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ABSTRACT 

The log-linear cognitive diagnosis model (LCDM) is a model comprised of categorical latent 

attributes said to represent specific constructs. It provides a method by which classification on a 

given attribute/trait can be statistically deduced from an individual’s observed response pattern. 

Item bias or differential item function (DIF) represents the occasion when an item on an 

assessment produces disparate results for individuals possessing the same level of a particular 

trait or ability. In this dissertation, the LCDM is applied to a simulated dataset comprised of 12 

items and measuring 3 attributes and an academic assessment dataset comprised of 3 items in 

which each item measures a single attribute. Using MPlus for analysis, an omnibus test for 

measurement invariance is implemented. The free baseline estimation approach is applied to the 

item and structural models. This baseline model is then compared to other, more constrained 

models. Model fit, item parameter estimates, structural model estimates, and impact of DIF or 

non-invariance are assessed.  Results of the empirical study indicated that the estimation tool, 

MPlus, was challenged by the complexity of the simulated data.  For this reason, estimation 

errors were common, and the omnibus approach was not entirely effective in identifying DIF 
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with these data. Overall, it was proven that greater instances of DIF in the items will produce 

differences or instability in the structural model.  The omnibus testing method was most 

successful when applied to the simpler data structure of the academic assessment. These data 

were found to have invariant items but lacked invariance in the structural model. 

INDEX WORDS: Measurement invariance, differential item function, log-linear cognitive 

diagnosis model, free baseline, MPlus 
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CHAPTER 1 

INTRODUCTION 

Recent decades have seen a steady increase of psychometricians interested in statistical 

models containing latent variables intended to provide multidimensional classification of 

individuals (Rupp & Templin, 2008). Such interest has spurred the development of a body of 

psychometric models known as diagnostic classification models (or DCMs), which are 

comprised of categorical latent attributes said to represent specific constructs (e.g., knowledge, 

abilities, or psychological conditions). In diagnostic assessments, attributes are manifest through 

the individual’s responses to specific items. Thus, an individual’s response pattern (i.e., series of 

correct/incorrect responses) reflects whether that individual has mastered a given attribute. These 

models provide one method by which such classifications can be statistically deduced from an 

individual’s observed response pattern (Rupp, Templin, & Henson, 2010). A great strength of 

DCMs lies in their ability to provide such detailed feedback regarding individuals’ mastery or 

non-mastery of fine-grained attributes. 

Measurement Invariance 

The term measurement invariance refers to the consistency of measurement across 

groups. Invariance testing, like differential item functioning (DIF), is predicated on the 

assumption that the items of an assessment function in the same manner across relevant groups. 

Essentially, a test that is designed to measure a given attribute should reveal differences among 

individuals only if those individuals differ on the attribute(s) purported to be measured by an 
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item and not on some other ancillary dimension(s). We should not find disparate results for 

people who are identical on the attribute but who might differ on other, less relevant, variables 

(Millsap, 2011). 

Invariance testing looks to establish measurement invariance for both the item parameters 

and the characteristics of the distribution of examinees. Measurement invariance analyses 

utilized for multi-group confirmatory factor analysis (CFA) examine a series of testable 

hypotheses through a set of nested model comparisons. The stepwise imposition of additional 

model constraints results in a stringent invariance assessment protocol with each step requiring 

stronger evidence to support invariance. The CFA literature pertaining to measurement 

invariance tends to endorse the use of the following series of hypothesis tests for model fit to 

obtain evidence in support of measurement invariance: 

1) Configural Invariance establishes that the same latent factor structure is present by

fixing the same pattern of parameters (fixed or free) across groups. This model implies that 

similar, but not identical, latent variables are present in the groups, 

2) Weak Factorial Invariance or Metric Invariance constrains the factor loadings to be

equal across groups. Invariance in this model implies that the same latent variables are being 

measured across groups, 

3) Strong Factorial Invariance or Scalar Invariance is assessed by specifying that both

factor loadings and intercepts be invariant across groups. This constrained model still implies 

that the same latent variables are being measured across groups, but invariance in the intercepts 

and the mean structure allows us to evaluate mean differences in the latent variables, and 
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4) Strict Factorial Invariance or Residual Invariance extends the strong factorial

invariance model by placing additional constraints that the unique error variances are invariant 

across groups. Constraining error variances to be invariant across groups implies that group 

differences in variances of the measured variables are a result of group differences in variances 

of the latent variables (MacCallum, 2012).  

Cognitive Diagnostic Approach to Invariance Testing 

The log-linear cognitive diagnosis model (LCDM) is a general case of DCM that 

provides a common framework through which all latent class-based DCMs can be expressed 

(e.g., Henson, Templin, & Willse, 2009). The foundations of classifications made with the 

LCDM, as with all DCMs, are the observed response data collected via diagnostic assessment. 

For comparisons to be made between groups of individuals, measurement invariance is essential. 

As the purpose of DCMs (or, more specifically, the LCDM) is to classify individuals as 

“masters” or “non-masters” or to render diagnoses, the invariance of items comprising diagnostic 

assessments is critical. Methods for assessing invariance in DCMs, more specifically the LCDM, 

have been based on those developed for use in CFA (Bozard, 2010). What has yet to be 

investigated, and is the focus of this dissertation, is the appropriateness of these methods for use 

with the LCDM. 

To show how an investigation of measurement invariance would work under the LCDM, 

two other models, item response theory (IRT) and confirmatory factor analysis (CFA) are 

discussed in this dissertation. Methods of invariance analyses in IRT and CFA are briefly 

described to provide additional context leading into the discussion of invariance testing under the 

LCDM. 
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Overview of Dissertation 

In this dissertation, I relate confirmatory factor analysis (CFA) and item response theory 

(IRT) to the LCDM to demonstrate the unique properties of the LCDM in terms of the best fit of 

measurement invariance procedures. To that end, I investigate invariance testing with the 

LCDM. Items that lack measurement invariance can yield biased estimates of examinee ability. 

Current research has yet to explore the appropriateness of measurement invariance testing 

methods as they are applied to the LCDM. This is cause for concern as all latent trait models are 

not created equal, and it is potentially detrimental to assume a one-size-fits-all approach to 

measurement invariance testing. For these reasons, this dissertation is important to the continued 

pursuit of invariance testing as it will provide evidence necessary for the continued application 

(or the reimaging) of invariance testing protocols within the LCDM framework. 

The following chapter presents a review of existing research as well as a definition and a 

detailed discussion of measurement invariance as it pertains to confirmatory factor analysis and 

item response theory. Chapter 3 details how invariance methods apply to the LCDM and the 

design of the current study, including methods of estimation and analysis. Chapter 4 discusses 

the procedure and results of the simulation study. Finally, Chapter 5 details the application of 

invariance testing to a real data set and makes conclusions regarding the efficacy and 

applicability of this method to invariance testing for the LCDM. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

In this chapter, I discuss the existing research related to measurement invariance analysis, 

addressing the theoretical aspects of invariance testing under multi-group confirmatory factor 

analysis (CFA) and item response theory (IRT) including likelihood ratio tests. Connections 

between these two methods are discussed to provide a theoretical background for the subsequent 

discussion of invariance testing under the log-linear cognitive diagnosis model (LCDM), which 

appears in Chapter 3. 

Confirmatory Factor Analysis (CFA) 

Confirmatory factor analysis (CFA) is a psychometric method in which the measurement 

model is determined a priori and explicitly specifies both the number of latent factors and the 

relationship of those factors to the specified indicators or items (Kline, 2005). CFA is 

characterized by continuous latent variables and is the term applied to latent variable modeling 

most frequently with continuous (or assumed continuous) data. Although CFA may be a 

multidimensional model, the basic CFA model involving the examination of a unidimensional 

trait or factor is discussed to demonstrate how invariance procedures are conducted. 

Confirmatory factor analysis models are typically characterized by the following set of 

assumptions: 1) the data are continuous, each item is normally distributed and may be 

represented by a regression like function of the latent factor (𝜆) or factors in the 

multidimensional case, 2) the latent factors are continuous and normally distributed, 3) the 
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indicated factor(s) are the only things measured by an item, and 4) residuals are assumed to be 

normally distributed. 

Assumptions related to normality are prerequisite for the application of maximum 

likelihood estimation (MLE). Methods for testing measurement invariance in CFA with normal 

outcomes extend to CFA for categorical outcomes. In such cases, maximum likelihood 

estimation is still used; however, the assumed distribution of the outcome changes. 

The unidimensional CFA model (2.1) posits that each item may be represented as a linear 

function of a particular latent variable with a random error term: 

𝑋𝑖𝑗 =  𝜇𝑖 + 𝜆𝑖𝑎𝜉𝑗𝑎 + 𝛿𝑖𝑗, (2.1) 

where Xij symbolizes the continuous item response to item i by person j, 𝜇𝑖 represents the

intercept term for the item i, 𝜆𝑖𝑎 symbolizes the factor loading for item i on factor a, 𝜉𝑗𝑎 

represents the latent variable value for person j on attribute a (for a test measuring A factors – 

subsequently called attributes for diagnostic classification models), and the residual or 

uniqueness of individuals for an item, δij where i again indicates the item and j the individual. 

The intercept 𝜇𝑖 is a constant and, conditional on the measured latent traits all having 

means of zero, is the mean for the item i. It can be interpreted as the item difficulty as it is a 

component of the larger mean structure for each item. The factor loading 𝜆𝑖𝑎 can be interpreted 

as a measure of item discrimination, indicating how much or how little of a latent trait (attribute) 

is present for an item. Factor loadings are statistical estimates of direct effects, and in a 

regression context, they may be interpreted as the slope of the regression line indicating the 

expected change in the score of the item per a one-unit change in the factor. Items with larger 

factor loadings imply a stronger indication of the attribute over smaller factor loadings. A factor 
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loading of zero would indicate an item does not measure the factor at all. Finally, the positive or 

negative direction of the residual or uniqueness 𝛿𝑖𝑗 represents the difference between the actual 

predicted level of response to that which was observed directly. 

In order for the CFA model to be identified, the scale of the factor (the mean and the 

variance) must be set. Commonly, the variance of the factor is identified by setting either an 

item’s factor loading to one (one item per each factor measured) or the factor variances must be 

fixed to one (often referred to as the standardized factor variance identification method). When 

the factor loading for an item is fixed to equal one, it is then referred to a marker item, which 

allows for the factor variance to be estimated. Fixing the factor variances to one and factor 

means to zero standardizes the factor(s) and eliminates the need for item factor loadings to be 

constrained for identification. In the following section, procedures for determining item 

invariance for multi-group CFA are discussed. 

Invariance Testing for Multi-group CFA Models 

For any test that is intended to measure a specific trait (latent variable) and is used with 

multiple populations (i.e., genders, racial groups, etc.), a critical assumption is that the scale 

measures the same trait in all groups. If that assumption holds, then comparisons and analyses of 

those factor scores are acceptable and provide meaningful interpretations. However, if this 

assumption is false, then any comparisons and/or analyses will likely yield biased results 

(MacCallum, 2012). In other words, if an item or scale is shown to be non-invariant across 

groups, then the trait or attribute purported to be measured is somehow biased or potentially 

reflecting differences present between groups that are a result of something other than the 

attribute or factor in question. This is the fundamental case for measurement invariance testing. 
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Invariance Testing Via Likelihood-Ratio Tests 

Likelihood ratio tests (2.2) offer a general framework for the investigation of 

measurement invariance or item bias. In this approach, the likelihood functions of two proposed 

models are compared, with one model said to be nested within the other. The first model, M1 is 

considered the baseline model and typically allows all parameters except the referent or marker 

variable to be freely estimated. In the constrained model, M2, the referent remains constrained 

and an item is studied by imposing additional equality constraints across groups one item at a 

time (Stark, Chernyshenko, & Drasgove, 2006).  Assuming algorithm convergence for both 

models, one is able to obtain likelihood function values, L1 and L2, then the test statistic 

𝑋𝐿𝑅
2 = −2 ln (

𝐿1

𝐿2
), (2.2) 

is chi-square distributed with degrees of freedom equal to the difference in degrees of freedom 

between the baseline and constrained models (Millsap, 2011). It should be noted that likelihood 

ratio tests are only appropriate for nested model comparisons.  

In CFA, measurement invariance analyses are performed on one set of parameters at a 

time. At each step in the sequence, we are interested in (1) the fit of that model and (2) the 

degree of decrease in fit compared to the previous model. At any step, if the model fits well and 

the decrease in quality of fit is not statistically significant, then the constraints imposed at that 

step are deemed plausible for the population (MacCallum, 2012). For the purposes of this 

dissertation, invariance analyses are pursued by first establishing configural invariance as a 

“prerequisite” for metric (loading), scalar (intercept), and residual invariance. The following 

sections further detail these invariance procedures. 
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Configural Invariance 

In order to have configural invariance, the overall factor structure must be the same in 

each group. This means that the groups have the same number of factors and the same pattern of 

fixed and free factor loadings (and other parameters).  Figure 2.1 displays the factor structure for 

a two group, two factor model with eight items. Each item has a unique relationship with each 

factor, and this relationship is mirrored in both groups.  No constraints are enforced at this stage. 

Groups are merely investigated for the presence of the same factor structure. If there is a lack of 

configural invariance, the pattern of factor loadings is not the same for both groups and further 

comparisons should not be made across groups because the observed variables are indicators of 

different factors or attributes. 
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Figure 2.1 Two group measurement model 
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This model implies that similar, but not identical, latent variables are present for the 

groups in question. Configural invariance allows all of the model parameters to be free and is 

considered the baseline model within which subsequent models are nested. This baseline model 

is used for model fit comparison in the next step in the invariance sequence, metric invariance. If 

configural invariance is not supported, then the argument for similar factor structures/patterns 

across groups does not hold and further analysis is not pursued. 

Metric Invariance 

If configural invariance is established, the next step in an invariance analysis is to 

confirm that the loadings for items on each factor are the same across groups. These so-called 

tests of “metric” or factorial invariance for multi-group CFA are essentially the test of whether 

the factor loading matrix, 𝚲̂𝒈, is invariant across groups (Reise et al. 1993). The test of the null 

hypothesis of full measurement invariance for two groups can be expressed formally as 

𝐻𝑜: 𝚲1 =  𝚲2. (2.3) 

No additional restrictions are placed on the variances as groups are likely to differ on the latent 

factors and unique (error) factors (Reise et. al., 1993). For a single item, Xig where i indicates the 

item and g indicates the group, the factor loading is in bold (2.4): 

𝑋𝑖𝑔 = 𝜇𝑖𝑔 + 𝝀𝑖𝑔𝜉 + 𝛿𝑖𝑔. (2.4) 

At this stage, the factor loadings are constrained to be equal across groups but no other 

constraints are imposed. Metric invariance testing provides evidence for or against the presence 

of equivalent common latent factors having identical impact across groups. Differences in factor 

loadings indicate that the regressions of the measured variables on the factor scores are not 

parallel across groups. If the regression slopes are varying, group differences in the measurement 
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intercepts are also likely because two regression lines with different slopes (i.e., factor loadings) 

will ordinarily also have different intercepts (Hoyle, 2012). Item factor loadings shown to be 

invariant across groups are subsequently tested for scalar invariance while those items that are 

found to be non-invariant are considered as such for all subsequent analyses and remain freely 

estimated. The final metric invariant model (i.e., the model for which there is not statistically 

significant improvement in model fit when additional factor loadings are freely estimated) 

becomes the baseline model for comparisons in the next invariance testing step, scalar 

invariance. Figure 2.2 graphically represents four different invariance scenarios for an item. The 

upper row displays two graphs in which metric invariance is present. The upper left graph 

indicates both metric and scalar invariance (discussed in the next section) while the upper right 

graph represents an item that is metric invariant but NOT scalar invariant across groups. The two 

graphs on the lower row reflect instances in which an item is metric non-invariant. 

Scalar Invariance 

Scalar invariance examines item intercepts for equality across groups, implying that the 

population differences in the means of the measured variables must be due to the influence of the 

common factors. It should be noted that only the items that have been shown to be metric 

invariant by the previous analyses are tested for scalar invariance. Scalar invariance testing is 

done by specifying both item factor loadings and item intercepts to be invariant across groups 

(𝜆𝑖1 = 𝜆𝑖2 =  𝜆𝑖 , 𝜇𝑖1 = 𝜇𝑖2 =  𝜇𝑖). The presence of scalar invariance implies that differences in 

the means of the observed items are due to differences in the means of the underlying latent 

factor or attribute. This is because the item mean is partially due to the item and partially due to 

the factor. However, when item intercepts are non-invariant or allowed to vary across 
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populations, the differences in observable variables may be due to differences in the true values 

of the associated latent variables or the item intercept. Heterogeneous item intercepts can 

represent systematic bias on all or part of a scale. These differences across populations are also 

called additive response bias, a situation in which influences not related to the common factor 

(i.e., social desirability or rater leniency) may result in biased item responses (positive bias or 

negative bias) in one population as compared to another (Gregorich, 2006).  

Using a single item 𝑋𝑖𝑔, the part of the model tested for scalar invariance is indicated in 

bold (2.5): 

𝑋𝑖𝑔 = 𝝁𝑖𝑔 + 𝜆𝑖𝑔𝜉 + 𝛿𝑖𝑔. (2.5) 

The two graphs on the left in Figure 2.2 reflect instances in which the item is scalar 

invariant.  The item indicated in the upper left graph is both metric and scalar invariant while the 

item displayed in the lower left graph is only scalar invariant. In practice, this item would have 

been eliminated from further invariance analysis during metric invariance testing. The two 

graphs on the right reflect items that are scalar non-invariant (i.e., for each group, the item has a 

unique intercept). 
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Figure 2.2 Display of different types of item invariance for two groups under CFA 

Residual Invariance 

Residual invariance testing is the final step in the investigation of measurement 

invariance. It is the strictest form of factorial invariance investigating only those items that are 

metric and scalar invariant. Testing for residual invariance involves restraining the factor 

loadings, item intercepts, and residual variances to be equal across groups (𝜆𝑖1 = 𝜆𝑖2 =  𝜆𝑖, 𝜇𝑖1 =

𝜇𝑖2 =  𝜇𝑖, 𝛿𝑖1 = 𝛿𝑖2 =  𝛿𝑖). It answers the questions of whether group differences on the items are 

solely due to group differences on the latent factors, since the error variances are held invariant 
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across groups (MacCallum, 2012). Using a single item 𝑋𝑖𝑔, the part of the model tested for 

residual invariance is related to the residual noted in bold (2.6): 

𝑋𝑖𝑔 = 𝜇𝑖𝑔 + 𝜆𝑖𝑔𝜉 + 𝜹𝑖𝑔, (2.6) 

where the parameter tested is the residual variance. Under the basic CFA model, 𝛿𝑖𝑔 is assumed 

to be normally distributed with a (fixed) zero mean and a unique variance Ψ𝑖𝑔. The unique 

variance parameters are the terms that are tested for invariance across groups. 

The presence of all four types of invariance is considered “strict” measurement 

invariance and indicates that group differences in the covariances, variances, and means for the 

indicator variables are solely due to group differences on the latent factors and not due to 

differences in factor structure (Millsap & Meredith, 2007). 

Two additional sets of constraints could be of interest as they pertain to the structural 

portion of the factor analysis model: 1) Invariance of variances and covariances of the latent 

variables, and 2) invariance of latent variable means. Both are considered to be extensions of the 

already “strict” state of residual invariance. In the first case, strict measurement invariance 

(having loadings, intercepts and residuals constrained) would be extended by constraining the 

variances and covariances of the latent variables to be equal across groups. Then the difference 

between the fit of this model and the strict factorial invariance model are compared via a 

likelihood ratio test. If latent variance/covariance invariance holds, then the implication is that 

the population covariance matrix is invariant across groups (MacCallum, 2012). In the second 

case, strict measurement invariance would be extended by constraining the latent factor means to 

be equal across groups. If latent mean invariance holds, then the implication is that the means of 

the latent factors are invariant across groups. However, if there is a significant difference 
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between this constrained model and the strict invariance model, then this is evidence that the 

population means on the latent factors are significantly different across groups suggesting one 

group may, on average, have more of a trait than another (MacCallum, 2012). 

It is important to note that pursuit of these additional forms of invariance may not be 

worth pursuing if only partial measurement invariance has been obtained (i.e., some but not all 

item factor loadings have been found to be invariant, Byrne, Shavelson, & Muthen, 1989). If 

only partial measurement invariance exists for a scale, then any comparison of latent factor 

means may not be meaningful (MacCallum, 2012). Byrne et al. (1989) gave the requirement that 

at least two parameters need to be invariant to assure significance of group comparisons. 

Item Response Theory (IRT) 

The previous section detailed procedures for assessing measurement invariance in CFA 

via a series of nested model comparisons using likelihood ratio tests. The nested model 

comparison approach may also be implemented for the detection of differential item functioning 

(DIF) in item response theory (IRT). In this section, the 2-paramter logistic model for IRT is 

introduced, procedures for detection of DIF via likelihood ratio tests are discussed, and the 

relationship between CFA and IRT methods is highlighted. 

2PL IRT Model 

The expansion and development of IRT models over recent decades has resulted in the 

creation of a wide range of models and measurement tools equipped to yield a plausible account 

of the relationship between the item and underlying trait (Reise, Widaman, & Pugh, 1993). IRT 

and CFA models quantify the probability that an individual will provide the correct response to a 
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particular item. Because individuals will certainly possess differing levels of ability, and item 

difficulty will vary across items, applying an IRT model that best fits the data is essential. 

One objective of this chapter is to highlight the shared elements of CFA and IRT. A few 

basic model assumptions are among these areas of overlap. Unidimensional IRT assumes 1) item 

responses are unidimensional (only measuring one latent trait) and are locally independent (given 

ability, a person’s item responses are uncorrelated). Like CFA, IRT assumes that the only thing 

measured by the item is the factor, 2) while CFA assumes that each item is continuous and normally 

distributed, this is not the case under IRT because items are not continuous. The 2PL model 

discussed here relies on dichotomous data, 3) unlike CFA which requires that the relationship 

between items and latent factors be linearly modeled via a regression line, IRT models each item’s 

relationship to the latent factor via a logistic regression line (item characteristic curve), and 4) both 

CFA and IRT assume a continuous and normally distributed latent factor or factors in the 

multidimensional case. 

For dichotomous items, the probability of a correct response, (𝑃𝑖𝑗(𝑋𝑖𝑗 = 1|𝜃𝑗), is a function

of the individual’s ability, or 𝜃𝑗. Three unidimensional IRT models are often used to model discrete

items having one, two, or three parameters that characterize the relationship between continuous, 

normally distributed ability and the probability of a correct response to an item Xij, where i indicates 

the item and j the individual. For the purposes of this dissertation, the discussion of IRT based 

analyses will be focused on the two-parameter logistic model because parameterization of the 

2PL model is more readily aligned with CFA (and the LCDM) and consequently provides a clear 

link between the three models and ultimately the invariance methods used for each. 
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In order to show how CFA and the LCDM may be linked to the 2-PL IRT model, some 

rewriting of the two-parameter model must be performed. By multiplying the item parameter ai 

through, the traditional two-parameter model can be redefined as: 

𝑃𝑖𝑗(𝑋𝑖 = 1|𝜃𝑗) =
exp(𝑎𝑖(𝜃𝑗−𝑏𝑖))

1+exp(𝑎𝑖(𝜃𝑗−𝑏𝑖))
=  

exp (−𝑎𝑖𝑏𝑖+ 𝑎𝑖𝜃𝑗)

1+exp (−𝑎𝑖𝑏𝑖+ 𝑎𝑖𝜃𝑗)
, 

(

(2.7) 

for an item i, and person j with ability parameter 𝜃𝑗 . The item difficultly parameter, bi also 

referred to as the location parameter, indicates the point of inflection or the point on the ability 

scale for which the probability of correct response is 50% for the examinee. The item 

discrimination parameter represents the slope of the item characteristic function at the point of 

inflection. The higher the ai value, the better the item discriminates between examinees of low 

and high ability levels. A notational link to CFA and the LCDM may be provided if −𝑎𝑖𝑏𝑖 is 

interpreted as the intercept (𝜇𝑖 in CFA, and, as shown next chapter, 𝜆𝑖,0 in the LCDM) and 𝑎𝑖 is 

interpreted as the slope (𝜆𝑖 in CFA and 𝜆𝑖,1,(1) in the LCDM). Because this IRT model is 

implemented with dichotomous data, the link function is necessary to transform these non-

normal outcomes into continuous values. In this parameterization, the link function expresses the 

discrimination parameter as a component of both the intercept and slope which marks an 

additional distinction between IRT and CFA. In CFA, the mean or intercept is distinct from the 

loading or slope. The residual or error term is also not present in this model. This is because 

errors are not estimated but assumed to follow a logistic distribution with a known residual 

variance. (Errors are still considered independent in IRT.) 
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In order to extend the previous discussion of the relationship between CFA and IRT to 

include the LCDM, it is necessary to first address multidimensional item response theory 

(MIRT). In many cases, a test item measures several abilities rather than a single latent trait. For 

example, a student answering a mathematics word problem may rely on both reading and 

mathematics abilities. When this is the case, a multidimensional model should be used in order to 

adequately estimate item parameters and respondent abilities. In MIRT, the probability of a 

correct item response is a function of the vector of abilities, 𝜽, rather than a single measure of 

ability, 𝜃. When success on an item truly depends upon multiple traits, MIRT models may be 

considered more appropriate than unidimensional models. Additionally, MIRT models can be 

used to estimate an examinee’s ability along several dimensions simultaneously (e.g., along both 

algebra and geometry scales in a mathematics test) and thus offer the potential to provide 

enhanced diagnostic information (Finkelman, 2013). The two-parameter multidimensional IRT 

model (M2PL) yielding the probability that an examinee with ability 𝜽 correctly responds to 

item i. The M2PL may be defined as: 

𝑃(𝑋𝑖𝑗 = |𝜽𝒋) =
𝑒𝑥𝑝 [𝒂𝒊

′𝜽𝒋−𝑎𝑖𝑏𝑖]

1+𝑒𝑥𝑝 [𝒂𝒊
′𝜽𝒋−𝑎𝑖𝑏𝑖]

, (2.8) 

where 𝒂𝒊
′ is a vector of discrimination parameters and 𝑎𝑖𝑏𝑖 is the difficulty parameter. 

The M2PL model may be re-parameterized to more closely resemble the LCDM: 

𝑃(𝑋𝑖𝑗 = 1|𝜽𝒋) =  
e

λ𝑖0+ ∑ λ𝑖1𝑎 𝜃𝑗𝑎

1+e
λ𝑖0+ ∑ λ𝑖1𝑎 𝜃𝑗𝑎

. (2.9) 

Similar to the rewriting of the unidimensional 2-parameter model from equation (2.7), now for 

the multidimensional case, the parameter 𝒂′𝒊𝜽𝒋 may represent a vector of slopes (λi1aθja) and the 

single difficulty parameter 𝑏𝑖 may represent the intercept or threshold (λi0) for item i. One 
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additional distinction for this re-parameterized model is the inclusion of the subscripted indicator 

a, signifying which latent trait is being measured. 

MIRT models have the potential to provide more detailed information than 

unidimensional models and offer greater diagnostic information. The following section offers a 

discussion of invariance testing for MIRT as it relates to that of CFA and ultimately the LCDM. 

Measurement Invariance (Differential Item Functioning) in IRT 

In IRT, a lack of measurement invariance is referred to as differential functioning. When 

differential functioning occurs at the item level, it is called differential item functioning (DIF). 

“DIF is defined as a difference in the probability of endorsing an item across comparison groups 

when the scores are on a common metric” (Stark, Chernyshenko, & Drasgove, 2006, p. 1293). 

Essentially, an item shows DIF if individuals having the same ability, but from different groups, 

do not have the same probability of getting the item right (Hambleton et.al., 1991). An 

assumption inherent in IRT models is that examinees with the same value on one or more latent 

trait(s), θ, will have the same probability of correct response on any item that is purported to 

measure θ. When an item exhibits DIF, it suggests that some other variable (either latent or 

observed) influences the probability of correct response on that item. DIF is of utmost interest in 

test development and analysis because it relates directly to the accuracy/fairness and validity of 

an assessment. 

There exist a number of methods of DIF detection both parametric and non-parametric 

some IRT-based and others non-IRT based. One commonly used non-parametric, non-IRT 

method is the Mantel-Haenszel procedure; the popularity of this method is most likely due to the 

relative simplicity of its execution (Li, 2008). Parametric methods for IRT include Raju’s area 
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measures (Raju, 1990), likelihood-ratio tests (Thissen, Steinberg, & Wainer, 1988), and Lord’s 

chi-square method (Lord, 1980). This discussion emphasizes the application of the likelihood-

ratio test method, as a parametric, IRT model-based procedure for measurement invariance 

analysis because this method can be used for both CFA and IRT and is subsequently proposed 

for invariance testing procedures in the LCDM. 

Under the IRT framework, DIF can be defined as occurring when the item characteristic 

curves (ICCs) differ between the reference and focal groups. Since the ICC is defined by its item 

parameters, it follows that one effective method of detecting DIF is to compare the parameters 

involved in generating the ICCs for these groups. Assuming that the IRT model fits, one should 

be able to find a simple (often linear) transformation that will put the item parameter estimates 

on a common scale. This process is known as parameter linkage and is needed when direct 

comparisons are to be made between item parameter estimates from different groups (Millsap, 

2011). 

Configural Invariance 

Applying likelihood ratio tests in IRT, like in CFA, involves a series of nested model 

comparisons in which item parameters are calculated and compared across examinee groups. 

Under CFA, the first step in the investigation of measurement invariance involves the 

establishment of configural invariance or the same factor structure for both groups (i.e., same 

items loading onto the same factors across groups). The execution of this step in IRT can be done 

in two different ways, the constrained baseline approach or the free-baseline approach. The 

constrained baseline approach involves fixing the group means, item loadings and item 

thresholds to be equal across groups. The free-baseline approach involves the free estimation of 
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all item thresholds and factor loadings less one item identified as the “marker” item. This item 

loading is constrained to equal 1 and should therefore be reasonably considered to be DIF free 

(Stark et al., 2006). The free-baseline method is considered here as it more closely aligns to 

procedures implemented in CFA. This MIRT model, 

𝑃(𝑋𝑖𝑗 = 1|𝜃𝑗) =  
e

λ𝑖0+ ∑ λ𝑖1𝑎 𝜃𝑗𝑎

1+e
λ𝑖0+ ∑ λ𝑖1𝑎 𝜃𝑗𝑎

, (2.10) 

may serve as the free-baseline model discussed above. 

Metric Invariance & Scalar Invariance 

Under CFA, the second step in measurement invariance testing pertains to the item factor 

loadings or metric invariance. The third step is that of scalar invariance or invariance of the item 

intercepts. In IRT the discrimination and location parameters are analogous to the factor loadings 

and intercepts in CFA analyses. However, in IRT, the metric (factor loading) and scalar 

(intercept) invariance are examined at the same time. (Stark et al., 2006). The reason 

simultaneous invariance testing of both intercept and slope for a binary response item is possible 

becomes clear when we consider the parameterization from Equation (2.8). Both the M2PL 

threshold and loading contain the discrimination parameter, ai, as a component, thereby making 

simultaneous analysis preferable.  

The constrained model is proposed for each item, one-by-one, with both the item 

thresholds (intercepts) and factor loadings simultaneously constrained or held equal.  In the 

following multidimensional IRT model, the intercept and loadings are highlighted in bold: 

𝑃(𝑋𝑖𝑗 = 1|𝜃𝑗) =  
e

𝛌𝒊𝟎+ ∑ 𝛌𝒊𝟏𝒂 𝜃𝑗𝑎

1+e
𝛌𝒊𝟎+ ∑ 𝛌𝒊𝟏𝒂 𝜃𝑗𝑎

. (2.11) 
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The estimated log-likelihood for a model with one item constrained or held equal across 

groups is then compared to the baseline model in which all loadings for all items are freely 

estimated. The degree to which model fit is impacted determines whether the item demonstrates 

non-invariance or DIF. This procedure is performed for all items, and the item for which unique 

estimation across groups results in the “largest” (over statistical significance) decrease in model 

fit is identified as non-invariant and remains freely estimated. 

If the constraining of items does not result in significant decrease in model fit, then all 

items are invariant. The upper left graph in Figure 2.3 displays the ICCs for an invariant item 

administered to two groups. However, if an item has been identified as non-invariant, then the 

item-by-item comparisons resume with the baseline model now referring to the estimated log-

likelihood for the model in which the non-invariant item has been freed. This process continues 

until the constraining of items no longer significantly decreases model fit. 

Simultaneous detection of loading and threshold invariance is the method by which to 

identify non-invariant items, and Figure 2.3 provides further evidence in support of this process 

as a reasonable means by which to determine item parameter invariance. Although in CFA, each 

type of non-invariance plays a unique role with regard to the fit of the linear item function, in 

IRT, the item characteristic curve (ICC) is influenced in both difficulty and discrimination 

regardless of which parameter lacks invariance. The upper right graph and two lower graphs 

reflect non-uniform DIF. The upper right graph presents the ICCs for an item having non-

invariant loadings but invariant thresholds (difficulty) across groups. The lower left graph 

presents the ICCs for an item having invariant loadings but non-invariant thresholds across 

groups, and the lower right graph represents the ICCs for an item in which both thresholds and 
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loadings are non-invariant. Regardless of the type of DIF, each graph reflecting an item with a 

non-invariant component displays item ICCs having different intercepts and slopes. 

Residual Invariance 

The final step for measurement invariance testing in CFA involves the investigation of 

each item’s error variances. As previously discussed, because IRT is implemented with 

dichotomous data, this step is unnecessary. Residuals or error terms are not estimated because 

they are assumed to have a logistic distribution with known variance, 𝜋
2

3⁄ . Therefore, once

items are found invariant in the previous analysis, testing for invariance is concluded. 

Figure 2.3 Display of different degrees of item invariance for two groups under IRT 
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Summary 

The purpose of this chapter has been to provide a theoretical as well as mathematical 

linkage between item response theory (IRT) and confirmatory factor analysis (CFA). Assuming 

the presence of a single latent trait or variable, the CFA model supposes that the latent trait is 

linearly related to each of the items or indicators. That is, individual differences on the latent 

trait, 𝜉𝑖𝑗, are linearly related to the individual differences on a given item, Xij, and the factor 

loading, 𝜆𝑖𝑗, is the raw regression coefficient representing this linear relationship. Error variances 

or residuals for items that are linearly unrelated to the latent variable are represented by the 

residual indicator, 𝛿𝑖𝑗 (Reise et. al., 1993). Additionally, the latent variable, θ, in IRT models 

represents individual differences in item response, but differences on θ are related monotonically 

to each item. In IRT models, a coefficients relate the latent trait (θ) to the item responses much 

like the 𝜆𝑖𝑗 estimates from CFA. As with 𝜆𝑖𝑗 estimates, the larger the a coefficient, the more 

closely the item is related to the latent variable (Reise et. al., 1993). Although there is not a direct 

connection between item difficulty parameters (bi), in IRT and CFA, the item intercept 𝜇𝑖 offers 

the nearest approximation as it contributes to the item mean structure, or average response to an 

item (MacCallum, 2012). 

Table 1 provides a summary of each of the steps described for the measurement 

invariance procedures as they apply to both item response theory and confirmatory factor 

analysis. The models are parameterized for each stage of analysis with the parameter of interest 

at each level of analysis reported in bold.
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Table 2.1  

Summary of Measurement Invariance Procedures for IRT and CFA 

Invariance Steps Theoretical Description Item Response Theory (MIRT) 
Confirmatory Factor 

Analysis 

Measurement Mode 

Configural Invariance Baseline fit in which all factors are 

freely estimated 
𝑃(𝑋𝑖𝑗 = 1|𝜃𝑗) =  

e
λ𝑖0+ ∑ λ𝑖1𝑎 𝜃𝑗𝑎

1+e
λ𝑖0+ ∑ λ𝑖1𝑎 𝜃𝑗𝑎

, 
𝑋𝑖𝑔 = 𝜇𝑖𝑔 + 𝜆𝑖𝑔𝜉 + 𝛿𝑖𝑔 

Metric Invariance Item factor loadings are fixed to be 

invariant. This describes intercepts 

as well as slopes for IRT 

𝑃(𝑋𝑖𝑗 = 1|𝜃𝑗) =  
e

𝛌𝒊𝟎+ ∑ 𝛌𝒊𝟏𝒂 𝜃𝑗𝑎

1+e
𝛌𝒊𝟎+ ∑ 𝛌𝒊𝟏𝒂 𝜃𝑗𝑎

, 
𝑋𝑖𝑔 = 𝜇𝑖𝑔 + 𝝀𝑖𝑔𝜉 + 𝛿𝑖𝑔 

Scalar Invariance Item intercepts are fixed to be 

invariant 

NA 𝑋𝑖𝑔 = 𝝁𝑖𝑔 + 𝜆𝑖𝑔𝜉 + 𝛿𝑖𝑔 

Residual Invariance Item residuals are fixed to be 

invariant 

NA 𝑋𝑖𝑔 = 𝜇𝑖𝑔 + 𝜆𝑖𝑔𝜉 + 𝜹𝑖𝑔 
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CHAPTER 3 

MEASUREMENT INVARIANCE & THE LCDM 

The previous chapter specified similarities present in the relationship between CFA and 

IRT and offered a detailed discussion of invariance testing and DIF detection procedures for both 

models. In this chapter, the purpose of the dissertation is further explicated by first drawing a 

connection from IRT and CFA to the LCDM. Then, methods of measurement invariance analysis 

as they pertain to the LCDM are discussed. 

Log-linear Cognitive Diagnosis Model 

The log-linear cognitive diagnosis model (LCDM), a general Diagnostic Classification 

Model (DCM), shares several essential characteristics with other latent variable models 

discussed previously. These include, but are not limited to its multidimensionality, confirmatory 

nature, and ability to provide diagnostic information concerning individuals’ 

abilities/performances (Rupp & Templin, 2008). Much like multidimensional IRT and 

multidimensional CFA, the LCDM can be used to assess multiple latent variables, each one 

representing a unique attribute of an assessment. Also, like IRT, the LCDM assumes each item 

can be modeled via a monotonically increasing function of the latent attributes. 

Fundamental to the LCDM is the Q-matrix, a unique loading structure in which the 

confirmatory nature of the LCDM is characterized through the representation of the 

relationship(s) between items and latent variables through a pattern matrix of zeros and ones. The 

Q-matrix shows which items measure which categorical latent variables (Rupp et al., 2010). The 
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Q-matrix further reflects the capability of the LCDM to extend beyond the modeling capabilities 

of other latent variable models with its ability to support complex loading structures. 

Under DCMs (and the LCDM), an additional assumption is of the presence of a latent 

variable or attribute that is split into (typically) two categories. This latent attribute dichotomy is 

meant to represent “mastery” or “non-mastery” of each measured latent attribute (mastery 

indicating an individual has a greater amount of the attribute than does an individual in the non-

mastery status). Attributes in DCMs typically represent constructs such as content knowledge or 

psychological conditions, and the classification of individuals is made based on their “mastery” 

or “non-mastery” of these attributes. It is the work of the LCDM to statistically deduce the 

relative “mastery’ or “non-mastery” by an individual of an attribute via observed response data 

(Rupp et al., 2010). 

The dichotomous latent variables in the LCDM distinguish it from IRT and CFA which 

both model continuous latent variables. The LCDM models the relationship of observed 

categorical response data to categorical latent variables and provides the conditional probability 

that a given individual’s attribute profile yields an accurate response to an item (Rupp et al., 

2010). Person estimates in the form of probabilities exceeding .50 are considered evidence in 

favor of “mastery” while probabilities lower than .50 are perceived as evidence of “non-mastery” 

for the latent variable or attribute in question. Probabilities that are near .50 would indicate that 

the item does not provide sufficient information to make a diagnosis. Item responses are assumed 

to be independent conditional on the multiple latent variables that are included in the model. 

Assuming item responses are conditionally independent given an examinee’s class 

membership, the latent class model indicates the probability of observing a vector of person j’s 
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scored item responses to all items (indicated by xj) as a function of the class membership c of 

examinee j (αj) as 

𝑃(𝑿𝑗 = 𝒙𝑗) =  ∑ 𝜐𝑐
2𝐴

𝑐=1 ∏ 𝜋
𝑖|𝜶𝑗

𝑥𝑖𝑗𝐼
𝑖=1 (1 − 𝜋𝑖|𝜶𝑗

)
1−𝑥𝑖𝑗

. (3.1) 

The parameter 𝜐𝑐 reflects the proportion of examinees belonging to class c (i.e., having the 

attribute pattern corresponding with class c). The 𝜐𝑐 values are probabilities and sum to one. These 

parameters also explain the relationship(s) between the attributes (i.e., the correlations) and make 

up the structural components of the LDCM.  The item parameter 𝜋𝑖|𝜶𝑗
 represents the conditional

probability that person j provides a correct response for item i given his or her attribute pattern 

(𝜶𝑗) and  𝑥𝑖𝑗 indicates the dichotomous item response (𝑥𝑖𝑗 = 0 or 𝑥𝑖𝑗 = 1) for examinee j to item 

I (Bradshaw, 2011). 

The measurement component of the model is represented by the product term. It specifies 

the relationship between the observed response data and the latent variable and expresses the 

joint probability of the observed responses as a product of the conditional probabilities of each 

item response (Bradshaw, 2011). This is similar to the way items are modeled in IRT (i.e., 

conditional independence given ability) except that in unidimensional IRT the item response 

probability is conditional on a continuous latent ability (θ) and in DCMs it is a latent attribute 

pattern or class. 

In sum, monotonicity is a constraint or assumption of both the LCDM and IRT models 

but is not for CFA (linearity is assumed under CFA). Finally, latent variables or attributes and Q-

matrix data are defined as 0/1 (dichotomous) under the LCDM. Although data assumptions in 

IRT state that items are dichotomous, IRT models continuous latent variables. CFA models both 

continuous data and continuous attributes or latent factors. Each of the assumptions or 
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constraints of the LCDM mentioned here are employed to ensure model identification (Henson et 

al., 2009). Next, I introduce the parameterization of the LCDM, highlight this relationship to 

both IRT and CFA, and present a two-attribute LCDM for the discussion of measurement 

invariance testing. 

Specifying the LCDM 

The LCDM can be written as an equation using a logit link function. Representing the LCDM 

in this manner serves to parallel the structure for the multidimensional IRT model discussed in 

chapter 2. Like IRT, the link function is used to make model-predicted probabilities between zero 

and one (Rupp et al., 2010). As in IRT, the LCDM models the log-odds of a correct response 

conditional on a respondent’s attribute pattern αj. The log-odds or logit is: 

Logit(𝑋𝑖𝑗 = 1|𝜶𝒋) = ln (
𝑃(𝑋𝑖𝑗=1|𝛂𝑗)

1−𝑃(𝑋𝑖𝑗=1|𝛂𝑗)
) . (3.2) 

The inverse logit function converts logit values to probabilities and is also the form IRT takes: 

𝑃(𝑋𝑖𝑗 = 1|𝜶𝒋) =
exp(Logit(𝑋𝑖𝑗=1|𝛂𝑗)) 

1+exp(Logit(𝑋𝑖𝑗=1|𝛂𝑗))
. (3.3) 

However, as also discussed, a major difference between IRT and the LCDM is in the 

binary instead of continuous latent predictors. Binary indicators specify the presence or absence 

of the latent predictors or attributes. Effects of individual attributes (main effects) and effects of 

combinations of attributes (interaction effects) are modeled in the item response (Rupp et al., 

2010). The LCDM is specified as 

𝜋𝑖|𝜶𝑗
= 𝑃(𝑋𝑖𝑗 = 1|𝜶𝒋) =

exp(λ𝑖 0+𝝀𝑖
𝑇𝒉(𝜶𝒋,𝒒𝒊))

1+exp(λ𝑖 0+𝝀𝑖
𝑇𝒉(𝜶𝒋,𝒒𝒊))

, (3.4) 

where the term λ𝑖,0 is the intercept that quantifies the log-odds (logit) of a correct response if 

examinee j has not mastered any of the attributes measured by item i. This value also indicates 

the reference group. The term 𝝀𝑖
𝑇𝒉(𝜶𝒋, 𝒒𝒊) is a linear combination of main and interaction effects
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in the model. The main effects and interactions are given in the row vector, 𝝀𝑖
𝑇, where superscript 

T represents the transpose. The term 𝒉(𝜶𝒋, 𝒒𝒊) is a column vector of indicators used to specify 

whether the main effects and interactions are present for the examinee and item. The term 𝒒𝒊 =

[𝑞𝑖1, 𝑞𝑖2, … , 𝑞𝑖𝐴] T and symbolizes the Q-matrix entries for item i and 𝜶𝒋  = [𝛼𝑗1, 𝛼𝑗2, … , 𝛼𝑗𝐴] the 

attribute pattern for examinee j. It follows that an element of 𝒉(𝜶𝒋, 𝒒𝒊) equals one if and only if 

(1) the item measures the attribute(s) that correspond to the effect (qia =1), and (2) the examinee 

possesses the attribute(s) that correspond to the effect (aja = 1). Otherwise, the element will equal 

zero, which will eliminate any main effect or interaction effect parameter that is associated with 

the unmeasured attribute(s) for the item or for un-mastered attributes in the respondents attribute 

profile. Via the LCDM, the linear combination 𝝀𝒊
𝑻𝒉(𝜶𝒋, 𝒒𝒊) can be further explicated as:  

 𝝀𝒊
𝑻𝒉(𝜶𝒋, 𝒒𝒊) =  ∑ λ𝑖,1(𝑎)(𝛼𝑗𝑎𝑞𝑖𝑎)

𝐴

𝑎=1

+  ∑ ∑ λ𝑖,2(𝑎𝑏)(𝛼𝑗𝑎𝛼𝑗𝑎𝑞𝑖𝑎𝑞𝑖𝑏)

𝐴

𝑏=𝑎+1

𝐴−1

𝑎=1

+ ⋯,  (3.5) 

where λ𝑖,1(𝑎) is the main effect for attribute a for item i, λ𝑖,2(𝑎𝑏) is the two-way interaction effect 

between attributes a and b for item i, and the ellipses suggest the third through Ath higher-order 

interactions where λ𝑖,𝐴 represents the A-way interaction effect between all possible attributes. As 

in IRT, this model contains a difficulty parameter, represented by the intercept λ𝑖,0 and a 

discrimination parameter in the form of the attribute specific loadings, which are also known as 

main effects. The intercept for an item provides the probability of correct response for the 

reference group (i.e., the lowest ability group or the group having no attribute mastery) when the 

latent trait is zero, and the main effect for an attribute can be interpreted as providing a measure 

of discrimination between attribute patterns that do or do not have that attribute (Bradshaw, 

2011). 
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Although the connection between IRT and the LCDM has been touched upon, yet to be 

discussed is the way CFA relates to the LCDM. Simply stated, the parameterization of LCDM 

attribute effects are like that of the factor loadings found in CFA. The following parameterization 

of the LCDM provides the probability of correct response for an item that requires two attributes: 

𝑃(𝑋𝑗𝑖 = 1|𝜶) =  
exp(λ𝑖0+λ𝑖1𝛼1+ λ𝑖2𝛼2+λ𝑖12𝛼1𝛼2) 

1+exp(λ𝑖0+λ𝑖1𝛼1+ λ𝑖2𝛼2+λ𝑖12𝛼1𝛼2)
. (3.6) 

This model illustrates the similarities between the parameterization of CFA and the 

LCDM. However, it is important to note that one critical difference lies in the interpretation of 

these parameters; a point that will be discussed further in the following invariance section. The 

discussion of measurement invariance testing for the LCDM will reference this model and its 

parallels to CFA and IRT. There also exists a unique relationship between the LCDM and multi-

factor ANOVA. The LCDM can be considered a special case of a generalized linear model, one 

that models the item response similarly to the multi-factor ANOVA. Taken in this context, the 

attributes or latent variables of the LCDM can be considered “equivalent” to the factors in 

ANOVA with the state of “mastery” or “non-mastery” indicating the levels of the ANOVA 

factor (Rupp et al., 2010). 

Assessment of Measurement Invariance with the LCDM 

Once mastery probabilities have been assigned to individuals, a major objective of the 

LCDM, as with any latent variable model, is to accurately make inferences about latent variable 

means across populations. When multiple groups are involved, we may wish to make 

comparisons between those groups. Measurement invariance, as it has been discussed for CFA 

and IRT, allows us to infer that the differences we see in observed variables are in fact due to the 

differences present for the latent factors or attributes. Often, measurement model parameters are 

either assumed invariant or their invariance is verified through statistical tests. Invariance tests 
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via nested model comparisons using likelihood ratio tests have already been described for IRT 

and CFA respectively. What remains to be determined is if this method/procedure is the best 

approach for use with invariance testing of the LCDM.  

The unique set of circumstances provided by the LCDM (e.g., multidimensionality, 

complex structure) suggest that procedures developed and implemented with CFA may be 

appropriate tools; however, as previously mentioned, the LCDM data structure is a pattern 

matrix of binary responses. The binary nature of these data relates more closely to data often 

investigated via IRT. It is the unique combination of this multidimensionality with binary data 

that supports the case for further investigation of a best approach for invariance analysis under 

the LCDM.  

Configural Invariance 

Invariance testing as it is performed within a multi-group CFA framework, addresses 

configural invariance first, to establish that the overall factor structure fits across groups. This 

procedure as it is applied to the LCDM is very similar. A baseline model is established at this 

point and all parameter estimates are freely estimated while factor means and variances are held 

constant. This model merely implies that similar, but not identical, latent factors (attributes) are 

present for the groups. 

To determine if this procedure is appropriate for use with the LCDM, a preliminary 

simulation was performed. Data were generated to represent two groups of 5,000 individuals 

with scores on a 2-attribute, 10-item measure. The items were simulated to have five items 

measuring each attribute with three of these items measuring both attributes. As data were 

simulated to have a known factor/attribute structure, the tests for configural invariance ran as 
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expected and a baseline model having five items loading onto each attribute was established for 

further investigation.  

Initially, data were generated to be entirely invariant across groups to verify that the 

method for detecting non-invariance was reliable. This means that item intercepts and all item 

loadings were generated to be equal for both groups. A graph of the probability of correct 

response to an item for two groups when all item parameters are invariant is shown in Figure 3.1.  

Subsequent data simulations introduced varying degrees of measurement non-invariance 

across parameter types. First, data were simulated to contain non-invariant thresholds or 

intercepts. A graph of the probability of correct response to an item for two groups when 

intercepts are non-invariant is displayed in Figure 3.1. Another dataset was generated to contain 

non-invariant main effects or loadings. A graph displaying the probability of correct response to 

an item for two groups when the item main effect loading are non-invariant is included in figure 

3.1. A fourth dataset was generated to contain non-invariant intercepts and non-invariant main 

effects simultaneously. Figure 3.1 displays a graph of the probabilities of correct response to an 

item for two groups both intercepts and an attribute main effect are non-invariant. Non-invariant 

interaction terms were avoided at this stage.  
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Figure 3.1 Display of different degrees of invariance for two groups under LCDM 

Metric Invariance 

Once configural invariance is established, subsequent invariance tests can be performed 

to verify item invariance for main effects. This process is analogous to the factorial or metric 

invariance employed for CFA. The analysis is performed by first holding all main effects for an 

item to be constant across groups and comparing the resulting model fit. Because these models 

are nested, fit values may be tested via likelihood ratio tests. If this constrained model yields a 

poorer fit (which is likely to occur should any parameters be non-invariant), then the item’s main 

effect loadings are freed. At this stage, we expect all items with main effect parameters simulated 

to be non-invariant, to statistically significantly decrease the overall model fit once they are 

constrained to be equal. When constraining main effects no longer significantly decreases model 
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fit, this reduced model (with some invariant item loadings held equal) is then used as the new 

baseline for subsequent scalar or intercept invariance tests. 

At this point it is also important to note that this order of approach may be appropriate 

when only main effects are included in the model but oftentimes interaction terms are present for 

LCDM data. In these instances, what has yet to be determined is what if any priority should be 

given to the potential non-invariant interaction terms. It may be pertinent to first investigate the 

factor loading invariance of interaction terms as a precursor to analyses of “main effects” 

invariance. The following two-attribute LCDM indicates the parameter of interest for the metric 

invariance analysis in bold: 

𝑃(𝑋𝑗𝑖 = 1|𝜶) =  
exp(λ𝑖0+𝛌𝒊𝟏𝛼1+ 𝛌𝒊𝟐𝛼2+λ𝑖12𝛼1𝛼2) 

1+exp(λ𝑖0+𝛌𝒊𝟏𝛼1+ 𝛌𝒊𝟐𝛼2+λ𝑖12𝛼1𝛼2)
. (3.8) 

Scalar Invariance 

Once factorial invariance has been established, CFA invariance analyses move to the 

investigation of item intercepts. As previously mentioned in the discussion of CFA invariance 

testing, this portion of the analysis addressing model intercepts recognizes that these values 

represent the average for the item whenever the latent variable is equal to zero. However, for the 

LDCM, intercepts indicate the probability of correct response for the reference group when the 

latent trait is zero. What this means for invariance testing is that not an item average score, but a 

score tied to a reference class is being tested. If this is the case, when we hold item intercepts 

constant, we are asserting that the item has the same value in the reference class across groups. 

The following two-attribute LCDM model indicates the parameter of interest for this analysis in 

bold: 

𝑃(𝑋𝑗𝑖 = 1|𝜶) =  
exp(𝛌𝒊𝟎+λ𝑖1𝛼1+ λ𝑖2𝛼2+λ𝑖12𝛼1𝛼2) 

1+exp(𝛌𝒊𝟎+λ𝑖1𝛼1+ λ𝑖2𝛼2+λ𝑖12𝛼1𝛼2)
. (3.9) 
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For the pilot simulated data, it was determined that freeing item intercepts or thresholds 

was a means of successfully recovering items that were simulated to be non-invariant regardless 

of the type of non-invariance (intercept or main effect). Based on this outcome, it may be worth 

further investigation to determine which parameters, main effects or intercepts, should be 

investigated for non-invariance first. 

As previously mentioned during the discussion of invariance testing for IRT, the analysis 

of item residuals does not apply to the LCDM because the distribution of error is assumed. 

Therefore, the investigation of measurement invariance under this protocol would conclude at 

this point. 

Table 3.1 at the end of this chapter reports the differences in invariance testing of the 

LCDM model as compared to IRT and CFA models. Each model is parameterized with the 

parameter of interest at each level indicated in bold. 

Figure 3.2 displays graphs of the logit response functions for four different 

invariance/non-invariance cases for two groups on an item having two attributes.  These graphs 

are like those typically used in ANOVA to investigate interaction terms. Parallel lines mean that 

a significant interaction term is not present. Conversely, a lack of parallel lines in these graphs 

would indicate a significant interaction term for the LCDM. The All Parameters Invariant graph 

demonstrates the same logit values for both groups when all parameters are equal, and no 

interaction is present. For every non-invariant case, the manipulated value was in Group 2. The 

non-invariant intercept in the upper right graph resulted in changes for both attribute 1 and 

attribute 2 logit values in Group 2 (shifted up one unit). The non-invariant main effect for 

attribute 1 shown in the lower left graph, increased the logit values by one unit when attribute 1 
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is present. Finally, the graph of the non-invariant interaction term is reflected in the lower right 

graph and results in non-parallel logit functions for Group 2.  

 

Figure 3.2 Logit response functions for different degrees of invariance under the LCDM 

 

The graphs reflect the impact that various sources of non-invariance have on logit values 

(and subsequent probabilities) in the LCDM.  

Study Design 

To verify the best approach for establishing measurement invariance for the LCDM, a 

series of larger scale simulations must be performed. Because an initial simulation or pilot study 

of non-invariant LCDM data indicated discrepancies between what is considered best practice 

for CFA invariance testing and what may be necessary for best practice for measurement 
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invariance testing of the LCDM, the proposed simulation is designed to assess the efficacy of 

measurement invariance procedures using likelihood ratio tests to determine the fit of item 

parameters via a series nested model comparisons. 

Data Generation 

The proposed simulation involves generation of data to represent a twelve-item test taken 

by 2,500 respondents. The test will assess the mastery/non-mastery of three attributes where 

𝜶𝑒 = [𝛼𝑒1, 𝛼𝑒2, 𝛼𝑒3]𝑇 with no item measuring more than two attributes simultaneously. The

resulting q-matrix will represent six unique item types. A test length of twelve items is adequate 

for the purposes of this study as it allows for the desired item-type diversity while remaining 

manageable for the desired number of replications. The balanced Q-matrix shown in Table 3.2 is 

a pattern matrix containing two of each of the six unique item types resulting in the 12-item test. 

The eight unique membership classes resulting from this q-matrix are shown in Table 4. 

Sample sizes of at least 1,000 subjects are considered large enough for reliable 

application of likelihood ratio tests for nested model comparisons (e.g., Li, 2008); therefore, a 

total sample size of 2,500 respondents is used for this study. Two hypothetical groups, each 

containing 1,250 responses, will be simulated where 𝐺𝑒 = 1 for group 1 and 𝐺𝑒 = 0 for group 2. 

Two items were simulated to have DIF, one item measuring attribute 1 and the other item 

measuring both attributes 2 & 3. 

The model for an item measuring attribute 1 may be written as follows, 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑋𝑒𝑖 = 1|𝛼𝑒1)) = (𝜆𝑖,0 + 𝜆𝑖,0,𝑔𝐺𝑒) + (𝜆𝑖,1,(1)𝛼𝑒1 + 𝜆𝑖,1,(1),𝑔𝛼𝑒1𝐺𝑒). (3.10) 
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The model for an item measuring attributes 2 & 3 simultaneously may be written as follows, 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑋𝑒𝑖 = 1|𝛼𝑒2, 𝛼𝑒3)) = (𝜆𝑖,0 + 𝜆𝑖,0,𝑔𝐺𝑒) + (𝜆𝑖,1,(2)𝛼𝑒2 + 𝜆𝑖,1,(2)𝛼𝑒2𝐺𝑒) +

(𝜆𝑖,1,(3),𝑔𝛼𝑒3 + 𝜆𝑖,1,(3),𝑔𝛼𝑒3𝐺𝑒) + (𝜆𝑖,2,(2,3)𝛼𝑒2𝛼𝑒3 +  𝜆𝑖,2,(2,3),𝑔𝛼𝑒2𝛼𝑒3𝐺𝑒). 

(3.11) 

Item parameters were simulated for each group in the study using a uniform distribution. The 

distribution for item intercepts in Group 2 will take the following range of values, 

𝜆𝑖,0 ∼ 𝑈(−2, .5). (3.12) 

Because data were simulated to represent two groups, and the potential and magnitude for 

DIF will be allowed to vary, the item intercept differences between Group 2 and Group 1 may 

take any of the following range of values in a Uniform cumulative distribution function, 

𝜆𝑖,0,𝑔 ∼ {
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . 5 

𝑈(−1,1) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . 5 
(3.13) 

Item main effects for Group 2 were simulated using a uniform distribution taking the following 

range of values,  

𝜆𝑖,1,(𝑎) ∼ 𝑈(. 5,2). (3.14) 

The differences for item main effects between Group2 and Group 1 was also be allowed to vary 

in magnitude and may take the following range of values under the cumulative distribution 

function: 

𝜆𝑖,1,(𝑎) ∼  {
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . 5

𝑈(−1,1) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . 5
(3.15) 

Item interactions for Group 2 were simulated using the following uniform distribution, 

𝜆𝑖,2,(𝑎,𝑎′) ∼ 𝑈(−.75, .75). (3.16) 

. 

. 



41 

 

Item interactions differences between Group2 and Group 1 were simulated using the following 

Uniform cumulative distribution function,  

 𝜆𝑖,2,(𝑎,𝑎′) ∼  {
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . 5

𝑈(−.5, .5) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . 5
 (3.17) 

The structural model below indicates the probability function for data having three 

attributes. The simulated structural model ensured that attributes had a bivariate tetrachoric 

correlation around .5, which is within the range typically used in DCM-related studies. Group 

differences are modeled for attribute three and the interaction between attributes one and two, 

 

log(𝑃(𝜶𝑒)) = 𝛾1,(1)𝛼𝑒1 + 𝛾1,(2)𝛼𝑒2 + (𝛾1,(3)𝛼𝑒3 + 𝛾1,(3),𝑔𝛼𝑒3𝐺𝑒) +

(𝛾2,(1,2)𝛼𝑒1𝛼𝑒2 + 𝛾2,(1,2),𝑔𝛼𝑒1𝛼𝑒2𝐺𝑒) + 𝛾2,(1,3)𝛼𝑒1𝛼𝑒3 + 𝛾2,(2,3)𝛼𝑒2𝛼𝑒3.. 

(3.18) 

For each replication in the study, the following uniform distribution was used for structural main 

effects in Group 2,  

 𝛾1,(𝑎) ∼ 𝑈(−1.1, −0.9). (3.19) 

The differences between Group 2 and Group 1 for the structural main effects were simulated 

using the following uniform distribution function,  

 𝛾1,(𝑎),𝑔 ∼  {
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . 5

𝑈(−.25, .25) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . 5
 (3.20) 

The structural interaction for Group 2 was simulated using the following distribution,  

 𝛾2,(𝑎,𝑎′) ∼ 𝑈(0.9,1.1) (3.21) 

The differences between Group 2 and Group 1 for the structural interaction terms were simulated 

according to the following distribution function,  

 𝛾2,(𝑎,𝑎′),𝑔 ∼  {
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . 5

𝑈(−.25, .25) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 . 5
 (3.22) 

. 

  

. 

 

1 

. 
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Data were generated using a base R program according to the above specifications and 

were assessed under four unique comparison conditions via Mplus. These comparisons are 

designed to identify different instances of DIF as they may occur in the LCDM (e.g. structural 

and item-level) as well as the efficacy of log-likelihood ratio tests for the identification of DIF.  

First, data were analyzed using the free baseline approach in which all parameters are 

allowed to vary across groups. This method should yield the best fit for simulated data and will 

be the comparison or control set for each of the subsequent models. Data were also analyzed 

under a fully constrained condition in which both structural and item level parameters are held 

constant across groups. A third condition for analysis was an item-level constrained case in 

which the structural parameters were allowed to vary across groups, but item level parameters 

were held constant. Finally, the fourth analysis condition was a “best case scenario” in which the 

data were analyzed in accordance with their simulated structure in a partial-item invariant model; 

items that were simulated to have DIF were allowed to vary across groups while other items 

were constrained. 

The first comparison set was between the fit of the free baseline model and the fully 

constrained model that does not allow structural or item-level parameters to vary across groups. 

Success is quantified as the proportion of times the likelihood ratio test statistics correctly 

indicates a poorer fit for the constrained model due to the presence of DIF. The second condition 

for comparison is the assessment of the change in model fit between the free baseline model and 

a partially constrained model in which the structural parameters are freely estimated, but the 

item-level parameters are constrained or held equal across groups. Again, success is defined as a 

statistically significantly poorer likelihood ratio test statistic for instances in which a parameter 

was simulated to have DIF. The third model comparison is made between the fully estimated 
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model and the partially item invariant model in which only the DIF items are allowed to vary 

across groups. It is expected that the fully constrained model will always have a poorer fit than 

the partially constrained model when DIF is present in some form. The question is whether the 

degradation in fit reaches a statistically significant level. Finally, the impact of DIF at the 

structural level is analyzed by comparing the fit statistics of the fully constrained model versus a 

freely estimated structural model.  

Power & Type I Error 

Power is defined as the proportion of times where the model comparisons correctly 

identify the presence of DIF (i.e. hit rate) between item parameters in Group 1 and Group 2 when 

DIF is truly present. For these data, if no DIF is present, but the likelihood ratio tests indicate 

DIF (i.e. false positive), then Type I error has occurred. However, if there was truly DIF present, 

but the likelihood ratio tests did not show it, then that counts against power (Type II error).  

Because the true model parameters can vary, the magnitude of DIF will vary across items 

and replications. Therefore, in addition to the identification of Power and Type I error, these data 

allow for the exploration of the impact effect size or the relative magnitude of DIF has on 

accurate identification of item parameter differences.  

Providing evidence in support of an amended protocol for investigating measurement 

invariance with the LCDM via simulation study is the primary task addressed by this research. 

Once complete, the same procedures were applied using an existing dataset. Specifically, the 

procedure that is identified as most appropriate for the LCDM via the simulation was then 

implemented with this existing data.  
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Real World Application: Kansas MTSS DCM Pilot 

In early 2018, the Kansas Multi-Tier Systems of Support group (MTSS) conducted a pilot 

study of a novel assessment system geared toward providing real-time feedback to students 

regarding their mastery status on a set of state standards. The pilot study was officially 

commissioned in January of 2018, with assessments being delivered to students during the last 

week of February and the first week of March. Assessments were delivered by MasteryConnect 

LLC, an educational technology company.  

The purpose of the pilot was to provide a proof-of-concept test for a series of assessments 

designed to aid MTSS in progress monitoring at-risk students throughout an academic year. 

Current curriculum-based measures provide information that is either too far removed from the 

formative process (i.e., a math score that does not provide insight into where students need help) 

or provide sub-scores that are so highly correlated they likely come from an assessment 

calibrated using a single unidimensional psychometric model (where any differences in scores 

likely represent measurement error). 

The Sample 

Two Kansas school districts volunteered to participate in the pilot: Wichita (Unified 

School District 259) and Olathe (Unified School District 233). Districts picked the schools where 

the pilot was to be administered. Olathe had 12 participating schools (eight elementary, two 

middle, and two high schools). Wichita had nine participating schools (six elementary, one 

middle, and two high schools). 

The assessments of the pilot were engineered to provide multidimensional information 

for each student rather than a single summary score on a broad content domain. As such, four 

sets of standards from the 2017 Kansas College and Career Ready Standards were chosen for 



45 

assessment, two from English Language Arts (Strands ELA1 and ELA2) and two from 

Mathematics (Strands Math1 and Math2). 

To demonstrate DIF methods using the LCDM, this study used Mathematics standard 

3.OA.3, which is described as:

3. Use multiplication and division within 100 to solve word problems in situations involving

equal groups, arrays, and measurement quantities, (e.g. by using drawings and equations 

with a symbol for the unknown number to represent the problem.) 

Items used in the assessments came from either MTSS staff or the Navigate Item Bank, 

as provided by Certica Solutions. The Navigate Item Bank was initially developed by the 

Educational Testing Service. It was purchased by NWEA (Northwest Evaluation Association) 

and used in formative assessments. Items have undergone extensive alignment studies and 

content checks throughout the existence of the item bank. 

All items were delivered by MasteryConnect using either interview, pencil-and-paper, or 

electronic delivery methods. Assessments at grades Pre-K, K, 1, and 2 were given via interview 

where proctors read questions aloud and recorded student responses. All items were multiple 

choice format and administered in the Wichita School District using the electronic 

MasteryConnect online platform. Assessments administered in the Olathe School District were 

delivered using pencil-and-paper bubble sheets and scored by MasteryConnect’s GradeCam 

optical character recognition software. Olathe’s assessments were administered offline for two 

reasons: (1) to provide a fail-safe method for obtaining data should any technological issues 

occur in Wichita, and, (2) due to Olathe’s formative assessment schedule having students take 

assessments from other vendors online at the time of the pilot, thereby limiting bandwidth for 
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online access. Responses were scored correct/incorrect, and all missing responses were scored as 

incorrect. 

In each grade level, two forms per subject area (ELA and Math) were created, called 

Form A and Form B. Each form was comprised of between three and five standards from each of 

the two content area strands, for a total of between six to ten standards assessed simultaneously. 

At the core of each form were the two on-grade standards from each strand, each assessed with 

five items. Then, depending on grade, up to four off-grade standards, with standards from two 

other grade levels, above or below being assessed. Pre-Kindergarten forms had standards from K 

and 1st grade for each strand (6 total), Kindergarten forms had standards from Pre-Kindergarten, 

1st, and 2nd grades (8 standards in total), forms for 1st through 10th grade had two standards 

above/below grade level (10 total), 11th grade forms had standards from 9th, 10th, and 12th 

grades (8 standards in total), and 12th grade forms had standards from 10th and 11th grade (6 

standards in total). 

Sample Assessment 

Each form contained five items per on-grade standard and two items per off-grade 

standard (for a total of 22, 24, or 26 items per form, depending on grade). A common item design 

was employed to link Forms A and B. For each on-grade standard, one item was chosen to 

appear on both forms. For each off-grade standard a separate item was chosen to appear on both 

forms. This design ensured standards were linked not just across forms, but also across grade 

levels through a spiral linking design.  

Conclusion 

This dissertation discusses a method of invariance testing via likelihood ratio tests of 

nested model comparisons and specifies how this method is applied to both CFA invariance 
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testing procedures and IRT DIF detection procedures. Likelihood ratio tests have also been 

proposed as a means of investigating non-invariance in the LCDM, and an outline for how this 

may be implemented has been described. 

A definitive invariance testing protocol for the LCDM has yet to be defined. Therefore, it 

is a primary purpose of this study to provide evidence in support of specific invariance testing 

procedures for the LCDM. This study aims to determine the most effective method for 

identifying non-invariance in the LCDM by exploring different conditions or types of non-

invariance as well as differing degrees or effect sizes of non-invariance. Non-invariance may 

occur in any item parameter type (intercept, main effect, or interaction) or structural parameter 

(main effect and interaction).   

 The results of this study will make a novel and important contribution to the LCDM and 

invariance testing literature. Not only will this investigation result in the provision of a practical 

guide for invariance testing procedures with the LCDM but it will yield information regarding 

the power and therefore the utility of this method for detecting differing types and magnitudes of 

non-invariance. 
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Table 3.1 

Summary of Invariance Procedures for IRT, CFA, and the LCDM 

Invariance 

Steps 
Theoretical 

Description 

Item Response 

Theory (MIRT) 

Confirmatory Factor 

Analysis 
Log-linear Cognitive Diagnostic Model 

Measurement 

Model 

Configural 

Invariance 

Baseline fit in 

which all factors 

are freely estimated 

𝑃(𝑋𝑖𝑗 = 1|𝜃𝑗)

=  
eλ𝑖0+ ∑ λ𝑖1𝑎 𝜃𝑗𝑎

1 + eλ𝑖0+ ∑ λ𝑖1𝑎 𝜃𝑗𝑎

, 

𝑋𝑖𝑔 = 𝜇𝑖𝑔 + 𝜆𝑖𝑔𝜉 + 𝛿𝑖𝑔 𝑃(𝑋𝑗𝑖 = 1|𝜶) =  
exp(λ𝑖0+λ𝑖1𝛼1+ λ𝑖2𝛼2+λ𝑖12𝛼1𝛼2) 

1+exp(λ𝑖0+λ𝑖1𝛼1+ λ𝑖2𝛼2+λ𝑖12𝛼1𝛼2)
, 

Metric 

Invariance 

Item factor loadings 

are fixed to be 

invariant. This 

describes intercepts 

as well as slopes for 

IRT 

𝑃(𝑋𝑖𝑗 = 1|𝜃𝑗)

=
e𝛌𝒊𝟎+ ∑ 𝛌𝒊𝟏𝒂 𝜃𝑗𝑎

1 + e𝛌𝒊𝟎+ ∑ 𝛌𝒊𝟏𝒂 𝜃𝑗𝑎

, 

𝑋𝑖𝑔 = 𝜇𝑖𝑔 + 𝝀𝑖𝑔𝜉 + 𝛿𝑖𝑔 𝑃(𝑋𝑗𝑖 = 1|𝜶) =  
exp(λ𝑖0+𝛌𝒊𝟏𝛼1+ 𝛌𝒊𝟐𝛼2+λ𝑖12𝛼1𝛼2) 

1+exp(λ𝑖0+𝛌𝒊𝟏𝛼1+ 𝛌𝒊𝟐𝛼2+λ𝑖12𝛼1𝛼2)
, 

Scalar 

Invariance 

Item intercepts are 

fixed to be invariant 

NA 𝑋𝑖𝑔 = 𝝁𝑖𝑔 + 𝜆𝑖𝑔𝜉 + 𝛿𝑖𝑔 𝑃(𝑋𝑗𝑖 = 1|𝜶) =  
exp(𝛌𝒊𝟎+λ𝑖1𝛼1+ λ𝑖2𝛼2+λ𝑖12𝛼1𝛼2) 

1+exp(𝛌𝒊𝟎+λ𝑖1𝛼1+ λ𝑖2𝛼2+λ𝑖12𝛼1𝛼2)
, 

Residual 

Invariance 

Item residuals are 

fixed to be invariant 

NA 𝑋𝑖𝑔 = 𝜇𝑖𝑔 + 𝜆𝑖𝑔𝜉 + 𝜹𝑖𝑔 NA 
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Table 3.2 

Q-matrix for 3 Attribute, 12 Item Test 

Item Attribute 1 Attribute 2 Attribute 3 

1 1 0 0 

2 0 1 0 

3 0 0 1 

4 1 1 0 

5 0 1 1 

6 1 0 1 

7 1 0 0 

8 0 1 0 

9 0 0 1 

10 1 1 0 

11 0 1 1 

12 1 0 1 

Table 3.3 

Attribute Mastery by Class Membership for 3 Attribute, 30 Item Test 

Class Attribute 1 Attribute 2 Attribute 3 

1 0 0 0 

2 0 0 1 

3 0 1 0 

4 0 1 1 

5 1 0 0 

6 1 0 1 

7 1 1 0 

8 1 1 1 
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CHAPTER 4 

SIMULATION STUDY 

Chapter 2 provided a review of item response theory, confirmatory factor analysis, and 

the process by which each of these assesses differential item function (DIF). In Chapter 3, the 

log-linear cognitive diagnosis model was detailed and the need for a standard DIF detection 

methodology was highlighted. Chapter 3 also proposed a simulation design and testing protocol 

for DIF detection under the LCDM. 

The results of this analysis are presented in two sections: In the first portion, the results 

for the simulation study are explored; in the second portion, a real data application is discussed. 

The simulation study includes a detailed discussion of the Differential Item Functioning (DIF) 

detection across four scenarios. Then, the impact of DIF effect size as it pertains to Type I error 

rates and power is discussed. As proposed in Chapter 3, power, Type I error control, and the 

effect size or magnitude of DIF were evaluated across four separate testing conditions in which 

each were allowed to vary randomly. 

Data were simulated to represent two groups of 1250 examinees. Each observation 

consisted of a 12-item test measuring three attributes. The four proposed model conditions were 

successfully simulated and represent the conditions of free baseline estimation, fully constrained 

item and structural parameter estimation, constrained item-level but freely estimated structural 

parameter estimation, and partially constrained item-level parameter estimation where items 

simulated to have DIF could vary across groups but the other items and the structural parameters 

were held equal. 



51 

Table 5 contains the specifications under which each test condition was estimated. These 

constraints were selected so as to limit each parameter to take a realistic set of values for a given 

condition. 

Table 4.1 

Simulation Estimation Constraints 

Estimation Constraints 

Level Intercept Main Effect Interaction 

Structural N/A N/A -1.10 -0.90 0.90 1.10 

Item -2.00 -0.50 0.50 2.00 -0.75 0.75 

The four proposed estimation methods were implemented and assessed to determine the 

most effective means of identifying DIF at the item and structural levels. Model 1, or the free 

baseline approach, allowed all item parameters to be freely estimated and served as the control 

condition. Each of the other models constrained the estimation in some way. Model 2 

constrained all item parameters and structural parameters to be equal across groups. Model 3 

constrained all item parameters to be equal across groups but allowed structural parameters to be 

freely estimated. Model 4 constrained all parameters excepting those known to possess simulated 

DIF. The log-likelihood of the free baseline model was used as the benchmark for comparison 

against each of the subsequent constrained models. Additionally, the log-likelihood of model 3 

was compared to the log-likelihood of model 2 to determine if fit was significantly impacted by 

freely estimating the structural model. 

Rather than assessing each item parameter for DIF in a stepwise fashion as is performed 

in CFA invariance analyses, each parameter was estimated for DIF simultaneously in an omnibus 

test for model fit. 
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Table 4.2 

Simulation Study Model Comparison Description 

 

Comparison Explanation 

Model1 vs Model2 Fully Estimated model vs Fully Constrained model   

Model1 vs Model3 Fully Estimated model vs Structural Model estimated/Items 

Constrained   

Model1 vs Model4 Fully Estimated model vs only DIF elements estimated   

Model2 vs Model3 Fully Constrained model vs Structural Model estimated/Items 

Constrained   

 

Data in model 1 were estimated via the free-baseline method which allows all item 

parameters to be freely estimated. The resulting fit statistic is considered the best fit because no 

elements have been constrained to equality across groups or conditions. For this reason, the fit of 

this model is used for comparison against other more constrained models.  Data in model 2 were 

fully constrained in both the item and structural parameters and should represent a significantly 

poorer fit for models containing simulated DIF.  In model 3, the structural model is freely 

estimated and represents the represents the theoretical condition in which groups differ on the 

construct being measured but not necessarily on the items that purport to measure the construct. 

Model 4 represents the ideal case in which we “know” where the DIF exists and allow these item 

parameters alone to vary. Table 4.3 contains the count of valid observations for each model. 

Table 4.3 

Parameter Estimate N 

 

Model N Valid Analyses 

Model 1 495 

Model 2 898 

Model 3 641 

Model 4 766 
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Table 4.4 

Simulation Study Model Comparison Results 

Comparisons 

N 

Comparisons 

Type 1 

Type 1 

p05 

Type 1 

p01 

N 

Comparisons 

Type 2 

Type 2 

p05 

Type 2 

p01 

Model 1 vs. Model 2 5 .400 .200 457 0.123 0.204 

Model 1 vs. Model 3 87 .000 .000 275 1.000 1.000 

Model 1 vs. Model 4 5 .200 .200 408 0.902 0.980 

Model 2 vs. Model 3 141 .879 .766 454 0.101 0.214 

Table 4.4 presents the overall model comparison results. Type I comparisons were made 

for cases in which no DIF was present and no estimation errors occurred. In line one, Model 1 vs 

Model 2, only five cases met the conditions for Type I error estimation resulting in poor Type I 

error control (α>.05). Type 2 Error/Power analyses included models that contained DIF items 

but were without estimation errors. For Model 1 vs Model 2, this resulted in a much larger 

sample size and better Type 2 Error/Power (1-β >.80). Ideally, the comparison of Model 1 with 

Model 2 should act as a baseline model in omnibus tests for DIF; however, in this simulation, 

Model 1 estimation was fraught with errors and failed to converge much of the time. Further, 

Wald statistics for item parameters with DIF were unobtainable for Model 1. 

Model 1 and Model 3 both allowed for the structural parameters to be freely estimated. 

This model comparison produced very strong Type I error control (α <.05). Conversely, Power 

was extremely low despite sufficient sample size and may reflect the impact of DIF in the 

structural model on the model fit statistics for Model 3 (1-β =0). 

Table 4.4, line 3 shows the results for Model 1 vs Model 4 comparisons. These also 

experienced problems with Type I error due to small sample size (α>.05); however, Type II 
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error/Power rates were also poor for these comparisons (1-β <.20). It is unclear if this is due to 

the manner in which the DIF was simulated or the estimation difficulties in MPlus.  

In the last line of Table 4.4, For Model 2 vs Model 3 comparisons are evaluated. The 

Type I error was extremely poor for these tests (α>.50) which highlights the impact of a freely 

estimated structural model. Conversely, Power/Type II error rates were much better for these 

comparisons (1-β >.80).  

Table 4.5 

Model 1 vs Model 2 Type II Error by Number of DIF Parameters 

N DIF Parameters 

N Comparisons 

Type 2 Type 2 p05 Type 2 p01 

1 19 .368 .684 

2 54 .148 .278 

3 106 .142 .189 

4 113 .088 .177 

5 97 .113 .155 

6 52 .058 .154 

7 15 .133 .133 

8 1 .000 .000 

 

Table 4.5 contains the Type II error rates by the number of DIF parameters in each 

replication. For Model 1 vs Model 2, as the number of DIF parameters increases, the probability 

of Type II error decreases. The DIF break-out captures one aspect of effect size for DIF 

indicating that the greater the DIF, the more powerful the omnibus test to accurately detect it.   

The simulated conditions in model 3 allowed for the structural parameters to be freely 

estimated across groups. Because DIF was simulated to randomly occur for the main effect for 

attribute 3 as well as the interaction between main effect 1 and 2 at the structural level, the fit of 

this model was compared to that of the free baseline model to determine if DIF at the structural 

level would negatively impact the overall model fit. This simulation also allowed magnitude of 
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DIF to vary across observations. Log likelihood comparison tests between model 3 and the free-

baseline model were performed in order to determine if a statistically significant decline in 

overall model fit occurred for model 3 cases in which DIF was present at the structural level. 

Table 4.6 

Model 1 vs Model 3 Error Rates by Number of DIF Item Parameters 

N DIF Item 

Parameters 

N 

Comparisons 

Type 1 Type 1 p05 Type 1 p01 

N 

Comparisons 

Type 2 

Type 2 

p05 

Type 2 

p01 

0 5 .000 .000 7 1.000 1.000 

1 10 .000 .000 23 1.000 1.000 

2 27 .000 .000 64 1.000 1.000 

3 22 .000 .000 94 1.000 1.000 

4 19 .000 .000 60 1.000 1.000 

5 4 .000 .000 24 1.000 1.000 

6 1 .000 .000 3 1.000 1.000 

In Table 4.6, the Type I and Type II error rates are reported for the Model 1 vs Model 3 

comparison. Type I error represents the case in which no DIF was present for structural 

parameters, but DIF may have been present in the item parameters. Type II error represents that 

case in which DIF is present in the structural parameters and also may be present at the item 

level. 

Regardless of the number of item parameters containing DIF, the fully estimated model 

was consistently preferred to the constrained model (Type I error). Conversely, Type II error 

rate/Power was poor for this comparison. Because the items in Model 3 were all constrained, 

when DIF was present, it manifested in the freely estimated structural model and produced 

significant differences between Model 1 and Model 3 fit statistics. Model 1 was favored in every 

comparison indicating the impact of constraining DIF items on overall model fit.  The lack of 

power in this case is likely due to small DIF effect size in the structural parameters. 
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Table 4.7  

Model 1 vs Model 4 Type II Error by Number of DIF Parameters 

N DIF Parameters N Comparisons Type 2 Type 2 p05 Type 2 p01 

1 17 0.941 1.000 

2 46 0.913 0.978 

3 97 0.887 0.979 

4 100 0.910 0.960 

5 89 0.876 0.989 

6 47 0.936 1.000 

7 11 0.909 1.000 

8 1 1.000 1.000 

 

Table 4.7 highlights the Type II error rates by number of DIF parameters for the Model 1 

vs Model 4 comparisons. This comparison contended with small sample size issues due to 

estimation errors in Model 1. Ultimately, these results indicate that the omnibus test does not 

work well for this type of model comparison, even when the DIF parameters are known and 

freely estimated as in Model 4. A better test for DIF in Model 4 turned out to be the Wald test for 

item parameter differences. Difference parameters were calculated in Model 4, and these results 

were then evaluated using the Wald statistic. Table 4.8 shows the results for the individual DIF 

parameters in the item and structural models.  

Table 4.8  

Error Rates: Parameter Estimates with DIF 

Model Part Parameter 

Type 

Item Affected 

Attributes 

Type1 p05 Type1 p01 Type2 p05 Type2 p01 

Structural  Main Effect N/A 3 .08 .03 .33 .44 

Structural Interaction N/A 1 & 2 .04 .01 .44 .48 

Measurement Intercept 5 N/A .02 .00 .32 .41 

Measurement Main Effect 5 2 .02 .01 .42 .45 

Measurement Main Effect 5 3 .03 .01 .41 .45 

Measurement Interaction 5 2 & 3 .04 .02 .49 .51 

Measurement Intercept 7 N/A .01 .00 .23 .29 

Measurement Main Effect 7 1 .03 .01 .32 .40 
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When the individual parameters are evaluated for DIF, the Type I and Type II error rates 

are much better. These results further support the finding that the omnibus test for DIF may not 

be the best method for DIF detection via MPlus. It is worth noting that DIF effect sizes for 

interaction terms were the smallest and this appears to manifest in the Type II error rates for 

these parameters. 

Table 4.9 

Model 2 vs Model 3 Error Rates by Number of DIF Item Parameters 

N DIF Item 

Parameters 

N 

Comparisons 

Type 1 

Type 1 

p05 

Type 1 

p01 

N 

Comparisons 

Type 2 

Type 2 

p05 

Type 2 

p01 

0 8 0.875 0.750 8 .250 .500 

1 16 0.813 0.750 39 .051 .282 

2 38 0.868 0.737 114 .096 .228 

3 34 0.853 0.706 154 .091 .195 

4 32 0.938 0.844 91 .143 .231 

5 10 1.000 1.000 42 .071 .095 

6 3 0.667 0.333 6 .167 .167 

Table 4.9 contains the Type I and Type II error rates by DIF parameter for the Model 2 vs 

Model 3 comparisons. Despite small samples sizes for Type I error, this table captures the impact 

of freeing the structural model across all levels of DIF. As the number of DIF items increased, 

the model with more estimated parameters was favored. Model 3 is favored when there is more 

DIF present in the items which suggests that not controlling for item level DIF results in larger 

differences in the structural model. 

Impact of DIF on Classification Rates 

Classification rates and percent reduction in error estimates (Cohen’s Kappa) for each of 

the attributes are shown in Tables 4.10 – 4.15. The classification rates are consistently strong 

across models and for increasing numbers of DIF parameters. This suggests that the magnitude 
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of simulated DIF was not large because it did not yield poorer classification. Cohen’s Kappa 

statistics show moderate to strong agreement for attribute classification.  The only exception to 

this may be for Model 2. Across attributes, the proportion of correct attribute classification was 

slightly smaller than for the other models. This is likely due to the high degree of 

misspecification (e.g. fully constrained model estimation) whenever DIF was present. 

Pattern classification rates and Cohen’s Kappa are shown in Tables 4.16 and 4.17. While 

pattern classification was consistent across all models and for each level of DIF, it was lower for 

Model 2. Cohen’s Kappa statistic showed fair to moderate agreement for pattern classifications 

and showed some decline as instances of DIF increased. 

Table 4.10 

Attribute 1 Classification Rates by DIF Count 

Model All 

All 

SE 0 SE 0 1 SE 1 2 SE 2 3 SE 3 

Model 1 0.792 0.036 0.776 0.032 0.802 0.033 0.800 0.036 0.791 0.034 

Model 2 0.785 0.042 0.785 0.036 0.795 0.043 0.794 0.034 0.786 0.040 

Model 3 0.789 0.043 0.791 0.031 0.805 0.036 0.794 0.037 0.792 0.039 

Model 4 0.793 0.035 0.776 0.008 0.796 0.036 0.801 0.031 0.795 0.033 

Model 4 SE 4 5 SE 5 6 SE 6 7 SE 7 8 SE 8 

Model 1 0.788 0.039 0.793 0.035 0.788 0.038 0.791 0.037 0.823 NA 

Model 2 0.782 0.041 0.788 0.043 0.779 0.049 0.775 0.050 0.810 0.008 

Model 3 0.789 0.043 0.792 0.038 0.778 0.055 0.773 0.063 0.754 0.078 

Model 4 0.788 0.038 0.797 0.033 0.790 0.039 0.788 0.038 0.772 0.035 
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Table 4.11 

Attribute 1 Kappa Statistic 

Model All 

All 

SE 0 SE 0 1 SE 1 2 SE 2 3 SE 3 

Model 1 0.582 0.073 0.551 0.063 0.603 0.068 0.598 0.071 0.581 0.069 

Model 2 0.571 0.083 0.570 0.070 0.589 0.085 0.587 0.068 0.572 0.079 

Model 3 0.577 0.086 0.581 0.062 0.610 0.073 0.587 0.074 0.582 0.078 

Model 4 0.585 0.071 0.553 0.014 0.591 0.073 0.602 0.061 0.588 0.066 

 

Model 4 SE 4 5 SE 5 6 SE 6 7 SE 7 8 SE 8 

Model 1 0.574 0.078 0.585 0.070 0.576 0.077 0.583 0.074 0.645 NA 

Model 2 0.563 0.081 0.576 0.085 0.557 0.100 0.549 0.101 0.619 0.016 

Model 3 0.576 0.087 0.582 0.075 0.555 0.110 0.545 0.125 0.507 0.155 

Model 4 0.574 0.078 0.592 0.067 0.579 0.077 0.576 0.076 0.544 0.072 

 

 

 

 

Table 4.12 

Attribute 2 Classification Rates by DIF Count 

Model All 

All 

SE 0 SE 0 1 SE 1 2 SE 2 3 SE 3 

Model 1 0.794 0.033 0.803 0.029 0.797 0.042 0.792 0.031 0.794 0.033 

Model 2 0.789 0.037 0.801 0.020 0.793 0.040 0.788 0.037 0.789 0.037 

Model 3 0.794 0.035 0.810 0.023 0.801 0.032 0.793 0.036 0.799 0.031 

Model 4 0.796 0.034 0.803 0.027 0.803 0.030 0.793 0.034 0.796 0.037 

 

Model 4 SE 4 5 SE 5 6 SE 6 7 SE 7 8 SE 8 

Model 1 0.794 0.033 0.797 0.032 0.787 0.039 0.795 0.031 0.790 NA 

Model 2 0.789 0.037 0.788 0.038 0.786 0.036 0.792 0.038 0.792 0.018 

Model 3 0.794 0.034 0.792 0.037 0.789 0.036 0.786 0.040 0.801 0.001 

Model 4 0.795 0.033 0.796 0.033 0.794 0.033 0.800 0.035 0.788 0.003 
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Table 4.13 

Attribute 2 Kappa Statistic 

Model All 

All 

SE 0 SE 0 1 SE 1 2 SE 2 3 SE 3 

Model 1 0.586 0.067 0.606 0.059 0.593 0.084 0.584 0.062 0.587 0.066 

Model 2 0.577 0.073 0.602 0.040 0.584 0.081 0.576 0.073 0.578 0.073 

Model 3 0.587 0.069 0.619 0.046 0.601 0.065 0.585 0.071 0.598 0.062 

Model 4 0.590 0.067 0.604 0.054 0.605 0.061 0.585 0.067 0.591 0.072 

Model 4 SE 4 5 SE 5 6 SE 6 7 SE 7 8 SE 8 

Model 1 0.586 0.066 0.593 0.064 0.573 0.077 0.590 0.062 0.579 NA 

Model 2 0.577 0.074 0.576 0.075 0.573 0.071 0.584 0.074 0.585 0.034 

Model 3 0.586 0.067 0.583 0.075 0.577 0.074 0.572 0.080 0.597 0.004 

Model 4 0.589 0.066 0.591 0.066 0.586 0.067 0.597 0.071 0.573 0.004 

Table 4.14 

Attribute 3 Classification Rates by DIF Count 

Model All 

All 

SE 0 SE 0 1 SE 1 2 SE 2 3 SE 3 

Model 1 0.792 0.035 0.778 0.025 0.790 0.038 0.793 0.035 0.794 0.036 

Model 2 0.786 0.039 0.788 0.018 0.780 0.048 0.791 0.031 0.787 0.039 

Model 3 0.794 0.036 0.791 0.015 0.792 0.034 0.794 0.031 0.795 0.036 

Model 4 0.796 0.035 0.795 0.024 0.783 0.038 0.798 0.028 0.795 0.036 

Model 4 SE 4 5 SE 5 6 SE 6 7 SE 7 8 SE 8 

Model 1 0.792 0.035 0.790 0.033 0.798 0.033 0.786 0.040 0.839 NA 

Model 2 0.787 0.039 0.783 0.042 0.791 0.041 0.775 0.042 0.812 0.042 

Model 3 0.797 0.037 0.789 0.036 0.798 0.036 0.775 0.058 0.819 0.034 

Model 4 0.796 0.036 0.796 0.031 0.800 0.035 0.781 0.044 0.785 0.008 
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Table 4.15 

Attribute 3 Kappa Statistic 

Model All 

All 

SE 0 SE 0 1 SE 1 2 SE 2 3 SE 3 

Model 1 0.583 0.070 0.555 0.050 0.578 0.076 0.583 0.071 0.585 0.072 

Model 2 0.573 0.077 0.576 0.035 0.561 0.093 0.582 0.062 0.574 0.076 

Model 3 0.586 0.073 0.582 0.030 0.584 0.066 0.585 0.063 0.588 0.072 

Model 4 0.589 0.069 0.590 0.048 0.564 0.076 0.595 0.057 0.589 0.071 

Model 4 SE 4 5 SE 5 6 SE 6 7 SE 7 8 SE 8 

Model 1 0.583 0.071 0.577 0.066 0.592 0.066 0.572 0.079 0.677 NA 

Model 2 0.574 0.076 0.567 0.080 0.582 0.080 0.551 0.081 0.623 0.086 

Model 3 0.591 0.075 0.576 0.072 0.594 0.073 0.549 0.109 0.638 0.068 

Model 4 0.589 0.072 0.590 0.062 0.598 0.071 0.557 0.090 0.571 0.015 

Table 4.16 

Pattern Classification Rate 

Model All 

All 

SE 0 SE 0 1 SE 1 2 SE 2 3 SE 3 

Model 1 0.506 0.038 0.499 0.031 0.509 0.037 0.512 0.037 0.506 0.042 

Model 2 0.483 0.071 0.509 0.027 0.491 0.063 0.500 0.052 0.486 0.070 

Model 3 0.505 0.049 0.520 0.018 0.520 0.033 0.506 0.056 0.513 0.044 

Model 4 0.511 0.041 0.508 0.013 0.504 0.055 0.517 0.037 0.514 0.039 

Model 4 SE 4 5 SE 5 6 SE 6 7 SE 7 8 SE 8 

Model 1 0.503 0.037 0.507 0.034 0.501 0.043 0.504 0.027 0.556 NA 

Model 2 0.477 0.077 0.480 0.071 0.475 0.082 0.470 0.065 0.529 0.040 

Model 3 0.504 0.052 0.499 0.051 0.500 0.045 0.479 0.044 0.499 0.086 

Model 4 0.508 0.041 0.512 0.042 0.514 0.036 0.492 0.055 0.497 0.024 
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Table 4.17 

Pattern Kappa Rate 

Model All 

All 

SE 0 SE 0 1 SE 1 2 SE 2 3 SE 3 

Model 1 0.394 0.041 0.375 0.042 0.372 0.048 0.388 0.048 0.401 0.039 

Model 2 0.400 0.038 0.407 0.040 0.408 0.010 0.408 0.062 0.401 0.042 

Model 3 0.402 0.037 0.414 0.016 0.372 NA 0.411 0.056 0.402 0.042 

Model 4 0.409 0.040 0.416 0.019 0.401 0.036 0.405 0.042 0.406 0.045 

 

Model 4 SE 4 5 SE 5 6 SE 6 7 SE 7 8 SE 8 

Model 1 0.376 0.040 0.410 0.040 0.413 0.030 0.387 0.038 NA NA 

Model 2 0.395 0.020 0.403 0.038 0.410 0.032 0.368 0.030 NA NA 

Model 3 0.396 0.019 0.402 0.034 0.414 0.033 0.348 NA 0.323 NA 

Model 4 0.398 0.033 0.425 0.039 0.429 0.021 0.356 0.012 NA NA 

 

 

Item Parameter Estimation 

Table 4.18 contains the average item parameter estimates and standard errors both with 

and without DIF for each of the four models. Table 4.19 contains the RMSE for these parameter 

estimates indicating the variability across replications. For Model 1, in which all parameters 

were freely estimated, the interaction parameter estimates were highly varied with diverse 

standard errors and large RMSE indicating a high degree of variability in this parameter estimate 

across replications. Intercept and main effect estimates for Model 1 cases without DIF show little 

similarity with other models; however, when DIF is present, Model 1 and Model 4 intercept, 

main effect and interaction term estimates are fairly similar which is what we would expect for 

these conditions.  

In Model 2, all items and the structural model were held equal across groups, this level of 

constraint resulted in parameter estimates that look unlike any other model for both DIF and no 

DIF conditions. Similarly, for Model 3 in which item parameters were held constant but the 
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structural model was freely estimated across groups, we see parameter estimates that do not 

resemble other model parameter estimates. 

Structural Parameter Estimation 

Table 4.20 contains the structural parameter estimates for each model separated by DIF 

and no DIF parameters. Table 4.21 contains the RMSE for the structural parameters indicating 

the degree of variability across replications. As expected, models in which the structural portion 

of the model was freely estimated across groups show similar parameter estimates. This is 

particularly true for the DIF cases. Model 2, the only model which constrained the structural 

parameters to be equal across groups, is meaningfully different from the other models. 

 

Table 4.18 

Item Parameter Estimate Bias 

Model 

Intercept 

No DIF 

SE 

Intercept 

No DIF 

Main 

Effect No 

DIF 

SE Main 

Effect No 

DIF 

Interaction 

No DIF 

SE 

Interaction 

No DIF 

Model 1 -0.034 0.092 0.060 0.114 0.601 4.179 

Model 2 -0.064 0.102 0.021 0.136 0.131 0.488 

Model 3 0.009 0.083 0.039 0.244 0.130 2.116 

Model 4 -0.012 0.076 0.033 0.103 0.152 2.164 

 

Model 

Intercept 

DIF 

SE 

Intercept 

DIF 

Main 

Effect DIF 

SE Main 

Effect DIF 

Interaction 

DIF 

SE 

Interaction 

DIF 

Model 1 -0.041 0.178 0.056 0.338 0.231 2.220 

Model 2 -0.114 0.683 0.071 0.771 0.282 2.157 

Model 3 -0.058 0.266 0.127 1.681 0.203 1.757 

Model 4 -0.035 0.216 0.053 0.335 0.293 2.525 
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Table 4.19 

Item Parameter Estimate RMSE 

Model 

Intercept 

No DIF 

SE 

Intercept 

No DIF 

Main 

Effect No 

DIF 

SE Main 

Effect No 

DIF 

Interaction 

No DIF 

SE 

Interaction 

No DIF 

Model 1 0.279 0.216 0.527 0.258 2.841 13.109 

Model 2 0.229 0.204 0.406 0.298 0.841 0.943 

Model 3 0.175 0.079 0.446 0.888 1.130 5.067 

Model 4 0.182 0.080 0.371 0.129 1.144 4.990 

Model 

Intercept 

DIF 

SE 

Intercept 

DIF 

Main 

Effect DIF 

SE Main 

Effect DIF 

Interaction 

DIF 

SE 

Interaction 

DIF 

Model 1 0.232 0.172 0.449 0.322 1.154 3.038 

Model 2 0.392 0.658 0.596 0.830 1.043 1.913 

Model 3 0.340 0.213 0.614 1.637 1.003 1.462 

Model 4 0.226 0.252 0.426 0.314 1.253 3.266 

Table 4.20 

Structural Parameter Estimate Bias 

Model Main Effect No 

DIF 

SE Main Effect 

No DIF 

Interaction No 

DIF 

SE Interaction 

No DIF 

Model 1 0.472 0.168 -0.471 0.179 

Model 2 0.306 1.223 -0.174 3.449 

Model 3 0.409 0.412 -0.386 0.633 

Model 4 0.578 0.352 -0.538 0.255 

Model Main Effect 

DIF 

SE Main Effect 

DIF Interaction DIF 

SE Interaction 

DIF 

Model 1 0.573 0.285 -0.500 0.364 

Model 2 0.261 4.339 -0.555 4.845 

Model 3 0.503 0.625 -0.493 0.820 

Model 4 0.572 0.259 -0.611 0.553 
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Table 4.21 

Structural Parameter Estimated RMSE 

Model Main Effect No 

DIF 

SE Main Effect 

No DIF 

Interaction No 

DIF 

SE Interaction 

No DIF 

Model 1 0.979 0.820 1.093 1.076 

Model 2 0.641 2.016 0.859 4.590 

Model 3 1.094 1.592 1.339 1.600 

Model 4 0.976 0.475 1.117 0.580 

 

Model Main Effect 

DIF 

SE Main Effect 

DIF Interaction DIF 

SE Interaction 

DIF 

Model 1 1.129 0.515 1.099 1.549 

Model 2 0.877 4.259 0.812 4.809 

Model 3 1.285 1.645 1.369 2.948 

Model 4 1.085 0.399 1.024 0.671 

 

 

Real Data Analysis 

For the real data analysis, the original five-item assessment was reduced to three so as to 

minimize the impact of MPlus and its instability in estimation. Additionally, three items allows 

for perfect item fit in the free baseline model thereby establishing a solid baseline for model 

comparisons.  

Three models were applied to the real data and evaluated for differences in model fit. 

Table 4.22  reports the model fit statistics for Model 1, the free baseline model, Model 2, the 

fixed item and freely estimated structural model, and Model 3, the fully constrained model. As 

expected, the fully estimated Model 1 shows the best fit for these data. Conversely, Model 3 

shows the poorest fit with Chi-Square Categorical Pearson Value (44.894, 0.00) indicating this 

model does not fit the data at all. 
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Table 4.22 

Real Data: Model Estimates 

 

Model Parameters 

ChiSq 

Categorical 

Pearson 

Value 

ChiSq 

Categorical 

Pearson DF 

ChiSq 

Categorical 

Pearson 

PValue LL 

Free Baseline 15 0 0 1 -1564.068 

Free Structural/ 

Fixed Items 9 4.093 6 0.6641 -1566.13 

Fixed Structural/ 

Fixed Items 8 44.894 7 0 -1587.081 

 

Model AIC BIC aBIC Entropy AICC 

Free Baseline 3158.136 3225.767 3178.141 0.822 3158.8688 

Free Structural/ 

Fixed Items 3150.259 3190.838 3162.263 0.797 3150.5313 

Fixed Structural/ 

Fixed Items 3190.161 3226.232 3200.831 0.777 3190.3785 

 

Table 4.23 contains the results of the log-likelihood ratio model comparison tests. These 

results show Model 2 is not significantly different from Model 1, X2 (6) = 4.124, p= .66; 

however Model 3 is statistically significantly poorer fit than Model 1, X2 (1) = 41.902, p<.001. 

These results indicate the groups do not differ on the items but do possess different levels of 

mastery of the measured attribute because the structural model must vary across groups in order 

for the model to fit the data.  Model 2 is the perfect model for the real data because it’s not 

significantly different from Model 1 but it is significantly different from Model 3. For Model 2, 

the items are fixed yet there is no difference from Model 1 which shows there is no difference 

between groups on the items. The only difference is in the structural model or the proportion of 

masters that are in each group. 
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Table 4.23 

Real Data: Model Comparisons 

Comparison Χ2 df Pvalue 

Free Baseline vs. Fixed Structural/Fixed Items 46.026 7 <.0001 

Free Baseline vs. Free Structural/Fixed Items 4.124 6 .6599 

Free Structural/Fixed Items vs. Fixed Structural/Fixed Items 41.902 1 <.0001 

All parameter estimates for the real data are reported in Table 4.24 and further indicate 

the differences in model fit across conditions. 

Table 4.24 

Real Data: All Parameter Estimates 

Free Baseline Structural Free All Fixed 

Parameter Estimate 
Std 

Error 
Estimate 

Std 

Error 
Estimate 

Std 

Error 

Mean Difference for Attribute 1.673 0.587 1.419 0.233 

Mean for District 0.039 0.077 0.039 0.08 0.039 0.077 

Mean for Attribute -1.366 0.441 -0.436 0.263 -1.359 0.27 

Intercept for I33488 District 1 0.29 0.238 0.29 0.21 0.189 0.187 

Main Effect for I33488 District 1 2.91 1.05 2.665 0.448 2.688 0.378 

Intercept for I33488 District 2 0.32 0.421 

Main Effect for I33488 District 2 2.492 0.538 

Intercept for I17880 District 1 -0.436 0.27 -0.513 0.256 -0.708 0.228 

Main Effect for I17880 District 1 2.248 0.485 2.499 0.343 2.709 0.32 

Intercept for I17880 District 2 -0.802 0.639 

Main Effect for I17880 District 2 2.932 0.666 

Intercept for I17852 District 1 -1.27 0.416 -1.237 0.357 -1.211 0.291 

Main Effect for I17852 District 1 4.793 3.946 3.165 0.463 2.868 0.339 

Intercept for I17852 District 2 -1.14 0.686 

Main Effect for I17852 District 2 2.652 0.682 

The Wald tests for parameter differences evaluate parameter estimates from the free 

baseline model for significant differences or DIF. These results show a statistically significant 

difference in attribute means (p<0.01) and no statistically significant differences for item 

parameters. These results further support the best fit of Model 2 and the fixed item and free 

structural model. 
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Table 4.25 

Real Data: Wald Tests for Parameter Difference Estimates 

Parameter Estimate Std Error Pvalue 

Mean Difference for Attribute 3.04 3.155 0.002 

Intercept Difference for I33488 -0.029 -0.061 0.952 

Main Effect Difference for I33488 0.419 0.355 0.723 

Intercept Difference for I17880 0.366 0.528 0.598 

Main Effect Difference for I17880 -0.684 -0.83 0.407 

Intercept Difference for I17852 -0.13 -0.162 0.871 

Main Effect Difference for I17852 2.141 0.535 0.593 

Conclusions 

Analysis of the simulated data revealed that MPlus is unstable for complex data and is 

more likely to experience errors or fail to converge when the number of parameters being 

estimated is high or interaction terms are present. In this case, the free baseline model, having the 

largest number of parameters to estimate, experienced the greatest number of errors in 

estimation. 

Evaluation of the model fit statistics from the simulation also showed that allowing the 

structural model to be freely estimated while constraining the item parameters to be equal is not 

effective if DIF may be present in the items. This is further validated by the real data which 

showed when no DIF is present in the items, constraining item parameters to be equal across 

groups while allowing the structural model to vary can yield the best fitting model. 

Finally, the D parameters which assessed the mean differences in parameters with DIF, 

were effective at identifying significant differences when models were effectively estimated by 

MPlus. 
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CHAPTER 5 

DISCUSSION 

This dissertation presented a method for the identification of Differential Item 

Functioning (DIF) for the Log-linear Cognitive Diagnosis Model (LCDM). By adapting an 

existing framework for DIF detection frequently implemented for Confirmatory Factor Analysis 

(CFA) models, a new omnibus test method was proposed and evaluated for the LCDM. This 

omnibus test attempted to evaluate all item and structural parameters simultaneously for the 

presence of DIF and was applied to both the simulated and real data samples.  

Model 1 Discussion 

The free-baseline model encountered frequent errors in MPlus. This was most likely due 

to issues with MPlus more than the freebaseline estimation itself. High number of parameters to 

be estimated could have contributed to the instability. Many samples failed to converge in this 

case, thereby limiting the number of available samples for model comparison and Type I Error 

and Power analysis. Regardless of these issues, there was sufficient data for model comparison.  

In the real data case, the number of items in the dataset were reduced to three. This 

allowed for a more stable estimation of the free baseline model, and far fewer issues occurred. 

Model 2 Discussion 

The fully constrained model was much more stable with regard to Mplus estimation, and 

the relationship between the fully constrained model and free baseline models was as expected. 

The freebaseline model, when it converged, yielded a statistically significantly better fit than the 

fully constrained model. Forcing group equivalence in model 2 produced item parameter 
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estimates and structural parameter estimates that were meaningfully different from the estimates 

produced by other models. 

The fully constrained model was applied to the real data and also proved to be a 

statistically significantly poorer fit than the fully estimated model. This model was also 

compared to the free structural/fixed item model in condition 3. 

Model 3 Discussion 

Model 3 explored the case when the structural model is allowed to vary between groups 

but item parameters are fixed across groups. This represents the theoretical case that a different 

proportion of masters are present for one group and is a fairly common practice in real data 

analyses. For the simulated data, differences in items became manifest in the freely estimated 

structural model and produced very different structural parameter estimates across replications. 

When DIF is present in the items, allowing the structural model to vary while constraining items 

to be equal produces inaccurate structural estimates. 

For the real data sample, this model represented an ideal fit. The free baseline comparison 

verified that item parameters were not statistically significantly different across groups. This 

gave justification to the use of model 3 as a means of assessing the presence of different 

proportions of masters in each group or structural model DIF. When model 3 fit was compared to 

the fully constrained model, it was verified that allowing the structural model to vary did 

improve overall fit. This indicates that different proportions of masters are present between 

groups in the real data sample. 

Model 4 Discussion 

Model 4 was intended to be the ideal case in which the items with DIF are known and are 

uniquely estimated for each group. This condition was also the testing ground for implementing 
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‘difference parameters” or values that are created in the model estimation to assess the difference 

in parameter estimates between groups. Difference parameters were created for the known DIF 

items. Unfortunately, this model was another source of estimation frustration with MPlus. 

Though not quite as unstable as model 1, it is likely that the volume of estimated parameters 

contributed to the challenges experienced with MPlus. When this model did converge, the 

difference parameters were fairly stable. This indicates the use of difference parameters could be 

a means of efficiently calculating item parameter differences if another estimation tool is used. 

This model did not work with the real dataset as there were no “known” items or 

parameters with DIF. 

Conclusions & Future Research 

The simulated data analysis was not as successful as hoped in that MPlus estimation 

errors frequently occurred. Because this was particularly problematic for the free baseline model, 

it would be worth future research investigating whether complexity of the data (items measuring 

multiple attributes and incorporating interaction terms) or volume of parameters generated these 

estimation errors.  

This analysis stopped short of the step-by-step identification of item biases. Future 

research should incorporate these multiple comparisons tests to locate item bias when the 

omnibus test (fully constrained vs free baseline) is found to yield significantly different fit 

statistics. 

The real data analysis was more successful than the simulated data analysis and proves 

that the omnibus tests for DIF work when MPlus remains stable.  The omnibus test of item 

parameter differences was successfully applied, and based on these results, the item parameters 

were found to hold no differences between groups. The real data analysis was also successful in 
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testing the structural model for DIF. In this case, DIF was found to be present at the structural 

level.  

The comparison of model 3 (freely estimated structural model/constrained items) 

produced inflated Type I error rates for the simulated data but was successful for the real data. 

The inflated Type I error in the simulation study indicates that maybe a more stepwise model 

comparison process needs to occur. The simulation shows that model 3 is limited when DIF is 

present in items. Item level DIF must be controlled before testing for DIF at the structural level. 

Differences in groups that are based on ability/trait may be spurious if DIF in items is not 

controlled for first. 

Finally, the success of the real data analysis lends support to the idea that the simulated 

data were too complex for MPlus.  In the real data, items measured only one dimension and there 

were no interaction terms. Given the success of the real data analysis, we can infer that complex 

data are not easily estimated in MPlus.  
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APPENDIX 

Model 1 Estimation Code

TITLE:  ! Section that appears in header of output file 

DATA:  ! Location of free format data file 

    FILE = data.csv; 

VARIABLE: 

    NAMES = id group class mitem1-mitem12;         ! List of variables in data file 

    USEVARIABLE = mitem1-mitem12;      ! Variables to be analyzed 

    CATEGORICAL = mitem1-mitem12;      ! Binary outcomes 

    CLASSES =sex(2) c(8);         !classes and group    

    KNOWNCLASS = sex(group = 0 group = 1); 

    IDVARIABLE = id; 

    AUXILIARY = class; 

ANALYSIS: 

    TYPE = MIXTURE;   ! Estimates latent classes 

    STARTS = 0; ! Turn off multiple random start feature 

    PROCESSORS = 16;  ! Number of processors available 

    MCITERATIONS = 2; 

    MUITERATIONS = 2; 

    MITERATIONS = 1000; 

    MCONVERGENCE = .0001; 

MODEL: 

%OVERALL% 

c#1 on sex (m12); 

c#2 on sex (m22); 

c#3 on sex (m32); 

c#4 on sex (m42); 

c#5 on sex (m52); 

c#6 on sex (m62); 

c#7 on sex (m72); 

[c#1] (m11); 
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[c#2] (m21); 

[c#3] (m31); 

[c#4] (m41); 

[c#5] (m51); 

[c#6] (m61); 

[c#7] (m71); 

 

%sex#1.c#1% ! Model for Class 1 

    [mitem1$1] (T1_1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_1_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_1_1);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_1_1);       ! Item 6 Thresh 1 

    [mitem7$1] (T7_1_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_1_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_1_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_1_1);     ! Item 12 Thresh 1 

 

%sex#1.c#2%  ! Model for Class 2 

    [mitem1$1] (T1_1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2_1);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_1_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_2_1);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2_1);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2_1);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_1_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_2_1);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2_1);     ! Item 12 Thresh 2 

 

%sex#1.c#3%  ! Model for Class 3 

    [mitem1$1] (T1_1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2_1);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_1_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_2_1);       ! Item 4 Thresh 2 

    [mitem5$1] (T5_3_1);       ! Item 5 Thresh 3 

    [mitem6$1] (T6_1_1);       ! Item 6 Thresh 1 

    [mitem7$1] (T7_1_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2_1);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_1_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_2_1);     ! Item 10 Thresh 2 
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    [mitem11$1] (T11_3_1);     ! Item 11 Thresh 3 

    [mitem12$1] (T12_1_1);     ! Item 12 Thresh 1 

%sex#1.c#4%  ! Model for Class 4 

    [mitem1$1] (T1_1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2_1);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_2_1);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2_1);       ! Item 4 Thresh 2 

    [mitem5$1] (T5_4_1);       ! Item 5 Thresh 4 

    [mitem6$1] (T6_2_1);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2_1);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_2_1);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2_1);     ! Item 10 Thresh 2 

    [mitem11$1] (T11_4_1);     ! Item 11 Thresh 4 

    [mitem12$1] (T12_2_1);     ! Item 12 Thresh 2 

%sex#1.c#5%  ! Model for Class 5 

    [mitem1$1] (T1_2_1);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_3_1);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_1_1);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_3_1);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2_1);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_3_1);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_1_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_3_1);     ! Item 12 Thresh 3 

%sex#1.c#6%  ! Model for Class 6 

    [mitem1$1] (T1_2_1);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2_1);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_3_1);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_2_1);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_4_1);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2_1);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2_1);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_3_1);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_2_1);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_4_1);     ! Item 12 Thresh 4 

%sex#1.c#7%  ! Model for Class 7 
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    [mitem1$1] (T1_2_1);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2_1);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_1_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_4_1);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_3_1);       ! Item 5 Thresh 3 

    [mitem6$1] (T6_3_1);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2_1);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2_1);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_1_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_4_1);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_3_1);     ! Item 11 Thresh 3 

    [mitem12$1] (T12_3_1);     ! Item 12 Thresh 3 

%sex#1.c#8%  ! Model for Class 8 

    [mitem1$1] (T1_2_1);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2_1);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_2_1);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_4_1);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_4_1);       ! Item 5 Thresh 4 

    [mitem6$1] (T6_4_1);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2_1);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2_1);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_2_1);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_4_1);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_4_1);     ! Item 11 Thresh 4 

    [mitem12$1] (T12_4_1);     ! Item 12 Thresh 4 

%sex#2.c#1% ! Model for Class 1 

    [mitem1$1] (T1_1_2);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1_2);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_1_2);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_1_2);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_1_2);       ! Item 6 Thresh 1 

    [mitem7$1] (T7_1_2);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1_2);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_1_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_1_2);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_1_2);     ! Item 12 Thresh 1 

%sex#2.c#2%  ! Model for Class 2 

    [mitem1$1] (T1_1_2);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_1_2);       ! Item 4 Thresh 1 
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    [mitem5$1] (T5_2_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1_2);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_1_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_2_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2_2);     ! Item 12 Thresh 2 

 

%sex#2.c#3%  ! Model for Class 3 

    [mitem1$1] (T1_1_2);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_1_2);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_2_2);       ! Item 4 Thresh 2 

    [mitem5$1] (T5_3_2);       ! Item 5 Thresh 3 

    [mitem6$1] (T6_1_2);       ! Item 6 Thresh 1 

    [mitem7$1] (T7_1_2);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_1_2);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_2_2);     ! Item 10 Thresh 2 

    [mitem11$1] (T11_3_2);     ! Item 11 Thresh 3 

    [mitem12$1] (T12_1_2);     ! Item 12 Thresh 1 

 

%sex#2.c#4%  ! Model for Class 4 

    [mitem1$1] (T1_1_2);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_2_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2_2);       ! Item 4 Thresh 2 

    [mitem5$1] (T5_4_2);       ! Item 5 Thresh 4 

    [mitem6$1] (T6_2_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1_2);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_2_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2_2);     ! Item 10 Thresh 2 

    [mitem11$1] (T11_4_2);     ! Item 11 Thresh 4 

    [mitem12$1] (T12_2_2);     ! Item 12 Thresh 2 

 

%sex#2.c#5%  ! Model for Class 5 

    [mitem1$1] (T1_2_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1_2);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_3_2);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_1_2);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_3_2);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1_2);       ! Item 8 Thresh 1 
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    [mitem9$1] (T9_1_2);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_3_2);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_1_2);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_3_2);     ! Item 12 Thresh 3 

 

 

%sex#2.c#6%  ! Model for Class 6 

    [mitem1$1] (T1_2_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_3_2);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_2_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_4_2);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_3_2);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_2_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_4_2);     ! Item 12 Thresh 4 

 

%sex#2.c#7%  ! Model for Class 7 

    [mitem1$1] (T1_2_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_1_2);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_4_2);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_3_2);       ! Item 5 Thresh 3 

    [mitem6$1] (T6_3_2);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_1_2);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_4_2);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_3_2);     ! Item 11 Thresh 3 

    [mitem12$1] (T12_3_2);     ! Item 12 Thresh 3 

 

%sex#2.c#8%  ! Model for Class 8 

    [mitem1$1] (T1_2_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_2_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_4_2);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_4_2);       ! Item 5 Thresh 4 

    [mitem6$1] (T6_4_2);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_2_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_4_2);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_4_2);     ! Item 11 Thresh 4 
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    [mitem12$1] (T12_4_2);     ! Item 12 Thresh 4 

MODEL CONSTRAINT:  ! Used to define LCDM parameters 

! Mplus uses P(X=0) rather than P(X=1) so multiply by -1 

! STRUCTURAL MODEL 1 

NEW(G_11_1*-1 G_12_1*-1 G_13_1*-1 G_212_1*1 G_213_1*1 G_223_1*1); 

m11=  - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m21= G_13_1 - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m31= G_12_1 - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m41= G_12_1+G_13_1+G_223_1 - 

(G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m51= G_11_1 - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m61= G_11_1+G_13_1+G_213_1 - 

(G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m71= G_11_1+G_12_1+G_212_1 - 

(G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

! STRUCTURAL MODEL 2 

NEW(G_11_2*-1 G_12_2*-1 G_13_2*-1 G_212_2*1 G_213_2*1 G_223_2*1); 

m12=  - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m22= G_13_2  - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m32= G_12_2 - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m42= G_12_2+G_13_2+G_223_2  - 

(G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m52= G_11_2  - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m62= G_11_2+G_13_2+G_213_2 - 

(G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m72= G_11_2+G_12_2+G_212_2 - 

(G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

! Item 1: Define LCDM parameters present for item 1 

NEW(L1_0_1 L1_11_1 L1_0_2 L1_11_2); 

T1_1_1=-(L1_0_1); ! Item 1 Thresh 1 

T1_2_1=-(L1_0_1+L1_11_1); ! Item 1 Thresh 2 

! Main effect order constraints 

L1_11_1>0; 

T1_1_2=-(L1_0_2); ! Item 1 Thresh 1 

T1_2_2=-(L1_0_2+L1_11_2); ! Item 1 Thresh 2 

! Main effect order constraints 

L1_11_2>0; 

!NEW(D1_0 D1_11); 

!D1_0 = L1_0_2-L1_0_1; 



85 

!D1_11 = L1_11_2-L1_11_1; 

! Item 2: Define LCDM parameters present for item 2 

NEW(L2_0_1 L2_12_1 L2_0_2 L2_12_2); 

T2_1_1=-(L2_0_1); ! Item 2 Thresh 1 

T2_2_1=-(L2_0_1+L2_12_1); ! Item 2 Thresh 2 

! Main effect order constraints 

L2_12_1>0; 

T2_1_2=-(L2_0_2); ! Item 2 Thresh 1 

T2_2_2=-(L2_0_2+L2_12_2); ! Item 2 Thresh 2 

! Main effect order constraints 

L2_12_2>0; 

!NEW(D2_0 D2_12); 

!D2_0 = L2_0_2-L2_0_1; 

!D2_12 = L2_12_2-L2_12_1; 

! Item 3: Define LCDM parameters present for item 3 

NEW(L3_0_1 L3_13_1 L3_0_2 L3_13_2); 

T3_1_1=-(L3_0_1); ! Item 27 Thresh 1 

T3_2_1=-(L3_0_1+L3_13_1); ! Item 27 Thresh 2 

! Main effect order constraints 

L3_13_1>0; 

T3_1_2=-(L3_0_2); ! Item 27 Thresh 1 

T3_2_2=-(L3_0_2+L3_13_2); ! Item 27 Thresh 2 

! Main effect order constraints 

L3_13_2>0; 

!NEW(D3_0 D3_13); 

!D3_0 = L3_0_2-L3_0_1; 

!D3_13 = L3_13_2-L3_13_1; 

! Item 4: Define LCDM parameters present for item 4 

NEW(L4_0_1 L4_11_1 L4_12_1 L4_212_1 L4_0_2 L4_11_2 L4_12_2 L4_212_2); 

T4_1_1=-(L4_0_1);     ! Item 4 Thresh 1 

T4_2_1=-(L4_0_1+L4_12_1); ! Item 4 Thresh 2 

T4_3_1=-(L4_0_1+L4_11_1); ! Item 4 Thresh 3 

T4_4_1=-(L4_0_1+L4_11_1+L4_12_1+L4_212_1);  ! Item 4 Thresh 4 

! Main effect order constraints 

L4_11_1>0; L4_12_1>0; 

! Two-way interaction order constraints 

L4_212_1>-L4_11_1; 

L4_212_1>-L4_12_1; 
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T4_1_2=-(L4_0_2);                                                        ! Item 4 Thresh 1 

T4_2_2=-(L4_0_2+L4_12_2);                                                    ! Item 4 Thresh 2 

T4_3_2=-(L4_0_2+L4_11_2);                                                    ! Item 4 Thresh 3 

T4_4_2=-(L4_0_2+L4_11_2+L4_12_2+L4_212_2);                                       ! Item 4 Thresh 4 

! Main effect order constraints 

L4_11_2>0; L4_12_2>0; 

! Two-way interaction order constraints 

L4_212_2>-L4_11_2; 

L4_212_2>-L4_12_2; 

 

!NEW(D4_0 D4_11 D4_12 D4_212); 

!D4_0=L4_0_2-L4_0_1; 

!D4_11=L4_11_2-L4_11_1; 

!D4_12=L4_12_2-L4_12_1; 

!D4_212=L4_212_2-L4_212_1; 

 

 

! Item 5: Define LCDM parameters present for item 5 

NEW(L5_0_1 L5_12_1 L5_13_1 L5_223_1 L5_0_2 L5_12_2 L5_13_2 L5_223_2); 

T5_1_1=-(L5_0_1);                                                        ! Item 29 Thresh 1 

T5_2_1=-(L5_0_1+L5_13_1);                                                 ! Item 29 Thresh 2 

T5_3_1=-(L5_0_1+L5_12_1);                                                 ! Item 29 Thresh 3 

T5_4_1=-(L5_0_1+L5_12_1+L5_13_1+L5_223_1);                                  ! Item 29 Thresh 4 

! Main effect order constraints 

L5_12_1>0; L5_13_1>0; 

! Two-way interaction order constraints 

L5_223_1>-L5_12_1; 

L5_223_1>-L5_13_1; 

 

T5_1_2=-(L5_0_2);                                                        ! Item 29 Thresh 1 

T5_2_2=-(L5_0_2+L5_13_2);                                                 ! Item 29 Thresh 2 

T5_3_2=-(L5_0_2+L5_12_2);                                                 ! Item 29 Thresh 3 

T5_4_2=-(L5_0_2+L5_12_2+L5_13_2+L5_223_2);                                  ! Item 29 Thresh 4 

! Main effect order constraints 

L5_12_2>0; L5_13_2>0; 

! Two-way interaction order constraints 

L5_223_2>-L5_12_2; 

L5_223_2>-L5_13_2; 

 

!NEW(D5_0 D5_12 D5_13 D5_223); 

!D5_0=L5_0_2-L5_0_1; 

!D5_12=L5_12_2-L5_12_1; 

!D5_13=L5_13_2-L5_13_1; 

!D5_223=L5_223_2-L5_223_1; 
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! Item 6: Define LCDM parameters present for item 6 

NEW(L6_0_1 L6_11_1 L6_13_1 L6_213_1 L6_0_2 L6_11_2 L6_13_2 L6_213_2); 

T6_1_1=-(L6_0_1);                                                          ! Item 6 Thresh 1 

T6_2_1=-(L6_0_1+L6_13_1);                                                    ! Item 6 Thresh 2 

T6_3_1=-(L6_0_1+L6_11_1);                                                    ! Item 6 Thresh 3 

T6_4_1=-(L6_0_1+L6_11_1+L6_13_1+L6_213_1);                                       ! Item 6 Thresh 4 

! Main effect order constraints 

L6_11_1>0; L6_13_1>0; 

! Two-way interaction order constraints 

L6_213_1>-L6_11_1; 

L6_213_1>-L6_13_1; 

 

T6_1_2=-(L6_0_2);                                                          ! Item 6 Thresh 1 

T6_2_2=-(L6_0_2+L6_13_2);                                                    ! Item 6 Thresh 2 

T6_3_2=-(L6_0_2+L6_11_2);                                                    ! Item 6 Thresh 3 

T6_4_2=-(L6_0_2+L6_11_2+L6_13_2+L6_213_2);                                       ! Item 6 Thresh 4 

! Main effect order constraints 

L6_11_2>0; L6_13_2>0; 

! Two-way interaction order constraints 

L6_213_2>-L6_11_2; 

L6_213_2>-L6_13_2; 

 

!NEW(D6_0 D6_11 D6_13 D6_213); 

!D6_0=L6_0_2-L6_0_1; 

!D6_11=L6_11_2-L6_11_1; 

!D6_13=L6_13_2-L6_13_1; 

!D6_213=L6_213_2-L6_213_1; 

 

! Item 7: Define LCDM parameters present for item 7 

NEW(L7_0_1 L7_11_1 L7_0_2 L7_11_2); 

T7_1_1=-(L7_0_1);                                                          ! Item 1 Thresh 1 

T7_2_1=-(L7_0_1+L7_11_1);                                                    ! Item 1 Thresh 2 

! Main effect order constraints 

L7_11_1>0; 

 

T7_1_2=-(L7_0_2);                                                          ! Item 1 Thresh 1 

T7_2_2=-(L7_0_2+L7_11_2);                                                    ! Item 1 Thresh 2 

! Main effect order constraints 

L7_11_2>0; 

 

!NEW(D7_0 D7_11); 

!D7_0 = L7_0_2-L7_0_1; 

!D7_11 = L7_11_2-L7_11_1; 

 

! Item 8: Define LCDM parameters present for item 8 

NEW(L8_0_1 L8_12_1 L8_0_2 L8_12_2); 
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T8_1_1=-(L8_0_1);                                                          ! Item 2 Thresh 1 

T8_2_1=-(L8_0_1+L8_12_1);                                                    ! Item 2 Thresh 2 

! Main effect order constraints 

L8_12_1>0; 

 

T8_1_2=-(L8_0_2);                                                          ! Item 2 Thresh 1 

T8_2_2=-(L8_0_2+L8_12_2);                                                    ! Item 2 Thresh 2 

! Main effect order constraints 

L8_12_2>0; 

 

!NEW(D8_0 D8_12); 

!D8_0 = L8_0_2-L8_0_1; 

!D8_12 = L8_12_2-L8_12_1; 

 

! Item 9: Define LCDM parameters present for item 9 

NEW(L9_0_1 L9_13_1 L9_0_2 L9_13_2); 

T9_1_1=-(L9_0_1);                                                        ! Item 27 Thresh 1 

T9_2_1=-(L9_0_1+L9_13_1);                                                 ! Item 27 Thresh 2 

! Main effect order constraints 

L9_13_1>0; 

 

T9_1_2=-(L9_0_2);                                                        ! Item 27 Thresh 1 

T9_2_2=-(L9_0_2+L9_13_2);                                                 ! Item 27 Thresh 2 

! Main effect order constraints 

L9_13_2>0; 

 

!NEW(D9_0 D9_13); 

!D9_0 = L9_0_2-L9_0_1; 

!D9_13 = L9_13_2-L9_13_1; 

 

! Item 10: Define LCDM parameters present for item 10 

NEW(L10_0_1 L10_11_1 L10_12_1 L10_2121 L10_0_2 L10_11_2 L10_12_2 L10_2122); 

T10_1_1=-(L10_0_1);                                                          ! Item 4 Thresh 1 

T10_2_1=-(L10_0_1+L10_12_1);                                                    ! Item 4 Thresh 2 

T10_3_1=-(L10_0_1+L10_11_1);                                                    ! Item 4 Thresh 3 

T10_4_1=-(L10_0_1+L10_11_1+L10_12_1+L10_2121);                                       ! Item 4 

Thresh 4 

! Main effect order constraints 

L10_11_1>0; L10_12_1>0; 

! Two-way interaction order constraints 

L10_2121>-L10_11_1; 

L10_2121>-L10_12_1; 

 

T10_1_2=-(L10_0_2);                                                          ! Item 4 Thresh 1 

T10_2_2=-(L10_0_2+L10_12_2);                                                    ! Item 4 Thresh 2 

T10_3_2=-(L10_0_2+L10_11_2);                                                    ! Item 4 Thresh 3 
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T10_4_2=-(L10_0_2+L10_11_2+L10_12_2+L10_2122); ! Item 4 

Thresh 4 

! Main effect order constraints 

L10_11_2>0; L10_12_2>0; 

! Two-way interaction order constraints 

L10_2122>-L10_11_2; 

L10_2122>-L10_12_2; 

!NEW(D10_0 D10_11 D10_12 D10_212); 

!D10_0=L10_0_2-L10_0_1; 

!D10_11=L10_11_2-L10_11_1; 

!D10_12=L10_12_2-L10_12_1; 

!D10_212=L10_212_2-L10_212_1; 

! Item 11: Define LCDM parameters present for item 11 

NEW(L11_0_1 L11_12_1 L11_13_1 L11_2231 L11_0_2 L11_12_2 L11_13_2 L11_2232); 

T11_1_1=-(L11_0_1); ! Item 29 Thresh 1 

T11_2_1=-(L11_0_1+L11_13_1); ! Item 29 Thresh 2 

T11_3_1=-(L11_0_1+L11_12_1); ! Item 29 Thresh 3 

T11_4_1=-(L11_0_1+L11_12_1+L11_13_1+L11_2231); ! Item 29 Thresh 

4 

! Main effect order constraints 

L11_12_1>0; L11_13_1>0; 

! Two-way interaction order constraints 

L11_2231>-L11_12_1; 

L11_2231>-L11_13_1; 

T11_1_2=-(L11_0_2); ! Item 29 Thresh 1 

T11_2_2=-(L11_0_2+L11_13_2); ! Item 29 Thresh 2 

T11_3_2=-(L11_0_2+L11_12_2); ! Item 29 Thresh 3 

T11_4_2=-(L11_0_2+L11_12_2+L11_13_2+L11_2232); ! Item 29 Thresh 

4 

! Main effect order constraints 

L11_12_2>0; L11_13_2>0; 

! Two-way interaction order constraints 

L11_2232>-L11_12_2; 

L11_2232>-L11_13_2; 

!NEW(D11_0 D11_12 D11_13 D11_223); 

!D11_0=L11_0_2-L11_0_1; 

!D11_12=L11_12_2-L11_12_1; 

!D11_13=L11_13_2-L11_13_1; 

!D11_223=L11_223_2-L11_223_1; 

! Item 12: Define LCDM parameters present for item 12 

NEW(L12_0_1 L12_11_1 L12_13_1 L12_2131 L12_0_2 L12_11_2 L12_13_2 L12_2132); 
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T12_1_1=-(L12_0_1);                                                          ! Item 6 Thresh 1 

T12_2_1=-(L12_0_1+L12_13_1);                                                    ! Item 6 Thresh 2 

T12_3_1=-(L12_0_1+L12_11_1);                                                    ! Item 6 Thresh 3 

T12_4_1=-(L12_0_1+L12_11_1+L12_13_1+L12_2131);                                       ! Item 6 

Thresh 4 

! Main effect order constraints 

L12_11_1>0; L12_13_1>0; 

! Two-way interaction order constraints 

L12_2131>-L12_11_1; 

L12_2131>-L12_13_1; 

 

T12_1_2=-(L12_0_2);                                                          ! Item 6 Thresh 1 

T12_2_2=-(L12_0_2+L12_13_2);                                                    ! Item 6 Thresh 2 

T12_3_2=-(L12_0_2+L12_11_2);                                                    ! Item 6 Thresh 3 

T12_4_2=-(L12_0_2+L12_11_2+L12_13_2+L12_2132);                                       ! Item 6 

Thresh 4 

! Main effect order constraints 

L12_11_2>0; L12_13_2>0; 

! Two-way interaction order constraints 

L12_2132>-L12_11_2; 

L12_2132>-L12_13_2; 

 

!NEW(D12_0 D12_11 D12_13 D12_213); 

!D12_0=L12_0_2-L12_0_1; 

!D12_11=L12_11_2-L12_11_1; 

!D12_13=L12_13_2-L12_13_1; 

!D12_213=L12_213_2-L12_213_1; 

 

OUTPUT: 

    TECH10;  ! Request additional model fit statistics 

 

SAVEDATA: ! Format, name of posterior probabilities of class membership file 

    FORMAT = F10.5; 

    FILE = model01_exam.dat; 

    SAVE = CPROBABILITIES; 
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Model 2 Estimation Code 

                                                                                                                                                                                                                                                            

TITLE:  ! Section that appears in header of output file 

    DCM for ExampleData with 3 attributes and 2-order structural model, 

    30 items, and maximum 2-order item model, 

    Saturated structural model (Mplus default). 

 

DATA:  ! Location of free format data file 

    FILE = data.csv; 

 

VARIABLE: 

    NAMES = id group class mitem1-mitem12;         ! List of variables in data file 

    USEVARIABLE = mitem1-mitem12;      ! Variables to be analyzed 

    CATEGORICAL = mitem1-mitem12;      ! Binary outcomes 

    CLASSES = c(8);         !classes and group     

    IDVARIABLE = id; 

    AUXILIARY = class; 

 

ANALYSIS: 

    TYPE = MIXTURE;                    ! Estimates latent classes 

    STARTS = 0;                        ! Turn off multiple random start feature 

    PROCESSORS =16;                    ! Number of processors available 

    MCITERATIONS = 2; 

    MUITERATIONS = 2; 

    MITERATIONS = 1000; 

    MCONVERGENCE = .0001; 

 

MODEL: 

 

%OVERALL% 

 

[c#1] (m1);  ! Latent variable mean for class 1 

[c#2] (m2);  ! Latent variable mean for class 2 

[c#3] (m3);  ! Latent variable mean for class 3 

[c#4] (m4);  ! Latent variable mean for class 4 

[c#5] (m5);  ! Latent variable mean for class 5 

[c#6] (m6);  ! Latent variable mean for class 6 

[c#7] (m7);  ! Latent variable mean for class 7 

 

 

%c#1% ! Model for Class 1 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 
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    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_1);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_1);       ! Item 6 Thresh 1 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_1);     ! Item 12 Thresh 1 

 

%c#2%  ! Model for Class 2 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2);     ! Item 12 Thresh 2 

 

 

%c#3%  ! Model for Class 3 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_3);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_1);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_3);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_1);     ! Item 12 Thresh 2 

 

%c#4%  ! Model for Class 4 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_4);       ! Item 5 Thresh 2 
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    [mitem6$1] (T6_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_4);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2);     ! Item 12 Thresh 2 

%c#5%  ! Model for Class 5 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_3);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_1);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_3);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_3);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_3);     ! Item 12 Thresh 3 

%c#6%  ! Model for Class 6 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_3);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_4);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_3);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_4);     ! Item 12 Thresh 4 

%c#7%  ! Model for Class 7 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_4);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_3);       ! Item 5 Thresh 3 

    [mitem6$1] (T6_3);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 
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    [mitem10$1] (T10_4);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_3);     ! Item 11 Thresh 3 

    [mitem12$1] (T12_3);     ! Item 12 Thresh 3 

 

%c#8%  ! Model for Class 8 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_4);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_4);       ! Item 5 Thresh 4 

    [mitem6$1] (T6_4);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_4);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_4);     ! Item 11 Thresh 4 

    [mitem12$1] (T12_4);     ! Item 12 Thresh 4 

 

 

MODEL CONSTRAINT:  ! Used to define LCDM parameters 

! Mplus uses P(X=0) rather than P(X=1) so multiply by -1 

 

! STRUCTURAL MODEL 

NEW(G_11 G_12 G_13 G_212 G_213 G_223); 

 

m1=  - (G_11+G_12+G_13+G_212+G_213+G_223); 

m2= G_13 - (G_11+G_12+G_13+G_212+G_213+G_223); 

m3= G_12 - (G_11+G_12+G_13+G_212+G_213+G_223); 

m4= G_12+G_13+G_223 - (G_11+G_12+G_13+G_212+G_213+G_223); 

m5= G_11 - (G_11+G_12+G_13+G_212+G_213+G_223); 

m6= G_11+G_13+G_213 - (G_11+G_12+G_13+G_212+G_213+G_223); 

m7= G_11+G_12+G_212 - (G_11+G_12+G_13+G_212+G_213+G_223); 

 

! Item 1: Define LCDM parameters present for item 1 

NEW(L1_0 L1_11); 

T1_1=-(L1_0);                                                          ! Item 1 Thresh 1 

T1_2=-(L1_0+L1_11);                                                    ! Item 1 Thresh 2 

! Main effect order constraints 

L1_11>0; 

 

! Item 2: Define LCDM parameters present for item 2 

NEW(L2_0 L2_12); 

T2_1=-(L2_0);                                                          ! Item 2 Thresh 1 

T2_2=-(L2_0+L2_12);                                                    ! Item 2 Thresh 2 

! Main effect order constraints 

L2_12>0; 



95 

 

 

 

! Item 3: Define LCDM parameters present for item 3 

NEW(L3_0 L3_13); 

T3_1=-(L3_0);                                                          ! Item 3 Thresh 1 

T3_2=-(L3_0+L3_13);                                                    ! Item 3 Thresh 2 

! Main effect order constraints 

L3_13>0; 

 

 

! Item 4: Define LCDM parameters present for item 4 

NEW(L4_0 L4_11 L4_12 L4_212); 

T4_1=-(L4_0);                                                          ! Item 4 Thresh 1 

T4_2=-(L4_0+L4_12);                                                    ! Item 4 Thresh 2 

T4_3=-(L4_0+L4_11);                                                    ! Item 4 Thresh 3 

T4_4=-(L4_0+L4_11+L4_12+L4_212);                                       ! Item 4 Thresh 4 

! Main effect order constraints 

L4_11>0; L4_12>0; 

! Two-way interaction order constraints 

L4_212>-L4_11; 

L4_212>-L4_12; 

 

 

! Item 5: Define LCDM parameters present for item 5 

NEW(L5_0 L5_12 L5_13 L5_223); 

T5_1=-(L5_0);                                                          ! Item 5 Thresh 1 

T5_2=-(L5_0+L5_13);                                                    ! Item 5 Thresh 2 

T5_3=-(L5_0+L5_12);                                                    ! Item 5 Thresh 3 

T5_4=-(L5_0+L5_12+L5_13+L5_223);                                       ! Item 5 Thresh 4 

! Main effect order constraints 

L5_12>0; L5_13>0; 

! Two-way interaction order constraints 

L5_223>-L5_12; 

L5_223>-L5_13; 

 

 

! Item 6: Define LCDM parameters present for item 6 

NEW(L6_0 L6_11 L6_13 L6_213); 

T6_1=-(L6_0);                                                          ! Item 6 Thresh 1 

T6_2=-(L6_0+L6_13);                                                    ! Item 6 Thresh 2 

T6_3=-(L6_0+L6_11);                                                    ! Item 6 Thresh 3 

T6_4=-(L6_0+L6_11+L6_13+L6_213);                                       ! Item 6 Thresh 4 

! Main effect order constraints 

L6_11>0; L6_13>0; 

! Two-way interaction order constraints 

L6_213>-L6_11; 
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L6_213>-L6_13; 

 

 

! Item 7: Define LCDM parameters present for item 7 

NEW(L7_0 L7_11); 

T7_1=-(L7_0);                                                          ! Item 7 Thresh 1 

T7_2=-(L7_0+L7_11);                                                    ! Item 7 Thresh 2 

! Main effect order constraints 

L7_11>0; 

 

 

! Item 8: Define LCDM parameters present for item 8 

NEW(L8_0 L8_12); 

T8_1=-(L8_0);                                                          ! Item 8 Thresh 1 

T8_2=-(L8_0+L8_12);                                                    ! Item 8 Thresh 2 

! Main effect order constraints 

L8_12>0; 

 

 

! Item 9: Define LCDM parameters present for item 9 

NEW(L9_0 L9_13); 

T9_1=-(L9_0);                                                          ! Item 9 Thresh 1 

T9_2=-(L9_0+L9_13);                                                    ! Item 9 Thresh 2 

! Main effect order constraints 

L9_13>0; 

 

 

! Item 10: Define LCDM parameters present for item 10 

NEW(L10_0 L10_11 L10_12 L10_212); 

T10_1=-(L10_0);                                                        ! Item 10 Thresh 1 

T10_2=-(L10_0+L10_12);                                                 ! Item 10 Thresh 2 

T10_3=-(L10_0+L10_11);                                                 ! Item 10 Thresh 3 

T10_4=-(L10_0+L10_11+L10_12+L10_212);                                  ! Item 10 Thresh 4 

! Main effect order constraints 

L10_11>0; L10_12>0; 

! Two-way interaction order constraints 

L10_212>-L10_11; 

L10_212>-L10_12; 

 

 

! Item 11: Define LCDM parameters present for item 11 

NEW(L11_0 L11_12 L11_13 L11_223); 

T11_1=-(L11_0);                                                        ! Item 11 Thresh 1 

T11_2=-(L11_0+L11_13);                                                 ! Item 11 Thresh 2 

T11_3=-(L11_0+L11_12);                                                 ! Item 11 Thresh 3 

T11_4=-(L11_0+L11_12+L11_13+L11_223);                                  ! Item 11 Thresh 4 
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! Main effect order constraints 

L11_12>0; L11_13>0; 

! Two-way interaction order constraints 

L11_223>-L11_12; 

L11_223>-L11_13; 

! Item 12: Define LCDM parameters present for item 12 

NEW(L12_0 L12_11 L12_13 L12_213); 

T12_1=-(L12_0);         ! Item 12 Thresh 1 

T12_2=-(L12_0+L12_13); ! Item 12 Thresh 2 

T12_3=-(L12_0+L12_11); ! Item 12 Thresh 3 

T12_4=-(L12_0+L12_11+L12_13+L12_213);       ! Item 12 Thresh 4 

! Main effect order constraints 

L12_11>0; L12_13>0; 

! Two-way interaction order constraints 

L12_213>-L12_11; 

L12_213>-L12_13; 

OUTPUT: 

    TECH10;  ! Request additional model fit statistics 

SAVEDATA: ! Format, name of posterior probabilities of class membership file 

    FORMAT = F10.5; 

    FILE = model02_exam.dat; 

    SAVE = CPROBABILITIES; 
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Model 3 Estimation Code 

 

                                                                                                                                                                                                                                                               

TITLE:  ! Section that appears in header of output file 

 

 

DATA:  ! Location of free format data file 

    FILE = data.csv; 

 

VARIABLE: 

    NAMES = id group class mitem1-mitem12;         ! List of variables in data file 

    USEVARIABLE = mitem1-mitem12;      ! Variables to be analyzed 

    CATEGORICAL = mitem1-mitem12;      ! Binary outcomes 

    CLASSES =sex(2)  c(8) ;         !classes and group     

    KNOWNCLASS = sex(group = 0 group = 1); 

    IDVARIABLE = id; 

    AUXILIARY = class; 

 

ANALYSIS: 

    TYPE = MIXTURE;                    ! Estimates latent classes 

    STARTS = 0;                        ! Turn off multiple random start feature 

    PROCESSORS = 16;                    ! Number of processors available 

 

MODEL: 

 

%OVERALL% 

 

c#1 on sex (m12); 

c#2 on sex (m22); 

c#3 on sex (m32); 

c#4 on sex (m42); 

c#5 on sex (m52); 

c#6 on sex (m62); 

c#7 on sex (m72); 

 

[c#1] (m11); 

[c#2] (m21); 

[c#3] (m31); 

[c#4] (m41); 

[c#5] (m51); 

[c#6] (m61); 

[c#7] (m71); 

 

%sex#1.c#1% ! Model for Class 1 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 
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    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_1);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_1);       ! Item 6 Thresh 1 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_1);     ! Item 12 Thresh 1 

 

%sex#1.c#2%  ! Model for Class 2 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2);     ! Item 12 Thresh 2 

 

 

%sex#1.c#3%  ! Model for Class 3 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_3);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_1);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_3);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_1);     ! Item 12 Thresh 2 

 

%sex#1.c#4%  ! Model for Class 4 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2);       ! Item 4 Thresh 1 
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    [mitem5$1] (T5_4);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_4);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2);     ! Item 12 Thresh 2 

 

%sex#1.c#5%  ! Model for Class 5 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_3);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_1);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_3);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_3);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_3);     ! Item 12 Thresh 3 

 

%sex#1.c#6%  ! Model for Class 6 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_3);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_4);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_3);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_4);     ! Item 12 Thresh 4 

 

%sex#1.c#7%  ! Model for Class 7 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_4);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_3);       ! Item 5 Thresh 3 

    [mitem6$1] (T6_3);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 2 
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    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_4);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_3);     ! Item 11 Thresh 3 

    [mitem12$1] (T12_3);     ! Item 12 Thresh 3 

%sex#1.c#8%  ! Model for Class 8 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_4);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_4);       ! Item 5 Thresh 4 

    [mitem6$1] (T6_4);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_4);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_4);     ! Item 11 Thresh 4 

    [mitem12$1] (T12_4);     ! Item 12 Thresh 4 

%sex#2.c#1% ! Model for Class 1 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_1);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_1);       ! Item 6 Thresh 1 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_1);     ! Item 12 Thresh 1 

%sex#2.c#2%  ! Model for Class 2 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2);     ! Item 12 Thresh 2 
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%sex#2.c#3%  ! Model for Class 3 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_3);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_1);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_3);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_1);     ! Item 12 Thresh 2 

%sex#2.c#4%  ! Model for Class 4 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_4);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_4);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2);     ! Item 12 Thresh 2 

%sex#2.c#5%  ! Model for Class 5 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_3);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_1);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_3);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_3);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_3);     ! Item 12 Thresh 3 

%sex#2.c#6%  ! Model for Class 6 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 
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    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_3);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_4);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_3);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_4);     ! Item 12 Thresh 4 

 

%sex#2.c#7%  ! Model for Class 7 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_4);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_3);       ! Item 5 Thresh 3 

    [mitem6$1] (T6_3);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_4);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_3);     ! Item 11 Thresh 3 

    [mitem12$1] (T12_3);     ! Item 12 Thresh 3 

 

%sex#2.c#8%  ! Model for Class 8 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_4);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_4);       ! Item 5 Thresh 4 

    [mitem6$1] (T6_4);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_4);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_4);     ! Item 11 Thresh 4 

    [mitem12$1] (T12_4);     ! Item 12 Thresh 4 

 

 

MODEL CONSTRAINT:  ! Used to define LCDM parameters 

! Mplus uses P(X=0) rather than P(X=1) so multiply by -1 

 

! STRUCTURAL MODEL 1 

NEW(G_11_1*-1 G_12_1*-1 G_13_1*-1 G_212_1*1 G_213_1*1 G_223_1*1); 

m11=  - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 
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m21= G_13_1 - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m31= G_12_1 - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m41= G_12_1+G_13_1+G_223_1 - 

(G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m51= G_11_1 - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m61= G_11_1+G_13_1+G_213_1 - 

(G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m71= G_11_1+G_12_1+G_212_1 - 

(G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

 

! STRUCTURAL MODEL 2 

NEW(G_11_2*-1 G_12_2*-1 G_13_2*-1 G_212_2*1 G_213_2*1 G_223_2*1); 

m12=  - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m22= G_13_2  - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m32= G_12_2 - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m42= G_12_2+G_13_2+G_223_2  - 

(G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m52= G_11_2  - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m62= G_11_2+G_13_2+G_213_2 - 

(G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m72= G_11_2+G_12_2+G_212_2 - 

(G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

 

! Item 1: Define LCDM parameters present for item 1 

NEW(L1_0 L1_11); 

T1_1=-(L1_0);                                                          ! Item 1 Thresh 1 

T1_2=-(L1_0+L1_11);                                                    ! Item 1 Thresh 2 

! Main effect order constraints 

L1_11>0; 

 

! Item 2: Define LCDM parameters present for item 2 

NEW(L2_0 L2_12); 

T2_1=-(L2_0);                                                          ! Item 2 Thresh 1 

T2_2=-(L2_0+L2_12);                                                    ! Item 2 Thresh 2 

! Main effect order constraints 

L2_12>0; 

 

 

! Item 3: Define LCDM parameters present for item 3 

NEW(L3_0 L3_13); 

T3_1=-(L3_0);                                                          ! Item 3 Thresh 1 

T3_2=-(L3_0+L3_13);                                                    ! Item 3 Thresh 2 

! Main effect order constraints 

L3_13>0; 
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! Item 4: Define LCDM parameters present for item 4 

NEW(L4_0 L4_11 L4_12 L4_212); 

T4_1=-(L4_0);      ! Item 4 Thresh 1 

T4_2=-(L4_0+L4_12);   ! Item 4 Thresh 2 

T4_3=-(L4_0+L4_11);   ! Item 4 Thresh 3 

T4_4=-(L4_0+L4_11+L4_12+L4_212); ! Item 4 Thresh 4 

! Main effect order constraints 

L4_11>0; L4_12>0; 

! Two-way interaction order constraints 

L4_212>-L4_11; 

L4_212>-L4_12; 

! Item 5: Define LCDM parameters present for item 5 

NEW(L5_0 L5_12 L5_13 L5_223); 

T5_1=-(L5_0);     ! Item 5 Thresh 1 

T5_2=-(L5_0+L5_13);   ! Item 5 Thresh 2 

T5_3=-(L5_0+L5_12);   ! Item 5 Thresh 3 

T5_4=-(L5_0+L5_12+L5_13+L5_223); ! Item 5 Thresh 4 

! Main effect order constraints 

L5_12>0; L5_13>0; 

! Two-way interaction order constraints 

L5_223>-L5_12; 

L5_223>-L5_13; 

! Item 6: Define LCDM parameters present for item 6 

NEW(L6_0 L6_11 L6_13 L6_213); 

T6_1=-(L6_0); ! Item 6 Thresh 1 

T6_2=-(L6_0+L6_13);   ! Item 6 Thresh 2 

T6_3=-(L6_0+L6_11);   ! Item 6 Thresh 3 

T6_4=-(L6_0+L6_11+L6_13+L6_213); ! Item 6 Thresh 4 

! Main effect order constraints 

L6_11>0; L6_13>0; 

! Two-way interaction order constraints 

L6_213>-L6_11; 

L6_213>-L6_13; 

! Item 7: Define LCDM parameters present for item 7 

NEW(L7_0 L7_11); 

T7_1=-(L7_0); ! Item 7 Thresh 1 

T7_2=-(L7_0+L7_11);   ! Item 7 Thresh 2 

! Main effect order constraints 

L7_11>0; 
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! Item 8: Define LCDM parameters present for item 8 

NEW(L8_0 L8_12); 

T8_1=-(L8_0);                                                          ! Item 8 Thresh 1 

T8_2=-(L8_0+L8_12);                                                    ! Item 8 Thresh 2 

! Main effect order constraints 

L8_12>0; 

 

 

! Item 9: Define LCDM parameters present for item 9 

NEW(L9_0 L9_13); 

T9_1=-(L9_0);                                                          ! Item 9 Thresh 1 

T9_2=-(L9_0+L9_13);                                                    ! Item 9 Thresh 2 

! Main effect order constraints 

L9_13>0; 

 

 

! Item 10: Define LCDM parameters present for item 10 

NEW(L10_0 L10_11 L10_12 L10_212); 

T10_1=-(L10_0);                                                        ! Item 10 Thresh 1 

T10_2=-(L10_0+L10_12);                                                 ! Item 10 Thresh 2 

T10_3=-(L10_0+L10_11);                                                 ! Item 10 Thresh 3 

T10_4=-(L10_0+L10_11+L10_12+L10_212);                                  ! Item 10 Thresh 4 

! Main effect order constraints 

L10_11>0; L10_12>0; 

! Two-way interaction order constraints 

L10_212>-L10_11; 

L10_212>-L10_12; 

 

 

! Item 11: Define LCDM parameters present for item 11 

NEW(L11_0 L11_12 L11_13 L11_223); 

T11_1=-(L11_0);                                                        ! Item 11 Thresh 1 

T11_2=-(L11_0+L11_13);                                                 ! Item 11 Thresh 2 

T11_3=-(L11_0+L11_12);                                                 ! Item 11 Thresh 3 

T11_4=-(L11_0+L11_12+L11_13+L11_223);                                  ! Item 11 Thresh 4 

! Main effect order constraints 

L11_12>0; L11_13>0; 

! Two-way interaction order constraints 

L11_223>-L11_12; 

L11_223>-L11_13; 

 

 

! Item 12: Define LCDM parameters present for item 12 

NEW(L12_0 L12_11 L12_13 L12_213); 

T12_1=-(L12_0);                                                        ! Item 12 Thresh 1 
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T12_2=-(L12_0+L12_13);                                                 ! Item 12 Thresh 2 

T12_3=-(L12_0+L12_11);                                                 ! Item 12 Thresh 3 

T12_4=-(L12_0+L12_11+L12_13+L12_213);                                  ! Item 12 Thresh 4 

! Main effect order constraints 

L12_11>0; L12_13>0; 

! Two-way interaction order constraints 

L12_213>-L12_11; 

L12_213>-L12_13; 

 

OUTPUT: 

    TECH10;  ! Request additional model fit statistics 

 

SAVEDATA: ! Format, name of posterior probabilities of class membership file 

    FORMAT = F10.5; 

    FILE = model03_exam.dat; 

    SAVE = CPROBABILITIES; 
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Model 4 Estimation Code 

                                                                                                                                                                                                                                                               

TITLE:  ! Section that appears in header of output file 

 

 

DATA:  ! Location of free format data file 

    FILE = data.csv; 

 

VARIABLE: 

    NAMES = id group class mitem1-mitem12;         ! List of variables in data file 

    USEVARIABLE = mitem1-mitem12;      ! Variables to be analyzed 

    CATEGORICAL = mitem1-mitem12;      ! Binary outcomes 

    CLASSES = sex(2) c(8);         !classes and group       

    KNOWNCLASS = sex(group = 0 group = 1); 

    IDVARIABLE = id; 

    AUXILIARY = class; 

 

ANALYSIS: 

    TYPE = MIXTURE;                    ! Estimates latent classes 

    STARTS = 0;                        ! Turn off multiple random start feature 

    PROCESSORS =16;                    ! Number of processors available 

    MCITERATIONS = 2; 

    MUITERATIONS = 2; 

    MITERATIONS = 1000; 

    MCONVERGENCE = .0001; 

 

MODEL: 

 

%OVERALL% 

 

c#1 on sex (m12); 

c#2 on sex (m22); 

c#3 on sex (m32); 

c#4 on sex (m42); 

c#5 on sex (m52); 

c#6 on sex (m62); 

c#7 on sex (m72); 

 

[c#1] (m11); 

[c#2] (m21); 

[c#3] (m31); 

[c#4] (m41); 

[c#5] (m51); 

[c#6] (m61); 

[c#7] (m71); 
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%sex#1.c#1% ! Model for Class 1 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_1_1);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_1);       ! Item 6 Thresh 1 

    [mitem7$1] (T7_1_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_1);     ! Item 12 Thresh 1 

 

%sex#1.c#2%  ! Model for Class 2 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_2_1);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2);     ! Item 12 Thresh 2 

 

 

%sex#1.c#3%  ! Model for Class 3 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_3_1);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_1);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_3);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_1);     ! Item 12 Thresh 2 

 

%sex#1.c#4%  ! Model for Class 4 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 
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    [mitem2$1] (T2_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_4_1);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1_1);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_4);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2);     ! Item 12 Thresh 2 

 

%sex#1.c#5%  ! Model for Class 5 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_3);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_1_1);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_3);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2_1);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_3);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_3);     ! Item 12 Thresh 3 

 

%sex#1.c#6%  ! Model for Class 6 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_3);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_2_1);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_4);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2_1);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_3);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_4);     ! Item 12 Thresh 4 

 

%sex#1.c#7%  ! Model for Class 7 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_4);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_3_1);       ! Item 5 Thresh 3 
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    [mitem6$1] (T6_3);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2_1);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_4);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_3);     ! Item 11 Thresh 3 

    [mitem12$1] (T12_3);     ! Item 12 Thresh 3 

 

%sex#1.c#8%  ! Model for Class 8 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_4);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_4_1);       ! Item 5 Thresh 4 

    [mitem6$1] (T6_4);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2_1);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_4);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_4);     ! Item 11 Thresh 4 

    [mitem12$1] (T12_4);     ! Item 12 Thresh 4 

 

%sex#2.c#1% ! Model for Class 1 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_1_2);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_1);       ! Item 6 Thresh 1 

    [mitem7$1] (T7_1_2);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_1);     ! Item 12 Thresh 1 

 

%sex#2.c#2% 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_1);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_2_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1_2);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 
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    [mitem10$1] (T10_1);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2);     ! Item 12 Thresh 2 

 

 

%sex#2.c#3% ! Model for Class 1 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_3_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_1);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1_2);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_3);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_1);     ! Item 12 Thresh 2 

 

%sex#2.c#4% 

    [mitem1$1] (T1_1);       ! Item 1 Thresh 1 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_2);       ! Item 4 Thresh 1 

    [mitem5$1] (T5_4_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_2);       ! Item 6 Thresh 2 

    [mitem7$1] (T7_1_2);       ! Item 7 Thresh 1 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_2);     ! Item 10 Thresh 1 

    [mitem11$1] (T11_4);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_2);     ! Item 12 Thresh 2 

 

%sex#2.c#5% 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_3);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_1_2);       ! Item 5 Thresh 1 

    [mitem6$1] (T6_3);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_3);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_1);     ! Item 11 Thresh 1 

    [mitem12$1] (T12_3);     ! Item 12 Thresh 3 
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%sex#2.c#6% 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_1);       ! Item 2 Thresh 1 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_3);       ! Item 4 Thresh 3 

    [mitem5$1] (T5_2_2);       ! Item 5 Thresh 2 

    [mitem6$1] (T6_4);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_1);       ! Item 8 Thresh 1 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_3);     ! Item 10 Thresh 3 

    [mitem11$1] (T11_2);     ! Item 11 Thresh 2 

    [mitem12$1] (T12_4);     ! Item 12 Thresh 4 

 

%sex#2.c#7% 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_1);       ! Item 3 Thresh 1 

    [mitem4$1] (T4_4);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_3_2);       ! Item 5 Thresh 3 

    [mitem6$1] (T6_3);       ! Item 6 Thresh 3 

    [mitem7$1] (T7_2_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_1);       ! Item 9 Thresh 1 

    [mitem10$1] (T10_4);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_3);     ! Item 11 Thresh 3 

    [mitem12$1] (T12_3);     ! Item 12 Thresh 3 

 

%sex#2.c#8% 

    [mitem1$1] (T1_2);       ! Item 1 Thresh 2 

    [mitem2$1] (T2_2);       ! Item 2 Thresh 2 

    [mitem3$1] (T3_2);       ! Item 3 Thresh 2 

    [mitem4$1] (T4_4);       ! Item 4 Thresh 4 

    [mitem5$1] (T5_4_2);       ! Item 5 Thresh 4 

    [mitem6$1] (T6_4);       ! Item 6 Thresh 4 

    [mitem7$1] (T7_2_2);       ! Item 7 Thresh 2 

    [mitem8$1] (T8_2);       ! Item 8 Thresh 2 

    [mitem9$1] (T9_2);       ! Item 9 Thresh 2 

    [mitem10$1] (T10_4);     ! Item 10 Thresh 4 

    [mitem11$1] (T11_4);     ! Item 11 Thresh 4 

    [mitem12$1] (T12_4);     ! Item 12 Thresh 4 

 

 

MODEL CONSTRAINT:  ! Used to define LCDM parameters 

! Mplus uses P(X=0) rather than P(X=1) so multiply by -1 
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! STRUCTURAL MODEL 1 

NEW(G_11_1*-1 G_12_1*-1 G_13_1*-1 G_212_1*1 G_213_1*1 G_223_1*1); 

m11=  - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m21= G_13_1 - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m31= G_12_1 - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m41= G_12_1+G_13_1+G_223_1 - 

(G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m51= G_11_1 - (G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m61= G_11_1+G_13_1+G_213_1 - 

(G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

m71= G_11_1+G_12_1+G_212_1 - 

(G_11_1+G_12_1+G_13_1+G_212_1+G_213_1+G_223_1); 

 

! STRUCTURAL MODEL 2 

NEW(G_11_2*-1 G_12_2*-1 G_13_2*-1 G_212_2*1 G_213_2*1 G_223_2*1); 

m12=  - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m22= G_13_2  - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m32= G_12_2 - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m42= G_12_2+G_13_2+G_223_2  - 

(G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m52= G_11_2  - (G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m62= G_11_2+G_13_2+G_213_2 - 

(G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

m72= G_11_2+G_12_2+G_212_2 - 

(G_11_2+G_12_2+G_13_2+G_212_2+G_213_2+G_223_2); 

 

NEW(DG_11*0 DG_12*0 DG_13*0 DG_212*0 DG_213*0 DG_223*0); 

DG_11 = G_11_2-G_11_1; 

DG_12 = G_12_2-G_12_1; 

DG_13 = G_13_2-G_13_1; 

DG_212 = G_212_2-G_212_1; 

DG_213 = G_213_2-G_213_1; 

DG_223 = G_223_2-G_223_1; 

 

! Item 1: Define LCDM parameters present for item 1 

NEW(L1_0 L1_11); 

T1_1=-(L1_0);                                                          ! Item 1 Thresh 1 

T1_2=-(L1_0+L1_11);                                                    ! Item 1 Thresh 2 

! Main effect order constraints 

L1_11>0; 

 

! Item 2: Define LCDM parameters present for item 2 

NEW(L2_0 L2_12); 

T2_1=-(L2_0);                                                          ! Item 2 Thresh 1 

T2_2=-(L2_0+L2_12);                                                    ! Item 2 Thresh 2 
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! Main effect order constraints 

L2_12>0; 

 

 

! Item 3: Define LCDM parameters present for item 3 

NEW(L3_0 L3_13); 

T3_1=-(L3_0);                                                          ! Item 3 Thresh 1 

T3_2=-(L3_0+L3_13);                                                    ! Item 3 Thresh 2 

! Main effect order constraints 

L3_13>0; 

 

 

! Item 4: Define LCDM parameters present for item 4 

NEW(L4_0 L4_11 L4_12 L4_212); 

T4_1=-(L4_0);                                                          ! Item 4 Thresh 1 

T4_2=-(L4_0+L4_12);                                                    ! Item 4 Thresh 2 

T4_3=-(L4_0+L4_11);                                                    ! Item 4 Thresh 3 

T4_4=-(L4_0+L4_11+L4_12+L4_212);                                       ! Item 4 Thresh 4 

! Main effect order constraints 

L4_11>0; L4_12>0; 

! Two-way interaction order constraints 

L4_212>-L4_11; 

L4_212>-L4_12; 

 

 

! Item 5: Define LCDM parameters present for item 5 

NEW(L5_0_1 L5_12_1 L5_13_1 L5_223_1 L5_0_2 L5_12_2 L5_13_2 L5_223_2); 

T5_1_1=-(L5_0_1);                                                        ! Item 29 Thresh 1 

T5_2_1=-(L5_0_1+L5_13_1);                                                 ! Item 29 Thresh 2 

T5_3_1=-(L5_0_1+L5_12_1);                                                 ! Item 29 Thresh 3 

T5_4_1=-(L5_0_1+L5_12_1+L5_13_1+L5_223_1);                                  ! Item 29 Thresh 4 

! Main effect order constraints 

L5_12_1>0; L5_13_1>0; 

! Two-way interaction order constraints 

L5_223_1>-L5_12_1; 

L5_223_1>-L5_13_1; 

 

T5_1_2=-(L5_0_2);                                                        ! Item 29 Thresh 1 

T5_2_2=-(L5_0_2+L5_13_2);                                                 ! Item 29 Thresh 2 

T5_3_2=-(L5_0_2+L5_12_2);                                                 ! Item 29 Thresh 3 

T5_4_2=-(L5_0_2+L5_12_2+L5_13_2+L5_223_2);                                  ! Item 29 Thresh 4 

! Main effect order constraints 

L5_12_2>0; L5_13_2>0; 

! Two-way interaction order constraints 

L5_223_2>-L5_12_2; 

L5_223_2>-L5_13_2; 
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NEW(D5_0 D5_12 D5_13 D5_223); 

D5_0=L5_0_2-L5_0_1; 

D5_12=L5_12_2-L5_12_1; 

D5_13=L5_13_2-L5_13_1; 

D5_223=L5_223_2-L5_223_1; 

 

! Item 6: Define LCDM parameters present for item 6 

NEW(L6_0 L6_11 L6_13 L6_213); 

T6_1=-(L6_0);                                                          ! Item 6 Thresh 1 

T6_2=-(L6_0+L6_13);                                                    ! Item 6 Thresh 2 

T6_3=-(L6_0+L6_11);                                                    ! Item 6 Thresh 3 

T6_4=-(L6_0+L6_11+L6_13+L6_213);                                       ! Item 6 Thresh 4 

! Main effect order constraints 

L6_11>0; L6_13>0; 

! Two-way interaction order constraints 

L6_213>-L6_11; 

L6_213>-L6_13; 

 

 

! Item 7: Define LCDM parameters present for item 7 

NEW(L7_0_1 L7_11_1 L7_0_2 L7_11_2); 

T7_1_1=-(L7_0_1);                                                          ! Item 1 Thresh 1 

T7_2_1=-(L7_0_1+L7_11_1);                                                    ! Item 1 Thresh 2 

! Main effect order constraints 

L7_11_1>0; 

 

T7_1_2=-(L7_0_2);                                                          ! Item 1 Thresh 1 

T7_2_2=-(L7_0_2+L7_11_2);                                                    ! Item 1 Thresh 2 

! Main effect order constraints 

L7_11_2>0; 

 

NEW(D7_0 D7_11); 

D7_0 = L7_0_2-L7_0_1; 

D7_11 = L7_11_2-L7_11_1; 

 

! Item 8: Define LCDM parameters present for item 8 

NEW(L8_0 L8_12); 

T8_1=-(L8_0);                                                          ! Item 8 Thresh 1 

T8_2=-(L8_0+L8_12);                                                    ! Item 8 Thresh 2 

! Main effect order constraints 

L8_12>0; 

 

 

! Item 9: Define LCDM parameters present for item 9 

NEW(L9_0 L9_13); 
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T9_1=-(L9_0); ! Item 9 Thresh 1 

T9_2=-(L9_0+L9_13);   ! Item 9 Thresh 2 

! Main effect order constraints 

L9_13>0; 

! Item 10: Define LCDM parameters present for item 10 

NEW(L10_0 L10_11 L10_12 L10_212); 

T10_1=-(L10_0); ! Item 10 Thresh 1 

T10_2=-(L10_0+L10_12); ! Item 10 Thresh 2 

T10_3=-(L10_0+L10_11); ! Item 10 Thresh 3 

T10_4=-(L10_0+L10_11+L10_12+L10_212);       ! Item 10 Thresh 4 

! Main effect order constraints 

L10_11>0; L10_12>0; 

! Two-way interaction order constraints 

L10_212>-L10_11; 

L10_212>-L10_12; 

! Item 11: Define LCDM parameters present for item 11 

NEW(L11_0 L11_12 L11_13 L11_223); 

T11_1=-(L11_0); ! Item 11 Thresh 1 

T11_2=-(L11_0+L11_13); ! Item 11 Thresh 2 

T11_3=-(L11_0+L11_12); ! Item 11 Thresh 3 

T11_4=-(L11_0+L11_12+L11_13+L11_223);       ! Item 11 Thresh 4 

! Main effect order constraints 

L11_12>0; L11_13>0; 

! Two-way interaction order constraints 

L11_223>-L11_12; 

L11_223>-L11_13; 

! Item 12: Define LCDM parameters present for item 12 

NEW(L12_0 L12_11 L12_13 L12_213); 

T12_1=-(L12_0); ! Item 12 Thresh 1 

T12_2=-(L12_0+L12_13); ! Item 12 Thresh 2 

T12_3=-(L12_0+L12_11); ! Item 12 Thresh 3 

T12_4=-(L12_0+L12_11+L12_13+L12_213);       ! Item 12 Thresh 4 

! Main effect order constraints 

L12_11>0; L12_13>0; 

! Two-way interaction order constraints 

L12_213>-L12_11; 

L12_213>-L12_13; 

OUTPUT: 

    TECH10;  ! Request additional model fit statistics 
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SAVEDATA: ! Format, name of posterior probabilities of class membership file 

    FORMAT = F10.5; 

    FILE = model04_exam.dat; 

    SAVE = CPROBABILITIES; 


