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Abstract

This dissertation explores several questions on the topic of pairs trading. The idea of pairs trading is

to simultaneously trade a pair of securities, typically stocks. The purpose is to hedge the risk associated

with buying and holding shares of a single stock by selling shares of a second stock. This method can

be beneficial, because it has the potential to be profitable under any market circumstances. That is to

say, it can be profitable even when prices are not going up. The strategy is to track and compare the

relative strengths of the prices of two stocks over time. When their prices diverge, the plan is to go long

in the weaker stock and go short in the stronger stock. This technique bets on the eventual reversal of

their price strengths. The objective is to trade the pairs over time to maximize an overall return with a

fixed commission cost for each transaction. The optimal policy is then characterized by threshold curves

obtained by solving the Hamilton-Jacobi-Bellman (HJB) equations that arise from following a dynamic

programming approach.
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Chapter 1

Introduction to Pairs Trading

1.1 Introduction

This dissertation explores several questions in the field of mathematical finance, specifically focusing on

identifying optimal strategies for pairs trading. Traditional stock trading strategies encourage investors

to buy low and sell high in order to secure a profit. However, this is only possible when prices go up,

which cannot be guaranteed. To alleviate this, the practice of pairs trading was introduced by Gerry

Bamberger and pioneered by quantitative analysts in Nunzio Tartaglia’s group at Morgan Stanley in the

1980s. The idea of pairs trading is to hedge the risk associated with buying and holding shares of a single

stock by enacting trades involving a second, usually strongly correlated, stock. The benefit of this method

is that in can be profitable under any market circumstances, due to its market neutral nature. For related

literature and detailed discussions on the subject, we refer the reader to the paper by Gatev et al. [10], the

book by Vidyamurthy [22], and references therein.

Pairs of stocks are typically chosen when their prices follow roughly the same trajectory over time, i.e.

when they are cointegrated; see Gatev et al. [10] and Liu and Timmermann [16] for further discussion.

When there is a divergence of the stock prices to a certain level, the pairs trade would be triggered: to short

the stronger stock and to long the weaker one, betting on the eventual convergence of the prices. This is

the strategy we seek to model in this dissertation. Another similar strategy bets on the eventual divergence

of the prices. When the difference between the prices decreases to a certain level, the pairs trade is entered

by longing the stronger stock and shorting the weaker one.
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Mathematical trading rules, including pairs trading rules, have been studied for several decades. Tradi-

tional pairs trading uses mean-reversion models, and closed-form solutions are often derived. However,

another commonly used model for stock price movements involves geometric Brownian motion. For

example, Zhang [25] considered a selling rule determined by two threshold levels: a target price and a cut-

loss limit. In [25], such optimal threshold levels are obtained by solving a set of two-point boundary value

problems. Guo and Zhang [11] studied the optimal selling rule under a model with switching geometric

Brownian motion. Using a smooth-fit technique, they obtained the optimal threshold levels by solving a

set of algebraic equations. Note that these papers are only concerned with geometric Brownian motion

type models. Chapters 2 and 3 of this dissertation are concerned with pairs trading under the assumption

of geometric Brownian motion.

The latter part of this dissertation also considers pairs trading strategies when a mean-reversion model

is assumed. Mean-reversion models are commonly used to depict price movements that tend to move

toward an equilibrium level. We refer the reader to Cowles and Jones [6], Fama and French [8], and Gal-

lagher and Taylor [9], among others, for studies in connection with mean-reversion and stock returns.

Mean-reversion models also find applications beyond stock markets. They are utilized for stochastic in-

terest rates, as explored by Vasicek [21] and Hull [14], stochastic volatility, as studied by Hafner and Her-

wartz [12], and energy markets, as examined by Blanco and Soronow [2]. There are also relevant findings

for options pricing involving mean-reversion assets, as demonstrated by Bos, Ware, and Pavlov [3]. We

also introduce regime-switching to the mean-reversion model. Regime-switching models complicate the

modeling problem, since the Markov chain incorporates another source of uncertainty into the models.

Market models with regime switching are important to market analysis. Regime-switching models

are often used to better reflect a random market environment. In a mean-reversion model, the rate of

reversion, the mean (equilibrium), and the volatility are all subject to change in the long run. One way to

capture these changes is to introduce a switching process dictating sudden changes in system parameters.

The models incorporate parameters to describe the trends of the market which switches among a finite

number of states, for instance, the uptrend (bull market) and the downtrend (bear market). Regime-

switching models were first introduced by Hamilton [13] in 1989 to describe time series. The models have

also been employed by Zhang [25] for optimal stock selling rules, Yin and Zhang [23] for applications in

portfolio management, and Yin and Zhou [24] for dynamic Markowitz problems. Unlike these papers,
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this dissertation does not introduce regime-switching in the context of geometric Brownian motions. A

mean-reverting Itô diffusion of the form dZt = θ(αt)[µ(αt)− Zt]dt+ σ(αt)dWt is used instead.

In many optimal trading problems, Hamilton-Jacobi-Bellman (HJB) equations are derived. Various

techniques in stochastic control theory have been employed to solve these equations, such as ordinary

differential equations (ODE), partial differential equations (PDE), smooth fitting, and viscosity solu-

tion methods. However, the associated HJB equations may involve highly complicated PDEs for which

classical solutions are very hard to obtain. To avoid solving these complicated HJB equations, stochas-

tic approximation methods can be used. Recent references on stochastic approximation can be found

in [4], [15]. However, in this dissertation, we only consider the ODEs and PDEs under smooth-fitting

conditions.

This dissertation is organized as follows: Chapter 2 is concerned with one round-trip pairs trade for a

pair of stocks whose prices follow geometric Brownian motions. We assume that the initial pairs position

may be either long or flat. We derive the associated HJB equations for the value functions and solve

them to find closed-form solutions and an optimal trading rule. Chapter 3 extends the round-trip pairs

trading problem from Chapter 2 to include the possibility that the initial pairs position may be long,

flat, or short. This results in a new set of value functions and, hence, a new set of HJB equations. We

are able to solve the HJB equations in closed form and obtain an optimal trading rule. Chapter 4 is

once again concerned with pairs trading, but now we assume the prices of the stocks follow a mean-

reversion process. We introduce regime switching to incorporate the possiblity of different market modes.

The quasi-variational inequalities for the value functions provide a set of sufficient conditions for the

optimality of the trading strategy.

1.2 Problem One: Round-Trip Pairs Trading under Geometric

Brownian Motions

One typical model for daily stock price movements is the following stochastic differential equation,

d

X1
t

X2
t

 =

X1
t

X2
t

µ1

µ2

 dt+

σ11 σ12

σ21 σ22

 d

W 1
t

W 2
t

 , (1.1)
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where {X1
t , t ≥ 0} denote the prices of some stock S1, and {X2

t , t ≥ 0} denote the prices of some

stock S2, µi, i = 1, 2 are the return rates, σij , i, j = 1, 2 are the volatility constants, and (W 1
t ,W

2
t )

is a 2-dimensional standard Brownian motion. One benefit of this model, is that it does not specify

any relationship between the pairs of stocks or require them to satisfy any measure of correlation, thus

allowing for greater possibilities in the choice of pairs [20]. The Brownian motion, whose sample path is

a random walk, encodes the assumption that it is impossible to accurately predict the change in the price

of a stock from day to day. We consider a pairs position Z where holding one share of Z means being long

one share in stock S1 and being short one share in stock S2. We allow that the initial position of Z may

be either long (i = 1) or flat (i = 0).

To the above stochastic differential equation (1.1), we assign the following partial differential operator

A =
1

2

{
a11x

2
1

∂2

∂x21
+ 2a12x1x2

∂2

∂x1∂x2
+ a22x

2
2

∂2

∂x22

}
+ µ1x1

∂

∂x1
+ µ2x2

∂

∂x2
, (1.2)

where a11 = σ2
11 + σ2

12, a12 = σ11σ21 + σ12σ22, a22 = σ2
21 + σ2

22, and x1, x2 are the initial prices of

stocks S1 and S2, respectively [18]. We then go about solving the Hamilton-Jacobi-Bellman equations

min
{
ρv0(x1, x2)−Av0(x1, x2), v0(x1, x2)− v1(x1, x2) + βbx1 − βsx2

}
= 0,

min
{
ρv1(x1, x2)−Av1(x1, x2), v1(x1, x2)− βsx1 + βbx2

}
= 0,

whereρ > 0 is a given discount factor (the rate at which the value of money decreases over time),βb andβs

are the transaction fees associated with buying and selling, and vi are candidate solutions for supremums

of reward functions of the form

J0(x1, x2, (τ1, τ2)) =E
[
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

]
,

J1(x1, x2, τ0) =E
[
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

]
,

for times τ0 ≥ 0 and τ2 ≥ τ1 ≥ 0. To solve this system, we must find thresholds k1 and k2 for buying

and selling, as in [20].
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1.3 Problem Two: Round-Trip Pairs Trading under Geometric

Brownian Motions with Reversible Initial Positions

Having previously allowed the initial pairs position to be long or flat, a natural next question to consider

is the short side of pairs trading. So, we begin again with the same stochastic differential equation as in

(1.1) and the same partial differential operator as in (1.2), but now we allow our intial pairs position to be

flat (i = 0), long (i = 1), or short (i = −1). If initially we are short in Z, we will buy one share of Z,

i.e. buy one share of S1 and sell one share of S2, at some time τ0 ≥ 0, which will conclude our trading

activity. If initially we are long in Z, we will sell one share of Z, i.e. sell S1 and buy S2 at some time τ0 ≥ 0,

which will conclude our trading activity. Otherwise, if initially we are flat, we can either go long or short

one share in Z at some time τ1 ≥ 0. Depending on our activity at time τ1, we would then either sell S1

and buy S2 (if long) or buy S1 and sell S2 (if short) at some time τ2 ≥ τ1, thus concluding our trading

activity. Hence, for x1, x2 > 0, the HJB equations become



min
{
ρv1(x1, x2)−Av1(x1, x2), v1(x1, x2)− βsx1 + βbx2

}
= 0,

min
{
ρv−1(x1, x2)−Av−1(x1, x2), v−1(x1, x2) + βbx1 − βsx2

}
= 0,

min
{
ρv0(x1, x2)−Av0(x1, x2), v0(x1, x2)− v1(x1, x2) + βbx1 − βsx2,

v0(x1, x2)− v−1(x1, x2)− βsx1 + βbx2

}
= 0,

where ρ, βs, and βb are as in Problem One, and vi are candidate solutions for supremums of reward

functions of the form

J−1(x1, x2, τ0) =E
[
−e−ρτ0

(
βbX

1
τ0
− βsX

2
τ0

)
I{τ0<∞}

]
,

J0(x1, x2, τ1, τ2) =E
[{
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

}
I{u=1}

+
{
e−ρτ1

(
βsX

1
τ1
− βbX

2
τ1

)
I{τ1<∞} − e−ρτ2

(
βbX

1
τ2
− βsX

2
τ2

)
I{τ2<∞}

}
I{u=−1}

]
,

J1(x1, x2, τ0) =E
[
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

]
.

We seek thresholds k1, k2, k3, and k4 for buying and selling Z. Let k1 indicate the price at which we

will sell one share of Z when the net position is flat. Similarly, we will denote by k2 the threshold for
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selling one share of Z when the net position is long. Next, k3 will indicate the price at which we will buy

one share of Z when the net position is short. Finally, the threshold for buying one share of Z when the

net position is flat will be denoted by k4. We define the function u as follows.

u(x1, x2, i) :=



−1, for i = 0 and x2 ≤ x1k1,

−1, for i = 1 and x2 ≤ x1k2,

1, for i = −1 and x2 ≥ x1k3,

1, for i = 0 and x2 ≥ x1k4.

.

Note the dependence of the reward function J0 on this function u.

After investigating this problem numerically, we were surprised to discover that choosing k1 = k2

and k3 = k4 leads to a valid solution to the HJB equations, and we could prove the uniqueness of these

thresholds by application of a special implicit function theorem [17]. This leads us to using the term

reversible to describe the initial positions due to the apparent symmetry between going one-share long in

Z and going one-share short in Z with the roles of S1 and S2 interchanged.

1.4 Problem Three: Pairs Trading under a Mean-Reversion Model

with Regime Switching

Another typical model for stock price movements is the mean-reverting (Ornstein-Uhlenbeck) process.

In this joint work with Dr. Phong Luu, Dr. Jingzhi Tie, and Dr. Qing Zhang, this model was coupled

with a two-state Markov chain, a switching process that reacts to sudden changes in system parameters

that might occur when a bear market becomes a bull market and vice versa. To focus on closed-form

solutions, we only consider the Markov chain, which we denoteαt, t = 1, 2, with an absorbing state. The

absorbing state assumption is reasonable, because markets tend to stay in one state for a significant period

of time. As before, we consider two stocks S1 and S2. LetX1
t andX2

t denote their prices, respectively, at

time t. The corresponding pairs position consists of a long position in S1 and short position in S2. For

simplicity, we include one share of S1 andK0 shares of S2 (for someK0 > 0) in the pairs position. The
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price of the position is given byZt = X1
t −K0X

2
t , which is a stochastic process governed by

dZt = θ(αt)[µ(αt)− Zt]dt+ σ(αt)dWt, Z0 = x,

where θ, µ, and σ are functions of a two-state Markov chainαt ∈ {1, 2}, andWt is a standard Brownian

motion independent of αt.

We consider the Markov chain with the absorbing state α = 2. In particular, its generator is Q =−λ λ

0 0

, for some λ > 0. Let Aα, α = 1, 2, denote the generator of (Zt, αt). Then,

A1v(x, 1) =
σ2
1

2
· d

2v(x, 1)

dx2
+ θ1(µ1 − x)

dv(x, 1)

dx
+ λ(v(x, 2)− v(x, 1)),

A2v(x, 2) =
σ2
2

2
· d

2v(x, 2)

dx2
+ θ2(µ2 − x)

dv(x, 2)

dx
.

The associated HJB equations are given by:

min
{
[ρ−A1]v0(x, 1), v0(x, 1)− v1(x, 1) + x+K

}
= 0,

min
{
[ρ−A1]v1(x, 1), v1(x, 1)− v0(x, 1)− x+K

}
= 0,

min
{
[ρ−A2]v0(x, 2), v0(x, 2)− v1(x, 2) + x+K

}
= 0,

min
{
[ρ−A2]v1(x, 2), v1(x, 2)− v0(x, 2)− x+K

}
= 0,

where ρ > 0 is a discount factor andK is a fixed percentage transaction cost. For this problem, one share

long in the pairs position Z means the combination of a one-share long position in S1 and a K0-share

short position in S2. Note that the value of the pairs positionZt may be negative.

Let 0 ≤ τ b1 ≤ τ s1 ≤ τ b2 ≤ τ s2 ≤ · · · denote a sequence of stopping times. A buying decision is made

at τ bn and a selling decision at τ sn, n = 1, 2, . . .. We consider the case that the net position at any time can

be either long (with one share of Z) or flat (no stock position of either S1 or S2). Let i = 0, 1 denote the

initial net position. If initially the net position is long (i = 1), then one should sellZ before acquiring any

future shares. The corresponding sequence of stopping times is denoted by Λ1 = (τ s1 , τ
b
2 , τ

s
2 , τ

b
3 , . . .).
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Likewise, if initially the net position is flat (i = 0), then one should start by buying a share of Z. The

corresponding sequence of stopping times is denoted by Λ0 = (τ b1 , τ
s
1 , τ

b
2 , τ

s
2 , . . .).

Thus, the vi above are candidate solutions for supremums of reward functions of the form:

Ji(x, α,Λi) =



E

{
∞∑
n=1

[
e−ρτsn(Zτsn −K)−e−ρτbn(Zτbn

+K)
]
I{τbn<∞}

}
, if i = 0,

E

{
e−ρτs1 (Zτs1

−K)

+
∞∑
n=2

[
e−ρτsn(Zτsn −K)−e−ρτbn(Zτbn

+K)
]
I{τbn<∞}

}
, if i = 1,

(1.3)

where the term E
∞∑
n=1

ξn is interpreted as lim sup
N→∞

E
N∑

n=1

ξn for given random variables ξn.

1.5 Mathematical Preliminaries

This section summarizes a number of established results that are used in this dissertation. These results

and their proofs can be found in [1], [5], [18].

1.5.1 Stochastic Processes

Definition 1.5.1 (Stochastic Process). A stochastic process is a collection of random variables {X(t)}t∈Λ
defined on the same probability space (Ω,F , P ), where Λ is some indexing set.

Typically, Λ is either the non-negative integers Λ = Z+ = {0, 1, 2, . . .} or the half line Λ = R+ =

[0,∞). When Λ = Z+, we call such a process a discrete-time stochastic process. When Λ = R+, we

call it a continuous-time stochastic process. Also,X(t)(ω) is sometimes written asXt(ω) orX(t, ω) for

notational convenience.

Definition 1.5.2 (Brownian Motion). A standard one-dimensional Brownian motion is a process{B(t)}t∈R+

such that

(i) B(0) = 0, almost surely
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(ii) B(t) has independent increments, i.e., if 0 < t1 < t2 < . . . < tn then the random variables

B (t1)−B(0), B (t2)−B (t1) , . . . , B (tn)−B (tn−1) are independent.

(iii) For all s ≥ 0, B(t+ s)− B(s) is equal in distribution to a normal random variable with mean 0

and variance t, i.e., a random variable with density

p(x) =
1√
2πt

e

−x2

2t

(iv) t→ B(t) is continuous, almost surely

Definition 1.5.3 (Itô Diffusion). A (time-homogeneous) Itô diffusion is a stochastic process Xt(ω) =

X(t, ω) : [0,∞] → Rn satisfying a stochastic differential equation of the form

dX(t) = b(X(t))dt+ σ(X(t))dB(t), t ≥ s, X(s) = x (1.4)

whereB(t) ism-dimensional Brownian motion, and b : Rn → Rn, σ : Rn → Rn×m satisfy

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|, x, y ∈ Rn,

i.e., b(·) and σ(·) are Lipschitz continuous.

For some fixed s, we will denote by Xs,x(t), for t ≥ s, the solution to (1.4) with initial condition

X(s) = x, almost surely. If s = 0, we writeXx(t) forXs,x(t).

LetQx be the probability law of a given Itô diffusion{X(t)}t∈Λ when its initial value isX(0) = x ∈ Rn.

The expectation with respect toQx is denoted by Ex[·]. Hence, we have

Ex [f1 (X (t1)) · · · fk (X (tk))] = E [f1 (X
x (t1)) · · · fk (Xx (tk))]

for all bounded Borel functions f1, · · · , fk and all times t1, · · · , tk ≥ 0, k = 1, 2, . . . .
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Theorem 1.5.1 (Markov Property for Itô Diffusions). Let f be a bounded Borel function from Rn → R.

Then for t, h ≥ 0,

Ex [f(X(t+ h)) | Ft] (ω) = EX(t,ω)[f(X(h)].

Definition 1.5.4 (Filtration). A filtration of the σ-algebra F is an increasing sequence of sub-σ-algebras

{Ft}t∈Λ, i.e., Fs ⊂ Ft for all s ≤ t. A stochastic process {X(t)}t∈Λ is adapted to the filtration {Ft}t∈Λ if

for each t ∈ Λ, X(t) is Ft-measurable.

Definition 1.5.5 (Stopping Time/Markov Time). Let (Ω,F , P ) be a probability space with filtration

{Ft}. A function (random variable) τ : Ω → [0,∞] is called a stopping time with respect to (adapted to)

{Ft} if

{ω : τ(ω) ≤ t} ∈ Ft

for all t ≥ 0.

IfH ⊂ Rn is any set, we define τH , the first exit time fromH , as follows

τH = inf {t > 0 : Xt /∈ H} .

Note that τH is a stopping time for any Borel setH .

Definition 1.5.6. Suppose τ is a stopping time adapted to a filtration {Ft}t∈R+
, and let F∞ denote the

smallest σ-algebra containing the whole collection {Ft}t∈R+
. Define the σ-algebra Fτ to be the σ-algebra

generated by all sets of the formB ∩ {τ ≤ t} whereB ∈ F∞ and t ∈ R+.

Theorem 1.5.2 (Srong Markov Property for Itô Diffusions). Let f be a bounded Borel function from Rn

to R and τ be a stopping time with respect to {Fτ}, τ <∞, almost surely. Then for all h ≥ 0,

Ex [f(X(τ + h)) | Fτ ] = EX(τ) [f(X(h))] .

Definition 1.5.7 (Generator of an Itô Diffusion). Let {X(t)} be a (time-homogeneous) Itô diffusion in

Rn. The (infinitesimal) generator A ofX(t) is defined by

Af(x) = lim
t↓0

Ex[f(X(t))]− f(x)

t
, x ∈ Rn.
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The set of functions f : Rn → R such that the limit exists at x is denoted by DA(x), while DA denotes the

set of functions for which the limit exists for all x ∈ Rn.

Definition 1.5.8 (Generator of an Itô Diffusion). LetX(t) be the Itô diffusion satisfying

dX(t) = b(X(t))dt+ σ(X(t))dB(t).

If f ∈ C2
0 (Rn) , then f ∈ DA and

Af(x) =
n∑

i=1

bi(x)
∂f

∂xi
+

1

2

n∑
i,j=1

(
σσT

)
i,j
(x)

∂2f

∂xi∂xj
.

Theorem 1.5.3 (Dynkin’s Formula). Let f ∈ C2
0 (Rn). Suppose τ is a stopping time with E[τ ] < ∞.

Then

Ex[f(X(τ))] = f(x) + Ex

[∫ τ

0

Af(X(s))ds

]
.

1.5.2 Martingales

Definition 1.5.9 (Martingale/Martingale Difference). An n-dimensional stochastic process {X(t)}t∈R+is

said to be a martingale on (Ω,F , P ) with respect to a filtration {Ft}t∈R+
if

(i) X(t) is Ft-measurable for all t ≥ 0,

(ii) E[∥X(t)∥] <∞ for all t, and

(iii) E [X(t) | Fs] = X(s) with probability 1 for all t ≥ s.

The sequence {X(t)}t∈Z+is called a martingale difference sequence if the condition (iii) above is replaced

by E [X(t) | Ft−1] = 0 with probability 1 .

Definition 1.5.10 (The Martingale Problem). If dX(t) = b(X(t)) + σ(X(t))dB(t) is an Itô diffusion

in Rn with generator A, and if f ∈C2
0 (Rn) andX(0) = x, almost surely, then

f(X(t)) = f(x) +

∫ t

0

Af(X(s))ds+

∫ t

0

∇fT (X(s))σ(X(s))dB(s)
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DefineMf (t) = f(X(t))−
∫ t

0

Af(X(s))ds.

We say that X(t) solves the martingale problem for generator A if Mf (t) is a martingale for each f in

C2
0 (Rn).

Theorem 1.5.4. Mf (t) is a Ft-martingale, where Ft = σ({X(s), s ≤ t}).
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Chapter 2

Round-Trip Pairs Trading under

Geometric BrownianMotions

2.1 Introduction

This chapter is concerned with an optimal strategy for simultaneously trading a pair of stocks. The pur-

pose of pairs trading is to hedge the risk associated with buying and holding shares of one stock by selling

shares of a related stock. The idea of pairs trading is to track the prices of two stocks that follow roughly

the same trajectory over time. A pairs trade is triggered by the divergence of their prices and consists of a

pair of positions to short the strong stock and to long the weak one. Such a strategy bets on the reversal

of their price strengths. Pairs trading, which was pioneered by quantitative researchers at brokerage firms

in the 1980s, is beneficial, because it can be profitable under any market circumstances [10]. A round-trip

trading strategy refers to opening and then closing a pair of security positions.

Some typical pairs-trading models assume the difference of the stock prices satisfies a mean-reversion

equation. However, we consider the optimal pairs-trading problem by allowing the stock prices to follow

general geometric Brownian motions as in [20]. One benefit of this model is that it does not specificy

any relationship between the pairs of stocks or require them to satisify any measure of correlation, thus

allowing for greater possibilities in the choice of pairs. The Brownian motion, whose sample path is a

random walk, encodes the assumption that it is impossible to accurately predict the change in the price

of a stock from day to day. Our objective is to trade the pairs over time to maximize an overall return

13



with a fixed commission cost for each transaction. In this chapter, we allow the initial pairs position to

be either long or flat. The optimal policy is characterized by threshold curves obtained by solving the

associated Hamilton-Jacobi-Bellman (HJB) equations.

2.2 Problem Formulation

Consider two stocks, S1 and S2. Let {X1
t , t ≥ 0} denote the prices of the stock S1, and let {X2

t , t ≥ 0}

denote the prices of the stock S2. They satisfy the following stochastic differential equation:

d

X1
t

X2
t

 =

X1
t

X2
t

µ1

µ2

 dt +

σ11 σ12

σ21 σ22

 d

W 1
t

W 2
t

 , (2.1)

where µi, i = 1, 2 are the return rates, σij , i, j = 1, 2 are the volatility constants, and (W 1
t ,W

2
t ) is a

2-dimensional standard Brownian motion.

In this chapter, we consider a round-trip pairs trading strategy. We assume the pairs position, which

we will denote Z, consists of a one-share long position in stock S1 and a one-share short position in stock

S2. We consider the case that the net position may initially be long (with one share of Z) or flat (with no

stock holdings of either S1 or S2). Let i = 0, 1denote the initial net positions of long and flat, respectively.

If initially we are long (i = 1), we will close the pairs position Z at some time τ0 ≥ 0 and conclude our

trading activity. Otherwise, if initially we are flat (i = 0), we will first obtain one share of Z at some time

τ1 ≥ 0, and then close pairs position Z at some time τ2 ≥ τ1, thus concluding our trading activity.

LetK denote the fixed percentage of transaction costs associate with buying or selling of stocks and

ρ > 0 be a discount factor. To further simplify the notation, we set βb = 1+K and βs = 1−K . Then

given the initial state (x1, x2), the initial net position i = 0, 1, and the decision sequences Λ1 = (τ0)

and Λ0 = (τ1, τ2), the resulting reward functions are

J0(x1, x2,Λ0) =E
[
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

]
,

J1(x1, x2,Λ1) =E
[
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

]
.
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Let V0(x1, x2) = sup
Λ0

J0(x1, x2,Λ0) and V1(x1, x2) = sup
Λ1

J1(x1, x2,Λ1) be the associated value

functions.

2.3 Properties of the Value Functions

In this section, we establish basic properties of the value functions.

Lemma 1. For all x1, x2 > 0, we have

0 ≤ V0(x1, x2) ≤ 2x1 + 2x2,

βsx1 − βbx2 ≤ V1(x1, x2) ≤ x1.

Proof. Note that for allx1,x2 > 0, V1(x1, x2) ≥ J1(x1, x2,Λ1) = E
[
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

]
.

In particular,

V1(x1, x2) ≥ J1(x1, x2, 0) = βsx1 − βbx2.

For all τ0 ≥ 0, J1(x1, x2,Λ1)

= E
[
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

]
≤ E

[
e−ρτ0

(
X1

τ0
−X2

τ0

)
I{τ0<∞}

]
= x1 + E

[∫ τ0

0

(−ρ+ µ1) e
−ρtX1

t dt I{τ0<∞}

]
− x2 − E

[∫ τ0

0

(−ρ+ µ2) e
−ρtX2

t dt I{τ0<∞}

]
≤ x1 − x2 − E

[∫ τ0

0

(−ρ+ µ2) e
−ρtX2

t dt I{τ0<∞}

]
≤ x1 − x2 + E

[∫ ∞

0

(ρ− µ2) e
−ρtX2

t dt

]
= x1.

Also, for all x1, x2 > 0,

V0(x1, x2) ≥ J0(x1, x2,Λ0)

= E
[
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}.
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Clearly, V0(x2, x2) ≥ 0 by definition and taking τ1 = ∞.Now, for all 0 ≤ τ1 ≤ τ2,

J0(x1, x2,Λ0)

= E
[
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞}

]
− E

[
e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

]
≤ E

[
e−ρτ2X1

τ2
I{τ2<∞}

]
− E

[
e−ρτ2X2

τ2
I{τ2<∞}

]
− E

[
e−ρτ1X1

τ1
I{τ1<∞}

]
+ E

[
e−ρτ1X2

τ1
I{τ1<∞}

]
≤ x1 − E

[
x2I{τ2<∞}

]
+ E

[∫ τ2

0

(ρ− µ2) e
−ρtX2

t dt I{τ2<∞}

]
+ x2 − E

[
x1I{τ1<∞}

]
+ E

[∫ τ1

0

(ρ− µ1) e
−ρtX1

t dt I{τ1<∞}

]
.

Now,

E
[∫ τ1

0

(ρ− µ1) e
−ρtX1

t dt I{τ1<∞}

]
≤ E

[∫ ∞

0

(ρ− µ1) e
−ρtX1

t dt

]
= (ρ− µ1)

∫ ∞

0

e−ρtx1e
µ1tdt

= x1.

Similarly,

E
[∫ τ2

0

(ρ− µ2) e
−ρtX2

t dt I{τ2<∞}

]
≤ x2.

Thus, for all Λ0, we have J0(x1, x2,Λ0) ≤ 2x1 + 2x2.

2.4 HJB Equations

In this section, we study the associated HJB equations. To the above stochastic differential equation (2.1),

we assign the following partial differential operator. Let

A =
1

2

{
a11x

2
1

∂2

∂x21
+ 2a12x1x2

∂2

∂x1∂x2
+ a22x

2
2

∂2

∂x22

}
+ µ1x1

∂

∂x1
+ µ2x2

∂

∂x2
, (2.2)
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where a11 = σ2
11 + σ2

12, a12 = σ11σ21 + σ12σ22, and a22 = σ2
21 + σ2

22 [18]. The associated HJB

equations have the form: For x1, x2 > 0,

min
{
ρv0(x1, x2)−Av0(x1, x2), v0(x1, x2)− v1(x1, x2) + βbx1 − βsx2

}
= 0,

min
{
ρv1(x1, x2)−Av1(x1, x2), v1(x1, x2)− βsx1 + βbx2

}
= 0.

To solve the above HJB equations, we first convert them into single variable equations. Lety = x2/x1

and vi(x1, x2) = x1wi(x2/x1), for some functionwi(y) and i = 0, 1. Then,

∂vi
∂x1

=
∂

∂x1

[
x1wi

(
x2
x1

)]
= x1

∂

∂x1

[
wi

(
x2
x1

)]
+ wi

(
x2
x1

)
∂

∂x1
[x1]

= x1w
′
i

(
x2
x1

)
·
(
− x2
x12

)
+ wi

(
x2
x1

)
= wi(y)− yw′

i(y),

∂vi
∂x2

=
∂

∂x2

[
x1wi

(
x2
x1

)]
= x1

∂

∂x2

[
wi

(
x2
x1

)]
= x1w

′
i

(
x2
x1

)
·
(

1

x1

)
= w′

i(y),

∂2vi
∂x12

=
∂

∂x1

[
wi

(
x2
x1

)
−
(
x2
x1

)
· w′

i

(
x2
x1

)]
=

∂

∂x1

[
wi

(
x2
x1

)]
− ∂

∂x1

[(
x2
x1

)
· w′

i

(
x2
x1

)]
= w′

i

(
x2
x1

)(
− x2
x12

)
−
[(

x2
x1

)
w′′

i

(
x2
x1

)(
− x2
x12

)
+ w′

i

(
x2
x1

)(
− x2
x12

)]
=
y2w′′

i (y)

x1
+
yw′

i(y)

x1
− yw′

i(y)

x1

=
y2w′′

i (y)

x1
,

∂2vi
∂x22

=
∂

∂x2

[
w′

i

(
x2
x1

)]
= w′′

i

(
x2
x1

)
·
(

1

x1

)
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=
w′′

i (y)

x1
,

∂2vi
∂x1x2

=
∂

∂x1

[
w′

i

(
x2
x1

)]
= w′′

i

(
x2
x1

)
·
(
− x2
x12

)
= −yw

′′
i (y)

x1
.

Write Avi in terms ofwi to obtain

Avi =
1

2

{
a11x1

2

(
y2w′′

i (y)

x1

)
+ 2a12x1x2

(
−yw

′′
i (y)

x1

)
+ a22x2

2

(
w′′

i (y)

x1

)}
+ µ1x1 (wi(y)− yw′

i(y)) + µ2x2 (w
′
i(y))

=
1

2
a11x1y

2w′′
i (y)− a12x1y

2w′′
i (y) +

1

2
a22x1y

2w′′
i (y) + µ1x1wi(y) + µ2x1yw

′
i(y)

− µ1x1yw
′
i(y)

= x1

{
1

2
[a11 − 2a12 + a22] y

2w′′
i (y) + (µ2 − µ1)yw

′
i(y) + µ1wi(y)

}
.

Let Lwi(y) = λy2w′′
i (y) + (µ2 − µ1)yw

′
i(y) + µ1wi(y), where λ =

a11 − 2a12 + a22
2

.

So Avi = x1Lwi. Note that λ ≥ 0 since

λ =
1

2

[
σ2
11 + σ2

12 − 2(σ11σ21 + σ12σ22) + σ2
21 + σ2

22

]
=

1

2

[
σ2
11 − 2σ11σ21 + σ2

21 + σ2
12 − 2σ12σ22 + σ2

22

]
=

1

2

[
(σ11 − σ21)

2 + (σ12 − σ22)
2
]
.

Here we only consider the case when λ ̸= 0. If λ = 0, the problem reduces to a first order case and can

be treated accordingly. The HJB equations can be given in terms of y andwi as follows:

min
{
x1 (ρw0(y)− Lw0(y)) , x1(w0(y)− w1(y) + βb − βsy)

}
= 0,

min
{
x1 (ρw1(y)− Lw1(y)) , x1(w1(y)− βs + βby)

}
= 0,

or equivalently,
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min
{
(ρ− L)w0(y), w0(y)− w1(y) + βb − βsy

}
= 0,

min
{
(ρ− L)w1(y), w1(y)− βs + βby

}
= 0.

(2.3)

To solve (2.3), we first consider the equations (ρ−L)wi(y) = 0, i = 0, 1, which can be rewritten as

−λy2w′′
i (y)− (µ2 − µ1)yw

′
i(y) + (ρ− µ1)wi(y) = 0.

Clearly, these are the Euler equations and their solutions are of the form yδ, for some δ. Substitute this

into the equation (ρ− L)wi = 0 to obtain

− λy2[δ(δ − 1)yδ−2]− (µ2 − µ1)y[δy
δ−1] + (ρ− µ1)y

δ = 0

=⇒ − λδ(δ − 1)yδ − (µ2 − µ1)δy
δ + (ρ− µ1)y

δ = 0

=⇒
[
−λδ2 + λδ + (µ1 − µ2)δ + (ρ− µ1)

]
yδ = 0

=⇒
[
δ2 − δ −

(
µ1 − µ2

λ

)
δ − ρ− µ1

λ

]
yδ = 0

=⇒
[
δ2 − δ

(
1 +

µ1 − µ2

λ

)
− ρ− µ1

λ

]
yδ = 0.

Then since yδ ̸= 0, it must be that

δ2 −
(
1 +

µ1 − µ2

λ

)
δ − ρ− µ1

λ
= 0.

This equation has two roots, δ1 and δ2, given by

δ1 =
1

2

(
1 +

µ1 − µ2

λ
+

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ

)
,

δ2 =
1

2

(
1 +

µ1 − µ2

λ
−

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ

)
.

(2.4)
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These roots are both real since we assume ρ > µ1. We also assume ρ > µ2, so

4ρ− 2µ1 − 2µ2

λ
>

4µ2 − 2µ1 − 2µ2

λ
=

2µ2 − 2µ1

λ

=⇒ 1 +

(
µ1 − µ2

λ

)2

+
2(µ1 − µ2)

λ
+

4ρ− 4µ1

λ
> 1 +

(
µ1 − µ2

λ

)2

+
2(µ2 − µ1)

λ

=⇒
(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ
>

(
1 +

µ2 − µ1

λ

)2

=⇒

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ
>

√(
1 +

µ2 − µ1

λ

)2

=⇒

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ
>

∣∣∣∣1 + µ2 − µ1

λ

∣∣∣∣ = ∣∣∣∣1− µ1 − µ2

λ

∣∣∣∣ ≥ 1− µ1 − µ2

λ

=⇒ 1 +
µ1 − µ2

λ
+

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ
> 2

=⇒ 1

2

1 +
µ1 − µ2

λ
+

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ

 > 1

=⇒ δ1 > 1.

Also, since

1 +
µ1 − µ2

λ
≤
∣∣∣∣1 + µ1 − µ2

λ

∣∣∣∣ =
√(

1 +
µ1 − µ2

λ

)2

<

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ
,

we must have δ2 < 0.

We conclude that the general solution of (ρ−L)wi(y) = 0 should be of the form: wi(y) = ci1y
δ1+

ci2y
δ2 , for some constants ci1 and ci2, i = 0, 1. Note that asy → 0, yδ2 → ∞, and asy → ∞, yδ1 → ∞.

Also note the following identities in δ1 and δ2:

−δ1δ2 = −1

2

(
1 +

µ1 − µ2

λ
+

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ

)
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· 1
2

(
1 +

µ1 − µ2

λ
−

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ

)

= −1

4

[(
1 +

µ1 − µ2

λ

)2

−
(
1 +

µ1 − µ2

λ

)2

− 4ρ− 4µ1

λ

]
=
ρ− µ1

λ
,

δ1 + δ2 =
1

2

(
1 +

µ1 − µ2

λ
+

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ

)

+
1

2

(
1 +

µ1 − µ2

λ
−

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ

)
= 1 +

µ1 − µ2

λ
,

(δ1 − 1)(1− δ2) = δ1 − δ1δ2 − 1 + δ2 = δ1 + δ2 − 1− δ1δ2

= 1 +
µ1 − µ2

λ
− 1 +

ρ− µ1

λ

=
ρ− µ2

λ
,

−δ1δ2
(δ1 − 1)(1− δ2)

=
ρ− µ1

λ
· λ

ρ− µ2

=
ρ− µ1

ρ− µ2

.

Now, the second part of the HJB equation

min
{
(ρ− L)w1(y), w1(y)− βs + βby

}
= 0

is independent of w0 and can be solved first. We must find thresholds k1 and k2 for buying and selling,

as in [20].

First, we need to find k1 so that on the interval (0, k1], w1(y) = βs − βby, and on the interval

(k1,∞),w1(y) = C2y
δ2 . Then the smooth-fit conditions determine k1 andC2.
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Figure 2.1: Thresholds for buying and selling regions

Necessarily, the continuity ofw1 and its first order derivative at y = k1 imply

βs − βbk1 = C2k
δ2
1 and − βb = C2δ2k

δ2−1
1 .
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From this system of equations, we can see

− βb
δ2

· k1 = C2k1
δ2 = βs − βbk1

=⇒
(
−βb
δ2

+
βbδ2
δ2

)
k1 = βs

=⇒ −1 + δ2
δ2

· k1 =
βs
βb

=⇒ k1 =
βs
βb

· −δ2
1− δ2

.

Also,

C2 =
βb
−δ2

k1
1−δ2

=
βb
−δ2

(
βs
βb

· −δ2
1− δ2

)1−δ2

=
βs

1−δ2

(1− δ2)1−δ2
· βb
−δ2

· βb
δ2−1

(−δ2)δ2−1

=

(
βs

1− δ2

)1−δ2 ( βb
−δ2

)δ2

.

We obtain the function

w1(y) =

βs − βby, for y ≤ k1,

C2y
δ2 , for y > k1,

with k1 andC2 given above. Next we need to solve the first part of HJB equation:

min
{
(ρ− L)w0(y), w0(y)− w1(y) + βb − βsy

}
= 0.

We need to find k2 so that on the interval (0, k2),w0(y) = C1y
δ1 , and on the interval [k2,∞),

w0(y) = w1(y)−βb+βsy = C2y
δ2 −βb+βsy. Then the continuity ofw0 and its first order derivative
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at y = k2 yield

C1k
δ1
2 = C2k

δ2
2 − βb + βsk2 and C1δ1k

δ1−1
2 = C2δ2k

δ2−1
2 + βs.

Take the ratio of the above two equations and get

k2
δ1

=
C2k

δ2
2 − βb + βsk2

C2δ2k
δ2−1
2 + βs

.

This implies

k2[C2δ2k
δ2−1
2 + βs] = δ1[C2k

δ2
2 − βb + βsk2]

=⇒ δ1C2k
δ2
2 − δ2C2k

δ2
2 + δ1βsk2 − βsk2 − βbδ1 = 0

=⇒ C2(δ1 − δ2)k
δ2
2 + βs(δ1 − 1)k2 − βbδ1 = 0.

We get an equation of k2:

f(k2) := C2(δ1 − δ2)k
δ2
2 + βs(δ1 − 1)k2 − βbδ1 = 0.

Consider

f(y) := C2(δ1 − δ2)y
δ2 + βs(δ1 − 1)y − βbδ1.

Note that as y → ∞, f(y) → βs(δ1 − 1)y− βbδ1, since δ2 < 0. That is, as y → ∞, f(y) → ∞, since

βs > 0, δ1− 1 > 0. Also, as y → 0+, f(y) → C2(δ1− δ2)y
δ2 −βbδ1. That is, as y → 0+, f(y) → ∞,

sinceC2 > 0, δ1 − δ2 > 0, and δ2 < 0. Now,

f ′(y) = C2δ2(δ1 − δ2)y
δ2−1 + βs(δ1 − 1)

f ′′(y) = C2δ2(δ2 − 1)(δ1 − δ2)y
δ2−2 = C2(−δ2)(1− δ2)(δ1 − δ2)y

δ2−2.
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Note then that f ′′(y) > 0 for all y > 0 since C2 > 0, (−δ2) > 0, (1 − δ2) > 0, and (δ1 − δ2) > 0.

Hence f is convex for all y > 0. Then

f ′(y) = 0 ⇐⇒ C2δ2(δ1 − δ2)y
δ2−1 + βs(δ1 − 1) = 0

⇐⇒ yδ2−1 =
βs(δ1 − 1)

C2(−δ2)(δ1 − δ2)

⇐⇒ y =

[
βs(δ1 − 1)

C2(−δ2)(δ1 − δ2)

] 1
δ2−1

⇐⇒ y =

[
C2(−δ2)(δ1 − δ2)

βs(δ1 − 1)

] 1
1−δ2

> 0.

Hence f attains its global minimum at yc =
[

βs(δ1 − 1)

C2(−δ2)(δ1 − δ2)

] 1
δ2−1

. We will show that f(y) = 0 has

two solutions and take the larger one to be k2. Since we already knowC2, once we find k2, we can express

C1 using the relationship above:

C1 =
C2δ2k

δ2−1
2 + βs

δ1k
δ1−1
2

=

(
βs
βb

· −δ2
1− δ2

)1−δ2 βb
−δ2

δ2k
δ2−1
2

δ1k
δ1−1
2

+
βs

δ1k
δ1−1
2

= −
(
βs
βb

)−δ2 ( −δ2
1− δ2

)1−δ2 (βs
δ1

)
kδ2−1
2

kδ1−1
2

+
βs

δ1k
δ1−1
2

=

[
1−

(
βs
βb

)−δ2 ( −δ2
1− δ2

)1−δ2

kδ2−1
2

](
βs
δ1

)
k1−δ1
2 .

We show that f(yc) < 0, thus implying the existence of k2. We compute f(yc) as follows:

f(yc) = C2(δ1 − δ2)y
δ2
c + βs(δ1 − 1)yc − βbδ1

= C2(δ1 − δ2)

[
βs(δ1 − 1)

−δ2C2(δ1 − δ2)

] δ2
δ2−1

+ βs(δ1 − 1)

[
βs(δ1 − 1)

−δ2C2(δ1 − δ2)

] 1
δ2−1

− βbδ1

= C
1

1−δ2
2 (δ1 − δ2)

1
1−δ2 [βs(δ1 − 1)]

δ2
δ2−1 (−δ2)−

δ2
δ2−1 +

[βs(δ1 − 1)]
δ2

δ2−1

[−δ2C2(δ1 − δ2)]
1

δ2−1

− βbδ1

= C
1

1−δ2
2 (δ1 − δ2)

1
1−δ2 [βs(δ1 − 1)]

δ2
δ2−1 [(−δ2)−

δ2
δ2−1 + (−δ2)

1
1−δ2 ]− βbδ1.
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Figure 2.2: Example of solution to f(k2) = 0.

Next we insertC2 =

(
βs

1− δ2

)1−δ2

·
(
βb
−δ2

)δ2

into f(yc) to get

f(yc) =

(
βs

1− δ2

)(
βb
−δ2

) δ2
1−δ2

(δ1 − δ2)
1

1−δ2 [βs(δ1 − 1)]
δ2

δ2−1 [(−δ2)−
δ2

δ2−1 + (−δ2)
1

1−δ2 ]− βbδ1

= β
1+

δ2
δ2−1

s β
δ2

1−δ2
b

(δ1 − δ2)
1

1−δ2 (δ1 − 1)
δ2

δ2−1 [(−δ2)−
δ2

δ2−1 + (−δ2)
1

1−δ2 ]

(1− δ2)(−δ2)
δ2

1−δ2

− βbδ1

= βb

[(
βs
βb

)1+
−δ2
1−δ2 (δ1 − δ2)

1
1−δ2 (δ1 − 1)

δ2
δ2−1 [(−δ2)−

δ2
δ2−1 + (−δ2)

1
1−δ2 ]

(1− δ2)(−δ2)
δ2

1−δ2

− δ1

]
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= βb

[(
βs
βb

)1+
−δ2
1−δ2

(δ1 − δ2)
1

1−δ2 (δ1 − 1)
δ2

δ2−1 − δ1

]
.

Since δ2 < 0, we let δ2 = −r with r > 0 and β =
βb
βs

> 1. This will imply

f(yc) = βb

[(
βs
βb

)1+ r
1+r

(δ1 + r)
1

1+r (δ1 − 1)
r

1+r − δ1

]

= βbδ1

[
β−1− r

1+r

(
1 +

r

δ1

) 1
1+r
(
1− 1

δ1

) r
1+r

− 1

]
.

The necessary and sufficient condition for the existence of k2 is f(yc) ≤ 0, and this is equivalent to

(
1 +

r

δ1

) 1
1+r
(
1− 1

δ1

) r
1+r

≤ β
1+2r
1+r .

We apply the geometric-arithmetic mean inequality

AθB1−θ ≤ θA+ (1− θ)B with θ =
1

1 + r
, A = 1 +

r

δ1
andB = 1− 1

δ1

to the left hand side of the above inequality to get

(
1 +

r

δ1

) 1
1+r
(
1− 1

δ1

) r
1+r

≤
(
1 +

r

δ1

)
· 1

1 + r
+

(
1− 1

δ1

)
· r

1 + r
= 1.

This implies f(yc) ≤ 0 if

1 < β
1+2r
1+r ⇐⇒ 1 < β.

This obviously holds since β > 1. So we establish the existence of k2.

Theorem 1. Let δi be given by (2.4) and ki be as described. Then the following functionsw1,w0 satisfy the

HJB equations (2.3):

w1(y) =


βs − βby, for 0 < y ≤ k1,(

βs
1− δ2

)1−δ2 ( βb
−δ2

)δ2

yδ2 , for y > k1,
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w1(y) =


[
1−

(
βs
βb

)−δ2 ( −δ2
1− δ2

)1−δ2

kδ2−1
2

](
βs
δ1

)
k1−δ1
2 yδ1 , for 0 < y < k2,(

βs
1− δ2

)1−δ2 ( βb
−δ2

)δ2

yδ2 − βb + βsy, for y ≥ k2.

Proof. Note that it is clear that C2 =

(
βs

1− δ2

)1−δ2

·
(
βb
−δ2

)δ2

> 0. We also wish to establish C1 =[
1−

(
βs
βb

)−δ2 ( −δ2
1− δ2

)1−δ2

kδ2−1
2

](
βs
δ1

)
k1−δ1
2 > 0. Consider,

C1 > 0 ⇐⇒ C2δ2k
δ2−1
2 + βs > 0

⇐⇒
(
βs
βb

· −δ2
1− δ2

)1−δ2 βb
−δ2

δ2k
δ2−1
2 + βs > 0

⇐⇒
(
βs
βb

)−δ2 ( −δ2
1− δ2

)1−δ2 βs
βb

· βb
−δ2

δ2k
δ2−1
2 + βs > 0

⇐⇒ −
(
βs
βb

)−δ2 ( −δ2
1− δ2

)1−δ2

βsk
δ2−1
2 + βs > 0

⇐⇒ βs >

(
βs
βb

)−δ2 ( −δ2
1− δ2

)1−δ2

βsk
δ2−1
2

⇐⇒ 1 >

(
βs
βb

)−δ2 ( −δ2
1− δ2

)1−δ2

kδ2−1
2

⇐⇒ k1−δ2
2 >

(
βs
βb

)−δ2 ( −δ2
1− δ2

)1−δ2

⇐⇒ k2 >

(
βs
βb

) −δ2
1−δ2

(
−δ2
1− δ2

)
.

Note then that if f

((
βs
βb

) −δ2
1−δ2

(
−δ2
1− δ2

))
< 0, we establishC1 > 0.

f

((
βs
βb

) −δ2
1−δ2

(
−δ2
1− δ2

))
= C2(δ1 − δ2)

[(
βs
βb

) −δ2
1−δ2

(
−δ2
1− δ2

)]δ2

+ βs(δ1 − 1)

(
βs
βb

) −δ2
1−δ2

(
−δ2
1− δ2

)
− βbδ1
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= C2(δ1 − δ2)

[(
βs
βb

)(
βs
βb

) −1
1−δ2

(
−δ2
1− δ2

)]δ2

+ βs(δ1 − 1)

(
βs
βb

) −δ2
1−δ2

(
−δ2
1− δ2

)
− βbδ1

= C2(δ1 − δ2)

(
βs
βb

)δ2 (βs
βb

) −δ2
1−δ2

(
−δ2
1− δ2

)δ2

+ βs(δ1 − 1)

(
βs
βb

) −δ2
1−δ2

(
−δ2
1− δ2

)
− βbδ1

=

(
βs
βb

) −δ2
1−δ2

[
C2(δ1 − δ2)

(
βs
βb

)δ2 ( −δ2
1− δ2

)δ2

+ βs(δ1 − 1)

(
−δ2
1− δ2

)]
− βbδ1

=

(
βs
βb

) −δ2
1−δ2

[(
βs
βb

· −δ2
1− δ2

)1−δ2 βb
−δ2

(δ1 − δ2)

(
βs
βb

)δ2 ( −δ2
1− δ2

)δ2

+ βs(δ1 − 1)

(
−δ2
1− δ2

)]
− βbδ1

=

(
βs
βb

) −δ2
1−δ2

[(
βs
βb

)(
−δ2
1− δ2

)(
βb
−δ2

)
(δ1 − δ2)

+ βs(δ1 − 1)

(
−δ2
1− δ2

)]
− βbδ1

=

(
βs
βb

) −δ2
1−δ2

(
βs

1− δ2

)
[(δ1 − δ2) + (δ1 − 1)(−δ2)]− βbδ1

=

(
βs
βb

) −δ2
1−δ2

(
βs

1− δ2

)
[δ1 − δ2 − δ1δ2 + δ2]− βbδ1

=

(
βs
βb

) −δ2
1−δ2

(
βs

1− δ2

)
[δ1(1− δ2)]− βbδ1

=

(
βs
βb

) −δ2
1−δ2

· βs
βb
βbδ1 − βbδ1

= βbδ1

[(
βs
βb

)1+
−δ2
1−δ2

− 1

]
< 0,
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since
(
βs
βb

)1+
−δ2
1−δ2

<
βs
βb

< 1. Hence we have shown that C1 > 0. Now we consider the following

intervals:

Γ1 = (0, k1]

Γ2 = (k1, k2)

Γ3 = [k2,∞).

We have chosen k1, k2 such that we establish the following equalities:

Γ1 : w1(y)− βs + βby = 0 ,

(ρ− L)w0(y) = 0,

Γ2 : (ρ− L)w1(y) = 0 ,

(ρ− L)w0(y) = 0,

Γ3 : (ρ− L)w1(y) = 0 ,

w0(y)− w1(y) + βb − βsy = 0,

for solutions of the form

w0(y) =


C1y

δ1 , for y ∈ Γ1,

C1y
δ1 , for y ∈ Γ2,

C2y
δ2 − βb + βsy, for y ∈ Γ3,

w1(y) =


βs − βby, for y ∈ Γ1,

C2y
δ2 , for y ∈ Γ2,

C2y
δ2 , for y ∈ Γ3.
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We now proceed to establish the following variational inequalities, thus confirming that we have solved

the HJB equation:

Γ1 : (ρ− L)w1(y) ≥ 0,

w0(y)− w1(y) + βb − βsy ≥ 0,

Γ2 : w1(y)− βs + βby ≥ 0,

w0(y)− w1(y) + βb − βsy ≥ 0,

Γ3 : w1(y)− βs + βby ≥ 0,

(ρ− L)w0(y) ≥ 0.

Γ1:

Using (ρ− L)w0(y) = 0 andw1(y) = βs − βby, we obtain

w0(y)− w1(y) + βb − βsy = C1y
δ1 − βs + βby + βb − βsy

= C1y
δ1 + (βb − βs)(y + 1)

≥ 0,

sinceC1 > 0, βb > βs, and y > 0. Also,

(ρ− L)w1(y) = (ρ− L)(βs − βby)

= ρβs − ρβby + Lβby − Lβs

= ρβs − ρβby + µ2βby − µ1βs

= (ρ− µ1)βs − (ρ− µ2)βby

=⇒ (ρ− L)w1(y) ≥ 0 ⇐⇒ (ρ− µ1)βs − (ρ− µ2)βby ≥ 0
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⇐⇒ (ρ− µ1)βs ≥ (ρ− µ2)βby

⇐⇒ (ρ− µ1)βs
(ρ− µ2)βb

≥ y

⇐⇒ (ρ− µ1)βs
(ρ− µ2)βb

≥ k1

since k1 ≥ y for all y ∈ Γ1. But note that

(ρ− µ1)βs
(ρ− µ2)βb

≥ k1 ⇐⇒ −δ1δ2
(δ1 − 1)(1− δ2)

· βs
βb

≥ k1

⇐⇒ δ1
(δ1 − 1)

· k1 ≥ k1,

which obviously holds since δ1 > δ1 − 1 > 0. Thus we have established the variational inequalities for

the region Γ1.

Γ3:

Using (ρ− L)w1(y) = 0 andw1(y) = w0(y) + βb − βsy, we obtain

w1(y)− βs + βby = w0(y) + βb − βsy − βs + βby

= C2y
δ2 − βb + βsy + βb − βsy − βs + βby

= C2y
δ2 + βby − βs.

Note that the continuity ofw1 andw′
1 at k1 ensure that

C2k
δ2
1 + βbk1 − βs = 0,

C2δ2k
δ2−1
1 + βb = 0.

Let g(y) = C2y
δ2 + βby − βs. Then g′(y) = C2δ2y

δ2−1 + βb. Note that

g′(y) ≥ 0 ⇐⇒ C2δ2y
δ2−1 + βb ≥ 0 ⇐⇒ βb ≥ C2(−δ2)yδ2−1
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⇐⇒ βb
C2(−δ2)

≥ yδ2−1

⇐⇒ C2(−δ2)
βb

≤ y1−δ2

⇐⇒ k1−δ2
1 ≤ y1−δ2

⇐⇒ k1 ≤ y.

Thus g(y) = C2y
δ2 +βby−βs is increasing for all y ≥ k1. In particular, sinceC2k

δ2
1 +βbk1−βs = 0,

we must haveC2y
δ2 + βby− βs ≥ 0 for all y ≥ k1. ThusC2y

δ2 + βby− βs = w1(y)− βs + βby ≥ 0

for all y ∈ Γ2 ∪ Γ3. Also,

(ρ− L)w0(y) = (ρ− L)(w1(y) + βsy − βb)

= (ρ− L)(w1(y)) + (ρ− L)(βsy − βb)

= 0 + ρβsy − ρβb + Lβb − Lβsy

= ρβsy − ρβb + µ1βb − µ2βsy

= (ρ− µ2)βsy − (ρ− µ1)βb.

Hence

(ρ− L)w0(y) ≥ 0 ⇐⇒ (ρ− µ2)βsy − (ρ− µ1)βb ≥ 0

⇐⇒ (ρ− µ2)βsy ≥ (ρ− µ1)βb

⇐⇒ y ≥ (ρ− µ1)βb
(ρ− µ2)βs

⇐⇒ k2 ≥
(ρ− µ1)βb
(ρ− µ2)βs

,

since k2 ≤ y for all y ∈ Γ3. Note that
(ρ− µ1)βb
(ρ− µ2)βs

=
−δ1δ2

(δ1 − 1)(1− δ2)
· βb
βs

and consider

f

(
−δ1δ2

(δ1 − 1)(1− δ2)
· βb
βs

)
= C2(δ1 − δ2)

(
−δ1δ2

(δ1 − 1)(1− δ2)
· βb
βs

)δ2

+ βs(δ1 − 1)

(
−δ1δ2

(δ1 − 1)(1− δ2)
· βb
βs

)
− βbδ1
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=

(
βs
βb

· −δ2
1− δ2

)1−δ2 ( βb
−δ2

)
(δ1 − δ2)

(
δ1

δ1 − 1
· −δ2
1− δ2

· βb
βs

)δ2

+ βb

(
−δ1δ2
1− δ2

)
− βbδ1

=
δ1 − δ2
1− δ2

(
δ1

δ1 − 1

)δ2

β2δ2−1βb + βbδ1

(
−δ2
1− δ2

− 1

)
.

Now, let δ2 = −r with r > 0. Then

f

(
−δ1δ2

(δ1 − 1)(1− δ2)
· βb
βs

)
=

(
δ1 + r

1 + r

)(
δ1 − 1

δ1

)r

β−2r−1βb + βbδ1

(
r

1 + r
− 1

)
.

Hence

f

(
−δ1δ2

(δ1 − 1)(1− δ2)
· βb
βs

)
< 0 ⇐⇒

(
δ1 + r

1 + r

)(
δ1 − 1

δ1

)r

β−2r−1βb < βbδ1

(
−r + 1 + r

1 + r

)
⇐⇒

(
r + 1

δ1

)(
δ1 + r

1 + r

)(
δ1 − 1

δ1

)r

< β2r+1

⇐⇒
(
δ1 + r

δ1

) 1
r+1
(
δ1 − 1

δ1

) r
r+1

< β
2r+1
r+1

⇐⇒
(
1 +

r

δ1

) 1
r+1
(
1− 1

δ1

) r
r+1

< β
2r+1
r+1 .

Applying the arithmetic-geometric mean inequality to the left-hand side yields

(
1 +

r

δ1

) 1
r+1
(
1− 1

δ1

) r
r+1

≤
(

1

r + 1

)(
1 +

r

δ1

)
+

(
r

r + 1

)(
1− 1

δ1

)
=

1

r + 1
+

r

r + 1
· 1

δ1
+

r

r + 1
− r

r + 1
· 1

δ + 1

=
r + 1

r + 1
= 1 < β < β

2r+1
r+1 .

So, f
(

−δ1δ2
(δ1 − 1)(1− δ2)

· βb
βs

)
< 0holds. That is,k2 >

(ρ− µ1)

(ρ− µ2)
· βb
βs

, which establishes (ρ−L)w0(y) ≥

0 for all y ∈ Γ3.
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Γ2:

On Γ2, we havew1(y)− βs + βby = C2y
δ
2 − βs + βby. Note that we have already shown thatC2y

δ
2 −

βs + βby ≥ 0 for all y ∈ Γ2 ∪ Γ3. Hence,w1(y)− βs + βby ≥ 0 for all y ∈ Γ2.

We also havew0(y)− w1(y) + βb − βsy = C1y
δ
1 − C2y

δ
2 + βb − βsy. Let

ϕ(y) = C1y
δ1 − C2y

δ2 + βb − βsy.

Hence
ϕ′(y) = C1δ1y

δ1−1 + C2(−δ2)yδ2−1 − βs

ϕ′′(y) = C1δ1(δ1 − 1)yδ1−2 − C2(−δ2)(1− δ2)y
δ2−2.

By continuity ofw0, we knowC1k
δ1
2 − C2k

δ2
2 + βb − βsk2 = 0. That is, we know ϕ(k2) = 0.

By continuity ofw′
0, we knowC1δ1k

δ1−1
2 + C2(−δ2)kδ2−1

2 − βs = 0. That is, we know ϕ′(k2) = 0.

By continuity of w1, we know C2k
δ2
1 = βs − βbk1. Hence, C1k

δ1
1 − C2k

δ2
1 + βb − βsk1 = C1k

δ1
1 −

βs + βbk1 + βb − βsk1 = C1k
δ1
1 + (k1 + 1)(βb − βs) ≥ 0. That is, we know ϕ(k1) ≥ 0.

By continuity of w′
1, we know −C2(−δ2)kδ2−1

1 = −βb. Hence, C1δ1k
δ1−1
1 + C2(−δ2)kδ2−1

1 − βs =

C1δ1k
δ1−1
1 + βb − βs ≥ 0. That is, we know ϕ′(k1) ≥ 0. Now,

ϕ′′(y) = C1δ1(δ1 − 1)yδ1−2 − C2(−δ2)(1− δ2)y
δ2−2

=

(
C2δ2k

δ2−1
2 + βs

δ1k
δ1−1
2

)
δ1(δ1 − 1)yδ1−2 − C2(−δ2)(1− δ2)y

δ2−2

=
C2δ2(δ1 − 1)kδ2−1

2 k−1
2

kδ1−1
2 k−1

2

· yδ1−2 +
βs(δ1 − 1)k−1

2

kδ1−1
2 k−1

2

· yδ1−2 − C2(−δ2)(1− δ2)k
δ2−2
2

kδ2−2
2

· yδ2−2

= −C2(−δ2)kδ2−2
2

[
(δ1 − 1)

(
y

k2

)δ1−2

+ (1− δ2)

(
y

k2

)δ2−2
]
+ βs(δ1 − 1)k−1

2

(
y

k2

)δ1−2

.

Hence ϕ′′(k2) = βs(δ1 − 1)k−1
2 − C2(−δ2)(δ1 − δ2)k

δ2−2
2 . Then note that

k2 >

[
βs(δ1 − 1)

C2(δ1 − δ2)(−δ2)

] 1
δ2−1

=⇒ kδ2−1
2 <

βs(δ1 − 1)

C2(δ1 − δ2)(−δ2)
,
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since δ2 − 1 < 0. Thus,

(kδ2−1
2 )k−1

2 (−C2)(−δ2)(δ1 − δ2) >

(
βs(δ1 − 1)

C2(δ1 − δ2)(−δ2)

)
k−1
2 (−C2)(−δ2)(δ1 − δ2)

=⇒ (kδ2−2
2 )(−C2)(−δ2)(δ1 − δ2) > −βs(δ1 − 1)k−1

2

=⇒ βs(δ1 − 1)k−1
2 − C2(−δ2)(δ1 − δ2)k

δ2−2
2 > 0.

That is, ϕ′′(k2) > 0.

Consider the equation ϕ′′(y) = 0.

ϕ′′(y) = 0 ⇐⇒ C1δ1(δ1 − 1)yδ1−2 − C2(−δ2)(1− δ2)y
δ2−2 = 0

⇐⇒ C1δ1(δ1 − 1)yδ1−2 = C2(−δ2)(1− δ2)y
δ2−2

⇐⇒ yδ1−δ2 =
C2(−δ2)(1− δ2)

C1δ1(δ1 − 1)

⇐⇒ y =

(
C2(−δ2)(1− δ2)

C1δ1(δ1 − 1)

) 1
δ1−δ2

.

Note then that ϕ′′(y) = 0 has a unique solution in [k1, k2].

Observe that ϕ, ϕ′, and ϕ′′ are continuous on [k1, k2]. Since ϕ(k2) = ϕ′(k2) = 0 and ϕ′′(k2) > 0,

there exists ε1 > 0 such that ϕ is nonnegative, decreasing, and convex over the interval (k2 − ε1, k2).

Since ϕ(k1) ≥ 0 and ϕ′(k1) ≥ 0, there exists ε2 > 0 such that ϕ is nonnegative and increasing on

(k1, k1 + ε2); moreover, k1 + ε2 < k2 − ε1. Suppose, if possible, there exists y ∈ (k1 + ε2, k2 − ε1)

such that ϕ(y) < 0. Note that ϕ
(
k1 +

ε2
2

)
> 0. Then by Intermediate Value Theorem, there exists

y1 ∈
(
k1 +

ε2
2
, y
)

such thatϕ(y1) = 0. Similarly, sinceϕ
(
k2 − ε1

2

)
> 0, there exists y2 ∈

(
y, k2 − ε1

2

)
such that ϕ(y2) = 0. Note also that ϕ′ (k1 + ε2

2

)
> 0 and ϕ′(y1) < 0. So, by Intermediate Value

Theorem, there exists ỹ1 ∈
(
k1 +

ε2
2
, y1
)

such that ϕ′(ỹ1) = 0. Similarly, since ϕ′(y2) > 0, there exists

ỹ2 ∈ (y1, y2) such that ϕ′(ỹ2) = 0. Also, since ϕ′ (k2 − ε1
2

)
< 0, there exists ỹ3 ∈

(
y2, k2 − ε1

2

)
such

that ϕ′(ỹ3) = 0. Finally, since ϕ′(ỹ1) = ϕ′(ỹ2) = 0, by Rolle’s Theorem, there exists y∗1 ∈ (ỹ1, ỹ2) such

that ϕ′′(y∗1) = 0. Similarly, since ϕ′(ỹ3) = 0, there exists y∗2 ∈ (ỹ2, ỹ3) such that ϕ′′(y∗2) = 0. But this is
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a contradiction, because y∗1 ∈ [k1, k2], y∗2 ∈ [k1, k2], but y∗1 ̸= y∗2 ; whereas the equation ϕ′′(y) = 0 has

exactly one solution in the interval [k1, k2].

Hence, ϕ(y) = C1y
δ1 − C2y

δ2 + βb − βsy ≥ 0 on Γ2. That is, w0(y) − w1(y) + βb − βsy ≥ 0

for all y ∈ Γ2.

2.5 A Verification Theorem

Theorem 2. We have vi(x1, x2) = x1wi

(
x1
x2

)
= Vi(x1, x2), i = 0, 1. Moreover, if initially i = 0,

let Λ∗
0 = (τ ∗1 , τ

∗
2 ) be such that

τ ∗1 = inf{t ≥ 0 | (X1
t , X

2
t ) ∈ Γ3}, τ ∗2 = inf{t ≥ τ ∗1 | (X1

t , X
2
t ) ∈ Γ1}.

Similarly, if initially i = 1, let Λ∗
1 = (τ ∗0 ) be such that

τ ∗0 = inf{t ≥ 0 | (X1
t , X

2
t ) ∈ Γ1}.

Then Λ∗
0 and Λ∗

1 are optimal.

Proof. The proof is divided into 4 steps.

Step 1: v0(x1, x2) ≥ 0.

Recall thatC1 > 0,C2 > 0 has previously been established. Now,

v0(x1, x2) = x1w0

(
x2
x1

)
=

C1x
δ1
2 x

1−δ1
1 , for (x1, x2) ∈ Γ1 ∪ Γ2,

C2x
δ2
2 x

1−δ2
1 − βbx1 + βsx2, for (x1, x2) ∈ Γ3.

Hence to show v0(x1, x2) ≥ 0, it suffices to show w0(y) ≥ 0 on Γ3. The continuity of w0 and w′
0

yield w0(k2) = C2k
δ2
2 − βb + βsk2 = C1k

δ1
2 > 0 and w′

0(k2) = C2δ2k
δ2−1
2 + βs = C1δ1k

δ1−1
2 > 0.

Also, w′′
0(y) = C2δ2(δ2 − 1)yδ2−2 > 0 for all y > 0. In particular, sincew′′

0(y) > 0 for all y ∈ Γ3, we

knoww′
0(y) is increasing on Γ3. And sincew′

0(k2) > 0, it must be thatw′
0(y) > 0 for all y ∈ Γ3. This

in turn implies that w0(y) is increasing on Γ3. Since we know w0(k2) > 0, it must be that w0(y) > 0

for all y ∈ Γ3.
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Step 2: −Ax1 −Bx2 ≤ vi(x1, x2) ≤ Ax1 +Bx2, i = 0, 1.

Let i = 0. On Γ1 ∪ Γ2, we have 0 ≤ v0(x1, x2) = C1x
1−δ1
1 xδ12 ≤ C1x1k

δ1
2 . On Γ3, −βbx1 + βsx2 ≤

v0(x1, x2) = C2x
1−δ2
1 xδ22 − βbx1 + βsx2 ≤ C2x1k

δ2
1 − βbx1 + βsx2. Hence we can choose suitable

A and B so the inequalities hold when i = 0. Then let i = 1. On Γ2 ∪ Γ3, we have 0 ≤ v1(x1, x2) =

C2x
1−δ2
1 xδ22 ≤ C2x1k

δ2
1 . On Γ1, −βbx2 ≤ v1(x1, x2) = βsx1 − βbx2 ≤ βsx1. So again we can choose

suitableA andB so the inequalities hold when i = 1.

Step 3: vi(x1, x2) ≥ Ji(x1, x2,Λi).

The functions v0 and v1 are continuously differentiable on the entire region {x1 > 0, x2 > 0} and

twice continuously differentiable on the interior of Γi, i = 1, 2, 3. In addition, they satisfy

0 ≤ (ρ− L)w0(y) ,

0 ≤ (ρ− L)w1(y),

−βb + βsy ≤ w0(y)− w1(y) ≤ w0(y)− βs + βby .

In particular, ρvi(x)−Avi(x) ≥ 0, i = 0, 1, whenever they are twice continuously differentiable. Using

these inequalities, Dynkin’s formula, and Fatou’s Lemma, as in Øksendal [18], we have

E
[
e−ρ(θ1∧N)vi(X

1
θ1∧N , X

2
θ1∧N)

]
≥ E

[
e−ρ(θ2∧N)vi(X

1
θ2∧N , X

2
θ2∧N)

]
for any stopping times 0 ≤ θ1 ≤

θ2, almost surely, and anyN .

For each j = 1, 2,

E
[
e−ρ(θj∧N)vi(X

1
θj∧N , X

2
θj∧N)

]
= E

[
e−ρ(θj∧N)vi(X

1
θj∧N , X

2
θj∧N)I{θj<∞}

]
+ E

[
e−ρ(θj∧N)vi(X

1
θj∧N , X

2
θj∧N)I{θj=∞}

]
= E

[
e−ρ(θj∧N)vi(X

1
θj∧N , X

2
θj∧N)I{θj<∞}

]
+ E

[
e−ρNvi(X

1
N , X

2
N)I{θj=∞}

]
.

In view of Step 2, the second term on the right hand side converges to zero because both E
[
e−ρNX1

N

]
and E

[
e−ρNX2

N

]
go to zero asN → ∞. Also,

e−ρ(θj∧N)vi(X
1
θj∧N , X

2
θj∧N)I{θj<∞} → e−ρθjvi(X

1
θj
, X2

θj
)I{θj<∞} almost surely asN → ∞.
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By showing the existence of γi, i = 1, 2 such that

sup
n

E
[(
e−ρ(θj∧N)X1

θj∧N

)γ1]
<∞,

sup
n

E
[(
e−ρ(θj∧N)X2

θj∧N

)γ2]
<∞,

we can show that both
{
e−ρ(θj∧N)X1

θj∧N

}
and

{
e−ρ(θj∧N)X2

θj∧N

}
are uniformly integrable. Hence we

obtain the uniform integrability of
{
e−ρ(θj∧N)vi(X

1
θj∧N , X

2
θj∧N)

}
and sendN to ∞ to obtain

E
[
e−ρθ1vi(X

1
θ1
, X2

θ1
)I{θ1<∞}

]
≥ E

[
e−ρθ2vi(X

1
θ2
, X2

θ2
)I{θ2<∞}

]
, for i = 0, 1.

Given Λ0 = (τ1, τ2), Λ1 = (τ0),

v0(x1, x2) ≥ E
[
e−ρτ1v0(X

1
τ1
, X2

τ1
)I{τ1<∞}

]
≥ E

[
e−ρτ1

(
v1(X

1
τ1
, X2

τ1
)− βbX

1
τ1
+ βsX

2
τ1

)
I{τ1<∞}

]
= E

[
e−ρτ1v1(X

1
τ1
, X2

τ1
)I{τ1<∞} − e−ρτ1

(
βbX

1
τ1
+ βsX

2
τ1

)
I{τ1<∞}

]
≥ E

[
e−ρτ2v1(X

1
τ2
, X2

τ2
)I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
+ βsX

2
τ1

)
I{τ1<∞}

]
≥ E

[
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
+ βsX

2
τ1

)
I{τ1<∞}

]
= J0(x1, x2,Λ0),

v1(x1, x2) ≥ E
[
e−ρτ1v1(X

1
τ0
, X2

τ0
)I{τ0<∞}

]
≥ E

[
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

]
= J1(x1, x2,Λ1).

Step 4: vi(x1, x2) = Ji(x1, x2,Λ
∗
i ).

Let i = 0. Define τ ∗1 = inf {t ≥ 0 | (X1
t , X

2
t ) ∈ Γ3}, τ ∗2 = inf {t ≥ τ ∗1 | (X1

t , X
2
t ) ∈ Γ1}. We apply

Dynkin’s formula and notice that, for each n, v0(x1, x2) = E
[
e−ρ(τ∗1∧n)v0(X

1
τ∗1∧n

, X2
τ∗1∧n

)
]

. Note also
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that lim
n→∞

E
[
e−ρ(τ∗1∧n)v0(X

1
τ∗1∧n

, X2
τ∗1∧n

)
]
= E

[
e−ρτ∗1 v0(X

1
τ∗1
, X2

τ∗1
)I{τ∗1<∞}

]
. It follows that

v0(x1, x2) = E
[
e−ρτ∗1 v0(X

1
τ∗1
, X2

τ∗1
)I{τ∗1<∞}

]
= E

[
e−ρτ∗1

(
v1(X

1
τ∗1
, X2

τ∗1
)− βbX

1
τ∗1

+ βsX
2
τ∗1

)
I{τ∗1<∞}

]
.

We also have

E
[
e−ρτ∗1 v1(X

1
τ∗1
, X2

τ∗1
)I{τ∗1<∞}

]
= E

[
e−ρτ∗2 v1(X

1
τ∗2
, X2

τ∗2
)I{τ∗2<∞}

]
= E

[
e−ρτ∗2

(
βsX

1
τ∗2

− βbX
2
τ∗2

)
I{τ∗2<∞}

]
.

Combine these to obtain

v0(x1, x2) = E
[
e−ρτ∗2

(
βsX

1
τ∗2

− βbX
2
τ∗2

)
I{τ∗2<∞} −

(
βbX

1
τ∗1

+ βsX
2
τ∗1

)
I{τ∗1<∞}

]
= J0(x1, x2,Λ

∗
0).

Let i = 1. Define τ ∗0 = inf {t ≥ 0 | (X1
t , X

2
t ) ∈ Γ1}. We apply Dynkin’s formula and notice that, for

each n, v1(x1, x2) = E
[
e−ρ(τ∗0∧n)v1(X

1
τ∗0∧n

, X2
τ∗0∧n

)
]

. Note also that

lim
n→∞

E
[
e−ρ(τ∗0∧n)v1(X

1
τ∗0∧n

, X2
τ∗0∧n

)
]
= E

[
e−ρτ∗0 v1(X

1
τ∗0
, X2

τ∗0
)I{τ∗0<∞}

]
. It follows that

v1(x1, x2) = E
[
e−ρτ∗0 v1(X

1
τ∗0
, X2

τ∗0
)I{τ∗0<∞}

]
= E

[
e−ρτ∗0

(
βsX

1
τ∗0

− βbX
2
τ∗0

)
I{τ∗0<∞}

]
= J1(x1, x2,Λ

∗
1).
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2.6 A Numerical Example

Figure 2.3: Closing Prices of TGT and WMT from 2010 to 2020

We consider adjusted closing price data for Walmart (WMT) and Target (TGT) from 2010 to 2020.

The first half of the data is used to calibrate the model, and the second half is used to test the results.

Using a least-squares method, we obtain the following parameters: µ1 = 0.09696, µ2 = 0.14347,

σ11 = 0.19082, σ12 = 0.04036, σ21 = 0.04036, and σ22 = 0.13988. We specify K = 0.001 and

ρ = 0.5. Then we find k1 = 0.85527, and k2 = 1.28061.
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Next we examine the dependence of k1 and k2 on the parameters by varying each. In Table 2.1, we see

that k1 and k2 both decrease in µ1. This leads to a larger buying region, Γ3.

Table 2.1: k1 and k2 with varying µ1

µ1 −0.00304 0.04696 0.09696 0.14696 0.19696

k1 0.91380 0.89057 0.85527 0.80194 0.72644

k2 1.54188 1.41541 1.28061 1.12891 0.96334

On the other hand, both k1 and k2 increase in µ2, as indicated in Table 2.2. This creates a larger Γ1 and,

hence, encourages early exit.

Table 2.2: k1 and k2 with varying µ2

µ2 0.04347 0.09347 0.14347 0.19347 0.24347

k1 0.76457 0.81341 0.85527 0.88736 0.91037

k2 0.98771 1.12128 1.28061 1.47155 1.72474

When varying σ11 and σ22, as in Table 2.3 and Table 2.4, we find that k2 increases while k1 decreases,

in both σ11 and σ22. This leads to a smaller buying zone, Γ1, due to the increased risk, as well as a smaller

selling zone, Γ3, because there is more price movement overall.

Table 2.3: k1 and k2 with varying σ11
σ11 0.09082 0.14082 0.19082 0.24082 0.29082

k1 0.92069 0.89220 0.85527 0.81532 0.77497

k2 1.21691 1.24468 1.28061 1.32066 1.36327

Table 2.4: k1 and k2 with varying σ22
σ22 0.03988 0.08988 0.13988 0.18988 0.23988

k1 0.88356 0.87601 0.85527 0.82593 0.79206

k2 1.25304 1.26036 1.28061 1.30985 1.34491
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However, as σ12 = σ21 increases, we find that k2 decreases, while k1 increases (Table 2.5). The greater

correlation leads to a larger Γ1, and hence more opportunity for buying, as well as a larger Γ3, and hence

more opportunity for selling.

Table 2.5: k1 and k2 with varying σ12 = σ21

σ12 −0.05964 −0.00964 0.04036 0.09036 0.14036

k1 0.73242 0.79189 0.85527 0.92029 0.97527

k2 1.41132 1.34509 1.28061 1.21730 1.15901

Since ρ represents the rate at which money loses value over time, k2 decreases in ρ, while k1 increases

in ρ, as in Table 2.6, reflecting the fact that we are less likely to want to hold in this case.

Table 2.6: k1 and k2 with varying ρ
ρ 0.4 0.45 0.5 0.55 0.6

k1 0.84068 0.84858 0.85527 0.86105 0.86611

k2 1.36281 1.31541 1.28061 1.25387 1.23262

Finally, larger transaction costs discourage trading. Naturally, Table 2.7 shows that as K increases, k2

increases and k1 decreases.

Table 2.7: k1 and k2 with varyingK
K 0.0000 0.0005 0.0010 0.0015 0.0020

k1 0.85698 0.85613 0.85527 0.85442 0.85356

k2 1.27670 1.27866 1.28061 1.28254 1.28447

Using the stock prices of WMT (S1) and TGT (S2) from 2015 to 2020, we backtest the pairs trading

rule. We found the pair (k1, k2) = (0.85527, 1.28061) using the parameters obtained based on the

historical price data from 2010 to 2015. Since we assume that we are initially flat (i = 0), a pairs trade

(long S1 and short S2) is triggered when (X1
t , X

2
t ) enters Γ3. The position is closed when (X1

t , X
2
t )

enters Γ1. Initially, we allocate the trading capital $100 K. When the first long signal is triggered, we use
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Figure 2.4: S1 = WMT, S2 = TGT with threshold levels k1, k2

half of our capital to purchase WMT stocks and short the same amount of TGT, reversing these trades

when the short signal is triggered. Each pairs transaction is charged $5 commission. In Figure 2.4, the

ratio of the stock prices is plotted against the thresholds k1 and k2. The equity curve indicates the date at

which the round trip trade is finished and the proportion of profit earned.

We can also interchange the roles by taking S1 = TGT and S2 = WMT. The new thresholds will

be (k̃1, k̃2) =

(
1

k2
,
1

k1

)
= (0.78087, 1.16922). In Figure 2.5, the ratio of the stock prices is plotted

against the thresholds k̃1 and k̃2. At the conclusion of our first round trip, we can initiate a second round

trip the next time (X1
t , X

2
t ) enters Γ3, closing the position on the last trading day, 12/30/2019. The
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Figure 2.5: S1 = TGT, S2 = WMT with threshold levels k̃1, k̃2

equity curve indicates the date at which each round trip trade is finished and the proportion of profit

earned. Note that both types of trades have no overlap and, hence, they can be executed simultaneously

without overextending our capital.

On the final trading day, there is $179,253 in the account. The grand total profit is $79,253, an

increase of 79.25% in a five year span. Since only six trades are executed, the capital remains in cash most

of the time and will earn interest or can be used for short-term trading, giving us the opportunity to

further increase our capital.
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Chapter 3

Round-Trip Pairs Trading under

Geometric BrownianMotions with

Reversible Initial Positions

3.1 Introduction

Having previously allowed the initial pairs position to be long or flat, a natural next question to consider

is the short side of pairs trading. So, we begin again with the same stochastic differential equation as in

(2.1) and the same partial differential operator as in (2.2), but now we allow our intial pairs position to

be flat (i = 0), long (i = 1), or short (i = −1). As before, our initial trading decision will depend on

the initial position. If intially we are long, we must sell one share of Z and conclude our trading activity.

Whereas, if initially we are short, we must buy one share of Z and conclude our trading activity. However,

if initially we are flat, we can either buy or sell one share of Z. Depending on that choice, our next trading

move would be to sell or buy, respectively, after which we would conclude our trading activity. We use the

term reversible to describe the initial positions due to the apparent symmetry between going one-share

long in Z and going one-share short in Z with the roles of S1 and S2 interchanged.
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3.2 Problem Formulation

As in Chapter 2, we consider two stocks, S1 and S2. We let {X1
t , t ≥ 0} denote the prices of the stock S1,

and let {X2
t , t ≥ 0} denote the prices of the stock S2. They satisfy the following stochastic differential

equation:

d

X1
t

X2
t

 =

X1
t

X2
t

µ1

µ2

 dt +

σ11 σ12

σ21 σ22

 d

W 1
t

W 2
t


where µi, i = 1, 2 are the return rates, σij , i, j = 1, 2 are the volatility constants, and (W 1

t ,W
2
t ) is a

2-dimensional standard Brownian motion.

We assume the pairs position, which we will denote Z, consists of a one-share long position in stock

S1 and a one-share short position in stock S2. We consider the case that the net position may initially be

short (with one share short in Z), long (with one share long in Z), or flat (with no stock holdings of either

S1 or S2). Let i = −1, 0, 1 denote the initial net positions of short, long, and flat, respectively. If initially

we are short in Z (i = −1), we will buy one share of Z, i.e. buy one share of S1 and sell one share of

S2, at some time τ0 ≥ 0, which will conclude our trading activity. If initially we are long in Z (i = 1),

we will sell one share of Z, i.e. sell S1 and buy S2 at some time τ0 ≥ 0, which will conclude our trading

activity. Otherwise, if initially we are flat (i = 0), we can either go long or short one share in Z at some

time τ1 ≥ 0. Depending on our activity at time τ1, we would then either sell S1 and buy S2 (if long) or

buy S1 and sell S2 (if short) at some time τ2 ≥ τ1, thus concluding our trading activity.

We seek thresholds k1, k2, k3, and k4 for buying and selling Z. Let k1 indicate the price at which we

will sell one share of Z when the net position is flat. Similarly, we will denote by k2 the threshold for

selling one share of Z when the net position is long. Next, k3 will indicate the price at which we will buy

one share of Z when the net position is short. Finally, the threshold for buying one share of Z when the
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net position is flat will be denoted by k4. Then define the following function:

u(x1, x2, i) =



−1, for i = 0 and x2 ≤ x1k1,

−1, for i = 1 and x2 ≤ x1k2,

1, for i = −1 and x2 ≥ x1k3,

1, for i = 0 and x2 ≥ x1k4.

Let K denote the fixed percentage of transaction costs associated with buying or selling of stocks and

ρ > 0 be a discount factor. As in Chapter 2, let βb = 1 +K and βs = 1 −K . Then given the initial

state (x1, x2), the initial net position i = −1, 0, 1, and the decision sequences Λ−1 = (τ0), Λ1 = (τ0)

and Λ0 = (τ1, τ2), the resulting reward functions are

J−1(x1, x2, τ0) =E
[
−e−ρτ0

(
βbX

1
τ0
− βsX

2
τ0

)
I{τ0<∞}

]
,

J0(x1, x2, τ1, τ2, u) =E
[{
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞}

− e−ρτ1
(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

}
I{u=1}

+
{
e−ρτ1

(
βsX

1
τ1
− βbX

2
τ1

)
I{τ1<∞}

− e−ρτ2
(
βbX

1
τ2
− βsX

2
τ2

)
I{τ2<∞}

}
I{u=−1}

]
,

J1(x1, x2, τ0) =E
[
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

]
.

For i = −1, 0, 1, let Vi(x1, x2) denote the value functions with initial state (X1
0 , X

2
0 ) = (x1, x2) and

initial net positions i = −1, 0, 1.That is, Vi(x1, x2) = sup
Λi

Ji(x1, x2,Λi).

3.3 Properties of the Value Functions

In this section, we establish basic properties of the value functions.

Lemma 2. For all x1, x2 > 0, we have

βsx1 − βbx2 ≤ V1(x1, x2) ≤ x1,
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βsx2 − βbx1 ≤ V−1(x1, x2) ≤ x2, and

0 ≤ V0(x1, x2) ≤ 4x1 + 4x2.

Proof. Note that for allx1, x2 > 0, V1(x1, x2) ≥ J1(x1, x2, τ0) = E
[
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

]
.

In particular,

V1(x1, x2) ≥ J1(x1, x2, 0) = βsx1 − βbx2.

Similarly, V−1(x1, x2) ≥ J−1(x1, x2, τ0) = E
[
−e−ρτ0

(
βbX

1
τ0
− βsX

2
τ0

)
I{τ0<∞}

]
. In particular,

V−1(x1, x2) ≥ J−1(x1, x2, 0) = βsx2 − βbx1.

Finally,

V0(x1, x2) ≥ J0(x1, x2, τ1, τ2, u)

= E
[{
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

}
I{u=1}

+
{
e−ρτ1

(
βsX

1
τ1
− βbX

2
τ1

)
I{τ1∞} − e−ρτ2

(
βbX

1
τ2
− βsX

2
τ2

)
I{τ2<∞}

}
I{u=−1}

]
.

Clearly, V0(x2, x2) ≥ 0 by definition and taking τ1 = ∞. So we establish the desired lower bounds.

Now, for all τ0 ≥ 0,

J1(x1, x2, τ0) = E
[
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

]
≤ E

[
e−ρτ0

(
X1

τ0
−X2

τ0

)
I{τ0<∞}

]
= E

[
e−ρτ0X1

τ0
I{τ0<∞}

]
− E

[
e−ρτ0X2

τ0
I{τ0<∞}

]
= x1 + E

[∫ τ0

0

(−ρ+ µ1) e
−ρtX1

t dt I{τ0<∞}

]
− x2 − E

[∫ τ0

0

(−ρ+ µ2) e
−ρtX2

t dt I{τ0<∞}

]
≤ x1 − x2 − E

[∫ τ0

0

(−ρ+ µ2) e
−ρtX2

t dt I{τ0<∞}

]
≤ x1 − x2 + E

[∫ ∞

0

(ρ− µ2) e
−ρtX2

t dt

]
= x1 − x2 + (ρ− µ2)

∫ ∞

0

e−ρtx2e
µ2tdt
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= x1 − x2 + x2

= x1.

Also, for all τ0 ≥ 0,

J−1(x1, x2, τ0) = E
[
−e−ρτ0

(
βbX

1
τ0
− βsX

2
τ0

)
I{τ0<∞}

]
≤ E

[
−e−ρτ0

(
X1

τ0
−X2

τ0

)
I{τ0<∞}

]
= E

[
e−ρτ0X2

τ0
I{τ0<∞}

]
− E

[
e−ρτ0X1

τ0
I{τ0<∞}

]
= x2 + E

[∫ τ0

0

(−ρ+ µ2) e
−ρtX2

t dt I{τ0<∞}

]
− x1 − E

[∫ τ0

0

(−ρ+ µ1) e
−ρtX1

t dt I{τ0<∞}

]
≤ x2 − x1 − E

[∫ τ0

0

(−ρ+ µ1) e
−ρtX1

t dt I{τ0<∞}

]
≤ x2 − x1 + E

[∫ ∞

0

(ρ− µ1) e
−ρtX1

t dt

]
= x2 − x1 + (ρ− µ1)

∫ ∞

0

e−ρtx1e
µ1tdt

= x2 − x1 + x1

= x2.

And, for all 0 ≤ τ1 ≤ τ2,

J0(x1, x2, τ1, τ2, u)

= E
[
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞}I{u=1}

]
− E

[
e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}I{u=1}

]
+ E

[
e−ρτ1

(
βsX

1
τ1
− βbX

2
τ1

)
I{τ1<∞}I{u=−1}

]
− E

[
e−ρτ2

(
βbX

1
τ2
− βsX

2
τ2

)
I{τ2<∞}I{u=−1}

]
≤ E

[
e−ρτ2X1

τ2
I{τ2<∞}I{u=1}

]
− E

[
e−ρτ2X2

τ2
I{τ2<∞}I{u=1}

]
− E

[
e−ρτ1X1

τ1
I{τ1<∞}I{u=1}

]
+ E

[
e−ρτ1X2

τ1
I{τ1<∞}I{u=1}

]
+ E

[
e−ρτ1X1

τ1
I{τ1<∞}I{u=−1}

]
− E

[
e−ρτ1X2

τ1
I{τ1<∞}I{u=−1}

]
− E

[
e−ρτ2X1

τ2
I{τ2<∞}I{u=−1}

]
+ E

[
e−ρτ2X2

τ2
I{τ2<∞}I{u=−1}

]
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≤ x1 − E
[
x2I{τ2<∞}I{u=1}

]
+ E

[∫ τ2

0

(ρ− µ2) e
−ρtX2

t dt I{τ2<∞}I{u=1}

]
+ x2 − E

[
x1I{τ1<∞}I{u=1}

]
+ E

[∫ τ1

0

(ρ− µ1) e
−ρtX1

t dt I{τ1<∞}I{u=1}

]
+ x1 − E

[
x2I{τ1<∞}I{u=−1}

]
+ E

[∫ τ1

0

(ρ− µ2) e
−ρtX2

t dt I{τ1<∞}I{u=−1}

]
+ x2 − E

[
x1I{τ2<∞}I{u=−1}

]
+ E

[∫ τ2

0

(ρ− µ1) e
−ρtX1

t dt I{τ2<∞}I{u=−1}

]
.

Now,

E
[∫ τ1

0

(ρ− µ1) e
−ρtX1

t dt I{τ1<∞}I{u=1}

]
≤ E

[∫ τ1

0

(ρ− µ1) e
−ρtX1

t dt I{τ1<∞}

]
≤ E

[∫ ∞

0

(ρ− µ1) e
−ρtX1

t dt

]
= (ρ− µ1)

∫ ∞

0

e−ρtx1e
µ1tdt

= x1.

Similarly,

E
[∫ τ2

0

(ρ− µ2) e
−ρtX2

t dt I{τ2<∞}I{u=1}

]
≤ x2,

E
[∫ τ1

0

(ρ− µ2) e
−ρtX2

t dt I{τ1<∞}I{u=−1}

]
≤ x2, and

E
[∫ τ2

0

(ρ− µ1) e
−ρtX1

t dt I{τ2<∞}I{u=−1}

]
≤ x1.

Thus, for all 0 ≤ τ1 ≤ τ2, J0(x1, x2, τ1, τ2, u) ≤ 4x1 + 4x2.

3.4 HJB Equations

In this section, we study the associated HJB equations. Let

A =
1

2

{
a11x

2
1

∂2

∂x21
+ 2a12x1x2

∂2

∂x1∂x2
+ a22x

2
2

∂2

∂x22

}
+ µ1x1

∂

∂x1
+ µ2x2

∂

∂x2
,
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where a11 = σ2
11 + σ2

12, a12 = σ11σ21 + σ12σ22, and a22 = σ2
21 + σ2

22. The associated HJB equations

have the form, for x1, x2 > 0:

min
{
ρv1(x1, x2)−Av1(x1, x2), v1(x1, x2)− βsx1 + βbx2

}
= 0,

min
{
ρv−1(x1, x2)−Av−1(x1, x2), v−1(x1, x2) + βbx1 − βsx2

}
= 0,

min
{
ρv0(x1, x2)−Av0(x1, x2), v0(x1, x2)− v1(x1, x2) + βbx1 − βsx2,

v0(x1, x2)− v−1(x1, x2)− βsx1 + βbx2

}
= 0.

As in Chapter 2, the HJB equations can be reduced to an ODE problem by applying the following sub-

stitution. Let y = x2/x1 and vi(x1, x2) = x1wi(x2/x1), for some function wi(y) and i = −1, 0, 1.

The HJB equations can be given in terms of y andwi as follows:


min

{
ρw1(y)− Lw1(y), w1(y)− βs + βby

}
= 0,

min
{
ρw−1(y)− Lw−1(y), w−1(y) + βb − βsy

}
= 0,

min
{
ρw0(y)− Lw0(y), w0(y)− w1(y) + βb − βsy, w0(y)− w−1(y)− βs + βby

}
= 0.

We would like to open pairs position Z when the price of S2 is large relative to the price of S1 (k3

and k4) and close pairs position Z when the price of S2 is small relative to the price of S1 (k1 and k2).

Additionally, we would be more willing to open pairs position Z when the net position is short than

when the net position is flat, since when the net position is short we experience the risk of holding one

share of S2 while borrowing one share of S1. Similarly, we would be more willing to close pairs position

Z when the net position is long than when the net position is flat, since when the net position is long

we experience the risk of borrowing one share of S2 while holding one share of S1. This suggests that we

should expect k1 ≤ k2 ≤ k3 ≤ k4.

w1 and k1:

The first equation

min
{
ρw1(y)− Lw1(y), w1(y)− βs + βby

}
= 0
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Figure 3.1: Thresholds for buying and selling regions

has solution

w1(y) =

βs − βby, for 0 < y ≤ k1,

C2y
δ2 , for y > k1,
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as in Chapter 2. Then the smooth-fitting conditions yield

βs − βbk1 = C2k
δ2
1 and − βb = C2δ2k

δ2−1
1 .

This will imply

(βs − βbk1)δ2 = −βbk1 =⇒ k1 =
−δ2
1− δ2

· βs
βb
,

and

C2 =
βb
−δ2

· k1−δ2
1 =

(
−δ2
βb

)−δ2 ( βs
1− δ2

)1−δ2

.

w−1 and k4:

Also, the second equation

min
{
ρw−1(y)− Lw−1(y), w−1(y) + βb − βsy

}
= 0

has solution

w−1(y) =

C1y
δ1 , for 0 < y < k4,

βsy − βb, for y ≥ k4.

Then the smooth-fitting conditions yield

C1k
δ1
4 = βsk4 − βb and C1δ1k

δ1−1
4 = βs.

This will imply

(βsk4 − βb)δ1 = βsk4 =⇒ k4 =
δ1

δ1 − 1
· βb
βs
,

and

C1 =
βs
δ1

· k1−δ1
4 =

(
βs
δ1

)δ1 (δ1 − 1

βb

)δ1−1

.
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w0, k2, and k3:

Additionally, the third equation

min
{
ρw0(y)− Lw0(y), w0(y)− w1(y) + βb − βsy, w0(y)− w−1(y)− βs + βby

}
= 0

has solution

w0(y) =


C1y

δ1 + βs − βby, for 0 < y ≤ k2,

B1y
δ1 +B2y

δ2 , for k2 < y < k3,

C2y
δ2 − βb + βsy, for y ≥ k3.

Then the smooth-fitting conditions yield

C1k
δ1
2 + βs − βbk2 = B1k

δ1
2 +B2k

δ2
2 ,

C1δ1k
δ1−1
2 − βb = B1δ1k

δ1−1
2 +B2δ2k

δ2−1
2 ,

B1k
δ1
3 +B2k

δ2
3 = C2k

δ2
3 − βb + βsk3,

B1δ1k
δ1−1
3 +B2δ2k

δ2−1
3 = C2δ2k

δ2−1
3 + βs.

There are four equations and four parameters,B1,B2, k2, andk3, that need to be found. These equations

can be written in the matrix form: kδ12 kδ22

δ1k
δ1−1
2 δ2k

δ2−1
2

B1 − C1

B2

 =

1 −k2
0 −1

βs
βb

 ,

and  kδ13 kδ23

δ1k
δ1−1
3 δ2k

δ2−1
3

 B1

B2 − C2

 =

k3 −1

1 0

βs
βb

 .

We introduce a new matrix

Φ(r) =

 rδ1 rδ2

δ1r
δ1−1 δ2r

δ2−1

 and its inverse Φ(r)−1 =
1

δ1 − δ2

−δ2r−δ1 r1−δ1

δ1r
−δ2 −r1−δ2

 ,
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for r ̸= 0. Returning to the smooth-fit conditions above, we have

B1 − C1

B2

 = Φ(k2)
−1

1 −k2
0 −1

βs
βb

 ,

and  B1

B2 − C2

 = Φ(k3)
−1

k3 −1

1 0

βs
βb

 .

This implies

B1

B2

 =

C1

0

+ Φ(k2)
−1

1 −k2
0 −1

βs
βb

 =

 0

C2

+ Φ(k3)
−1

k3 −1

1 0

βs
βb

 .

The second equality yields two equations of k2 and k3 that we can rewrite as

Φ(k3)−1

k3 −1

1 0

− Φ(k2)
−1

1 −k2
0 −1

βs
βb

 =

 C1

−C2

 .

The matrix in [·] above is

1

δ1 − δ2

 (1− δ2)k
1−δ1
3 + δ2k

−δ1
2 δ2k

−δ1
3 + (1− δ2)k

1−δ1
2

−(1− δ1)k
1−δ2
3 − δ1k

−δ2
2 −δ1k−δ2

3 − (1− δ1)k
1−δ2
2

 .

The two equations involving k2 and k3 are

1

δ1 − δ2

(1− δ2)k
1−δ1
3 + δ2k

−δ1
2 δ2k

−δ1
3 + (1− δ2)k

1−δ1
2

(1− δ1)k
1−δ2
3 + δ1k

−δ2
2 δ1k

−δ2
3 + (1− δ1)k

1−δ2
2

βs
βb

 =

C1

C2

 .

Recall that

C1 =
βs
δ1

· k1−δ1
4 =

(
βs
δ1

)δ1 (δ1 − 1

βb

)δ1−1

andC2 =
βb
−δ2

· k1−δ2
1 =

(
−δ2
βb

)−δ2 ( βs
1− δ2

)1−δ2

.
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The system of equations for k2 and k3 is

(1− δ2)k
1−δ1
3 + δ2k

−δ1
2

δ1 − δ2
βs +

δ2k
−δ1
3 + (1− δ2)k

1−δ1
2

δ1 − δ2
βb =

βs
δ1

· k1−δ1
4 ,

(1− δ1)k
1−δ2
3 + δ1k

−δ2
2

δ1 − δ2
βs +

δ1k
−δ2
3 + (1− δ1)k

1−δ2
2

δ1 − δ2
βb =

βb
−δ2

· k1−δ2
1 .

We are looking for solutions (k2, k3) in the triangular region

T = {(r, s) : k1 ≤ r < s ≤ k4} ⊂ R2
+.

Let γ =
βb
βs

. Then we can reduce the system to

F1(k2, k3) :=
(1− δ2)k

1−δ1
3 + δ2k

−δ1
2

δ1 − δ2
+
δ2k

−δ1
3 + (1− δ2)k

1−δ1
2

δ1 − δ2
γ − k1−δ1

4

δ1
= 0, (3.1)

F2(k2, k3) :=
(1− δ1)k

1−δ2
3 + δ1k

−δ2
2

δ1 − δ2
+
δ1k

−δ2
3 + (1− δ1)k

1−δ2
2

δ1 − δ2
γ − γk1−δ2

1

−δ2
= 0. (3.2)

Note that, by application of a special implicit function theorem [17], (k1, k4) is the unique solution to

the system, since:

F1(k1, k4) =
(1− δ2)k

1−δ1
4 + δ2k

−δ1
1

δ1 − δ2
+
δ2k

−δ1
1 + (1− δ2)k

1−δ1
4

δ1 − δ2
γ − k1−δ1

4

δ1

=
k−δ1
4

δ1 − δ2

[
(1− δ2)k4 −

δ1 − δ2
δ1

k4 + δ2γ

]
+

k−δ1
1

δ1 − δ2
[δ2 + (1− δ2)γk1]

=
k−δ1
4

δ1 − δ2

[
(1− δ2)δ1
δ1 − 1

γ − δ1 − δ2
δ1 − 1

γ + δ2γ

]
+

k−δ1
1

δ1 − δ2
[δ2 + (−δ2)]

=
k−δ1
4

δ1 − δ2

[
−δ2(δ1 − 1)

δ1 − 1
γ + δ2γ

]
= 0,

and

F2(k1, k4) =
(1− δ1)k

1−δ2
4 + δ1k

−δ2
1

δ1 − δ2
+
δ1k

−δ2
4 + (1− δ1)k

1−δ2
1

δ1 − δ2
γ − γk1−δ2

1

−δ2
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Figure 3.2: Numerical solution to system of equations in (3.1) and (3.2).

=
k−δ2
4

δ1 − δ2
[(1− δ1)k4 − δ1γ] +

k−δ2
1

δ1 − δ2

[
δ1 + (1− δ1)γk1 +

δ1 − δ2
δ2

γk1

]
=

k−δ2
4

δ1 − δ2
[−δ1γ + δ1γ] +

k−δ2
1

δ1 − δ2

[
δ1 +

(1− δ1)(−δ2)
1− δ2

− δ1 − δ2
1− δ2

]
=

k−δ2
1

δ1 − δ2

[
δ1 +

δ1δ2 − δ1
1− δ2

]
. =

k−δ2
1

δ1 − δ2

[
δ1 −

δ1(1− δ2)

1− δ2

]
= 0.

Now, recall that the smooth-fit conditions forw0 can be written as:
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(B1 − C1)k

δ1
2 +B2k

δ2
2 = βs − βbk2,

(B1 − C1)δ1k
δ1−1
2 +B2δ2k

δ2−1
2 = −βb,

and


B1k

δ1
3 + (B2 − C2)k

δ2
3 = βsk3 − βb,

B1δ1k
δ1−1
3 + (B2 − C2)δ2k

δ2−1
3 = βs.

From these we obtain:

(B1 − C1)k
δ1
2

(B1 − C1)δ1k
δ1−1
2

=
βs − βbk2 −B2k

δ2
2

−βb −B2δ2k
δ2−1
2

=⇒ k2
δ1

=
βs − βbk2 −B2k

δ2
2

−βb −B2δ2k
δ2−1
2

=⇒ βsδ1 − βbδ1k2 −B2δ1k
δ2
2 = −βbk2 −B2δ2k

δ2
2

=⇒ B2k
δ2
2 (δ1 − δ2) = βsδ1 + βb(1− δ1)k2

=⇒ B2 =
βsδ1k

−δ2
2 − βb(δ1 − 1)k1−δ2

2

δ1 − δ2
.

Also,

B2k
δ2
2

B2δ2k
δ2−1
2

=
βs − βbk2 − (B1 − C1)k

δ1
2

−βb − (B1 − C1)δ1k
δ1−1
2

=⇒ k2
δ2

=
βs − βbk2 − (B1 − C1)k

δ1
2

−βb − (B1 − C1)δ1k
δ1−1
2

=⇒ βsδ2 − βbδ2k2 − (B1 − C1)δ2k
δ1
2 = −βbk2 − (B1 − C1)δ1k

δ1
2

=⇒ (B1 − C1)k
δ1
2 (δ1 − δ2) = −βb(1− δ2)k2 − βsδ2

=⇒ B1 − C1 =
βs(−δ2)k−δ1

2 − βb(1− δ2)k
1−δ1
2

δ1 − δ2
,

B1k
δ1
3

B1δ1k
δ1−1
3

=
βsk3 − βb − (B2 − C2)k

δ2
3

βs − (B2 − C2)δ2k
δ2−1
3
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=⇒ k3
δ1

=
βsk3 − βb − (B2 − C2)k

δ2
3

βs − (B2 − C2)δ2k
δ2−1
3

=⇒ βsδ1k3 − βbδ1 − (B2 − C2)δ1k
δ2
3 = βsk3 − (B2 − C2)δ2k

δ2
3

=⇒ (B2 − C2)k
δ2
3 (δ1 − δ2) = βs(δ1 − 1)k3 − βbδ1

=⇒ B2 − C2 =
βs(δ1 − 1)k1−δ2

3 − βbδ1k
−δ2
3

δ1 − δ2
,

and

(B2 − C2)k
δ2
3

(B2 − C2)δ2k
δ2−1
3

=
βsk3 − βb −B1k

δ1
3

βs −B1δ1k
δ1−1
3

=⇒ k3
δ2

=
βsk3 − βb −B1k

δ1
3

βs −B1δ1k
δ1−1
3

=⇒ βsδ2k3 − βbδ2 −B1δ2k
δ1
3 = βsk3 −B1δ1k

δ1
3

=⇒ B1k
δ1
3 (δ1 − δ2) = βs(1− δ2)k3 + βb(δ2)

=⇒ B1 =
βs(1− δ2)k

1−δ1
3 − βb(−δ2)k−δ1

3

δ1 − δ2
.

Note then that if k2 = k1, we have

k2 =
βs
βb

· −δ2
1− δ2

=⇒ βs(−δ2) = βb(1− δ2)k2

=⇒ βs(−δ2)k−δ1
2 = βb(1− δ2)k

1−δ1
2

=⇒ βs(−δ2)k−δ1
2 − βb(1− δ2)k

1−δ1
2 = 0

=⇒ βs(−δ2)k−δ1
2 − βb(1− δ2)k

1−δ1
2

δ1 − δ2
= 0

=⇒ B1 − C1 = 0

=⇒ B1 = C1.

Also, if k3 = k4, we have

k3 =
βb
βs

· δ1
δ1 − 1

=⇒ βbδ1 = βs(δ1 − 1)k3
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=⇒ βbδ1k
−δ2
3 = βs(δ1 − 1)k1−δ2

3

=⇒ βs(δ1 − 1)k1−δ2
3 − βbδ1k

−δ2
3 = 0

=⇒ βs(δ1 − 1)k1−δ2
3 − βbδ1k

−δ2
3

δ1 − δ2
= 0

=⇒ B2 − C2 = 0

=⇒ B2 = C2.

Hence, in this case

w0(y) =


C1y

δ1 + βs − βby, for 0 < y ≤ k1,

C1y
δ1 + C2y

δ2 , for k1 < y < k4,

C2y
δ2 − βb + βsy, for y ≥ k4.

Let us relabel these threshholds as

k∗1 := k1 = k2 =
−δ2
1− δ2

· βs
βb
, (3.3)

k∗2 := k3 = k4 =
δ1

δ1 − 1
· βb
βs
. (3.4)

Then we have the following.

Theorem 3. Let δi be given by (2.4) and k∗i be given by (3.3), (3.4). Then the following functions w1, w−1,

andw0 satisfy the HJB equations (3.4):

w1(y) =


βs − βby, for 0 < y ≤ k∗1,(
− δ2
βb

)−δ2 ( βs
1− δ2

)1−δ2

yδ2 , for y > k∗1,

w−1(y) =


(
βs
δ1

)δ1 (δ1 − 1

βb

)δ1−1

yδ1 , for 0 < y < k∗2,

βsy − βb, for y ≥ k∗2,
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w0(y) =



(
βs
δ1

)δ1 (δ1 − 1

βb

)δ1−1

yδ1 + βs − βby, for 0 < y ≤ k∗1,(
βs
δ1

)δ1 (δ1 − 1

βb

)δ1−1

yδ1 +

(
− δ2
βb

)−δ2 ( βs
1− δ2

)1−δ2

yδ2 , for k∗1 < y < k∗2,(
− δ2
βb

)−δ2 ( βs
1− δ2

)1−δ2

yδ2 − βb + βsy, for y ≥ k∗2.

Proof. We divide the first quadrant of the plane into 3 regions,

Γ1 : 0 < y ≤ k∗1, Γ2 : k
∗
1 < y < k∗2, Γ3 : k

∗
2 ≤ y.

Thus, to establish that we have found a solution to the HJB equations, we must establish the following

list of variational inequalities:



(ρ− L)w1(y) ≥ 0, for y ∈ Γ1,

w1(y)− βs + βby ≥ 0, for y ∈ Γ2 ∪ Γ3,

w−1(y) + βb − βsy ≥ 0, for y ∈ Γ1 ∪ Γ2,

(ρ− L)w−1(y) ≥ 0, for y ∈ Γ3,

(ρ− L)w0(y) ≥ 0, for y ∈ Γ1 ∪ Γ3,

w0(y)− w1(y) + βb − βsy ≥ 0, for y ∈ Γ1 ∪ Γ2,

w0(y)− w−1(y)− βs + βby ≥ 0, for y ∈ Γ2 ∪ Γ3.

On Γ1,

(ρ− L)w1(y) = (ρ− L)(βs − βby)

= ρβs − ρβby − Lβs + Lβby

= ρβs − µ1βs + µ1βby + (µ2 − µ1)βby − ρβby

= (ρ− µ1)βs − (ρ− µ2)βby.
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Hence,

(ρ− L)w1(y) ≥ 0 ⇐⇒ (ρ− µ1)βs ≥ (ρ− µ2)βby

⇐⇒ y ≤ ρ− µ1

ρ− µ2

· βs
βb

⇐⇒ y ≤ δ1
δ1 − 1

· −δ2
1− δ2

· βs
βb

⇐⇒ y ≤ δ1
δ1 − 1

· k∗1,

which holds, since y ≤ k∗1 ≤
δ1

δ1 − 1
· k∗1 .

On Γ2 ∪ Γ3,

w1(y)− βs + βby = C2y
δ2 − βs + βby.

Hence

w1(y)− βs + βby ≥ 0 ⇐⇒ C2y
δ2 − βs + βby ≥ 0.

Let f(y) = C2y
δ2 − βs + βby. Then

f ′(y) ≥ 0 ⇐⇒ C2δ2y
δ2−1 + βb ≥ 0

⇐⇒ C2(−δ2)yδ2−1 ≤ βb

⇐⇒ yδ2−1 ≤ βb
C2(−δ2)

= (k∗1)
δ2−1

⇐⇒ y1−δ2 ≥ (k∗1)
1−δ2

⇐⇒ y ≥ k∗1,

which clearly holds. Hence f(y) is increasing for y > k∗1. Since f(k∗1) = 0, it must be thatw1(y)−βs+

βby ≥ 0 on Γ2 ∪ Γ3.

On Γ1 ∪ Γ2,

w−1(y) + βb − βsy = C1y
δ1 + βb − βsy.
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Hence

w−1(y) + βb − βsy ≥ 0 ⇐⇒ C1y
δ1 + βb − βsy ≥ 0.

Let g(y) = C1y
δ1 + βb − βsy. Then

g′(y) ≤ 0 ⇐⇒ C1δ1y
δ1−1 − βs ≤ 0

⇐⇒ C1δ1y
δ1−1 ≤ βs

⇐⇒ yδ1−1 ≤ βs
C1δ1

= (k∗2)
δ1−1

⇐⇒ y ≤ k∗2,

which clearly holds. Hence g(y) is decreasing for y < k∗2. Since g(k∗2) = 0, it must be that w−1(y) +

βb − βsy ≥ 0 on Γ1 ∪ Γ2.

On Γ3,

(ρ− L)w−1(y) = (ρ− L)(βsy − βb)

= ρβsy − ρβb − Lβsy + Lβb

= ρβsy − µ2βsy + µ1βb − ρβb

= (ρ− µ2)βsy − (ρ− µ1)βb.

Hence,

(ρ− L)w−1(y) ≥ 0 ⇐⇒ (ρ− µ2)βsy ≥ (ρ− µ1)βb

⇐⇒ y ≥ ρ− µ1

ρ− µ2

· βb
βs

⇐⇒ y ≥ −δ2
1− δ2

· δ1
δ1 − 1

· βb
βs

⇐⇒ y ≥ −δ2
1− δ2

· k∗2,
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which holds, since y ≥ k∗2 ≥
−δ2
1− δ2

· k∗2 .

On Γ1,

(ρ− L)w0(y) = (ρ− L)(w−1(y) + w1(y))

= (ρ− L)w−1(y) + (ρ− L)w1(y)

= 0 + (ρ− L)w1(y),

and we have already established that (ρ− L)w1(y) ≥ 0 on Γ1.

On Γ3,

(ρ− L)w0(y) = (ρ− L)(w1(y) + w−1(y))

= (ρ− L)w1(y) + (ρ− L)w−1(y)

= 0 + (ρ− L)w−1(y),

and we have already established that (ρ− L)w−1(y) ≥ 0 on Γ3.

On Γ1,

w0(y)− w1(y) + βb − βsy = C1y
δ1 + βs − βby − βs + βby + βb − βsy

= C1y
δ1 + βb − βsy,

and we have already established thatC1y
δ1 + βb − βsy ≥ 0 on Γ1.

On Γ2,

w0(y)− w1(y) + βb − βsy = C1y
δ1 + C2y

δ2 − C2y
δ2 + βb − βsy

= C1y
δ1 + βb − βsy,
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and we have already established thatC1y
δ1 + βb − βsy ≥ 0 on Γ2.

On Γ2,

w0(y)− w−1(y)− βs + βby = C1y
δ1 + C2y

δ2 − C1y
δ1 − βs + βby

= C2y
δ2 − βs + βby,

and we have already established thatC2y
δ2 − βs + βby ≥ 0 on Γ2.

On Γ3,

w0(y)− w−1(y)− βs + βby = C2y
δ2 − βb + βsy − βsy + βb − βs + βby

= C2y
δ2 − βs + βby,

and we have already established thatC2y
δ2 − βs + βby ≥ 0 on Γ3.

3.5 A Verification Theorem

Theorem 4. We have vi(x1, x2) = x1wi

(
x2

x1

)
= Vi(x1, x2), i = −1, 0, 1. If initially i = −1,

let τ ∗0 = inf {t ≥ 0 : (X1
t , X

2
t ) ∈ Γ3}. If initially i = 1, let τ ∗0 = inf {t ≥ 0 : (X1

t , X
2
t ) ∈ Γ1}.

Finally, if initially i = 0, let τ ∗1 = inf {t ≥ 0 : (X1
t , X

2
t ) /∈ Γ2}. If

(
X1

τ∗1
, X2

τ∗1

)
∈ Γ1, then u∗ = −1

and τ ∗2 = inf {t ≥ τ ∗1 : (X1
t , X

2
t ) ∈ Γ3}. Otherwise, if

(
X1

τ∗1
, X2

τ∗1

)
∈ Γ3, then u∗ = 1 and τ ∗2 =

inf {t ≥ τ ∗1 : (X1
t , X

2
t ) ∈ Γ1}.

Proof. Given (ρ−A)vi(x1, x2) ≥ 0, i = −1, 0, 1, and applying Dynkin’s formula and Fatou’s Lemma

as in Øksendal [18], we have for any stopping times 0 ≤ τ1 ≤ τ2, almost surely,

Ee−ρτ1vi
(
X1

τ1
, X2

τ1

)
≥ Ee−ρτ2vi

(
X1

τ2
, X2

τ2

)
.
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Hence, we have

v0(x1, x2) ≥ E
[
e−ρτ1v0

(
X1

τ1
, X2

τ1

)]
≥ E

[
e−ρτ1v0

(
X1

τ1
, X2

τ1

)
I{τ1<∞}

]
≥ E

[
e−ρτ1

(
v1
(
X1

τ1
, X2

τ1

)
− βbX

1
τ1
+ βsX

2
τ1

)
I{τ1<∞}I{u=1}

]
+ E

[
e−ρτ1

(
v−1

(
X1

τ1
, X2

τ1

)
+ βsX

1
τ1
− βbX

2
τ1

)
I{τ1<∞}I{u=−1}

]
=E

[
e−ρτ1v1

(
X1

τ1
, X2

τ1

)
I{τ1<∞}I{u=1}

]
+ E

[
e−ρτ1v−1

(
X1

τ1
, X2

τ1

)
I{τ1<∞}I{u=−1}

]
+ E

[
e−ρτ1

(
βsX

1
τ1
− βbX

2
τ1

)
I{τ1<∞}I{u=−1}

]
− E

[
e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}I{u=1}

]
≥ E

[
e−ρτ2v1

(
X1

τ2
, X2

τ2

)
I{τ2<∞}I{u=1}

]
+ E

[
e−ρτ2v−1

(
X1

τ2
, X2

τ2

)
I{τ2<∞}I{u=−1}

]
+ E

[
e−ρτ1

(
βsX

1
τ1
− βbX

2
τ1

)
I{τ1<∞}I{u=−1}

]
− E

[
e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}I{u=1}

]
≥ E

[
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞}I{u=1}

]
− E

[
e−ρτ2

(
βbX

1
τ2
− βsX

2
τ2

)
I{τ2<∞}I{u=−1}

]
+ E

[
e−ρτ1

(
βsX

1
τ1
− βbX

2
τ1

)
I{τ1<∞}I{u=−1}

]
− E

[
e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}I{u=1}

]
=E

[ {
e−ρτ2

(
βsX

1
τ2
− βbX

2
τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1
− βsX

2
τ1

)
I{τ1<∞}

}
I{u=1}

+
{
e−ρτ1

(
βsX

1
τ1
− βbX

2
τ1

)
I{τ1<∞} − e−ρτ2

(
βbX

1
τ2
− βsX

2
τ2

)
I{τ2<∞}

}
I{u=−1}

]
= J0 (x1, x2, τ1, τ2, u) ,

for all 0 ≤ τ1 ≤ τ2. This implies v0 (x1, x2) ≥ V0 (x1, x2). Also,

v1(x1, x2) ≥ E
[
e−ρτ0v1

(
X1

τ0
, X2

τ0

)]
≥ E

[
e−ρτ0v1

(
X1

τ0
, X2

τ0

)
I{τ0<∞}

]
=E

[
e−ρτ0

(
βsX

2
τ0
− βbX

1
τ0

)
I{τ0<∞}

]
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=E
[
−e−ρτ0

(
βbX

1
τ0
− βsX

2
τ0

)
I{τ0<∞}

]
= J1 (x1, x2, τ0) ,

and

v−1(x1, x2) ≥E
[
e−ρτ0v−1

(
X1

τ0
, X2

τ0

)]
≥E

[
e−ρτ0v−1

(
X1

τ0
, X2

τ0

)
I{τ0<∞}

]
=E

[
e−ρτ0

(
βsX

1
τ0
− βbX

2
τ0

)
I{τ0<∞}

]
= J−1 (x1, x2, τ0) ,

for all 0 ≤ τ0. Hence v1 (x1, x2) ≥ V1 (x1, x2) and v−1 (x1, x2) ≥ V−1 (x1, x2).

Now define τ ∗1 = inf {t ≥ 0 : (X1
t , X

2
t ) /∈ Γ2}. If

(
X1

τ∗1
, X2

τ∗1

)
∈ Γ1, then τ ∗2 =

inf {t ≥ τ ∗1 : (X1
t , X

2
t ) ∈ Γ3}. Otherwise, if

(
X1

τ∗1
, X2

τ∗1

)
∈ Γ3, then τ ∗2 =

inf {t ≥ τ ∗1 : (X1
t , X

2
t ) ∈ Γ1}. Using Dynkin’s formula, we obtain

v0(x1, x2) = E
[
e−ρτ∗1 v0

(
X1

τ∗1
, X2

τ∗1

)
I{τ∗1<∞}

]
,

E
[
e−ρτ∗1 v1

(
X1

τ∗1
, X2

τ∗1

)
I{τ∗1<∞}

]
= E

[
e−ρτ∗2 v1

(
X1

τ∗2
, X2

τ∗2

)
I{τ∗2<∞}

]
,

and

E
[
e−ρτ∗1 v−1

(
X1

τ∗1
, X2

τ∗1

)
I{τ∗1<∞}

]
= E

[
e−ρτ∗2 v−1

(
X1

τ∗2
, X2

τ∗2

)
I{τ∗2<∞}

]
.

Thus,

v0(x1, x2) =E
[
e−ρτ∗1 v0

(
X1

τ∗1
, X2

τ∗1

)
I{τ∗1<∞}

]
=E

[
e−ρτ∗1

(
v1

(
X1

τ∗1
, X2

τ∗1

)
− βbX

1
τ∗1

+ βsX
2
τ∗1

)
I{τ∗1<∞}I{u∗=1}

]
+ E

[
e−ρτ∗1

(
v−1

(
X1

τ∗1
, X2

τ∗1

)
+ βsX

1
τ∗1

− βbX
2
τ∗1

)
I{τ∗1<∞}I{u∗=−1}

]
=E

[
e−ρτ∗1 v1

(
X1

τ∗1
, X2

τ∗1

)
I{τ∗1<∞}I{u∗=1}

]
+ E

[
e−ρτ∗1 v−1

(
X1

τ∗1
, X2

τ∗1

)
I{τ∗1<∞}I{u∗=−1}

]
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+ E
[
e−ρτ∗1

(
βsX

1
τ∗1

− βbX
2
τ∗1

)
I{τ∗1<∞}I{u∗=−1}

]
− E

[
e−ρτ∗1

(
βbX

1
τ∗1

− βsX
2
τ∗1

)
I{τ∗1<∞}I{u∗=1}

]
=E

[
e−ρτ∗2 v1

(
X1

τ∗2
, X2

τ∗2

)
I{τ∗2<∞}I{u∗=1}

]
+ E

[
e−ρτ∗2 v−1

(
X1

τ∗2
, X2

τ∗2

)
I{τ∗2<∞}I{u∗=−1}

]
+ E

[
e−ρτ∗1

(
βsX

1
τ∗1

− βbX
2
τ∗1

)
I{τ∗1<∞}I{u∗=−1}

]
− E

[
e−ρτ∗1

(
βbX

1
τ∗1

− βsX
2
τ∗1

)
I{τ∗1<∞}I{u∗=1}

]
≥ E

[
e−ρτ∗2

(
βsX

1
τ∗2

− βbX
2
τ∗2

)
I{τ∗2<∞}I{u∗=1}

]
− E

[
e−ρτ∗2

(
βbX

1
τ∗2

− βsX
2
τ∗2

)
I{τ∗2<∞}I{u∗=−1}

]
+ E

[
e−ρτ∗1

(
βsX

1
τ∗1

− βbX
2
τ∗1

)
I{τ∗1<∞}I{u∗=−1}

]
− E

[
e−ρτ∗1

(
βbX

1
τ∗1

− βsX
2
τ∗1

)
I{τ∗1<∞}I{u∗=1}

]
=E

[{
e−ρτ∗2

(
βsX

1
τ∗2

− βbX
2
τ∗2

)
I{τ∗2<∞} − e−ρτ∗1

(
βbX

1
τ∗1

− βsX
2
τ∗1

)
I{τ∗1<∞}

}
I{u∗=1}

+
{
e−ρτ∗1

(
βsX

1
τ∗1

− βbX
2
τ∗1

)
I{τ∗1<∞} − e−ρτ∗2

(
βbX

1
τ∗2

− βsX
2
τ∗2

)
I{τ∗2<∞}

}
I{u∗=−1}

]
= J0 (x1, x2, τ

∗
1 , τ

∗
2 , u

∗) .

Similarly,

v1(x1, x2) =E
[
e−ρτ∗0 v1

(
X1

τ∗0
, X2

τ∗0

)
I{τ∗0<∞}

]
=E

[
e−ρτ∗0

(
βsX

2
τ∗0

− βbX
1
τ∗0

)
I{τ∗0<∞}

]
= J1 (x1, x2, τ

∗
0 ) ,

v−1(x1, x2) =E
[
e−ρτ∗0 v−1

(
X1

τ∗0
, X2

τ∗0

)
I{τ∗0<∞}

]
=E

[
e−ρτ∗0

(
βsX

1
τ∗0

− βbX
2
τ∗0

)
I{τ∗0<∞}

]
= J−1 (x1, x2, τ

∗
0 ) .
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3.6 A Numerical Example

As in Chapter 2, we consider adjusted closing price data for Walmart (WMT) and Target (TGT) from

2010 to 2020. The first half of the data is used to calibrate the model, and the second half is used to test

the results. Using a least-squares method, we obtain the following parameters: µ1 = 0.09696, µ2 =

0.14347, σ11 = 0.19082, σ12 = 0.04036, σ21 = 0.04036, and σ22 = 0.13988. We specifyK = 0.001

and ρ = 0.5. Then we find k∗1 = 0.85527, and k∗2 = 1.32175.

Next we examine the dependence of k∗1 and k∗2 on the parameters by varying each. In Table 3.1, we see

that k∗1 and k∗2 both decrease in µ1. This leads to a larger buying region, Γ3.

Table 3.1: k∗1 and k∗2 with varying µ1

µ1 −0.00304 0.04696 0.09696 0.14696 0.19696

k∗1 0.91380 0.89057 0.85527 0.80194 0.72644

k∗2 1.54402 1.42682 1.32175 1.23477 1.17006

On the other hand, both k∗1 and k∗2 increase in µ2, as indicated in Table 3.2. This creates a larger Γ1 and,

hence, encourages early exit.

Table 3.2: k∗1 and k∗2 with varying µ2

µ2 0.04347 0.09347 0.14347 0.19347 0.24347

k∗1 0.76457 0.81341 0.85527 0.88736 0.91037

k∗2 1.15468 1.21883 1.32175 1.48176 1.72581

When varying σ11 and σ22, as in Table 3.3 and Table 3.4, we find that k∗1 decreases while k∗2 increases,

in both σ11 and σ22. This leads to a smaller buying zone, Γ1, due to the increased risk, as well as a smaller

selling zone, Γ3, because there is more price movement overall.
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Table 3.3: k∗1 and k∗2 with varying σ11
σ11 0.09082 0.14082 0.19082 0.24082 0.29082

k∗1 0.92069 0.89220 0.85527 0.81532 0.77497

k∗2 1.22784 1.26704 1.32175 1.38652 1.45871

Table 3.4: k∗1 and k∗2 with varying σ22
σ22 0.03988 0.08988 0.13988 0.18988 0.23988

k∗1 0.88356 0.87601 0.85527 0.82593 0.79206

k∗2 1.27943 1.29045 1.32175 1.36871 1.42724

However, as σ12 = σ21 increases, we find that k∗1 increases, while k∗2 decreases (Table 3.5). The greater

correlation leads to a larger Γ1, and hence more opportunity for buying, as well as a larger Γ3, and hence

more opportunity for selling.

Table 3.5: k∗1 and k∗2 with varying σ12 = σ21

σ12 −0.05964 −0.00964 0.04036 0.09036 0.14036

k∗1 0.73242 0.79189 0.85527 0.92029 0.97527

k∗2 1.54345 1.42754 1.32175 1.22837 1.15911

Since ρ represents the rate at which money loses value over time, k∗1 increases in ρ, while k∗2 decreases

in ρ, as in Table 3.6, reflecting the fact that we are less likely to want to hold in this case.

Table 3.6: k∗1 and k∗2 with varying ρ
ρ 0.4 0.45 0.5 0.55 0.6

k∗1 0.84068 0.84858 0.85527 0.86105 0.86611

k∗2 1.40518 1.35725 1.32175 1.29425 1.27222

Finally, larger transaction costs discourage trading. Naturally, Table 3.7 shows that as K increases, k∗1
decreases and k∗2 increases.
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Table 3.7: k∗1 and k∗2 with varyingK
K 0.0000 0.0005 0.0010 0.0015 0.0020

k∗1 0.85698 0.85613 0.85527 0.85442 0.85356

k∗2 1.31911 1.32043 1.32175 1.32307 1.32439

Figure 3.3: S1 = WMT, S2 = TGT with threshold levels k∗1 , k∗2

Using the stock prices of WMT (S1) and TGT (S2) from 2015 to 2020, we backtest the pairs trading

rule. We found the pair (k1, k2) = (0.85527, 1.32177) using the parameters obtained based on the

historical prices from 2010 to 2015. Since we assume that we are initially flat (i = 0), a pairs trade is

triggered when (X1
t , X

2
t ) enters Γ1 (short S1 and long S2) or Γ3 (long S1 and short S2). Depending on

which occurs first, the pairs position is reversed when (X1
t , X

2
t ) enters Γ3 or Γ1, respectively. Initially,
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Figure 3.4: S1 = TGT, S2 = WMT with threshold levels k̃∗1 , k̃∗2

we allocate the trading capital $100 K. When the first short signal is triggered, we simulate the short sale

of $50 K in WMT stocks and the purchasing of the same amount of TGT and reverse these trades when

the long signal is triggered. Each pairs transaction is charged $5 commission. In Figure 3.3, the ratio of

the stock prices is plotted against the thresholds k∗1 and k∗2 . A second round trip can be initiated the next

time (X1
t , X

2
t ) is in Γ1 or Γ3 and will proceed accordingly. The final round trip will be closed on the last

trading day, 12/30/2019. The equity curve indicates the date at which each round trip trade is finished

and the proportion of profit earned.
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We can also interchange the roles by taking S1 = TGT and S2 = WMT. The new thresholds will

be (k̃∗1, k̃∗2) =

(
1

k∗2
,
1

k∗1

)
= (0.75656, 1.16922). In Figure 3.4, the ratio of the stock prices is plotted

against the thresholds k̃∗1 and k̃∗2 . Note that this results in the exact same sequence of trades as when the

roles were reversed. Hence, there is no need to consider this scenario.

On the final trading day, there is $181,351 in the account. The grand total profit is $81,351, an

increase of 81.35% in a five year span. Since only six trades are executed, the capital remains in cash most

of the time and will earn interest or can be used for short-term trading, giving us the opportunity to

further increase our capital.
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Chapter 4

Pairs Trading under aMean-Reversion

Model with Regime Switching

4.1 Introduction

This is joint work with Dr. Phong Luu, Dr. Jingzhi Tie, and Dr. Qing Zhang. This chapter delves further

into the mathematics of pairs trading. Specifically, this chapter focuses on the scenario where the differ-

ence between a pair follows a mean-reversion model. Mean-reversion models are commonly employed in

financial markets to capture price movements that tend to gravitate towards an equilibrium level. We also

introduce the problem of regime switching. Market models with regime switching are important in mar-

ket analysis. In a mean-reversion model, the rate of reversion, the mean (equilibrium), and the volatility

are all subject to change in the long run. One way to capture these changes is to introduce a switching

process dictating sudden changes in system parameters.

The main purpose of this chapter is to study pairs trading rules under mean-reversion models cou-

pled with a two-state Markov chain. In particular, we consider an optimal pairs trading rule in which a

pairs (long-short) position consists of a long position of one stock and a short position of the other. The

pair’s value Zt is defined as a difference of the stock prices. The state processes (Zt, αt) are modeled so

thatZt is mean-reversion coupled with a two-state Markov chain,αt. To focus on closed-form solutions,

we only consider the Markov chain with an absorbing state. The objective is to initiate (buy) and close

(sell) the pairs positions sequentially to maximize a discounted payoff function. A fixed (commission
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or slippage) cost will be imposed to each transaction. We study the problem following a dynamic pro-

gramming approach and establish the associated HJB equations for the value functions. We show that

the corresponding optimal stopping times can be determined by four threshold levels x1, x2, x3, and x4.

These key levels can be obtained by solving a set of algebraic-like equations. In addition, we provide a

set of sufficient conditions that guarantee the optimality of our pairs trading rule. We also examine the

dependence of these threshold levels on various parameters in a numerical example.

4.2 Problem formulation

We consider two stocks S1 and S2. Let X1
t and X2

t denote their prices, respectively, at time t. The cor-

responding pairs position consists of a long position in S1 and short position in S2. For simplicity, we

include one share of S1 and K0 shares of S2 (for some K0 > 0) in the pairs position. The price of the

position is given by Zt = X1
t − K0X

2
t . We assume that Zt is a mean-reverting (Ornstein-Uhlenbeck)

process governed by

dZt = θ(αt)[µ(αt)− Zt]dt+ σ(αt)dWt, Z0 = x,

where θ, µ, and σ are functions of a two-state Markov chainαt ∈ {1, 2}, andWt is a standard Brownian

motion independent ofαt. In this chapter, we consider the Markov chain with the absorbing stateα = 2.

In particular, its generator isQ =

(
−λ λ
0 0

)
, for some λ > 0.

Remark 4.2.1. Our main focus is the full characterization of the solution in closed form. In view of this,

we limit our attention to the above setup. Generalization of the HJB equations to the case with more

than two states is possible, but their closed-form solutions are difficult to obtain. As for the absorbing

state condition, it will not much affect the applicability of the results in practice, because pairs trading

typically involves short-term actions, while switching in market modes is of longer term. The Markov

chain with an absorbing state will help to capture a major portion of the switching effects under our

discounted reward functions.

In this chapter, one share long in the pairs position Z means the combination of a one-share long

position in S1 and a K0-share short position in S2. Note that the value of the pairs position Zt may be
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negative. Let 0 ≤ τ b1 ≤ τ s1 ≤ τ b2 ≤ τ s2 ≤ · · · denote a sequence of stopping times. A buying decision is

made at τ bn and a selling decision at τ sn, n = 1, 2, . . ..

We consider the case that the net position at any time can be either long (with one share of Z) or flat

(no stock position of either S1 or S2). Let i = 0, 1 denote the initial net position. If initially the net

position is long (i = 1), then one should sell Z before acquiring any future shares. The corresponding

sequence of stopping times is denoted by Λ1 = (τ s1 , τ
b
2 , τ

s
2 , τ

b
3 , . . .). Likewise, if initially the net position

is flat (i = 0), then one should start by buying a share of Z. The corresponding sequence of stopping

times is denoted by Λ0 = (τ b1 , τ
s
1 , τ

b
2 , τ

s
2 , . . .).

LetK > 0 denote the fixed transaction cost (e.g., slippage and/or commission) associated with buy-

ing or selling ofZ. Given the initial state (Z0, α0) = (x, α), initial net position i = 0, 1, and the decision

sequences, Λ0 and Λ1, the corresponding reward functions are

Ji(x, α,Λi) =



E

{
∞∑
n=1

[
e−ρτsn(Zτsn −K)−e−ρτbn(Zτbn

+K)
]
I{τbn<∞}

}
, if i = 0,

E

{
e−ρτs1 (Zτs1

−K)

+
∞∑
n=2

[
e−ρτsn(Zτsn −K)−e−ρτbn(Zτbn

+K)
]
I{τbn<∞}

}
, if i = 1,

where ρ > 0 is a given discount factor. In this paper, the term E
∞∑
n=1

ξn is interpreted as

lim sup
N→∞

E
N∑

n=1

ξn for given random variables ξn.

4.3 Properties of the Value Functions

Let Vi(x, α) denote the value functions with the initial state (Z0, α0) = (x, α) and initial net positions

i = 0, 1. That is,

Vi(x, α) = sup
Λi

Ji(x, α,Λi).
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It can be shown as in Song and Zhang [19] the following inequalities hold:

V0(x, α) ≥ V1(x, α)− x−K, V1(x, α) ≥ V0(x, α) + x−K,

and, for some constantsC1 andC2,

0 ≤ V0(x, α) ≤ C1|x|+ C2, and x−K ≤ V1(x, α) ≤ C1|x|+ C2. (4.1)

4.4 HJB equations

Let Aα, α = 1, 2, denote the generator of (Zt, αt). Then,

A1v(x, 1) =
σ2
1

2
· d

2v(x, 1)

dx2
+ θ1(µ1 − x)

dv(x, 1)

dx
+ λ(v(x, 2)− v(x, 1)),

A2v(x, 2) =
σ2
2

2
· d

2v(x, 2)

dx2
+ θ2(µ2 − x)

dv(x, 2)

dx
.

The associated HJB equations are given by:

min
{
[ρ−A1]v0(x, 1), v0(x, 1)− v1(x, 1) + x+K

}
= 0,

min
{
[ρ−A1]v1(x, 1), v1(x, 1)− v0(x, 1)− x+K

}
= 0.

min
{
[ρ−A2]v0(x, 2), v0(x, 2)− v1(x, 2) + x+K

}
= 0,

min
{
[ρ−A2]v1(x, 2), v1(x, 2)− v0(x, 2)− x+K

}
= 0.

(4.2)

These HJB equations are equivalent to the corresponding set of variational inequalities outlined in

Øksendal [18]. Each equation consists of two parts. The continuation region is determined by the first

part, while a buy/sell action is dictated by the second part.

To simplify the notation, we let

uj(x) = vj(x, 1) and wj(x) = vj(x, 2) for j = 0, 1.
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-
x1

u0(x)=u1(x)−x−K [ρ−A1]u0(x) = 0

-
x2[ρ−A1]u1(x) = 0 u1(x) = u0(x) + x−K

-
x3

w0(x)=w1(x)− x−K [ρ−A2]w0(x) = 0

-
x4[ρ−A2]w1(x) = 0 w1(x) = w0(x) + x−K

Figure 4.1: Continuation Regions (darkened intervals)

The HJB equations can be written in terms of these functions:

min
{
[ρ−A1]u0(x), u0(x)− u1(x) + x+K

}
= 0,

min
{
[ρ−A1]u1(x), u1(x)− u0(x)− x+K

}
= 0.

min
{
[ρ−A2]w0(x), w0(x)− w1(x) + x+K

}
= 0,

min
{
[ρ−A2]w1(x), w1(x)− w0(x)− x+K

}
= 0.

(4.3)

Intuitively, the optimal strategy should be of the buy-low-and-sell-high type as in [19]. One would

expect threshold levels x1, x2, x3, and x4 (with x1 < x2 and x3 < x4) as in Figure 4.1: if αt = 1 buy

whenZt ≤ x1 and sell whenZt ≥ x2; and if αt = 2 buy whenZt ≤ x3 and sell whenZt ≥ x4.

Note that the last two equations in (4.3) are independent of αt = 1 due to the absorbing state. We

can solve for them separately. To this end, we first start with the equation [ρ−A2]wj(x) = 0, which is

σ2
2

2
· d

2wj(x)

dx2
+ θ2(µ2 − x)

dwj(x)

dx
− ρwj(x) = 0. (4.4)
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The equation for wj(x) is homogeneous. As shown in Eloe at al. [7], it has two linearly independent

solutions given by

ψ1(x) =

∫ ∞

0

η2(t)e
−κ2(µ2−x)tdt and ψ2(x) =

∫ ∞

0

η2(t)e
κ2(µ2−x)tdt,

where κ2 =
√
2θ2/σ2, β2 = ρ/θ2, and η2(t) = tβ2−1 exp(−t2/2). Note that ψ1(x) → 0 as x→ −∞

and ψ2(x) → 0 as x→ ∞.

In view of Figure 4.1, the solution for the equationmin
{
[ρ−A2]w0(x), w0(x)−w1(x)+x+K

}
=

0 has the form w0(x) = w1(x) − x −K for x < x3; and [ρ − A2]w0(x) = 0 for x > x3. The linear

growth conditions (4.1) on the value functions imply, for someA2,w0(x) = A2ψ2(x) for x > x3.

Similarly, the solution for the equation min
{
[ρ−A2]w1(x), w1(x)− w0(x)− x+K

}
= 0 has

the formw1(x) = w0(x) + x−K for x > x4; and [ρ−A2]w1(x) = 0 for x < x4. The linear growth

conditions (4.1) imply, for someA1,w1(x) = A1ψ1(x) for x < x4.

Therefore, we have

w0(x) =

A1ψ1(x)− x−K for x < x3,

A2ψ2(x) for x ≥ x3,

and w1(x) =

A1ψ1(x) for x < x4,

A2ψ2(x) + x−K for x ≥ x4.

Then the smooth-fit conditions at x3 and x4 yield

A1ψ1(x3)− x3 −K = A2ψ2(x3),

A1ψ
′
1(x3)− 1 = A2ψ

′
2(x3),

and

A1ψ1(x4) = A2ψ2(x4) + x4 −K,

A1ψ
′
1(x4) = A2ψ

′
2(x4) + 1.

We can rewrite the above system in matrix form to get

ψ1(x3) ψ2(x3)

ψ′
1(x3) ψ′

2(x3)

 A1

−A2

 =

x3 +K

1

 and

ψ1(x4) ψ2(x4)

ψ′
1(x4) ψ′

2(x4)

 A1

−A2

 =

x4 −K

1

 .
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This implies x3 and x4 have to satisfy

 A1

−A2

 =

ψ1(x3) ψ2(x3)

ψ′
1(x3) ψ′

2(x3)

−1x3 +K

1

 =

ψ1(x4) ψ2(x4)

ψ′
1(x4) ψ′

2(x4)

−1x4 −K

1

 . (4.5)

Once we find x3 and x4, we can then findA1 andA2.

Next, we move on to solve the first two equations in (4.3). First, note that the homogeneous equations

[ρ−A1]uj(x) = 0 are given by

σ2
1

2

d2uj(x)

dx2
+ θ1(µ1 − x)

duj(x)

dx
− (ρ+ λ)uj(x) = −λwj(x).

The lemma below is about the solution of the above non-homogeneous ODE.

Lemma 3. The general solution of

σ2

2

d2f(x)

dx2
+ θ(µ− x)

df(x)

dx
− (ρ+ λ)f(x) = −λg(x) (4.6)

is of the form

f(x) = C1

∫ ∞

0

η(t)e−κ(µ−x)tdt + C2

∫ ∞

0

η(t)eκ(µ−x)tdt +
λ

σ
√
πθ

∫ ∞

−∞
g(y)K(x, y, µ)dy,

for constantsC1 andC2. Here.

K(x, y, µ) =

∫ 1

0

u
ρ+λ
θ

−1(1− u2)−
1
2 exp

{
− θ

σ2

[(x− µ)u+ (µ− y)]2

1− u2

}
du,

and κ and η(t) are given by

κ =

√
2θ

σ
, and β =

ρ+ λ

θ
; η(t) = tβ−1 exp(−t2/2).

Proof. To find the general solution of (4.6), we only need to find a special solution. We use the method of

Fourier transform to reduce the second order equation of x to a first order equation of its dual variable,
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ξ. Define the Fourier transform with respect to x as

û(ξ) =

∫ ∞

−∞
e−iξxu(x)dx.

Then its inverse is given by

u(x) =
1

2π

∫ ∞

−∞
eiξxû(ξ)dξ.

We consider the case when the solution of (4.6) has decay properties

lim
|x|→∞

xf(x) = 0.

This yields

f̂ ′(ξ) =

∫ ∞

−∞
e−ixξf ′(x)dx

= e−ixξf(x)
∣∣∣∞
−∞

+ iξ

∫ ∞

−∞
e−iξxf(x)dx

= iξ

∫ ∞

−∞
e−iξxf(x)dx

and

x̂f(x)(ξ) =

∫ ∞

−∞
e−ixξxf(x)dx = i

d

dξ
f̂(ξ).

Applying the Fourier transform to Equation (4.6) and using the above properties, we obtain

iθµξf̂(ξ)− iθ
d

dξ
[iξf̂(ξ)]− σ2

2
ξ2f̂(ξ)− (ρ+ λ)f̂(ξ) = −λĝ(ξ).

We rewrite the above equation as follows

θ
d

dξ
[ξf̂(ξ)] + [iθµξ − (ρ+ λ)− σ2

2
ξ2]f̂(ξ) = −λĝ(ξ).

Let u(ξ) = ξf̂(ξ). Then we have a first order linear equation

θ
du

dξ
+

[
iθµ− ρ+ λ

ξ
− σ2

2
ξ

]
u = −λĝ.
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This equation can be written in the standard form of the first order linear equation:

du

dξ
+

[
iµ− ρ+ λ

θξ
− σ2

2θ
ξ

]
u = −λ

θ
ĝ.

This linear equation has a multiplier

m(ξ) = exp

{∫ (
iµ− ρ+ λ

θξ
− σ2

2θ
ξ

)
dξ

}
= ξ−

ρ+λ
θ eiµξ−

σ2

4θ
ξ2 .

This leads to
d

dξ

[
u(ξ)ξ−

ρ+λ
θ eiµξ−

σ2

4θ
ξ2
]
= −λ

θ
ĝ(ξ)ξ−

ρ+λ
θ eiµξ−

σ2

4θ
ξ2 .

By integrating both sides, we find

u(ξ)ξ−
ρ+λ
θ eiµξ−

σ2

4θ
ξ2 = −λ

θ

∫
ĝ(ξ)ξ−

ρ+λ
θ eiµξ−

σ2

4θ
ξ2dξ + c,

where c is an arbitrary constant. So the solution u(ξ) in integral form is given by

u(ξ) = −λ
θ
ξ

ρ+λ
θ e−iµξ+σ2

4θ
ξ2
∫ ξ

ξ0

ĝ(η)η−
ρ+λ
θ eiµη−

σ2

4θ
η2dη + cξ

ρ+λ
θ e−iµξ+σ2

4θ
ξ2 .

This implies

f̂(ξ) = −λ
θ
ξ

ρ+λ
θ

−1e−iµξ+σ2

4θ
ξ2
∫ ξ

ξ0

ĝ(η)η−
ρ+λ
θ eiµη−

σ2

4θ
η2dη + cξ

ρ+λ
θ

−1e−iµξ+σ2

4θ
ξ2 .

We want to find a special solution with certain decay properties, so we take ξ0 = ∞ and c = 0. Hence

we have a closed form:

f̂(ξ) =
λ

θ
ξ

ρ+λ
θ

−1e−iµξ+σ2

4θ
ξ2
∫ ∞

ξ

ĝ(η)η−
ρ+λ
θ eiµη−

σ2

4θ
η2dη.

Introducing a new variable s = η/ξ, we then have η = ξs and

f̂(ξ) =
λ

θ
e−iµξ+σ2

4θ
ξ2
∫ ∞

1

ĝ(sξ)s−
ρ+λ
θ eiµξs−

σ2

4θ
ξ2s2ds.
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Substitute ĝ(ξs) =
∫ ∞

−∞
e−iξsyg(y)dy into the last integral and we obtain

f̂(ξ) =
λ

θ
e−iµξ+σ2

4θ
ξ2
∫ ∞

1

∫ ∞

−∞
g(y)s−

ρ+λ
θ eiµξs−iξsy−σ2

4θ
ξ2s2dyds.

Applying the inverse Fourier transform, we have

f(x) =
λ

2πθ

∫ ∞

−∞

∫ ∞

1

∫ ∞

−∞
eixξ−iµξ+iµξs−iξsy−σ2

4θ
(s2−1)ξ2g(y)s−

ρ+λ
θ dydsdξ

=
λ

2πθ

∫ ∞

−∞
g(y)

∫ ∞

1

s−
ρ+λ
θ

∫ ∞

−∞
eixξ−iµξ+iµξs−iξsy−σ2

4θ
(s2−1)ξ2dξdsdy.

The integral with respect to ξ can computed explicitly by apply the following formula:

∫ ∞

−∞
e−ixξ− θ

2
ξ2dξ =

√
2π

θ
e−

x2

2θ .

This yields

∫ ∞

−∞
eixξ−iµξ(1−s)−iξsy−σ2

4θ
(s2−1)ξ2dξ =

2

σ
·
√

πθ

s2 − 1
exp

{
−θ[x− µ+ (µ− y)s]2

σ2(s2 − 1)

}
.

Hence we obtain

f(x) =
λ

σ
√
πθ

∫ ∞

−∞
g(y)

∫ ∞

1

s−
ρ+λ
θ (s2 − 1)−1/2 exp

{
−θ[x− µ+ (µ− y)s]2

σ2(s2 − 1)

}
dsdy.

LetK0(x, y, µ) be the inside integral:

K0(x, y, µ) =

∫ ∞

1

s−
ρ+λ
θ (s2 − 1)−1/2 exp

{
−θ[x− µ+ (µ− y)s]2

σ2(s2 − 1)

}
ds.

Let u = 1/s in the previous integral. Then we have

K(x, y, µ) =

∫ 1

0

u
ρ+λ
θ

−1(1− u2)−
1
2 exp

{
− θ

σ2

[(x− µ)u+ (µ− y)]2

1− u2

}
du.
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In view of Lemma 3 , the solutions of the homogeneous equations [ρ−A1]uj(x) = 0 from the first

two equations in (4.3) are of the form, for j = 0, 1,

uj(x) = B1ϕ1(x) +B2ϕ2(x) + γj(x),

for some constantsB1 and B2, where

ϕ1(x) =

∫ ∞

0

η1(t)e
−κ1(µ1−x)tdt ,

ϕ2(x) =

∫ ∞

0

η1(t)e
κ1(µ1−x)tdt ,

γj(x) =
λ

σ1
√
πθ1

∫ ∞

−∞
wj(y)K(x, y, µ1)dy,

with

κ1 =

√
2θ1
σ1

, β1 =
ρ+ λ

θ1
, η1(t) = tβ1−1 exp(−t2/2),

and

K(x, y, µ1) =

∫ 1

0

u
ρ+λ
θ1

−1
(1− u2)−

1
2 exp

{
− θ1
σ2
1

[(x− µ1)u+ (µ1 − y)]2

1− u2

}
du.

Again, in view of the linear growth conditions (4.1), it follows that

u0(x) =

B1(x)ϕ1(x) + γ1(x)− x−K, for x < x1,

B2ϕ2(x) + γ0(x), for x ≥ x1,

and

u1(x) =

B1ϕ1(x) + γ1(x), for x < x2,

B2ϕ2(x) + γ0(x) + x−K, for x ≥ x2.

Then, the smooth-fit conditions at x1 and x2 yield

B1ϕ1(x1) + γ1(x1)− x1 −K = B2ϕ2(x1) + γ0(x1),

B1ϕ
′
1(x1) + γ′1(x1)− 1 = B2ϕ

′
2(x1) + γ′0(x1),
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B1ϕ1(x2) + γ1(x2) = B2ϕ2(x2) + γ0(x2) + x2 −K,

B1ϕ
′
1(x2) + γ′1(x2) = B2ϕ

′
2(x2) + γ′0(x2) + 1.

These can be written in matrix form as follows:ϕ1(x1) ϕ2(x1)

ϕ′
1(x1) ϕ′

2(x1)

 B1

−B2

 =

x1 +K + γ0(x1)− γ1(x1)

1 + γ′0(x1)− γ′1(x1)

 ,

ϕ1(x2) ϕ2(x2)

ϕ′
1(x2) ϕ′

2(x2)

 B1

−B2

 =

x2 −K + γ0(x2)− γ1(x2)

1 + γ′0(x2)− γ′1(x2)

 .

It follows that  B1

−B2

 =

ϕ1(x1) ϕ2(x1)

ϕ′
1(x1) ϕ′

2(x1)

−1x1 +K + γ0(x1)− γ1(x1)

1 + γ′0(x1)− γ′1(x1)


=

ϕ1(x2) ϕ2(x2)

ϕ′
1(x2) ϕ′

2(x2)

−1x2 −K + γ0(x2)− γ1(x2)

1 + γ′0(x2)− γ′1(x2)

 .

(4.7)

The last equality can be used to determine x1 and x2 and thenB1 andB2.

To summarize, the solutions of the HJB equations (4.3) have the following forms:

u0(x) =

B1ϕ1(x) + γ1(x)− x−K, for x < x1,

B2ϕ2(x) + γ0(x), for x ≥ x1,

u1(x) =

B1ϕ1(x) + γ1(x), for x < x2,

B2ϕ2(x) + γ0(x) + x−K, for x ≥ x2,

and

w0(x) =

A1ψ1(x)− x−K, for x < x3,

A2ψ2(x), for x ≥ x3,

w1(x) =

A1ψ1(x), for x < x4,

A2ψ2(x) + x−K, for x ≥ x4.
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Variational inequalities for w0 and w1

Note that the HJB equations (4.3) consist of both equalities and inequalities. Next, we focus on the

inequality parts. We first considerw0(x) andw1(x). Recall that, on (−∞, x3), [ρ−A2]w1(x) = 0 and

w0(x) = w1(x)− x−K . The corresponding inequalities are given by

[ρ−A2]w0(x) ≥ 0 and w1(x) ≥ w0(x) + x−K.

Sincew1(x) = A1ψ1(x) andw0(x) = A1ψ1(x)− x−K , it follows that

0 ≤ [ρ−A2]w0(x) = [ρ−A2](w1(x)− x−K)

= −(ρ−A2)(x+K) = −ρ(x+K) +A2(x+K)

= −ρ(x+K) + θ2(µ2 − x) = θ2µ2 − ρK − (ρ+ θ2)x

is equivalent to

x ≤ θ2µ2 − ρK

ρ+ θ2
for x ≤ x3,

which is equivalent in turn to

x3 ≤
θ2µ2 − ρK

ρ+ θ2
. (4.8)

The other inequalityw1(x) ≥ w0(x)+x−K holds sincew1(x) = w0(x)+x+K > w0(x)+x−K .

Next, on (x3, x4), the corresponding inequalities are

x−K ≤ w1(x)− w0(x) ≤ x+K ⇐⇒ |w1(x)− w0(x)− x| ≤ K

withw0(x) = A2ψ2(x) andw1(x) = A1ψ1(x). This implies

|A1ψ1(x)− A2ψ2(x)− x| ≤ K, for x ∈ (x3, x4). (4.9)

Finally, on (x4,∞), [ρ − A2]w0(x) = 0 and w1(x) = w0(x) + x − K . The corresponding

inequalities are

[ρ−A2]w1(x) ≥ 0 and w0(x) ≥ w1(x)− x−K.
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Sincew0(x) = A2ψ2(x) andw1(x) = A2ψ2(x) + x−K , we have

0 ≤ [ρ−A2]w1(x) = [ρ−A2](w0(x) + x−K)

= (ρ−A2)(x−K) = (ρ+ θ2)x− (ρK + θ2µ2)

is equivalent to

x ≥ θ2µ2 + ρK

ρ+ θ2
, for x ≥ x4,

which is equivalent also to

x4 ≥
θ2µ2 + ρK

ρ+ θ2
. (4.10)

The other inequalityw0(x) ≥ w1(x)−x−K holds sincew0(x) = w1(x)−x+K > w1(x)−x−K .

Variational inequalities for u0 and u1

We next consider the inequalities for u0(x) and u1(x) on the intervals (−∞, x1), (x1, x2) and (x2,∞).

First, on (−∞, x1), we have u0(x) = u1(x)− x−K and [ρ−A1]u1(x) = 0; and the corresponding

inequalities are [ρ − A1]u0(x) ≥ 0 and u1(x) ≥ u0(x) + x − K . The second inequality holds since

u1(x) = u0(x)+x+K ≥ u0(x)+x−K . To simplify the notation, letA0
1 =

σ2
1

2

d2

dx2
+θ1(µ1−x)

d

dx
.

Then, we have

0 ≤ [ρ−A1]u0(x)

is equivalent to

0 ≤ (ρ−A0
1)u0 − λ(w0(x)− u0(x))

= (ρ+ λ)u0(x)−A0
1u0(x)− λw0(x).

Note that

(ρ−A1)u1(x) = 0 ⇐⇒ (ρ+ λ)u1(x)−A0
1u1(x) = λw1(x).

88



Combine these to obtain

0 ≤ (ρ−A1)u0(x) = (ρ+ λ)u0(x)−A0
1u0(x)− λw0(x)

= (ρ+ λ)[u1(x)− x−K]−A0
1[u1(x)− x−K]− λw0(x)

= (ρ+ λ)u1(x)−A0
1u1(x)− (ρ+ λ)(x+K) +A0

1(x+K)− λw0(x)

= λ[w1(x)− w0(x)]− (ρ+ λ)(x+K) + θ1(µ1 − x)

= λ[w1(x)− w0(x)] + θ1µ1 − (ρ+ λ+ θ1)x− (ρ+ λ)K,

which is equivalent to

λ[w1(x)− w0(x)] + θ1µ1 − (ρ+ λ+ θ1)x− (ρ+ λ)K ≥ 0, for x < x1. (4.11)

Next, on (x1, x2), the corresponding inequalities are

u0(x) ≥ u1(x)− x−K and u1(x) ≥ u0(x) + x−K,

which are equivalent to |u1(x)−u0(x)−x| ≤ K . Recall that u1(x) = B1ϕ1(x)+γ1(x) and u0(x) =

B2ϕ2(x) + γ0(x). It follows that

|B1ϕ1(x) + γ1(x)−B2ϕ2(x)− γ0(x)− x| ≤ K, for x1 < x < x2. (4.12)

Finally, on (x2,∞), we have [ρ−A1]u0(x) = 0 andu1(x) = u0(x)+x−K ; and the corresponding

inequalities are

u0(x) ≥ u1(x)− x−K and [ρ−A1]u1(x) ≥ 0.

The first inequality holds since u0(x) = u1(x)− x+K > u1(x)− x−K . For the second inequality,

we note that

[ρ−A1]u0(x) = 0 ⇐⇒ (ρ+ λ)u0(x)−A0
1u0(x) = λw0(x)
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and

0 ≤ [ρ−A1]u1(x)

is equivalent to

0 ≤ [ρ−A1]u1 − λ(w1(x)− u1(x))

= (ρ+ λ)u1(x)−A0
1u1(x)− λw1(x).

Combine these to obtain

0 ≤ (ρ−A1)u1(x)

= (ρ+ λ)u1(x)−A0
1u1(x)− λw1(x)

= (ρ+ λ)[u0(x) + x−K]−A0
1[u0(x) + x−K]− λw1(x)

= (ρ+ λ)u0(x)−A0
1u0(x) + (ρ+ λ)(x−K)−A0

1(x−K)− λw1(x)

= λ[w0(x)− w1(x)] + (ρ+ λ)(x−K)− θ1(µ1 − x)

= λ[w0(x)− w1(x)]− θ1µ1 + (ρ+ λ+ θ1)x− (ρ+ λ)K,

which is equivalent to

λ[w0(x)− w1(x)]− θ1µ1 + (ρ+ λ+ θ1)x− (ρ+ λ)K ≥ 0, for x > x2. (4.13)

To summarize the results obtained so far, we have
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Theorem 4.4.1. Let x1 and x2 be given in (4.7) and x3 and x4 in (4.5). Assume the inequalities (4.8),

(4.9),(4.10), (4.11), (4.12), and (4.13) hold. Then, the functions

v0(x, 1) = u0(x) =

B1ϕ1(x) + γ1(x)− x−K for x < x1,

B2ϕ2(x) + γ0(x) for x ≥ x1,

v1(x, 1) = u1(x) =

B1ϕ1(x) + γ1(x) for x < x2,

B2ϕ2(x) + γ0(x) + x−K for x ≥ x2,

and

v0(x, 2) = w0(x) =

A1ψ1(x)− x−K for x < x3,

A2ψ2(x) for x ≥ x3,

v1(x, 2) = w1(x) =

A1ψ1(x) for x < x4,

A2ψ2(x) + x−K for x ≥ x4,

satisfy the HJB equations (4.2).

4.5 A Verification Theorem

We state a verification theorem next. Its proof can be given similarly as in Song and Zhang [19].

Theorem 4.5.1. Assume the conditions of the previous theorem and v0(x, α) ≥ 0. Then, vi(x, α) are the

value functions, i.e., vi(x, α) = Vi(x, α), for i = 0, 1, α = 1, 2, and x. Let Db = {(x, 1) : x >

x1} ∪ {(x, 2) : x > x3} and Ds = {(x, 1) : x < x2} ∪ {(x, 2) : x < x4}. If initially i = 0, let

Λ∗
0 = (τ b1 , τ

s
1 , τ

b
2 , τ

s
2 , . . .) with τ b1 = inf{t : (Zt, αt) ̸∈ Db}, τ s1 = inf{t ≥ τ b1 : (Zt, αt) ̸∈ Ds},

τ b2 = inf{t ≥ τ s1 : (Zt, αt) ̸∈ Db}, and so on. If initially i = 1, let Λ∗
1 = (τ s1 , τ

b
2 , τ

s
2 , . . .) with

τ s1 = inf{t : (Zt, αt) ̸∈ Ds}, τ b2 = inf{t ≥ τ s1 : (Zt, αt) ̸∈ Db}, τ s2 = inf{t ≥ τ b2 : (Zt, αt) ̸∈ Ds},

and so forth. Then, Λ0 and Λ1 are optimal.
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4.6 A Numerical Example

In this section, we consider a numerical example with the following specifications:

µ1 = 0, µ2 = 0.5, θ1 = 1, θ2 = 1, σ1 = 0.5, σ2 = 0.5, λ = 3, ρ = 0.1, K = 0.003.

We use Newton’s method to solve the equations in (4.5) to obtain x3 = 0.295314 and x4 = 0.498290.

Then we use these x3 and x4 to solve the equations in (4.7) to get x1 = −0.118156 and x2 = 0.132020.

Here the inequalities (4.8) and (4.10) are used to limit the range for x3 and x4 and can be verified directly

with the values of x3 and x4 respectively. Also, the solutions for (4.5) and (4.7) consist of a set of pairs.

The rest of the inequalities (4.8)-(4.13) are used to select the pairs that satisfy all of them. Here each of the

inequalities (4.9), (4.11)-(4.13) can be rearranged in the form f(x) ≥ 0, and be verified by the minimum

of f(x) being non-negative on the corresponding interval. The corresponding value functions u0, u1,

w0, andw1 are plotted in Figure 4.2.

We next vary one of the parameters at a time and examine the dependence of (x1, x2, x3, x4). First we

examine the dependence of (x1, x2, x3, x4) onµ1. As can be seen in Table 4.1, both x1 and x2 increase in

µ1. This is because µ1 is the mean level whenα = 1. As µ1 rises, it raises the trading band corresponding

to α = 1. Note that in this case, neither x3 nor x4 is affected due to the fact that α = 2 is absorbing.

Table 4.1: x1, x2, x3, x4 with varying µ1

µ1 x1 x2 x3 x4

−0.2 −0.282615 −0.032631 0.295314 0.498290

−0.1 −0.200239 0.048728 0.295314 0.498290

0 −0.118156 0.132020 0.295314 0.498290

0.1 −0.035907 0.215687 0.295314 0.498290

0.2 0.048433 0.299286 0.295314 0.498290

Similarly, as we vary µ2, x3 and x4 exhibit similar behavior, while x1 and x2 barely change. This can

be seen in Table 4.2.
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Figure 4.2: Value Functions u0(x), u1(x),w0(x), andw1(x)
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Table 4.2: x1, x2, x3, x4 with varying µ2

µ2 x1 x2 x3 x4

0.3 −0.117226 0.133386 0.136663 0.339629

0.4 −0.117777 0.132596 0.216005 0.418976

0.5 −0.118156 0.132020 0.295314 0.498290

0.6 −0.118395 0.131627 0.374582 0.577565

0.7 −0.118533 0.131391 0.453802 0.656792

Next, we vary θ1. As θ1 increases, x1 increases while x2 decreases (Table 4.3). This is because θ1 is the

mean reversion rate when α = 1. The larger the θ1, the more forceful the Zt is pulled back to its mean,

resulting in a smaller trading band around the mean level.

Table 4.3: x1, x2, x3, x4 with varying θ1
θ1 x1 x2 x3 x4

0.8 −0.123438 0.139573 0.295314 0.498290

0.9 −0.120738 0.135682 0.295314 0.498290

1 −0.118156 0.132020 0.295314 0.498290

1.1 −0.115716 0.128606 0.295314 0.498290

1.2 −0.113420 0.125437 0.295314 0.498290

Similar behavior is observed in Table 4.4 for x3 and x4 as θ2 varies.

Table 4.4: x1, x2, x3, x4 with varying θ2
θ2 x1 x2 x3 x4

0.8 −0.118137 0.132050 0.284158 0.501107

0.9 −0.118148 0.132033 0.290217 0.499713

1 −0.118156 0.132020 0.295314 0.498290

1.1 −0.118163 0.132010 0.299681 0.496885

1.2 −0.118169 0.132001 0.303479 0.495519

In Tables 4.5 and 4.6, we vary σ1 and σ2 separately. Larger volatility corresponds to a wider price

range. As a result, we see a wider trading band (smaller x1 and bigger x2 or smaller x3 and bigger x4).
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Table 4.5: x1, x2, x3, x4 with varying σ1
σ1 x1 x2 x3 x4

0.3 −0.083771 0.095985 0.295314 0.498290

0.4 −0.101716 0.114706 0.295314 0.498290

0.5 −0.118156 0.132020 0.295314 0.498290

0.6 −0.133533 0.148252 0.295314 0.498290

0.7 −0.148118 0.163604 0.295314 0.498290

Table 4.6: x1, x2, x3, x4 with varying σ2
σ2 x1 x2 x3 x4

0.3 −0.118162 0.132014 0.323132 0.467952

0.4 −0.118160 0.132016 0.308772 0.483890

0.5 −0.118156 0.132020 0.295314 0.498290

0.6 −0.118151 0.132026 0.282604 0.511634

0.7 −0.118146 0.132033 0.270515 0.524185

Next, we varyK . A largerK discourages frequent trading. This can be seen in Table 4.7 by decreasing

x1 (and x3) and increasing x2 (and x4), respectively.

Table 4.7: x1, x2, x3, x4 with varyingK
K x1 x2 x3 x4

0.001 −0.083112 0.087305 0.327876 0.468124

0.002 −0.103943 0.112881 0.308834 0.485869

0.003 −0.118156 0.132020 0.295314 0.498290

0.004 −0.129196 0.148099 0.284446 0.508168

0.005 −0.138306 0.162345 0.275191 0.516505

Finally, we vary λ (with µ1 = 0.5, µ2 = 0, θ1 = θ2 = 1, σ1 = σ2 = 0.5, ρ = 0.1, andK = 0.003).

Recall that (x3, x4) is associated with the absorbing state α = 2 and therefore independent of λ. As λ

increases to infinity, the corresponding (x1, x2) decreases and approaches to (x3, x4). This trend can be

seen in Table 4.8.

95



Table 4.8: x1, x2, x3, x4 with varying λ
λ x1 x2 x3 x4

1 0.317598 0.573764 −0.101480 0.101480

5 0.229788 0.469172 −0.101480 0.101480

10 0.104981 0.319730 −0.101480 0.101480

20 0.042377 0.207961 −0.101480 0.101480

50 −0.036283 0.083097 −0.101480 0.101480
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Appendix A

MATLABCodes

Codes for Chapter 2: Round-Trip Pairs Trading under GBM

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Computing Least-Squares Parameters for Stock 1 and Stock 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

format longg

T2=readmatrix(’WMT1015.csv’); %%% input Stock 1 price data

T1=readmatrix(’TGT1015.csv’); %%% input Stock 2 price data

S=[T1(:,6),T2(:,6)];

N=size(S(:,1));

M=size(S(:,2));

N=N(1);

M=M(1);

N=min(N,M);

for i=1:N-1

u1(i,1)=log(S(i,1)/S(i+1,1));

u2(i,1)=log(S(i,2)/S(i+1,2));
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end

u1_bar=sum(u1(:,1))/N;

u2_bar=sum(u2(:,1))/N;

for i=1:N-1

bb1(i,1)=(u1(i,1)-u1_bar)*(u1(i,:)-u1_bar);

bb2(i,1)=(u2(i,1)-u2_bar)*(u2(i,:)-u2_bar);

bb12(i,1)=(u1(i,1)-u1_bar)*(u2(i,:)-u2_bar);

end

bb1=sum(bb1(:,1))/(N-1);

bb2=sum(bb2(:,1))/(N-1);

bb12=sum(bb12(:,1))/(N-1);

sigma1=sqrt(bb1*252);

sigma2=sqrt(bb2*252);

sigma1sigma2=(bb12*252);

b0=min(sigma1,sigma2);

minB=1000;

for j=0:10000

b=b0*j/10000;

aa=abs(b*(sqrt(sigma1*sigma1-b*b)...

+sqrt(sigma2*sigma2-b*b))-sigma1sigma2);

if aa<minB

minB=aa;

b_star=b;
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end

end

b=b_star;

s12=b_star; %%% output Stock 1/Stock 2 correlation constant

s21=b_star; %%% output Stock 1/Stock 2 correlation constant

s11=sqrt(sigma1*sigma1-b_star*b_star);

%%% output Stock 1 volatility constant

s22=sqrt(sigma2*sigma2-b_star*b_star);

%%% output Stock 2 volatility constant

for k=1:N

X(k)=k/252;

Y(k,1)=log(S(k,1));

Y(k,2)=log(S(k,2));

end

for k=1:N

AA0(k,1)=X(k)*X(k);

BB0(k,1)=X(k);

CC0(k,1)=X(k)*Y(k,1);

CC1(k,1)=X(k)*Y(k,2);

DD0(k,1)=Y(k,1);

DD1(k,1)=Y(k,2);

end

AA01=sum(AA0(:,1));

BB01=sum(BB0(:,1));

CC01=sum(CC0(:,1));
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DD01=sum(DD0(:,1));

CC11=sum(CC1(:,1));

DD11=sum(DD1(:,1));

A1=(CC01-BB01*DD01/N)/(AA01-BB01*BB01/N);

B1=(DD01-A1*BB01)/N;

A2=(CC11-BB01*DD11/N)/(AA01-BB01*BB01/N);

B2=(DD11-A2*BB01)/(N);

m1=A1+0.5*sigma1*sigma1; %%% output Stock 1 return rate

m2=A2+0.5*sigma2*sigma2; %%% output Stock 1 return rate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Computing k_1, C_2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K=0.001; %%% input transaction costs

r=0.5; %%% input discount factor

Bb=1+K;

Bs=1-K;

a11=s11^2+s12^2;

a12=s11*s21+s12*s22;

a22=s21^2+s22^2;

l=(a11-2*a12+a22)*0.5;

d1=0.5*(1+(m1-m2)/l+((1+(m1-m2)/l)^2+(4*r-4*m1)/l)^(0.5));

%%% output delta_1
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d2=0.5*(1+(m1-m2)/l-((1+(m1-m2)/l)^2+(4*r-4*m1)/l)^(0.5));

%%% output delta_2

k1=(Bs/Bb)*(-d2/(1-d2)) %%% output k_1

C2=(Bb/(-d2))*k1^(1-d2); %%% output C_2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plotting Equation to Show Existence of k_2, C_1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

syms x

eqnLeft = C2*(d1-d2)*x^(d2)+Bs*(d1-1)*x-Bb*d1;

eqnRight = 0;

fplot([eqnLeft eqnRight])

hold on

axis([0,2,-0.8,5])

k2 = vpasolve(eqnLeft == eqnRight, x, 1.5) %%% output k_2

plot(k2,0,’ko’)

labels={’(k_2,0)’};

text(k2,0,labels,’VerticalAlignment’,’bottom’,...

’HorizontalAlignment’,’right’);

title(’Solution to f(y)=0’)

C1=(C2*d2*k2^(d2-1)+Bs)/(d1*k2^(d1-1)); %%% output C_1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Stock Trading Simulation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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format longg

T4=readmatrix(’WMT1520.csv’); %%% input Stock 1 price data

T3=readmatrix(’TGT1520.csv’); %%% input Stock 2 price data

SS=[T3(:,5),T4(:,5)];

NN=size(SS(:,1));

MM=size(SS(:,2));

NN=NN(1);

MM=MM(1);

NN=min(NN,MM);

XX=zeros(size(SS(:,1)));

for i=1:NN

XX(i,1)=SS(i,1)./SS(i,2); %%% y = x_2 / x_1

end

YY=zeros(size(SS));

for i=1:NN

YY(i,1)=k2;

YY(i,2)=k1;

end

count=1;

for i=1:NN

if XX(i,1)>=k2

G3(count,1)=i; %%% Dates on which y lies in Gamma_3

count=count+1;

end

end
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count=1;

for i=1:NN

if XX(i,1)<=k1

G1(count,1)=i; %%% Dates on which y lies in Gamma_1

count=count+1;

end

end

p=100000

p1=p+(p/2)/SS(G1(1,1),1)*SS(G3(1,1),1)...

-((p/2)/SS(G1(1,1),2)*SS(G3(1,1),2))-20

%%% profit from first round trip

for i=1:G3(1,1)-1

eq2(i,1)=p;

end

for i=G3(1,1):NN

eq2(i,1)=p1;

end

count=1;

for i=1:size(G1)

if G1(i,1)>G3(1,1)

G1(count,1)=G1(i,1);

count=count+1;

end

end
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p2=p1+(p1/2)/SS(G3(1,1),2)*SS(G1(1,1),2)...

-((p1/2)/SS(G3(1,1),1)*SS(G1(1,1),1))-20

%%% profit from second round trip

for i=1:G1(1,1)-1

eq1(i,1)=p1;

end

for i=G1(1,1):NN

eq1(i,1)=p2;

end

count=1;

for i=1:size(G1)

if G1(i,1)>G3(1,1)

G1(count,1)=G1(i,1);

count=count+1;

end

end

count=1;

for i=1:size(G3)

if G3(i,1)>G1(1,1)

G3(count,1)=G3(i,1);

count=count+1;

else

G3(count,1)=NN;

end

end
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p3=p2+(p2/2)/SS(G1(1,1),1)*SS(G3(1,1),1)...

-((p2/2)/SS(G1(1,1),2)*SS(G3(1,1),2))-20

%%% profit from third round trip

for i=G3(1,1):NN

eq2(i,1)=p3;

end

profit=p3-100000 %%% total profit

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plotting the First Equity Curve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure

plot(1+eq1/100000,’b’), hold on;

text(150,2.1,[’Equity Curve (Long WMT and Short TGT):’ ...

’ 2015/1/2 -- 2019/12/30’]);

fontsize(8,"points")

plot(XX,’b-’,’LineWidth’, 0.85)

hold on

plot(YY,’g’,’LineWidth’, 1)

text(1000,YY(1000,1)+0.1,’$$k_2$$’, ’Interpreter’, ’LaTeX’);

text(1000,YY(1000,2)+0.1,’$$k_1$$’, ’Interpreter’, ’LaTeX’);

axis([0,1257,0,3])

xlabel(’Date’)

ylabel(’Ratio of Stock Prices’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Interchanging the Roles of Stock 1 and Stock 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

k4=1/k1

k3=1/k2

WW=zeros(size(SS(:,1)));

for i=1:NN

WW(i,1)=SS(i,2)./SS(i,1);

end

ZZ=zeros(size(SS));

for i=1:NN

ZZ(i,1)=k4;

ZZ(i,2)=k3;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plotting the Second Equity Curve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(2)

plot(1+eq2/100000,’b’), hold on;

text(150,1.925,[’Equity Curve (Long TGT and Short WMT):’ ...

’ 2015/1/2 -- 2019/12/30’]);

fontsize(8,"points")

plot(WW,’b-’,’LineWidth’, 0.85)

hold on

plot(YY,’g’,’LineWidth’, 1)
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text(1000,ZZ(1000,1)-0.05,’$$\widetilde{k_2}$$’, ’Interpreter’, ’LaTeX’);

text(1000,ZZ(1000,2)-0.05,’$$\widetilde{k_1}$$’, ’Interpreter’, ’LaTeX’);

axis([0,1257,0,3])

xlabel(’Date’)

ylabel(’Ratio of Stock Prices’)

Codes for Chapter 3: Round-Trip Pairs Trading under GBM with Reversible

Initial Positions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Computing Least-Squares Parameters for Stock 1 and Stock 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

format longg

T2=readmatrix(’WMT1015.csv’); %%% input Stock 1 price data

T1=readmatrix(’TGT1015.csv’); %%% input Stock 2 price data

S=[T1(:,6),T2(:,6)];

N=size(S(:,1));

M=size(S(:,2));

N=N(1);

M=M(1);

N=min(N,M);

for i=1:N-1

u1(i,1)=log(S(i,1)/S(i+1,1));

u2(i,1)=log(S(i,2)/S(i+1,2));

end

u1_bar=sum(u1(:,1))/N;
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u2_bar=sum(u2(:,1))/N;

for i=1:N-1

bb1(i,1)=(u1(i,1)-u1_bar)*(u1(i,:)-u1_bar);

bb2(i,1)=(u2(i,1)-u2_bar)*(u2(i,:)-u2_bar);

bb12(i,1)=(u1(i,1)-u1_bar)*(u2(i,:)-u2_bar);

end

bb1=sum(bb1(:,1))/(N-1);

bb2=sum(bb2(:,1))/(N-1);

bb12=sum(bb12(:,1))/(N-1);

sigma1=sqrt(bb1*252);

sigma2=sqrt(bb2*252);

sigma1sigma2=(bb12*252);

b0=min(sigma1,sigma2);

minB=1000;

for j=0:10000

b=b0*j/10000;

aa=abs(b*(sqrt(sigma1*sigma1-b*b)...

+sqrt(sigma2*sigma2-b*b))-sigma1sigma2);

if aa<minB

minB=aa;

b_star=b;

end

end
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b=b_star;

s12=b_star; %%% output Stock 1/Stock 2 correlation constant

s21=b_star; %%% output Stock 1/Stock 2 correlation constant

s11=sqrt(sigma1*sigma1-b_star*b_star);

%%% output Stock 1 volatility constant

s22=sqrt(sigma2*sigma2-b_star*b_star);

%%% output Stock 2 volatility constant

for k=1:N

X(k)=k/252;

Y(k,1)=log(S(k,1));

Y(k,2)=log(S(k,2));

end

for k=1:N

AA0(k,1)=X(k)*X(k);

BB0(k,1)=X(k);

CC0(k,1)=X(k)*Y(k,1);

CC1(k,1)=X(k)*Y(k,2);

DD0(k,1)=Y(k,1);

DD1(k,1)=Y(k,2);

end

AA01=sum(AA0(:,1));

BB01=sum(BB0(:,1));

CC01=sum(CC0(:,1));

DD01=sum(DD0(:,1));

CC11=sum(CC1(:,1));

DD11=sum(DD1(:,1));
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A1=(CC01-BB01*DD01/N)/(AA01-BB01*BB01/N);

B1=(DD01-A1*BB01)/N;

A2=(CC11-BB01*DD11/N)/(AA01-BB01*BB01/N);

B2=(DD11-A2*BB01)/(N);

m1=A1+0.5*sigma1*sigma1; %%% output Stock 1 return rate

m2=A2+0.5*sigma2*sigma2; %%% output Stock 1 return rate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Computing k_1, k_4, C_1, C_2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K=0.001; %%% input transaction costs

r=0.5; %%% input discount factor

Bb=1+K;

Bs=1-K;

a11=s11^2+s12^2;

a12=s11*s21+s12*s22;

a22=s21^2+s22^2;

l=(a11-2*a12+a22)*0.5;

d1=0.5*(1+(m1-m2)/l+((1+(m1-m2)/l)^2+(4*r-4*m1)/l)^(0.5));

%%% output delta_1

d2=0.5*(1+(m1-m2)/l-((1+(m1-m2)/l)^2+(4*r-4*m1)/l)^(0.5));

%%% output delta_2
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k1=(Bs/Bb)*(-d2/(1-d2)) %%% output k_1

C2=(Bb/(-d2))*k1^(1-d2); %%% output C_2

k4=(Bb/Bs)*(d1/(d1-1)) %%% output k_4

C1=(Bs/(d1))*k4^(1-d1); %%% output C_1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plotting System of Equations to Estimate k_2, k_3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

syms x y

eqn1 = ((1-d2)*x^(1-d1)+d2*y^(-d1))/(d1-d2)...

+(((d2)*x^(-d1)+(1-d2)*y^(1-d1))*G)/(d1-d2)-(k4^(1-d1))/d1 == 0;

eqn2 = ((1-d1)*x^(1-d2)+d1*y^(-d2))/(d1-d2)...

+(((d1)*x^(-d2)+(1-d1)*y^(1-d2))*G)/(d1-d2)-(G*(k1^(1-d2)))/(-d2) == 0;

a = axes;

F1=fimplicit(eqn1,[0,5],’b’);

hold on

grid on

F2=fimplicit(eqn2,[0,5],’m’);

hold on

M1 = "F_1 = 0";

M2 = "F_2 = 0";

legend([F1,F2], [M1, M2]);

L=sym(-4:5:6);

a.XTick=double(L);

a.YTick=double(L);

M=arrayfun(@char,L,’UniformOutput’,false);

a.XTickLabel=M;
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a.YTickLabel=M;

title(’Plot of System of Equations’);

plotx=[k1, k4];

ploty=[k4, k1];

xlabel(’k_3’);

ylabel(’k_2’);

labels={’(k_1,k_4)’, ’(k_4,k_1)’};

plot(plotx,ploty,’ko’,’HandleVisibility’,’off’);

text(plotx,ploty,labels,’VerticalAlignment’,...

’bottom’,’HorizontalAlignment’,’right’);

S=solve(eqn1,eqn2,’ReturnConditions’,true);

k2=k4;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Stock Trading Simulation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

format longg

T4=readmatrix(’WMT1520.csv’); %%% input Stock 1 price data

T3=readmatrix(’TGT1520.csv’); %%% input Stock 2 price data

SS=[T3(:,5),T4(:,5)];

NN=size(SS(:,1));

MM=size(SS(:,2));

NN=NN(1);

MM=MM(1);

NN=min(NN,MM);

XX=zeros(size(SS(:,1)));

for i=1:NN
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XX(i,1)=SS(i,1)./SS(i,2); %%% y = x_2 / x_1

end

YY=zeros(size(SS));

for i=1:NN

YY(i,1)=k2;

YY(i,2)=k1;

end

count=1;

for i=1:NN

if XX(i,1)>=k2

G3(count,1)=i; %%% Dates on which y lies in Gamma_3

count=count+1;

end

end

count=1;

for i=1:NN

if XX(i,1)<=k1

G1(count,1)=i; %%% Dates on which y lies in Gamma_1

count=count+1;

end

end

p=100000;

if G1(1,1)<G3(1,1)

p1=p+(p/2)/SS(G1(1,1),1)*SS(G3(1,1),1)...

-((p/2)/SS(G1(1,1),2)*SS(G3(1,1),2))-20;
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%%% profit from first round trip

for i=1:G3(1,1)-1

eq(i,1)=p;

end

for i=G3(1,1):NN

eq(i,1)=p1;

end

end

count=1;

for i=1:size(G1)

if G1(i,1)>G3(1,1)

G1(count,1)=G1(i,1);

count=count+1;

end

end

p2=p1+(p1/2)/SS(G3(1,1),2)*SS(G1(1,1),2)...

-((p1/2)/SS(G3(1,1),1)*SS(G1(1,1),1))-20;

%%% profit from second round trip

for i=G1(1,1):NN

eq(i,1)=p2;

end

count=1;

for i=1:size(G3)

if G3(i,1)>G1(1,1)

G3(count,1)=G3(i,1);

count=count+1;
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else

G3(count,1)=NN;

end

end

p3=p2+(p2/2)/SS(G1(1,1),1)*SS(G3(1,1),1)...

-((p2/2)/SS(G1(1,1),2)*SS(G3(1,1),2))-20;

%%% profit from third round trip

for i=G3(1,1):NN

eq(i,1)=p3;

end

profit=p3 %%% total profit

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plotting the First Equity Curve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure

plot(1+eq/100000,’b’), hold on;

text(300,2.075,’Equity Curve: 2015/1/2 -- 2019/12/30’);

fontsize(8,"points")

plot(XX,’b-’,’LineWidth’, 0.85)

hold on

plot(YY,’g’,’LineWidth’, 1)

text(1000,YY(1000,1)+0.1,’$$k_2^*$$’,’Interpreter’,’LaTeX’);

text(1000,YY(1000,2)+0.1,’$$k_1^*$$’,’Interpreter’,’LaTeX’);

axis([0,1257,0,3])

xlabel(’Date’)
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ylabel(’Ratio of Stock Prices’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Interchanging the Roles of Stock 1 and Stock 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

k4=1/k1

k3=1/k2

WW=zeros(size(SS(:,1)));

for i=1:NN

WW(i,1)=SS(i,2)./SS(i,1);

end

ZZ=zeros(size(SS));

for i=1:NN

ZZ(i,1)=k4;

ZZ(i,2)=k3;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plotting the Second Equity Curve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(2)

plot(1+eq/100000,’b’), hold on;

text(300,2.075,’Equity Curve: 2015/1/2 -- 2019/12/30’);

fontsize(8,"points")

plot(WW,’b-’,’LineWidth’, 0.85)
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hold on

plot(ZZ,’g’,’LineWidth’, 1)

text(1000,ZZ(1000,1)-0.15,’$$\widetilde{k_2^*}$$’,’Interpreter’,’LaTeX’);

text(1000,ZZ(1000,2)-0.15,’$$\widetilde{k_1^*}$$’,’Interpreter’,’LaTeX’);

axis([0,1257,0,3])

xlabel(’Date’)

ylabel(’Ratio of Stock Prices’)
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