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Abstract

Dual Priority scheduling is a variation of the Fixed Priority scheduling paradigm in

real-time systems. It was introduced to make non-real-time jobs complete sooner

while ensuring that real-time jobs still meet their deadlines. In Fixed Priority

scheduling, each task is assigned with a fixed priority and the task executes in that

priority throughout the schedule. In Dual Priority algorithm every task has two

priorities, high and low – each task runs in low priority as soon as it arrives and con-

tinues executing in its low priority order until it reaches its priority promotion time,

and executes at its high priority level until completion. In original Dual Priority

scheduling algorithm the low and high priority orderings are the same. This thesis

focuses on implementing various low priority orderings to examine which low priority

ordering should be chosen to make more tasks schedulable. We found that in many

cases, having the low priority order be the reverse of the high priority order allows

more task sets to be schedulable. Task sets whose low priority is ordered according

to decreasing laxity (the time a job can remain in wait queue without missing a

deadline) also seemed to be schedulable more often than other options.
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Chapter 1

Introduction

A real-time system is any computing system which has to perform all its compu-

tations within specific time constrains. Each task in a real-time operating system

(RTOS) has a restricted time period to complete its execution [1]. Accuracy of the

system depends on both the logical result and the time it takes to complete the tasks.

If the system fails to respond in the time period assigned for that particular task, it

is considered to be an incorrect response.

Many real-time systems have jobs that repeat. We call these repeating jobs

periodic jobs. Real-time systems (RTS) are used in various industries like health,

defense, automobiles, etc. [2]. Each task may have one or more jobs, period, execution

time and a deadline associated with it. The period is defined to be the amount of

time between successive job releases. A deadline is a time period assigned to a

task within which it is supposed to complete its execution. Apart from the period,

execution time and deadline every task has its own priority which is determined by

the scheduling algorithm.

Missing a deadline may have consequences based on what type of real-time system

it is. When the system cannot afford to miss a deadline or missing a deadline has
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life threatening consequences then it is called a hard real-time system (HRT). An

example of a HRT can be an aircraft control system in which a computer controls

the flight of that aircraft. Every single action is timed in this case and if the system

is not prompt enough to do the same then there might be a huge irreversible loss.

Few more examples of hard real time systems could be an automated car, missile

system, etc. [3].

When some deadline misses are allowed, it is called a soft real-time system (SRT).

However the system tries to meet as many deadlines as possible. Online video stream-

ing would serve as the best example for SRT. If the system misses some deadlines and

a few frames are lost, the consequences are not catastrophic. However, it degrades the

performance of the system indeed. Other examples of soft real-time system includes

online reservation system, sound system, laser printer, etc. [3].

Tasks which have all the jobs of that task arrive in fixed time intervals are called

periodic tasks. On the other hand when the jobs are not released in a strictly periodic

pattern it is called sporadic task. However for sporadic tasks there is a minimum

time gap between releases of every job of that task [4]. When a task of higher priority

can interrupt execution of a task with lower priority then the scheduling algorithm is

called preemptive. On the contrary when every task completes its execution without

any interruption the scheduling algorithm is called non-preemptive.

A real-time system may involve one or more number of processors. A system that

has just one processor is called a uniprocessor system where as if the system has two or

more processors it is called a multiprocessor system. More and more multiprocessor

scheduling algorithms are coming into picture. The increase in popularity is because

multiprocessor systems can run many tasks on the system concurrently [3]. Using

multi-core processor also satisfies todays need to acquire maximum processing power.

Multiprocessor scheduling is basically divided into two types: Global scheduling and
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partitioned scheduling [5]. In global scheduling there is just one single global queue of

tasks and a global scheduler assigns jobs to the processors for scheduling. Migration

of tasks over processors is allowed in these algorithms. In partitioned scheduling

every task set is partitioned into various subsets of the tasks. Each task subset has

its own local scheduler which assigns jobs from that subset to a processor. Real-time

scheduling in multiprocessors can be either online scheduling or offline scheduling.

In an offline scheduling algorithm, the system is completely aware of the details and

the timings of the tasks in advance. This knowledge is used to predict the behavior

of the schedule and hence the scheduling decisions are made even before the system

starts running. In an online scheduling algorithm there is no preexisting information

about the task specifics and so all the scheduling decisions are made at run-time.

If the priorities of the tasks remain the same throughout the schedule then it is

supposed to be static where as if the priorities of the tasks keep changing according

to the scheduling algorithm during the schedule then it is called as dynamic [1].

Two of the multiprocessor scheduling algorithm is Standard Dual Priority algorithm

(SDP) [6] and Modified Dual Priority (MDP) algorithm. These algorithms take into

account high and low priority bands while scheduling. Standard Fixed Priority (SFP)

algorithm is a fixed priority scheduling algorithm which assigns every task a fixed

priority which remains constant throughout the schedule. The task with the higher

priority is always given more preference than the tasks with relatively lower priority.

It makes sure that only the task with the highest priority runs at any point in the

schedule. Therefore every task has only one priority associated with it [1].

The dual priority scheduling algorithm is an online scheduling algorithm where

every task has its own low and high priority and a priority promotion time [6]. Each

job initially executes in its low priority order until it reaches its priority promotion

time. At that point the job acquires high priority and continues executing in its high
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priority. A particular order is chosen for high priority band and low priority band

while simulating either Standard Dual Priority algorithm [6] or Modified Dual Prior-

ity algorithm [3]. This thesis focuses on simulating Standard Dual Priority scheduling

algorithm [6] on multiple unique task sets considering different priority orderings for

high priority and low priority band and concluding which proves to the best out of

all the combinations in different scenarios. The performance is gauged depending

on how many task sets are schedulable or unschedulable with that particular low

priority ordering.
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Chapter 2

Model and Definitions

This is a general reference model for real-time systems. The terminology below will

be used throughout this thesis in order to maintain consistency. A job is nothing but

a unit of work that is scheduled and executed by the system. Many jobs combine to

form a task which performs a specific function. Let there be m processors in the sys-

tem. Various tasks together form a task set which is denoted by τ = {T1, T2, . . . Tn}

where T1, . . . , Tn are the tasks. A task Ti is represented as a tuple (pi, ei) where pi

is the time period in which every job is released and ei is the execution time of the

job. In addition to all the parameters above, every job of task Ti has an arrival time

which is represented as ai,k where ai,k = (k − 1) · pi which means that the kth job of

task Ti, denoted by Ti,k is released at that arrival time ai,k. The deadline of the job

is expressed as di,k = k · pi, where di,k is the deadline of the kth job of task Ti. The

job Ti,k is expected to execute for i time units in the interval [ai,k, di,k]. The average

amount of the time a task consumes the processor for its execution or the processing

time is termed as processor utilization and is indicated as ui and is calculated as

ui = ei/pi [7].

The property indicating if all the tasks in a real-time system can meet its deadlines
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is called schedulability and a blue print of the tasks under execution is called a

schedule. A task set is said to be valid if all the tasks in that task set meet its

deadline and a schedule is said to be feasible if atleast one valid schedule exists for

that particular task set [7]. We assume that the processor is idle while a job is

waiting to execute and a higher priority job will never be in the wait queue while a

lower priority job is executing.

This thesis focuses on improving the Standard Dual Priority scheduling algorithm

by considering different priority orderings of high and low priority bands. The max-

imum amount of time that can elapse between arrival and completion of the job is

called its worst case response time (WCRT), Ri. Worst case response time can be

calculated by adding execution time ei and worst case interference Ii. Interference

in a task model is defined as the amount of the time a job has to wait after getting

interrupted by a higher priority job before it completes its execution. In Dual Pri-

ority scheduling [6] a task Ti runs at its low priority (Ti,low) until a point where it

acquires its high priority (τi,high) and that point is called the priority promotion time

or simply promotion time. At a certain point in execution a task gets promoted to

higher priority level and then it continues to be in that high priority state until it

completes its execution. The promotion time of a task Ti is represented as λi. The

original Dual priority algorithm has a middle priority range in addition to low and

high priority ranges. All the real-time jobs have two fixed priorities each – i.e., low

and high. The jobs which are not time critical are called non real-time jobs and they

execute in FIFO, first in first out order and acquire the middle range priority [6].

The purpose of this algorithm was to improve the response time of non-real-time

jobs while still ensuring real-time jobs meet their deadlines.

A job’s laxity [1] is defined as the maximum time a job can wait ideally without

being executed without having to miss its deadline. The relative deadline of a task
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Table 2.1: Basic notation

Notation Description
Ti Task number i
ei Worst case execution time of task Ti

Ri Worst case response time of task Ti

Di Relative Deadline of task Ti

λi Promotion time of task Ti

τi,low Low priority assigned to task Ti

τi,high High priority assigned to task Ti

pi Period of task Ti

ai Arrival time of job of task Ti

n Number of tasks
m Number of processors
ui Utilization of task Ti

is defined as the time elapsed between the arrival and completion of each job in the

task. The absolute deadline is the point in time in the schedule when a job has to

finish its execution at or before that time. A task is said to have implicit deadlines

when the deadline of the task is equal to its period. Whereas when the deadline of

the task is less than or equal to its period it is called constrained deadline.
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Chapter 3

Related Work

As discussed above, the tasks can be scheduled using global and partitioned schedul-

ing algorithms [5]. The scheduling algorithms can also be divided into Fixed Priority

and Dynamic Priority scheduling algorithms. In Fixed priority algorithms each task

has just one constant priority throughout the schedule whereas in Dynamic Priority

algorithms the priority of the task keeps changing during the schedule due to various

factors. This thesis focusses on Fixed Priority algorithms, however, Earliest Deadline

First (EDF) [1] algorithm is one of the very popular Dynamic Priority algorithms.

According to EDF the task with the earliest or the shortest deadline gets the higher

priority and the task with the farthest deadline gets the least priority. Some of the

important Fixed Priority scheduling algorithms are discussed below.

3.1 Fixed Priority Scheduling

In a Fixed Priority scheduling algorithm [1] every task has one fixed priority assigned

to it. That task holds the given priority throughout the schedule. This priority

decides which task will execute at any point in the schedule. The fixed priority

algorithm makes sure that only the highest priority task among the arrived tasks
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execute at any time during the schedule.

Example 1 Consider an example of a schedule where Ti = (ei, pi) is the task at

index i with execution time ei and period pi. They have the arrival time ai and a

deadline di = pi. Let T1 = (2, 7); T2 = (3, 8) and T3 = (4, 12) with arrival times

a1 = 2, a2 = 3 and a3 = 0. The tasks T1, T2 and T3 have priorities 1, 2 and 3

respectively. Figure 3.1 illustrates the schedule of these tasks. The rectangles in the

schedule represent the execution time of the task, up arrows indicate arrival times of

the task and down arrows indicate the deadline of the task.

At t = 0 T3 is begins executing and continues executing until T1 arrives at time

t = 2. At this point, the scheduler will suspend T3’s execution and T1 starts executing

since T1 has higher priority than T3. This is called preemption where T1 is preempting

T3. T1 then executes until completion, causing T3 to wait for the processor. Mean-

while, T2 arrives at time t = 3 while T1 is still running. Task T2 must wait to execute

since T1’s priority is greater than the priority of T2. In this case, after T1 completes

its execution, when T2 and T3 both are waiting to acquire the processor, T2 will start

executing and T3 continues waiting to execute because T2 has higher priority than T3.

Finally, T3 resumes its execution after T2 completes its execution successfully.

Because these are periodic tasks, T1 will release a new task at time t = 9 and

T2 and T3 will release new jobs at times 11 and 12, respectively. The scheduling

decisions will continue in the same manner as described above

3.2 RM (or DM)

The Rate Monotonic algorithm (RM) proposed by Liu and Layland [1] assigns higher

priority to tasks with shorter periods. Therefore, the task with the least period

will have the highest priority and the task with the longest period will have the

9



Figure 3.1: A sample Fixed Priority schedule.

lowest priority. Rate Monotonic scheduling algorithm is optimal for Fixed Priority

on uniprocessor systems when deadlines are implicit, which means that if a task set

can meet all deadlines by any Fixed Priority scheduling algorithm then it can meet

all its deadlines by the Rate Monotonic algorithm [1].

In addition to the assumptions made above, they assumed a couple of more

things which were not really required or are not applicable. This theory expected the

tasks to have constant execution time but the analysis proves that Rate Monotonic

algorithm works fine even when the execution times are just bounded above – i.e.,

ei is the worst-case execution time, but actual execution time may be smaller than

ei. It will still succeed if the execution time is less than the period of the task. They

also thought that the tasks have to be strictly periodic. However, when analyzed

this theory works even when there is a task Ti which arrives at most once in every

pi units of time.
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According to the model where deadlines are equal to periods, the scheduling algo-

rithm is called Rate Monotonic algorithm but what if the deadlines are constrained

i.e., if Di ≤ pi for all i = 1, 2, . . . , n. When deadlines are not equal to periods but are

less than or equal to periods, they are called constrained deadlines. As expected, the

rate monotonic algorithm for choosing priority of the task based on its period will not

turn out to be optimal when the deadlines are constrained. For example a task has

a longer period but a shorter relative deadline would keep waiting for other tasks to

execute since the priority chosen for that task was lower because of its large period.

So some infrequent task might be more urgent than a frequent task. Therefore Dead-

line Monotonic policy (DM) [8] is more efficient than Rate Monotonic policy in this

case. In the Deadline Monotonic algorithm a task with a shorter relative deadline

should be given higher priority and the task with the farthest relative deadline will

have the least priority. For the constrained systems, priority ordering according to

the Deadline Monotonic technique proved to be optimal on uniprocessor systems [8].

Rate monotonic algorithm did turn out to be optimal but only for uniprocessor

systems when the deadline is equal to the period. In case of a multiprocessor system

there was another issue as to how would the tasks be assigned to the processors.

Therefore rate monotonic algorithm is not optimal for multiprocessor systems.

3.3 TDA

Time Demand Analysis (TDA) is a technique used to perform fixed priority schedul-

ing analysis. Liu and Layland [1] proved that if a task set with implicit deadline

has a utilization ≤ n(21/n − 1) then it is RM schedulable on uniprocessor systems.

Note that limn→∞ n(21/n − 1) = ln 2 ≈ 69.3%. When utilization of the task set

is greater than 69.3% then more accurate methods should be used to determine
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schedulability. Hence TDA is used to calculate the worst case response time of a

task. TDA was initially introduced for uniprocessor [9] and was later extended for

multi-processors [10, 11, 12]. A periodic task set’s schedulability using a fixed priority

scheduling algorithm is determined with the help of TDA.

On uniprocessors, the maximum requested processing time of task T1 through Ti

in a time interval of length t is calculated as [9]:

wi(t) = ei +
i−1
∑

k=1

⌈

t

pk

⌉

· ek (3.1)

The above equation is a consequence of the critical instant theorem [1]. Critical

instant theorem can be stated as follows: Given a task Ti executing in a fixed priority

schedule on a uniprocessor, worst case response time of Ti will occur when Ti release

a job at time t and all higher priority tasks release jobs at the same time. In TDA

the expression sumi−1
k=1

⌈

t
pk

⌉

· ek measure the high priority demand in an interval of

length t assuming all high priority tasks are released at the beginning of the interval.

By the Critical Instant Theorem, if t* is the minimum value such that wi(t∗) = t∗

then t* is worst case response time of Ti.

The sum in Equation 3.1 defines the worst case high priority interference during

an interval of length t in uniprocessor systems with constrained deadlines. The value

wi(t) is defined as the worst-case system demand of a task T1, . . . , Ti during a time

interval of length t. If there exists a t∗ such that wi(t∗) = t∗ ≤ Di then naturally Ti

will complete its execution without missing any of its deadlines. That is because the

worst case system demand is less than the time interval so even if the Ti executes in

its worst case scenario, it will still meet all its deadlines.

The longest interval in which the processor executes tasks at priority k or higher

is known as level-k busy period. Various kinds of jobs in multi-processor systems

executing in level-k busy period are called body, carry-in and carry-out. Jobs are

12



Figure 3.2: Carry-in and No-carry-in jobs.

classified in the above categories based on their arrival times and deadlines with

respect to level-k busy period as described below and illustrated in Figure 3.2.

• Body: Jobs that arrive in level-k busy period and also have a deadline in level-k

busy period.

• Carry-in: These jobs also have their deadlines in level-k busy period, however,

they arrive before the level-k busy period.

• Carry-out: Jobs that arrive in the level-k busy period but have deadlines after

the level-k busy period.

These are considered since the critical instant theorem [1], which applies for

uniprocessors, does not apply for multi processors [10].

Research by Bertogna et al. [10, 11] and Guan et al. [12] proposed an extended

model to compute fixed priority response times more accurately in case of multi

processor systems. Their approach first computes the worst-case length of time a

task Ti might prevent task Tk from executing – this is called Ti’s interference on

Ti. The analysis takes two types of interferences into consideration interference from
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carry-in (ICI
k (Ti, x)) and no-carry-in (INC

k (Ti, x)) jobs, and proves that there cannot

be more than m− 1 carry-in jobs. Note INC
k includes both body and carry-out jobs.

Let τ<k = {T1, . . . , Tk−1} be the tasks with priority higher than task Tk. Guan’s

method determines the worst-case partition of τ<k into τNC and τCI that results Tk’s

worst-case response time. Specifically, let Z‖ ⊆ τ × τ be the set of all partitions

of τ<k = T1, . . . , Tk−1. Guan’s method partitions τ<k into τNC and τCI such that

τNC ∪ τCI = τ<k, τ
NC ∩ τCI = ∅, and |τCI ≤ m− 1.

Guan et al. also derived a formula to calculate an upper bound on the total

interference in an interval of length x caused by all the high priority jobs:

Ωk(x) = max
(τNC ,τCI)∈Z





∑

Ti∈τNC

INC
k (Ti, x) +

∑

Ti∈τCI

ICI
k (Ti, x)



 (3.2)

Once the worst-case interference has been calculated, the Response Time Analysis

(RTA) can be found in a manner similar to the uniprocessor TDA method. The

worst-case response time is no larger than the smallest value x such that

⌊

Ωk(x)

m

⌋

+ ek ≤ x. (3.3)

The equation 3.3 can be best explained using Figure 3.3. In the worst case, task

Tk only executes while no other tasks are executing, leaving m − 1 idle processors.

If this occurs, then the Ωk(x) time units of interference must occur in parallel.

This determines the upper bounds of the task Tk’s response time. Therefore, it

is concluded that the task may not be schedulable if x > Dk. The test above is

a sufficient only test since the results of the analysis are pessimistic. Note that a

sufficient only test may make fixed priority-schedulable task sets fail this test.
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Figure 3.3: Guans’s Response Time Analysis.

3.4 OPA

Initially Audsley devised an algorithm called Optimal Priority Assignment (OPA)

algorithm which derives priority levels for a task set if the task set is FP schedu-

lable [13][14]. When deadlines are longer than periods neither RM nor DM is and

optimal FP scheduling algorithm. R. Davis and A. Burns then proved that OPA

works in case of multiprocessors also under certain conditions with respect to schedu-

lability. Optimal Priority Assignment relies on a schedulability test S: “For a given

system model, a priority assignment policy P is referred to as optimal with respect

to a schedulability test S, if there are no task sets, compliant with the system model

that are deemed schedulable by test S using another priority assignment policy, that

are not also deemed schedulable by test S using policy P” [15].

The pseudo code for OPA algorithm by Davis et al. [15] is given below:

Optimal Priority Assignment Algorithm

for each priority level k, lowest first

{
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for each unassigned task Ti

{

if Ti is schedulable at priority k according to schedulability test S

{

assign Ti to priority k

break (continue outer loop)

}

}

return unschedulable

}

return schedulable

The algorithm above does not account for the order in which tasks should be

considered at each priority level higher than k. OPA algorithm will run the schedu-

lability test S at most n(n + 1)/2 times, where n is the number of tasks. This is

a much better solution than actually inspecting all the n! possible orderings. The

above algorithm ensures a schedulable priority assignment according to schedulabil-

ity test S, if one exists. They also proved that using Audley’s OPA algorithm for any

global FP schedulability test for periodic or sporadic task sets is said to be optimal

if it simply abides by the following three conditions [15]:

1. Higher priority tasks may affect the schedulability of task Tk according to the

test S but the relative priority of those higher priority tasks have no effect on

it.

2. Similarly, lower priority tasks may affect the schedulability of task Tk according

to the test S but the relative priority of those lower priority tasks have no effect

on it.
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3. According to the schedulability test S, if two tasks with the adjacent priority

are swapped the task which is assigned the higher priority after swapping will

never be unschedulable if it was schedulable before swapping. (As a corollary,

a task with the lower priority after assignment can never become schedulable

after swapping if it was unschedulable before swapping).

Davis and Burns concluded that Audsley’s Optimal Priority Assignment algo-

rithm can be taken into account with sufficient schedulability tests for global FP

schedulability of periodic task sets. However, it cannot be it cannot be used for

any exact schedulability test for the same. Note that global FP scheduling refers

to global fixed-priority preemptive scheduling algorithm where the all the tasks are

placed in a single global queue and are allowed to migrate from one processor to

another according to the requirement [15].

3.5 FPZL

Fixed Priority until Zero Laxity (FPZL) [16] is a multiprocessor scheduling algorithm

for real-time systems. It is called a “minimally dynamic” algorithm, meaning a

job’s priority can change at most once between its arrival and its completion. This

approach is almost the same as global fixed priority preemptive scheduling algorithm

with an addition. According to the FPZL algorithm if a task’s laxity becomes zero

that task should get the highest priority at that point. Fixed Priority until Static

Laxity (FPSL) [16] and Fixed Priority until Critical Laxity (FPCL) [16] are similar

to FPZL with some variation.

FPZL is also a global scheduling algorithm [5] in which a global queue of jobs

is maintained and a single scheduler decides which processor will run which job.

FPZL is based on the global fixed priority preemptive scheduling technique which
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is generally known as FP scheduling. In FPZL all the jobs are scheduled based on

their fixed priority until their laxity becomes zero. When a job has zero laxity it

must execute in order to avoid missing its deadline. Clearly, every task set that is

FP schedulable is also FPZL schedulable.

In the case where a task set is FP-schedulable, FP is always preferred over FPZL.

That is because FP algorithm is simpler than FPZL and checking for zero laxity just

adds to the computation time and complexity. Hence if a task set is FP schedulable,

FP is used over FPZL. In fact, the FPZL schedule will be the same as the FP

schedule for FP-schedulable task sets using the same priority assignments. However,

there exist task sets that are FPZL schedulable but not FP schedulable. Hence

FPZL outshines the performance of global FP scheduling algorithms because both

of them schedule the tasks almost in the same manner except for the fact that FPZL

assigns the tasks with zero laxity at the highest priority which makes them meet their

deadlines but the latter fails to make the task with zero laxity meet its deadline.

3.6 Dual Priority Scheduling

As the name suggests this algorithm paradigm assigns each task with two priorities

as opposed to Fixed Priority algorithm [1] where each task has just one priority.

This was developed to ensure that HRT jobs meet their deadlines and to improve

the response time for all the non-real time jobs. According to Davis et al. [6] priority

levels are split into three ranges: high, medium and low. Each HRT periodic task

in Dual Priority algorithm is assigned with two priorities – one being in the lower

priority range and another being in the higher priority range – as well as a priority

promotion time. In addition all the non-real-time jobs execute at the medium priority

level in first in first out (FIFO) order. The goal of this algorithm was to improve the
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response time of non-real-time jobs, while ensuring all the real time jobs still meet

their deadlines.

Priorities assigned to the periodic task Ti are represented as τi,high and τi,low,

where τi,high is the high priority and τi,low is the low priority assigned of task Ti.

Each periodic task Ti also has a priority promotion time associated with it which

is denoted by λi. The promotion time plays a very vital role in the Dual Priority

scheduling algorithm since it is used to determine if the task Ti is currently executing

in the high priority or in the low priority level. Initially when the task arrives, it

always executes in its low priority range τi,low. If it does not complete its execution

before its promotion time, it gets promoted as soon as it reaches its promotion time λi

and from that point forward it continues executing at priority τi,high until completion

of its execution. This algorithm makes sure that at any point in execution only the

highest priority job executes and all the jobs continue executing in a priority driven

manner [7]. Look at the example below [3].

Example 2 Figure 3.4 illustrates a uniprocessor Dual Priority schedule. Let there

be three tasks T1(0, 5, 2), T2(0, 7, 1) and T3(0, 8, 3). The promotion time of task T1

is λ1 = 2, promotion time of task T2 is λ2 = 1 and of task T3 is λ3 = 3 . They

are synchronous tasks meaning both arrive at the same time 0. Since task T1 has

higher priority than task T2 and task T3 , it starts executing. At time 1 T2 gets

promoted and so it acquires the processor and starts executing. At time unit 2, T1

gets promoted and since it has the highest priority level it starts executing and first

completes its execution at time unit 3. T1 and T2 have finished executing by now and

T3 gets promoted and it continues executing until completion. Meanwhile second job

of task T1 keeps waiting and is given the processor only after T3 completes since T3

is promoted and T1 is in its low priority level. The schedule continues in a similar

manner.
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Figure 3.4: A sample Dual Priority schedule.

Though Dual Priority algorithm was originally designed to improve response

times of non-real-time jobs and to ensure HRT tasks meet their deadlines for unipro-

cessors, it was applied in different ways to achieve distinct goals. With the help of

Dual Priority scheduling, utilization bounds for RM scheduling with deferred pre-

emptions were determined by Gopalakrishnan et al. [17]. Uniprocessor Dual Priority

scheduling was extended to reduce power consumption by Jejurkar et al. [18]. WRCT

analysis was performed by Bril et al. [19] for uniprocessor fixed priority systems with

preemption.

3.7 PNPDP

The Partially Non Preemptive Dual Priority scheduling algorithm [20][21] is a devel-

oped version of Dual priority algorithm. PNPDP [20] has the same characteristics

as the standard dual priority with a few differences which are discussed below. In

PNPDP there are no non real-time jobs like SDP. The main difference between PN-

PDP and SDP is that lower priority jobs in PNPDP are not allowed to initiate

preemptions. A task can only preempt another task when it is promoted to in its

high priority level. However both high and low priority jobs can be preempted. Ho

20



et al. [21][20] used worst case response time analysis developed by Guan et al. [12]

in order to calculate promotion offset for every task. This approach is focused on

reducing preemption and migration overhead.

Guan et al. [12] demonstrated a scheme for calculating interference of the high

priority tasks on the low priority tasks in a fixed priority schedule. This approach was

adopted to calculate the interference on the low priority tasks – i.e. the amount of

time each low priority task waits for the higher priority task to complete its execution

when interrupted. Worst case response time Ri of a task Ti is calculated by adding

execution time ei to its worst case interference Ii (i.e., Ri = ei + Ii), where Ii is

computed using Guan’s method.

Ho et al. [21][20] concluded that when a task executes in its lower priority level,

the worst case response time of the high priority promotion time of the task will

always decrease. This follows before the value of ei in Equation 3.3 will be smaller

and the value of Ωi will not increase. Hence a delay in promotion time will not cause

any adverse impact on the schedulability – i.e., delaying the promotion time when

the task is executing in its lower priority level would not cause the task to miss its

deadline if it was meeting its deadline otherwise.

Consider the example below below [20].

Example 3 Table 3.1 describes a task set to be scheduled on two processors. When

PNPDP algorithm is run on this task set it generates the schedule illustrated in

Figure 3.5. In the figure of the schedule the solid up arrow indicates the arrival of a

new job, dashed up arrow means priority promotion, rectangles indicate that the job

is executing in the rectangular indicative priority level.

T2 and T3 arrive at t = 0 and start executing in their lower priority. T1 arrives at

t = 1. Similarly task T0 arrives at time t = 2. Both task T0 and task T1 have higher

priority than T2 and T3 but they do not preempt the lower priority tasks. Tasks T2
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Table 3.1: Task set for PNPDP example.

Task Period Execution Time WC Response Time Promotion Time
Ti pi ei Ri λi

T0 4 2 2 2
T1 7 3 4 3
T2 10 4 3 7
T3 25 5 6 19

Figure 3.5: A sample PNPDP schedule.
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and T3 continue executing without any preemption until they reach their promotion

time after λi time units have elapsed. At that point they get promoted to their high

priority level and preemptions are initiated.
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Chapter 4

Considering Low Priority Levels in

Dual Priority Scheduling

Standard Dual Priority [6] was introduced in order to improve response times of

non-real-time jobs without causing real-time jobs to miss their deadlines. Addition-

ally, though, it has been observed that tasks which were not meeting its deadlines

with Standard Fixed Priority were able to meet their deadlines using Standard Dual

Priority. In fact, there is a conjecture that the Dual Priority algorithm is optimal

for tasks executing on a uniprocessor [22].

The way high and low priority assignments are determined plays a key role in

SDP. In fact the improvement in schedulability of the tasks from SFP [1] to SDP [6]

is because of the way tasks are assigned priorities. To emphasize this point, Jadhav

introduced Modified Dual Priority algorithm [3], an extension to SDP [6] which

delays the priority promotion time. It is based on the idea that the more time a

task spends executing in its low priority level the less interference it causes on the

lower priority promoted tasks. Obviously the delayed promotion time was chosen in

a manner where that delay does not cause a deadline miss for that particular task.
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This thesis deals with various priority orderings for SDP when executed on mul-

tiprocessors and examines which priority ordering (if any) are the best in a given

scenario. Number of processors, tasks per task set, etc were considered. To our

knowledge, previous work on xprocessor DP scheduling assumed low priority order-

ing is the same as the high priority ordering for all the tasks. However, there is no

reason this should be the case. For example, consider T1, the task with the highest

priority level. When this task is promoted, it will execute right away and will not be

preempted. Therefore, there is no reason to let this task have the highest low priority

level. What has been proposed in this thesis is that the priority ordering for lower

priority range may be set using different techniques and some of them turn out to be

more reasonable choices than setting up both the ranges in the same order. Ideally,

this idea will make more tasks meet their deadlines under different conditions. All

priority orderings below have been experimented under both implicit and constrained

deadlines with different number of processors, tasks and utilization values. Different

Low priority ordering techniques are listed below:

1. Same order as high priority (HP)

2. Reverse high priority order

3. Least execution time first (LEF)

4. Highest execution time first (HEF)

5. Least laxity first (LLF)

6. Highest laxity first (HLF)

Each of the low priority assignment orders has been performed with both OPA

and RM being the high priority ordering. In all cases we use Guan’s method [12] to

determine the priority promotion time.
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1. Same order as high priority

In this mthod, high priority and low priority orders are the same. This is the

typical priority ordering seen in many results for multiprocessor Dual Priority

Scheduling [6].

2. Reverse HP

Reverse HP means that the low priority order is reverse of the high priority

order. The reverse priority is calculated as the difference between the number

of tasks and the high priority order of the task. Let us consider an example to

understand how reverse priority assignment works. Assume the high priority

order assigned using OPA of tasks T1, T2, T3 and T4 is 3, 2, 0 and 1, respectively.

If Ti,high is the higher priority then Ti,low = n - Ti,high - 1 where n is the number

of the tasks in the task set. So in the above example the low priority of T1,low

= 4-3=1; T2,low = 4-2=2; T3,low = 4-0=4 and T4,low = 4-1=3. Therefore the low

priority ordering using OPA-Reverse for tasks T1, T2, T3 and T4 would be 0,

1, 3 and 2 respectively. This technique balances the priority given to the task

such that if it has highest priority when in high priority band then it should

get lowest priority when in low priority band. Similarly if the task has lowest

priority in the high priority band then it should have highest priority when in

the low priority band. So any task will get a higher relative priority in the low

priority range if it has a relative lower priority in high priority range.

3. Least execution time first (LEF)

This is a simple strategy where the task with the least execution time is given

the highest priority. It is intended to make the tasks wait for the least amount

of time. So if the tasks which can quickly complete are chosen to execute

over the tasks which would take comparatively longer to finish their execution.
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This is a very intelligent strategy which has an impact on various factors of the

scheduling algorithm. Firstly if the shorter tasks execute first, they are most

likely to successfully complete their execution hence meeting their deadlines.

It is also the periodic task equivalent to the a Shortest Processing Time First

(SPF) [23] scheduling algorithm where we are eliminating the wait time of the

shorter jobs so that they do not have to wait for longer jobs to execute before

them. In real-time systems, when the execution time of the job is smaller

as compared to the other task’s execution time, it will sometimes miss its

deadline due to waiting for the longer job to execute. Another advantage to

it where if the tasks with shorter execution times are getting executed first

then they would leave more amount of processor time for the longer jobs to

execute without interruption in the higher priority band. Hence LEF is a simple

technique to make more tasks meet their deadlines.

4. Highest execution time first (HEF)

In HEF the tasks with higher execution time get a higher priority low priority

level and the priority of the tasks decreases with the decreasing execution time.

The longest job (job of the task with the highest execution time) has the highest

low priority and the shortest job (job of the task with the least execution time)

will get the lowest low priority. The idea behind this approach is that if the

longest jobs execute first then the shortest ones can execute quickly without

any interruptions. Naturally the longer jobs will cause more interruption than

the shorter jobs. So they need to be executed before the shorter ones in order

to avoid interference in the lower low priority tasks.

The expectation is that if the longer jobs to have higher priority in low priority

band then they will execute more before being preempted and therefore put

less demand on the system when executing in the high priority band.
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5. LLF

Recall the laxity of a task in real-time systems can be defined as the amount of

the time a task can wait before executing and still meet its deadline. When a

job of task T i initially released, its laxity is Di−ei. So in LLF the low priority

ordering is from the smallest Di − ei to the largest.

While the high priority order of the tasks are ordered using either OPA or RM

the low priority order of the task can be defined using laxity. Because laxity is

a measure of task’s slack, it is reasonable to use it as a priority metric. In fact

Liu and Layland introduced the Least laxity First algorithm in this seminar

paper [1].

6. HLF

This strategy is the reverse of the LLF technique. In this case, tasks with

higher laxity have higher priority level in the low priority band.
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Chapter 5

Experiments and Results

Standard Dual Priority [6] is simulated in various scenarios using the low priority

orderings discussed above. The process followed for performing experiments is ex-

plained below:

• Task set generation: First the task utilization values are randomly generated

using Stafford’s randfixedsum procedure [24]. n, m, s, a, b which generates a

n×m array of values between a and b whose sum is s. For our purpose we let

n = 2, 5 or 10 for different scenarios, m = 4, 8, 16 or 32. We always had a = 0

and b = 1. The sum was our target, which ranges from 0.6×m to 0.98×m. The

total utilization is calculated as the number of processors times the percentage

of the utilization. For example if there are 4 processors and the utilization

is about 50% then the total utilization would be 4 × 0.50 = 2.0. Consider a

case where the system has 8 tasks per task set then using Random Fixed Sum

technique 8 (equal to number of tasks per taskset) values are generated which

would sum up to 2.0 (total utilization). These utilization values are then used

to determine the execution time of the task.

Task sets are then derived by randomly generating periods and computing
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the execution times from the utilizations and the periods (e = u · p). The

period is a random number between 1 and 200. Note that task index for tasks

{T1, T2, . . . Tn} would be {0, 1, . . . n− 1}. The deadline of a task is determined

in two ways. The experiments are conducted using implicit deadlines, where

deadline is equal to period (Di = pi) and constrained deadlines, where deadlines

are less than or equal to the periods (Di ≤ pi).

• Simulation: These tasks were run on Standard Fixed Priority scheduling

algorithm. Only the task sets that were not schedulable with SFP i.e., SFP -

unschedulable task sets were taken in account for further experimenting. The

idea behind using only the tasks which are SFP unschedulable is because SDP

is a variation of SDP and is used to make the tasks meet their deadlines which

did not meet their deadlines with SFP.

The SFP-unschedulable tasks were then simulated under Standard Dual Prior-

ity [6] under multiple scenarios that are illustrated below:

• Number of processors m = 4, 8, 16, 32.

• Number of tasks n = 2×m, 5×m, 10×m.

• Number of utilization values u = 0.625 × m, 0.675 × m, 0.725 × m, 0.775 ×

m, 0.825×m, 0.875×m, 0.925×m, 0.975×m.

As shown above the utilization values are taken in such a way that they consider

the case where the processor utilization range from about 62% to 98%. The

utilization bound was proposed by Phillips et al. [25] which should start from

50% and range up to 98%. However this was a pessimistic approach and so

it was decided to consider utilization bounds to start at around 60% because

for 50% - 60% utilization it was very challenging to obtain SFP-unschedulable
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Table 5.1: Scenario

Scenario SFP-unschedulable (%)
p4n8u0.525 6
p4n8u0.575 14
p4n8u0.625 15
p8n16u0.525 0.2
p8n16u0.575 2
p8n16u0.625 5.3
p8n16u0.675 11.6
p16n32u0.525 0.5
p16n32u0.575 3.1
p16n32u0.625 8
p16n32u0.675 15.9

tasks. Also in some of the cases the utilization bound would just start with

later values and not 62% for the same reason.

• High priority ordering: Optimal Priority Assignment [15] and Rate mono-

tonic [1].

• Low priority ordering: All the low priority orderings discussed in Chapter 4

were experimented with both OPA and RM as the high priority order. One

optimal i.e., OPA prioriy ordering and another not optimal technique i.e., RM

was considered.

• Deadlines: Implicit and constrained.

All the experiments were performed with both implicit and constrained dead-

lines. Implicit deadlines just make the deadline be equal to period. Constrained

deadlines were determined finding a random number in the range [f(u), p],

where

f(u) = 2(p− e)× u+ (2e− p) (5.1)
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and u is the utilization percentage of the processor, p is the period of the task,

e is the execution time of the task.

• Number of runs r = 1000 when m is 4, 8, 16 and 500 when m is 32.

1000 runs were performed for each scenario except for the experiments with 32

processors because of the time constraints. it took a long time (up to 5 or 6

hours per experiment) to run.

Each scenario was captured using the percentage of the schedulable tasks obtained

from 1000 runs versus the percentage of the processor utilization.

5.1 High Priority Order : OPA, Deadline: Im-

plicit

Below, the different scenarios are explored separately, according to the number of

processors.

5.1.1 4 Processors

The x-axis in the graph shows the utilization percentage of the processor and the

y-axis shows the percentage of the tasks schedulable (out of 1000). Each line in

the graph represents the result of assigning low priority technique and compares its

performance with various other low priority ordering while OPA remains the high

priority ordering strategy. The low priority orders include same as OPA, reverse

of OPA, Least Execution Time First, Highest Execution Time First, Least Laxity

First, and Highest Laxity First. The first low priority ordering where the low priority

band has the same priority order as high priority order which in this case is OPA,
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(a) 8 tasks

(b) 20 tasks

(c) 40 tasks

Figure 5.1: Simulations on 4 processors with various numbers of tasks for the “High
Priority Order: OPA, Deadline: Implicit” scenario.
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is nothing but the original Dual Priority algorithm whose performance is compared

with respect to other low priority orderings and the same high priority order.

In Figure 5.1(a) where the number of tasks are twice the number of processors

does not really contribute towards the conclusion since it is a trivial case where there

are very few processors and the number of tasks are also few. On an average each

processor has 2 tasks to to schedule which is fairly easy and possible. But when

there are 20 tasks and 40 tasks per task set then the average number of tasks on

each processor increases to 5 and 10 for n = 20 and n = 40 respectively. It can be

noticed that Least Laxity First performs the best in Figure 5.1(b) and both Least

Laxity First and OPA-Reverse performs the best in Figure 5.1(c). They are very

much in accordance to the expected results. We expected the promising low priority

orderings to be both LLF and the reverse low priority and in it did turn out in the way

it was expected to be. That’s because laxity is a strong factor to be considered when

dealing with deadline oriented tasks. If the task with the least laxity is executed first

then the tasks are more likely to meet their deadlines as explained in Chapter 4. Also

reversing the high priority seems to be a reasonable choice when compared to other

low priority orderings. Therefore, it is intuitive to expect that setting up the low

priority order using LLF or OPA-Reverse will improve the performance of traditional

SDP.

5.1.2 8 Processors

Similar to the first case, the result with number of tasks being twice the number of

processors is very trivial. OPA-Reverse and LLF perform nearly the same but are not

the best ones among all the other orderings in that case. However in p = 8, n = 40

and p = 8, n = 80, LLF and OPA-Reverse are the two approaches that perform

best. They outperform all the other low priority orderings and definitely improve
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(a) 16 tasks

(b) 40 tasks

(c) 80 tasks

Figure 5.2: Simulations on 8 processors with various numbers of tasks for the “High
Priority Order: OPA, Deadline: Implicit” scenario.
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SDP’s performance. In Figure 5.2(b), observe that OPA-Reverse performs the same

as OPA-Same – i.e., the original SDP – but LLF surely makes more task sets meet

their deadlines which were not able to be schedulable using SDP. In Figure 5.2(c),

OPA-Same performs extremely poorly while OPA-Reverse performs the best which

has again proved to be a wise low priority ordering to be chosen while simulating

SDP.

5.1.3 16 Processors

This case presents a strong example of how well OPA-Reverse performs. In the

trivial case, Figure 5.3(a), OPA-reverse performs the best but the other priority

orderings perform almost the same as OPA-Reverse. However in both Figures 5.3(b)

and 5.3(c), OPA-Reverse turns out to be the best low priority ordering technique.

It performs better than LLF also. Hence reversing the high priority order in low

priority ordering might be very advantageous when powerful techniques like LLF fail

to perform.

5.1.4 32 Processors

As there has been a pattern of the trivial case making all the low priority orderings

perform more or less in the same manner follows in this case too. All the low

priority orderings perform almost the same providing no contribution towards the

conclusion. In Figure 5.4(b), there appears to be a large difference in the performance

results of each low priority ordering, with OPA-Reverse performs slightly better than

other strategies. OPA-Reverse outperforms all the other low priority orderings in

Figure 5.4(c) with highest number of processors and highest number of tasks per

task set considered. Hence reversing the priority order in low priority band can

make a lot of difference in many cases.
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(a) 32 tasks

(b) 80 tasks

(c) 160 tasks

Figure 5.3: Simulations on 16 processors with various numbers of tasks for the “High
Priority Order: OPA, Deadline: Implicit” scenario.
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(a) 64 tasks

(b) 160 tasks

(c) 320 tasks

Figure 5.4: Simulations on 32 processors with various numbers of tasks for the “High
Priority Order: OPA, Deadline: Implicit” scenario.
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Figure 5.5: Percent of schedulable task sets with various low priority settings for 4
processors and task sets of 40 tasks for the “High Priority Order: RM, Deadline:
Implicit” scenario.

5.2 High priority order : RM, Deadline: Implicit

Going forward only one figure for each of the processor scenarios is depicted. The

results for the same number of processors with fewer task sets are similar to the

ones given below. All the graphs representing experimental results can be found in

Appendix. Only the extreme cases with number of tasks per task set is 10 times the

number of processors are illustrated below with increasing number of processors.

5.2.1 4 Processors

In Figure 9(c), it is very clear than RM in its traditional way works better than the

other low priority ordering techniques. Until a certain point in the graph all the

low priority orderings perform in a similar manner because the processor utilization

is relatively low. However when it comes to more processors they start varying in
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Figure 5.6: Percent of schedulable task sets with various low priority settings for 8
processors and task sets of 80 tasks for the “High Priority Order: RM, Deadline:
Implicit” scenario.

their performance. LLF low priority ordering performs better than all the other low

priority orderings and it does improve the original SDP to a certain extent when the

utilization bound gets higher. On the other hand RM-Reverse performs the worst.

This might be because RM itself is not an optimal priority ordering technique so

reversing a non-optimal priority order in the low priority band does not provide a

strong reason to improve the performance.

5.2.2 8 Processors

Figure 10(c) is very similar to the previous case where original RM performs better

than most of the other low priority ordering techniques but LLF does perform even

better than all the rest of the low priority orderings and so LLF can be a safe choice

for low priority ordering in SDP when considering RM as high priority ordering.
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Figure 5.7: Percent of schedulable task sets with various low priority settings for 16
processors and task sets of 160 tasks for the “High Priority Order: RM, Deadline:
Implicit” scenario.

5.2.3 16 Processors

Figure 11(c) clearly depicts that LLF is a certainly a fair choice to make over all the

low priority orderings when RM algorithm defines the high priority ordering. It is

very likely according to the results that RM-Reverse is going to perform the worst

and hence should not be considered.

5.2.4 32 Processors

In Figure 12(c), the performance of the tasks is very difficult to be gauged in this

case because there is no one low priority ordering that performs well throughout.

All of them start in the same manner as they did for other cases being almost equal

for lower utilization bounds. LLF turns out to perform decently for about 80% to

90% of the processor utilization but its performance drops as the utilization bound
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Figure 5.8: Percent of schedulable task sets with various low priority settings for 32
processors and task sets of 320 tasks for the “High Priority Order: RM, Deadline:
Implicit” scenario.

increases. That might be because of the increase in number of processors and tasks

to a high extent. This is an unusual behavior but out of all the choices, LLF turns

out to be the better one if not the best choice.

5.3 High priority order : OPA, Deadline: Con-

strained

5.3.1 4 Processors

In Figure 1(c), the performance of OPA is very similar under implicit and constrained

deadlines. In this case OPA-Reverse and LLF perform exactly the same again prov-

ing that choosing an intelligent low priority ordering when high priority order is

determined but OPA makes more tasks in SDP meet their deadlines.
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Figure 5.9: Percent of schedulable task sets with various low priority settings for 4
processors and task sets of 40 tasks for the “High Priority Order: OPA, Deadline:
Constrained” scenario.

5.3.2 8 Processors

LLF has often performed same as OPA-Reverse or even better than that but there

are cases when OPA-Reverse has has undoubtedly be better than LLF, as seen in

Figure 2(c), According to the results so far, it is always preferable to choose LLF

as the low priority ordering technique when considering OPA as high priority order

but if the time and resources permit, OPA-Reverse should be the second best choice

which may give even better results than LLF sometimes. OPA-same performs the

worst. It means that using any other low priority technique than the same as high

priority order technique will make some significant improvement in the performance

of SDP.
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Figure 5.10: Percent of schedulable task sets with various low priority settings for 8
processors and task sets of 80 tasks for the “High Priority Order: OPA, Deadline:
Constrained” scenario.

Figure 5.11: Percent of schedulable task sets with various low priority settings for 16
processors and task sets of 160 tasks for the “High Priority Order: OPA, Deadline:
Constrained” scenario.
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Figure 5.12: Percent of schedulable task sets with various low priority settings for 32
processors and task sets of 320 tasks for the “High Priority Order: OPA, Deadline:
Constrained” scenario.

5.3.3 16 Processors

Figure 3(c) shows that the SDP performs poorly when compared to most of the

low priority orderings. OPA-Reverese stands out in the figure above making it as

reasonable choice as LLF.

5.3.4 32 Processors

Figure 4(c) HLF performs the worst in most of the cases and that is obvious because

if the job that can wait for most amount of time to get executed is scheduled first

then the jobs that need to get executed earlier or have cannot afford to wait for

the execution will certainly miss their deadlines. No other low priority technique is

any closer to the performance of OPA-Reverse in most of the cases which is why it

should be chosen over LLF when OPA is high priority order and the deadlines are

constrained.
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Figure 5.13: Percent of schedulable task sets with various low priority settings for
4 processors and task sets of 40 tasks for the “High Priority Order: DM, Deadline:
Constrained” scenario.

5.4 High priority order : DM, Deadline: Con-

strained

5.4.1 4 Processors

The results in Figure 5(c) are interesting because DM performs nearly equal to the

performance of good low priority orderings, such as LLF. As expected the RM-

Reverse would perform the worst, but the LLF ordering and DM-same ordering is

respectable. This may be because RM has not optimal and the behaves unexpectedly

under constrained deadlines.

5.4.2 8 Processors

Figure 6(c) shows a very similar result as the previous case where the original DM

with its high and low priority order the same as DM performs better than all the
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Figure 5.14: Percent of schedulable task sets with various low priority settings for
8 processors and task sets of 80 tasks for the “High Priority Order: DM, Deadline:
Constrained” scenario.

other orderings. Again LLF is reasonably close but still not as good as the original

SDP. Therefore letting the original algorithm be as it is when DM is the high priority

order and the deadlines are constrained is a good option.

5.4.3 16 Processors

The results in Figure 7(c) are quite similar to those in Figure 6(c) apart from the

fact that at this point it can be concluded that reversing the high priority order

and determining low priority order according to that works best in case of OPA but

works worst in case of DM.

5.4.4 32 Processors

With the increase in number of processors and the number of tasks the behavior of

DM gets unpredictable, as seen in Figure 8(c). However traditional SDP performs
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Figure 5.15: Percent of schedulable task sets with various low priority settings for 16
processors and task sets of 160 tasks for the “High Priority Order: DM, Deadline:
Constrained” scenario.

Figure 5.16: Percent of schedulable task sets with various low priority settings for 32
processors and task sets of 320 tasks for the “High Priority Order: DM, Deadline:
Constrained” scenario.
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better than the other low priority ordering techniques. It is safe to say that if a

non-optimal high priority ordering technique is used under constrained deadlines,

changing the low priority order might just not turn out to perform as expected.
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Chapter 6

Conclusion

This thesis explored the problem of priority assignment techniques in Dual Priority

algorithm and made an effort to improve the algorithm. This was achieved by having

the low priority order be set according to different techniques. It compares the

performance of different low priority ordering techniques in Dual Priority algorithm.

Experimental results demonstrate that there no single low priority ordering tech-

nique that outperforms all the other low priority techniques. The optimal low priority

technique depends on the number of processors and number of tasks being consid-

ered. Hence in different scenarios with different number or processors and tasks

different low priority ordering techniques work the best.

The expectation was that reversing the high priority order (OPA-Reverse/RM-

Reverse) or Least Laxity First (LLF) would have worked the best in every case.

The experimental results do not depict reverse priority of least laxity the best choice

but they do perform well in nearly all the scenarios. The low priority ordering by

reversing the high priority or according to least laxity first technique does improve

schedulability of the tasks as compared to Standard Dual Priority. It makes many

of the tasks that were unschedulable with traditional dual priority be schedulable by
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changing the low priority ordering. It also performs better than most of the other

low priority orderings considered in the above experiments.It has been observed that

the results differ when the deadlines are made constrained from implicit which may

have an adverse effect on the performance of the algorithm as in the case of RM

under constrained deadlines.

Hence it can be concluded that the reasonable choice for low priority ordering in

Dual Priority Algorithm would be reversing the high priority order when considering

OPA under constrained deadlines or Least Laxity First ordering when considering

OPA/RM under implicit deadlines. Various other low priority ordering techniques

can also be considered to improve the performance of original Dual Priority algorithm

but in general LLF and OPA/RM-Reverse outperform other low priority orderings

most of the time.
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The results of all the experiments being performed presented in this chapter

except for the results of the low priority orderings tested with high priority order as

OPA and the deadlines being implicit as they have already being discussed in the

previous chapter.
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(a) 8 tasks

(b) 20 tasks

(c) 40 tasks

Figure 1: Simulations on 4 processors with various numbers of tasks for the “High
Priority Order: OPA, Deadline: Constrained” scenario.
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(a) 16 tasks

(b) 40 tasks

(c) 80 tasks

Figure 2: Simulations on 8 processors with various numbers of tasks for the “High
Priority Order: OPA, Deadline: Constrained” scenario.
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(a) 32 tasks

(b) 80 tasks

(c) 160 tasks

Figure 3: Simulations on 16 processors with various numbers of tasks for the “High
Priority Order: OPA, Deadline: Constrained” scenario.
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(a) 64 tasks

(b) 160 tasks

(c) 320 tasks

Figure 4: Simulations on 32 processors with various numbers of tasks for the “High
Priority Order: OPA, Deadline: Constrained” scenario.
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(a) 8 tasks

(b) 20 tasks

(c) 40 tasks

Figure 5: Simulations on 4 processors with various numbers of tasks for the “High
Priority Order: DM, Deadline: Constrained” scenario.
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(a) 16 tasks

(b) 40 tasks

(c) 80 tasks

Figure 6: Simulations on 8 processors with various numbers of tasks for the “High
Priority Order: DM, Deadline: Constrained” scenario.
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(a) 32 tasks

(b) 80 tasks

(c) 160 tasks

Figure 7: Simulations on 16 processors with various numbers of tasks for the “High
Priority Order: DM, Deadline: Constrained” scenario.
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(a) 64 tasks

(b) 160 tasks

(c) 320 tasks

Figure 8: Simulations on 32 processors with various numbers of tasks for the “High
Priority Order: DM, Deadline: Constrained” scenario.
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(a) 8 tasks

(b) 20 tasks

(c) 40 tasks

Figure 9: Simulations on 4 processors with various numbers of tasks for the “High
Priority Order: RM, Deadline: Implicit” scenario.
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(a) 16 tasks

(b) 40 tasks

(c) 80 tasks

Figure 10: Simulations on 8 processors with various numbers of tasks for the “High
Priority Order: RM, Deadline: Implicit” scenario.
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(a) 32 tasks

(b) 80 tasks

(c) 160 tasks

Figure 11: Simulations on 16 processors with various numbers of tasks for the “High
Priority Order: RM, Deadline: Implicit” scenario.
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(a) 64 tasks

(b) 160 tasks

(c) 320 tasks

Figure 12: Simulations on 32 processors with various numbers of tasks for the “High
Priority Order: RM, Deadline: Implicit” scenario.
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