123, and 0.870, respectively.
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Figure A.1: ACF of Squared Returns and Squared Residuals

Figure A.2 illustrates the effect of the GARCH fit on the log returns. The second graph

shows how the GARCH adapts to fit highly variable periods. For instance, look at the

observations surrounding the 200th time point. The variance among the log returns is sub-

stantially higher during this period than others. We can see this reflected in the same time

period in the fitted GARCH values. The third graph from the top gives us the result after

devolatizing the log returns using the fitted GARCH values.
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Figure A.3 is a histogram of the log returns and the residuals after the log returns are

devolatized. The resulting distribution is roughly symmetric with a slight left skew. The

NIG distribution handles this shape well.
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Figure A.4 is the Quantile-Quantile Plot of the theoretical NIG quantiles vs. the quan-

tiles of the GARCH residuals. The plot implies a good fit of the NIG distribution to the

devolatized returns.
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Figure A.4: NIG QQ-plot to assess NIG fit
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Figure A.5 is another graphical tool for evaluating the NIG fit of the devolatized returns.

In the left most figure, the NIG density laid over the GARCH residuals closely fits the density

of the residuals. The estimated parameters for µ, ξ, β, and δ are 0.23, 1.35, -0.22, and 1.32,

respectively.
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Appendix B

Results for S&P 500

Individual descriptions of the plots used in the S&P analysis were left out in favor of brevity.

The analysis followed the same methodology as the DJIA ETF analysis in Appendix A.
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Figure B.1: Time Series of S&P Closing Prices, 01-02-2008 to 01-13-2012
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The p-value for the Box-Ljung test is 0.001, indicating that the residuals are not indepen-

dent at the first lag. The ACF plot of the squared residuals does not show any substantial

autocorrelation. The parameters (ω, β1, and β2) for the GARCH(1,1) are 2.64 ∗ 10−6, 0.11,

and 0.88, respectively.

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C
F

ACF of Squared stock

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C
F

ACF of Squared Residuals

Figure B.2: ACF plots of log returns and squared log returns
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Again, we see the histogram is roughly symmetric with some slight left skew and heavier

tails. This should be well modeled by the NIG distribution,
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Figure B.3: Histogram of GARCH residuals
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The QQ-plot indicates an adequate fit. There seems to be some departure from the NIG

in the tails, but the fit is good overall.
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Figure B.4: NIG QQ-plot of errors
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Figure B.5: Log Returns, Fitted GARCH values, and GARCH residuals for S&P data
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The parameter estimates for µ, ξ, β, and δ are 0.33, 1.42, -0.34, and 1.32, respectively.
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Figure B.6: NIG fit for S&P time series
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Table B.1: Backtesting Summary for S&P 500 series VaR
α N T p̂ p-value

0.05 59 1016 0.0581 0.3288
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Appendix C

Backtesting Test Statistic

The test statistic for the test of unconditional coverage is

−2 log[(1− α)T−NαN ] + 2 log[(1− (N
T

))T−N(N
T

)N ] ∼ χ2(1)

where N is the number of violations, T is the total number of time points, and α is the

given probability of losing the VaR or greater over a given time period. The test statistic

for testing independence is

2[logL(π01, π11)− logL(π, π)] ∼ χ2(1)

where

L(π01, π11) = (1− π01)n00πn01
01 (1− π11)n10πn11

11 ,

L(π, π) = (1− π)n00+n10πn01+n11

π01 =
n01

(n00 + n01)
, π11 =

n11

(n10 + n11)
,

π =
(n01 + n11)

n
,

n00= number of nonviolations followed by a nonviolation,

n01=number of nonviolations followed by a violation,

n10 =number of violations followed by a nonviolation,
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and n11 = number of violations followed by violations. Assuming the test statistics are

independent allows us to combine the two, yielding an overall test statistic that is distributed

χ2(2).
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