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ABSTRACT

This dissertation comprises three manuscripts which examine the recreational travel cost
literature and consider new approaches to data management and demand modelling that improve
the statistical efficiency and accuracy of standard travel cost methods and applications. Together,
these papers provide valuable insights and recommendations for future econometric applications
of the travel cost model.

Revealed preference methods require survey data on past resource use, and numerous
studies have found reported recreation frequency to be overestimated and concentrated on
prototype values. Our first paper develops two approaches to treat extreme values and rounded
responses. We illustrate how, when modeling single-site trip data using a negative binomial (NB)
distribution, employing the incomplete beta function simplifies the incorporation of censored
intervals. We show the NB’s fit is improved by either reassigning rounded responses to censored
regimes where reported trip numbers define the intervals’ upper bounds, or by mixing the NB
with a continuous distribution at a cut-point where response behavior begins to exhibit rounding.

Much of the travel cost literature uses mixed logit (MXL) models to evaluate recreational
site choice data. Multinomial probit (MNP) models are less common, as they have been difficult

to work with historically. Our second paper compares these models’ performances and explores



implications for welfare analysis in the case of multi-site trip data. Utilizing a new, more
efficient approach (dubbed the Delta Method Approximation) for estimating the distribution of
the mean benefit from policy implementation in MNP models, we discuss the merit of increasing
MNP models’ prevalence in non-market valuation studies.

North Carolina’s beaches are imperiled by coastal erosion, sea level rise, severe storms,
and oceanfront development. Proposed solutions to these problems include beach replenishment,
coastal retreat, and shoreline armoring. These policies affect the quality and value of coastal
resources and recreation, and assessing these welfare impacts is necessary for benefit-cost-
analysis of these alternatives. Our third paper analyzes multi-site trip data for North Carolina
households using travel costs and site attributes. We employ a MXL model in our recreation
demand analysis and discuss the advantages of incorporating a Kuhn-Tucker generalized corner
solution model in future extensions of this analysis.

INDEX WORDS:  Censoring, Extreme responses, Incomplete beta function, Kuhn-Tucker,
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Rounded responses, Travel cost
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CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

The travel cost model is one of the corner-stones of non-market valuation, and is
frequently applied in the context of recreational site choice data. This dissertation is organized as
a collection of three separate (but related) manuscripts which address the following topics: (1)
Best practices for correcting patterns of response rounding and overstatement of recreational
behavior in survey data; (2) Comparative analysis of mixed logit and multinomial probit random
utility models’ performances in the case of multi-site trip data; and (3) Application of the mixed
logit model to the welfare analysis of beach erosion, site quality, and recreation demand, and
examination of research extensions incorporating the Kuhn-Tucker generalized corner solution
method.

The estimation of economic values for environmental amenities is critical to making
informed resource management decisions and accurately assessing environmental damages.
Revealed preference methods for measuring economic values require data on observed behavior.
Typically such behavior is elicited by surveys of target populations regarding their past use of a
natural resource. Since recall periods are generally over a past season or year, the issue of recall
accuracy needs to be considered. Systematic biases in reporting past behavior may compromise
the methods used to derive values from revealed preference data.

Numerous studies have found that respondents tend to both overestimate their recreation
frequencies and round off their responses to end in a zero or five. Tourangeau et al. (2000) report

that open-ended questions which require a numerical response may manifest these



characteristics: i) the larger the number to be reported the more likely it will be a round value;
and ii) the distances between successive rounded values increase as the numbers increase. They
also state that “by reporting their answers as round values, respondents may be consciously
attempting to communicate the fact that their answers are at best approximations.”

Vaske and Beaman (2006) describe how respondents may answer recall questions about
frequencies (such as days of participation) using episode enumeration, formula-based multipliers,
and prototypes, which cause their responses to deviate from what occurred in reality. All of these
approximations can manifest in the data as response “heaping” — where reported numbers occur
more often than chance would suggest. As the authors explain, heaping is likely related to
number (or digit) preference: “numbers that a person has a disposition to use or avoid.” Indeed,
Huttenlocher et al. (1990) find that respondents tend to overuse both multiples of 5 and 10 and
numbers associated with calendar events such as weeks or months (7, 14, 21, 30 and 60, for
example). Another manifestation of recall error is response “leaping” — where response heaping
increases with reported magnitudes. “For responses under 15, several studies have found limited
0-5 heaping...Above 100, responses may fall largely on 150, 200, 300, and 500 with gaps
widening as responses move into the thousands,” (Vaske and Beaman 2006).

Several papers discuss front-end reduction (prevention) of response bias and suggest
strategies to improve survey design and implementation (Pudney 2008; Schaeffer and Presser
2003; Miller and Anderson 2002; Tarrant and Manfredo 1993; Chu et al. 1992). With regard to
back-end reduction (correction) of response bias, Evans and Herriges (2010) provide a recent
example. Using generated data experiments and a latent class model which assumes respondents
are members of either a rounding or non-rounding class, they find that rounding bias can have

significant impacts on parameter estimates and resulting welfare measurements. Chapter 2 of this



dissertation focuses on the data portion of travel cost modelling by presenting two new
approaches to treat the presence of extreme values and rounded responses in survey count data.

In terms of modelling strategies used to evaluate recreational site choice data, Random
Utility Models (RUM), which divide recreational seasons into multiple discrete choice occasions
in which respondents either take or do not take a trip, have historically been quite popular. To
date, much of the travel cost literature has focused on the use of multinomial logit (MNL) and
mixed logit (MXL) (random parameters logit) models. Multinomial probit (MNP) models are
less common, as they have been more difficult to work with historically. While MNL models are
relatively simple to work with and can model site selection decisions (substitution effects), they
cannot model decisions about total trips taken over the course of a recreational season
(participation effects). For this reason, while they can provide welfare estimates on a per-trip
basis, MNL models cannot provide estimates of seasonal welfare impacts. To achieve this, it is
necessary to link the site choice model to a participation decision model. This has typically been
accomplished through some sort of nested logit model.

Standard logit models cannot represent random taste variation, they adhere to the
Independence of Irrelevant Alternatives (11A) axiom (which results in restricted, unrealistic
substitution patterns among similar alternatives), and they cannot accommodate correlation in
unobserved factors over time. While generalized extreme value models (the family of models to
which nested logits belong) relax the 1A constraints, they remain plagued by the problems of
random taste variation and serial correlation (Train 2009). MNP and MXL models are equipped
to deal with these challenges, however. Compared to standard MNL and nested logit models,
MNP and MXL models are more flexible, and their respective simulation methods are capable of

handling a wider variety of datasets.



The MNP model is advantageous in that it is not bound by the 1A axiom and it can
incorporate both random taste variation and temporally correlated error terms. It also captures
correlations in utilities between alternatives when the error term covariance matrix, Q, is
normalized. However, the MNP model is challenged both by its inherent assumption that all
unobserved components of utility are normally distributed® and by its lack of a closed form
expression for expected maximum utility (Train 2009). Like the MNP model, the MXL model is
advantageous in that it does not hinge on the I1A axiom and can incorporate both random taste
variation and correlation in unobserved factors across time. Additionally, the MXL model is not
limited by the assumption of normality made by the MNP model (Train 2009).

Chapter 3 of this dissertation focuses on the methodology portion of travel cost modelling
by comparing the performance of MNP and MXL models and by employing an innovative,
analytical approach for calculating expected maximum utility in the MNP context which may
provide theoretical verification of standard simulation procedures while demonstrating a
computational advantage. In sum, chapter 3 offers insights as to the merit of increasing MNP
models’ prevalence in the non-market valuation literature.

In recreation demand studies, it is frequently the case that a researcher’s dataset will
consider respondents’ socio-demographic characteristics and reported seasonal visitation to a
large number of alternatives (perhaps a dozen sites or more), for which there is an accompanying

site attribute index. Often, a respondent will visit a subset of sites multiple times, and other sites

! This assumption may hold in most cases, but particularly in the case of price coefficients, it may lead to estimates
that are not theoretically desirable. The normal density has mass on either side of the mean of zero, implying that
some members of the population would have a positive price coefficient where we would (almost always) anticipate

a negative (Train 2009).



not at all. “To consistently derive welfare measures for price and attribute changes with such
data, structural econometric models that behaviorally and statistically account for the mixture of
corner solutions (unvisited sites) as well as interior solutions (sites with one or more trips) are
required,” (von Haefen and Phaneuf 2005). Chapter 4 of this dissertation presents a timely
application of the travel cost model which utilizes the MXL framework examined in chapter 3; it
further describes the advantages and challenges of employing a Kuhn-Tucker generalized corner
solutions model to evaluate the same dataset.

North Carolina's beaches are imperiled by a number of forces including coastal erosion,
sea level rise, storm events of increasing frequency and severity, and oceanfront development.
Three primary solutions to these problems have been proposed: beach replenishment, coastal
retreat, and shoreline armoring. Each of these management approaches induces changes in the
quality of coastal resources, affecting the distribution of beach and dune sediments, presence and
location of hardened structures, and configuration of buildings and infrastructure. These changes,
in turn, affect the economic value of coastal recreation. We consider the use values associated
with North Carolina (NC) beaches and how these values could be influenced by the
implementation of the aforementioned management policies. The accurate assessment of such
welfare impacts is, naturally, a critical component of the benefit-cost-analysis of these alternative
proposals. Our primary research goal is to identify and characterize preferences for beach width.

To this end, we analyze revealed preference beach site choice data for a random sample
of NC households (data collection funded by East Carolina University and NC Sea Grant in
2013). Through the use of the NC Department of Environmental Quality's Coastal Geographic
Information Systems (GIS) files, a traveler’s manual for NC beaches (Morris 2005), and a host

of Outer Banks tourism websites, we create a site-attribute matrix for NC beaches that includes



information regarding travel costs and beach length, width, and accessibility. We employ a MXL
model in our analysis of recreation demand and the impact of site characteristics (many of which
can be influenced by coastal policy and erosion management) on site choice and intensity of
beach recreation. Our research therefore represents an important contribution to the
understanding of people's preferences and support (willingness to pay, WTP) for different

erosion management scenarios.



CHAPTER 2

SURVEY RESPONSE DATA: PATTERNS AND PROBLEMS?

2 Barfield, A.S. and J.S. Shonkwiler. To be submitted to American Journal of Agricultural Economics



Abstract

Revealed preference methods require survey data on past resource use, and numerous
studies have found reported recreation frequency to be overestimated and concentrated on
prototype (rounded and calendar-based) values. This paper develops two approaches to treat
extreme values and rounded responses in survey datasets and thereby improve model fit and
resulting welfare estimates. We illustrate how, when modeling single-site trip data using a
negative binomial (NB) distribution, employing the incomplete beta function simplifies the
incorporation of censored intervals. We show the NB’s fit is improved by either reassigning
rounded responses to censored regimes where reported trip numbers define the intervals’ upper
bounds, or by mixing the NB with a continuous distribution at a cut-point where response
behavior begins to exhibit rounding. We feel these methods will be useful for recreation demand

research and may have broad applicability to the general analysis of count data.



Introduction

The estimation of economic values for environmental amenities is critical to making
informed resource management decisions and accurately assessing environmental damages.
Revealed preference methods for measuring economic values require data on observed behavior.
Typically such behavior is elicited by surveys of target populations regarding their past use of a
natural resource. Since recall periods are generally over a past season or year, the issue of recall
accuracy needs to be considered. Systematic biases in reporting past behavior may compromise
the methods used to derive values from revealed preference data.

Numerous studies have found that reported recreation frequency has been overestimated.
For instance, Connelly and Brown (1995) find that reported angling trips on Lake Ontario are
over-estimated by roughly 44% as compared with diary data, with recall bias increasing with
user avidity. Hoehn et al. (1996) similarly find recall bias to be associated with respondents’
over-statement of Michigan angling trips. Explanations for this bias are concerned mainly with
the saliency of the resource, the respondent’s strategic behavior (real or imagined), and the
respondent’s self-delusion (or effort to impress the surveyor) if the activity can be considered
glamourous or healthy. Another dimension of recall bias is respondents’ tendency to round off
responses to end in a zero or five. Tourangeau et al. (2000) report that open-ended questions
which require a numerical response may manifest these characteristics: i) the larger the number
to be reported the more likely it will be a round value; and ii) the distances between successive

rounded values increase as the numbers increase.®

3 Tourangeau et al. (2000) further clarify that if respondents round fairly (i.e., if they always round their responses to
the nearest round value), due to the uneven spacing of round values, the net effect of rounding will actually be a

downward bias in the data. However, if respondents are not rounding fairly but are characteristically rounding up or



To illustrate the patterns observed in recreation survey data, consider the following table
of reported trips in three different recreation demand studies:

Table 2.1. Trips reported in recreation demand studies.

Ozuna and Parsons Ozuna and Parsons
. Moeltner . Moeltner
Trips Gomez (2006) et al. Trips Gomez (2006) et al.
(1995) (1999) (1995) (1999)
0 417 469 287 16 1 0 0
1 68 24 60 17 0 0 2
2 38 22 38 20 3 1 11
3 34 9 36 25 3 2 4
4 17 7 25 26 1 0 0
5 13 10 24 28 0 0 1
6 11 5 17 30 3 0 2
7 2 4 4 35 0 0 1
8 8 2 5 40 3 0 3
9 1 1 0 50 1 0 2
10 13 4 34 88 1 0 0
11 2 1 0 100 0 1 12
12 5 0 0 N 659 563 565
aAlso
13 0 1 0 150,200,
250

14 0 0 1
15 14 0 4

The Ozuna and Gomez (1995) study collects data from a random sample of registered
boat owners about boating trips to a popular lake in Texas. Moeltner (2006) collects data from a
random sample of fishing license holders regarding fishing trips to the trophy section of a local
Nevada river. Parsons et al. (1999) collect data from a random sample of Delaware residents

regarding their visits to a popular beach.

down, systematic error is introduced into the model in the direction of the rounding. The evidence in the recreational

survey response literature generally finds that respondents do not round fairly — they overstate their participation.
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It is noteworthy how many properties these datasets share. First, there is a large
proportion of zeros (indicating a lack of involvement in the recreational activity being studied)
which suggests what Sarker and Surry (2004) refer to as a “fast decay” process. Second, there is
a disproportionate number of rounded responses and some evidence of rounding to the half-
dozen and dozen. Third, there are some very large reported values which are almost all rounded
to the nearest 10.

This paper develops two different approaches to treat both the presence of extreme values
and rounded responses that we feel will be of interest to recreation demand modelers and that
may have broad applicability to the analysis of other types of count data.

Theoretical Background

A common problem in recreation survey response data is a preponderance of zeros due to
non-participation. This excess-zero problem may be addressed by considering a negative
binomial (NB) estimator for the recreation demand model or by employing some of the
alternative count data estimators suggested by Sarker and Surry (2004).* The remaining question
is how to treat the rounded responses. Schaeffer and Presser (2003) have claimed that
“estimation strategies lead to heaping at common numbers, such as multiples of 5 or 10...these
strategies can be considered techniques for ‘satisficing’...conserving time and energy and yet
producing an answer that seems good enough for the purposes at hand.” Similarly, Tourangeau et
al. (2000) state that “by reporting their answers as round values, respondents may be consciously

attempting to communicate the fact that their answers are at best approximations.”

4 If the zeros are generated by a different process than the non-zero responses (i.e., if some inherent, behavioral
difference between users and non-users of a resource is readily identifiable), then hurdle count data models may

need to be estimated (Haab and McConnell 2002).
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“There are no established conventions for rounding survey responses. Hence,
researchers cannot be sure how much rounding there may be in survey data. Nor
can researchers be sure whether respondents round to simplify communication or
to convey partial knowledge,” (Manski and Molinari 2010).

Vaske and Beaman (2006) provide a summary of their research on the topic of survey
response, describing how respondents may answer recall questions about frequencies (such as
days of participation) using episode enumeration, formula-based multipliers, and prototypes,
which cause their responses to deviate from what occurred in reality. With low participation and
episode enumeration (the recall and counting of specific occurrences), episode omission or
telescoping may cause response errors. With greater participation and formula-based multipliers
(the recall of a frequency rule applied to a time frame), misestimation of the rule or failure to
recall exceptions to it may result in response error. With the use of prototypes (a single number
used to represent a range of values), response clusters can occur, commonly around 0’s and 5°s.

All of these approximations can manifest in the data as response “heaping” — where
reported numbers occur more often than chance would suggest. As Vaske and Beaman (2006)
explain, heaping is likely related to number (or digit) preference: “numbers that a person has a
disposition to use or avoid.” Indeed, Huttenlocher et al. (1990) find that respondents tend to
overuse both multiples of 5 and 10 and numbers associated with calendar events such as weeks

or months (7, 14, 21, 30 and 60, for example).®> These patterns (heaping, rounding and digit

5 Huttenlocher et al. (1990) also describe the occurrence of forward bias, which results both from response leaping
and from response “bounding”: the imposition of an upper boundary (self-imposed or otherwise) on reports. This

phenomenon (and more generally, response contraction bias) is further explored in Tourangeau et al. (2000).
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preference) have all been observed and studied in the demographic, epidemiological and
historical literatures (Pudney 2008).

Another manifestation of recall error is response “leaping” — where response heaping
increases with reported magnitudes. “For responses under 15, several studies have found limited
0-5 heaping...Above 100, responses may fall largely on 150, 200, 300, and 500 with gaps
widening as responses move into the thousands,” (Vaske and Beaman 2006).

A number of papers discuss front-end reduction (prevention) of response bias and suggest
strategies to improve survey design and implementation (Pudney 2008; Schaeffer and Presser
2003; Miller and Anderson 2002; Tarrant and Manfredo 1993; Chu et al. 1992). With regard to
back-end reduction (correction) of response bias, Evans and Herriges (2010) provide a recent
example. They employ a latent class model which assumes respondents are members of either a
rounding or non-rounding class. Using generated data experiments, they find that rounding bias
can have significant impacts on parameter estimates and resulting welfare measurements, with
consumer surplus loss due to site closure being overstated by 5-37 percent.

Methodology
The Censored Regime Method:

Vaske and Beaman (2006) also propose some methods for reducing the bias that heaping
may generate. Their approach attempts to smooth out the heaps by distributing the values over an
interval whose shape is related to the underlying distribution of the un-heaped data. Since the
recreation demand models most frequently used for the analysis of single-site visitation data
entertain discrete distributions, this smoothing can be accomplished by assigning the heaped
observations to intervals. Thus, we can view the resulting estimator as a count data model with

censored regimes — outcomes are assigned to occur in a particular region or segment of the

13



distribution. This is consistent with Manski and Molinari's (2010) interpretation of rounded
reported numerical values as interval data.

Our statistical approach employs the NB distribution (see Cameron and Trivedi 2013),
which is capable of handling large numbers of zeros and extreme values.® Its probability mass

function is:

-1

—1 u y (X_l «
rova ) (=) ()

ry+uria—1)

1)

where I'is the gamma function, y is the number of trips to a site, 4 = E(y), and a is a scale
parameter capturing overdispersion. Note that if & = 0, the NB distribution collapses to a Poisson
distribution.

To define the intervals to which the heaped data will be assigned, we impose a structure
that is informed by the findings of previous studies. If we assume that rounded data signal
approximations and if we subscribe to the notion that respondents tend to exaggerate their
participation, then it follows that the intervals will include values no greater than the heaped
value. Further, the larger the heaped response, the larger the interval to which it should be
assigned. Essentially, this is an empirical issue. Specification tests such as Pearson's chi-square
statistic or the deviance statistic can help guide model specification.

Implementation of a count data estimator with numerous censored regimes does pose the
complication that sums of probabilities comprise each of the intervals. In the case of the NB
distribution, however, the incomplete beta function can be used to compute cumulative

probabilities by representing the cumulative distribution function (cdf) of the NB probability

® For additional discussion of the NB distribution’s strengths in this context, please see Sarker and Surry (2004).
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mass function (pmf).” This greatly simplifies the censored estimation. The incomplete beta

function is:

F(Z+W) z—1 w—1
) L(z,w) = > )F(W)f t71 (1 — )W dt

where x = “_1_ ,Z=a~1, wis the upper-bound on the regime (i.e., the heaped response we
u+a-1

are reassigning to the regime), and t is the argument of integration.

In our application, to determine the probability that a response, y, falls within a regime
with lower-bound, k, and upper-bound, w, the incomplete beta function will calculate Pr [k<y<w]
= Prly<(w+1)]-Prly<(k+1)]).

We use the generalized Pearson X ? statistic (McCullagh and Nelder 1989) to evaluate
our model fit. This statistic is chi-square distributed with degrees of freedom equal to the number
of observations (i.e. respondents) minus the number of parameters estimated:

©) X?= Yy —E(s 03 /V(yi; 0)

where n is the number of respondents, y; is the number of trips reported by person i, 8 is a vector
of estimated parameters, and V is variance. This form of the Pearson statistic is preferred to the
form based on observed and expected frequencies as it does not require the assignment of data to
groups (“bins”). The null hypothesis of this statistic is that the model fits the dataset well;
specifically, that the model’s predicted values accurately reproduce the dataset’s first two
moments (the mean and variance). Thus, a low p-value for this statistic indicates that the model
fits badly — there is a low probability of error in rejecting this null hypothesis — and vice versa.

The Distribution Transition Method:

" “The sum of a number of negative binomial terms can be expressed in terms of an incomplete beta function ratio,

and hence as a sum of binomial terms,” (Johnson et al. 1992, pg. 209).
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Both the Evans and Herriges (2010) latent class model and our Censored Regime Method
have their merits and shortcomings. The Evans and Herriges (2010) approach requires the
identification of two regimes: rounders and non-rounders. As the mean number of rounders’ trips
will likely greatly exceed the mean number of non-rounders’ trips, a stochastic specification to
identify class membership must be employed. It is unclear how to precisely formulate this, and
there is no obvious reason why rounders and non-rounders should have different conditional
means. While our Censored Regime Method allows for the same conditional mean formulation
for all respondents and may improve model fit, it suffers from the fact that increasing the size of
the intervals will necessarily increase the value of the log likelihood. Since there is no statistical
penalty from this approach, the selection and size of the censored regimes can only be based on a
reasonableness criterion.® The researcher must consequently justify the sizes and positions of
multiple intervals.

An alternative approach is to assume that at some cut-point, the distribution of responses
changes from a discrete to a continuous distribution. The selection of this single cut-point, where
a transition from non-rounding to rounding behavior can be assumed, is again based on a
reasonableness criterion. For a discrete distribution, a given integer outcome has a unique
probability associated with it, and though the term “count data regression” has become
commonplace, it is somewhat misleading. In truth, the count data model is based on a probability

mass function with a conditional mean — it is not, in fact, a regression. There is no underlying

8 Increasing the width of the intervals allows each regime to encompass larger sums of probabilities. Attempting to
parameterize the bounds on these regimes will therefore result in the model selecting bounds at the minimum and
maximum responses. To avoid this collapsing of regimes, the researcher must determine and impose what they deem

to be appropriate interval bounds for their particular dataset.
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distribution of outcomes associated with a conditioning variable. By contrast, a regression model
with a continuous response variable has a distribution of responses associated with a
conditioning variable because the probability of a given response is very small.

For smaller responses where rounding is less likely to have occurred and where an
outcome of zero is meaningfully different from outcomes such as one or two, the (less flexible)
discrete distribution can reasonably be applied to calculate an exact probability for each
response. For larger responses where rounding is more likely to have occurred and there is less
certainty that outcomes are exact, the (more flexible) continuous distribution calculates
probabilities around each response.® Under this formulation, the area of responses defined by the
discrete distribution is right truncated, and the area of responses defined by a continuous
distribution is left truncated. The form that the likelihood function takes in each of these
partitions is therefore determined by the specific mixture of distributions chosen, and will be
illustrated with regard to our specific application.

Application

Using data from Parsons et al. (1999),° we consider day-trip visits to a single site (Cape
Henlopen State Park) in our estimation. The numbers of trips reported by the respondents in this
survey are shown below in table 2.2. Again, we see a large number of zeros, possible heaping at

rounded numbers and the half-dozen and dozen marks, some extreme values, and increasing

% If a respondent has engaged in rounding behavior, the researcher may observe that the respondent took, for
example, 50 trips to a recreational resource. In fact, there is some distribution of trips around this 50 trip response
that better represents the respondent’s true pattern of visitation.

10 The Parsons et al. (1999) survey was conducted in October, 1997, asking respondents about recreational trips to

62 Mid-Atlantic beaches during 1997 to date.
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distances between the larger numbers of reported trips (“leaping”). There is also evidence of
overdispersion, with an observed mean of 2 and a variance of over 48.

Table 2.2. Reported trips to Cape Henlopen State Park, 1997.

R(;I;)r(;?tse d Respondents | Proportion R;or(;?tse d Respondents = Proportion
0 378 0.6690 15 4 0.0071
1 54 0.0956 18 1 0.0018
2 24 0.0425 20 4 0.0071
3 26 0.0460 25 3 0.0053
4 11 0.0195 30 1 0.0018
5 21 0.0372 35 1 0.0018
6 10 0.0177 40 1 0.0018
8 6 0.0106 50 1 0.0018
10 11 0.0195 72 1 0.0018
12 5 0.0088 100 1 0.0018
1 1 oo e g ST

In the application of our Censored Regime Method, we fit a number of variations of the
NB distribution and assess our models’ success by employing the Pearson statistic, which
follows equation (3) where n=565 and the variance is defined by the specific form of the NB
distribution being estimated. In the application of our Distribution Transition Method, we
consider a mixture of the generalized NB distribution and the lognormal distribution, again
utilizing the Pearson statistic to assess model performance.
Results

Censored Regime Method:
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We first fit a standard NB distribution to the data, with variance defined as:
(4) V(i) = (1 + ody)= fytod;?
where 4;= E(y;;8), 8 = {B, @}, and $ is a vector of explanatory variables (travel cost and socio-
demographic information: the natural log of age and dummy variables for having a child under
10 years old, being retired, or being a student).

Our results from this specification are summarized in table 2.3 below.

Table 2.3. Estimates: Standard negative binomial distribution.

Variable/ Parameter Coefficient Robust Std. z-

Error Value

Constant 0.2411 1.6121 0.1496

Trip Cost -0.0333 0.0041 -8.0644

In(Age) 0.4313 0.4249 1.0150

Child <10 0.5370 0.2546 2.1091

Retired -0.6952 0.3369 -2.0636

Student 1.0942 0.3230 3.3879

Dispersion: o 4.3993 0.4943 8.9003

Pearson Statistic: 729.0, Log Likelihood =-797.76

p=0.000

Our Pearson statistic indicates a poor model fit, which leads us to our subsequent
specification — the generalized NB distribution. This model is a more flexible form of the
standard NB distribution and estimates an additional variable, &, to be included in 8. Its variance

is defined as:

(5) V(yi) = i+ s ?

Our results from this specification are summarized in table 2.4 below.
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Table 2.4. Estimates: Generalized negative binomial distribution.

Variable/Parameter Coefficient Robust Std. Z-

Error Value

Constant 1.4250 1.4686 0.9703

Trip Cost -0.0354 0.0045 -7.9368

In(Age) 0.1283 0.3926 0.3269

Child <10 0.7206 0.2090 3.4486

Retired -0.5810 0.3190 -1.8216

Student 0.9522 0.3252 2.9278

Dispersion: o 6.4913 0.8720 7.4443

() 0.4765 0.1033 4.6141

Pearson Statistic: 621.5, Log Likelihood =-785.11

p=0.030

Our Pearson statistic improves slightly, indicating a somewhat better fit. We therefore use
this model in our subsequent specifications which incorporate censored regimes and
reassignment of the heaped observations. In our first censored, generalized NB model, we
impose the following, dual-regime structure: the pmf is fit to observations with fewer than 50
reported trips; the single observation of 50 trips is assigned to a regime of 36-50*! trips; and the
two remaining observations are assigned to a regime of greater than 50 trips. Our results from

this specification are summarized in table 2.5 below.

1 While the upper-bound of 50 trips is predetermined by our assumption that the intervals contain no more than the
reported number of trips, the lower-bound is somewhat arbitrary. In this case, 36 was selected given that the

majority of the observations occur at 35 or fewer reported trips.
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Table 2.5. Estimates: Dual-censored generalized negative binomial distribution.

Variable/ Parameter Coefficient Robust z-
Std. Value
Error
Constant 1.5521 1.4316 | 1.0842 Censored
Regimes
Trip Cost -0.0345 0.0044 @ -7.8536 >50
In(Age) 0.0795 0.3812 = 0.2087 50 » 36 to 50
Child <10 0.6967 0.2010 @ 3.4660
Retired -0.5626 0.3101  -1.8145
Student 0.9313 0.3212 @ 2.8995
Dispersion: o 6.4054 0.8516 = 7.5216
) 0.5105 0.1048 @ 4.8735

Pearson Statistic: 433.8, Log Likelihood =
p=0.999 —774.73

Our Pearson statistic'? indicates a significant improvement in the fit of the model, which
supports the incorporation of censored regimes and reassignment of heaped observations in our
estimation procedures. In our second censored, generalized NB model, we impose the following,
multiple-regime structure: the pmf is fit to observations with fewer than 20 reported trips; the
four observations of 20 trips are assigned to a regime of 16-20 trips; the three observations of 25
trips are assigned to a regime of 21-25; the observation of 30 trips to a regime of 26-30; the

observation of 35 trips to a regime of 31-35; the observation of 40 trips to a regime of 31-40; the

12 Computing the Pearson statistic for a censored observation requires calculation of said observation’s expected

value and variance, given that it falls in an interval: E(yila<yi<b) and V(yila<yi<b).
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observation of 50 trips to a regime of 36-50*%; and the two remaining observations to a regime of
greater than 50 trips. Our results from this specification are summarized in table 2.6 below.
Table 2.6. Estimates: Multi-censored generalized negative binomial distribution.

Variable/ Parameter Coefficient Robust Std. z-Value

Error
Constant 1.5154 1.4168 | 1.0696 Censored
Regimes
Trip Cost -0.0341 0.0044 @ -7.7450 >50

In(Age) 0.0803 0.3777  0.2126 50 » 36 to 50
Child <10 0.6942 0.1989 @ 3.4901 40 » 31to 40
Retired -0.5535 0.3067 | -1.8045 35»31to35
Student 0.9171 0.3180 | 2.8843 30 » 26 to 30
Dispersion: o 6.3425 0.8437  7.5177 25»21t0 25
) 0.5267 0.1083 @ 4.8641 20 » 16 to 20

Log Likelihood =
—755.69
Our log likelihood!* indicates that the fit of our model has improved yet again by
incorporating the additional regimes. This provides further evidence that respondents are over-
reporting their visitation and rounding up to multiples of 5 and 10. In the context of over-

reporting and extreme values, a common practice in the survey response literature is simply to

13 The increasing range of the intervals to which observations are reassigned accounts for the increasing distance
between rounded values as numbers of reported trips themselves increase.

14 Due to the number of regimes and reassigned observations in this model, the Pearson statistic becomes
computationally-difficult to calculate. The two-regime model has been shown to reproduce the first two moments of
the dataset; by incorporating additional censored regimes, we are increasing the model’s flexibility, and would not

expect the Pearson statistic to suffer as a result. The improved log likelihood value lends support to this assumption.
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exclude larger values from the dataset on the basis that they are likely to be unrepresentative of
the general (or target) population. To this end, we consider how our results would be affected if
we truncated the data at 50 (thereby losing three, extreme-value observations) and estimate a
generalized NB model. Our results from this specification are summarized in table 2.7 below.

Table 2.7. Estimates: Truncated, generalized negative binomial distribution.

Variable/ Parameter Coefficient Robust Std. Error z-Value
Constant 2.0370 1.3548 1.5036
Trip Cost -0.0309 0.0041 -7.5161

In(Age) -0.1108 0.3549 -0.3123
Child <10 0.6409 0.1897 3.3783
Retired -0.5312 0.2958 -1.7961
Student 0.8711 0.3123 2.7891
Dispersion: o 5.9586 0.7362 8.0940
() 0.5994 0.1131 5.2982
Pearson Statistic: Log Likelihood = -757.72
488.2, p=0.979

We have lost information in estimating this model (by eliminating data points), and as a
result, the fit is not quite as good as when we incorporate this information under uncertainty.
Estimated per-trip consumer surplus®® moves from $29.33 (standard error of 3.78) in the multi-
censored distribution to $32.36 (standard error of 4.29) in the truncated distribution, and we
observe changes in all of the parameter estimates. While these changes are not statistically

different, we have only lost three observations in this particular example. In datasets with large

15 Calculated as the inverse of the estimated coefficient on trip cost, the marginal utility of income.
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numbers of extreme values to either truncate or model under uncertainty, the disparities in these
parameter estimates could become significant with regard to policy implications.
Distribution Transition Method:

Following the results of our Censored Regime Method application, we propose the use of
the generalized NB for the discrete distribution. For the continuous distribution, we propose the
use of the lognormal distribution. The lognormal distribution has the advantage of a long right
tail, and the NB and lognormal distributions follow the same conditional mean process. This
makes the transition from the discrete to the continuous distribution smoother than in the case of
latent class models where there are different conditional means depending on class membership.

For observations at or below the cut-point, c, the likelihood is:

ro+a(s) ()

u+a) \u+a
r(y+1)r(a)Pr(ysc)

(6) Pr(y < ¢)

where a = % u®, W is the conditional mean, a is the dispersion parameter, and y is the number of

trips to a site up to the cut-point, c (i.e., y=0,1,...,c). This is the result of multiplying the right
truncated generalized NB distribution by the probability of being in that regime—hence, the two
probabilities will cancel out.

For observations above the cut-point, the likelihood is:

exp(—.5(1OBWIBUIN2y (1 _ o (x g c+1))

(7) ’

(am) (@ (log(,u)—;og(c+ 1)))

where y is the number of trips to a site beyond the cut-point (i.e., y = c+1,...), 2(x,a,c + 1) is
the sum of probabilities of the generalized NB distribution from 0 to ¢, and @ (z) is the standard
normal cumulative distribution function. In this case, ®(z) is the probability that the lognormal

distribution is above c to account for the left truncation. The term (1 — 2(x, a, ¢ + 1)) accounts
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for the probability of being above the cut-point and can be computed using the incomplete beta
function (note that x is now defined as (a/(a + u)).

To calculate the Pearson statistic, we must obtain the conditional means and variances of
this mixed distribution model.

For the right truncated generalized NB distribution, we refer to the recent work by
Shonkwiler (2016), which corrects the second moments as reported by Gurmu and Trivedi

(1992) and Cameron and Trivedi (2013). The formulas are as follows for the conditional mean:

. (c+Dpmf(c+1) _ o
(8) E[YlY <cl=up =g M

and conditional variance:

© Vlrso=p+p?/a+(c+D@—w)— W —pw?-@-DW® —pu/a
where pmf (c + 1) represents the generalized NB probability mass function evaluated at c+1.
For the left truncated lognormal distribution®®, the conditional moments can be written as:

2) @ (o+(log(u)—-log(c))/o)
@((log(u)-log(c))/o)

(10) E(yly > c¢) = exp(log(n) + .50

2 _ 2y P2a+(log(u)-log(c))/o)
(11) E(y*ly > c¢) = exp(log(u) + 20°) (o800 —1og(e) /o)

This permits straightforward computation of the Pearson statistic.
In our application of the Distribution Transition Method, our model was fit to the data
with a cut-point set at 19, as we believe responses of 20 reported trips or more could exhibit

rounding behavior. The results we obtained (table 2.8 below) are remarkably similar to those

16 These formulas are based on the work of Bebu and Mathew (2009) (note what they report as the variance is

actually E(y?)).
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found in tables 2.5 and 2.6, and display similar improvements as compared with the simple
truncated distribution summarized in table 2.7.

Table 2.8. Estimates: Mixed generalized negative binomial-lognormal distribution.

Variable/Parameter Coefficient Robust Std. zZ-

Error Value

Constant 1.5680 1.4055 1.1156

Trip Cost -0.0340 0.0044 -7.7660

In(Age) 0.0653 0.3728 0.1752

Child <10 0.6897 0.1980 3.4833

Retired -0.5750 0.3091 -1.8602

Student 0.9255 0.3198 2 8940

Dispersion: o 6.2178 0.7927 7.8438

o) 0.5168 0.1077 4.7985

G 1.0608 0.1884 5.6306

Pearson Statistic: 477.5, Log Likelihood = -741.04
p=0.993
Discussion

The survey response literature has established that respondents tend to over-report their
recreational activities, and correcting for “heaps and leaps” in survey response data is largely an
empirical issue. This paper illustrates how, when modeling single-site recreational trip data using
a negative binomial distribution, employing the incomplete beta function to represent the cdf of
the NB distribution simplifies the incorporation of censored intervals. We further provide
evidence that the NB model’s fit is significantly improved by either (1) reassigning heaped
responses to censored regimes where reported trip numbers determine the intervals’ upper-
bounds, or (2) mixing the NB distribution with a continuous distribution at a cut-point where it is

supposed that response behavior begins to exhibit rounding.
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We find two socio-demographic variables to be significant: Child<10 and Student. We
hypothesize this is because Cape Henlopen State Park is a popular vacation destination for those
who are, or have children who are, out of school during the summer. Our analysis did not find a
statistically significant difference in the parameter or per-trip consumer surplus estimates when
extreme values were either truncated or incorporated under uncertainty. However, only three
observations were truncated in our particular application, which may not have provided a
significant enough loss of information to impact the overall estimation. As we expand this
research, we may examine other sites in the Parsons et al. (1999) dataset (or different datasets

entirely) where the impacts of truncation may be more extensive.
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CHAPTER 3
MULTINOMIAL PROBIT AND MIXED LOGIT MODELING OF RECREATION DEMAND:

A COMPARATIVE ANALYSISY

17 Barfield, A.S., G. Colson, and J.S. Shonkwiler. To be submitted to Environmental and Resource Economics
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Abstract

Much of the travel cost literature uses mixed logit (MXL) models to evaluate recreational
site choice data. Multinomial probit (MNP) models are less commonly used, as their relatively
cumbersome simulation procedures have made them more difficult to work with historically.
This paper compares model performance and explores implications for welfare analysis in the
case of multi-site trip data. We calculate estimates of average expected maximum utility (pre and
post policy implementation), as well as willingness to pay estimates for site quality
improvements and the distributions of these estimates. Our results display parallel patterns of
inference across both models. We also utilize a new, more efficient approach to estimate the
distribution of the mean benefit from policy implementation in MNP models (the Delta Method
Approximation), and illustrate this approach’s advantages over traditional simulation procedures.
Given our findings, we discuss the merit of increasing MNP models’ prevalence in the non-

market valuation literature.
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Introduction

The travel cost method is well-established within the field of economic valuation. Its use
in the non-market valuation of natural resources and amenities is particularly prevalent. To date,
much of the travel cost literature has focused on the use of multinomial logit (MNL) and mixed
logit (MXL) (random parameters logit) models to evaluate recreational site choice data.
Multinomial probit (MNP) models are much less common, as they have been more difficult to
work with historically. Compared to standard MNL and nested logit models, MNP and MXL
models are more flexible, and their respective simulation methods are capable of handling a
wider variety of datasets. This study compares the MNP model to its popular and natural
competitor (the MXL model) and employs an innovative, analytical approach for calculating
expected maximum utility which is less computationally demanding than standard simulation
methods.

By comparing MNP and MXL models, we explore the extent to which logit
specifications capture correlations in utilities for different alternatives, which may be significant
in terms of welfare estimates. These correlations are necessarily accounted for in MNP models.
If logit models capture the majority of these correlations, their results should be quite similar to
those of MNP models. If our results indicate that the two models provide significantly different
pictures of these correlations, we may confront the claim that MXL models can approximate any
random utility model (including a probit).*® By comparing our approach for expected utility

estimation with typical simulation methods, we provide an alternative procedure for welfare

18 For example, if MXL models do not actually provide an excellent approximation of MNP models, and MNP
analysis provides a good fit for a researcher’s data, the results of said MNP analysis would provide different

information and conclusions for policy analysis than a MXL analysis would.
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analysis in MNP models that may provide theoretical verification of these simulation procedures
while demonstrating a computational advantage. In sum, this study offers insights as to the merit
of increasing MNP models’ prevalence in the non-market valuation literature.®

Theoretical Background

While MNL models are relatively simple to work with and can accurately model site
selection decisions (substitution effects), they cannot model decisions about total trips taken over
the course of a recreational season (participation effects). For this reason, while they can provide
welfare estimates on a per-trip basis, MNL models alone cannot provide estimates of seasonal
welfare impacts resultant from, for example, changes in site quality or quantity. To achieve this,
it is necessary to link the site choice model to a participation decision model. This has typically
been accomplished through some sort of nested logit model.

Recent advances in computational power have made the MNP and MXL models
applicable to studies with a large number of alternatives to evaluate. Both approaches have
advantages over the traditional MNL and nested logit models. Logit models cannot represent
random taste variation, they adhere to the Independence of Irrelevant Alternatives (11A) axiom
(which results in restricted, unrealistic substitution patterns among similar alternatives), and they
cannot accommodate correlation in unobserved factors over time. While generalized extreme
value models (the family of models to which nested logits belong) relax the 1A constraints, they
remain plagued by the problems of random taste variation and serial correlation (Train 2009).

The MNP and MXL models are equipped to deal with these challenges, however.

19 This discussion is particularly relevant given that recent increases in computational power makes MNP analysis

feasible for around a dozen alternatives.
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The MNP model is advantageous in that it is not bound by the 1A axiom and it can
incorporate both random taste variation and temporally correlated error terms. It also captures
correlations in utilities between alternatives when the error term covariance matrix, Q, is
normalized.?’ However, the MNP model is challenged both by its inherent assumption that all
unobserved components of utility are normally distributed?! and by its lack of a closed form
expression for expected maximum utility (Train 2009). Like the MNP model, the MXL model is
advantageous in that it does not hinge on the 11A axiom and can incorporate both random taste
variation and correlation in unobserved factors across time. Additionally, the MXL model is not
limited by the assumption of normality made by the MNP model (Train 2009).

However, there is no implicit guarantee that a researcher’s data are generated by random
utility model process, and if they are not, a flexible mechanism to describe allocation choices is
needed. Flexibility in MXL models can only be achieved through a random parameters
specification. MNP models are (perhaps) more flexible, in that you may impose any structure on
Q (unlike in MXL) while also being able to specify random parameters (as long as they are
normal).

Beyond the initial step of estimating and signing the parameters of interest, to place our

study in context with the rest of the travel cost literature, it is necessary that we also provide

20 The researcher must normalize the error term covariance matrix to ensure identification of the parameters
affecting utility. This normalization occurs automatically in logit models but must be done manually in probit
models (Train 2009).

2L This assumption may hold in most cases, but particularly in the case of price coefficients, it may lead to estimates
that are not theoretically desirable. The normal density has mass on either side of the mean of zero, implying that
some members of the population would have a positive price coefficient where we would (almost always) anticipate

a negative (Train 2009).
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comparable welfare estimates that measure responses to changes in environmental quality. To do
this, we must estimate expected maximum utilities before and after implementing the proposed
policy. This is a relatively straightforward process in logit models, but probit models require
more complicated methods.
Methodology

For both the MNP and MXL models, we consider utility to be composed of observed and
unobserved components such that:
(1) Unj = Vnj + &nj
where there are n respondents and j alternatives; V; is the observed portion of utility which may
be expressed in terms of explanatory variables xnj and coefficients B such that, in the linear case,
Vhj = PBn’Xnj; and the distribution of enj depends on the model chosen (i.i.d type | extreme value in
logit, generalized extreme value in nested logit, normal in probit, etc.).
The Multinomial Probit Model:

MNP choice probabilities take the form:
(2 Poi = [I1(Vni+ & >Vj + &5 Vj # D)B(e)dey
where I(-)is an indicator variable for the truth of the statement in parentheses; €n is a vector of
error terms [€n1,..., €n3]; and @(e,,) is the normal density of en:

1 -1
1 =m0 tey

3 B(ey) = G €

where Q is the (JXJ) covariance matrix?? of g,
0'11 cee 0'1]
o1 0y

22 For simplicity, we omit the subscript n on Q, but each respondent is likely to have their own, unique Q.
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The integrals in equation (2) are therefore J-dimensional over all values of en. But, as only
differences in utility matter in this context, it is also possible to express the MNP choice
probabilities as (J-1)-dimensional integrals over differences between errors:

(5) Ppi = [I(Vypji 4 &nji <OV j # DO(E)dEn;

where Vnﬁ: Vnj — Vais &nji= €nj — €ni; & 1S a vector of error term differences over all

alternatives but i [&,4;,...,,;:]; and @(&y;) is the normal density of &,;:

6 O(Ey) = L —28mi " e
(6) &ni) = Cm20-D5, [1/2 e

where (2; is derived from Q23 (Train 2009).

Discrete choice models must be normalized so that only economically significant
information is preserved in the covariance matrix of the error term — specifically, so that
elements of the covariance matrix dealing with the irrelevant concepts of level and scale of
utility (which do not affect behavior) are removed. This is an issue of parameter identification. In
this sense, the reduction in the number of parameters is not a restriction, but rather a “correction”
of sorts.?* A critical difference between logit (and nested logit) and probit models is that this
normalization occurs automatically in logit models, whereas it must be manually imposed in
probit models. An unrestricted, unnormalized model will have J(J+1)/2 covariance matrix
parameters; an unrestricted, normalized model will have [(J-1)J/2]-1 covariance matrix

parameters (Train 2009). Train (2009) provides a “procedure? that can always be used to

28 For a “straightforward” way to derive 2; from Q, please see Train (2009) pg. 99-100.
24 Additional restrictions on the error term covariance matrix may be imposed at the researcher’s discretion, but their
structure may or may not achieve the necessary normalization on their own (Train 2009).

% Please see Train (2009) pg. 101-102.
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normalize a probit model and assure that all parameters are identified...either by itself or as a
check on another procedure.”

Probit probabilities require numeric simulation to evaluate. The most widely used
simulation method for probit models is the GHK simulator,?® which is employed in the context of
utility differences (P,; is simulated based on U,,; having been subtracted from all other utilities).
Recall that with utility differences against alternative i, Uy, j; = Vji + &3 & is @ (3-1)X1 vector
of error term differences over all alternatives but i: [&,4;,...,&,;]; and &,; ~ N(0, Q) where Q; is
derived from Q (Train 2009).

Now define Lito be the lower-triangular Cholesky decomposition matrix of Q; such that

Li Li’=£;.
c;1 O 0
0o .. 0
7 L. = C21 C22
0 ' €31 C3p C33 .. O

And define the vector nn’=[N1n,...,n@-yn] as a vector of i.i.d. standard normal deviates (obtained
by taking (J-1) draws from a random number generator for a standard normal distribution) such
that nnj~N(0,1) V j. Using these definitions, we can see that &,; = Linn, because Cov(&,;) =
E[€,:& ;1= E[Linn(Linn)’1= Li E[nyn’] Li’= Li | Li'=0;. Therefore, we can express the model as
Up1i = Vipai + €111, Unzi= Vigi + €211 + €215, €tc. (Train 2009). The choice probabilities

now are:

% The GHK simulator is known to be extremely reliable, particularly given that it is unbiased for any number of
replications and given that its estimates display smaller variances than any of its competitors’ (Chen and Cosslett

1998).
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(8)

Pni = Prob (Unji < OV] * l)

. —(V..,.
= Prob (171 < nll)X Prob (772 < ZWn2i + C291)
C11 C22

n < ﬁ)x
C11

With this structure in mind, the GHK simulator is calculated by:

1) First, calculating (771 < _V”“') = ¢ (_V””),where @(ﬂ) is the standard

C11 C11 C11

normal cumulative distribution evaluated at (ﬂ)

C11

2) Then, drawing a value of n,, labeled n;", from a standard normal distribution

truncated at —2 To take a draw from a truncated normal is a two-step process:

C11

a. Take a draw from a standard normal distribution labeled p1"

b. Calculate n,” = @1 (er o (—Vnu)>

C11

—(Vnzit c2111)
C22

N = nlr) = ¢ (_(Vnzi"' C21771r))

C22

3) Then, calculating Prob (le <

4) Continuing this process for all alternatives but i.

5) Then, calculating the simulated probability for the rth draw of n,, n,, etc., as:

BT _ Vi ~(Vnait c21m1”)
Pni_(‘b(c11 )X(D( 2z )X
6) Repeating steps 1-5 R times.
7) Then, calculating the overall simulated probability as P,; = % R_, P (Train 2009).

When using the GHK simulator in maximum likelihood estimation, there are a few things

we must consider. Since the GHK simulator uses utility differences that are taken against the

alternative we are calculating the probability for, we must take different utility differences for

respondents who choose other alternatives. Also, since once respondent might choose alternative

i (where we would use the covariance matrix £;), and another might choose alternative j (where
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we would use the covariance matrix ﬁj), we must ensure that all J possible covariance matrices
are derived from the same original matrix Q (and that they are positive definite). Naturally, the
matrix Q must also have been normalized so that parameters are identified, as previously
discussed (Train 2009).’

The Mixed Logit Model:

MXL choice probabilities take the form:

©) Pri = [Lyu(B)f(B)dP

where Lni(f) is the logit probability evaluated for the parameters f3:
eVni(®

(10) Ly (B) = W

and f(p) is a density function (a.k.a. a mixing distribution). In the linear utility case, then, the

MXL probability is:

(12) - I B,xn])f(ﬁ)dﬁ

In this sense, the MXL probability “is a weighted average of the logit formula evaluated
at different values of 3, with the weights given by the density f(),” (Train 2009). The density
functions can be either discrete or continuous, but in practice, they have typically been specified
as the latter. The normal and lognormal densities are commonly used,? but gamma, uniform, and
other densities can also be employed. In estimating a MXL model, there are two sets of
parameters to be concerned with — the ’s, which evaluate the logit formula, and the parameters

in 0 (mean, p, and covariance, ) which describe the density function. Often, the parameters of

2" Train (2009) illustrates a procedure that satisfies these requirements on pg. 129-130.
28 The lognormal distribution is most useful in the case where a coefficient is expected to have the same sign for

every individual in the sample (positive for income, negative for cost/price, etc.).
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interest are those describing the density function,?® more accurately written as f(p|0). For this
reason, the parameters B are integrated out of the MXL probabilities: P,; = [ L,;(8)f(B|60)dB
(Train 2009).

The approach to the MXL model outlined above is known as the Random Coefficients
approach and is the most direct, most commonly used method. Each individual in the sample

knows their own Bn’s and &nj’s for all j alternatives, and will select alternative i only when

eﬁ‘n’xni

Uni>Unj for all j # i (we only observe the xnj’s, however). Integrating L,,; (8,) = (m)
j=1€

over all possible Bn results in equation (11). This approach is most useful when patterns of taste
are the primary research interest and the number of explanatory variables is small (estimating the
distribution of a large number coefficients can become quite difficult and impractical) (Train
2009).

An alternative (but formally equivalent) approach to the MXL model is known as the
Error Components approach, which uses dual error terms that create correlations in the utilities
for different alternatives. In this specification, utility is expressed as:
(12) Upj = a'Xnj + U Znj + €
where x,,; and z,; are vectors of observables on alternative j, « is a vector of fixed coefficients,

Hn is a vector of zero mean random terms, and &,,; is once again i.i.d. extreme value. Therefore,

the random portion of utility is nnj= u', z,; + &, which can be correlated across alternatives

29 |f we also want the values of the B’s to be interpreted in their typical sense (as coefficients indicating individual
preferences), Train (2009) offers a description of how to obtain this information using the data and estimates of 6

(pg. 259-281).
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depending on how we specify z,, ;. When z,; is not zero, utility will be correlated over
alternatives as follows:
(13) Cov (MnisMnj) = E(W Zni + &ni) (W Znj + €0j) = 2/ W2y
where W is the covariance matrix of pn. Therefore, even when W is diagonal (the error
components are independent) utility will be correlated across alternatives. Any number of
correlation patterns (and therefore, substitution patterns) can be achieved depending on which
variables are selected to enter as error components. For instance, it is possible to specify a MXL
model using the Error Component approach so that it is analogous to a nested logit model.* This
approach is most useful when prediction of substitution patterns is the primary research goal and
the number of explanatory variables is large (Train 2009).

Simulation methods are easily applicable to the MXL model. First, we specify a
functional form for f(B|0). We then 1) for each person in the sample, draw a value of  from
f(B|0), labeled Pp1 for draw 1; 2) calculate Lni(Bo1); and 3) repeat steps (1) and (2) R times and

average the results yielding:

(14) Pui = = TR Lui(Bor)

This is an unbiased estimator for Pni, the probability that person n visits alternative i.3! We obtain
n of these estimates for each of the j alternatives and calculate the simulated log likelihood
(SLL):

(15) SLL = ¥N_,¥)_ dyjInPy

30 For more on this particular specification of the MXL and on the Error Components approach’s formal equivalence
with the Random Coefficients approach, please see Train (2009) pg.139-140.
31 P . is also strictly positive, is twice differentiable in the parameters 6 and the variables X, and sums to 1 over all j

alternatives (Train 2009).
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where dnj is an indicator variable taking the value of 1 if person n chose alternative j (and O if
they did not). The value of 0 (i.e., the mean, p, and covariance, X, of the distribution of ) which
maximizes the SLL is the maximum simulated likelihood estimator (MSLE) (Train 2009).
Welfare Analysis:

In the MNP context, utilities are elements of a multivariate normal random vector. If we
let X=[X1, X2,...,Xwm] be a normally distributed random vector (of utilities) with mean p and
covariance X, and we define maximum utility to be X(my=maxi<g<m{Xg}, then the probability

density function of X(m) is (from Arellano-Valle and Genton 2008%):

exp| -(X-,u )2/ 22, .
(16) 6((,,,) (x) :251‘7:1 ( zjzgg gg) D1 ((ip169%) Mgy 2 ggg)

where: Xy is the variance for the g™ alternative; g is the mean for the g™ alternative; iv-1 is a
unit vector with (M-1) rows; @m-1(.) is the (M-1)-dimensional standard normal cumulative
density function; Iq is an M-dimensional identity matrix with the g™ row deleted; rg is the g™ row
of an M-dimensional identity matrix; p-g = uly', 2Z-gq = rg21g', and pgg = pt-g + (X — p1g) 29/ Zgg; 2-
g = le2 Iy, and 2lggg = 2igg - 2igg" 2gg/2gg.

From this equation we arrive at the general result that the expected value of the

maximum, E(X(m)) is:
(17) EXmy) = [, xty,, (D dx
While relatively few transformations or constructions are required for this method,

evaluating this integral is challenging when p and X vary across observations. And unless X2 has

32 The following notation is adapted from Corollary 4 (equation [5]), page 31.
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been scaled, the range of integration can be sizeable. Afonja (1972) * develops an approach to

approximate the evaluation of this integral using the moment generating function:
(18) MGFy,,, (0 =X, exp(tug+ 37 2g,) Pus([(ag-54) J:[0ir-1] ;Rg)
where:[ . ]:[ . ] are the lower and upper limits of integration; Sq is an (M-1)xM-dimensional

matrix obtained by inserting —im-1" in the g™ column of an (M-1)—dimensional identity matrix;

Qg=SgZS;; ag is an (M-1)x1 vector defined such that a,=S,u./\/diag(Q,); R is a correlation

matrix defined such that R, (i,))=Q,(i.)/\/2,(1.)2,(.j) , 1,j=1, 2, ..., M-1; vgis an (M-1)x1

vector of the form [1 2 3 ... M]' with the g element deleted; and sq is an (M-1)x1 vector defined

such that s, (1) = (Zp -, ) /2 00) , =1, 2, ... M-1.

It follows, then, that expected maximum utility is defined as:
(19) ﬁMGFX(m)(t)/ﬁ”t:o =E(X(m))

While this method provides for a bounded upper limit on the integral and is faster than
integrating the entire density as described in equation (17), it requires the construction of many,
perhaps observation-variant, matrices and vectors.

To estimate welfare impacts associated with changes in environmental quality, Chen and
Cosslett (1998) employ the GHK simulator in their application — a recreational site choice study
using data on Michigan salmon anglers in the early 1980’s. They use an unbiased frequency
simulator to estimate expected maximum utility and mean benefit of policy implementation.
They also estimate the distribution of this mean benefit using both the Krinsky-Robb and

bootstrap procedures.

33 The following notation is adapted from Equation 3.2, page 255.
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Chen and Cosslett (1998) estimate expected maximum utility of making a choice from

available alternatives, U,,, as follows:

=

(20) U, = %25=12§=i(pja + x8+ w")I(pja+ x5+ w" = pa+ xf+ w', Vi)
where there are J alternatives, pj is the travel cost to site j (and a can therefore be considered the
marginal utility of income), x; is a vector of site attributes, uj is a normally distributed error term
drawn randomly for each of the R replications run, and I(:)is an indicator variable for the truth of
the statement in parentheses.

They then calculate the expected benefit of the policy measure as:

@1) EW(x![x%) = E(B|x° — x?) = Jm ) Timlx)

where x%and x! are the vectors of attributes pre and post policy change, respectively, and
Bi is the benefit for the i observation. The numerator calculates the change in expected
maximum utility caused by the policy and the denominator monetizes this impact. The
estimation of expected maximum utility and the expected benefit of policy implementation in the
MXL context is identical to these simulation processes (except that the error term, u;, is instead
distributed i.i.d type 1 extreme value).

The distribution of this expression, as calculated by the Krinksy-Robb procedure,
involves, for both x’and x*: 1) taking D draws from the asymptotic normal distributions of the
parameter estimates, 2) calculating U;,,,(x") over R replications, and 3) calculating equation (21)
and its standard error to determine a distribution. The distribution of this expression, as
calculated by the bootstrap procedure, involves for both x° and x*: 1) resampling the original data
to create S new datasets, 2) calculating new parameter estimates for each of these S datasets, 3)

calculating U;,,,(x") over R replications, and 4) calculating equation (21) and its standard error to

determine a distribution.
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Both of these approaches are data intensive, and Chen and Cosslett (1998) find they
returned very similar results. Furthermore, Chen and Cosslett (1998) find that the log likelihood
values and parameter estimates tended to stabilize after 100 replications, but they report results
for up to 2,000 replications as well. The “ideal” number of replications is a subject that is still
debated in the literature.

We propose another method for estimating the distribution of the mean benefit from
policy implementation. This approach is based on the application of the delta method to the
moment generating function of expected maximum utility (Afonja 1972), and conveniently side-
steps the issue of determining the optimum number of replications. In addition, it may also be
more computationally efficient than the Chen and Cosslett (1998) procedures in practice. If we
define 0 as a vector of the parameter estimates, 6 = [a ], where B itself contains the parameters
on all explanatory variables but travel cost (trip price), we can use the delta method to
approximate the distribution of the mean benefit as follows:

anm(xl)_Uim(xo)

(22) A= 50
(23) V(E(Bi|x® > x1)) ~ AV(6)A'

where A= Y| A;. In practice, we find the estimates achieved using this Delta Method
Approximation to be nearly identical to those obtained following Chen and Cosslett (1998)’s
procedures.
Application

We compare the results of the MXL and MNP models when they are applied to a
common recreational site choice dataset. In our analysis we use a subset of the Callaway et al.
(1995) data that was collected via a 1993 survey of a sample of Pacific Northwest residents. The

survey questionnaire focused primarily on Columbia River reservoirs, of which we select four
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significant examples for our study: Lake Roosevelt (site 1), Dworshak (site 2), Lower Granite (site
3), and Lake Pend Oreille (site 4).

Respondents reported their visits to each of the reservoirs during the summer months. For
the four reservoirs considered in this analysis, the randomly sampled respondents reported a total of
1396 trips. In addition to travel cost (price), we use the monthly average deviation of each
reservoir’s water level away from its full pool level (e.g., negative ten means ten feet below full
pool) as the right hand side variables driving visitation on the left hand side. Summary statistics
for these explanatory variables are provided in table 3.1 below.

Table 3.1. Reservoir trips: Travel costs and average water level deviations from full pool.

Variable Mean Minimum Maximum | Std. Dev.
Travel Cost (1993 dollars) 63.5199 1.2500 235.5500 38.7634
Deviation from Full Pool (ft.) -9.9079 -57.6000 0.6000 17.3864

In both our MNP and MXL specifications, our model allows price to be random and takes
the form:
(24) Ugi = Bipgi + ydeve: + 81(1LowerGranite) + 82(1PendOreille) + &gi
where Ugi is the utility of the g site for the i observation, i=1,2,...,n; pqi is travel cost and devgi
is deviation from full pool for the g'" site and i™" observation; i = (8 + vi) and vi ~ N(0, »?).
Alternative specific constants are included for the third and fourth sites because of their
fundamental differences from the first two sites.

In our MNP specification, ¢i ~ N(0, Q) and E(zivi) = 0; therefore (vipi + & ) ~ N(0,2)
where X = Q + w?pi'pi and is a variance-covariance matrix which introduces correlation across

prices. Following Train (2009), we restrict © to be a diagonal matrix such that:
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W11 0 0 0
Wy, 0 0

25 0=
(25) 1 0
W44

In our MXL specification, however, & ~ EV(0, 1), and we cannot collapse the error terms
into a single vector as in the MNP specification.
Results

For our MNP model, we employ the GHK simulator using 1,000 replications for the
maximum likelihood estimation. The results of our initial estimation suggest that m11 = ®22 = ®a4,
an assumption imposed in subsequent simulations.* Our results from this specification are
reported in table 3.2 below.

Table 3.2. Estimates: Multinomial probit model maximum likelihood analysis.

Variable/Parameter Estimate | Std. Error (R)! | Std. Error? | Z (R)
Travel Cost: 3 -0.0432 0.0035 0.0035 -12.4060
Deviation from Full Pool: y 0.0048 0.0020 0.0020 2.4000
ASC on Lower Granite: 01 -0.7687 0.0798 0.0809 -9.6328
ASC on Pend Oreille: 62 0.2582 0.0479 0.0501 5.3960
SD on Travel Cost: ® 0.0200 0.0021 0.0021 9.6030
Error Term Variance: w11 0.1871 0.0431 0.0467 4.3411
'Robust standard error Log
Conventional standard error Likelihood =
-716.14

34 A Likelihood Ratio test of this hypothesis yielded X? = 2.404 with 2 degrees of freedom (p=0.301).
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For our MXL model, we employ a Random Coefficients simulation approach using 5,000
replications (Halton draws) for the maximum likelihood estimation. Our results from this
specification are reported in table 3.3 below.

Table 3.3. Estimates: Mixed logit model maximum likelihood analysis.

Variable/Parameter Estimate | Std. Error (R)! | Std. Error? | Z (R)
Travel Cost: B -0.0877 0.0059 0.0059 -14.8820
Deviation from Full Pool: y 0.0059 0.0042 0.0042 1.3912
ASC on Lower Granite: 61 -1.3042 0.1913 0.1691 -6.8172
ASC on Pend Oreille: 32 0.6042 0.1001 0.1097 6.0363
SD on Travel Cost: ® 0.0320 0.0051 0.0051 6.2691
Robust standard error Log
Conventional standard error Likelihood =
-730.79

To test the performance of the welfare analysis methods previously described, we first
calculate the average of expected maximum utility.>> For the MNP model, we use the Probability
Density Function Approach (equations [16] and [17]), the Moment Generating Function
Approach (equations [18] and [19]), and the Simulation Approach using 1,000, 2,000, 5,000, and
10,000 replications (equation [20]). For the MXL model, we use the Simulation Approach
(equation [20]) using 1,000, 2,000, 5,000, and 10,000 replications. Our results from these

calculations are reported in table 3.4 below.

% Note that the signing of utility is not intuitive in this context. Utility is an ordinal measure.
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Table 3.4. Estimates: Average of expected maximum utility.

Estimates
Approach MNP Model MXL Model

Probability Density Function Approach -0.9968 -
Moment Generating Function Approach -0.9967 (true®) -

Simulation Approach (R=1000) -1.0174 -2.5812

Simulation Approach (R=2000) -0.9972 -2.5826

Simulation Approach (R=5000) -1.0032 -2.5817

Simulation Approach (R=10000) -0.9979 -2.5815

We then calculate the expected benefit (i.e., effect on expected maximum utility) of

increasing the total travel cost to each individual site by $5 as described in equation (21). For the

MNP model, we employ both the Moment Generating Function and Simulation Approaches

(using 1,000, 2,000, 5,000, and 10,000 replications). For the MXL model, we employ the

Simulation Approach (using 1,000, 2,000, 5,000, and 10,000 replications). Our results from these

estimations are reported in table 3.5 below.

36 Both the Probability Density Function and Moment Generating Function approaches for the MNP model are

based on theory and the evaluation of a “true” formula (rather than simulation). However, because the Probability
Density Function approach requires integration over a cumulative density function, it has the potential to introduce
more “noise” into its estimation than the Moment Generating Function approach (which reduces noise by evaluating

derivatives). For this reason, we consider Moment Generating Function approach’s estimate to be the “true” value.
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Table 3.5.

Estimates: Average benefit from increasing individual site prices by $5.

Estimates

True Simulation Simulation Simulation Simulation

(MGF) (R=1000) (R=2000) (R=5000) (R=10000)
Site MNP MNP MXL MNP MXL MNP MXL MNP MXL
Price
Change
P1+$5 | -2.0810 | -2.0950 | -2.0606 | -2.0740 | -2.0388 | -2.0860 | -2.0636 | -2.0810 | -2.0650
P2 +$5 | -0.4140 | -0.3960 | -0.4022 | -0.4030 | -0.3882 | -0.4070 | -0.3996 | -0.4120 | -0.4103
P3+%$5 | -0.7640 | -0.7870 | -0.7512 | -0.7590 | -0.7286 | -0.7730 | -0.7469 | -0.7640 | -0.7443
P4 +$5 | -1.5120 | -1.5120 | -1.5680 | -1.5000 | -1.5482 | -1.5190 | -1.5424 | -1.5070 | -1.5522

Lastly, for both the MNP and MXL models, we calculate the distribution of the mean

benefit of a universal one foot increase in deviation from full pool using traditional (simulation)

methods and the Delta Method Approximation approach (equations [22] and [23]). This measure

can be interpreted as the consumer (recreator) per-trip willingness to pay (WTP) for a one foot

increase in water levels at all four reservoirs. Our results from these calculations are reported in

table 3.6 below.
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Table 3.6. Estimates: Mean per-trip benefit of a universal one foot increase in water levels.

Estimates (1993 dollars)
MNP Model MXL Model
Approach Mean Robust Mean Robust
Benefit Std. Benefit Std.
Deviation Deviation
Simulation®’ $0.1132 $0.0487 $0.0668 $0.0505
Delta Method Approximation $0.1108 $0.0486 $0.0668 $0.0489

Discussion

It is unsurprising that point estimates of average expected maximum utility (table 3.4)
differ between the model specifications — error terms are being drawn from different
distributions and the two models are estimating a different number of parameters (recall that an
“extra” parameter is estimated in the MNP context to account for scale and level of utility).
Nevertheless, it is clear that the patterns of sign and relative significance of these parameter
estimates persist across both specifications, and the models achieve similar log likelihoods at
convergence (tables 3.2 and 3.3). Furthermore, the inference both models provide about the
welfare impacts of a policy change (a $5 travel cost increase) is nearly identical, regardless of the
number of replications employed in the simulation (table 3.5). In terms of WTP measures and
their distributions, the MNP model predicts the average benefit of a universal one foot increase

in water levels to be roughly twice that of the MXL model (table 3.6). This is a result of the

37 In the MNP estimation, we employed a Krinsky-Robb procedure using 1,000 draws. In the MXL estimation, we

employed a bootstrapping procedure using 1,000 iterations.
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aforementioned difference in the original parameter estimates.® Interestingly, however, both
models provide a very similar picture of the distribution around this WTP estimate (a standard
deviation of approximately $.05 across the board).

With regard to methodology, we find that the Delta Method Approximation provides a
computational advantage over both of the more traditional simulation procedures (Krinsky-Robb
and bootstrapping) — welfare estimates for both models could be calculated in a matter of
minutes as opposed to a matter of hours. The Delta Method Approximation also eliminates the
need for the researcher to run multiple simulations to determine the optimal number of
replications to report.

While the MXL and MNP models performed similarly overall, the MNP model did fit
slightly better in terms of log likelihood achieved at convergence. Given this result and the
advantages and simplifications that the Delta Method Approximation presents for welfare
analysis in the MNP context, we believe the MNP model merits greater consideration in the

recreational travel cost (and non-market valuation) literature.

38 The MXL model estimates the coefficient on price to be roughly twice what the MNP model estimates. As the
WTP for a one foot increase in deviation in the MXL context is the negative of the ratio of the coefficient on
deviation to the coefficient on price (i.e., -y/B), the MXL model will necessarily estimate the WTP measure to be

roughly half what the MNP model will.
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CHAPTER 4
BEACH EROSION, SITE QUALITY, AND RECREATION DEMAND: APPLICATION OF

MIXED LOGIT AND KUHN-TUCKER GENERALIZED CORNER SOLUTION MODELS?®*®

% Barfield, A.S. and C.E. Landry. To be submitted to Journal of the Association of Environmental and Resource
Economics
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Abstract

North Carolina’s beaches are imperiled by coastal erosion, sea level rise, severe storms,
and oceanfront development. Proposed solutions to these problems include beach replenishment,
coastal retreat, and shoreline armoring. These policies affect the quality and value of coastal
resources and recreation, and assessing these welfare impacts is necessary for benefit-cost-
analysis of these alternatives. In this paper, we analyze multi-site revealed preference trip data
for North Carolina households using travel costs and beach site attributes (beach width, beach
length, number of access points, parking area, ferry-only access, and presence of lifeguards) as
explanatory variables. We employ a mixed logit model in our recreation demand analysis and
discuss the advantages of incorporating a Kuhn-Tucker generalized corner solution model in
future analyses. The welfare estimates we obtain have immediate policy relevance and
contextualize future research efforts utilizing this Sea Grant dataset (of which the revealed

preference responses are but a subset).
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Introduction

North Carolina's beaches are imperiled by a number of forces including coastal erosion,
sea level rise, storm events of increasing frequency and severity, and oceanfront development.
Three primary solutions to these problems have been proposed: beach replenishment, coastal
retreat, and shoreline armoring. Each of these management approaches induces changes in the
quality of coastal resources, affecting the distribution of beach and dune sediments, presence and
location of hardened structures, and configuration of buildings and infrastructure. These changes,
in turn, affect the economic value of coastal recreation. This paper considers the use values
associated with North Carolina (NC) beaches and how these values could be influenced by the
implementation of the aforementioned management policies. The accurate assessment of such
welfare impacts is, naturally, a critical component of the benefit-cost-analysis of these alternative
proposals. Our primary research goal is to identify and characterize preferences for beach width.

To this end, we analyze revealed preference beach site choice data for a random sample
of NC households (data collection funded by East Carolina University and NC Sea Grant in
2013). Through the use of the NC Department of Environmental Quality's Coastal Geographic
Information Systems (GIS) files, a traveler’s manual for NC beaches (Morris 2005), and a host
of Outer Banks tourism websites, we create a site-attribute matrix for NC beaches that includes
information regarding travel costs and beach length, width, and accessibility. We employ a
Mixed Logit (MXL) model in our analysis of recreation demand and the impact of site
characteristics (many of which can be influenced by coastal policy and erosion management) on
site choice and intensity of beach recreation. Our research therefore represents an important
contribution to the understanding of people's preferences and support (willingness to pay, WTP)

for different erosion management scenarios.
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Theoretical Background

In recreation demand studies, it is frequently the case that a researcher’s dataset will
consider respondents’ socio-demographic characteristics and reported seasonal visitation to a
large number of alternatives (perhaps a dozen sites or more), for which there is an accompanying
site-attribute index. Often, a respondent will visit a subset of sites multiple times, and other sites
not at all. “To consistently derive welfare measures for price and attribute changes with such
data, structural econometric models that behaviorally and statistically account for the mixture of
corner solutions (unvisited sites) as well as interior solutions (sites with one or more trips) are
required,” (von Haefen and Phaneuf 2005).

Random Utility Models (RUM), which divide recreational seasons into multiple discrete
choice occasions in which respondents either take or do not take a trip, have historically been
quite popular in this context. Much of the recent travel cost literature has focused specifically on
the use of MXL models to evaluate recreational site choice data and estimate recreation demand.
MXL models are more flexible than standard multinomial logit models, and their simulation
methods can accommodate a greater variety of datasets. Additional advantages MXL models
have over simpler logit formats include: (1) They are not bound by the Independence of
Irrelevant Alternatives (11A) axiom that yields unrealistic substitution patterns among similar
alternatives; (2) They can incorporate random taste variation and temporally correlated error
terms; (3) Through various specifications and impositions on structural form, they may be able to
approximate any RUM process (Train 2009).

Methodology
Following the classic RUM framework, we assume utility is composed of observed and

unobserved elements such that;
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1) Unj = Vnj + &nj

where there are n respondents and j alternatives (i.e., sites); Vn;j is the observed portion of utility,
which is expressed in terms of explanatory variables (i.e, site attributes and travel cost) x»jand
coefficients B such that, in the linear case, Vnj = Pn’Xnj; and &nj IS the unobserved portion of utility
(an error term) distributed i.i.d type I extreme value.

MXL choice probabilities take the form:

) Pri = [Lyu(B)f(B)dp

where Lni(f) is the logit probability evaluated for the parameters f3:
oVni(B)

3 Lni(B) = SV

and f(p) is a density function (i.e., a mixing distribution). In the linear utility case, the MXL

probability is:

(4) - I B,xn])f(ﬁ)dﬁ

As such, the MXL probability “is a weighted average of the logit formula evaluated at
different values of B, with the weights given by the density f(f),” (Train 2009). Density functions
can be discrete but are typically specified to be continuous - the normal and lognormal densities
are common,*° though other densities can also be used. This is known as the Random
Coefficients approach and is the most direct, most commonly used MXL method. Each
respondent knows their own Bn’s and &nj’s for all j alternatives, and will select alternative i only

when Uni>Uy; for all j # i (we only observe the xy;’s, however) (Train 2009).

40 The lognormal distribution is most useful when a coefficient is likely to have the same sign for all respondents.
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Simulation methods are easily applied to MXL models. We first specify a functional form
for f(3). We then 1) for each respondent, draw a value of B from f{f), labeled Pp1 for draw 1; 2)

calculate Lni(Bp1); 3) repeat steps (1) and (2) R times; and 4) average the results yielding:

(5) Poi = = TR Lni(Bog)
This is an unbiased estimator for Py, the probability that person n selects alternative i.*! We
obtain n of these estimates for each of the j alternatives and calculate the simulated log likelihood
(SLL):
(6) SLL = ¥N_ ¥)_, dynj InPy,
where dn; is an indicator variable which takes a value of 1 if person n chose alternative j (and 0
otherwise) (Train 2009).

Calculating the expected benefit of (i.e., WTP for) a change in site attributes, as might
result from policy implementation, involves first calculating the difference in expected maximum

utility under initial and altered conditions, and then monetizing this impact:

) EW (! [x%) = E(BJx° — x?) = JmZ)Tinx)
where U,,, is expected maximum utility; X’ and x* are vectors of site attributes pre and post
policy change, respectively; a is the coefficient on travel cost and can therefore be considered the
marginal utility of income; and Bj is the benefit for the it observation. The distribution of this
expression can then be calculated using either Krinsky-Robb or bootstrapping procedures.

In logit models which are linear in parameters, this WTP measure can conveniently be

obtained by taking the negative of the ratio of the estimated coefficient on the attribute of interest

to the estimated coefficient on travel cost:

41 p . is also strictly positive, is twice differentiable, and sums to 1 over all j alternatives.
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PN

(8) WTP = —%‘
where 7, is the estimated coefficient on any site attribute, x, other than travel cost, and & is the
estimated coefficient on travel cost.
Application
Data

In our application, we analyze revealed preference beach-site-choice data gathered from a
random sample of NC households through a 2013 internet survey funded by NC Sea Grant and
East Carolina University.** Roughly 1,000 respondents provide socio-demographic information
and number of trips to 20 sets of Outer Banks beaches*® over the previous year (41 beaches
grouped from north to south based on assumed similarity of associated travel costs). For the
purposes of this study, we introduce a no-go option (a 21% alternative) and consider the
preferences of respondents who report taking 52 day trips a year or less in order to achieve a
weekly repeated discrete choice format. This formatting assumes respondents take a maximum
of one trip per week with 52 choice occasions (where timing of the trips throughout the year is
irrelevant), and reduces our sample size to 259 respondents.

Table 4.1 below reports the total number of day trips taken by these 259 respondents to

each of the 20 sets of beaches.

42 This revealed preference data is a subset of the (much larger) dataset, which has dense revealed preference, stated
preference, and contingent valuation components.

43 Respondents were also offered two write-in choice options where they could self-report beaches they visited but
were not listed in the survey. The majority of those self-reported beaches were, in actuality, subsumed by the options

specifically offered in the survey, and we recode the data accordingly.
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Table 4.1. Distribution of day trips taken to NC beaches.

Beach Total Trips | Proportion of All Trips
Corolla/ Duck 41 0.0263
Kitty Hawk/ Kill Devil Hills/ Nags Head 254 0.1627
Pea Island 6 0.0038
Rodanthe/ Waves/ Salvo/ Avon 5 0.0032
Buxton/ Frisco/ Hatteras 14 0.0090
Ocracoke 18 0.0115
Cape Lookout/ Core Banks 5 0.0032
Fort Macon/ Atlantic/ Pine Knoll Shores/ Salter 207 0.1326

Path/ Indian/ Emerald Isle

Hammocks Beach/ Bear Island 14 0.0090
North Topsail 78 0.0500
Surf City/ Topsail 67 0.0429
Figure 8 Island 10 0.0064
Wrightsville 220 0.1409
Masonboro Island 8 0.0051
Carolina/ Kure/ Fort Fisher 194 0.1243
Bald Head Island 11 0.0070
Oak Island/ Caswell/ Yaupon/ Long 137 0.08776
Holden 113 0.0724
Ocean Isle 45 0.0288
Sunset 114 0.0730
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To supplement the data collected in the NC Sea Grant survey, we create a site-attribute
index which characterizes these groups of NC beaches in terms of beach length, beach width
(minimum, maximum, quartiles, average and standard deviation), number of access points, total
area of parking lots, the presence of lifeguards, and whether a boat or ferry ride is required to
access beaches within the group. Data on these attributes is gathered from the NC Department of
Environmental Quality’s (NCDEQ) Coastal GIS files, a traveler’s manual for NC beaches
(Morris 2005), and a variety of North Carolina tourism websites.**

The presence of lifeguards and the requirement of a ferry or boat ride to access a beach
are coded as percentages. For example: if a choice set contains one beach, if lifeguards are
(not)present, (0)100 percent of the beaches in that set have lifeguards, and the lifeguards attribute
is set equal to (0)1. If a choice set contains multiple beaches and lifeguards are present at some,
but not all of the beaches, the lifeguards attribute is set equal to whatever proportion of the total
length of the choice set the beaches with lifeguards represent (i.e., combined length of beaches
with lifeguards/total length of all beaches in the choice set).

Length and width are measured in meters. Width measurements are taken every 100
meters, from the edge of the water inward to the edge of the sand (i.e., the width of the beach as
it would appear to a respondent walking along it), along 50 meter transect gridlines. Access

points are those officially demarcated in the “NC Beach and Waterfront Access” layer of the

44 (Cape Lookout National Seashore 2016), (Fort Caswell 2016), (Outer Banks: Lifeguard Locations Information
2016), (Outer Banks North Carolina Rentals 2016), (Outer Banks Vacation Guides 2016), (The Official Travel and

Tourism Website for North Carolina 2016), (The Outer Banks 2016).
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NCDEQ’s GIS data.* Parking area is associated with these access points (i.e., parking areas
adjacent to access point but not part of clearly private or commercial property) and is measured
in square meters (rounded to the nearest 50).

Figure 4.1 below provides a screen capture image of the NCDEQ’s interactive GIS
mapping applet. It displays the 50 meter transects layer used to measure beach length and width,
as well as the beach and waterfront access layer used to identify access points and associated

parking lots. The blue and orange icon indicates an official access point.

NZ North Carolina Division of Coastal Management  bepartment of Environmental Quality home | DEQ

~ovace

- - S s

i+ 35.765979 -75.528946 Degrees | A \ ~—~—9f North Carolina DOT, Esri, HERE, DeLorme, INCREMENT P, Intermap, ... -
] < -

Figure 4.1. Screen capture of satellite imagery used to construct NC site-attribute index.
Source: North Carolina Department of Environmental Quality

Our final site-attribute index is shown in tables 4.2 and 4.3 below.

“ There are beach access points which exist but are not officially demarcated in this layer (including some piers),
however, and many of these may have public parking available. Unfortunately, it is difficult to delineate exactly
what constitutes an access point by looking at the satellite imagery alone, which is why we currently rely on
officially recognized points. Future revisions to this dataset may be able to incorporate more comprehensive access

point counts.
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Table 4.2. NC beach attributes: Width measurements (meters).

Beach Min Q1 Q2 Q3 Max Avg SD
Width | Width | Width | Width | Width Width | Width

Corolla/Duck 14.00 | 28.00 | 32.00| 36.00 45.00 31.84 5.38
Kitty Hawk/Kill Devil Hills/Nags Head 11.00 | 39.50 | 56.00 | 78.00 410.00 63.71 38.02
Pea Island 16.00 | 51.00 | 85.00 | 117.00 385.00 92.26 56.49
Rodanthe/Waves/Salvo/Avon 8.00| 52.00| 62.00| 76.00 168.00 65.91 22.90
Buxton/Frisco/Hatteras 17.00 | 50.25| 71.50 | 132.75 420.00 94.88 62.42
Ocracoke 30.00 | 65.00 | 80.00 | 122.75| 1355.00 | 162.44 | 236.76
Cape Lookout/Core Banks 5.00| 52.00| 70.00| 102.00 | 1154.00 97.34 | 115.28
Fort Macon/Atlantic/Pine Knoll Shores/Salter Path/ 30.00 | 48.00 | 55.00| 65.00 432.00 61.00 30.17
Indian/Emerald Isle

Hammocks Beach/Bear Island 31.00 | 47.00| 52.00 | 113.00 474.00 | 112.07 | 122.61
North Topsail 8.00 | 26.00| 29.00| 34.00 187.00 30.89 14.17
Surf City/Topsail 12.00 | 22.00| 29.50| 66.00 356.00 48.74 43.94
Figure 8 Island 18.00 | 60.50 | 72.00 | 84.00 396.00 79.77 45.03
Wrightsville Beach 46.00 | 55.00 | 64.00| 71.00 148.00 67.07 18.82
Masonboro Island 15.00 | 63.50| 80.00 | 97.00 160.00 80.58 24.34
Carolina/Kure/Fort Fisher 0.00 | 42.00| 54.00| 68.00 287.00 60.60 34.62
Bald Head Island 19.00 | 39.00 | 58.00 | 93.00 242.00 69.45 41.80
Oak Island/Caswell/YYaupon Beach/Long 7.00| 24.00| 36.00| 52.00 391.00 42.03 33.23
Holden 12.00 | 23.00| 31.50| 41.00 360.00 39.50 36.71
Ocean lIsle 0.00| 32.00| 39.00| 57.00 216.00 46.41 29.54
Sunset 0.00| 2450 | 36.00| 45.00 252.00 41.85 32.32
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Table 4.3. NC beach attributes: Length (meters), access points (#), parking area (sq. meters), ferry access (%), lifeguards (%0).

Beach Length | Access Parking Ferry | Lifeguards
Points Area

Corolla/Duck 33900 16 11950 | 0.00 0.81
Kitty Hawk/Kill Devil Hills/Nags Head 38950 86 64000 | 0.00 0.89
Pea Island 15550 6 9100 | 0.00 0.00
Rodanthe/Waves/Salvo/Avon 42500 6 8850 | 0.00 0.00
Buxton/Frisco/Hatteras 26200 7 12250 | 0.00 0.46
Ocracoke 26200 0 0| 1.00 1.00
Cape Lookout/Core Banks 88700 0 0| 1.00 0.00
Fort Macon/Atlantic/Pine Knoll Shores/Salter Path/ 96 48100 | 0.00 0.71
Indian/Emerald Isle 39750

Hammocks Beach/Bear Island 6000 0 0| 1.00 1.00
North Topsail 17850 38 21700 | 0.00 0.00
Surf City/Topsail 17900 51 10050 | 0.00 0.00
Figure 8 Island 13200 0 0| 044 0.00
Wrightsville Beach 7400 43 15050 | 0.00 1.00
Masonboro Island 12900 0 0| 1.00 0.00
Carolina/Kure/Fort Fisher 18900 47 23450 | 0.00 1.00
Bald Head Island 13850 27 1500 | 1.00 0.00
Oak Island/Caswell/YYaupon Beach/Long 20950 67 25500 | 0.00 0.27
Holden 13100 20 2950 | 0.00 0.00
Ocean Isle 9200 24 13600 | 0.00 0.00
Sunset 6350 33 6900 | 0.00 0.00
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For each respondent, we also generate round-trip travel costs that are the sum of
estimated mileage costs, time costs, and fees. Mileage costs are calculated using the AAA 2013
per mile cost of $0.608 over round-trip driving distances. Time costs are calculated to be one-
third the hourly wage rate (determined by reported income) and assume that respondents are
driving 55 miles per hour. Ferry fees are also included where applicable.

Specifications

To keep the number of explanatory variables feasible for estimation, we include site
attributes (alternative-variant variables) only. Each of our models allows the beach width term to
be a random normal parameter while all other parameters are held fixed (constant). Our
estimations compare the measures of central tendency with regard to beach width — mean and
median — as the standard deviation on beach width is often large and one measure may provide a
better representation of recreator preferences than the other. We also consider nonlinear
transformations of the width measurements (quadratic, natural log, inverse) and an interaction
term which introduces one respondent-variant variable — a dummy for concern about beach
width — into the estimation.*® These specifications therefore take the following forms:

9) Ugi = i Wgi + aPgi + V1lgi + y2Agi + V3Kgi + VaFgi + y5Ggi + Egi

(10) Ugi = Pi Wei + aPgi + vilg + y2Agi + V3Kgi + VaFgi + V5Ggi + VeWCgi + &gi

where Uyg; is the utility of the g™ site for the i'" observation, i=1,2,...,n; Wgi is beach width, which
may be median width, average width, the natural log of either of these measures, the inverse of

either of these measures, or the square of either of these measures; Pygi is travel cost; L is beach

46 Respondents answered the question “how concerned are you about the width of developed beaches along the
North Carolina shoreline?”” on a scale of 1-4 with 1 being “not concerned at all” and 4 being “very concerned.” We

create a dummy variable for this concern set equal to 1 if respondents’ answers were either a three or a four.
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length; Agi is number of access points; Kgi is parking area; Fgi is the proportion of beaches in the
gth site requiring boat or ferry access; Ggi is the proportion of beaches in the gth site with
lifeguards; WCyi is an interaction term multiplying the width measure Wgi by the dummy variable
for concern about beach width, Cgi; i = (8 + vi) and vi ~ N(0, »?); and &g ~ EV(0, 1).

To evaluate our models’ fits, we employ the Akaike/Bayesian Information Criterion (AIC
and BIC, respectively). The AIC and BIC can be used to compare the success of non-nested
models — the lower the criterions’ values, the better the models are performing.

Results

We estimate a total of sixteen MXL maximum likelihood specifications each using 1,000
Halton draws - eight for each measure of central tendency on beach width, where the first four
models (one with the raw width measurement, three with the nonlinear transformations) do not
include the interaction term, and the last four models do include the interaction term. None of our
specifications find the interaction term to be statistically significant, and the best fitting models
for both average and median width (as indicated by the AIC and BIC values) employ the log
transformation of the width measurement. We therefore use these log-width models in our
subsequent welfare analysis. Results from these estimations are provided in tables 4.4 and 4.5

below.
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Table 4.4. Estimates: MXL maximum likelihood analysis on log-median-width.

Variable/Parameter Estimate Std. Error 4
In(medwidth): -0.5722 0.0554 -10.3276
travel cost: a -0.0219 0.0008 -27.0397
length: y1 -0.0000 0.0000 -2.7064
access points: y2 0.0068 0.0030 2.2866
parking area: y3 0.0000 0.0000 5.0630
ferry: va -0.9356 0.1597 -5.8565
lifeguards: vs 0.8219 0.0803 10.2341
SD on In(medwidth): ® 0.4924 0.0361 13.6307
Log Likelihood =-6120.58 AIC =12257.16 BIC =12341.58

Table 4.5. Estimates: MXL maximum likelihood analysis on log-average-width.

Variable/Parameter Estimate Std. Error z

In(avgwidth): B -0.5553 0.0534 -10.4051
travel cost: o -0.0218 0.0008 -27.0290

length: y1 -0.0000 0.0000 -3.0140

access points: y2 0.0095 0.0031 3.0968
parking area: y3 0.0000 0.0000 4.0937

ferry: ya -0.7922 0.1616 -4.9023

lifeguards: ys 0.7758 0.0788 9.8387

SD on In(avgwidth): ® 0.4733 0.0344 13.7421

Log Likelihood =-6116.30 AIC =12248.59 BIC =12333.01
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To contextualize these results, we calculate point estimates and 95% confidence intervals

for consumer (household) per-trip WTP for (mean benefit of) a unit increase in each of the site

attributes using a Krinsky-Robb procedure with 1,000 replications. These measures can be

interpreted as, for example, the per-trip benefit a respondent would experience from the

provision of an additional beach access point, square meter of parking area, meter of beach

width, etc. Our results are provided in table 4.6 below.

Table 4.6. Estimates: Per-trip WTP for unit increases in NC beach site attributes.

Estimates (2013 dollars)

Log-Median-Width Model

Log-Average-Width Model

Variable WTP 95% ClI WTP 95% ClI
width*”: B -$0.4773 | (-$0.5936, -$0.3639) | -$0.3666 | (-$0.4558, -$0.2799)
length: v1 -$0.0005 | (-$0.0010, -$0.0001) | -$0.0006 | (-$0.0010, -$0.0002)
access points: y2 | $0.3113 ($0.0312, $0.5902) $0.4357 ($0.1451, $0.7252)
parking area: ys | $0.0011 ($0.0007, $0.0016) | $0.0009 ($0.0005, $0.0014)
ferry: ya -$42.6308 | (-$57.0380, -$27.8941) | -$36.3062 | (-$50.1055, -$21.4101)
lifeguards: ys | $37.4512 | ($29.7899, $46.2706) | $35.5516 | ($27.9166, $44.0323)

Discussion

The different specifications on width perform very similarly and provide nearly identical

pictures of the influence of the explanatory variables on trip demand, though there are noticeable

47 Our WTP estimates for the width parameters are evaluated at the means for both measures and have been adjusted

to account for the log transformation, which is nonlinear, and therefore prevents the straightforward application of

equation (8) in this context.
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differences in the parameter estimates for lifeguards, ferry access, and number of access points.
As a result, the confidence intervals around some site attributes’ WTP estimates do not always
overlap between the models. Additionally, in the log-average-width specification (which fits
slightly better overall), all of the parameters are highly significant, whereas number of access
points strays towards bordering on insignificance in the log-median-width specification.

Generally speaking, the signs on the parameters are what we expect. Travel costs and
requiring the arrangement of a boat or ferry ride to access a beach have a negative influence on
trip demand. Length also has a (small) negative influence, perhaps because the walking distance
between beach amenities such as restrooms and beachside attractions is greater on longer
beaches. Number of access points, the amount of parking area, and the presence of lifeguards all
have positive impacts on trip demand.

Somewhat surprising, however, is the result that beach width has a negative influence on
recreation demand. This could be indicative of significant heterogeneity in preferences for beach
width, or the fact that the value respondents place on beach width is dependent upon activities
they engage in which we don’t have data on. Our finding could also indicate that the balance of
recreational beach activities favors easy water access. Furthermore, a negative demand for beach
width could also reflect respondents’ crowding concerns — because more people go to wide
beaches where there is more space, respondents may be entangling their preferences for beach
width and congestion. It is also possible that including alternative specific constants for each of
the beach choice sets and introducing more sociodemographic information into the model
through interaction variables could help to better identify preferences for beach width. To ensure
that this negative result is valid, we will continue to explore measurement and specification

issues.
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Nevertheless, while beach erosion and sea level rise directly impact beach width, they
also threaten beach access in general. In certain sea level rise scenarios, the number of beach
access points could be reduced and the proportion of beaches accessible only by ferry or boat
could increase. Given the results of our welfare analysis, these consequences could have
substantial economic impacts and should be considered in future natural resource management
decisions for the Outer Banks region.

Overall, this paper provides insights that we feel will be of interest to fellow researchers
and to coastal management authorities. We analyze a very recent, highly disaggregated and
detailed revealed preference dataset, as well as a unique and diverse site-attribute index. With
these high quality data, we evaluate a significant number of alternatives using an advanced
econometric model that is particularly well-suited to this valuation context. The welfare
estimates we obtain have immediate policy relevance, and provide context for future work with
this dataset (of which the revealed preference responses are but a subset).

Future Work

While RUM models like the MXL have historically been the work-horse estimation
procedures used in recreation demand studies, to calculate demand and welfare impacts at the
seasonal level, RUM models require an additional estimation process to determine the season-
wide implications of per-trip outcomes. The Kuhn-Tucker Generalized Corner Solution (KT)

models originally developed by Wales and Woodland (1983) provide a utility-theoretic*®

48 A significant appeal of the KT model is the “unified and internally consistent” framework it offers to characterize
the nature of corner solutions. The KT model is explicitly derived from the utility function and utility maximization
theory, which necessarily ensures that the restrictions of this theory are satisfied and that the behavioral implications

of corner solutions are accounted for (Phaneuf et al. 2000).
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alternative to RUM maodels, though their reputation for being computationally laborious has
hindered their adoption in the literature. In KT models, it is assumed that individual preferences
are distributed randomly across the population. As a result, the classic Kuhn-Tucker conditions
associated with utility maximization become likewise randomly distributed, allowing for
construction of the probabilities that corner solutions will occur and of the likelihood function

(Phaneuf et al. 2000).

“These ‘Kuhn-Tucker’ models... consistently account for both the extensive
(which sites to visit) and intensive (how many trips to take) margins of choice and
can be used to recover a coherent representation of an individual’s seasonal
preferences. As such, the KT framework has a significant conceptual advantage

over discrete choice approaches for modeling seasonal recreation demand,” (von

Haefen and Phaneuf 2005).

Fortunately, KT models have become more accessible as a result of recent advances in
computational power and simplifications of the algorithms used to estimate the models. For this
reason, we plan to incorporate a KT model in a second-stage analysis of our NC beach data,
employing the framework established and described by Phaneuf and Siderelis (2003) and von
Haefen and Phaneuf (2005) as follows.*°

We first consider that a respondent’s direct utility function takes the form:

(11) U(x,zQ,¢pB)

49 As far as we are aware, the KT model presented in von Haefen and Phaneuf (2005) represents the most
comprehensive and refined approach currently available in the literature. Sanchez et al. (2016), for instance, utilize
this approach in their analysis of the recreational values of the San Jacinto Wilderness. They furthermore

acknowledge Phaneuf for providing them with the MATLAB source code employed in their estimation.
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where x is an M-dimensional vector of trips; Q is an L X M matrix of site attributes; z is a
numeraire representing spending on all other goods (price normalized to one); g is a vector of
structural parameters to be estimated; and ¢ is a matrix (or vector) of unobserved heterogeneity —
components of utility known to the respondent but unknown (random) to the researcher. This
framework is therefore consistent with random utility maximization theory.

Respondents maximize their utility over x and z subject to budget and non-negativity
constraints:
(12) max,, U(x,z;Q,¢,B) s.t. y= p'x+z, xi=20,j=1,.,M
where U has the typical curvature properties (is continuously differentiable, quasi-concave, etc.);
p is an M-dimensional vector of travel costs (including access fees); and y is income. The non-
negativity constraint ensures that the first order conditions are Kuhn-Tucker conditions.

Assuming z > 0, the Kuhn-Tucker conditions defining the optimal consumption bundle (x”, z°)

are:
aU/an .
(13) 070 S Ppi=1..,M
and
OU/axj _ .
(14) i % (Goad= 1)) =0, =1,..,M

These equations can be interpreted thusly: the marginal rate of substitution between trips
to a visited site (an interior solution) and other goods is equal to the travel cost to the site, and the
marginal rate of substitution between trips to an unvisited site (a corner solution) and other goods
is less than the travel cost to the site. For corner solutions, then, travel cost exceeds the
respondent’s reservation price. For interior solutions, allowing g;(x,y,p, Q, B) to represent the

solution to equation (14), equations (13) and (14) can be rewritten as:
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(15) &< g;(x,y,p,Q,B)

and
(16) x % (g— g;(xy,0.Q,8)=0

Given distributional assumptions about the form of &, we may define the probabilities of
observing both corner and interior solutions, and through maximum likelihood estimation, we
may recover that parameters in B that will define x”.

In terms of welfare analysis, Hicksian compensating surplus (CS") resulting from a
change in prices (travel costs) and/or site attributes from (p°, Q°) to (p?, Q') can be expressed

through either indirect utility functions (equation [17]) or expenditure functions (equation [18])

as:

(17) v(p®,Q%y,B,&) =v(', Q" y — CS",B,¢)
or

(18) Cst =y —e(p',Q,U%B,¢)

where U° = v(p°, Q% y, B, €). There are computational challenges with either approach.

In either of these scenarios, respondents switch between membership in either the non-
visitation (corner solution) or visitation (interior solution) regimes to maximize their
utility/minimize their expenditures. These regimes correspond to the 2™ combinations of interior
and corner solutions possible for the M sites. When M is large, solving equations (17) or (18) can
be a daunting task. Additionally, because CS" is a random variable (as it is partially defined by
g), the researcher can only compute measures such as E(CS™) through simulation methods.
Fortunately, advances made by Phaneuf et al. (2000), von Haefen (2004), and von Haefen et al.

(2004) have allowed for the estimation of KT welfare measures even in cases where M is sizable.
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Empirically, the three KT specifications examined by von Haefen and Phaneuf (2005)
rely on the concept of additive separability*® - i.e., that U = X} u;(x;) + u, —and are variations
of the direct utility function:

(19) U=3 win(dx +6)+ %Zp,
w; = exp(8's + pg;),
;= exp(y'q;),
p=1—exp(p’),
0 = exp(6"),
u = exp(u”)
where s is a vector of individual characteristics; (0, Y, 8%, p* u*) are structural parameters; € =
(&4, .-, €y) 1S Unobserved heterogeneity where each element is distributed i.i.d EV; and p < 1.
This utility function format ensures that weak complementarity holds — changes in g; (site
attributes of site j) have no impact on utility when xj = 0. Weak complementarity necessarily
implies that estimated welfare effects will represent only use values.

This particular utility structure implies the following likelihood of observing a specific

outcome x, conditional on (9, Y, 6% p* u*):
(20) L(x18,y,6% p", 1) = I T1;[exp(—g;(0)/m)] ®>® x exp[—exp(—g;())]
where |J| is the determinant of the Jacobian; 1(x; >0) is an indicator variable; and g;(-) is the

right hand side of equation (15) in the particular context of this utility function:

50 Additive separability eliminates the possibility of inferior goods and Hicksian complementarities between goods,
and implies that wealthier respondents will visit more sites more frequently than other respondents. This implication

may be either plausible or bothersome depending on the specific application.
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[—6's + ln% + In(®x; +0) + (p — 1) In(y — p'x)], for all j.

TR

The three KT specifications examined by von Haefen and Phaneuf (2005) differ in their
treatment of the structural parameters as either fixed (more restrictive) or random (more general)
across the population. A fixed parameters classical model, random parameters Bayesian model,
and random parameters classical model are described. As we progress with our application, we
will determine which of these specifications is most appropriate.®

Conducting a welfare analysis in the KT framework involves a two-step procedure to
calculate CSH at each iteration in a simulation procedure. First, the unobserved heterogeneity
must be simulated such that they are consistent with the choices observed under baseline
conditions. Second, CS™ must be solved for conditional on these simulated elements of
unobserved heterogeneity. The approach advocated by von Haefen and Phaneuf (2005) is a
conditional approach which, by the law of iterated expectations, should represent the expectation
of unconditional welfare estimates (so long as the data-generating process is correctly specified),
and which has been shown to provide significant time savings as compared with the standard,
unconditional approach.

“...we simulate the unobserved heterogeneity such that our model perfectly
predicts observed behavior at baseline conditions and use the model’s structure to
predict how individuals respond to price, quality, and income changes...this
conditional approach to welfare measurement differs from the more traditional
unconditional approach where the structural model is used to predict both
behavior at baseline conditions and responses to price, quality, and income
changes,” (von Haefen and Phaneuf 2005).

51 See von Haefen and Phaneuf (2005), pages 141-146, for details.
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To simulate the unobserved heterogeneity, we must first draw from the joint distribution
[f (B:, €¢1x¢)] of an individual t’s structural parameters [B; = (8¢, Ve, 67, pt, ui)] and i.i.d EV
draws conditional on said individuals observed trips. Note that:

(21) fBe eclxe) = f(Belxe) f(&elBer x¢)

which illustrates that we may first simulate from f(8;|x;) and then from f(&;|B:, x;). Not every
specification of the KT model will require simulation from f(8;|x;), however. If we decide to
use the random parameters classical specification, this simulation will require the use of an
algorithm described in von Haefen and Phaneuf (2005), pages 147-148.

To compute values of CSH, von Haefen and Phaneuf (2005) recommend the use of an
expenditure function approach developed by von Haefen (2004), as it has been shown to be
significantly faster than the utility function approach develop by von Haefen et al. (2004).%2
These computational savings arise from the fact that von Haefen et al. (2004)’s method requires
the researcher to solve multiple constrained maximization problems, whereas von Haefen
(2004)’s method requires a solution to only one constrained minimization problem.

Recall that under the assumption of additive separability, a respondent’s Kuhn-Tucker

conditions for expenditure minimization can be stated as:

au](x])/axj .
(22) )07 <p,j=1..,M
and
(23) U= Zﬁ-” ui(x;) + uy(2)

52 This approach is nevertheless detailed on pages 149-150 of von Haefen and Phaneuf (2005).
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Therefore, if the researcher can solve for the optimal value of z, equation (22) can be used
to solve for all optimal values of x. An iterative algorithm that identifies these solutions is as
follows:

1. Atiteration i, set zi = (z}™! + z~1) /2. Initially, set z? = 0 and

zy = u; (U - L (0)).

2. Conditional on z, solve for xiusing (22) and @i* = U(x%, z}) using (23).

3. IfU < U,setzl =z, and z, = z~1. Otherwise set z} = z/~tand z}, = zJ.

4. lterate until |(z} — z%)| < ¢ where c is arbitrarily small.

The general approach to solve for estimates of CSH can be summarize as follows:

1. On each iteration, first simulate 8, from f(B;|x;) and then &, from f (&;| B¢, x¢)-

Recall that simulation from f(B;|x;) is not required in the fixed parameter classical
model, and is automatically generated at each step of the Bayesian random
parameters model. The procedure necessitated by the random parameters classical
model is detailed on pages 147-148 of von Haefen and Phaneuf (2005).

2. Conditional on the simulated values (B, €;), compute values of CS" resulting from

changes in travel cost and site attributes according to one of two methods:

a. The indirect utility function approach provided by von Haefen et al. (2004),
which utilizes a numerical bisection method to determine the necessary
change in income required to equate baseline and altered utility levels. Each
iteration uses an algorithm to solve the respondent’s constrained optimization

problem.
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b. The expenditure function approach provided by von Haefen (2004), which
uses an algorithm to determine the minimum necessary expenditure required
to achieve baseline utility levels under altered conditions.

3. Average the computed values of CSH to determine E(CS), the expected value of a
respondent’s Hicksian surplus.
We anticipate that the KT model will outperform the MXL model’s results and will
provide statistically different welfare estimates and policy inference. Given how large our choice
set is (20 alternatives and hundreds of respondents), if dimensionality becomes an issue with

regard to convergence, we may need to aggregate the dataset up to the county level.
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CHAPTER 5
CONCLUSIONS

This dissertation presents three studies which examine the recreational travel cost
literature and consider new approaches to data management and demand modelling that improve
the statistical efficiency and accuracy of standard travel cost methods and applications. Together,
these papers provide valuable insights as well as recommendations for future econometric
applications of the travel cost model.

The survey response literature has established that respondents tend to over-report their
recreational activities, and correcting for “heaps and leaps” in survey response data is largely an
empirical issue. Our first paper develops two approaches to treat the presence of extreme values
and rounded responses in survey datasets and thereby improve model fit and resulting welfare
estimates. We illustrate how, when modeling single-site trip data using a negative binomial (NB)
distribution, employing the incomplete beta function simplifies the incorporation of censored
intervals. We show the NB’s fit is improved by either reassigning rounded responses to censored
regimes where reported trip numbers define the intervals’ upper bounds, or by mixing the NB
with a continuous distribution at a cut-point where it is supposed that response behavior begins
to exhibit rounding. Our analysis did not find a statistically significant difference in the
parameter or per-trip consumer surplus estimates when extreme values were either truncated or
incorporated under uncertainty. However, only three observations were truncated in our

particular application, which may not have provided a significant enough loss of information to
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impact the overall estimation. We feel these results will be useful for recreation demand research
and may have broad applicability to the general analysis of count data.

Much of the travel cost literature uses mixed logit (MXL) models to evaluate recreational
site choice data. Multinomial probit (MNP) models are less commonly used, as their relatively
cumbersome simulation procedures have made them more difficult to work with historically. Our
second paper compares these models’ performances and explores implications for welfare
analysis. In our application using multi-site trip data, we calculate estimates of average expected
maximum utility (pre and post policy implementation), as well as willingness to pay (WTP)
estimates for site quality improvements and the distributions of these estimates. We find that
while point estimates of average expected utility (unsurprisingly) differ between the MXL and
MNP models, the patterns of sign and relative significance of our parameter estimates persist
across both specifications, and the models achieve similar log likelihoods at convergence.
Furthermore, our results display consistent, parallel patterns of inference across both models. In
terms of WTP measures and their distributions, we find that the MNP model predicts the average
benefit of a universal one foot increase in water levels to be roughly twice that of the MXL
model. Interestingly, however, both models provide a very similar picture of the distribution
around this WTP estimate.

With regard to methodology, we find that the Delta Method Approximation provides a
computational advantage over both of the more traditional simulation procedures (Krinsky-Robb
and bootstrapping) — welfare estimates for both models could be calculated in a matter of
minutes as opposed to a matter of hours. The Delta Method Approximation also eliminates the
need for the researcher to run multiple simulations to determine the optimal number of

replications to report. While the MXL and MNP models performed similarly overall, the MNP
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model did fit slightly better in terms of log likelihood achieved at convergence. Given this result
and the advantages and simplifications that the Delta Method Approximation presents for
welfare analysis in the MNP context, we believe the MNP model warrants greater consideration
in the recreational travel cost (and non-market valuation) literature.

Our third paper aims to identify and characterize preferences for beach width among
North Carolina households by analyzing multi-site revealed preference trip data using travel
costs and beach site attributes (beach width, beach length, number of access points, parking area,
ferry-only access, and presence of lifeguards) as explanatory variables. We employ a MXL
model in our recreation demand analysis and discuss the advantages of incorporating a Kuhn-
Tucker generalized corner solution model in future extensions of this analysis.

The different specifications on the beach width measurement that we compare (log of
average width and log of median width) perform very similarly and provide nearly identical
pictures of the influence of the explanatory variables on trip demand, though there are noticeable
differences in the parameter estimates for lifeguards, ferry access, and number of access points.
As a result, the confidence intervals around some site attributes” WTP estimates do not always
overlap between the models. The signs on the parameters are generally what we expect. We find
that travel costs and requiring the arrangement of a boat or ferry ride to access a beach have a
negative influence on trip demand. Length is also found to have a (small) negative influence,
perhaps because the walking distance between beach amenities such as restrooms and beachside
attractions is greater on longer beaches. Number of access points, the amount of parking area,
and the presence of lifeguards are all found to have positive impacts on trip demand. It is
somewhat surprising, however, that we find beach width has a negative influence on recreation

demand, and we discuss possible justifications for this result.
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Nevertheless, while beach erosion and sea level rise directly impact beach width, they
also threaten beach access in general. In certain sea level rise scenarios, the number of beach
access points could be reduced and the proportion of beaches accessible only by ferry or boat
could increase. Given the results of our welfare analysis, we find that these consequences could
have substantial economic impacts and should be considered in future natural resource
management decisions for the Outer Banks region. Overall, this paper provides insights that we
feel will be of particular interest to coastal management authorities. The welfare estimates we
obtain have immediate policy relevance, and provide context for future work with this Sea Grant

dataset (of which the revealed preference responses are but a subset).
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