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middle and high school teachers’ knowledge resources when inferring directly and inversely 

proportional relationships between quantities. Additionally, the study examined preservice 

teachers’ solution strategies and their difficulties when solving single and multiple proportion 

problems. An explanatory case study with multiple cases was used to make comparisons within 

and across cases. This study used the knowledge-in-pieces perspective in reporting preservice 

teachers’ reasoning about ratios and proportional relationships. It appeared that the extent to 

which the preservice teachers were successful in coordinating the directly and inversely 

proportional relationships hinged on their attention to the specific features of the context. 

Although the preservice teachers accurately inferred the relationships between two covarying 

quantities as directly proportional or inversely proportional, their inferences were mainly based 

on attending to qualitative relationships—two quantities are increasing together—and the 

constancy of the rate of change. Thus, preservice teachers who relied heavily on the qualitative 

relationships and the constancy of the rate of change often judged nonproportional relationships 



that consisted of a constant difference or constant sum to be proportional, even after identifying 

correct nonproportional relationships. The results showed that the contexts of the hands-on 

problems facilitated the preservice teachers’ coordination of the directly and inversely 

proportional relationships more than the contexts of the missing-value word problems. 

 

 

INDEX WORDS: Preservice teachers, Teacher knowledge, Teacher education, Proportional 

reasoning, Ratio, Proportional relationships 

 

  



 

 

EXPLORING PRESERVICE MIDDLE AND HIGH SCHOOL MATHEMATICS TEACHERS’ 

UNDERSTANDING OF DIRECTLY AND INVERSELY PROPORTIONAL 

RELATIONSHIPS 

 

by 

 

MUHAMMET ARICAN 

BS + MEd., Gazi University, Turkey, 2004 

MEd., The University of Georgia, 2010 

 

 

 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

 

ATHENS, GEORGIA 

2015 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2015 

Muhammet Arican 

All Rights Reserved 

  



 

 

EXPLORING PRESERVICE MIDDLE AND HIGH SCHOOL MATHEMATICS TEACHERS’ 

UNDERSTANDING OF DIRECTLY AND INVERSELY PROPORTIONAL 

RELATIONSHIPS 

 

by 

 

MUHAMMET ARICAN 

 

 

 

 

      Major Professor:  Andrew G. Izsák 

      Committee:  Sybilla Beckmann Kazez 

         Dorothy Y. White 

         Melissa Freeman 

 

 

 

 

 

 

 

 

 

 

Electronic Version Approved: 

 

Suzanne Barbour 

Dean of the Graduate School 

The University of Georgia 

August 2015 

 



iv 

 

 

DEDICATION 

 

 

I dedicate this study to 

My mother, Gulbeyaz Arican 

For believing in my potential 

And 

My wife, Esra and  

My son, Suleyman Bera 

For their love and patience 

  



v 

 

 

ACKNOWLEDGEMENTS 

First, I would like to thank to my major professor, Andrew Izsák, for guiding me during 

this journey. His comments and suggestions significantly contributed to this study. I extend 

special thanks to my committee members, Melissa Freeman, Sybilla Beckmann, and Dorothy 

White, for their valuable feedback and support. I owe a debt of gratitude to my friends Oguz 

Koklu, Burak Olmez, and Rayen Antillanca for their help in collecting the interview data and 

their suggestions regarding the early drafts of the interview protocol.  

I am grateful to the Turkish Ministry of Education for their sponsorship and support 

throughout my master’s and doctoral programs at the University of Georgia. I am also grateful to 

the Department of Mathematics and Science Education for giving me the opportunity to pursue 

my MEd. and Ph.D. degrees in such a respected program and benefit from such distinguished 

professors in the field. 

I am grateful to my parents, Gulbeyaz and Suleyman, and my siblings, Ali, Yesim, and 

Huseyin, for their support and encouragement. Finally, I sincerely thank my wife, Esra, for her 

love and support, and my son, Suleyman Bera, for bringing joy to our family.  

  



vi 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS .............................................................................................................v 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... ix 

CHAPTER 

 1 INTRODUCTION .........................................................................................................1 

   Background ..............................................................................................................1 

   Statement of the Problems .......................................................................................4 

   Purpose of the Study ................................................................................................6 

   Research Questions ..................................................................................................6 

   Significance of the study ..........................................................................................7 

 2 LITERATURE REVIEW ............................................................................................10 

   Discussion of the Key Concepts ............................................................................10 

   Types of Problems Used in Studying Ratios and Proportions ...............................23 

   Strategies Used to Solve Proportion Problems ......................................................25 

   Studies on Students’ Proportional Reasoning ........................................................30 

   Studies on Teachers’ Proportional Reasoning .......................................................35 

   Multiplicative Reasoning .......................................................................................39 

 3 METHODOLOGY ......................................................................................................45 

   Theoretical Framework ..........................................................................................45 



vii 

   Research Design.....................................................................................................50 

   Pilot Study ..............................................................................................................81 

 4 RESULTS ..................................................................................................................108 

   Research Problems, Purposes, and Questions......................................................108 

   Analysis and Findings ..........................................................................................109 

   Case One: Kathy ..................................................................................................111 

   Case Two: Susan ..................................................................................................137 

   Case Three: Carol ................................................................................................160 

   Case Four: Helen..................................................................................................184 

 5 DISCUSSION and IMPLICATIONS ........................................................................210 

   Discussion ............................................................................................................210 

   Implications..........................................................................................................223 

REFERENCES ............................................................................................................................228 

APPENDICES 

 A INTERVIEW PROTOCOL FOR PILOT PROJECT ................................................234 

 B INTERVIEW PROTOCOL FOR FINAL PROJECT ................................................245 

 



viii 

 

 

 

LIST OF TABLES 

Page 

Table 1: Theme Development Process for Kathy's Case ...............................................................60 

Table 2: Themes for Susan, Carol, and Helen ...............................................................................64 

Table 3: Descriptions of the Mathematical Tasks..........................................................................66 

Table 4: Preservice Teachers’ Solution Strategies .......................................................................218 

  



ix 

 

 

 

LIST OF FIGURES 

Page 

Figure 1: Classification of proportions ..........................................................................................18 

Figure 2: A demonstration of a simple proportion structure..........................................................19 

Figure 3: Representation of an inverse proportion structure .........................................................20 

Figure 4: Representation of and strategies for solving a missing-value problem ..........................24 

Figure 5: Expression of a directly proportional relationship from the multiple batches 

perspective. ........................................................................................................................41 

Figure 6: Expression of a directly proportional relationship from the variable parts perspective .42 

Figure 7: Expression of a constant product relationship ................................................................43 

Figure 8: The three steps to solve the Fence problem ...................................................................75 

Figure 9: The steps to solve the Apartment problem .....................................................................76 

Figure 10: Expression of the multiplicative relationship between the number of notches and 

radii……. ...........................................................................................................................79 

Figure 11: Abby’s determination of a graph with an inversely proportional relationship .............84 

Figure 12: Sally’s ratio table for the number of people and number of fences relationship ..........89 

Figure 13: Sally’s inversely proportional graph for the number of notches and number of 

revolutions relationship ......................................................................................................90 

Figure 14: Sally’s attempts to draw an inversely proportional graph ............................................90 

Figure 15: Jason’s incorrect direct proportion strategy .................................................................93 

Figure 16: Jason’s response to the Speed problem ........................................................................94 



x 

 

Figure 17: Robert’s response to the Fence problem ......................................................................99 

Figure 18: Kathy’s scientific unit conversion method .................................................................115 

Figure 19: Kathy’s ratio table for expressing a constant ratio relationship between the distance 

and time …. ......................................................................................................................116 

Figure 20: Kathy’s expression of a constant ratio relationship between the distance and time ..117 

Figure 21: Kathy’s ratio table for expressing a constant product relationship in Task 1B ..........120 

Figure 22: Kathy’s explanation of a numerical reciprocal multiplicative relationship ...............121 

Figure 23: Kathy’s ratio table for expressing a constant product relationship in Task 3 ............122 

Figure 24: Kathy’s ratio table strategy in Task 4 .........................................................................123 

Figure 25: Kathy’s directly and inversely proportional graphs in Task 1 ...................................126 

Figure 26: Kathy’s multiplication operations within and between measure spaces ....................131 

Figure 27: Kathy’s two double number lines strategy .................................................................134 

Figure 28: Kathy’s ratio table strategy involving two steps ........................................................136 

Figure 29: Susan’s directly proportional graph and ratio table....................................................140 

Figure 30: Susan’s expression of the proportional relationship between the number of people and 

number of cupcakes .........................................................................................................142 

Figure 31: Susan’s inversely proportional graph and ratio table .................................................146 

Figure 32: Susan’s ratio table for expressing constancy of the products in Task 3 .....................147 

Figure 33: Susan’s determination of the relationships in Graphs A, B and C .............................150 

Figure 34: Susan’s incorrect double number line strategy...........................................................153 

Figure 35: Susan’s ratio table strategy for solving a multiple proportion question .....................155 

Figure 36: Susan’s two double number lines strategy .................................................................156 

Figure 37: Susan’s initial distance formula .................................................................................157 



xi 

 

Figure 38: Susan’s unit conversion strategy ................................................................................160 

Figure 39: Carol’s strip diagram strategy ....................................................................................163 

Figure 40: Carol’s ratio table strategy .........................................................................................164 

Figure 41: Carol’s ratio table for expressing the number of people and cupcakes relationship ..168 

Figure 42: Carol’s drawing depicting the number of notches and revolutions relationship ........170 

Figure 43: Carol’s inverse proportion and proportion formula strategy in Task 1B ...................172 

Figure 44: Carol’s linear graph for expressing the number of notches and radii relationship .....174 

Figure 45: Carol’s inversely proportional graph ..........................................................................178 

Figure 46: Carol’s pictorial representation of the number of people and time relationship ........180 

Figure 47: Carol’s second attempt to explain the number of people and time relationship ........182 

Figure 48: Carol’s incorrect proportion strategy in Task 4 ..........................................................183 

Figure 49: Helen’s multiplication statement for explaining the radii and number of notches 

relationship .......................................................................................................................187 

Figure 50: Helen’s repeated addition of the batches in Task 1A .................................................188 

Figure 51: Helen’s expression of the constancy of the between measure space ratios ................191 

Figure 52: Helen’s table for expressing the number of notches and revolutions relationship .....193 

Figure 53: Helen’s ratio table for expressing the number of weights and distance relationship .195 

Figure 54: Helen’s linear graph for expressing the number of notches and radii relationship ....198 

Figure 55: Helen’s descriptions of the relationships in Graphs A, B and C ................................202 

Figure 56: Helen’s double number line strategy ..........................................................................205 

Figure 57: Helen’s diagrams expressing the number of cupcakes and time relationship ............207 

Figure 58: Sally’s ratio table strategy in the Bakery ΙΙ task ........................................................218 

Figure 59: Carol’s unit ratio strategy in Task 1A ........................................................................222 



1 

 

 

 

CHAPTER 1 

INTRODUCTION 

Background 

Understanding ratios, proportions, and proportional reasoning constitutes a main area of 

school mathematics that is critical for students to learn but difficult for teachers to teach (Lobato 

& Ellis, 2010). For instance, middle grade students need to understand proportionality well if 

they want to succeed in Grades 6-8 and in their following mathematical experiences (Lobato & 

Ellis, 2010). Therefore, in middle school, students need to develop skills that are essential for the 

development of proportionality. Two of those skills, as reflected in the National Council of 

Teachers of Mathematics’ (NCTM; 2000) Principles and Standards for School Mathematics, are 

understanding and using ratios and proportions to represent quantitative relationships; and 

developing, analyzing, and explaining methods for solving problems involving proportions 

(Number and Operations Standards for Grades 6-8 section, para. 7). In addition to these two 

skills, in Grade 7, students should be able to “analyze proportional relationships and use them to 

solve real-world and mathematical problems (7.RP)” (CCSSM; Common Core State Standards 

Initiative, 2010, p. 48).  

Researchers define proportional reasoning in a various ways. For example, Lamon 

(2007) defines it as follows:  

[P]roportional reasoning means supplying reasons in support of claims made about the 

structural relationships among four quantities, (say a, b, c, d) in a context simultaneously 

involving covariance of quantities and invariance of ratios or products; this would consist 
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of the ability to discern a multiplicative relationship between two quantities as well as the 

ability to extend the same relationship to other pairs of quantities. (pp. 637-638)  

The definition above is a very thorough way of defining proportional reasoning. Later in the 

same manuscript, she describes proportional reasoning briefly: “Proportional reasoning refers to 

detecting, expressing, analyzing, explaining, and providing evidence in support of assertions 

about proportional relationships” (Lamon, 2007, p. 647). Lamon (2007) states that proportional 

reasoning advances as one studies fractions, and it is a sign of one’s rational number sense.  

Karplus, Pulos, and Stage (1983a) describe proportional reasoning as a term that indicates 

reasoning in a “system of two variables between which there exists a linear functional 

relationship” (p. 219), and for them proportional reasoning leads one to reach conclusions about 

a condition or phenomenon that can be explained by a constant ratio. Lesh, Post, and Behr 

(1988) view proportional reasoning as a form of mathematical reasoning that entails “a sense of 

co-variation and of multiple comparisons, and the ability to mentally store and process several 

pieces of information” (p. 93). They also point out that proportional reasoning plays a key role in 

students’ mathematical development, viewing it as an important concept in children’s elementary 

school arithmetic and in higher mathematics.   

According to Lamon (2007), proportionality is a much larger context than proportional 

reasoning. For Lamon (2007), “Proportionality is a mathematical construct referring to the 

condition or the underlying structure of a situation in which a special invariant (constant) 

relationship exists between two co-varying quantities (quantities that are linked and changing 

together)” (p. 638). She hypothesizes that proportions appear in the study of the natural 

expression of equivalent rational numbers and that one learns to reason proportionally by various 

experiences with rational numbers. For her, understanding proportionality develops later through 
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interactions with mathematical and scientific systems, and these systems involve the invariance 

of a ratio or of a product.  

As stated in the Common Core State Standards for Mathematics, to be able to reason 

proportionally, students should be able to “Decide whether two quantities are in a proportional 

relationship (7.RP.2a)” (CCSSM; Common Core State Standards Initiative, 2010, p. 48). There 

are two types of proportional relationships between quantities: (directly) proportional 

relationships and inversely proportional relationships. The word directly is written in 

parentheses because the concept of proportional relationship is usually understood to refer to 

directly proportional relationships (Beckmann, 2011). According to Beckmann and Izsák (2015), 

models of multiplication, division, and proportional relationships can be combined by the 

equation M∗N = P, where M, N, and P stand for known constants. For Beckmann and Izsák 

(2015), a (directly) proportional relationship is “a collection of pairs of values for x and y” that 

either satisfy the equation x ∗ N = y or M∗ x = y (p. 20). In both equations, N and M are known 

constants, and x and y are either unknown variable amounts or two co-varying values. In a 

directly proportional relationship, the unknown amounts (x and y) vary directly with each other. 

Varying directly implies that the values of these two quantities stay in a constant ratio.  

On the other hand, an inversely proportional relationship is “a collection of pairs of 

values for x and y” that satisfy the equation x ∗ y =P, where x and y are unknown quantities or 

two co-varying values, and P is a known constant (Beckmann & Izsák, 2015, p. 20). The term 

inversely proportional is used, because there is an inverse relationship between two quantities in 

that if the value of a quantity increases by a multiplicative constant, then the corresponding value 

of the second quantity decreases by the reciprocal of that constant. Hence, in an inversely 
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proportional relationship, the unknown amounts (x and y) vary inversely with each other, and 

varying inversely implies that the product of the values of these two quantities remains constant.  

Lamon (2007) states that y = k∙x is the mathematical model for directly proportional 

relationships. In this model, the variables y and x represent the quantities that are in a 

proportional relationship, and the amount k represents the constant of proportionality. Since y = 

k∙x necessitates 
𝑦

𝑥
=  𝑘, in a proportional relationship, the quotient of the two co-varying 

quantities always remains constant. The mathematical model for an inversely proportional 

relationship is y∙x = k. Similarly, k represents the constant of proportionality. For Lamon (2007), 

the constant of proportionality plays a fundamental role in understanding proportionality. She 

describes the constant of proportionality as a slippery character, since its role depends on the 

situation where it is used. For example, she explains that in a graph it is the slope, in symbols it 

is a constant, in rate situations it is the constant rate, in reading maps it is the scale, in similar 

figures it is the scale factor, and it may mean the percentage if we think about sales tax.  

Statement of the Problems 

Two primary types of proportional relationship problems are used in mathematics 

education research: missing-value problems and comparison problems (Lamon, 2007). In 

missing-value type problems, a student is typically presented with three of the four values and 

asked to determine the fourth missing value (Lamon, 2007). However, in comparison problems, 

two ratios are compared to determine whether they are equal, or if one is larger or smaller 

(Lobato & Ellis, 2010). One of the problems of teaching and learning proportional relationships 

is that traditional proportion instruction places an emphasis on rule memorization and rote 

computations (Izsák & Jacobson, 2013). Hence, the most common textbook strategy for solving 

a missing-value problem is the cross-multiplication strategy (Fisher, 1988), which requires 
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setting a proportion and cross-multiplying numbers within the proportion. This strategy can also 

be used with comparison problems to determine the equality of two ratios. As noted by Izsák and 

Jacobson (2013), “reasoning about proportional relationships involves much more than using 

cross-multiplication” (p. 2). For Izsák and Jacobson (2013), a strong understanding of 

proportional relationships involves “understanding and using multiplicative relationships 

between two co-varying quantities and recognizing whether or not two co-varying quantities 

remain in the same constant ratio” (p. 2). As observed by many researchers (e.g., Fisher, 1988; 

Riley, 2010), teachers can depend severely on using the cross-multiplication strategy when 

solving proportion problems.  

A second problem is that, according to Izsák and Jacobson (2013), mathematics 

education research has overlooked teachers’ proportional reasoning. In particular, only a few 

researchers (e.g., Fisher, 1988; Izsák & Jacobson, 2013; Lim, 2009; Riley, 2010) have studied 

teachers’ proportional reasoning regarding inverse proportions. These researchers observed that 

when teachers were introduced to inverse proportion problems they struggled to solve those 

problems. For example, Fisher (1988) gave 20 secondary mathematics teachers the following 

inverse proportion problem:  

If it takes nine workers 5 hours to mow a certain lawn, how long would it take six 

workers to mow the same lawn? (p. 160). 

As discussed by Fisher (1988), 12 out of 20 teachers solved this problem incorrectly, and nine of 

them approached the problem as if it were a direct proportion problem. Therefore, a third 

problem is that preservice and in-service teachers tend to judge nonproportional relationships to 

be proportional (Cramer, Post, & Currier, 1993; Fisher, 1988; Izsák & Jacobson, 2013; Lim, 

2009; Riley, 2010). In addition to these three problems, Lim (2009) observed that preservice 
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teachers (PSTs) had greater difficulty with the conceptual understanding of the solution of a 

direct proportion problem than conceptual understanding of a nonproportional problem. They are 

likely to use additive strategies to solve proportion problems (Simon & Blume, 1994; Riley, 

2010). They have difficulty creating suitable reciprocal multiplicative relationships for 

nonproportional problems (Izsák & Jacobson, 2013). Finally, they have difficulty understanding 

ratio-as-measure and the invariance of a ratio (Simon & Blume, 1994).  

Purpose of the Study 

My main goal in conducting this study was to explore how preservice middle and high 

school mathematics teachers infer directly and inversely proportional relationships in single and 

multiple proportion questions. Additionally, I was interested in understanding the types of 

strategies that PSTs use to solve single and multiple proportion questions, the ways they 

represent directly and inversely proportional relationships in the given questions, and the 

difficulties that they encounter while solving these questions. To accomplish these goals, I asked 

the following research questions. 

Research Questions 

1. How do preservice middle and high school mathematics teachers infer directly and 

inversely proportional relationships in single and multiple proportion problems; what 

types of knowledge resources do they use when inferring and explaining directly and 

inversely proportional relationships; and what kinds of difficulties do they encounter in 

the process of inferring, explaining, and expressing directly and inversely proportional 

relationships?  
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2. What types of solution strategies do preservice middle and high school mathematics 

teachers use to solve single and multiple proportion problems, and how do they express 

directly and inversely proportional relationships in those problems? 

Significance of the Study 

In earlier research, some of which I discussed previously, researchers investigated 

teachers’ proportional reasoning mostly using missing-value word problems, which usually 

involved a single proportional or nonproportional relationship. Similarly, instruction on 

proportions traditionally uses missing-value word problems in teaching, and cross multiplication 

is the choice for a general solution strategy. Hence, preservice and in service teachers usually 

have some experiences with missing-value word problems. In this study, a combination of 

hands-on activities and real-world missing-value problems, which involved either single or 

multiple directly and inversely proportional relationships, were used. It was expected that the use 

of physical devices (e.g., plastic gears and mini number balance system) would provide hands-on 

experiences and generate a checking mechanism for PSTs, which would eventually help them 

have well developed understandings of directly and inversely proportional relationships. Because 

it is not easy to solve multiple proportion problems by simply forming a proportion and applying 

the cross-multiplication strategy, it was expected that teachers would avoid using cross 

multiplication and additive strategies in those problems. Therefore, the results of this study 

illuminate how PSTs reason about proportional relationships when they cannot rely on 

computation methods like cross multiplication. In addition, it was anticipated that the use of 

hands-on and multiple proportion problems would help reveal teachers’ knowledge resources for 

inferring directly and inversely proportional relationships.  
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This study makes use of the knowledge-in-pieces epistemological perspective (diSessa, 

1988, 1993, 2006) to analyze knowledge resources that teachers used to infer directly and 

inversely proportional relationships and multiplicative relationships. Most recently, Izsàk and 

Jacobson (under review) investigated preservice middle and secondary grades teachers’ facility 

with multiplicative relationships and identification of directly and inversely proportional 

relationships by utilizing the knowledge-in-pieces perspective. However, the missing-value 

problems used by Izsàk and Jacobson (under review) involved either a single inversely 

proportional relationship or a constant difference relationship. Izsàk and Jacobson (under review) 

suggested that future research should involve more complex cognitive structures to analyze 

teachers’ responses to the proportion problems. In order to examine complex cognitive structures 

Izsàk and Jacobson (under review) recommended using problem tasks that involve physical 

devices and other contexts with which teachers have less experience. Since this study uses 

hands-on and multiple proportion tasks to examine teachers’ proportional reasoning, it extends 

and strengthens the knowledge-in-pieces perspective by applying core components of this 

perspective to understand the more complex cognitive structures used by teachers to identify 

directly and inversely proportional relationships and multiplicative relationships.    

Thus, it was anticipated that this study would make four contributions to the current 

research base in mathematics education: First, very little research has been conducted on PSTs’ 

proportional reasoning. In particular, only a few researchers (e.g., Fisher, 1988; Izsák & 

Jacobson, 2013; Lim, 2009; Riley, 2010) have studied teachers’ proportional reasoning regarding 

inverse proportions, and even fewer researchers have studied multiple proportions (e.g., 

Vergnaud, 1983, 1988). Second, the use of hands-on tasks and real-world missing-value 

problems together precipitate the gathering of relevant information regarding PSTs’ proportional 
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reasoning. Third, this study builds a bridge between mathematics education and science 

education by making use of science concepts—velocity, gear ratio, and balance. Fourth, this 

study uses the knowledge-in-pieces perspective for analyzing PSTs’ knowledge resources in 

detecting and explaining directly and inversely proportional relationships in problems tasks with 

more complex structures and with which teachers have less experience. 
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, I elaborate on the key concepts and mathematics literature, some of which 

I already discussed in Chapter One, about proportional reasoning and proportional relationships. 

I first discuss key concepts that play important roles in studying proportions. Next, I present the 

types of problems that have been used in studying ratios and proportions and discuss strategies 

that students and teachers employ when solving proportion problems. I then summarize previous 

studies on students’ and teachers’ proportional reasoning. In the last section of the chapter, I 

explain how the term multiplicative reasoning is used in this study. 

Discussion of the Key Concepts 

Quantity  

Researchers, such as Schwartz (1988), Shalin (1987), and Nesher (1988), “characterize 

quantities as ordered pairs of the form (number, unit)” while Steffe (1991b) “characterizes 

quantity as the outcome of unitizing or segmenting operations” (as cited in Thompson, 1994, p. 

184). Although, for Thompson (1994), operations of unitizing and segmenting are essential for a 

person to create quantities, he states that he uses the term quantity more broadly than Steffe 

(1991b). Thompson (1990) defines quantity as a “quality of something that one has conceived as 

admitting some measurement process” (p. 5). Similarly, Lamon (2007) defines quantity as a 

“measurable quality of an object—whether that quality is actually quantified or not” (p. 630). As 

an example, one can compare the heights of two people without measuring by simply observing 

the difference when they stand beside each other. For Lamon (2006), linking quantities that are 
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not quantified is an essential kind of reasoning, and this kind of reasoning is available to children 

when posed in contexts that they understand (as cited in Lamon, 2007). As an example, Lamon 

(2007) suggests that one way to help students develop this type of reasoning involves using a 

context in which teachers ask students how many cookies (the same, more, or less) their friends 

would get if they shared some cookies with some friends one day and if they shared fewer 

cookies with more friends the next day.  

Two different kinds of quantity are described by researchers: intensive quantity and 

extensive quantity. Schwartz (1988) defines intensive quantity as “a type of quantity that is 

ordinarily not either counted or measured directly” (p. 42), and for him, intensive quantities can 

be recognized by the fact that their unit measures contains the word per. For Kaput and West 

(1994), intensive quantity is used as “a blanket term to cover all the types of quantities” (p. 239) 

that are described as rates, ratios, unit conversion factors, and scale conversion factors. As stated 

by Kaput and West (1994), intensive quantities can be used in two different ways: particular 

intensive quantity (or particular ratio) and rate intensive quantity (or rate-ratio). If we are using a 

particular ratio to describe some relationship between two quantities, then we are using a 

particular intensive quantity. For example, if we talk about a particular purchase of vegetables—

let’s say if we pay 6 dollars for 3 pounds of vegetables—then we are talking about particular 

intensive quantity. On the other hand, because the statement 2 dollars per pound refers to the 

price of vegetables of any amount, then we are talking about a rate intensive quantity.  

On the other hand, Thompson (1990) defines extensive quantity as “a quantity that may 

be measured directly or is a combination of directly measurable quantities” (p. 6). For Kaput and 

West (1994), two extensive quantities can be used to construct an intensive quantity. For 

example, if we pay 5 dollars for 3 pounds of vegetables, then the statement 5 dollars per 3 
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pounds corresponds to an intensive quantity, and 5 dollars and 3 pounds correspond to extensive 

quantities that can be used to construct the intensive quantity.  

Ratio and Rate  

As discussed by Thompson (1994), even though a conventional distinction is not made 

between ratio and rate, there is widespread confusion about existing distinctions. For Thompson 

(1994), because of the lack of conventional distinction between ratio and rate, these two terms 

are used frequently without definition. He sums up the most frequent distinctions as follows:   

1) A ratio is a comparison between quantities of like nature (e.g., pounds vs. pounds), and a 

rate is a comparison of quantities of unlike nature (e.g., distance vs. time; Vergnaud, 

1983, 1988). 

2) A ratio is a numerical expression of how much there is of one quantity in relation to 

another quantity; a rate is a ratio between a quantity and a period of time (Ohlsson, 1988). 

3) A ratio is a binary relation which involves ordered pairs of quantities. A rate is an 

intensive quantity—a relationship between one quantity and one unit of another quantity 

(Kaput, Luke, Poholsky, & Sayer, 1986; Lesh, Post, & Behr, 1988; Schwartz, 1988).  

(Thompson, 1994, p. 190) 

According to Thompson (1994), each of the above distinctions seems to have some validity, 

although there is an evident controversy about those distinctions. For him, these distinctions have 

been based upon situations per se instead of mental operations. Thompson (1994) describes a 

ratio as being the “result of comparing two quantities multiplicatively” (p. 190) and rate as a 

“reflectively abstracted constant ratio” (p. 192). Similarly, Lobato and Ellis (2010) define the 

term ratio as a “multiplicative comparison of two quantities, or it is a joining of two quantities in 

a composed unit” (p. 12).  
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The most common definitions of ratio and rate are based on the nature of the quantities 

compared, so when two quantities that are compared have the same units, they become a ratio; 

but if they have different units, they become a rate. As stated in the draft Ratio and Proportional 

Relationships Progression (Common Core Standards Writing Team; 2011), some authors 

distinguish ratios from rates by looking at the nature of the quantities, but other authors use ratios 

to encompass both kinds of situations, and the CCSSM standards use ratio in this later sense. A 

colon is used in the notation of a ratio, as in 2: 3, and the quotient 
2

3
 is called the value of the ratio 

2: 3. If we let the ratio 2: 3 represents 2 cups of orange juice for every 3 cups of apple juice, then 

the associated rate is 
2

3
 cups of orange juice for every 1 cup of apple juice, and the numerical 

term 
2

3
 is called the unit rate.  

If we multiply each measurement in a ratio by the same positive number, then we get an 

equivalent ratio, and equivalent ratios have the same unit rate. For example, if we multiply each 

measurement in 
2 𝑐𝑢𝑝𝑠 𝑜𝑟𝑎𝑛𝑔𝑒 𝑗𝑢𝑖𝑐𝑒

3 𝑐𝑢𝑝𝑠 𝑎𝑝𝑝𝑙𝑒 𝑗𝑢𝑖𝑐𝑒
 by 2, then we get a ratio of 4: 6 and we still have a rate of  

2

3
 

cups of orange juice for every 1 cup of apple juice. Equivalent ratios play a critical role in 

exploring directly proportional relationships, since one has to consider equivalent ratios to solve 

problems that involve directly proportional relationships. The ratio of the reciprocal of the 

quantities is called an inverse of a ratio or simply inverse ratio. For example, the inverse ratio of 

2 𝑐𝑢𝑝𝑠 𝑜𝑟𝑎𝑛𝑔𝑒 𝑗𝑢𝑖𝑐𝑒

3 𝑐𝑢𝑝𝑠 𝑎𝑝𝑝𝑙𝑒 𝑗𝑢𝑖𝑐𝑒
 is 

3 𝑐𝑢𝑝𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑒 𝑗𝑢𝑖𝑐𝑒

2 𝑐𝑢𝑝𝑠 𝑜𝑓 𝑜𝑟𝑎𝑛𝑔𝑒 𝑗𝑢𝑖𝑐𝑒
. This concept is important, because to solve problems 

that involve inversely proportional quantities, we need to form a proportion in which the second 

ratio needs to be an inverse ratio.  

Two other important concepts involving ratios are the concepts of within and between 

ratios. According to Freudenthal (1973, 1978), an internal (within) ratio is composed of 
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“magnitudes” from the same system or measure space, while an external (between) ratio is 

composed of “magnitudes” from different systems or measure spaces (as cited in Lamon, 2007). 

For instance, if a car covers a distance of 60 miles in 1 hour, then it can cover 120 miles in 2 

hours. In this example, 60 miles: 120 miles and 1 hour: 2 hours are internal (within) ratios, and 

60 miles: 1 hour and 120 miles: 2 hours are external (between) ratios. As emphasized by Lamon 

(2007), one of the persistent issues in proportions is the confusion about the classification of 

students’ strategies as either within or between. For her, the confusion results from different uses 

of the terms within and between in the earlier research, which originated in a science tradition. 

For example, Karplus et al. (1983a, 1983b) and Noelting (1980a, 1980b) used alternative 

definitions for within and between ratios (Lamon, 2007). They defined a system as “a set of 

interacting elements” (Lamon, 2007, p. 634). For them, an internal (within) ratio was “a 

comparison of elements within one scientific state or system” (Lamon, 2007, p. 634). In contrast, 

an external (between) ratio involved elements from different systems. According to this 

alternative view, in the example above, 60 miles and 1 hour define a system, and 120 miles and 2 

hours define another system. Hence 60 miles: 1 hour and 120 miles: 2 hours become internal 

(within) ratios. Similarly, 60 miles: 120 miles and 1 hour: 2 hours become external (between) 

ratios.  

As discussed by Lamon (2007), using terminologies “within or between measure spaces” 

or “within or between systems” can help us eliminate this confusion (p. 634). I give the following 

two examples to demonstrate these two terminologies:  

Example 1:  If 4 apples cost 1 dollar, then 12 apples cost 3 dollars.  

In this example, our measure spaces are: number of apples (Measure space one or M1) and cost 

in dollars (Measure space two or M2). Therefore, the ratio 
4 apples

12 apples
=  

1

3
 is an example of a within 
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measure space ratio. On the other hand, the ratio 
4 apples

1 dollar
 is an example of a between measure 

space ratio. Here, the between measure space ratio becomes an intensive quantity.  

Example 2: Mixture one was constituted using 2 cups of sugar and 6 cups of water. 

Mixture two was constituted using 3 cups of sugar and 8 cups of water.  

In this example, system one is mixture one and system two is mixture two. Hence, 

2 cups of sugar

6 cups of water 
 and 

3 cups of sugar

8 cups of water 
 are within-system ratios, and 

2 cups of sugar

3 cups of sugar 
 and 

6 cups of water

8 cups of water 
 are 

between-system ratios.  

One can see the use of within or between measure spaces terminology in Vergnaud’s 

(1983, 1988) studies. In this study, I also use within or between measure spaces terminology to 

avoid confusion. Following Freudenthal (1973, 1978), Vergnaud’s (1983, 1988), and Lamon 

(2007), one may define within and between measure space ratios as follows: If a ratio consists of 

quantities that are taken from the same measure space, then this ratio is called a within measure 

space ratio. On the contrary, if a ratio consists of quantities that are taken from different measure 

spaces, then this ratio is called a between measure space ratio. As defined by Lamon (2007), 

“Measure spaces usually refer to different sets of objects, different types of quantities, or 

different units of measure” (p. 634). If students solve a problem by forming a proportion with 

two within measure space ratios, then their strategy is called a within measure space strategy. 

Similarly, if they form a proportion by using two between measure space ratios, then their 

strategy is called a between measure space strategy. 

Covariation 

As stated by Lamon (2007), “proportional relationships involve one of the simplest forms 

of co-variation” (p. 648). By covariation, Lamon (2007) implies that “two quantities are linked to 

each other in such a way that when one changes, the other one also changes in a precise way with 
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the first quantity” (p. 648). As I discussed in Chapter One, if there is a directly proportional 

relationship between two quantities (e.g., x and y), we can write y =  k1 ∙ 𝑥 or 
𝑦

𝑥
 = k1 , where 𝑘1 is 

called the constant of the proportionality. Similarly, if there is an inversely proportional 

relationship between x and y, we can write y ∙ x = k2, and again, 𝑘2 is called the constant of the 

proportionality. As one can understand from these two equations—y =  k1 ∙ 𝑥 and y ∙ x = k2— 

directly and inversely proportional relationships require a multiplicative relationship between the 

two quantities. For example, in the directly proportional case, y is a constant multiple of x and, 

so when x changes (increases or decreases), y changes in proportion to x. Similarly in the 

inversely proportional case, y is a constant multiple of  
1

𝑥
, and x and y change in an opposite 

manner. For instance, when x increases, y decreases in proportion to x or, when x decreases, y 

increases in portion to x.  

Proportion 

According to the Common Core Standards Writing Team (2011), a proportion is “an 

equation stating that two ratios are equivalent” (p. 3).  Similarly, Fisher (1988) defines the term 

proportion as a “statement of the equality of two ratios (i.e., a/b = c/d)” (p. 157), and Lobato and 

Ellis (2010) define it as a “relationship of equality between two ratios” (p. 12). Because a 

proportion is formed by two equivalent ratios, and because each of these two ratios represents the 

relationship between two quantities, in a proportion, even if we change the corresponding values 

of the quantities, the ratio of the two quantities remains constant.  

According to the draft Ratio and Proportional Relationships Progression (Common Core 

Standards Writing Team, 2011), “The study of ratios and proportional relationships extends 

students’ work in measurement and in multiplication and division in the elementary grades” (p. 

2). Also, Lobato and Ellis (2010) state that elementary schools allow students to develop 
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meanings for fractions and multiplication that have important foundations on which students 

build an understanding of ratios, proportions, and proportional reasoning. Hence, Vergnaud 

(1983, 1988) emphasizes that multiplication, division, fractions, ratios, and rational numbers are 

not mathematically independent of one another and places these concepts within a larger context 

that he calls the multiplicative conceptual field. For Vergnaud (1988), a conceptual field is “a set 

of situations, the mastering of which requires mastery of several concepts of different natures” 

(p. 141). Two main conceptual fields are additive and multiplicative structures (Vergnaud, 1983, 

1988). Additive structures include a set of problems involving addition, subtraction, difference, 

interval, and translation, and multiplicative structures include a set of problems involving 

multiplication, division, fraction, ratio, and similarity (Vergnaud, 1983, 1988).  

Vergnaud (1983, 1988) discusses three types of multiplicative structures: isomorphism of 

measures, product of measures, and multiple proportion other than product. The isomorphism of 

measures structure “consists of a simple direct proportion between two measure-spaces 𝑀1 

and 𝑀2” (Vergnaud, 1988, p. 129). The product of measures structure “consists of the Cartesian 

composition of two measure-spaces, 𝑀1 and 𝑀2, into a third, 𝑀3” (Vergnaud, 1988, p. 134). 

According to Vergnaud (1988), the problems in this structure are concerned with area, volume, 

Cartesian product, and work. Although this structure includes an inversely proportional 

relationship between quantities multiplied, Vergnaud (1983, 19888) did not focus on this 

inversely proportional relationship in detail. In the multiple proportion structure, “a measure-

space 𝑀3 is proportional to two different independent measure-spaces 𝑀1 and 𝑀2” (Vergnaud, 

1988, p. 138). This type of proportional relationship is also called a jointly proportional 

relationship. For example: “The consumption of cereal in a scout camp is proportional to the 

number of persons and to the number of days” (Vergnaud, 1988, p. 138). As noted by Vergnaud 
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(1988), multiple proportion problems have not been researched widely, and most teachers are 

unaware of students’ difficulties with these problems. 

 

Figure 1. Classification of proportions. 

Although there is not an agreed upon classification of proportions, in this study, I classify 

proportions into two main categories: single proportions and multiple proportions (Figure 1). In 

Figure 1, I classified multiple proportions for the case of the three measure spaces. Single 

proportions involve direct and inverse proportions, and multiple proportions involve compound 

and continued proportions. My classification uses Vergnaud’s (1983, 1988) classification of 

multiplicative structures and extends it a little bit further. For instance, first, my definition of a 

single proportion structure combines isomorphism of measures and product of measures 

structures. Second, my definition of a multiple proportion structure involves two main types of 

proportions: compound and continued. A compound proportion structure involves direct-direct-

inverse and inverse-inverse-inverse proportion structures. Following the multiplication statement 

provided by Beckmann and Izsák (2015), a direct-direct-inverse structure can be expressed by 

the multiplication statement, M*N = k*P, and an inverse-inverse-inverse structure can be 

expressed by the multiplication statement, M*N*P = k. In these two statements, M, N, and P 

represent the quantities compared, and k represents the constant of the proportionality. 



19 

 

Vergnaud’s (1983, 1988) multiple proportion structure is equivalent to a direct-direct-inverse 

proportion structure in my classification. 

Single Proportions. Following Vergnaud (1983, 1988), if we only have two measure 

spaces (e.g., M1 and M2) that involve four quantities (e.g., a, b, c, and d), then the proportion 

that is formed by these four quantities has a single structure. In the direct proportion, quantities 

in two measure spaces, M1 and M2, are directly proportional to each other. Vergnaud (1983, 

1988) called this structure Isomorphism of Measures. As discussed by Vergnaud (1983), this 

structure describes many situations in ordinary life – for example, fair sharing, uniform speed 

(speed and distance), and constant price (cost and objects bought). The following example is 

adapted from Vergnaud (1983): 

Example: If the consumption of gas for a car is 6 liters per 100 km, then it needs 30 liters 

to travel 500 km. In this example, a = 100 km, b = 6 liters, c = 500 km, d = 30 liters, M1 

= distance, and M2 = gas in liters.  

Because the distance traveled and the amount of gas consumed are directly proportional, the 

direct proportion that is formed among the four quantities in this question is either a:c = b:d or 

a:b = c:d. Vergnaud (1983) demonstrated the simple direct proportion between M1 and M2 as in 

Figure 2.  

 

Figure 2. A demonstration of a simple proportion structure. 

Unlike the case of a direct proportion, in an inverse proportion, the quantities in two 

measure spaces are inversely proportional to each other. We can also see inversely proportional 

structures naturally in life. For example, if the distance is constant, then the speed and the time 
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are inversely proportional; the number of people and the time spent completing a job are also 

inversely proportional if we take the amount of work to be constant and assume that each person 

works at the same rate, and the lengths of height and width of a rectangle are also inversely 

proportional if we take the area to be constant.  

Example: If one can cover 120 miles in 2 hours driving at 60 mph, then he or she can 

cover the same distance in 3 hours driving at 40 mph.  

In this example, M1 = speed, M2 = time, a = 60 mph, b = 2 hours, c = 40 mph, and d = 3 hours. 

Because there is an inversely proportional relationship between the speed and the time, the 

proportion that is formed among these four quantities is either a:c = d:b or a:d = c:b. Therefore, 

for this example, a×b= c×d, and they represent the distance traveled. Following Vergnaud 

(1983), I represent the inverse structure of this example in Figure 3. 

 

Figure 3. Representation of an inverse proportion structure. 

Multiple Proportions. Multiple proportions are formed if we have more than two 

measure spaces. For simplicity, I use three measure spaces. Let our three measure spaces be M1, 

M2, and M3. Hence, in a multiple proportion structure, we can determine three relationships 

between three measure spaces: between M1 and M2, between M1 and M3, and between M2 and 

M3. There are two substructures of multiple proportions: a compound proportion structure and a 

connected proportions structure.  

A compound proportion structure consists of a combination of direct and inverse 

proportions. For example, it involves direct-direct-inverse and inverse-inverse-inverse proportion 
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structures for three quantities case. I demonstrate these two structures by using two different 

examples:  

Example 1: If four workers paint two bedrooms in 6 hours, then two workers paint one 

bedroom in 6 hours.  

Example 2: If 12 workers build an apartment in 24 days by working 8 hours per day, then 

24 workers build the same apartment in 16 days working 6 hours per day.  

In the first example, let M1 be the number of workers, M2 be the number of bedrooms, 

and M3 be the number of hours each worker works per day. There is a directly proportional 

relationship between quantities in M1 and M2 (assuming the number of hours each worker works 

per day to be constant). Similarly, there is a directly proportional relationship between quantities 

in M2 and M3 (assuming the number of workers to be constant). On the other hand, there is an 

inversely proportional relationship between quantities in M1 and M3 (assuming the number of 

bedrooms to be constant). I call this structure a direct-direct-inverse proportion structure (or 

joint proportion structure) and the relationship a direct-direct-inverse proportional relationship. 

The mathematical composition behind this structure can be described as follows: (number of 

workers) * (number of hours) = (number of bedrooms) * (man-hours per bedroom). In this 

example, man-hours per bedroom is the constant of the proportionality and can be calculated 

as 𝑘 =
4∙6

2
= 12. In addition, if M1 consist of quantities a and b, M2 consist of quantities c and d, 

and M3 consist of quantities e and f; then, in the direct-direct-inverse proportion structure, we 

have a∙d∙e = b∙c∙f. For instance, in example one, we have a = 4, b = 2, c = 2, d = 1, e = 6, and f = 

6. Here we have a∙d∙e = 4∙1∙6 = 24 and b∙c∙f = 2∙2∙6 = 24.  

In the second example, let M1 be the number of workers, M2 be the number of days, and 

M3 be the number of hours workers work per day. The number of workers is inversely 
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proportional to the number of days if we assume that the number of hours per day is constant. 

The number of workers is also inversely proportional to the number of hours per day if we 

assume that the number of days is constant. Furthermore, the number of days and the number of 

hours per day are inversely proportional if we take the number of workers as constant. I call this 

structure an inverse-inverse-inverse proportion structure and the relationship an inverse-inverse-

inverse proportional relationship. The mathematical composition behind this structure can be 

described as follows: (number of workers) * (number of days) * (number of hours per day) = 

(man-hours). The constant of the proportionality, man-hours, can be found by multiplying the 

number of workers by the number of days and by the number of hours per day. In our example, 

we have k = 12∙24∙8 = 2304 = 24∙16∙6. If M1 consist of quantities k and l, M2 consist of 

quantities m and n, and M3 consist of quantities r and s; then, in the inverse-inverse-inverse 

proportion structure, we have k∙m∙r = l∙n∙s.  

If there are four quantities that have a structure in which a:b = b:c = c:d and so on, then 

we call this structure continued proportions. The following example illustrates this structure: 

Example: John, Mary, David, and Elizabeth want to share 30 cookies among themselves 

in the following ratios: John: Mary = 1: 2, Mary: David = 2: 4, and David: Elizabeth = 3: 

6. How many cookies does each one get? 

In this example, there is a continued proportion 1:2 = 2:4 = 3:6. This proportion implies that John 

gets 
1

2
 times as many cookies as Mary, Mary gets 

1

2
 times as many as David, and David gets 

1

2
 

times as many as Elizabeth. As a result, Elizabeth gets 8 times as many cookies as John. If x is 

the number of cookies John gets, then in total they have x + 2x + 4x + 8x = 15x cookies. One can 

find that x = 2 and determine that John gets two cookies, Mary gets four cookies, David gets 

eight cookies, and Elizabeth gets 16 cookies.   
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Types of Problems Used in Studying Ratios and Proportions 

Lobato and Ellis (2010) mentioned three types of proportion problems: missing-value 

problems, comparison problems, and transformation problems. The first two problem types are 

more frequently used in research than the last type. In a missing-value problem, three out of four 

quantities are usually given, and the goal is to determine the missing one. The following question 

is an example of a missing-value problem: 

Example:  If a store sells two bags of apples for four dollars, then how much does the 

store charge for three bags of apples? 

The problem above consists of a directly proportional relationship between the number of bags 

and the cost. One can also generate missing-value problems with inversely proportional 

relationships. To solve this problem, a student can generate the following proportion, 
2

4
=  

3

𝑥
 , and 

determine x by cross-multiplying or using other techniques. Following Vergnaud (1983), I 

illustrate two of these techniques in Figure 4. In this figure, M1 represents measure-space one, 

which is the bags of apples, and M2 represents measure-space two, which is the cost of the 

apples in dollars. In the first method, one can determine the constant relationship between the 

numbers of bags and the cost and, then, apply the same constant to get the missing-value. This 

method can be called a between measure space strategy, which I discussed previously. One can 

also determine the relationship between numbers of bags and use the same relationship between 

the numbers of dollars to get the missing value. This method can be called a within measure 

space strategy, which I also discussed previously.  
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Figure 4. Representation of and strategies for solving a missing-value problem. 

In a comparison problem, one needs to compare two given ratios by determining whether 

the first of the two ratios is greater than, less than, or equal to the second. Mixture problems can 

be given as examples for the comparison problems. For example, when comparing the tastiness 

of two mixtures, usually we compare two ratios that determine the flavors. The following 

example can be given to illustrate missing-value problems:   

Example: We have two pitchers of lemonades. The first one is made by mixing 2 cups of 

lemon juice with 5 cups of water, and the second one is made by mixing 3 cups of lemon 

juice with 7 cups of water. Which one of the lemonades tastes more lemony? 

To solve this example, one can form two between measure space ratios: 
2 cups of lemon juice

5 cups of water 
 

and 
3 cups of lemon juice

7 cups of water 
 and determine that 

3

7
>

2

5
. One can conclude that the second mixture tastes 

more lemony.   

The last problem type is transformation problems. Lobato and Ellis (2010) describe this 

problem type as follows: “Transformation problems give a ratio or two equivalent ratios and ask 

students either to change one or more quantities to change the ratio relationship or to determine 

how a given change in one or more quantities changes the relationship” (p. 5). 

Example: A particular brand of lemonade is made by mixing 2 cups of lemon concentrate 

with 3 cups of water, and a bottle of lemonade contains 20 cups of the mixture. Because 

the company had complaints from their costumers about the strong lemon taste in the 
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lemonade, they decided to reduce the lemon concentrate they used in the bottles to 5 

cups. Can you determine the new relationship between the lemon concentrate and water? 

Because the company used 20 cups of lemon-water mixture in a bottle of lemonade, then new 

bottles must have 20 cups of mixture also. We know that there are five cups of lemon 

concentrate used in this new mixture, so the remaining 15 cups must be water. Consequently, in 

the new mixture, the lemon-water ratio must be 
5 𝑐𝑢𝑝𝑠 𝑙𝑒𝑚𝑜𝑛

15 𝑐𝑢𝑝𝑠 𝑤𝑎𝑡𝑒𝑟
=  

1 𝑐𝑢𝑝𝑠 𝑙𝑒𝑚𝑜𝑛

3 𝑐𝑢𝑝𝑠 𝑤𝑎𝑡𝑒𝑟
. Thus, we can 

conclude that, in the new mixture, the company used one cup of lemon concentrate for every 

three cups of water. 

Strategies Used to Solve Proportion Problems 

Karplus et al. (1983b) developed lemonade puzzles to explore proportional and other 

types of reasoning of 60 sixth graders and 60 eight graders. They collected students’ strategies in 

a strategy scale that involved four categories:  

1. Category I (incomplete or illogical strategy): The responses in this category indicated 

that students did not know the answer, guessed, or used inappropriate quantitative 

operations.  

2. Category Q (qualitative strategy): The responses in this category demonstrated that 

students compared given quantities qualitatively using words, such as less and more, or 

identical terms.   

3. Category A (additive strategy): The responses in this category showed that students 

compared quantities by paying attention to the differences in the values of these 

quantities.  
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4. Category P (proportional strategy): The responses in this category revealed that 

students compared quantities by paying attention to the proportional relationships 

between quantities.  

Tourniaire (1986) gave the following mixture problem and explained typical student answers for 

each of the four categories above: 

 There are two mixtures of orange juice and water. One is made with 2 glasses of orange 

juice and 4 glasses of water. The other is made with 6 glasses of orange juice. How much 

water should be used to get the same taste? (p. 404) 

For Tourniaire (1986), a strategy such as “6, because there are 6 glasses of orange juice” (p. 404) 

would fit in Category I. On the other hand, a strategy such as “10, because there is much more 

orange juice, so there should be much more water, too” (p. 404) would fit in Category Q. An 

additive strategy would look like “8, because there should be 2 more glasses of water than 

orange juice” (p. 404). Finally, a proportional strategy would look like “12, because there should 

be twice as much water as orange juice” (p. 404) or “12, because we used 3 times as much 

orange juice, so we need 3 times as much water” (p. 404).  

To classify secondary teachers’ solution strategies to solve two direct and two inverse 

proportion problems, Fisher (1988, pp. 161-162) used a list of nine strategies. She treated the 

first five of the following strategies as the incorrect strategies and the remaining four as the 

correct strategies: 

1. No answer. 

2. Intuitive: Guessing the answer or answering the question by just relying on feelings or 

intuition; 
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3. Additive: The subject incorrectly focuses on the additive differences between the given 

quantities and does not consider multiplicative relationships; 

4. Proportion attempt: The subject understands that proportion was involved but cannot 

express the relationship; 

5. Incorrect other: An incorrect strategy that cannot be placed in categories 1-4; 

6. Proportion formula: A correct strategy in which the subject solves a problem by 

showing the equivalence of two ratios or by generating an equation that expresses the 

equality of two products followed by an explicit statement noticing the inverse 

relationship;   

7. Proportional reasoning: The subject solves the problem by using a correct proportion 

strategy other than the proportion formula; 

8. Algebra: The subject solves the problem by setting up an algebraic equation other than 

the proportion formula; 

9. Correct other: A correct strategy that cannot be placed in categories 6-8.   

While working with 24 sixth-grade students, Lamon (1993, p. 46) identified the 

following six strategies from their responses to a set of 40 ratio and proportion problems: 

1. Avoiding: Students did not establish a genuine interaction with the problem; 

2. Visual or additive: Students solved problems by using the trial-and-error method. They 

did not offer reasons for their responses, they employed visual judgments, or they used 

incorrect additive strategies;   

3. Pattern building: Students used verbal or written patterns without considering numerical 

relationships;  
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4. Pre-proportional reasoning: Students used intuitive activities, such as charts, pictures, 

or models, to solve the problems. Some relative thinking was also involved in the 

solution processes;  

5. Qualitative proportional reasoning: Students understood numerical relationships, used 

a ratio as a unit, and used relative thinking to solve the problems; 

6. Quantitative proportional reasoning: Students used algebraic symbols to show 

proportions and understood functional and scalar relationships in those symbols. 

In addition to the six strategies that I discussed above, for Lamon (2007), at an early age 

children use a building-up strategy to solve proportion problems. In the building-up strategy, 

students set up a ratio and, by addition, extend it to a second ratio. Following Lamon (2007, 

p.643), an example of this strategy looks like the following: 

If two pencils cost 1$ 

1$ for 2 more makes 2$ 

1$ for 2 more makes 3$ 

For Lamon (2007), without additional information, this strategy would not be treated as a 

proportional reasoning strategy, since it does not take into account the constant ratio.  

Lamon (2007) also discussed two intuitive strategies, double counting and unitizing 

strategies. A double counting strategy uses the norming process, described as “reinterpreting a 

situation in terms of some chosen unit” (Lamon, 2007, p. 644). In this strategy, students chose 

one of the ratios and used it to reinterpret the other ratio. For instance, adapting the example 

given by Lamon (2007, p. 644), suppose three pizzas were shared among five girls, and one 

pizza was shared between two boys. If we ask students to determine who gets more pizza, the 

girls or the boys, then they could reinterpret the 1 pizza:2 boys ratio as 3 pizzas:6 boys. Hence, 
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they could realize that six boys share three pizzas. Therefore, students could arrive at the solution 

that the girls get more pizza, because they would be able to feed one more person.  

As explained by Lamon (1996), “Unitizing is the cognitive assignment of a unit of 

measurement to a given quantity; it refers to the size chunk one constructs in terms of which to 

think about a given commodity” (p. 170). For instance, thinking of a case of cola as 24 cans, 2 

(12-packs), 4 (six-packs), or 6 (four-packs) can be given as an example of unitizing (Lamon, 

1996). As stated by Lamon (1996), “The ability to form and operate with increasingly complex 

unit structures appears to be an important mechanism by which more sophisticated reasoning 

develops” (p. 170). Therefore, the ability to correctly unitize given quantities plays an important 

role in the development of students’ proportional reasoning. In the light of the three strategy 

categories, I further discuss additive and proportional reasoning strategies in the following 

paragraphs. 

Additive strategies.  As I explained above, a student who uses an additive strategy 

compares two quantities by paying attention to the additive differences in the values of these 

quantities. One of the additive strategies is a repeated addition strategy in which students 

understand multiplication as repeated addition. For example, a student who reasons additively 

can solve the following problem by repeatedly adding four three dollars (3 dollars + 3 dollars + 3 

dollars + 3 dollars) instead of multiplying three dollars by 4.  

Jane wants to buy four plastic cars, each of which costs three dollars. How much money 

does she need to pay? 

As mentioned by Tourniaire (1986), “repeated adders either do not master multiplication or fail 

to see its link with repeated addition” (p. 406). For Hart (1981), children use repeated addition to 

avoid multiplying a number by a fraction. Hence, for her, teachers should be aware of children’s 
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use of repeated addition. As mentioned by Lobato and Ellis (2010), there is a need to extend 

students’ conception of multiplication beyond repeated addition if teachers want to develop their 

students’ proportional reasoning.  

Proportional reasoning strategies. A student who reasons proportionally can 

understand proportional relationships between the values of the quantities compared. As 

mentioned by Lamon (2007), “Proportional reasoners are able to differentiate between additive 

and multiplicative situations and to apply whichever transformation is appropriate” (p. 650). 

Students can determine proportional relationships between quantities in different ways. Doubling 

and halving strategies are two of the simplest ways of testing proportional relationships between 

quantities. Two other strategies to determine proportional relationships between quantities are 

within and between measure space ratio strategies. Since I have already explained these two 

strategies previously, I do not discuss them here.  

Studies on Students’ Proportional Reasoning 

Noelting (1980a, 1980b) studied children’s cognitive development. He explored the 

following two questions: (1) is cognitive development hierarchical? (2) what are the mechanisms 

involved in the processes of development? A sample of 321 children from ages 6 to 16 

participated in the study. Children were chosen from mathematically advanced classrooms and 

from the same socio-economic level. A test, which had 25 items, was developed by the author. 

Each item involved a comparison between the relative orange tastes of two drinks. Items were 

categorized into stages according to their difficulty. Nine stages were formed. Noelting (1980a, 

1980b) matched these stages with Piagetian operational levels to understand the cognitive 

development of students at each stage. As a result, he found that stage 0 corresponded to the 

Symbolic level. Stages IA, IB, and IC corresponded to Lower, Middle, and Higher Intuitive 



31 

 

levels, respectively. Stages IIA and IIB corresponded to Lower and Higher Concrete Operational 

levels, respectively. IIIA and IIIB corresponded to Lower and Higher Formal Operational levels.  

Noelting (1980a, 1980b) discussed that older students were more successful at attaining 

higher stages. The students who were in the lower stages usually used additive strategies, and the 

students who were in the higher stages usually used multiplicative reasoning strategies (i.e., 

within ratio, between ratio, and unit ratio). Students who used additive strategies focused on a 

single quantity, either the amount of water or the amount of orange juice, and this tendency 

resulted in their incorrect reasoning. Five of the items involved noninteger ratios, and as 

discussed by Noelting (1980a, 1980b), these items were more difficult for students. Therefore, 

these five items were placed in the higher stages.  

Karplus et al. (1983a, 1983b) investigated adolescents’ proportional reasoning. Karplus et 

al. (1983a) used four comparison problems, and Karplus et al. (1983b) used eight lemonade 

puzzles. The first study was conducted with 116 sixth graders and 137 eight graders. Four 

problems were administrated during one class period. Responses to those four problems were 

combined into seven categories: Category N (N: no response), Category I (I: incorrect), Category 

C (C: correct), Category E (E: error), Category Pw (Pw: proportional within), Category Pb (Pb: 

proportional between), and Category Po (Po: proportional other).  

Karplus et al. (1983a, 1983b) and Noelting (1980a, 1980b) used a different approach to 

define between and within strategies than Vergnaud (1983, 1988). If a person compared 

quantities from two different measure spaces, then Vergnaud (1983, 1988) defined the strategy 

that the person used to compare quantities as a between strategy and the ratio as a between 

measure space ratio. On the other hand, if a person used quantities from the same measure space, 

then he defined the strategy as a within strategy and the ratio as a within measure space ratio. 
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According to Karplus et al. (1983a, 1983b) and Noelting (1980a, 1980b), the quantities 

compared in a between approach formed an extensive variable. For example, comparing 

distances 50 km and 60 km was a between strategy, and the ratio 
5

6
 was a between ratio. 

Conversely, two quantities compared in a within approach formed an intensive variable. For 

instance, comparing 50 km and 2 hours was a within strategy, and the ratio 
50 km

2 hours
 was a within 

ratio. Therefore, in the within strategy, two quantities formed a rate. For Vergnaud (1983, 1988), 

comparing distances 50 mph and 60 mph was a within measure space strategy, and 
5

6
 was a 

within measure space ratio. Similarly, for him, comparing 50 km and 2 hours was a between 

measure space strategy, and the ratio 
50 km

2 hours
 was a between measure space ratio.  

As discussed by Karplus et al. (1983a), even though Vergnaud (1981) proposed the 

between strategy as more natural than the within strategy (here the terms between and within 

strategies were used in terms of Karplus et al.’s (1983a, 1983b) and Noelting’s (1980a, 1980b) 

definitions), in Karplus et al. (1983a, 1983b), the within strategy seemed to be more natural than 

the between strategy. Karplus et al. (1983a) stated that, before the 14th century, the between 

strategy was the only accepted form of proportional computation. They also stated that the within 

strategy seemed more faithful to comparison and missing-value problems, since an intensive 

variable was defined by a within ratio. As a result, Karplus et al. (1983a) concluded that “…the 

relative frequencies with which the types of comparison and various strategies are used is 

affected greatly by the context and numerical content of the problem, and even the immediately 

preceding task” (p. 231). In addition, approximately one-fourth of the errors were because of 

incomplete calculations. 

The second study explored the proportional and other types of reasoning of 60 sixth-

graders and 60 eighth graders. Four of the lemonade puzzles had equal ratios, and the remaining 
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four had unequal ratios. As discussed by Karplus et al. (1983b), the most difficult puzzle for 

students was the one which involved unequal nonintegral ratios. When unequal nonintegral ratios 

were presented, students generally preferred additive strategies. The subjects used within 

comparisons more than between comparisons, and this result for Karplus et al. (1983b) differed 

from what their previous research found. Hence, they concluded that this result was evidence of 

context and numerical relationships significantly influencing the types of comparison used by the 

subjects. Karplus et al. (1983a) mentioned that, in the Karplus et al. (1983b) study, “the 

reasoning approach actually used by most adolescents is determined by the presence of equal 

and/or integral ratios and not by the fact that sweetness of the concentrate is a constant intensive 

variable defined by the lemon/sugar ratio” (p. 222).  

Tourniaire (1986) explored elementary school students’ strategies in solving proportion 

problems. Sixty pupils from Grades 3, 4, and 5 participated in the study. Two interviews were 

conducted. Three problems were used in the first interviews, and four problems were used in the 

second interviews. As mentioned by Tourniaire (1986), since this study involved young students, 

small numbers and integer ratios were used. Also, all of the problems were missing-value type 

problems. In the first interview, all of the 60 pupils were interviewed, and in the second one, 30 

pupils were interviewed. Two types of mixture problems were used: orange juice and paint. In 

order to classify students’ strategies, Tourniaire (1986) used a strategy scale that was developed 

by Karplus et al. (1983b). The scale had four levels: incomplete, qualitative, additive, and 

proportional. 

The success rate for the orange juice problem in the first interview was 60% and, in the 

second interview, 63%. However, for the paint problem, which was only used in the first 

interview, the success rate was 37%. Because students were forbidden to play with paints in their 
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classrooms, they were less familiar with a paint context. Thus, as stated by Tourniaire (1986), 

familiarity with the use of ratios in a context made a difference in the children’s abilities to 

answer the problem, such as the distinction between the orange juice problem and the paint 

problem. He also stated that the presence of a mixture appeared to increase the difficulty of the 

question. Also for Tourniaire (1986), students’ responses indicated that young children have 

some idea of the concept of proportions. He also stated that the context of the problem 

influenced students’ performance. In addition, he mentioned that very few additive strategies 

were presented and no qualitative strategies were found. However, a repeated addition strategy 

was usually used by the subjects, but it did not exist on the strategy scale.  

Harel, Behr, Lesh, and Post (1994) studied the concept of taste constancy with tasks that 

required students to compare the “orangeness” of two glasses of orange juice that were taken 

from the same mixture. Since the glasses were filled from the same mixture, the compared ratios 

were always equal. As discussed by Harel et al. (1994), Noelting (1980a, 1980b) and Tourniaire 

(1986) had taken children’s conceptions of taste constancy for granted. Therefore, Harel et al. 

(1994) aimed to show that children’s conceptions of taste constancy cannot be taken for granted. 

Sixteen sixth grade children participated in this study. When students were shown two different 

sized glasses that were filled from the same orange juice box, eight of these children stated that 

the glasses would “taste different.” Later, these eight students were interviewed to understand 

their responses. At the end of the interview processes, as stated by Harel et al. (1994), only one 

child changed his/her answer from “Not the same” to “The same,” and the other remaining 

children did not change their answers. The student with the answer “they taste the same” was at 

the stage of understanding the quantity of taste as an intuitive internalized ratio. Students with 
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answers “do not taste the same” believed that “the taste of a mixture depends on the volume 

occupied by the mixture” (Harel et al., 1994, p. 333). 

As discussed by Harel et al. (1994), three factors affected children’s reasoning about the 

constancy of taste: the relative volumes of the mixtures to be tasted, the uniformity of the liquid 

to be tasted, that is, whether it is thought of as consisting of a single ingredient or more than one 

ingredient, and the numerical data of the problem. Students’ tendency to focus on a single 

quantity was a sign of their use of univariate reasoning, which was also discussed by Lobato and 

Ellis (2010). They mentioned that before students are able to reason with ratios, they reason with 

a single quantity. This type of reasoning is called univariate reasoning.  

Studies on Teachers’ Proportional Reasoning 

As discussed by Izsák and Jacobson (2013), a small number of studies on teachers’ 

reasoning about proportional relationships have reported that “teachers’ difficulties are similar to 

students’ difficulties” (p. 3). For example: Teachers tend to judge nonproportional relationships 

to be proportional (Cramer, Post, & Currier, 1993; Fisher, 1988; Izsák & Jacobson, 2013; Lim, 

2009; Riley, 2010); they have difficulty understanding ratio-as-measure and the invariance of a 

ratio and tend to use additive strategies to solve proportion problems (Riley, 2010; Simon & 

Blume, 1994); they have trouble creating suitable reciprocal multiplicative relationships for 

nonproportional problems (Izsák & Jacobson, 2013); and they have difficulty with the 

conceptual understanding of the solutions to direct proportion problems (Lim, 2009).  

In order to identify secondary mathematics teachers’ strategies on proportion problems, 

Fisher (1988) interviewed 20 teachers. Four problems were designed of which there were two 

inverse proportion problems, a wheel problem and a work problem. She found out that 12 out of 

20 teachers solved the work problem incorrectly, where nine of them attempted the problem as if 
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it was a direct proportion problem. Similarly, six teachers solved the wheel problem incorrectly. 

However, none of the teachers attempted the wheel problem as a direct proportion problem. The 

teachers’ scores were almost perfect on the remaining two direct proportion problems (Fisher, 

1988).  

Cramer, Post, and Currier (1993) designed a word problem in which there was a constant 

difference between the numbers of laps completed by two runners: Sue and Julie. They were 

running equally fast around a track. Sue started first, and when she had run nine laps, Julie had 

run three laps. Participants were asked to determine the number of laps Sue ran when Julie 

completed 15 laps. Although this problem did not involve a proportional relationship, as stated 

by Cramer et al. (1993), 32 out of 33 preservice elementary education teachers in a mathematics 

methods class approached this problem as if it were a direct proportion problem. In addition to 

this lap problem, Cramer et al. (1993) also provided a direct proportion problem to their 

participants, and they observed that all of the participants answered this problem correctly. 

Simon and Blume (1994) focused on the development of the ratio-as-measure concept. 

For them, ratio-as-measure is “the ability to identify a ratio as the appropriate measure of a given 

attribute” (Simon & Blume, 1994, p. 184). A mathematics course on mathematics learning and 

teaching was designed to collect data. Twenty six prospective elementary teachers proceeded 

through a 5-week pre-student-teaching practicum and a 15-week student-teaching practicum. A 

pre-test problem, which involved understanding the “squareness” of three rectangles, was given 

to prospective elementary teachers. Nineteen out of the 26 teachers used an additive strategy to 

solve this problem. During the study, teachers were asked to compare the steepness of different 

ski ramps. As discussed by Simon and Blume (1994), teachers used two methods to indicate 

steepness: First, they compared the height: width ratios of two ski ramps. Second, they compared 
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the difference between the heights and the widths. When teachers were given different sized 

ramps that had the same slopes, their reasoning seemed to focus neither on the invariance of the 

slopes nor the invariance of the ratios.  

Lim (2009) studied the proportion concept with the assistance of 28 PSTs of Grades 4-8. 

The PSTs were given five tasks, each of which was either nonproportional or proportional. In 

one task, two similar candles, A and B, are burning at the same rate, but they were lit at different 

times. When Candle A had burned 20 mm, Candle B had burned 12 mm. The PSTs were asked 

to calculate how many millimeters of Candle A had burned given that Candle B had burned 30 

mm. In another task, two candles, P and Q, are burning at different rates, and they were lit at the 

same time. When P had burned 16 mm, Candle Q had burned 10 mm. The PSTs were asked to 

calculate how many millimeters of Candle P had burned given that Candle Q had burned 35 mm. 

Lim (2009) reported that 23 out of 28 PSTs used the same strategy for both tasks. Seventeen out 

of the 23 used a proportional strategy, and of those 17, 13 set up a proportion and calculated the 

missing value, and the other four used a unit ratio strategy. Five out of the 23 used an additive 

strategy, and the remaining one used an incorrect strategy. One student solved the first task using 

a unit ratio strategy, and for the second task, he/she “wrote ‘not enough information to determine 

how fast candle P is burning’” (Lim, 2009, p. 496). Only four of the 28 PSTs used a correct 

additive strategy for the first task and a correct proportional strategy for the second task. Lim 

(2009) stated that participants who correctly solved the first task appeared to have a referential 

meaning for the 18 mm difference and the 8 mm difference. He noted that 21 of the participants 

solved the first task correctly. He also stated that although more participants successfully 

completed the second task than the first task, they appeared to have more difficulty with the 

conceptual understanding of the solution for the second task. For example, Lim (2009) reported 
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that none of the participants who used a proportional strategy for the second task explained the 

meaning of the ratio 16:10 or the ratio 35:10 in their written responses. 

Riley (2010) used a lap problem in her study, and she mentioned that only 46% of the 80 

preservice elementary teachers answered this problem correctly. She stated that participants who 

gave an incorrect answer usually set up a proportion and used the cross multiplication strategy as 

if the problem was a direct proportion problem. In addition to the lap problem, she also used a 

comparison problem, a missing-value problem, and three inverse proportion problems. She stated 

that 90% and 71% of the PSTs answered the missing-value problem and the comparison problem 

correctly respectively. Three inverse proportion problems were answered correctly by 48%, 39%, 

and 39% of the PSTs. Riley (2010) stated that teachers who gave incorrect responses to these 

three problems generally set up a proportion and then cross multiplied the given numbers.  

In addition to these studies, Izsák and Jacobson (2013) also investigated the reasoning of 

four pairs of preservice middle school teachers and four pairs of preservice secondary teachers. 

Two nonproportional word problems, a dumpling problem and a team problem were used. The 

dumpling problem involved the constant difference of quantities, and the team problem involved 

the constant product of the quantities. As stated by Izsák and Jacobson (2013), in addition to 

these two problems, the preservice secondary teachers were also asked to sort six word problems. 

Only the responses from the three pairs of preservice middle school teachers for the dumpling 

problem were discussed. Even though all three pairs had a correct understanding of the constant 

difference between the numbers of dumplings, two pairs initially judged the relationship to be 

proportional. A common problem with these two pairs was that they had “trouble coordinating 

their meanings for ‘same rate’ and ‘constant ratio’ with the constant difference between the 

numbers of dumplings” (Izsák & Jacobson, 2013, p. 14). The last pair rejected the possibility of a 
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proportional relationship quickly opting for a multiplicative comparison (Izsák & Jacobson, 

2013). However, the secondary teachers quickly realized the nonproportional nature of the 

constant difference problems (Izsák & Jacobson, 2013). As discussed by Izsák and Jacobson 

(2013), none of the participants constructed a constant product in any of the constant product 

problems. Many of them, at first, thought that these problems could be solved using a direct 

proportion, but later, they realized the inverse relations in the problems. Most of the participants 

also had trouble creating suitable reciprocal multiplicative relationships; even participants who 

focused on multiplicative comparisons were unable to explain reciprocal multiplicative 

relationships. In addition, Izsák and Jacobson (2013) stated that participants who were able to 

solve these problems reasoned out the amount of time in which a single person could complete 

the job.  

Multiplicative Reasoning 

In this section, I explain how the term multiplicative reasoning is used in this dissertation. 

In her definition of the proportional reasoning, which I provided in Chapter One, Lamon states 

that proportional reasoning involves “the ability to discern a multiplicative relationship between 

two quantities” (2007, p. 638). Hence, proportional reasoning necessitates understanding 

multiplicative relationships between two covarying quantities. Following Vergnaud’s (1983, 

1988) multiplicative conceptual field framework, I interpret the term multiplicative to include 

multiplication, division, fractions, ratios, and proportions. Vergnaud (1983, 1988) discusses three 

types of multiplicative structures: isomorphism of measures, product of measures, and multiple 

proportion other than product. This study contains isomorphism of measures and multiple 

proportion other than product structures and strengthens Vergnaud’s work by investigating 

constant product relationships. Therefore, by adapting Lamon’s (2007) definition of proportional 
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reasoning and implementing it to the multiplicative conceptual field framework, I describe 

multiplicative reasoning to mean supplying reasons in support of claims made about the 

multiplicative structures presented in problem contexts that consists of the ability to understand 

multiplicative relationships and to form multiplicative comparisons between covarying 

quantities.  

As I discussed in the previous chapter, multiplicative relationships can be expressed by 

the equation M∗N = P, where M, N, and P stand for known constants (Beckmann & Izsák, 2015). 

According to Beckmann and Izsák (2015), in this equation the multiplier, M, is interpreted as the 

number of groups, the multiplicand, N, is interpreted as the number of units in each group, and 

the product, P, is interpreted as the number of units in M groups. In this equation, the 

isomorphism of measures structure can be expressed by either the equation x ∗ N = y or M ∗ x = 

y, where x and y are either unknown variable amounts or two co-varying values. Based on the 

types of units of quantities that we are comparing, we can express multiplicative relationships 

between quantities either with the first equation or the second equation. The first equation can be 

used to express a multiplicative relationship between quantities with different types of units. For 

instance, the following question can be given as an example to illustrate this multiplicative 

relationship:  

Example 1: If Gear A, with a 2-cm radius, have 4 notches around, then how many 

notches around Gear B, with a 4-cm radius (assuming Gear A and Gear B can be 

meshed)? 

In this question, the multiplicative relationship between the radii and number of notches can be 

expressed by either (R cm) * (
2

1
 notch/cm) = (N notches) or (N notches) * (

1

2
 cm/notch) = (R cm). 

In these two equations, multiplicands represent the unit rate. In the two equations the unit rates 
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can be interpreted as “two notches per 1 cm” and “
1

2
 cm radius per one notch,” respectively. 

Substituting four for R in one of these two equations, one can determine the number of notches 

to be eight. In this question, “four notches in 2 cm” can be viewed as a composed unit (Lobato & 

Ellis, 2010) or “batch.” Hence, eight notches can be calculated iterating this batch two times 

(Figure 5). The perspective used to interpret this type of proportional relationships is called the 

multiple batches perspective. Similar interpretation also works for the second equation where we 

need to consider the unit rate, 
1

2
 cm radius per one notch, as a batch. When two is substituted for 

x and four is substituted for y in the x ∗ N = y equation, the division to obtain N, which is the unit 

rate, is called a partitive or how many units in each group? division (Beckmann & Izsák, 2015).  

 

Figure 5. Expression of a directly proportional relationship from the multiple batches 

perspective.  

On the other hand, the multiplicative relationship in the second equation—M ∗ x = y—

can be obtained if x and y have the same type of units. The following example can be used to 

illustrate this situation:   

Example 2: A certain brand of lemonade is made by mixing 3 ounces of water with 2 

ounces of lemon concentrate. How many ounces of lemon concentrate are needed to be 

mixed with 12 ounces of water?  
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In this example, the multiplicative relationship between ounces of water and lemon concentrate 

can be expressed by either 
2

3
 * (Ounces of Water) = (Ounces of Lemon Concentrate) or 

3

2
 * 

(Ounces of Lemon Concentrate) = (Ounces of Water). In these two equations, the multipliers are 

numbers, which are unit-less. The multiplicative relationships in these equations can be 

interpreted as “The amount of lemon concentrate is two-thirds the amount of water” and “The 

amount of water is three-halves the amount of lemon concentrate,” respectively. Hence, the 

amount of lemon concentrate and water mixed in a fixed 2 to 3 ratio that means for same-sized 

part there are 2 parts of lemon concentrate and 3 parts of water. As seen in Figure 6, the number 

of parts is fixed but they can vary in size. For instance, the size of each part will be 1 ounce if we 

make a 5-ounce mixture. On the other hand, the size of each part will be 4 ounces if we make a 

20-ounce mixture. According to Beckmann and Izsák (2015), the perspective used to interpret 

this type of proportional relationships is called the variable parts perspective. Substituting 12 for 

the ounces of water, one can calculate the amount of lemon concentrate to be 8 ounces. When 3 

ounces is substituted for x and 2 ounces is substituted for y in the M ∗ x = y equation, the division 

to obtain M, which is a number, is called a measurement or how many groups? division (e.g., 

Greer, 1992). 

 

Figure 6. Expression of a directly proportional relationship from the variable parts 

perspective. 

Based on the equation M ∗ N = P, a constant product relationship satisfies the equation x 

∗ y = P, where x and y are unknown quantities or two co-varying values, and P is a known 
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constant (Beckmann & Izsák, 2015). The gear context can also be used to illustrate a constant 

product relationship. The following example demonstrates a constant product relationship 

between the number of notches and number of revolutions: 

Example 3: If Gear A, with eight notches, revolves three times, then how many times 

does Gear B, with six notches, revolve (assuming Gear A and Gear B can be meshed)? 

In this question, the product of the number of notches of a gear by its number of revolutions 

yield the total notches revolved around this gear. For instance, on Gear A, eight notches revolve 

in one revolution, so in three revolutions a total of 24 notches revolve. Hence, eight notches can 

be interpreted as the number of notches revolved in one revolution and the number of revolutions 

gives us how many groups of eight notches revolved. Because both gears are meshed, the same 

24 notches revolve around both gears that means the product of the number of notches and 

number of revolutions remains constant (Figure 7). Therefore, in the question, the multiplication 

statement can be expressed by (R revolutions) * (N notches per revolution) = (P notches). 

Substituting six and 24 for N and P, respectively, one can make a measurement division and 

calculate the number of revolutions of Gear B as four.  

 

Figure 7. Expression of a constant product relationship. 

Vergnaud’s (1983, 1988) multiple proportion other than product (direct-direct-inverse) 

structure can be expressed by the equation x * y = z, where x, y, and z are either unknown 
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variable amounts or co-varying values. In this structure, z is directly proportional to x and y 

quantities, and x and y are inversely proportional. The following example illustrates this 

structure: 

Example 4: If four people frost 20 cupcakes in 12 minutes, then how long would it take 

for three people to frost 30 cupcakes (assuming all people work at the same pace)?  

In this question, the number of cupcakes is directly proportional to the number of people and 

number of minutes, but the number of people and the number of minutes are inversely 

proportional. The multiplicative relationships among the three quantities can be expressed by the 

statement, (P people) * (T minutes) = (C cupcakes) * k, where k represents the constant of the 

proportionality. Substituting four, 12, and 20 for P, T, and C in the statement, one can calculate k 

as 
48

20
 or simply 

12

5
. For this particular example, 

12

5
 represents the number of minutes needed to 

frost one cupcake by one person. Therefore, the multiplication statement becomes (P people) * 

(T minutes) = (C cupcakes) *  
12

5
. Substituting three and 30 for P and C in the statement, one can 

calculate the number of minutes required for three people to frost 30 cupcakes as 24 minutes.    

In the following chapter, I discuss the methodology that I used in this study. To do that, 

first, I explain the theoretical framework that informs this study. Next, I describe the research 

design and explain the participant selection criteria and the method for data collection and 

analysis. Later, I explain the problem tasks, give a rationale for inclusion of the tasks, and give 

advanced summaries of each task. Finally, I discuss the pilot study and its findings.  
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CHAPTER 3 

METHODOLOGY 

Theoretical Framework 

The purpose of this study is to explore preservice middle and high school mathematics 

teachers’ understanding of directly and inversely proportional relationships. More specifically, I 

examine the types of strategies they use to solve given problems, their ability to detect and 

represent directly and inversely proportional relationships, and the reasoning they engage in 

when solving these problems. I developed the conceptual and theoretical framework for this 

study drawing on a number of such frameworks reported in past research. In particular, I used 

Vergnaud’s (1983, 1988) the multiplicative conceptual field theory to develop the categories of 

proportions (see Figure 1) and to explain multiplicative structures of the problems. I used the 

solution strategies framework described by Fisher (1988) and Lamon (1993) to classify and 

explain PSTs’ solutions strategies. Finally, to analyze knowledge resources that PSTs used to 

infer directly and inversely proportional relationships and multiplicative relationships, I used 

core components of the knowledge-in-pieces epistemological perspective (diSessa, 1988, 1993, 

2006). In the following paragraphs, I explain the knowledge-in-pieces perspective and describe 

its core components.  

Knowledge-in-Pieces Perspective 

Developed originally in the area of Newtonian mechanics (e.g., diSessa 1988, 1993), the 

knowledge-in-pieces epistemological perspective has its roots in science education research on 

conceptual change (Izsàk & Jacobson, under review). However, as discussed by Izsàk and 
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Jacobson (under review), this perspective has also been applied in several areas of mathematics, 

including whole-number multiplication, fractions, functions, and probability. The knowledge-in-

pieces perspective acknowledges that elements of knowledge are “more diverse and smaller in 

grain size than those presented in textbooks” (Izsàk, 2005, pp. 361-362). According to this 

perspective, growth and change in one’s knowledge entails various related processes, including 

the development of new knowledge elements as well as the coordination of diverse knowledge 

elements and the adjustment of conditions under which specific elements may be used 

productively (Izsàk, 2005). One of the central constructs that is used by diSessa (1988, 1993) to 

explain a particular example of knowledge structures is p-prims. For diSessa (1988), p-prims can 

be understood as “simple abstractions from common experiences that are taken as relatively 

primitive in the sense they generally need no explanation” (p. 52). An example given by diSessa 

(1988) is the statement that a person gets more result when he or she expends more effort.  

diSessa and Sherin (1998) stated that previous research on conceptual change did not 

explain explicitly what constitutes a concept. For diSessa and Sherin (1998), although “concepts 

are at the core of our understanding…they are left as something of a black box” (p. 1161). 

Additionally, previous models of concept included only a small number of mental structures that 

were associated with a concept (diSessa & Sherin, 1998). However, diSessa and Sherin (1998) 

describe their model of concept as a knowledge system. As stated by diSessa (1988), students 

have a fragmented system of intuitive knowledge, and this system of intuitive knowledge reveals 

important educational problems. Furthermore, the traditional models of conceptual change are 

interested in whether or not a person has a concept, but diSessa and Sherin (1998) believe that 

instead of looking at people’s possession of concepts, “it is necessary to describe specific ways 

in which a learner's concept system behaves like an expert's - and the ways and circumstances in 
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which it behaves differently” (p. 1170). Hence, a decade later, within the knowledge-in-pieces 

perspective diSessa and Sherin (1998) proposed the coordination classes construct as a certain 

class of concepts. They defined a coordination class as a “systematic collection of strategies for 

reading a certain type of information out from the world” (p.1155). Therefore, for diSessa and 

Sherin (1998), coordination classes were “systematically connected ways of getting information 

from the world” (p. 1171).  

As stated by diSessa and Sherin (1998), to highlight a coordination class perspective, 

they see coordination as a verb representing ‘see’ or ‘determine information” (pp. 1171-1172). 

For instance, “when a person makes observations and uses prior knowledge to make inferences 

from those observations, the person has performed an act of coordination” (Thaden-Koch, 2003, 

p. 1). There are two mechanisms that make up a coordination class: readout strategies and causal 

net. Readout strategies “deal with the diversity of presentations of information to determine, for 

example, characteristic attributes of a concept exemplar in different situations” (diSessa & 

Sherin, 1998, p. 1171), or more simply, they are strategies for acquiring information about the 

physical world. diSessa and Sherin (1998) suggest two kinds of coordination that are central to 

readout: integration and invariance. Integration is frequently collecting, selecting, or combining 

“diverse observations to determine what we wish to see” (diSessa & Sherin, 1998, p. 1176), and 

invariance deals with “how observations in different circumstances can manage to determine the 

same information” (diSessa & Sherin, 1998, p. 1176). The second mechanism, the causal net, is 

“The general class of knowledge and reasoning strategies that determines when and how some 

observations are related to the information at issue” (diSessa & Sherin, 1998, p. 1176).  

As stated by diSessa and Sherin (1998), read out strategies and the causal net are closely 

related. Therefore, they should “co-evolve” as learning happens, and features of one will have 
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important effects on how the other operates and advances (diSessa & Sherin, 1998, p. 1177). The 

distinct changes in read out strategies and in the causal net determine the features of conceptual 

change (diSessa & Sherin, 1998). Following diSessa and Sherin (1998), in learning of a new 

coordination class, no new read out strategies may be necessary; however, the existing read out 

strategies can be arranged and used in other ways. Furthermore, at times new read out strategies 

may be necessary in acquiring information. On the other hand, according to diSessa and Sherin 

(1998), one may not have a prior causal net, so the construction of a new net from “whole cloth” 

may be required, or “an old causal net may need to be developed and reorganized to varying 

degrees” (p. 1177). According to diSessa and Sherin (1998), not all examples discussed as 

concepts are coordination classes. For example, p-prims may establish concepts; however, since 

by themselves p-prims are “too small and isolated,” they cannot be counted as coordination 

classes (p. 1178). In this study, I did not utilize coordination classes construct to explain the 

PSTs’ reasoning, but instead I investigated their coordination of the directly and inversely 

proportional relationships. Following diSessa and Sherin (1998), I use the term coordination in 

the sense of determining and integrating information within a problem context. 

Applying Knowledge-in-Pieces Perspective to Proportional Relationships 

Izsak and Jacobson (under review) stated that their participants attended to the following 

knowledge resources in inferring proportional relationships: “…associations with specific phrase 

like “same rate,” facility with multiplicative relationships between numbers, and attention to 

multiplicative relationships within and between measure spaces” (p. 29). In addition to these 

knowledge resources, a PST might infer a proportional relationship attending to the qualitative 

relationships that illustrate coordinated increases or decreases in the values of covarying 

quantities. Izsak and Jacobson (under review) observed that attention to the multiplicative 
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relationships helped the PSTs in correcting their initial incorrect inferences of the directly 

proportional relationships. Hence, in this study, I expect that PSTs who attend to multiplicative 

relationships between and within measure spaces when inferring directly and inversely 

proportional relationships are more likely to distinguish proportional relationships from 

nonproportional relationships. On the contrary, I expect that PSTs who just rely on the specific 

phrases and qualitative relationships may have difficulty distinguishing proportional 

relationships from nonproportional relationships. Besides determining PSTs’ knowledge 

resources in inferring directly and inversely proportional relationships, the knowledge-in-pieces 

perspective is also effective in determining the range of knowledge resources PSTs use to reason 

about multiplicative relationships. Therefore, the knowledge-in-pieces perspective is utilized in 

determining these knowledge resources.  

In this study, I expect that PSTs may use a variety of knowledge resources when inferring 

directly and inversely proportional relationships. I also expect that some PSTs may judge 

inversely proportional relationships as if they were directly proportional. Similarly, some PSTs 

may have prior knowledge resources that either help them to infer, for example, correct 

multiplicative relationships between two covarying quantities or prevent them from inferring 

correct multiplicative relationships. On the other hand, PSTs may not have prior knowledge on 

the topic and may need to construct a new knowledge in order to understand proportional 

relationships. I decided to use the knowledge-in-pieces perspective to analyze PSTs’ responses 

for the following reasons: First, the knowledge-in-pieces perspective can be used effectively in 

identifying PSTs’ knowledge resources in inferring directly and inversely proportional 

relationships between two covarying quantities and the reasoning behind their correct and 

incorrect inferences. Second, it is helpful in the sense of analyzing participants’ “contextually 
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sensitive” (Wagner, 2006, p. 7) intuitive knowledge and characterizing the evolution of this 

knowledge from naïve to expert. Third, the knowledge-in-pieces perspective offers effective 

tools for analyzing how PSTs infer directly and inversely proportional relationships, the 

strategies they use in inferring these relationships, and the difficulties they experience while 

working on the single and multiple proportion problems. Fourth, the knowledge-in-pieces 

perspective is effective in analyzing cognitive structures that PSTs use to identify directly and 

inversely proportional relationships. Finally, this study makes use of science concepts, and PSTs’ 

comprehension of these concepts can be analyzed by employing the knowledge-in-pieces 

perspective. 

Research Design 

Multiple-Case Study Methodology 

I designed this study to have two parts: a pilot study and a final study. In the pilot study, I 

tested my ideas about the mathematical tasks that I was planning to use, and I tried to understand 

PSTs’ expertise in reasoning about proportional relationships. Consequently, I was able to refine 

my ideas about the mathematical tasks that I intended to use, and I was able to observe PSTs’ 

reasoning about proportional relationships, which helped me revise my research questions, 

mathematical tasks, and criteria for participant selection. To explain my participants’ knowledge 

resources when inferring directly and inversely proportional relationships, an explanatory 

multiple-case study methodology (e.g., Yin, 1993, 2009) was used to design this study. Yin 

(2009) offered a twofold definition of case study methodology. The first part of the definition 

involved the scope of a case study: “A case study is an empirical inquiry that investigates a 

contemporary phenomenon in depth and within its real-life context, especially when the 

boundaries between phenomenon and context are not clearly evident” (Yin, 2009, 18). The 
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second part of the definition involved technical characteristics of a case study. For Yin (2009), 

the case study inquiry:  

o copes with the technically distinctive situation in which there will be many more 

variables of interest than data points, and as one result  

o relies on multiple sources of evidence, with data needing to converge in a 

triangulation fashion, and as another result  

o benefits from the prior development of theoretical propositions to guide data 

collection and analysis. (p. 18) 

Yin (2009) defined a case as “a concrete entity, event, occurrence, action, but not an abstract 

topic such as a concept, argument, hypothesis, or theory” (p. x). As Stake (1978) points out, “The 

case need not be a person or enterprise. It can be whatever ‘bounded system’…is of interest” (p. 

7). Because one of the purposes of this study was to explore PSTs’ reasoning, each individual 

participant constituted a case in this study. Since there was more than one case, a multiple-case 

study methodology best suited the scope of this study.  

This study focused on a contemporary phenomenon—exploring PSTs’ understanding of 

and difficulties with directly and inversely proportional relationships. Interview videos, 

transcripts, and participants’ written responses were derived from the interview data and were 

used to explain the research phenomenon and the contextual conditions. Two research questions, 

which included a combination of sub questions, were designed to guide this study. The questions 

were intended to analyze how PSTs infer and express directly and inversely proportional 

relationships in the given problem contexts, the solution strategies that they use to solve single 

and multiple proportion problems, and the difficulties they encounter while solving these 

problems. While participants were working on the problem tasks, I tried not to interfere with the 
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participants’ ways of reasoning and dealing with the interview activities since my role was to 

facilitate these activities during the process of data collection. According to Yin (1993), a case 

study is a preferred method when (a) the researcher seeks to answer research questions that are 

designed to explain “how” and “why” a social phenomenon works, (b) the researcher has slight 

control over events, and (c) the study focuses on a contemporary phenomenon within an 

authentic situation (Yin, 2009). Thus, the case study appeared to be a proper methodological 

design for this study. 

Because one of the goals of this study was to explore PSTs’ understanding and reasoning 

about direct and inverse proportions and, as a result, to explain their comprehension of directly 

and inversely proportional relationships, I conceptualized this study as an explanatory case study 

methodology. Yin (1993) briefly described explanatory case study as follows: “An explanatory 

case study presents data bearing on cause-effect relationships—explaining which causes 

produced which effects” (p. 5). As highlighted by Mills, Durepos, and Wiebe (2010), besides 

exploring and describing phenomena, explanatory case studies can also be used to develop 

theory and explain causal relationships. For them, a key feature of an explanatory case study is 

that during the research process the researchers need to remain open to new discoveries. 

One of the most important strengths of case study is that it allows researchers to explore a 

real-life phenomenon in depth (Yin, 2009). In addition to this strength, George and Bennett 

(2004) explained four other strengths of case studies: (a) case studies have potential for obtaining 

high conceptual validity; (b) they have well-built procedures for promoting new hypotheses; (c) 

by using case studies in the context of individual cases, researchers can intimately analyze the 

conjectured role of causal mechanisms; and (d) case studies can be used to address causal 

complexity. Meyer (2001) underlined that in contrast to grounded theory or survey research 



53 

 

methods, there are nearly no clear-cut requirements instructing case study research. For Meyer 

(2001), this is both a strength and weakness of case study research. This is a strength because 

having no specific requirements allows researchers to tailor “the design and data collection 

procedures to the research questions” (Meyer, 2001, p. 330). Conversely, having no specific 

requirements may result in the development of poor case studies and this is one of the criticisms 

of the case study methodology. A second criticism is that case studies offer little basis for 

scientific generalization (Yin, 2009). Especially, the generalizability of the single-case studies is 

usually questioned. As an answer to this criticism Yin (2009) states that “…case studies, like 

experiments, are generalizable to theoretical propositions and not to populations or universes” (p. 

15). Stake (1978) offers naturalistic generalization as an alternative to scientific generalization 

in qualitative research: 

Naturalistic generalizations develop within a person as a product of experience. They 

drive from the tacit knowledge of how things are, why they are, how people feel about 

them, and how these things are likely to be later or in other places with which this person 

is familiar. (Stake, 1978, p. 6) 

According to Stake (1978), there is a necessity for generalization about a specific case or 

generalization to a similar case, and readers organize the foundation for naturalistic 

generalization as they identify important similarities to cases. A third criticism to the case studies 

is that “they take too long, and they result in massive, unreadable documents” (Yin, 2009, p. 15).   

I used the following three tests to establish the validity of this case study: construct 

validity, internal validity, and external validity (e.g., Yin, 1993, 2009). Construct validity deals 

with “identifying correct operational measures for the concepts being studied” (Yin, 2009, p. 40). 

As explained by Yin (2009), internal validity, which is only used with explanatory case studies, 
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is concerned with establishing a causal relationship. External validity deals with “defining the 

domain to which a study’s findings can be generalized” (p. 40). Parallel to the case study tactics 

discussed in Yin (2009), I established each one of these three tests as follows: Construct validity 

was addressed by using sources of evidence (e.g., interview videos, transcripts, participants’ 

written responses) that were derived from the interview data and by having key informants (the 

members of my advisory committee) review the draft of the case study report. Since cross-task 

analysis yielded information about the causal relationships, I used it to strengthen the internal 

validity of this study. Many qualitative researchers reject causation because they believe that 

causal explanation is “incompatible with an interpretivist or constructivist approach” (Maxwell, 

2012, p. 655). For Maxwell (2012), the main reason for qualitative researchers’ rejection of 

causal explanation is that since it has been used regularly in quantitative research, it has an 

association with positivism. Maxwell (2012) opposes the rejection of causality in qualitative 

research and offers a realist approach. To address external validity, I used literal replication logic 

in which each case was “carefully selected so that it…predicts similar results” (Yin, 2009, p. 54). 

Because, as opposed to purposefully selecting for diversity, I selected my participants from a 

small sample (PSTs who took or have been taking content courses on ratios and proportions), 

each case produced results that would be generalizable to the selected sample. Therefore, the 

participants represented the cases.  

Participants and Selection Process 

Since the purpose of this study was to understand PSTs’ reasoning about directly and 

inversely proportional relationships, I recruited prospective middle and high school mathematics 

teachers from one large public university in the Southeast. The university offers separate 

programs leading to certification for secondary grades (6-12) and middle grades (4-8) 
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mathematics teachers. PSTs, therefore, were selected from these two programs. Since the focus 

of this study involved challenging mathematical problems, PSTs with some college level 

experience on direct and inverse proportions were preferred. The secondary grades program 

includes one content course with a focus on multiplicative relationships, ratios, and proportions; 

the middle grades program includes two such content courses. Therefore, preservice teachers 

who attended or were attending one of these courses were selected. Although I was an observer 

in those classes, my relationship with those participants at the time did not extend beyond that 

role. Furthermore, participation in the study was voluntarily and each participant was given 10 

dollars incentive for each hour of participation.  

For the pilot study, in the spring semester of 2013, once Institutional Review Board (IRB) 

approval had been secured, I contacted a course instructor who had been teaching a secondary 

teacher education course. I asked the instructor to forward an electronic recruitment message to 

the students in his class. One female and two male preservice secondary grade teachers agreed to 

participate in the study. Later, in the fall semester of 2013, two preservice middle grade teachers, 

one female and one male, agreed to participate in the study. To maintain confidentiality, I used 

the following pseudonyms for the secondary grade PSTs: Sally, Robert, and Jason; for the 

middle grade PSTs, I used Abby and Michael. All participants were in the third year of their 

programs. Sally stated that she was majoring in mathematics education and was attending a 

university course in which she was studying proportional relationships. Robert stated that he was 

majoring in mathematics education with a minor in statistics. He pointed out that he had not 

previously attended any university courses with a focus on proportional relationships. However, 

he said he helped middle school students solve proportion problems that, according to him, were 

similar to the problems he had encountered in this study. Jason said that he was majoring in 
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mathematics education with a concentration on mathematics, so he was pursuing a dual degree. 

He stated that he had taken two university courses that focused on proportional relationships. 

Abby was, at the time, taking a course that focused on proportional relationships. Michael stated 

that he had not taken any university courses on proportional relationships. Because Michael had 

conceptual difficulties understanding the topics discussed in the tasks, I excluded his case. Thus, 

only responses from four of the participants were analyzed.  

For the final study, in the fall semester of 2014, I contacted two course instructors. One 

was teaching a course designed for middle grade PSTs, and the other one was teaching a course 

designed for secondary grade PSTs. I introduced my study to the PSTs in both courses and asked 

if they would like to participate in the study. I let them know that their participation in the study 

was voluntary, and that they would be given $10 of incentive per 1 hour of involvement. Six 

female secondary grade teachers, and one male and three female middle grade teachers agreed to 

participate in the study. Based on the information that they gave about their background on the 

direct and inverse proportions, three female secondary grade and two female middle grade PSTs 

were chosen among 10 teachers. To maintain confidentiality, I use the following pseudonyms for 

the secondary grade PSTs: Kathy, Susan, and Amy; for the middle grade PSTs, I use Carol and 

Helen. With the exception of Susan who was in the third year of her program, the remaining 

participants were in the fourth year of their programs. Amy and Kathy stated that they were 

majoring in mathematics education, and Susan said that she was majoring in mathematics 

education with a concentration on mathematics. They all had been attending a course with a 

focus on directly and inversely proportional relationships. Carol and Helen were both majoring 

in middle grades education with a concentration in mathematics, and they both stated that they 

took two courses in which they studied the directly and inversely proportional relationships. 
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During the interview process, I observed that Amy had difficulty understanding the topics we 

discussed. For that reason I excluded her case in this study. Thus, only responses from four of the 

participants were analyzed and discussed in detail. 

Data Collection and Analysis 

The data was collected through semi-structured clinical interviews (e.g., Bernard, 1994). 

This allowed me to maintain a consistent interview structure with each participant (see interview 

protocols, Appendices A and B), while also providing me the flexibility to probe or modify the 

follow up questions depending on the responses that I obtained from the participants. Semi-

structured clinical interviews were helpful in capturing verbal and nonverbal components of the 

participants’ explanations, gestures, and writing. During the interview process, I adopted a 

facilitator role, being careful not to create a teacher-student kind of relationship between my 

participants and myself. Furthermore, during the interviews, I tried not to intervene in their 

reasoning or direct their thinking in any particular way; however, to understand their reasoning 

in-depth, I asked for clarification, further explanation, or pointed out inconsistencies between 

their verbal and written statements. As a result, it is important to point out that all interview 

situations affect, to a certain extent, the responses obtained, and it is difficult to know to what 

extent the interview situation and questions may have influenced the results.  

 In order to best capture participants’ reasoning processes, two video cameras were used 

during the pilot and final interviews. One focused on the participant’s written work, and the other 

focused on the participant and the interviewer. I conducted all of the interviews with the 

participants, and one graduate student helped me operate the video cameras. In the pilot study, 

Robert, Jason, and Sally were interviewed for three hours each; Abby was interviewed for 

approximately 80 minutes. In the final study, Kathy was interviewed for approximately 4 hours, 
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and Susan was interviewed for around four and a half hours. Carol and Helen were interviewed 

for approximately 5 hours each.  

Roulston (2001) discussed thematic analysis as an approach to analyzing interview data. 

In this study, the interview data was analyzed using a thematic analysis approach. As stated by 

Mills et al. (2010): 

Thematic analysis is a systematic approach to the analysis of qualitative data that 

involves identifying themes or patterns of cultural meaning; coding and classifying data, 

usually textual, according to themes; and interpreting the resulting thematic structures by 

seeking commonalties, relationships, overarching patterns, theoretical constructs, or 

explanatory principles. (pp. 925-926) 

According to Holstein and Gubrium (1997), thematic analysis is the most widely used approach 

in social sciences to analyze data (as cited in Roulston, 2001); however, it has not been well 

described (Mills et al., 2010). Boyatzis (1998) describes five purposes of thematic analysis: It 

can be used as  

1. A way of seeing  

2. A way of making sense out of seemingly unrelated material  

3. A way of analyzing qualitative information  

4. A way of systematically observing a person, an interaction, a group, a situation, an 

organization, or a culture 

5. A way of converting qualitative information into quantitative data (p. 4)  

The analytic strategy used in thematic analysis is coding (Mills et al., 2010). As stated by 

Saldaña (2012), a code is “most often a word or short phrase that symbolically assigns a 

summative, salient, essence-capturing, and/or evocative attribute for a portion of language-based 

or visual data” (p. 3). While coding the data, researchers also take notes, which constitute memos 

that are “informal analytic notes” (Charmaz, 2006, p. 72). The goal of the researcher in the 
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process of data analysis is to identify themes. As described by Guest et al. (2011), thematic 

analysis concentrates on “identifying and describing both implicit and explicit ideas within the 

data, that is, themes” (p. 10). Two approaches to identifying themes are discussed by Mills et al. 

(2010): deductive and inductive. In the deductive approach “Researchers might use research 

questions, interview questions, or theory-derived categories as a start list of priori themes for 

coding data documents, an approach that can facilitate within- or cross-case comparisons” (Mills 

et al., 2010, p. 926), whereas in the inductive approach themes emerge from the data, and they 

are grounded in the data. As explained by Mills et al. (2010), the researcher builds a case 

analysis through a process of:  

[N]oticing patterns, attending to how participants label events, defining emergent themes, 

constantly comparing data against codes and categories, cycling back through documents 

to revise coding, recording interpretive insights in research memos, and developing data 

displays that reveal overarching patterns. (p. 926)  

In this study, I used a mix of deductive and inductive approaches to identify themes.    

I briefly present the steps that I followed to collect and analyze the final data. Although, I 

followed a slightly different approach in analyzing the pilot data, for the most part I engaged in 

these activities. First, I conducted semi-structured interviews for data collection. Second, the 

interviews were transcribed verbatim. Third, I open coded the interview transcripts line-by-line 

and wrote memos about these incidents. Fourth, I created a code file for each task in Microsoft 

Excel. Then, I counted the number of occurrences of each code and entered that number in the 

record for the task. Fifth, I wrote a descriptive analysis of each case. Sixth, I returned to the 

interview transcripts and recoded these to strengthen the reliability of the results and to reduce 

the number of codes. I then aggregated similar codes together to determine the connections 
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among the codes and to identify relationships. Seventh, I determined the overall themes by 

considering the number of occurrences of each code, the connections among the codes, and the 

research questions at hand. Because I used my research questions, the codes, and their 

occurrences to determine the themes, deductive and inductive approaches were used in the 

analysis of the data. The last step of the data analysis was that I wrote cross-task analyses of each 

case based on the themes that I identified. In the following pages, I explain the steps that I 

followed in determining the themes for each case.   

Thematic Analysis Process. To analyze the interview data thematically, I followed three 

stages. In Table 1, I present these three stages and the process of theme development for Kathy’s 

case. In the first stage, I organized the open codes in each task according to their occurrences and 

determined the most frequently occurring codes throughout the interviews. I then sifted the open 

codes based on their frequencies, meaningfulness in answering the research questions, and 

connections with the other codes. Hence, I did not consider the open codes in the process of 

theme development if they were not meaningful in answering the research questions, did not 

have any connections with the other codes, and appeared less frequently. 

Table 1 

Theme Development Process for Kathy's Case 

Stages 

                                                                      Stage Three: Themes                                                                                                                                          

Theme 1: Attention to multiplicative and qualitative relationships when inferring directly and 

inversely proportional relationships.                                                                                                                                                

Theme 2: Proficiency in distinguishing directly and inversely proportional relationships from 

nonproportional relationships.  

Theme 3: The use of proportional reasoning strategies and reasoning within measure spaces when 

solving proportion questions.                                                                                                                                  

Stage Two: Categorization of the open codes 

Comprehension: Understanding the constant product relationship between quantities (9); Statement 

of a directly proportional relationship (4); Statement of an inversely proportional relationship (3); 

Distinguishing inversely and directly proportional graphs (2); Understanding starting points 

precluding proportional relationships in Graphs B and C (2); Not all linear graphs depict proportional 

relationships (1); Not all increase-decrease relationships are proportional (1); There is a need to have 

a multiplicative relationship between the pair of values to infer a proportional relationship (1); 
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Comprehension of the numerical multiplicative reciprocal relationships in an inversely proportional 

graph (1); None of the graphs express proportional relationships (1)                                                                                                                                     

Knowledge Resources:  Statement of an inverse qualitative relationship (15); Statement of a 

multiplicative relationship within measure spaces (10); Statement of a reciprocal multiplicative 

relationship (10); Inferring an inversely proportional relationship between quantities based on the 

inverse qualitative relationship (6); Statement of a qualitative relationship (4); Attention to the 

constancy of the quotients when inferring proportional relationships (3); Attention to the numerical 

reciprocal multiplicative relationship within two measure spaces in inferring inversely proportional 

relationship (3); Attention to the within measure space multiplicative factors being reciprocal of each 

other when inferring the inversely proportional relationship (3); Inferring a proportional relationship 

between quantities based on the qualitative relationship (2);  Statement of a numerical multiplicative 

relationship between measure spaces (1); Attention to the unit ratios when inferring constant ratio 

relationships between quantities (1)  

Difficulties: Expressing her difficulty solving a multiple proportion question (3); Difficulty writing 

inverse proportion formula (2); Expressing her difficulty solving the fence problem (1); Difficulty 

expressing verbal explanations into mathematical form (1); Difficulty relating constancy of the 

products with the existing of an inversely proportional relationship (1); Difficulty recognizing the 

reciprocal numerical relationship when the within measure multiplicative factor was not a whole 

number (1); Difficulty recognizing constancy of the products in the ratio table (1); Difficulty 

recognizing a constant product relationship between the number of people and number of minutes (1); 

Difficulty obtaining an expression to indicate relationships among the number of people, number of 

cupcakes, and time (1)                                               

Solution Strategies & Expressions: Ratio table strategy (28); Multiplying within measure spaces 

(17); Algebra strategies (14); Multiplying between measure spaces (6); Double number line strategy 

(6); Scientific unit conversion method (4); Unit ratio strategy (2); Additive strategy (1); Double 

counting strategy (1) & Double number line (6); Table (6); Formula (4); Directly proportional graph 

(2); Inversely proportional graph (2)                   

Stage One: Organization of the Open Codes 

The open codes that remained after sifting process are entered in this stage. 

 

In the second stage, I identified first-hand relationships among the open codes that 

remained in Stage One and entered related codes under one of the four categories that I 

determined considering my research questions and research purposes: comprehension, 

knowledge resources, difficulties, and solution strategies and expressions. In the first category, I 

entered the open codes that suggested the PSTs’ comprehension of the directly and inversely 

proportional relationships. In the second category, I entered the codes that demonstrated 

knowledge resources of the PSTs’ when inferring directly and inversely proportional 

relationships. In the third category, I entered the codes that suggested difficulties the PSTs 

encountered in the process of determining, explaining, and expressing directly and inversely 
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proportional relationships, and while solving the given questions. In the last category, I entered 

the codes that showcased the PSTs’ solution strategies and expressions of the directly and 

inversely proportional relationships. I also entered the frequency of each code in parenthesis. 

Some of the codes were related with more than one category; however, I only entered a code 

within a single, best suited category. For instance, if a code was demonstrating a difficulty, I 

entered this code in the difficulty category, although it might have also suggested a 

comprehension issue. Because the first three categories were derived from Research Question 

One, the codes in these categories were related. I entered a code within a single category because 

that allowed me to present a relatively simple structure of the theme development process; 

however, I considered the relationships among the codes in four categories when identifying the 

themes.  

In the last stage, I determined the themes that best reflected the overall ideas presented in 

these four categories. In my determination, I considered the relationships among the codes and 

their frequencies. For example, in Table 1, the knowledge resources category included codes that 

demonstrated Kathy’s attention to the multiplicative and qualitative relationships that she 

constructed between two covarying quantities when inferring directly and inversely proportional 

relationships. Hence, the codes suggested her attention to the multiplicative and qualitative 

relationships when inferring directly and inversely proportional relationships. In the 

comprehension category, the codes including, “Not all linear graphs depict proportional 

relationships,” “Not all increase-decrease relationships are proportional,” and “None of the 

graphs express proportional relationships” demonstrated Kathy’s ability to distinguish the 

directly and inversely proportional relationships from the nonproportional relationships. 
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Therefore, the codes in comprehension category suggested Kathy’s proficiency in distinguishing 

the directly and inversely proportional relationships from the nonproportional relationships. 

In the solution strategies category, the ratio table strategy was the most frequent code 

throughout the interviews, which appeared 28 times. In this strategy and in the remaining 

strategies, Kathy usually reasoned multiplicatively and preferred multiplying within measure 

spaces, which occurred 17 times. Considering Kathy’s comprehension of directly and inversely 

proportional relationships, which was also suggested by the codes entered in the comprehension 

category, and the frequency of the additive strategies, which occurred only once, the codes 

suggested Kathy’s preference for reasoning within measure spaces when solving the proportion 

questions. Because I did not detect a consistent difficulty throughout the tasks and the 

frequencies of the difficulties were relatively small in number, the codes did not suggest an 

overall theme for the difficulties Kathy encountered. On the other hand, I discussed some of the 

difficulties, which appear in Table 1, in the cross-task analysis.  

I followed the same steps for the remaining three participants. In Table 2, I present the 

themes that I determined for Susan, Carol, and Helen. Common to all three participants, the open 

codes suggested the PSTs’ difficulties in distinguishing directly and inversely proportional 

relationships from nonproportional relationships. They all preferred proportional reasoning 

strategies to solve the proportion questions. For example, Susan used ratio table and algebra 

strategies more often, which appeared 16 and 15 times, respectively. Whereas, Carol preferred 

ratio table and proportion formula strategies, which appeared 15 and 14 times, respectively. On 

the other hand, Helen used ratio table and unit ratio strategies more often than the other 

strategies, which appeared 20 and 15 times, respectively. The codes also indicated Carol and 

Helen’s difficulties interpreting the cupcake order in terms of cupcakes in Task 2. The thematic 
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analysis of the PSTs’ responses demonstrated their attention to specific features of contexts of 

the mathematical tasks when inferring directly and inversely proportional relationships. For 

instance, Susan attended to the constancy of the rate of change, static points on graphs, and 

whether the values of points were swapped when inferring directly and inversely proportional 

relationships. On the other hand, Carol and Susan attended to the multiplicative and qualitative 

relationships when inferring directly and inversely proportional relationships.  

Table 2 

Themes for Susan, Carol, and Helen 

Participants Themes  

Susan 

Theme 1: Attention to the constancy of the rate of change when inferring directly 

proportional relationships.                                                                                                       

Theme 2: Attention to static points on graphs and values of points being swapped 

when inferring inversely proportional relationships.                                                                                         

Theme 3: Difficulty distinguishing directly and inversely proportional relationships 

from nonproportional relationships.                                                                                             

Theme 4: The use of proportional reasoning strategies and reasoning within measure 

spaces when solving proportion questions. 

 

Carol 

Theme 1: Attention to unit rates, multiplicative relationships within measure spaces, 

and qualitative relationships when inferring directly proportional relationships.                                                                                                                                      

Theme 2: Attention to multiplicative and inverse qualitative relationships when 

inferring inversely proportional relationships.                                                     

Theme 3: Difficulty distinguishing directly and inversely proportional relationships 

from nonproportional relationships.                                                                                        

Theme 4: The use of proportional reasoning strategies when solving proportion 

questions and difficulty interpreting the cupcake order in terms of cupcakes. 

 

Helen 

Theme 1: Attention to numerical multiplicative relationships between measure 

spaces and qualitative relationships when inferring directly proportional 

relationships.                                                                                                                                    

Theme 2: Attention to inverse qualitative relationships and the context of balancing 

when inferring inversely proportional relationships.                                              

Theme 3: Difficulty distinguishing directly and inversely proportional relationships 

from nonproportional relationships.                                                                                       

Theme 4: The use of proportional reasoning strategies when solving proportion 

questions and difficulty interpreting the cupcake order in terms of cupcakes. 
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Problem Tasks 

A total of nine mathematical tasks were used in this study (see Table 3). Some 

combinations of the first eight tasks were used in the pilot study. The final study involved the 

Gear, Bakery, Balance, Speed, Fence, and Scout Camping tasks in which the Fence and Scout 

Camping tasks were used as extras. The interview protocols for the pilot and final study are in 

Appendix A and B, respectively. For the purposes of this study, I developed the Gear, Painter, 

Apartment, and Balance System tasks. I adapted Bakery, Fence, Cookie Factory, and Speed tasks 

from Dr. Sybilla Beckman’s textbook, Mathematics for Elementary Teachers (2011), and 

adapted the Scout Camping task from Vergnaud’s (1983) study. The tasks involved either single 

or multiple proportional relationships and all of the problems were missing-value type problems. 

In all of the tasks, participants were required to detect and explain either directly or inversely 

proportional relationships.  

The Gear task involved single directly and inversely proportional relationships that were 

investigated in two separate parts, respectively. The Bakery, Painter, Fence, Apartment and 

Speed tasks involved multiple proportional relationships. The Bakery task included two parts in 

the pilot study and three parts in the final study. The Painter task also included two parts. The 

Cookie Factory and the Balance System tasks involved single inversely proportional 

relationships. In Table 3, I briefly describe these nine tasks and report the names of the 

participants who worked on these tasks during the pilot study. In the final study, all participants 

worked on the same, Gear, Bakery, Balance, Speed, Fence, and Scout Camping tasks.  
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Table 3 

Descriptions of the Mathematical Tasks 

Name of 

the task 
Brief descriptions Participants 

Gear 

A directly proportional relationship between the size of a gear and the 

number of notches it possessed and an inversely proportional relationship 

between the number of revolutions that a gear made and its size are 

involved in this task. For example, in one of the questions, participants 

calculated the number of notches of a gear with a 2-cm radius, given that 

the second gear had a 3-cm radius and 12 notches. In another question, 

they calculated the number of revolutions of a gear with a 3-cm radius, 

given that the second gear had a 4-cm radius and revolved six times.  

Robert, 

Sally, 

and Jason 

Bakery 

In this task, participants explored one inversely and two directly 

proportional relationships among the number of people, the number of 

cupcakes, and the number of minutes. The task involved single and 

multiple proportion questions. For example, in one of the questions, 

participants calculated how many cupcakes could be frosted by two people 

in T minutes, considering that three people frosted N cupcakes in T 

minutes. 

 

Robert, 

Sally, 

and Jason 

Balance 

In this task, I provided participants with a mini-number balance system 

with which they balanced the system through hanging weights on hooks 

that were placed on both sides of the system. They explored an inversely 

proportional relationship between the distance (how far from the center a 

weight hung) and the number of weights that were hung.  

 

Abby and 

Michael 

Speed 

In this task, one inversely and two directly proportional relationships 

among the distance, speed, and time are investigated. The participants 

worked on questions similar to this one: If you covered the distance 

between two markers in 90 seconds driving at 60 mph and if you want to 

cover the same distance in 60 seconds, then what must your speed be? 

 

Sally, 

Jason, 

Abby, and 

Michael 

Fence 

This task involved identifying one inversely and two directly proportional 

relationships among the number of workers, the number of days, and the 

number of fences painted. The participants worked on questions similar to 

the following one: If three people take two days to paint five fences, how 

long will it take two people to paint one fence?  

 

Robert, 

Sally, 

and Jason 

Apartment 

This task involved an inverse-inverse-inverse relationship among the 

number of workers, the number of hours they work each day, and the 

number of days required to build an apartment. For example, participants 

needed to calculate the number of days it would take for 12 workers to 

build an apartment when each worker worked 8 hours per day, given that 

eight workers built the same apartment in 24 days working 6 hours per 

day. 

 

Robert, 

Sally, 

and Jason 
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Painter 

The participants explored a directly proportional relationship between the 

number of painters and number of bedrooms and an inversely proportional 

relationship between the number of painters and number of hours. For 

example, the participants calculated the number of bedrooms painted by 

eight painters in 6 hours, given that four painters painted three bedrooms in 

6 hours. Similarly, they calculated the number of hours needed by eight 

painters to paint three bedrooms, given that four painters painted the same 

three bedrooms in 6 hours. 

Robert 

Cookie 

Factory 

This task involved an inversely proportional relationship between the 

number of assembly lines used to make boxes of cookies and the time 

required to fill a truck with those boxes. The participants worked on 

questions similar to the following one: If four assembly lines could make 

enough boxes of cookies to fill a truck in 10 hours, how many hours are 

needed to fill the same truck if eight assembly lines were used? 

 

Robert 

Scout 

Camp 

This task involved three inversely proportional relationships among the 

number of people, the amount of cereal each person eats per day, and the 

number of days they stayed in the camp. Participants worked on questions 

to calculate the number of people, the amount of cereal each person ate per 

day, or the number of days they stayed in the camp. 

Only final 

study 

participants 

Rationale for Inclusion of the Tasks. When developing the interview protocols, I 

considered mathematical tasks to represent real-life examples. For example, I included the Gear, 

Balance, Speed and Bakery tasks because I expected them to be helpful to research participants 

in making connections with real-life conditions. In the Gear and Balance tasks, plastic gears and 

a mini-number balance system were provided, respectively, to explore directly and inversely 

proportional relationships. Therefore, these tasks provided hands-on experiences with direct and 

inverse proportions. In addition, the use of physical materials provided the following two 

advantages:  

 Because the plastic gears and balance system had features that were suitable for 

forming directly and inversely proportional relationships, they helped me 

investigating participants’ reasoning about these two relationships. 

 As emphasized by Hart (1981), “children who are presented with practical problems 

(e.g., gears), which needed a ratio for solution, do improve and abandon the addition 
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strategy” (p. 100). Therefore, it is expected that hands-on tasks would also help PSTs 

to abandon the additive strategies.  

The use of hands-on tasks and real-world problems together, precipitated the gathering of 

relevant information regarding the research questions. The tasks contained a variety of 

proportion categories, which I discussed in Chapter Two, and the use of these different 

categories was effective in understanding the participants’ reasoning for different situations. The 

multiple proportion problems could not be easily solved by cross-multiplication or additive 

strategies. Hence, multiple proportion problems were effective in determining the solution 

strategies of the PSTs’ when they could not rely on the cross-multiplication and rote 

computations. These problems also helped me determine the participants’ conceptual 

understanding and difficulties. Furthermore, the mathematical tasks used were appropriate for 

exposing the participants’ reasoning because using those tasks I was able to generate 

conversations around the research topics. The interactive nature of the tasks was also helpful in 

building rapport between the participants and myself. Additionally, the interactive nature of the 

interviews was helpful for exposing participants’ knowledge resources, coordination of these 

resources, development of cognition, and construction of meanings.  

Advance Summaries of the Tasks. These advance summaries include the information 

about what mathematics I targeted with the tasks and possible solution methods.  

Gear. The development of the Gear tasks was influenced by the concept of Gear (Speed) 

Ratio, an essential concept in engineering. Gear (Speed) Ratio is defined as the ratio of the radii 

of two gears, the ratio of the number of notches of two gears, or the inverse ratio of the velocity 

of each gear. This definition assumes that the two gears are meshed into each other, meaning that 

they have the same sized notches. Hence, if the movement ratio is represented by R, the radii by 
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r, the number of notches by n, and the angular velocity by v, the Gear (Speed) Ratio is expressed 

by 𝑅 =  
𝑟1

𝑟2
=  

𝑛1

𝑛2
=  

𝑣2

𝑣1
.  

In the first part of this task, I provided the participants with two plastic gears to 

investigate the directly proportional relationship between the number of notches of a gear and the 

size of its radius. For example, one of the problems involved determining the number of notches 

of Gear B, with a 6-cm radius, given that Gear A had a 3-cm radius and 12 notches. Because 

Gears A and B had circumferences 6π and 12π, respectively, and notches evenly placed, Gear B 

had 2 times as many notches as Gear A. Hence, the answer was 24 notches. After realizing this 

directly proportional relationship, as seen in the equation above, one could set up either 
𝑟1

𝑟2
=  

𝑛1

𝑛2
  

or 
𝑟1

𝑛1
=  

𝑟2

𝑛2
 as the proportion and could determine the missing value. For this study, I followed 

the conceptual framework given by Vergnaud (1983, 1988) to explain multiplicative 

relationships. If we designate radii as measure space one (M1), then the number of notches 

become measure space two (M2). Hence, 
𝑟1

𝑟2
 and 

𝑛1

𝑛2
 become within measure space ratios, and 

𝑟1

𝑛1
 and 

𝑟2

𝑛2
 become between measure space ratios. I expected participants to realize that the 

3 𝑐𝑚

6 𝑐𝑚
=

1

2
 within measure space ratio was equal to the 

12 𝑛𝑜𝑡𝑐ℎ𝑒𝑠

𝑥 𝑛𝑜𝑡ℎ𝑒𝑠
=  

12

𝑥
 within measure space ratio, and to 

realize that the 
12 𝑛𝑜𝑡𝑐ℎ𝑒𝑠

3 𝑐𝑚
=

4 𝑛𝑜𝑡𝑐ℎ𝑒𝑠

1 𝑐𝑚 
 between measure space ratio, which was the unit rate 

between the number of notches of a gear and the size of its radius, was equal to the 
𝑥 𝑛𝑜𝑡𝑐ℎ𝑒𝑠

6 𝑐𝑚
 

between measure space ratio. Thinking either way would help participants to determine the 

number of notches of Gear B. Furthermore, I expected participants to realize that the number of 

notches and radii were covarying in a fixed 
4 𝑛𝑜𝑡𝑐ℎ𝑒𝑠

1 𝑐𝑚 
 ratio. Additionally, I expected that the 
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participants could express this relationship with a directly proportional graph and see that the 

slope would be equal to the value of this fixed ratio.  

In the second part of this task, the goal was to explore the inversely proportional 

relationship between the number of revolutions a gear makes and size of its radius. Because the 

number of notches a gear has was proportionally related to the size of its radius, I expected the 

participants to also understand the inversely proportional relationship between the number of 

revolutions and number of notches. For instance, one of the problems involved determining the 

number of revolutions of Gear K with four notches, given that Gear F had 8 notches and 

revolved three times. I expected my participants to realize the inverse relation between the size 

of a gear and the number of revolutions it makes. They should see that for every one revolution 

of Gear F, eight notches of it moved; hence, in three revolutions a total of 24 notches of it 

moved. Gear K was meshed with Gear F, so I expected that the participants should see the same 

24 notches as revolving on Gear K. Because four notches moved on Gear K in one full rotation, 

Gear K needed to make six revolutions. One could solve this problem forming either 
𝑟1

𝑟2
=  

𝑣2

𝑣1
 or 

𝑛1

𝑛2
=  

𝑣2

𝑣1
 proportions and calculating the missing value. Thus, I presumed that the participants 

could realize that the 
8 𝑛𝑜𝑡𝑐ℎ𝑒𝑠

4 𝑛𝑜𝑡𝑐ℎ𝑒𝑠
=

2

1
 within measure space ratio was equal to the inverse of the 

3 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

 𝑥 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
=  

3

𝑥
 within measure space ratio. The between measure space ratios were not equal 

in this task, so there was not a single constant rate. For this reason, I expected to see more of the 

reasoning within measure spaces. I anticipated possible difficulties for recognition of the 

inversely proportional relationship because, as I discussed earlier, teachers tend to judge 

nonproportional relationships to be proportional (Cramer, Post, & Currier, 1993; Fisher, 1988; 

Izsák & Jacobson, 2013; Lim, 2009; Riley, 2010). I also anticipated that the participants could 
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have difficulty recognizing the product of the number of revolutions and number of notches 

being constant and the reciprocal multiplicative relationship between the number of revolutions 

and number of notches. In addition, I expected that participants could express the inversely 

proportional relationship with an inversely proportional graph.  

Bakery. This task involved three parts. In the first part, the goal was to explore the 

directly proportional relationship between the number of people and the number of cupcakes 

they frosted in a fixed amount of time, as well as the directly proportional relationship between 

the number of cupcakes and time considering the number of people as constant. In the second 

part, the goal was to investigate the inversely proportional relationship between the number of 

people and the time required for that many people to frost a fixed amount of cupcakes. The last 

part involved exploration of multiple proportion problems. Each part also involved two small 

sections. In the first section, I used a combination of letters and numbers, and in the second 

section, I used just numbers. So, if a participant could not answer the questions in the first 

section, then I continued with the questions in the second section.  

For example, in the first part of this task, I asked participants to calculate the number of 

cupcakes frosted by two people in T minutes, given that three people frosted N cupcakes in T 

minutes. I expected my participants to realize that the number of cupcakes and number of people 

was covarying in a fixed 
𝑁 𝑐𝑢𝑝𝑐𝑎𝑘𝑒𝑠 

3 𝑝𝑒𝑜𝑝𝑙𝑒
 ratio. For this task, M1 was the number of people, and M2 

was the number of cupcakes they frosted in T minutes. I imagined my participants to realize that 

the 
2 𝑝𝑒𝑜𝑝𝑙𝑒 

3 𝑝𝑒𝑜𝑝𝑙𝑒
=

2

3
 within measure space ratio was equal to the 

𝑥 𝑐𝑢𝑝𝑐𝑎𝑘𝑒𝑠

𝑁 𝑐𝑢𝑝𝑐𝑎𝑘𝑒𝑠
=  

𝑥

𝑁
 within measure 

space ratio, and to realize that the 
𝑁 𝑐𝑢𝑝𝑐𝑎𝑘𝑒𝑠 

3 𝑝𝑒𝑜𝑝𝑙𝑒
 between measure space ratio was equal to the 

𝑥 𝑐𝑢𝑝𝑐𝑎𝑘𝑒𝑠

2 𝑝𝑒𝑜𝑝𝑙𝑒
 between measure space ratio. Also the participants needed to realize that the value of 



72 

 

the between measure space ratio would become the slope of the directly proportional relationship 

between the number of cupcakes and the number of people.  

In the second part, the participants worked on problems including the following: At a 

bakery, three people can frost a total of N cupcakes in T minutes. How long would it take for six 

people to frost N cupcakes? Because this problem involved fixing the number of cupcakes and 

doubling the number of people, the time required to frost N cupcakes would be halved. 

Therefore, using this information and other similar information, I expected my participants to 

realize the inversely proportional relationship between the time required to frost N cupcakes and 

number of people. For this task, M1 was the number of people, and M2 was the time needed to 

frost N cupcakes. I supposed my participants to realize that the 
3 𝑝𝑒𝑜𝑝𝑙𝑒 

6 𝑝𝑒𝑜𝑝𝑙𝑒
=

1

2
 within measure 

space ratio was equal to the inverse of the 
𝑇 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

𝑥 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
=

𝑇

𝑥
 within measure space ratio. The between 

measure space ratios were not equal in this task, so there was not a single constant rate. For this 

reason, I expected to see more of the reasoning within measure spaces.  

In the third part, the participants worked on the multiple proportion problems including 

the following: At a bakery, three people can frost a total of N cupcakes in T minutes. How long 

would it take for one person to frost 2N cupcakes? I anticipated that the participants might 

experience some difficulty solving this problem because three quantities were covarying together 

and the value of none of them was fixed. I expected the participants to reason within measure 

spaces because it was not easy to reason between measure spaces for this type of problems. They 

needed to solve the problem by fixing the value of one of the three quantities at a time and 

identifying the relationship between the remaining two quantities. 

Speed. The first problem of this task necessitated the calculation of the time needed to 

cover a distance driving at 50 mph, considering that driving at 60 mph another car covered the 
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same distance in 90 seconds. Because the faster car could cover the same distance in fewer 

seconds, there was an inversely proportional relationship between speed and time. I expected that 

one could solve this problem by first calculating the distance covered in 90 seconds. Since 

driving at 60 mph necessitated covering one mile every minute, then in 90 seconds the fast car 

could cover one and half miles. Since the slower car could cover 50 miles in one hour, it could 

cover one and a half miles in 
1.5 𝑚𝑖𝑙𝑒𝑠  

50𝑚𝑖𝑙𝑒𝑠/ℎ𝑜𝑢𝑟
=

3

100
 of an hour, which was equal to 108 seconds. 

However, an easier method to solve this problem could be as follows: If one considers M1 as 

speed and M2 as time, one could form a 
60 𝑚𝑖𝑙𝑒𝑠/ℎ𝑜𝑢𝑟  

50 𝑚𝑖𝑙𝑒𝑠/ℎ𝑜𝑢𝑟
=

6

5
 within measure space ratio and could 

infer that this ratio is equal to the inverse of  
90 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  

𝑥 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
=

90

𝑥
 within measure space ratio. Also I 

expected that some participants may have known the distance formula—D = S×T—and that they 

might use it to solve this problem. In addition, I presumed some difficulties with unit 

conversions.  

Balance. The mini number balance system was a simple version of an equal-arm beam 

balance scale. In this study, I used it to explore inversely proportional relationships. If we hang 

some weights (A weight was represented with a blue rectangular rod) on one side of the balance 

system, then we need to hang some other weights on the other side to balance the system. I 

expected that participants could balance the system by hanging the same number of weights on 

both sides. However, for this study participants were required to explore multiple ways of 

balancing the system. The main idea in a balance system was that there was an inversely 

proportional relationship between the distance from the center and the numbers of weights hung. 

For example, if we hang two weights at 10 cm, then we need to hang five weights at 4 cm, or 10 

weights at 2 cm, or 20 weights at 1 cm to balance the system. Thus, I expected that the 

participants could generate the balance formula as follows: D1×W1 = D2×W2, where D1 was 
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the distance from the center in the first direction; D2 was the distance from the center in the 

second direction; W1 was the number of weights hung in the first direction; and W2 was the 

number of weights hung in the second direction.  

Fence. This task involved a multiple proportional relationship. In the first problem, 

participants had to calculate the number of days required for two people to paint one fence, 

considering that three people painted five fences in two days. For this task, the participants 

needed to realize two proportional relationships: between the number of people and the number 

of fences and between the number of days and the number of fences. And they also had to 

understand one inversely proportional relationship: between the number of people and the 

number of days. After determining these relationships, one could solve this problem by fixing 

one quantity at a time. For example, using the information that three people can paint five fences 

in two days, a participant could determine that one person can paint the same five fences in six 

days because having a third of the number of people requires tripling the number of days. For the 

second step, the participant could determine that two people can paint five fences in three days 

because doubling the number of people necessitates halving the number of days. For the last 

step, the participant could conclude that two people can paint one fence in three-fifths of a day 

because having a fifth of the number of fences requires a fifth the number of days. I 

demonstrated this solution method in Figure 8. However, one could solve this problem by 

following a different order. I expected that this task could be difficult for the participants because 

it involved multiple relationships, and it was not easy for someone to simply set up a proportion 

and to use cross-multiplication strategy. Hence, the participants needed to identify and 

comprehend all the existing relationships in the multiple proportion problems, and this feature of 
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the multiple proportion problems allowed me to better understand the participants’ reasoning and 

their knowledge resources when inferring the relationships. 

3 people    5 fences   2 days 

1 person    5 fences   6 days 

2 people    5 fences   3 days 

      2 people    1 fence     
3

5
 of a day. 

Figure 8. The three steps to solve the Fence problem. 

Apartment. This task also involved multiple proportional relationships. For the first 

problem, participants needed to calculate the number of days required by 12 workers to build an 

apartment if each worker works 8 hours per day, considering that eight workers can build the 

same apartment in 24 days each working 6 hours per day. In this task, the participants were 

required to realize three inversely proportional relationships between the number of workers, the 

number of hours they work each day, and the number of days it took them to build the apartment. 

After determining these inverse relationships, one could solve this problem by fixing one 

quantity at a time. For example, using the information that by working 6 hours per day eight 

workers could build the apartment in 24 days, a participant could determine the number of hours 

each worker works as 6 × 24 = 144 hours. Since there were eight workers, they worked 8 × 144 

= 1152 hours in total. Here 1152 hours became the constant of the proportionality. The problem 

required calculating the number of days for 12 workers, where each of them was working 8 

hours per day. So they could work 12 × 8 = 96 hours a day. For the last step, the participant 

could divide the total number of hours—1152—by 96 hours and could get 12 days. This is one of 

the easiest methods to solve this problem; however, this solution may not involve consideration 

of the proportionality. Another solution, which has a higher possibility for involving 
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proportionality, is to follow a method that is very much similar to the method I discussed in the 

Fence task. I demonstrated this solution method in Figure 9. However, one could solve this 

problem by following a different order.  

      8 workers    6 hours   24 days  

12 workers   6 hours   16 days 

  12 workers    8 hours   12 days  

Figure 9. The steps to solve the Apartment problem. 

Painter. In the first part of this task, the initial problem was about determining the 

number of bedrooms painted by eight painters in 6 hours, given that four painters painted three 

bedrooms in 6 hours. Reasoning within measure spaces, I expected the participants to recognize 

that doubling the number of painters required doubling the number of bedrooms they painted in 6 

hours. So, the answer was six bedrooms. Hence, this task involved determining a fixed 

3 𝑏𝑒𝑑𝑟𝑜𝑜𝑚𝑠 

4 𝑝𝑎𝑖𝑛𝑡𝑒𝑟𝑠
 ratio relationship between the number of painters and number of bedrooms they 

painted in 6 hours. For this task, M1 was the number of painters, and M2 was the number of 

bedrooms they painted in 6 hours. I expected that my participants could realize the 
4 𝑝𝑎𝑖𝑛𝑡𝑒𝑟𝑠 

8 𝑝𝑎𝑖𝑛𝑡𝑒𝑟𝑠
=

1

2
 

within measure space ratio as equal to the 
3 𝑏𝑒𝑑𝑟𝑜𝑜𝑚𝑠 

𝑥 𝑏𝑒𝑑𝑟𝑜𝑜𝑚𝑠
=  

3

𝑥
 within measure space ratio. And I 

further anticipated that they could realize that the 
3 𝑏𝑒𝑑𝑟𝑜𝑜𝑚𝑠 

4 𝑝𝑎𝑖𝑛𝑡𝑒𝑟𝑠
 between measure space ratio was 

equal to the 
𝑥 𝑏𝑒𝑑𝑟𝑜𝑜𝑚𝑠 

8 𝑝𝑎𝑖𝑛𝑡𝑒𝑟𝑠
 between measure space ratio.  

In the second part of this task, the participants were required to determine the number of 

hours needed by eight painters to paint three bedrooms, given that four painters painted the same 

three bedrooms in 6 hours. I expected the participants to recognize the reciprocal multiplicative 

relationship, doubling the number of painters would halve the number of hours to paint three 

 ÷4/3 

3\33 

 ×4/3 

3\33 

 ×3/2 

3\33 

 ÷3/2 

3\33 



77 

 

bedrooms. So, the answer was 3 hours. As a result, this task involved determining an inversely 

proportional relationship between the number of painters and number of hours. Designating M1 

as the number of painters and M2 as the number of hours, I expected that my participants could 

recognize that the 
4 𝑝𝑎𝑖𝑛𝑡𝑒𝑟𝑠 

8 𝑝𝑎𝑖𝑛𝑡𝑒𝑟𝑠
=

1

2
 within measure space ratio was equal to the inverse of the 

6 ℎ𝑜𝑢𝑟𝑠 

𝑥 ℎ𝑜𝑢𝑟𝑠
=  

6

𝑥
 within measure space ratio. The between measure space ratios were not equal, so 

there was not a constant rate. 

Cookie Factory. Knowing that four assembly lines can make enough boxes of cookies to 

fill a truck in 10 hours, the first problem involved determining the number of hours required to 

fill the same truck if eight assembly lines were used. Because the assembly lines were doubled, 

the time needed to fill the truck would be halved, and so the answer was 5 hours. Hence, I 

expected the participants to realize the inversely proportional relationship between the number of 

assembly lines and the time it took them to make boxes of cookies to fill a truck. For this 

problem, I presumed the participants could designate M1 as the number of assembly lines and 

M2 as the time needed to fill the truck. Later, they could determine the 
4 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 𝑙𝑖𝑛𝑒𝑠 

8 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 𝑙𝑖𝑛𝑒𝑠
=

1

2
 within 

measure space ratio, and could show that this ratio was equal to the inverse of the 

second 
10 ℎ𝑜𝑢𝑟𝑠 

𝑥 ℎ𝑜𝑢𝑟𝑠 
=

10

𝑥
 within measure space ratio. Because the between measure space ratios were 

not equal, there was not a constant rate between the number of assembly lines and the time.  

Scout Camp. This task involved inverse-inverse-inverse multiplicative relationships 

among the number of people, number of cereal, and number of days. For instance, the first 

question was about determining the amount of cereal 20 people needed to eat, so the cereal they 

brought with them would last for 16 days, given that it would take 20 people 12 days if each one 

of them consumes half of a pound of cereal every day. Similar to the previous multiple 
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proportion tasks, I expected that the participants could solve this problem by fixing the value of 

one of the three quantities at a time and working on identifying the relationship between the 

remaining two quantities. I also expected them to calculate the total amount of cereal to be 120 

pounds by multiplying 20 people with 12 days and one-half pound per person per day; however, 

I did not think that they could recognize 120 pounds as representing the constant of 

proportionality.  

Multiplicative Structures Presented in the Mathematical Tasks. The mathematical 

tasks used to collect data were appropriate for compiling relevant information from the PSTs 

about their inferences of the directly and inversely proportional relationships. Because the 

mathematical tasks used in this study involved comparing quantities with different units, it was 

expected that the PSTs might have difficulty expressing and stating multiplicative relationships 

between measure spaces. For instance, in Task 1A, there was a directly proportional relationship 

between the size of a gear and its number of notches. The PSTs were provided two gears, which 

were thought to be meshed, and they were asked to calculate either the number of notches or the 

radius of the gears. In one of the questions, the PSTs needed to calculate the number of notches 

of Gear B, with a 2-cm radius, given that Gear A had a 3-cm radius and 12 notches. The 

mathematical structure of the relationship between the number of notches and radius for this 

particular question can be expressed with the multiplication statement (3 cm) * (4 notches/cm) = 

12 notches. This mathematical statement can be best explained with a multiple batch perspective. 

Assuming 4 notches per 1 cm as a batch, which is a unit rate, an expert can iterate this batch two 

times to calculate the number of notches on Gear B as eight. In general, the multiplicative 

relationship between the number of notches and radii can be expressed with the statement (R cm) 

* (
N

R
 notches/cm) = N notches (Figure 10). Because it was not meaningful to state the 
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multiplicative relationship by saying either “12 notches is four times 3 cm” or “3 cm is one-

fourth of 12 notches,” I expected that when comparing quantities between measures, the PSTs 

either would state the unit rate or focus on the numerical multiplicative relationship—12 is 4 

times the 3.  

 

Figure 10. Expression of the multiplicative relationship between the number of notches 

and radii. 

Because the mathematical tasks in this study involved comparing quantities with different 

units rather than the same units, I expected that it would be difficult for the PSTs to express 

multiplicative relationships between measure spaces. For example, the following information and 

question can be given as an illustration of two quantities with the same units. Three ounces of 

rose oil and 2 ounces of chamomile oil are mixed to make a fragrance. How much chamomile oil 

was needed if 12 ounces of rose oil were used in the fragrance? In this question, the 

mathematical structure of the relationship can be expressed with (
2

3
) * (Rose oil) = Chamomile 

oil. A PST could state the multiplicative relationship between measure spaces by saying either 

"The chamomile oil is two-thirds the rose oil" or "the rose oil is three-halves the chamomile oil,” 

which are relatively easier to determine than the multiplicative relationships between measure 

spaces with different units that I provided in the preceding paragraph. As in the gear example 

above, quantities in the separate within measure spaces had the same units. Therefore, I expected 

a tendency from the PSTs to make multiplicative comparisons within measure spaces—3 cm is 
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three-halves the 2 cm, so 12 notches needed to be three-halves the eight notches—rather than 

making multiplicative comparisons between measure spaces.  

In the inverse proportion tasks, there was a constant product relationship between the two 

covarying quantities. For example, in Task 1B, the product of the number of revolutions and 

number of notches yielded the total number of notches revolved on a gear, which was constant. 

Hence, the multiplicative structure of the relationship could be expressed with the following 

statement: (number of revolutions) * (number of notches per revolution) = total notches. In the 

Balance task, because the PSTs needed to balance the system on two sides, they were required to 

have the same value, which was determined by multiplying the number of weights and the 

distance from the center of the system, on both sides. Therefore, the contexts of the Gear and 

Balance tasks were appropriate for facilitating the PSTs’ inferences of constant product 

relationships. In the Bakery task, there was an inversely proportional relationship between the 

number of people and the number of minutes. It was expected that an expert might infer the 

cupcakes order as the product of the number of people and the cupcakes frosted by each person. 

Because the cupcake order consisted of a fixed number of cupcakes, this expert could recognize 

that as the number of people increases, the time to complete the order decreases by the 

multiplicative inverse of the increases in the number of people. On the other hand, a novice 

might have difficulty inferring the cupcakes order as the product of the number of people and the 

cupcakes frosted by each person. 

Because more than two quantities were involved in the multiple proportion tasks, 

identifying multiplicative relationships were expected to be more difficult than single proportion 

tasks. For example, in the Bakery task, there was a direct-direct-inverse proportional 

relationships structure. The multiplicative relationships among the number of people, the number 
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of minutes, and the number of cupcakes can be expressed with the following multiplication 

statement: (number of people) * (number of minutes) = (number of cupcakes) * (number of 

person-minutes per cupcake), where “number of person-minutes per cupcake” represents the 

constant of proportionality. To infer the multiplicative relationship between any two quantities, 

PSTs needed to fix the value of the third quantity as constant. In the Scout Camp task, there was 

an inverse-inverse-inverse proportional relationships structure. Hence, the product of the number 

of people, the number of days, and the amount of cereal eaten by a person in a single day yielded 

the total cereal, which was constant. Therefore, the multiplicative relationships could be 

expressed by the following multiplication statement: (number of people) * (number of days) * 

(pounds of cereal eaten per person per day) = total pounds of cereal.  

Pilot Study 

In the following pages, I present the data analysis of one middle grades teacher, Abby, 

and three secondary grades teachers, Sally, Jason, and Robert. Each case analysis begins with a 

brief summary, and a cross-task analysis of the participants’ responses follows it. The data 

analysis is concluded with a discussion of the findings. I provided a brief summary of the pilot 

study at the end of this chapter in order to discuss the transition from the pilot to final study.  

Abby’s Case 

Summary. Abby correctly inferred the directly and inversely proportional relationships 

between quantities in the Balance and Speed tasks. Although, in some instances, there was 

evidence that Abby coordinated multiplicative relationships within two separate measure spaces, 

her inference of the directly and inversely proportional relationships was mainly based on 

attending to the qualitative relationships, not to the multiplicative relationships between 

quantities. To solve the problems in the Balance task, she used the balance formula that she 
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generated. In the Speed task, by reasoning within measure spaces, Abby used the unit ratio and 

ratio table strategies. She expressed the relationships with tables, balance and distance formulas, 

and directly and inversely proportional graphs. 

Cross-Task Analysis. In the Balance task, I provided Abby with a mini number balance 

system by which she balanced the system through hanging weights on hooks that were placed on 

both directions of the system. Her goal was to explore the relationship between the distance (how 

far from center a weight hung) and the number of weights hung. Although Abby did not 

necessarily anticipate an inversely proportional relationship, she seemed to have a sense of 

proportionality about the way the balance system was working, and noted her suspicion by 

stating the following idea: 

Abby: I am trying to think how exactly this [pointing at the balance] works but I think ummm 

maybe this balance is set, maybe it is set to stay in a certain proportion. So, only things 

that like did that proportion will make it balanced. 

After working a while to figure out the way the system was working, she inferred an inversely 

proportional relationship between the distance and the number of weights. Her inference of the 

inversely proportional relationship was based on attending to inverse nature of increments and 

decrements in the values of corresponding quantities.  

Int: Can you tell me what kind of relation is this? 

Abby: I think it is a proportional relationship [sounded hesitant]. Well it is a, I think, it is an 

inversely proportional relationship because a proportional relationship would be uhmm 

every time the distance increases by a certain amount uhmmm the amount of weight 

would increase by certain amount. This one decreasing while the other increasing, I think 

it would be inversely proportional because it is opposite. 

  

According to the exchange, Abby’s correct inference of the inversely proportional relationship 

was based on attending to the inverse qualitative relationship, which she described by saying, 

“This one decreasing while the other [is] increasing.” The following exchange demonstrated 

Abby’s recognition of a covariation between the number of weights and distance:  
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Int: Here you talked about relation between distance and weight. Can you tell me more about 

this relation? 

Abby: Yeah so here I said as the distance from zero increases the weight that you need to put on 

decreases. So there always the reason why this always works is because they are always 

changing together. 

 

In the exchange, Abby’s statement, “…they are always changing together” indicated her 

understanding of the covariation.  

Abby successfully explained the reciprocal multiplicative relationships within measure 

spaces if the number of weights and distances involved halving and doubling. For example, when 

told that six weights were hung at 7 
1

2
 cm in one direction of the system and asked where to hang 

three weights to balance the system in the other direction, Abby stated that because the number 

of weights on one side was double the other side, for her, the distance needed to be doubled so 

that the system could be balanced: 

Abby: I think that since this weight [pointed at six weights] is double this weight [pointed at 

three weights] then, or three is one half [of] six, so this weight is half of this weight. Then 

my distance should be double because like I said before, the closer ummm that the 

distance is to zero the more weights that you need to put on. And so since this is exactly 

half of this. I think that new distance is going to be exactly double seven and a half which 

is fifteen. 

 

I should have noted that the problem above was an inverse proportion problem and very easy 

since it only involved doubling and halving; however, there was not enough evidence if she 

could infer reciprocal multiplicative relationships within measure spaces in an inverse proportion 

problem for fractional values. During the interviews, Abby did not explain multiplicative 

relationships between measure spaces, and that suggested her preference for reasoning about 

multiplicative relationships within measure spaces.  

When I asked Abby to draw a directly proportional graph and an inversely proportional 

graph, she successfully drew a directly proportional graph, but initially thought the graph in 

Figure 11 a, which she drew, was also representing a direct proportion.  
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Abby: Yeah. Uhm so for direct as one increasing the other is increasing so like something like 

that. Uhm or as one is decreasing the other is decreasing so it would be like this…I think 

nope that's wrong. Uhm okay for indirect this would be indirect because uhm like here 

uhm I am just going to pretend like I am plotting these points. So one and 24 and 2 and 

12, and 3 and [inaudible], and four and six. 

 

The explanation demonstrated that Abby’s attention to the qualitative relationships directed her 

to incorrect conclusions—a direct proportion and inverse proportion—about the relationship in 

Figure 11 a. A few exchanges later, by marking the values, which she had in her ratio table, she 

obtained the correct inversely proportional graph (Figure 11 b), in which the line was curved 

instead of straight. When I asked which one—Figure 11 a or 11 b—was showing an inversely 

proportional relationship, she said that the graph in Figure 11 b was showing an inversely 

proportional relationship and explained: 

Abby: Because even then it's like so next would be like six and four uhmmm because they're not 

because they're not changing at the same rate.  

Int: In that case? 

Abby: In this case they're still change like a straight line means they're changing at the same 

rate. 

 

The exchange showed that for Abby, a straight line necessitated the change of the values of 

quantities “at the same rate.” Because she detected that the values in her ratio table and in the 

curved graph were not changing at the same rate, she concluded that the graph with a curved line 

was representing the inversely proportional relationship.  

 
(a)                                                                       (b) 

Figure 11. Abby’s determination of a graph with an inversely proportional relationship. 
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In the Speed task, Abby inferred one inversely and two directly proportional relationships 

among the distance, speed, and time by fixing a quantity at a time and describing appropriate 

qualitative relationships between the remaining two quantities. She usually solved the given 

questions reasoning within measure spaces that involved coordinated multiplication and division. 

For instance, when I asked Abby her reason for using the same and opposite operations in two 

separate problems, she explained: 

Abby: It is because as the amount of miles that you travel increases, the amount of time that you 

move uhmm the amount of time that you take increases too because you are traveling at 

the same rate at you traveling at the same miles per hour. So, as long as your speed does 

not change, the more miles you travel the more time is going to take. And they are 

moving at the same time as long as the miles per hour stay the same.   

Int: So what kind of relation is this you are talking about? 

Abby: So this is a proportional relationship. The amount of miles and the amount of seconds is 

the proportional relationship if the miles per hour stay the same. But here if you are 

looking at the seconds and the miles per hours, [it is] inversely proportional. Because 

uhmmm at the amount miles that you are traveling stay the same then as the seconds as 

the amount of time you take increases the miles per hour that you are driving decreases if 

you are traveling the same distance. So it depends on what uhmmm what variables you 

look at or what two variables you are comparing. So this makes more sense. 

 

This exchange demonstrated that Abby inferred the directly proportional relationship between 

the distance and the time and the inversely proportional relationship between the time and the 

speed by considering the speed and distance as constants one at a time and by qualitatively 

describing the coordinated increases and decreases in the values of the remaining two quantities. 

The exchange also demonstrated how Abby successfully coordinated the need for taking value of 

a quantity as constant with the presence of a directly or inversely proportional relationship 

between the other two quantities. For example, she said, “The amount of miles and the amount of 

seconds is the proportional relationship if the miles per hour stay the same.” 
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Sally’s Case 

Summary. Sally usually inferred the directly and inversely proportional relationships in 

the given questions by attending to and explaining the qualitative relationships between 

quantities. She also inferred the multiplicative relationships within measure spaces. In the direct 

proportion questions, by making multiplicative comparisons between measure spaces, she 

inferred the constancy of the quotients. On the other hand, in the inverse proportion questions, 

she did not recognize the constancy of the products. She expressed the relationships among 

quantities with proportions, ratio tables, directly and inversely proportional graphs, equations, 

and formulas. She seemed to be comfortable while she was working on the tasks, so she solved 

problems in the absence of numbers and set up direct and inverse proportions and used other 

proportional reasoning strategies to solve given problems.  

Cross-Task Analysis. Similar to Abby, Sally’s main strategy for inferring relationships 

between quantities was to describe qualitative relationships. If the problem tasks involved more 

than two quantities such as in the Fence, Apartment, and Speed tasks, she fixed one quantity at a 

time and described the relationship between the remaining two. As a strategy, before attempting 

to solve any problems, she described the qualitative relationships among quantities and solved 

the problems later. Her qualitative descriptions generally embodied some type of causal 

relationships (e.g., radius increases so revolutions decreases, more workers so less time) and 

resembled p-prims like knowledge pieces since the effect-reaction relationships defined in those 

descriptions were self-evident. The following exchange from the Bakery ΙΙ task showed how she 

inferred an inverse relationship between the number of people and the time to frost 50 cupcakes: 

Int: If two people frost 50 cupcakes in 12 minutes, then how long would it take for four 

people to frost 50 cupcakes? 

Sally: Okay this is going to be an inverse relationship because we still know two people can 

frost 50 cupcakes in 12 minutes. So it is not going to take them, if this was like a regular 
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proportion, then four people to frost 50 cupcakes it would take, if we multiply two by 2 to 

get four people so multiply the time by 2 and we get 24 minutes. But that doesn’t make 

any sense because it will actually take them less time to frost cupcakes because more 

people there. And then they work at the same pace and so it is going to take less time. 

 

The exchange suggested that Sally’s inference of the inverse relationship was based on her 

coordination of the inverse qualitative relationship—“…more people…so it is going to take less 

time”—in the given question with the knowledge of what would look like the qualitative 

relationship if it was a “regular” proportional relationship by which she implied the directly 

proportional relationship.  

Sally reasoned multiplicatively while solving the questions and seemed to be aware of the 

consequences of addition and multiplication. For example, in the Gear Ι task, when asked how 

many notches would Gear 2, which had a 4-cm radius and 16 notches, have if Gear 1 with a 3-

cm radius had 18 notches instead of 12. She explained that multiplying 12 notches by 
3

2 
 would 

yield 18 notches, so, she said that she also need to multiply 16 notches by 
3

2 
 to obtain the number 

of notches on Gear 2. When asked how she knew multiplying 16 notches by 
3

2 
 would work, she 

explained:  

Sally: Well honestly, I just tried to figure out what you could multiply by this number [pointed 

at 12] to get this number [pointed at 18]…First, I thought you add six but that is not a 

definition of proportionality…It should be like constant factor, so it should be something 

like you are multiplying by. So, I found that if you multiply 12 by three halves that will 

give you 18. So, to check it is proportional or not, then we can go over here this number 

[pointed at 16] and multiply by the same amount and that will give us 24, which 

corresponds to the 18. These two [pointed at 12 and 16] are corresponding and these two 

[pointed at 18 and 24] are corresponding. And then I think we can say it is proportional. 

 

Sally’s explanation suggested that for her, the idea of proportionality necessitated multiplying 

values of two separate within measure space quantities by the same multiplicative factor. Her 

correct explanation also suggested that she had facility with fractions as multiplicative operators. 

It appeared that Sally’s consideration of multiplication in her reasoning to explain proportionality 
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was an example for her coordination of the proportionality with the necessity of the existence of 

multiplicative relationships between two covarying quantities.  

Sally successfully identified appropriate multiplicative relationships within measure 

spaces for whole numbers and proper and improper fractions. For instance, in the Gear Ι task, 

one of the questions involved calculation of the number of notches around Gear 2, which had a 

4-cm radius, given that Gear 1, which had a 3-cm radius, had 18 notches. She explained the 

multiplicative relationship within measure spaces by saying, “I know that Gear 1 is always going 

to have three-fourths the amount of little notches that Gear 2 has. And so if I know how many 

notches Gear 2 has, I can multiply this by 
3

4
 and get the amounts of notches that Gear 1 has.” 

Sally also made multiplicative comparisons between measure spaces in the direct proportion 

questions to infer constant ratio relationships between two covarying quantities. For instance, in 

the Fence task, from the information—two people paint five fences in three days—she inferred 

the constant ratio between the number of people and the number of fences as 
2

5
 (Figure 12). 

Fixing the number of people, she also explained a constant ratio relationship between the number 

of fences and number of days:  

Sally: So people over fences is going to be constant. So, the amount of people in this was just 

two and the amount of fences was five, so two-fifths. It also equals to same ratio, which 

is, four over 10 is also equal to two-fifths. So if you are just changing these [pointed at 

the number of fences and number of people] and keeping days constant and then that will 

work. But uhmmm yeah like this one [pointed at 6 people/5 fences ≠ 1 person/5 fences] it 

won't work with because you are changing the amount of days. And so, if you…so, this 

does…this actually does work. So, day one over fence one equal day two over fence two. 

So, I don't have any example of this though. But if you increase the amount of days you 

have then you increase and if you keep the amount of people the same. So, like whatever 

this is, this does not have any equation has to be constant. So, in this case this is people. 

So, you keep people constant then your day to fence ratio is going to be same for all your 

examples. 

Figure 12 and the statement above demonstrated Sally’s inference of a constant ratio relationship 

between the number of people and number of fences. She clearly stated this relationship by 
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saying, “So people over fences is going to be constant.” Sally’s statement, “So, the amount of 

people in this was just two and the amount of fences was five, so two-fifths. It also equals to 

same ratio, which is, four over 10 is also equal to two-fifths,” suggested that she was attending to 

the numerical multiplicative relationships between measure spaces in inferring the constant ratio 

relationship. 

 

Figure 12. Sally’s ratio table for the number of people and number of fences relationship. 

In the Gear ΙΙ task, when asked to draw a graph to express the relationship between the 

number of revolutions and the radius, Sally marked some values that she obtained earlier and 

drew the graph in Figure 13, but she could not decide whether the graph needed to be straight or 

curved (Figures 14 a and b). She then explained:  

Sally: Between points 1 and 3, I am going to figure out the slope. If it is a linear relationship, 

the slope should be constant between all these points. 
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Figure 13. Sally’s inversely proportional graph for the number of notches and number of 

revolutions relationship. 

Sally calculated the slopes for some of the values and determined that the slope was changing 

(Figure 13). Hence, she decided Figure 14 b was the graph of the inverse relationship. Similar to 

Abby, Sally also initially assumed the graph in Figure 14 b as an inversely proportional graph 

and like Abby, by attending to the constancy of the rate of change, she obtained the correct 

inversely proportional graph. Abby and Sally’s initial erroneous assumptions suggested 

constraints in their understanding of proportional and nonproportional relationships. 

 

(a)                                       (b) 

Figure 14. Sally’s attempts to draw an inversely proportional graph.  
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Jason’s Case 

Summary. Jason used both proportion formula and proportional reasoning strategies. His 

solution strategies and reasoning demonstrated his understanding of directly proportional 

relationships; however, he experienced conceptual difficulties in understanding and explaining 

inversely proportional relationships. For example, in the Gear ΙΙ task, he incorrectly inferred a 

directly proportional relationship between the size of a gear and the number of revolutions it 

made. Jason had trouble with multiple proportion questions that involved the time concept. For 

instance, in the Speed task, he incorrectly read out an inversely proportional relationship between 

the distance traveled and the number of minutes. Jason used ratio tables, graphs, equations, or 

formulas to represent the directly and inversely proportional relationships.  

Cross-Task Analysis. Similar to Abby and Sally, to decide the relationships between two 

covarying quantities, Jason usually increased (or decreased) the value of a quantity and observed 

the corresponding change in the other quantity. If this second quantity also increased, then he 

said there was a directly proportional relationship between those two quantities. On the contrary, 

if the second quantity decreased, then he said these two quantities were inversely proportional. 

Jason also made multiplicative comparisons within measure spaces if the covarying quantities 

involved doubling and halving and used those multiplicative comparisons to infer the 

relationships or to solve questions.  

In the Bakery ΙΙ task, Jason explored the relationship between the number of people and 

number of minutes needed to frost 50 cupcakes. He stated that the multiplicative relationship 

within two measure spaces by saying: 

Jason: We have twice as many people working so it should not take longer, it should take half 

the time not the double the time. Six minutes. How to explain it...It is because we do not 

have a proportional relationship. We have an inversely proportional relationship.  
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Jason’s statement, “We have twice as many people working so it should not take longer, it 

should take half the time not the double the time” provided evidence for his attending to 

reciprocal multiplicative relationships within measure spaces. Jason’s response suggested that he 

used this reciprocal multiplicative relationships as a knowledge resource to infer an inversely 

proportional relationship between the number of people and number of minutes.  

If the problems involved more than two quantities, Jason fixed one quantity at a time to 

discuss the relationship between the other two quantities. For example, in the Bakery ΙΙ task, he 

expressed the relationships among the number of people, number of cupcakes, and number of 

minutes with the equation: 𝑝 ∗ 𝑚 = 𝑐. Although this equation was not complete, it was important 

because Jason formed this equation by fixing a quantity at a time and exploring the directly and 

inversely proportional relationships between the other two quantities. When asked to replace 

some values into this equation for checking, Jason realized that the equation was not working for 

the values he replaced. His reasoning was understandable, but he needed to recognize that 

𝑝∗𝑚

𝑐
 was equal to some constant k, so the equation was going to be 𝑝 ∗ 𝑚 = 𝑘 ∗ 𝑐.  

In the Gear ΙΙ task, Jason initially endorsed a directly proportional relationship between 

the number of revolutions and radius. To determine the number of revolutions of a gear, with a 

3-cm radius, given that another gear, with a 4-cm radius, made six revolutions, he set up the 

direct proportion 
3 𝑐𝑚

4 𝑐𝑚
=  

𝑥 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

6 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
 and cross-multiplied to obtain an incorrect answer, 

9 

2
 

revolutions (Figure 15). To explain his solution, Jason used a concept of “distance travelled,” 

which appeared to be a piece of knowledge that the participants usually coordinated with the 

gear concept. He calculated that the gear with a 4-cm radius travelled a distance of 48π and the 

gear with a 3-cm radius travelled a distance of 𝑥 ∗ 6π, but he could not find a way to coordinate 

the concept of distance traveled with the directly proportional relationship. Hence, he could not 
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explain that the gears had to travel the same distance since they were meshed. His difficulty 

understanding the gears traveling the same distance suggested constraints in his coordination of 

constant product relationships. At that moment, I asked him whether the gears traveled the same 

distances or different distances. He reacted to my question by saying, “Ohhh I see what you are 

saying.” As can be understood from his reaction, my question directed him to think about the 

possibility of the gears traveling the same distances. It would have been good if I had waited for 

him to finalize his response, instead of directing him with my question. Although he explained 

that the gears required traveling the same distances because they were “linked,” it is a question 

whether he could have been obtained the same conclusion if I had not helped him with my 

question. On the other hand, his initial incorrect inference can be given as an example for his 

judgment of an inversely proportional relationship to be directly proportional. 

 

Figure 15. Jason’s incorrect direct proportion strategy. 

In the Speed task, when he was calculating the speed of a car that was driving two miles 

in 100 seconds, Jason assumed the relationship between the distance and time to be inversely 

proportional. As a result of assuming an inversely proportional relationship, he used opposite 

operations within two separate measure spaces and obtained an incorrect answer (Figure 16). The 

following exchange shows our discussion: 

Int: Twenty miles per hour your speed?  

Jason: Yeah. 
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Int: How did you derive that conclusion? 

Jason: So, you know I can go two miles in 100 seconds, so again using inverse proportionality 

five-thirds time two miles in 60 seconds because six-fifths I mean six-tenths time 100 is 

60. So, ten-fifths I mean ten-sixths which is equal to five-thirds time two equals ten-

thirds.  

 

These exchanges suggested constraints in Jason’s understanding of the directly and inversely 

proportional relationships. In addition, his incorrect judgement of the relationship showed that 

Jason might not have had well-developed strategies for inferring directly and inversely 

proportional relationships and for successfully distinguishing these relationships from each other. 

As seen in Figure 16, he also incorrectly multiplied 
10

3
 by 6 instead of 60. When reminded if it 

was okay to drive more miles in fewer seconds, Jason recognized his incorrect assumption of 

inversely proportional and said, “Oh I used inverse proportion. Yeah okay I used, I assumed an 

inversely proportional relationship and that is not the case.” He then corrected his answer by 

assuming a directly proportional relationship.  

 

Figure 16. Jason’s response to the Speed problem. 

Robert’s Case 

Summary. Robert solved the given questions generating algebraic formulas or equations, 

or using the proportion formula strategy. In his solution strategies, he appeared to depend on the 

numerical relationships and preferred to express relationships among quantities with algebraic 
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equations and formulas. He was comfortable with mathematical calculations, but he had 

difficulty explaining the meanings of his calculations and the meanings of numerical values. In 

each task, he generated the mathematical expressions by trying out numbers, and he checked the 

accurateness of his expressions by replacing the given numbers. He did not explain directly and 

inversely proportional relationships between quantities; instead, he described qualitative 

relationships among them. Therefore, his reasoning and solution strategies indicated that he had 

a limited coordination of directly and inversely proportional relationships. He represented 

directly and inversely proportional relationships with graphs, equations, or formulas.  

Cross-Task Analysis. Similar to the other three participants, Robert compared the given 

quantities qualitatively and decided the relationships to be inverse or linear. In a few instances, 

he described multiplicative relationships between quantities. Therefore, comparing quantities 

qualitatively was his main strategy for inferring relationships. For example, the following 

exchanges in the Gear ΙΙ task showed how Robert described the relationship between the size of 

a gear and its number of revolutions: 

Int: Do you think is there a relationship between the radius and the number of revolutions the 

gear makes? 

Robert: It is related because like we said this is the largest radius and this is the smallest radius 

so let’s say the greater the radius the fewer amount of rotations. So if this one is greater 

than this, this one [pointed at the small gear] had to make more rotations than this one 

[pointed at the big gear] because its radius is greater.  

Int: What happens if we make this one too big you know? If we make the second gear too 

large or too big then what happens if we return this one [second gear] six times again? 

Robert: This [pointed at the first gear] has to turn more.  

 

In the exchanges above, Robert stated the inverse qualitative relationship by saying, “…the 

greater the radius the fewer amount of rotations.”  

In the Cookie Factory task, when asked to calculate the number of hours needed by eight 

assembly lines to fill a truck with boxes of cookies, given that four assembly lines filled the same 
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truck in 10 hours, Robert inaccurately stated a “linear relationship” between the number of 

assembly lines and number of hours. Hence, he solved the problem incorrectly and obtained 20 

hours as his answer. To explain his answer, he made an incorrect multiplicative comparison 

within measure spaces and stated that it would take eight assembly lines twice the time of four 

assembly lines to fill the same truck. Some exchanges later, he described the correct inverse 

qualitative relationship between the number of assembly lines and the number of hours by 

saying, “As the assembly lines increase hours decrease and vice versa.” When reminded of the 

contradiction between his description of the relationship and his answer, Robert divided 10 hours 

by 2 instead of multiplying and obtained the correct answer, 5 hours. Thus, it appeared that my 

reminder created a disequilibrium between the computation that Robert made and the qualitative 

relationship he had described. This was the only case he incorrectly inferred a relationship 

between given quantities. It was possible that he might have been attracted by the possibility of a 

linear relationship between given quantities. Therefore, this was an example of a preservice 

teachers’ incorrect judgment of an inversely proportional relationship to be a directly 

proportional relationship. 

In the Gear Ι and ΙΙ tasks, when asked how he obtained the units of his answers, Robert 

had difficulty to explain how he obtained those units. For example, when asked to calculate the 

radius of a gear with 11 notches, given that another gear, with a 3-cm radius, had 12 notches, 

Robert divided 11 notches by four notches and obtained 2.75 cm as the radius of the gear: 

Int: If we had another gear with 11 notches, what would be the radius of that new gear? 

Robert: So, you would keep this thing [circled the 4 to 1 ratio] the same and then you just take 11 

notches divided by four notches because you are using the same standard. And that will 

give you 2.75 cm. Because you are using the same standard as the last, so the ratio will be 

the same. 
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Earlier in the Gear Ι task, simplifying the 12-notches-to-3-cm relationship, Robert obtained a 4 

notches:1 cm ratio and interpreted it as “four notches for every one cm.” Robert’s explanation in 

the exchange suggested that he was searching for the same constant ratio relationship. Hence, he 

divided 11 notches by 4 notches and got 2.75 cm as the radius of the gear. When I asked how he 

got the unit of his division to be centimeters, he seemed confused and could not give an answer. 

When dividing, he seemed to focus on the numbers rather than referent units. Therefore, his 

difficulty answering my question suggested that he might not know the unit of this 4 notches:1 

cm ratio could be written as notches per cm (or notch/cm). Similarly, in the Gear ΙΙ task, Robert 

used the idea of the “total number of notches moved” on one gear as a result of some number of 

revolutions to solve the questions. For instance, he calculated the total number of notches moved 

on Gear 2, with 16 notches, after three revolutions as 48 notches. He then divided 48 notches by 

the number of notches around Gear 1, which had 12 notches, and obtained the number of 

revolutions as four. When asked how he obtained revolutions as the unit, he had difficulty to 

explain. Hence, he used statements such as “12 notches is one rotation” or “12 notches is 

equivalent to one rotation,” but he did not realize that the statements could be written as 12 

notches/rotation. Therefore, he should have realized that the accurate within measure space ratio 

could be written as 
48 (notches)

12 (notches/rotation)
= 4 rotations. As I explained in Chapter Two, the division 

operation he made in this question is called measurement division. In this question, 48 notches 

was the constant product that obtained by multiplying the number of notches by the number of 

revolutions. Robert’s difficulty interpreting the meaning of his division suggested that he 

calculated the correct answer by just focusing on the numbers and without knowing the 

significance of the operations he made.  
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Robert generally searched for the numerical relationships between quantities and 

generated algebraic expressions, equations, or formulas to solve the given problems. He also set 

up proportions and used additive strategies. Hence, his solution strategies can be classified in 

Fisher’s (1988) algebra and proportion formula strategies. Although Robert preferred using 

equations and formulas, he had trouble explaining the meanings of his equations and formulas. 

For example, in the Bakery ΙΙ task, when asked to calculate the time needed by n people to frost 

50 cupcakes, given that two people frosted 50 cupcakes in 12 minutes, as a result of trying out 

the values of the given quantities, Robert obtained the correct formula 
24

n
 to indicate the time 

needed to frost 50 cupcakes by n people. When asked the meaning of 24 in 
24

n
, he could not 

explain that it represented the time required for one person to frost 50 cupcakes. Thus, Robert’s 

difficulty interpreting the meaning of units in his solutions, and his difficulty understanding the 

meaning of his formulas, suggested constraints in his coordination of the directly and inversely 

proportional relationships in the given tasks.   

Because the Fence task involved multiple relationships, it was difficult to think about 

setting up proportions. Therefore, he seemed to have difficulty solving the questions in this task. 

For example, when asked to calculate the number of days needed for two people to paint one 

fence, given that three people painted five fences in two days, first, he identified that one person 

could paint 
5

3
 fences in two days. He then divided five-thirds by 2 to decide how many fences one 

person could paint in one day and with a calculator he achieved .8333. He had trouble with 

converting this result to its fractional form that indicated problems with fractions. A few 

exchanges later, he realized that .8333 was equal to five-sixths. He then determined that two 

people could paint 
10

6
=

5

3
 of a fence in one day. After he obtained this result, he said “but that is 
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too much.” He seemed confused, so when asked the time needed for one person to paint five 

fences, he calculated that one person could paint five fences in six days. As an answer to the time 

required for two people to paint one fence, he said that “I want to say it is three-fifths of a day, 

but I do not know why.” Using the information “ 
5

6
 fence = 1 day,” which he already identified, 

he determined that it would take six-fifths of a day for one person to paint one fence. He 

explained that he multiplied both sides of the equation by 
6

5
. Next, he divided 

6

5
 by 2 and 

determined that two people could paint one fence in three-fifths of a day (Figure 17). My follow-

up questions and the conversation between us seemed to provide clarity to Robert; however, he 

did not appear to understand the meanings of the operations that he used in his solution.  

 

Figure 17. Robert’s response to the Fence problem. 

When the numbers were not presented, Robert appeared to have difficulty solving the 

given questions. If the questions involved a single directly proportional relationship, then he 

easily obtained a formula or equation to express numerical relationships. For example, in the 

Bakery Ι task, given that two people can frost 50 cupcakes in 12 minutes, Robert represented the 

number of cupcakes frosted by n people in 12 minutes by the formula x = 25n. On the contrary, 

if the problems involved a single inversely proportional relationship, Robert had to spend some 

time to figure out the correct formula. For example, in the Bakery ΙΙ task, he had to try out three 
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formulas to obtain the correct formula 
50

25
×

12

n
= 𝑚𝑖𝑛. By this formula, he was able to calculate 

the time required for n people to frost 50 cupcakes. Similarly, in the Cookie Factory task, he had 

to spend some time to obtain the formula 
4 lines

 x lines
× 10 = 𝑦 ℎ𝑜𝑢𝑟𝑠 by which he calculated the time 

or the number of assembly lines. Thus, it appeared that Robert had difficulties when the numbers 

were not presented and in solving multiple proportion problems because he did not seem to 

coordinate the directly and inversely proportional relationships and did not consider 

proportionality in his reasoning. Coordinating proportionality requires performing correct 

operations in complex situations, even if the numbers were not presented.  

Discussion of the Pilot Study Findings 

In the following pages, I discuss the pilot study findings around each research question 

by making cross-case comparisons. 

Research Question 1: How do preservice middle and high school mathematics teachers infer 

directly and inversely proportional relationships in single and multiple proportion problems; 

what types of knowledge resources do they use when inferring and explaining directly and 

inversely proportional relationships; and what kinds of difficulties do they encounter in the 

process of inferring, explaining, and expressing directly and inversely proportional 

relationships? 

Before attempting to solve problems, all four of the PSTs initially decided the 

relationships between quantities by paying attention to the qualitative relationships (e.g., 

coordinated increments/and or decrements of the values in each related quantities). For example, 

if the values of two quantities increased (or decreased) together, then they inferred a directly 

proportional relationship. On the other hand, if the value of a quantity increased and the value of 

the related quantity decreased, then they inferred an inversely proportional relationship. 
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Furthermore, it appeared that they usually expected a clear dichotomy, if a relationship is not 

directly proportional, then it is inversely proportional. None recognized that if a relationship is 

not directly proportional, then it does not have to be inversely proportional.  

If the given questions involved more than two quantities, such as in the multiple 

proportion tasks, then they usually fixed one quantity at a time to explain the relationship 

between the other two quantities. In the multiple proportion tasks, I also observed that PSTs were 

able to coordinate the need for taking the value of a quantity as constant with the presence of a 

directly or inversely proportional relationship between the other two quantities, and this 

coordination seemed to be very important. The PSTs’ qualitative comparisons usually involved 

causal relationships (e.g., x increases so y increases or x increases so y decreases), and they used 

these qualitative comparisons to infer the directly and inversely proportional relationships. In 

addition, looking at the PSTs’ responses, I can say that deciding relationships before attempting 

to solve the given questions increased participants’ successes of getting correct answers. 

Based on the inaccurate dichotomy that they expected, all four PSTs used a similar 

strategy in inferring an inversely proportional relationship between two quantities. This strategy 

involved coordination of the inverse qualitative relationship—Quantity A increases and Quantity 

B decreases—in the given question with the knowledge of what the qualitative relationship 

would look like if it was a directly proportional relationship. Therefore, by coordinating these 

two knowledge pieces, they were able to demonstrate a contradiction between directly and 

inversely proportional relationships, and by using this contradiction, they rationalized their 

inferences of inversely proportional relationships. Besides comparing quantities qualitatively, 

which was participants’ main strategy to infer the directly and inversely proportional 

relationships, PSTs also compared quantities multiplicatively and used those multiplicative 
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relationships to infer directly and inversely proportional relationships and to solve questions. 

They usually made comparisons within measure spaces. In their study, Izsàk and Jacobson 

(2013) pointed out how PSTs’ formation of multiplicative relationships between quantities 

played an important role in their inferences about directly proportional relationships. Similarly, 

in this study, I observed that PSTs’ formation of multiplicative relationships significantly 

affected their inferences of the relationships and their abilities to meaningfully distinguish 

directly and inversely proportional relationships from each other.  

Each PST had some difficulties explaining what directly and inversely proportional 

relationships implied and distinguishing these two relationships from one another. Because 

Robert depended on algebraic equations and formulas to solve given problems, I observed that 

he had more difficulties than other participants in explaining and making sense of his solutions. 

For instance, he had difficulty using correct units, explaining the meaning of the units, and unit 

conversions. Since Robert searched for numerical relationships, when the numbers were not 

presented, he had trouble generating equations. He also had difficulty with fractions and fraction 

operations and with solving multiple proportion questions. Abby initially had two meanings of 

the rate concept and endorsed a single rate for the inversely proportional relationship between the 

number of weights and distance. Jason incorrectly judged an inversely proportional relationship 

to be directly proportional. This result was consistent with the findings from previous studies, 

which reported that teachers tend to judge nonproportional relationships to be proportional (e.g., 

Cramer, Post, & Currier, 1993; Fisher, 1988; Izsák & Jacobson, 2013; Lim, 2009; Riley, 2010).  

In the Speed task, Sally and Jason incorrectly inferred an inversely proportional 

relationship between the distance and time. It seemed that inclusion of time might have inclined 

Sally and Jason to make incorrect inferences about the directly proportional relationships. Their 
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incorrect inferences can be given as evidence for their difficulties in inferring and distinguishing 

directly and inversely proportional relationships in the multiple proportion tasks. In addition, 

Abby and Sally’s initial expectations of the graph of an inversely proportional relationships to be 

straight demonstrated their difficulties in distinguishing inverse additive relationships from 

inverse multiplicative relationships.     

Research Question 2: What types of solution strategies do preservice middle and high school 

mathematics teachers use to solve single and multiple proportion problems, and how do they 

express directly and inversely proportional relationships? 

Except Robert, the remaining three PSTs generally considered proportionality in their 

responses and mainly used a proportion formula and/or proportional reasoning strategies to solve 

the given questions. Robert usually generated algebraic equations and/or formulas to solve the 

questions. However, he also used the proportion formula strategy in which he set up direct and 

inverse proportions and cross multiplied values to get the missing one. I observed that Abby, 

Sally, and Jason generated equations or formulas as well to solve problems, but they usually 

generated these equations or formulas if I asked them to do so or as a second approach. In the 

multiple proportion questions, Abby, Sally, and Jason generally used a ratio table strategy, which 

involved coordinated multiplications or divisions. In addition, I observed that Jason and Robert 

used correct additive strategies in the Gear Ι and Gear ΙΙ tasks, respectively; however, they used 

those strategies as backups. Hence, it appeared to me that the use of hands-on tasks, in which 

physical devices were provided, and the multiple proportion questions prevented the use of 

additive and incorrect strategies and precipitated the use of the proportion formula and 

proportional reasoning strategies.  
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The PSTs usually expressed the directly and inversely proportional relationships with 

ratio tables, direct and inverse proportions, formulas, equations, or graphs. I observed that none 

of the participants knew what a graph of an inversely proportional relationship would look like. 

Jason and Robert obtained an inversely proportional graph by marking points without making a 

prediction about what it would look like. On the other hand, Abby and Sally initially thought that 

the graph of an inversely proportional relationship could be straight (Figures 11 a and 13 b, 

respectively). All participants correctly identified the slopes of the directly proportional graphs 

and explained their meanings. They all explained that, in a directly proportional graph, the slope 

was constant and there was not a single slope in an inversely proportional graph. Robert also 

added that the slope was positive in a linear graph, and it was negative in an inverse graph, but 

he also stated that the graph of a directly proportional relationship could be curved.  

A Brief Summary of the Pilot Study  

The pilot study yielded information about the quality of the research questions, 

theoretical approach, research design (e.g., data collection, participant selection, data analysis), 

and the interview process (e.g., quality of the interview tasks and follow-up questions). In the 

following pages, I discuss how I used this information to improve the quality of the final study.  

Research Questions. I revised my initial research questions according to the pilot study 

results and to the change in my theoretical approach. For instance, based on my initial theoretical 

approach, the social constructivist theory, I was mainly interested in PSTs’ comprehension of the 

directly and inversely proportional relationships and their constructions of the knowledge of 

these two relationships. Later, based on the feedback that I received from my advisory committee 

on my pilot study, I decided that employing the knowledge in pieces perspective to make sense 
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of my interview data would be a better option. Therefore, I revised my research questions 

considering this new theoretical approach and the initial findings. 

Theoretical Approach. As I stated in the above paragraph, I initially planned to employ 

a social constructivist theory in analyzing my pilot data. Later, my advisory committee suggested 

that the social constructivist approach may not be compatible with my research purposes and the 

research questions at hand. Hence, I decided to employ the knowledge-in-pieces perspective to 

interpret the interview data, because, as I discussed earlier, the knowledge-in-pieces perspective 

offer effective tools (e.g., read out strategies and the causal net) for analyzing the knowledge 

resources of PSTs in inferring directly and inversely proportional relationships. Furthermore, the 

knowledge-in-pieces perspective is effective in analyzing PSTs’ responses to the problems with 

complex cognitive structures. In addition, PSTs’ comprehension of science concepts (e.g., gear 

ratio, velocity, and balance) can be interpreted by employing a knowledge-in-pieces perspective. 

Research Design. The use of case study methodology helped me analyze the pilot 

interview data closely and report findings in-depth. Therefore, I decided to continue using the 

case study methodology to report my final findings. Semi-structured interviews also helped me 

generate reflective conversations between the participants and me. These reflective conversations 

assisted me in understanding the PSTs’ reasoning, and they also appeared to help the PSTs 

understand directly and inversely proportional relationships and to realize their mistakes. In 

addition, the pilot study showed the importance of participants having some college level 

experiences with directly and inversely proportional relationships. Except Robert, I recruited the 

PSTs from courses that treated proportional relationships because Izsàk and Jacobson (under 

review) observed that the PSTs usually enter these courses with a few knowledge resources, and 

they usually use computation methods like cross-multiplication. As in Robert’s case, they may 
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also focus on the numerical relationships rather than direct and inverse covariation between 

quantities. Because the mathematical tasks that I used required proportional reasoning skills to 

understand directly and inversely proportional relationships between quantities, and the multiple 

proportion tasks were challenging and could not solved using rote computation methods, for the 

final study, I decided to recruit participants with some college level experience on proportions.  

Interview Process. The analysis of the pilot tasks revealed that the Gear and Speed tasks 

yielded richer information than the other ones. Therefore, I decided to continue using these tasks 

in the final study. Because the pilot study demonstrated that the PSTs had a dichotomy—a 

relationship is either directly proportional or inversely proportional—in the Gear task, I decided 

to provide the PSTs with three graphs (see Appendix B Task 1B) that involved nonpoportional 

relationships to investigate their ability to distinguish proportional relationships from 

nonproportional relationships. The Bakery and Painter tasks were similar in nature; however, 

because the problems in the Bakery tasks could be converted to multiple proportion problems, I 

decided to continue with the Bakery tasks. The Fence problem was a little difficult, because it 

involved multiple relationships, and the Apartment task, which also involved multiple 

relationships, was solved easily without considering proportionality. Hence, I decided to use the 

Fence task as an extra in the final study. On the other hand, I decided to use the Scout Camp task 

adapted from Vergnaud (1983), which I did not use in the pilot study, as an extra instead of the 

Apartment task. The reason for including the Scout camp task was that unlike the Apartment 

task, it involved three quantities with different referent units (the number of people, amount of 

cupcakes, and the number of days). In addition, because the Balance task offered hands-on 

experience about inversely proportional relationships, I also decided to use it in the final study. 
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Therefore, I decided to use the Gear, Bakery, Balance, Speed, Fence, and Scout tasks in the final 

study. 

After deciding the mathematical tasks for the final study, I revised the pilot interview 

protocol to develop the final interview protocol. While revising the pilot interview protocol, I 

considered the pilot findings, my research questions, and the feedback that I obtained from my 

advisory committee. Thus, I developed a first draft of my final interview protocol. Later, I shared 

this final protocol with two doctoral students and with my advisory committee for their feedback. 

Next, I revised this first draft according to their feedback and generated the last form of the final 

interview protocol. 

In the following chapter, I report the findings of the final study and discuss the PSTs’ 

reasoning about directly and inversely proportional relationships. 
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CHAPTER 4 

RESULTS 

Research Problems, Purposes, and Questions 

It is my contention that in mathematics education literature, the concept of inversely 

proportional relationships is largely overlooked because of its complex nature and the fact that 

directly proportional relationships occur more frequently in school mathematics. Hence, issues 

such as PSTs’ reasoning about and comprehension of inversely proportional relationships is not 

well-explored. Similarly, the concept of multiple proportions has been explored by only a few 

researchers such as Vergnaud (1983, 1988). Thus, my main goal in conducting these case studies 

was to investigate how preservice middle and high school mathematics teachers infer directly 

and inversely proportional relationships in the given mathematical tasks and distinguish them 

from each other and from nonproportional relationships. Additionally, I was interested in 

understanding the types of strategies that PSTs used to solve single and multiple proportion 

problems, their ability to represent directly and inversely proportional relationships in the given 

problems, and the difficulties that they encountered while solving these problems. To achieve 

these goals, I was guided by the following research questions: 

1. How do preservice middle and high school mathematics teachers infer directly and 

inversely proportional relationships in single and multiple proportion problems; what 

types of knowledge resources do they use when inferring and explaining directly and 

inversely proportional relationships; and what kinds of difficulties do they encounter in 
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the process of inferring, explaining, and expressing directly and inversely proportional 

relationships? 

2. What types of solution strategies do preservice middle and high school mathematics 

teachers use to solve single and multiple proportion problems, and how do they express 

directly and inversely proportional relationships in those problems? 

Analysis and Findings 

In the following pages, I present the analysis of four cases. The case analysis begins with 

a brief summary of the cross-case findings. This is followed by a cross-task analysis of the PSTs’ 

responses. In the cross-task analysis, the analysis of the PSTs’ responses is organized around the 

themes that I provided in Chapter Three. To interpret the PSTs’ responses, I use the 

knowledge-in-pieces perspective and multiplicative conceptual field framework. The 

knowledge-in-pieces perspective is employed to understand the knowledge resources of the PSTs 

and their coordination of directly and inversely proportional relationships. On the other hand, the 

multiplicative conceptual field framework is employed to understand multiplicative structures 

presented in the problems. Because the PSTs worked on various questions, I only provide their 

strategies on some of those questions. I selected those strategies based on the following three 

criteria: (a) Did the participant present a different perspective in her solution than the remaining 

participants? (b) Did the strategy exhibit a significant understanding or constraint in the 

participant’s reasoning? (c) Did the strategy involve a new way of expressing the relationships 

contained in the questions? There are no deletions in the transcripts that I provide. I show pauses 

with ellipses and describe actions within square brackets.  
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Summary of the Cross-Case Findings 

Kathy was the more proficient of the two secondary grade PSTs in proportional 

reasoning. She successfully inferred the constant ratio relationships between two covarying 

quantities by making multiplicative and qualitative comparisons. She easily determined the 

multiplicative relationships within measure spaces. In addition, if the values of quantities in two 

separate measure spaces involved doubling and halving situations, she was able to state the 

reciprocal multiplicative relationships. Otherwise, she stated the numerical reciprocal 

multiplicative relationships. Kathy was the only participant among the four PSTs who inferred 

appropriately that relationships illustrated in Graphs B and C (see Appendix B Task 1B) are 

nonproportional. Kathy’s attention to the numerical multiplicative relationships within the 

separate measure spaces allowed her to infer the relationships in those graphs as nonproportional. 

On the other hand, although Susan was able to form multiplicative relationships within measure 

spaces and reciprocal multiplicative relationships, she attended to the constancy of the rate of 

change when inferring constant ratio relationships and attended to the static points on graphs and 

values of points being swapped to infer constant product relationships. Hence, she had difficulty 

distinguishing the nonproportional relationships that were depicted in Graphs B and C from 

directly and inversely proportional relationships. Both Kathy and Susan recognized the 

constancy of the products in Tasks 1B and 3 but not in the remaining inverse proportion tasks. 

They both had difficulty explaining multiplicative relationships between measure spaces. Hence, 

they preferred reasoning within measure spaces when solving the given tasks.  

The two middle grade PSTs, Carol and Helen, did not differ much in their reasoning. 

They were successful in determining multiplicative relationships within measure spaces, 

reciprocal multiplicative relationships, and qualitative relationships between two covarying 
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quantities. Carol inferred directly proportional relationships between quantities by attending to 

unit rates, multiplicative relationships within measure spaces, and qualitative relationships—two 

quantities are increasing (or decreasing) together. On the other hand, Helen’s main knowledge 

resource for inferring given relationships was attending to qualitative relationships and constancy 

of the rate of change. They both attended to inverse qualitative relationships—one quantity is 

increasing and other quantity is decreasing—when inferring inversely proportional relationships, 

and both PSTs’ responses to inverse proportion questions indicated their difficulties coordinating 

constant product relationships. Because of their attention to qualitative relationships and 

constancy of the rate of change when inferring proportional relationships, Carol and Helen had 

trouble distinguishing proportional relationships from nonproportional relationships depicted in 

Graphs B and C in Task 1B. With the exception of Task 1A, in which they reasoned between 

measure spaces, they usually preferred reasoning within measure spaces when solving single and 

multiple proportion questions. They also used a variety of proportional reasoning and other 

strategies to solve the proportion questions. In Task 2B, they both tended to interpret the cupcake 

order in terms of minutes rather than cupcakes. Hence, they inappropriately shared the number of 

minutes among the number of people. Carol and Helen used graphs, formulas, tables, pictures, or 

some combination to express the directly and inversely proportional relationships in the given 

tasks.  

Case One: Kathy 

Summary  

Kathy was successful in inferring directly and inversely proportional relationships in the 

given tasks. She attended to multiplicative relationships (e.g., the constancy of the quotients, unit 

ratio relationships, and numerical multiplicative relationships between two separate measure 
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spaces) and to qualitative relationships—two quantities are increasing (or decreasing) together—

when inferring directly proportional relationships between quantities. On the other hand, she 

attended to numerical reciprocal multiplicative relationships, context of balancing, and inverse 

qualitative relationships—one quantity is increasing and other quantity is decreasing—when 

inferring inversely proportional relationships. Kathy recognized the constancy of the products in 

Tasks 1B and 3, but she did not recognize them in the remaining inverse proportion tasks. 

Therefore, the contexts of the hands-on tasks were effective in facilitating Kathy’s recognition of 

the constant product relationships. She successfully distinguished directly and inversely 

proportional relationships from the nonproportional relationships that consisted of a quadratic 

growth, constant difference, or a constant sum. Kathy generally used proportional reasoning 

strategies and preferred reasoning within measure spaces when solving single and multiple 

proportion questions. She expressed directly and inversely proportional relationships with 

graphs, double number lines, formulas, tables, or some combination.  

Cross-Task Analysis  

In Chapter Three, I determined three themes for Kathy’s case among the codes that I 

provided in Table 1. In the following pages, I elaborate on these three themes to explain Kathy’s 

reasoning across tasks. In the first theme, I discuss how Kathy inferred directly proportional 

relationships in Tasks 1A, 2, 4, and 5, and inversely proportional relationships in Tasks 1B, 3, 

and 4 by attending to multiplicative and qualitative relationships. In the second theme, I 

investigate how Kathy distinguished directly and inversely proportional relationships in Task 1B 

from nonproportional relationships. In the last theme, I discuss selected proportional reasoning 

strategies that Kathy used across tasks, and her preference for reasoning within measure spaces.  
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Theme 1: Attention to multiplicative and qualitative relationships when inferring directly and 

inversely proportional relationships. 

In Task 1A, when asked to discuss the relationship between the number of notches and 

radii, Kathy used the given information about two meshed gears, X and Y, to discuss the 

relationship. Gear X had a radius of 𝑟1 cm and 𝑛1 notches, and Gear Y had a radius of 𝑟2 cm and 

𝑛2 notches. The following exchanges demonstrate how Kathy inferred a constant ratio 

relationship between the radii and number of notches: 

Kathy: Well yeah so you, I mean you would know that, like if this, like if we are just focusing on 

this relationship [drew a rectangle around 𝑟1 and 𝑛1] with this gear [pointed Gear X] like 

we know that the radius and the notches are, we know they are related because they are 

on the same circle, or gear, yeah on the same gear. And so just given that we increase the 

radius, size, like we also know decrease whatever we are doing, we are multiplying this 

radius [pointed 𝑟1] by a number. We know that this radius [pointed 𝑟2] depends on this 

radius here [pointed 𝑟1] and then this [pointed 𝑛1]…this number of notches [pointed 𝑛2] 

depends on the number of notches here [𝑛1]. So, I think that if we know these two 

[moved her pen across 𝑟1 and 𝑛1] and then given whatever other one [made an imaginary 

circle around 𝑟2 and 𝑛2], we know like we find the relationship here [moved her pen 

across 𝑟1 and 𝑛1] and use it to find the same relationship here [moved her pen across 𝑟2 

and 𝑛2].  

Int: So, they have the same relationship here [pointed to 𝑟2 and 𝑛2], like this relationship 

[pointed to 𝑟1 and 𝑛1] and this relationship [pointed to 𝑟2 and 𝑛2] are the same? 

Kathy: From like radii to notches.  

Int: Yeah radii to notches. 

Kathy: Yeah yeah yeah. Well it could be like, it [moved her pen across 𝑟2 and 𝑛2] is going to be 

a multiple of whatever we are given here [moved her pen across 𝑟1 and 𝑛1] yeah they are 

the same. 

 

Although Kathy used the term relationship, it was not clear that she was referring to the ratio of 

the radii and number of notches until she stated the phrase “radii to notches.” There was an 

indication of a ratio relationship in the “radii to notches” phrase, and her gestures were 

supporting this idea, because she was moving her pen across 𝑟1 and 𝑛1, and again across 𝑟2 

and 𝑛2. Her statement “…we find the relationship here [moved her pen across 𝑟1 and 𝑛1] and use 

it to find the same relationship here [moved her pen across 𝑟2 and 𝑛2]” provided evidence for her 
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suggestion of a constant ratio relationship. Although Kathy’s final statement “…it is going to be 

a multiple of whatever we are given here yeah they are the same” can be interpreted as 
𝑟2

𝑛2
=

𝑟1∗𝑘

𝑛1
, 

which precludes a constant ratio relationship, the phrase “yeah they are the same” suggests that 

she was considering the equivalence of the two ratios. Hence, it is my conjecture that by this 

statement Kathy implied 
𝑟2

𝑛2
=

𝑟1∗𝑘

𝑛1∗𝑘
. Therefore, these exchanges suggested that she might have 

been attending to the numerical multiplicative relationship between the separate measure spaces 

of the radii and number of notches. Thus, these data provided initial evidence for Kathy’s 

recognition of a constant ratio relationship between the radii and number of notches. 

In Task 2A, when asked to determine the relationship between the number of people and 

number of cupcakes and between the number of cupcakes and time, Kathy inferred directly 

proportional relationships between those quantities. She used the information three people 

frosting 60 cupcakes in 12 minutes, which I provided her earlier, to explain that there was a 1-

person-to-20-cupcakes and a 5-cupcakes-to-1-minute constant ratio relationship.  

Kathy: This [pointed at people and cupcakes] is proportional yeah and so is this [pointed at 

cupcakes and time]. 

Int: So, the same? 

Kathy: [Nodded] 

Int: How did you determine these to be proportional? 

Kathy: I guess because we can…we can get them all down to like this base case like where we 

know that for every one person they frost 20 cupcakes, and so then from there I can tell 

you any number of people. I mean, I could do the same thing here [pointed at cupcakes 

and time]. It would give me the same result but it is just like if I wanted to know how 

many cupcakes were made in 1 minute, then I would divide by…both these [pointed at 60 

cupcakes and 12 minutes] by 12, and there were five cupcakes in 1 minute, and then I 

could get any number of cupcakes and any number of minutes. 

 

Kathy’s phrases “…for every one person they frost 20 cupcakes” and “…there were five 

cupcakes in 1 minute” illustrated her formation of unit ratios and suggested that she was 

considering the two unit ratios as batches. Kathy’s statement “…we can get them all down to like 
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this base case…” provided evidence for her recognition of a constant ratio relationship between 

the number of people and number of cupcakes and between the number of cupcakes and number 

of minutes, because she indicated that any people and cupcakes and cupcakes and minutes 

relationship could be simplified to the 1-person-to-20-cupcakes and 5-cupcakes-to-1-minute 

constant ratio relationships, respectively. Therefore, these exchanges demonstrated Kathy’s 

attention to unit ratio relationships when justifying her inference of the directly proportional 

relationships.  

In Task 4, Kathy successfully calculated the speed of a car, given that it covered 2 miles 

in 100 seconds, to be 72 mph using a scientific unit conversion method (Figure 18) which, she 

said, she used in chemistry and physics. When asked if there was a relationship between the 

distance and time, Kathy correctly inferred a proportional relationship by attending to the 

relationships between numbers in her ratio table and constancy of the quotients. 

Int: So, what is the relation between the distance and the time? You talked about the relation 

between speed and the seconds to be inversely proportional, how about the relation 

between the distance you covered and the time it takes to cover? 

Kathy: It should be proportional I think. Yeah this should be proportional. 

Int: Please tell me why it is proportional. 

Kathy: I mean, so you are going at a constant speed, okay so then miles and seconds [drawing a 

ratio table], miles is here and seconds and then we know this relationship 2 and 100 and 

we know 1 is 50 and 3 is 150 and 4 is 200 and so on.   

Int: So, then you think it is proportional? 

Kathy: Yeah because all these are all these have to same like ratio this 1 over 50, and 2 over 100 

is going to be 1 over 50…3 over 150 is 1 over 50, it keeps going.  

 

 

Figure 18. Kathy’s scientific unit conversion method. 

Kathy drew the ratio table in Figure 19 and showed that there was a constant 
1

50
 ratio relationship 

between the distance and time. The exchanges above also showed her explicit statement of this 



116 

 

constant ratio relationship. Therefore, the exchanges and Figure 19 confirmed that Kathy’s 

causal net was sufficient to see that driving at a constant speed was yielding a constant ratio 

relationship between the distance and time. Because Kathy did not consider the referent units in 

her explanation of the constant ratio relationship between miles and seconds and did not show 

the multiplicative relationship by an expression, she appeared to attend to the relationships 

between numbers and constancy of the quotients when justifying her inference of the 

proportional relationship.  

 

Figure 19. Kathy’s ratio table for expressing a constant ratio relationship between the 

distance and time.  

Some exchanges later, by taking 30 minutes as constant, Kathy expressed the constant 

ratio relationship between distance and speed with a ratio table based on an example—a car 

covering 10 miles in 30 minutes driving 20 miles per hour—that she generated (Figure 20). 

Kathy explained that she generated the ratio table based on the fact that the value of the speed 

was double the value of the distance: 

Kathy: Uhmm my miles per hour you just double it because you are keeping 30 minutes 

constant. So, if I travel this [pointed at 15 miles] match in half an hour then the whole 

hour I would travel 30 miles ohh no no that is 30 miles per hour yeah yeah yeah that still 

makes sense. In 10 minutes, I will drive, no in 30 minutes I drive 10 miles and I am going 

20 miles per hour. In 30 minutes I drive 15 miles...   

Int:  Then your speed is? 

Kathy: 30 miles per hour. 
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Kathy’s attention to the value of speed always being double of the value of distance and her 

phrase “my miles per hour you just double it” illustrated that she was attending to numerical 

multiplicative relationships between measure spaces. Hence, her reasoning in this task extended 

my understanding about what she was capable of. When I asked Kathy to generate a formula to 

express relationships among the distance, speed, and time, she easily determined the correct 

formula from the fact that the unit of the speed was written as miles per hour and tested the 

accurateness of the formula on the values in her ratio table. Kathy calculated T to be 
1

2
 hour using 

the speed formula, but she did not explain that her constant 
1

2
 ratio was also representing 

1

2
 hour 

(see Figure 20). Kathy’s absence of attaching an appropriate referent unit to constant 
1

2
 ratio 

suggested her attention to the numerical multiplicative relationship. Therefore, Kathy inferred 

constant ratio relationships in Task 4 by attending to numerical multiplicative relationships 

between measure spaces.  

 

Figure 20. Kathy’s expression of a constant ratio relationship between the distance and 

speed. 

In Task 5, Kathy worked on calculating the number of days needed by two people to 

paint one fence, given that three people painted five fences in two days. Kathy inferred a directly 

proportional relationship between the number of fences and number of days based on the 
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qualitative relationship that she constructed. She stated this qualitative relationship by saying, 

“…there is less fences it is going to take less time, so this is a proportional…” This was the only 

instance throughout the interviews that Kathy attended to a qualitative relationship when 

inferring a directly proportional relationship. Thus, Kathy’s reasoning in Tasks 1A, 2A, 4, and 5 

illustrated that she attended to the unit ratio relationships, constancy of the quotients, numerical 

multiplicative relationships between separate measure spaces, and qualitative relationships when 

inferring directly proportional relationships.  

In the following pages, I discuss how Kathy inferred inversely proportional relationships 

in Tasks 1B, 3, and 4. In Task 1B, Kathy recognized that the product of the number of notches of 

a gear by the number of revolutions it made was giving the total number of notches moving in 

some number of revolutions. For instance, in one of the questions, Kathy needed to calculate the 

number of notches of Gear K, given that it completed two-thirds of a revolution, when Gear F, 

with eight notches, revolved three times. Kathy explained:  

Kathy: No that is okay…let's see revolves three times and has eight notches, so that means like 

in total it goes through 24 notches right? Because it revolves three times with eight 

notches so this is [pointed at Gear F], it goes through 24 notches in this three 

revolutions…and then K revolves two-thirds of a time and goes through the exact same 

number of notches.   

Int: How do you know it goes through the same number of notches? 

Kathy: Because I guess like the reason why I am thinking that is because like in these three 

revolutions it [Gear K] goes through…goes through two-thirds of a revolution but 

because we know that F has eight notches we know that in total in three revolutions it is 

going to go through 24, so that we can say that. Okay I know, that [pointed at Gear K] is 

going to go through 24 notches in two-thirds of a revolution.  

 

For Kathy, Gear F was “going through” a total of 24 notches in three revolutions, which she 

calculated by multiplying three revolutions and eight notches. By stating, “…K revolves two-

thirds of a time and goes through the exact same number of notches,” Kathy inferred that both 

gears were rotating the same total number of notches. Hence, for Kathy, Gear K needed to “go 
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through” 24 notches in two-thirds of a revolution. A few exchanges later, she incorrectly 

multiplied 24 notches by two-thirds and obtained an answer, 16 notches, but she immediately 

recognized that this answer was not correct: 

Kathy: Uhmm so I guess 24 notches in two-thirds how many notches in one whole is what we 

want to know. So, I guess we know it goes 24 notches in two-thirds of a revolution and 

we want to know how many in one. Ohh so it is three-halves not two-thirds I am 

backwards that is why. So, to get to here [pointed at 1 revolution] it is three-halves so two 

[inaudible]… 

 

Kathy’s search for the number of notches in one revolution was consistent with partitive 

division. Hence, by multiplying 24 notches by 
3

2
, she calculated the correct answer as 36 notches. 

Kathy’s explanation in this task provided evidence for her consideration of the constant total 

notches when explaining the inverse relationship between the number revolutions and number of 

notches. She used the idea of two gears “going through the same number of notches” to solve the 

remaining questions in this task. Thus, Kathy’s idea of two gears “going through the same 

number of notches” can be given as an early sign of her understanding of the constancy in the 

situation. 

Some exchanges later, Kathy worked on a new question. In this question, she needed to 

calculate the number of revolutions of Gear L, with eight notches, given that Gear M had 14 

notches and revolved four times. She used the same idea––two gears “go through the same 

number of notches”––and calculated the answer to be seven revolutions. When asked if she 

could use a ratio table strategy to solve the same question, Kathy said she did not have 

familiarity with this strategy. Hence, I described for her what a ratio table looks like, and she was 

able to generate one for the relationship between the number of notches and number of 

revolutions depicted in the question (Figure 21). She recognized that the product of all rows 

(notches and revolutions) was equal to 56: 
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Kathy: Okay so well that has to be 56, I mean this is 56 here. I just know, I just kind of know 

that like all of these, like these two [pointed at notches and revolutions] have to multiply 

to give me 56 like every single time. So, I am saying what times two is 56 and that is, I 

do not know, 28. And then 
56

3
, I do not what that is.  

Int: You can leave like that. Knowing that 56, you said 56 is the?  

Kathy: is the product of notches and revolutions. 

 

Here, Kathy explicitly stated that 56 was the product of notches and revolutions. In the exchange, 

Kathy used multiplication and attended to the multiplicative relationships between the number of 

notches and number of revolutions to discuss the constant product relationship. Therefore, the 

exchange and Figure 21 suggested Kathy’s coordination of the constant product relationship 

between the number of notches and number of revolutions.  

 

Figure 21. Kathy’s ratio table for expressing a constant product relationship in Task 1B. 

Some exchanges later, when asked to determine the number of revolutions of Gear K, 

with 12 notches, given that Gear F, with eight notches, revolved p times, Kathy calculated the 

number of revolutions to be 
2

3
p (Figure 22). In her calculation, she multiplied eight notches by p 

revolutions to find the total notches moved on Gear F and then divided the product, 8p, by the 

number of notches of Gear K, which was 12. Kathy then explained an inversely proportional 

relationship between the number of notches and number of revolutions based on the numerical 

reciprocal multiplicative relationship that she constructed.  
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Kathy: I mean, I can say, this [pointed at 12] is three-halves of eight, so this [pointed at 
2

3
𝑝] is 

going to be two-thirds of p because it is inverse proportions.  

Int: How do you know, like you said an inverse proportion? 

Kathy: Yeah. 

Int: How do you know it is inverse? 

Kathy: I just by the definition of what an inverse proportion is. I do not really, we do not talk 

about this long time but it is just like…like you know like notches and revolutions are 

going to be inversely proportional because here you multiplying by three-halves and then 

you multiplying by two-thirds here. It is like you are multiplying by the reciprocal so 

yeah. You are multiplying one relationship like notches by the reciprocal of revolution, 

and then vice versa. 

 

Kathy’s initial statement “…this [pointed at 12] is three-halves of 8, so this [pointed at 
2

3
𝑝] is 

going to be two-thirds of p because it is inverse proportions” demonstrated how she attributed 

her description of the numerical reciprocal relationship between the number of notches and 

number of revolutions to the inversely proportional relationship. She then attributed the inversely 

proportional relationship to the within measure space multiplicative factors being reciprocal of 

each other by saying, “…notches and revolutions are going to be inversely proportional because 

here you multiplying by three-halves and then you multiplying by two-thirds here.” Thus, these 

exchanges demonstrated Kathy’s consideration of the constant product relationship between the 

number of notches and number of revolutions when explaining her solution and showed her 

attention to a relationship between the inversely proportional relationship and numerical 

reciprocal multiplicative relationship that she constructed.  

 

Figure 22. Kathy’s explanation of a numerical reciprocal multiplicative relationship. 
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In Task 3, Kathy investigated the relationship between the number of weights hanging on 

a balance and the distance of those weights from the center of the balance. By hanging some 

number of weights on one side and by experimenting on the other side, Kathy obtained the 

balance formula, W1*D1 = W2*D2. When I asked how she got this formula, Kathy explained, “I 

was just observing what I saw, what happened, so I just kind of made a conjecture from there.” 

Hence, Kathy’s determination of the formula was based on her experimentation with the balance. 

Some exchanges later, I asked if she could generate a ratio table from the values of quantities 

that she needed to balance the system on one side, given that on the other side eight weights were 

hung at a 3-cm distance from the center. Considering the balance formula, Kathy multiplied 8 by 

3 and got 24 and explained that she needed the products being equal to 24 on the other side. She 

generated a ratio table (Figure 23) and explained that all products were equal to 24. 

Kathy: Okay. So we know that the multiplication of weights and the length is going to be 24. 

And so if we wanted to do balancing it out, all the things we can do, add on here. Okay so 

it will be three and eight and eight and three, and then four and six, and six and four. 

 

The phrase “…the multiplication of weights and the length is going to be 24” and Figure 23 

clearly demonstrated Kathy’s attention to a constant product between the number of weights and 

distance from the center of the balance. Kathy’s reasoning in this task suggested that the context 

of balancing seemed to facilitate her observation of the constant product relationship.  

 

Figure 23. Kathy’s ratio table for expressing a constant product relationship in Task 3.  
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In Task 4, Kathy needed to calculate the speed of a car that covered a certain distance in 

60 seconds, given that another car covered the same distance in 90 seconds driving at 60 mph. 

She used a ratio table strategy and reasoned between measure spaces (Figure 24). In this strategy, 

she determined two-thirds as the multiplicative factor between 90 seconds and 60 mph. She then 

multiplied 60 seconds by the multiplicative reciprocal of two-thirds and calculated the speed of 

the car to be 90 mph. Kathy then explained:  

Kathy: Okay so what I am thinking is that if there, so if you want to cover the same distance in 

less time then you have to go faster. So, I am going to take this is being inversely 

proportional. So, if it takes 90 seconds drive 60 mph and this would be two-third, two-

third? Yeah. And then 60 seconds we need three-half so 90, 90 mph. 

 

Kathy’s explanation above suggested that her inference of the inversely proportional relationship 

between the speed and time was based on the inverse qualitative relationship—“…so if you want 

to cover the same distance in less time then you have to go faster.” Therefore, this was an 

example to demonstrate Kathy’s use of a qualitative compensation to infer an inversely 

proportional relationship. Although multiplying between measure spaces in this question worked, 

it would not work with all numbers. It seemed that the specific repetition of the numbers allowed 

Kathy to use this strategy.  

 

Figure 24. Kathy’s ratio table strategy in Task 4. 

Thus, Kathy attended to the numerical reciprocal multiplicative relationships in Task 1B, 

context of balancing in Task 3, and inverse qualitative relationships in Task 4 when inferring 
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inversely proportional relationships. Because Kathy only recognized the constancy of the 

products in Tasks 1B and 3, the contexts of Gear and Balance tasks seemed to facilitate her 

coordination of the constant product relationships. 

Theme 2: Proficiency in distinguishing directly and inversely proportional relationships from 

nonproportional relationships.  

In Task 1B, I asked Kathy to compare the relationships in her directly and inversely 

proportional graphs (Figure 25) that she drew to show relationships between the number of 

notches and radii and between the number of notches and revolutions, respectively, with three 

graphs (see Appendix B Task 1B) that expressed nonproportional relationships. Graph A 

depicted quadratic growth that can be expressed with 𝑦 = 𝑥2, Graph B depicted a constant 

difference that can be expressed with 𝑦 = 𝑥 + 2, and Graph C depicted a constant sum that can 

be expressed with 𝑦 = −𝑥 + 5. Kathy quickly inferred the nonproportional relationships in 

Graphs B and C.  

Kathy: Okay I do not think…I do not think B and C are showing the same thing that this [pointed 

at the directly proportional graph] is showing just because I mean they are linear, like you 

want to say they are the same but they are not because…I mean…this [pointed at Graph 

B] has like a starting value and just like this is, like this one [pointed at Graph C]. These 

[pointed at Graphs B and C] are not proportional because I mean when you…you know 

what I am saying, like when you multiply…so like what we are looking, can I draw on 

this [pointed at Graph B]?     

Int: Yeah you can draw on it. 

Kathy: Yeah and then 3 and 5 [drawing on Graph B] okay, so but like 2 is with 0 like do you see 

what I am saying you cannot like…from like…like 1 on we can talk about it. But it just 

like because we are starting at (0, 2), it is like how do you multiply…like in 

proportionality like we were doing here how do you find something that multiply is by 

that [pointed at (0, 2)] to get you to 1 and 3 or 2 and 4, just it does not happen. In this 

[pointed at Graph C], the same idea, that here it is like 5…this is 0 and 1 goes with 4 and 

2 goes with 3, like all, I mean you cannot like I am just starting with 0 and 5 and I want to 

know then I want to calculate like 2 and 3 that I, how do I get there from 0 and 5. It does 

not, that [pointed at Graph C] is not proportional. 
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In the exchange above, it appeared that Kathy understood the need to have a multiplicative 

relationship between the pair of values of two covarying quantities to infer a directly 

proportional relationship. Comparing Graph B with her directly proportional graph (Figure 25), 

Kathy explained that because Graph B had a starting point (0, 2), there was not a multiplicative 

factor to get (1, 3) and (2, 4) from (0, 2). Kathy’s statement “…how do you find something that 

multiply is by that [pointed at (0, 2)] to get you to 1 and 3 or 2 and 4, just it does not happen” 

suggested that she was attending to the numerical multiplicative relationships within the separate 

values of quantities in the x and y-axis. On the other hand, her statement “…from like…like 1 on 

we can talk about it” suggested that she might be mistakenly thinking about a proportional 

relationship on the remaining part of the graph that starts at (1, 3). Because she did not explain 

further what her reason was for a possible proportional relationship on some parts of the graph, I 

do not have enough evidence for what she was thinking.  

In the exchange, Kathy also compared Graph C with the directly proportional graph and 

explained that Graph C had a starting point (0, 5) and there was not a multiplicative factor to get 

(2, 3) from (0, 5). Kathy’s reasoning was not entirely clear, but she may have been saying that  

because multiplying zero by any number would result in zero, there was not a multiplicative way 

to obtain the remaining points from the starting points (0, 2) and (0, 5). I expected Kathy to 

compare Graph C with her inversely proportional graph because in both graphs there was an 

inverse qualitative relationship—one quantity was increasing and other quantity was decreasing. 

It is possible that she might be inclined by the fact that Graphs B and C were expressing linear 

relationships. In her directly proportional graph in Figure 25, the origin, (0, 0) could not be 

multiplied to obtain the values of the remaining points. Therefore, as I will discuss in the 

following pages, Kathy explained that she could neglect the origin. Nevertheless, Kathy’s 
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reasoning was sufficient enough to see that for her the starting points of Graphs B and C 

precluded directly proportional relationships.  

 

Figure 25. Kathy’s directly and inversely proportional graphs in Task 1. 

The following exchange also demonstrated some of the ways Kathy distinguished 

directly proportional relationship from nonproportional relationships:  

Int: In this case [I pointed to the directly proportional graph she drew in the previous task] 

how do you go from one [point] to [the] other? Like you were saying something. 

Kathy: Right, so because like we are not given any sort of like starting value you know it is like 

0 and 0, so it is like that is pretty clear but then from there [pointed the directly 

proportional graph] like we can see 1 and 4 coincides and 3 and 12 coincides. So, it is 

like we know the…this thing…the like 1 and 4 and 3 and 12 are proportional…because 

like we can kind of like neglect this [pointed at the origin] when it starts, they both started 

at 0 but like when you are given something that it does not start at 0 you have to…you 

have to see like…if one of them is non zero like only way to get to 0 is to multiply by 0 

so it is like, it does not really make sense to call this [pointed at Graph C] the same. 

 

In the exchange, without referring to the units, Kathy explained that 1 cm and 4 notches and 3 

cm and 12 notches were proportional, but she did not explicitly state how she inferred 1 cm and 

4 notches and 3 cm and 12 notches to be proportional. It is possible that she might have been 

attending to both points being on the directly proportional line to which she referred by saying, 

“…1 and 4 coincides and 3 and 12 coincides.” Although what Kathy implied by her statement 

“…when you are given something that it does not start at 0 you have to…you have to see like if 

one of them is non zero like only way to get to 0 is to multiply by 0” seemed to be not clear, I 
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offer the following interpretation of this statement. By the first 0, she appeared to imply the 

origin. For Kathy, if a graph had a starting point other than the origin, such as (0, 5), the only 

way to obtain the zero value of this starting point from any remaining points on Graph C was to 

multiply within separate measure spaces of x and y by 0. Hence, this idea did not make sense to 

Kathy because multiplying by 0 would not yield the starting point that she intended to get. 

Therefore, Kathy’s reasoning suggested that her attention to the multiplicative relationships 

within separate measure spaces allowed her to understand that the starting points of Graphs B 

and C precluded proportional relationships on these graphs.  

On the other hand, Kathy initially assumed an inversely proportional relationship in 

Graph A. 

Kathy: Like, I can actually call it [pointed at Graph A] maybe, call it an inverse proportion graph 

but I am trying to kind of figure it out. Because I mean here [pointed at the inversely 

proportional graph that she drew] neither of them [pointed at two end points of her 

inversely proportional line], you know, are coming…are going to come and contact with 

the x and y axes but I guess it is okay can we neglect that, too. Like we can neglect that 

with proportions like where it hits the zero whatever…I do not really know, like I am 

looking at it there, it just looks like then it really look graph of x squared, I mean the 

positive side. I am just trying to think like…  

 

In a directly proportional graph, the line of the graph passing through the origin was 

contradicting Kathy’s idea of multiplying the values of two separate quantities by the same 

number to get the proportional pair of values. Hence, Kathy appeared to have difficulty making 

sense of the origin from the idea of multiplying within separate measure spaces of x and y, and 

so she stated in the current and preceding exchanges that we could “neglect” the origin. 

Therefore, for Kathy, whether a graph “hits” (0, 0), by which she implied that the line of a graph 

passes through the origin, seemed to be a key feature. It is possible that Kathy’s initial incorrect 

assumption might be related to Graph A having a curved line similar to the inversely 

proportional line that did not intercept the axes at 𝑥 = 0 and 𝑦 = 0; however, as it appears in 
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Kathy’s statement, she was not sure about the accuracy of her assumption. She successfully 

explained that Graph A was showing a 𝑦 = 𝑥2 relationship. When reminded, in her inversely 

proportional graph, the number of revolutions was increasing as the number of notches was 

decreasing and asked if that was also the case in Graph A, Kathy said both quantities were 

increasing in Graph A. Therefore, she explained that calling Graph A an inverse proportion 

graph was not meaningful: 

Kathy: So, I do not think that does not make sense. No it does not make sense…because like if 

like one is increasing by whatever number then other quantity needs to be like multiply 

by the reciprocal of that number so it will be decreasing. I guess whatever the number it 

depends, like the quantities are varying but like in the opposite way. So that is wrong. 

 

The exchange showed that for Kathy, because of the numerical reciprocal multiplicative 

relationship that existed between inversely proportional quantities, when the value of a quantity 

increased multiplicatively by a number, the value of the inversely related quantity would 

decrease by the multiplicative reciprocal of that number. She noted this inverse covariation by 

saying, “…the quantities are varying but like in the opposite way.” Therefore, the exchange 

indicated that Kathy was able to explain why her initial assumption of a proportional relationship 

in Graph A was wrong by attending to the numerical reciprocal multiplicative relationship within 

the separate measure spaces.  

Thus, all of these data in Task 1B showed that Kathy’s attention to the numerical 

multiplicative relationships within separate measure spaces helped her determining 

nonproportional relationships in Graphs A, B, and C. Because distinguishing directly and 

inversely proportional relationships from nonproportional relationships require an expert’s skills 

and knowledge, Kathy’s reasoning in this task demonstrated her proficiency in proportional 

reasoning.  
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Theme 3: The use of proportional reasoning strategies and reasoning within measure spaces 

when solving proportion questions.  

In the previous pages, I presented various ways that Kathy inferred whether relationships 

were directly proportional, inversely proportional, or neither. Henceforth, I will explain the 

strategies that she used to solve given multiple and single proportion questions. Kathy used a 

variety of proportional reasoning strategies (e.g., Fisher, 1988) for solving proportions and was 

able to use additional strategies that I suggested. In Task 1A, I asked Kathy to calculate the 

number of notches around Gear B, with a 6-cm radius, given that Gear A, with a 3-cm radius, 

had 12 notches. Kathy recognized that the radius of Gear B was double the radius of Gear A, so 

she said that the circumference of Gear B was also doubling the circumference of Gear A. 

Hence, she was attending to multiplicative relationships within measure spaces. 

Kathy: Okay, so I guess my first thought is that because the radius of the Gear B is double the 

radius of Gear A that means that the circumference is also going to be doubled. So, if it is 

twelve notches around then Gear B be 24 notches around. 

 

When asked how she could express her verbal solution mathematically, by reasoning between 

measure spaces, Kathy explained:  

Kathy: Okay so if it is I guess that circumference, so like A and B we know circumference 2πr so 

that is 6π and circumference here is 12π. And then this [Gear A] has 12 notches. I am just 

looking at how these two numbers [pointed at 6π and 12] are related, and so this is well I 

mean not including the π, we know what that [pointed at π] is. It is like times 2, that 

would be 24. That is how I am thinking of it. 

 

Kathy compared 6π and 12 multiplicatively, and following the same type of reasoning she 

determined the number of notches of Gear B to be 24 notches. Kathy’s statement above showed 

her initial understanding of a numerical multiplicative relationship between the circumference of 

a gear and number of notches, a between measure space comparison.  
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Some exchanges later, when asked to calculate the number of notches around Gear B 

again if Gear A had 7 notches instead of 12 notches, Kathy immediately determined the amount 

to be 14 notches and pointed out that in the first question, she should have considered how 6π 

and 12π were related instead of considering how 6π and 12 notches were related. 

Kathy: Okay then I will take 14…because I guess I am still looking at…I guess, I should be 

looking at how these two [circled 6π and 12π]…  

Int: In that case you looked at that two [pointed 6π and 12 notches] right? 

Kathy: Yeah and that was incorrect because I guess they [pointed 12π and 12 notches] are 

confuses me… 

Int: Why do you think that is..? 

Kathy: Because they have both…I mean these two [pointed 12π and 12 notches] has 12 so I was 

looking, I guess I was just thinking about like that but I mean if this, like if the radius 

doubles and the number of notches would also double. So if the radius goes, like if the 

radius goes from 3 to 6, then their notches would go from 7 to 14 because [inaudible 

multiplied 3 cm and 7 notches by 2] how I am thinking about it. 

 

Although Kathy multiplicatively compared quantities both between and within measure spaces, 

these exchanges suggested her preference of comparing quantities within measure spaces over 

between measure spaces. While the data did not provide any evidence, her preference might have 

based on the easiness of comparing quantities within measure spaces because they had the same 

referent units. As I discussed earlier, Kathy usually attended to the numerical multiplicative 

relationships when determining the constant ratio relationships. Her claim of comparing 

quantities between measure spaces as incorrect in this task together with her avoidence of the 

referent units in determining the constant ratio relationships suggested possible constraints in her 

reasoning about comparing quantities between measure spaces. Therefore, she focused on within 

measure spaces and by comparing radii multiplicatively calculated the number of notches around 

Gear B to be 14 notches (Figure 26). When asked what she would obtain if she multiplied 

between measure spaces, Kathy multiplied 3 and 6 by 
7

3
  and got the same answer, 14 notches, 
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(Figure 26). When reminded that she thought the multiplying between measure spaces to be 

incorrect, Kathy explained:  

Kathy: I guess, I was just dealing up here with such pretty whole numbers [pointed at 3 cm to 6 

cm and 7 notches to 14 notches]. I did not really consider like that the idea of multiplying 

by an improper fraction. I see how it works I just did not put that together first yeah. 

 

The statement above sugested that Kathy’s preference of multiplying within measure spaces in 

this question was based on her ease with multiplying by whole numbers. Hence, it appeared that 

Kathy’s solution methods depended on the numbers provided. On the other hand, her ability to 

multiply by improper fractions was a sign of her competence with dealing difficult numbers.  

  

Figure 26.  Kathy’s multiplication operations within and between measure spaces. 

In Task 1B, Kathy solved inverse proportion questions. She immediately recognized that 

the relationship between the number of notches and revolutions was different than the 

relationship between the radii and number of notches. Hence, when asked to calculate the 

number of revolutions of Gear K, with four notches, given that Gear F, with eight notches, 

revolved three times, she stated “I want to say 6” and noted that she did not know how to write it 

down mathematically. Some exchanges later, when asked how many revolutions Gear K would 

make if it had six notches instead of four notches. She incorrectly stated that Gear K rotated one 

and a fourth times when Gear F rotated one time: 

Kathy: So, when this one, so when Gear F rotates one time, Gear K rotates one and a fourth 

times. 

Int: Okay, how did you get that? 

Kathy: Okay because huhahh I found you! Yess! I think I did it, we will see how that goes. Let’s 

see if I can actually explain it. Okay so…maybe that one is a third let me think…So, it is 
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like this [pointed at Gear F] rotates one time goes through eight notches and then this one 

[pointed at Gear K] has to go through six notches. So, when it [Gear K] goes to full six, it 

still has two more notches leftover before this one [pointed at Gear F] is like out of full 

circle, revolution…One and, I do not…if it was one and a fourth or one and a third let me 

think. (Three) because like is it of this [pointed at six notches on Gear K], if it was of this 

one [pointed at Gear K] and it would be 2 out of 6 but if it was of this one [pointed at 

Gear F] it is 2 out of 8. 

 

This exchange showed Kathy’s struggle to decide between one and a fourth or one and a third as 

the number of revolutions of Gear K. By reasoning additively, she explained that once Gear F 

completed a full revolution, Gear K was completing a full revolution and there were two notches 

“left over” on Gear K. She then could not decide whether to compare these two notches with 

eight nothes or six notches. Comparing two notches with eight and six notches multiplicatively 

was yielding one-fourth and one-third, respectively. The mathematical statement in this question 

can be written as (X revolutions) * (6 not/rev) = 8 notches. Although this situation can be 

modeled by measurement division, whether Kathy was thinking about division at this point was 

not clear. What was clear was her difficulty with referent units, she did not know whether the 

compare the two notches to Gear K or to Gear F. Kathy’s confusion might have arisen from 

reliance on the additive reasoning by which she found that there were “two notches left over” on 

Gear K. This exchange happened before Kathy recognized a constant product relationship 

between the number of notches and revolutions.  

Some exchanges later, I introduced two new gears, Gears L and M. Gear L had eight 

notches, and Gear M had 14 notches and revolved four times. Considering her idea of the 

constancy of the total notches moved on both gears in some revolutions, Kathy calculated the 

total notches moved on Gear M in four revolutions as 56 notches and divided 56 by 8 and got the 

correct answer of seven revolutions. In Task 1A, Kathy used a double number line to express the 

relationship between the radii and number of notches. When asked if she could use a double 
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number line to solve this question, Kathy drew two sperate double number lines (Figure 27), one 

for Gear M and one for Gear L. In both number lines, she matched the number of notches with 

the number of revolutions and, by multiplying within measure spaces, she calculated the total 

notches moving as 56 notches. Kathy explained her reasoning by stating:  

Kathy: Okay, so double number line. I can try see how that works. Uhhmm so okay so we want 

to know…okay this is Gear M. So, we know that 14 notches are in one revolution. We 

want to know how many notches are in four revolutions because we have to have that 

before we can even think about L. So, to get here [pointed at four revolutions] we 

multiply by 4, and the same thing here [pointed at 14 notches] to get 56. So, then for the 

L, uhmm okay let me see…so we know that we have okay so now we have eight notches 

make one revolution, and we know that in total we are looking for 56 notches because 

that is how many notches M goes through in four revolutions. So, we multiply this 

number [pointed at eight notches] by 7 to get 56. That is how those numbers are related 

and then we have to do the same thing here [pointed at one revolution], seven 

revolutions. 

 

Because the relationship between the number of notches and revolutions was an inversely 

proportional relationship and the fact that a number line cannot be used to express an inversely 

proportional relationship, I expected Kathy to have difficulty solving this question using a double 

number line. My purpose for suggesting Kathy to use a double number line to solve this question 

was to understand her proficiency with proportional relationships. Because Kathy inferred 56 

notches to be the total notches moved on both gears by multiplying 14 notches per revolution and 

four revolutions, these data suggested her coordination of the constant product relationship 

between the number of notches and number of revolutions. Therefore, Kathy’s coordination of 

the constant product relationship seemed to facilitate her understanding of using two seperate 

double number lines to solve this question. Thus, Kathy’s reasoning in this task demonstrated her 

proficiency in reasoning within measure spaces about proportional relationships.  
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Figure 27. Kathy’s two double number lines strategy.  

When Kathy was working on Task 2B, I asked her if she could use a double number line 

to calculate the number of people needed to frost 60 cupcakes in 9 minutes, given that three 

people frosted 60 cupcakes in 12 minutes. She explained: 

Kathy: Not for that though because you cannot I mean double number line increase together or 

decrease together, these [pointed at people and time] go opposite so we cannot use that.  

 

Kathy’s statement above provided evidence for her attention to the qualitative relationships in 

explaining why a double number cannot be used to express an inverse relationship. Some 

exchanges later, I reminded Kathy how she used the double number line strategy to solve an 

inverse proportion question in the Gear task. She explained: 

Kathy: Well if you want something proportional because these like, these number lines [pointed 

at the double number lines for the number of notches moved and revolutions] show 

proportional relationships between two things.  

 

Kathy’s statement showed her understanding of using double number lines when showing 

proportional relationships. For her, there was a proportional relationship between the number of 

notches moved and revolutions. Because the context of the Gear task facilitated Kathy’s 

understanding of the total notches as the product of number of revolutions and number of 

notches per revolution, she was able to use double number lines in that task by thinking of two 
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pairs of increasing quantities. In the current question, there was also a constant product 

relationship between the number of people and number of minutes, but Kathy did not see 36 as 

the number of minutes to frost a total of 60 cupcakes. Therefore, Kathy stated that she could not 

use double number line in this question. In this task, Kathy might have had difficulty working 

with time. In addition, in the Gear task, the unit of the product—total notches moved—was the 

same as the unit of the number of notches; however, in the Bakery task the product was 

presented in terms of cupcakes but could also be interpreted in terms of person-minutes.  

Kathy worked on the multiple proportion questions in Task 2C, and in those questions 

she preferred reasoning within measure spaces. For instance, when asked to calculate the number 

of cupcakes frosted by two people in 
T

2
 minutes, given that three people frosted N cupcakes in T 

minutes, she used a ratio table strategy, which she said involved two steps (Figure 28):  

Kathy: So, [thinking]…okay so I would probably take two steps again and do like three people in 

half the time frost half the cupcakes, N over 2. 

Int: Okay. 

Kathy: And then I guess multiplying, we want to know how many.   

Int: Yeah two people. 

Kathy: Two people so we need to multiply that [pointed three people] by two-thirds, less people 

less cupcakes…[pause over 30 seconds] I think [she wrote 
2N

6
] yeah. 

 

In the first step, Kathy determined that 3 people could frost 
N

2
 cupcakes in 

T

2
 minutes. She then 

multiplied three people by two-thirds to get two people and so multiplied 
N

2
 cupcakes by the same 

two-thirds and got the correct answer 
2N

6
 cupcakes. The exchange showed that Kathy attended to 

the numerical multiplicative relationships within measure spaces and the qualitative relationship 

“…less people less cupcakes…” to solve the question. Kathy attended to these two features 

throughout the interview to solve the multiple proportion questions.  
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Figure 28. Kathy’s ratio table strategy involving two steps. 

In Task 4, I asked Kathy to calculate the speed of a car that covered a certain distance in 

50 seconds, given that another car covered the same distance in 90 seconds driving at 60 mph. 

She used a ratio strategy and, reasoning between measure spaces incorrectly, determined the 

speed to be 75 mph (see Figure 24). Kathy immediately recognized the inaccuracy of her answer 

and said: 

Kathy: 50 seconds, you multiply 50 by 
3

2
, and you get hahh wait a minute. 

Int: What happened? 

Kathy: 50 over, 50 seconds and one and a half, what is it…[she calculated 
150

2
= 75 mph]. No it 

does not make sense hold on a second.  

 

Kathy then multiplied within measure spaces and calculated the correct answer of 108 mph. 

When asked why 75 mph did not make sense, she explained:    

Kathy: Yeah it does not make sense because it should be faster because it less time. 

Int: It is less time than?  

Kathy: 60. 

 

In the preceding question, Kathy calculated the speed of the same car as 90 mph to cover the 

same distance in 60 seconds. Because she was driving the same distance in less time, 50 seconds, 

she expected to obtain a speed of more than 90 mph. Hence, her understating of the qualitative 

compensation between the speed and time helped her to recognize the mistake in her solution. 

After obtaining 108 mph, she stated “I guess, I should have been doing it this way” that 

suggested her inclination towards reasoning within measure spaces. When I reminded her that 

she reasoned between measure spaces in the preceding question, Kathy said that reasoning 
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between measure spaces worked for that particular question, because the numbers (60 mph and 

60 seconds, and 90 seconds and 90 mph) in two opposite corners of her strategy were the same 

(see Figure 24). She concluded that it did not matter going from within measure space values or 

between measure space values for that specific question; however, she noted that reasoning 

within measure spaces would always work. Therefore, for Kathy, the specific repetition of the 

numbers allowed her to calculate the correct answer in the preceding question.  

Case Two: Susan 

Summary 

Susan correctly inferred directly and inversely proportional relationships in the given 

tasks. Although she was successful in forming multiplicative relationships within measure spaces 

and reciprocal multiplicative relationships, her main knowledge resource for inferring directly 

proportional relationships was attention to the constancy of the rate of change. On the other 

hand, Susan identified relationships as inversely proportional by attending to the static points on 

graphs and whether the values of points were swapped (e.g., (x, y) and (y, x)). Because of her 

preference for attending to the constancy of the rate of change and static points when inferring 

directly and inversely proportional relationships, Susan had difficulty distinguishing directly and 

inversely proportional relationships from nonproportional relationships that consisted of a 

constant difference or constant sum. Susan used proportion formula, algebra strategies (e.g., 

equations, formulas), and other proportional reasoning strategies (e.g., ratio table, double number 

lines) and preferred reasoning within measure spaces in solving multiple and single proportion 

questions. She expressed directly and inversely proportional relationships with graphs, double 

number lines, formulas, ratio tables, or with some combination. 
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Cross-Task Analysis 

In Chapter Three, I determined four themes, which I provided in Table 2, for Susan’s 

case based on the thematic analysis. In the following pages, I elaborate on these four themes to 

explain Susan’s reasoning across tasks. In the first theme, I discuss Susan’s attention to the 

constancy of the rate of change in Tasks 1A and 2A when inferring directly proportional 

relationships between two covarying quantities. In the second theme, I explain Susan’s focus on 

static points on graphs and values of points being swapped in Tasks 1B and 3 when inferring 

inversely proportional relationships. In the third theme, I investigate Susan’s difficulty 

distinguishing directly and inversely proportional relationships from the nonproportional 

relationships. Finally, in the last theme, I conclude the cross-task analysis with a discussion of 

select proportional reasoning strategies that Susan used to solve the given questions across tasks.  

Theme 1: Attention to the constancy of the rate of change when inferring directly proportional 

relationships. 

Susan correctly inferred directly proportional relationships in the given tasks. Susan’s 

responses to the direct proportion questions demonstrated that her inference was mainly based on 

her attention to the constancy of the rate of change. Although Susan successfully obtained 

multiplicative relationships within measure spaces, she did not recognize multiplicative 

relationships between measure spaces. She even obtained the multiplicative relationships within 

measure spaces in the presence of proper fractions. For example, in Task 1A, Susan worked on a 

question in which she needed to calculate the number of notches of Gear B, with a 2-cm radius, 

given that Gear A had a 3-cm radius and 12 notches. She accurately obtained two-thirds as the 

multiplicative relationship within measure spaces: 

Susan: Okay, so it would have…, so B is two-thirds the size of A. 

Int: Okay. So, two-thirds because. 
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Susan: Because…the circumference 4π, so 6π simplifies to two-thirds. 

Int: Two-thirds okay. 

Susan: So, then it would have [multiplied 12 notches by two-thirds] eight notches. 

 

Susan’s statement, “…so B is two-thirds the size of A,” exemplified her determination of a 

multiplicative relationship within measure spaces. She determined this multiplicative relationship 

by comparing the circumferences of the two gears multiplicatively. Because she expected to have 

the same multiplicative relationship between the number of notches of the two gears, these 

exchanges suggested her coordination of multiplicative relationships within measure spaces.  

On only one occasion did Susan seem to attend to a multiplicative relationship between 

measure spaces. In Task 1A, using the 3-cm-to-12-notches relationship, she drew a linear graph 

(Figure 29) to express the relationship between the number of notches and radii. Some exchanges 

later, Susan generated a ratio table between the values of the number of notches and radii (Figure 

29). When asked if there was a pattern or something important to talk about in her table, Susan 

explained: 

Susan: Umm, it’s always increasing by 4, the number of notches it increases by 4 each time the 

centimeters increases by 1. 

 

Susan’s statement demonstrated that she was attending to the constancy of the rate of changes 

within two separate measure spaces. When asked, Susan inferred a proportional relationship 

between the number of notches and radii in her ratio table. 

Susan: It is a proportion. 

Int:   How do you know that is proportional? 

Susan: Because there is a constant rate of change. 

Int:   Constant rate of change? 

Susan: The notches equals 4 times the centimeters, the amount of centimeters. 

Int:   Always, do you mean? 

Susan: Yeah. 

 

These exchanges showed that for Susan, the existence of a constant rate of change suggested a 

proportional relationship between the number of notches and radii. She calculated the rate of 
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change as four (Figure 29) and explained it as follows: “The notches equals 4 times the 

centimeters, the amount of centimeters.” Although her definition of the constant rate of change 

suggested an understanding of a multiplicative relationship between measure spaces, there was 

no other evidence in her interviews that would allow one to claim that she coordinated 

multiplicative relationships between measure spaces. Therefore, in this occasion, Susan seemed 

to be expressing an association between the number of notches and radii based on the entrees in 

her ratio table. Thus, these exchanges and Figure 29 revealed that Susan’s inference of the 

proportional relationship was based on attending to the constancy of the rate of change. 

 

Figure 29. Susan’s directly proportional graph and ratio table. 

In Task 2A, when asked to talk about the relationship between the number of people and 

number of cupcakes, Susan used the information confirming that three people frost 12 cupcakes 

in T minutes to draw a linear graph (Figure 30). She then inferred the relationship as a 

proportional relationship. 

Int: What is the relation…, what do you think the relation is? 

Susan: Between cupcakes and people? 

Int: Yeah. 

Susan: They are proportional. 

Int: The reason is you have the graph or something…what was your main idea to graph it? 

Like, when I ask you to identify the relationship between these two, like the number of 

cupcakes and people, you said I can graph it. What was the reason for graphing to 

identify the relationship? 
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Susan: So, I could show there was a linear relationship. So, that the…the ratio…, there is a 

constant ratio between the people and the cupcakes. 

 

According to these exchanges, Susan’s reason for drawing the graph was to show that it was 

linear and that there was a constant ratio relationship between the number of people and 

cupcakes. These data suggested a consistency between Susan’s reasoning in Task 1A and Task 

2A, because in both tasks she drew linear graphs first and inferred relationships based on those 

graphs. Her strategy of drawing a graph to infer a relationship suggested her possible 

coordination of a directly proportional relationship with the linearity of its graph. These 

exchanges also included the first instance of Susan’s mentioning the term constant ratio 

relationship. When asked what she meant by the constant ratio, Susan explained:  

Susan: Uhh, so we have 0, 0; 1, 4; 2, 8; 3, 12, and umm so this [pointed at 12 cupcakes] is three 

times the amount of the one person; this [pointed at eight cupcakes] is two times the 

amount of whatever is made by the first person.  

Int: So the ratio is here. 

Susan: Oh, sorry. 

Int: What was the ratio, like you mean these two, like 1 over 2 or the other 3…like you said 

in that case, 3 and 12 something? 

Susan: I don’t know. It increases by four every time. Whatever you do to the… like if you look 

at the original, the 1 to 4. Whatever you do from the 1 to get to the…any amount of 

people that is you do to the amount of cupcakes. 

Int: Same thing. 

Susan: Same four and that’ll give you the answer. 

 

These exchanges suggested that Susan was attending to a multiplicative relationship—“…so this 

[pointed at 12 cupcakes] is three times the amount of the one person, this [pointed at eight 

cupcakes] is two times the amount of whatever is made by the first person”—and the constancy 

of the increments within measure spaces—“It increases by four every time.” Although she used 

the term constant ratio relationship, there was not any indication that she was attending to the 

relationships between measure spaces. Hence, these data suggested that she might have used the 

term constant ratio relationship to indicate the constancy of the rate of change. Her ratio table in 
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Figure 30 confirmed my conjecture about her reasoning because she was attending to the 

constancy of the increments within measure spaces. Therefore, similar to Task 1A, these 

exchanges and Figure 30 implied that Susan’s inference of the proportional relationship between 

the number of people and cupcakes was based on her attention to the constancy of the rate of 

change.  

 

Figure 30. Susan’s expression of the proportional relationship between the number of 

people and number of cupcakes. 

Theme 2: Attention to static points on graphs and values of points being swapped when inferring 

inversely proportional relationships.  

Susan successfully inferred inversely proportional relationships in the given inverse 

proportion questions. She recognized the constancy of the products in Tasks 1B and 3 but did not 

recognize them in the remaining inverse proportion questions. Although Susan was successful at 

determining the multiplicative reciprocal relationships between quantities, she mainly attended to 

the numbers provided or points in graphs when justifying the inversely proportional 

relationships. For example, in Task 1B, when asked the number of revolutions of Gear K, with 

four notches, given that Gear F, with eight notches, revolved three times, Susan correctly 

determined the number of revolutions to be six.  

Susan: Umm, so the distance that F has to travel is 2 times as far, so if it [pointed at Gear F] goes 

around 3 times, K is going to go around 6 times…6 times. 
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Int: You said distance F traveled, what do you mean by the distance? 

Susan: The circumference of F is going to be 2 times as big as circumference of K. 

 

In the exchange, by the term distance, Susan implied the lengths of the circumferences of Gears 

F and K. Because Gear F’s circumference was double the circumference of Gear K, for Susan 

Gear F was traveling two times the circumference of Gear K. A few exchanges later, Susan 

stated the reciprocal multiplicative relationship between the sizes of Gears F and K and their 

number of revolutions:  

Susan: Yeah so, so this, Gear F goes around three times and it’s two times as big; K only needs 

half the time to go a full revolution, so it’s going to go twice as many revolutions as F. 

So, it’s going to go six revolutions. 

 

This statement clarified what Susan implied by the distance traveled by two gears. Without this 

statement, Susan’s explanation, “…so the distance that F has to travel is 2 times as far,” could be 

considered incorrect because both gears traveled the same distance. For Susan, Gear K was 

completing a full revolution in half the time Gear F completed a full revolution. For that reason, 

Gear K was making twice the number of revolutions Gear F made. In these data, the gear context 

seemed to facilitate Susan’s coordination of the size of a gear with its circumference and thereby 

with its notches, and her determination of the correct reciprocal multiplicative relationship 

between the size of a gear and its revolutions. Therefore, these data were an illustration of the 

influence of the gear context on a PST’s reasoning. 

Although Susan stated an accurate reciprocal multiplicative relationship between the 

sizes of Gears F and K and their number of revolutions, she seemed to have difficulty expressing 

her solution mathematically. Susan stated her difficulty as follows: 

Susan: And since there’s eight notches around that means that the circumference makes up eight 

notches. So that, it’s…I don’t know I don’t know what to write for it. 
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Based on Susan’s response above, I asked what the distance traveled by Gear F was in three 

revolutions. In response, Susan calculated the distance traveled by Gear F in three revolutions as 

24 notches. My question appeared to trigger something in Susan’s understanding, because she 

then recognized that Gear K was traveling the same 24 notches in six revolutions. 

Susan: It goes around the same amount of notches. 

Int: What do you mean by the same amount? 

S: Because four goes around 6 times, that’s 24 notches as well.   

Int: Can you tell me about that one? It’s interesting. 

Susan: Umm, because since this [pointed at Gear K] is 2 times as small, the amount of 

revolutions are going to be 2 times as many. So, that’s why I multiplied it by the 6. 

 

Susan’s last statement—“…since this [pointed at Gear K] is 2 times as small, the amount of 

revolutions are going to be 2 times as many”—illustrated her attention to the reciprocal 

multiplicative relationships between the number of notches and number of revolutions when 

explaining constancy of the total notches traveled in both gears. Although the question that I 

asked seemed to facilitate her understanding of the constancy of the total notches traveled in 

some number of revolutions, Susan was able to reason about the necessity of both gears traveling 

the same distance. She explained: 

Susan: Since, yes, to make one full revolution it has to hit all four notches, it’s hitting all four 

notches six times. So, you get 24 notches, which is the same as the Gear F. 

 

According to Susan, each of the four notches on Gear K was hit by six times by Gear F. Hence, a 

total of 24 notches were hit on Gear K and this number was the same as total notches revolving 

around Gear F. This explanation demonstrated that Susan’s causal net was sufficient to see that 

the same number of notches was revolving around both gears. Because the total number of 

notches revolved on a gear was the product of number of revolutions and notches per one 

revolution, these data provided evidence for Susan’s rudimentary understanding of a constant 

product relationship between the number of notches and number of revolutions. Therefore, she 
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usually solved the inverse questions in this task by using a “total notches traveled” strategy. In 

this strategy, Susan calculated the total number of notches revolved on a gear by multiplying its 

number of notches by the number of revolutions and equated this value with the product of the 

number of notches and revolutions in the other gear. 

Susan obtained the reciprocal multiplicative relationship between the size of a gear and 

its revolutions even in the presence of proper fractions. For instance, in one of the questions, 

using the “total notches traveled” strategy, she calculated the number of revolutions of Gear K, 

with 12 notches, to be 
2

3
𝑝 revolutions, given that Gear F, with eight notches, made p revolutions. 

She explained the reciprocal multiplicative relationship as follows: 

Susan: Since Gear F is two-thirds the size of Gear K, it’s going to…Gear K’s going to make 

two-thirds the amount of revolutions as Gear F. 

 

Some exchanges later, when asked to draw the graph of the relationship between the number of 

notches and revolutions using the 8-notches-to-3-revolutions relationship, Susan drew an 

inversely proportional graph (Figure 31) and declared an inverse relationship between the 

number of notches and revolutions.  

Susan: These are inversely related. 

Int: Okay, how do you know that are inversely…? 

Susan: Because when there is 24 notches, there is only one revolution, but when there is 24 

revolutions, there is one notch and you can find the inverse relationship between them. 

Int: When you are saying inverse relationship, what do you imply with inverse? 

Susan: I mean, like 24 over 1 that is the inverse of 1 over 24.   

Int: Okay, because of that reason, you think that is the inverse… 

Susan: Yeah. 

Int: inversely…inverse relationship? 

Susan: Yes and you can find that throughout the entire graph. 

Int: Do you mean you will have an inverse of some…one point appears here [I pointed at the 

inversely proportional graph]? 

Susan: Every point on the graph has an inverse somewhere else on the graph. 
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Susan wrote that 
24 𝑛𝑜𝑡𝑐ℎ𝑒𝑠

1 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 and 

8 𝑛𝑜𝑡𝑐ℎ𝑒𝑠

3 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
 ratios were the inverses of 

1 𝑛𝑜𝑡𝑐ℎ

24 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
 

and 
3 𝑛𝑜𝑡𝑐ℎ𝑒𝑠

8 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
 ratios, respectively (see Figure 31). Her statement “…24 over 1 that is the 

inverse of 1 over 24” suggested that she was attending to 
24 

1
 and 

1 

24
 being reciprocal of each other 

when explaining the inverse relationship. She stated that every point on the inversely 

proportional graph had an inverse somewhere else on the graph. It appeared that for Susan, the 

points (1 notch, 24 revolutions) and (24 notches, 1 revolution) were the inverses of each other 

because the values of the quantities were swapped. Therefore, when inferring two points as 

inverses of each other, Susan seemed to attend to the pair of values of two points being swapped 

rather than the quotients that they formed.  

 

Figure 31. Susan’s inversely proportional graph and ratio table. 

A few exchanges later, I asked Susan if she could express the relationship between the 

number of notches and revolutions with a ratio table. She generated the ratio table in Figure 31 

and explained: 

Susan: The amount of notches and the amount of revolutions…every time we multiply together, 

they equal 24. 
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Susan explicitly stated the constant product relationship between the number of notches and 

number of revolutions. Susan appeared to attend to the numerical relationships between numbers 

in her ratio table when determining the constant product relationship. Because Susan also 

explained 24 as the total notches traveled in both gears, the context of the Gear task seemed to 

facilitate her understanding of this constant product relationship.  

In Task 3, Susan determined the balance formula, W1*D1 = W2*D2, playing with the 

plastic weights and hanging them at different distances. She described the inverse qualitative 

relationship between the number of weights and distance by stating, “The amount of weights is 

increasing as you are decreasing the distance.” She generated the ratio table in Figure 32 for a 

particular number of weights and distance relationship and, when asked, endorsed an inversely 

proportional relationship between the number of weights and distance: 

Susan: Yeah. So, they are inversely proportional. 

Int: Why do you think that is, they are inversely [proportional]?  

……. 

Susan: Because the 2 times the 6 equals 12, the 6 times the 2 equals 12, 4 times 3 equals 12. 

They are always…the distance times the amount of weights like for that distance always 

multiply to 12. 

 

In the particular number of weights and distance relationship that Susan decided, the product of 

the number of weights and the distance was always equal to 12. Susan’s reasoning when 

endorsing an inversely proportional relationship in this task was similar to that on Task 1B 

because she appeared to attend to swapping pairs of values.  

 

Figure 32. Susan’s ratio table for expressing constancy of the products in Task 3.  
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Besides attending to the static points and swapping pair of numbers, in Task 2B, Susan 

inferred an inversely proportional relationship between the number of people and number of 

minutes by attending to the numerical multiplicative relationships within measure spaces. When 

I asked Susan to calculate the number of minutes need by six people to frost N cupcakes given 

that three people frosted N cupcakes in T minutes, she reasoned within measure spaces and 

explained: 

Susan: Umm, if I think if my thinking is right, the amount of people is inversely proportional to 

the amount of time. 

Int: Time?  Why do you think that is inversely proportional? 

Susan: Because here to go from the original 3 people to the 6 people we multiplied by 2 and then 

the time we divided by 2, so you’re doing like the opposite umm operation. 

Int: How about for 3 people and 2 people? 

Susan: So, going from 3 people to 2 people you multiplied it by 2 over 3 so then you multiplied 

the time by 3 over 2. 

 

These exchanges demonstrated Susan’s attention to the numerical multiplicative relationships 

within measure spaces when justifying her inference of an inversely proportional relationship. 

Therefore, all these data in Tasks 1B, 2B, and 3 confirmed Susan’s attention to the static points 

on graphs and values of points being swapped and numerical multiplicative relationships within 

measure spaces when inferring inversely proportional relationships between quantities.     

In summary, although in some instances, Susan accurately stated reciprocal multiplicative 

relationships and recognized the constancy of products in Tasks 1B and 3, her inference of 

inversely proportional relationships appeared to be mainly based on her attention to static points 

on graphs and values of points being swapped. While Susan’s conjecture of pair of values being 

swapped in an inversely proportional was correct, it was not sufficient to distinguish proportional 

relationships from nonproportional relationships. She should have attributed the reason for 

inferring the inversely proportional relationships to the reciprocal multiplicative relationships 

between two quantities and constancy of the products. Except Tasks 1B and 3, Susan did not 
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recognize the constancy of the products in the remaining inverse proportion tasks; however, after 

I asked her if the products of the inversely proportional quantities were constant in those tasks, 

she realized the constancy of those products. Therefore, the contexts of Tasks 1B and 3 seemed 

to facilitate Susan’s recognition of constant product relationships between quantities more than 

the remaining inverse proportion tasks.  

Theme 3: Difficulty distinguishing directly and inversely proportional relationships from 

nonproportional relationships.  

Susan had difficulty distinguishing directly and inversely proportional relationships from 

the nonproportional relationships that consisted of constant difference or constant sum. When 

working on Task 1B, I provided Susan with three graphs (Figure 33) and asked her to determine 

the relationships in them. She inferred a linear relationship in Graph B: 

Susan: That [pointed at Graph B] is linear. 

Int: Is that also proportional like the one here [I pointed at the directly proportional graph in 

Figure 29]? 

Susan: Yes. 

Int: Okay, please tell me how do you know this is also proportional?   

Susan: So, slope between the two points is always the same distance, because that [pointed at x] 

is always changing 1 and that [pointed at y] is always changing 1. 

 

As discussed earlier, Susan attended to the constancy of the rate of change when inferring the 

directly proportional relationships. These exchanges also showed Susan’s attention to the 

constancy of the rate of change when inferring a proportional relationship in Graph B. She 

emphasized the constancy of the change by stating, “…slope between the two points is always 

the same distance.”  
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Figure 33. Susan’s determination of the relationships in Graphs A, B and C. 

For the relationship in Graph C, Susan generated the ratio table in Figure 33 and stated 

that Graph C looked like an inversely proportional relationship graph. 

Int: Okay, how about [Graph] C?   

Susan: So, it looks like it is inversely proportional. 

Int: Why do you think it looks like…it is inversely proportional? 

Susan: Because we have…for 0 x there is 5 y, and for 5 x there is 0 y, yeah. 

Int: Do you mean the pairs (0, 5) and (5, 0)? 

Susan: The pairs have the opposite… 

 

For Susan, Graph C looked like an inversely proportional relationship graph, because for each 

point on Graph C there was an opposite point, which she characterized as swapping the values of 

x and y. For example, for Susan, the two pairs (0, 5) and (5, 0) were opposite because x and y 

values were swapped. These exchanges provided evidence for Susan’s attention to the static 

points on Graph C when inferring an inversely proportional relationship. Therefore, her 

reasoning when inferring an inversely proportional relationship for Graph C supported the 

consistent pattern in her reasoning when inferring the constant product relationship between the 

number of notches and revolutions, which I discussed in the previous category. Susan then 

explained that in the inversely proportional relationship between the number of notches and 
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revolutions, the products were all equal to 24 and noted that in Graph C the x and y values added 

up to five. 

Susan: The one with 24s. In this one they all add up to five, but in that one they all multiplied or 

the product was 24. 

Int: Can you talk about that? You said these are, here products were 24 but here they add up 

[to] 5. 

Susan: They add up to five. 

Int: Add up to five, yeah. That do you think that makes them same or different or? But you 

said they are same right inversely proportional?  

Susan: I yeah I said that.  Umm… 

Int: But how that difference makes…you know changes like, product and…addition. 

Susan: So, I think it kind of just depends on what you are relating. So, here we were multiplying 

notches to revolutions…I don’t know. 

 

Although I tried to ask Susan if she attached any significance to the difference between constant 

sum and constant product, her response “…I think it kind of just depends on what you are 

relating” suggested that for Susan obtaining the constant sum or constant product did not have 

significantly different implications for inferring inversely proportional relationships. 

Nevertheless, that she did not seem confident about her response indicated a possible confusion 

about constant sum and constant product relationships. Therefore, even though Susan recognized 

that the x and y values in Graph C were adding up to five, she did not see that the values adding 

up to five precluded an inversely proportional relationship between x and y.  

A few exchanges later, Susan generated a ratio table (Figure 33) and identified Graph A 

as representing the 𝑦 = 𝑥2 relationship. She then stated that because x and y were not increasing 

at a constant rate, there was not a proportional relationship. 

Susan: It’s the graph of x-squared. 

Int: How about the relationship between x and y?  Is that a proportional, inversely 

proportional, or you know neither kind of? 

Susan: I want to say no but I do not know why. 

Int: No…do you mean like…? 

Susan: They are not, it is not proportional. I do not know. 

Int: From what aspect of the relationship you want to believe that they are…this is not 

proportional? 
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Susan: Because it is not increasing at a constant rate and it is not the 3…9 is the 3 squared, but it 

does not have anything to do with the 4, other than they are both the squared of that 

[pointed x]. 

 

Although Susan stated that she did not know why she believed Graph A was not proportional, in 

her causal net, initially the lack of a constant rate was the reason for Graph A being a 

nonproportional graph. Therefore, Susan’s attention to the constancy of the rate of change 

facilitated her in identifying the relationship in Graph A as nonproportional, even though she was 

hesitant in her response. 

In summary, Susan’s attention to the constancy of the rate of change and relationships 

between static points on graphs precluded her from determining nonproportional relationships 

exhibited in Graphs B and C. Susan’s incorrect inferences suggested her difficulty differentiating 

proportional relationships from nonproportional relationships.  

Theme 4: The use of proportional reasoning strategies and reasoning within measure spaces 

when solving proportion questions. 

In the previous pages, I presented several ways that Susan inferred whether relationships 

were directly proportional, inversely proportional, or neither. Hereafter, I will discuss some of 

the proportional strategies that she used to solve given multiple and single proportion questions. 

In Task 1B, when asked if she could calculate the number of notches of Gear K, which revolved 

eight times, given that Gear F, with n notches, revolved six times using a strategy other than the 

“total notches traveled” strategy, Susan used a double number line incorrectly and determined 

the number of notches to be 
4

3
𝑛 (Figure 34). While explaining her solution, Susan immediately 

recognized that she would not have obtained the same result if she had used her original “total 

notches traveled” strategy: 

Susan: Okay…so, since I knew that for every six revolutions there were n notches…we were 

trying to find out how many n notches in eight revolutions…You can since they are 
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occurring at the same time, you can manipulate it to get to eight. You can manipulate six 

into eight and by doing that you also manipulate n to get to whatever would be co-

occurring with the eight revolutions. 

Int: You obtained four-thirds…? 

Susan: Four-thirds n. 

Int: How about if you…? 

Susan: Which I would not have done… 

Int: Sorry? 

Susan: I would not have gotten that if I did it my way, the same way I was doing, previously. 

Int: What…what would you get? 

Susan: Well the way I was going to do it…I would have had six revolutions times n notches, and 

then I would have divided that by the eight revolutions, and I would have gotten three-

fourths n notches. 

 

Susan incorrectly stated that “…for every six revolutions there were n notches.” The correct 

statement should resemble “for every one revolution there were n notches.” Susan’s following 

statement, “…how many n notches in eight revolutions,” and her usage of the term co-occurring 

suggested that she might have considered the number of notches and revolutions to be varying 

directly. Because there was a directly proportional relationship between the total number of 

notches and number of revolutions, Susan seemed to confuse the number notches on Gear K with 

the total number of notches. Kathy, on the other hand, was able to use two double number lines 

to solve a similar inverse proportion question by comparing the total notches moved and number 

of revolutions.  

 

Figure 34. Susan’s incorrect double number line strategy. 

A few exchanges later, Susan explained that one of these two results was incorrect but 

could not decide which one was. Her difficulty determining the incorrect result also supported 
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my claim of possible constraints in her understanding of the constant product relationship 

between the number of notches and number of revolutions. When asked how she interpreted 
4

3
𝑛 

and 
3

4
𝑛 notches, Susan explained: 

Susan: So, the three-fourths n notches means that K has three-fourths the amount of notches as 

F. Is that what you were asking? 

Int: I was asking…like that one has six revolutions and that one has eight revolutions. Does 

that say anything about the notches? 

Susan: So, okay…so, eight revolutions…means that K is going to have less distance to travel 

than…F would. So, that means there is going to be fewer notches if they are… 

Int: Fewer notches, okay, on Gear F or K? 

Susan: There is going to be fewer notches on Gear K. 

Int: But how about if you if you look at your answers, which one has fewer notches? 

Susan: This one [pointed at 
3

4
𝑛 nothes]. 

As I explained earlier, by the term distance, Susan meant the circumferences of Gears F and K. 

Because Gear K traveled eight times, by attending to inverse qualitative relationship, Susan 

decided that Gear K had “fewer notches” than Gear F. Hence, without careful attention, Susan’s 

usage of the term distance to imply the circumference of a gear (or the number of notches) might 

create confusion. Therefore, these exchanges showed that Susan’s comparison of the inverse 

qualitative relationship between the number of revolutions and number of notches facilitated her 

decision of Gear K having less notches than Gear F. Because 
3

4
𝑛  notches was less than 

4

3
𝑛 

notches, Susan decided that the number of notches of Gear K was 
3

4
𝑛 notches. When asked why 

the double number line did not work, she was unable to explain. Thus, unlike Kathy, she could 

not adapt her methods for using double number lines to reason about the inversely proportional 

relationships between the number of notches and number of revolutions.  

Overall, in the Bakery task, Susan preferred a ratio table strategy to solve the given 

multiple proportion questions. In this strategy, she fixed the value of a quantity as constant and 

then used mathematical operations within separate measure spaces for the remaining two 
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quantities. For example, in Task 2B, she successfully calculated the time required by one person 

to frost 2N cupcakes, given that three people frosted N cupcakes in T minutes, to be 6T minutes 

(Figure 35). In her ratio table strategy, first she fixed N cupcakes as a constant, and by reasoning 

within measure spaces, she determined that one person could frost N cupcakes in 3T minutes. 

Next, she fixed one person as a constant, and by multiplying within measure spaces, she 

calculated that one person could frost 2N cupcakes in 6T minutes.  

 

Figure 35. Susan’s ratio table strategy for solving a multiple proportion question. 

Some exchanges later, when asked if she could use any other method to solve the same 

question, Susan said she could use two different double number lines (Figure 36):  

Susan: I mean you could use a double number line…but I would use two different double 

number lines. 

Int: How do you…can you show it to me, like how do you…? 

Susan: Okay. So, we have…I left cupcakes the same. So, we have people and time, 

so…ohh…see I do not know…they are inversely proportional. 

Int: What happened? You said they are inversely proportional. Cannot you use double 

number lines with that, do you mean that? 

Susan: Yeah…I do not know because…because the three people is occurring at the same time 

that the T minutes is. But I divided this [pointed at three people] by 3 to get to one, so I 

had to multiply this [pointed at T minutes] by 3 to get to 3T. 

 

Susan’s idea of using two number lines seemed to be resting on the two steps in her ratio table 

strategy. Following the same strategy, she fixed the number of cupcakes and expressed the 

relationship between the number of people and number of minutes with one double number line. 

She then fixed the number of people and expressed the relationship between the number of 

cupcakes and number of minutes. These exchanges suggested that because Susan needed to 

divide three people by 3 to get one person, and needed to multiply T minutes to get 3T minutes 
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as the time required for one person to frost N cupcakes, she realized the inversely proportional 

relationship between the number of people and time precluded the use of a double number line. 

Assuming the correctness of the first double number line, she was able to express the relationship 

between the number of cupcakes and number of minutes on the second double number line. In 

Task 1B, Susan was unable to explain why the double number line did not work for the gear 

question, but in this task, she attributed the inappropriateness of using double number line to the 

inversely proportional relationship between the number of people and number of minutes. 

Similar to Kathy, Susan also did not see 3T minutes as the constant product of the number of 

people and number of minutes. She should have seen 3T as the total “person-minutes” to frost N 

cupcakes. Thus, these data suggested that although Susan was expert at using double number 

lines to express directly proportional relationships, her difficulty recognizing 3T minutes as the 

total “person-minutes” to frost N cupcakes precluded her from using double number lines with 

inverse proportions.  

 

Figure 36. Susan’s two double number lines strategy. 

In Task 4, Susan preferred reasoning within measure spaces and using a scientific unit 

conversion strategy. For example, in one of the questions, she needed to calculate the speed of a 

car that covered a certain distance in 60 seconds, given that another car covered the same 
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distance in 90 seconds at 60 mph. When asked what her initial impression was, Susan inferred 

the speed to be 90 miles an hour: 

Susan: It is going to be 90 miles an hour. 

Int: How do you know that it is 90 mph?  How did you get that quick? 

Susan: I do not know.  Because he is driving 60 miles an hour, so he is driving a mile a minute. 

So, he drove a mile and a half because he drove for 90 seconds. So, if we want to drive a 

mile and a half in 60 seconds…you would have to travel a mile and a half in a minute. 

Int: Then how do you know your speed is 90? 

Susan: Because 90 miles in an hour divided by 60 seconds is 1.5. 

 

In Tasks 1B and 3, Susan inferred inversely proportional relationships based on numbers 

swapping. In this task, the numbers were also swapped, but she did not see that. Instead, Susan 

seemed to be focusing on the numerical relationship between values of the speed and time 

because she incorrectly stated the relationship among speed, time, and distance by saying, 

“Because 90 miles in an hour divided by 60 seconds is 1.5.” Later, dividing 90 seconds by 60 

mph, she wrote 1.5 (Figure 37) without its units that also suggested her attention to the 

relationship between numbers. To further investigate this possibility, I asked her if she was 

getting “miles” from the division of “seconds” by “miles per hour,” and Susan stated, “I don’t 

know if it makes sense that I write 1.5 miles.” Her response was a reflection of her confusion 

about the accurateness of her distance expression. Later, when she was reasoning out her answer, 

she incorrectly explained that multiplying 1.5 miles by 60 seconds yielded 90 mph (Figure 37). 

Susan’s incorrect expressions indicated that her difficulty with using appropriate referent units 

and expressing multiplicative relationship among quantities in the multiple proportion problems.  

 

Figure 37. Susan’s initial distance formula. 
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Some exchanges later, when asked to calculate the speed of a car that covered a distance 

in 50 seconds, given that another car covered the same distance in 90 seconds driving at 60 mph, 

Susan multiplied 1.5 miles by 50 seconds and, as in Kathy’s case, incorrectly calculated the 

speed to be 75 mph (Figure 37). Because she earlier calculated that the same distance was 

covered in 60 seconds at 90 mph, Susan immediately recognized that her answer of 75 mph did 

not make sense.   

Susan: 50 seconds, then you get 75 miles an hour, which does not make sense because if it took 

less time they should be traveling at a faster speed. 

Int: Faster speed, right. 

Susan: So, this should be greater than 90. 

 

In Susan’s causal net, because 50 seconds was less than 60 seconds, the speed of the car needed 

to be more than 90 mph. Therefore, her coordination of the inverse qualitative relationship 

appeared to facilitate the detection of the mistake in her calculation. When asked what the 

relationship between the speed and time was, Susan used her knowledge of the inverse 

qualitative relationship to infer an inversely proportional relationship.  

A few exchanges later, I told Susan that she could use any method to solve this question. 

She incorrectly set up a 
90 𝑚𝑝ℎ

60 𝑠
=

𝑋 𝑚𝑝ℎ

50 𝑠
 direct proportion, which would have yielded the same 

incorrect 75 mph answer, but she did not calculate the result. She indicated her difficulty with the 

question by stating, “I do not know why this is so hard for me to do.” Some exchanges later, 

Susan decided to use a ratio table strategy to solve this question. She first tried out this strategy 

on the previous question in which she calculated the speed of a car that covered a distance in 60 

seconds, given that another car covered the same distance in 90 seconds at 60 mph. She showed 

that she was multiplying one side by 1.5 and dividing the other side by 1.5. Hence, she decided 

that she needed to multiply 60 seconds by 
5

6
 to get 50 seconds and divide 90 mph by 

5

6
, allowing 
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her to correctly determine the speed of the car to be 108 mph. These data suggested that Susan 

was better able to coordinate quantities when making within measure space comparisons than 

when making between measure space comparisons.  

When asked if the 
90 𝑚𝑝ℎ

60 𝑠
=

𝑋 𝑚𝑝ℎ

50 𝑠
 proportion would have helped her to calculate the same 

correct answer, Susan said the proportion would not have helped her to calculate the same 

answer and explained the reason:  

Susan: Because it is…it is not a proportional relationship, so. 

Int: How about if it was a proportional [relationship], then do you think it will…it would 

work? 

Susan: If it was proportional, then the ratio between the two [pointed at the speed and time] 

would be the same throughout. 

 

In Susan’s causal net, because the relationship between the speed and time was not a 

proportional relationship, the direct proportion that she set up would not have yielded the correct 

answer. Her statement, “If it was proportional, then the ratio between the two [pointed at the 

speed and time] would be the same throughout” provided evidence of her coordination of a 

directly proportional relationship with the constancy of the quotients between measure spaces. 

Some exchanges later, Susan explained that the product of the time and speed was constant, 

reasoning that there was an inversely proportional relationship between these two quantities:  

Susan: So, like…if we multiplied these like 50, 50 seconds times 108 miles per hour, that should 

be the same as multiplying 60 seconds times 90 miles per hour because the inverse 

proportion. 

 

Although Susan’s statement “…50 seconds times 108 miles per hour, that should be the same as 

multiplying 60 seconds times 90 miles per hour because the inverse proportion” suggested her 

attention to constancy of the products, she did not see that the product of time and speed yielded 

the distance. Therefore, this example was evidence of Susan’s difficulty with referent units and 

coordinating the relationships among distance, speed, and time. When asked what the result of 
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multiplying 60 seconds by 90 mph was, Susan used a “scientific unit conversion” strategy 

(Figure 38) and successfully converted 60 mph to 
1

60
 miles per second. She multiplied 

1

60
 miles 

per second by 90 seconds and obtained 1.5 miles. She realized that the product of the time and 

speed yielded the distance. Thus, my question seemed to facilitate Susan’s determination of the 

correct distance formula.  

 

Figure 38. Susan’s unit conversion strategy. 

Case Three: Carol 

Summary 

Carol correctly inferred directly and inversely proportional relationships in the given 

tasks. She was successful in determining multiplicative relationships within measure spaces, 

multiplicative reciprocal relationships, and qualitative relationships between two covarying 

quantities. Carol inferred directly proportional relationships between quantities by attending to 

the unit rate, multiplicative relationships within measure spaces, and qualitative relationships—

two quantities are increasing (or decreasing) together. On the other hand, she usually attended to 

the inverse qualitative relationships—one quantity is increasing and other quantity is 

decreasing—when inferring inversely proportional relationships. She recognized the constancy 

of the products in Tasks 1B and 3, but did not recognize similar relationships in the remaining 

inverse proportion tasks. Hence, the Tasks 1B and 3 appeared to facilitate Carol’s recognition of 

the constant product relationships more than the remaining inverse proportion tasks. Because 

Carol focused on the constancy of the rate of change and qualitative relationships that she 

constructed between quantities, she had difficulty distinguishing directly and inversely 
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proportional relationships from nonproportional relationships that consisted of a constant 

difference or a constant sum. In Task 2, she tended to interpret the cupcake order in terms of 

minutes rather than cupcakes. Carol used a variety of proportional reasoning strategies to solve 

single and multiple proportion questions. She expressed directly and inversely proportional 

relationships with graphs, formulas, tables, pictures, or some combination.  

Cross-Task Analysis 

In Chapter Three, I determined four themes, which I provided in Table 2, for Carol’s case 

based on the thematic analysis. In the following pages, I elaborate on these four themes to 

explain Carol’s reasoning across tasks. In the first theme, I discuss Carol’s attention to unit rates 

and qualitative relationships in Task 1A and to the multiplicative relationships within measure 

spaces and equivalence of the between measure space ratios in Task 2A when inferring directly 

proportional relationships between two covarying quantities. In the second theme, I discuss 

Carol’s focus on the multiplicative and inverse qualitative relationships when inferring inversely 

proportional relationships in Tasks 1B and 3. In the third theme, I discuss Carol’s difficulty 

distinguishing directly and inversely proportional relationships from nonproportional 

relationships. In the last theme, I conclude the cross-task analysis with a discussion of select 

proportional reasoning strategies that Carol used to solve the given questions across tasks.  

Theme 1: Attention to unit rates, multiplicative relationships within measure spaces, and 

qualitative relationships when inferring directly proportional relationships.  

In Task 1A, Carol worked on questions that involved a directly proportional relationship 

between the number of notches and radii. For instance, in one of the questions, I asked Carol to 

calculate the number of notches of Gear B, with a radius of 
3

 4
 cm, given that Gear A had a radius 

of 3 cm and 12 notches. By setting up a 
3 𝑐𝑚

 12 𝑛𝑜𝑡𝑐ℎ𝑒𝑠
=

 
3

 4
 𝑐𝑚

 𝑥 𝑛𝑜𝑡𝑐ℎ𝑒𝑠
 proportion and cross-multiplying 
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the values, Carol successfully determined that Gear B had three notches. Unlike the other three 

PSTs, Carol usually preferred using proportions to solve questions and to explain her solutions in 

Tasks 1A and 1B. When asked how she made sense of that answer, Carol drew a strip diagram 

that had a size of 1 cm and divided it evenly into four parts, with each part having a size of 
1

 4
 cm 

(Figure 39). She explained: 

Carol: Yeah, well, if you have, say it is the same as 1 centimeter and you have four notches, 

okay. We’re looking at it as, since, you’re…this is three-fourths of 1 centimeter. You’re 

going to want to break your centimeter up by fourths because you’re looking at that’s 

how many parts give you a whole. So, if you have your 1 centimeter here and you get 

four notches. Let’s just say 1, 2, 3, 4. Okay, well, this works out nice because we have 

four notches for 1 centimeter and we have four parts of our whole. That’s how we’re 

going to break up our centimeters. So, we have it like, here is, we have…we’re looking 

just at 1, 2, 3 parts of our whole because the numerator, that’s what it tells us 1, 2, 3. So, 

we’re looking at three parts of our whole. So, then, if this is our different…we’re going to 

look at three parts of the four. So, now we have three of our four notches is to three-

fourths of a centimeter.   

Int: So, you made a match here between each point showing one match for each kind. 

Carol: It’s like saying how much would…then you basically break it down into saying instead of 

1 centimeter you have four notches, for one notch you have one-fourth of a centimeter. 

So, that’s another unit rate you can look at instead of per 1 centimeter, it’s per one notch.   

 

Carol’s unit rate statements—“…it is the same as 1 centimeter and you have four notches...” and 

“…1 centimeter you have four notches, for one notch you have one-fourth of a centimeter”— 

suggested her attention to the unit ratio relationship between the radius and the number of 

notches. By the first statement, Carol implied that 3-cm-to-12-notches relationship was 

equivalent to the 1-cm-to-4-notches relationship. The exchange showed that because Carol knew 

that there were four notches per 1 cm radius, she partitioned the whole strip into four equal parts. 

For Carol, the whole strip represented a 1-cm radius, and the four small boxes below the strip 

represented four notches. She verbally explained the association between four parts and the 

whole strip saying, “…this is three-fourth of 1 centimeter.” Hence, this statement made it clear 

why she shaded three parts of the whole strip. Carol also stated the association between the four 
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boxes—represented the notches—and the strip diagram—represented 1-cm radius—verbally 

saying, “…we have three of our four notches is to 
3

 4
 of a centimeter…” Therefore, for Carol, 

each part in her strip diagram represented one-fourth of 1 cm as shown by her annotation (see 

Figure 39). Because three parts formed 
3

 4
 of a centimeter, she matched each of the three parts 

with one box and determined the number of notches to be three. This example showed that 

Susan’s determination of the unit rate between the radius and the number of notches facilitated 

her making sense of the correct answer.  

 

Figure 39. Carol’s strip diagram strategy. 

Some exchanges later, similar to the previous example, setting up a 
3 𝑐𝑚

 10 𝑛𝑜𝑡𝑐ℎ𝑒𝑠
=

 
6

 5
 𝑐𝑚

 𝑥 𝑛𝑜𝑡𝑐ℎ𝑒𝑠
 

proportion and cross-multiplying the values, Carol calculated the number of notches of Gear B, 

with a 
6

 5
 cm radius, to be four notches, given that Gear A had a 3-cm radius and 10 notches. 

When asked if she could use another strategy, Carol said she could make a table (Figure 40):  

Carol: So, you can do…let’s do it for every, since we’re working with this, let’s do it for every 

fifth of a centimeter. So, for one notch gives you…let’s do it per notch instead. So, you 

have notches here and then centimeters, you know for 10 notches you have 3 centimeters.  

And then you know for 1 notch you have three-tenths of a centimeter. So, for 2 notches 

you’re going to have 0.6 because for 1 notch is 0.3. If you add another notch for 0.3 

centimeters, you just add 0.6. So, then you have for 3 notches, it’s going to be 0.9 

because you added another 0.3 and then for 4 notches, it’s going to be 1.2 and so on until 

you get 3 centimeters for 10. And you would hopefully notice that six-fifth, you’re 

looking for six-fifth, and since you’re going to be working with decimals, I would say put 

that in decimal form first, which is 1.2 centimeters. And then once you hit this 1.2 you 

would see, oh, okay, for 1.2 centimeters, I would have 4 notches. 
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Carol attended to the repeated addition of batches as indicated by her double counting approach. 

First, knowing that there were 10 notches for a 3-cm radius, she determined a 1-notch-to-0.3-cm 

radius relationship as one batch, which also was the unit rate. By repeatedly adding this batch, 

she calculated a 1.2-cm-radius-to-4-notches relationship. Therefore, this was another example 

demonstrating Carol’s attention to the unit rate in making sense of her response to a given 

question. When asked if she would prefer addition, Carol stated, “…for me it’s not meaningful 

just because I know that multiplication is just a bunch of addition.” Carol’s statement suggested a 

close association between addition and multiplication when concatenating batches based on a 

unit rate. At the same time, she suggested that if she had been given big numbers such as 100 

notches, she would have needed to multiply the 10 notches by 10 and 3 cm by 10. These data 

suggested that Carol’s preference for repeated addition or multiplication was influenced by the 

numbers involved.  

 

Figure 40. Carol’s ratio table strategy. 

A few exchanges later, when the second interviewer asked how she was making sense of 

her table from the meaning of proportional relationships, Carol explained: 

Carol: It just shows that the proportions…all of these relationships, all these ratios [pointed at 1 

notch and 0.3 cm] are equivalent. The proportions are equal, they stay consistent 

throughout the table. So, but if this was 3 and this was 0.8, it wouldn’t be proportional. If 

this was anything but 0.9 for 3 notches it would not be proportional.   

Int: It is because? 

Carol: Because of the unit rate we found from the original ratio we were given. 
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In the exchange, it appeared that Carol used the terms ratio and proportion interchangeably to 

mean the same thing. Hence, this suggested confusion of the two terms on her part. She also used 

these two terms interchangeably in some other instances. For instance, some exchanges earlier, 

she called the 
3 𝑐𝑚

 12 𝑛𝑜𝑡𝑐ℎ𝑒𝑠
 between measure space ratio a proportion, saying “…if this [pointed at 

3-cm/12 notches ratio] is the proportion that we’re using.” Because a proportion is formed by 

two equivalent ratios, she might have confused the terms ratio and proportion. Carol’s 

explanation “So, but if this was 3 and this was 0.8, it wouldn’t be proportional. If this was 

anything but 0.9 for 3 notches it would not be proportional” provided evidence for her 

understanding of a constant ratio relationship. Thus, these data showed that Carol’s attention to 

the unit rate assured the correct conclusion that the number of notches and radii were in a 

constant ratio. 

Some exchanges later, when asked if there was a relationship between the number of 

notches and the radii in the given questions, Carol described the qualitative relationship: 

Carol: The greater the radius, or the greater the size of the gear, the more notches you’re going 

to have. 

 

When asked if there was a special name for the qualitative relationship that she described, Carol 

stated, “It was a proportional relationship” and explained: 

Carol: The size of the gear and the radius, yeah. And then it’s…I know what you’re asking, I 

just can’t remember the words. Hold on, let me think. It’s a…we did this so much last 

semester in Dr. Anna’s (pseudonym) class…I can’t…I don’t know what it’s called now. 

Oh gosh, it’s the proportional because it is like…if it was like the radius, the bigger the 

size of the gear, the less notches you have it would be an inversely proportional 

relationship. But with this one it’s just a proportional relationship then, because they’re 

both growing in size. They are both getting bigger as you get bigger. The bigger radius, 

the more notches you’re going to have…the greater number of notches you’re going to 

have. So, if your radius gets smaller, that means the size of your circle is getting smaller. 

That means you’re going to have less notches.  
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Although Carol explained that the relationship between the number of notches and radii was 

proportional, she seemed to be searching for another term. Hence, she tried to remember what 

students called it in Dr. Anna’s class. Because the relationship was a directly proportional 

relationship, she might have been trying to remember the term directly proportional. For Carol, 

because the radii and number of notches were both increasing, there was a proportional 

relationship. She also explained that if the relationship could be characterized like this—the 

bigger the size of the gear, the less notches—then it would be an inversely proportional 

relationship. Therefore, these data demonstrated Carol’s attention to qualitative relationships 

when inferring a directly proportional relationship.  

In Task 2A, Carol investigated a directly proportional relationship between the number of 

people and number of cupcakes frosted in a fixed time. For example, in one of the questions, I 

asked Carol to calculate the number of cupcakes frosted by four people in T minutes, given that 

three people frosted N cupcakes in T minutes. She drew a table (Figure 41) and suggested a 

proportional relationship between the number of people and number of cupcakes: 

Carol: Yes, like okay, these [pointed at people and cupcakes] are going to be proportional like 

they’re like… 

Int: What do you mean by…? 

Carol: If this [pointed at people] doubles, then this one [pointed at cupcakes] will double. 

Int: Which are the proportional, [can] you show…? 

Carol: The number of people plus the number of cupcakes. So if…if 300 people worked, then 

300N would be made. If one person worked 1/3 of N person…of N would be made. So, 

these [pointed at people and cupcakes] will be at the same ratio, so if…  

 

As these exchanges and Figure 41 demonstrated, Carol multiplied within separate measure 

spaces to show that the number of people and cupcakes remained in a constant ratio. In the 

exchanges, she slipped and said 300 people would make 300N cupcakes, but some exchanges 

later, she corrected her mistake by saying 100N cupcakes. Her last statement, “So, these [pointed 

at people and cupcakes] will be at the same ratio,” provided evidence for her coordination of a 
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constant ratio relationship between the number of people and number of cupcakes. Therefore, 

these exchanges showed Carol’s attention to the multiplicative relationships within measure 

spaces when inferring a proportional relationship. When asked what she meant by the term ratio, 

Carol explained:  

Carol: I just know that as this [pointed at people] increases, like multiplicatively, this [pointed at 

cupcakes] will increase. It’s not adding. You don’t add three [pointed at people] and then 

add three [pointed at cupcakes]. You don’t add one [pointed at people] and then add one 

[pointed at cupcakes]. It’s like you have to, because like if it was from 3 to 300 people, 

you wouldn’t add 297 cupcakes because they could be making 10 cupcakes per person. 

So, it’s whatever you multiply your original ratio…the ratio goes from this [pointed at 

people] to this [pointed at cupcakes], not this [pointed at people] to this [pointed at 

people]. So, it is three people for N, so six people for 2N, four people for 4/3N, this is 

your original thing, 3 to N. So… 

Int: You said the ratio do not…doesn’t go from that [I pointed at people] to that one [I 

pointed at people], what was the reason for you going from that [people] to that 

[cupcakes] instead of that one [people]? 

Carol: Because it’s…you’re going to com…I don’t…I would, I compare two different 

quantities… 

Int: You compare…? 

Carol: So, if you have three people making N cupcakes, so you have 3 to N. If you have one, 

alright?  It is going to be 1/3N. If you have a 100, it’s going to be…or 300 it’s going to be 

100N. How’d you get from 3 to 100…300, 3 multiplied by 100 and N multiplied by 100. 

Int: So, do you obtain the, these ratios to be equal or different, kind of? 

Carol: They’re equivalent…so they’re proportional in that way…and then yeah, so… 

 

Carol described the increments in the number of people and cupcakes multiplicatively and as a 

simultaneous action. This suggested her understanding of a covariation between the number of 

people and number of cupcakes. Her comparison of the multiplication with addition implied that 

Carol was aware of the consequences of addition and multiplication. When describing the ratio, 

she explained that she would compare values between measure spaces. She did not give a clear 

reason for that, but her explanation suggested that by comparing the values of the two between 

measure spaces, she was able to show that all ratios were equal to the original ratio, which she 

referred to as 3 people to N cupcakes. Her explanation suggested this reason because by 

multiplying and dividing within measure spaces, she showed that 3 people to N cupcakes, 1 
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person to 
1

 3
N cupcakes, and 300 people to 100N cupcakes, stayed at the same constant ratio 

(Figure 41). In her last statement, she provided the equivalence of these ratios as the reason for 

inferring a proportional relationship between the number of people and cupcakes. Therefore, 

these data showed Carol’s attention to the multiplicative relationships within measure spaces and 

equivalence of the between measure space ratios when inferring the constant ratio relationship. 

 

Figure 41. Carol’s ratio table for expressing the number of people and number of 

cupcakes relationship.  

Carol’s reasoning on Task 1A and 2A provided evidence for her coordination of the 

constant ratio relationships. Her knowledge resources in coordinating the constant ratio 

relationships were that she attended to unit rates and qualitative relationships in Task 1A and that 

she attended to the multiplicative relationships within measure spaces and equivalence of the 

between measure space ratios in Task 2A.  

Theme 2: Attention to multiplicative and inverse qualitative relationships when inferring 

inversely proportional relationships. 

In Task 1B, Carol investigated an inversely proportional relationship between the number 

of notches and number of revolutions. Carol recognized that the product of the number of 

notches of a gear by the number of revolutions it made gave the total distance it revolved. For 

instance, in the first question, she needed to calculate the number of revolutions of Gear K, with 
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four notches, given that Gear F, with eight notches, revolved three times. She drew the two gears 

as in Figure 42 and explained as follows: 

Carol: Each notch, since they’re the same…since it’s like there’s same spacing, it is just smaller 

gear than this one [pointed Gear F]. They’re going to, these notches are going to hit 

twice. So, if there’s three rotations for eight, then for four notches there’s going to be six 

rotations. 

 

As is clear in the statement above and Figure 42, Carol’s explanation suggested that her 

understanding that Gear K revolved twice the number of revolutions Gear F had completed was 

based on the notion that each notch on Gear K would be hit twice when Gear F completed a full 

revolution. In Task 1A, Carol found an association between the circumference of a gear and its 

number of notches and explained the directly proportional relationship between the number of 

notches and radius based on this association. Hence, when asked how she could use the same 

idea in this question, she took the radii of Gears F and K as 4 cm and 2 cm, respectively, and 

calculated the circumferences as 8π and 4π, respectively. She then explained her idea that both 

gears would travel the same total length: 

Carol: [Gear F] is 8π centimeters, okay. We want to know how many turns will be made if we 

completed three full turns. So, we’re going to be turning three full turns so it’s going to 

be 24, a total length of 24 centimeters turned. Like, do you see what I’m trying to say 

when I say that? Like, if you had a string and you traced, it’s going to… 

Int: One string is…one turn is the… 

Carol: is 8π. 

Int: And then you say… 

Carol: So three turns gives you 24π centimeters. 

Int: So, the length of the string. 

Carol: Okay, so if, well I don’t know why…hold on umm, because this is, I’m thinking that this 

is…these [pointed at Gears F and K] are going to turn the same distance. 

Int: How do you know they turn the same distance?   

Carol: I don’t know, I just know that if they turn the same distance, they’re going to have a 

different number of turns. And so if this…if you want the both turned 24 centimeters, 24π 

centimeters, this one [pointed at Gear F] took three turns and so this circumference is 4π, 

and you want to turn a complete 24π centimeters, you would, in each turn, and this one 

[pointed at Gear K] has 4π instead of 8π. You would do 24π divided by 4π and that would 

give you six turns. 
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These exchanges showed Carol’s successful coordination of the circumferences of the gears with 

the “distances” they traveled in some number of revolutions. By multiplying the number of 

revolutions of Gear F by the length of its circumference, she calculated the distance traveled by 

Gear F as 24π. Carol explicitly stated that both gears “turn the same distance,” although she did 

not give a clear reason to explain why they were turning the same distance. Carol’s 

multiplication operation in calculating the distances traveled by the gears could be expressed 

with the following multiplication statement: (number of revolutions) * (length of the 

circumference) = distance. Because Carol calculated the circumference of Gear K as 4π and 

divided 24π by 4π to obtain six revolutions, she seemed to attend to the multiplicative 

relationships between quantities. The division that Carol made in this question is called 

measurement division. Therefore, Carol’s mathematical operations and her comprehension of 

two meshed gears traveling the same distance provided evidence for her understanding of using 

constant product to explain the reciprocal relationship between the size of a gear and its number 

of revolutions.  

 

Figure 42. Carol’s drawing depicting the number of notches and revolutions relationship. 

Some exchanges later, when asked to calculate the number revolutions of Gear L, with 

eight notches, given that Gear M with 14 notches revolved four times, Carol calculated the total 

notches being touched on Gear M to be 56 following similar reasoning. She divided 56 by 8 and 
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found the number of revolutions of Gear L to be seven. Because in the question 14 [notches] 

divided by 7 [revolutions] was equal to 8 [notches] divided by 4 [revolutions], by attending to 

the relationship between numbers, Carol observed a numerical inversely proportional 

relationship between the values. During a later exchange, based on the idea of the numerical 

inversely proportional relationship, Carol set the inverse proportion and calculated the number of 

revolutions of Gear Z, with 𝑛2 notches, as 𝑟2 =
𝑛1𝑟1

𝑛2
 (Figure 43), given that Gear T, with 𝑛1 

notches, revolved 𝑟1 times. When asked what 𝑛1𝑟1was, Carol explained as follows: 

Carol: n1r1 is the number of notches times the number of rotations from Gear T. And then n2 is 

the number of notches for Gear Z and so through this, through that, realizing that 

relationship and then setting up like the proportions and cross-multiplying and dividing to 

find x, I just don’t know why it works. 

 

The exchange showed Carol’s explicit multiplicative statement of 𝑛1𝑟1 as a product of the 

number of notches and revolutions; however, she accepted that she did not know why setting up 

a proportion and cross-multiplying worked. She did not notice that the inverse proportion was 

expressing the equality of the product of the number of notches and revolutions in both gears 

(𝑛1𝑟1= 𝑛2𝑟2). Therefore, Carol’s recognition of the inverse proportion by attending to the 

numbers and her inability to notice the inverse proportion expressing the equality of the product 

of the number of notches and revolutions provided evidence for her difficulty understanding why 

setting the inverse proportion and cross-multiplying worked. When asked what 56 meant, Carol 

explained in the following manner: 

Int: What was 56 in your head?  I’m asking what that means. 

Carol: 56 is the number of notches times the number of rotations. Or it could be the number of 

total notches touched, okay? So, like saying, okay, oh that’s why it makes sense. Okay, 

so it’s saying for one full rotation, n1 notches will be touched. 

Int: Yes. 

Carol: Okay, so if you have x, r1 rotations, then that times the notches will give you how many 

total notches were touched throughout those rotations. 
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These exchanges showed Carol’s explicit statement of 56 as the number of notches per rotation 

times the number of rotations and suggested her understanding of a constant product relationship. 

From the context of gears, Carol made sense of 56 by explaining it as “the number of total 

notches touched” on both gears. Hence, for Carol, 𝑛1𝑟1 represented the total number of notches 

that were touched on Gear T in 𝑟1 rotations. When asked why she divided 𝑛1𝑟1 by 𝑛2, Carol 

explained in the following manner: 

Carol: By n2 because you want to know how many times it took Gear Z to make…how many 

times it took Gear Z to touch that many notches. 

 

Carol’s explanation suggested that she divided 𝑛1𝑟1by 𝑛2 to calculate how many times Gear Z 

touched 𝑛1𝑟1 notches. For Carol, because 𝑛2 notches would be touched in one rotation of Gear Z, 

dividing the total 𝑛1𝑟1 notches by 𝑛2 yielded the number of revolutions of Gear Z. Therefore, in 

this example, Carol used measurement division to calculate the number of revolutions of Gear Z. 

Although these data suggested Carol’s understanding of a constant product relationship between 

the number of notches and number of revolutions, her difficulty recognizing the equality of two 

such products suggested she did not fully understand the significance of what she had done by 

setting the inverse proportion and cross-multiplying. 

 

Figure 43. Carol’s inverse proportion and proportion formula strategy in Task 1B.  

In Task 3, Carol investigated an inversely proportional relationship between the number 

of weights hung and the distance from the center of a balance. By playing with plastic weights 
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and hanging them in different places, Carol recognized that the number of weights times the 

distance on one side of the balance was equal to the number of weights times the distance on the 

other side. Hence, in addition to the context of gears, the context of balancing also seemed to 

facilitate Carol’s recognition of a constant product relationship. When asked to describe 

relationship between the number of weights and distance, Carol inferred an inversely 

proportional relationship:  

Carol: So, if you are closer, so if your distance is less, then your weight will be more.  So, as 

your distance decreases your weight increases, so it is like the inverse, like proportional. 

Int: You said proportional, inverse or? 

Carol: Yeah, it’s inverse. 

Int: But how do you know it’s proportional? 

Carol: Because like this like we had a distance of 8, but our weight was 1. 

Int: Okay. 

Carol: Okay. And then we had a distance of 1 but our weight was 8.  

 

These exchanges suggested that Carol’s inference was based on the inverse qualitative 

relationship—“…as your distance decreases your weight increases…”—that she constructed 

between the number of weights and distance. When asked to explain how she knew that the 

relationship was proportional, similar to Susan, Carol attended to pair of values of two quantities 

being swapped to justify proportionality. In Tasks 2B and 4, Carol also worked on the inverse 

proportion questions and usually inferred inversely proportional relationships by attending to the 

inverse qualitative relationships—one quantity is increasing and other quantity is decreasing. She 

did not recognize the constancy of the products in those tasks. Therefore, the contexts of the 

Tasks 1B and 3 facilitated Carol’s understanding of the constant product relationships more than 

the contexts of the Tasks 2B and 4.  
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Theme 3: Difficulty distinguishing directly and inversely proportional relationships from 

nonproportional relationships.  

In Task 1A, when asked what kind of graph she would have if she plotted the directly 

proportional relationship between the number of notches and radii, Carol stated, “A linear one.” 

She drew the linear graph in Figure 44 and explained: 

Carol: Every…for every, like the length of centimeters you have, the amount of notches is going 

to fall on this line. It’s never going to fall off this line as long as it’s a 1 centimeter to 4 

notches ratio.   

 

Carol’s explanation seemed to be consistent with her coordination of the constant ratio 

relationship between the number of notches and radii, which I discussed earlier. She suggested a 

constant 1-centimeter-to-4-notches relationship for each and every notch-to-radii relationship 

that falls on the directly proportional line. Carol’s explanation, consistent with previous data in 

Task 1A, focused on to the unit rate when determining a linear relationship between the number 

of notches and radii. 

 

Figure 44. Carol’s linear graph for expressing the number of notches and radii 

relationship.  

Although I planned to provide three graphs (see Appendix B Task 1B) that consisted of 

quadratic growth, constant difference, and constant sum in Task 1B, I decided instead to provide 

them at this point because I expected to receive an explanation from Carol similar to the one 

provided above when determining the relationships in those three graphs. When asked to 
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compare the relationships in the three graphs with her linear graph (see Figure 44), Carol 

immediately stated that the relationships in Graph B and her linear graph were the same: 

Carol: It would be B, yes.   

Int: Is [it] the same relationship kind of, between x and y here [I pointed at Graph B] with the 

number of notches and radius? 

Carol: I think so because, although it’s not the same slope, it is the same like linear function.  

It’s still y = x + b.  

Int: Is that also…you said this [I pointed at her linear graph] is proportional relationship, 

right? Is that [I pointed at Graph B] also proportional like that one? 

Carol: Yes. The only thing that’s throwing me off is the 0 for 2.   

Int: Sorry? 

Carol: The only thing that throws me off is for 0 of x, you have 2 of y and then for 1 of x you 

have 3 and 4 of x. So like you can’t…like, for some like this, this here, this 0 to 2 is not 

an equal proportion from 1 to 3. So, that’s the only thing that’s throwing me off saying 

that they’re not exactly alike because if they’re exactly alike, they’re going to have…, 

well… 

 

Carol pointed out that Graph B and her graph had different slopes but that they expressed “the 

same” linear relationship, which she claimed to be y = x + b. When asked, she claimed that the 

relationship in Graph B was also proportional; however, she did not seem confident in her claim. 

The reason for Carol’s lack of confidence in her response seemed to be related to Graph B’s 

starting point (0, 2). Although Carol explained that the ratio 0 to 2 was not equal to 1 to 3, her 

responses suggested that she did not have a clear explanation why the starting point (0, 2) 

prevented a constant ratio relationship between x and y quantities. Therefore, she did not see the 

significance of this starting point for inferring a proportional relationship. 

Because Carol’s final statement above included the phrase “if they’re exactly alike,” the 

second interviewer asked what she meant by this phrase. Carol responded to this question as 

follows: 

Carol: Well, I don’t know. Like, if you’re starting from the origin I guess…but I guess it doesn’t 

matter where you start from as long as you know for every 1 it’s going to be 3…No 

because if it was 0, it would be 0 because it is, [sighed] I do not know. 

Int 2: Is that matter or it doesn’t matter? 

Carol: I guess it doesn’t matter. 
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Int 2: It doesn’t. 

Carol: No, because you cannot get divide…the only thing you can divide 1 by to get 0 is 0 or 

something, I don’t know but…or multiply 1. So, I guess it doesn’t matter where you start 

from as long as you see that, like, for every value on the x you’re going to have a value 

for y that lands on this line. And this one [pointed at Graph A] is not like that [pointed at 

her directly proportional graph] because it’s like exponential. 

 

Carol’s response “So, I guess it doesn’t matter where you start from as long as you see that, like, 

for every value on the x you’re going to have a value for y that lands on this line” suggested that 

she did not see the significance of Graph B’s starting at (0, 2). Carol’s response also 

demonstrated her attention to linearity when determining a proportional relationship. 

Furthermore, her statement “…the only thing you can divide 1 by to get 0 is 0 or something, I 

don’t know but…or multiply 1” implied her difficulty with dividing zero. Therefore, these 

exchanges showed that attention to linearity and the presence of “the same” functional 

relationship, which she claimed to be y = x + b, were the two main reasons for Carol’s inference 

of a proportional relationship in Graph B.  

As is clear in her final statement above—“And this one [pointed at Graph A] is not like 

that [pointed at her directly proportional graph] because it’s like exponential”—Carol inferred a 

nonproportional relationship for Graph A, but she misinterpreted the quadratic growth in Graph 

A to be exponential. Similar to Carol, in the pilot study, Robert misinterpreted a hyperbolic 

growth in an inversely proportional graph as exponential. When asked, Carol continued 

explaining her reason for inferring a nonproportional relationship for Graph A as follows: 

Carol: [Nodded] and then, well, I guess it would be because you plotted this line, but these 

[pointing at x and y] aren’t going to be proportional rates, like there’s…because you see 

it’s like a curve. It’s like an exponential curve and then this one [pointed at Graph C] has 

a negative slope, so it’s going to decrease. But this one [pointed at Graph B] is the most 

similar to this [pointed at her directly proportional graph], because it has a positive 

increase. So, this [pointed at Graph C] is like inverse proportionality because as x grows 

bigger, y grows smaller.  

 



177 

 

For Carol, because the line in Graph A was curved, which she incorrectly claimed to be an 

exponential curve, the x and y values were not increasing at a constant rate. She stated her 

observation of the absence of a constant rate by saying, “But these aren’t going to be 

proportional rates.” Therefore, she seemed to infer the nonproportional relationship from the 

absence of a constant rate. Carol’s further explanation supports this interpretation: 

Carol: I mean it…the only reason I say it is not directly proportional is because of…for every 1, 

it’s a 1 and then you go over 1 and it’s a 4. And then you go over another 1 and it’s a 9.  

It’s not the same unit rate for all the things. So, like if these were connected as a slope 

like this, not all the ys would fall. You see what I’m saying? It’s like an exponential…I 

don’t know the word is for it.  

 

In her explanation, Carol explicitly stated that there was not a constant rate of change in Graph 

A—“It’s not the same unit rate for all the things”—and for her that was the reason that Graph A 

did not depict a proportional relationship. As seen in the preceding exchange, Carol inferred an 

inversely proportional relationship in Graph C based on an inverse qualitative relationship—

“…as x grows bigger, y grows smaller.” Therefore, Carol’s inference of the inversely 

proportional relationship between x and y was consistent with her definition of what an inversely 

proportional relationship was.  

When asked for clarifications of her responses regarding the relationships in Graphs A, 

B, and C, Carol explained as follows: 

Int: And these are…this is [I pointed at Graph C] you said inversely proportional and this is [I 

pointed at Graph B]? 

Carol: Proportional. 

Int 2: Because the slope is constant? 

Carol: Yeah, on this one [pointed at Graph B]. 

Int 2: Is slope was also constant in this one [pointed at Graph C]? 

Carol: It is constant, but it is inverse because as your x increases, your y decreases.  

Int 2: Hang on, just one more time, just for clarification, you say that for proportionality the 

slope should be constant and both variables should increase, and if slope is constant but if 

one is decreasing the other increases then it is not a proportional. 

Carol: No it is still proportional it is just inversely proportional. 
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Carol’s main points of focus in determining proportionality was the constancy of the rate of 

change and linearity of the graphs. It was clear from the data that after determining the constancy 

of the rate of change, she decided that the relationship was either directly proportional or 

inversely proportional based on the qualitative relationships between the two covarying 

quantities. It appeared that for Carol, the term inverse meant “opposite,” and so the inversely 

proportional relationship in Graph C was in some sense the opposite of the proportional 

relationship depicted in Graph B. Carol did not indicate that Graphs B and C showed a constant 

difference and a constant sum between x and y, respectively. In Task 1B, when asked to draw the 

graph of the relationship between the number of notches and revolutions, Carol drew the graph in 

Figure 45, where the line was almost straight. Although she explained that the line did not 

intersect the x- and y-axis at zero and that there was not a constant slope, her drawing was 

consistent with her incorrect inference of an inversely proportional relationship in Graph C. 

Thus, these data suggested that Carol attempted to integrate certain features of the context (i.e., 

constancy of the rate of change and linearity of the graphs) with her understanding of inverse but 

did not recognize that relationships in Graphs B and C were nonproportional.  

 

Figure 45. Carol’s inversely proportional graph. 
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Theme 4: The use of proportional reasoning strategies when solving proportion questions and 

difficulty interpreting the cupcake order in terms of cupcakes. 

In the previous pages, I presented several ways that Carol inferred whether relationships 

were directly proportional, inversely proportional, or neither. Hereafter, I will explain some of 

the strategies that Carol used to solve the given multiple and single proportion questions and the 

difficulties that she encountered while solving those questions. For instance, in Task 2B, Carol 

investigated an inversely proportional relationship between the number of people and number of 

minutes required to frost a fixed number of cupcakes. When asked how long it would take for 

four people to frost N cupcakes, given that three people frosted N cupcakes in T minutes, Carol 

used a ratio table strategy and by reasoning within measure spaces, she found the correct answer 

to be  
3

4
𝑇 minutes. She offered the following explanation for her solution: 

Carol: For four people? Three people, four people, T time…alright…how’d you get from 3 to 

4…multiply it by four-thirds, yeah. So, to get you do the opposite so T times three-

fourths and you would get three-fourths of the time because like I said, the more people 

you have the less time it will take and if the time is like divvied up, so like 

you’re…here’s like one person, here’s one person, here’s one person, so then you have, 

okay, T here, so a third of T, a third of T, if you divvied up the time like that and then if 

you add another, hold on, trying to do it in my head, but now I don’t. Then, you still have 

like a third of the T, this [wrote a third of T over the three people she drew] is like a third 

of T. But now that you have of the T and we don’t know T. So now that you have 4 

people, these thirds are going to be split up by like 4, so you have like 1, 2, 3, and then 

here’s 4. So, you have four total people and then you have just the thirds of the time split 

up because this was like your original thing. So, then you have three ways split up over 

four people. Does that make sense? That’s the way I saw it in my head. I don’t think 

that’s imagined to be correct, like I don’t know. Never mind, it’s just how I looked at it. 

But I know that, just based on this, if it is four-thirds here, it’s going to be three-fourths 

there. 

 

Although Carol correctly solved the question by reasoning within measure spaces and forming 

an inverse qualitative relationship that “the more people you have the less time it will take,” her 

attention to the inverse qualitative relationship and to the numbers indicated that she did not 

necessarily understand why 
3

4
T minutes made sense. Hence, she had difficulty coordinating the 
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cupcake order with the number of people. She wanted to make a pictorial representation of the 

question to explain the solution (Figure 46) but tended to interpret the cupcake order in terms of 

minutes rather than cupcakes. She distributed T minutes evenly among the three people, which 

suggested her misunderstanding that people worked sequentially instead of concurrently. 

Because one additional person joined the original three people, Carol then explained that she 

needed to split up 
1

3
T minutes over four people and that for her there were “three ways split up 

over four people.” Carol’s phrase “three ways split up over four people” indicated that she was 

reasoning in a way similar to sharing three objects among four people. Therefore, her reasoning 

suggested that she had been attending to the numbers and looking for a way to get 
3

4
T minutes. 

Ultimately, she admitted that this was the way she saw the question in her head and stated that 

she did not think it was a correct solution.  

 

Figure 46. Carol’s pictorial representation of the number of people and time relationship.  

When asked how she divvied up T minutes by three people, Carol explained as follows:  

Carol: I do not know. I don’t think…I think that’s the one way to look at it. It doesn’t make 

sense anymore. It made sense in my head and after I drew it, I don’t know, it didn’t make 

sense. Because the more people you have, if you’re like dividing up your time by the 

number of people that you have, then it will be 1/4 T with four people and so it does not, 

it does not, like…never mind, just…. 
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Although Carol recognized that her pictorial representation did not make sense, her explanation 

of dividing up T minutes by four people suggested that she was still thinking of the cupcake 

order in terms of minutes. To understand whether she was thinking people working sequentially 

or concurrently, I asked the following question: 

Int: Do you think they work…do you think those people working in this bakery…work 

like…say we three working at this bakery. Like we make some number of cupcakes in T 

minutes like say 12 minutes, okay? So, do you think you work 4 minutes, Rachel 

(pseudonym) works 4 minutes, and I work 4 minutes? 

Carol: No, we all work 12 minutes. 

 

Carol’s response suggested that she seemed to understand that all of us were working 12 

minutes; however, it was not clear whether she thought three of us were working concurrently or 

sequentially. She then explained: 

Carol: But like if somebody’s working, we’re all going to work the same amount of time, the 

total time that it took. Like you’re not…I’m not going to work harder, I’m working 4 

minutes and now it’s your turn to work 4 minutes, we’re all going to work the 12 

minutes, so. 

 

Carol’s statement, “…I’m working 4 minutes and now it’s your turn to work 4 minutes. We’re 

all going to work the 12 minutes…” can be interpreted as a rejection for a sequential working 

order because she was focusing on 12 minutes.  

Because Carol focused on sharing the number of minutes among the number of people, 

she had difficulty making sense of the correct answer. Therefore, I reoriented her attention 

toward sharing cupcakes by asking how many cupcakes each of us would frost in 12 minutes, 

she correctly stated that it was one-third of N cupcakes. Henceforth, she decided to use N 

cupcakes to explain the solution. She drew four people again and correctly explained that four of 

us were frosting four-thirds of N cupcakes in 12 minutes (Figure 47). Carol then correctly 

calculated the time required for four people to frost N cupcakes as 9 minutes and explained:  
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Carol: Then instead of it being four-thirds of N, it will be three-fourths of 12 because it’s that 

inverse proportion. If we’re keeping N the same, it’s going to take less time to frost the 

same amount of minutes. And if each person is frosting a third of N, then instead of 

having four-thirds of N, we have three-fourths of the time that it took because of that 

inverse relationship that they have. So, it would be three-fourths of 12 and that is 9. 

 

Carol’s response showed that she did not seem to see that 
1

4
N cupcakes was three-fourths of 

1

3
N 

cupcakes, so the time needed to frost 
1

4
N cupcakes was three-fourths the time required to frost 

1

3
N cupcakes. In addition, she also slipped when saying “If we’re keeping N the same, it’s going 

to take less time to frost the same amount of minutes.” Whereas she needed to say that it’s going 

to take less time to frost the same amount of cupcakes. All these data in Task 2B did not suggest 

a clear explanation for Carol’s inappropriate approach of distributing the number of minutes 

evenly among the people but suggested her possible confusion. Sharing N cupcakes among four 

people would hold with her representation; however, sharing number of minutes among four 

people did not work that way. Hence, her previous experience with sharing some number of 

objects evenly among the people and the involvement of the time concept might have led to her 

confusion. In addition, Carol did not seem to see the constant product relationship between the 

number of people and number of minutes, and that appeared to affect her making sense of the 

correct answer. 

 

Figure 47. Carol’s second attempt to explain the number of people and time relationship. 
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In Task 4, Carol investigated relationships among the speed of a car, the distance it 

covered, and the time to travel that distance. The first question of the task concerned calculating 

the speed of a car that covered a certain distance in 60 seconds, given that another car covered 

the same distance in 90 seconds at 60 mph. Carol incorrectly set up a direct proportion and by 

cross-multiplying the values, she calculated 40 miles per hour to be the speed of the first car 

(Figure 48). She immediately recognized that the answer she found was not correct: 

Carol: Yeah, I cross multiply by, but it’s not going to equals 90x and x equals 40 but that 

doesn’t make sense because if you are traveling the same distance in the shorter amount 

of time, your speed will be…will increase, not decrease. So, that’s not right, that’s why I 

x’d it out…let me think, hold on…So, if you traveled X distance in 90 seconds at 60 mph 

and you want to travel X in 60 seconds and you want to know how much…how fast that 

would take. Gosh, I don’t know…It would be I think it’s…well if your time is 

decreasing, your speed is increasing because your distance’s staying the same, right? 

 

Carol’s determination of the inverse qualitative relationship, which she stated by saying “if your 

time is decreasing, your speed is increasing,” seemed to help her understand that her claim of the 

speed of the car as 40 mph was incorrect. In her explanation, Carol considered the distance to be 

fixed when determining the inverse qualitative relationship, and this provided evidence for her 

proficiency in determining qualitative relationships if more than two quantities were presented. 

Although Carol recognized that setting up a direct proportion was an inappropriate strategy, she 

seemed to have difficulty finding a more appropriate strategy to solve this question. 

 

Figure 48. Carol’s incorrect proportion formula strategy in Task 4. 

A few exchanges later, by multiplicatively comparing quantities in within separate 

measure spaces, Carol correctly calculated the speed to be 90 miles per hour. She then explained: 
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Carol: Or this [pointed at 90 seconds] would decrease or times…this [pointed at 60 seconds] is 

two-thirds of 90, yeah. So, times two-thirds…so, then you’re going to…if you’re 

multiplying this [pointed at 90 seconds] times two-thirds, you’re doing the inverse, so 

you’re going to multiply this [pointed at 60 mph] by three-halves. And so 60 times 3, 180 

divided by 2 is 90. 

Int: 90…? 

Carol: 90 seconds…90 mph.  

 

This exchange demonstrated how Carol coordinated the numerical multiplicative relationships 

within separate measure spaces of speed and seconds with the inverse qualitative relationship. 

When she discussed her solution, Carol suggested working with within measure spaces instead of 

between measure spaces: 

Carol: You can, but I don’t. I suggest keeping your units together. 

Int: Okay. You said you can if you do that kind of relationship multiplicative? 

Carol: Well, I mean that you’re like I think it only works because you [have] 60 miles per hour 

in 60 seconds.  

 

By saying “I suggest keeping your units together,” Carol appeared to imply comparing quantities 

with the same units (i.e., seconds with seconds and mph with mph), and so suggested reasoning 

within measure spaces. For Carol, because the given numbers were the same, 60 mph and 60 

seconds, it was okay to multiply between measure spaces for this specific question. Perhaps, 

because Carol did not recognize the constancy of the products, she might have assumed that 

reasoning between measure spaces would be incorrect except for some specific situations. 

Therefore, this exchange demonstrated how Carol used specific features of the problem situation 

to choose one solution strategy over another. 

Case Four: Helen 

Summary 

Helen accurately inferred directly and inversely proportional relationships in the given 

tasks. Although she was successful in making multiplicative comparisons between and within 

measure spaces, her main knowledge resources for inferring directly and inversely proportional 
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relationships was that she attended to qualitative relationships and constancy of rate of change. 

Therefore, she had difficulty distinguishing directly and inversely proportional relationships 

from nonproportional relationships that consisted of a constant difference or a constant sum. 

Similar to Carol in Task 2, she tended to interpret the cupcake order in terms of minutes rather 

than cupcakes. With the exception of Task 1A, she usually preferred reasoning within measure 

spaces when solving single and multiple proportion questions. She also reasoned in a variety of 

ways about proportional relationships. Helen expressed directly and inversely proportional 

relationships using graphs, double number lines, formulas, tables, pictures, or with some 

combination. 

Cross-Task Analysis 

In Chapter Three, I determined four themes, which I provided in Table 2, for Helen’s 

case based on the thematic analysis. In the following pages, I discuss these four themes to 

explain Helen’s reasoning across tasks. In the first theme, I explain Helen’s attention to 

numerical multiplicative relationships between measure spaces and qualitative relationships 

when inferring directly proportional relationships in Tasks 1A and 4. In the second theme, I 

analyze Helen’s attention to inverse qualitative relationships and the context of balancing when 

inferring inversely proportional relationships in Tasks 1B and 3. In the third theme, I discuss 

Carol’s difficulty distinguishing the directly and inversely proportional relationships from the 

nonproportional relationships in Task 1B. In the last theme, I conclude the cross-task analysis 

with a discussion of selected proportional reasoning strategies that Carol used to solve the given 

questions across tasks.  
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Theme 1: Attention to numerical multiplicative relationships between measure spaces and 

qualitative relationships when inferring directly proportional relationships. 

In Task 1A, Helen explored a directly proportional relationship between the number of 

notches and radii. She usually made multiplicative comparisons between measure spaces to solve 

the given questions. For example, in one of the questions, I asked Helen to calculate the size of 

Gear D with 21 notches, given that Gear E with a 4-cm radius had 14 notches. She explained: 

Helen: Okay. I can just do the same as I did before. So, I have 4 over 14 which is two-sevenths. 

So, this 4 cm is two-sevenths of 14 notches, and so I have to ask myself what x amount of 

cm is two-sevenths of 21. So, I have 21 times two-sevenths which is 42 over 7 which is 6 

cm, yeah for D.  

 

Although Helen considered the referent units in her statement, “...4 cm is two-sevenths of 14 

notches,” her reasoning and multiplication statement (Figure 49) suggested that she might have 

been attending to a numerical multiplicative relationship between the radii and number of 

notches. Helen’s statement, “…so I have to ask myself what x amount of cm is two-sevenths of 

21,” showed that she was searching for the same multiplicative relationship (radius is two-

sevenths of number of notches) between measure spaces for Gear D. Therefore, she multiplied 

21 notches by 
2

7
 and found that the radius of Gear D was 6 cm. In the multiplication statement 

(see Figure 49), Helen used 
2

7
 without its referent unit—cm/notch—and that was the reason for 

claiming she was attending to a numerical multiplicative relationship. From the meaning of 

multiplication, the correct statement needed to be (21 notches) * (
2

7
 cm/notch) = 6 cm. Although 

Helen did not infer a directly proportional relationship between the number of notches and radii, 

the multiplication statement in Figure 49 suggested that she expected to have the same constant 
2

7
 

ratio relationship between 21 notches and 6 cm. Thus, these data can be given as a sign of 

Helen’s expectation of a constant ratio relationship between the number of notches and radii. 
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Figure 49. Helen’s multiplication statement for explaining the radii and number of 

notches relationship. 

Some exchanges later, I asked Helen to calculate the number of notches on Gear B with a 

6-cm radius, given that Gear A had a 3-cm radius and m notches. In her solution, Helen made 

multiplicative comparisons within measure spaces rather than making multiplicative 

comparisons between measure spaces and explained: 

Helen: Well, I think since well I would say that if this is [pointing out 3 cm and m notches] unit 

rate so I would have basically 1m like there is a certain amount of notches for 3 cm. So, 

since I do not know what this [pointed at the number of notches of Gear B] is and I have 

6-cm, I double this [pointed 3-cm] so I would just say that 2m will give me 6 cm so we 

are looking for. 

In the previous questions of this task, Helen was given numbers that she used to identify the 

numerical multiplicative relationships between measure spaces. In the current question, Helen 

identified the multiplicative relationship within measure spaces and correctly determined the 

number of notches to be 2m. Helen’s inclination towards reasoning within measure spaces might 

have been based on the number of notches being represented by the letter m and the fact that 

doubling the numbers of centimeters and notches allowed working with the same units. When 

reminded that she talked about unit rates in the previous questions and asked what the unit rate 

was in this question, Helen explained: 

Helen: Actually I do not know because if we have 1m. 

Int: Okay. 

Helen: I was just saying it is like 1 but that does not make sense.  

Int: One? One notch? 

Helen: We do not know it. I am…just like m, I am just saying if we have 1m, if it is m and then 

we know that for every m there is 3 cm that since we already know that three times…like 

doubling three is six. We doubled what he had here [pointed at 3 cm and m notches] so 
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that's why we would say there is 2m because that would be as just we have 3 m plus 3 m 

is 6 and 2m. Like this [pointed at 3 and m] is be 6 and 2m. Like I was saying that is how I 

think about it. 

 

In the exchanges, Helen did not recognize that the unit rate between the radii and number of 

notches could be stated as either there is 
𝑚

3
 notches per 1 cm radius or 

3

𝑚
 cm radius per 1 notch. 

Her difficulty seemed to be related with the involvement of the letter m. On the other hand, by 

the phrase “for every m there is 3 cm,” Helen characterized a fixed ratio relationship between the 

number of notches and radii, and she used a multiple batches approach (Figure 50) to explain her 

solution. In her approach, she seemed to consider the 3-cm-to-m-notches relationships as a batch 

and, by adding two batches, determined a 6-cm-to-2m-notches relationship. Therefore, Helen’s 

reasoning in this task demonstrated a possible discomfort about forming multiplicative 

relationships between measure spaces in the absence of numbers and suggested constraints in the 

extent to which she could coordinate constant ratio relationships between two covarying 

quantities.  

 

Figure 50. Helen’s repeated addition of the batches in Task 1A.  

In Task 4, Helen explored relationships among the speed of a car, the distance it covered, 

and the time to cover that distance. For example, in one of the questions, I asked Helen to 

calculate the time required for a car, which was traveling at a constant rate, to cover 16 miles, 

given that it traveled 40 miles in 50 minutes. She used a ratio table strategy, but incorrectly 

inferred an inverse relationship between the distance and time.  

Helen: So, I can just do the table. So, if I was traveling 1 mile it would take me more, like it 

would take me longer to travel 1 mile at the same rate.  
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Int: Yeah at the same rate, sorry I forgot to mention that. You are driving at the same 

rate…same speed. 

Helen: So, that means it would take 2,000 minutes for 1 mile. 

Int: Okay. 

Helen: Right? Because 4 times 5 is 20 yeah that is right yeah that time I have two zeros that is 

2,000 yeah yeah that is right. Okay so then to get to 16 miles, that [pointed at 1 mile] 

would times by 16, so that means I would divide this [pointed at 2,000 minutes] by 16. So 

it would be 2,000/16, which is [simplifying, obtained 125 minutes]. So, 16 miles ohhh 

that does not make sense.   

 

It was possible that because earlier Helen studied an inversely proportional relationship between 

speed and time, she might have confused the distance and speed concepts because the units of 

both concepts involve the term mile (mile and miles per hour). Similarly, in the pilot study, Sally 

and Jason incorrectly stated an inversely proportional relationship between the distance and time 

on the same task. Hence, the involvement of the time concept appeared to affect Helen’s 

incorrect inference. When she determined the time it would take to cover 16 miles as 125 

minutes, Helen recognized the mistake and said, “…ohhh that does not make sense.” When 

asked why 125 minutes did not make sense to her, Helen explained:  

Helen: Because if I traveled less miles...  

Int: Less miles comparing 40? 

Helen: Ohh wait I just realized okay these two problems were different. 

Int: Which ones? 

Helen: This one [pointed at part a] and this one [pointed at part c]. So, I was doing the same 

thing that I did here [pointed at part a] with this but that is not the same because for this 

one I am traveling a certain distance in 90 seconds at 60 miles in 1 hour. So, if I want to 

cover the same distance…in less seconds, I have to travel faster so it is inversely 

proportional. But this one [pointed at part c] if I travel 40 miles in 50 minutes…then to 

travel 1 mile it is, if I am just traveling wait if I am just going to travel just 1 mile it is 

going to take less time.    

 

In these exchanges, Helen recognized that while driving at the same rate, covering 1 mile must 

have taken less time than covering 40 miles. These exchanges supported my conjecture above for 

Helen’s incorrect inference of an inversely proportional relationship between the distance and 

time, because she admitted her confusion of the directly proportional relationship in the current 
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question with the inversely proportional relationship in the previous question. For Helen, because 

in the previous question she was covering “the same distance in less seconds,” there was an 

inversely proportional relationship between the speed and time. She then stated “…if I am just 

going to travel just 1 mile it is going to take less time.” Therefore, these statements indicated that 

Helen’s inferences of directly and inversely proportional relationships were based on her 

attention to qualitative relationships.  

In her second attempt to solve the question, Helen reasoned between measure spaces. 

Hence, she set up the proportion in Figure 51, cross-multiplied, and correctly determined the 

time to be 20 minutes.  

Helen: The same speed. Okay so basically what I did here was I said how many…so the speed 

here miles per minute, I am trying to…same miles per minutes, in this [pointed at 40 

miles/50 minutes = 16 miles/? min] I want, I need it to be the same.    

Int: Why do you want those equal to that? 

Helen: Because you want the same speed. And if the speed is miles per minutes this speed 

[pointed at 16 miles/? min] has to be the same miles per minute. 

Int: Do you mean this is the speed [I pointed at 40 miles/50 minutes]? 

Helen: This one [pointed at 40 miles/50 minutes], it is the speed.   

Int: Okay. 

Helen: So this speed [pointed at 16 miles/? min] you want the speed equal each other.  

Int: Then you interpret those two as speeds. 

Helen: Right so basically I am looking at this 40 to 50 equals 16 to 20 [she wrote 40/50 =16/20]. 

So if I reduce this [pointed at 40/50] to four-fifths this [pointed at 16/20] also equals four-

fifths. These ratios are the same.  

 

These exchanges demonstrated that Helen coordinated the multiplicative relationships among the 

speed, distance, and time, because she explained that speed was expressed by the ratio between 

the distance and time. She seemed to deduce this expression from the fact that the unit of speed 

was written as “miles per minute.” Because the cars were driving at a constant rate, Helen 

showed that both 
40 𝑚𝑖𝑙𝑒𝑠

50 𝑚𝑖𝑛
 and 

16 𝑚𝑖𝑙𝑒𝑠

20 𝑚𝑖𝑛
 were equal and could be simplified to  

4

5
. Therefore, by 

equating the rates, Helen explained a constant ratio relationship between the distance and time.  
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Figure 51. Helen’s expression of the constancy of the between measure space ratios.  

Thus, in Tasks 1A and 4, Helen made multiplicative comparisons between measure 

spaces and attended to the qualitative relationship—the less distance in less seconds—when 

inferring directly proportional relationships. She was comfortable identifying numerical 

multiplicative relationships between measure spaces when numbers were presented, but forming 

multiplicative relationships between measure spaces in the absence of numbers may have 

required more effort. 

Theme 2: Attention to inverse qualitative relationships and the context of balancing when 

inferring inversely proportional relationships.  

In Task 1B, Helen explored an inversely proportional relationship between the number of 

notches and number of revolutions. To solve the given questions, she usually used a ratio table 

strategy that involved multiplying and dividing the values within separate measure spaces 

simultaneously. For example, when asked to calculate the number of revolutions of Gear L, with 

eight notches, given that Gear M, with 14 notches, revolved four times, Helen generated the ratio 

table in Figure 52 and explained: 

Helen: Okay so I just do 14 notches and then 4 revolutions [generating a ratio table]…So, for 

one, for one notch I would divided by 14, so I do 14 divided by…ohh four divided by, 

ohhh since I divided by 14 to get one notch, I would do four times 14 to get the number 

of revolutions. So, for one notch for these new L and M, I would have 56 revolutions.  

Int: You are dividing and multiplying because? 

Helen: Because this is an inverse relationship. So, to get 1 to 8 I multiply by 8. So, that means I 

have to divide by 8 here [pointed at 56 revolutions]. So, it will be seven revolutions.  
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Int: Does that make sense looking at the number of notches?  

Helen: No, does it? Ohh yeah it does make sense because…since I have 14 notches and four 

revolutions that means if I have smaller number of notches I am going to need more 

revolutions. 

 

According to Helen’s explanation, she was multiplying a quantity on one side of the table by a 

number and dividing the covarying quantity on the other side by the same number, because for 

her there was an inverse relationship between the number of notches and revolutions. These data 

suggested that her determination of the inverse relationship was based on the inverse qualitative 

relationship that she described by saying, “…if I have smaller number of notches I am going to 

need more revolutions.” I reminded Helen of how she used the unit rate concept to explain the 

relationship between the number of notches and the radii, and I asked if there was something 

similar in this task. I expected Helen to recognize that the product of the number of notches and 

revolutions was always equal to 56. She did not express the constancy of the products but 

explained: 

Helen: Well it was different than the other one because whatever you do to the one you have to 

do opposite to the other because of it is an inverse relationship. And like same with this 

since I multiply it here I divide it here. And so for this type of problems with like 

revolution and relationships that like that is what we have to do this, do the opposite. 

 

Helen’s explanation provided evidence for how she distinguished the relationship between the 

number of notches and number of revolutions from the relationship between the number of 

notches and radii. For Helen, an inverse relationship was the reason for multiplying and dividing 

the values of two separate within measure space quantities by the same number. Although I 

provided Helen with opportunities to identify a constant product relationship, she did not express 

the constant product between the number of notches and number of revolutions in her ratio table.  
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Figure 52. Helen’s ratio table for expressing the number of notches and revolutions 

relationship. 

In Task 3, Helen explored an inversely proportional relationship between the number of 

weights hung on a balance and the distance from the center of the balance. To clarify what the 

task was about, I explained that W1 number of weights was hung at D1 distance on one side of 

the balance, and W2 number of weights was hung on the second side. The first question was 

about determining D2, the distance in the second side, in terms of D1, W1, and W2. By hanging 

different variations of weights, Helen recognized that the product of the number of weights and 

distance was equal on both sides. Therefore, she expressed the relationship between the number 

of weights and distance with W1*D1 = W2*D2.  

Helen: Well I think, well I was, I think that W1 or yeah W1 times the distance, distance one 

would have to equal, would has to equal W2 times the distance in order to balance [she 

wrote W1D1=W2D2]. So in order to find out what D2 is, I would just do W1 times D1 

divided by W2.  

Int: How do you know that [I pointed at W1D1] one was equal to this two [I pointed at 

W2D2] to balance? 

Helen: Well if they are balanced like they have to be the same on both sides in order to balance. 

Int: Same what? 

Helen: The same value or the same weights essentially because if this is like one out here 

[pointed at number 10] like there has to be more, they just have to equal to same, like 

these two numbers [pointed at W1 and D1] multiplied by each other equal to same. 

 

The exchanges provided evidence that Helen’s recognition of the constant product relationship 

between the number of weights and distance was based on her understanding of balancing—
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“Well if they are balanced like they have to be the same on both sides in order to balance.” It 

appeared that Helen determined this constant product relationship by experimenting on the 

balance system, but it was possible that she might have had past instruction on balancing and that 

might have helped her determining the constant product relationship. Hence, the context of 

balancing seemed to be helpful in Helen’s determination of the constant product relationship.  

Some exchanges later, I asked Helen if she could generate a ratio table from the values of 

quantities that she needed to use to balance the system on one side, given that on the other side 

six weights were hung on a 4-cm distance from the center. Using the balance formula, Helen 

multiplied 6 by 4 and got 24 and explained that she needed combinations of 24 on the other side. 

Helen: Okay so I guess the first way is try about it is that I have 4 cm and then six weights, so 

based on this W1D1=W2D2, I started off by thinking okay well I multiply this and that is 

4 times 6 is 24 and…so, what are the like what are the…possible combinations that I can 

come up with. So, I can do…I can do 4 and 6, I can do…four weights on 6 cm away. So, 

I can try that first [she hung six weights at 4 cm], that works. And then I could do…three 

weights, so three weights on 8 cm.   

Int: Do you want to talk about anything? 

Helen: Well all these [circled pairs of weights and distances] values here like if I multiply these 

together they have to equal 24 for to balance.   

Int: What is that 24? 

Helen: Twenty four is the amount of distance and weight of the first side. Yeah like I showed 

here that this is four weights on the distance of six from the center, so that is why it has to 

be 24.  

 

Helen searched for “possible combinations” of 24, and by circling each pair (Figure 53), she 

showed that the products were all equal to 24. When asked what 24 was, she said, “Twenty four 

is the amount of distance and weight of the first side.” As I discussed in the previous paragraph, 

Helen considered the product of the number of weights and distance to be a value or an amount.  

Therefore, these exchanges provided evidence for Helen’s explicit attention to the constancy of 

the products of number of weights and distance. These data suggested that Helen’s recognition of 

the constant product relationship was based on her attention to the numbers or, as I discussed in 
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the preceding paragraph, she might have recalled this constant product relationship from a past 

instruction on balancing. 

 

Figure 53. Helen’s ratio table for expressing the number of weights and distance 

relationship. 

Some exchanges later, when asked if it was a coincidence that all products were equal to 

24, Helen explained: 

Helen: No, it is not a coincidence because they need to equal to 24 to balance out. 

Int: To balance out. I mean this is…is this related to the balance issue or for any inversely 

proportional relationship do you need that you know products being equal? Like in the 

revolution task, I remember you did not discuss that kind of thing.  

Helen: Because the balance. 

Int: The balance issue. 

Helen: Yeah if I would go back to that [revolution task] and look at the balance issue then maybe 

it would. I would make... 

Int: The revolution issue do you mean? 

Helen: Right if I compare the revolution issue to balance maybe it would, it probably would. 

 

For Helen, to balance the two sides of the system, she needed all products equal to 24. When 

asked if the products were equal because of the balancing issue or applied to any inversely 

proportional relationship product, Helen stated that it was because of the balancing. Hence, 

Helen’s response suggested that she might not have a well-developed coordination between 

inversely proportional relationships and the necessity of products being constant. Helen then 

returned to Task 1B to investigate whether the relationship between the number of notches and 

number of revolutions could be explained by the idea of balancing.  
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Helen: So, it would be well if I, let's…I can compare it to the how I have it here. So, that they 

linked, like I could just say like L1 times ohh not L1, N1 times R1 equals N2 times R2.  

Int: Which is? 

Helen: Number of notches and the number of revolutions. So, if I have eight notches and R1, I 

do not know. That was equal to 14 notches and four revolutions. [Multiplied 14 by 4] So, 

I would have R1 or 8R1 equals 14 times four and then 56 divided by [8]…seven. Okay, 

so basically this [pointed at 14*4] is equal to 56 and I need this [pointed at 8*R1] to equal 

to 56 as well. So, what can I multiply eight by to bala…basically yes like balance, it is 

56. So, what times eight would give me 56, it will be 8 times 7. So 8 times 7 is equal to 

14 times 4. 

Int: In your ratio table you also obtained seven revolutions for that one right? 

Helen: Right. So, these all multiply and equal, this [pointed at 14 notches and four revolutions] 

equal 56 here, this [pointed at one notch and 56 revolutions] equal to 56, the product is 

56, and then the product of these [pointed at eight notches and seven revolutions] is 56 

here.  

Int: You could not recognize that one that time because…the reason was? 

Helen: The balance, I think the balance helped me to connect. 

 

Helen’s immediate determination of the equation N1*R1=N2*R2 suggested that she might have 

been following the same multiplicative structure presented in her balance formula because she 

did not interpret her equation in terms of equal groups of notches for each rotation. Multiplying 

the values of number of notches and number of revolutions that she presented in her ratio table 

(see Figure 52), Helen determined that all products were equal to 56. For Helen, the products 

were all equal to 56 in both sides of her equation N1*R1=N2*R2 and that was supporting her 

claim the products being equal because of balancing. Helen’s reasoning demonstrated that she 

used the equal signs in her balance formula and in equation N1*R1=N2*R2 to represent the 

concept of balancing, because she explained:  

Helen: I think it is just because of what I was presented with like balance, so I used the equal 

sign as the balance. So, when I see that these two quantities would have to equal for to 

balance. So, that is how I came up with. I used it like resembled this balance. 

 

I do not have enough evidence about why Helen did not recognize the constancy of the products 

when she was working on Task 1B. Although Helen recognized the constant product relationship 

in Task 3, and when asked, she recognized the constant product relationship in Task 1B, her 
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reasoning indicated that she did not have a well-coordinated understanding of the constant 

product relationships––for instance, she did not explain total notches and the product of notches 

per revolution and the number of revolutions. My main reason for this claim is that Helen’s 

recognition of the constant product relationship in Task 3 was context-dependent, and she 

seemed to attend to the numbers rather than the reciprocal multiplicative relationships between 

quantities. Hence, she could not recognize the constancy of the products in the remaining inverse 

proportion tasks. My second reason is that the products were equal because of the inversely 

proportional relationship between quantities, but Helen did not see that and rather attributed the 

reason to the context of balancing.  

Theme 3: Difficulty distinguishing directly and inversely proportional relationships from 

nonproportional relationships.  

In Task 1A, Helen asserted a directly proportional relationship between the number of 

notches and radii. When asked how she knew that the relationship was proportional, Helen drew 

the linear graph in Figure 54 and explained: 

Helen: Well I just think that the points, like wherever I just see this, like if I looked it up on 

graph like this [drawing a graph], I will see that for every…if this was centimeters and 

then notches, I will see that for every 3 centimeters I am up some notch. So, if I have, like 

6 centimeters I still have more notches and it will keep going and it would be like…that 

for one, for every 1 centimeters goes up, it will increase in the other. So, that is way it is 

proportional. 

Int: You said it will increase in the other? 

Helen: So, like if centimeters increases the number of notches will increase as well.  

 

These exchanges showed that Helen’s assertion of the proportional relationship was based on her 

attention to the rate of change—“…for every 3 centimeters I am up some notch…for every 1 

centimeters goes up, it will increase in the other” and to the qualitative relationship—“…if 

centimeters increases the number of notches will increase as well.”  
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Figure 54. Helen’s linear graph for expressing the number of notches and radii 

relationship. 

Some exchanges later, I asked if any relationship with an increase-increase situation, such 

as the one Helen described in the previous exchange, was proportional. To demonstrate such a 

situation, I gave a track example in which she and I were running at a constant speed around a 

circular track, and she started running after I ran 100 meters. She recognized that the distance 

between us was constant:   

Helen: If we have a constant speed that means we have a constant distance in between. 

 

Although Helen recognized that the distance between us was constant, when I asked if the 

relationship between the distances she and I ran was the same as the relationship in her directly 

proportional graph, she stated that these two relationships were the same and explained: 

Int: Okay. Is that the same kind of relationship [I referred to the directly proportional 

relationship] we are talking here or...? 

Helen: I think it is because one does like if you go, if you are 400, like what I say you are 400 

meters from the starting point and I started 100 meters behind you.  

Int: Okay. 

Helen: Then I be 300 meters behind you, and then as you increase distance I increase distance 

but we are still in the same like we still have the same…we still have the same distance 

apart. It is always going to be 100 meters apart.  

 

Helen’s statement, “…as you increase distance I increase distance but we are still in the same… 

distance apart,” suggested her understanding of the constant difference of our running distances. 
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Although these exchanges did not support a clear explanation for why Helen thought the 

relationship between the distances we ran was as same with the relationship in her directly 

proportional graph, her definition of the qualitative relationship—“as you increase distance I 

increase distance”— implied her attention to the qualitative relationships. Hence, Helen did not 

appear to understand that because she always remained 100 meters behind me it was not possible 

to conclude that the relationship between our running distances was the same with the 

relationship in her directly proportional graph. It is possible that she might thinking about the 

constancy of the rate of change in both relationships when inferring the same relationship in both 

of them. Therefore, the data suggested Helen’s lack of differentiation between proportional and 

nonproportional relationships.  

In Task 1B, when asked to discuss the relationship between the number of notches and 

number of revolutions, Helen explicitly stated an inversely proportional relationship. She said: 

Helen: I think it is an inverse relationship. So, whenever one goes up the other goes down. So, 

the number of notches…is inversely proportional to the number of revolutions. 

 

Helen’s statement of the inversely proportional relationship was based on the inverse qualitative 

relationship that she constructed between the number of notches and revolutions because she 

said, “…it is an inverse relationship so whenever one goes up the other goes down.” Helen’s 

usage of the terms inverse relationship and inversely proportional in the same sentence to 

describe the inversely proportional relationship suggested that she was using both terms to mean 

the same thing. Because not all inverse relationships are inversely proportional, Helen’s usage of 

these two terms interchangeably supported my conjecture about her lack of differentiation 

between proportional and nonproportional relationships. Hence, when reminded, Helen 

explained:  
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Helen: Because proportional like they are also related. So, that is why I say inversely 

proportional. 

Int: Do you mean they are the, they mean the same thing for you? 

Helen: Yeah what I say inverse, I think so. I think I am using it at the same way. The inverse of 

something is the same as saying it is inversely proportional, because they are related.  

 

In these exchanges, it was not clear what Helen meant by the phrase, “they are related,” and why 

she believed that this implied that inverse and inversely proportional mean the same thing. My 

interpretation for her use of the term is that she might be using the term proportion to mean 

related and might be suggesting the existence of an increase-decrease kind of covariation 

between the quantities.  

A few exchanges later, Helen drew an inversely proportional graph to express the 

relationship between the number of notches and revolutions and explained: 

Helen: Okay so, for eight notches I had three revolutions, for four notches I had six revolutions. 

It is going to end up looking like this [drawing an inversely proportional graph] because 

when I, as I decrease the number of notches like it is going to keep going like that and if 

I, as I, it is going to slowly like approach zero. 

 

Helen’s explanation demonstrated her comprehension of the inversely proportional line 

approaching both the x- and y-axis at zero. Although knowing this feature of the inversely 

proportional graphs was important to coordinate inversely proportional relationships depicted in 

graphs, it was not sufficient for Helen to distinguish proportional relationships from 

nonpoportional relationships.  For instance, some exchanges later, I provided her with three 

graphs (see Appendix B Task 1B) that expressed nonproportional relationships, and I asked if 

she could identify the relationships on those graphs. She stated that there were constant rates in 

Graph B and C (Figure 55), so the relationships in these graphs were similar to the directly 

proportional relationship that she discussed in the previous task.  

Helen: Okay, so I would just say that this [pointed at Graph B] one is…the rate is constant so as 

I go over, this is…okay so for…I would start out at some point [pointing at y = 2]. I do 

not like if it was distance from home or something. In each time I go, let’s say, or each 
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time one minute goes by I move up one foot or like I can, I do not know just something 

like that. So, like this rate right here, like I am going to go over and this is like we are up 

and over, up and over, and up, that is going to be a constant rate. And same with this one 

[pointed at Graph C]. I start off maybe some distance from home and I go down certain 

amount and I also this is [pointed at the small rectangle that she drew to express rate of 

change] going to be constant stay the same every time. But this one [pointed at Graph A] 

is like increasing exponentially so no.  

Int: So these two relationships are? 

Helen: These [pointed at Graphs B and C] are similar. 

 

This exchange suggested that Helen inferred the relationships in Graphs B and C to be similar 

based on the existence of constancy of the rate of changes. On the other hand, for her, the 

relationship in Graph A was different than the relationships in Graphs B and C, because there 

was not a constant rate but it was “increasing exponentially.” Hence, as in Carol’s case, Helen 

also misinterpreted the quadratic growth in Graph A as exponential.  

It was not clear from the preceding exchanges what Helen meant when she said, “These 

[pointed at Graphs B and C] are similar.” When asked, Helen explained that the relationships in 

these two graphs were similar to the directly proportional relationship that she discussed in the 

previous task. When I pointed out that the x and y values in Graph B were both increasing but 

the x and y values in Graph C were not like that, Helen explained: 

Helen: Yeah that is true. But it is I think it is even though they are like different graphs, they still 

have the same relationship, like...   

Int: Proportional? 

Helen: Yeah like they still proportional, they still increases at a constant rate but this one's 

[pointed at Graph A] rate is not constant like if you try to find, if you found like slope of 

that with tangent or whatever…it would not be a, it does not increase at a constant… 

because like here 1 over 1, 2 [over] 3. If it was constant the line would be like that [drew 

a straight line].  

 

This exchange provided evidence that for Helen x and y values increasing at a constant rate 

suggested a proportional relationship. Although I pointed out the differences in the relationships 

in Graphs B and C, she still inferred that these two graphs showed proportional relationships. It 

seemed that for Helen, straightness of the line of a graph was evidence for the existence of a 
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constant rate. As I discussed earlier, Helen usually attended to the qualitative relationships 

between two covarying quantities when inferring directly and inversely proportional 

relationships. Therefore, it seemed that Helen’s attention to qualitative relationships together 

with the existence of constant rate of change created difficulties for her distinguishing 

proportional relationships from nonproportional relationships.  

 
Figure 55. Helen’s descriptions of the relationships in Graphs A, B and C.  

Theme 4: The use of proportional reasoning strategies when solving proportion questions and 

difficulty interpreting the cupcake order in terms of cupcakes. 

In the previous pages, I presented several ways that Helen inferred whether relationships 

were directly proportional, inversely proportional, or neither. Henceforth, I will explain some of 

the proportional reasoning strategies that Helen used to solve the given multiple and single 

proportion questions and the difficulties that she encountered while solving those questions. In 

Task 1A, when asked to calculate the number of notches on Gear Y that had a radius of 𝑟2, given 

that Gear X had 𝑛1 notches and 𝑟1 radius, Helen set up a proportion, 
𝑟1 

𝑛1
=

𝑟2

𝑥
, and found that 𝑛2 

was equal to 
𝑟2𝑛1

𝑟1
. She explained as follows: 

Helen: So, I guess I would just set up a proportion like I did before. I have certain amount of cm 

for every amount of notches I have [wrote r1/n1], and then I have the same thing here 

certain amount of cm for x amounts of notches [wrote r2/x]. So say, so r1 times x, which 



203 

 

is x is the amount of notches for Y…is equal to r2 times n1, and so x would equal r2 

times n1 over r1.  

 

Helen’s statement—“I have certain amount of cm for every amount of notches I have, and then I 

have the same thing here certain amount of cm for x amounts of notches”—can be provided as 

her definition of the constant ratio relationship between the radii and number of notches. Hence, 

this statement provided evidence for Helen’s expectation of a constant ratio relationship between 

the radii and number of notches. When asked if she could use other strategies to solve the 

question, Helen explained: 

Helen: If I would set up something similar to this [wrote r1 --> n1 notches and r2 --> x notches], 

r1 has n1 notches and then r2 is what but there is no way for me to get to like there is no 

way for me to, I guess I cannot necessarily it is not necessarily 2r that is the whole. So, it 

is 2r then I could do something but that is r2. Would that make any kind of sense?  

Int: Yeah I understand. So, if you were given something 2r or… 

Helen: If it was 2r then I just double it and say this one [pointed at the notches on Gear Y] would 

be like 2n. 

Int: But here you think you cannot or go or get something you said? 

Helen: I do not think so because I do not really know…I do not know anything about r. I just 

know that for every r there is n amount of notches. So, for every r2 there is going to be a 

relationship between this one [pointed at r1] but I think that is expressed with this 

[pointed at 
𝑟2𝑛1

𝑟1
]. 

 

For Helen, there was “no way” for her to get 𝑟2 from 𝑟1. Although she expected a constant ratio 

relationship between the radii and number of notches and expressed this relationship correctly 

with the 
𝑟1 

𝑛1
=

𝑟2

𝑥
 proportion, she could not recognize that 𝑟2 was 

𝑟2 

𝑟1
 times 𝑟1and that the same 

relationship would hold for 𝑛2, which was 
𝑟2 

𝑟1
 times 𝑛1. Therefore, these exchanges provided 

evidence of Helen’s difficulty identifying multiplicative relationships within and between 

measure spaces in the absence of numbers. 

In Task 1B, when asked to calculate the number of revolutions of Gear K, with six 

notches, given that Gear F, with eight notches, completed three revolutions, Helen decided to use 

a double number line. As can be seen in Figure 56, she used opposite mathematical operations in 
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the top and bottom number lines and obtained the correct answer—four revolutions. Hence, 

when reminded that they were using the same operations in the top and bottom number line of 

the double number line in one of her classes, which I also observed, and asked if it was okay to 

use opposite operations in the double number lines, Helen explained: 

Helen: I think we did the same operation depending on the relationship.  

Int: Did you that for the... 

Helen: We did it for…we did…okay so usually depending on the relationship, like since this is 

inverse, we know that you have to do the opposite. Because we did both of in the Dr. 

Betty's (pseudonym) class.    

Int: You did both of them? 

Helen: Yeah because we, first we like learned how to do it with like the proportional or directly 

proportional things like that but now that one we start moving with this [pointing 3 

revolutions] like inverse relationships we also did. 

 

In a double number line, a pair of quantities from separate measure spaces generates a batch, and 

one can iterate this batch by multiplying by a factor to get multiple batches. Hence, the quantities 

that generate a batch covary directly. Because, in an inverse proportion, quantities covary 

inversely, using double number line was not an appropriate strategy to express an inversely 

proportional relationship; however, Helen just showed how to use a double number line to solve 

an inverse proportion question without attending to the operations used. On the other hand, the 

product of the inversely proportional quantities remains constant, and there is a directly 

proportional relationship between this product and the inversely proportional quantities. As in 

Kathy’s case, Helen could calculate 24 notches as the constant product and use two separate 

double number lines or one triple number line to express the relationship between the number of 

notches and number of revolutions. Nevertheless, Helen was able to use a double number line to 

support her reasoning in this task. 
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Figure 56. Helen’s double number line strategy.  

Some exchanges later, when asked to calculate the number of notches of Gear K that 

revolved two-third times, given that Gear F, with eight notches, revolved three times, Helen 

again used a double number line. She determined a 1-notch-to-24-revolutions relationship on the 

double number line and tried to figure out “how many two-third revolutions were in 24 

revolutions.” Helen’s question statement can be expressed mathematically with (X notches) * (
2

3
 

revolutions per notch) = 24 revolutions. Hence, she was searching for a measurement division. 

Although Helen spent a great deal of time switching between the double number line and the 

ratio table strategies, she struggled to obtain the correct answer, 36 notches. Thus, these data 

suggested Helen’s difficulty determining multiplicative relationships when the values of two 

covarying quantities involved nonwhole number multiplicative relationships within and between 

measure spaces. 

In Task 2B, when asked to calculate the time required for six people to frost N cupcakes, 

given that three people frosted N cupcakes in T minutes, Helen used a ratio table strategy and 

reasoned within measure spaces correctly to determine that the answer was 
1

2
T minutes. A few 

exchanges later, I asked Helen if she could use another strategy to solve the same question and 
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suggested that she could create drawings or diagrams. Helen represented N cupcakes with a 

rectangular diagram (Figure 57 a) in which she shared N cupcakes among three people. The 

following statement showed Helen’s difficulty coordinating the number of minutes with the 

cupcake order and number of people: 

Helen: I will just say like this, I have this [drew a rectangular diagram] and I will just say that 

like this is N cupcakes here and it takes three people T minutes. Uhmm so basically I 

would just I guess divide this [diagram] by 3 and just say that this is for person one, and 

this is for person two, and this is for person three. But uhmm noo this is stuck, I mean I 

am just like trying to picture but I do not know I think. Like I just know if I add more 

people and the time to be half, like if I double the amount of people it [time] is going to 

be half but I do not know. 

Int: In this picture you divided N cupcakes by… 

Helen: Three people. 

Int: Is this [diagram] helping you to get your answer or? 

Helen: [negative nodding] 

Int: Ohh okay. Why? 

Helen: Because I have to do something with the time but like, I understand that if each person 

have the third to do, it is going to take more time than versus like if we have the same 

number of N and then we do one, two, three like that each person is going to get the sixth 

so it will take…I guess I do not really know but this makes sense. I just know we have 

half the time [wrote 1/2 T and circled it]. 

 

Helen knew that her diagrams needed to have information about the minutes, but she stated her 

difficulty expressing the minutes in her diagrams. Helen’s reasoning indicated her tendency to 

interpret the cupcake order in terms of minutes rather than cupcakes. She distributed the minutes 

evenly among the three people, which suggested her misunderstanding that people worked 

sequentially instead of concurrently. In addition, she seemed to conflate fixing number of people 

and sharing N cupcakes among T minutes and fixing T minutes and sharing N cupcakes among 

three people. 

When I asked why she distributed minutes evenly among the three people, Helen 

explained: 

Int: Why do you think that is a third of the time? 
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Helen: Because one-third plus one-third plus one-third…one-third T sorry. So three-thirds T 

which is T.  

 

Helen did not recognize that each person was doing his or her part in T minutes rather than one-

third T minutes. It was possible that Helen might have been considering one-third T minutes as 

the time required to frost one-third N cupcakes by three people rather than the time needed by 

one person to frost one-third N cupcakes. The following exchange suggested that Helen’s 

inclination towards the first explanation: 

Int: You said one person takes one-third of the time. 

Helen: Yeah 

Int: To frost one-third of N? 

Helen: Yeah. Ohh maybe I am right or wrong like I know that or one like I was just dividing up 

the number of cupcakes evenly and for this number of cupcakes it is the third of time 

like... 

 

Helen’s explanation—“I was just dividing up the number of cupcakes evenly and for this number 

of cupcakes it is the third of time”—demonstrated that she was considering one-third T minutes 

as the time needed to frost one-third N cupcakes. Because the total work for cupcake order was 

the product of the number of people and number of minutes, it could be expressed in units of 

“person-minutes.” Helen’s tendency interpreting the cupcake order in terms of minutes rather 

than cupcakes suggested a confusion in her side between the number of minutes and 

“person-minutes.” 

  

(a)                                                             (b) 

Figure 57. Helen’s diagrams expressing the number of cupcakes and time relationship. 
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A few exchanges later, Helen drew a new diagram (Figure 57 b) to express N cupcakes 

and divided it into six even parts. She then explained that one person was doing one-sixth of the 

work and by circling two parts, she stated that two people were doing their parts in one-sixth T 

minutes.  

Helen: That is what it is [she divided 1/3 by 2 and got 1/6]. It is two people do one-sixth like two 

people complete the cupcakes in one-sixths of the time, and so the same thing two people 

complete the one-third of the cupcakes so you divided amounts by 2. I just I do not know 

I am just kind of think like, this is another one-sixths of the time, and then two people do 

this, they complete this in one-sixth of the time. So one-sixth plus one-sixth plus one-

sixth equals to three-sixth which is equal one-halves the time. That is the only way I can 

see the picture it but I really do not know.    

 

It seemed that because the number of people was doubled, Helen halved one-third T minutes and 

used similar inappropriate reasoning to arrive at the correct answer. When asked if she was 

assuming that people worked separately, she said, “No, they work together but it still has the 

same amount of time.” Although the statement suggested her understanding that the people 

worked concurrently rather than sequentially, it was not clear why she tended to distribute the 

minutes evenly by each individual. Her distribution strategy would be appropriate if she had 

distributed the cupcake order (or “person-minutes”) among the people rather than distributing the 

minutes among the people. Helen’s explanations of the diagrams were not accurate, and she did 

not seem completely confident about her explanations. Because, in the particular problem, the 

cupcake order was discussed in minutes rather than total number of cupcakes, it was not 

surprising to see Helen’s difficulty coordinating the cupcakes order as a product of number of 

people and number of cupcakes per person. In this task, although Helen successfully constructed 

the cupcake order as equal-sized groups (e.g., Izsàk & Jacobson, under review) of cupcakes, she 

did not see how to use her equal groups in determining the number of minutes needed by each 

person to frost his/her own part (Figure 57). That the cupcake order was described by two 
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different units might also affected Helen’s difficulty interpreting the cupcake order in terms of 

cupcakes. 

In the following chapter, I provide a discussion of the findings and conclude the study 

with a discussion of implications and suggestions for future research. 
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CHAPTER 5 

DISCUSSION and IMPLICATIONS 

Discussion 

The findings of this study confirmed some findings reported in existing mathematics 

education research literature and added detailed information about the knowledge resources that 

PSTs used when determining directly and inversely proportional relationships, their difficulties 

determining these relationships, and the types of strategies they used to solve the given problems. 

This study contributes to the mathematics education literature by elucidating the research 

questions discussed. In the following paragraphs, I provide a discussion of the findings for each 

research question.  

Research Question 1: How do pre-service middle and high school mathematics teachers infer 

directly and inversely proportional relationships in single and multiple proportion problems; 

what types of knowledge resources do they use when inferring and explaining directly and 

inversely proportional relationships; and what kinds of difficulties do they encounter in the 

process of inferring, explaining, and expressing directly and inversely proportional 

relationships? 

The PSTs’ responses to the proportion problems suggested their initial tendencies to infer 

relationships in the given tasks either as proportional relationships, which some of them referred 

to as linear relationships, or as inverse relationships based on attending to qualitative 

relationships between two covarying quantities. For instance, if the values of two quantities 

increased (or decreased) together, they usually inferred a proportional relationship. On the other 
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hand, if the value of a quantity increased and the value of the related quantity decreased, they 

inferred an inverse relationship. The PSTs’ qualitative comparisons usually involved causal 

relationships (e.g., x increases so y increases, or x increases so y decreases). Except for Kathy, 

who explicitly stated that not all relationships are proportional, the remaining PSTs usually 

inferred linear relationships as directly proportional and inverse relationships as inversely 

proportional. Hence, they tended to use the terms inverse and inversely proportional, and linear 

and directly proportional interchangeably. It appeared that these PSTs usually expected a 

dichotomy: If a relationship is not directly proportional, then it is inversely proportional. They 

seemed not to recognize that if a relationship is not directly proportional, then it does not have to 

be inversely proportional. Therefore, the PSTs’ reasoning suggested a possible difficulty 

differentiating proportional relationships from nonproportional relationships.  

Following the preceding paragraph, in the final study, with the exception of Kathy, none 

of the participants recognized nonproportional relationships in Graphs B and C (see Appendix 

B). Kathy was the only participant who attended to the multiplicative relationships when 

determining the relationships in Graphs B and C as nonproportional. The remaining participants 

usually attended to qualitative relationships (i.e., the value on the x-axis increases, so the value 

on the y-axis increases), constancy of the rate of change (or the inconstancy of the rate of 

change), shapes of graphs (i.e., whether the line of the graph was straight or curved), points (i.e., 

the values of the points being swapped), or some combination. Thus, the findings of this study 

suggested that the extent to which the PSTs were successful in distinguishing proportional and 

nonproportional relationships from each other hinged on their attention to the multiplicative 

relationships between quantities. This result was consistent with the findings of the Izsàk and 

Jacobson (2013) study in which they explained that “…teachers’ capacities to form 
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multiplicative relationships played a key role in their capacities to judge when relationships 

between two quantities were and were not proportional” (p. 1). 

Besides attending to qualitative relationships, the PSTs also attended to multiplicative 

relationships within and between measure spaces when determining directly and inversely 

proportional relationships. Because the mathematical tasks used in this study included quantities 

with different units, identifying multiplicative relationships within measure spaces seemed easier 

for the PSTs than identifying multiplicative relationships between measure spaces. For this 

reason, the PSTs usually formed multiplicative relationships within measure spaces. On the other 

hand, when they made multiplicative comparisons between measure spaces, they usually 

appeared to attend to numerical multiplicative relationships. The PSTs’ reasoning indicated that 

identifying constant ratio relationships was easier for them than identifying constant product 

relationships. Although they recognized the constancy of the products and reasoned about the 

constant product relationships in Tasks 1 and 3, none of the PSTs recognized the constancy of 

the products in the remaining inverse proportion tasks. Therefore, the contexts of the Gear and 

Balance tasks seemed to facilitate the PSTs’ inferences of the constant product relationships 

more than the contexts of the remaining tasks. This result is very important, because it shows the 

effectiveness of using hands-on tasks in teaching directly and inversely proportional 

relationships, and thus encourages educators to use hands-on tasks in their teaching.  

Because the multiple proportion tasks (i.e., Bakery, Speed, Fence, and Scout Camp) 

involved more than two quantities, the PSTs usually fixed one quantity at a time to explain the 

relationship between the other two quantities. Hence, the PSTs were generally able to coordinate 

the need for taking the value of a quantity as constant with the presence of a directly or inversely 

proportional relationship between the other two quantities, and this coordination seemed 
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important. On the other hand, none of the PSTs was able to express the multiplicative 

relationships among the quantities in the Bakery and Fence tasks, and most of them had 

difficulty expressing the multiplicative relationships in the Speed task. In the Scout Camp task, 

although they usually calculated the total pounds of cereal by multiplying the given three 

quantities, they did not recognize that the product was constant. Therefore, the PSTs’ difficulty 

expressing multiplicative relationships in the multiple proportion tasks suggested possible 

constraints in their coordination of the multiplicative relationships when more than two 

quantities are present.  

As explained earlier, I observed that the extent to which the PSTs were successful in 

coordinating directly and inversely proportional relationships hinged on their attention to specific 

features of the contexts. These specific features comprised the knowledge resources of the PSTs’ 

for determining directly and inversely proportional relationships. As discussed by Izsak and 

Jacobson (under review), attention to some of these features including qualitative relationships 

(two quantities are increasing together or one quantity is increasing and the other is decreasing), 

constancy of the rate of change, and textual features (two cars driving at the same rate or all 

workers working at the same pace, numbers, points, graphs) are “…associated with an expert 

perspective on proportional relationships, but they do not reliably discriminate between 

relationships that are and are not proportional” (p. 9). Based on the PSTs’ responses to the 

proportion problems, the following five main knowledge resources of the PSTs’ for determining 

directly and inversely proportional relationships were observed: (a) attention to qualitative 

relationships; (b) attention to multiplicative relationships between and within measure spaces; (c) 

facility with multiplicative relationships between numbers; (d) attention to the constancy of the 

rate of change and shape of the graphs (i.e., the line is straight or curved); and (e) attention to the 
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static points on graphs and values of points being swapped. In their study, in addition to the 

associations with a particular phrase such as “same rate” and attention to equal groups, Izsàk and 

Jacobson (under review) mentioned the second and third knowledge resources for their 

participants’ inferences of proportional relationships (p. 29). In comparison to Izsàk and 

Jacobson (under review), the knowledge resources observed in this study were more diverse, and 

that could be attributed to the inclusion of the physical devices and multiple proportion tasks.  

The PSTs usually attended to some combination of these five knowledge resources when 

determining relationships between quantities. For instance, while Susan made multiplicative 

comparisons within measure spaces, she attended to qualitative relationships, constancy of the 

rate of change, and static points on graphs and values of points being swapped when determining 

constant ratio and constant product relationships. It appeared that some of these five knowledge 

resources might have influenced the PSTs in inferring relationships more than others. For 

example, although Susan, Carol, and Helen made multiplicative comparisons within and between 

quantities, they tended to judge nonproportional relationships to be proportional. Their incorrect 

judgments were consistent with findings reported in existing mathematics education research 

(e.g., Cramer, Post, & Currier, 1993; Fisher, 1988; Izsák & Jacobson, 2013; Lim, 2009; Riley, 

2010). This result supported my conjecture above: Some of these features might have influenced 

the PSTs’ reasoning when determining relationships more than others. Another indicator of my 

claim is that although Helen recognized a constant difference relationship between running 

distances in Task 1B, she inferred a proportional relationship based on the constancy of the rate 

of change. Similarly, Susan recognized the constant sum relationship in Graph C, but she 

inferred an inversely proportional relationship based on the constancy of the rate of change. 

Izsàk and Jacobson (under review) also documented a similar difficulty to the one Helen 
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encountered and noted that “…the cues on which the preservice teachers relied for anticipating a 

proportional relationship were not always well integrated with the quantitative relationships they 

were forming” (p. 12). In this study, I used the PSTs’ incorrect inferences to determine their 

expertise in coordinating directly and inversely proportional relationships. 

I observed that each PST had some difficulties reasoning about directly and inversely 

proportional relationships. The extent of their difficulties differed based on their ability to 

coordinate directly and inversely proportional relationships. For instance, because Kathy was the 

most proficient of the four PSTs in reasoning about proportions, she had less difficulty than the 

remaining three PSTs. Kathy was the only PST who successfully inferred the relationships 

depicted in Graphs B and C in Task 1B as nonproportional. On the other hand, Susan, Carol, and 

Helen’s incorrect inferences suggested difficulties in their coordination of directly and inversely 

proportional relationships. In addition, in Task 4, Helen incorrectly endorsed an inversely 

proportional relationship between the distance and time. As I discussed earlier, in the pilot study, 

Sally and Jason also incorrectly endorsed an inversely proportional relationship between the 

distance and time. It seemed that inclusion of time might have influenced the PSTs to make 

incorrect judgments about directly proportional relationships. I should have noted that PSTs’ 

incorrect judgment of directly proportional relationships to be inversely proportional is a new 

finding. 

Although the PSTs were comfortable in expressing multiplicative relationships between 

quantities with algebraic equations or formulas in the single proportion tasks, they all had 

difficulty generating algebraic equations or formulas in the multiple proportion tasks. Because 

the multiple proportion tasks involved relationships among at least three quantities, the PSTs’ 

difficulties generating algebraic equations or formulas to express multiplicative relationships 
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suggested their difficulties coordinating multiplicative relationships when more than two 

quantities were presented. In addition, although the PSTs were comfortable with describing 

multiplicative relationships within measure spaces, they described multiplicative relationships 

between measure spaces in fewer instances and when they did, they had difficulty stating those 

relationships. Because, in this study, quantities in two separate measure spaces had different 

referent units, it appeared that describing multiplicative relationships between measure spaces 

was more difficult than describing multiplicative relationships within measure spaces. Therefore, 

this feature of the tasks might have affected the PSTs’ preferences of describing multiplicative 

relationships within measure spaces. Izsàk and Jacobson (under review) noted a similar difficulty 

for the PSTs who participated in their study. 

In addition to these difficulties, in the Bakery task, there was an inversely proportional 

relationship between the number of people and number of minutes. Although both Carol and 

Helen correctly explained that the workers made equal numbers of cupcakes in a fixed amount of 

time, they had difficulty coordinating the cupcake order with the number of people. Hence, when 

Carol and Helen drew a pictorial representation of the problem (see Figures 46 and 57), they 

tended to interpret the cupcake order in terms of minutes rather than cupcakes, and so they had 

difficulty explaining their solutions. Their inappropriate reasoning suggested that Carol and 

Helen might not have coordinated the cupcakes order as the product of the number of people and 

the cupcakes frosted by each person. In their study, Izsàk and Jacobson (under review) also noted 

a similar difficulty that their participants were having. 
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Research Question 2: What types of solution strategies do preservice middle and high school 

mathematics teachers use to solve single and multiple proportion problems, and how do they 

express directly and inversely proportional relationships? 

Based on the analysis of the PSTs’ responses to the proportion tasks in the pilot and final 

studies, I entered the solution strategies of the PSTs’ in Table 4. In the final study, I encouraged 

the PSTs to use different strategies by asking them if they could use a different strategy than they 

normally used; however, I did not do that in the pilot study. Hence, as it appears in Table 4, in 

the final study, the PSTs used many more strategies than they did in the pilot study. Table 4 

suggests that many of the PSTs’ strategies could be classified within Fisher’s (1988) proportion 

formula, proportional reasoning (i.e., ratio table, unit ratio, and double number line), and algebra 

strategies. Additive, computation (e.g., unit conversion method), and intuitive (e.g., double 

counting strategy) strategies were also observed but occurred in fewer instances.  

In Table 4, the most used strategy appeared to be the ratio table strategy. Three different 

variations of this strategy were observed. In the most common usage, the PSTs entered the given 

information side by side, without necessarily having rows and columns, and either multiplied or 

divided within and/or between measure spaces (e.g., see Figures 26 and 35). In the second type 

of usage, they entered the information and separated the values of the quantities from different 

measure spaces by rows and columns, and again either multiplied or divided within and/or 

between measure spaces (e.g., see Figures 21 and 23). In the last type of usage, which was only 

used by Sally in the Bakery II task, the information was entered in a parenthesis rather than in a 

table (Figure 58). The ratio table strategy usually yielded the correct results if the PSTs inferred 

the correct relationships between quantities. As it appears in Table 4, some of the PSTs obtained 

incorrect results using the ratio table strategy because they inferred incorrect relationships 
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between the quantities compared. Because the multiple proportion tasks involved three 

quantities, the ratio table strategy allowed the PSTs to fix one quantity at a time and make 

multiplicative operations on the remaining two quantities. Therefore, the PSTs usually preferred 

the ratio table strategy in the multiple proportion tasks (i.e., Bakery, Speed, Fence, Apartment, 

and Scout Camp).  

 

Figure 58. Sally’s ratio table strategy in the Bakery ΙΙ task. 

Table 4 

Preservice Teachers’ Solution Strategies 

PILOT STUDY 

 

Abby Sally Jason Robert 

Gear Ι 

  

Proportion Formula 

Strategy                                     

Ratio Table Strategy 

Proportion Formula 

Strategy                   

Additive Strategy  

Unit Ratio Strategy       

Proportion Formula 

Strategy 

Gear ΙI 

  

Proportion Formula 

Strategy   

*Proportion 

Formula Strategy                         

Algebra Strategy 

Algebra Strategy          

Additive Strategy 

Bakery Ι 

  

Ratio Table Strategy          

Proportion Formula 

Strategy 

Ratio Table 

Strategy 

Unit Ratio Strategy           

Algebra Strategy 

Bakery II 

  

Ratio Table Strategy                                

Algebra Strategy 

Ratio Table 

Strategy                            

Algebra Strategy 

Unit Ratio Strategy          

Algebra Strategy 

Painter I 

      

Ratio Table 

Strategy                         

Unit Ratio Strategy 

Painter II 
      

Unit Ratio Strategy          

Algebra Strategy 
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Fence 
  

Ratio Table Strategy 
Ratio Table 

Strategy 

Ratio Table 

Strategy 

Apartment 
  

Ratio Table Strategy 
Ratio Table 

Strategy 
Algebra Strategy 

Cookie 

Factory 
      

*Ratio Table 

Strategy       

Algebra Strategy 

Speed 

Unit Ratio Strategy          

Ratio Table 

Strategy 

*Ratio Table 

Strategy           

*Ratio Table 

Strategy 
  

Balance 

Algebra Strategy                                  

Ratio Table 

Strategy       

FINAL STUDY  

 Kathy Susan Carol Helen 

Gear Ι 

Ratio Table 

Strategy              

Double Number 

Line Strategy 

Unit Ratio Strategy           

*Proportional 

Reasoning Strategy 

Proportion Formula 

Strategy                 

Ratio Table Strategy   

Proportion Formula 

Strategy                

Unit Ratio Strategy 

Strip Diagram 

Strategy              

Ratio Table 

Strategy        

Double Counting 

Strategy 

Proportion Formula 

Strategy                   

Ratio Table 

Strategy              

Double Counting 

Strategy                

Unit Ratio Strategy  

Gear ΙI 

Additive Strategy              

Algebra Strategy                

Double Number 

Line Strategy                            

Ratio Table 

Strategy   

Algebra Strategy                            

Ratio Table Strategy        

*Double Number 

Line Strategy 

*Proportion 

Formula Strategy             

Algebra Strategy          

Ratio Table 

Strategy      

*Double Number 

Line Strategy 

Bakery Ι 

Ratio Table 

Strategy              

Double Number 

Line Strategy 

Ratio Table Strategy     

Proportion Formula 

Strategy 

Unit Ratio Strategy 

Double Counting 

Strategy 

Ratio Table 

Strategy    

Ratio Table 

Strategy                         

Unit Ratio Strategy 

Bakery II 
Ratio Table 

Strategy  

Ratio Table Strategy 

Unit Ratio Strategy    

Ratio Table 

Strategy       

*Pictorial 

Representation 

Strategy 

Ratio Table 

Strategy       

*Pictorial 

Representation 

Strategy 

Bakery III 
Ratio Table 

Strategy  

Ratio Table Strategy           

*Double Number 

Line Strategy 

Unit Ratio Strategy 

    

Ratio Table 

Strategy  

Unit Ratio Strategy  

Ratio Table 

Strategy   

Balance 

Algebra Strategy                               

Ratio Table 

Strategy 

Algebra Strategy                

Ratio Table Strategy 

Algebra Strategy             

Ratio Table 

Strategy 

Algebra Strategy               

Ratio Table 

Strategy 
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Speed 

*Ratio Table 

Strategy                 

Unit Conversion 

Strategy  

Double Counting 

Strategy 

*Algebra Strategy    

*Proportion Formula 

Strategy                        

Ratio Table Strategy           

Double Number 

Line Strategy                               

Unit Conversion 

Strategy  

Unit Ratio Strategy 

*Proportion 

Formula Strategy              

Ratio Table 

Strategy        

Additive Strategy             

Unit Ratio Strategy             

Double Number 

Line Strategy  

Unit Conversion 

Strategy                 

*Ratio Table 

Strategy              

Proportion Formula 

Strategy 

Fence 
Ratio Table 

Strategy 
    

Ratio Table 

Strategy 

Scout 

Camp 

Ratio Table 

Strategy 
Algebra Strategy 

Pictorial 

Representation 

Strategy 

Pictorial 

Representation 

Strategy             

Ratio Table 

Strategy             

Note. * indicates that the PST obtained an incorrect answer. 

The second most used strategy appeared to be the algebra strategy. Following Fisher’s 

(1988) strategies framework, I classified a strategy as an algebra strategy if the PSTs solved a 

problem setting up an algebraic equation other than a proportion formula. Except Robert, who 

heavily relied on this strategy, all other PSTs seemed to consider proportionality in their 

explanations of the algebraic expressions. Robert usually generated the formulas and equations 

by focusing on the relationships between numbers and so, when asked, he could not explain the 

meanings of his formulas and equations. In the pilot study, all three secondary grade teachers 

generated the 𝑡𝑖𝑚𝑒 =
24

𝑛
 formula in the Bakery task to calculate the time needed by n people to 

frost 50 cupcakes, but none of the final study participants used the algebra strategy in this task. 

On the other hand, in the Gear ΙΙ task, the PSTs generally considered the equality of the total 

number of notches revolved on two meshed gears after some number of revolutions. In this task, 

the PSTs’ ideas of total number of notches revolved on a gear could be expressed by the equation 

(number of revolutions) * (number of notches per revolution) = total number of notches. 

Similarly, in the Balance task, the PSTs generated the balance formula, W1*D1 = W2*D2, and 

used it to solve the given questions. Therefore, it appeared that the contexts of the Gear and 
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Balance tasks facilitated the PSTs’ understanding of the algebraic relationships between 

quantities. 

After the ratio table and algebra strategies, the PSTs preferred the proportion formula 

strategy. In this strategy, the PSTs set up a direct or an inverse proportion, showing the 

equivalence of two ratios, and they calculated the missing value by multiplying (or dividing) 

within or between measure spaces or by cross-multiplying values within the proportion (see 

Figures 43, 48, 51, and 59). The common mistake of the PSTs with this strategy was that because 

some of them tended to judge inversely proportional relationships to be directly proportional 

(e.g., Cramer, Post, & Currier, 1993; Fisher, 1988; Lim, 2009; Riley, 2010), they set up a direct 

proportion to solve an inverse proportion problem. For instance, in the pilot study, Jason set up a 

direct proportion in the Gear ΙΙ task to solve an inverse proportion problem (see Figure 15). In 

the final study, Carol set up a direct proportion in the Speed task to solve an inverse proportion 

problem (see Figure 48). Nevertheless, overall, the PSTs tended to use the incorrect proportion 

formula strategy in a few instances. This might have happened because of the inclusion of hands-

on and multiple proportion tasks and the PSTs’ prior experiences with direct and inverse 

proportions. 

 The PSTs also used the unit ratio, double number line, additive, unit conversion, 

pictorial, and double counting strategies. In the unit ratio strategy, the PSTs usually inferred a 

unit ratio relationship between two quantities, and they used this relationship to calculate a 

missing value. The PSTs usually used this strategy within the other strategies. For instance, in 

Figure 56, Helen used this strategy within a double number line strategy, and in Figure 59, Carol 

used it within a proportion formula strategy. In the pilot study, Robert frequently stated the unit 

ratio in an equation (e.g., 1 cm = 4 notches, 1 person = 25 cupcakes) and used this equation to 
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calculate the missing-value. The double number line strategy was used by only final study 

participants. The PSTs usually used the double number line strategy to solve the direct 

proportion questions. In the inverse proportion questions, the product of the inversely 

proportional quantities was directly proportional to each inversely proportional quantity. Hence, 

inverse proportion questions could also be solved by the double number line strategy if the 

intention was to express a directly proportional relationship. For example, Kathy used two 

double number lines to solve an inverse proportion question in the Gear ΙΙ task; however, Susan 

and Helen used this strategy inappropriately in the same task. Kathy’s correct usage 

demonstrated her coordination of the constant product relationship in the Gear ΙΙ task, and Susan 

and Helen’s inappropriate usages showed limitations in their coordination of the constant product 

relationships.  

 

Figure 59. Carol’s unit ratio strategy in Task 1A. 

The PSTs also used correct additive strategies to solve problems. Because the additive 

strategies were used in a small number of instances, Table 4 suggests that the PSTs appeared to 

prefer reasoning multiplicatively rather than additively, and this appeared to be supported by the 

inclusion of hands-on and multiple proportion tasks. This result also supports the idea of using 

hands-on and multiple proportion tasks in teaching directly and inversely proportional 

relationships, and it contradicts the results obtained by Simon and Blume (1994) and Riley 

(2010) who stated that PSTs are likely to use additive strategies to solve proportion problems. In 
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the final study, Kathy, Susan, and Helen used a “unit conversion” strategy to solve the questions 

in the Speed task. This strategy involved conversion of the units and did not involve reasoning 

proportionally. Hence, it seemed to be a computation method of which the PSTs made use. In 

addition to these strategies, Carol and Helen used pictorial drawings to solve the inverse 

proportion problems in the Bakery ΙΙ and Scout Camp tasks. The double counting strategy, which 

was referred by Lamon (2007) as an intuitive strategy, appeared in a couple instances.   

The PSTs used ratio tables, direct and inverse proportions, algebraic formulas and 

equations, graphs, double number lines, or some combination of these to express the directly and 

inversely proportional relationships. It appeared that none of the PSTs knew what a graph of an 

inversely proportional relationship would look like, so they usually obtained an inversely 

proportional graph by marking given points. For example, in the pilot study, Abby and Sally 

initially thought that the graph of an inversely proportional relationship could be linear (see 

Figures 11 a and 13 b). I observed a similar tendency in the final study from Susan, Carol, and 

Helen, all of whom incorrectly inferred an inversely proportional relationship in Graph C based 

on the constancy of the rate of change and straightness of the line. Additionally, Carol drew her 

inversely proportional graph as almost straight (see Figure 45). Finally, the PSTs easily 

recognized the constancy of the quotients and products when they entered the given data into a 

ratio table. Otherwise, they had difficulty recognizing these constant relationships, especially the 

constant product relationships.  

Implications 

In this study, I investigated how preservice middle and high school mathematics teachers 

reason about proportional relationships. This is a critical topic, because existing mathematics 

education research documents numerous difficulties that students and teachers have with this 
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topic, some of which I discussed in Chapters One and Two. In the studies that I discussed, 

researchers generally used word problems with a single proportional or a nonproportional 

relationship to investigate how students or teachers reason about proportional relationships. On 

the other hand, in this study, the PSTs solved problems about proportional relationships that were 

presented through word problems and physical devices (e.g., plastic gears, mini number balance 

system), and the problems involved either single or multiple directly and inversely proportional 

relationships. Results of this study illuminate how PSTs reason about proportional relationships 

when they cannot rely on computation methods like cross-multiplication.   

As I discussed in Chapter One, this study makes four contributions to the current research 

base in mathematics education: First, very little research has been conducted on PSTs’ 

proportional reasoning. In particular, only a few researchers (e.g., Fisher, 1988; Izsák & 

Jacobson, 2013; Lim, 2009; Riley, 2010) have studied teachers’ proportional reasoning regarding 

inverse proportions. Although these studies have included inversely proportional relationships, 

they have not focused on teachers’ reasoning about such relationships to the extent that I have in 

this study. Additionally, multiple proportions were studied by only a very small number of 

researchers (e.g., Vergnaud, 1983, 1988). Because it was not easy to solve multiple proportion 

problems by simply forming a proportion and applying the cross-multiplication strategy, the 

PSTs avoided using cross-multiplication and additive strategies in those problems. Hence, the 

use of multiple proportion problems appeared to incline the PSTs to use cognitively more 

demanding strategies such as ratio table and algebra strategies. Therefore, this study benefits 

university educators and teachers by illuminating strategies that PSTs use when solving single 

and multiple proportion problems and difficulties that they encounter when solving those 

problems. By paying more attention to these solutions strategies and difficulties, university 
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educators and teachers may contribute to the development of their students’ proportional 

reasoning.  

Second, the use of hands-on tasks and real-world missing-value problems together 

precipitate the gathering of relevant information for revealing teachers’ knowledge resources for 

determining directly and inversely proportional relationships. One of the main findings of this 

study is that Gear and Balance tasks facilitated the PSTs’ coordination of inversely proportional 

relationships more than the missing-value word problems (i.e., Bakery, Speed, Fence, and Scout 

Camp). In this study, the PSTs easily recognized the constancy of the products in the Gear and 

Balance tasks, but they usually had difficulty recognizing constant products in the remaining 

word problems. In the Balance task, the PSTs made experiments to balance the system on both 

sides, and so they empirically determined the constant product in the balance. Similarly, in the 

Gear task, the context facilitated the PSTs in determining the constant product—the total notches 

moved—by coordinating the number of groups (where a group corresponded to one rotation) and 

the size of groups (where the size was the number of notches). Thus, among hands-on activities, 

there may be important differences in how students reason about multiplicative relationships. 

Therefore, this result encourages educators to use hands-on activities such as the ones used in 

this study in teaching inversely proportional relationships.  

Third, this study builds a bridge between mathematics education and science education 

by making use of science concepts—velocity, gear ratio, and balance. The contexts of the Gear, 

Balance, and Speed tasks were effective in facilitating the PSTs’ proportional reasoning because 

they provided connections with real-life conditions. Hence, these tasks facilitated the PSTs’ 

coordination of directly and inversely proportional relationships by enabling them to use their 

life experiences in making sense of the problems discussed. Some forms of proportional 
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relationships are usually involved in the science concepts, but the existing research on 

proportional reasoning reveals that researchers have rarely utilized these science concepts in 

investigating students’ or teachers’ proportional reasoning. Therefore, considering the 

effectiveness of these concepts in understanding the PSTs’ reasoning about proportions, the 

results of this study may inspire mathematics educators to use science concepts in their 

investigations.  

Fourth, this study uses the knowledge-in-pieces perspective for analyzing PSTs’ 

knowledge resources in determining and explaining directly and inversely proportional 

relationships in problem tasks with more complex structures and with which teachers have less 

experience. In this study, it appeared that the context of the tasks significantly affected the PSTs’ 

correct inferences of the directly and inversely proportional relationships. The PSTs usually 

attended to specific features of the contexts when determining relationships between quantities, 

and some features (e.g., constancy of the rate of change, linearity of the graphs, and attention to 

the static points) influenced the PSTs in inferring relationships more than the others (e.g., 

multiplicative relationships between and within measure spaces). The knowledge resources that I 

entered in the first parenthesis were relevant for inferring directly or inversely proportional 

relationships but were not sufficient to distinguish proportional relationships from 

nonproportional relationships. Hence, the PSTs’ difficulty distinguishing proportional 

relationships from nonproportional relationships suggested that these knowledge resources 

provided a foundation for reasoning about proportional relationships, but they needed further 

development. Therefore, mathematics educators should aware of the influences of these specific 

features on students’ correct and incorrect inferences of the proportional relationships and pay 

more attention to the features that direct students to make incorrect inferences. It was not clear in 
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this study why some of these specific features influenced the PSTs in inferring certain 

relationships more than the others. It is possible that the PSTs’ previous experiences with these 

specific features might have inclined them to pay more attention to them when determining 

relationships. 
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APPENDICES 

Appendix A 

Preservice Middle School Mathematics Teachers’ Proportional Reasoning Pilot Project 

Interview Protocol 

Interviewer: MuhammetArican.   

Discussion of goals: The goal for the interview is to explore in-depth PSTs’ understanding of 

proportional and inversely proportional relationships. In particular, I am looking for answers to 

the following questions: How do preservice middle and high school mathematics teachers 

identify proportional relationships and inversely proportional relationships?, how do preservice 

middle and high school mathematics teachers compare and contrast proportional relationships 

with inversely proportional relationships?, what strategies do they use to compare and contrast 

the two relationships?, and what types of reasoning do they engage in when solving tasks that 

involve proportional and inversely proportional relationships? I believe investigating problems 

with directly proportional relationships and inversely proportional relationships is critical 

because research indicates that in-service and preservice mathematics teachers have problems 

understanding directly proportional and inversely proportional relationships especially the latter. 

Also these kinds of problems are examples of multi-step problems and it is important for middle 

and high school mathematics teachers to learn to apply their knowledge in multi-step situations. 

Materials: Each participant will be given a printout of the mathematical tasks, papers, pencils, 

plastic gears with different sizes, and colored pencils in case they need.  
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Introduction: In the first two tasks participants are going to explore the relationships on given 

plastic gears so I will introduce the gears they will be exploring and explain assumptions such as 

the notches have the same size in each gear so they can be meshed one another, meshed gears 

have different sizes, etc… Later I will ask them to work on the tasks and I will let them know 

that I am very interested in their thinking. Also I will tell them that this interview is not a test so 

they may skip questions and they may discontinue the interview at any time without explanation. 

As the participants discuss their thinking, I will ask follow up questions.  

Interview Tasks 

Note: In tasks 1 and 2, Gear 1 and Gear 2 are connected to each other so if one turns around then 

the other gear also will turn around. Also in tasks 1 and 2 we are assuming all the notches are the 

same size, so that they can be meshed to one another, and equally placed around the gears (Gear 

1 and Gear 2).   

Task 1 

Assume you are given two gears, Gear 1 and Gear 2. Gear 1 has a radius r1 = 3 cm and Gear 2 

has a radius r2 = 4 cm. If Gear 1 has n1 = 12 notches, then how many notches, n2, does Gear 2 

have?   

Possible follow-up questions:  

 Can you explain to me what you are thinking? 

 If Gear 1 had 18 notches, then how many notches does Gear 2 have? 

 Numbers of notches of given three gears are as follows. Can you obtain what should be 

the radius of each gear? (Assume that the sizes of notches are the same with notches in 

Gear 1 and Gear 2, and equally placed around the gears.) 

A gear with 8 notches 
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A gear with 11 notches 

A gear with 18 notches 

 Assume you replaced Gear 1 with following gears, radius of each given. Can you obtain 

the number of notches of each gear? (Assume that the sizes of notches are the same with 

notches in Gear 1, and equally placed around the gears.)  

A gear with a radius 5 cm 

A gear with a radius 
1

2
  cm 

A gear with a radius 
3

4
 cm  

A gear with a radius 
7

2
= 3

1

2
 cm 

 Now assume if we had two different gears, Gear 3 and Gear 4, with radii 4 cm and 6 cm, 

respectively. If we were able to place 14 notches around the Gear 3, then how many of 

these notches can we place around Gear 4? (Assume that sizes of the notches are the 

same in Gear 3 and Gear 4 again.)     

 Considering all the parts of Task 1, do you think is there a relationship between the radius 

of a gear and the number of notches it has? If there is can you represent this relationship 

with anything that you think will be proper? Can you explain me what do you think about 

this relationship?  

 Let think if the question was given in the following format: Gear 1 has a radius r1 and n1 

number of notches and Gear 2 has a radius r2 and n2 number of notches then how would 

you solve describe the relationship? 

 Can you write this relationship in an algebraic form? (If does not understand, then 

explain that for example as an equation or another form.) 
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Task 2 

Assume you are given the gears in task 1 again. If Gear 2 revolves R2 = 6 times, then how many 

times does Gear 1 revolve?  

Possible follow-up questions:  

 Can you explain to me what you are thinking? 

 If Gear 2 revolves 3 times, then how many times does Gear 1 revolve?   

 If Gear 2 revolves 1 time, then how many times does Gear 1 revolve?   

 If Gear 2 completes 
3

4
 of a revolution, then how much revolutions does Gear 1 complete? 

 If Gear 2 revolves 
15

2
 = 7 

1

2
 times, then how many times does Gear 1 revolve?      

 If we replaced Gear 1 with each of the following gears with given radius, can you obtain 

the number (or the parts) of the revolutions each gear makes still assuming that Gear 2 

revolves 6 times? (Assume that the sizes of notches are the same with notches in Gear 1 

and 2 and are equally placed around the gears.)  

A gear with radius 8 cm 

A gear with radius 
1

2
  cm 

A gear with radius 
3

4
 cm  

A gear with radius 
7

2
= 3

1

2
 cm 

 Now assume you replace Gear 1 and Gear 2 with two new gears, Gear 5 and Gear 6, with 

15 and 21 notches respectively. If Gear 5 revolves 8 times, then how many revolutions 

does Gear 6 make? (Assume that Gear 5 and Gear 6 have the same size notches but they 

are different in size then the notches in Gear 1 and Gear 2.)     
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 Is there a relationship between the radius of Gear 1 and the number of revolutions it 

makes, still assuming that Gear 2 revolves 6 times? If there is, can you represent this 

relationship with a table, graph, or anything you think proper?  

 Is there a relationship between the number of notches a gear has and the number of 

revolutions it makes? If there is, can you represent this relationship with anything that 

you think will be proper? 

 If the question was given in the following format: Gear 1 has a radius r1, has n1 notches 

and makes R1 revolutions and Gear 2 has a radius r2, has n2 number of notches, and 

makes R2 revolutions, then how would you represent the relationships between those 

quantities? 

 Can you represent these relationships in an algebraic form? (If they do not understand 

what I mean, then I will tell them if they can represent the relations in an equation or 

another form.) 

Task 3 

At a bakery, 2 people can frost a total of 50 cupcakes in 12 minutes. How many cupcakes can 4 

people frost in 12 minutes? (Assume that all people work at the same steady pace.)  

Possible Follow-up Questions: 

 Can you explain what you are thinking? 

 How many cupcakes can 1 person frost in 12 minutes?  

 How many cupcakes can 3 people frost in 12 minutes? 

 How many cupcakes can N people frost in 12 minutes?  

 How many people will be needed to frost 350 cupcakes in 12 minutes? 
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 How about if we increase the number of people by adding six more people, then do we 

need to increase the number of cupcakes by subtracting the same number? 

 How many people will be needed to frost M cupcakes in 12 minutes? 

 Is there a relationship between the number of people and the number of cupcakes?  

 How do you know it is directly proportional? 

 Can you represent this relationship with a graph and a table? 

Task 4 

At a bakery, 2 people can frost a total of 50 cupcakes in 12 minutes. How long will it take for 4 

people to frost 50 cupcakes? (Assume that all people work at the same steady pace.)  

Possible Follow-up Questions: 

 Can you explain what you are thinking? 

 How long will it take for 1 person to frost 50 cupcakes?  

 How long will it take for 6 people to frost 50 cupcakes?  

 How about if we increase the number of people by adding six more people, then do we 

need to decrease the time by subtracting the same number? 

 How long will it take for N people to frost 50 cupcakes?  

 If we know that 50 cupcakes were frost in 8/3 minutes, then how many people frosted 

that many cupcakes? (Assuming that 2 people can frost a total of 50 cupcakes in 12 

minutes.) 

 How many people do we need to frost 50 cupcakes in ¾ of a minute? (Assuming that 2 

people can frost a total of 50 cupcakes in 12 minutes.) 

 How long would it take for 4 people to frost 75 cupcakes? (Assuming that 2 people can 

frost a total of 50 cupcakes in 12 minutes.) 
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 Is there a relationship between the number of people and number of minutes when 

frosting 50 cupcakes? How do you know it is inversely proportional?  

 Can you represent this relationship with a graph and a table? 

Task 5 

If 4 painters can paint 3 bedrooms in 6 hours then how many bedrooms can 8 painters paint in 

the same 6 hours? (Assume that all painters work at the same steady pace.) 

Possible Follow-up Questions: 

 Can you explain what you are thinking? 

 How many bedrooms or parts of a bedroom can a single painter paint in 6 hours?  

 How many bedrooms or parts of a bedroom can two painters paint in 6 hours?  

 How many bedrooms or parts of a bedroom can 6 painters paint in 6 hours?  

 How many painters will be needed to paint 9/2 bedrooms in 6 hours? 

 How many bedrooms or parts of bedrooms can be painted by N painters in 6 hours? 

 Is there a relationship between the number of painters and the number of bedrooms 

painted in 6 hours? If there is, can you explain what that relation is?  

 Can you represent this relationship with anything that you think will be proper?  

Task 6 

If 4 painters can paint 3 bedrooms in 6 hours, then how many hours would it take for 8 painters 

to paint the same 3 bedrooms? (Assume that all painters work at the same steady pace.) 

Possible Follow-up Questions: 

 Can you explain what you are thinking? 

 How many hours must 1painter spend to paint the same 3 bedrooms? 

  How many hours must 2 painters spend to paint the same 3 bedrooms? 
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 How many painters do we need to paint 3 bedrooms in 1 hour? 

 How many painters do we need to paint 3 bedrooms in ¾ of an hour? 

 How many painters do we need to paint 3 bedrooms in 4/3 hours? 

 Now if 4 painters can paint 3 bedrooms in 6 hours then how many painters do we need to 

paint 4 bedrooms in 4 hours? 

 Is there a relationship between the number of painters and the number of hours spent for 

painting 3 bedrooms? If there is, can you explain what that relation is? 

 Can you represent this relationship with a table, graph, or anything you think 

appropriate?  

Task 7: Direct-Direct-Inverse Proportional Relationship Problems  

If 3 people take 2 days to paint 5 fences, how long will it take 2 people to paint 1 fence? 

(Assume that the fences are all the same size and the painters work at the same steady rate.)   

Possible Follow-up Questions: 

 Can you explain what you are thinking? 

 How many days would it take for 1 person to paint 5 fences?  

 How many days would it take for 1 person to paint 1 fence?  

 How many days would it take for 2 painters to paint 1 fence?  

 Assuming that 3 people take 2 days to paint 5 fences, how many fences can 6 painters 

paint in 3 days? 

 Assuming that 3 people take 2 days to paint 5 fences, how many painters do we need to 

paint 10 fences in 3 days? 

 Are there any relationships between the given three quantities? If there are, then can you 

explain what those relations are? 
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 Can you represent these relationships with anything that you think may proper? 

Task 8: Inverse-Inverse-Inverse Proportional Relationship Problems 

If 8 workers can build an apartment in 24 days by working 6 hours each day, then how many 

days does it take for 12 workers to build the same apartment if each works 8 hours every day? 

(Assume that all workers work at the same steady pace.) 

Possible Follow-up Questions: 

 Can you explain what you are thinking? 

 How many days does it take 1 worker to build the same apartment if he/she works 6 

hours each day?  

 How many days does it take 1 worker to build the same apartment if he/she works 8 

hours each day?  

 How many days does it take 12 workers to build the same apartment if each work 8 hours 

every day?  

 Assuming that 8 workers can build an apartment in 24 days by working 6 hours each day, 

how many workers do we need to build the same apartment in 18 days assuming each 

worker work 4 hours a day? 

 Still we assume that 8 workers can build an apartment in 24 days by working 6 hours 

each day. Now if we have 12 workers, so how many hours a day should each worker 

need to work to build the same apartment in 16 days? 

 Are there any relationships between the given three quantities? If there are, then can you 

explain what those relations are? 

 Can you represent these relationships with anything that you think may proper? 
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Task 9 

In a cookie factory, 4 assembly lines make enough boxes of cookies to fill a truck in 10 hours. 

How long will it take to fill the truck if 8 assembly lines are used? (Assume that all assembly 

lines work at the same steady rate.) 

Possible Follow-up questions:  

 How long will it take to fill a truck if 2 assembly lines are used?  

 How long will it take to fill a truck if 1 assembly line is used?  

 How long will it take to fill a truck if 6 assembly lines are used?  

 How many assembly lines do we need to fill the truck in 
2 

3  
  of an hour? 

 How many assembly lines do we need to fill the truck in 
5 

4  
 hours? 

 Is there a relationship between the number of assembly lines and the number of hours to 

fill the truck? If there is, can you represent this relationship with anything that you think 

will be proper? 

Task 10 

If you covered the distance between two markers in 90 seconds driving at 60 mph. How long 

would it take you to cover the same distance driving at 50 mph? 

Possible Follow-up questions:  

 Is there another way to solve this problem? 

 How long would it take someone to cover the same distance if she/he walks 1 mile per 

hour? (Assume she/he walks in a steady pace.) 

 How long would it take someone to cover the same distance driving at 80mph? 

 If you cover 2 miles in 100 seconds, then what is the speed of your car in mile per hour? 

 If you trveled 40 miles 50 minutes, then how long would it take you to travel 15 miles? 
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 Are there relationships between speed of a car, the distance it traveled, and the amount of 

time traveled? Can you tell me what kinds of relationships are these? 

Task 11 (Used only with middle grade PSTs) 

Note: I will introduce the mini number balance system and explain the goal, which is to figure a 

balance between weights that can be hung at both directions. I will tell them they will need to 

assume they are only allowed to hang weights on one place at a time in both directions. Also, I 

will explain that each weight weighs one gram.  

Question: If you hang 3 grams on number 4 at one direction, then can you show me different 

ways of forming the balance in the system?  

Possible follow-up questions:  

 Can you explain to me what you are thinking? 

 Can you tell me more about why do you think hanging this way works?   

 Similarly, if you had hung 4 grams at number 8, then can you show me the ways of 

forming the balance in the system? 

 Can you think the numbers on the both directions in another way? What can they also 

represent here? 

 Can you find an equation that can be used to explain the ways of balancing the system? 

 Is there a relation between weights and the distance where the weights hung? 

Can you draw a graph of this relationship?   
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Appendix B 

EXPLORING PRESERVICE MIDDLE AND HIGH SCHOOL MATHEMATICS 

TEACHERS’ UNDERSTANDING OF DIRECTLY AND INVERSELY 

PROPORTIONAL RELATIONSHIPS 

Interview Protocol 1 

Interviewer: Muhammet Arican   

Discussion of goals: The goal for the first half of Interview 1 is to explore how preservice 

middle school mathematics teachers infer the directly proportional relationship between the size 

of a gear and the number of notches around it. In the second half, I will explore how preservice 

middle school mathematics teachers infer the inversely proportional relationship between the 

size of a gear and the number of revolutions it makes and the inversely proportional relationship 

between the number of notches the gear has and its number of revolutions. I will provide PSTs 

with plastic gears and give them some problems that will help me explore their reasoning. 

During the first interview, I will focus on the knowledge resources that they use to detect the 

directly and inversely proportional relationships. Additionally, the types of strategies that they 

use to solve given proportion problems, the ways they represent the directly and inversely 

proportional relationships, and the types of reasoning they engage in when solving these 

problems will be explored.  

Materials: Each participant will be given printouts of the problems, paper, pencils, and plastic 

gears.  
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Introduction: I will let the participants know that I am most interested in their thinking 

processes. Also, I will tell them that this interview is not a test, so they may skip questions and 

may discontinue the interview at any time without explanation. I will ask them to work on the 

tasks and to think aloud while they are attempting to solve the problems. I will let them know 

that they can play with the plastic gears to solve the problems and encourage them to take their 

time. I will also let them know that I may ask them to use a new method to solve given problems 

but this doesn’t mean their first way was wrong. Before moving to the tasks, I will ask them if 

they have any questions for me. As the participants discuss their thinking, I will ask them 

follow-up questions. 

Interview Tasks and Follow-up Questions 

Task 1A 

Note: In Tasks 1A and 1B, two gears are meshed with each other, so if one gear rotates, then the 

other gear also rotates. Because the two gears are meshed, they have the same-sized notches, and 

the notches are equally placed around the gears. 

Problem: Two gears, Gear A and Gear B, are meshed with each other as seen in picture below. 

Gear A has a 3-cm radius, and Gear B has a 6-cm radius. If Gear A has 12 notches, then how 

many notches does Gear B have?   

Possible follow-up problems and questions:  

Note: I will start with easy problems and gradually increase the difficulty of the questions. I do 

not plan to ask each one of the following problems. Depending on the interviewee’s responses, I 

may ask three or four of these problems.    

 Please tell me what you are thinking.  
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 How else might you solve this problem? Please tell me methods that could be used to 

solve this problem. (I will suggest using a drawing if students are stuck trying to 

calculate.) 

 If Gear A had seven notches, then how many notches would Gear B have? 

 If Gear B had a 2-cm radius, then how many notches would Gear B have? 

 If Gear B had a 
3

4
-cm radius, then how many notches would Gear B have? 

 What if Gear A had 3-cm radius and 10 notches, and Gear B had a 
6

5
-cm radius, then how 

many notches would Gear B have? 

 What if Gear A had 5-cm radius and four notches, and Gear B had six notches, then what 

would be the size of Gear B? 

 Now, assume we have two different gears, Gear D and Gear E that are also meshed and 

have 21 and 14 notches, respectively. If Gear D has a radius of 6 cm, then what is the 

radius of Gear E? (We are assuming that the sizes of the notches of Gear D and Gear E 

are the same.)     

 If Gear E had 8 notches, then what would be the size of Gear E? 

Note: I will continue with the following problems.  

 Gear A and Gear B with 3-cm and 6-cm radius, respectively, are meshed with each other 

again. If Gear A has m notches, then please calculate the number of notches of Gear B in 

terms of m. 

 What if Gear B had a 2-cm radius, then how many notches would it have? 

If an interviewee cannot answer the problem above, then I will ask the following problem.  

 What if Gear B had a 1-cm radius, then how many notches would it have? 
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 Now, consider what if Gear A had a 𝑟1-cm radius and six notches, and Gear B had eight 

notches, then what would be the value of Gear B’s radius (𝑟2) in terms of 𝑟1? 

Note: Although the following problem might be a little difficult for PSTs in a middle grades 

program, I will use this problem, since it may help me understand PSTs’ abilities to solve 

problems when the numbers are not provided. This problem may also help me detect their 

reasoning for more complex situations.  

 Gear X with a radius 𝑟1-cm and Gear Y with a radius 𝑟2-cm are meshed with each other. 

If Gear X has 𝑛1 notches, then how many notches (𝑛2) does Gear Y have?   

 Please tell me what you are thinking. 

 How else might you solve this problem? Please tell me methods that could be used to 

solve this problem. (I will suggest using a drawing if students are stuck trying to 

calculate.) 

Note: I will ask the following questions to each of the interviewees. 

 Considering all of these problems, would you talk about any patterns or relationships, if 

any, between the size of a gear and the number of its notches?  

 How did you determine your description of the relationship?  

 Please represent the relationship you claim graphically. 

 How else might you express this relationship? 

Task 1B 

Problem: Gear F and Gear K are two meshed gears where Gear F has 8 notches and Gear K has 

4 notches. If Gear F revolves 3 times, then how many times does Gear K revolve?  
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Possible follow-up problems and questions:  

Note: Depending on the interviewees’ responses, I may ask three or four of the following 

problems. 

 Please tell me what you are thinking.  

 How else might you solve this problem? Please tell me methods that could be used to 

solve this problem. (I will suggest using a drawing if students are stuck trying to 

calculate.) 

 What if Gear F completed 
3

2
 revolutions, then how much revolutions would Gear K 

complete? 

 What if Gear K had six notches, then how much revolutions would Gear K complete 

when Gear F completed three revolutions? 

 How many notches should Gear K have, so when Gear F completes three revolutions, it 

can complete 
2

3
 of a revolution? (We are assuming that Gear F and Gear K are meshed, 

and Gear F has eight notches.) 

 Now, assume that you are given a new pair of gears (Gear L and Gear M) that are also 

meshed and have eight and 14 notches, respectively. If Gear M revolves four times, then 

how many revolutions does Gear M make?  

 How many notches should Gear L have, so when Gear M completes four revolutions, it 

can complete 
7

2
 revolutions? 

Note: I will continue with the following problems. 

 You are given Gear F and Gear K with eight and four notches, respectively. If Gear F 

made p revolutions, then determine the number of revolutions that Gear K made in terms 

of p. 
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 What if Gear K had 12 notches, then how many revolutions would it complete? (We are 

assuming that Gear F made p revolutions.) 

If an interviewee cannot answer the problem above, then I will ask the following problem.  

 What if Gear K had one notch, then how many revolutions would it complete? (We are 

assuming that Gear F made p revolutions.) 

 When Gear F with n notches completed six revolutions, Gear K completed eight 

revolutions. Please determine the number of notches of Gear K in terms of n. 

Note: Although the following problem might be a little difficult for PSTs in a middle grades 

program, I will use this problem, since it may help me understand PSTs’ abilities to solve 

problems when the numbers are not provided. This problem may also help me detect their 

reasoning for more complex situations.  

 Gear T has 𝑛1 notches, and Gear Z has 𝑛2 notches. If Gear T revolves 𝑅1times, then how 

many times (𝑅2) does Gear Z revolve?  

 Please tell me what you are thinking.  

Note: I will ask the following questions to each interviewee. 

 Considering all of these problems, would you talk about any patterns or relationships, if 

any, between the number of notches on a gear and the number of its revolutions?  

 How did you determine your description of the relationship?  

 Please represent the relationship you claim graphically. 

 Please compare this relationship with the relationship that you identified in the previous 

task (Task 1A). Please explain similarities and differences. 

 Please describe the relationships in the following three graphs and compare those 

relationships with each other. 
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(a)                                                                      (b) 

 

(c) 

Interview Protocol 2 

Interviewer: Muhammet Arican   

Discussion of goals: The goal for the second interview is to explore how preservice middle 

school mathematics teachers infer the directly proportional relationship between the number of 

people and the number of cupcakes they frost in some fixed time, the directly proportional 
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relationship between the number of cupcakes frosted by some fixed number of people and the 

time needed to frost that many cupcakes, and an inversely proportional relationship between the 

number of people and the time they needed to frost some fixed number of cupcakes. During the 

second interview, I will focus on the knowledge resources that they use to detect the directly and 

inversely proportional relationships. Additionally, the types of strategies that they use to solve 

given proportion problems, the ways they represent the inversely proportional relationships, and 

the types of reasoning they engage in when solving these problems will be explored.  

Materials: Each participant will be given printouts of the problems, paper, and pencils.  

Introduction: I will let the participants know that I am most interested in their thinking 

processes. Also, I will tell them that this interview is not a test, so they may skip questions and 

may discontinue the interview at any time without explanation. I will ask them to work on the 

tasks and to think aloud while they are attempting to solve the problems. I will let them know 

that they can play with the plastic gears to solve the problems and encourage them to take their 

time. Before moving to the tasks, I will ask them if they have any questions for me. As the 

participants discuss their thinking, I will ask them follow-up questions. 

Interview Tasks and Follow-up Questions 

Task 2A 

Problem: At a bakery, 3 people can frost a total of N cupcakes in T minutes. How many 

cupcakes can 6 people frost in the same T minutes? (Assume that all people work at the same 

steady pace.)  

Possible follow-up problems and questions: 

 Please tell me what you are thinking. 
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 How else might you solve this problem? Please tell me methods that could be used to 

solve this problem. (I will suggest using a drawing if students are stuck trying to 

calculate.) 

 How many cupcakes can four people frost in T minutes?  

 How many cupcakes can M people frost in T minutes?  

 How many people are needed to frost  
2N

3
  cupcakes in T minutes? 

 How long would it take for three people to frost 
3N

2
 cupcakes? 

Note: If an interviewee cannot answer the initial problem or has difficulty with the follow up 

questions, then I will skip them and continue with the next problem and follow up questions. If 

he/she can answer it, then I will not introduce the next problem and continue with the last part of 

this task.  

 At a bakery, three people can frost a total of 60 cupcakes in 12 minutes. How many 

cupcakes can one person frost in 12 minutes? (Assume that all people work at the same 

steady pace.) 

 Please tell me what you are thinking. 

 How else might you solve this problem? Please tell me methods that could be used to 

solve this problem.   

 How many cupcakes can six people frost in 12 minutes?  

 How many people are needed to frost 80 cupcakes in 12 minutes? 

 How long would it take for three people to frost 90 cupcakes? 

Note: I will ask the following questions to each interviewee.   

 Considering all of these problems, would you talk about any patterns or relationships, if 

any, between the number of people and the number of cupcakes? What are they?  
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 How did you determine your description of the relationship?  

 Please represent the relationship you claim with a drawing.  

 Considering all of these problems, would you talk about any patterns or relationships, if 

any, between the number of cupcakes and the time? What are they?  

 How did you determine your description of the relationship?  

 Please represent the relationship you claim with a drawing.  

Task 2B 

Problem: At a bakery, 3 people can frost a total of N cupcakes in T minutes. How long would it 

take for 6 people to frost N cupcakes? (Assume that all people work at the same steady pace.) 

Possible follow-up questions: 

 Please tell me what you are thinking. 

 How else might you solve this problem? Please tell me methods that could be used to 

solve this problem.  

 How long would it take for two people to frost N cupcakes?  

 How many people are needed to frost N cupcakes in 
3T

4
 minutes?  

Note: If an interviewee cannot answer the initial problem or has difficulty with the follow up 

questions, then I will skip them and continue with the next problem and follow up questions. If 

he/she can answer it, then I will not introduce the next problem and continue with the last part of 

this task.  

 At a bakery, three people can frost a total of 60 cupcakes in 12 minutes. How long would 

it take for six people to frost 60 cupcakes? (Assume that all people work at the same 

steady pace.) 

 How long would it take for one person to frost 60 cupcakes?  
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 How many people are needed to frost 60 cupcakes in 9 minutes?  

Note: I will ask the following questions to each interviewee.   

 Considering all of these problems, would you talk about any patterns or relationships, if 

any, between the number of people and the time? What are they?  

 How did you determine your description of the relationship?  

 Please represent the relationship you claim graphically. 

 Please compare this relationship with the relationships in the previous task. Please 

explain the similarities and the differences. 

Task 2C 

Problem: At a bakery, 3 people can frost a total of N cupcakes in T minutes. How long would it 

take for 1 person to frost 2N cupcakes? (Assume that all people work at the same steady pace.)  

 Please tell me what you are thinking. 

 How else might you solve this problem? Please tell me methods that could be used to 

solve this problem.  

 How many cupcakes can two people frost in 
T

2
 minutes?  

 How many people are needed to frost 
2N

3
  cupcakes in 

T

3
 minutes? 

Note: If an interviewee cannot answer the initial problem or has difficulty with the follow up 

questions, then I will skip them and continue with the next problem and follow up questions.  

 At a bakery, three people can frost a total of 60 cupcakes in 12 minutes. How long would 

it take for one person to frost 120 cupcakes? (Assume that all people work at the same 

steady pace.) 

 Please tell me what you are thinking. 
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 How else might you solve this problem? Please tell me the ways that you think could be 

used to solve this problem.  

 How many cupcakes can two people frost in 6 minutes? (Assuming that three people can 

frost a total of 60 cupcakes in 12 minutes, and they all work at the same steady pace.) 

 How many people are needed to frost 40 cupcakes in 4 minutes? (Assuming that three 

people can frost a total of 60 cupcakes in 12 minutes.) 

 Considering parts A, B, and C, please formulate an equation to express relationships 

among the number of people, the number of cupcakes, and the number of minutes?  

Interview Protocol 3 

Interviewer: Muhammet Arican   

Discussion of goals: I will provide each preservice teacher with a mini number balance system, 

which is a simple version of an equal-arm beam balance scale. In this interview, the goal is to 

explore how PSTs infer an inversely proportional relationship between the number of weights 

hung and the distance (how far from the center a weight is hung). I will tell the PSTs to hang 

some number of weights on a number in one direction of the system and ask them to balance the 

system in the other direction. In addition, I will explain that they are allowed to hang weights on 

only one number to balance the system. I will also explore the knowledge resources that PSTs 

use to detect the inversely proportional relationship, the types of strategies that they use to solve 

given proportion problems, the ways they represent the inversely proportional relationship, and 

the types of reasoning they engage in when solving these problems.  

Materials: Each participant will be given printouts of the problems, paper, pencils, and a mini 

number balance system.  
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Introduction: I will let the participants know that I am most interested in their thinking 

processes. Also, I will tell them that this interview is not a test, so they may skip questions and 

may discontinue the interview at any time without explanation. I will ask them to work on the 

tasks and to think aloud when they are attempting to solve the problems. I will let them know 

that they can play with the plastic gears to solve the problems and encourage them to take their 

time. Before moving to the tasks, I will ask them if they have any questions for me. As the 

participants discuss their thinking, I will ask them follow-up questions.  

Interview Tasks and Follow-up Questions 

Task 3  

Problem: You are given that 𝑊1 number of weights were hung on a number that has a 𝐷1 

distance from the center on one side of the balance system. To balance the system on the other 

side, you want to hang 𝑊2 number of weights. What would be the distance (𝐷2) in terms 

of 𝐷1, 𝑊1, and 𝑊2, so you could balance the system?  

Possible follow-up problems and questions:  

 Please tell me what you are thinking. 

If the interviwee obtain 𝐷1* 𝑊1= 𝐷2 * 𝑊2 equation, then I will ask the following question: 

 How did you obtain this equation? Why do you think the product of  𝐷1and 𝑊1 is equal to 

the product of 𝐷2 and 𝑊2? 

 How else might you express this equation?  

Note: If the interviewee cannot answer the problem, I will skip it and continue with the 

following problems. 

 If you are given that 𝑊1 = 6 weights, 𝐷1 = 𝑎 𝑐𝑚, and 𝑊2 = 8 weights, then what 

would be the value of 𝐷2 in terms of a? 
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 Please tell me how do you make sense of 𝐷2 in terms of given number of weights and a? 

 If you are given that 𝐷1 = 4 𝑐𝑚, 𝐷2 = 3 𝑐𝑚,  and 𝑊1 = 𝑚 weights, then what would be 

the value of 𝑊2 in terms of 𝑚? 

 Please tell me how do you make sense of 𝑊2 in terms of given distances and m? 

Note: If the interviewee cannot answer the problems above, then I will skip these problems and 

continue with the following problems. 

 If you are given that 𝐷1 = 4 𝑐𝑚, 𝐷2 = 3 𝑐𝑚, and 𝑊2 = 8 weights, then what would be 

the value of 𝑊1? 

 How did you obtain 24? 

 Please tell me more about why you think hanging them this way works. 

Note: I will ask the following questions to each interviewee.   

 If you hang six weights on number eight on one side, then please show me different ways 

of balancing the system on the other side?      

 Please express these different ways of balancing the system with a ratio table.  

 Do you recognize anything significant in your table? Please explain what you recognize 

as significant.   

 Would you talk about any patterns or relationships, if any, between the number of 

weights and the place where the weights were hung? What are they?  

 How did you determine your description of the relationship?  

 Please represent the relationship you claim graphically. 

 Do you recognize anything significant in your graph? Please explain what you recognize 

as significant.   
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Interview Protocol 4 

Interviewer: Muhammet Arican   

Discussion of goals: Tasks 4, 5, and 6 involve multiple proportional relationships. The goal for 

Task 4 is to explore how preservice middle school mathematics teachers infer the directly or 

inversely proportional relationships among the speed, distance, and time. In Task 5, PSTs’ 

determination of two directly proportional relationships and one inversely proportional 

relationship will be studied. In Task 6, PSTs’ determination of three inversely proportional 

relationships will be explored. Because these tasks involve multiple proportional relationships, I 

expect difficulties from PSTs in solving these problems. Since it is difficult to set up proportions 

and use the cross-multiplications strategy to solve the problems in these tasks, by using these 

tasks, I expect to detect PSTs’ reasoning for complex situations. During the interview, I will 

focus on the knowledge resources that they use to detect directly and inversely proportional 

relationships. Additionally, the types of strategies that they use to solve given proportion 

problems, the ways they represent the directly and inversely proportional relationships, and the 

types of reasoning they engage in when solving these problems will be explored.  

Materials: Each participant will be given printouts of the problems, paper, and pencils.  

Introduction: I will let the participants know that I am most interested in their thinking 

processes. Also, I will tell them that this interview is not a test, so they may skip questions and 

may discontinue the interview at any time without explanation. I will ask them to work on the 

tasks and to think aloud when they are attempting to solve the problems. I will let them know 

that they can play with the plastic gears to solve the problems and encourage them to take their 

time. Before moving to the tasks, I will ask them if they have any questions for me. As the 

participants discuss their thinking, I will ask them follow-up questions.  
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Interview Tasks and Follow-up Questions 

Task 4 

If you covered the distance between two markers in 90 seconds driving at 60 mph and if you 

want to cover the same distance in 60 seconds, then what must be your speed? 

Possible follow-up questions:  

 Please tell me what you are thinking. 

 Please calculate how much miles you covered in 90 seconds driving at 60 mph. 

 How long would it take someone to cover the same distance if she/he walks 1 mile per 

hour? (Assume she/he walks at a steady pace.) 

Note: I will ask the following questions to each interviewee.   

 If you cover 2 miles in 100 seconds, then what is the speed of your car in miles per hour? 

 If you traveled 40 miles in 50 minutes, then how long would it take you to travel 16 

miles? 

 You covered the distance (D) between two markers in 90 seconds driving at V mph. If 

you want to cover the same distance in 60 seconds, then what must your speed be in 

terms of V? 

 How else might you solve this problem? Please tell me methods that could be used to 

solve this problem.  

 Please calculate how many miles you covered in 90 seconds driving at V mph in terms of 

V. 

 If you reduce your speed to 
2V

3
 mph, then how long would it take you to cover the same 

distance (D)?  
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 Would you talk about any patterns or relationships, if any, among the speed of a car, the 

distance it travels, and the amount of time traveled? What are they?  

 Please generate a formula to express these relationships. 

Extra Tasks: 

Task 5: Direct-Direct-Inverse Proportional Relationships Problem  

If three people take two days to paint five fences, how long will it take two people to paint one 

fence? (Assume that the fences are all the same size, and the painters work at the same rate.)   

Possible follow-up questions: 

 Please tell me what you are thinking. 

 How else might you solve this problem? Please tell me methods that could be used to 

solve this problem.  

 Assuming that three painters painted five fences in two days, how many fences can six 

painters paint in three days? 

 Assuming that three painters painted five fences in two days, how many painters do we 

need to paint 10 fences in three days? 

 Would you talk about any patterns or relationships, if any, among the number of painters, 

the number of fences painted, and the number of days? What are they?  

Task 6: Inverse-Inverse-Inverse Proportional Relationships Problem 

A total of 20 people went on a scout camping trip. If each person consumes 
1

2
 of a pound of 

cereal every day, then the cereal will last for 12 days. On the first day, they decided to extend the 

length of their stay from 12 days to 16 days. How much cereal should each person eat so that the 

cereal will last for 16 days?  
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 Possible follow-up questions:  

 Please tell me what you are thinking. 

 How else might you solve this problem? Please tell me methods that you could be used to 

solve this problem.  

 If each of the 20 people consumed 
1

4
 of a pound of cereal every day, how many days 

would the cereal last? 

 If each of the 20 people consumed 
3

2
  of a pound of cereal very day, how many days 

would the cereal last? 

 If 10 more students joined the scout group the day before they went camping, how much 

cereal could each person eat so that the cereal would last for 12 days?   

 Would you talk about any patterns or relationships, if any, among the number of people, 

cereal consumption per person, and the length of their stay? 


