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ABSTRACT 

This dissertation comprises three manuscripts which examine the recreational travel cost 

literature and consider new approaches to data management and demand modelling that improve 

the statistical efficiency and accuracy of standard travel cost methods and applications. Together, 

these papers provide valuable insights and recommendations for future econometric applications 

of the travel cost model. 

Revealed preference methods require survey data on past resource use, and numerous 

studies have found reported recreation frequency to be overestimated and concentrated on 

prototype values. Our first paper develops two approaches to treat extreme values and rounded 

responses. We illustrate how, when modeling single-site trip data using a negative binomial (NB) 

distribution, employing the incomplete beta function simplifies the incorporation of censored 

intervals. We show the NB’s fit is improved by either reassigning rounded responses to censored 

regimes where reported trip numbers define the intervals’ upper bounds, or by mixing the NB 

with a continuous distribution at a cut-point where response behavior begins to exhibit rounding. 

Much of the travel cost literature uses mixed logit (MXL) models to evaluate recreational 

site choice data. Multinomial probit (MNP) models are less common, as they have been difficult 

to work with historically. Our second paper compares these models’ performances and explores 



implications for welfare analysis in the case of multi-site trip data. Utilizing a new, more 

efficient approach (dubbed the Delta Method Approximation) for estimating the distribution of 

the mean benefit from policy implementation in MNP models, we discuss the merit of increasing 

MNP models’ prevalence in non-market valuation studies. 

North Carolina’s beaches are imperiled by coastal erosion, sea level rise, severe storms, 

and oceanfront development. Proposed solutions to these problems include beach replenishment, 

coastal retreat, and shoreline armoring. These policies affect the quality and value of coastal 

resources and recreation, and assessing these welfare impacts is necessary for benefit-cost-

analysis of these alternatives. Our third paper analyzes multi-site trip data for North Carolina 

households using travel costs and site attributes. We employ a MXL model in our recreation 

demand analysis and discuss the advantages of incorporating a Kuhn-Tucker generalized corner 

solution model in future extensions of this analysis.  

INDEX WORDS: Censoring, Extreme responses, Incomplete beta function, Kuhn-Tucker, 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 The travel cost model is one of the corner-stones of non-market valuation, and is 

frequently applied in the context of recreational site choice data. This dissertation is organized as 

a collection of three separate (but related) manuscripts which address the following topics: (1) 

Best practices for correcting patterns of response rounding and overstatement of recreational 

behavior in survey data; (2) Comparative analysis of mixed logit and multinomial probit random 

utility models’ performances in the case of multi-site trip data; and (3) Application of the mixed 

logit model to the welfare analysis of beach erosion, site quality, and recreation demand, and 

examination of research extensions incorporating the Kuhn-Tucker generalized corner solution 

method.  

The estimation of economic values for environmental amenities is critical to making 

informed resource management decisions and accurately assessing environmental damages. 

Revealed preference methods for measuring economic values require data on observed behavior. 

Typically such behavior is elicited by surveys of target populations regarding their past use of a 

natural resource. Since recall periods are generally over a past season or year, the issue of recall 

accuracy needs to be considered. Systematic biases in reporting past behavior may compromise 

the methods used to derive values from revealed preference data.   

Numerous studies have found that respondents tend to both overestimate their recreation 

frequencies and round off their responses to end in a zero or five. Tourangeau et al. (2000) report 

that open-ended questions which require a numerical response may manifest these 
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characteristics: i) the larger the number to be reported the more likely it will be a round value; 

and ii) the distances between successive rounded values increase as the numbers increase. They 

also state that “by reporting their answers as round values, respondents may be consciously 

attempting to communicate the fact that their answers are at best approximations.” 

Vaske and Beaman (2006) describe how respondents may answer recall questions about 

frequencies (such as days of participation) using episode enumeration, formula-based multipliers, 

and prototypes, which cause their responses to deviate from what occurred in reality. All of these 

approximations can manifest in the data as response “heaping” – where reported numbers occur 

more often than chance would suggest. As the authors explain, heaping is likely related to 

number (or digit) preference: “numbers that a person has a disposition to use or avoid.” Indeed, 

Huttenlocher et al. (1990) find that respondents tend to overuse both multiples of 5 and 10 and 

numbers associated with calendar events such as weeks or months (7, 14, 21, 30 and 60, for 

example). Another manifestation of recall error is response “leaping” – where response heaping 

increases with reported magnitudes. “For responses under 15, several studies have found limited 

0-5 heaping…Above 100, responses may fall largely on 150, 200, 300, and 500 with gaps 

widening as responses move into the thousands,” (Vaske and Beaman 2006).  

Several papers discuss front-end reduction (prevention) of response bias and suggest 

strategies to improve survey design and implementation (Pudney 2008; Schaeffer and Presser 

2003; Miller and Anderson 2002; Tarrant and Manfredo 1993; Chu et al. 1992). With regard to 

back-end reduction (correction) of response bias, Evans and Herriges (2010) provide a recent 

example. Using generated data experiments and a latent class model which assumes respondents 

are members of either a rounding or non-rounding class, they find that rounding bias can have 

significant impacts on parameter estimates and resulting welfare measurements. Chapter 2 of this 
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dissertation focuses on the data portion of travel cost modelling by presenting two new 

approaches to treat the presence of extreme values and rounded responses in survey count data. 

In terms of modelling strategies used to evaluate recreational site choice data, Random 

Utility Models (RUM), which divide recreational seasons into multiple discrete choice occasions 

in which respondents either take or do not take a trip, have historically been quite popular. To 

date, much of the travel cost literature has focused on the use of multinomial logit (MNL) and 

mixed logit (MXL) (random parameters logit) models. Multinomial probit (MNP) models are 

less common, as they have been more difficult to work with historically. While MNL models are 

relatively simple to work with and can model site selection decisions (substitution effects), they 

cannot model decisions about total trips taken over the course of a recreational season 

(participation effects). For this reason, while they can provide welfare estimates on a per-trip 

basis, MNL models cannot provide estimates of seasonal welfare impacts. To achieve this, it is 

necessary to link the site choice model to a participation decision model. This has typically been 

accomplished through some sort of nested logit model.  

Standard logit models cannot represent random taste variation, they adhere to the 

Independence of Irrelevant Alternatives (IIA) axiom (which results in restricted, unrealistic 

substitution patterns among similar alternatives), and they cannot accommodate correlation in 

unobserved factors over time. While generalized extreme value models (the family of models to 

which nested logits belong) relax the IIA constraints, they remain plagued by the problems of 

random taste variation and serial correlation (Train 2009). MNP and MXL models are equipped 

to deal with these challenges, however. Compared to standard MNL and nested logit models, 

MNP and MXL models are more flexible, and their respective simulation methods are capable of 

handling a wider variety of datasets. 
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The MNP model is advantageous in that it is not bound by the IIA axiom and it can 

incorporate both random taste variation and temporally correlated error terms. It also captures 

correlations in utilities between alternatives when the error term covariance matrix, Ω, is 

normalized. However, the MNP model is challenged both by its inherent assumption that all 

unobserved components of utility are normally distributed1 and by its lack of a closed form 

expression for expected maximum utility (Train 2009). Like the MNP model, the MXL model is 

advantageous in that it does not hinge on the IIA axiom and can incorporate both random taste 

variation and correlation in unobserved factors across time. Additionally, the MXL model is not 

limited by the assumption of normality made by the MNP model (Train 2009).   

Chapter 3 of this dissertation focuses on the methodology portion of travel cost modelling 

by comparing the performance of MNP and MXL models and by employing an innovative, 

analytical approach for calculating expected maximum utility in the MNP context which may 

provide theoretical verification of standard simulation procedures while demonstrating a 

computational advantage. In sum, chapter 3 offers insights as to the merit of increasing MNP 

models’ prevalence in the non-market valuation literature. 

In recreation demand studies, it is frequently the case that a researcher’s dataset will 

consider respondents’ socio-demographic characteristics and reported seasonal visitation to a 

large number of alternatives (perhaps a dozen sites or more), for which there is an accompanying 

site attribute index. Often, a respondent will visit a subset of sites multiple times, and other sites 

                                                 
1 This assumption may hold in most cases, but particularly in the case of price coefficients, it may lead to estimates 

that are not theoretically desirable. The normal density has mass on either side of the mean of zero, implying that 

some members of the population would have a positive price coefficient where we would (almost always) anticipate 

a negative (Train 2009).  
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not at all. “To consistently derive welfare measures for price and attribute changes with such 

data, structural econometric models that behaviorally and statistically account for the mixture of 

corner solutions (unvisited sites) as well as interior solutions (sites with one or more trips) are 

required,” (von Haefen and Phaneuf 2005). Chapter 4 of this dissertation presents a timely 

application of the travel cost model which utilizes the MXL framework examined in chapter 3; it 

further describes the advantages and challenges of employing a Kuhn-Tucker generalized corner 

solutions model to evaluate the same dataset.  

North Carolina's beaches are imperiled by a number of forces including coastal erosion, 

sea level rise, storm events of increasing frequency and severity, and oceanfront development. 

Three primary solutions to these problems have been proposed: beach replenishment, coastal 

retreat, and shoreline armoring. Each of these management approaches induces changes in the 

quality of coastal resources, affecting the distribution of beach and dune sediments, presence and 

location of hardened structures, and configuration of buildings and infrastructure. These changes, 

in turn, affect the economic value of coastal recreation. We consider the use values associated 

with North Carolina (NC) beaches and how these values could be influenced by the 

implementation of the aforementioned management policies. The accurate assessment of such 

welfare impacts is, naturally, a critical component of the benefit-cost-analysis of these alternative 

proposals. Our primary research goal is to identify and characterize preferences for beach width. 

To this end, we analyze revealed preference beach site choice data for a random sample 

of NC households (data collection funded by East Carolina University and NC Sea Grant in 

2013). Through the use of the NC Department of Environmental Quality's Coastal Geographic 

Information Systems (GIS) files, a traveler’s manual for NC beaches (Morris 2005), and a host 

of Outer Banks tourism websites, we create a site-attribute matrix for NC beaches that includes 
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information regarding travel costs and beach length, width, and accessibility. We employ a MXL 

model in our analysis of recreation demand and the impact of site characteristics (many of which 

can be influenced by coastal policy and erosion management) on site choice and intensity of 

beach recreation. Our research therefore represents an important contribution to the 

understanding of people's preferences and support (willingness to pay, WTP) for different 

erosion management scenarios. 
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CHAPTER 2 

SURVEY RESPONSE DATA: PATTERNS AND PROBLEMS2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2 Barfield, A.S. and J.S. Shonkwiler. To be submitted to American Journal of Agricultural Economics 
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Abstract 

Revealed preference methods require survey data on past resource use, and numerous 

studies have found reported recreation frequency to be overestimated and concentrated on 

prototype (rounded and calendar-based) values. This paper develops two approaches to treat 

extreme values and rounded responses in survey datasets and thereby improve model fit and 

resulting welfare estimates. We illustrate how, when modeling single-site trip data using a 

negative binomial (NB) distribution, employing the incomplete beta function simplifies the 

incorporation of censored intervals. We show the NB’s fit is improved by either reassigning 

rounded responses to censored regimes where reported trip numbers define the intervals’ upper 

bounds, or by mixing the NB with a continuous distribution at a cut-point where response 

behavior begins to exhibit rounding. We feel these methods will be useful for recreation demand 

research and may have broad applicability to the general analysis of count data. 
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Introduction 

The estimation of economic values for environmental amenities is critical to making 

informed resource management decisions and accurately assessing environmental damages. 

Revealed preference methods for measuring economic values require data on observed behavior. 

Typically such behavior is elicited by surveys of target populations regarding their past use of a 

natural resource. Since recall periods are generally over a past season or year, the issue of recall 

accuracy needs to be considered. Systematic biases in reporting past behavior may compromise 

the methods used to derive values from revealed preference data.   

Numerous studies have found that reported recreation frequency has been overestimated. 

For instance, Connelly and Brown (1995) find that reported angling trips on Lake Ontario are 

over-estimated by roughly 44% as compared with diary data, with recall bias increasing with 

user avidity. Hoehn et al. (1996) similarly find recall bias to be associated with respondents’ 

over-statement of Michigan angling trips. Explanations for this bias are concerned mainly with 

the saliency of the resource, the respondent’s strategic behavior (real or imagined), and the 

respondent’s self-delusion (or effort to impress the surveyor) if the activity can be considered 

glamourous or healthy. Another dimension of recall bias is respondents’ tendency to round off 

responses to end in a zero or five. Tourangeau et al. (2000) report that open-ended questions 

which require a numerical response may manifest these characteristics: i) the larger the number 

to be reported the more likely it will be a round value; and ii) the distances between successive 

rounded values increase as the numbers increase.3 

                                                 
3 Tourangeau et al. (2000) further clarify that if respondents round fairly (i.e., if they always round their responses to 

the nearest round value), due to the uneven spacing of round values, the net effect of rounding will actually be a 

downward bias in the data. However, if respondents are not rounding fairly but are characteristically rounding up or 



 

10 

To illustrate the patterns observed in recreation survey data, consider the following table 

of reported trips in three different recreation demand studies: 

Table 2.1. Trips reported in recreation demand studies. 

Trips 

Ozuna and 

Gomez 

(1995) 

Moeltner 

(2006) 

Parsons 

et al. 

(1999) 

 Trips 

Ozuna and 

Gomez 

(1995) 

Moeltner 

(2006) 

Parsons  

et al. 

(1999) 

0 417 469 287  16 1 0 0 

1 68 24 60  17 0 0 2 

2 38 22 38  20 3 1 11 

3 34 9 36  25 3 2 4 

4 17 7 25  26 1 0 0 

5 13 10 24  28 0 0 1 

6 11 5 17  30 3 0 2 

7 2 4 4  35 0 0 1 

8 8 2 5  40 3 0 3 

9 1 1 0  50 1 0 2 

10 13 4 34  88 1 0 0 

11 2 1 0  100 0 1 1a 

12 5 0 0  N 659 563 565 

13 0 1 0     

aAlso 

150,200,

250 

14 0 0 1      

15 14 0 4      

 

The Ozuna and Gomez (1995) study collects data from a random sample of registered 

boat owners about boating trips to a popular lake in Texas. Moeltner (2006) collects data from a 

random sample of fishing license holders regarding fishing trips to the trophy section of a local 

Nevada river. Parsons et al. (1999) collect data from a random sample of Delaware residents 

regarding their visits to a popular beach. 

                                                 
down, systematic error is introduced into the model in the direction of the rounding. The evidence in the recreational 

survey response literature generally finds that respondents do not round fairly – they overstate their participation.  
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It is noteworthy how many properties these datasets share. First, there is a large 

proportion of zeros (indicating a lack of involvement in the recreational activity being studied) 

which suggests what Sarker and Surry (2004) refer to as a “fast decay” process. Second, there is 

a disproportionate number of rounded responses and some evidence of rounding to the half-

dozen and dozen. Third, there are some very large reported values which are almost all rounded 

to the nearest 10.   

This paper develops two different approaches to treat both the presence of extreme values 

and rounded responses that we feel will be of interest to recreation demand modelers and that 

may have broad applicability to the analysis of other types of count data. 

Theoretical Background 

A common problem in recreation survey response data is a preponderance of zeros due to 

non-participation. This excess-zero problem may be addressed by considering a negative 

binomial (NB) estimator for the recreation demand model or by employing some of the 

alternative count data estimators suggested by Sarker and Surry (2004).4 The remaining question 

is how to treat the rounded responses. Schaeffer and Presser (2003) have claimed that 

“estimation strategies lead to heaping at common numbers, such as multiples of 5 or 10…these 

strategies can be considered techniques for ‘satisficing’…conserving time and energy and yet 

producing an answer that seems good enough for the purposes at hand.” Similarly, Tourangeau et 

al. (2000) state that “by reporting their answers as round values, respondents may be consciously 

attempting to communicate the fact that their answers are at best approximations.” 

                                                 
4 If the zeros are generated by a different process than the non-zero responses (i.e., if some inherent, behavioral 

difference between users and non-users of a resource is readily identifiable), then hurdle count data models may 

need to be estimated (Haab and McConnell 2002). 
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“There are no established conventions for rounding survey responses. Hence, 

researchers cannot be sure how much rounding there may be in survey data. Nor 

can researchers be sure whether respondents round to simplify communication or 

to convey partial knowledge,” (Manski and Molinari 2010). 

Vaske and Beaman (2006) provide a summary of their research on the topic of survey 

response, describing how respondents may answer recall questions about frequencies (such as 

days of participation) using episode enumeration, formula-based multipliers, and prototypes, 

which cause their responses to deviate from what occurred in reality. With low participation and 

episode enumeration (the recall and counting of specific occurrences), episode omission or 

telescoping may cause response errors. With greater participation and formula-based multipliers 

(the recall of a frequency rule applied to a time frame), misestimation of the rule or failure to 

recall exceptions to it may result in response error. With the use of prototypes (a single number 

used to represent a range of values), response clusters can occur, commonly around 0’s and 5’s.  

All of these approximations can manifest in the data as response “heaping” – where 

reported numbers occur more often than chance would suggest. As Vaske and Beaman (2006) 

explain, heaping is likely related to number (or digit) preference: “numbers that a person has a 

disposition to use or avoid.” Indeed, Huttenlocher et al. (1990) find that respondents tend to 

overuse both multiples of 5 and 10 and numbers associated with calendar events such as weeks 

or months (7, 14, 21, 30 and 60, for example).5 These patterns (heaping, rounding and digit 

                                                 
5 Huttenlocher et al. (1990) also describe the occurrence of forward bias, which results both from response leaping 

and from response “bounding”: the imposition of an upper boundary (self-imposed or otherwise) on reports. This 

phenomenon (and more generally, response contraction bias) is further explored in Tourangeau et al. (2000). 
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preference) have all been observed and studied in the demographic, epidemiological and 

historical literatures (Pudney 2008).  

Another manifestation of recall error is response “leaping” – where response heaping 

increases with reported magnitudes. “For responses under 15, several studies have found limited 

0-5 heaping…Above 100, responses may fall largely on 150, 200, 300, and 500 with gaps 

widening as responses move into the thousands,” (Vaske and Beaman 2006).  

A number of papers discuss front-end reduction (prevention) of response bias and suggest 

strategies to improve survey design and implementation (Pudney 2008; Schaeffer and Presser 

2003; Miller and Anderson 2002; Tarrant and Manfredo 1993; Chu et al. 1992). With regard to 

back-end reduction (correction) of response bias, Evans and Herriges (2010) provide a recent 

example. They employ a latent class model which assumes respondents are members of either a 

rounding or non-rounding class. Using generated data experiments, they find that rounding bias 

can have significant impacts on parameter estimates and resulting welfare measurements, with 

consumer surplus loss due to site closure being overstated by 5-37 percent. 

Methodology 

The Censored Regime Method: 

Vaske and Beaman (2006) also propose some methods for reducing the bias that heaping 

may generate. Their approach attempts to smooth out the heaps by distributing the values over an 

interval whose shape is related to the underlying distribution of the un-heaped data. Since the 

recreation demand models most frequently used for the analysis of single-site visitation data 

entertain discrete distributions, this smoothing can be accomplished by assigning the heaped 

observations to intervals. Thus, we can view the resulting estimator as a count data model with 

censored regimes – outcomes are assigned to occur in a particular region or segment of the 
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distribution. This is consistent with Manski and Molinari's (2010) interpretation of rounded 

reported numerical values as interval data. 

Our statistical approach employs the NB distribution (see Cameron and Trivedi 2013), 

which is capable of handling large numbers of zeros and extreme values.6 Its probability mass 

function is: 

(1)                   
𝛤(𝑦+𝛼−1)(

𝜇

𝜇+𝛼−1)
𝑦

(
𝛼−1

𝜇+𝛼−1)
𝛼−1

𝛤(𝑦+1)𝛤(𝛼−1)
 

where 𝛤is the gamma function, 𝑦 is the number of trips to a site, µ = 𝐸(𝑦), and α is a scale 

parameter capturing overdispersion. Note that if α = 0, the NB distribution collapses to a Poisson 

distribution. 

 To define the intervals to which the heaped data will be assigned, we impose a structure 

that is informed by the findings of previous studies. If we assume that rounded data signal 

approximations and if we subscribe to the notion that respondents tend to exaggerate their 

participation, then it follows that the intervals will include values no greater than the heaped 

value. Further, the larger the heaped response, the larger the interval to which it should be 

assigned. Essentially, this is an empirical issue. Specification tests such as Pearson's chi-square 

statistic or the deviance statistic can help guide model specification.   

Implementation of a count data estimator with numerous censored regimes does pose the 

complication that sums of probabilities comprise each of the intervals. In the case of the NB 

distribution, however, the incomplete beta function can be used to compute cumulative 

probabilities by representing the cumulative distribution function (cdf) of the NB probability 

                                                 
6 For additional discussion of the NB distribution’s strengths in this context, please see Sarker and Surry (2004). 
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mass function (pmf).7 This greatly simplifies the censored estimation. The incomplete beta 

function is: 

(2)               𝐼𝑥(𝑧, 𝑤) =
𝛤(𝑧+𝑤)

𝛤(𝑧)𝛤(𝑤)
∫ 𝑡𝑧−1(1 − 𝑡)𝑤−1𝑑𝑡

𝑥

0
 

where x = (
𝛼−1

𝜇+𝛼−1), z = 𝛼−1, w is the upper-bound on the regime (i.e., the heaped response we 

are reassigning to the regime), and t is the argument of integration. 

In our application, to determine the probability that a response, y, falls within a regime 

with lower-bound, k, and upper-bound, w, the incomplete beta function will calculate Pr [k≤y≤w] 

= Pr[y<(w+1)]-Pr[y<(k+1)]).  

We use the generalized Pearson 𝑋2 statistic (McCullagh and Nelder 1989) to evaluate 

our model fit. This statistic is chi-square distributed with degrees of freedom equal to the number 

of observations (i.e. respondents) minus the number of parameters estimated: 

 (3)                 𝑋2 =  ∑ {𝑦𝑖 − 𝐸(𝑦𝑖; 𝜃)}2/𝑉(𝑦𝑖; 𝜃)𝑛
𝑖=1  

where n is the number of respondents, 𝑦𝑖 is the number of trips reported by person i, 𝜃 is a vector 

of estimated parameters, and V is variance. This form of the Pearson statistic is preferred to the 

form based on observed and expected frequencies as it does not require the assignment of data to 

groups (“bins”). The null hypothesis of this statistic is that the model fits the dataset well; 

specifically, that the model’s predicted values accurately reproduce the dataset’s first two 

moments (the mean and variance). Thus, a low p-value for this statistic indicates that the model 

fits badly – there is a low probability of error in rejecting this null hypothesis – and vice versa.  

The Distribution Transition Method: 

                                                 
7 “The sum of a number of negative binomial terms can be expressed in terms of an incomplete beta function ratio, 

and hence as a sum of binomial terms,” (Johnson et al. 1992, pg. 209). 
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Both the Evans and Herriges (2010) latent class model and our Censored Regime Method 

have their merits and shortcomings. The Evans and Herriges (2010) approach requires the 

identification of two regimes: rounders and non-rounders. As the mean number of rounders’ trips 

will likely greatly exceed the mean number of non-rounders’ trips, a stochastic specification to 

identify class membership must be employed. It is unclear how to precisely formulate this, and 

there is no obvious reason why rounders and non-rounders should have different conditional 

means. While our Censored Regime Method allows for the same conditional mean formulation 

for all respondents and may improve model fit, it suffers from the fact that increasing the size of 

the intervals will necessarily increase the value of the log likelihood. Since there is no statistical 

penalty from this approach, the selection and size of the censored regimes can only be based on a 

reasonableness criterion.8 The researcher must consequently justify the sizes and positions of 

multiple intervals. 

An alternative approach is to assume that at some cut-point, the distribution of responses 

changes from a discrete to a continuous distribution. The selection of this single cut-point, where 

a transition from non-rounding to rounding behavior can be assumed, is again based on a 

reasonableness criterion. For a discrete distribution, a given integer outcome has a unique 

probability associated with it, and though the term “count data regression” has become 

commonplace, it is somewhat misleading. In truth, the count data model is based on a probability 

mass function with a conditional mean – it is not, in fact, a regression. There is no underlying 

                                                 
8 Increasing the width of the intervals allows each regime to encompass larger sums of probabilities. Attempting to 

parameterize the bounds on these regimes will therefore result in the model selecting bounds at the minimum and 

maximum responses. To avoid this collapsing of regimes, the researcher must determine and impose what they deem 

to be appropriate interval bounds for their particular dataset. 
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distribution of outcomes associated with a conditioning variable. By contrast, a regression model 

with a continuous response variable has a distribution of responses associated with a 

conditioning variable because the probability of a given response is very small. 

For smaller responses where rounding is less likely to have occurred and where an 

outcome of zero is meaningfully different from outcomes such as one or two, the (less flexible) 

discrete distribution can reasonably be applied to calculate an exact probability for each 

response. For larger responses where rounding is more likely to have occurred and there is less 

certainty that outcomes are exact, the (more flexible) continuous distribution calculates 

probabilities around each response.9 Under this formulation, the area of responses defined by the 

discrete distribution is right truncated, and the area of responses defined by a continuous 

distribution is left truncated. The form that the likelihood function takes in each of these 

partitions is therefore determined by the specific mixture of distributions chosen, and will be 

illustrated with regard to our specific application.  

Application 

 Using data from Parsons et al. (1999),10 we consider day-trip visits to a single site (Cape 

Henlopen State Park) in our estimation. The numbers of trips reported by the respondents in this 

survey are shown below in table 2.2. Again, we see a large number of zeros, possible heaping at 

rounded numbers and the half-dozen and dozen marks, some extreme values, and increasing 

                                                 
9 If a respondent has engaged in rounding behavior, the researcher may observe that the respondent took, for 

example, 50 trips to a recreational resource. In fact, there is some distribution of trips around this 50 trip response 

that better represents the respondent’s true pattern of visitation. 

10 The Parsons et al. (1999) survey was conducted in October, 1997, asking respondents about recreational trips to 

62 Mid-Atlantic beaches during 1997 to date.   
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distances between the larger numbers of reported trips (“leaping”). There is also evidence of 

overdispersion, with an observed mean of 2 and a variance of over 48.  

Table 2.2. Reported trips to Cape Henlopen State Park, 1997. 

Trips 

Reported 
Respondents Proportion  Trips 

Reported 
Respondents Proportion 

0 378 0.6690  15 4 0.0071 

1 54 0.0956  18 1 0.0018 

2 24 0.0425  20 4 0.0071 

3 26 0.0460  25 3 0.0053 

4 11 0.0195  30 1 0.0018 

5 21 0.0372  35 1 0.0018 

6 10 0.0177  40 1 0.0018 

8 6 0.0106  50 1 0.0018 

10 11 0.0195  72 1 0.0018 

12 5 0.0088  100 1 0.0018 

14 1 0.0018  Descriptive 

Statistics 
n=565 

s2=48.73 

mean=2.09 

 

In the application of our Censored Regime Method, we fit a number of variations of the 

NB distribution and assess our models’ success by employing the Pearson statistic, which 

follows equation (3) where n=565 and the variance is defined by the specific form of the NB 

distribution being estimated. In the application of our Distribution Transition Method, we 

consider a mixture of the generalized NB distribution and the lognormal distribution, again 

utilizing the Pearson statistic to assess model performance.  

Results 

Censored Regime Method: 
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We first fit a standard NB distribution to the data, with variance defined as:                                     

(4)         V(yi) = 𝜇̂𝑖(1 + α𝜇̂𝑖)= 𝜇̂𝑖+α𝜇̂𝑖
2
 

where 𝜇̂𝑖= 𝐸(𝑦𝑖; 𝜃), 𝜃 = {𝛽̂, 𝛼̂}, and β is a vector of explanatory variables (travel cost and socio-

demographic information: the natural log of age and dummy variables for having a child under 

10 years old, being retired, or being a student). 

Our results from this specification are summarized in table 2.3 below.  

Table 2.3. Estimates: Standard negative binomial distribution. 

Variable/ Parameter Coefficient Robust Std. 

Error 

z-

Value 

Constant 0.2411 1.6121 0.1496 

Trip Cost -0.0333 0.0041 -8.0644 

ln(Age) 0.4313 0.4249 1.0150 

Child <10 0.5370 0.2546 2.1091 

Retired -0.6952 0.3369 -2.0636 

Student 1.0942 0.3230 3.3879 

Dispersion: α 4.3993 0.4943 8.9003 

    

Pearson Statistic: 729.0, 

p=0.000 

Log Likelihood = -797.76 
  

 

Our Pearson statistic indicates a poor model fit, which leads us to our subsequent 

specification – the generalized NB distribution. This model is a more flexible form of the 

standard NB distribution and estimates an additional variable, Φ, to be included in 𝜃. Its variance 

is defined as:  

(5)     V(yi) =  𝜇̂𝑖+α𝜇̂𝑖
2−𝛷

 

Our results from this specification are summarized in table 2.4 below. 
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Table 2.4. Estimates: Generalized negative binomial distribution. 

Variable/Parameter Coefficient Robust Std. 

Error 

z-

Value 

Constant 1.4250 1.4686 0.9703 

Trip Cost -0.0354 0.0045 -7.9368 

ln(Age) 0.1283 0.3926 0.3269 

Child <10 0.7206 0.2090 3.4486 

Retired -0.5810 0.3190 -1.8216 

Student 0.9522 0.3252 2.9278 

Dispersion: α 6.4913 0.8720 7.4443 

Φ 0.4765 0.1033 4.6141 

    

Pearson Statistic: 621.5, 

p=0.030 

Log Likelihood = -785.11 
  

 

Our Pearson statistic improves slightly, indicating a somewhat better fit. We therefore use 

this model in our subsequent specifications which incorporate censored regimes and 

reassignment of the heaped observations. In our first censored, generalized NB model, we 

impose the following, dual-regime structure: the pmf is fit to observations with fewer than 50 

reported trips; the single observation of 50 trips is assigned to a regime of 36-5011 trips; and the 

two remaining observations are assigned to a regime of greater than 50 trips. Our results from 

this specification are summarized in table 2.5 below. 

 

 

                                                 
11 While the upper-bound of 50 trips is predetermined by our assumption that the intervals contain no more than the 

reported number of trips, the lower-bound is somewhat arbitrary. In this case, 36 was selected given that the 

majority of the observations occur at 35 or fewer reported trips.  
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Table 2.5. Estimates: Dual-censored generalized negative binomial distribution. 

Variable/ Parameter Coefficient Robust 

Std. 

Error 

   z-

Value 

  

Constant 1.5521 1.4316 1.0842 
 

Censored 

Regimes 

Trip Cost -0.0345 0.0044 -7.8536 
 

>50 

ln(Age) 0.0795 0.3812 0.2087 
 

  50 » 36 to 50 

Child <10 0.6967 0.2010 3.4660 
  

Retired -0.5626 0.3101 -1.8145 
  

Student 0.9313 0.3212 2.8995 
  

Dispersion: α 6.4054 0.8516 7.5216 
  

Φ 0.5105 0.1048 4.8735 
  

    
  

Pearson Statistic: 433.8, 

p=0.999 

Log Likelihood =   

−774.73 

    

 

Our Pearson statistic12 indicates a significant improvement in the fit of the model, which 

supports the incorporation of censored regimes and reassignment of heaped observations in our 

estimation procedures. In our second censored, generalized NB model, we impose the following, 

multiple-regime structure: the pmf is fit to observations with fewer than 20 reported trips; the 

four observations of 20 trips are assigned to a regime of 16-20 trips; the three observations of 25 

trips are assigned to a regime of 21-25; the observation of 30 trips to a regime of 26-30; the 

observation of 35 trips to a regime of 31-35; the observation of 40 trips to a regime of 31-40; the 

                                                 
12 Computing the Pearson statistic for a censored observation requires calculation of said observation’s expected 

value and variance, given that it falls in an interval: E(yi|a<yi<b) and V(yi|a<yi<b). 
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observation of 50 trips to a regime of 36-5013; and the two remaining observations to a regime of 

greater than 50 trips. Our results from this specification are summarized in table 2.6 below. 

Table 2.6. Estimates: Multi-censored generalized negative binomial distribution. 

Variable/ Parameter Coefficient Robust Std. 

Error 

z-Value 
  

Constant 1.5154 1.4168 1.0696 
 

Censored 

Regimes 

Trip Cost -0.0341 0.0044 -7.7450 
 

>50 

ln(Age) 0.0803 0.3777 0.2126 
 

  50 » 36 to 50 

Child <10 0.6942 0.1989 3.4901 
 

  40 » 31 to 40 

Retired -0.5535 0.3067 -1.8045 
 

  35 » 31 to 35 

Student 0.9171 0.3180 2.8843 
 

  30 » 26 to 30 

Dispersion: α 6.3425 0.8437 7.5177 
 

  25 » 21 to 25 

Φ 0.5267 0.1083 4.8641 
 

  20 » 16 to 20 

    
  

Log Likelihood =       

−755.69 

 
    

  

Our log likelihood14 indicates that the fit of our model has improved yet again by 

incorporating the additional regimes. This provides further evidence that respondents are over-

reporting their visitation and rounding up to multiples of 5 and 10. In the context of over-

reporting and extreme values, a common practice in the survey response literature is simply to 

                                                 
13 The increasing range of the intervals to which observations are reassigned accounts for the increasing distance 

between rounded values as numbers of reported trips themselves increase.  

14 Due to the number of regimes and reassigned observations in this model, the Pearson statistic becomes 

computationally-difficult to calculate. The two-regime model has been shown to reproduce the first two moments of 

the dataset; by incorporating additional censored regimes, we are increasing the model’s flexibility, and would not 

expect the Pearson statistic to suffer as a result. The improved log likelihood value lends support to this assumption. 
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exclude larger values from the dataset on the basis that they are likely to be unrepresentative of 

the general (or target) population. To this end, we consider how our results would be affected if 

we truncated the data at 50 (thereby losing three, extreme-value observations) and estimate a 

generalized NB model.  Our results from this specification are summarized in table 2.7 below. 

Table 2.7. Estimates: Truncated, generalized negative binomial distribution. 

Variable/ Parameter       Coefficient Robust Std. Error      z-Value 

Constant 2.0370 1.3548 1.5036 

Trip Cost -0.0309 0.0041 -7.5161 

ln(Age) -0.1108 0.3549 -0.3123 

Child <10 0.6409 0.1897 3.3783 

Retired -0.5312 0.2958 -1.7961 

Student 0.8711 0.3123 2.7891 

Dispersion: α 5.9586 0.7362 8.0940 

Φ 0.5994 0.1131 5.2982 

    

Pearson Statistic: 

488.2,  p=0.979 

Log Likelihood = -757.72 
  

  

We have lost information in estimating this model (by eliminating data points), and as a 

result, the fit is not quite as good as when we incorporate this information under uncertainty. 

Estimated per-trip consumer surplus15 moves from $29.33 (standard error of 3.78) in the multi-

censored distribution to $32.36 (standard error of 4.29) in the truncated distribution, and we 

observe changes in all of the parameter estimates. While these changes are not statistically 

different, we have only lost three observations in this particular example. In datasets with large 

                                                 
15 Calculated as the inverse of the estimated coefficient on trip cost, the marginal utility of income.  
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numbers of extreme values to either truncate or model under uncertainty, the disparities in these 

parameter estimates could become significant with regard to policy implications.  

Distribution Transition Method: 

 Following the results of our Censored Regime Method application, we propose the use of 

the generalized NB for the discrete distribution. For the continuous distribution, we propose the 

use of the lognormal distribution. The lognormal distribution has the advantage of a long right 

tail, and the NB and lognormal distributions follow the same conditional mean process. This 

makes the transition from the discrete to the continuous distribution smoother than in the case of 

latent class models where there are different conditional means depending on class membership.  

For observations at or below the cut-point, c, the likelihood is:       

 (6)                                               
𝛤(𝑦+𝑎)(

𝜇

𝜇+𝑎
)

𝑦
(

𝑎

𝜇+𝑎
)

𝑎

𝛤(𝑦+1)𝛤(𝑎)Pr (𝑦≤𝑐)
Pr (𝑦 ≤ 𝑐)  

where 𝑎 =  
1

𝛼
 𝜇𝛷, µ is the conditional mean, α is the dispersion parameter, and y is the number of 

trips to a site up to the cut-point, c (i.e., y = 0,1,…,c). This is the result of multiplying the right 

truncated generalized NB distribution by the probability of being in that regime—hence, the two 

probabilities will cancel out.  

 For observations above the cut-point, the likelihood is: 

(7)                           
exp (−.5(

(log(𝑦)−log(𝜇))

𝜎
)2)(1−𝛺(𝑥,𝑎,𝑐+1))

(𝜎√2𝜋)(𝛷(
log(𝜇)−log(𝑐+1)

𝜎
))

 

where y is the number of trips to a site beyond the cut-point (i.e., y = c+1,…), 𝛺(𝑥, 𝑎, 𝑐 + 1) is 

the sum of probabilities of the generalized NB distribution from 0 to c, and 𝛷(𝑧) is the standard 

normal cumulative distribution function. In this case, 𝛷(𝑧) is the probability that the lognormal 

distribution is above c to account for the left truncation. The term (1 − 𝛺(𝑥, 𝑎, 𝑐 + 1)) accounts 
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for the probability of being above the cut-point and can be computed using the incomplete beta 

function (note that x is now defined as (𝑎 (𝑎 + 𝜇⁄ )). 

 To calculate the Pearson statistic, we must obtain the conditional means and variances of 

this mixed distribution model.  

For the right truncated generalized NB distribution, we refer to the recent work by 

Shonkwiler (2016), which corrects the second moments as reported by Gurmu and Trivedi 

(1992) and Cameron and Trivedi (2013). The formulas are as follows for the conditional mean: 

(8)                                   𝐸[𝑌|𝑌 ≤ 𝑐] = 𝜇 −
(𝑐+1)𝑝𝑚𝑓(𝑐+1)

𝑥 Pr(𝑌≤𝑐)
= 𝜇0      

and conditional variance:  

(9)      𝑉(𝑌|𝑌 ≤ 𝑐) = 𝜇 + 𝜇2/a + (𝑐 + 1)(𝜇0 − 𝜇) − (𝜇0 − 𝜇)2 − (a − 1)(𝜇0 − 𝜇)𝜇/a 

where 𝑝𝑚𝑓(𝑐 + 1) represents the generalized NB probability mass function evaluated at c+1. 

For the left truncated lognormal distribution16, the conditional moments can be written as:  

(10)                          𝐸(𝑦|𝑦 > 𝑐) = exp(log (𝜇) + .5𝜎2) 
𝛷(𝜎+(log(𝜇)−log(𝑐))/𝜎)

𝛷((log(𝜇)−log(𝑐))/𝜎)
  

(11)                       𝐸(𝑦2|𝑦 > 𝑐) = exp(2log (𝜇) + 2𝜎2) 
𝛷(2𝜎+(log(𝜇)−log(𝑐))/𝜎)

𝛷((log(𝜇)−log(𝑐))/𝜎)
 

This permits straightforward computation of the Pearson statistic. 

In our application of the Distribution Transition Method, our model was fit to the data 

with a cut-point set at 19, as we believe responses of 20 reported trips or more could exhibit 

rounding behavior. The results we obtained (table 2.8 below) are remarkably similar to those 

                                                 
16 These formulas are based on the work of Bebu and Mathew (2009) (note what they report as the variance is 

actually E(y2)).   
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found in tables 2.5 and 2.6, and display similar improvements as compared with the simple 

truncated distribution summarized in table 2.7.  

Table 2.8. Estimates: Mixed generalized negative binomial-lognormal distribution. 

Variable/Parameter Coefficient Robust Std. 

Error 

z-

Value 

Constant 1.5680 1.4055 1.1156 

Trip Cost -0.0340 0.0044 -7.7660 

ln(Age) 0.0653 0.3728 0.1752 

Child <10 0.6897 0.1980 3.4833 

Retired -0.5750 0.3091 -1.8602 

Student 0.9255 0.3198 2.8940 

Dispersion: α 6.2178 0.7927 7.8438 

Φ 0.5168 0.1077 4.7985 

 1.0608 0.1884 5.6306 

Pearson Statistic: 477.5, 

p=0.993 

Log Likelihood = -741.04 
  

 

Discussion 

 The survey response literature has established that respondents tend to over-report their 

recreational activities, and correcting for “heaps and leaps” in survey response data is largely an 

empirical issue. This paper illustrates how, when modeling single-site recreational trip data using 

a negative binomial distribution, employing the incomplete beta function to represent the cdf of 

the NB distribution simplifies the incorporation of censored intervals. We further provide 

evidence that the NB model’s fit is significantly improved by either (1) reassigning heaped 

responses to censored regimes where reported trip numbers determine the intervals’ upper-

bounds, or (2) mixing the NB distribution with a continuous distribution at a cut-point where it is 

supposed that response behavior begins to exhibit rounding.   
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We find two socio-demographic variables to be significant: Child<10 and Student. We 

hypothesize this is because Cape Henlopen State Park is a popular vacation destination for those 

who are, or have children who are, out of school during the summer. Our analysis did not find a 

statistically significant difference in the parameter or per-trip consumer surplus estimates when 

extreme values were either truncated or incorporated under uncertainty. However, only three 

observations were truncated in our particular application, which may not have provided a 

significant enough loss of information to impact the overall estimation. As we expand this 

research, we may examine other sites in the Parsons et al. (1999) dataset (or different datasets 

entirely) where the impacts of truncation may be more extensive.  
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CHAPTER 3 

MULTINOMIAL PROBIT AND MIXED LOGIT MODELING OF RECREATION DEMAND: 

A COMPARATIVE ANALYSIS17 

  

                                                 
17 Barfield, A.S., G. Colson, and J.S. Shonkwiler. To be submitted to Environmental and Resource Economics 
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Abstract 

Much of the travel cost literature uses mixed logit (MXL) models to evaluate recreational 

site choice data. Multinomial probit (MNP) models are less commonly used, as their relatively 

cumbersome simulation procedures have made them more difficult to work with historically. 

This paper compares model performance and explores implications for welfare analysis in the 

case of multi-site trip data. We calculate estimates of average expected maximum utility (pre and 

post policy implementation), as well as willingness to pay estimates for site quality 

improvements and the distributions of these estimates. Our results display parallel patterns of 

inference across both models. We also utilize a new, more efficient approach to estimate the 

distribution of the mean benefit from policy implementation in MNP models (the Delta Method 

Approximation), and illustrate this approach’s advantages over traditional simulation procedures. 

Given our findings, we discuss the merit of increasing MNP models’ prevalence in the non-

market valuation literature. 
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Introduction 

The travel cost method is well-established within the field of economic valuation. Its use 

in the non-market valuation of natural resources and amenities is particularly prevalent. To date, 

much of the travel cost literature has focused on the use of multinomial logit (MNL) and mixed 

logit (MXL) (random parameters logit) models to evaluate recreational site choice data. 

Multinomial probit (MNP) models are much less common, as they have been more difficult to 

work with historically. Compared to standard MNL and nested logit models, MNP and MXL 

models are more flexible, and their respective simulation methods are capable of handling a 

wider variety of datasets. This study compares the MNP model to its popular and natural 

competitor (the MXL model) and employs an innovative, analytical approach for calculating 

expected maximum utility which is less computationally demanding than standard simulation 

methods.  

By comparing MNP and MXL models, we explore the extent to which logit 

specifications capture correlations in utilities for different alternatives, which may be significant 

in terms of welfare estimates. These correlations are necessarily accounted for in MNP models. 

If logit models capture the majority of these correlations, their results should be quite similar to 

those of MNP models. If our results indicate that the two models provide significantly different 

pictures of these correlations, we may confront the claim that MXL models can approximate any 

random utility model (including a probit).18 By comparing our approach for expected utility 

estimation with typical simulation methods, we provide an alternative procedure for welfare 

                                                 
18 For example, if MXL models do not actually provide an excellent approximation of MNP models, and MNP 

analysis provides a good fit for a researcher’s data, the results of said MNP analysis would provide different 

information and conclusions for policy analysis than a MXL analysis would. 
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analysis in MNP models that may provide theoretical verification of these simulation procedures 

while demonstrating a computational advantage. In sum, this study offers insights as to the merit 

of increasing MNP models’ prevalence in the non-market valuation literature.19  

Theoretical Background 

While MNL models are relatively simple to work with and can accurately model site 

selection decisions (substitution effects), they cannot model decisions about total trips taken over 

the course of a recreational season (participation effects). For this reason, while they can provide 

welfare estimates on a per-trip basis, MNL models alone cannot provide estimates of seasonal 

welfare impacts resultant from, for example, changes in site quality or quantity. To achieve this, 

it is necessary to link the site choice model to a participation decision model. This has typically 

been accomplished through some sort of nested logit model.  

Recent advances in computational power have made the MNP and MXL models 

applicable to studies with a large number of alternatives to evaluate. Both approaches have 

advantages over the traditional MNL and nested logit models. Logit models cannot represent 

random taste variation, they adhere to the Independence of Irrelevant Alternatives (IIA) axiom 

(which results in restricted, unrealistic substitution patterns among similar alternatives), and they 

cannot accommodate correlation in unobserved factors over time. While generalized extreme 

value models (the family of models to which nested logits belong) relax the IIA constraints, they 

remain plagued by the problems of random taste variation and serial correlation (Train 2009). 

The MNP and MXL models are equipped to deal with these challenges, however. 

                                                 
19 This discussion is particularly relevant given that recent increases in computational power makes MNP analysis 

feasible for around a dozen alternatives. 
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The MNP model is advantageous in that it is not bound by the IIA axiom and it can 

incorporate both random taste variation and temporally correlated error terms. It also captures 

correlations in utilities between alternatives when the error term covariance matrix, Ω, is 

normalized.20 However, the MNP model is challenged both by its inherent assumption that all 

unobserved components of utility are normally distributed21 and by its lack of a closed form 

expression for expected maximum utility (Train 2009). Like the MNP model, the MXL model is 

advantageous in that it does not hinge on the IIA axiom and can incorporate both random taste 

variation and correlation in unobserved factors across time. Additionally, the MXL model is not 

limited by the assumption of normality made by the MNP model (Train 2009).   

However, there is no implicit guarantee that a researcher’s data are generated by random 

utility model process, and if they are not, a flexible mechanism to describe allocation choices is 

needed. Flexibility in MXL models can only be achieved through a random parameters 

specification. MNP models are (perhaps) more flexible, in that you may impose any structure on 

Ω (unlike in MXL) while also being able to specify random parameters (as long as they are 

normal).  

Beyond the initial step of estimating and signing the parameters of interest, to place our 

study in context with the rest of the travel cost literature, it is necessary that we also provide 

                                                 
20 The researcher must normalize the error term covariance matrix to ensure identification of the parameters 

affecting utility. This normalization occurs automatically in logit models but must be done manually in probit 

models (Train 2009). 

21 This assumption may hold in most cases, but particularly in the case of price coefficients, it may lead to estimates 

that are not theoretically desirable. The normal density has mass on either side of the mean of zero, implying that 

some members of the population would have a positive price coefficient where we would (almost always) anticipate 

a negative (Train 2009).  
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comparable welfare estimates that measure responses to changes in environmental quality. To do 

this, we must estimate expected maximum utilities before and after implementing the proposed 

policy. This is a relatively straightforward process in logit models, but probit models require 

more complicated methods. 

Methodology 

For both the MNP and MXL models, we consider utility to be composed of observed and 

unobserved components such that: 

(1)                     𝑈𝑛𝑗 =  𝑉𝑛𝑗 +  𝜀𝑛𝑗 

where there are n respondents and j alternatives; Vnj is the observed portion of utility which may 

be expressed in terms of explanatory variables xnj and coefficients β such that, in the linear case, 

Vnj = βn’xnj; and the distribution of εnj depends on the model chosen (i.i.d type I extreme value in 

logit, generalized extreme value in nested logit, normal in probit, etc.).  

The Multinomial Probit Model: 

 MNP choice probabilities take the form: 

(2)                          𝑃𝑛𝑖 =  ∫ 𝐼(𝑉𝑛𝑖 +  𝜀𝑛𝑖 > 𝑉𝑛𝑗 +  𝜀𝑛𝑗  ∀ 𝑗 ≠ 𝑖)∅(𝜀𝑛)𝑑𝜀𝑛 

where I(·)is an indicator variable for the truth of the statement in parentheses; εn is a vector of 

error terms [εn1,…, εnJ]; and ∅(𝜀𝑛) is the normal density of εn: 

(3)                                                  ∅(𝜀𝑛) =  
1

(2𝜋)𝐽/2|𝛺|1/2  𝑒−
1

2
𝜀′𝑛𝛺−1𝜀𝑛 

where Ω is the (JXJ) covariance matrix22 of 𝜀𝑛:  

(4)                                                 𝛺 =  (

𝜎11 ⋯ 𝜎1𝐽

⋮ ⋱ ⋮
𝜎𝐽1 ⋯ 𝜎𝐽𝐽

) 

                                                 
22 For simplicity, we omit the subscript n on Ω, but each respondent is likely to have their own, unique Ω. 
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The integrals in equation (2) are therefore J-dimensional over all values of εn. But, as only 

differences in utility matter in this context, it is also possible to express the MNP choice 

probabilities as (J-1)-dimensional integrals over differences between errors:  

(5)                                𝑃𝑛𝑖 =  ∫ 𝐼(𝑉̃𝑛𝑗𝑖 + 𝜀𝑛̃𝑗𝑖 < 0 ∀ 𝑗 ≠ 𝑖)∅(𝜀𝑛̃𝑖)𝑑𝜀𝑛̃𝑖 

where 𝑉̃𝑛𝑗𝑖= 𝑉𝑛𝑗 − 𝑉𝑛𝑖; 𝜀𝑛̃𝑗𝑖= 𝜀𝑛𝑗 − 𝜀𝑛𝑖; 𝜀𝑛̃𝑖 is a vector of error term differences over all 

alternatives but i [𝜀𝑛̃1𝑖,…,𝜀𝑛̃𝑗𝑖]; and ∅(𝜀𝑛̃𝑖) is the normal density of 𝜀𝑛̃𝑖: 

(6)                                         ∅(𝜀𝑛̃𝑖) =  
1

(2𝜋)1/2(𝐽−1)|𝛺̃𝑖 |1/2
 𝑒−

1

2
𝜀′̃𝑛𝑖𝛺̃𝑖 −1𝜀̃𝑛𝑖 

where 𝛺̃𝑖 is derived from Ω23 (Train 2009). 

 Discrete choice models must be normalized so that only economically significant 

information is preserved in the covariance matrix of the error term – specifically, so that 

elements of the covariance matrix dealing with the irrelevant concepts of level and scale of 

utility (which do not affect behavior) are removed. This is an issue of parameter identification. In 

this sense, the reduction in the number of parameters is not a restriction, but rather a “correction” 

of sorts.24 A critical difference between logit (and nested logit) and probit models is that this 

normalization occurs automatically in logit models, whereas it must be manually imposed in 

probit models. An unrestricted, unnormalized model will have J(J+1)/2 covariance matrix 

parameters; an unrestricted, normalized model will have [(J-1)J/2]-1 covariance matrix 

parameters (Train 2009). Train (2009) provides a “procedure25 that can always be used to 

                                                 
23 For a “straightforward” way to derive 𝛺̃𝑖 from Ω, please see Train (2009) pg. 99-100. 

24 Additional restrictions on the error term covariance matrix may be imposed at the researcher’s discretion, but their 

structure may or may not achieve the necessary normalization on their own (Train 2009). 

25 Please see Train (2009) pg. 101-102. 
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normalize a probit model and assure that all parameters are identified…either by itself or as a 

check on another procedure.” 

 Probit probabilities require numeric simulation to evaluate. The most widely used 

simulation method for probit models is the GHK simulator,26 which is employed in the context of 

utility differences (𝑃𝑛𝑖 is simulated based on 𝑈𝑛𝑖 having been subtracted from all other utilities). 

Recall that with utility differences against alternative i, 𝑈̃𝑛𝑗𝑖  = 𝑉̃𝑛𝑗𝑖 + 𝜀𝑛̃𝑗𝑖; 𝜀𝑛̃𝑖 is a (J-1)X1 vector 

of error term differences over all alternatives but i: [𝜀𝑛̃1𝑖,…,𝜀𝑛̃𝑗𝑖]; and 𝜀𝑛̃𝑖 ~ N(0, Ω̃i) where Ω̃i is 

derived from Ω (Train 2009). 

 Now define Li to be the lower-triangular Cholesky decomposition matrix of Ω̃i such that               

Li Li’=Ω̃i. 

(7)                          𝐿𝑖 =  (

𝑐11 0 … … 0
𝑐21 𝑐22 0 … 0
𝑐31 𝑐32 𝑐33 … 0
… … … … …

) 

And define the vector ηn’=[η1n,…,η(J-1)n] as a vector of i.i.d. standard normal deviates (obtained 

by taking (J-1) draws from a random number generator for a standard normal distribution) such 

that ηnj~N(0,1) ∀ 𝑗. Using these definitions, we can see that 𝜀𝑛̃𝑖 = Liηn, because Cov(𝜀𝑛̃𝑖) = 

E[𝜀𝑛̃𝑖𝜀̃′𝑛𝑖]= E[Liηn(Liηn)’]= Li E[ηnηn’] Li’= Li I Li’=Ω̃i. Therefore, we can express the model as 

𝑈̃𝑛1𝑖 = 𝑉̃𝑛1𝑖 + 𝑐11𝜂1, 𝑈̃𝑛2𝑖= 𝑉̃𝑛2𝑖 + 𝑐21𝜂1 + 𝑐22𝜂2, etc. (Train 2009). The choice probabilities 

now are: 

 

                                                 
26 The GHK simulator is known to be extremely reliable, particularly given that it is unbiased for any number of 

replications and given that its estimates display smaller variances than any of its competitors’ (Chen and Cosslett 

1998).  
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(8)      𝑃𝑛𝑖 = 𝑃𝑟𝑜𝑏 (𝑈̃𝑛𝑗𝑖 < 0 ∀ 𝑗 ≠ 𝑖) 

= 𝑃𝑟𝑜𝑏 (𝜂1 <  
−𝑉̃𝑛1𝑖

𝑐11
) 𝑋 𝑃𝑟𝑜𝑏 (𝜂2 <  

−(𝑉̃𝑛2𝑖 +  𝑐21𝜂1)
𝑐22

|𝜂1 <  
−𝑉̃𝑛1𝑖

𝑐11
) 𝑋 … 

 With this structure in mind, the GHK simulator is calculated by: 

1) First, calculating  (𝜂1 <  
−𝑉̃𝑛1𝑖

𝑐11
) =  𝛷 (

−𝑉̃𝑛1𝑖

𝑐11
) , where Φ(

−𝑉̃𝑛1𝑖

𝑐11
)  is the standard 

normal cumulative distribution evaluated at (
−𝑉̃𝑛1𝑖

𝑐11
). 

2) Then, drawing a value of 𝜂1, labeled 𝜂1
𝑟, from a standard normal distribution 

truncated at  
−𝑉̃𝑛1𝑖

𝑐11
. To take a draw from a truncated normal is a two-step process: 

a. Take a draw from a standard normal distribution labeled µ1
r 

b. Calculate 𝜂1
𝑟 =  𝛷−1 (𝜇1

𝑟 𝛷 (
−𝑉̃𝑛1𝑖

𝑐11
)) 

3) Then, calculating 𝑃𝑟𝑜𝑏 (𝜂2 <  
−(𝑉̃𝑛2𝑖+ 𝑐21𝜂1)

𝑐22
|𝜂1 =  𝜂1

𝑟 ) =  𝛷 (
−(𝑉̃𝑛2𝑖+ 𝑐21𝜂1

𝑟)

𝑐22
) 

4) Continuing this process for all alternatives but i. 

5) Then, calculating the simulated probability for the rth draw of 𝜂1, 𝜂2, etc., as:                

𝑃̂𝑛𝑖
𝑟 =  𝛷 (

−𝑉̃𝑛1𝑖

𝑐11
) 𝑋 𝛷 (

−(𝑉̃𝑛2𝑖+ 𝑐21𝜂1
𝑟)

𝑐22
)  𝑋 … 

6) Repeating steps 1-5 R times. 

7) Then, calculating the overall simulated probability as 𝑃̂𝑛𝑖 =
1

𝑅
 ∑ 𝑃̂𝑛𝑖

𝑟𝑅
𝑟=1  (Train 2009). 

 When using the GHK simulator in maximum likelihood estimation, there are a few things 

we must consider. Since the GHK simulator uses utility differences that are taken against the 

alternative we are calculating the probability for, we must take different utility differences for 

respondents who choose other alternatives. Also, since once respondent might choose alternative 

i (where we would use the covariance matrix Ω̃i), and another might choose alternative j (where 
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we would use the covariance matrix Ω̃j), we must ensure that all J possible covariance matrices 

are derived from the same original matrix Ω (and that they are positive definite). Naturally, the 

matrix Ω must also have been normalized so that parameters are identified, as previously 

discussed (Train 2009).27 

The Mixed Logit Model: 

            MXL choice probabilities take the form: 

(9)          𝑃𝑛𝑖 =  ∫ 𝐿𝑛𝑖(𝛽)𝑓(𝛽)𝑑𝛽  

where Lni(β) is the logit probability evaluated for the parameters β: 

(10)                                                𝐿𝑛𝑖(𝛽) =  
𝑒𝑉𝑛𝑖(𝛽)

∑ 𝑒
𝑉𝑛𝑗(𝛽)𝐽

𝑗=1

 

and f(β) is a density function (a.k.a. a mixing distribution). In the linear utility case, then, the 

MXL probability is: 

(11)                                             𝑃𝑛𝑖 =  ∫(
𝑒𝛽′𝑥𝑛𝑖

∑ 𝑒
𝛽′𝑥𝑛𝑗𝐽

𝑗=1

)𝑓(𝛽)𝑑𝛽  

 In this sense, the MXL probability “is a weighted average of the logit formula evaluated 

at different values of β, with the weights given by the density f(β),” (Train 2009). The density 

functions can be either discrete or continuous, but in practice, they have typically been specified 

as the latter. The normal and lognormal densities are commonly used,28 but gamma, uniform, and 

other densities can also be employed. In estimating a MXL model, there are two sets of 

parameters to be concerned with – the β’s, which evaluate the logit formula, and the parameters 

in θ (mean, µ, and covariance, Σ) which describe the density function. Often, the parameters of 

                                                 
27 Train (2009) illustrates a procedure that satisfies these requirements on pg. 129-130. 

28 The lognormal distribution is most useful in the case where a coefficient is expected to have the same sign for 

every individual in the sample (positive for income, negative for cost/price, etc.). 
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interest are those describing the density function,29 more accurately written as f(β|θ). For this 

reason, the parameters β are integrated out of the MXL probabilities: 𝑃𝑛𝑖 =  ∫ 𝐿𝑛𝑖(𝛽)𝑓(𝛽|𝜃)𝑑𝛽 

(Train 2009). 

The approach to the MXL model outlined above is known as the Random Coefficients 

approach and is the most direct, most commonly used method. Each individual in the sample 

knows their own βn’s and εnj’s for all j alternatives, and will select alternative i only when 

Uni>Unj for all j ≠ i (we only observe the xnj’s, however). Integrating 𝐿𝑛𝑖(𝛽𝑛) = (
𝑒𝛽𝑛′𝑥𝑛𝑖

∑ 𝑒
𝛽𝑛′𝑥𝑛𝑗𝐽

𝑗=1

) 

over all possible βn results in equation (11). This approach is most useful when patterns of taste 

are the primary research interest and the number of explanatory variables is small (estimating the 

distribution of a large number coefficients can become quite difficult and impractical) (Train 

2009).  

An alternative (but formally equivalent) approach to the MXL model is known as the 

Error Components approach, which uses dual error terms that create correlations in the utilities 

for different alternatives. In this specification, utility is expressed as: 

(12)                                                𝑈𝑛𝑗 =  𝛼′𝑥𝑛𝑗 + 𝜇′
𝑛

𝑧𝑛𝑗 + 𝜀𝑛𝑗 

where 𝑥𝑛𝑗 and 𝑧𝑛𝑗 are vectors of observables on alternative j, 𝛼 is a vector of fixed coefficients, 

µn is a vector of zero mean random terms, and 𝜀𝑛𝑗 is once again i.i.d. extreme value. Therefore, 

the random portion of utility is ηnj = 𝜇′
𝑛

𝑧𝑛𝑗 + 𝜀𝑛𝑗, which can be correlated across alternatives 

                                                 
29 If we also want the values of the β’s to be interpreted in their typical sense (as coefficients indicating individual 

preferences), Train (2009) offers a description of how to obtain this information using the data and estimates of θ 

(pg. 259-281). 



 

42 

depending on how we specify 𝑧𝑛𝑗. When 𝑧𝑛𝑗 is not zero, utility will be correlated over 

alternatives as follows: 

(13)                   𝐶𝑜𝑣 (𝜂𝑛𝑖 , 𝜂𝑛𝑗) = 𝐸(𝜇′
𝑛

𝑧𝑛𝑖 + 𝜀𝑛𝑖)(𝜇′
𝑛

𝑧𝑛𝑗 + 𝜀𝑛𝑗) =  𝑧′𝑛𝑖𝑊𝑧𝑛𝑗 

where W is the covariance matrix of µn. Therefore, even when W is diagonal (the error 

components are independent) utility will be correlated across alternatives. Any number of 

correlation patterns (and therefore, substitution patterns) can be achieved depending on which 

variables are selected to enter as error components. For instance, it is possible to specify a MXL 

model using the Error Component approach so that it is analogous to a nested logit model.30 This 

approach is most useful when prediction of substitution patterns is the primary research goal and 

the number of explanatory variables is large (Train 2009).   

Simulation methods are easily applicable to the MXL model. First, we specify a 

functional form for f(β|θ). We then 1) for each person in the sample, draw a value of β from 

f(β|θ), labeled βD1 for draw 1; 2) calculate Lni(βD1); and 3) repeat steps (1) and (2) R times and 

average the results yielding: 

(14)                                                  𝑃̂𝑛𝑖 =  
1

𝑅
 ∑ 𝐿𝑛𝑖(𝛽𝐷𝑅)𝑅

𝑟=1  

This is an unbiased estimator for Pni, the probability that person n visits alternative i.31 We obtain 

n of these estimates for each of the j alternatives and calculate the simulated log likelihood 

(SLL): 

(15)                                              𝑆𝐿𝐿 =  ∑ ∑ 𝑑𝑛𝑗
𝐽
𝑗=1

𝑁
𝑛=1 𝑙𝑛𝑃̂𝑛𝑖 

                                                 
30 For more on this particular specification of the MXL and on the Error Components approach’s formal equivalence 

with the Random Coefficients approach, please see Train (2009) pg.139-140. 

31 𝑃̂𝑛𝑖 is also strictly positive, is twice differentiable in the parameters θ and the variables x, and sums to 1 over all j 

alternatives (Train 2009). 
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where dnj is an indicator variable taking the value of 1 if person n chose alternative j (and 0 if 

they did not). The value of θ (i.e., the mean, µ, and covariance, Σ, of the distribution of β) which 

maximizes the SLL is the maximum simulated likelihood estimator (MSLE) (Train 2009). 

Welfare Analysis: 

In the MNP context, utilities are elements of a multivariate normal random vector. If we 

let X=[X1, X2,…,XM] be a normally distributed random vector (of utilities) with mean µ and 

covariance Ʃ, and we define maximum utility to be X(m)=max1<g<M{Xg}, then the probability 

density function of X(m) is (from Arellano-Valle and Genton 200832): 

(16)                          fX(m)
(x)= ∑

exp(-(x - μg)
2

/2Σgg)

√2πΣgg

M
g=1 ΦM-1((iM-1⊗x) - μ-gg; Σ-g-gg) 

where: Ʃgg is the variance for the gth alternative; µg is the mean for the gth alternative; iM-1 is a 

unit vector with (M-1) rows; ΦM-1(.) is the (M-1)-dimensional standard normal cumulative 

density function; Ig is an M-dimensional identity matrix with the gth row deleted; rg is the gth row 

of an M-dimensional identity matrix; µ-g = μIg', Σ-gg = rgΣIg', and μ-gg = μ-g + (x – μg)Σ-gg/ Σgg; Σ-

g-g = IgΣ Ig', and Σ-g-gg = Σ-g-g - Σ-gg' Σ-gg/Σgg. 

 From this equation we arrive at the general result that the expected value of the 

maximum, E(X(m)) is: 

(17)                                                𝐸(𝑋(𝑚)) = ∫ xfX(m)
(x)dx                                   

∞

−∞
 

While relatively few transformations or constructions are required for this method, 

evaluating this integral is challenging when µ and Ʃ vary across observations. And unless Ʃ has 

                                                 
32 The following notation is adapted from Corollary 4 (equation [5]), page 31. 
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been scaled, the range of integration can be sizeable. Afonja (1972) 33 develops an approach to 

approximate the evaluation of this integral using the moment generating function: 

(18)                  MGFX(m)
(t)= ∑ exp(tμg+ 1

2
t2Σgg)M

g=1 ΦM-1([(𝑎𝑔- 𝑠𝑔)']:[∞iM-1] ;Rg) 

where:[ . ]:[ . ] are the lower and upper limits of integration; Sg is an (M-1)xM–dimensional 

matrix obtained by inserting –iM-1' in the gth column of an (M-1)–dimensional identity matrix; 

Ωg=SgΣSg
'
; ag is an (M-1)x1 vector defined such that ag=Sgμ./√diag(Ωg); Rg is a correlation 

matrix defined such that Rg(i,j)=Ωg(i,j)/√Ωg(i,i)Ωg(j,j) , i,j=1, 2, …, M-1; vg is an (M-1)x1 

vector of the form [1 2 3 … M]' with the gth element deleted; and sg is an (M-1)x1 vector defined 

such that sg(i)= (Σg,g-Σg,vg(i)) t/√Ωg(i,i) , i=1, 2, …, M-1. 

 It follows, then, that expected maximum utility is defined as: 

(19)                                               ∂MGFX(m)
(t) ∂t |𝑡=0⁄  = E(X(m))   

While this method provides for a bounded upper limit on the integral and is faster than 

integrating the entire density as described in equation (17), it requires the construction of many, 

perhaps observation-variant, matrices and vectors.  

To estimate welfare impacts associated with changes in environmental quality, Chen and 

Cosslett (1998) employ the GHK simulator in their application – a recreational site choice study 

using data on Michigan salmon anglers in the early 1980’s. They use an unbiased frequency 

simulator to estimate expected maximum utility and mean benefit of policy implementation. 

They also estimate the distribution of this mean benefit using both the Krinsky-Robb and 

bootstrap procedures.  

                                                 
33 The following notation is adapted from Equation 3.2, page 255. 
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Chen and Cosslett (1998) estimate expected maximum utility of making a choice from 

available alternatives, 𝑈̂̅𝑚, as follows: 

(20)           𝑈̂̅𝑚 =  
1

𝑅
∑ ∑ (𝑝𝑗𝛼 + 𝑥𝑗𝛽 +  𝑢𝑗

𝑟)𝐽
𝑗=𝑖

𝑅
𝑟=1 𝐼(𝑝𝑗𝛼 + 𝑥𝑗𝛽 +  𝑢𝑗

𝑟  ≥  𝑝𝑙𝛼 +  𝑥𝑙𝛽 + 𝑢𝑙
𝑟 , ∀𝑙) 

where there are J alternatives, pj is the travel cost to site j (and α can therefore be considered the 

marginal utility of income), xj is a vector of site attributes, uj is a normally distributed error term 

drawn randomly for each of the R replications run, and I(·)is an indicator variable for the truth of 

the statement in parentheses.  

They then calculate the expected benefit of the policy measure as: 

(21)                        𝐸𝑊(𝑥1|𝑥0) = 𝐸(𝐵𝑖|𝑥
0 → 𝑥1) =  

𝑈̅𝑖𝑚(𝑥1)−𝑈̅𝑖𝑚(𝑥0)

−𝛼
 

where x0 and x1 are the vectors of attributes pre and post policy change, respectively, and 

Bi is the benefit for the ith observation. The numerator calculates the change in expected 

maximum utility caused by the policy and the denominator monetizes this impact. The 

estimation of expected maximum utility and the expected benefit of policy implementation in the 

MXL context is identical to these simulation processes (except that the error term, uj, is instead 

distributed i.i.d type 1 extreme value). 

The distribution of this expression, as calculated by the Krinksy-Robb procedure, 

involves, for both x0 and x1: 1) taking D draws from the asymptotic normal distributions of the 

parameter estimates, 2) calculating 𝑈̅𝑖𝑚(𝑥·) over R replications, and 3) calculating equation (21) 

and its standard error to determine a distribution. The distribution of this expression, as 

calculated by the bootstrap procedure, involves for both x0 and x1: 1) resampling the original data 

to create S new datasets, 2) calculating new parameter estimates for each of these S datasets, 3) 

calculating 𝑈̅𝑖𝑚(𝑥·) over R replications, and 4) calculating equation (21) and its standard error to 

determine a distribution. 
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Both of these approaches are data intensive, and Chen and Cosslett (1998) find they 

returned very similar results. Furthermore, Chen and Cosslett (1998) find that the log likelihood 

values and parameter estimates tended to stabilize after 100 replications, but they report results 

for up to 2,000 replications as well. The “ideal” number of replications is a subject that is still 

debated in the literature.  

We propose another method for estimating the distribution of the mean benefit from 

policy implementation. This approach is based on the application of the delta method to the 

moment generating function of expected maximum utility (Afonja 1972), and conveniently side-

steps the issue of determining the optimum number of replications. In addition, it may also be 

more computationally efficient than the Chen and Cosslett (1998) procedures in practice. If we 

define θ as a vector of the parameter estimates, θ = [α β], where β itself contains the parameters 

on all explanatory variables but travel cost (trip price), we can use the delta method to 

approximate the distribution of the mean benefit as follows: 

(22)                                         ∆𝑖=  
𝜕

𝑈̅𝑖𝑚(𝑥1)−𝑈̅𝑖𝑚(𝑥0)

−𝛼

𝜕𝜃
 

(23)                                         𝑉(𝐸(𝐵𝑖|𝑥
0 → 𝑥1))  ≈  ∆𝑉(𝜃)∆′ 

where ∆= ∑ ∆1
𝑛
𝑖=1 . In practice, we find the estimates achieved using this Delta Method 

Approximation to be nearly identical to those obtained following Chen and Cosslett (1998)’s 

procedures. 

Application 

 We compare the results of the MXL and MNP models when they are applied to a 

common recreational site choice dataset. In our analysis we use a subset of the Callaway et al. 

(1995) data that was collected via a 1993 survey of a sample of Pacific Northwest residents. The 

survey questionnaire focused primarily on Columbia River reservoirs, of which we select four 
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significant examples for our study: Lake Roosevelt (site 1), Dworshak (site 2), Lower Granite (site 

3), and Lake Pend Oreille (site 4).  

 Respondents reported their visits to each of the reservoirs during the summer months. For 

the four reservoirs considered in this analysis, the randomly sampled respondents reported a total of 

1396 trips. In addition to travel cost (price), we use the monthly average deviation of each 

reservoir’s water level away from its full pool level (e.g., negative ten means ten feet below full 

pool) as the right hand side variables driving visitation on the left hand side. Summary statistics 

for these explanatory variables are provided in table 3.1 below. 

Table 3.1. Reservoir trips: Travel costs and average water level deviations from full pool. 

Variable Mean Minimum Maximum Std. Dev. 

Travel Cost (1993 dollars) 63.5199 1.2500 235.5500 38.7634 

Deviation from Full Pool (ft.) -9.9079 -57.6000 0.6000 17.3864 

 

In both our MNP and MXL specifications, our model allows price to be random and takes 

the form: 

(24)                 Ugi = βipgi + γdevgi + δ1(1LowerGranite) + δ2(1PendOreille) + εgi 

where Ugi is the utility of the gth site for the ith observation, i=1,2,…,n; pgi is travel cost and devgi 

is deviation from full pool for the gth site and ith observation; βi = (β + νi) and νi ~ N(0, ω2). 

Alternative specific constants are included for the third and fourth sites because of their 

fundamental differences from the first two sites. 

In our MNP specification, εi ~ N(0, Ω) and E(εiνi) = 0; therefore (νipi + εi ) ~ N(0,Σ) 

where  Σ = Ω + ω2pi'pi  and is a variance-covariance matrix which introduces correlation across 

prices. Following Train (2009), we restrict Ω to be a diagonal matrix such that: 
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(25)                                           𝛺 =  (

𝜔11 0 0 0

𝜔22 0 0

1 0
𝜔44

) 

In our MXL specification, however, εi ~ EV(0, 1), and we cannot collapse the error terms 

into a single vector as in the MNP specification.  

Results 

For our MNP model, we employ the GHK simulator using 1,000 replications for the 

maximum likelihood estimation. The results of our initial estimation suggest that ω11 = ω22 = ω44, 

an assumption imposed in subsequent simulations.34 Our results from this specification are 

reported in table 3.2 below. 

Table 3.2. Estimates: Multinomial probit model maximum likelihood analysis. 

Variable/Parameter Estimate Std. Error (R)1 Std. Error2 Z (R) 

Travel Cost: β -0.0432 0.0035 0.0035 -12.4060 

Deviation from Full Pool: γ 0.0048 0.0020 0.0020 2.4000 

ASC on Lower Granite: δ1 -0.7687 0.0798 0.0809 -9.6328 

ASC on Pend Oreille: δ2 0.2582 0.0479 0.0501 5.3960 

SD on Travel Cost: ω 0.0200 0.0021 0.0021 9.6030 

Error Term Variance: ω11 0.1871 0.0431 0.0467 4.3411 

1Robust standard error 
2Conventional standard error 

Log 

Likelihood = 

-716.14 

   

 

                                                 
34 A Likelihood Ratio test of this hypothesis yielded X2 = 2.404 with 2 degrees of freedom (p=0.301). 
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 For our MXL model, we employ a Random Coefficients simulation approach using 5,000 

replications (Halton draws) for the maximum likelihood estimation. Our results from this 

specification are reported in table 3.3 below. 

Table 3.3. Estimates: Mixed logit model maximum likelihood analysis. 

Variable/Parameter Estimate Std. Error (R)1 Std. Error2 Z (R) 

Travel Cost: β -0.0877 0.0059 0.0059 -14.8820 

Deviation from Full Pool: γ 0.0059 0.0042 0.0042 1.3912 

ASC on Lower Granite: δ1 -1.3042 0.1913 0.1691 -6.8172 

ASC on Pend Oreille: δ2 0.6042 0.1001 0.1097 6.0363 

SD on Travel Cost: ω 0.0320 0.0051 0.0051 6.2691 

1Robust standard error 
2Conventional standard error 

Log 

Likelihood = 

-730.79 

   

 

To test the performance of the welfare analysis methods previously described, we first 

calculate the average of expected maximum utility.35 For the MNP model, we use the Probability 

Density Function Approach (equations [16] and [17]), the Moment Generating Function 

Approach (equations [18] and [19]), and the Simulation Approach using 1,000, 2,000, 5,000, and 

10,000 replications (equation [20]). For the MXL model, we use the Simulation Approach 

(equation [20]) using 1,000, 2,000, 5,000, and 10,000 replications. Our results from these 

calculations are reported in table 3.4 below. 

 

 

                                                 
35 Note that the signing of utility is not intuitive in this context. Utility is an ordinal measure.  
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Table 3.4. Estimates: Average of expected maximum utility. 

 Estimates 

 

Approach 

 
MNP Model MXL Model 

Probability Density Function Approach 

 

-0.9968 - 

Moment Generating Function Approach 

 

-0.9967 (true36) - 

Simulation Approach (R=1000) 

 

-1.0174 -2.5812 

Simulation Approach (R=2000) 

 

-0.9972 -2.5826 

Simulation Approach (R=5000) 

 

-1.0032 -2.5817 

Simulation Approach (R=10000) 

 

-0.9979 -2.5815 

 

 We then calculate the expected benefit (i.e., effect on expected maximum utility) of 

increasing the total travel cost to each individual site by $5 as described in equation (21). For the 

MNP model, we employ both the Moment Generating Function and Simulation Approaches 

(using 1,000, 2,000, 5,000, and 10,000 replications). For the MXL model, we employ the 

Simulation Approach (using 1,000, 2,000, 5,000, and 10,000 replications). Our results from these 

estimations are reported in table 3.5 below. 

 

 

                                                 
36 Both the Probability Density Function and Moment Generating Function approaches for the MNP model are 

based on theory and the evaluation of a “true” formula (rather than simulation). However, because the Probability 

Density Function approach requires integration over a cumulative density function, it has the potential to introduce 

more “noise” into its estimation than the Moment Generating Function approach (which reduces noise by evaluating 

derivatives). For this reason, we consider Moment Generating Function approach’s estimate to be the “true” value. 
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Table 3.5. Estimates: Average benefit from increasing individual site prices by $5. 

 

Estimates 

 True 

(MGF) 

Simulation 

(R=1000) 

Simulation 

(R=2000) 

Simulation 

(R=5000) 

Simulation 

(R=10000) 

Site  

Price  

Change 

 

MNP MNP  MXL  MNP  MXL  MNP  MXL  MNP  MXL  

P1 + $5 

 

-2.0810 -2.0950 -2.0606 -2.0740 -2.0388 -2.0860 -2.0636 -2.0810 -2.0650 

P2 + $5 

 

-0.4140 -0.3960 -0.4022 -0.4030 -0.3882 -0.4070 -0.3996 -0.4120 -0.4103 

P3 + $5 

 

-0.7640 -0.7870 -0.7512 -0.7590 -0.7286 -0.7730 -0.7469 -0.7640 -0.7443 

P4 + $5 

 

-1.5120 -1.5120 -1.5680 -1.5000 -1.5482 -1.5190 -1.5424 -1.5070 -1.5522 

 

 Lastly, for both the MNP and MXL models, we calculate the distribution of the mean 

benefit of a universal one foot increase in deviation from full pool using traditional (simulation) 

methods and the Delta Method Approximation approach (equations [22] and [23]). This measure 

can be interpreted as the consumer (recreator) per-trip willingness to pay (WTP) for a one foot 

increase in water levels at all four reservoirs. Our results from these calculations are reported in 

table 3.6 below. 
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Table 3.6. Estimates: Mean per-trip benefit of a universal one foot increase in water levels. 

 Estimates (1993 dollars) 

 

 MNP Model 

 

MXL Model 

Approach 

 
Mean  

Benefit 

 

Robust  

Std. 

Deviation 

Mean  

Benefit 

Robust  

Std. 

Deviation 

Simulation37 

 

$0.1132 $0.0487 $0.0668 $0.0505 

Delta Method Approximation 

 

$0.1108 $0.0486 $0.0668 $0.0489 

 

Discussion 

 It is unsurprising that point estimates of average expected maximum utility (table 3.4) 

differ between the model specifications – error terms are being drawn from different 

distributions and the two models are estimating a different number of parameters (recall that an 

“extra” parameter is estimated in the MNP context to account for scale and level of utility). 

Nevertheless, it is clear that the patterns of sign and relative significance of these parameter 

estimates persist across both specifications, and the models achieve similar log likelihoods at 

convergence (tables 3.2 and 3.3). Furthermore, the inference both models provide about the 

welfare impacts of a policy change (a $5 travel cost increase) is nearly identical, regardless of the 

number of replications employed in the simulation (table 3.5). In terms of WTP measures and 

their distributions, the MNP model predicts the average benefit of a universal one foot increase 

in water levels to be roughly twice that of the MXL model (table 3.6). This is a result of the 

                                                 
37 In the MNP estimation, we employed a Krinsky-Robb procedure using 1,000 draws. In the MXL estimation, we 

employed a bootstrapping procedure using 1,000 iterations.  
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aforementioned difference in the original parameter estimates.38 Interestingly, however, both 

models provide a very similar picture of the distribution around this WTP estimate (a standard 

deviation of approximately $.05 across the board).  

 With regard to methodology, we find that the Delta Method Approximation provides a 

computational advantage over both of the more traditional simulation procedures (Krinsky-Robb 

and bootstrapping) – welfare estimates for both models could be calculated in a matter of 

minutes as opposed to a matter of hours. The Delta Method Approximation also eliminates the 

need for the researcher to run multiple simulations to determine the optimal number of 

replications to report. 

 While the MXL and MNP models performed similarly overall, the MNP model did fit 

slightly better in terms of log likelihood achieved at convergence. Given this result and the 

advantages and simplifications that the Delta Method Approximation presents for welfare 

analysis in the MNP context, we believe the MNP model merits greater consideration in the 

recreational travel cost (and non-market valuation) literature. 

 

 

 

 

 

                                                 
38 The MXL model estimates the coefficient on price to be roughly twice what the MNP model estimates. As the 

WTP for a one foot increase in deviation in the MXL context is the negative of the ratio of the coefficient on 

deviation to the coefficient on price (i.e., -γ/β), the MXL model will necessarily estimate the WTP measure to be 

roughly half what the MNP model will.  
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CHAPTER 4 

BEACH EROSION, SITE QUALITY, AND RECREATION DEMAND: APPLICATION OF 

MIXED LOGIT AND KUHN-TUCKER GENERALIZED CORNER SOLUTION MODELS39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
39 Barfield, A.S. and C.E. Landry. To be submitted to Journal of the Association of Environmental and Resource 

Economics 
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Abstract 

North Carolina’s beaches are imperiled by coastal erosion, sea level rise, severe storms, 

and oceanfront development. Proposed solutions to these problems include beach replenishment, 

coastal retreat, and shoreline armoring. These policies affect the quality and value of coastal 

resources and recreation, and assessing these welfare impacts is necessary for benefit-cost-

analysis of these alternatives. In this paper, we analyze multi-site revealed preference trip data 

for North Carolina households using travel costs and beach site attributes (beach width, beach 

length, number of access points, parking area, ferry-only access, and presence of lifeguards) as 

explanatory variables. We employ a mixed logit model in our recreation demand analysis and 

discuss the advantages of incorporating a Kuhn-Tucker generalized corner solution model in 

future analyses. The welfare estimates we obtain have immediate policy relevance and 

contextualize future research efforts utilizing this Sea Grant dataset (of which the revealed 

preference responses are but a subset).  
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Introduction 

North Carolina's beaches are imperiled by a number of forces including coastal erosion, 

sea level rise, storm events of increasing frequency and severity, and oceanfront development. 

Three primary solutions to these problems have been proposed: beach replenishment, coastal 

retreat, and shoreline armoring. Each of these management approaches induces changes in the 

quality of coastal resources, affecting the distribution of beach and dune sediments, presence and 

location of hardened structures, and configuration of buildings and infrastructure. These changes, 

in turn, affect the economic value of coastal recreation. This paper considers the use values 

associated with North Carolina (NC) beaches and how these values could be influenced by the 

implementation of the aforementioned management policies. The accurate assessment of such 

welfare impacts is, naturally, a critical component of the benefit-cost-analysis of these alternative 

proposals. Our primary research goal is to identify and characterize preferences for beach width. 

To this end, we analyze revealed preference beach site choice data for a random sample 

of NC households (data collection funded by East Carolina University and NC Sea Grant in 

2013). Through the use of the NC Department of Environmental Quality's Coastal Geographic 

Information Systems (GIS) files, a traveler’s manual for NC beaches (Morris 2005), and a host 

of Outer Banks tourism websites, we create a site-attribute matrix for NC beaches that includes 

information regarding travel costs and beach length, width, and accessibility. We employ a 

Mixed Logit (MXL) model in our analysis of recreation demand and the impact of site 

characteristics (many of which can be influenced by coastal policy and erosion management) on 

site choice and intensity of beach recreation. Our research therefore represents an important 

contribution to the understanding of people's preferences and support (willingness to pay, WTP) 

for different erosion management scenarios. 
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Theoretical Background 

 In recreation demand studies, it is frequently the case that a researcher’s dataset will 

consider respondents’ socio-demographic characteristics and reported seasonal visitation to a 

large number of alternatives (perhaps a dozen sites or more), for which there is an accompanying 

site-attribute index. Often, a respondent will visit a subset of sites multiple times, and other sites 

not at all. “To consistently derive welfare measures for price and attribute changes with such 

data, structural econometric models that behaviorally and statistically account for the mixture of 

corner solutions (unvisited sites) as well as interior solutions (sites with one or more trips) are 

required,” (von Haefen and Phaneuf 2005). 

Random Utility Models (RUM), which divide recreational seasons into multiple discrete 

choice occasions in which respondents either take or do not take a trip, have historically been 

quite popular in this context. Much of the recent travel cost literature has focused specifically on 

the use of MXL models to evaluate recreational site choice data and estimate recreation demand. 

MXL models are more flexible than standard multinomial logit models, and their simulation 

methods can accommodate a greater variety of datasets. Additional advantages MXL models 

have over simpler logit formats include: (1) They are not bound by the Independence of 

Irrelevant Alternatives (IIA) axiom that yields unrealistic substitution patterns among similar 

alternatives; (2) They can incorporate random taste variation and temporally correlated error 

terms; (3) Through various specifications and impositions on structural form, they may be able to 

approximate any RUM process (Train 2009).  

Methodology  

Following the classic RUM framework, we assume utility is composed of observed and 

unobserved elements such that: 
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(1)                     𝑈𝑛𝑗 =  𝑉𝑛𝑗 +  𝜀𝑛𝑗 

where there are n respondents and j alternatives (i.e., sites); Vnj is the observed portion of utility, 

which is expressed in terms of explanatory variables (i.e, site attributes and travel cost) xnj and 

coefficients β such that, in the linear case, Vnj = βn’xnj; and εnj is the unobserved portion of utility 

(an error term) distributed i.i.d type I extreme value. 

MXL choice probabilities take the form: 

(2)          𝑃𝑛𝑖 =  ∫ 𝐿𝑛𝑖(𝛽)𝑓(𝛽)𝑑𝛽  

where Lni(β) is the logit probability evaluated for the parameters β: 

(3)                                                𝐿𝑛𝑖(𝛽) =  
𝑒𝑉𝑛𝑖(𝛽)

∑ 𝑒
𝑉𝑛𝑗(𝛽)𝐽

𝑗=1

 

and f(β) is a density function (i.e., a mixing distribution). In the linear utility case, the MXL 

probability is: 

(4)                                             𝑃𝑛𝑖 =  ∫(
𝑒𝛽′𝑥𝑛𝑖

∑ 𝑒
𝛽′𝑥𝑛𝑗𝐽

𝑗=1

)𝑓(𝛽)𝑑𝛽  

 As such, the MXL probability “is a weighted average of the logit formula evaluated at 

different values of β, with the weights given by the density f(β),” (Train 2009). Density functions 

can be discrete but are typically specified to be continuous - the normal and lognormal densities 

are common,40 though other densities can also be used. This is known as the Random 

Coefficients approach and is the most direct, most commonly used MXL method. Each 

respondent knows their own βn’s and εnj’s for all j alternatives, and will select alternative i only 

when Uni>Unj for all j ≠ i (we only observe the xnj’s, however) (Train 2009).  

                                                 
40 The lognormal distribution is most useful when a coefficient is likely to have the same sign for all respondents. 
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Simulation methods are easily applied to MXL models. We first specify a functional form 

for f(β). We then 1) for each respondent, draw a value of β from f(β), labeled βD1 for draw 1; 2) 

calculate Lni(βD1); 3) repeat steps (1) and (2) R times; and 4) average the results yielding: 

(5)                                                  𝑃̂𝑛𝑖 =  
1

𝑅
 ∑ 𝐿𝑛𝑖(𝛽𝐷𝑅)𝑅

𝑟=1  

This is an unbiased estimator for Pni, the probability that person n selects alternative i.41 We 

obtain n of these estimates for each of the j alternatives and calculate the simulated log likelihood 

(SLL): 

(6)                                              𝑆𝐿𝐿 =  ∑ ∑ 𝑑𝑛𝑗
𝐽
𝑗=1

𝑁
𝑛=1 𝑙𝑛𝑃̂𝑛𝑖 

where dnj is an indicator variable which takes a value of 1 if person n chose alternative j (and 0 

otherwise) (Train 2009). 

 Calculating the expected benefit of (i.e., WTP for) a change in site attributes, as might 

result from policy implementation, involves first calculating the difference in expected maximum 

utility under initial and altered conditions, and then monetizing this impact: 

(7)                             𝐸𝑊(𝑥1|𝑥0) = 𝐸(𝐵𝑖|𝑥
0 → 𝑥1) =  

𝑈̅𝑖𝑚(𝑥1)−𝑈̅𝑖𝑚(𝑥0)

−𝛼
 

where 𝑈̅𝑖𝑚 is expected maximum utility; x0 and x1 are vectors of site attributes pre and post 

policy change, respectively; α is the coefficient on travel cost and can therefore be considered the 

marginal utility of income; and Bi is the benefit for the ith observation. The distribution of this 

expression can then be calculated using either Krinsky-Robb or bootstrapping procedures. 

In logit models which are linear in parameters, this WTP measure can conveniently be 

obtained by taking the negative of the ratio of the estimated coefficient on the attribute of interest 

to the estimated coefficient on travel cost: 

                                                 
41 𝑃̂𝑛𝑖 is also strictly positive, is twice differentiable, and sums to 1 over all j alternatives. 
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(8)                                                             𝑊𝑇𝑃 =  −
𝛾̂𝑥

𝛼̂
  

where 𝛾𝑥 is the estimated coefficient on any site attribute, x, other than travel cost, and 𝛼̂ is the 

estimated coefficient on travel cost.  

Application 

Data 

In our application, we analyze revealed preference beach-site-choice data gathered from a 

random sample of NC households through a 2013 internet survey funded by NC Sea Grant and 

East Carolina University.42 Roughly 1,000 respondents provide socio-demographic information 

and number of trips to 20 sets of Outer Banks beaches43 over the previous year (41 beaches 

grouped from north to south based on assumed similarity of associated travel costs). For the 

purposes of this study, we introduce a no-go option (a 21st alternative) and consider the 

preferences of respondents who report taking 52 day trips a year or less in order to achieve a 

weekly repeated discrete choice format. This formatting assumes respondents take a maximum 

of one trip per week with 52 choice occasions (where timing of the trips throughout the year is 

irrelevant), and reduces our sample size to 259 respondents.  

Table 4.1 below reports the total number of day trips taken by these 259 respondents to 

each of the 20 sets of beaches. 

 

                                                 
42 This revealed preference data is a subset of the (much larger) dataset, which has dense revealed preference, stated 

preference, and contingent valuation components. 

43 Respondents were also offered two write-in choice options where they could self-report beaches they visited but 

were not listed in the survey. The majority of those self-reported beaches were, in actuality, subsumed by the options 

specifically offered in the survey, and we recode the data accordingly. 
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Table 4.1. Distribution of day trips taken to NC beaches. 

Beach Total Trips  Proportion of All Trips 

Corolla/ Duck 41 0.0263 

Kitty Hawk/ Kill Devil Hills/ Nags Head 254 0.1627 

Pea Island 6 0.0038 

Rodanthe/ Waves/ Salvo/ Avon 5 0.0032 

Buxton/ Frisco/ Hatteras 14 0.0090 

Ocracoke 18 0.0115 

Cape Lookout/ Core Banks 5 0.0032 

Fort Macon/ Atlantic/ Pine Knoll Shores/ Salter 

Path/ Indian/ Emerald Isle 

207 0.1326 

Hammocks Beach/ Bear Island 14 0.0090 

North Topsail 78 0.0500 

Surf City/ Topsail  67 0.0429 

Figure 8 Island 10 0.0064 

Wrightsville  220 0.1409 

Masonboro Island 8 0.0051 

Carolina/ Kure/ Fort Fisher 194 0.1243 

Bald Head Island 11 0.0070 

Oak Island/ Caswell/ Yaupon/ Long 137 0.08776 

Holden 113 0.0724 

Ocean Isle 45 0.0288 

Sunset 114 0.0730 
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To supplement the data collected in the NC Sea Grant survey, we create a site-attribute 

index which characterizes these groups of NC beaches in terms of beach length, beach width 

(minimum, maximum, quartiles, average and standard deviation), number of access points, total 

area of parking lots, the presence of lifeguards, and whether a boat or ferry ride is required to 

access beaches within the group. Data on these attributes is gathered from the NC Department of 

Environmental Quality’s (NCDEQ) Coastal GIS files, a traveler’s manual for NC beaches 

(Morris 2005), and a variety of North Carolina tourism websites.44  

The presence of lifeguards and the requirement of a ferry or boat ride to access a beach 

are coded as percentages. For example: if a choice set contains one beach, if lifeguards are 

(not)present, (0)100 percent of the beaches in that set have lifeguards, and the lifeguards attribute 

is set equal to (0)1. If a choice set contains multiple beaches and lifeguards are present at some, 

but not all of the beaches, the lifeguards attribute is set equal to whatever proportion of the total 

length of the choice set the beaches with lifeguards represent (i.e., combined length of beaches 

with lifeguards/total length of all beaches in the choice set). 

Length and width are measured in meters. Width measurements are taken every 100 

meters, from the edge of the water inward to the edge of the sand (i.e., the width of the beach as 

it would appear to a respondent walking along it), along 50 meter transect gridlines. Access 

points are those officially demarcated in the “NC Beach and Waterfront Access” layer of the 

                                                 
44 (Cape Lookout National Seashore 2016), (Fort Caswell 2016), (Outer Banks: Lifeguard Locations Information 

2016), (Outer Banks North Carolina Rentals 2016), (Outer Banks Vacation Guides 2016), (The Official Travel and 

Tourism Website for North Carolina 2016), (The Outer Banks 2016). 
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NCDEQ’s GIS data.45 Parking area is associated with these access points (i.e., parking areas 

adjacent to access point but not part of clearly private or commercial property) and is measured 

in square meters (rounded to the nearest 50).  

Figure 4.1 below provides a screen capture image of the NCDEQ’s interactive GIS 

mapping applet. It displays the 50 meter transects layer used to measure beach length and width, 

as well as the beach and waterfront access layer used to identify access points and associated 

parking lots. The blue and orange icon indicates an official access point.  

 

Figure 4.1. Screen capture of satellite imagery used to construct NC site-attribute index. 

Source: North Carolina Department of Environmental Quality 

Our final site-attribute index is shown in tables 4.2 and 4.3 below.

                                                 
45 There are beach access points which exist but are not officially demarcated in this layer (including some piers), 

however, and many of these may have public parking available. Unfortunately, it is difficult to delineate exactly 

what constitutes an access point by looking at the satellite imagery alone, which is why we currently rely on 

officially recognized points. Future revisions to this dataset may be able to incorporate more comprehensive access 

point counts.  
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Table 4.2. NC beach attributes: Width measurements (meters). 

Beach Min 

Width 

Q1 

Width 

Q2 

Width 

Q3 

Width 

Max 

Width 

Avg 

Width 

SD 

Width 

Corolla/Duck 14.00 28.00 32.00 36.00 45.00 31.84 5.38 

Kitty Hawk/Kill Devil Hills/Nags Head 11.00 39.50 56.00 78.00 410.00 63.71 38.02 

Pea Island 16.00 51.00 85.00 117.00 385.00 92.26 56.49 

Rodanthe/Waves/Salvo/Avon 8.00 52.00 62.00 76.00 168.00 65.91 22.90 

Buxton/Frisco/Hatteras 17.00 50.25 71.50 132.75 420.00 94.88 62.42 

Ocracoke 30.00 65.00 80.00 122.75 1355.00 162.44 236.76 

Cape Lookout/Core Banks 5.00 52.00 70.00 102.00 1154.00 97.34 115.28 

Fort Macon/Atlantic/Pine Knoll Shores/Salter Path/ 

Indian/Emerald Isle 

30.00 48.00 55.00 65.00 432.00 61.00 30.17 

Hammocks Beach/Bear Island 31.00 47.00 52.00 113.00 474.00 112.07 122.61 

North Topsail 8.00 26.00 29.00 34.00 187.00 30.89 14.17 

Surf City/Topsail 12.00 22.00 29.50 66.00 356.00 48.74 43.94 

Figure 8 Island 18.00 60.50 72.00 84.00 396.00 79.77 45.03 

Wrightsville Beach 46.00 55.00 64.00 71.00 148.00 67.07 18.82 

Masonboro Island 15.00 63.50 80.00 97.00 160.00 80.58 24.34 

Carolina/Kure/Fort Fisher 0.00 42.00 54.00 68.00 287.00 60.60 34.62 

Bald Head Island 19.00 39.00 58.00 93.00 242.00 69.45 41.80 

Oak Island/Caswell/Yaupon Beach/Long 7.00 24.00 36.00 52.00 391.00 42.03 33.23 

Holden 12.00 23.00 31.50 41.00 360.00 39.50 36.71 

Ocean Isle 0.00 32.00 39.00 57.00 216.00 46.41 29.54 

Sunset 0.00 24.50 36.00 45.00 252.00 41.85 32.32 
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Table 4.3. NC beach attributes: Length (meters), access points (#), parking area (sq. meters), ferry access (%), lifeguards (%). 

Beach Length Access 

Points 

Parking 

Area 

Ferry Lifeguards 

Corolla/Duck 33900 16 11950 0.00 0.81 

Kitty Hawk/Kill Devil Hills/Nags Head 38950 86 64000 0.00 0.89 

Pea Island 15550 6 9100 0.00 0.00 

Rodanthe/Waves/Salvo/Avon 42500 6 8850 0.00 0.00 

Buxton/Frisco/Hatteras 26200 7 12250 0.00 0.46 

Ocracoke 26200 0 0 1.00 1.00 

Cape Lookout/Core Banks 88700 0 0 1.00 0.00 

Fort Macon/Atlantic/Pine Knoll Shores/Salter Path/ 

Indian/Emerald Isle 39750 

96 48100 0.00 0.71 

Hammocks Beach/Bear Island 6000 0 0 1.00 1.00 

North Topsail 17850 38 21700 0.00 0.00 

Surf City/Topsail 17900 51 10050 0.00 0.00 

Figure 8 Island 13200 0 0 0.44 0.00 

Wrightsville Beach 7400 43 15050 0.00 1.00 

Masonboro Island 12900 0 0 1.00 0.00 

Carolina/Kure/Fort Fisher 18900 47 23450 0.00 1.00 

Bald Head Island 13850 27 1500 1.00 0.00 

Oak Island/Caswell/Yaupon Beach/Long 20950 67 25500 0.00 0.27 

Holden 13100 20 2950 0.00 0.00 

Ocean Isle 9200 24 13600 0.00 0.00 

Sunset 6350 33 6900 0.00 0.00 
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For each respondent, we also generate round-trip travel costs that are the sum of 

estimated mileage costs, time costs, and fees. Mileage costs are calculated using the AAA 2013 

per mile cost of $0.608 over round-trip driving distances. Time costs are calculated to be one-

third the hourly wage rate (determined by reported income) and assume that respondents are 

driving 55 miles per hour. Ferry fees are also included where applicable.  

Specifications 

To keep the number of explanatory variables feasible for estimation, we include site 

attributes (alternative-variant variables) only. Each of our models allows the beach width term to 

be a random normal parameter while all other parameters are held fixed (constant). Our 

estimations compare the measures of central tendency with regard to beach width – mean and 

median – as the standard deviation on beach width is often large and one measure may provide a 

better representation of recreator preferences than the other. We also consider nonlinear 

transformations of the width measurements (quadratic, natural log, inverse) and an interaction 

term which introduces one respondent-variant variable – a dummy for concern about beach 

width – into the estimation.46 These specifications therefore take the following forms: 

(9)                      Ugi = βi Wgi + αPgi + γ1Lgi + γ2Agi + γ3Kgi + γ4Fgi + γ5Ggi + εgi 

(10)           Ugi = βi Wgi + αPgi + γ1Lgi + γ2Agi + γ3Kgi + γ4Fgi + γ5Ggi + γ6WCgi + εgi 

where Ugi is the utility of the gth site for the ith observation, i=1,2,…,n; Wgi is beach width, which 

may be median width, average width, the natural log of either of these measures, the inverse of 

either of these measures, or the square of either of these measures; Pgi is travel cost; Lgi is beach 

                                                 
46 Respondents answered the question “how concerned are you about the width of developed beaches along the 

North Carolina shoreline?” on a scale of 1-4 with 1 being “not concerned at all” and 4 being “very concerned.” We 

create a dummy variable for this concern set equal to 1 if respondents’ answers were either a three or a four. 
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length; Agi is number of access points; Kgi is parking area; Fgi is the proportion of beaches in the 

gth site requiring boat or ferry access; Ggi is the proportion of beaches in the gth site with 

lifeguards; WCgi is an interaction term multiplying the width measure Wgi by the dummy variable 

for concern about beach width, Cgi; βi = (β + νi) and νi ~ N(0, ω2); and εgi ~ EV(0, 1). 

To evaluate our models’ fits, we employ the Akaike/Bayesian Information Criterion (AIC 

and BIC, respectively). The AIC and BIC can be used to compare the success of non-nested 

models – the lower the criterions’ values, the better the models are performing.  

Results 

 We estimate a total of sixteen MXL maximum likelihood specifications each using 1,000 

Halton draws - eight for each measure of central tendency on beach width, where the first four 

models (one with the raw width measurement, three with the nonlinear transformations) do not 

include the interaction term, and the last four models do include the interaction term. None of our 

specifications find the interaction term to be statistically significant, and the best fitting models 

for both average and median width (as indicated by the AIC and BIC values) employ the log 

transformation of the width measurement. We therefore use these log-width models in our 

subsequent welfare analysis. Results from these estimations are provided in tables 4.4 and 4.5 

below.  
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Table 4.4. Estimates: MXL maximum likelihood analysis on log-median-width. 

Variable/Parameter Estimate Std. Error Z 

ln(medwidth): β -0.5722 0.0554 -10.3276 

travel cost: α -0.0219 0.0008 -27.0397 

length: γ1 -0.0000 0.0000 -2.7064 

access points: γ2 0.0068 0.0030 2.2866 

parking area: γ3 0.0000 0.0000 5.0630 

ferry: γ4 -0.9356 0.1597 -5.8565 

lifeguards: γ5 0.8219 0.0803 10.2341 

SD on ln(medwidth): ω 0.4924 0.0361 13.6307 

Log Likelihood = -6120.58 AIC = 12257.16 BIC = 12341.58  

 

Table 4.5. Estimates: MXL maximum likelihood analysis on log-average-width. 

Variable/Parameter Estimate Std. Error Z 

ln(avgwidth): β -0.5553 0.0534 -10.4051 

travel cost: α -0.0218 0.0008 -27.0290 

length: γ1 -0.0000 0.0000 -3.0140 

access points: γ2 0.0095 0.0031 3.0968 

parking area: γ3 0.0000 0.0000 4.0937 

ferry: γ4 -0.7922 0.1616 -4.9023 

lifeguards: γ5 0.7758 0.0788 9.8387 

SD on ln(avgwidth): ω 0.4733 0.0344 13.7421 

Log Likelihood = -6116.30 AIC = 12248.59 BIC = 12333.01  
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 To contextualize these results, we calculate point estimates and 95% confidence intervals 

for consumer (household) per-trip WTP for (mean benefit of) a unit increase in each of the site 

attributes using a Krinsky-Robb procedure with 1,000 replications. These measures can be 

interpreted as, for example, the per-trip benefit a respondent would experience from the 

provision of an additional beach access point, square meter of parking area, meter of beach 

width, etc. Our results are provided in table 4.6 below. 

Table 4.6. Estimates: Per-trip WTP for unit increases in NC beach site attributes. 

 Estimates (2013 dollars) 

 Log-Median-Width Model Log-Average-Width Model 

Variable WTP 95% CI WTP 95% CI 

width47: β -$0.4773 (-$0.5936, -$0.3639) -$0.3666 (-$0.4558, -$0.2799) 

length: γ1 -$0.0005 (-$0.0010, -$0.0001) -$0.0006 (-$0.0010, -$0.0002) 

access points: γ2 $0.3113 ($0.0312, $0.5902) $0.4357 ($0.1451, $0.7252) 

parking area: γ3 $0.0011 ($0.0007, $0.0016) $0.0009 ($0.0005, $0.0014) 

ferry: γ4 -$42.6308 (-$57.0380, -$27.8941) -$36.3062 (-$50.1055, -$21.4101) 

lifeguards: γ5 $37.4512 ($29.7899, $46.2706) $35.5516 ($27.9166, $44.0323) 

 

Discussion 

The different specifications on width perform very similarly and provide nearly identical 

pictures of the influence of the explanatory variables on trip demand, though there are noticeable 

                                                 
47 Our WTP estimates for the width parameters are evaluated at the means for both measures and have been adjusted 

to account for the log transformation, which is nonlinear, and therefore prevents the straightforward application of 

equation (8) in this context.  
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differences in the parameter estimates for lifeguards, ferry access, and number of access points. 

As a result, the confidence intervals around some site attributes’ WTP estimates do not always 

overlap between the models. Additionally, in the log-average-width specification (which fits 

slightly better overall), all of the parameters are highly significant, whereas number of access 

points strays towards bordering on insignificance in the log-median-width specification.  

Generally speaking, the signs on the parameters are what we expect. Travel costs and 

requiring the arrangement of a boat or ferry ride to access a beach have a negative influence on 

trip demand. Length also has a (small) negative influence, perhaps because the walking distance 

between beach amenities such as restrooms and beachside attractions is greater on longer 

beaches. Number of access points, the amount of parking area, and the presence of lifeguards all 

have positive impacts on trip demand.  

Somewhat surprising, however, is the result that beach width has a negative influence on 

recreation demand. This could be indicative of significant heterogeneity in preferences for beach 

width, or the fact that the value respondents place on beach width is dependent upon activities 

they engage in which we don’t have data on. Our finding could also indicate that the balance of 

recreational beach activities favors easy water access. Furthermore, a negative demand for beach 

width could also reflect respondents’ crowding concerns – because more people go to wide 

beaches where there is more space, respondents may be entangling their preferences for beach 

width and congestion. It is also possible that including alternative specific constants for each of 

the beach choice sets and introducing more sociodemographic information into the model 

through interaction variables could help to better identify preferences for beach width. To ensure 

that this negative result is valid, we will continue to explore measurement and specification 

issues. 
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Nevertheless, while beach erosion and sea level rise directly impact beach width, they 

also threaten beach access in general. In certain sea level rise scenarios, the number of beach 

access points could be reduced and the proportion of beaches accessible only by ferry or boat 

could increase. Given the results of our welfare analysis, these consequences could have 

substantial economic impacts and should be considered in future natural resource management 

decisions for the Outer Banks region.  

Overall, this paper provides insights that we feel will be of interest to fellow researchers 

and to coastal management authorities. We analyze a very recent, highly disaggregated and 

detailed revealed preference dataset, as well as a unique and diverse site-attribute index. With 

these high quality data, we evaluate a significant number of alternatives using an advanced 

econometric model that is particularly well-suited to this valuation context. The welfare 

estimates we obtain have immediate policy relevance, and provide context for future work with 

this dataset (of which the revealed preference responses are but a subset).  

Future Work 

While RUM models like the MXL have historically been the work-horse estimation 

procedures used in recreation demand studies, to calculate demand and welfare impacts at the 

seasonal level, RUM models require an additional estimation process to determine the season-

wide implications of per-trip outcomes. The Kuhn-Tucker Generalized Corner Solution (KT) 

models originally developed by Wales and Woodland (1983) provide a utility-theoretic48 

                                                 
48 A significant appeal of the KT model is the “unified and internally consistent” framework it offers to characterize 

the nature of corner solutions. The KT model is explicitly derived from the utility function and utility maximization 

theory, which necessarily ensures that the restrictions of this theory are satisfied and that the behavioral implications 

of corner solutions are accounted for (Phaneuf et al. 2000). 
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alternative to RUM models, though their reputation for being computationally laborious has 

hindered their adoption in the literature. In KT models, it is assumed that individual preferences 

are distributed randomly across the population. As a result, the classic Kuhn-Tucker conditions 

associated with utility maximization become likewise randomly distributed, allowing for 

construction of the probabilities that corner solutions will occur and of the likelihood function 

(Phaneuf et al. 2000). 

“These ‘Kuhn-Tucker’ models… consistently account for both the extensive 

(which sites to visit) and intensive (how many trips to take) margins of choice and 

can be used to recover a coherent representation of an individual’s seasonal 

preferences. As such, the KT framework has a significant conceptual advantage 

over discrete choice approaches for modeling seasonal recreation demand,” (von 

Haefen and Phaneuf 2005). 

Fortunately, KT models have become more accessible as a result of recent advances in 

computational power and simplifications of the algorithms used to estimate the models. For this 

reason, we plan to incorporate a KT model in a second-stage analysis of our NC beach data, 

employing the framework established and described by Phaneuf and Siderelis (2003) and von 

Haefen and Phaneuf (2005) as follows.49 

We first consider that a respondent’s direct utility function takes the form: 

(11)                                                        𝑈(𝑥, 𝑧; 𝑄, 𝜀, 𝛽) 

                                                 
49 As far as we are aware, the KT model presented in von Haefen and Phaneuf (2005) represents the most 

comprehensive and refined approach currently available in the literature. Sanchez et al. (2016), for instance, utilize 

this approach in their analysis of the recreational values of the San Jacinto Wilderness. They furthermore 

acknowledge Phaneuf for providing them with the MATLAB source code employed in their estimation. 
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where x is an M-dimensional vector of trips; Q is an 𝐿 × 𝑀 matrix of site attributes; z is a 

numeraire representing spending on all other goods (price normalized to one); 𝛽 is a vector of 

structural parameters to be estimated; and 𝜀 is a matrix (or vector) of unobserved heterogeneity – 

components of utility known to the respondent but unknown (random) to the researcher. This 

framework is therefore consistent with random utility maximization theory. 

 Respondents maximize their utility over x and z subject to budget and non-negativity 

constraints: 

(12)                    𝑚𝑎𝑥𝑥,𝑧 𝑈(𝑥, 𝑧; 𝑄, 𝜀, 𝛽)   𝑠. 𝑡.   𝑦 =  𝑝′𝑥 + 𝑧,   𝑥𝑗 ≥ 0, 𝑗 = 1, … , 𝑀 

where U has the typical curvature properties (is continuously differentiable, quasi-concave, etc.); 

p is an M-dimensional vector of travel costs (including access fees); and y is income. The non-

negativity constraint ensures that the first order conditions are Kuhn-Tucker conditions. 

Assuming z > 0, the Kuhn-Tucker conditions defining the optimal consumption bundle (x*, z*) 

are: 

(13)                                                    
𝜕𝑈 𝜕𝑥𝑗⁄

𝜕𝑈 𝜕𝑧⁄
 ≤  𝑝𝑗 , 𝑗 = 1, … , 𝑀 

 and 

(14)                                       𝑥𝑗 × (
𝜕𝑈 𝜕𝑥𝑗⁄

𝜕𝑈 𝜕𝑧⁄
−  𝑝𝑗) = 0, 𝑗 = 1, … , 𝑀  

These equations can be interpreted thusly: the marginal rate of substitution between trips 

to a visited site (an interior solution) and other goods is equal to the travel cost to the site, and the 

marginal rate of substitution between trips to an unvisited site (a corner solution) and other goods 

is less than the travel cost to the site. For corner solutions, then, travel cost exceeds the 

respondent’s reservation price. For interior solutions, allowing 𝑔𝑗(𝑥, 𝑦, 𝑝, 𝑄, 𝛽) to represent the 

solution to equation (14), equations (13) and (14) can be rewritten as: 
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(15)                                                𝜀𝑗 ≤ 𝑔𝑗(𝑥, 𝑦, 𝑝, 𝑄, 𝛽) 

 and 

(16)                                               𝑥𝑗 × (𝜀𝑗 −  𝑔𝑗(𝑥, 𝑦, 𝑝, 𝑄, 𝛽)) = 0 

 Given distributional assumptions about the form of ε, we may define the probabilities of 

observing both corner and interior solutions, and through maximum likelihood estimation, we 

may recover that parameters in β that will define x*. 

 In terms of welfare analysis, Hicksian compensating surplus (CSH) resulting from a 

change in prices (travel costs) and/or site attributes from (p0, Q0) to (p1, Q1) can be expressed 

through either indirect utility functions (equation [17]) or expenditure functions (equation [18]) 

as: 

(17)                                   𝑣(𝑝0, 𝑄0, 𝑦, 𝛽, 𝜀) = 𝑣(𝑝1, 𝑄1, 𝑦 − 𝐶𝑆𝐻, 𝛽, 𝜀) 

or 

(18)                                             𝐶𝑆𝐻 = 𝑦 − 𝑒(𝑝1, 𝑄1, 𝑈0, 𝛽, 𝜀) 

where 𝑈0 =  𝑣(𝑝0, 𝑄0, 𝑦, 𝛽, 𝜀). There are computational challenges with either approach.  

 In either of these scenarios, respondents switch between membership in either the non-

visitation (corner solution) or visitation (interior solution) regimes to maximize their 

utility/minimize their expenditures. These regimes correspond to the 2M combinations of interior 

and corner solutions possible for the M sites. When M is large, solving equations (17) or (18) can 

be a daunting task. Additionally, because CSH is a random variable (as it is partially defined by 

ε), the researcher can only compute measures such as E(CSH) through simulation methods. 

Fortunately, advances made by Phaneuf et al. (2000), von Haefen (2004), and von Haefen et al. 

(2004) have allowed for the estimation of KT welfare measures even in cases where M is sizable. 
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Empirically, the three KT specifications examined by von Haefen and Phaneuf (2005) 

rely on the concept of additive separability50 – i.e., that 𝑈 = ∑ 𝑢𝑗(𝑥𝑗) +  𝑢𝑧
𝑀
𝑗  – and are variations 

of the direct utility function: 

(19)                                         𝑈 = ∑ ᴪ𝑗
𝑀
𝑗=1 ln(𝛷𝑗𝑥𝑗 + 𝜃) +

1

𝑝
𝑧𝑝, 

ᴪ𝑗 = exp(𝛿′𝑠 + 𝜇𝜀𝑗), 

𝛷𝑗 = exp(𝛾′𝑞𝑗), 

𝜌 = 1 − exp(𝜌∗), 

𝜃 = exp(𝜃∗), 

𝜇 = exp (𝜇∗) 

where s is a vector of individual characteristics; (δ, ϒ, θ*, ρ*, µ*) are structural parameters; 𝜀 = 

(𝜀1, … , 𝜀𝑀) is unobserved heterogeneity where each element is distributed i.i.d EV; and ρ < 1. 

This utility function format ensures that weak complementarity holds – changes in qj (site 

attributes of site j) have no impact on utility when xj = 0. Weak complementarity necessarily 

implies that estimated welfare effects will represent only use values.  

This particular utility structure implies the following likelihood of observing a specific 

outcome x, conditional on (δ, ϒ, θ*, ρ*, µ*): 

(20)          𝐿(𝑥|𝛿, 𝛾, 𝜃∗, 𝜌∗, 𝜇∗) = |𝑱| ∏ [exp (−𝑔𝑗(∙)) 𝜇)⁄ ]
1(𝑥𝑗>0)

𝑗 × exp[−exp (−𝑔𝑗(∙))] 

where |𝑱| is the determinant of the Jacobian; 1(xj >0) is an indicator variable; and 𝑔𝑗(∙) is the 

right hand side of equation (15) in the particular context of this utility function: 

                                                 
50 Additive separability eliminates the possibility of inferior goods and Hicksian complementarities between goods, 

and implies that wealthier respondents will visit more sites more frequently than other respondents. This implication 

may be either plausible or bothersome depending on the specific application. 
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1

𝜇
[−𝛿′𝑠 + 𝑙𝑛

𝜌𝑗

𝛷𝑗
+ 𝑙𝑛 (𝛷𝑗𝑥𝑗 + 𝜃) + (𝜌 − 1) 𝑙𝑛(𝑦 − 𝜌′𝑥)], for all j. 

The three KT specifications examined by von Haefen and Phaneuf (2005) differ in their 

treatment of the structural parameters as either fixed (more restrictive) or random (more general) 

across the population. A fixed parameters classical model, random parameters Bayesian model, 

and random parameters classical model are described. As we progress with our application, we 

will determine which of these specifications is most appropriate.51  

Conducting a welfare analysis in the KT framework involves a two-step procedure to 

calculate CSH at each iteration in a simulation procedure. First, the unobserved heterogeneity 

must be simulated such that they are consistent with the choices observed under baseline 

conditions. Second, CSH must be solved for conditional on these simulated elements of 

unobserved heterogeneity. The approach advocated by von Haefen and Phaneuf (2005) is a 

conditional approach which, by the law of iterated expectations, should represent the expectation 

of unconditional welfare estimates (so long as the data-generating process is correctly specified), 

and which has been shown to provide significant time savings as compared with the standard, 

unconditional approach.  

“…we simulate the unobserved heterogeneity such that our model perfectly 

predicts observed behavior at baseline conditions and use the model’s structure to 

predict how individuals respond to price, quality, and income changes…this 

conditional approach to welfare measurement differs from the more traditional 

unconditional approach where the structural model is used to predict both 

behavior at baseline conditions and responses to price, quality, and income 

changes,” (von Haefen and Phaneuf 2005). 

                                                 
51 See von Haefen and Phaneuf (2005), pages 141-146, for details. 
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To simulate the unobserved heterogeneity, we must first draw from the joint distribution 

[𝑓(𝛽𝑡, 𝜀𝑡|𝑥𝑡)] of an individual t’s structural parameters [𝛽𝑡 = (𝛿𝑡, 𝛾𝑡, 𝜃𝑡
∗, 𝜌𝑡

∗, 𝜇𝑡
∗)] and i.i.d EV 

draws conditional on said individuals observed trips. Note that: 

(21)                                        𝑓(𝛽𝑡, 𝜀𝑡|𝑥𝑡)  =  𝑓(𝛽𝑡|𝑥𝑡) 𝑓(𝜀𝑡|𝛽𝑡, 𝑥𝑡) 

which illustrates that we may first simulate from 𝑓(𝛽𝑡|𝑥𝑡) and then from 𝑓(𝜀𝑡|𝛽𝑡, 𝑥𝑡). Not every 

specification of the KT model will require simulation from 𝑓(𝛽𝑡|𝑥𝑡), however. If we decide to 

use the random parameters classical specification, this simulation will require the use of an 

algorithm described in von Haefen and Phaneuf (2005), pages 147-148.  

 To compute values of CSH, von Haefen and Phaneuf (2005) recommend the use of an 

expenditure function approach developed by von Haefen (2004), as it has been shown to be 

significantly faster than the utility function approach develop by von Haefen et al. (2004).52 

These computational savings arise from the fact that von Haefen et al. (2004)’s method requires 

the researcher to solve multiple constrained maximization problems, whereas von Haefen 

(2004)’s method requires a solution to only one constrained minimization problem.  

 Recall that under the assumption of additive separability, a respondent’s Kuhn-Tucker 

conditions for expenditure minimization can be stated as: 

(22)                                                
𝜕𝑢𝑗(𝑥𝑗) 𝜕𝑥𝑗⁄

𝜕𝑢𝑧(𝑧) 𝜕𝑧⁄
 ≤  𝑝𝑗 , 𝑗 = 1, … , 𝑀 

and 

 (23)                                                 𝑈̅ = ∑ 𝑢𝑗(𝑥𝑗) +  𝑢𝑧(𝑧)𝑀
𝑗  

                                                 
52 This approach is nevertheless detailed on pages 149-150 of von Haefen and Phaneuf (2005). 
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 Therefore, if the researcher can solve for the optimal value of z, equation (22) can be used 

to solve for all optimal values of x. An iterative algorithm that identifies these solutions is as 

follows: 

1. At iteration i, set 𝑧𝑎
𝑖 = (𝑧𝑙

𝑖−1 + 𝑧𝑢
𝑖−1)/2. Initially, set 𝑧𝑙

0 = 0 and    

𝑧𝑢
0 = 𝑢𝑧

−1(𝑈̅ − ∑ 𝑢𝑗(0)). 

2. Conditional on 𝑧𝑎
𝑖 , solve for xi using (22) and 𝑢̃𝑖 = 𝑈(𝑥𝑖, 𝑧𝑎

𝑖 ) using (23). 

3. If 𝑈̃𝑖 < 𝑈̅, set 𝑧𝑙
𝑖 = 𝑧𝑎

𝑖  and 𝑧𝑢
𝑖 = 𝑧𝑢

𝑖−1. Otherwise set 𝑧𝑙
𝑖 = 𝑧𝑙

𝑖−1and 𝑧𝑎
𝑖  = 𝑧𝑢

𝑖 . 

4. Iterate until |(𝑧𝑙
𝑖 − 𝑧𝑢

𝑖 )| ≤ 𝑐 where c is arbitrarily small.  

The general approach to solve for estimates of CSH can be summarize as follows:  

1. On each iteration, first simulate 𝛽𝑡 from 𝑓(𝛽𝑡|𝑥𝑡) and then 𝜀𝑡 from 𝑓(𝜀𝑡|𝛽𝑡, 𝑥𝑡). 

Recall that simulation from 𝑓(𝛽𝑡|𝑥𝑡) is not required in the fixed parameter classical 

model, and is automatically generated at each step of the Bayesian random 

parameters model. The procedure necessitated by the random parameters classical 

model is detailed on pages 147-148 of von Haefen and Phaneuf (2005). 

2. Conditional on the simulated values (𝛽𝑡, 𝜀𝑡), compute values of CSH resulting from 

changes in travel cost and site attributes according to one of two methods: 

a. The indirect utility function approach provided by von Haefen et al. (2004), 

which utilizes a numerical bisection method to determine the necessary 

change in income required to equate baseline and altered utility levels. Each 

iteration uses an algorithm to solve the respondent’s constrained optimization 

problem. 
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b. The expenditure function approach provided by von Haefen (2004), which 

uses an algorithm to determine the minimum necessary expenditure required 

to achieve baseline utility levels under altered conditions. 

3. Average the computed values of CSH to determine E(CS), the expected value of a 

respondent’s Hicksian surplus.  

We anticipate that the KT model will outperform the MXL model’s results and will 

provide statistically different welfare estimates and policy inference. Given how large our choice 

set is (20 alternatives and hundreds of respondents), if dimensionality becomes an issue with 

regard to convergence, we may need to aggregate the dataset up to the county level. 
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CHAPTER 5 

CONCLUSIONS 

This dissertation presents three studies which examine the recreational travel cost 

literature and consider new approaches to data management and demand modelling that improve 

the statistical efficiency and accuracy of standard travel cost methods and applications. Together, 

these papers provide valuable insights as well as recommendations for future econometric 

applications of the travel cost model. 

The survey response literature has established that respondents tend to over-report their 

recreational activities, and correcting for “heaps and leaps” in survey response data is largely an 

empirical issue. Our first paper develops two approaches to treat the presence of extreme values 

and rounded responses in survey datasets and thereby improve model fit and resulting welfare 

estimates. We illustrate how, when modeling single-site trip data using a negative binomial (NB) 

distribution, employing the incomplete beta function simplifies the incorporation of censored 

intervals. We show the NB’s fit is improved by either reassigning rounded responses to censored 

regimes where reported trip numbers define the intervals’ upper bounds, or by mixing the NB 

with a continuous distribution at a cut-point where it is supposed that response behavior begins 

to exhibit rounding. Our analysis did not find a statistically significant difference in the 

parameter or per-trip consumer surplus estimates when extreme values were either truncated or 

incorporated under uncertainty. However, only three observations were truncated in our 

particular application, which may not have provided a significant enough loss of information to 
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impact the overall estimation. We feel these results will be useful for recreation demand research 

and may have broad applicability to the general analysis of count data.  

Much of the travel cost literature uses mixed logit (MXL) models to evaluate recreational 

site choice data. Multinomial probit (MNP) models are less commonly used, as their relatively 

cumbersome simulation procedures have made them more difficult to work with historically. Our 

second paper compares these models’ performances and explores implications for welfare 

analysis. In our application using multi-site trip data, we calculate estimates of average expected 

maximum utility (pre and post policy implementation), as well as willingness to pay (WTP) 

estimates for site quality improvements and the distributions of these estimates. We find that 

while point estimates of average expected utility (unsurprisingly) differ between the MXL and 

MNP models, the patterns of sign and relative significance of our parameter estimates persist 

across both specifications, and the models achieve similar log likelihoods at convergence. 

Furthermore, our results display consistent, parallel patterns of inference across both models. In 

terms of WTP measures and their distributions, we find that the MNP model predicts the average 

benefit of a universal one foot increase in water levels to be roughly twice that of the MXL 

model. Interestingly, however, both models provide a very similar picture of the distribution 

around this WTP estimate.  

With regard to methodology, we find that the Delta Method Approximation provides a 

computational advantage over both of the more traditional simulation procedures (Krinsky-Robb 

and bootstrapping) – welfare estimates for both models could be calculated in a matter of 

minutes as opposed to a matter of hours. The Delta Method Approximation also eliminates the 

need for the researcher to run multiple simulations to determine the optimal number of 

replications to report. While the MXL and MNP models performed similarly overall, the MNP 
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model did fit slightly better in terms of log likelihood achieved at convergence. Given this result 

and the advantages and simplifications that the Delta Method Approximation presents for 

welfare analysis in the MNP context, we believe the MNP model warrants greater consideration 

in the recreational travel cost (and non-market valuation) literature. 

Our third paper aims to identify and characterize preferences for beach width among 

North Carolina households by analyzing multi-site revealed preference trip data using travel 

costs and beach site attributes (beach width, beach length, number of access points, parking area, 

ferry-only access, and presence of lifeguards) as explanatory variables. We employ a MXL 

model in our recreation demand analysis and discuss the advantages of incorporating a Kuhn-

Tucker generalized corner solution model in future extensions of this analysis.  

The different specifications on the beach width measurement that we compare (log of 

average width and log of median width) perform very similarly and provide nearly identical 

pictures of the influence of the explanatory variables on trip demand, though there are noticeable 

differences in the parameter estimates for lifeguards, ferry access, and number of access points. 

As a result, the confidence intervals around some site attributes’ WTP estimates do not always 

overlap between the models. The signs on the parameters are generally what we expect. We find 

that travel costs and requiring the arrangement of a boat or ferry ride to access a beach have a 

negative influence on trip demand. Length is also found to have a (small) negative influence, 

perhaps because the walking distance between beach amenities such as restrooms and beachside 

attractions is greater on longer beaches. Number of access points, the amount of parking area, 

and the presence of lifeguards are all found to have positive impacts on trip demand. It is 

somewhat surprising, however, that we find beach width has a negative influence on recreation 

demand, and we discuss possible justifications for this result.  
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Nevertheless, while beach erosion and sea level rise directly impact beach width, they 

also threaten beach access in general. In certain sea level rise scenarios, the number of beach 

access points could be reduced and the proportion of beaches accessible only by ferry or boat 

could increase. Given the results of our welfare analysis, we find that these consequences could 

have substantial economic impacts and should be considered in future natural resource 

management decisions for the Outer Banks region. Overall, this paper provides insights that we 

feel will be of particular interest to coastal management authorities. The welfare estimates we 

obtain have immediate policy relevance, and provide context for future work with this Sea Grant 

dataset (of which the revealed preference responses are but a subset).  
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