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Abstract

Inferences from phylogenetic trees is useful in forensic science, bioinformatics, identifying

pathogens, and other applications. Thus, building accurate trees is important. Research

on nucleotides substitution models has shown the models to be robust for estimating gene

trees, but the effects on estimating species trees has not been examined. Cumulative errors

on gene tree estimation can transfer over to species tree estimation. Even if the errors are

small on each estimated gene tree, they can add up and have a significant impact on accuracy

of species tree estimation. In part one of this research, simulations were used to explore how

wrongly specified models affect species tree estimation. In part two, data from Austrian

finches were used to explore the error of estimation in 30 genes. We found that the models

we used in the simulations were robust in species tree estimation. In the finch data, 24 of the

30 estimated genes had a significant chi-square, meaning the 24 genes did not fit the data

well. Genes with high GC content appear to have large residuals. Almost all of the residuals

were positive suggesting that the evolutionary models were underestimating the frequency of

most patterns. Having a vast majority of the genes not being correctly modeled, leads to the

adage ’garbage in, garbage out,’ in reference to building a species tree. For improvements,



models should better address genes with high GC content and address the under-fitting issue.

Due to computational constraints, the results of the simulations may have been affected by

the sample size of genes. The simulations might need a bigger sample size of genes to detect

an error in species tree estimation if a true error existed.
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Chapter 1

Introduction

1.1 Background

Phylogenetics is the study of evolutionary relationships and history among biological entities,

such as species or genes. Typically, phylogenetics examines one of the following questions:

(1) what are the evolutionary relationships or histories among species/genes, (2) how do

sequences of DNA, RNA, or protein evolve, (3) can the processes of sequence evolution be

described better with a mathematical model? Phylogenetics expands our knowledge of genes,

genomes, and species evolution. Not only do we learn how the sequence came to be, but we

also discover principles that allow us to predict how the sequences will evolve in the future.

Applications of phylogenetics include species and genes classification, identifying pathogens,

forensic science, and bioinformatics.

Evolutionary relationships can be visualized in phylogenetic trees. There are two types

of phylogenetic trees, gene trees and species trees. Gene trees symbolize the evolutionary

history of the genes; they can also provide evidence for gene duplication events, as well

as evidence for speciation events. Gene trees group alleles of a single gene into phylogeny.
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Species trees, which are based on gene trees, depict the ancestral relationships between

individuals.

The construction of a phylogenetic tree starts from sequences of different species that

are believed to share a common link in their evolutionary history. Before building the

phylogenetic trees, the sequences must be aligned. Sequence alignment is a way of arranging

the sequences of DNA, RNA, or protein to identify regions of similarity that may be a

consequence of functional, structural, or evolutionary relationships between the sequences

(Yxuhehybyja, 2010). When two symbolic representations of DNA or protein sequences are

arranged next to one another, we can identify point mutations of insertion and deletion. If

an insertion or deletion occurred in one of the sequences, this would offset the sequence from

the rest and can usually be noticed through different lengths of sequences.

Once aligned, there are various approaches for building trees; this research uses the

maximum likelihood (ML) method. In the ML method, a heuristic algorithm is used to

construct trees of evolutionary history from the observed data, and we calculate the trees’

respective probabilities. The tree with the highest probability is identified as the most likely

phylogeny. The ML method can require a tremendous amount of computing power making

it a slow process, especially for large data sets.

In the ML method, a nucleotide substitution model is chosen when building the gene

trees from the sequence data. A nucleotide substitution is a point mutation where a single

nucleotide is substituted for a different nucleotide during translation. There are numerous

nucleotide substitution models to simulate, or predict, these point mutations. The Markov

chain is a stochastic process for modeling nucleotide substitutions. In a Markov chain,

the value of the model only depends on the current value and is independent of previous

values. Markov models of DNA sequence evolution are used to describe the rate at which one

nucleotide replaces another in the evolutionary process. One family of evolutionary models

is called the General Time Reversible models (GTR). In the family of GTR models, the
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probability of going from event A to event B is the same as going from event B to event A,

i.e. P (i− > j) = P (j− > i), where i = {A,C,G, T}, j = {A,C,G, T}. This family consists

of many nested models. We are concerned with three common DNA substitution models in

this family: the Jukes and Cantor 1969 model (JC), the Hasegawa, Kishino, and Yano 1985

model (HKY), and the Generalized Time-Reversible model. The JC and HKY models are

nested within the GTR model.

The complexity of the model depends on the number of parameters in the model. The

parameters for the DNA substitution models are the nucleotide substitution rates and the

base frequencies. Nucleotide substation rates refer to the number of nucleotide substitutions

per site per unit time. Base frequencies refer to the frequency of adenine (A), cytosine (C),

guanine (G), and thymine (T) in the nucleotide sequences. The base frequencies must add

up to one; therefore, if three base frequencies are known the fourth is fixed.

The JC is the simplest DNA substitution model, whereas the GTR is the most complex

model. The JC model assumes equal mutation rates and equal base frequencies; therefore,

there is only one parameter, which represents the nucleotide substitution rate. Unlike the

JC model, the HKY model allows for unequal base frequencies. The HKY model has five pa-

rameters because it has two nucleotide substitution rates, and three parameters for the base

frequencies. In the HKY model the two substitution rates are for transition and transver-

sion rates. The transition rate is the rate of substitution of one purine for another purine

or one pyrimidine for another pyrimidine. A transversion is a substitution from a purine to

a pyrimidine or vice versa. The GTR is the most complex model with nine parameters, six

for the different nucleotide substitution rates and three parameters for the base frequencies.

If the more complicated model is not a significantly better fit for the real data, the simpler

model is preferred.

3



Figure 1.1: Transitions and Transversions

Previous research has focused on model selection for each gene independently (Liu et al.,

2008) and has found that model selection does not matter for estimating a single gene tree

(Felsenstein, 1981). However, it is currently unknown if model selection matters when es-

timating a species tree. There has been little attention given to the effect of the chosen

substitution model on species tree estimation. In this thesis, the chosen model’s goodness-

of-fit on the genes is evaluated. A chi-square test is used to compare the multiple sequence

alignment patterns (MSAP) expected frequencies to MSAP observed frequencies. A statis-

tically significant difference between the observed MSAP and expected MSAP means that

4



proposed models with the given parameters are unlikely to produce a distribution similar to

that of the observable data. In order to do the test, nucleotides are assumed to be indepen-

dent of all other nucleotides; the nucleotide is not influenced by nucleotides around it, or at

any other site in the sequence.

5



Chapter 2

Methods

2.1 Simulations

The purpose of these simulations was to examine the effect of using the wrong nucleotide

substitution model on species tree estimation. To determine the effects, we started from a

specified species tree (the true species tree), from which we generated gene trees (true gene

trees), from which we generated nucleotide sequences. From the nucleotide sequences, we

generated estimated gene trees, from which we generated the estimated species tree (Figures

2.1 and 2.1). To derive the gene trees from the true species tree, we used the formula

developed by Rannala and Yang (2003), which is applied by the function sim.coaltree.sp

in the R package phybase. Seq-Gen simulated the evolution of nucleotide sequences. The

program read in gene trees and produced nucleotide sequences for each gene tree based on a

nucleotide substitution model.

Once the nucleotide sequence was produced, we reversed the procedural order by starting

from the nucleotide sequence and ending at the estimated species tree. RAxML, a program

for maximum likelihood-based inference of large phylogenetic trees, analyzed the sequences

generated from Seq-Gen and produced estimated gene trees, under one of the nucleotide

6



substitution models. MP-EST built the estimated species tree from a set of estimated gene

trees, by maximizing a pseudo-likelihood function. We then compare the estimated species

tree to the true species tree. Success is defined when the estimated species tree matches the

true species tree.

For the simulations, we use three different modes, JC, HKY, and GTR. When deriving

the nucleotide sequences, we chose one of the three models, which was defined as the true

model. When estimating the gene trees, we again chose one of the three models, defined

as the proposed model. Therefore, there are nine different combinations (JC-JC, JC-HKY,

JC-GTR, HKY-JC, etc.) used during the simulations. Examining these nine different com-

binations in various simulations help us to understand the effects of choosing a wrong model,

by under-fitting or over-fitting, on estimating a species tree. We believe that if the proposed

model is the same as the true model, the estimated species trees should be closer to the true

species tree than estimated species trees created under a different model.

The five simulations used the unrooted species tree ((((A: 0.01, B: 0.01): 0.01, C: 0.02):

0.01, D: 0.03) :0.01, E: 0.04). The length of each generated sequence is 1000 nucleotides.

Methods for each of the five simulations are described below.
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Figure 2.1: Flowchart of Simulation
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Figure 2.2: Sim Map
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2.2 Sim 1

The first simulation is a baseline simulation. This simulation is constrained by keeping many

variables constant (non-randomized). The variables that are held constant are mutation

rates, branch lengths, nucleotide frequencies, transition and transversion ratio, the shape

parameter, and the rate matrix values. Other simulations, which relax one or more of the

previously mentioned variables, are compared to this simulation.

2.3 Sim 1A

We simulated 100 data sets each generating 100 true gene trees, giving a total of 10,000 true

gene trees in all. Seq-Gen then generated the sequences for the 100 data sets, with RAxML

and MP-EST estimating the gene trees and species tree respectively. We compared the 100

estimated species trees to the true species tree, and the 10, 000 estimated gene trees to their

respective true gene tree. The base proportions for the models are listed in Table 2.1. The

transition-transversion ratio for the JC and HKY model was 0.05 and 0.1 respectively. The

GTR rate matrix is listed in table 2.2.

Table 2.1: Nucleotide Base Proportions for Models
Model A C G T
JC 0.25 0.25 0.25 0.25
HKY 0.08 0.10 0.77 0.05
GTR 0.31 0.22 0.26 0.20

Table 2.2: Relative Rate of Substitution
Base A C G T
A 0.79
C 0.11 0.76
G 0.09 0.05 0.76
T 0.01 0.08 0.10 0.81
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2.4 Sim 1B

In Sim 1B, we used the previously simulated data; but instead, we formed 10 groups each

with 1,000 genes. The groups were submitted to MP-EST to estimate the species trees. This

regrouping allowed us to explore the effects of a bigger sample size.

2.5 Sim 2

In Simulation 2, instead of using fixed parameters we generate the parameters for the GTR

and HKY models from a probability distribution instead of being fixed. For the HKY model,

the base frequencies for the nucleotides were randomized from a Dirichlet distribution with

its shape parameter equal to 5. For our nucleotie substitution model we randomized our

transition - transversion ratio and our shape parameter using a normal distribution with a

means of 0.9 and 0.5, respectively and a standard deviation of 0.2 and 0.1, respectively. For

the GTR model, the frequencies were randomized from a Dirichlet distribution with its shape

parameter equal to 5. We randomized the rate matrix values from a log-normal distribution

with a mean of 1.0 and a standard deviation of 1.0. The shape parameter is randomized in

the same way as in the HKY model. The JC model for this simulation was omitted, since

its parameters are always fixed and remained the same as in Simulation 1. We performed

100 simulations, each with 100 gene trees, resulting in 100 estimated species trees.
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2.6 Sim 3

Simulation 3 is the same as Simulation 2, but instead, we double the sample size from 10,000

gene trees to 20,000 gene trees, and we also run the JC model. Simulation 3 consist of two

parts, A and B. In part A we run 100 simulations each generating 200 gene trees. In part B

we group 2,000 estimated gene trees, forming ten groups. In part A we submit 100 files to

MP-EST to get 100 estimated species trees, and in part B, we submit 10 files to MP-EST

to get 10 estimated species trees.

2.7 Sim 4

In simulation 4, we allowed variable mutation rates on the different branches of the tree.

Variable mutation rates allow us to relax the assumption that the molecular evolution is

approximately constant over time for all lineages. We randomized the different branch

mutation rates using a log-normal distribution, with a mean of 1 and a variance of one 0.5.

We ran 100 simulations, each with 100 gene trees, resulting in 100 estimated species trees.

2.8 Sim 5

In Simulation 5, we examined how shorter branch length affects estimation. We repeated the

variable mutation rates across the branches as in Simulation 4, but species branches C and

D came from a different log-normal distribution resulting in branches considerably shorter

than the rest. For species branch C and D, the log-normal distribution had a mean of 0.1

with a variance of 0.5. We wanted to examine how having two species with shorter branch

length affect the estimation. Here we did 100 simulations each with 100 gene trees. We then

estimated a total of 10,000 gene trees to predict the species tree.
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2.9 Real Data

Australian birds are often studied by biogeographers. In Australia there are many geological

barriers causing geographical separation. These geographical separations are believed to be

the primary mechanism responsible for speciation as discussed by Keast (1958). In northern

Australia there are two barriers, the Carpentarian Barrier and Kimberley Plateau-Arnhem

Land Barrier, that may have played a key role in bird diversification. Several closely related

species of Australian grass finches in the genus Poephila illustrate both of the classic northern

Australian biogeographic patterns (Keast, 1958). Jennings and Edwards (2005) collected

allelic data obtained from one individual per population of Peophial acuticauda, P. hecki,

and P. cincta. They also included sequences for a distant relative, the zebra finch (P.

guttata). Part of the four Finches DNA sequences were used in this analysis.

The sequences were already aligned, and there was no missing data or gaps. The file

was in nexus format, which also included the gene matrix. The Finch data contained 30

genes, and each gene was separated into its own file for analysis. For each gene, we did a

frequency count of the MASP’s, which was our observable frequency. We submitted each

gene file to the Jmodel Test (Darriba et al. (2012) and Guindon and Gascuel (2003)) that

uses AIC as its model selection criterion. The best model was chosen out of JC, HKY, and

GTR. Under the best model, Phyml (Guindon et al. (2010)) calculated the probabilities of

each pattern, and we multiplied this by the sequence length to get the expected frequency

counts. A goodness-of-fit chi-square test was done on each gene to see if the model fit the

data.
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Chapter 3

Statistical Methods

3.1 Theoretical Probabilities

To calculating the probability of an MSAP, we assumed that the columns in the sequences are

independent of one another. For k species, there are 4k different MSAP’s. In the finch data,

we have four species, thus having 256 different MSAP’s. The distribution of the columns

follow a multinomial distribution (Eq. 3.1). For a given tree where the branch lengths,

terminals, and internodes are known, such as Gene Tree 1 (Figure A.1), we can calculate the

MSAP by multiplying, for each path, Pij times the branch length, tn, starting from the root

and leading to a terminal end. Equation A.1 shows the calculation for Gene Tree 1. If the

internodes are unknown, as in Gene Tree 2 (Figure A.2), then we must account for all the

possibilities at each internode. Each internode would have four possibilities {A, C, G, T}. In

Gene Tree 2, there are three unknown internodes, therefore 64 (43) different trees that can

lead to an ’ACCA’ MSAP. Summing up those 64 tree probabilities would give the probability

of occurrence of an ’ACCA’ column. Note that Pij is used in the above calculations; the

next paragraph discusses how the Pij’s are obtained.
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p(y1, y2, ..., yk) =
n!

y1!y2!..., yk!
py11 p

y2
2 ...p

yk
k (3.1)

where
k∑
i=1

pi = 1 and

k∑
i=1

yi = n.

In calculating the probability of an MSAP, Pij is needed. Pij is the probability of going

from one nucleotide to another and can be found in the probability transition matrix, P(t).

The probability transition matrix is a 4x4 matrix, where the rows are equal to {A,C,G,T}

and the columns are equal to {A,C,G,T}. Each row-by-column element in the P(t) matrix

represents a different Pij. The rows of the matrix are considered the inputs and the columns

are considered the outputs. However, since we assume a time-reversible process, the matrix

is symmetrical with Pij = Pji. To find the P (t) matrix we take the exponential of the Q

matrix (eq. 3.2).

Pij(t) = exp(Qt), (3.2)

where i = {A,C,G, T}

j = {A,C,G, T} .

The rate transition matrix (Q matrix), is also a 4x4 matrix, with the rows and columns

defined as in the P (t) matrix. The elements of the matrix are the rates of moving from one

nucleotide to another. Again, the rows are the inputs, and the columns are the outputs.
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Each row sums to zeros, where the element in the main diagonal equals the negative sum of

the other three elements in the row. To get the Q matrix, a model must be chosen, and then

the free parameters of that model are estimated from the data. That is, given a data set,

we use the maximum likelihood approach in estimating our parameters for the theoretical

model. Once we have our estimated parameters, we can derive our Q matrix. The next

paragraphs discuss the JC, HKY and GTR model and how to obtain their respective Q

matrices.

Pij(t) =


1
4

+ 3
4
exp(−µt) if i = j

1
4
− 1

4
exp(−µt) if i 6= j.

(3.3)

The key variables in nucleotide substitution models are the substitution rate(s) from one

nucleotide to another nucleotide and the time frame over which substitution could occur.

Since straightforward time points are not usually available for molecular data, and we can-

not separate the time and rate variables, the product of rate and time, known as genetic

distance, is more commonly used. We reparametrize the genetic distance as τ . Distinctions

between the models include how they regulate both base frequencies and substitution rates.

QJC =



−3
4
µ 1

4
µ 1

4
µ 1

4
µ

1
4
µ −3

4
µ 1

4
µ 1

4
µ

1
4
µ 1

4
µ −3

4
µ 1

4
µ

1
4
µ 1

4
µ 1

4
µ −3

4
µ


. (3.4)
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Model JC has two distinct assumptions. Frist, we assume that nucleotide substitutions

are equally likely, meaning that the substitution rates are the same between all nucleotides.

Second, we assume that base frequencies are equal among the four nucleotides (25%). As

a result of these assumptions, the JC model has one parameter, µ, denoting the overall

substitution rate. The JC Q matrix is shown in equation (3.4) and the elements of the P (t)

matrix is shown in equation 3.3.

The HKY model incorporates multiple parameters to create a more realistic model of

how nucleotide sequences evolve by relaxing the two assumptions discussed in the JC model:

we allow transitions and transversions to occur at different rates, and we allow base frequen-

cies to vary relative to each other. The Q matrix for the HKY model is shown in matrix

3.5. In the HKY Q matrix, the k parameter indicates a transversion substitution. In most

sequence comparisons, transitions are found to occur more frequently than transversions,

even though each nucleotide has two transversions and only one transition. Transitions may

be more common since cells have mechanisms to detect mismatched base pairs. Four of the

nucleotide substitution equations are shown in A.2, where v is the branch length in terms of

the expected number of changers per site. The other state combinations can be obtained by

substituting in the appropriate base frequencies.

QHKY =



∗ πC kπG πT

πA ∗ πG kπT

kπA πC ∗ πT

πA kπC πG ∗


. (3.5)
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The GTR model is the most complex model of the group. Like the HKY model, the

nucleotides can occur at different frequencies. However, in the GTR model, each pair of

nucleotide substitutions occurs at a different rate. Since the model is time reversible, A

changes to T at the same rate that T changes into A. Since the model is time reversible, the

probability transition matrix is symmetrical.

QGTR =



∗ δπC ηπG βπT

δπA ∗ επG απT

ηπA επC ∗ γπT

βπA απC γπG ∗


(3.6)

where

α = r(T → C) = r(C → T )

β = r(T → A) = r(A→ T )

γ = r(T → G) = r(G→ T )

δ = r(C → A) = r(A→ C)

ε = r(C → G) = r(G→ C)

η = r(A→ G) = r(G→ A).

3.2 Two-Proportion Z-Interval

For the simulations, we used hypothesis testing to make statistical inference about our pop-

ulation proportions. The point estimate of a population proportion, p, was given by p̂ = x
n
,

where x is the number of correct estimated species trees, and n is the total number of esti-
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mated species trees in the simulation. The simulations were considered to be independent

samples. A two-proportion z-interval (Eq. 3.7) was used to determine if the proportions

of correctly estimated species tree were statistically different between true-model and esti-

mated model pairings. If the confidence interval contained zero for the difference between

two model pairings, then the proportions were not considered to be statistically different.

A 95% confidence interval was used for the calculations. We also assumed the sampling

distribution of p̂ is approximately normal.

p̂1 − p̂2 ± zα/2
√
p̂1q̂1
n1

+
p̂2q̂2
n2

(3.7)

3.3 AIC

The Akaike information criterion (AIC) provides a means for model selection and is based on

the Kullback-Leibler divergence (Posada and Buckley, 2004). AIC estimates the information

lost when a particular model is used to represent the process that generates the data. As

such, it deals with the trade-off between the complexity of the model and the goodness of

fit of the model. AIC compares the relative quality of nested statistical models for a given

data set. Given a collection of nested models, AIC estimates the relative quality of each

model to all other candidate models. The model with the lowest AIC score is considered the

best model relative to the other tested models. AIC does not measure the absolute quality

of the model; if all the candidate models fit poorly, AIC will simply choose the best among

the group of poorly fitting models.

AIC = 2(k)− 2ln(L̂) (3.8)
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We used AIC to evaluate gene tree models of the Finch data. Models JC, HKY, and GTR

were compared, and the model with lowest AIC score for a particular gene was used to

estimate that gene tree.

3.4 Goodness-of-Fit Chi-Square Test

To examine how closely our proposed model fits the finch data, we performed a GOF chi-

square test. We performed the analysis on all thirty genes independently. For each gene,

we compared the observed counts of MSAP’s to our expected counts of MSAP’s. To get

our expected counts of MSAP’s we multiplied the probability of an MSAP by the sequence

length. A statistically significant difference between the observed frequencies and the ex-

pected frequencies would suggest that our model data differed from the observed finch data.

The degrees of freedom for the chi-square test was n-1, where n was the number of pat-

terns. In the observed data, some MSAP’s were not observed, and all of these unobserved

patterns were grouped together in one bin called ’REST.’ For instance, if our observed data

had ten different patterns, our n would be 11 for the ten patterns plus one for the REST.

The probability of the REST was the sum of all the unobserved MSAP’s probabilities. The

chi-square test should have an expected count of five in each bin, but this was not the case

in the finch data. Some of the patterns had such a small probability coupled with a short

to moderate sequence length that resulted in the expected counts being below five or even

zero. Consequently, we also conducted a conditional chi-squared test, conditioned on the

observable patterns. a GOF χ2 test (Eq. 3.9). We used the Bonferroni correction since we

were simultaneously performing the GOF test on the finch data. This correction adjusted

the p-value to 0.05/30.

χ2 =
∑
all cells

(Obs− Exp)2

Exp
(3.9)
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Chapter 4

Analysis and Results

4.1 Sim 1a

The results suggest that over-fitting nor under-fitting have an adverse effect. Even though

the proportions of over-fitting tend to be slightly higher, there was not a statistical difference

between the proportions; the differences could be due to chance. Table 4.1 list the proportions

of correctly estimated species trees from simulation 1a. The column headers list the true

model, where as the rows list the estimated model. To further investigate if any underlying

patterns existed, we increase the sample size of gene trees used to estimate the species tree in

Simulation 1b, with the proportion results listed in Table 4.2 . Table B.1 list the proportion

of estimated gene trees that matched the true gene tree for all the simulations. The results in

Table B.1 are in line with previous research that suggests that the models are robust for gene

tree estimation. Table B.2 shows the average topological distance and standard deviation

of estimated gene tree from the true gene tree. Table B.2 shows the average topological

distance and standard deviation of estimated gene tree from the true gene tree. Estimated

gene trees were close to their respective gene trees.
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Table 4.1: Sim 1a Proportion of Correctly Estimated Species Tree
Model 1.JC 1.HKY 1.GTR
2.JC .55 .53 .56
2.HKY .55 .40 .61
2.GTR .59 .44 .67

4.2 Sim 1b

The results from increasing the number of gene trees used to estimate the species tree may

show hints of some issues with under-fitting. However, the sample size is now too small to

determine if the proportions are truly different from one another or the difference is just

due to chance. When GTR is the true model, under-fitting with the JC model may cause

problems and additional simulations would be needed to determine if there is a statistically

significant difference.

Table 4.2: Sim 1b
model 1.JC 1.HKY 1.GTR
2.JC .70 .40 .30
2.HKY .50 .40 .50
2.GTR .70 .30 .60
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4.3 Sim 2

Randomizing the parameters for the HKY and GTR models, the GTR model start to show

some patterns of being more accurate Table 4.3. When GTR is the true model, under-

fitted models appear to perform worse at predicting the species tree (p-value= 0.058 for the

difference between the proportions between HKY and GTR). This finding would be in line

with our expectations that under-fitting models would lead to more errors in predicting the

true species tree. Increasing the simulations in order to increase the sample size may give a

more definitive conclusion.

Table 4.3: Sim 2
model 1.HKY 1.GTR
2.JC .59 .58
2.HKY .58 .55
2.GTR .65 .69

Table 4.4: Sim 2 Correctly Estimated Gene Trees
model 1.HKY 1.GTR
2.JC .18 .16
2.HKY .18 .17
2.GTR .18 .18

4.4 Sim 3a

In this sample, we increased the sample size of estimated gene trees to examine the effects on

estimating species trees. The results (Table 4.5) again show there is no statistical difference

between the models in estimating species tree. Under-fitting or over-fitting does not seem to

be of any concern. When HKY is the true model and the JC model is used (under-fitting)

there may be some issues of concern. Increasing the number of simulations could shed light

on the issue.
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Table 4.5: Sim 3a
model 1.JC 1.HKY 1.GTR
2.JC .81 .74 .74
2.HKY .79 .84 .78
2.GTR .82 .80 .74

4.5 Sim 3b

Table 4.6: Sim 3b
model 1.JC 1.HKY 1.GTR
2.JC .7 .7 .8
2.HKY .5 .8 .9
2.GTR .6 .8 .7

The results (Table 4.6) are in line with the previous findings in that there is no statistical

difference between the different models estimating the correct species tree. Previous research

has shown that using the wrong model does not adversely affect estimating the gene trees;

and thus results in this thesis support this claim when estimating species trees.

4.6 Sim 4

Even when mutation rates were allowed to vary in the model, there was no statistical differ-

ence in under-fitting or over-fitting models. This results (Table 4.7) is consistent with results

of prior simulations.

Table 4.7: Sim 4
model 1.JC 1.HKY 1.GTR
2.JC .62 .54 .50
2.HKY .62 .55 .51
2.GTR .61 .48 .58
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4.7 Sim 5

In this simulation, we shorten the branch length of two species, making the lengths unequal.

Overall these models did worse than the equal-length models in predicting the correct species

tree (Table 4.8). Models HKY and GTR seem to be more affected by these unequal branch

lengths than the JC model. Again, there was no statistical difference between the models in

estimating the correct species tree.

Table 4.8: Sim 5
model 1.JC 1.HKY 1.GTR
2.JC .50 .51 .56
2.HKY .50 .43 .50
2.GTR .43 .46 .44

4.8 Finch Descriptive Statistics

In the Finch data, as previously mentioned there were no gaps or missing data, and the

file contained 30 genes for the finches. The sequence length for each species was 16,119

nucleotide bases. A chi-square test for homogeneity revealed that there was no statistical

difference between the frequencies of nucleotides among the different species (x=0.106, df =

9, p-value = 1 see Table 4.9). There were more adenines and thymines than cytosines and

guanines in each species (see Figure 4.1). The most common MSAP’s were TTTT, AAAA,

CCCC, and GGGG. MASP’s with three of the same nucleotides were the next most common

patterns.

4.9 AIC

The Jmodel Test used AIC as a means of model selection. Table 4.11 shows the results for

the 30 genes. Model HKY was chosen as the best model for nineteen of the genes, JC for six
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genes, and the GTR model for five genes. Results of the model selection were treated as the

theoretical model and submitted to phyml to get the expected probabilities of all MSAP’s.

P_acuticauda P_hecki P_cincta T_guttata

Finch Base Proportions
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Figure 4.1: Nucleotide Base Proportions for the Finches

Table 4.9: Species’ Nucleotide Base Frequencies
Base P acuticauda P Hecki P cincta T guttata
A 4733 4739 4739 4740
C 3330 3327 3327 3327
G 3274 3279 3274 3260
T 4782 4774 4779 4792

4.10 Goodness of Fit

Our goodness-of-fit results show that our estimated genes do not accurately reflect the ob-

served data. For our regular chi-square test (α = 0.05), 24 of the 30 estimated genes were

statistically different from the observed genes, even after the Bonferroni correction (Table

4.12). For our conditional chi-square test (α = 0.05), 21 of the estimated genes were signifi-

cantly different, and after the Bonferroni correction, 16 were still significantly different from
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Table 4.10: Frequencies of Most Common Patterns
MSAP Count
TTTT 4652
AAAA 4615
CCCC 3208
GGGG 3137
GGGA 51
CCCT 42
AAAG 40
TTTC 32

Table 4.11: AIC Model Selection for Finch Genes
Best Model Genes Count
JC 5, 6, 7, 14, 22, 23 6

HKY
1, 3, 4, 9 ,11, 12, 13, 15, 16, 17,
18, 19, 20, 21, 25, 26, 27, 28, 30

19

GTR 2, 8, 10, 24, 29 5

the observed genes. These differences supports the notion that even after model selection

a GOF test should be performed. With most of the estimated gene trees not being accu-

rate, these errors are likely to transfer over to estimating species trees. Table 4.12 shows

the p-values for the chi-square tests. The ’*’ in the table indicates a significantly different

chi-square test under the Bonferroni correction.

Table C.1 shows the MSAP that had standardized residuals that were above or below

4 standard deviations of the expected counts of MSAP’s . The ’REST’ term in the table

refers to all of the MSAP’s that were not observed in the real data. When calculating the

chi-square, we summed all the probabilities of the non-observed patterns and called it the the

probability of observing the rest. From Table C.1 we notice the MSAP’s with GC content

tend to have the most extreme residuals. Appendix C.1 includes the standardized residual

plots for each gene of the finch data. The residuals are not symmetrical around the y=0 line.

27



Most of the residuals lie above the line, meaning that our proposed models are consistently

underestimating many frequencies of the MSAP’s.
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Table 4.12: GOF Results

Gene χ2 Bonferroni Correction Conditional χ2 Bonferroni Correction
Conditional

1 5.329×10−6 1.590×10−04

2 3.422×10−11 6.109×10−10

3 9.973×10−27 3.217×10−24

4 7.537×10−9 1.978×10−07

5 1.019×10−30 8.979×10−28

6 6.680×10−6 8.881×10−05

7 4.702×10−19 1.034×10−17

8 0.137* * 0.485* *
9 3.900×10−11 1.474×10−10

10 0.437* * 0.649* *
11 0.003 0.019 *
12 2.234×10−27 2.597×10−24

13 0.087* * 0.181* *
14 0.161* * 0.371* *
15 8.938×10−4 4.762×10−03 *
16 0.005 0.073* *
17 8.453×10−9 2.173×10−07

18 5.662×10−56 2.694×10−53

19 0.004 0.032 *
20 0.010 0.068* *
21 3.13×10−80 1.884×10−75

22 4.328×10−4 3.494×10−03 *
23 0.015 0.102* *
24 5.639×10−67 1.342×10−64

25 0.007 0.043 *
26 1.755×10−18 1.746×10−17

27 0.466* * 0.437* *
28 0.059* * 0.157* *
29 1.204×10−24 2.273×10−20

30 8.630×10−4 1.643×10−03
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Chapter 5

Discussion

The quality of an estimator is assessed by its bias and variance. Ideally, we want an estimator

to be unbiased with a small variance. To evaluate the goodness of our estimators, we employ

the average square of the distance between the estimator and its target parameter, this is

known as the mean square error (MSE). The MSE is a function of the bias and variance (Eq.

5.1). The MSE may help to explain why a wrong model may have done just as good or even

better than the correct model. The wrong model may have had a lower MSE than the correct

model. For instance, the JC may be biased when the true model is the GTR model, but its

variance could be smaller than that of the GTR model. The more complicated evolutionary

models tend to have a higher variance, due to the greater number of parameters.

MSE(θ̂) = [B(θ̂)]2 + V (θ̂) (5.1)

Additionally, the simulations results may be unexpected due to sample size limitations.

The errors in the estimated gene trees are so small that there might not be enough cumulative

errors to affect species tree estimation. In species tree estimation, the error of each gene tree

may accumulate, so the more estimated gene trees used, the more errors are transferred

over to species tree estimation. The idea is that good estimates of gene trees can lead to a
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good estimate of a species tree, however poor estimates of gene trees may result in a poor

estimate of a species tree. The sample size in gene trees and repetitive simulations may not

be sufficient to detect an effect. This finding suggests that nucleotide substitution models

may be robust in estimating species trees when the estimation is drawn from a small number

of estimated gene trees. In this study, sample size limitations were due to computing power

and computing restrictions. The zcluster has a limit of the number of produced output

files. RAxML produces an abundance of output files when estimating gene trees, which may

approach the limits of zcluster. Other software should be considered for estimating the gene

trees such as Phyml.

The finch data had no sequence gaps. Typically, this would not be the case, as there

would be point mutations in the sequences. Calculating MSAP’s with gaps would be more

difficult. One possible method would be to look at the marginal probabilities for the MSAP’s

that contain one or more missing nucleotides. For instance, if there are four species and one of

the MSAP’s is ’AATX,’ where X indicates a missing value, then we would count the number

of AAT’s in the pattern for the first three species. Then we would need to calculate the

expected probability of observing this pattern for the first three species, before computing

the chi-square. This calculation could be very cumbersome especially when the number of

species increases.
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With regards to the finch data, when looking at the 24 estimated genes that are rejected,

we noticed that GC content might be the cause of poop model fit as patterns with high GC

content result in models with the most bias. Patterns with high GC content seems to give

us the biggest errors. Table C.1 list the MSAP’s with residuals greater than three standard

deviations for each gene and Appendix C.1 has a standardized residual plot for each gene.

Some of the residuals are as far as 15 to 20 standard deviations away from zero, with quite a

few residuals hovering around 8 to 10 standard deviations away from the zero. GC content

may have a biological importance as prior research shows that GC content significantly

affects evolutionary modeling of nucleotide sequences (Smarda et al., 2014). Models that

better handle the GC content would most likely improve the accuracy of estimation.

Even though the first part of this thesis may not have produced statistically significant

results, there is value gained from these simulations. Previous research has shown that

single gene tree estimation is robust to the nucleotide substitution model, but research has

not been done on the robustness of the nucleotide substitution model when estimating species

trees. The simulations performed in this research give insight on how choosing the wrong

model affects the accuracy of species tree estimation. The findings suggest that species tree

estimation is robust to the evolutionary model, similar to the findings of gene tree estimation.

However, this finding may not hold up as the sample size of gene trees used to derive the

species tree increases. Also, our analysis just considers the topology of the trees. Estimation

would be improved taking into consideration the topology and the divergence time. Branch

length would likely be affected by the model used, making the errors statistically significant.

Future research should consider divergence time and topology in exploring bias in estimating

species trees.
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Appendix A

Statistical Methods
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Figure A.1: Gene tree 1 with known internodes

P (Gene tree 1) = [PAC(t1)PCA(t3)][PAC(t1)PCC(t4)][PAT (t2)PTC(t5)][PAT (t2)PTA(t6)]

(A.1)
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Figure A.2: Gene tree 2 with unknown internodes

β =
1

2(πA + πG)(πC + πT ) + 2k[(πAπG) + (πCπT )]
(A.2)

PAA(v, k, π) = [πA(πA + πG + (πC + πT )e−βv) + πGe
−(1+(πA+πG)(k−1.0))βv]/(πA + πG)

PAC(v, k, π) = πC(1.0− e−βv)

PAG(v, k, π) = [πG(πA + πG + (πC + πT )e−βv)− πGe−(1+(πA+πG)(k−1.0))βv]/(πA + πG)

PAT (v, k, π) = πT (1.0− e−βv)
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Appendix B

Simulations

B.1 Gene Tree Estimation

Table B.1 shows that proportions of estimated gene trees that matched the true gene trees.

The column headers are the true model. Our results are in line with previous research that

suggests that the models are robust for gene tree estimation. Table B.2 shows the average

topological distance and standard deviation of estimated gene tree from the true gene tree.
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Table B.1: Proportion of Correctly Estimated Gene Trees

Model JC HKY GTR

Simulation 1
JC .19 .07 .07
HKY .19 .07 .07
GTR .19 .07 .07

Simulation 2
JC - .18 .16
HKY - .18 .17
GTR - .18 .18

Simulation 3
JC .18 .17 .16
HKY .18 .17 .17
GTR .18 .17 .17

Simulation 4
JC .18 .18 .16
HKY .19 .18 .16
GTR .18 .18 .17

Simulation 5
JC .17 .16 .15
HKY .17 .16 .15
GTR .16 .16 .15

Table B.2: Gene Trees Topology Distance

JC HKY GTR
Mean SD Mean SD Mean SD

Simulation 1
JC 2.44 1.48 3.16 1.25 3.17 1.24
HKY 2.44 1.49 3.17 1.23 3.17 1.23
GTR 2.45 1.48 3.17 1.23 3.18 1.23

Simulation 2
JC - - 2.49 1.47 2.56 1.46
HKY - - 2.48 1.47 2.54 1.47
GTR - - 2.48 1.47 2.50 1.48

Simulation 3
JC 2.46 1.48 2.51 1.46 2.57 1.44
HKY 2.47 1.48 2.49 1.46 2.54 1.46
GTR 2.47 1.48 2.50 1.46 2.52 1.46

Simulation 4
JC 2.46 1.48 2.50 1.47 2.56 1.45
HKY 2.45 1.48 2.49 1.48 2.55 1.45
GTR 2.47 1.48 2.49 1.48 2.51 1.46

Simulation 5
JC 2.56 1.46 2.59 1.44 2.67 1.43
HKY 2.57 1.47 2.57 1.46 2.64 1.44
GTR 2.57 1.46 2.58 1.45 2.62 1.45

36



B.2 Possible Trees

These are the possible trees for simulations. The distributions are graphed according to the

order listed below.

1. ((A,(C,(B,D))),E)

2. (((B,(A,D)),C),E)

3. (((C,(A,D)),B),E)

4. ((((B,D),A),C),E)

5. (((B,A),(D,C)),E)

6. (((A,C),(B,D)),E)

7. ((((C,A),B),D),E)

8. ((A,(D,(C,B))),E)

9. (((C,(B,A)),D),E)

10. (((D,(A,B)),C),E)

11. (((D,(A,C)),B),E)

12. ((A,(B,(C,D))),E)

13. ((((C,B),A),D),E)

14. (((A,D),(B,C)),E)

15. (((A,(D,C)),B),E)
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B.3 Distribution of Gene Trees (True & Estimated)
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Appendix C

Goodness-of-Fit

C.1 Multiple Sequence Alignment Patterns and Stan-

dardized Residual Plots
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Table C.1: Error Prone MSAP’s
Finch Gene Multiple Sequence Alignment Patterns
1 ATTT, CGCC, REST
2 CGCG
3 CGCT, REST
4 ACCC, GGGT
5 GGAC, TTTG
6 CAAA
7 GGAA, GTGT, TTGT
8
9 CCGC, GTGG
10
11
12 CGGT, TCTT, TGGC, REST
13
14
15 ACCC, CCGG
16 AAAG, REST
17 TTCA, REST
18 GGCC, TGGT, REST
19
20 GGGC
21 GGCC, GTGT, REST
22 GCGG
23
24 GAGG, TCAA, REST
25 AACC
26 CAAA, CTCT
27
28
29 CACC, CGGT, GGAT, GGCG, TTCC, REST
30 TAAA

46



−
2

0
2

4

MSAP’s

g
e

n
e

1

AAAA AAAG ATTT CCCT GGGA GGGT TATT TTTA TTTT

Figure C.1: Gene 1 Residual plot

−
2

0
2

4
6

MSAP’s

g
e

n
e

2

AAAA AAAT CCCC CCGG CTTT GGGA GGGT TTTC TTTT

Figure C.2: Gene 2 Residual plot

0
5

1
0

MSAP’s

g
e

n
e

3

AAAA AAAG AACA CCCC CGCT GAGG GGAG GGGA GGGT TTTC

Figure C.3: Gene 3 Residual plot

47



−
2

0
2

4

MSAP’s

g
e

n
e

4

AAAA AAAT ACCC CCCA CCTC GGGA GGGT TTCT TTTT

Figure C.4: Gene 4 Residual plot

0
5

1
0

MSAP’s

g
e

n
e

5

AAAA AATA CCCC CCCT GAAA GGAG TAAA TTCT TTTT

Figure C.5: Gene 5 Residual plot

−
2

0
2

4

MSAP’s

g
e

n
e

6

AAAA AGAA CCCC CCCT GGAG GGGC TCTT TTTG

Figure C.6: Gene 6 Residual plot

48



−
2

2
4

6
8

MSAP’s

g
e

n
e

7

AAAA CCCC CCCT GAGG GGGG GTGT TTTA TTTT

Figure C.7: Gene 7 Residual plot

−
3

−
1

0
1

2

MSAP’s

g
e

n
e

8

AAAA AGAA AGGG CCCC CCGC CGGG GAAG GGGA GTTG TGGG TTTC

Figure C.8: Gene 8 Residual plot

−
2

0
2

4

MSAP’s

g
e

n
e

9

AAAA AAAG AAGA CCCC CCCT CCGC GGGG GTGG TTTC TTTT

Figure C.9: Gene 9 Residual plot

49



−
2

−
1

0
1

MSAP’s

g
e

n
e

1
0

AAAA AGAA CCCT GAAA GGGA GGGG TTTA TTTG

Figure C.10: Gene 10 Residual plot

−
2

0
1

2

MSAP’s

g
e

n
e

1
1

AAAA CCCA CCCC CCTC GGGA GGGG GGGT TTCC TTTC TTTG TTTT

Figure C.11: Gene 11 Residual plot

−
4

0
2

4
6

8

MSAP’s

g
e

n
e

1
2

AAAA AAAG ACCC CCCC CGGG CTTC GAAA GGGA GGGT TAAT TGGC TTTT

Figure C.12: Gene 12 Residual plot

50



−
2

−
1

0
1

2

MSAP’s

g
e

n
e

1
3

AAAA AAAC AAAG CCCC CCCT GGGG TTCT TTTA TTTT

Figure C.13: Gene 13 Residual plot

−
2

−
1

0
1

2

MSAP’s

g
e

n
e

1
4

AAAA AAAC AAAG CCCC GGGA GGGC GGGG TTTC TTTT

Figure C.14: Gene 14 Residual plot

−
2

0
1

2
3

MSAP’s

g
e

n
e

1
5

AAAA AGAA ATTT CCCC CCTT GGGG TCTT TTCC TTTT

Figure C.15: Gene 15 Residual plot

51



−
3

−
1

1
2

3

MSAP’s

g
e

n
e

1
6

AAAA AACC AATA CCGG GGAA GGGA GGTG TAAA TTCC TTGG TTTT

Figure C.16: Gene 16 Residual plot

−
2

0
2

4
6

MSAP’s

g
e

n
e

1
7

AAAA AAAT AAGG CCCA CCCG CCTC GGGA TTCA TTGT TTTC

Figure C.17: Gene 17 Residual plot

0
5

1
0

1
5

MSAP’s

g
e

n
e

1
8

AAAA CCCC CCTC GGAG GGGA GTGG TATT TGGT TTTT

Figure C.18: Gene 18 Residual plot

52



−
3

−
1

1
2

3

MSAP’s

g
e

n
e

1
9

AAAA AAAG AAGA AGGG CCCC CTTT GGGA TAAA TCCC TTCT TTTT

Figure C.19: Gene 19 Residual plot

−
3

−
1

1
2

3

MSAP’s

g
e

n
e

2
0

AAAA AAAT AGGG CCCT CTCC CTTT GGGA GGGG TTCT

Figure C.20: Gene 20 Residual plot

0
5

1
0

2
0

MSAP’s

g
e

n
e

2
1

AAAA AAAT AGGG CCCA CCCT CTTT GCCC GGCC GTGT TGGG TTTA TTTT

Figure C.21: Gene 21 Residual plot

53



−
2

0
1

2
3

MSAP’s

g
e

n
e

2
2

AAAA AGAA CCCG CCTC GGAG GGGT TTTT
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C.2 Sample of R code

library ("phybase") # zcluster

sptree <- "((((A: 0.01, B: 0.01): 0.01, C: 0.02):0.01, D: 0.03):0.01, E:0.04)"

spname <- c("A", "B", "C", "D", "E");

nodematrix <- read.tree.nodes(str=sptree, name=spname)$nodes

nodematrix[,5]<-0.2

nodematrix[8,5]<-0.001

nspecies <- length(spname)

ngenetrees <- 1000

seqlength <- 1000

nsim <- 1000

for (j in 1:(nsim * ngenetrees)){

genetrees <- sim.coaltree.sp(rootnode=rootoftree(nodematrix), nodematrix=nodematrix,

nspecies=nspecies,seq=rep(1,nspecies), name=spname)$gt

write(genetrees,paste("truegenetree",j,sep=""))

freq<-paste(rdirichlet(1,c(5,5,5,5)),collapse=" ")

shape<-abs(rnorm(1,0.5,0.1))

tratio<-abs(rnorm(1,0.9,0.2))

try(system(paste("seq-gen -a", shape, " -g4 -mHKY -f ", freq, " -t", tratio, " -l1000", " -z", floor(runif(1)*3928109+2817615), " < truegenetree",j," > seq",j,sep="")))

}

# produces seq’s and truegenetree’s

# The four frequencies are generated from the dirichelt distribution (n,a) n is the number of random numbers generated, a is shape parameter

# Shape parameter and transition/transversion ratio for seq-gen generated from normal distribution

for(i in 1:nsim)
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{

raxmlcommand1<-paste("raxml -mGTRGAMMA -s seq",((i-1)*ngenetrees+1):(i*ngenetrees)," -n gtr",((i-1)*ngenetrees+1):(i*ngenetrees)," -p",floor(runif(ngenetrees)*3923426+373262),sep="")

raxmlcommand2<-paste("raxml -mGTRGAMMA -s seq",((i-1)*ngenetrees+1):(i*ngenetrees)," --JC69 -n jc",((i-1)*ngenetrees+1):(i*ngenetrees)," -p",floor(runif(ngenetrees)*3923426+373262),sep="")

raxmlcommand3<-paste("raxml -mGTRGAMMA -s seq",((i-1)*ngenetrees+1):(i*ngenetrees)," --HKY85 -n hky",((i-1)*ngenetrees+1):(i*ngenetrees)," -p",floor(runif(ngenetrees)*3923426+373262),sep="")

write(c(raxmlcommand1,raxmlcommand2,raxmlcommand3),paste("run",i,sep=""))

}

# produce run files

write(paste("qsub -q rcc-30d run",1:nsim,sep=""),"submit")

#--------------------------------------

# 2 root gene trees

#--------------------------------------

genetrees<-1:(nsim*ngenetrees)

for(j in 1:(nsim*ngenetrees)){

phy<-read.tree(paste("RAxML_bestTree.jc",j,sep=""))

a<-root(phy, outgroup="A", resolve.root=T)

a<-root(a, outgroup="E", resolve.root=T)

a$edge.length <- NULL

a$node.label <- NULL

a$root.length <- NULL

genetrees[j] <- write.tree(a)

}

genetrees<-matrix(genetrees,ngenetrees,nsim)

for(j in 1:nsim) write(genetrees[,j],paste("genetrees_jc",j, sep=""))

# gives genetrees’s for JC
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genetrees<-1:(nsim*ngenetrees)

for(j in 1:(nsim*ngenetrees)){

phy<-read.tree(paste("RAxML_bestTree.hky",j,sep=""))

a<-root(phy, outgroup="A", resolve.root=T)

a<-root(a, outgroup="E", resolve.root=T)

a$edge.length <- NULL

a$node.label <- NULL

a$root.length <- NULL

genetrees[j] <- write.tree(a)

}

genetrees<-matrix(genetrees,ngenetrees,nsim)

for(j in 1:nsim) write(genetrees[,j],paste("genetrees_hky",j, sep=""))

# genetrees for HKY

genetrees<-1:(nsim*ngenetrees)

for(j in 1:(nsim*ngenetrees)){

phy<-read.tree(paste("RAxML_bestTree.gtr",j,sep=""))

a<-root(phy, outgroup="A", resolve.root=T)

a<-root(a, outgroup="E", resolve.root=T)

a$edge.length <- NULL

a$node.label <- NULL

a$root.length <- NULL

genetrees[j] <- write.tree(a)

}

genetrees<-matrix(genetrees,ngenetrees,nsim)

for(j in 1:nsim) write(genetrees[,j],paste("genetrees_gtr",j, sep=""))
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# gives gene trees for GTR

#--------------------------------------

# 3 ESTIMATING SPECIES TREES USING MPEST

#--------------------------------------

c<-"A 1 A

B 1 B

C 1 C

D 1 D

E 1 E"

for(j in 1:nsim){

file <- paste("control_jc",j,sep="")

treefile <- paste("genetrees_jc",j,sep="")

b<-floor(runif(1)*619136+431171)

a<-c(treefile,"0", b, paste(ngene,nspecies), c ,"0")

write(a, file)

}

# gives control file for JC

for(j in 1:nsim){

file <- paste("control_hky",j,sep="")

treefile <- paste("genetrees_hky",j,sep="")

b<-floor(runif(1)*619136+431171)
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a<-c(treefile,"0", b, paste(ngene,nspecies), c ,"0")

write(a, file)

}

# gives control file for HKY

for(j in 1:nsim){

file <- paste("control_gtr",j,sep="")

treefile <- paste("genetrees_gtr",j,sep="")

b<-floor(runif(1)*619136+431171)

a<-c(treefile,"0", b, paste(ngene,nspecies), c ,"0")

write(a, file)

}

# gives control file for GRT

for (j in 1:nsim){

runfile<-paste("run_m",j,sep="")

x<-c(paste("mpest control_jc",j,sep=""), paste("mpest control_hky",j,sep=""), paste("mpest control_gtr",j,sep=""))

write(x,runfile)

}

# gives run_m files

write(paste("qsub -q rcc-30d run_m",1:nsim,sep=""),"submit_m")

# gives submit_m file
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#submit jobs through submit_m

# give .tre files

nsim<-100

ngenetrees<-100

truegenetree<-1:(nsim*ngenetrees)

for(i in 1:(nsim*ngenetrees))

{

truegenetree[i]<-read.tree.string(paste("truegenetree",i,sep=""),format="phylip")$tree

}

genetree_jc<-matrix("",ngenetrees,nsim)

genetree_hky<-matrix("",ngenetrees,nsim)

genetree_gtr<-matrix("",ngenetrees,nsim)

for(i in 1:nsim)

{

genetree_jc[,i]<-scan(paste("genetrees_jc",i,sep=""),what="character",sep="\n")

genetree_hky[,i]<-scan(paste("genetrees_hky",i,sep=""),what="character",sep="\n")

genetree_gtr[,i]<-scan(paste("genetrees_gtr",i,sep=""),what="character",sep="\n")

}

jcdist <-1:length(genetree_jc)

hkydist <-1:length(genetree_hky)

gtrdist <- 1:length(genetree_gtr)
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for(k in 1:length(genetree_jc))

{

jcdist[k]<-dist.topo(read.tree(text=truegenetree[k]),read.tree(text=genetree_jc[k]))

hkydist[k]<-dist.topo(read.tree(text=truegenetree[k]),read.tree(text=genetree_hky[k]))

gtrdist[k]<-dist.topo(read.tree(text=truegenetree[k]),read.tree(text=genetree_gtr[k]))

}

jcdata <- c(mean(jcdist),sd(jcdist))

hkydata <- c(mean(hkydist),sd(hkydist))

gtrdata <- c(mean(gtrdist), sd(gtrdist))

63



Bibliography

Darriba, D., Taboada, G., Doallo, R., and Posada, D. (2012). jmodeltest 2: more models,

new heuristics and parallel computing. Nature Methods, 8:772.

Felsenstein, J. (1981). Evolutionary trees from dna sequences: A maximum likelihood ap-

proach. Journal of Molecular Evolution, 17:368–376.

Guindon, S., Dufayard, J., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010).

New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the

performance of phyml 3.0. Systematic Biology, pages 307–321.

Guindon, S. and Gascuel, O. (2003). A simple, fast and accurate method to estimate large

phylogenies by maximum-likelihood. Systematic Biology, pages 696–704.

Jennings, W. B. and Edwards, S. V. (2005). Speciational history of australian grass finches

(poephila) inferred from thirty gene trees. Evolution, 59:2033–2047.

Keast, A. (1958). Infraspecific variation in the australian finches. Comparative Zoology,

58:219–246.

Liu, L., Pearl, D., Brumfield, R., and Edwards, S. (2008). Estimating species trees using

multiple-allele dna sequence data. Evolution, 62:2080–2091.

64



Posada, D. and Buckley, T. (2004). Model selection and model averaging in phylogenetics:

Advantages of akaike information criterion and bayesian approaches over likelihood ratio

tests. Systematic Biology, pages 793–808.

Rannala, B. and Yang, Z. (2003). Bayes estimation of species divergence times and acestral

population sizes using dna sequences from multiple loci. Genetics, 164:1645–1656.

Smarda, P., Bures, P., Horova, L., Leitch, I., Mucina, L., Pacini, E., and Rotreklova, O.

(2014). Ecological and evolutionary signficanced of genomic gc content diversity in mono-

cots. Proceedings of the National Academy of Science of the United States of America,

111:E4096–E4102.

Yxuhehybyja (2010). Sequence alignment. http://www.bioinformatics.org/wiki/

Sequence_alignment. Accessed: 2017-03-12.

65


