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ABSTRACT

This dissertation explores several questions on the topic of pairs trading. The idea of pairs trading is
to simultaneously trade a pair of securities, typically stocks. The purpose is to hedge the risk associated
with buying and holding shares of a single stock by selling shares of a second stock. This method can
be beneficial, because it has the potential to be profitable under any market circumstances. That is to
say, it can be profitable even when prices are not going up. The strategy is to track and compare the
relative strengths of the prices of two stocks over time. When their prices diverge, the plan is to go long
in the weaker stock and go short in the stronger stock. This technique bets on the eventual reversal of
their price strengths. The objective is to trade the pairs over time to maximize an overall return with a
fixed commission cost for each transaction. The optimal policy is then characterized by threshold curves
obtained by solving the Hamilton-Jacobi-Bellman (HJB) equations that arise from following a dynamic

programming approach.
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CHAPTER I

INTRODUCTION TO PAIRS TRADING

1.1 Introduction

This dissertation explores several questions in the field of mathematical finance, specifically focusing on
identifying optimal strategies for pairs trading. Traditional stock trading strategies encourage investors
to buy low and sell high in order to secure a profit. However, this is only possible when prices go up,
which cannot be guaranteed. To alleviate this, the practice of pairs trading was introduced by Gerry
Bamberger and pioneered by quantitative analysts in Nunzio Tartaglia’s group at Morgan Stanley in the
1980s. The idea of pairs trading is to hedge the risk associated with buying and holding shares of a single
stock by enacting trades involving a second, usually strongly correlated, stock. The benefit of this method
is that in can be profitable under any market circumstances, due to its market neutral nature. For related
literature and detailed discussions on the subject, we refer the reader to the paper by Gatev et al. [10], the
book by Vidyamurthy [22], and references therein.

Pairs of stocks are typically chosen when their prices follow roughly the same trajectory over time, i.e.
when they are cointegrated; see Gatev et al. [10] and Liu and Timmermann [16] for further discussion.
When there is a divergence of the stock prices to a certain level, the pairs trade would be triggered: to short
the stronger stock and to long the weaker one, betting on the eventual convergence of the prices. This is
the strategy we seek to model in this dissertation. Another similar strategy bets on the eventual divergence
of the prices. When the difference between the prices decreases to a certain level, the pairs trade is entered

by longing the stronger stock and shorting the weaker one.



Mathematical trading rules, including pairs trading rules, have been studied for several decades. Tradi-
tional pairs trading uses mean-reversion models, and closed-form solutions are often derived. However,
another commonly used model for stock price movements involves geometric Brownian motion. For
example, Zhang [25] considered a selling rule determined by two threshold levels: a target price and a cut-
loss limit. In [25], such optimal threshold levels are obtained by solving a set of two-point boundary value
problems. Guo and Zhang [11] studied the optimal selling rule under a model with switching geometric
Brownian motion. Using a smooth-fit technique, they obtained the optimal threshold levels by solving a
set of algebraic equations. Note that these papers are only concerned with geometric Brownian motion
type models. Chapters 2 and 3 of this dissertation are concerned with pairs trading under the assumption
of geometric Brownian motion.

The latter part of this dissertation also considers pairs trading strategies when a mean-reversion model
is assumed. Mean-reversion models are commonly used to depict price movements that tend to move
toward an equilibrium level. We refer the reader to Cowles and Jones [6], Fama and French [8], and Gal-
lagher and Taylor [9], among others, for studies in connection with mean-reversion and stock returns.
Mean-reversion models also find applications beyond stock markets. They are utilized for stochastic in-
terest rates, as explored by Vasicek [21] and Hull [14], stochastic volatility, as studied by Hafner and Her-
wartz [12], and energy markets, as examined by Blanco and Soronow [2]. There are also relevant findings
for options pricing involving mean-reversion assets, as demonstrated by Bos, Ware, and Pavlov [3]. We
also introduce regime-switching to the mean-reversion model. Regime-switching models complicate the
modeling problem, since the Markov chain incorporates another source of uncertainty into the models.

Market models with regime switching are important to market analysis. Regime-switching models
are often used to better reflect a random market environment. In a mean-reversion model, the rate of
reversion, the mean (equilibrium), and the volatility are all subject to change in the long run. One way to
capture these changes is to introduce a switching process dictating sudden changes in system parameters.
The models incorporate parameters to describe the trends of the market which switches among a finite
number of states, for instance, the uptrend (bull market) and the downtrend (bear market). Regime-
switching models were first introduced by Hamilton [13] in 1989 to describe time series. The models have
also been employed by Zhang [25] for optimal stock selling rules, Yin and Zhang [23] for applications in

portfolio management, and Yin and Zhou [24] for dynamic Markowitz problems. Unlike these papers,



this dissertation does not introduce regime-switching in the context of geometric Brownian motions. A
mean-reverting Itd diffusion of the form dZ; = 0(a)[p(ow) — Z|dt + o(ow)dW; is used instead.

In many optimal trading problems, Hamilton-Jacobi-Bellman (HJB) equations are derived. Various
techniques in stochastic control theory have been employed to solve these equations, such as ordinary
differential equations (ODE), partial differential equations (PDE), smooth fitting, and viscosity solu-
tion methods. However, the associated HJB equations may involve highly complicated PDEs for which
classical solutions are very hard to obtain. To avoid solving these complicated HJB equations, stochas-
tic approximation methods can be used. Recent references on stochastic approximation can be found
in [4], [xs]. However, in this dissertation, we only consider the ODEs and PDEs under smooth-fitting
conditions.

This dissertation is organized as follows: Chapter 2 is concerned with one round-trip pairs trade for a
pair of stocks whose prices follow geometric Brownian motions. We assume that the initial pairs position
may be either long or flat. We derive the associated HJB equations for the value functions and solve
them to find closed-form solutions and an optimal trading rule. Chapter 3 extends the round-trip pairs
trading problem from Chapter 2 to include the possibility that the initial pairs position may be long,
flat, or short. This results in a new set of value functions and, hence, a new set of HJB equations. We
are able to solve the HJB equations in closed form and obtain an optimal trading rule. Chapter 4 is
once again concerned with pairs trading, but now we assume the prices of the stocks follow a mean-
reversion process. We introduce regime switching to incorporate the possiblity of different market modes.
The quasi-variational inequalities for the value functions provide a set of sufficient conditions for the

optimality of the trading strategy.

1.2 Problem One: Round-Trip Pairs Trading under Geometric
Brownian Motions

One typical model for daily stock price movements is the following stochastic differential equation,

X} X} 011 O Wl
al>t =" P e [T 72 a7 ) (11)
Xt2 Xf H2 021 022 VVf



where { X/}, > 0} denote the prices of some stock S, and {X?,¢ > 0} denote the prices of some
stock §2, i © = 1,2 are the return rates, 0;;, 7, ] = 1,2 are the volatility constants, and (th, VVE)
is a 2-dimensional standard Brownian motion. One benefit of this model, is that it does not specify
any relationship between the pairs of stocks or require them to satisfy any measure of correlation, thus
allowing for greater possibilities in the choice of pairs [20]. The Brownian motion, whose sample path is
arandom walk, encodes the assumption that it is impossible to accurately predict the change in the price
of a stock from day to day. We consider a pairs position Z where holding one share of Z means being long
one share in stock $* and being short one share in stock $%. We allow that the initial position of Z may
be either long (i = 1) or flat (i = 0).

To the above stochastic differential equation , we assign the following partial differential operator

.A—l a x202 + 2a1971 @ o +a x282 + 0 + pox 0 (r.2)
== — — — — 1.2
H 1022 22 5010y 2 %02 e Ha

2 81’1 8x2’

where ai] = O-%l + O'%Q, Q12 = 0110921 + 012022, Q29 = Ugl + 0'52, and T1, Lo are the initial prices of

stocks 8 and 82, respectively [18]. We then go about solving the Hamilton-Jacobi-Bellman equations

min {PU0($17$2) - Avo(xl,@), Uo(%, Iz) - U1($1, 1’2) + Brr1 — 5s$2} =0,

min {pvl(ﬂsl, xg) — Avy (21, 22), v1(21, 22) — Bex1 + Bb:vz} =0,

where p > 0isagiven discount factor (the rate at which the value of money decreases over time), 3, and 3,
are the transaction fees associated with buying and selling, and v; are candidate solutions for supremums

of reward functions of the form

Jo(z1, T2, (11,72)) =E[e "™ (B X}, — BoX2) Lirycooy — € 77 (B X}, — B X2) Liry oo},

Jl (mlu Zo, TO) - E |:6_p7—0 (/BSX}-O - 6bX30) I[{7'0<C>O}j| )

for times 79 > O and 75 > 71 > 0. To solve this system, we must find thresholds £ and &, for buying

and selling, as in [20].



1.3 Problem Two: Round-Trip Pairs Trading under Geometric
Brownian Motions with Reversible Initial Positions

Having previously allowed the initial pairs position to be long or flat, a natural next question to consider
is the short side of pairs trading. So, we begin again with the same stochastic differential equation as in
and the same partial differential operator as in , but now we allow our intial pairs position to be
flat (2 = 0), long (¢ = 1), or short (¢ = —1). If initially we are short in Z, we will buy one share of Z,
i.e. buy one share of S' and sell one share of §2, at some time 79 > 0, which will conclude our trading
activity. If initially we are long in Z, we will sell one share of Z, i.c. sell S'and buy $? at some time 75 > 0,
which will conclude our trading activity. Otherwise, if initially we are flat, we can either go long or short
one share in Z at some time 73 > 0. Depending on our activity at time 7, we would then either sell st
and buy §% (if long) or buy S! and sell 8 (if short) at some time 75 > 74, thus concluding our trading

activity. Hence, for 21, x9 > 0, the HJB equations become
% q

.
min {/)Ul(xl,lé) - AU1($17 xz), U1($17 Iz) — Bsx1 + 6b$2} =0,
min {pv—l(@"l, 352) - AUfl(ﬂfl, 352), Ufl(l“l, fl’z) + Ppr1 — 5s$2} =0,

min PUO(I1,$2) - AUO(%, $2), U0($17$2) - U1($1,$2) + Bor1 — Bsx2,

Uo(%, 5U2) - ’U—l(fUl, 352) — By + 51)372} =0,

\

where p, 3,5, and 3, are as in Problem One, and v; are candidate solutions for supremums of reward

functions of the form

J_1(z1, 32, 70) =E [—e 7™ (B X} — BsX2) Ling<oo}] -
Jo(z1, 2, 71, 72) =E[{e 7™ (B:X}, — BoX2) Limpooy — €77 (Bo X} — BsX2) Lim<ooy Hljumty
+ {7 (B:X7, = BoX2) Lim<ooy — €777 (B X5, — BoX2) Limy<ooy Hlu=—13]
Ji(1, 2, 70) = [e 777 (8,X), — B X)) Lirg<oo] -

We seek thresholds k1, k2, k3, and k4 for buying and selling Z. Let k; indicate the price at which we

will sell one share of Z when the net position is flat. Similarly, we will denote by &y the threshold for



selling one share of Z when the net position is long. Next, k3 will indicate the price at which we will buy
one share of Z when the net position is short. Finally, the threshold for buying one share of Z when the

net position is flat will be denoted by k4. We define the function u as follows.

—1, for t =0 and ) S xlkl,

—1, for71=1 and z9 < x1ko,
w(xy, o, 1) :=

s for : = —1 and i) Z $1]€3,

1, for i =0 and ) Z $1k4.

Note the dependence of the reward function J; on this function w.

After investigating this problem numerically, we were surprised to discover that choosing k1 = ks
and k3 = k4 leads to a valid solution to the H]B equations, and we could prove the uniqueness of these
thresholds by application of a special implicit function theorem [r7]. This leads us to using the term
reversible to describe the initial positions due to the apparent symmetry between going one-share long in

Z and going one-share short in Z with the roles of S' and §? interchanged.

1.4 Problem Three: Pairs Trading under a Mean-Reversion Model
with Regime Switching

Another typical model for stock price movements is the mean-reverting (Ornstein-Uhlenbeck) process.
In this joint work with Dr. Phong Luu, Dr. Jingzhi Tie, and Dr. Qing Zhang, this model was coupled
with a two-state Markov chain, a switching process that reacts to sudden changes in system parameters
that might occur when a bear market becomes a bull market and vice versa. To focus on closed-form
solutions, we only consider the Markov chain, which we denote o, ¢ = 1, 2, with an absorbing state. The
absorbing state assumption is reasonable, because markets tend to stay in one state for a significant period
of time. As before, we consider two stocks S and S2. Let th and X tz denote their prices, respectively, at
time ¢. The corresponding pairs position consists of a long position in S and short position in S?. For

simplicity, we include one share of St and K shares of S? (for some K > 0) in the pairs position. The



price of the position is given by Z; = X} — K¢ X?, which is a stochastic process governed by
dZt = 6(0[,5)[,&(0(,5) — Zt]dt + O'(Oét)th7 Z() =,

where 0, 11, and o are functions of a two-state Markov chain a; € {1, 2}, and W} is a standard Brownian
motion independent of c.

We consider the Markov chain with the absorbing state & = 2. In particular, its generator is () =

A A
,forsome A > 0. Let A,, @ = 1, 2, denote the generator of (Z;, o). Then,

0 0
2 d2 ’ 1 d , 1
e,y =B B gD |\ o,2) - (e, 1)
o3 d?v(z,2) dv(z,2)
Asv(z,2) = 72 g Tl o) —

The associated HJB equations are given by:

min{[p—Al]vo(x,l), vo(z,1) —vi(z, 1) + o+ K

j=0
min{[p—.Al]vl(m,l), v1(z, 1) —vo(z, 1) —x+K}
min{[p—Ag]vo(a:,2) vo(z,2) —vy(z,2) +az+K}

min{[p — As]vy(2,2), vi(x,2) —vo(x,2) — 2z + K} =0,

where p > 0 is a discount factor and K is a fixed percentage transaction cost. For this problem, one share
long in the pairs position Z means the combination of a one-share long position in S' and a K-share
short position in S?. Note that the value of the pairs position Z; may be negative.

Let0 < T{’ <7< Tg < 15 < --- denote a sequence of stopping times. A buying decision is made
at 70 and a selling decision at 75, n = 1,2, . . .. We consider the case that the net position at any time can
be either long (with one share of Z) or flat (no stock position of either S or S?). Let i = 0, 1 denote the
initial net position. If initially the net position is long (¢ = 1), then one should sell Z before acquiring any

future shares. The corresponding sequence of stopping times is denoted by A1 = (75,75, 75,72, .. ).



Likewise, if initially the net position is flat (¢ = 0), then one should start by buying a share of Z. The

corresponding sequence of stopping times is denoted by Ag = (77, 75,75, 75, . . .).

Thus, the v; above are candidate solutions for supremums of reward functions of the form:

( o0
B [e—PTfL(ZTfL — K)—e "™ (Zy + K)] 1{73@0}}, if i =0,
n=1

Ji(z,a,\;) = ES e 7 (Zs — K) (1.3)

+3° [ 2 - K) e (Zy + K)) 1{73@0}}, if Q= 1,
\ n=2

o0 N
where the term E Z &n is interpreted as lim sup E Z &y for given random variables &,,.

N—oo

n=1 n=1

1.5 Mathematical Preliminaries

This section summarizes a number of established results that are used in this dissertation. These results

and their proofs can be found in [1], [s], [18].

1.s.1 Stochastic Processes

Definition r.5.x (Stochastic Process). A stochastic process is a collection of random variables { X (t) }ien

defined on the same probability space (S, F, P), where A is some indexing set.

Typically, A is either the non-negative integers A = Z, = {0,1,2,...} or the halfline A = R} =
[0,00). When A = Z., we call such a process a discrete-time stochastic process. When A = R, we
call ita continuous-time stochastic process. Also, X (t)(w) is sometimes written as X, (w) or X (¢, w) for

notational convenience.

Definition r.5.2 (Brownian Motion). 4 standard one-dimensional Brownian motion is a process { B(t) }1er,

such that

(z) B(0) = 0, almost surely



(7)) B(t) bas independent increments, i.e, if 0 < t; < ty < ... < i, then the random variables

B (t;) — B(0),B (ts) — B (t1),..., B (tn) — B (tn—1) are independent.

(117) Forall s > 0, B(t + s) — B(s) is equal in distribution to a normal random variable with mean 0

and variancet, i.e., a random variable with density

(iv) t — B(t) is continuous, almost surely

Definition 1.5.3 (Itd Diffusion). A (time-homagencous) 1t6 diffusion is a stochastic process Xi(w) =

X(t,w) : [0, 00] = R" satisfying a stochastic differential equation of the form

AX(t) = b(X (£))dt + o(X()dB(t), t>s, X(s)=ux (4)

where B(t) is m-dimensional Brownian motion, and b : R* — R", o : R" — R™™ satisfy

b(z) = b(y)[ +|o(x) —o(y)| < Dlz —yl, x,y €R",

ie, b(-) and o(-) are Lipschitz continuous.

For some fixed s, we will denote by X**(t), fort > s, the solution to (1.4) with initial condition

X(s) = x, almost surely. If s = 0, we write X*(t) for X**(¢).

Let Q be the probability law of a given Itd diffusion { X (¢) };e4 when itsinitial valueis X (0) = = € R™

The expectation with respect to Q)” is denoted by E*[-]. Hence, we have

B [fo (X (02)) -+ fo (X (t0))] = E[f (X7 (£2)) -+ fr (X7 (t))]

for all bounded Borel functions fi,- - - , fr and all timesty,--- ¢, >0,k =1,2,....



Theorem 1.5.1 (Markov Property for Itd Diffusions). Let f be a bounded Borel function from R™ — R.
Then fort, h > 0,
E* [f(X(t+R)) | Fi] () = EXE[£(X (h)].

Definition 1.5.4 (Filtration). 4 filtration of the o-algebra F is an increasing sequence of sub-o-algebras
{Fitien 1o Fs C Fiforall s < t. A stochastic process { X (t) }sen is adapted to the filtration { Fi}, .\ if
foreacht € A, X (t) is Fr-measurable.

Definition rs.s (Stopping Time/Markov Time). Ler (2, F, P) be a probability space with filtration
{Fi}. 4 function (random variable) T : Q2 — [0, 00| is called a stopping time with respect to (adapted to)

{F}if
{w:t(w) <t} e F

forallt > 0.

If H C R" is any set, we define 7y, the first exit time from H, as follows
m=inf{t>0: X, ¢ H}.

Note that 7 is a stopping time for any Borel set H.

Definition 1.5.6. Suppose T is a stopping time adapted to a filtration {Fi} ey, , and let Fo, denote the
smallest o-algebra containing the whole collection {Fi},cy, . Define the o-algebra F to be the o-algebra

generated by all sets of the form B N {1 < t} where B € Fogandt € R,.

Theorem 1.5.2 (Srong Markov Property for Itd Diftusions). Let f be a bounded Borel function from R™

to R and T be a stopping time with respect to { F. }, T < 00, almost surely. Then for all h > 0,
E” [f(X (T +h)) | Fo] = EXT[f(X(R))].

Definition 1.5.7 (Generator of an Itd Diffusion). Let { X (t)} be a (time-homogeneous) It6 diffusion in
R™. The (infinitesimal) generator A of X (t) is defined by

o BPSX @) = f(2)
Af(z) =lim ;

i ,x € R™

10



The set of functions f : R™ — R such that the limit exists at x is denoted by D A(x), while D 5 denotes the

set of functions for which the limit exists for all x € R™.

Definition 1.5.8 (Generator of an Itd Diffusion). Lez X (t) be the It diffusion satisfying
dX(t) = b(X(t))dt + o (X (t))dB(t).

Iff € C3(R™) ,then f € Daand

Af(z) = Zb (2 )8% +5 Z (UUT)Z‘,]‘ (x>azafx]

i=1 zj:1

Theorem 1.5.3 (Dynkin’s Formula). Let f € C3 (R™). Suppose T is a stopping time with E[1] < .
Then

B = f)+ B | A

1.5.2 Martingales

Definition 1.5.9 (Martingale/Martingale Difference). An n-dimensional stochastic process { X (t) }er , is

said to be a martingale on (Q, F, P) with respect to a filtration {Fi} ., if
(1) X(t)is Fy-measurable for all t > 0,
(i7) E[|| X (t)]|]] < oo forallt, and

(iii) E[X(t) | Fs] = X (s) with probability 1 for all t > s.

The sequence { X (t) }1ez., is called a martingale difference sequence if the condition (iii) above is replaced
byE [ X (t) | Fie1] = O with probabiliry 1.

Definition r.5.10 (The Martingale Problem). [fdX (t) = b(X (t)) + o(X (¢))dB(t) is an It6 diffusion
in R™ with generator A, and if f € C§ (R") and X (0) = x, almost surely, then

f(X / AF(X(s))ds + / VST (X (5))0 (X (5))dB(s)

II



Define M(t) / Af(X
We say that X (t ) solves the martingale problem for generator A if My(t) is a martingale for each f in
2 (R™).

Theorem v.5.4. M (t) is a Fi-martingale, where Fy = o({X (s), s < t}).

12



CHAPTER 2

RouUND-TRIP PAIRS TRADING UNDER

GEOMETRIC BROWNIAN MOTIONS

2.1 Introduction

This chapter is concerned with an optimal strategy for simultaneously trading a pair of stocks. The pur-
pose of pairs trading is to hedge the risk associated with buying and holding shares of one stock by selling
shares of a related stock. The idea of pairs trading is to track the prices of two stocks that follow roughly
the same trajectory over time. A pairs trade is triggered by the divergence of their prices and consists of a
pair of positions to short the strong stock and to long the weak one. Such a strategy bets on the reversal
of their price strengths. Pairs trading, which was pioneered by quantitative researchers at brokerage firms
in the 1980s, is beneficial, because it can be profitable under any market circumstances [10]. A round-trip
trading strategy refers to opening and then closing a pair of security positions.

Some typical pairs-trading models assume the difference of the stock prices satisfies a mean-reversion
equation. However, we consider the optimal pairs-trading problem by allowing the stock prices to follow
general geometric Brownian motions as in [20]. One benefit of this model is that it does not specificy
any relationship between the pairs of stocks or require them to satisify any measure of correlation, thus
allowing for greater possibilities in the choice of pairs. The Brownian motion, whose sample path is a
random walk, encodes the assumption that it is impossible to accurately predict the change in the price

of a stock from day to day. Our objective is to trade the pairs over time to maximize an overall return

13



with a fixed commission cost for each transaction. In this chapter, we allow the initial pairs position to
be either long or flat. The optimal policy is characterized by threshold curves obtained by solving the

associated Hamilton-Jacobi-Bellman (H]B) equations.

2.2 Problem Formulation

Consider two stocks, 8! and §2. Let { X}, > 0} denote the prices of the stock ', and let { X2, ¢ > 0}

denote the prices of the stock s, They satisty the following stochastic differential equation:

X} X} o1 O wl
af>t) =" Plae + (7" 72 a7, (21)
th Xf H2 021 022 VVE

where f1;, 1 = 1,2 are the return rates, 05, 7,j = 1,2 are the volatility constants, and (WEW2)isa
2-dimensional standard Brownian motion.

In this chapter, we consider a round-trip pairs trading strategy. We assume the pairs position, which
we will denote Z, consists of a one-share long position in stock S! and a one-share short position in stock
S2. We consider the case that the net position may initially be long (with one share of Z) or flat (with no
stock holdings of either §' or §%). Leti = 0, 1 denote the initial net positions of long and flat, respectively.
If initially we are long (¢ = 1), we will close the pairs position Z at some time 79 > 0 and conclude our
trading activity. Otherwise, if initially we are flat (¢ = 0), we will first obtain one share of Z at some time
71 2> 0, and then close pairs position Z at some time 7o > 71, thus concluding our trading activity.

Let K denote the fixed percentage of transaction costs associate with buying or selling of stocks and
p > 0beadiscount factor. To further simplify the notation, we set 3, = 1 + K and 3; = 1 — K. Then
given the initial state (21, x3), the initial net position ¢ = 0, 1, and the decision sequences A; = (79)

and Ay = (71, 72), the resulting reward functions are

Jo(ffl, T2, Ao) = E[e_m (ﬁsXTlQ - BbXEQ) ]I{TQ<OO} —e M (ﬁbXTl1 - BSX%) ]I{r1<oo}},

J1(I1,$27 Al) =K [e—mo (5sX710 - 5bX30) I[{To<oo}} .

14



Let Vo(x1, z2) = sup Jo(x1, 9, Ag) and Vi (z1, x9) = sup Ji (21, x2, A1) be the associated value
A() Al
functions.

2.3 Properties of the Value Functions

In this section, we establish basic properties of the value functions.
Lemma 1. Forall x1, o > 0, we bhave

0 < Vo(xy, ) < 221 + 219,

Bsx1 — Bpre < Vi(x1,22) < 2.

PFOOf: Notethatforallxl,xg > O,%(l’l, Qfg) > Jl(l'l, Xa, Al) =K [e‘pm (ﬂSXio — BbXEO) ]I{TO<OO}:|'
In particular,

Vi(xy, 22) > Ji(21,22,0) = Bs1 — Byo.
Forall g > 0, Jy (21, 22, A7)
=E [ (B.X% — BX2) Lrpcooy]
<E[e (X7, — X7,) Lrg<ooy]
=z, +E UOTO (—p+ ) e X, dt ]1{70@0}1 —1—E UOTO (=p + o) e X7dt Tz <o)
<xy—19—F [/OTO (—p + pp) e P X2dt ]I{To<oo}:|
<zi—22+E [/OO (P_/ub2)€_ththt}
0
= 1.

Also, forall 1, 25 > 0,

Vo(x1, x2) > Jo(z1, 22, Ag)

=E [eipTz (ﬁsX‘;l-Q - 5bX32) ]I{7—2<oo} —e M (BbX}-l - Bin) ]I{7'1<oo}-

15



Clearly, Vo (g, £2) > 0 by definition and taking 71 = 00. Now, forall0 < 7y < 7o,

Jo(w1, T2, Ao)
B (3 — ) Tay] — B[ (K — ) T o]
<E [eprinQ]I{T2<OO}] —E [67PT2X32]I{T2<OO}£| —E [e*pﬁXil]I{T1<oo}} +E [eipTle ]I{T1<OO}]

1

< a1 —E [22]{r<o0)] +E U (p— p2) e X/ dt H{T2<°°}]
0

+ 29— E [:vl]l{ﬁ@o}] +E {/ (p— 1) e P X} dt ]I{n@o}} .
0

Now,
E {/ (p— 1) e*Ptthdt H{n<oo}} <E {/ (p— 1) ePtthdt]
0 0
=(p— Ml)/ e Plyettdt
0

= T.

Similarly,
T2
E {/ (p — p2) e_thtzdt H{TQ<OO}:| < Z3.
0

Thus, for all Ag, we have Jy(z1, x2, Ag) < 221 + 2. O

2.4 HJB Equations

In this section, we study the associated H] B equations. To the above stochastic differential equation ,

we assign the following partial differential operator. Let

1 0? 0? 0?
A== 2249 22
{allz)jl ax% + 191X 8:1516952 + A22To 8%%

0

0
} + ,Ull’la—xl + ,le[Ega—xQ, (2.2)

2
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where a1y = 0%, + 03y, a3 = 011091 + 01202, and asy = 035 + 03, [18]. The associated HJB

equations have the form: For z, 5 > 0,

min {PUO(%,%‘Q) — AUo(iUh 362)7 Uo(l’h 562) - Ul(»”fl, 33'2) + Bpr1 — 5s332} =0,

min {pvl(xlny) - Avl(%, I2), U1($1, $2) — Bsx1 + Bbb} =0.

To solve the above HJB equations, we first convert them into single variable equations. Lety = x2 /14

and v;(x1, z2) = xyw;(x2/ 1), for some function w;(y) and ¢ = 0, 1. Then,

ory  Or 1 1 N 183:1 Wi 1 Wi x1 ) Oy !

“an (2] -5 [(52):
(2 (2) ()
_vwi(y) | ywily)  ywily)

+
T 15 T

_ i)
X1 ’

Pvi 0 [ (2] _ (22}, (L
0192 Oxy | '\ iy i\ 1
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Write Av; in terms of w; to obtain

1 20 l! " 1"
Av = L {” (M) | 2an,212, <_ywz <y>> ¢ <wz (y))}
2 21 xy 1

+ ey (wiy) — ywi(y)) + pors (wiy))

1 1

= §a11x1y2w;/(y) - a123513/2w§/(y) + §a22$1y2w§/(y) + mziw;i(y) + poz1yw;(y)

— iz ywi(y)
1
=1 {5 [a11 — 2a12 + ag] y*w! (y) + (1o — p1)ywi(y) + ulwi(y)} :

ay; — 2a12 + ag
5 )

Let Lwi(y) = Ay*wi (y) + (2 — m)yw(y) + pwi(y), where A =
So Av; = z1 Lw;. Note that A > 0 since

>
I

01, + 0t — 2(011021 + 012092) + 05 + 03]

2 2 2 2
[011 — 2011021 + 0y + 01y — 2012092 + 022}

N RN RN~

[(011 - 0'21)2 + (012 — 0’22)2] .

Here we only consider the case when A # 0. If A = 0, the problem reduces to a first order case and can

be treated accordingly. The HJB equations can be given in terms of i and wj as follows:

min {xl (pwoy) — Lwo(y)), z1(woly) — wi(y) + By — ﬁsy>} =0,

min {xl (pwi(y) — Lwi(y)), w1(wi(y) — Bs + 5by)} =0,
or equivalently,
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min { (p = L)wo(y). woly) = wily) + B — By} = 0.
min {(p — L)wy(y), wi(y) — Bs + 5109} = 0.

To solve (2.3), we first consider the equations (p — £)w;(y) = 0,7 = 0, 1, which can be rewritten as

—\y?wi (y) — (2 — p)ywi(y) + (p — m)wi(y) = 0.

Clearly, these are the Euler equations and their solutions are of the form y°, for some §. Substitute this

into the equation (p — £)w; = 0 to obtain

— AP [0(6 — 1)y° %) = (2 — pa)y[oy" '] + (p — 1)y’ = 0
—A6(6 — 1)y’ — (2 — p1)0y’ + (p — )y’ = 0

(=A% + A6+ (1 — p2)d + (p — )] y° =0

{52_5_(M1;N2>5_P—)\M1]y5:0

[52—5<1+’“;“2)—p;’“]y‘szo.

P

Then since y° # 0, it must be that

52_(”@)5_@:0‘

This equation has two roots, d; and 09, given by

[ — = p2\° Ap— A
1 1 2 1 1
( + < +— ) + )
2
P — f2 pa — M2 4p — 4
<1+ h\ \/<1+ 3 > —i——/\ )

9

(51:

1
2

1
6225



These roots are both real since we assume p > 1. We also assume p > fi9, so

4p = 2p — 2p9 - Apg — 2p = 2p9 2 — 2

) ) A
= o\ 20m —p2) | Ap— 4w g — 2 \? | 2(pe — )
+< T ) et + S + =
p—pa\ | 4p—4p po — 1\
1 1 2 1 1 2 1
— ( + = ) + >( + =5
4p—4 ?
:>\/( )+ p— 4 \/(1+M2 ul)
A
:>\/( ) 4p— o 1+u2—u1:'1 il | O Nl/\,u2
> 4p—4
— /~L2 + 2 5 s g
j1 — pia p— 2\ 4p— A
~ (1 1 1
= (1t ( + 5 ) + = >
— 0, > 1.
Also, since

M1 — Mo

1+M1—M2<

we must have 9, < 0.
We conclude that the general solution of (p — L)w; (y) = 0should be of the form: w; (y) = cay® +
cioy?2, for some constants ¢;; and ¢, 7 = 0, 1. Note thatasy — 0,y%2 — oo,andasy — 00,y — oo.

Also note the following identities in ¢; and Js:

1 M1 — M2 M1 — M2 ? 4p — 4
—010p =—— 11 1
102 2( + \ + (+ X ) + X )
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(51—1)(1—(52):(51—(5152—1+(52:(51+52—1—(51(52

M1 — M2 P— H
=1+—— h\ —1+— \
_ P
A
—0102 p— A
(61 = 1)(1 = d2) A P — H2
_ P
p—Ha

Now, the second part of the HJB equation

min{(P— L)wi(y), wily) — Bs +ﬁby} -

is independent of wy and can be solved first. We must find thresholds k1 and &, for buying and selling,
asin [20].
First, we need to find k; so that on the interval (0, k1], w1(y) = Bs — By, and on the interval

(ky1,00), w1 (y) = Cay®2. Then the smooth-fit conditions determine k; and Cs.
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g — W7 55),5.1'1 — (5)5_,1'2 =0
(p—Awv; =0

Buy S' and Sell Short S2

Hold

I's

Lo, = Ii") 1
(p—Aup=0
(p— A1 =0
Irg9 = Lvljll

v1 — Bsx1 + Bpxa =0
(p— Ao =0

Sell S' and Buy Back S?

O

Figure 2.1: Thresholds for buying and selling regions

Necessarily, the continuity of w; and its first order derivative aty = k; imply

B = Bokir = Co® and - — By = Codph? ™.

22
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From this system of equations, we can see

—%«rﬂ%ﬁzﬁ—&h
2
By | Buoe B
:>( 52—|— 52 kl—ﬁs
_1+52'k _ B
3 LB,
ﬂs 62
=k ==
YT B 10,
Also,
_ Bv 1-62
CQ—_52k

(e
—0y \ B 1—0

B By BT
(1 — 52)1_62 ‘ —52 ‘ (—52)62_1

Be N\ B\
:(h@) (39'

We obtain the function

Bs — Boy, ftor y < ky,
wi(y) =
C2y62’ for Yy > ]{;1,

with k; and C5 given above. Next we need to solve the first part of HJB equation:

min {(p — L)wo(y). woly) — wi(y) + f — Ay | = 0.

We need to find ks so that on the interval (0, ky), wo(y) = C13°!, and on the interval [k, 00),

wo(y) = w1 (y) — Bo+ Bsy = Coy®? — By, + Bsy. Then the continuity of wy and its first order derivative
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aty = ky yield
Clkgl = 02]{:32 - Bb + 631{;2 and Cl(slkgl_l = 02(52]{332_1 + B&

Take the ratio of the above two equations and get

ky _ Coky® — By + Biks
51 0252/{332_1 + /Bs

This implies

koo [Cadok? ™" + Bl = 61[Cokd — By, + Boks)
- 65102/€(252 - 5202%52 + 015ska — Bska — Brd1 =0
== Co(61 — 82)k3 + Bs(01 — 1)ky — Bpdy = 0.

We get an equation of ky:
f(k2) i= Co(81 = B2)kg* + Bo(dr — Dk — Bdy = 0.

Consider

fy) = Co(61 — 02)y” + Bs(61 — 1)y — By

Note thatasy — o0, f(y) — Bs(01 — 1)y — Ppor, since b < 0. Thatis, as y — oo, f(y) — oo, since
Bs > 0,0, —1 > 0. Also,asy — 0%, f(y) — Ca(61 — 02)y*? — 1. Thatis,asy — 0%, f(y) — oo,

since Cy > 0,; — d2 > 0,and d2 < 0. Now,

f'(y) = Caba(61 — 62)y™ " + Bs(61 — 1)
F"(y) = Ca02(82 — 1)(61 — 62)y™ 2 = Ca(—02) (1 — 62) (61 — b2)y™ .
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Note then that f”(y) > Oforally > 0since Cy > 0, (—d2) > 0, (1 — ) > 0,and (6; — d2) > 0.

Hence f is convex for all y > 0. Then

Fy) =0 <= Caba(61 — G2)y™> "+ Bo(61 — 1) =0

1 Bs(6i—1)

= Yl =
Y Ca(—02)(01 — 62)

— o= latiats]”
=y {022(22)1(6_11—)52)} &

Bs(01 — 1)
Co(—02)(01 — 02

two solutions and take the larger one to be ks. Since we already know C'y, once we find ks, we can express

51
)] . We will show that f(y) = 0has

Hence f attains its global minimum at y, = {

(' using the relationship above:

o Cobok? ™ 4+ B <@ 0 )1‘52 By Sokg™" B
! kDT By 1—6 A

—(3) () ()

By 1 =0, o) k3t k!
B BN =0 N\ | (B pioa
) () e

We show that f(y.) < 0, thus implying the existence of ko. We compute f(y.) as follows:

f(ye) = Ca (01 — 52)1/32 + Bs(01 — 1)ye — Bror

B0 —1) ]%= - B —1) ]=T
—02C5(d1 — 52>} A0 =) {—(5202(51 — 52)} Buor

= O 0y — bR (51 — )] (=) e A DIE T
[—02C (01 — d2)] %271

= O (6, — 8) T [ — ] [(—0) BT 1 (—6,)7] — Bud.

= Cy(5y — 8) [

— Byo1
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Solution to f(y)=0

e
[&)]
T
I

Figure 2.2: Example of solution to f(k2) = 0.

3 =% /g o\
Next we insert Cy = - (22 into f(y.) to get
1 -0 —09

s = (125) (Z) 7 o o PG~ ) o - 4

! 22 _ b2 1

= 51+6;%1 245 (01— 09) 752 (61 — 1)%7T[(—0p) 271 + (—0,) 2]
— B, ! _

(1 —=02)(—0d2) "2

1+ - by _ oy e

) KﬂS) T (01— 62) 5 (8 — V)R (=8) B 4 (<) TR

_ﬂb 6_ 02 — 4

’ (1= 8,)(~82) ™5

- Byo1
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B\ R 1 .

B

Since §y < 0, welet dy = —r withr > 0and 5 = — > 1. This will imply

S

B T . .
f(ye) = Br [(5_:)) (51—1—7”)1”(51—1)1“—51]

_ —1-15 AN A
= Bpo1 [ﬁ + (1 + 51) (1 51) 1] )

We apply the geometric-arithmetic mean inequality

1 1
APB"? <A+ (1—0)Bwith0 = —— A=1+—and B=1— —
T+7 o1 0

to the left hand side of the above inequality to get

PR S U S U DU S U & DA
51 51 - (51 147 51 1+7"_ i

This implies f(y.) < 0if

1427
1< i <= 1<p.
This obviously holds since 8 > 1. So we establish the existence of k.

Theorem 1. Let 6; be given by and k; be as described. Then the following functions wy, wy satisfy the
HJB equations .-

() Bs_ﬁbya fO’”0<y§/€17
wl y — /8 1752 ﬁb 52
S Pb 5o L
(1_52) (_52) vy, fOV?/> 1,
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wy (y

—d2 8o
<1€862> (—6_;) v = ot By, fory = ks,

1-65
[1 N (§b> (1_—(%52) kéb_l] (51) K0 for 0 <y < ko,
) —

/8 1762 /8 52
Proof. Note that it is clear that Cy = ( : ) . (—b) > (. We also wish to establish C; =

_52

5& _52 1= So—1 65 1-6,
1 - (ﬁb) <1 — 52> ks o k5%t > 0. Consider,

CL >0 <= Codkd ™ 4+ 6,>0

Bs _52 102 Bb So—1
(Bb 1 -9 562k +h:>0

—02 1-6,

(%) (1_—522> % _55;26 kel B> 0
- (%) h (1__5?52) - Bkd ™ + B, > 0
Bs > (g}i) <1—_5252)152 5Sk<252_1

1-65

() () e
—02 10,

B0 s (%) (1—_5252)
> (§b> (1—_522»

Note then thatif f BS —02 < 0, we establish C] > 0.
By 1 -9

()7 (25) e -»[(3) ™ ()]

!

IIIIIIIIII

!
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ié ﬁs & _62 &
a0 (3)" (%)
—5y
A0 - 1) (1_52>] ~ b
2 B =&\ By B\ (=02 \”
(6b) [(E 1—52) —_(52(51_5”(@) (1—52)
+ By(01 — 1) <1—_522>] — Bud,
A IAYEAYE!
_(E) [(%) 1—62)( 5)“1_52)
+ B0, )(1_525)] Bud

[(61 = d2) + (61 — 1)(—0d2)] — Budy

|
VR

|
>
S

|
VR

( b )51—52 0102 + 2] — Pror

B\ T

B

B\

Br 1 — 09
- (g_ (1 %52 01(1 = 8)] —
= (% 1_52 '%5}351 SN

,—,\_/\_/\_/v

B\
(513) 1]
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)

Bo

intervals:

Bo

+tiod
since <—S> < & < 1. Hence we have shown that C;

Fl - (07 kl]
F2 = (klu k2)
F3 = [k’g, OO)

We have chosen k1, k3 such that we establish the following equalities:

Fli

w(y) — Bs + By =0,
(p— L)wo(y) =0,

Fy: (p—Luwi(y) =0,

(p— L)woly) =0,

I3: (p—Lwi(y) =0,

wo(y) —wi(y) + By — Bsy = 0,

for solutions of the form

;

C’ly‘sl, for y e I'y,

Ciyt, for y € I'y,

023162 - ﬁb + ﬁsy7 for Yy € F37
\

4
BS — Bbyu fOI' Yy € Flv
= q Oy, for y € I'y,
Coy?, for y € I's.

\

30

> 0. Now we consider the following



We now proceed to establish the following variational inequalities, thus confirming that we have solved

the HJB equation:

Iz (p = L)wi(y) =0,

wo(y) — wi(y) + B — Bsy = 0,

Ly o wi(y) — Bs + By >0,

wo(y) — wi(y) + B — Bsy = 0,

Is: wi(y) — Bs + By > 0,

(p— L)wo(y) = 0.

F1:

Using (p — L)wo(y) = 0and wy(y) = fs — Puy, we obtain

wo(@/) — w1 (y) + ﬁb - Bsy = Clyél - ﬂs + ﬁby + Bb - Bsy

=™ + (By — Bs)(y + 1)

>0

- ?

since C'y > 0, By, > [s,and y > 0. Also,

(p = L)wi(y) = (p — L)(Bs — Boy)
= pPs — pBoy + LPvy — LS
= pPs — pBoy + p2Bpy — 11 Ps
= (p— p1)Bs — (p — p2) By

= (p—L)wi(y) >0 <= (p—p1)Bs — (p— p2)Bry >0
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= (p— )b > (p— p12)Boy
= G 2
= R h
since k1 > y forall y € I'1. But note that
% 2h = Gna R 2
oz

which obviously holds since 9 > d; — 1 > 0. Thus we have established the variational inequalities for

the region I';.

Fg:

Using (p — L)wi(y) = 0and wy(y) = wo(y) + By — Bsy, we obtain

wl(y) - BS + ﬂby - wO(y) + 6b - 6sy - /BS + Bby
= 02y62 - ﬁb + 5sy + Bb - Bsy - Bs + ﬂby

= Coy™ + Boy — B
Note that the continuity of wy and w] at k1 ensure that

C2k?(1§2 + Bpk1 — Bs = 0,
Cy02k2 ™ + B, = 0.

Letg(y) = 02952 + Bry — Bs. Then ¢'(y) = 02523/52*1 + By. Note that

gdy) >0 <~ Coboy®? L + By, > 0 <= By > Cz(—52)y62_1
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Thus g(y) = Coy® + By — B is increasing for all y > k;. In particular, since Cok®? + Bok1 — Bs = 0,
we must have Coy®? + Bpy — B > Oforally > k1. Thus Coy® + Buy — s = wi(y) — Bs + Boy > 0
forally € I's UT'3. Also,

(p = L)wo(y) = (p — L)(wi(y) + Bsy — Bv)
= (p = L)(wi(y)) + (p = L)(Bsy — Po)
=0+ pBsy — pBo + LBy — LBy
= pBsy — pBo + 1118 — H2Psy

= (p—p2)Bsy — (p— p1)Bo.

Hence
(p—L)wo(y) 20 <= (p—p2)Bsy — (p— 1) B > 0
= (p—12)Bsy > (p— )b
=G
= b2z
since by < yforally € Is. Note that L P =010 By 4 ider

(p — p2)Ps (01 = 1)(1—62) By

(i ) =009 (e 3)

—0102 Bo
+ Bs(61— 1) <<51 D=6 E) — Bp01
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I By o =0 B\
_<E'1—52) (52>(5_52)<51—1'1—52'E)

—0102
+ Bo (1 — 62) — Budy

=06 [ 6 \” sy — 5y
= 2= 1
13, (51_1> B B + Bro1 s,
Now, let 69 = —r withr > 0. Then
—5152 Bb 51+T 51_1)7’ o1 < r >
L2 = T 1) .
f<(51—1)(1—52) 55) (1+r)( & BB+ B0 |

Hence

/ ((51 —_1(;(152— 5) s> <!

o1+7r 0 —1 " Cor_1 —r+14+7r
(1+r)( )6 Bo < Dol { =715
r+1 51—|—’l“ 51—1 " 2r+1
(5 )(m)( ) <

((51+T) ((51—1) <527:L11
01
e (1+ )" (1oL $<62T++11

01 01 '

Applying the arithmetic-geometric mean inequality to the left-hand side yields

1+T¢1111$< HE SR Y U
(51 (51 - r+1 (51 r+1 51

1 T 1 T T 1

r1l  rxl 0 v+l v+l 541
r+1 2r41

= =1l<pg<Brt.

r+1 p<b

11

< Oholds. Thatis, ko > M gb,whmh establishes (p—L)wo(y) >
P — K2 s

—0102 ﬁb>

So, i)
°f(<61—1><1—52> 5,
Oforally € I's.
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112:

On I'y, we have w; (y) — Bs + Boy = Cays — Bs + Bpy. Note that we have already shown that Cyys —
Bs + Bpy = Oforally € Ty UTs. Hence, wy(y) — Bs + Bpy > Oforally € Ty.
We also have wo(y) — w1 (y) + By — Bsy = C1y8 — Coyd + By — Bsy. Let

o(y) = C1y° — Coy® + By, — Buy.

Hence

P'(y) = C101y" 4 02(—52)952_1 — B
¢"(y) = C161 (61 — 1)y" 2 — Co(—02)(1 — 02)y™ 2.

By continuity of wp, we know C1 k3" — Cok3? + B, — Bska = 0. Thatis, we know ¢(ky) = 0.

By continuity of w), we know C18, k3 ™" + Cy(—02)k3> " — B, = 0. That is, we know ¢/ (k) = 0.
By continuity of w1, we know Cok$? = B, — Byki. Hence, C1kS — Cok®® + B, — Bk = C1E —
Bs + Bok1 + Bo — Boky = C1ES + (ky + 1)(Bs — Bs) > 0. That is, we know ¢(k1) > 0.

By continuity of w}, we know —Cy(—8)k}> " = — . Hence, C10, k3 * 4 Cy(—02) k2™ — B, =
C161k3 ™ 4 By — Bs > 0. That is, we know ¢/ (k1) > 0. Now,

¢"(y) = C161(61 — 1)y™ > — Co(—62) (1 — 62)y” 2

Codo k321 + B,
= (SRR 55— - st - o
1h3

_ Cada(0 — Dhy ' ky ! L B0 = Dky' 5y Ca(=0)(1 = 6y)ky* 2

= Gl [(51 -1 (%)H +(1-5) (%)62_2 + A6 — D! (%)61_2.

Hence ¢ (ky) = Bs(61 — 1)ky t — Co(—05)(861 — 02)kS? 2. Then note that

6,6 —1) ] o1 B0 —1)

551
ko > = k < ,
2706 - 52)(—52)} ? Cy(61 — 62)(—02)
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since 09 — 1 < 0. Thus,

2—1y7.—1 Bs(61 — 1) -1
(K (o))~ ) > (P Y b - ()6 — o)

= (k3 77)(—Co)(—62)(61 — 02) > —B(01 — 1)Ky "

— 55(51 — 1)]{?2_1 — CQ(_52)(51 — (52):1{?(25272 > 0.

Thatis, ¢"(kg) > 0.

Consider the equation ¢” (y) = 0.

¢"(y) =0 <= C181(61 — 1)y™ % = Cy(=02) (1 = &5)y™ 2 = 0

= C101(0; — 1)y 72 = Cy(—82) (1 — §y)y>
s1—s, _ Ca(=02)(1 — do)

YT T - )
~(Ca(=02)(1 — d2) U=
¢jy‘( Cro1(01 — 1) ‘

Note then that ¢”(y) = 0 has a unique solution in [k, k).

Observe that ¢, ¢/, and ¢ are continuous on [k, ko). Since ¢(k2) = ¢'(k2) = 0and ¢”(ka) > 0,
there exists €1 > 0 such that ¢ is nonnegative, decreasing, and convex over the interval (ky — €1, k2).
Since ¢(k1) > 0and ¢'(k1) > 0, there exists o > 0 such that ¢ is nonnegative and increasing on
(k1, k1 + £2); moreover, k1 + €2 < ko — €;. Suppose, if possible, there exists y € (ky + €2, ko — £1)
such that ¢(y) < 0. Note that ¢ (k; + %) > 0. Then by Intermediate Value Theorem, there exists
Y1 € (/{:1 + 2, y) such that ¢(y;) = 0. Similarly, since ¢ (k’g — %) > (, there exists yo € (y, ko — %)
such that ¢(y2) = 0. Note also that ¢/ (/{:1 + %2) > 0and ¢'(y;) < 0. So, by Intermediate Value
Theorem, there exists y; € (k1 + %, yl) such that ¢/ (y;) = 0. Similarly, since ¢'(y2) > 0, there exists
U2 € (y1,y2) such that ¢'(y2) = 0. Also, since ¢’ (k2 — %) < 0, there exists y3 € (yg, ko — %1) such
that ¢'(y3) = 0. Finally, since ¢’ (y1) = ¢'(y2) = 0, by Rolle’s Theorem, there exists y; € (41, y2) such
that ¢"(y}) = 0. Similarly, since ¢/ (y3) = 0, there exists y5 € (va, y3) such that ¢”(y3) = 0. But this s
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a contradiction, because yj € [k1, ks, y5 € [k1, ko], but y] # y5; whereas the equation ¢”(y) = 0 has
exactly one solution in the interval [k, ks].

Hence, ¢(y) = C1y™ — Coy” + By — By > 0 on Ty, Thatis, wo(y) — wi(y) + o — By > 0
forally € I's. ]

2.5 A Verification Theorem

Theorem 2. We have v;(x1,x9) = TW; (ﬂ> = Vi(x1,22), 1 = 0, 1. Moreover, if initially i = 0,
X2
let N = (11, 75) be such that

o =1inf{t > 0] (X}, X?) € I3}, 75 = inf{t > 7 | (X}, X?) e '} }.
Similarly, if initially i = 1, let N} = (73) be such that
¢ =inf{t > 0] (X}, X}?) e T1}.
Then Nj and N\ are optimal.

Proof. The proof is divided into 4 steps.

Step 1: Uo(.rl, CCQ) > 0.

Recall that C} > 0, Cy > 0 has previously been established. Now,

5 1-6
( ) (@) e for (z1,22) €1 U Ty,
Vo(T1,T2) = T1Wo | — | =
x _
1 C’ngzx% % _ By + Bswy, for (1, 29) € Ts.

Hence to show vg(x1, x2) > 0, it suffices to show wy(y) > 0 on I's. The continuity of wy and wy,
yield wo(ky) = Cokd? — By + Boky = C1k3 > 0and w)(ky) = Cadokd> ™ 4 B, = C16:k3 " > 0.
Also, wij(y) = Ca2(d2 — 1)y?2~2 > 0 forally > 0. In particular, since w{j (y) > 0 forally € T3, we
know w{(y) is increasing on I's. And since w((k2) > 0, it must be that w((y) > 0 forall y € I's. This
in turn implies that wp(y) is increasing on I's. Since we know wy(k2) > 0, it must be that wy(y) > 0

forally € I's.
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Step 2: —Axy — Bxy < vi(x1,22) < Az + Bag,1 =0, 1.

Leti = 0.0n Ty Uy, we have 0 < vg(z1,x2) = Clxi_élmgl < C’lxlkgl. OnTl's, =By + Bsxa <
vo(x1,x2) = CQ:I;}‘52:U‘§2 — Bpx1 + Bsre < CQ$1]€(152 — Byr1 + Bs2. Hence we can choose suitable
A and B so the inequalities hold when i = 0. Thenleti = 1. OnI'y U '3, we have 0 < vy (21, 22) =
C’gx%_‘SQQ:gQ < 02111]{7(152. OnTy, —fpre < v1(1,x2) = Bsw1 — Bpra < Ps21. So again we can choose

suitable A and B so the inequalities hold when ¢ = 1.

Step 3: ?)Z'(ZCl, 3?2) > Ji(ﬂfl, X9, Az).

The functions vy and vy are continuously differentiable on the entire region {1 > 0, 2 > 0} and

twice continuously differentiable on the interior of I';, ¢ = 1, 2, 3. In addition, they satisty

IN

(p— L)wo(y),
(p— L)wi(y),
=B+ Bsy < woly) — wi(y) < woly) — Bs + By -

0
0

IN

In particular, pv;(x) — Av;(z) > 0,7 = 0, 1, whenever they are twice continuously differentiable. Using
these inequalities, Dynkin’s formula, and Fatou’s Lemma, as in Oksendal [18], we have
E [e‘p(elAN)vi(XellAN, XglAN)} >E [e‘p(GQAN)Ui(X§2AN, ngv)} for any stopping times 0 < 6; <

6, almost surely, and any N.

Foreachj = 1,2,

E |00 (X s X5 )|
=K [e_"(ej/\N)vi(X;j/\mngAN)H{ej@o}] +E [e_p(ejAN)vi(XHlj/\NangAN)]I{GjZOO}]

=E [e’p(ej/\N)vi(XgleN, ngAN)H{gj@}] +E [e7NMui (X}, X3) Lo, —o0}] -

In view of Step 2, the second term on the right hand side converges to zero because both [E [e_pN X}V}
and £ [e_pNXJQV} go to zero as N — oo. Also,

e*P(eiAN)vi(X(}jAN, ng/\N)]I{gj<oo} — e vi(X(}j , ng)]l{gj@o} almost surely as N — oo.
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By showing the existence of 7;, 7 = 1, 2 such that

.
sup E [(e—p(Gj/\N)Xelj/\N> 1] < 00,

y
supE [(e’p(efAN)ng/\N> 2] < 00,

we can show that both {e_p(ej "X GAN } and {6_” (0;/AN) X AN } are uniformly integrable. Hence we
’ j

obtain the uniform integrability of {e‘p( M) (X 91]- s X 92j An) ¢ and send N to 0o to obtain

E [e 0 (X0, X3 g ot > E [0 Xy, X2 Tigycoy] fori = 0,1

Given Ao = (7'1,7'2)> Al - (7—()):

vo(x1,w2) > E [e7P M uo( X7, X2) 7 <oo)]
>E [ (0(Xp,, X7) = BXp, + B:X7) Lr<on)]
=E [e 01 (XL, X2 ) rcooy — €™ (BXE + B.X2) Lri<ooy]
> E [e " 01(XL, X2 [ry<ooy — €™ (BXE + BX2) Lrycooy]
> E [ (B,X1 = ByX2) Limyeooy — € 7™ (BoXL + B X2) Tiry <o)
= Jo(21, 22, o),
v1(21,2) > B [e Moy (X)), X2 ) irp<oc}]
>E [ (B X5, — BoX2) Limy<oo)]
= Ji(x1, 29, A1)

Step 4: v;(x1, x2) = Ji(x1, x2, A)).

Leti = 0. Define 77 = inf {t > 0 | (X}, X}?) € I3}, 75 = inf {t > 77 | (X}, X}?) € '1}. We apply
X2

Dynkin’s formula and notice that, for each n, vo(z1, 22) = E [efp(Tl* Ao (XL 7+an) |- Notealso

*
T AN
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that lim E [e‘p(TfA”)vo(Xl X2

* *
T AN T1 AN
n—o00 1 1

)} =E [e_prvo(XTll*,Xff)]l{ﬁ@o}} . It follows that

vo(w1,72) = E [eprfUO(Xrle?— )H{n*<oo}]

*
1

=E | (u(X5,X2%) = BoX5; + BXE ) L]
We also have

E [G*PTT V1 (Xil*; X2 )H{Tf<oo}] =k [e*p@* U1 <Xi2*’ Xzz*)]I{T5<OO}]

—pTy 1 2
_E [e / (gsxﬂz @,XTQ*) 11{75@0}} .
Combine these to obtain

vo(z1,72) = E [6_’”5 <BSX71-2* — 517X722»«> S (@;XTll* + &le*) H{’Tf<00}i|

= Jo(xh ZIo, AS)

Leti = 1. Define 7§ = inf {t > 0 | (X}, X}?) € I'1 }. We apply Dynkin’s formula and notice that, for

eachn, vi(z1,20) = E [e‘p(TgA”)vl (X pns ng,\n)] . Note also that
JLHSOE e—PTE AR g, (X%/\n, ng/\n)i| =E [e—pﬂf v (Xrlg : X% )]I{Tg@o}} . It follows that

V1 (1'1, xz) =E |:6pr6‘,01 (Xq% ) X%‘)]I{Tg<00}:|
i 1 2
E [e PTo (ﬁSXTg — ﬁbX7-5> H{rg<oo}]

Jl(l'l, T, AT)
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2.6 A Numerical Example

150
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— WMT
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Figure 2.3: Closing Prices of TGT and WMT from 2010 to 2020

We consider adjusted closing price data for Walmart (WMT) and Target (TGT) from 2010 to 2020.
The first half of the data is used to calibrate the model, and the second half is used to test the results.
Using a least-squares method, we obtain the following parameters: p; = 0.09696, pu, = 0.14347,
o1 = 0.19082, 015 = 0.04036, 021 = 0.04036, and 09 = 0.13988. We specify K = 0.001 and

p = 0.5. Then we find k; = 0.85527, and ko = 1.28061.
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Next we examine the dependence of k1 and k2 on the parameters by varying each. In Tablelo.1, we see

that k; and ky both decrease in 4. This leads to a larger buying region, I's.

Table 2.1: k1 and ky with varying /1

w1 | —0.00304 | 0.04696 | 0.09696 | 0.14696 | 0.19696
ki | 0.91380 | 0.89057 | 0.85527 | 0.80194 | 0.72644
ko | 1.54188 | 1.41541 | 1.28061 | 1.12891 | 0.96334

On the other hand, both £; and k5 increase in 9, as indicated in Table This creates a larger I'; and,

hence, encourages early exit.

Table 2.2: ki and Ky with varying pio

2%

0.04347

0.09347

0.14347

0.19347

0.24347

ki

0.76457

0.81341

0.85527

0.88736

0.91037

0.98771

1.12128

1.28061

1.47155

1.72474

When varying 011 and 099, as in Table and Table we find that k9 increases while k; decreases,

in both 011 and 095. This leads to a smaller buying zone, I';, due to the increased risk, as well as a smaller

selling zone, I's, because there is more price movement overall.

Table 2.3: k1 and Ky with varying o4

011

0.09082

0.14082

0.19082

0.24082

0.29082

ki

0.92069

0.89220

0.85527

0.81532

0.77497

k2

1.21691

1.24468

1.28061

1.32066

1.36327

Table 2.4: £k and ky with varying 099

022

0.03988

0.08988

0.13988

0.18988

0.23988

ki

0.88356

0.87601

0.85527

0.82593

0.79206

ks

1.25304

1.26036

1.28061

1.30985

1.34491

42




However, as 015 = 09 increases, we find that k9 decreases, while &y increases (Table . The greater

correlation leads to a larger I';, and hence more opportunity for buying, as well as a larger I'3, and hence

more opportunity for selling.

Table 2.5: k1 and ko with varying 015 = 093

012 | —0.05964 | —0.00964 | 0.04036 | 0.09036 | 0.14036
ky | 0.73242 0.79189 | 0.85527 | 0.92029 | 0.97527
ko | 1.41132 1.34509 | 1.28061 | 1.21730 | 1.15901

Since p represents the rate at which money loses value over time, ks decreases in p, while k; increases

in p, as in Table[o.6} reflecting the fact that we are less likely to want to hold in this case.

Table 2.6: k; and k5 with varying p

p 0.4 0.45 0.5 0.55 0.6
ky | 0.84068 | 0.84858 | 0.85527 | 0.86105 | 0.86611
ko | 1.36281 | 1.31541 | 1.28061 | 1.25387 | 1.23262

Finally, larger transaction costs discourage trading. Naturally, Table [2.7| shows that as K increases, ko

increases and k; decreases.

Table 2.7: k; and Ky with varying K

K | 0.0000 | 0.0005 | 0.0010 | 0.0015 | 0.0020
ky | 0.85698 | 0.85613 | 0.85527 | 0.85442 | 0.85356
ko | 1.27670 | 1.27866 | 1.28061 | 1.28254 | 1.28447

Using the stock prices of WMT (S') and TGT (S?) from 2015 to 2020, we backtest the pairs trading
rule. We found the pair (k1, k3) = (0.85527,1.28061) using the parameters obtained based on the
historical price data from 2010 to 2015. Since we assume that we are initially flat (¢ = 0), a pairs trade
(long 8" and short §?) is triggered when (X}, X?) enters I's. The position is closed when (X}, X?)

enters I';. Initially, we allocate the trading capital $100 K. When the first long signal is triggered, we use
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2.5+ .
Equity Curve (Long WMT and Short TGT): 2015/1/2 -- 2019/12/30
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Figure 2.4: S' = WMT, S$? = TGT with threshold levels k1, k-

half of our capital to purchase WMT stocks and short the same amount of TGT, reversing these trades
when the short signal is triggered. Each pairs transaction is charged $5 commission. In Figure the
ratio of the stock prices is plotted against the thresholds k1 and k5. The equity curve indicates the date at
which the round trip trade is finished and the proportion of profit earned.

We can also interchange the roles by taking S! = TGT and 8> = WMT. The new thresholds will
be (ki ka) = (k:lz’ kil) = (0.78087,1.16922). In Figure the ratio of the stock prices is plotted
against the thresholds £ and k. At the conclusion of our first round trip, we can initiate a second round

trip the next time (X}, X7) enters I's, closing the position on the last trading day, 12/30/2019. The
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Equity Curve (Long TGT and Short WMT): 2015/1/2 -- 2019/12/30
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Figure 2.5: S' = TGT, S? = WMT with threshold levels kNl, kNQ

equity curve indicates the date at which each round trip trade is finished and the proportion of profit
earned. Note that both types of trades have no overlap and, hence, they can be executed simultaneously
without overextending our capital.

On the final trading day, there is $179,253 in the account. The grand total profit is $79,253, an
increase of 79.25% in a five year span. Since only six trades are executed, the capital remains in cash most
of the time and will earn interest or can be used for short-term trading, giving us the opportunity to

further increase our capital.
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CHAPTER 3

RouUND-TRIP PAIRS TRADING UNDER
GEOMETRIC BROWNIAN MOTIONS WITH

REVERSIBLE INITIAL POSITIONS

3.1 Introduction

Having previously allowed the initial pairs position to be long or flat, a natural next question to consider
is the short side of pairs trading. So, we begin again with the same stochastic differential equation as in
and the same partial differential operator as in , but now we allow our intial pairs position to
be flat (i = 0),long (¢ = 1), or short (i = —1). As before, our initial trading decision will depend on
the initial position. If intially we are long, we must sell one share of Z and conclude our trading activity.
Whereas, if initially we are short, we must buy one share of Z and conclude our trading activity. However,
if initially we are flat, we can either buy or sell one share of Z. Depending on that choice, our next trading
move would be to sell or buy, respectively, after which we would conclude our trading activity. We use the
term reversible to describe the initial positions due to the apparent symmetry between going one-share

long in Z and going one-share short in Z with the roles of S' and §? interchanged.
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3.2 Problem Formulation

Asin Chapter 2, we consider two stocks, 8" and 8. Welet { X}!, ¢ > 0} denote the prices of the stock S,
and let { X?,¢ > 0} denote the prices of the stock 2. They satisfy the following stochastic differential
equation:

th th 1251 011 012 d th

d = dt +
th Xf H2 021 022 Wf

where p1;, i = 1,2 are the return rates, 0;, i, j = 1,2 are the volatility constants, and (W}, W}?) is a
2-dimensional standard Brownian motion.

We assume the pairs position, which we will denote Z, consists of a one-share long position in stock
8" and a one-share short position in stock $2. We consider the case that the net position may initially be
short (with one share short in Z), long (with one share long in Z), or flat (with no stock holdings of either
St or§?). Leti = —1, 0, 1 denote the initial net positions of short, long, and flat, respectively. If initially
we are shortin Z (¢ = —1), we will buy one share of Z, i.e. buy one share of S' and sell one share of
$2, at some time 79 > 0, which will conclude our trading activity. If initially we are long in Z (i = 1),
we will sell one share of Z, i.e. sell §* and buy $? at some time 75 > 0, which will conclude our trading
activity. Otherwise, if initially we are flat (2 = 0), we can either go long or short one share in Z at some
time 77 > 0. Depending on our activity at time 71, we would then either sell §' and buy $? (if long) or
buy S' and sell $? (if short) at some time 75 > 74, thus concluding our trading activity.

We seek thresholds k1, ko, k3, and k4 for buying and selling Z. Let k; indicate the price at which we
will sell one share of Z when the net position is flat. Similarly, we will denote by &y the threshold for
selling one share of Z when the net position is long. Next, k3 will indicate the price at which we will buy

one share of Z when the net position is short. Finally, the threshold for buying one share of Z when the
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net position is flat will be denoted by k4. Then define the following function:

—1, fori=0 and x5 < 1k,

—1, for t =1 and i) S [L’lk’g,
u(xy, x9,1) =
1, for i = —1 and z9 > x1ks3,

1, for t = 0 and z9 > x1k4.

Let K denote the fixed percentage of transaction costs associated with buying or selling of stocks and
p > 0 be a discount factor. Asin Chapter 2, let 3, = 1 + K and 3; = 1 — K. Then given the initial
state (21, T2), the initial net position ¢ = —1,0, 1, and the decision sequences A_1 = (79), A1 = (7o)

and Ag = (71, 72), the resulting reward functions are

J_1(x1, 22, 70) =E [—e_m (@,X - B:X )H{TO<OO}}

Jo(z1, 2, 71, 72, u) =E[{e™"™ (B, X}, — BuX2) Liry<oo}
e”fm (5bX e~ B X)) L <oo =)
+ {7 (B:X X2) Lir <o
e (B Xy, — BoX7,) Tirp<oo) =11
Ji(w1, 22, 70) =E [8 pro (55 - BbX )]I{ro<oo}] .
Fori = —1,0,1, let V;(z1, T9) denote the value functions with initial state (X}, X2) = (x1, 72) and
initial net positions ¢ = —1,0, 1. Thatis, V;(x1, x2) = sup Ji(z1, z2, ;).

i

3.3 Properties of the Value Functions
In this section, we establish basic properties of the value functions.

Lemma 2. Forall x4, xo > 0, we have

Bsx1 — Bpre < Vi(x1,20) < 271,
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Bsxo — Prr1 < V_i(21,22) < 29, and
0 S ‘/0(131,]32> S 4.751 + 4$2.

Proof. Notethatforallzy, 2o > 0,Vi(x1, 2) > Ji(21,22,70) = E [e 7™ (B X} — BoX2) Lirpco}]-
In particular,

Vi(xy,22) > Ji(z1, 22,0) = Bsx1 — Bpa.

Similarly, V,1($1, LCQ) Z Jfl(l'l, Ta, To) =E [—e_p”’ (BbX,}O — ﬁSXEO) ]I{T0<OO}] .In particular,
V_oi(x1,22) > J_1(21,22,0) = Bewy — By
Finally,

Vo(xr, 22) > Jo(21, 22, 71, T2, 0)
=E[{e™™ (B:X,, — B X7,) Lincoo) — €™ (B6X7, — B X7 ) Tin<oo) }iumry

+ {6—PT1 (ﬁinl - ﬁngl) H{‘rloo} —e (ﬁb)(Tl2 - /BSXEQ) H{Tz<oo}}]l{u=—1}]'

Clearly, Vo (g, £2) > 0 by definition and taking 71 = 00. So we establish the desired lower bounds.

Now, forall 7y > 0,

[ (B:X7, — 5o X3) Tirg<on)]

J1($1>$2,To) =K
< E [e—p’ro (Xio - Xzo) ]I{TO<OO}]
E

[ X lro<oo}] — B [77° X7 Tiry<ocy]
=z, +E [/OTO (—p+p1) e X} dt ]I{To<oo}:|
—z,—E UOTO (—p + p2) e " X7 dt H{To<oo}}
<z —x2 — E {/TO (—p + p2) e " X7 dt ]I{To<00}l
0
<or—n+ B[ [ (- e Xzl
0

=z — 2o+ (p— o) / e Plryet?tdt
0
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=T — Lo+ I9

= X.
Also, forall 7y > 0,
J_1(z1, 29, 70) = E [—e " (BX} — B X2) Lirg<oot]
<E [_e—pTo (Xio - Xzo) H{7'0<°O}}
=E[e X7 Lrycoy] — E [e77X] T coc]

=1, +E UOTO (—p + p) e " X7 dt H{To<<>0}]
—o —E {/OTO (—=p+ ) e " X/ dt H{TO<°°}}
<zyg—11 —E [/TO (—=p + ) e_thtldt H{TO<°°}}
0
<wzy—x1 +E {/OO (P_Ml)@_thtldt}
0

=z —11+ (p— ,ul)/ e Plaertdt
0

=29 — T+ 2

= T9.
And, forall0 < 71 < 79,

Jo(x1, 29, T1, T2, u)
=E[e™" (8, X;, = BoX7,) Lim<ooi Lfu=y] — E[e™™ (BX7, — B X7,) Tiry <o) [u=y]
+E[e™™ (B:X5 — BoX2) Lim<ootljum—1y] — E[e ™7 (B X1, — BsX2) Liry<ootLiuz—1}]
<E[e™ X I cooflpu=ny] = E[e™7 X Tir, cooplu=ny]
— B[ X I <oopliu=y] + E[e7 X2 7 <o) [fumny]
+E[e™" X7 I cojlfu=—13] — E[e™"" X7 [, <o) [fu=-1}]

—Ble™ X oo lu=—1}] + Ble™ X7 I, co0 [fu=1)]
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<z —E [$2H{Tz<oo}]1{u 1} +E |: p /L € th dt ]I{7—2<oo}]1{u 1}:|
+ 22 — E [x1H{7'1<oo}]I{u 1} |: :0 ,Ull € ot X dt ]I{’T1<OO}]I{”LL 1}:|
+ 21 — E 227, coojlu—1y] + { (p— po) e P X7dt H{T1<oo}]1{u—l}:|

+ 23 — E [21]{r, <o) [fu=—13] + E [ (p— ) e X/ dt ]I{T2<OO}]I{U,—1}:|

Now,

IN

T1
|:/0 (:0 — M1 e_thtldt ]I{T1<OO}:|

E )
<E {/000 (p— Nl)e_thtldt:|

= (P—m)/ e Prriettde
0

T1
E |:/ (p - ,UJI) e_thtldt H{'r1<oo}]l{u_1}:|
0

= T.
Similarly,

E |:/ p /JJ2 € PX dtH{7'2<oo}]I{u 1} < xg,
0

T1 T
E [/ (p— po) e " X? dt]I{Tl@o}]l{uf_l} < x4, and

|

Thus, forall 0 S 1 S T2, Jo(xl,fL‘g,Tl,TQ,U,) S 4l’1 + 4[E2.

,0 ,u1 € th dt]I{.,-2<OO}H{u__1} < xI.

c\

3.4 HJB Equations

In this section, we study the associated H]B equations. Let

1 2 2 2
A:{ 0 0 0 0 0

2 2
= s+ 2 + Aoty o + 15— +
2 i 8x% 12012 011014 4222 8x% } i 0xy fa® 201y Ty
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where a1, = 0%, + 0%, G129 = 011091 + 012092, and a9y = 03, + 05,. The associated HJB equations

have the form, for z1, x5 > 0:

(

min { pos (o1, 22) = Avy(@1,2), v1(w1,72) = B + s | =0,
min {pU—l(xh Iz) - AU—I(xla $2)7 U—l(%, xz) + Pox1 — 5&2} =0,

min {pvo(flh, r2) — Avg(x1, T2), vo(21,22) — v1(21, T2) + o1 — B2,

Uo(xh $2) - U—l(%, Iz) — Bsx1 + 5b$2} =0.

\

As in Chapter 2, the HJB equations can be reduced to an ODE problem by applying the following sub-
stitution. Let y = xo/x1 and v;(x1, 3) = xw;(xs/ 1), for some function w;(y) andi = —1,0, 1.

The HJB equations can be given in terms of i and wj as follows:

min {pun(y) = Lun(9). wiy) ~ B+ fuy} =0,
min {1 (y) = L (), woa(9) + By — By = 0,
min { pui(y) — Luo(y), woly) = wily) + B — Ay, wo(y) = wa(y) = B+ By} = 0.

We would like to open pairs position Z when the price of §? is large relative to the price of ' (k3
and k,) and close pairs position Z when the price of 8§ is small relative to the price of ' (k; and k).
Additionally, we would be more willing to open pairs position Z when the net position is short than
when the net position is flat, since when the net position is short we experience the risk of holding one
share of §2 while borrowing one share of s’ Similarly, we would be more willing to close pairs position
Z when the net position is long than when the net position is flat, since when the net position is long
we experience the risk of borrowing one share of $? while holding one share of §'. This suggests that we

should expect k1 < ko < k3 < ky.

wy and k:

The first equation

min {pw1 (y) = Lwi(y), wily) — Bs + Bby} =0
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To

(p—Av =0

v_1 + Bpxy — By =0

vp — U1 + 35.!‘1 — (‘J))S.I‘Q =0 To = kyxy

Ty = j\'g‘l'l

if flat

Buy S! and Sell S?

(,[_) — A)i'l =

Vg — U + _53[,.4"]_ — .~'_j)$.l'2 =

(P - A) v_1 = 0
Buy S! and Sell 82 (p— ﬁ) Lzo i (())
if short (p— Ay =(
e (p—Aw_; =0

Sell S* and Buy S? if long

Sell 8t and Buy S? if flat (p—Av_1 =0

Hold T9 = koxy

vo — V_1 — Bsx1 + Opra =0
(p—A)v1 =0
(p—Av_1=0

9 = fx'lil'l

Vg — V_1 — Bex1 + Oy = 0
Uy — :5)5‘1‘1 + 3(,.'1'2 =0

~

O

has solution

Figure 3.1: Thresholds for buying and selling regions

Bs_ﬁb?% for 0<?J§k‘17

wy(y) =
C2y527

for y > k’l,
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as in Chapter 2. Then the smooth-fitting conditions yield
By — Boky = Cok{* and  — B, = Cadok* ™.

This will imply
_52 65
1—48 B

B o 1s —\ " B \'™
Cy=-0 o= (22 .
2= 5k 5, s

(Bs — Byk1)ba = —Bok1 = Ky =

and

w_q1 and ky:

Also, the second equation

min  pw-1(y) — Lw-1(y), w-1(y) + B — Byt =0
{ J

has solution

Ciy, for 0 <y < ky,
w_1(y) =
553/ — Bb, fOI' Yy Z k’4.

Then the smooth-fitting conditions yield
Cik}' = Beks — By and  C16:k " = B

This will imply
o B

S —1 By

Bs o 1os BN /6 -1\
T .
=5k 5 5,

(Bskll - Bb)(sl - /Bsk4 - k4 -

and
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Wo, ,ZCQ, and ]433:

Additionally, the third equation

min { pu(y) — Lug(y), woly) = wily) + B — By, woly) = w-r(y) = B+ By} = 0

has solution )

C1y™ + Bs — By, for 0 <y < ko,

wO(y) - Bly(;l + BQy(;Q, for ko <y < k3,

Coy® — By + Bsy, for y > ks.
\

Then the smooth-fitting conditions yield

CLES + B — Boka = Bikd + Bok?,
C1ok3 ™ — By = Byoi kS ™! + Bodok2 ™!,
Bk + Bok$? = Cok3? — By, + Biks,

By kS ! Bydok Tt = Ch00k T + B,

There are four equations and four parameters, B1, B, k2, and k3, that need to be found. These equations

can be written in the matrix form:

kS k52 B, — 1 —ko\ [ 5
(51k31_1 52]€(252_1 Bz 0 -1 Bb 7
and
k21 k22 B ks —1\ (58
3 3 1 . 3 s
SRS 0k \ By — Gy 1 0/ \B

We introduce a2 new matrix

O(r) = and its inverse  ®(r) " =
dp — 6 ’
517“6171 527‘6271 =92 617"762 —rl=d
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for r # 0. Returning to the smooth-fit conditions above, we have

= @(;@) )
B2 0 -1 ﬁb

and

This implies

()= () () ()= () o (00) ()
B, 0 0 —1 By, C, 1 0 B

The second equality yields two equations of k3 and k3 that we can rewrite as

D (k3) — O (ko) = )
1 0 0 -1 By —Cs

The matrix in [-] above is

1 (1= 0)ky " + 0ok ™ k3™ + (1 — Sa)ky
01 =00 \ (1= 6)ki™2 — 61k %  —61k; % — (1 — &)kl

The two equations involving ks and ks are

1 (1= 02)ks ™" 4 0oky ™ Gaky™ + (1= a)ky "\ (B [Ch
00 =02 \ (1 —8)ki™% + 0iky™ 6ik3™ + (1 -0k ) \ By )
Recall that

Bs 15 (53)61 (&—1)51‘1 B s (—52>‘52( B, )1‘52
Cr="2 k= (22 dCy= 0 k2 = (2 .
N 5 By SR — B, 1— 0,
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The system of equations for k3 and ks is

(L= O™+ 0aks™ | Bk (LB B,
(51 — 52 ° (51 - 52 51 ! ’
(1—6y)ks% + (51]{;5%6 k3% 4+ (1 — 6y)ki™2 5 B s
01 — 02 ° 01 — 02 —0y !
We are looking for solutions (kz, k3) in the triangular region
T={(r,s): ks <r<s<kCR%L
Lety = @. Then we can reduce the system to
(1= Go)ky ™™ + 0oy ™ k3™ + (1 —S0)ky™ k™™
Fi(ky, k3) = _ — )
1(ka, k3) 5, — o, + 5 — o, Y 5, 0, (3.1)
_ 1-5; —6 - _ 1-6; 1-6;
F2<kj2’ ]{}3) — (]_ 61>k3 + 51]432 i 511{33 + (1 51)]€2 N ’)/k?l —0 (32)
01 — 02 01— 02 —02

Note that, by application of a special implicit function theorem [x7], (K1, k4) is the unique solution to

the system, since:

(1= G2)ky " + Soky ™ N Ok + (1=0)ky ™ k"

Filk, k) = 5 -0, 5 — 5 TS
_ 51’“4_6152 _(1 by — 2 5_1 LT 527} + 51]{;1—6152 [02 + (1 — 82) k1]
_ 511{/‘4__6152 :(15:??17 - 6511__5127 + 527} + 51161:6152 [0 4+ (—65)]

-
_ 51]“4_ 5 | %Eéi 1 1)7+6ﬂ]
=0,
and
Fy(hn k) = L7 51)(];5‘_625 UL T;l(l__(;jﬁkwv - Vli;
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Plot of System of Equations

o
4
— \.\
ir | T
] (k k)
T .‘H-
N\ /
Y
1 i
1
kS

Figure 3.2: Numerical solution to system of equations in (3.1) and (3.2)).

ky k% 6 — 0
= 5 4 5 [(1 — 51)/{,’4 — (51’)/] 5 5 |:(51 + (1 — 51)’7]{1 + 2’7k1:|
1 — 02 1 — 02
k% k02 (1—0)(=0) & — 0,
=5 g, o talt sy {51+ [ 1—52]

ok 52 5152
"6 — 0, 1— 52
k%2 61(1 —0y)
— 5 —
51 — 05

=0.

=

Now, recall that the smooth-fit conditions for wg can be written as:
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(By — Cl)kgl + B2k32 = Bs — Byka,

(B — 01)5114731_1 + B25Qk?g2_1 = —[,

and

Blkigl + (By — 02)]?‘32 = Bsks — B,

Blélk’glil + <B2 - CQ)(SQkZéfQil - ﬁs-

From these we obtain:

By — Byks — Bokb

(By — C1)k3! _
(B — 01)511631_1 —0Bp — 3252]€(252_1

Also,

Bk

51 —ﬁb - 3252]%’32_1
—> B,01 — By0iky — Badiky = —Byky — Bydok

ks _ By — Boks — Boky’

— nggz ((51 — 52) = ﬁs51 + 51,(1 — 51)]{72

g, _ OOk = B = Dk
01 — 02

By — Boka — (By — CLKS!

Bydokd™t

ky B — Boka — (B

—Bp — (B1 — Cl)5lkgl_1
— Ok

5y —Bp — (B1 — 01)51k§1‘1

= (302 — Bpdoka — (B —

Cl)égkgl = —ﬁbkg - (Bl - 01)51/{(251

= (B1 — C1)k3 (81 — 02) = —By(1 — 62)ks — B02

_ Bo(=02)ky " — By(1 — By

— B - (), = 51— 0, )
Bk _ Bsks — By — (B2 — Co)kY
Bl5lk§1_1 Bs — (B2 — 02)52]€§2_1
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ks _ Bks — By — (Ba — Ch)kg?
01 By~ (Ba— Co)0ak™!
1 Bs — (By — C3)02ky

= Bs01ks — By01 — (Ba — Ca)01ky = Bsks — (By — Cy) 82k
— (BQ - 02)7652(51 - 52) = 55(51 - 1)k73 — Byor

Bs(01 — )kyl,f(h — 5b51k§62
51 — 0 ’

— By — CQ

and

(Bo— Co)k?  Biks— B — Biky ks Biks — B — Bikd

(By — Co)02k32™Y By — Byoykg 0o By — B0k
—> By02ks — By0y — B10okSt = Boks — Byoyk3!
= Bik3 (01 — 62) = Bs(1 — 62) ks + By(02)
Bo(1 = Ga)ky ™" = By(—0a)ks ! _

== 50,
Note then that if ky = kq, we have
ﬁs _52
ko — 25 .
T B 10,

= [s(—0d2) = Bp(1 — d2)k2
—> By(—02)ky = By(1 — S2)ky
— By(—=02)k5 % — By(1 — S)ki ™ =0

1 _ 1-61
B0 — BB

01 — 09
:>Bl—01:0

- Bl = Cl-
Also, if k3 = k4, we have
ks = Py 0
55 61 —1

= B0 = Bs(61 — 1)ks
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—> By01ks = By(0) — 1)y
—> Bo(61 — k372 — By01k3 = 0

Bo(01 — DES™ — Byor ks ™
01 — 09

:>BQ—CQZO

=0

:>BQZCQ.

Hence, in this case

(

C1y™ + Bs — By, for 0 <y < ky,

\\

wo(y) Ciy% + Cyy2, for ki <y < ky,

Coy® — By + By, for y > ky.
\

Let us relabel these threshholds as

_52 &

ki =k =ky = . .
1 1 2 1—06, By (3-3)
* o 51 /Bb

B=k=khi=e"y 2 (3-4)

Then we have the following.

Theorem 3. Let 0; be given by and k be given by , . Then the following functions wy, w_,
and wy satisfy the HJB equations :
Bs_ﬁby7 fb;" 0<y§]ff7

wy(y) = 5.\ 3 1-55
__2 s d2 *
( 6{;) (1_52) y ) ﬁr y>k17

1 . 41—1
(@) (51 1) v for 0<y <k,
w_l(y) = 51 Bb

Bsy - Blﬂ fbi’ ) Z k;a
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1) 01—1
; 1 5 _1 1
ﬁ) <15b ) 3/514‘55—517?% fUV0<Z/§k>1ka

Bs)él 51 - 1>61_1 5 ( 52)_62 ( Bs )1_62 S
woly) = — L | —— 2 kT <y <k;3,
o(y) ( )\ 5 1y6 3, —s Yy, for ki <y <k;

5 2 ; —02

Proof. We divide the first quadrant of the plane into 3 regions,

\
/N
o

F10<y§k);, FQkT<y<k;, ngggy

Thus, to establish that we have found a solution to the HJB equations, we must establish the following

list of variational inequalities:

(

(p = Llwi(y) =0, for y € Ty,

wy(y) — Bs + By > 0, for y € ToUTS,
w_1(y) + By — Bsy > 0, for y € I'1 U Ty,
(0 = L)w-(y) =0, for y €T,

(p— L)we(y) >0, for y e 'y UTs,
wo(y) —wi(y) + By — Bsy 20,  for y € 1 UTy,
wo(y) —w-1(y) — Bs + By >0, for y € N UTs.

On Fl;

(p = L)wi(y) = (p = L)(Bs — By)
= pBs — pBy — LBs + LBy
= pBs — p1Bs + 1oy + (12 — 111) By — pBoy

= (p—m)Bs — (p— 12) Bvy-
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Hence,

(p—L)wi(y) 20 <= (p—11)Bs = (p — p2) By

— ySP—#l'&
p— 2 B

51 _52 Bs

< . R

AR T T e NS

0

< kK
<:>y—61_1 1>

0
which holds, sincey < kj < 3 LI k3.
On FQ U Fg,
wi(y) — Bs + Boy = Coy®™ — Bs + Boy.

Hence

wi(y) — Bs 4 By > 0 <= Coy® — By + By > 0.

Let f(y) = Cay™ — B, + Byy. Then

f(y) >0 <= Coboy™  +5,>0

<~ 02(—52)96271 < B

b1 By — (k* do—1
<~ Yy = O2<_52) ( 1)

— yl—(Sg Z (k‘r)1752

= y > ki,

which clearly holds. Hence f(y) is increasing for y > k. Since f(k}) = 0, it must be that w; (y) — 5 +
@)y Z 0 on FQ U Fg.

Onl'; UTy,
w—l(y) + ﬁb - /Bsy - Oly51 + ﬁb - /Bsy
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Hence

w_1(y) + B — Bsy > 0 <= C1y’ + By — Bsy > 0.

Letg(y) = C1y°" + B, — By. Then

Jdy) <0 <= C1oy" ' =B, <0

= C16y" 7 < B,
Bs

51—1 < — k* 61_1
<~ Yy — 0151 ( 2)

— y < k3,

which clearly holds. Hence g(y) is decreasing for y < k3. Since g(k3) = 0, it must be that w_ (y) +
By — Bsy = 0onl'y UTh.

On Fg,
(0 — Lyw_1(y) = (p— L)(Bsy — By)
= pBsy — pBy — LBy + LBy
= pBsy — p2Bsy + 1B — pB
= (p— p2)Bsy — (p — 111) Bo-
Hence,

(p—Lyw1(y) >0 <= (p—p2)Bsy = (p— 1) B

<:>y2p_'ul-&
P — M2 55
—03 o By
> . )
DR B N S )

— 02
= y > -k
y—1_62 29
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— 6y

_52

which holds, since y > k5 > 1 - k3.

On Fl,

(p— Llwo(y) = (p — L)(w-1(y) + wi(y))
=(p—L)w_a(y) + (p — L)wi(y)
=0+ (p— L)wi(y),

and we have already established that (p — £)w;(y) > O onT'.
On Fg,

(p = Llwo(y) = (p — L)(wi(y) + w-1(y))
= (p— L)wi(y) + (p — L)w_1(y)
=0+ (p— L)w_1(y),

and we have already established that (p — £)w_1(y) > 0 on ;.
On Fl 5

wO(y) - wl(y) + ﬁb - ﬁsy = Cly(sl + Bs - Bby - Bs + Bby + Bb - Bsy

= C1y™ + By — By,

and we have already established that '} y°' + By — By > 0onTy.

On FQ,

wo(y) —wi(y) + By — Bsy = Oy + Coy®™ — Coy® + By — Bay

= Olyél + /86 - 55%

6s



and we have already established that y°' + By — By > 0onTs.

On FQ,

wo(y) —w_1(y) — Bs + By = Ciy® 4 Cyy® — C1y°* — By + By

= Cyy™ — Bs + Byy,

and we have already established that Cyy®* — S, + By > 0 on I,

On Fg,

wo(y) — w_1(y) — Bs + By = Coy™ — By + Bsy — Bsy + By — Bs + By

= Cyy™ — Bs + Byy,

and we have already established that Coy®? — By + Bpy > 0on T,

3.5 A Verification Theorem

Theorem 4. We have v;(x1,12) = x1W; (z1> = Vi(zq,x9), 1 —1,0,L Ifinitially i = —1,
let 7y = inf{t >0: (X}, X}?) €T3} Ifinitiallyi = 1, lee 75 = inf{t >0: (X}, X?) € T'1}.
Finally, ifinitially i = 0, let 7¥ = inf {t > 0 : (X}, X}?) ¢ I's}. [f( 1:X72-1*> ey, thenu* = -1
and 73 = inf{t > 77 : (X}, X?) € 's}. Otherwise, zf( e XQ*
inf {t > 7 : (X}, X?) e T}

€ I's,thenu* = land 1y =

Proof. Given (p— A)v;(z1,22) > 0,7 = —1,0, 1, and applying Dynkin’s formula and Fatou’s Lemma

as in Dksendal [18], we have for any stopping times 0 < 71 < 75, almost surely,

Ee "M, (X1, X2) > Ee "™v; (X}, X2).

717 T2
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Hence, we have

vo(w1, w2) 2 E [e™ Mg (X, X7))]

T1)

>E [e vy (XL, X2) Iy <oo}]
>E [ (o (X5, X2) = 56X, + BX2) T ol

+E [e7 (vo (X}, X2) + B XL, — BX2) Ly <ot ue—1y]
=E [e7" o1 (X7, X7,) Lm <coojLu=ny]

T T T

+E [e7 Mooy (X7, X7) Tm<ooplfu=—1}]

+ E [6*1)7'1 (/BSXil - ﬁszl) ]I{Tl<°0}]1{“:—1}}

—E [e7™ (8X), — BsX2) Liry <o lfuzty]
>E [e7™01 (Xy,, X7,) Ln<ooj [u=1)]

X
+E [0 (X5, X7,) Lincoolfu=1y]
+E [ (8,X), — BoX2) Lz cooliu=1y]
—E [ (BX7, — BsX2) Lz, <oy Lfu=1}]
>E [e ™ (B:X,, — B X2) Lincoot Lfu=13)
—E [ (8,X), = B:X2) I <oy Tfu=—1y]
+E [e7™ (B,X7, = oX2) Lim<ootlu=—1y]
—E [ (X7, — BsX2) Lz <oy Lfu=1}]
=E[{e " (B:X), — BoX2) Lirycooy — € "™ (B X}, — B X2) Liry<oo} } Lumty
+ {e " (B X), = B X2) Lirycooy — € 7 (B X5, — BsX2) Liry<oo} L1y

= Jo (21,22, 71,72, 1),
forall 0 < 7 < 7. Thisimplies vy (1, 22) > Vo (21, 22). Also,

(o770 (X7, X5)]

’Ul(.flfl,ilfg) Z T0?

v

T0? ° T T0

E
E [e "™y (X1, X2) Liny<oo}]
E [e_pTO (BSX’EO B ﬁino) ]I{7'0<°0}]
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=E [~e ™ (B X5, — BsX7) Lim<oo)]

= Jl (l’l,fL‘Q,T()) )

and

T0? T0

E

>E [e vy (X7, X2) Liry<oo}]
E [epro (ﬁsX‘fl'o o ﬁbX‘?'o) I[{7'0<00}}
J

forall 0 S T0- Hence U1 ($1,$2) Z Vi (iL‘l, 1'2) and V_1 (iL‘l, 1'2) Z V,1 (1'1, 1’2).
Now define 7} = inf {t > 0: (X}, X?) & T5}. If (X%,X%) €'y, theny =

inf {t > 77 : (X}, X}?) € I's}. Otherwise, if (XTlf, X3f> € s, then 1y =

inf {t > 77 : (X}, X}?) € I'1}. Using Dynkin’s formula, we obtain

vo(z1,22) = [e_’”l*vo (Xi;, X?;) ]I{Tl*<oo}] :

E oy (X0 X% ) Trp oot | = B[00 (X35, X% ) Tisgcont]

and

E [6_/)71*21_1 <X71{"X72'f> H{rf<oo}: =E :e_PTgv_l (Xle*’X%) ]I{r;<oo}] .

vo(z1,22) =E :e_pﬁvo <X711*»X31*> H{n*<oo}]

=K [ei (Ul <Xif7X72-f> - /Binl* + 53X31*> ]I{Ti“<oo}]1{u*=1}]
+E B (Ufl (Xrll*aXE;> + 55X711* - ﬁbX?-l*> H{T{‘<oo}]1{u*=—1}]
—E e <Xl; ; Xf;) H{Tf<oo}]1{u*:1}}

+E [e oy (X4 X2 ) Tt cony T =1y
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+E [ (8,XL = BX2 ) T <o liue— 1y
—E :eipﬁ* (5erll* - ﬁerzl*> {Tl*<oo}]1{u*:1}}
_ [e—m*vl < ng,ng) H{Tg@}ﬂ{u*:l}}
+E [y (XY X2 ) T coy L=y
+E e (B,X4 = AXE) Tt con =1y
R :e_pﬁ* (@b P 55)(31*) ]I{T;@O}]I{u*:l}}
>E [67%* <5sX712* - 5be,;) H{r;<oo}ﬂ{u*:1}]
~E e (BX) — AX2% ) TrgconTpur—)
+E :e_pﬁ* (@sXTl; - 5bX31*> ]I{Tf<oo}]1{u*:—1}i|
_E :e_PTI‘ (@b X1 — BSXff) H{TKOO}]I{u*:l}}
—E[ {7 (8.X) = BX% ) Trgcoey — € (BXY = B X2 ) Tprg con) | Loy

+ {e*f’ﬁ* (ﬁszl* — Bbxf.f) Tir<ooy — €77 (ﬁin; - 6st;> I[{T;@o}} H{u*:fl}]

* _x %
= JO (331,332,7'1,7'2,u )
Similarly,

_ —p7y 1 2
vi(21, 72) =E [e o (XTS,X75> {Tg<oo}]
—p7 2 1
=E [6 PTo (65X7—6‘ - BbXTg) H{Tg<00}i|

= (Ilv T, Tg) )
v1(21,22) =E [(;mgv_l <Xflg, ng) H{Tg<oo}]

=F [e_PTS <55X716* — ﬁbXT2§> ]I{Tg<oo}]

=J_1 (21,29, 75) -
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3.6 A Numerical Example

As in Chapter 2, we consider adjusted closing price data for Walmart (WMT) and Target (TGT) from
2010 to 2020. The first half of the data is used to calibrate the model, and the second half is used to test
the results. Using a least-squares method, we obtain the following parameters: ©; = 0.09696, o =

0.14347, 011 = 0.19082, 015 = 0.04036, 091 = 0.04036, and 099 = 0.13988. We specify K = 0.001

and p = 0.5. Then we find k] = 0.85527, and k5 = 1.32175.

Next we examine the dependence of k7 and k3 on the parameters by varying each. In Tablefs.1, we see

that k7 and k3 both decrease in f11. This leads to a larger buying region, I's.

Table 3.1: k] and k3 with varying /1;

w1 | —0.00304 | 0.04696 | 0.09696 | 0.14696 | 0.19696
Ey | 0.91380 | 0.89057 | 0.85527 | 0.80194 | 0.72644
k3 | 1.54402 | 1.42682 | 1.32175 | 1.23477 | 1.17006

On the other hand, both £} and k3 increase in p2, as indicated in Table This creates a larger I'y and,

hence, encourages early exit.

Table 3.2: k] and k3 with varying 1,

o | 0.04347 | 0.09347 | 0.14347 | 0.19347 | 0.24347
k7 | 0.76457 | 0.81341 | 0.85527 | 0.88736 | 0.91037
k3 | 1.15468 | 1.21883 | 1.32175 | 1.48176 | 1.72581

When varying 011 and 029, as in Table[3.3/and Table we find that kT decreases while &3 increases,

in both 01; and 029. This leads to a smaller buying zone, I';, due to the increased risk, as well as a smaller

selling zone, I'3, because there is more price movement overall.
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Table 3.3: k] and k3 with varying o3

0.09082

0.14082

0.19082

0.24082

0.29082

0.92069

0.89220

0.85527

0.81532

0.77497

1.22784

1.26704

1.32175

1.38652

1.45871

Table 3.4: k] and k3 with varying 099

022

0.03988

0.08988

0.13988

0.18988

0.23988

0.88356

0.87601

0.85527

0.82593

0.79206

ks

1.27943

1.29045

1.32175

1.36871

1.42724

However, as 019 = 09 increases, we find that k] increases, while k3 decreases (Table3.s). The greater

correlation leads to a larger I';, and hence more opportunity for buying, as well as a larger I's, and hence

more opportunity for selling.

Table 3.5: £} and k3 with varying 019 = 093

012 | —0.05964 | —0.00964 | 0.04036 | 0.09036 | 0.14036
kT | 0.73242 0.79189 | 0.85527 | 0.92029 | 0.97527
k3 | 1.54345 1.42754 | 1.32175 | 1.22837 | 1.15911

Since p represents the rate at which money loses value over time, k¥ increases in p, while k3 decreases
P Y 1 2

in p, as in Table 3.6} reflecting the fact that we are less likely to want to hold in this case.

Table 3.6: k] and k5 with varying p

0.4

0.45

0.5

0.55

0.6

0.84068

0.84858

0.85527

0.86105

0.86611

1.40518

1.35725

1.32175

1.29425

1.27222

Finally, larger transaction costs discourage trading. Naturally, Table [3.7|shows that as K increases, k]

decreases and £ increases.
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Table 3.7: k] and k3 with varying K
K | 0.0000 | 0.0005 | 0.0010 | 0.0015 | 0.0020
k7 1 0.85698 | 0.85613 | 0.85527 | 0.85442 | 0.85356

k3 | 1.31911 | 1.32043 | 1.32175 | 1.32307 | 1.32439

2.5 i)

5 J Equity Curve: 2015/1/2 -- 2019/12/30 i
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Figure 3.3: 8! = WMT, 8* = TGT with threshold levels k7, k3

Using the stock prices of WMT (8') and TGT (S?) from 2015 to 2020, we backtest the pairs trading
rule. We found the pair (k1, k3) = (0.85527,1.32177) using the parameters obtained based on the
historical prices from 2010 to 2015. Since we assume that we are initially flat (¢ = 0), a pairs trade is
triggered when (X}, X2) enters I'; (short 8' and long 8?) or I's (long 8' and short §?). Depending on

which occurs first, the pairs position is reversed when (X}, X?) enters '3 or 'y, respectively. Initially,
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Figure 3.4: S' = TGT, §* = WMT with threshold levels ka , kg‘

we allocate the trading capital $100 K. When the first short signal is triggered, we simulate the short sale
of $50 K in WMT stocks and the purchasing of the same amount of TGT and reverse these trades when
the long signal is triggered. Each pairs transaction is charged $5 commission. In Figure 3.3} the ratio of
the stock prices is plotted against the thresholds k7 and k3. A second round trip can be initiated the next
time (X}, X?)isin I'; or I3 and will proceed accordingly. The final round trip will be closed on the last
trading day, 12/30/2019. The equity curve indicates the date at which each round trip trade is finished

and the proportion of profit earned.
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We can also interchange the roles by taking S' = TGT and S? = WMT. The new thresholds will
~ o~ 1 1
be (kj, k%) = ( ) = (0.75656, 1.16922). In Figure the ratio of the stock prices is plotted

against the thresholds /;i‘ and /;2" . Note that this results in the exact same sequence of trades as when the
roles were reversed. Hence, there is no need to consider this scenario.

On the final trading day, there is $181,351 in the account. The grand total profit is $81,351, an
increase of 81.35% in a five year span. Since only six trades are executed, the capital remains in cash most

of the time and will earn interest or can be used for short-term trading, giving us the opportunity to

turther increase our capital.
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CHAPTER 4

PAIRS TRADING UNDER A MEAN-REVERSION

MobpEL wiTH REGIME SWITCHING

4.1 Introduction

This is joint work with Dr. Phong Luu, Dr. Jingzhi Tie, and Dr. Qing Zhang. This chapter delves further
into the mathematics of pairs trading. Specifically, this chapter focuses on the scenario where the differ-
ence between a pair follows a mean-reversion model. Mean-reversion models are commonly employed in
financial markets to capture price movements that tend to gravitate towards an equilibrium level. We also
introduce the problem of regime switching. Market models with regime switching are important in mar-
ket analysis. In a mean-reversion model, the rate of reversion, the mean (equilibrium), and the volatility
are all subject to change in the long run. One way to capture these changes is to introduce a switching
process dictating sudden changes in system parameters.

The main purpose of this chapter is to study pairs trading rules under mean-reversion models cou-
pled with a two-state Markov chain. In particular, we consider an optimal pairs trading rule in which a
pairs (long-short) position consists of a long position of one stock and a short position of the other. The
pair’s value Z; is defined as a difference of the stock prices. The state processes (Z;, o) are modeled so
that Z; is mean-reversion coupled with a two-state Markov chain, a;. To focus on closed-form solutions,
we only consider the Markov chain with an absorbing state. The objective is to initiate (buy) and close

(sell) the pairs positions sequentially to maximize a discounted payoft function. A fixed (commission
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or slippage) cost will be imposed to each transaction. We study the problem following a dynamic pro-
gramming approach and establish the associated HJB equations for the value functions. We show that
the corresponding optimal stopping times can be determined by four threshold levels z1, x2, 3, and x4.
These key levels can be obtained by solving a set of algebraic-like equations. In addition, we provide a
set of sufficient conditions that guarantee the optimality of our pairs trading rule. We also examine the

dependence of these threshold levels on various parameters in a numerical example.

4.2 Problem formulation

We consider two stocks S and S%. Let X} and X7 denote their prices, respectively, at time ¢. The cor-
responding pairs position consists of a long position in S* and short position in S?. For simplicity, we
include one share of S and K shares of S? (for some K > 0) in the pairs position. The price of the
position is given by Z; = X} — Ko X7 . We assume that Z; is a mean-reverting (Ornstein-Uhlenbeck)
process governed by

dZt = 9(0[15){/,6(@15) - Zt]dt + O'(Oét)th, ZO =X,

where 0, 11, and o are functions of a two-state Markov chain a; € {1, 2}, and W} is a standard Brownian

motion independent of a;. In this chapter, we consider the Markov chain with the absorbing state o = 2.

A A

, for some A > 0.
0 0

In particular, its generator is () = (

Remark 4.2.1. Our main focus is the full characterization of the solution in closed form. In view of this,
we limit our attention to the above setup. Generalization of the HJB equations to the case with more
than two states is possible, but their closed-form solutions are difficult to obtain. As for the absorbing
state condition, it will not much affect the applicability of the results in practice, because pairs trading
typically involves short-term actions, while switching in market modes is of longer term. The Markov
chain with an absorbing state will help to capture a major portion of the switching effects under our

discounted reward functions.

In this chapter, one share long in the pairs position Z means the combination of a one-share long

position in S and a K-share short position in S?. Note that the value of the pairs position Z; may be
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negative. Let 0 < Tf <7 < Té’ < 75 < --- denote a sequence of stopping times. A buying decision is
made at 72 and a selling decision at 75, n = 1,2, . . ..

We consider the case that the net position at any time can be either long (with one share of Z) or flat
(no stock position of either S or S?). Let i = 0,1 denote the initial net position. If initially the net
position is long (¢ = 1), then one should sell Z before acquiring any future shares. The corresponding
sequence of stopping times is denoted by Ay = (7§, 7%, 75,72, . . .). Likewise, if initially the net position
is flat (¢ = 0), then one should start by buying a share of Z. The corresponding sequence of stopping
times is denoted by Ag = (70, 75,70, 735, .. ).

Let K > 0 denote the fixed transaction cost (e.g., slippage and/or commission) associated with buy-
ing or selling of Z. Given the initial state (Zy, ag) = (, @), initial net position i = 0, 1, and the decision
sequences, Ao and Ay, the corresponding reward functions are

n=1

B [e—pﬂi(zﬁ — K)—e " (Zp + K)] 1{73@}}, ifi =0,

Ji(x,Oé,AZ-) = E eipr(ZTls - K)

+3 [e—mﬁ(zﬁi — K)—e " (Z + K)} I{Tkoo}}, ifi =1,
n=2

\

oo
where p > 0 is a given discount factor. In this paper, the term E g &n is interpreted as

n=1
N

limsup E Z &y for given random variables &,,.
n=1

N—o0

4.3 Properties of the Value Functions

Let V;(z, ) denote the value functions with the initial state (Zy, ag) = (, @) and initial net positions
1 =0, 1. Thatis,
‘/i(x7 Oé) = sup Jl(‘ru «, Az)

A;
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It can be shown as in Song and Zhang [19] the following inequalities hold:
‘/O(xaoé) Z ‘/I(xa Oé) —T— Ka ‘/1(.15,04) Z ‘/b(l',a) +r— K7
and, for some constants C; and Cy,

0 < Vo(z,a) < Cy|x| + Cy, andz — K < Vi(x, ) < Ch|z| + Cs. (4.1)

4.4 HJB equations

Let Ay, @ = 1,2, denote the generator of (Z;, o). Then,

A1) =% LD 4 gy - N | 3o, 2) — o 1)),
Av(x,2) = % % + Oz (g — x)%

The associated HJB equations are given by:

min{[,o—/ll]vo(x,l), vo(z,1) —vi(z, 1) + o+ K

min

min

[p— Ai]vi(z, 1), vi(x, 1) — vo(x, 1) —:E+K}
[p — Az]vo(,2), vo(z,2) — vi(z,2) +x+K}

min

—~ =

o — AsJon (2, 2), v1(2,2) — vo(2,2) — z + K} —0.

These HJB equations are equivalent to the corresponding set of variational inequalities outlined in
Oksendal [18]. Each equation consists of two parts. The continuation region is determined by the first
part, while a buy/sell action is dictated by the second part.

To simplify the notation, we let

uj(z) =v;j(z,1) and w;(z) =wv;(z,2)forj=0,1.

78



up(z)=ui(x)—z —K [p— Ai]up(z) =0

1
lp — AiJui(z) = 2 ui(z) = up(z) + 7 — K ]
wo(z) =wn(z) = K [p— Aslun(x) = 0
€3
[p— Adui () = 0 % @) —wol@) oK

Figure 4.1: Continuation Regions (darkened intervals)

The HJB equations can be written in terms of these functions:

min {[p — AJuo(x), uo(x) — wi(z) + a + K} —0,

min{[p—.Al]ul(x), ul(x)—uo(x)—x+K} = 0. )
43
min {[p — As]wo(x), wo(z) — wy(x) +x + K} =0,

min {[p — As]wn (), wy(x) — wo(x) — 2z + K} = 0.

Intuitively, the optimal strategy should be of the buy-low-and-sell-high type as in [19]. One would
expect threshold levels x1, 29, 23, and 24 (with 21 < 29 and 23 < 4) asin Figure if o, = 1buy
when Z; < 1 and sell when Z; > x9; and if oy = 2 buy when Z; < 23 and sell when Z; > 4.

Note that the last two equations in are independent of &, = 1 due to the absorbing state. We

can solve for them separately. To this end, we first start with the equation [p — As]w;(z) = 0, which is

o5 d*w;(x)

dw; ()
dx

2 dz?

+ 02(p2 — ) — pwj(z) = 0. (4.4)
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The equation for w;(x) is homogeneous. As shown in Eloe at al. [7], it has two linearly independent

solutions given by

1#1 (.CE) — / nQ(t)e—nz(Mz—x)tdt and wQ(gj) — / nQ(t)GKQ(NQ_I)tdt,
0 0

where rig = /205 /79, By = p/02, and n(t) = t727 L exp(—t2/2). Note that ¢y (z) — Oasx — —o0
and Y5 (x) — Oasz — oo.

In view ofFigure the solution for the equation min {[,O—Ag]w()(l’), wo(z) —wl(x)—l—aH—K} =
0 has the form wo(x) = wy(x) — x — K forx < x3;and [p — As|wo(z) = 0 for x > x3. The linear
growth conditions on the value functions imply, for some A, wo(x) = Agie(x) for z > 3.

Similarly, the solution for the equation min {[p — As]w (), wi(x) — wo(x) —x + K} = 0 has
the form wy (z) = wo(z) +x — K forxz > 45 and [p — AsJwy () = 0 for z < x4. The linear growth
conditions imply, for some Ay, wy(x) = Ay (z) forz < z4.

Therefore, we have

Ayp(x) —x — K forx < x3, Ay () forx < 1y,

wo(r) = and  wy(z) =
Aostho () forx > w3, Astho(z) +x — K forz > x4.

Then the smooth-fit conditions at 23 and x4 yield

Ay (z3) — 23 — K = Agthy(x3), Ay (14) = Agtho(24) + 24 — K,

and

Ay (w3) — 1 = Apy(x3), Ay (z4) = Agty(xy) + 1.

We can rewrite the above system in matrix form to get

Y1(x3) ha(ws3) Ay 3+ K U1 (z4) Yo(z4) Ay Ty — K

= and =

Vi(zs) ¥y(x3) ) \—As 1 Vi(xa) Uy(ma) ) \—As 1

8o



This implies 23 and 4 have to satisfy

-1 -1

Ar | [ alws) do(as) z3+ K\ [t1(za) a(z4) vy — K (45)
— Ay U(xs)  y(xs) 1 () y(xa) 1
Once we find x5 and x4, we can then find A; and As.
Next, we move on to solve the first two equations in (4.3). First, note that the homogeneous equations
[p — Ai]uj(z) = 0 are given by
ot d*u;(z)
2 da?

du, ()
dx

+01(m — ) = (P 4+ N, (2) = =Aw; (2).

The lemma below is about the solution of the above non-homogeneous ODE.

Lemma 3. The general solution of

df(z)

—(p+ N f(x) = —Ag(x) (4.6)

is of the form

)\ o0
/ g(y) K (x,y, p)dy,
0 J_

flz) =G / n(t)e ™ B2dt + Cy / n()errdr +
0 0

g

for constants Cy and Cs. Here.

K.y, p) = /01 11— ) exp {_ﬁ [(z — pu+ (u—y)” } .

o2 1 —u?

and k and 1)(t) are given by
K=~ and f = “—=; n(t) =t Lexp(—t*/2).

Proof. To find the general solution of , we only need to find a special solution. We use the method of

Fourier transform to reduce the second order equation of x to a first order equation of its dual variable,
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§. Define the Fourier transform with respect to « as

u(é) = / h e~y (2)d.

o0

Then its inverse is given by

u(w) = % /_ () dE .

We consider the case when the solution of (4.6)) has decay properties

lim xf(z)=0.

|z|—o00

This yields
P = [ e raa
)| i [ e
225/ e % f(z)dx
and

@) = / " e f(a)da = Zd%f(i)

Applying the Fourier transform to Equation (4.6]) and using the above properties, we obtain

0'2 -~ ~

BHEF(E) — 10 i€ TIE)] — TETE) — (0 + NF(E) = ~X51)

d¢
We rewrite the above equation as follows

-~

O ETEN + i€ — (p-+ 3 — TEIF(E) = 251(6).

Letu(§) =¢ f(ﬁ ). Then we have a first order linear equation



This equation can be written in the standard form of the first order linear equation:

This linear equation has a multiplier

2 A o2 42
N O

d
dé

By integrating both sides, we find

This leads to
o2 ¢2 A PN e 022
[ue)e e ] = Zge)e e

A

ug)e e 5 — -3 [Gee T eneBedg 1

where ¢ is an arbitrary constant. So the solution «(¢) in integral form is given by

| ¢ o, o
u(§) = —%fﬁke_wgﬁigz/ ﬁ(ﬁ)ﬁ_%e’“n‘ﬁnzdn T S arna
o

This implies
13
&) = ——pr e 49{2/ /g\(n)ﬁ_%ei“n‘%*dn + 05%‘1e—w§+%§£2.
o

We want to find a special solution with certain decay properties, so we take {; = oo and ¢ = 0. Hence

we have a closed form:

gt / GOy 7 ey,
3

Introducing a new variable s = 7/&, we then have n = £s and

(e = %e—m&‘;zg?/ G(s€)s™ o5 e 5 .
1
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o0

Substitute g(£s) = / e~ g(y)dy into the last integral and we obtain

fA(g) = %eiu@riﬁ@/ / g(y)s " oiHEs— zgsyfﬁé dyds.
1 —00

Applying the inverse Fourier transform, we have

27T9 / / / QITE—IHEFipEs— Zésy*f(82*1)£29(y)3*%dyd5d5
g(y)/ s —242 T i Fipgs —igsy— 71)52d£dsdy.
1

—00

27T€

The integral with respect to § can computed explicitly by apply the following formula:

/ eE € 4 = %ﬂe—

—00

This yields

oo 2
/ eixffiuf(l s)— zfsyf—(s2fl)£ dé _ z . w0 exp {_9[1’ — [+ (:u _ y)S] } )
— O' J—

o0

Hence we obtain

Let Ko(z,y, it) be the inside integral:

O A . e

fx) =

Letu = 1/s in the previous integral. Then we have

K(z,y, 1) = /01 W1 — ) exp {—ﬁ (o= put (u=—y)l } du.

o2 1 —wu?
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In view of Lemma, the solutions of the homogeneous equations [p — A;|u;(z) = 0 from the first

two equations in (4.3)) are of the form, for j = 0, 1,

uj(r) = Bi1¢1(x) + Baga(z) + 75(2),

for some constants B; and Bs, where

o) = [ (e ar,

0

o) = [ miermrar,
0

A o0
v () = 0_1—\/7T—61/_()o w;(y) K (z,y, pr)dy,

with
V20, + A _
=Y g = P2 () = 1P exp(—12/2),
01 91
and

K (2,9, 1) = /01 W1 = w?)F exp {—ﬁ [ = m)u st = y)f } du.

o? 1—w?
Again, in view of the linear growth conditions , it follows that
Bi(x)p1(x) +1(x) —x — K, forz < a,

up(z) =
B2¢2(I) + ’}/o(l’), forx Z Xy,

and

Bio1(x) + 7 (x), forx < xo,
u (z) =
Bypo(z) + vo(z) + . — K, forz > xs.

Then, the smooth-fit conditions at 21 and x5 yield

Bi¢1(z1) + 711 (z1) — 21 — K = Baga(x1) + vo(21),

B¢ (21) + 71 (z1) — 1 = Bagh(z1) + 75(21),
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B1¢1(x2) + 71(x2) = Baa(w2) + Yo(22) + 22 — K,

B¢ (z2) + 71 (22) = Bagp(2) + vp(w2) + 1.

These can be written in matrix form as follows:

It follows that
By _ ¢1(71)  P2(71
—Bs Pr(z1) Pl

(22)
(22)

The last equality can be used to determine 1 and x5 and then B; and Bs.

To summarize, the solutions of the HJB equations have the following forms:

(

Biopi(x) + yi(x) —z — K, forx < xq,
up(z) =
| B20a(2) + 70(), forz > 1,
\
Blgbl(l’) + ’71(1’), forx < T,
u(z) =
\ngbg(aj) +v(z)+x— K, forx > x,,
and )
Ay (z) — 2 — K, forx < x3,
wo(x) =
Agihe(x), for v > x3,
Ay (), forx < x4,
wy () =
Agthg(x) +x — K, forx > xy.
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Variational inequalities for w, and w;

Note that the HJB equations consist of both equalities and inequalities. Next, we focus on the
inequality parts. We first consider wy () and wy (). Recall that, on (—o0, 23), [p — As]w; (z) = 0and

wo(z) = wy(z) — x — K. The corresponding inequalities are given by
[p — AsJwo(x) >0 and wy(z) > wo(z) + 2 — K.
Since wy (x) = A1¢1(z) and wo(z) = A1y () — x — K, it follows that

0 < [p = AsJwo(z) = [p — As](wi(z) —z — K)
=—(p—A)(z+ K)=—p(z+ K) + As(z + K)

= —p(z + K) + 02(pi2 — x) = bap10 — pK — (p+ 02)x

is equivalent to

Osp1o — pK
r < 227 PR fora < x3,
p+ 6
which is equivalent in turn to
Otz — pK
Ly < ———— .8
3> o1 6, (4-8)

The other inequality wy (z) > wy(z) + 2 — K holds since wy (z) = wo(x) +x+ K > wo(x) + 2 — K.

Next, on (23, 4), the corresponding inequalities are

r— K <w(z)—wy(zx) <z + K < |w(z)—wo(z)—z| <K

with U)O<£IZ'> = AQlﬂQ(iIZ’) and w1 (x) = Alwl (x) This 1mphes

A1 (z) — Agihe(x) — 2| < K, for x € (23, 24). (4-9)

Finally, on (z4,00), [p — As]Jwo(z) = 0and wy(xz) = wo(z) + 2 — K. The corresponding
inequalities are

[p— AsJwi(x) >0 and wo(z) > wi(z) —z — K.
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Since wo(z) = Aghe(x) and wy () = Agthe(x) + x — K, we have

0 < [p— AsJuwi(z) = [p — As](wo(z) + 2 — K)

=(p—A)(z — K) = (p+62)x — (pK + Oap12)

is equivalent to
Oap12 + pK
x> ——

, forx > xy,
B ,0+92 =

which is equivalent also to
Oapio + pK
Ty > ————.

The other inequality wo(x) > wq () —2 — K holds since wy () = wy(z) —x+ K > wy(z) —z — K.

Variational inequalities for vy and u;

We next consider the inequalities for 1y () and u («) on the intervals (—00, 21), (21, 22) and (22, 00).
First, on (—00, 1), we have ug(z) = ui(z) —  — K and [p — Aj]u; (z) = 0; and the corresponding

inequalities are [p — Ajjug(z) > O0and uy(x) > ug(x) +  — K. The second inequality holds since
2 2
o7 d

d
2 a2 Tl g

uy (7) = up(x) +x+K > ug(z) +2 — K. Tosimplify the notation, let A} = e

Then, we have
0 < [p— AiJug(z)
is equivalent to

0 < (p— AY)uo — Mwo(x) — uo(x))
= (p+ Nug(z) — Alug(z) — Mwo ().

Note that

(p—ADui(z) =0 <= (p+Nu(z) — Aui(x) = My ().
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Combine these to obtain

< (p— Auo(x) = (p+ Nuo(x) — Afug(x) — Awo(x)

= (p+ N (2) =2 — K] = Afur() — & — K] — Awo ()
=(p+Nuy(z) — Alus(z) — (p+ A (2 + K) + Az + K) — dwg(z)
= Awi(z) —wo(x)] = (p+ M@ + K) + 01 (11 — )
= Awi(z) —wo(@)] + 611 — (p+ A+ b1)z — (p+ A K,

which is equivalent to
Mwi(z) —wo(x)] +61p1 — (p+ A+ 601)z — (p+ ANK >0, forz < ;. (4.11)
Next, on (21, Z2), the corresponding inequalities are
up(z) > ui(z) —x — K and w(x) > up(z) + 2 — K,

which are equivalent to |u; (z) — ug(x) — x| < K. Recall thatuy (x) = By¢y(x) + 7 (x) and up(z) =
Bypa () + Yo(x). It follows that

|B1o1(z) + 71(x) — Baga(x) — vo(z) — 2| < K, forzy < x < 9. (4.12)

Finally, on (22, 00), we have [p— A, |Jug(x) = 0and uy () = ug(x)+2x — K;and the corresponding
inequalities are

up(z) > ui(x) —x — K and [p— AjJui(z) > 0.

The first inequality holds since ug(z) = u1(z) — x + K > u;(z) — x — K. For the second inequality,

we note that

[p— AlJuo(z) =0 <= (p+ Nuo(z) — Alup(x) = ()
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and
0 < [p—AiJui(z)
is equivalent to

0<[p—AJur — Awi () — ui(2))
= (p+ Nuy(2) — Alui(z) — Iwy ().

Combine these to obtain

0<(p—Aui(z)
= (p+ Nus(z) — Ajus(z) — Awi (2)
= (p+ Nuo(z) + z — K| — Aug(z) + . — K| — Mwy ()
= (p+ Nuo(z) — Afug(z) + (p + M) (2 = K) = Aj(z — K) — dwi(z)
= Awo(z) —wi(2)] + (p+ A)(z — K) = (1 — 2)
=

Wo\T
[wo(z) —wi(@)] = O + (p+ A+ 01)z — (p+ A K,
which is equivalent to
Mwo(z) —wi(x)] — O + (p+ A+ 01)x — (p+ ANK >0, forx > xo.

To summarize the results obtained so far, we have
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Theorem 4.4.x. Let x1 and x5 be given in @) and T3 and x4 in . Assume the inequalities @,
, , , , and hold. Then, the functions

(

Bigi(w (@) —o - K forx < x4,
wo(,1) = wo(z) = 4 DT N) fora <

\ngbg(l’) + ’Yo(l’) fbi"[E > Xy,

;

Bigi(z) + () Jorx <z,

\B2¢2(1‘) + @)+ —K forx > x,

and )

Ay () —z — K forx < w3,
vo(z,2) = wo(z) =
Agthy () forx > x3,
A1¢1(x) fb;"l’ < Ty,

A2¢2($) +x— K _fOVCL’ Z Ty,

v1(z,2) = wy(z) =

satisfy the HIB equations .

4.5 A Verification Theorem

We state a verification theorem next. Its proof can be given similarly as in Song and Zhang [19].

Theorem 4.5.1. Assume the conditions of the previous theorem and vy(x, o) > 0. Then, v;(z, o) are the
value functions, i, vi(x,a) = Vi(z,a), fori = 0,1, « = 1,2, and x. Let Dy = {(z,1) : = >
1} U{(2,2) 1 v > a3} and Dy = {(x,1) 1 v < 22} U{(2,2) : © < x4}. Ifinitiallyi = 0, let
Ay = (28,7175, ) with ™ = inf{t . (Zy, o) & Dy}, 78 = inf{t > 70 : (Zy, o) € D},
= inf{t > 77 : (Zy,o0) & Dy}, and soon. If initiallyi = 1, let N\t = (75,75, 75,...) with
5 =inf{t: (Z;,ay) € Ds}, 78 = inf{t > 75 : (Zy, ) € Dy}, 75 = inf{t > 72 (Zs, ) € Dy},
and so forth. Then, Ay and Ny are optimal.
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4.6 A Numerical Example

In this section, we consider a numerical example with the following specifications:
1 =0,u0 =0.5,00 =1,00 =1,01 =0.5,00 = 0.5, A =3,p=0.1, K = 0.003.

We use Newton’s method to solve the equations in to obtain x3 = 0.295314 and x4, = 0.498290.
Then we use these 23 and 24 to solve the equations in togetx; = —0.118156 and z9 = 0.132020.
Here the inequalities and are used to limit the range for 23 and 24 and can be verified directly
with the values of x3 and x4 respectively. Also, the solutions for and consist of a set of pairs.
The rest of the inequalities (4.8)-(4.13) are used to select the pairs that satisfy all of them. Here each of the
inequalities (4.9)), (4.11)-(4.13) can be rearranged in the form f(x) > 0, and be verified by the minimum
of f(x) being non-negative on the corresponding interval. The corresponding value functions u, u1,

wo, and wy are plotted in Figure.2]

We next vary one of the parameters at a time and examine the dependence of (1, 22, 23, x4). First we
examine the dependence of (21, 2, 3, 24) on 1. As can be seen in Table both x1 and x5 increase in
ft1. This is because /41 is the mean level when av = 1. As yuy rises, it raises the trading band corresponding

to o = 1. Note that in this case, neither 3 nor x4 is affected due to the fact that o = 2 is absorbing.

Table 4.1: 1, T9, 23, x4 with varying 11y

M1 T T2 x3 T4

—0.2 | —0.282615 | —0.032631 | 0.295314 | 0.498290

—0.1 | —0.200239 0.048728 0.295314 | 0.498290

o —0.118156 0.132020 0.295314 | 0.498290

0.1 —0.035907 0.215687 0.295314 | 0.498290

0.2 0.048433 0.299286 0.295314 | 0.498290

Similarly, as we vary ji2, 3 and 4 exhibit similar behavior, while 21 and 25 barely change. This can

be seen in Table
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Figure 4.2: Value Functions uo(z), u1 (), wo(z), and wq ()
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Table 4.2: x1, 22, x3, 4 with varying 1o

M2 T1 X2 z3 T4

0.3 | —0.117226 | 0.133386 | 0.136663 | 0.339629

0.4 | —0.117777 | 0.132596 | 0.216005 | 0.418976

o5 | —0.118156 | 0.132020 | 0.295314 | 0.498290

0.6 | —0.118395 | 0131627 | 0.374582 | 0.577565

0.7 | —0.118533 | o0.31391 | 0.453802 | 0.656792

Next, we vary 0. As ¢, increases, 71 increases while 75 decreases (Tablel.3). This is because 0 is the
mean reversion rate when o = 1. The larger the 0, the more forceful the Z; is pulled back to its mean,

resulting in a smaller trading band around the mean level.

Table 4.3: 21, T2, 23, 24 with varying 0,

01 Z1 €2 x3 Ty

0.8 | —0.123438 | 0.139573 | 0.295314 | 0.498290

0.9 | —0.120738 | 0.135682 | 0.295314 | 0.498290

I —0.118156 | 0.132020 | 0.295314 | 0.498290

L1 | —0.115716 | 0.128606 | 0.295314 | 0.498290

r2 | —0.113420 | o.a25437 | 0.295314 | 0.498290

Similar behavior is observed in Table[4.4/for 23 and 24 as 65 varies.

Table 4.4: 1, x9, w3, 14 with varying 6,

02 Z1 Z2 z3 Ty

0.8 | —0.118137 | o.132050 | 0.284158 | o.501107

0.9 | —0.118148 | 0.132033 | 0.290217 | 0.499713

I —0.118156 | 0.132020 | 0.295314 | 0.498290

1 | —0.118163 | o.132010 | 0.299681 | 0.496885

12 | —0.118169 | o.132001 | 0.303479 | 0.495519

In Tables [4.5] and we vary 0 and 09 separately. Larger volatility corresponds to a wider price

range. As a result, we see a wider trading band (smaller 2; and bigger x5 or smaller 23 and bigger 4).
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Table 4.5: 21, T2, 23, 14 with varying oy

g1 T T2 T3 L4

0.3 | —0.083771 | 0.095985 | 0.295314 | 0.498290

0.4 | —0.101716 | o.114706 | 0.295314 | 0.498290

o5 | —0.118156 | 0.132020 | 0.295314 | 0.498290

0.6 | —0.133533 | 0.148252 | 0.295314 | 0.498290

0.7 | —0.148118 | 0.163604 | 0.295314 | 0.498290

Table 4.6: 1, T2, 3, 74 with varying oy

g2 1 €2 €3 Tyq

0.3 | —0.118162 | o0.132014 | 0.323132 | 0.467952

0.4 | —0.118160 | o.132016 | 0.308772 | 0.483890

o.5 | —0.118156 | 0.132020 | 0.295314 | 0.498290

0.6 | —0.118151 | 0.132026 | 0.282604 | 0.511634

0.7 | —0.118146 | 0.132033 | 0.270515 | 0.524185

Next, we vary K. Alarger K discourages frequent trading. This can be seen in Table[4.7]by decreasing

x1 (and x3) and increasing =5 (and x4), respectively.

Table 4.7: 21, T2, T3, 14 with varying K

K X1 X9 T3 T4

o.001 | —0.083112 | 0.087305 | 0.327876 | 0.468124

0.002 | —0.103943 | o0.112881 | 0.308834 | 0.485869

0.003 | —0.118156 | 0.132020 | 0.295314 | 0.498290

0.004 | —0.129196 | 0.148099 | 0.284446 | 0.508168

0.005 | —0.138306 | 0.162345 | 0.275191 0.516505

Finally, we VaI'Y/\(With M1 = 05, Mo = 0, 91 = 92 = 1, 01 = 09 = 05,/) = 01, and K = 0003)
Recall that (x5, x4) is associated with the absorbing state v = 2 and therefore independent of A. As A

increases to infinity, the corresponding (1, z2) decreases and approaches to (x5, 24). This trend can be

seen in Table

95



Table 4.8: 21, 9, 73, 74 with varying A

T T2 T3 T4

I 0.317598 | 0.573764 | —0.101480 | o.101480
5 0.229788 0.469172 | —0.101480 | o.101480
10 0.104981 0.319730 | —0.101480 | o.101480
20 0.042377 0.207961 | —0.101480 | o.101480
so | —0.036283 | 0.083097 | —0.101480 | o.101480
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APPENDIX A

MATLAB CoDEs

Codes for Chapter 2: Round-Trip Pairs Trading under GBM

Tolololototolololololotototototo o oo oo o o o o o o o o o o o o o o oo tototo oo o o o o o o o o o o o o o oo To oo to oo o o o o o o o o o o
% Computing Least-Squares Parameters for Stock 1 and Stock 2

Yool ToToTo 1o To o o o To ToTo o To o o o Jo ToTa o o o o o o To oo oo o o o To oo oo o o o To oo oo o o To To oo oo o o To T oo oo o o To T o oo o o

format longg

T2=readmatrix (°’WMT1015.csv’);  %%% input Stock 1 price data
Tl=readmatrix(’TGT1015.csv’); %%k input Stock 2 price data
S=[T1(:,6),T2(:,6)];

N=size(S(:,1));

M=size(S(:,2));

N=N(1);

M=M(1);

N=min (N,M) ;

for i=1:N-1

ul(i,1)=log(8(i,1)/S(i+1,1));
u2(i,1)=1og(S(1,2)/8(i+1,2));
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end

ul_bar=sum(ui(:,1))/N;
u2_bar=sum(u2(:,1))/N;

for i=1:N-1
bb1(i,1)=(ul(i,1)-ul_bar)*(ul(i,:)-ul_bar);
bb2(i,1)=(u2(i,1)-u2_bar)*(u2(i,:)-u2_bar);
bb12(i,1)=(ul(i,1)-ul_bar)*(u2(i,:)-u2_bar);

end

bbl=sum(bb1(:,1))/(N-1);
bb2=sum(bb2(:,1))/(N-1);
bb12=sum(bb12(:,1))/(N-1);

sigmal=sqrt (bb1x252) ;
sigma2=sqrt (bb2x252) ;
sigmalsigma2=(bb12%252) ;

bO=min(sigmal,sigma?2);

minB=1000;

for j=0:10000
b=b0*j/10000;
aa=abs (b*(sqrt(sigmal*sigmal-b*b). ..
+sqrt (sigma2*sigma2-b*b))-sigmalsigma?) ;
if aa<minB
minB=aa;

b_star=b;
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end

end

b=b_star;
s12=b_star;  %h% output Stock 1/Stock 2 correlation constant
s21=b_star; %%k output Stock 1/Stock 2 correlation constant
sll=sqrt(sigmal*sigmal-b_star*b_star);

%kt output Stock 1 volatility constant
s22=sqrt (sigma2*sigma2-b_star*b_star) ;

%kt output Stock 2 volatility constant

for k=1:N
X (k)=k/252;
Y(k,1)=1log(S(k,1));
Y(k,2)=log(S(k,2));

end

for k=1:N
AAO(k, 1)=X(k)*X (k) ;
BBO(k,1)=X(k);
CCO(k,1)=X(k)*Y(k,1);
CC1(k,1)=X(k)*Y(k,2);
DDO(k,1)=Y(k,1);
DD1(k,1)=Y(k,2);

end

AAO1=sum(AAOC(:,1));
BBO1=sum(BBO(:,1));
CCO1=sum(CCO(:,1));
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DDO1=sum(DDO(:,1));
CC11=sum(CC1(:,1));
DD11=sum(DD1(:,1));

A1=(CC01-BB01*DD01/N)/(AA01-BBO1*BB0O1/N) ;
B1=(DD01-A1*BB01)/N;

A2=(CC11-BB01*DD11/N)/(AA01-BBO1*BB01/N) ;
B2=(DD11-A2%BB01) /(N) ;

m1=A1+0.5*sigmal*sigmal; %%/ output Stock 1 return rate

m2=A2+0.5*sigma2*sigma2; %%k output Stock 1 return rate

Voo 1o oo o ToTo o o o ToTo o o o ToTo o o o To o o o Jo To o o o Jo ToTo o o To T To o o To o o o o To T o o ToTa o o o To o o o o To o o o Jo To o o o ToFo o o o o
% Computing k_1, C_2
oo ToToTo o ToToo To o JoToo o o ToTo o o o To o To o o To o o o o To o o o To oo o o To o o o o To o o o To oo o o To 1o o o Jo o 1o o o To o o o To o Jo o o o

K=0.001; %%k input transaction costs

r=0.5;  %k% input discount factor

Bb=1+K;

Bs=1-K;
all=s11~2+s1272;
al2=s11%s21+s12%s22;
a22=821"2+s2272;
1=(al1-2%al2+a22)*0.5;

d1=0.5*%(1+(m1-m2)/1+((1+(m1-m2) /1) ~2+(4*r-4*m1) /1)~ (0.5));

%h%h output delta_1
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d2=0.5% (1+(m1-m2) /1- ((1+(m1-m2) /1) ~2+(4*r-4*m1)/1)~(0.5));

%% output delta_2

k1=(Bs/Bb)*(-d2/(1-d2))  %%% output k_1
C2=(Bb/(-d2))*k1~(1-d2); %%k output C_2

Tololotatotolololololototototolo o oo oo o o o o o o o o o o o o o o ototototo oo o o o o o o o o o o o o o oo o To o oo To o o o o o o o o o o o
% Plotting Equation to Show Existence of k_2, C_1
Tolotototototolololo ot totototo oo o oo o too o o o o o oo o oo To o otototo oo o o o o o o o o o o o o o e oo To o oo oo o oo o o o o o o e

syms x
eqnleft = C2%(d1-d2)*x~(d2)+Bs*(d1-1)*x-Bbxdl;
eqnRight = 0;

fplot([eqnLeft eqnRight])

hold on

axis([0,2,-0.8,5])

k2 = vpasolve(eqnLeft == eqnRight, x, 1.5) %%k output k_2

plot(k2,0,’ko?)

labels={’(k_2,0)’};

text (k2,0,labels, ’VerticalAlignment’, ’bottom’, . ..
’HorizontalAlignment’,’right’);

title(’Solution to f(y)=0’)

C1=(C2*d2*k2~ (d2-1)+Bs)/(d1¥k2~(d1-1));  %%% output C_1

1o 1o To o ToTo o To o o JoTo o o ToTo o ToTo o JoTo o Jo To o o To o o Jo o o Jo To o o ToTo o Jo o o To T o o To o o ToTo o Jo T o o To T o To T o Jo o o o To o o To o o
% Stock Trading Simulation

Tolo oo oo To oo o ToToToToToToTo oo o 1o 1o 1o o o o o o o o o o o o o To To T ToTo oo oo oo oo o o o o o o o o o o o To T T ToTo T oo o oo o o
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format longg

T4=readmatrix (’WMT1520.csv’); %%/ input Stock 1 price data

T3=readmatrix(’TGT1520.csv’);  %h/k input Stock 2 price data

SS=[T3(:,5),T4(:,5)]1;
NN=size(SS(:,1));
MM=size(SS(:,2));
NN=NN(1) ;

MM=MM (1) ;

NN=min (NN,MM) ;

XX=zeros(size(SS(:,1)));

for i=1:NN

XX(i,1)=SS(i,1)./S8s(i,2); hhte y = x_2 / x_1

end

YY=zeros(size(SS));

for i=1:NN
YY(i,1)=k2;
YY(i,2)=ki;

end

count=1;
for i=1:NN
if XX(i,1)>=k2
G3(count,1)=1i;
count=count+1;
end

end

%%/ Dates on which y lies in Gamma_3
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count=1;
for i=1:NN
if XX(i,1)<=ki1
Gl(count,1)=i; %% Dates on which y lies in Gamma_1
count=count+1;
end

end

p=100000
pl=p+(p/2)/SS(G1(1,1),1)*SS(G3(1,1),1)...
-((p/2)/8S(G1(1,1),2)*8S(G3(1,1),2))-20

hht profit from first round trip

for i=1:G3(1,1)-1
eq2(i,1)=p;

end

for i=G3(1,1):NN
eq2(i,1)=p1;

end

count=1;
for i=1:size(G1)
if G1(i,1)>G3(1,1)
Gl(count,1)=G1(i,1);
count=count+1;
end

end
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p2=pl+(p1/2)/SS(G3(1,1),2)*SS(G1(1,1),2) ...
-((p1/2)/8S(G3(1,1),1)*SS(G1(1,1),1))-20

%kl profit from second round trip

for i=1:G1(1,1)-1
eql(i,1)=p1;

end

for i=G1(1,1):NN
eql(i,1)=p2;

end

count=1;
for i=1:size(G1)
if G1(i,1)>G3(1,1)
Gl(count,1)=G1(i,1);
count=count+1;
end

end

count=1;
for i=1:size(G3)
if G3(i,1)>G1(1,1)
G3(count,1)=G3(i,1);
count=count+1;
else
G3(count,1)=NN;
end

end

104



p3=p2+(p2/2) /SS(G1(1,1),1)*SS(G3(1,1),1) ...
- ((p2/2)/8S(G1(1,1),2)*SS(G3(1,1),2))-20

%h%h profit from third round trip

for i=G3(1,1):NN
eq2(i,1)=p3;

end

profit=p3-100000  %%% total profit

Tolololototolololotolotototototo oo oo o oo o o o o o o o o o o o o oo tototo oo o o o o o o o o o o o o o oo To oo To oo o o o o o o o o o o
% Plotting the First Equity Curve
Yoo To oo oo 1o oo o To o o o o o ToToTo o o o o oo ToTo oo o o o o ToTo oo o o o o ToTo o o o o o o To T o o o o o o To T o o o o o To To 1o o o o o

figure
plot(1+eq1/100000,°b’), hold on;
text(150,2.1, [’Equity Curve (Long WMT and Short TGT):’ ...
’ 2015/1/2 -- 2019/12/30°1);
fontsize(8,"points")
plot(XX,’b-’,’LineWidth’, 0.85)
hold on
plot(YY,’g’,’LineWidth’, 1)
text (1000,YY(1000,1)+0.1,°$$k_2$$°, ’Interpreter’, ’LaTeX’);
text (1000,YY(1000,2)+0.1,°$$k_1$$’>, ’Interpreter’, ’LaTeX’);
axis([0,1257,0,31)
xlabel(’Date’)

ylabel (’Ratio of Stock Prices’)

Tolo o oo oo To oo o ToToToToToToTo oo o 1o 1o 1o o o o o o o o o o o o To T To T ToTo T oo oo oo oo o o o o o o o o o o To T T ToTo T oo o o oo o
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% Interchanging the Roles of Stock 1 and Stock 2
Yool To 1o 1o 6 To o oo Jo ToTo o o o o o Jo ToTa o o o o o o To oo oo o o o To oo oo o o o To oo oo o o ToTo oo oo o o To T o oo o o To T o oo o o

k4=1/k1
k3=1/k2

WW=zeros(size(SS(:,1)));
for i=1:NN
WW(i,1)=SS(i,2)./8S(i,1);

end

ZZ=zeros(size(SS));

for i=1:NN
ZZ(i,1)=k4;
ZZ(i,2)=k3;

end

Tololotototolololololotototototo o oo oo o o o o o o o o o o o o o o oo tototo oo o o o o o o o o o o o o o oo o To oo to oo o o o o o o o o o o
% Plotting the Second Equity Curve
Yoo To o 1o oo 1o o o To o To o o o o o ToToTo o o o o o o ToTo oo o o o o ToTo oo o o o o ToTo o o o o o o To T o o o o o To To T o o o o o To To oo o o o

figure(2)

plot(1+eq2/100000,°b’), hold on;

text (150,1.925, [’Equity Curve (Long TGT and Short WMT):’ ...
’ 2015/1/2 -- 2019/12/30°]);

fontsize(8,"points")

plot (WW,’b-’,’LineWidth’, 0.85)

hold on

plot(YY,’g’,’LineWidth’, 1)
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text (1000,ZZ(1000,1)-0.05, $$\widetilde{k_2}$$’>, ’Interpreter’, ’LaTeX’);
text (1000,ZZ(1000,2)-0.05,  $$\widetilde{k_1}$$’>, ’Interpreter’, ’LaTeX’);
axis([0,1257,0,3])

xlabel(’Date’)

ylabel(’Ratio of Stock Prices’)

Codes for Chapter 3: Round-Trip Pairs Trading under GBM with Reversible

Initial Positions

TolooTo oo oo 1o o oo o To o o o o oo ToTo o o o o o o ToTo oo o o o o ToTo oo o o oo ToTo o o o o o o To T o o o o o o To T o o o o o To To T o o o o
% Computing Least-Squares Parameters for Stock 1 and Stock 2

Tolo o oo oo o oo oo ToToToToToTo oo oo 1o o o o o o o o o o o o o o To o ToToTo oo oo oo oo oo o o o o o o o o o To T T To To oo oo oo o

format longg

T2=readmatrix(’WMT1015.csv’);  %k/k input Stock 1 price data
Tl=readmatrix(’TGT1015.csv’);  %%% input Stock 2 price data
S=[T1(:,6),T2(:,6)];

N=size(S(:,1));

M=size(S(:,2));

N=N(1);

M=M(1);

N=min (N,M) ;

for i=1:N-1
ul(i,1)=log(S(i,1)/S(i+1,1));
u2(i,1)=1log(8(i,2)/S(i+1,2));

end

ul_bar=sum(ui(:,1))/N;
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u2_bar=sum(u2(:,1))/N;

for i=1:N-1
bb1(i,1)=(u1l(i,1)-ul_bar)*(ul(i,:)-ul_bar);
bb2(i,1)=(u2(i,1)-u2_bar)*(u2(i,:)-u2_bar);
bb12(i,1)=(ul(i,1)-ul_bar)*(u2(i,:)-u2_bar);

end

bbl=sum(bb1(:,1))/(N-1);
bb2=sum(bb2(:,1))/(N-1);
bb12=sum(bb12(:,1))/(N-1);

sigmal=sqrt (bb1%252) ;
sigma2=sqrt (bb2%252) ;
sigmalsigma2=(bb12%252) ;

bO=min(sigmal,sigma?2);

minB=1000;

for j=0:10000
b=b0%*3/10000;
aa=abs (b*(sqrt(sigmal*sigmal-b*b). ..
+sqrt (sigma2+sigma2-b*b))-sigmalsigma?2) ;
if aa<minB
minB=aa;
b_star=b;
end

end
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b=b_star;
s12=b_star;  %h% output Stock 1/Stock 2 correlation constant
s21=b_star; %%k output Stock 1/Stock 2 correlation constant
sll=sqrt(sigmal*sigmal-b_star*b_star);

%kt output Stock 1 volatility constant
s22=sqrt(sigma2*sigma2-b_star*b_star);

%kl output Stock 2 volatility constant

for k=1:N
X (k)=k/252;
Y(k,1)=log(S(k,1));
Y(k,2)=log(S(k,2));

end

for k=1:N
AAO (k,1)=X(k)*X (k) ;
BBO(k,1)=X(k);
CCO(k,1)=X(k)*Y(k,1);
CC1(k,1)=X(k)*Y(k,2);
DDO(k,1)=Y(k,1);
DD1(k,1)=Y(k,2);

end

AAO1=sum(AAO(:,1));
BBO1=sum(BBO(:,1));
CCO1=sum(CCO(:,1));
DDO1=sum(DDO(:,1));
CC11=sum(CC1(:,1));
DD11=sum(DD1(:,1));
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A1=(CC01-BB01*DD01/N)/(AAO1-BBO1*BBO1/N) ;
B1=(DD01-A1*BB01) /N;

A2=(CC11-BB01*DD11/N)/(AA01-BBO1%*BB0O1/N) ;
B2=(DD11-A2%BB01)/(N);

m1=A1+0.5*sigmal*sigmal; %%’k output Stock 1 return rate

m2=A2+0.5*sigma2*sigma2;  %kk output Stock 1 return rate

FotoTo oo lo o foTo o ToJo o To o To To o o To o Jo o foJo o fo o To To o To To foJo o fo o To fo o To Fo o o Vo o to o fo o To fo o To Fo o To Fo o to o fo o To fo o o Fo o To o fo o
% Computing k_1, k_4, C_1, C_2
To o1 Yoo To oo To o To o Jo To To To o Jo To To To o Jo To To To o Jo To To To oo To To To o o To To fo oo Fo To fo oo To To To oo Fo fo To o fo Fo Fo To o o Fo To Fo oo fo To fo o fo o

K=0.001; %%/ input transaction costs

r=0.5;  %k% input discount factor

Bb=1+K;

Bs=1-K;
all=s11~2+s1272;
al2=s11%s21+s12%s22;
a22=821"2+82272;
1=(al1-2%al12+a22)*0.5;

d1=0.5%(1+(m1-m2) /1+((1+(m1-m2) /1) 2+ (4*r-4*m1) /1)~ (0.5));
%% output delta_1
d2=0.5%(1+(m1-m2) /1- ((1+(m1-m2) /1) ~2+(4*r-4*xm1) /1)~ (0.5));

%kl output delta_2
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k1=(Bs/Bb)*(-d2/(1-d2))  %%% output k_1
C2=(Bb/(-d2))*k1~(1-d2);  %kk output C_2

k4=(Bb/Bs)*(d1/(d1-1))  %k% output k_4
C1=(Bs/(d1))*k4~(1-d1);  %k% output C_1

Tololotatotolololololototototolo o oo oo o o o o o o o o o o o o o o ototototo oo o o o o o o o o o o o o o oo o To o oo To o o o o o o o o o o o
% Plotting System of Equations to Estimate k_2, k_3
Tolotototototolololo ot totototo oo o oo o too o o o o o oo o oo To o otototo oo o o o o o o o o o o o o o e oo To o oo oo o oo o o o o o o e

syms X y
eqnl = ((1-d2)*x~(1-d1)+d2*xy~(-d1))/(d1-d2)...
+(((d2)*x~ (-d1)+(1-d2) *xy~ (1-d1))*G) /(d1-d2) - (k4" (1-d1))/d1l == O;
eqn2 = ((1-d1)*x~(1-d2)+d1xy~(-d2))/(d1-d2)...
+(((d1D)*x~ (-d2)+(1-d1) *y~ (1-d2) ) *G) /(d1-d2) - (Gx (k1" (1-d2)))/(-d2) == 0;
a = axes;
Fi=fimplicit(eqni, [0,5],°b?);
hold on
grid on
F2=fimplicit(eqn2, [0,5],’m’);
hold on
M1 ="F_1=20";
M2 = "F_2 = 0";
legend([F1,F2], [M1, M2]);
L=sym(-4:5:6);
a.XTick=double(L);
a.YTick=double(L);
M=arrayfun(Qchar,L,’UniformOutput’,false);
a.XTickLabel=M;
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a.YTickLabel=M;

title(’Plot of System of Equations’);

plotx=[k1, k4];

ploty=[k4, kil;

xlabel(°k_3’);

ylabel (°k_2°);

labels={’(k_1,k_4)’, ’(k_4,k_1)’};

plot(plotx,ploty, ’ko’, HandleVisibility’,’off’);

text(plotx,ploty,labels,’VerticalAlignment’,. ..
’bottom’, ’HorizontalAlignment’,’right’);

S=solve(eqnl,eqn2, ’ReturnConditions’,true);

k2=k4;

Voo 1o 1o To o ToTo o 1o o JoToo o o JoTo o o o To o o o Jo To o o o Jo To o o o To T o o o To o o o Jo To o o o To T o o o To o Fo o o To o o o Jo To o o o To o o o o o
% Stock Trading Simulation

Yoo ToToTo o ToTo oo o ToToo o o ToToTo o o ToTo o o o ToJo o o Jo ToTo o o To T o o o To o o o o To T o o ToTa o o o To oo o o To o o o o To o o o To T o o o o
format longg

T4=readmatrix (’WMT1520.csv’);  %h% input Stock 1 price data
T3=readmatrix(’TGT1520.csv’);  %%k% input Stock 2 price data
S8=[T3(:,5),T4(:,5)];

NN=size(SS(:,1));

MM=size(SS(:,2));

NN=NN(1) ;

MM=MM(1) ;

NN=min (NN,MM) ;

XX=zeros(size(SS(:,1)));
for i=1:NN
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XX(1,1)=8S(i,1)./8S(i,2); hhhy =x_2 / x_1

end

YY=zeros(size(SS));

for i=1:NN
YY(i,1)=k2;
YY(i,2)=ki;

end

count=1;
for i=1:NN
if XX(i,1)>=k2
G3(count,1)=1i; %% Dates on which y lies in Gamma_3
count=count+1;
end

end

count=1;
for i=1:NN
if XX(i,1)<=k1
Gl(count,1)=i;  %k% Dates on which y lies in Gamma_1
count=count+1;
end

end

p=100000;
if G1(1,1)<G3(1,1)
pl=p+(p/2)/SS(G1(1,1),1)*SS(G3(1,1),1)...
-((p/2)/85(G1(1,1),2)*SS(G3(1,1),2))-20;

3



%%l profit from first round trip
for i=1:G3(1,1)-1
eq(i,1)=p;
end
for i=G3(1,1):NN
eq(i,1)=p1;
end

end

count=1;
for i=1:size(G1)
if G1(i,1)>G3(1,1)
Gl(count,1)=G1(i,1);
count=count+1;
end

end

p2=p1+(p1/2)/SS(G3(1,1),2)*SS(G1(1,1),2). ..
-((p1/2)/Ss(G3(1,1),1)*3S(G1(1,1),1))-20;
hht profit from second round trip
for i=G1(1,1):NN
eq(i,1)=p2;

end

count=1;
for i=1:size(G3)
if G3(i,1)>G1(1,1)
G3(count,1)=G3(i,1);

count=count+1;

14



else
G3(count,1)=NN;
end

end

p3=p2+(p2/2) /SS(G1(1,1),1)*SS(G3(L,1),1). ..
-((p2/2)/85(G1(1,1),2)*SS(G3(1,1),2))-20;
%%t profit from third round trip
for i=G3(1,1):NN
eq(i,1)=p3;

end

profit=p3  %k% total profit

Voo 1o 1o To o ToTo o 1o o JoToo o o JoTo o o o To o o o Jo To o o o Jo To o o o To T o o o To o o o Jo To o o o To T o o o To o Fo o o To o o o Jo To o o o To o o o o o
% Plotting the First Equity Curve
o ToToTo o ToTo o To o o ToTo o JoTo 1o o To o o JoJo o JoTo o o To o o Jo o o JoTo o o To o o Jo o o Jo T o o To o o To T o Jo T o o To 1o o To o o Jo o o o Fo o o To o o

figure

plot(1+eq/100000,’b’), hold on;

text (300,2.075,’Equity Curve: 2015/1/2 -- 2019/12/30°);
fontsize(8,"points")

plot (XX,’b-?,’LineWidth’, 0.85)

hold on

plot(YY,’g’,’LineWidth’, 1)

text (1000,YY(1000,1)+0.1,°$$k_2"*$$’, > Interpreter’,’LaTeX’);
text (1000,YY(1000,2)+0.1,°$$k_1~*$$’,’Interpreter’,’LaTeX’);
axis([0,1257,0,3])

xlabel(’Date’)
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ylabel(’Ratio of Stock Prices’)

Tololo oo oo oo oottt o o To o To o o o o o o o o o o o o o oo oo oo To o To oo oo o o o o o o o o o o o oo o o o To T ToToTo oo oo oo o
% Interchanging the Roles of Stock 1 and Stock 2
Tolotototototololololotototototo o oo oo o oo o o o o o o o o oo To o otototo oo o oo o o o o o o o o o oo o o To oo to oo o oo oo o o o o o

k4=1/k1
k3=1/k2

WW=zeros(size(SS(:,1)));
for i=1:NN
WWw(i,1)=SS(i,2)./88(i,1);

end

ZZ=zeros(size(SS));

for i=1:NN
ZZ(i,1)=k4;
ZZ(i,2)=k3;

end

Tololotototolololololotototololo o oo oo o o o o o o o o o o o o o o oo tototo oo o o o o o o o o o o o o o oo o To oo To oo o o o o o o o o o o
% Plotting the Second Equity Curve
Tolototototoolololo otototo oo oo oo s oo o o o o o o oo oot To o o ototo oo o o o o o o o o o o o o o e oo To o oo oo o o o o o o o o o o

figure(2)

plot(1+eq/100000,’b’), hold on;

text (300,2.075, ’Equity Curve: 2015/1/2 -- 2019/12/30°);
fontsize(8,"points")

plot (WW,’b-’,’LineWidth’>, 0.85)
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hold on

plot(ZZ,’g’,’LineWidth’, 1)

text (1000,ZZ(1000,1)-0.15,’$$\widetilde{k_2"*}$$’, > Interpreter’, ’LaTeX’);
text (1000,Z2Z(1000,2)-0.15,’$$\widetilde{k_1~*}$$’, ’Interpreter’,’LaTeX’);
axis([0,1257,0,3])

xlabel(’Date’)

ylabel(’Ratio of Stock Prices’)
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