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ABSTRACT

In this work, we generalize Bertram’s work on rank two vector bundles on
a smooth irreducible projective curve to an irreducible singular curve C' with
only one node as singularity. We resolve the indeterminancy of the rational map
ér: P(Ext (L, O¢)) — SUc(2, L) defined by ¢([0 = Oc — E — L — 0]) = E in
the case deg L. = 3,4 via a sequence of three blow-ups with smooth centers. Here
SU(2, L) is a compactification of the moduli space SU-(2, L) of semi-stable vector
bundles of rank 2 and determinant L on C'.

An additional part is on the base locus of the generalized theta divisor ©, on
SU¢(r, L) for a smooth curve C. Among our results, we show, using results of Ray-
naud, that the base locus is always non-empty when r > 29 and L = O¢.
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INTRODUCTION

The moduli spaces of semi-stable vector bundles with trivial determinant on a
smooth curve are one of the links between Mathematics and Physics which has
been studied at the end of the twentieth century and at the beginning of the current
one. There are several formulas about them which are known to the physicists, but
that are still to be proved by mathematicians, and this is the main motivation for
the following work. We want to understand those moduli spaces and their “cousins,”
which would be some similar and related moduli spaces. Also, we want to extend
known constructions to the case of singular curves.

The moduli spaces of semi-stable vector bundles on a smooth curve were con-
structed in the sixties by several people, including Mumford, Narasimhan, Ramanan,
and Seshadri. They are well understood in the case when the genus of the curve is
either 0 or 1, thanks to work of Grothendieck and Atiyah. In the case of a sin-
gular curve, the moduli spaces were constructed in the seventies by Newstead and
Seshadri, together with their natural compactifications using torsion-free sheaves.

The first part of this work deals with a construction of Bertram which uses
extensions of line bundles to study rank-2 vector bundles of fixed determinant on
a smooth curve. We generalize his construction to an irreducible curve C' with one
node in the particular case when the degree of the fixed determinant is 3 or 4. The
idea is to look at extensions of L by O¢, where L is a generic line bundle of degree
3 or 4, and consider the ‘forgetful’ map which sends an extension to the vector
bundle of rank 2 in the middle, forgetting the extension maps. This gives a rational

map from P(Ext (L, O¢)) to SUc(2, L), a compactification of the moduli space
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SUc(2, L) of semi-stable vector bundles of rank 2 and determinant L. We resolve
the indeterminancy of the map by a sequence of three blow-ups with smooth centers.
A nice aspect of these blow-ups is that there exists at each stage a ‘universal bundle’
which gives the rational map in a natural way.

In the first chapter, we describe the rational map, and we relate coherent sheaves
on the curve to coherent sheaves on its normalization, N, with some extra structure.
The image of the rational map (on its domain of definition) is contained in the
dense open subset SU(2, L) of m In the second chapter, we blow-up the
extension space at a point, and we describe the new rational map. The curve is
naturally embedded in P(Ext +(L, O¢)), and we blow-up this space at the singular
point of the curve. The image of this map contains all non-trivial extensions of
L®(m.On)* by m.On which are push-forwards of extensions from the normalization.
In the third chapter, we blow-up the new space along a line. The image of the new
rational map contains all non-trivial locally-free extensions of L ® (m,Oy)* by m.Op
of determinant L. Finally, in the fourth chapter, we blow-up the new space along
the strict transform of the curve. The induced map is a morphism, and the image
contains all non-trivial extensions of L(—q) by O¢(q), where ¢ is any smooth point
on the curve.

The second part of this work studies the base locus of the generalized theta
divisor on the moduli space of vector bundles of fixed rank and determinant on a
smooth curve. The generalized theta divisor is any divisor whose associated line
bundle is the unique ample generator of the Picard group of the moduli space.

In the fifth chapter, we give a short survey of the known results, and we prove two
new results. Among our results, we show that, if the degree of the vector bundle is
a multiple of the rank, and the rank is at least 29, then the base locus is non-empty,
and we give a lower bound for its dimension. Moreover, we show that the base locus

is non-empty for smaller ranks if the curve is a covering of another smooth curve.



3
The sixth and final chapter is a report on a conjecture introduced by Donagi and
Tu which generalizes a previous conjecture known to the physicists. The conjecture
expresses a duality between sections of multiples of the generalized theta divisors on
different moduli spaces of vector bundles. After reformulating the conjecture, and
supplying more evidence for it, we show how the conjecture would help in answering
questions about the base locus of the generalized theta divisor.

The appendices contain technical results needed in the first part of this work
that we did not want to include there to make the exposition more readable. The
first appendix studies extension spaces of torsion-free sheaves of rank 1 on a nodal
curve with one node, the second one studies similar extension spaces on the product
of a smooth variety with the curve, and the third one contains a result that we need

to prove the linearity of certain restrictions of our rational maps.



CHAPTER 1

GETTING STARTED

1.1 BACKGROUND AND NOTATION

We extend Bertram’s construction (see [Ber89], [Ber92]) to the case of an irreducible
projective curve with one node, i.e., we use extensions to study the moduli spaces

of (S-equivalence classes' of) semi-stable? vector bundles of rank 2. Let

C

Ext &(L, O¢)

an irreducible projective curve with one node p as singularity

m N —C the normalization of C

D1, P2 the two points on N which map to p in C

g>2 the arithmetic genus of C'

L a generic line bundle on C'

SUc(2,L) the moduli space of (S-equivalence classes of) semi-stable
vector bundles of rank 2 and determinant L on C

SUc(2, L) the compactification of SU:(2, L) via torsion-free sheaves

(see [Ses82] and [NewT8])

the vector space of extensions of L by O¢

P the projectivization of Ext (L, O¢)

(S) the vector subspace of a vector space V' corresponding to
a linear subspace S C P(V)

T,X the tangent space to a variety X at the point x

ITwo vector bundles E; and Ey of rank 2 are S-equivalent if there exists a line bundle
F such that 2deg F' = deg £} = deg E, F' C E; and either F' C Fy or Ey/F C Es.
2A bundle E of rank 2 is semi-stable if 2 deg F' < deg E for every line subbundle F C E.

4
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The only exception to the table is that we shall use 7,,C' to denote the projective
tangent plane to the curve at p, which is a 2-dimensional linear subspace of Py,
instead of the tangent plane itself.

Also, we shall abuse the notation at times. For example, a point x in P; corre-
sponds to a line through the origin in Ext 5(L, O¢). If one extension on such a line
is0 — Oc — E, — L — 0, then all the non-trivial extensions on the line have the
middle vector bundle isomorphic to E,. Therefore, we shall sometimes refer to E,
as the “extension in Ext (L, O¢) corresponding to z.” In other words, even if there
does not exist a unique extension determined by x, the middle vector bundles in the
extensions corresponding to x are all isomorphic, and we shall refer to any of them
as the “extension corresponding to x.”

Finally, for every extension space Ext'(G,F) and every map F — F’ [resp.
G' — G], there exists a linear homomorphism Ext'(G, F) — Ext'(G, F’) [resp.

Ext '(G, F) — Ext }(G', F)] given by the pull-back

0O —— F E G 0
| | [
0 —— F' E’ G 0

[resp. the push-forward

0 F E G 0
] | | )
0 F E' G’ 0

We shall sometimes refer to these linear homomorphisms as “natural linear homo-

morhisms.”

1.2 DESCRIPTION OF THE RATIONAL MAP

We study the rational map ¢p: P, — SUc(2, L) defined as follows. Let z € Py.

Then x corresponds to a line through the origin in the vector space Ext & (L, O¢).
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Each point on the line corresponds to an extension 0 — O — F — L — 0 and

all the E’s (except for the one corresponding to the origin) are isomorphic. Define
¢1(x) to be the equivalence class of E in SU(2, L), that we shall denote by E.

Note that Ext (L, O¢) is isomorphic to H(C,L ® we)* (see [Har77, 111.6.7,

I11.7.6]). Therefore, the linear system |L ® w¢| defines a rational map
PLOwe - C—)’L & wc\* ~ IP)L.
Let Uy, C P, be the open locus of semi-stable extensions.

Proposition 1.1. (1) Ifdeg L < 0, then U = 0.
(3) ]f3 S degL S 4, then UL = ]P)L \ @L@wc(o)-

Remark. The same is true in the case of a smooth curve (see [Ber92, section 3]).

Proof. (1) If deg L < 0, then every extension 0 — O — E — L — 0 of L by
O¢ is not semi-stable because Oc C F and degO¢ = 0 > deg L = deg F.

(2) This is equivalent to the following statement: If 0 < deg L < 2, then every
non-trivial extension of L by O is semi-stable. Let 0 — O — E — L — 0 be a
non-trivial extension of L by O¢, and suppose that E is not semi-stable. Then there
exists a torsion-free quotient I of E of rank 1 such that 2deg F' < degE < 2 3.
Therefore, deg F' < 0.

Case I: deg F' < 0. Then the composition Oy <— E — F'is the zero map, and the
map F — F factors through L. But this is not possible because deg F' < 0 < deg L

and every map from L to F' is zero®.

3This is a standard result about non-semi-stable torsion-free coherent sheaves (see, for
example, [New78]).

4This is clear if F' is locally-free, and the same proof holds for a torsion-free sheaf (see
[LeP97, 5.3.3]).
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Case II: deg F' = 0. Consider the composition O — E — F. If this is the zero
map, we obtain a contradiction as in case I. If it is not the zero map, then it has to
be an isomorphism?®, and the extension is trivial.
(3) Let 3 < deg L <4, and let 0 - Oc — F — L — 0 be a non-trivial extension
of L by O¢. If F is not semi-stable, then there exists a torsion-free quotient F' of E
such that 2deg F' < deg ¥ < 4. Therefore, deg F' < 1. An argument similar to that
of part (2) above shows that deg F' cannot be < 0, and therefore deg I’ = 1. Since
deg F' < deg L, the composition O < E — F' cannot be the zero map (or £ — F
would factor through L), and this implies that O¢ < F. If F' is locally-free, then
F = O¢(q) for some q € C'\ {p}. If F is not locally-free, then F' = m,Op °. The rest

of the proof follows from the following lemma. O

Lemma 1.2. (1) If q is a smooth point of C' (i.e., ¢ # p), then
YPq
PLRwc (Q) = ]P)(ker(EXt IC(L7 OC)—>EXt IC(Lv OC(Q))))

Moreover, ¢rg..(p) = P(ker(Ext &(L, O¢) kit Ext H(L, m.0n))).

(2) Let 0 - Oc — E — L — 0 be a non-trivial extension, and let F be a
torsion-free sheaf with deg F' < deg L. If there exists a surjective map E — F,
then E € ker(Ext (L, O¢) 24 Ext &(L, F)). The converse is true if Oc C F and

E & kerg for every torsion-free sheaf G such that Oc C G C F.

Remark. The linear homomorphisms v, 1, and 1 are the natural push-forward

maps defined by the inclusions of O¢ into O¢(q), O, and F, respectively.

5Since the image is a subsheaf of the torsion-free sheaf F, if the map is non-zero, then
the image has rank 1 and degree < deg O¢ = 0; since this is also the degree of F', the map
is surjective. It is clearly also injective, since O¢ is torsion-free.

6A torsion-free non-locally-free coherent sheaf F of rank 1 on C is of the form m,F
for some line bundle F on N (see [Ses82, VIL.2, VIL.10]). In our case, since deg F' = 1,
deg F =0, and O¢ — F implies that Oy = 7*O¢ — F. Therefore, F = Oy.
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Proof. (1) If ¢ # p, then prg..(q) is the hyperplane H°(C, L ® wc(—q)) in
H°(C, L ® we). In particular, it corresponds to the kernel of the dual linear homo-
morphism H°(C, Lowc)* — HY(C, Lowe(—q))*. This homomorphism is the natural
linear homomorphism v, when we identify Ext ;(L, O¢) [resp. Ext (L, Oc(q))] with
H(C, L ®we)* [resp. H(C, L ® we(—q))*].

If ¢ = p, then pre..(p) is the hyperplane of H°(C, L&wc) defined by the sections
vanishing at p. Since the sheaf generated by the regular functions which vanish at
p is the sheaf 7, (On(—p1 — p2)) and its dual is T.On, @Lrew. (p) corresponds to the
kernel of the linear homomorphism H'(C,L™') — HY(C,L™' ® 7,0y), where we
identified H(C, L ® we)* with H'(C, L™1) (see [Har77,II1.7.7]). If G is any coherent
sheaf, we can identify Ext -,(L, G) with H*(C, L~*® @) using [Har77, 111.6.3, 111.6.7],
and the linear homomorphism above becomes 1, as claimed.

(2) Let f be the surjective map E — F, and consider its composition with the
inclusion O — FE. This is a non-zero map Og — F. Otherwise, £ — F would
factor through L and this is not possible because deg F' < deg L and F'is torsion-

free. Then we have a commutative diagram

0 Oc¢ E L 0
| | [ ,
0 F Yr(E) L 0

and we need to prove that ¥ p(F) splits. The surjective map (—f +id): E® F — F
contains O¢ in its kernel, and therefore it induces a surjective map from the quotient
Vrp(E) = (E® F)/O¢ to F. This surjective map, composed with the inclusion
F — ¢p(F) gives the identity on F', proving that ¢p(E) is the trivial extension.
For the converse, assume that Oc C F, E € ker¢p, and E ¢ keriq for every

Oc € G C F. Then there exists a commutative diagram

0 Oc E L 0
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The composition £ — F'& L — F, where the second map is the projection onto the
first factor, must be surjective. Otherwise, its image would be a torsion-free sheaf G
such that O C G C F'. Indeed, O¢ is contained in the image because the composite
map Og — F — F & L — F' is non-zero. O

From now on, we shall restrict ourselves to the first non-trivial case, i.e., when

deg L is either 3 or 4.
Lemma 1.3. Ifdeg L > 3, then prgw. 1S an embedding.

Remark. Since ¢rgg,. is an isomorphism onto its image, we shall identify C' with
<10L®UJC (C) g ]P)L'

Proof. By [Bar87, 3.14-3.18], we need to prove that, for every ¢, ¢ € C not both
equal to p,
HY(C,L®we®T,®T,) = H(C,L®we) =0,

where Z, [resp. Z,] is the ideal sheaf of the point g [resp. ¢'] 7, and that®
HY(C,L®wc®I;)=H'(C,L®wc) = 0.
Case I: ¢,¢' # p. Then, by Serre duality,
HY O, L®we T, ®T,) ~ H(C, L™ (¢ +¢))",

which is zero because deg(L™'(¢+ ¢')) < 0.
Case II: ¢ # p and ¢’ = p. Since T*we ~ wy(p1 + p2) (see [Bar87, 3.7]), using the

projection formula we obtain we ® 7, ~ mwy, and

LRwe®ZI,®1L,~ L(—q) @ mwy ~ T (7" (L(—q)) @ wn).

If ¢ # p, then Z, = Oc(—q). If ¢ = p, then T, = m.(On(—p1 — p2))-

8The case of Ig is a little different because Iq2 = 1, ® Z, for a smooth point ¢, but
Ig # I, ® I, for the node p. We have that Ig = m.wn(—2p1 — 2p2), and it is equal to
(I, ® I,,)/ Tors .



10

Therefore,
HY(C,L®we ®T,®Ty) ~ H' (N, 7" (L(~q)) @ wy) =~ H(N, 7" (L7 (q)))"

(see [Har77, Ex. I11.4.1]), which is zero because deg(m*(L'(q))) < 0.

Case III: ¢ = ¢’ = p. Then we ® Z? ~ 7, (wn(—p1 — p2)) and
L®we @I ~m(r*L @ wy(—p1 — p2))-
Therefore,
HY (C,LR®wc ®I2) ~ H'(N,7*L ® wy(—p1 — p2)) ~ H(N,7* L~ (p1 + p2))",

which is zero because deg(m*L~!(p; + p2)) < 0. O

Remark. Lemma 1.2 shows that a smooth point ¢ € C C P, is the point
P(ker(Ext (L, O¢) Y Ext &(L,Oc(q)))) and the singular point p is the point

P(ker(Ext (L, Oc) % Ext L(L, m.0x))).

Lemma 1.4. The projective tangent plane to C' at p is

7,0 = P(ker(Ext L(L, Oc) 22Ext L(L, 7. (On (p1 + p2))))).-

Proof. Tt is easy to see that all the kernels involved in this proof have the right
dimension (for a formal proof, see lemma A.1). The line between the singular point
p and a smooth point ¢ is given by P(ker(Ext (L, O¢) — Ext &(L, m.On(q)))), this
being a 1-dimensional linear subspace of P, which contains both p and ¢. If we take
the limit as p — ¢ along the branch corresponding to p; (i = 1,2), we see that the

projective tangent line at p to that branch is
X, = P(ker(Ext (L, Oc)—Ext (L, m.(On(pi))))) (i =1,2).

Since P(ker (1)1 2)) is a 2-dimensional linear subspace of P;, which contains both X,

and X,,, it is the projective tangent plane 7,C to C at p. O
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We end this section with an important way to describe the rational map ¢y, °.

Proposition 1.5. There exists a locally-free sheaf £, on Pp x C' such that

Erl@yxe = or(x)

for every x € P, \ C. Moreover, £, is an extension in Extp (L, Op, (1)), and for
every a # 0 in Ext (L, Oc), if we identify 7 Op,(1))|{ja)yxc with Oc using a, €

restricts on {[a]} x C' to the extension a itself.

Proof. The vector space of extensions Extp (L, Op, (1)) is isomorphic to
Hom (Ext (L, O¢), Ext (L, O¢)) by lemma B.1. Let £ be the extension cor-
responding to the identity homomorphism. Then, if a # 0 is an extension

0— Oc — E, = L—0, E|ayxc is E, by corollary B.2. O

1.3 RELATING SHEAVES ON C TO SHEAVES ON N

N C
P

D2

Every extension 0 — O — F — L — 0 of L by O¢ pulls-back to an extension
0 - Oy — mE — 7L — 0 of 7*L by Ox on N, because L is locally-free.
Therefore, if we denote by L the line bundle 7*L on N, there exists a natural map

7 Ext H(L, O¢) — Ext (L, Ox).

Lemma 1.6. If we identify Ext (L, Oy) with Ext (L, m.On) via the projection
formula, the map 7 : Ext 5(L, O¢) — Ext \ (L, O) is the natural linear homomor-

phism ¥, Ext (L, Oc) — Ext (L, 7.0y).

9In the proposition, Extp (L, Op, (1)) actually denotes Ext %Lxc(wéL,w[ﬁLOM(l)).
For an explanation of the notation, see appendix B.
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Proof. Note that 7* is linear. Indeed, the diagrams which define the operations on
Ext (L, O¢) pull-back to the diagrams which define the operations on Ext 3 (£, Ox)
for the corresponding images. Hence, since'” the dimension of Ext &(L, O¢) is equal
to g —1+deg L, which is equal to dim Ext 3 (£, Ox)+1, it is enough to show that 7*
has the same kernel as 1,,. Since both kernels are 1-dimensional, it suffices to show
that ker 1, is contained in ker 7*.
We saw in lemma 1.2 that if an extension 0 — O — EF — L — 0 is in
the kernel of 1, then E has 7,0y as quotient, and therefore 7*E has quotient
Oy = (m*(7.Op))/Tors. Since 0 — Oc — E — L — 0 is in the kernel of 7* if and

only if 7*E has Oy as quotient, the two kernels are the same. O

Remark. The linear homomorphism 7*: Ext (L, O¢) — BExt y(L£,0p) gives a
rational map 7*: P, — P, where P, is P(Ext (£, Oy)). This map is just the

projection from p.

The following lemma describes the fibers of 7*. For every vector bundle G of
rank 7 on N and for every r-dimensional subspace F(G) of G|,, & G|,,, define a

torsion-free sheaf G on C by
G = ker(m.G—((Glp, ® Glp,)/F(G))).

Bhosle shows in [Bho92] that the correspondence (G, F'(G)) — G is one-to-one if
G is locally-free. Le., if G is locally-free, then there exists a unique pair (G, F(G))

which satisfies the equality above. In such a case, G = 7*G.

Lemma 1.7. Let 0 — Oy — £ — L — 0 be a non-trivial extension of L by Oy,
and let F(E) be a 2-dimensional vector subspace of E|,, @ E|p,. Then the torsion-
free sheaf E = ker(m.& — (€|, @ Ep,)/F(E)) is in Ext (L, O¢) if and only if
F(E)N(On|p, @ On|p,) = F(Oc¢) and the image of F(E) under the homomorphism

For calculations of dimensions of extension spaces, see appendix A.
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Elpy ® Elpy—Llp, ® L]y, is contained in F(L). There is a P*\ {pt} of such F(E)’s,
and the corresponding E’s are all the non-trivial extensions of L by Oc such that

mFE =E&.

Proof. We need to find, for a fixed £ € Ext (£, Oy), which F(E) give a com-

mutative diagram as the following.

0 0 0
0 — O¢ —— m.0Opn ON|?,(E(';SN|W 0
O - E N ﬂ_*g g|pflr‘?9Eé):|p2 O
0 - L N 7T*£ L:‘p}??a[/fh% O
0 0 0

First of all, we need F'(E)N (Onlp, ® Onlp,) = F(O¢) for O¢ to be contained in E.

Secondly, we want the bottom map in the following diagram to be well-defined:

8’1’1 @glm L) E’m @[”pz

| |

g|p1 D glm £|p1 D £|p2
F(E) F(L)

i.e., we need F(F) C f~Y(F(L)).

In the projective space P(E],, @ &|,,) ~ P3, such F(E)’s correspond to the lines
contained in the plane corresponding to f~'(F(L)) which pass through the point
corresponding to F'(O¢), except for the line corresponding to On/|,, & On|p,. There-

fore, the F'(F)’s that give an extension of L by O¢ for a fixed £ are parametrized

by P*\ {pt}. O
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Since the rational map 7*: P;, — P, is the projection from p, if we blow-up Py,

at p, we obtain a well-defined morphism Py ; := BL,P;, — P.

Pra E;

RN

Y

Under this morphism, the exceptional divisor E; maps isomorphically onto P,.
This isomorphism corresponds to the isomorphism Ext (L, m,Ox) ~ Ext (£, On)
given by the projection formula. The preimage of a vector bundle £ € P, in Py ; is
given by the E’s corresponding to the tuples (£, F(E)) described in the lemma, plus
a point in F; corresponding to the only extension 0 — 7,0y — E — L — 0 of L

by m.Op such that 7*E/Tors = £.



CHAPTER 2

THE FIRST BLOW-UP

2.1 THE FIRST BLOW-UP

Since the indeterminancy locus of the rational map ¢ : Py, — SUq(2, L) is the curve
C C Pp, to resolve the indeterminancy via a sequence of blow-ups with smooth
centers, we need to begin the process with the blow-up of P;, at the singular point p
of C. By lemma 1.2, p is P(ker(¢,)), where 9, is the natural linear homomorphism

Ext (L, O¢) — Ext ;(L, m.Op). Therefore, the exceptional divisor E; of
]P)LJ = B/;p]P)Li)]P)L

is canonically isomorphic to P(Ext & (L, 7,Oy)) because we have the canonical iso-
morphisms

Ext &(L, O¢)
ker 1),

We saw in section 1.3 that there is a morphism Pr; — P, which extends the

Ey ~P(Nyyp,) and Nyyp, > T,Pp ~ ~ Ext &(L, 7.0y).

rational map 7*: Py, — P, and that E; maps isomorphically onto P,.

Theorem 2.1. (a) The composition ¢roe1: Pr1—SU(2, L) extends to a rational
map ¢r1 defined as follows: The image of a point x € E; corresponding to an

extension &, in Ext N (L, Oy) is the torsion-free sheaf
By = ker(m. & —(Elpy @ Elp,) /(Onlpy & Onlpy))-

If E! is the extension in Ethc(L,TF*ON) corresponding to x, then E! maps to E,

under the natural homomorphism Ext &(L, W*ON)LEX'C (L & (m.On)", m.0x).

15
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(b) The indeterminancy locus of the rational map ¢r1: Pr1 — SU(2, L) is the

union of the strict transform Cy of C' and the line

Ly == P(ker(Ext L(L, 7,0n)—Ext L(L @ (1.0x)", m.0x))) C Ei.

s
Jk
/\

We shall delay the proof of theorem 2.1 to the next section. Let us now understand

the situation better. The strict transform 51 of C'is isomorphic to N and intersects

E at the two points py, ps lying on p. The following lemma describes L.

Lemma 2.2. The points on Ly correspond to the directions in T,C', the projective

tangent plane to C at p. In particular, Ly is the line through py and ps in E;.

Proof. Tt suffices to show that L; contains p; and p,. Let us show first that
pi = IP’(ker(Extlc(L,W*ON)LEX“C(L,W*ON(pi)))) C P(Ext (L, m,0p)) ~ E; for
1 = 1,2. We already saw in the proof of lemma 1.4 that the projective line tangent

at p to the branch corresponding to p; is

X,,

7

P(ker(Ext &(L, Oc) — Ext &(L, m.(On (p:)))))

for ¢ = 1, 2. Therefore,

<p~> ~ <sz> ~ ker(Ext};(L, OC) - EthC(L77T*(ON(pi))))
Y {p) ker(Ext &(L, O¢) — Ext (L, 7.0x))

is equal to ker); for i = 1,2, as claimed.

1See lemma A.3 for a proof that dim(ker ) = 2.
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To prove that pi,ps € L1, we need to show that ker; C kery for i = 1,2. By
the proof of lemma 1.2, a non-trivial extension E in Ext (L, 7,Oy) is in the kernel
of ¢; if and only if there exists a surjective map E — m,On(p;). Then there exists a

commutative diagram

0 0
L® (W*ON)* = L® (W*ON)*
0 — Oy — F —_— L — 0
|
0 — .0y — mOn(p;) —— C, — 0
0 0

Since L ® (m.Op)* C E, the extension is also in the kernel of 1, i.e., there exists a

commutative diagram

0 — .0y — F —_— L — 0

I | |

0 — 0Oy — mOyv® (LR (m.0ON)) — L®(mOn)" —— 0
U

To understand the image of ¢ 1|g,, it is important to understand the image of

the natural linear homomorphism .

Lemma 2.3. There exists a commutative diagram

Ext v (L, On) — Ext &(L, m.On)

l lw : (2.1)

EXt}V(ﬁ(_pl _p2)7 ON) — Ethc(L X (W*ON)*,W*ON)

the linear homomorphism T, is an isomorphism onto its image, and

Im ) ~ Ext }V(E(—pl —p2),On).
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Proof. There is a natural commutative diagram

Ext (L, On) L Ext & (7L, m.On)

l l ,

Ext y(L(=p1 = p2), On) —— Exto(L ® (mOn)", mOn)
where the vertical homomorphisms are pull-backs via the inclusions £L(—p; —py) — L
and L ® (m.On)* = m(L(—p1 — p2)) — m.L, respectively. Since the vertical homo-
morphism on the right factors through Ext (L, 7,0Oy), to prove that (2.1) is commu-
tative, it is enough to show that the isomorphism Ext (£, On) = Ext &(L, m,.Oy)
factors through Ext &(7.L, 7,.0).
Consider an extension 0 — Oy — & — L — 0 of £ by Op. Its image in

Extlc(L, m.On) is the only extension 0 — 7,0y — E — L — 0 of L by 7.0y such

that & = n*E/Tors . There exists a commutative diagram

0 0
0O — FF — 7t — C, — 0,

I
0 — L —— mL —— (Llp ®L,)/F(L) — 0

0 0
and it is clear that E is the pull-back of 7,£ via the inclusion L — 7, L.

Since Ext j(L,0x) — Exty(L(—p1 — p2),On) is surjective?, the fact that
T Ext N (L(=p1 — p2), On) — Ext (L @ (7,.0y)*, 7.0y) is an isomorphism onto
its image follows from its injectivity, and dim Ext 3 (£(—p; — p2), On) = dimIm 7.
Indeed, Im 7, = Im, and® dim Im 7, = dim Im ¢ = dim Ext (L, 7.0Ox) — 2, which

is equal to dim Ext 5 (L£(—p1 — p2), On) = dim Ext (£, On) — 2. [

2Because Ext %,(C,, @ Cp,, On) is zero, being N a smooth curve.
3For the calculations of the dimensions of these extension spaces, see appendix A.
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Corollary 2.4. The image ¢r1(Pr\ (L1 U 51)) of or1 in SU(2, L) is given by

pr(PL\CYU{E € SU(2,L) | E = m.E for some € € Ext \(L(—p1 — p2), On)}.

2.2 PROOF OF THEOREM 2.1

To prove theorem 2.1, we need the following result.

Lemma 2.5. All non-trivial extensions
0— 1, On—E—L ® (m,.0n)"—0
in Ext (L @ (1.0n)*, m.Ox) are semi-stable.

Proof. Assume that FE is not semi-stable. Then there exists a torsion-free quotient
F of E of rank 1 and degree <1 (see [LeP97, section 5.3]). Consider the composite
map m,0Oy — E — F. If it is the zero-map, then the morphism F — F factors
through L ® (m.Oy)*, and this is not possible since deg(L @ (7.Ox)*) > 1 > deg F.
If it is not the zero-map, then it is an inclusion because 7,Qy is torsion-free, and this
implies that deg I’ = 1 and F' ~ 7,Oy. But this can happen only if the extension

we started with is trivial. O

Corollary 2.6. The natural map P(Ext ;(L®(1,On)*, m.0n)) — SUc(2, L) defined

by (0 - 7.0y — E — L® (m.On)" — 0) — E is a morphism.

Remark. Since this morphism is always generically injective and injective for
g > 3 (or g > 2 for degL = 3) by lemma A.7, we shall usually think of
P(Ext (L ® (m,0n)*, m.O)) as contained in SUq(2,L), ie., if we say that a
map to SUq(2,L) is given by a map to P(Ext (L ® (7m,0x)*, 7,0x)), we are
actually talking about the composition with the morphism in the corollary. For our
purposes, the fact that for g = 2 or 3 there might be a locus where this morphism

is not injective is irrelevant, as it is irrelevant that there is a locus where ¢, is not
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injective. This shall become an issue when we study the fibers of the rational map,

which is not done in this work.

Proof (of theorem 2.1). Let us start with the geometric idea of the proof. We
already saw in section 1.3 that the space Py \ {p} is isomorphic to the space of pairs
(E,F(E)), with £ € P, and F(FE) satisfying the conditions in lemma 1.7, and the
image of an extension 0 — O¢ — E — L — 0 corresponding to a pair (£, F(F))
via ¢, is exactly E = ker(m,.€ — (€|, & E|p,)/F(E)). A line through the point p in
P, corresponds to all such pairs for a fixed &£.

Let = € Ej. It is clear from lemma 1.7 that, if ¢, ;(x) exists, then
gbL,l(I) = Eﬂf = ker(w*g—>(5|p1 D g|p2)/(ON|p1 @ ON|102))7

since On|p, @ On|p, is the natural limit of the planes F'(E)’s for any fixed &,. The

commutative diagram in the proof of lemma 1.7 changes into

0 0
| |
mT.OnN = w0y
| |
0 —— E, e Oi:zg‘;’ﬁm 0, (2.2)

showing that E, is the image under v of the extension in Ext ;(L, 7.Oy) corre-
sponding to &, *.
We saw in proposition 1.5 that there exists a locally-free sheaf £, on Py, x C' such

that Erlzyxc =~ ¢r(x) for every x € P, \ C. Let €. be the torsion-free sheaf on

4Note that m,(L(—p1 — p2)) =~ T(T*L @ On(—p1 — p2)) ~ L @ (1.0n)*.
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Pr1 x C defined by®
8]471 = kel"((€1, 1)*8L—>OE1 X W*ON),

Note that the map is surjective because £r|(pyxc is isomorphic to P(ker),), which
surjects onto m,Oy by lemma 1.2. Moreover, the sheaf Op, X 7,0 is supported
on Ey x C, and so &y, defines the same map as £, on Pr; \ £y = Pp \ {p}, ie.,
Erilixe ~ ELl{ei@)yxc for every x € Py \ Ey.

If z € Ey, we have an exact sequence &1, 1|y xc — (€1,1)*EL|{zyxc — mOn — 0,
which completes to an exact sequence 0 — 17" — &E1 1|{zyxc = ELl{pyxc — TOn — 0
on C, where T is the torsion sheaf ’Torlf’L’lXC(O,g1 X 7.0, Oz1xc), that we shall

show in section 2.3 to be isomorphic to m,Op. Since &£ L’{p}XC fits in the commutative

diagram
0 0
L® (W*ON) = L® (W*ON)*
0 OC 5L|{p}><C —_— L —_— O,
I
0 Oc¢ m.On — C, — 0
0 0

the kernel of &|pixe — mOn is L ® (1.0n)*, and Ep1|{z}xc is an extension of
L ® (m.On)* by m.0On.

Therefore, by lemma 2.5, &7 1|{z}xc is semi-stable if and only if it does not split
as such extension. To conclude the proof of the theorem, we need to show that

Erliayxe (with x € ) is the trivial extension 7,0y ® (L ® (7,0y)*) if and only if

°For the notation for torsion-free sheaves on the product of a variety with C, see
appendix B.
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x € L;. We shall actually prove in proposition 2.9 that £, 1|z, xc induces the rational
map ¢r1|g, . In particular, £11|{z1xc =~ E, for every x € E;. Remember that E, fits
in the diagram (2.2). It is not semi-stable if and only if 7. L(—p; —p2) C E, C m.&,,

i.e.5 L(—p; — p2) C &,. Since &, does not split, and so L Z &,, there are only three

possibilities:
0 —— L(=p1 —p2) Ex On(p1+p2) — 0
00—  L(-p) Ex On(p) —— 0,
0 ——  L(—p2) & On(p) —— 0

and we know from Bertram’s work” in [Ber89] and [Ber92] that the extensions in
Ext (£, Oy) of this kind are exactly the ones on the secant line joining p; and ps,

which is L; under the identification E; ~ P(Ext (£, On)). O

2.3 DESCRIPTION OF &r

In this section, we shall analyze &£ ; in more depth. We shall show that it is, in
some sense, “canonical,” by relating it to other universal sheaves, and we shall try
to understand in more depth what sheaf it is by putting it into exact sequences. The
main goal is to introduce the tools needed for the proof of proposition 2.9, that we
shall prove in the next section, stating that £ ; induces the rational map ¢y, ;.

Let us start by analyzing £, ;. We know that &, fits into an exact sequence®

0—0Op,(1)—E,—L—0

OTf £(—p1—p2) C &, then m L(—p1—p2) maps to zero into (E|p, BE|p, )/ (ON|p @ ON|p,)
which is isomorphic to L|,, & L|,,, and so it is contained in E;.

"This result is identical to lemma A.5.

8For the notation for torsion-free sheaves on the product of a variety with C, see
appendix B.
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on Py, x C, and we want to put £ into a similar exact sequence on Py ; x C. Using

the definition of &7, 1, we obtain the following commutative diagram on Pr; x C:

| N
0—eiO0p, (1) — (1, 1), — L—0
\ g1 !
OE1 X W*ON

!
0

Let us compute the image of g;. First of all, since the support of Op, X 7.0On
is F; x C, the support of Im g; is contained in it. This means that we have the
following commutative diagram on E; x C, where the first row is exact because 7/, L
is locally-free, and therefore Tor, » (75 L, Op, xc) = 0:

0 —— 0E1><C — 5L|{p}><c

! l

0 —— Imgg —— m.Opn

| |

0 0
Since the map from Og, ¢ to 75w Oy is injective’, the map from Op, x¢ to Im gy

is both injective and surjective, i.e., Img; ~ Op, «c.

9This is clear since it is not the zero map, and the sheaves Og,xc and 75m,.On do not
contain torsion.
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This gives us a commutative diagram on Pr; x C

0 0 0
oO— A — Era — B — 0
0 — &i0p, (1) — (e, )¢, —— L —— 0, (2.3)

0 —— OE1XC - OEl Xm0y —— OEM{P} — 0

0 0 0
where A, £, 1, and B, are defined by the exactness of the vertical exact sequences.

In particular, Ay ~ 7, (€70p,(1) ® Op, ,(—Ex)).

This shows that £ fits in the exact sequence
0—¢70p,(1) ® Op, ,(—E1)—EL1—B1—0
on P, x C, which restricts to the exact sequence
0—O0g, (1)—E&L1| g, xc—B1| g, xc—0

on E; x C. The restriction stays exact because Op, (1) is locally-free, and the map
Op, (1) — EL1|m xc s generically injective. Therefore, the image of any 7 or sheaf

which would appear on the left is 0.

Remark. We shall use this fact several times when restricting diagrams or short
exact sequences. When no comments are made about a sequence staying exact after
a restriction, the reason shall be the same as here, i.e., the first sheaf is locally-free,

and the first map is generically injective.
Lemma 2.7. There exists a short exact sequence
O—>0E1 (1) X 71->f<(,)N—>gL,1|E1 xc—L® (W*ON)*—>0

on By x C.
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In the proof, we shall need the following result.

Lemma 2.8. There are isomorphisms

1xC *
,]-07'[1%,>< (OE1><C'70E'1><C> = 7TE10E1(1)7
P C
Tory " (Op,xipy; Omxc) =~ Op (1) RC,,

TOTIIPLJXC(OEl X Oy, OE1><C) ~ OEl(l) X m.On.

Proof. Consider the short exact sequence 0 — Op, (—FE1) — O, , — O, — 0
on Py, 4 and its pull-back to Py ; x C. If we restrict it to £y x C [resp. By X {p}], we

obtain the following exact sequence:

0—Tor, "(Op, v, Op xc)—Op, (1) ~50p, x o —+Op, xc—0,

1><C(

resp. 0—T o, ““(Op, x 1p}, Oy ) — O, (1) R Cp—=Op, (5} — O, (53—,

which proves the first two isomorphisms. The third one follows from the first two
and the short exact sequence 0 — Op,x¢c — O, K 71.0xy — Op,x(py — 0. O

Proof (of lemma 2.7). If we restrict the diagram (2.3) to E; x C, we obtain!"

0 0 0
0 E— OEl(l) — OEl(l)@ﬂ'*ON — OElx{p}(l) — 0
0 —— OEl(l) — 5L,1|E1xc — BI|E1><C — 0
0
0 —— OE1><C — ﬂ-é’gL|{p}><C - L — 0
0 — Opxec —— @Oy  —— Opypy — 0
0 0 0

0For the first row, see lemma 2.8.
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It follows from the commutativity of the diagram that
ker(me €Ll pyxc——me (M On)) = ker(mg L—Op, x(py) ~ 76(L @ (m.Ox)),

which implies our statement. O

2.4 RELATION BETWEEN &1 AND ¢

We shall prove in this section the following result.
Proposition 2.9. The sheaf €1 on Pr 1 x C induces the rational map ¢, 1.

Let &' be the universal sheaf on P(Ext ;(L, m.Op)) x C' ~ E; x C corresponding

to the identity under the isomorphism
Ext p, vo(L, Op, (1) K m,.O) ~ Hom (Ext &.(L, m.On), Ext &(L, m.0On))

described in lemma B.1 and its following remark. In particular, £'|z1xc ~ E., for
every x € Ey, where E! is the torsion-free sheaf which corresponds to the extension
x. The main step in the proof of proposition 2.9 is that £ maps to £y 1|g, xc under

the natural linear homomorphism
Ext i «o(L, Op, (1) K m.On)—Ext i, (L ® (m.On)*, O, (1) K 7,0y),

induced by the short exact sequence 0 — L ® (7.0Oy)* — L — C, — 0 pulled-back
from C' to By x C.
Proof (of proposition 2.9). Let us pull-back the extension &, to Pr; x C, and

then push it forward via the inclusion 73, (¢70p, (1)) — €]Op (1) K 7w, On:

0 —— €>{OPL(1) — (61,1)*81, L 0
| | [ (2.4)
0 — ¢j0p, (1) ¥ 71Oy —— & L 0

The restriction of &) to Ey x C splits. Indeed, £i0p,(1)|p, ~ Opg,, and since

Ext  «o(L, mOn) =~ H°(Ey, Op,) ® Ext (L, m.Oy) by lemma B.1, we see that
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E mrxc splits as long as £)|(zyxc splits for some x € E;. Restricting the diagram
(2.4) above to {x} x C for any x € Ey, we see that &j|r3xc is the trivial extension
Up(ELlipyxc):
Therefore, there exists a surjective map &) — O, 7,0y, and we can define &
to be its kernel:

0—& —E—Op, X m,0n—0.

There exists a commutative diagram on P,y x C' similar to (2.3):

0 0
0 — Al — &l L 0
I
0 — &0p, (1) X T1,0y —— & L 0,
OE1 @TF*ON = OEl @W*ON
0 0

with A} ~ (e]0p, (1) ® Op, ,(—FE1)) K 7,0Ox. Moreover, we have the following com-

mutative diagram on Pj,; x C' which relates &) and &] to &£, and & ;:

0 0
| | |
0 —— Era s (e, 1), —— Op, X710y —— 0
| | [
0 —— &l _4, & s O, RT,0y —— O
| |
e10p, (1)XC, = €0, (1)XC,
| |
0 0

When we restrict the first two rows of this diagram to F; x C, and we look at the

image of the restrictions of i; and i} to E; x C, we obtain the following diagram,
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where the first row is the exact sequence described in lemma 2.7.

0 — OEl(l)@ﬂ—*ON - 5L,1|E1><C “‘E—1XC> L®(7T*ON)* — 0

H ! l

0 — Op, (1) X7,0On —— &Ellmxc ZI‘E—1XC> L —— 0

This shows that £ 1|k, ¢ is the pull-back of £]| g, x¢ via the pull-back of the inclusion
L ® (m.0n)* — L from C to E; x C. We shall now show that &{|g, «¢ is actually

the canonical sheaf &' € Ext p (L, Op, (1) K 1,0y) described above. This is a

summary of the steps used in the construction of £|z,xc '

& e Bxtl,.o(L, O, (1)
! !
(e1,1)"€L € Extp, oL €i0p,(1))
! !
g« Bxtl, o(L£0s, (1) K 7.0)
! T
& € Extp, «o(L: (610, (1) ® Op, ,(—E1)) B m,Oy)
! !
Ellmxe € Ext p vo(L, O, (1) K m.0p)

Using the isomorphisms
Exty,o(L, FRG)~ H Y, F) @ Ext (L, G)

of lemma B.1, we can understand what extension &{|g, «¢ is by tracking the cor-
responding elements in these spaces. Let vp,...,v, be a basis of Ext (L, O¢),
with Span{vy} = (p), and let v,...,v% be the corresponding dual basis in

Ext &(L, O¢)* ~ H(P, Op,(1)). Then £, corresponds to the element

n

S v @ € HOP, Op, (1)) ® Ext (L, Oc).

=0

HNote that one of the arrows goes in the other direction between the extension spaces.



We have the following diagram?!?:

)

l

5{|E1><C

i v @ v
i=0
!
Z vy ®v;
i=0
|
Z Ui ® (i)

=1

!

n

Z v @ Pp(vi)

=1

!
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€  HP.,0p, (1) ® Ext&(L,O¢)

!

€ H(Pyy,0s,(1)) ® Ext (L, Oc)

l

€ HPp,,ei0p,(1)) ® Ext &(L, m.0N)
7
HO(]P)L,lv €>{OPL(1) ® OPL,l(_El))
€ (%4
EXtIC(L,ﬂ'*ON)
l

3 ) @Yyn) € HOEy, Op, (1) ® Ext L(L, 7.0)
=1

This proves our claim that &f|g, ¢ is €. Therefore, since £ 1|g, xc is the pull-back

of &g, xc via L ® (m.On)* — L, and the pull-back corresponds to composing a

homomorphism in Hom (Ext &(L, m.Ox), Ext &(L, m,Ox)) with ¢ to obtain an ele-

ment in Hom (Ext ;(L, 7.0x), Ext (L ® (m.On)*, 7.ON)), EL1|p < corresponds to

¢ itself. This proves that, for any a € Ext (L, m.0n), a # 0, Ep1lqap«c is ¥(a) as

extensions of L ® (m.Oy)* by m.Op.

This proves our proposition, since &, 1 defines ¢, outside of E;. I

2Note that 1, (vg) = 0.



CHAPTER 3

THE SECOND BLOW-UP

3.1 THE SECOND BLOW-UP

To resolve the indeterminancy of ¢, we first blow-up P ; along the line L; C Ej.
Let

]P)L,Q = B'CLlIPL,I&)IPL,li)PLy
and let Fy C Pr 5 be the exceptional divisor.

Theorem 3.1. (a) The composition ¢r,10e2: P o—SUc(2, L) extends to a rational

map ¢ro satisfying the following: For each | € Ly, the rational map
¢L,2’E2|z : E2‘1—>8u0(27 L)
1s the projectivization of a linear homomorphism NLl/pL,lh — H', where

H' ={det E ~ L} C Ext ¢(L ® (m.0)", m.Ox).

This linear homomorphism is an isomorphism if | # p1,pa, and it maps N, /e, |p,
(1 =1,2) surjectively onto Imy C H'.
(b) In particular, the indeterminancy locus of ¢r2: Pro — SU(2, L) is the strict

transform Cy of C.
Corollary 3.2. The image ¢r2(Pra\ 5’2) of ¢r.2 in SU(2, L) is given by*

o (P \ C)UP(H').

'Remember that by P(H’) we actually mean its image into SU¢(2, L) by the morphism
described in corollary 2.6.
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We shall delay the proof of the theorem until section 3.3, after we study the
exceptional divisor in this section, and another important situation in section 3.2.
Note that the strict transform 52 of 51 is isomorphic to 51 and N, and it intersects
E5 at two points p; and py lying over p; and ps, respectively.
The first step in the proof of theorem 3.1 is the analysis of the exceptional divisor
FEs, which is canonically isomorphic to P(N7, /e, ,). It is a projective bundle over L.
Since N7, /Py, 18 the normal bundle to L, in Py, ;, it contains the normal bundle to

L, in E7, and we have the following exact sequence of vector bundles on L;:
O—>NL1/E'1 —>NL1/PL,1—>NE1/PL,1 ‘Ll —0.

For each [ € Ly, if we let X; be the projective line in P, which passes through p and

corresponds to [, we obtain the following canonical isomorphisms:

TZPLI o~ <Xl>
~ d T X, ~ ~ ~ l
NEI/PL,I‘I T, B, — dpAy <p> <>
N N
Ext L(L,O
Bxt o(L, Oc) ~ Ext L(L, m.0y)
(p)
and
EXtIC(L,ﬂ'*ON)
N o~ TE (1) _ Ext (L, mOp)
fafeadt = Ly (Ly) - (Ly) )

{0)

Since (L;) = kerv, we have that, for every | € Ly, N, p,|; is canonically Im1. In
particular, it is independent from [, and for every [ € L; we have the following exact
sequence

0—Im¢—Np, jp,,[i— (1) —0.

The geometric reason for the independence of Ny, /g, |; from [ is simple. We saw that

the rational map ¢, 1|g, : E1 — SUc(2, L) is given by the rational map

By ~ P(Ext L(L, m.0x) "YU (Imy) C P(Ext L(L & (1,0x)*, m.Ox)),
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which is the projection from L. It is constant on each plane containing L. Blowing-

up E; at the line L;, we obtain a morphism
BL, Ey—P(Im ).

For each | € Ly, a point of P(Ny, g, |;) corresponds to a plane through Ly, and it
maps to the same point as the plane. The projectivization of each fiber of Ny, g,

maps isomorphically onto P(Im ).

Lemma 3.3. The short exact sequence
0—)NL1/E1—)NLl/PL,1—>NE1/PL,1|L1 —0

splits. If N = dim Py, then Nip,/p, ~ O, (1)®N72, and Ng,p, |, ~ Or,(—1).
Moreover, P(Ng,/p, ,|L,) is canonically isomorphic to 1/}:6’ N Ey, where 1/}:(/7 is the

strict transform of T,C' in Pr o via €90 ;.

We shall denote P(Ng,/p, ,|z,) by La. It is isomorphic to Ly via e3|z,, and it
corresponds to a section of the projective bundle Fy — L.

Proof. Claim 1: N7, /g, ~ Op, (1)®N=2. There is a short exact sequence
O—>IL1 /1-1241 —>QE1 ’L1 —>QL1 —>Oa

which together with the standard short exact sequence for Qpn (see [Har77, 11.8.13])

gives the following commutative diagram

0 0 0

0 — I,/T}, — Qg —

0 —— kerg —— Og, |1, e Or, — 0
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®N-2"and so

Since g is an isomorphism, 7, /Z7 ~ker f ~ Oy, (—1)
NLI/EI = OLl(l)@N_2'

Claim 2: N, /p, |0, ~ Or,(—1). It is a standard fact about blow-ups (see [Har77,
11.8.24(c)]) that N, /e, , ~ Op,(—1). The claim follows by restricting this isomor-
phism to L;.

Claim 3: The following short exact sequence splits:
O—>-/\[L1/E1 —>NL1/PL,1—>NE1/PL,1 ‘Ll —0.

This follows from the fact that every extension of Op,(—1) by O, (1)®V~2 splits.

Indeed,

EthLl(OLl(_l)7OLl(l)@N_2) = HI(L17OL1(1)®OL1(1)@N_2)

12

Hl (Lh OLl (2)®N72)

~ oNPHY(L,,0.,(2) = 0.

The last statement of the lemma follows from the description of Ng, /p, |1, given
at the beginning of the section. O

We conclude this section with the following important geometric fact.

Lemma 3.4. The two points p; and ps where the strict transform 6’2 of C intersects

the exceptional divisor Ey do not lie in the strict transform 1/}:(/7 of T,C.

This lemma is important because one of the main steps in the proof of theorem
3.1 is that the rational map ¢y, 5 is defined everywhere on f;é, and this would not
be possible if 6’2 intersected it.

Proof. Let i € {1,2}. We need to show that, in Py ;, the tangent direction of

51 at p; is not the same as the tangent direction of the strict transform )?pi of X,
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at p;, where X,,, = P(ker(Ext (L, O¢) — Ext &(L, m.(On(p;))))) 2 is the projective
line in P;, tangent at p to the branch of C' corresponding to p;.

There exists local coordinates at p such that X, is parametrized by the map
t — (t,0,...,0), and the branch of C' corresponding to p; is locally parametrized
by t — (t,aqt? + O(t3), ..., a,t? + O(t?)) for some ay,...,q,. After blowing-up
P, at p, and choosing the local coordinates wq,...,u, at p; in such a way that
(g, .y up) — (g, ugg, . . . Uy, )~(pi is parametrized by t — (¢,0,...,0), and Cy
is parametrized by t — (¢, ast + O(t?),. .., ant + O(t?)).

Therefore, to prove that the tangent direction to Ci at p; is not the same as the
tangent direction of )~(pi, it suffices to show that one of the a;’s is not zero. Remember
that |L ® we| is the linear system which defines the embedding of C' in Pp. If we

compose this embedding with the normalization 7 : N — C', the composition is the

morphism associated to the linear system W C |7*(L ® w¢)| defined by
W =P({s € H'(N, 7" (L ® wc)) | s(p1) = s(p2)})-

In terms of this linear system, the condition that one of the a;’s is not zero becomes
the condition that there exists an effective divisor D in the linear system W such

that D Z 2]91 + P3—; but D Z 3pz + P3—;. Since
{DeW |D=>mp;+psi}={D €[ (Lowec)| | D> mp;+psi}

for every m > 0, because D > p; and D € W implies that D > p; 4+ ps_;, to prove

our lemma we need to prove that
RO(N, 7 (L ® we) @ On(—2p;i — p3—s)) = hO(N, 7 (L ® we) @ On(—3p; — ps_s)) + 1.

Since ™*we ~ wy(p1 + p2), ™(L @ we) @ On(—mp; — p3—;) ~ 7L @ wy((1 —m)p;)

for every integer m. In our case, m is 2 or 3, and m — 1 is less than deg L. Therefore,

2See the proof of lemma 1.4.
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(N, (L @ we) ® On(—=mp; — ps—i)) = B°(N, 7L~ @ On((m — 1)p;)) = 0, and

the result follows from the Riemann-Roch theorem. O

3.2 LIMITS ALONG LINES IN 7,C' THROUGH p

Before we proceed to the proof of theorem 3.1, it is important to study the following
situation: Let 7,,C be the projective tangent plane to C' at p, and let X be a projective
line in 7,C passing through p. As we saw in lemma 2.2, such lines are parametrized
by L;. Any such line X (I € L) intersects C' at p (and possibly at other points, but

always a finite number), and there exists a rational map
¢L’XZ . Xl—>81/{c(2, L),

which extends uniquely to a morphism ¢; defined on the whole X;. We are interested
in finding v;(p). If M; is the extension of C, by m.On corresponding to a point
l € Ly ~ P(Ext (C,, m.Oy)) 2, then*

X, = P(ker(Ext (L, Oc)—Ext (L, Mp))).
The following lemma describes the M,’s.

Lemma 3.5. If | # p1,ps, then M, is a line bundle of degree 2. If l = p; (i = 1,2),

then M, is m.On(p;).

Proof. All of the extensions of C, by m,.Oy (which are sometimes called “ele-

mentary transformations” of 7.Op) are of the form

M, = ker(m.On(p1 + p2)—(On(p1 + p2)|py ® On(p1 + p2)|p)/ F (M),

where F'(M,) is a one-dimensional vector subspace of Oy (p1+p2)|p, @ On (P1+D2) |ps

and M, is locally-free if and only if F'(M,) projects isomorphically onto Oy (p1+p2)|p,

3For this isomorphism, see lemma A.3.
4The right side contains {p} = P(ker(Ext &(L,O¢) — Ext (L, m.0))) and is con-
tained in 7,C = P(ker(Ext & (L, Oc) — Ext (L, m.On(p1 + p2))))-
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and On(p1 + p2)lp, (see [Bho92, 1.8]). It is clear that this happens for all F/(M;)’s
except for the two vector subspaces F'(M,,) = On(p1 + p2)|p; (¢ = 1,2) for which

My, = ker(m.On (p1 + p2) — On(p1 + pa)lps_.) = m.On (pi)- D
We are now ready to find 1;(p).

Lemma 3.6. Let | € Ly. Then ¢y(p) is the unique (up to isomorphisms) torsion-free

sheaf E; which can be written both as an extension
0—m.On—E—L ® (m.0On)"—0

and an extension

0—L & Ml*—>El—>Ml—>O.

In particular, it is locally-free if and only if | # pq, ps.

Proof. Since for every z € X;\{p}, ¥y(x) maps onto M; by lemma 1.2, the same is
true for ¢;(p). Indeed, it cannot surject onto something of smaller degree, or it would
not be semi-stable. Since 9(p) is in SU(2, L), the kernel of ¢;(p) — M, must then
be L ® M}, and we have a short exact sequence 0 — L ® M} — ¢;(p) — M; — 0.

Since v;(z) surjects onto L for every x € X;\ {p}, ¥i(p) surjects onto some
torsion-free sheaf F' C L, which must have deg F' > 2 because 1;(p) is semi-stable.
Moreover, F' # L because in that case ¢;(p) would be an extension of L by O¢, but
we know that the limit in Py, is £1|(pxc, which is not semi-stable. Since 9/;(p) is an
extension of M; by L ® M;, and every map from M; to F is zero®, the composite
map L ® M} — y(p) — F is non-zero, and therefore L ® M} C F C L, which
implies that F' ~ L ® (m.Opn)*.

Therefore, 1;(p) is both an extension of M; by L ® M and of L ® (m.On)* by

m.Op, as claimed. There is only one such torsion-free sheaf (up to isomorphisms),

5Since they are both torsion-free shaves of degree 2, there exists a map between them
only if they are isomorphic, and this does not happen for a generic L.
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because such sheaves are all in the kernel of the natural linear homomorphism
Ext o(M;, L @ M) — Ext (M, L ® (7.0Oy)*) by lemma 1.2 6 and the kernel is
one-dimensional, being isomorphic to Hom «(M;, C,). O

We now give another description of Ej for [ # py, ps. Pulling-back the short exact
sequence 0 — L ® Mfl — E; — M; — 0 to N, we obtain the short exact sequence
0 — L(—p1 —p2) — & — On(p1 + p2) — 0, where & = n*E;. This follows from
the fact that 7*M; ~ Opy(p1 + p2). Indeed, M, is locally-free because | # p1, po,
and M; C 7.(On(p1 + p2)). Therefore, 7*M; is contained in Oy (p; + pa), which
is 1. (On(p1 + p2))/Tors. Since they have the same degree, they are isomorphic.
Moreover, since E; surjects onto L ® (m.On)* =~ m.(L(—p1 — p2)), & surjects onto

L(—p1 — p2) ~ "1 (L(—p1 — p2))/Tors, and the sequence above splits, i.e.,

& >~ On(p1 + p2) ® L(—p1 — p2)-

This proves that, for all [ € Ly, | # p1,p2, & = 7*E) is the same vector bundle
On(p1 + p2) ® L(—p1 — p2). To simplify the notation, we shall denote On(p; + p2)
by O" and L(—p1 — p2) by L'. Let F(E;) be the two dimensional vector subspace of
Eilpy ® Eilp, such that E; = ker(m.& — (&, @ &ilp,)/F(Er)). Consider the inclusion
L' C &. Since E; € Ext (M, L ® M;"), we have that

F(El) N (‘C,|p1 D £/|p2) - F(L ® Ml_1)7 F(El) - Span {£/|p1 S ‘C,|p27 F(Ml)}

Looking at the inclusion O’ C &, we see that, since Ej surjects onto L @ (m.On)*,
F(E) N (O, & O,,) = {0}. There is an A' \ {0} of such F(F;)’s: Let us show

that, as expected, they all give isomorphic E;’s.

6Lemma 1.2 is about extensions of L by Oc¢, but a similar statement is true about
extensions of M; by L ® M.
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In this picture of P(E|,, & &|p,),

- (1) P(F(
. (2) P(F(
/ l / / (3) (O], ® Oy,)
() P(L', L))

(5) B(L

the lines corresponding to the F(E;)’s are the lines in the plane (5) going through

(2), except for the line (4) and the line joining (2) and (1).

Let us fix a basis of £|,, ®E|,, ~ C* such that the standard directions correspond
respectively to O'|,,, O'lpy, L']py, L'lpy, and F(M;), F(L ® M;™!) are generated by
(1,1,0,0) and (0, 0,1, 1) respectively. Then F'(E;),, = Span {(0,0,1,1), (1,1,m,0)} for
some m # 0. The corresponding E’s are all isomorphic because the automorphism
or: O ®L — O @ L given by (a,b) — (Aa,b) identifies F(E;)y, with F(L})y,)x.

We shall prove in proposition 3.16 that the points of Ly = fp\é N Ey ~ L1 map

to these vector bundles E;. The following lemma describes their geometry.

Lemma 3.7. The torsion-free shaves E; (I € L) form a conic in a quadric Q in
P? ~ P(ker(Ext o (L ® (m,On)*, m.On)—Ext {(L @ (1,0x8)*, 1.0x(p1 + 12)))).

Proof. For a proof that the dimension of the kernel above is really four, see lemma

A.6. For every | € Ly, let

X1 = Pker(Ext (L ® (1.0n)*, 7.0n)—Ext (L @ (m.On)*, M,))),

Xip = Pker(Ext (L ® (1.05)*, m.0n)—Ext (L @ M}, 7.0x))).

These are all lines by lemma A.6. For each [ € Ly, X;; and Xy span the plane
P(ker(Ext (L ® (m.On)*, m.On) — Ext (L ® Mj;, M)))).
The union of all these lines is a quadric (). We shall show in lemma 3.9 that

H':= {det E ~ L} is a hyperplane in Ext ;(L®(m.Oy)*, 7.0y ). Similarly, P(H')P?
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is a hyperplane in this P2, and the intersection of P(H’) with Q is the conic in the
lemma, since we know that each FEj is contained in both.

For another proof of this lemma, using lemma B.5, see section 3.5. 0

3.3 PROOF OF THEOREM 3.1

As in the proof of theorem 2.1, we first give a geometric idea of the proof. We saw
in section 3.1 that the normal bundle Ny, /p, , splits as N, /5 ® N, jp,,|L,, and
that Ny, /g, |; is canonically isomorphic to Im) for every I € L. Moreover, for each
[ € Ly, there is a natural point in N, /P...|1, the point determined by the direction
of the strict transform X ; of the line X, described in section 3.2.

If [ # p1, p2, the image of the corresponding point in Es|; is the vector bundle E;
described in lemma 3.6, and the statement in the theorem that ¢ o|g,, maps FEs|;
isomorphically onto P(H’) shall follow from the linearity of the map.

When [ is p; or ps, it is clear that ¢y, 5 cannot be defined at the two points p; and
p2 where 52 intersects Fy. We shall see that the all the torsion-free sheaves which
are in the image of F5 are extensions of L® (1.Oy)* by 7.0y, and we saw in lemma
2.5 that the only such extension which is not semi-stable is the trivial extension.
Therefore, even in this case, the statement in the theorem that ¢y, of B,|, Maps Es,
onto P(Im ) shall follow from the linearity of the map.

As for the first blow-up, let us construct a torsion-free sheaf £, 5 on P, 5 x C' such
that £ol{syxc = dr2(x) for every x € Py \ 52. We can construct &£ 5, starting

with the torsion-free sheaf £, ; corresponding to the rational map ¢y, 1, as follows”

5L,2 = ker((eg, 1)*51171—)6;0[/1(1) X W*ON).

"For the existence of the map in the definition of Er,2, for a proof of its surjectivity,
and for an in more depth analysis of the sheaf, see section 3.4.
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Moreover, the sheaf €50, (1) K7, Oy is supported on Ey X C, and so &, 5 defines the
same map as 3 on Py \ Ey = Pry \ Ly. The situation is very similar to the one
in the first blow-up, and it is easy to see that, for every [ € Ly and every = € Fy|,,

we have an exact sequence
0—>7T*ON—>5L,2|{;1¢}><C—>5L,1|{l}><C—>7T*ON—>0-

Since Ep1|pyxe ~ mOn @ (L @ (m.Op)*) for every | € Ly, we obtain that, for every

r € By, E19|(z)xc 1s an extension of the following type:
0—7.On—EL 2|2} xc—— L @ (1.0n)"—0.

We shall prove in proposition 3.14 that the sheaf £, » induces the rational map ¢y, o.

In particular, for every [ € Ly, the restriction of ¢, 5 to Es|; is a rational map
By|i—P(Ext &(L ® (1.05)%, T.0nN)),
that we want to prove to be linear, and to be a morphism for [ # pq, ps.

Lemma 3.8. For every |l € Ly, the rational map
OL2lE),: Fali—P(Ext o(L © (1,0n)", m.0N))
18 linear.

Proof. We give two different proofs.
First proof: We already saw in section 3.1 that, for every [ € L, we have the

following commutative diagram:

P21y,
—_—

EQ’[ P(EXté(L@ (W*ON)*,W*ON))

U U
PNLyeli) —— P(Im )

Since the morphism P(N7, /g, |;) — P(Im®) is a linear isomorphism, the map itself

is linear by proposition C.1.
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Second Proof: It follows from lemma 3.11 using lemma B.5. O

Let us now show that H’ is a hyperplane in Ext (L ® (7,.0x)*, 7.0n).

Lemma 3.9. The closure of {E € Ext,(L ® (7.0y)%,7.0x) | det E ~ L} in

Ext &(L ® (m.On)*, 7.On) is a vector subspace of codimension 1.
Proof. Tt is enough to show that the closure of
P ({E € Ext (L ® (m.On)*, mOn) | det E ~ L})

in P(Ext &(L ® (7.0x)*, m.Op)) is a linear hyperplane. Let E be a vector bundle in
Ext (L @ (7.0n)*, m.Ox): What are the possible values for det E?

Consider the lines X;; and X, that we defined in lemma 3.7. By lemma 1.2 8
every vector bundle in X ; surjects onto M;. Therefore, if £ is a non-trivial extension
in X1, there exists a commutative diagram?

0 0

ker f = ker f

0 — 1.0y — E —— L®(mOyN)* — 0.

0 — mOxy — M, —— C, — 0

0 0
Hence, the vector bundles in X;; are of the form 0 — L ® M} — E — M; — 0,

and the determinant of the locally-free such E’s is of the form L ® M; ® M for

LU € Ly \ {p1,p2}. Similarly, all of the vector bundles E in X;, are of the form

8Lemma 1.2 is about extensions of L by Oc¢, but a similar statement is true about
extensions of L @ (m.On)* by m.On.

9This diagram also illustrates the isomorphism X;; ~ P(Hom (L ® (m.On)*,Cp))
described in the proof of lemma A.6.
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0 — L® M - E — My — 0, and so their determinant is of the same form as

above. Consider the rational map

det : P(Ext &(L ® (7,05)", 7.0n))—{L' € Pic*(O) | 7*L/ ~ 7n*L} ~ P*.

It is defined on the locus of locally-free sheaves, and it extends to the locus of the
extensions which are not push-forwards of extension from N (see [Bho92, 4.7]). Since
it is an isomorphism on each line X;; with [ # p;,p, and i € {1,2}, it is a linear
map by proposition C.2. O

We conclude this section with the following proposition, which completes the

proof of theorem 3.1.

Proposition 3.10. For every l € Ly, | # p1,ps, the rational map
Ey|; — P(Ext H(L ® (m.On)*, m.On))

is an isomorphism onto its image . =p; (1= en it maps Ey|; onto
) ) phi to its image P(H'). If | = p; (i = 1,2), then it maps Es|; ont

P(Imv)). In particular, if | # p1, pa, then ¢a|p,, is a morphism.

Proof. We already saw in lemma 3.8 that the map is linear for every [ € L.
Let x; be the point described at the beginning of the section, i.e., the point on
the intersection of the strict transform of the line X; with E5. We shall prove in
proposition 3.16 that, if [ # pi, ps, £L2|12)xc is isomorphic to the vector bundle F;
of lemma 3.6. Therefore, in this case, the image of Es|; contains P(Im) and Ej.
Since E; ¢ P(Im)), the image of Es|; is the hyperplane H'.

If I = p; (i = 1,2), then the image is just P(Im ). Indeed, we already know that
the map cannot be defined everywhere on Es|,, (i = 1,2) because it contains a point
on the strict transform Co of C' which is contained in the locus of indeterminancy
of ¢r 2. Therefore, it cannot be an isomorphism. Being a linear map, its image is

contained in a hyperplane, which has to be P(Im ). O
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3.4 DESCRIPTION OF &
We saw in section 2.3 that £11|g, ¢ is an extension
0—O0pg (1) X m.Oy—Ep1|pyxc— L ® (m.0n)"—0,
and that it is the image of £ 'Y under the natural linear homomorphism
Ext i (L, Op, (1) K m.On)—Ext i, (L ® (7. On)*, Op, (1) K 7,0y).

In particular €11/, xc is the image of the universal sheaf corresponding to the line

L. This implies that £, 1|1, xc splits as
(OLl(l) X W*ON) ) (L ® (W*ON)*),

and we have the surjective map £,1 — Op, (1) K 7.0Ox — 0 whose pull-back to
P12 x C appears in the definition of &7 5 in Section 3.3.

Using the definition of £ 5 and the short exact sequence with £ that we saw
in section 2.3, we obtain the following commutative diagram on P75 x C"

0

5L2

)

! N S
0—>(€2, 1)*./41 — (82, 1)*5L,1 — (82, 1)*81—>0

\ 92 l
30, (1) R 7,0y

!

0

Let us compute the image of g,. Since the support of the target sheaf e3Op, (1)Xr,On

is Fy x C', the support of Im g, is contained in it. This means that we have the

19Remember that £ was the universal sheaf corresponding to P(Ext &(L, m.On)) =~ Ej.
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following commutative diagram on Ey x C"

0 —— &301,(1) —— (2, 1)"Era|Lixc

l l

0 —— Imgy, —— &50,(1)X7.Op-

| |

0 0

The situation is similar to the one we saw for Im g, in section 2.3: the map from
75,6501, (1) to e501, (1) W7, Oy is injective, and so the map from 73, e50;, (1) to

Im g5 is injective and surjective, i.e.,
Im gy ~ 75,501, (1).

We have then the following commutative diagram on P, o x C":

0 0 0
0—— A, — ELs — B, — 0
0 —— (52,1)*A1 EE— (52:1)*8L,1 EE— (52,1)*81 — 0, (3‘1)

0 — &0.,(1) — 0., (1) X710y — 50, (1) KC, —— 0

0 0 0

where Ay, &1 2, and B, are defined by the vertical exact sequences.
Now we want to show that, for every I € Ly, I # p1, p2, EL2|m,|, xc is the universal
bundle associated to H' when we identify Fs|, with H'. First of all, let us show the

following
Lemma 3.11. For every l € Ly, | # p1,p2, there exists a short exact sequence
O—>OE2|1(1) D 71'*ON_"C/‘LQ’E2|l><C—>L (%9 (W*ON)*—>O

on Eg‘l x C.



45
As for the proof of lemma 2.7, we shall need to restrict the diagram (3.1) to

E5 x C. Let us first calculate some torsion sheaves.

Lemma 3.12. There are isomorphisms

Tory " (Opyxc, Opxc) =~ 7, O0p,(—Es),
PLQXC
TO?“l’ (Ong{p}:Ongc) ~ OEQ(_EQ)&CP,
TOTIFMXC(OEQgﬁ*oN,Oszc) ~ Opg,(—Ey) ¥ 70O,

where Og,(—Ey) denotes Op, ,(—E3)|g,. Moreover, if F' is a locally-free sheaf on E,

then TOTTL’QXC(WEQF ® —, Op,xc) s T, F ® TOTTL’QXC(—, Op,xc)-

Proof. The first part of this proof is the exact copy of the proof of lemma 2.8: We
just need to replace Py 4, Ey, and O, (1) with Pp, o, Es, and Op,(—Es), respectively.
The last statement follows from the fact that if we tensor any exact sequence with a

locally-free sheaf, it stays exact. If we tensor any of the exact sequences that we used

to calculate the 7or; sheaves with 73, F', we see that TOTTL’QXC(WEQF ® —, Op,xc)
is 75, F ® Tor, " (=, Op,xc). O

Proof (of lemma 3.11). The restriction of diagram (3.1) to Ey x C'is
0 0 0

0 — F(—Ey) —— F(—E)R7,0y —— F(-E,)RC, — 0

0 —— F(_E2) - 5L,2|E2x0 E— BQ|E2><C — 0

0 M
0 —— ' —— (2, 1)*€ralrixe — (€2,1)*Bilyxe —— 0
0—s F — FRROy —— FRC, ——0
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where we denoted the locally-free sheaf 5Oy, (1) [resp. €501, (1) ® Op,(—FE>)] on E,
by F [resp. F'(—Es)] to simplify the notation. This shows that Bs|g,«c has torsion.
Also, for every [, Bs|p,,xc has torsion, and Bs|g,|,xc/Tors is isomorphic to
ker((e2, 1)*Bi|iyxc——=Ok,,x{p})- It is clear that this kernel is just the pull-back
via (e2,1) of Bi|gyxc modulo torsion, which is 75 (L @ (7,Op)*). From the diagram,
it is clear that the kernel of the map &£y, 2|g,|,xc—7&(L ® (1,0x)*) is the same as
the kernel of the map & 9| gy, xc— (€2, 1)*EL1 |y« e, which is Op,, (1) X7, Oy. O
We conclude the section with the following result, which follows directly from

the proof above, and that we shall need in section 4.4.

Lemma 3.13. There exists a short exact sequence
0— (301, (1) ® Op, ,(—E2)|p,) M T.On—EL 2| By xc—L @ (1.0n) " —0
on By x C.

Proof. This follows directly from the diagram in the proof of lemma 3.11
by looking at the middle column and observing that the kernel of the map
(g2, 1)*Ep )z, xc — €501, (1) K 1,0n on By x Cistt 75(L @ (1.0n)%). O

3.5 RELATION BETWEEN &5 AND ¢y 5

The main goal of this section is to prove the following result.

Proposition 3.14. The sheaf £, 2 on Pr o x C induces the rational map ¢r, 2.
For the proof, we need the following lemma.

Lemma 3.15. If Y C Py 5 is a smooth subvariety such that

COdim(Y, ]P)Lyg) = COdlm(Y N EQ, EQ),

then ’TorIIPL’QXC((’)EQXC7 Oyxc) =0 and TOT]fL’QXC((’)EQX{p}, Oyxc) = 0.

HRemember that €1l xc splits.
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Proof. Consider the short exact sequence 0 — Op, ,(—FE») L 0p e — Op, — 0
on [Py, 5 and its pull-back to Pp o x C. If we tensor it with Oy ¢, we obtain the exact
sequence

P C Flyx gly x
0—T or; "> (Op,xc, Oy xc)—O0p, ,(—E2) |y —= Oy xc — Oynpyyxc—0

on Y x C, where the zero on the left occurs because Op, ,x¢ is locally-free.

Since the codimension of Y N Ey in Y is 1, ¢ is zero on the dense open subset
(Y\(YNE,))xC, and f is an isomorphism on it. Therefore, TOTIFL’QXC((’)EQXc, Oy xc)
is supported on (YNE;)xC, and it must be zero, being a subsheaf of Op, ,(—E3)|y xc,
which is a locally-free sheaf on a bigger dimensional variety.

Consider now the short exact sequence 0 — (m,On)* — O¢ — C, — 0 on C and
its pull-back 0 — Op, X (1.0y)" — Op,xc — Opyxpy — 0 to £y x C. If we tensor

this exact sequence with Oy« over Op, ,«c, we obtain the exact sequence

0—T—0ynp, X (1.0n)" —Ornm)xc —OrnE)x{p} —0

on (Y N Ey) x C, where T' = TOT?L’QXC(OEQX{ID},OYXC) and the zero on the left

is TOTTL’QXC(OEQXcv, Oyxc). Just as above'?, Oynpg, B (1,.0n)* — Oynpy)xc is an
isomorphism on the dense open subset (Y N Ey) x (C'\ {p}), whose complement

. . Pr.oxC
has codimension 1, and therefore 7or; “*" (

OEZX{p},nyc) must be zero, being
supported on (Y NEy) x {p} and contained in the torsion-free sheaf Oy g, (1. OnN)*,
which is supported on a bigger dimensional variety. O

Proof (of proposition 3.14). It is clear that & » defines ¢ 2 on Pr o\ Ey. On Es, we
shall divide the proof in two part. We shall first show that & o defines the rational
map ¢ on E,NEy ~ PN, /p,) C Es, where E, is the strict transform of E;,
and then we shall prove in proposition 3.16 that, if [ # pi, p2, then &7 2|20 ~ Ei,

where Ej is the vector bundle of lemma 3.6.

2For another proof of T being 0, note that the map Oyng, X (1.0n)* — OwnEy)xc
is injective because it is the pull-back of the injective map (m.On)* — O¢ via the flat
morphism (Y N Ey) x C — C.
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Since ¢r,» agrees with the rational map defined by &7 2 on a dense open subset,

we have that ¢p2(x) is £ 2|(zyxc Whenever this is semi-stable. In particular, the
proposition will follow from the fact that £ 5 is semi-stable for every x € Esy except

for + = p;, i = 1,2, which are the only two points on Ey where we know that ¢ o

cannot be defined.

Here is a picture of FEs:

A4,
.ﬁ] .ﬁA
__l __l __l
1 1 1 ~
/ / / Ey N Ey
P1 [ D2 Ly

To prove that &, o defines the rational map ¢y 5 on EiNE, ~ PN, 8,) C Es,
restrict the commutative diagram (3.1) to E; x C' to obtain:

0 0 0

0 — AQ‘EIXC —_— 8L72’ —_— — 0

E1><C BQ‘ElXC

0 —— U*OE1(1) - (071)*8L,1‘E1><C — (071)*81’E1><C — 0,

0 — 0'0,,(1) — "0, (1) ¥ 7, Oy — 00, (1) KC, —— 0

0 0 0
where o: El — F is the restriction of &9 to El. The vertical columns are exact
because Tor[fL’QXC(ezoLl(l),OEIXc) = Tor]fL’QXC(ezoLl(l) X Cp,0f,,c) = 0.

This is true because €50;,(1) ~ €50p, (—E1) ® Op,xc, and since e50p, ,(—£)
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is a locally-free sheaf, it is enough to show that Tor[fL’QXC((’)EQXc,OEIXc) and
TOTIFL’QXC(OEQX{}D}, O, «¢) are both 0, which was proved in lemma 3.15.

Since (0,1)*Ep1|m xc 1s an extension of 75 (L ® (1.On)*) by 0*Op, (1) K 7,0,

there exists a commutative diagram

0— Aj — Er2lp e — L® (m.On)" — 0

0 — O, (1) X710y — (0,1)€r1lpxe — L® (m.0n)" — 0,

O'*OLl(l) X W*ON == U*OLl(l) X 7T*ON

0 0
where A} =~ (0¥ Op, (1) ® O, (—(E N E,))) B 7.0y
Using the isomorphisms Ext ., (L, FXG) ~ H(Y, F) ® Ext (L, G) of lemma

B.1 as we did in the proof of proposition 2.9, we have the following diagram®®
Eiilmxe Y wieyw) € H(Ey, O, (1)) ® V
=1

! ! !

(0, 1) Ealmxe «— > wi@pw) € HY(E), 0" 0p (1)) @V
i=1

! ! 7 ;
Ealpiee D wi@v(w) € H(Ey, Ay @V
i=3
! ! !
6L72‘(E10E2|1)XC —> Zw(wl)* ®’¢(wl) E HO(El ﬂEg]l,OEmEg‘l(l))@V
=3

13Note that 1 (wy) = 1 (wz) = 0.
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where wy,...,w, is a basis of Ext (L, m.Ox) such that Span {w;,wy} = ker,
w?, ..., w is the corresponding dual basis of Ext (L, m,.0n)* ~ H(Ey, Og, (1)),
and we denoted Ext ;(L ® (7,.0y)*, 7.0Oy) by V to simplify the diagram.

This proves that &, o (BrBal)xC corresponds to the inclusion when we identify the
vector space Ext zélmEQh)XC(L ® (m.ON)", O np,), (1) ®m.Oy) with the vector space
Hom (Im v, Ext (L ® (7,0x)*, m.Op)) as described in lemma B.1. In particular, for
every a € Ime, a # 0, [a] € P(Im¢)) ~ PNy, /g, |1) Ey N By, and Eral{ayxc > a

as extensions of L® (m.Oy)* by m.Oy. The proposition now follows from proposition

3.16. 0

Proposition 3.16. For every | € Ly, | # py,ps, 5L72|)?l><0 induces the morphism
U Xy — SUC(2,L) in a neighborhood of p. In particular, £ alizyxc ~ £, and

ora(z) = By, where {z;} = E3 N )?l, and Ej is the vector bundle of lemma 3.6.
For the proof, we need the following lemma.

Lemma 3.17. The kernel of the natural push-forward Ext (L, O¢) — Ext &(L, M)

equals the kernel of the natural pull-back Ext (L, Oc) — Ext ((L ® M; ', Oc).

Proof. We already saw in lemma 1.2 that if an extension is in the kernel of
VYug,: Bxt H(L, Oc) — Ext &(L, M;), then the middle vector bundle surjects onto M,
or m,Op (or it splits). By lemma A.1, the dimension of this kernel is 2, and since the
subspace of vector bundles surjecting onto 7,Op is 1-dimensional, we can choose a
basis { £y, Es} of the kernel given by two extensions which surject onto M.

Since the dimension of the kernel of 4,1 : Ext (L, 0c) — Ext (Lo M, Oc)
is also 2 by lemma A.2, it is enough to show that F; and FE, become trivial when

pulled-back via L®Ml—1 — L, i.e., that there exists a commutative diagram (i = 1,2)

0 OC EZ' —_— L — 0

[ | |

0 Oc Oc@(L(X)MI_l) — L®Ml_1 — 0
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For each i € {1,2}, since the kernel of the surjective map E; — M; is L® M; ', and
the composition of L ® Ml’1 — F; with E; — L is the inclusion L ® Z\/[l’1 — L, it
follows that there exists a map L ® M;"' < 1 Mt (E;) which gives the splitting. [

Proof (of proposition 3.16). To simplify the notation throughout this proof, we
shall identify X; with its strict transforms in P ; and P75, and therefore identify
the points z; € By CPry, l€ Ly CEy CPry,and p € C CPyr. Then & := &Ll x,xc
and & ; 1= 5L7i|)?lxc (1 =1,2) are sheaves on X; x C' which define the same rational
map X; — SUq(2,L) on X;\ {p}.

Since El]{p}xc and 51,1\{p}xc are not semi-stable, the rational maps defined by &
and & ; are not morphisms. We shall prove that & 5 induces a morphism in a neigh-
borhood of p, i.e., that & s|(pyxc is semi-stable (and, in particular, it is isomorphic
to £)).

There exists a short exact sequence 0 — Ox, (1) = & — L — 0on X; x C. If we

apply the functor Hom x,xo(L ® M; ', —), we obtain
Hom x,xc(L @ M; ", &) < Hom x,xc(L @ M; ", L) — Extk, ,o(L @ M; ", Ox,(1)).

The natural inclusion L ® Mfl — L gives an element of Hom x,«xc(L ® Ml’l, L)
which maps to zero in Ext (L ® M; ', Ox,(1)). Indeed, its image would be the

extension &£ on X; x C defined by:

0 —— OXl(l) 81 L — 0
] | | ,
0 —— Ox,(1) &l LM —— 0

which splits because & = vf ® v, + v ® v, € H°(X;,0x,(1)) ® Ext (L, O¢),
Span {v;, 12} = (X;), and it maps to 0 € H(X;, Ox,(1)) ® Ext o(L @ M; ", O¢)
because vy and v, map to zero under the pull-back via L ® Ml_1 — L by lemma

3.17. Therefore, there exists an inclusion 75 (L ® M;™') < &, and a commutative
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diagram on X; x '

0 0
LeM™ = LeM!
0 — Ox(1) — & — L — 0,
I
0 — Ox (1) — G — 5 — 0
0 0

where G and S, are defined by the exactness of the last two columns. In particular, S,
is the pull-back from the second factor of a skyscreaper sheaf of degree 2 supported
at p. This skyscreaper sheaf is L/(L® M;™') ~ M;/O¢, and it fits into a short exact
sequence 0 — 1,0x/Oc — M;/Oc — M;/7.On — 0.

The idea of the proof is to show that & » € Ext ﬁ(lxc((’)xl(—l) X M, L ® M),
and that & |y <c is £

Since &1 can be defined as the kernel of & — Opy B m.On ™, we have the

following commutative diagram on X; x C:

0 0 0
0 — Oy —— &  —— By ——0
0 — Ox(1) — & — L — 0

14This is just the restriction of the short exact sequence defining £ 1,1 to X; x C. It stays
exact because of lemma 3.15, since codim (X, P, 2) = codim ({p}, E2).
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Since the composition 75 (L ® M; ') — & — Oy W7, Op is the zero map, the line

bundle 7}, (L ® M; ") is contained in &1, and the following diagram is commutative.

0 0
LeM™ = LeM!
0 —— Oy, — & —— By —— 0,
|
0 — Ox, — Gy _— Sp.1 — 0
0 0

where G; and S, ; are defined by the exactness of the last two columns. In particular,
Spa is an extension of Oy, (—1) X (M,/7.On) by Ox, K (1.0On/O¢) because there

exists a commutative diagram

0 0
71'>f<(9N Ml
0 — Ox, &O—c — Sy — OXl(_l)&W*ON — 0
I
T.On M, .
0 — Ox K o, — Sy — OXZ@?T*ON 0
Owixtpy = Olp}xip}
0 0

Moreover, S, ; is the image of S, under the pull-back linear homomorphism via the

inclusion Oy, (—1) X (M;/7.On) — Ox, ¥ (M,/7.On).
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Similarly, we obtain three commutative diagrams describing & 2, which can be

defined as the kernel of &1 — Oy,y K7, 0On 12

0 0 0
0 — Ox(-1) — Eio — B — 0
0— Ox —— &  —— By —— 0

0 0 0
0 0
LeM™ = LeM!
0 — Ox(-1) — &2 B— B 2 — 0;
I
0 — Ox(-1) — Gy —— S, ——0
0 0

15As for &1, this is just the restriction of the short exact sequence defining &7, » which
stays exact when restricted to X; x C by lemma 3.15.
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0 0
0 M,
0 — Ox(-NREE 5, —— Oy (-)E—— —— 0
C W*ON
I
W*ON Ml
0 —— OXlg OC Sp1 — OXZ( 1)@71_*01\[ — 0
Otpx{p} = Opixip}
0 0

In particular, Sy, ; is the push-forward of S, » via the natural homomorphism induced
by the inclusion Oy, (—1) K (1.0n/O¢) — Ox, K (1.0n/O¢). Under the natural
isomorphism Ext , .«(Ox,(=1) K —, Ox,(=1) K =) ~ Ext } , +(Ox, K —, Ox, K —),
Sp,2 maps to .Sy, since they both map to S, ; under the natural linear homomorphisms
described above.

Indeed, those homomorphisms are injective, because, using lemma B.3, they

become the injective linear homomorphisms
Hom X1 (OXH OXz)—>Hom Xi (OXZ (_1)7 OXZ)
and
Hom Xi (OXl (_1)7 OXZ (—1))—>Hom Xq (OXZ (_1)7 OXz)

tensored by the identity on Ext ¢(M;/7,On, m.On/O¢). Therefore,

M,

Sp2 = mx,Ox (=1) ® 5, = Ox (-1) B 7=,
C

and there exists a short exact sequence 0 — L ® Mfl —ELo— Gy — 0on X; xC,

where G is an extension of Ox,(—1) X (M;/O¢) by Ox,(—1).
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As observed above, we would like to show that G is Oy, (—1) & M. Consider

Gy ®@ 7, Ox,(1). It is an element of

M,
EXtﬁQXC (OXZ O; OXZXC) ~ H (Xl XC ( )®le><c)

M,
Hl(lele ®HO (07—1 )
Oc

12

and it is therefore a pull-back from C' of an extension in Ext &(M;/O¢, O¢). Since
(G2 ® 7%, 0x,(1))| {2} xc s isomorphic to M; for every x # p, G is Ox,(—1) X M; as

claimed. Therefore, there exists a short exact sequence
0—L ® M;'—&2—0Ox,(—1) K M;—0.

The proposition is now proved, because & 2|} < cannot split, being an extension
of M; by L ® M;"" and an extension of L ® (m.Ox)* by m.Oy, and therefore it is
semi-stable. By continuity, it must be isomorphic to Fj, that we proved to be the
limit of ¢;(z) as x — p. O

We conclude this chapter by giving another proof of lemma 3.7. Let us first show

that there exists a short exact sequence
O—>OL2 (2) X 71->f<(,)N—>gL,2|L2><C—>L ® (W*ON)*—>0

on Ly x C'. This follows by restricting the short exact sequence of lemma 3.13 to
Ly x C, and observing that (¢50r, (1) ® Og,(—E2))|z, ~ Or,(2). Now, by lemma
B.5, it suffices to show that the image of the induced rational map is contained
in the P? defined in lemma 3.7, and this is clear because Ly C Yf};é, and T,C' is

P(ker(Ext &(L, O¢) — Ext (L, 7. (On(p1 + p2))))).



CHAPTER 4

THE THIRD BLOW-UP

4.1 'THE THIRD BLOW-UP

To resolve the indeterminancy of ¢, 2, we now blow-up P along 6’2. Let
PL,?, = BL‘@QPL,Q&PL,Q&PL,I&PLy
and let E3 C Pp, 3 be the exceptional divisor.

Theorem 4.1. The composition ¢ o0¢e3: Pr3s—SUc(2, L) extends to a morphism
o3 such that for each q € 6’2, q # D1,p2, the restriction of ¢r 3 to Es|, maps
Es|, isomorphically onto' P(Ext &(L(—q), Oc(q))), and for i = 1,2, its restriction

to Eslp, sends Ej

5, isomorphically onto P(H').

k3

Corollary 4.2. The image of ¢ro in SUc(2, L) is given by
oL(PL\C)UPH') | P(Exte(L(=9).O0c(g))):
q€C.q#p
We shall prove theorem 4.1 in the next section, after we study the exceptional
divisor Fj3 in this section. We know that F3 is canonically isomorphic to N; Go/PL o

Let ¢ # p1, po. Then we have the canonical isomorphisms

Ext &(L, Oc)
Ner o~ TPro  TPr (@)
Gt e, T T,C T T,c

"'We identify here a point ¢ on 62, q # p1,p2, with its image ¢ on C.
2Note that by P(H') [resp. P(Ext &(L(—q),0c(q)))] we actually mean its image into
SUc(2,L) by the morphism described in corollary 2.6 [resp. 4.4].

27
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and so, to prove that Ej|,——P(Ext &(L(—q), Oc(q))), it is necessary to prove that

_ ker(Ext &(L, Oc)—Ext &(L(—q), 0c(q)))
- (a) '

Since the secant line joining two smooth points ¢, ¢’ of C' is?

7,C

P(ker(Ext 5(L, Oc)—Ext & (L, Oc(q + ¢)))),

and Ext (L, Oc(q+¢')) ~ Ext &(L(—¢'), Oc(q)), this follows when taking the limit
as ¢ — q.
Let now g = p; with ¢ € {1,2}. Then

T5 Py o
N~ 5 pzi,\,’ ~ Ts F,.
CQ/PL,2|p1 Tﬁi02 pi2

This contains the canonical hyperplane 75, (Es|,,) that maps isomorphically to Im 1.

Indeed, using lemma 3.3 and the fact that Ey ~ P(Ng, /e, ,),

) -~ NL1/PL,1|pi ~ NL1/E1 |pz’ & OLI(_]‘)|pi
P <ﬁZ> OLl(_1)|pi

which we already saw to be canonically isomorphic to Im+t in section 3.1. We

Tﬁi(EQ

= NLI/El

pi»

shall show in proposition 4.9 that the morphism P(75,(Es|,,)) — SUc(2, L) fac-
tors through this canonical isomorphism, i.e., there exists a commutative diagram
Eslg, >~ P(T5,E)  —— ors(Eslp) € SUc(2,L)
U 7 . (4.1)
P(T5,(Ezly,)) —— P(Ime)

We shall then show that the top map factors through an isomorphism Es|5 — P(H').

4.2 PROOF OF THEOREM 4.1

As for the other blow-ups, the strategy is to construct a universal sheaf £ 3 on

P15 x C, and then prove that &£; 3 induces the expected rational map. In this case,

3See lemma A.5.
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we also want to prove that &3 induces a morphism, i.e., that & 3|z1xc is semi-
stable for every x € Pr, 3. The definition of £, 3 is not as evident as in the other two
blow-ups, and we postpone it to section 4.3.

By construction, £y, 3 shall agree with £,0 on P 3\ F3 =Pro\ 52, and we shall
show in propositions 4.7 and 4.8 that, if ¢ € 5’2, q # P1, D2, then &p 3|py), <o induces
the isomorphism of Fj|, with P(Ext &(L(—q), Oc(q))) described in section 4.1. To
prove that this induces a morphism from Ejs|, to W, we need to prove the

following result.

Lemma 4.3. All non-trivial extensions
0—0O¢(q)—E—L(—q)—0

in Ext §(L(—q), Oc(q)) are semi-stable.

Proof. This proof is identical to the one of lemma 2.5 when we change 7,0y into

Oc(q) and L ® (m,Opn)* into L(—q). O

Corollary 4.4. The natural map P(Ext &(L(—q), Oc(q))) — SU(2, L) defined by

(0 — Oc(q) — E — L(—q) — 0) — E is a morphism.

Note that this morphism is always generically injective and actually injective for
g >3 (or g > 2 for deg L = 3) by lemma A.7.

We now want to give the idea of the proof that 5L73|E3‘5ixc (i =1,2) induces an
isomorphism of Ejs|5 with P(H’). We saw in chapter 3 that each fiber of £y over Ly,
except for the two special fibers over p; and py, maps isomorphically onto P(H’),
while those two special fibers map onto P(Im ), which is a hyperplane in P(H").

Therefore, for each point x € P(H')\P(Im ), there exists a section s, of Fy — L4
defined as follows: If ¢ # py, pa, s.(¢) is the unique point of Es|, that maps to z in

P(H'). This defines a section on L \ {p1,p2}, which can be completed to a section
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of Ey — Ly by taking its closure. Note that its closure must satisfy s,(p;) = p; for
i = 1,2, because p; is the only point on FEs|,, that does not map to P(Ime), and
x & P(Im).

We shall show that each such section has a different tangent direction at p; and
P2, so that when we blow-up these two points in Es, the strict transforms of the

s.(L1)’s will not intersect and will define the map Es|; — P(H’') by y — z with

—_~—

{y} = s.(L1) N Es.

Sz

Szo
Szs

4! b2 Sz4

Szs

L Ao

E,N E,y

| )

P1 D2

From the definition of & 3, it will be clear that, as in the case of the first two
blow-ups, ¢1,3(Es|5) C P(Ext (L ® (m.0n)*, 7.Ox)), and therefore, using diagram

(4.1), we can prove the following linearity result.

Lemma 4.5. Fori = 1,2, the rational map

G138l sl : Eslp—P(Ext (L @ (1.0n)", m.0x))
18 linear.

Proof. The proof is the same as the one of lemma 3.8. O
For each i € {1, 2}, since the map is linear, and we know it to send the hyperplane

P(T5,(Es|p,)) isomorphically onto P(Im ), to prove that it maps Ej

5, isomorphically

onto P(H’), it suffices to show that there exists a point y € Ej|5 that maps to some
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point x € P(H') \ P(Im)). We shall prove in proposition 4.10 that, for every [ € Ly,
[ # p1, e, the point y;; defined as the intersection of the strict transform of sg,(L;)

with Ej|5 maps to E; for ¢ = 1,2, and this completes the proof of theorem 4.1. [

4.3 DEFINITION OF &p 3

We shall define &, 3 as the kernel of a map (e3,1)*Er2 — (3, 1)"(Az2lg, v ® F2), with
F, a sheaf on C, x C such that Faligixe = Oc(q) if ¢ # p1, p2, and Fol gy ~ mOn
for i = 1,2. The map corresponds to a map &, — 75 Op,(1)|cxc ® F, where
F =1}, Ia being the ideal sheaf of the diagonal A in C' x C.

Before we define the map, let us study F in more detail.

Lemma 4.6. There exists a short exact sequence
0—Ocxo— F—wx' —0.

Moreover, Flipxc =~ Oc(q) if ¢ # p, and Flpyxc ~ mOy.

Proof. Starting with the short exact sequence 0 — Zp — Ocxe — Oa — 0, and

applying the functor Homexo(—, Ocxc), we obtain the short exact sequence?
0—>chc—>f—>5$téXC(OA, chc)—>0.

Moreover, Exts, o(Oa, Ocxc) = Extso(On,woxe) @ Woko =~ WA @ Woke =~ Wi
since wa >~ Exty, o(Oa, woxc) (see [Eis95, 21.15]), and wexeo|a =~ wi2.

Now, for any ¢ € C, restricting the short exact sequence to {q} x C, we obtain
a short exact sequence 0 — O¢ — Fl(gxc — C4 — 0, which we need to prove does
not split.

It is enough to show that F|igxc is a torsion-free sheaf, and it is enough to

study the situation in a neighborhood of {q} x {¢}. This is a nice local calculation,

4The sequence starts with Homexc(Oa, Ocxc) which is zero because Oy ¢ is torsion-
free, and ends with Extl, (Ocxc, Ocxc) which is also zero (see [Har77, 111.6.7]).
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which we shall not write up, though. We take this opportunity to use Macaulay 2

(see [M2]). If ¢ # p, then it is enough to study the following situation®. Let

Eil
(21)

and show that Hom g(I, R) ®z S ~ Hom (I ®g S,S), where Hom g(I, R) ®r S

R= C[.Tl,ilfg],[ = (.lel — .CI?Q),S =

corresponds to ZA |{g1xc, and Hom (1 ® S, S) corresponds to (Za|gyxc)* = Oc(q).

Here is the Macaulay 2 code:

1 : R = QQ[x1,x2]
ideal (x1 - x2)
module I

ideal (x1)
R/ J

Hom (M, R"~1)

N *x S

M *x S

Hom (Q, S~1)

R

T =2nag =R HF

The last line of the output will be “true” and it checks that the two modules are
the same. If ¢ = p, then we need to prove that Hom g(I, R) ®r S ~ Hom s(I ®g S, S)

for

(C[xlax%ylayQ] R

R = 7]7:: T — , Lo — 75; = .
(1’1y17332y2) (1 o y2) (xlay1>

The following Macaulay 2 code proves itS:

1 : R = QQ[x1,x2,y1,y2] / (x1 * y1, x2 * y2)
ideal (x1 - x2, yl1 - y2)
module I

ideal (x1, y1)

R/ J

Hom (M, R"1)

N *x S

M *x §

Hom (Q, S°1)

resolution P

resolution R

[ oI« | | | (| ([ I

aooaoamdovv=zng =2 HF

d
d
The last part of the code output shows that the two sheaves have the same

resolution, and in particular that F|,«c is torsion-free. 0

This is enough because the completion of an analytic neighborhood of {q} x {q} is the
same as the completion C[[z,y]] of C[z,y].

6Note that this time we cannot just type “P==R” as before, because the two modules
do not live in the same space, one is a quotient of 52, and one is a sub-module. Therefore,
we look at their resolutions.
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We know that &, is the extension of 77, L by 7 Op, (1) that corresponds to the
identity in Hom (Ext (L, Oc), Ext &:(L, O¢)). Since 7, Op, (1)|oxe = T (L ® we),
where m; is the first projection C' x C' — (', we obtain the following short exact

sequence on C' x C":
00— (L ® we)—EL|oxc— 1y L—0.

The map 7 (L®we) — 7 (L®we) ®F extends to amap £ |oxe — 7 (LOwe) @ F

if £.|cxc is in the kernel of the natural linear homomorphism
Ext 1C><C(7T;L7 WT(L ® wC))—>EXt 1C><C(7T;L7 WT(L ® wC) ® ]:)7
i.e., if &r|oxc is in the image of the natural linear homomorphism
Hom oo (msL, 7 (L ®@ we) @ wit)—Ext by o(ms L, 7 (L @ we)).
Let us prove that this is the case. Since 7f(L ® we) ® wx' is isomorphic to L on
A~ C, Hom oxc(mL, 75 (L ® we) @ wx') ~ HY(A,Op) ~ C. Moreover,
Bxtbyo(mL (L@ we) = H'(C x C,(L®we) KLY
~ H(C,L®wc)® HY(C, L™
~ Ext (L, Oc)* @ Ext (L, Oc),
which has the canonical identity element corresponding to £ |cxc. Clearly, the con-
stant section 1 of Oa maps to the identity, and our claim is proved, i.e., there exists
amap Eploxc — ™, Op,(1)|cxc ® F as claimed at the beginning of the section.
This map is surjective because its restriction to {¢} xC, ¢ # p, [resp. to {p} xC] is
the surjective map Er|(g3xc — Oc(q) [resp. Erlpyxc — mOn| that makes Er|(gxc

[resp. & |pyxc] not semi-stable.

There exists a commutative diagram

5L71|51><C ‘/41|6'1><C(g)'¢.1 O

! l 7

(o, 1)*(ELlexe) AN J*OPL(l)’é’leC@(O',l)*F — 0
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where o : 6’1 — (' is the restriction of £; to 51, and F; is defined by the first
row being exact. Since the restriction of the short exact sequence defining £, to
Cy x C stays exact by lemma 3.15 7 the cokernel of the vertical map on the left is
Ofpy poy X, Op. Since the fiber of ker g at {p;} x C has degree 2 for i = 1,2, it maps

to zero into m,Oy, and we obtain the following commutative diagram on Cy x C-

0 0

O I kerg B — 5L71|51><C B — A1|51X0®F1 — O

0 —— kerg —— (U’l)*(gL‘CxC) 9 O’*OPL(l)‘él ®(0,1)*,’F — 0.

O{p1,p2} &W*ON = O{pl,pz} &W*ON

0 0
If we restrict to {¢} x C, for ¢ € 5’1, q # p1, D2, then Filgxec ~ Fligxe ~ Oc(q).

Let i € {1,2}. If we restrict the right column to {p;} x C, we obtain
0—T—Fi| pyxc—F | ppxc—TcOn—0,

where T = TorC (O, pay B 7.0x, Oppyxc)-
To calculate this sheaf, consider 0 — Og (—pi) — Og — O,y — 0 on C, and
its pull-back to C; x C'. We want to tensor it with Op1poy ¥ 7,On, and we do it in

two steps. We first tensor it with 7 (7.Ox) to obtain
0—>061 (—p) X T.On—T,On—0f,y K1, On—0,

where the map Og (—p;) X m.Oy — 7Oy is injective because it is an isomorphism

on the dense open subset (Cy \ {p:}) x C whose complement has codimension 1, and

"Lemma 3.15 is about a subvariety Y C Py, o, but the same statement about Y C P, ;
with P, o [resp. Es] replaced by Pr, ;1 [resp. E] is also true, with the same proof.
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therefore the image of any torsion sheaf appearing on the left will be zero, being a
subsheaf of a torsion-free sheaf supported on a codimension 1 subvariety. Then we

tensor the short exact sequence with 7%1 O(py.,p»} to obtain
0—T—0g, (=)l {pr,pe} M T ON—Opp, po} ¥ 1. On—Ofpy K 71,0n—0,

from which it is clear that T~ O,y K 7,0, and therefore f1|{p¢}><C ~ m7,0n.
An identical process defines a sheaf F5 on 6*2 x C such that

5L72|62><C A2|62X0®f2 0

| l ,

Eralewe — Allg e ®F1 —— 0
where we identify 52 and 51 via the isomorphism &5 &y Since the cokernel of the
vertical maps is again Oyp, 5,) X 7,0y, the exact same proof as above shows that
Faligixe = Oc(q) if q € 52, q # D1, P2, and Fo|(pyxc ~ Oy for i = 1,2.
We define €1, 3 to be the kernel of the map (e3,1)*EL2 — (€3, 1)*(Azlg, o @ F2).

4.4 RELATION BETWEEN &1 3 AND ¢ 3

Proposition 4.7. For every q € 6’2, q # D1, D2, O1.3| By, ©5 @ morphism, and it maps

Es|, isomorphically to P(Ext 5(L(—q), Oc(q))).

Proof. We proved in section 4.1 that Fs|, ~ P(Ext &(L(—q), Oc(q))), and there-
fore we need to show that under this identification, ¢, 3 is the identity map. The

proposition follows from proposition 4.8. O

Proposition 4.8. The restriction of 3 to Es|, x C is the extension of w5 L(—q)
by Op,),(1) X Oc(q) that corresponds to the identity under the identification of this

extension space with Hom (Ext (L(—q), Oc(q)), Ext 4(L(—q), Oc(q))).

Proof. This proof is very similar to the proof of proposition 2.9. Let H C P, be a

linear hyperplane that contains ¢, does not contain p, and is transverse to the curve
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C at ¢ (i.e., H does not contain 7,C'). Then H is isomorphic to its strict transform

in Py 5, which we shall still denote by H. It is clear that £ s|lmxc is ELlmxe, and
therefore it is an extension 0 — Oy (1) — Eo|lpxec — L — 0 on H x C.

Let o : H — H be the blow-up of H at ¢, and let £/ C H be the exceptional

divisor. Then there exists a commutative diagram on HxC:

0 0 0
0 — 0"0y(1) ® Of(—E') — Erslive — Bslge — 0
0 —— c*Opn (1) — (0,1)"Eraluxe — L — 0,
0 — Op/xc —— OpXOc(q) —— Opixiqg —— 0
0 0 0

where Bs is defined exactly in the same way we defined B; and B,, and the columns
are exact because of lemma 3.15 8.

Let &}, be the push-forward of (0, 1)*Ep o|pxc via 0*Og (1) — 0*Op (1) X Oc(q):

0 —— O'*OH(]_) — (071)*5L,2|HXC L 0
| | [ L (42
0 —— 0*0Ox(1) X Oc(q) —— Ey L 0

Then the restriction of £, to E' x C splits. Indeed, 0*Oy(1)|p ~ O, and since
Ext 1. (L, Oc(q)) ~ H(E', Op) @ Ext &(L, Oc(q)) by lemma B.1, we see that
Eylprxco splits as long as E|(zyxc splits for some = € E'. Resctricting the diagram
(4.2) above to {z} x C for any x € E', we see that £ |(z)xc is the trivial extension
Ue(ELlgyxc)-

8In lemma 3.15, replace Y with ﬁ, and Eo C P9 with B3 C P 3.
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Therefore, there exists a surjective map & — Op X Oc(q), and we can define

& to be its kernel:
0—Ey1—Er—0p K Oc(q)—0.

Then there exists the following commutative diagram on H x C:

0 0
0 — (0"Ou(1) @ Og(=E")) W Oc(q) —— &, L 0
I
0— c* O (1) X Oc(q) — Ey L 0.
Op K Oc(q) = Op K OC(Q)
0 0

Moreover, we have the following commutative diagram on H x C' that relates Ex
and &}, to Eralnxc and €35, o

0 0
0 —  &algee  — (@.1)Eluxe —— Op®Oc(q) —— 0

0 — Ena 1, Ey —— Op®Oc(qg) — O
Ou(1)RC, = o*Ox(1)KRC,
0 0

When we restrict the first two rows of this diagram to £’ x C, and we look at the
image of the restrictions of i; and ] to £’ x C, we obtain the following diagram,

where the first row shows that the restriction of £, 3 to E3|, x C ~ E' x C is an
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extension of 7§ L(—¢q) by Og,, (1) K O¢(q):

Z‘1|E’><C’

0 — Op(1)XOc(q) — Erslpxe —— L(—q) —— 0

H l l

0 —— Op(1)BO(g) —— Elpylpxe 2% [

—>O

This shows that &p3|pxc is the pull-back of & |pxc via the pull-back of the

inclusion L(—¢q) — L from C to E' x C. Here is a summary of how to construct

Erslpxc
Epoluxe € Ext pr.o (L, Ou(1))
| |
(0,1)*Epaluxc € Ext & .(L,0"Ox(1))
| |
&l S Ext 5 . (L,0"Ox(1) K Oc(q))
| T
Eha € Exty (L, (070r(1) ® Of(—E')) K Oc(q))
| |
Euplexe € Ext pryo(L, Op (1) R Oc(q))
| |
Erslmxe € Ext o (L(—q), Om (1) R Oc(q))

Using the isomorphisms
Exty,o(L, FRG)~ H(Y,F) ® Ext 5(L,G)

of lemma B.1, we can understand what extension &y 3| «¢ is by tracking the corre-
sponding elements in these spaces.
Let vg,...,v, be a basis of Exts(L,O¢) with Span{v,...,v,} = (H),

and Span{vp,v1} = (T,C). Let v{,...,v: be the corresponding dual basis in

9Note that one of the arrows goes in the other direction between the extension spaces.
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Ext &(L, O¢)*, with v},...,v% a basis of (H)* ~ H°(H,Oy(1)). Then &raluxc

corresponds to the element

> wr@v € HY(H,0y(1)) @ Ext L(L, Oc).

i=1
We have the following diagram, where _, is the natural linear homomorphism
Ext o(L, Oc(q)) — Ext o(L(—q), Oc(q)) '

n

Eroluxe va ® v; € H°(H,0y(1)) ® Ext (L, O¢)

=1
! | !
(0. 1)y «— Y view €  HYH,o*Oy(1) @ Ext{(L,Oc)
=1
! | !
Ey = Y ui®(v) € H(H,0"0u(1)) @Ext &(L, Oc(q))
1=2
! | T
HYH,o*Op(1) ® Oz(—F'))
Eig = Y i@ () € ®
=2

Ext IC(Lv OC(Q))
! ! !

Epilpxc < wa®¢q(vz‘) e HE, 0p(1)®Exta(L, Oc(q))
=2

! l !

Ergloxe «—— Y wi®w, € H(E,0p(1))® Extt(L(—q),0c(q))
1=2

where, for 2 < i <n, w; = _4(¢,(v;)). Therefore, £ 3 corresponds to the identity
in Hom (Ext &(L(—q), Oc(q)), Ext &(L(—q), Oc(q))), as claimed. O

We now prove that ¢L,3’]}D(Tﬁ'(E2 y) factors through the canonical isomorphism

lp;

P(T5,(E,l,,)) — P(Im1) described in section 4.1.

19Note that 1/4(v1) = 0 and ker(¢_, o 1,) = Span {vg, v1 }.
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Proposition 4.9. Fori € {1,2}, the extension

5L73|P(N{5i}/32\p¢)><c € Ext [%)(N{ﬁi}/Eg\pi)XC(L X (W*ON)*7 OP(N{E’}/EQ\M)(]_) X W*ON)

corresponds to the inclusion in Hom (Imy, Ext (L @ (7,0x)*, m.0n)) under the

canonical identification Nz, /g,), ~ Im.

Proof. Let i € {1,2}. We already saw in chapter 3 that £f,|g,|, xc induces the
linear map given by projection from p;, i.e., it corresponds to a linear homomorphism

Niyppalp — Ext ((L® (m.0n)*, m.0y) of kernel (p;) and image Im ¢ (lemma B.1).

Therefore, we can find a basis wy, ..., w, of /\/’Ll/]pL,1|pi and a basis vy, ..., v, of
Ext (L @ (7.0y)*, 7.0y) such that (p;) = Span{w;}, Imv = Span {v,...,v,},
and Span {wy, w;} maps to Span {v;} for every 2 < j < n under the homomorphism
corresponding to & o Falp,xc- In particular, this sheaf corresponds to Z?:Q wi ® v;
in H°(E|p,, Op,y,, (1)) ® Ext (L ® (m,0x8)", 7.0y).

To simplify the notation, let us denote Es|,, by X and its blow-up at p; by

c: X — X , with E’ the exceptional divisor. Then there exists a short exact sequence
0—CErsl5vc——(0,1)"E 2| xxc—Op R m,On—0,

obtained by restricting the short exact sequence defining &5 to X xC. Tt stays
exact because of lemma 3.15.

There exists the following commutative diagram on X xC
0 0

0— A@?T*ON — 5L73|)~(><C —_— L®(7T*ON)* — 0
I

0 — 0*Ox(1) X 71,0y —— (0,1)* EL2lxxe —— L® (m.0n)" —— 0,

OElgTF*ON = OElgTF*ON
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where A = 0*Ox (1) ® Ox(—E'). If we restrict the first row to £’ x C, we obtain a

short exact sequence
O—>OE/(1) X W*ON—>8L73‘EI><C—>L ® (W*ON)*—>O

Remember that E' is P(Nizy/m,),, ). The following diagram, where we denoted
Ext (L ® (7.0x)*, 7.0x) by V to simplify the notation, illustrates the steps we

took in finding & 3| pxc:

Eralxxe  —— Y wi®v; € HYX,0x(1)®V
j=2

| l |
(0. 1) Epalxxe «—— Y wi®v; € HYX,0*0Ox(1) @V
7j=2
l l T
8L,3’)?><C . Zw;(@vj < HO()’ZaA)@V
j=2
l | |
ELslexe = Y vi@vy € HE,0p(1)eV
j=2

Therefore, £, 3| g/« corresponds to the inclusion Im ¢ — Ext ((L® (7.0n)*, m.O),
as claimed. O

Let I € Ly, I # p1,pa, and let Y] := sg, (L), where sg, is the section of Ey — Ly
defined in section 4.2. Remember that we denoted by y; ; the only point of intersection

of the strict transform Y; of ¥; with Eslp (1=1,2).
Proposition 4.10. The restriction of 3 to 371 x C' is a non-zero element of

Ext} (L ® (1.0y),m.0y) = H'(Y,,O05) ® Ext &(L ® (1.0y), m.Ox), where Y,

is the strict transform of Yy in Pp 3. In particular £ 3lqy, ,yxc = By fori=1,2.
For the proof, we need the following result.

Lemma 4.11. The restriction of Op, ,(—E3) to Ly ~ P! is Op,(1).
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Proof. Remember that L, = i:é N Es. It is isomorphic to L = i:é N E; via &9,

and it is therefore the exceptional divisor of the blow-up of 7),C' at p. Therefore,

OPL,Q(_EQ)‘LZ = (OPL,Q(_EQ)”]:;@HLQ = OTPAG(_LQ)’LQ = OLQ(l)'

U
Proof (of proposition 4.10). We saw in lemma 3.13 that there exists a short exact
sequence 0 — (€507, (1) ® Og,(—E3)) R m.0n — EL2|pyxc — L@ (m.0n)* — 0 on

FEy x C. If we restrict it to Y; x C, we obtain the short exact sequence
O—>OYZ (2) X W*ON—>8L,2|YZ><C—>L & (W*ON)*—>O,

because Op,(—Fs)|ly; = Oy, (1) since Y, and Ly are in the same linear system'’.

Therefore, there exists the following commutative diagram on }71 xC~Y, xC:

0 0
0— Og;l X 7T*ON —_— 5L73|§7l><C — L & (77'*0]\[)* — 0
I
0— Oy(2)®7.0Oy — Eralvixe —— L® (mOpn) —— 0,
0{517]'52} X W*ON = 0{51,52} X W*ON
0 0

and 1.3, ¢ s an element of Ext %XC(L(@(W*ON), m.Op). Since this is isomorphic to
HO(Y], Oy, ) ® Ext H(L® (1.0n), 7.0) by lemma B.1, &1.3]5, ¢ 18 non-zero because

we know that £p 3](1xc does not split for every y € 571, Y # Y1, Yo O

HEach section of Ey — L; corresponds to a line subbundle of N, L,/Pp.» Which we saw

to be isomorphic to O & O, (—1), with O := O, (1) & --- ® O, (1). Both Y; and Ly are

images of sections of F5 — L of the form OLI(—l)(a’—id)(’) @ Or,(—1), since they both do

not intersect P(O) = P(N, /g, )-
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4.5 WHERE TO GO NEXT

As mentioned in chapter 2, the next step would be to study the fibers of the morphism
®13, and then to use the morphism to study the moduli space W The most
interesting case would probably be when g = 2, since then dimm = 3, and
dim P, = deg L.

Next, since our rational maps factor through projective spaces like P(H') and
P(Ext (L(—q), Oc(q))) when restricted to fibers of the exceptional divisors, we can
use our construction to study other different compactifications of SUq(2,L). We
are particularly interested in the following two other important compactifications of
this moduli space: The one introduced by Bhosle in [Bho92], which we used in this
work, and another one introduced by Gieseker in [Gie84]. Bhosle’s construction uses
generalized parabolic bundles, and Gieseker’s uses sheaves on semi-stable models of
the curve.

Finally, we would like to find a good way to generalize this construction to higher
degree. The indeterminancy locus is not as easy to calculate after the first blow-up,

even when deg L = 5.



CHAPTER 5

THE BASE LOCUS OF THE GENERALIZED THETA DIVISOR

5.1 A BRIEF SURVEY

Let C be a smooth irreducible projective curve of genus g > 2. For a positive integer
r and an integer d, let Uc(r,d) be the moduli space of (S-equivalence classes of)
semi-stable! vector bundles of rank r and degree d. If L is a line bundle on C,
let SU:(r, L) be the moduli space of (S-equivalence classes of) semi-stable vector
bundles of rank r and determinant L. If L;, L, are two line bundles of degree d,
then?

SUc(r, L) ~SUc(r, Ly).

Therefore, we shall denote this moduli space also by SU¢(r, d) when we do not want
to emphasize which line bundle has been fixed as determinant.

Also, if d; = dy (mod r), then?
SUc(r,dy) =~ SUc(r,dy) and  Uc(r,dy) ~ Uc(r, ds).

Therefore, for each r, it is enough to consider degrees d such that 0 < d < r.

LA vector bundle E of rank r and degree d is called semi-stable if, for every subbundle
F CE, rdegF < drkF.

2The isomorphism is F — E ® L, where L is a line bundle such that L™ ~ L1_1 ® Lo.

3The isomorphisms are both given by E +— E® L, where L is an appropriate line bundle
of degree (dy —dy)/r.
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Finally, if d; + dy =7, 0 < dy,ds < r, then —d; = dy (mod ), and

SUc(r,d)) — SUp(r,—dy) ~ SUc(r,dy)
Uo(r,dy) — Uc(r,—dy) =~ Ue(r,dy)

E — FE

and it is enough to consider degrees d such that 0 < d < r/2.

The Picard group of SUc(r,d) is generated by one ample line bundle (see
[DreNar89]), which we shall denote by L, 4. If ©, 4 is a divisor on SU¢(r,d) such
that £, 4 = Osuc(ra)(Ora), then O, 4 is called a generalized theta divisor. We are
interested in the base locus of its linear system.

If d = 0, a point in the base locus corresponds to a semi-stable vector bundle
with integral slope? p(E) < g — 1 such that H°(E ® L) # 0 for every line bundle L
of degree 0 °. This was proved by Beauville in [Bea88] for » = 2 and by Beauville,
Narasimhan and Ramanan in [BeaNarRam89] in general. Raynaud studied such

bundles in [Ray82], and Beauville summarizes his results as follows in [Bea95].

Theorem (Raynaud). (a) Forr =2, the linear system |O2p| has no base points.
(b) Forr =3, |©3,| has no base points if g =2, or if g > 3 and C is generic.
(c) Let n be an integer > 2 dividing g. For r = n9, the linear system |O,.o| has

base points.

Using the bundles constructed by Raynaud, we improve the result in part (c) of

his theorem.

Theorem 5.1. If r > 29, then |O, | has base points. Moreover, the dimension of

its base locus is at least (r — 29)%(g — 1) +1 6.

4The slope of a vector bundle E is defined as u(F) = deg E/rkE.
°In particular, then, u(E) > 0.
SNote that n?(g — 1) + 1 is the dimension of Uc(n,0).
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We also prove that, for some covering curves, the base locus of |©,.¢| is non-empty

for ranks smaller than 29.

Proposition 5.2. Let C—Cbeann:l covering of smooth irreducible projective

curves of genus § and g, respectively. If s is a positive integer such that’

HEIHES!
n S
then there exists a vector bundle in the base locus of |ésg,o|, where ésg,o 1S a gener-

alized theta divisor in SUx(s7,0).

Remark. Note that the condition [g/n] > [g/s] + 1 implies that [g/n] > 2. There-

fore, g/m > 1,1e.,n <g.

Corollary 5.3. For every covering as above with 1 < n < g, there exists an s

satisfying the condition above such that s9 < 29, unless ¢ = 4 and n = 2.

About stability of the vector bundles in the base locus, note that all of the vector
bundles constructed in the proof of theorem 5.1 are semi-stable and not stable, but

we prove the following®

Proposition 5.4. If ry = min{r € N | |©,| has base points}, then every vector

bundle in the base locus of |©,, | is stable.

To our knowledge, no stable bundles have been proved to exist in the base locus
of |©,] if r > .
If d = 1, we have the following result proved by Brivio and Verra in [BriVer99|

for r = 2 and [BriVer02] in general.

Theorem (Brivio,Verra). The line bundle L, is very ample for every positive r.

"For a real number m, we denote by [m] the smallest integer > m.
8This is probably a known fact to the experts in the area, but we could not find it in
the literature.



7

In particular, the linear systems |©, ;| are base-point-free.
To our knowledge, nothing is known about the base locus of the linear systems

10,4 if2< d < r/2.

5.2 PROOF OF THEOREM 5.1

In this section, we shall set d = 0, and drop the degree from the notation of the
generalized theta divisor explained above. Also, since all of the moduli spaces of the
form SUq(r, L) for some line bundle L of degree 0 are isomorphic, we shall assume
that L = O¢.

The proof of theorem 5.1 can be divided in two parts. We first use the bundles
constructed by Raynaud in [Ray82] to show that the base locus of |©,| is always

non-empty if » = 29, and then we prove the following lemma.

Lemma 5.5. If E is a vector bundle in the base locus of |©,|, then, for every
F € Ug(n,0), the vector bundles of the form (E® F)® L (with L € Pic”(C)) which
have trivial determinant are in the base locus of |©,,|. Moreover, the space of all

such bundles has dimension n*(g — 1) + 1.

As we saw above, Beauville says in [Bea95] that the linear system |O,|has base
points for r = n? where n is an integer dividing g. What Raynaud actually constructs
is, for every n, a semi-stable vector bundle of rank n¢ and slope g/n such that
H°(E ® L) # 0 for every line bundle L of degree 0. Then, for g,n > 2, we have
g/n<g-—1.

If g is even, we are then done because n = 2 divides g, and we obtain base points
for r = n9 = 29. If g is odd, it is actually possible to construct, using Raynaud’s
bundle, another vector bundle with integral slope and the same property. This is

actually proved by Raynaud’s himself’:

9For our purposes we can say that a semi-stable vector bundle has the property () if
0<pu(E)<g-1and H'(E® L) # 0 for every line bundle L of degree 0.
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Proposition ([Ray82, 1.7.2]). Let ro be an integer. Every semi-stable wvector
bundle on C of rank r < ry satisfies (x) if and only if every stable vector bundle

of slope g — 1 and rank < ry does.
We shall prove this stronger statement.

Proposition 5.6. If E is a semi-stable vector bundle of slope (E) < g—1 such that
HY(E ® L) # 0 for every line bundle L of degree 0, then there exists a semi-stable

vector bundle E' of rank < rkE and slope [1(E)](< g — 1) with the same property.

Proof. If p(E) is an integer, we can take E' = E. If u(E) < [p(E)], let E; be
an elementary transformation of F, ie., 0 - F — E; — C, — 0, for some p € C.
Clearly, rkE) = rkE, and H(F, ® L) 2 H°(E ® L) # 0 for every L € Pic’(C).

Assume that E; is not semi-stable. Let I} C E; be a subbundle of maximal
slope. Then both F} and E;/F; are semi-stable vector bundles. Moreover, the short
exact sequence 0 — Fy — E} — E;/F; — 0 induces, for every L € Pic’(C), a long

exact sequence of cohomology
0—H(F,® L)—H"(E,®@ L)—H((E,/F) ® L)— - -

which implies, by semi-continuity, that either H°(F} ® L) # 0 for every L € Pic’(C)
or H'((E,/F) ® L) # 0 for every L € Pic’(C). Let G be the vector bundle (either
Fy or Ey/F) for which this is true.
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Let F = E N Fy. Since pu(Fy) > u(Ey) > p(E), and E is semi-stable, F' # F},

and we obtain the following commutative diagram

0 0

O— ¥ — F —C, — 0

O— £ — Fr —C, — 0.

E/F — El/Fl

0 0
Since E is semi-stable, u(F) < u(F) < [u(E)], and therefore u(Fy) < [u(E)]. Also,
w(E) < u(E/F) = p(Ey/Fr) < w(Ey) < [p(E)].

To summarize, we proved that, if F; is not semi-stable, then there exists a vector
bundle G of rank rkG < rkE; with u(F) < u(G) < [u(E)], and H*(G ® L) # 0 for
every L € Pic’(C). If E; is semi-stable, then we produced a vector bundle of rank
tkE with p(E) < p(Ey) < [p(E)] with the same property. If E; is semi-stable, let
E{ = E,. Otherwise, let Ef = G.

We can now repeat the process, starting with F/ as E, and we can produce semi-
stable vector bundles E! such that u(E!) < [u(E)], and H°(E! ® L) # 0 for every
L € Pic’(C). The process ends (i.e., u(E!) = [u(E)] for some i) after a finite number
of steps, because at each step either the rank decreases or the degree increases, and
rkE! [resp. deg E!] is bounded below by 1 [resp. above by tkE! - [u(E)]]. O

We shall now prove lemma 5.5.

Proof (of lemma 5.5). Let E be a vector bundle in the base locus of |0,|. There
are two special cases for which the proof is simpler: when n = 1 and when F is

stable. We shall explain how these two cases work as we go through the proof.
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Consider the set of extensions 0 - EQ Lr — Wr — F — 0, where F' € Ug(n, 0),

and Lp is a line bundle such that L% ~ det F* . Let us show that W is a vector
bundle of rank 7 + n that is in the base locus of |0,,|.

First of all, Wr is semi-stable (see [LeP97, 5.3.5]). Also, note that, for a fixed

F, all extensions of F' by £ ® Lp are S-equivalent to (E ® Lp) @ F, so it suffices

to consider Wr = (F ® Lp) ® F. Moreover, Wy contains £ ® L, and so, for every

LePic? 'C, HYEQLr®L)#0= H'(Wr® L) #0, since deg(Lr ® L) = g — 1,

and F is in the base locus of |©,|. And Wy has also trivial determinant; indeed,
det Wp ~det(E® Lr) @ det F ~det E® L, ® det F' ~ det E' ~ O¢.

The idea for the rest of the proof is that at most a finite number of Wr’s have
the same S-equivalence class, and so the dimension of the vector bundles in the base
locus of |©,,,| that we constructed is dimU(n,0) = n?(g — 1) + 1.

Let o: Pic’C x U(n,0) — U(r 4+ n,0) be the morphism (L, F) — (E® L) & F.

There is a natural embedding SUc(r +n, Oc) C U(r + n,0), and we claim that!!

Claim. Let
B = p(Pic’C x U(n,0)) N SUc(r +n, Oc).

Then dim B = n?(g — 1) + 1, and B is contained in the base locus of |0, ,]|.
Proof. 1t is clear that B is contained in the base locus of |0,,,|. The preimage of

SUc(r +n,0¢) under ¢ is A = {(L,F) € Pic’C x U(n,0) | L" ~ det F*}, and
B = ¢(A).

107f 5 = 1, the proof is a little bit simpler; we do not need to use Lp, since det F* is just
F~1. We can just use the set of extensions 0 - E® F~! — Wp — F" — 0, with F a line
bundle of degree 0.

UFor n = 1, we use the map ¢ : Pic’C — SUc(r+1,0¢) given by F — (EQ F~V) @ F".
If we then let B = ¢(Pic’C) C SUc(r + 1,0¢), the claim is that B is contained in the
base locus of |©,41] and dim B = g.
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The claim now is that dim A = dim#(n,0) and the general fiber of ¢ is finite.
We shall assume in what follows that F'is a stable vector bundle; this does not effect
the computation since a generic element of U (n,0) is stable.

Consider the second projection A — U(n,0): it is surjective because for every
stable F' € U(n,0) there exists L € Pic’C such that L" ~ det [’*. Moreover, there
are only a finite number of them, and this proves the claim about the dimension.

Let ®%_Gr(E); be the associated grading of E (see [LeP97, section 5.3]). Since
F' is a stable bundle, the associated grading for ¢(L, F') is

k

PGr(E) e L) o F.

i=1

Let H € B, it is of the form ¢(L,F) = (E® L) @ F for some (L, F) € A. We
shall prove that there are only a finite number of (L, F’) € A such that (EQ L) & F
is S-equivalent to (F ® L") & F”, i.e., there exists a permutation o € Sy, such that,
for every i € {1,...,k+ 1}, Gr(o(L, F)); = Gr(o(L', F'))ow) 2.

There are two cases'.

Case I: k > 2. Then there exist at least one i € {1,...,k} such that o(i) is also

in {1,...,k}. Then, setting Gr; = Gr(E); for i =1,...,k,

Gr; ® L ~ Gry,;y @ L' = det(Gr; ® L) ~ det(Gr,;) @ L)
= det Gr; ® L" ~ det Gry;) ® (L')"

= (L')" ~detGr; ® L™ ® det Gr;(li),

where n = rkGr; = rkGr,(;), and there exist only a finite number of L' with this
property. We shall show now that F” is uniquely determined. There are two subcases.

Subcase I: o(k +1) = k+ 1. Then F' ~ F.

2For the case n = 1, the associated grading for H is @le(Gr(E)i QF HYoFr.
13When E is stable, we only have the second case. See the note after the proof.
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Subcase II: 0(j) = k + 1 for some j # k + 1. Then F' ~ Gr; ® L '*.
Case II: k =1, i.e., E is stable. If 0 = idg,, we use the same technique as before.

If 0(1) =2 and 0(2) = 1, then F” is uniquely determined by F ® L ~ F’, and

EQL ~F = det(F®L')~detF
= det E® (L) ~det F

= (L))" ~det E™' @ det F;

again there are only a finite number of L’ that satisfy this property'®. O

Note that we could assume at the beginning of the proof that E is stable. Indeed,
assume for a second that we prove that, for E stable in the base locus of |©,|, we
can costruct a family of semi-stable vector bundles in the base locus of |©,,| of
dimension n?(g—1)+1. As we shall prove in proposition 5.4, if the base locus of |0, | is
not empty, there exist a stable vector bundle in the base locus of |©,.| for some 7’ < r,
and doing the construction using the stable bundle, we would find a family of vector
bundles in the base locus of |©,,,,| of dimension (r+n—1r')*(g—1)+1 > n?(g—1)+1,
which is what we want to prove.

We wrote the proof for the general case because many of the concrete examples
that have been provided so far of vector bundles in the base locus are examples of
vector bundles that are not known to be stable. The construction can be used for
those vector bundles to construct some other concrete vector bundles of higher rank
in the base locus of the generalized theta divisor.

We shall now end the section with the proof of proposition 5.4.

YFor n = 1: Case I: k > 2. Then there exist at least one i € {I,...,k} such that
o(i) € {1,...,k}. Then Gr;@ F~! ~ Gry;) @ (F')~! = (F/)" ~ det Gr; '@ Fr@det G1y i),
where n = rkGr; = rkGr,(;), and there exist only a finite number of F' " with this property.

BFor n = 1: Case II: k = 1, i.e., E is stable. Since E is in the base locus of |©,|, it
cannot be a line bundle; hence, ¢ =id. Then E® F~! ~ E® (F')~! implies (F')" ~ F",
and there exist again only a finite number of F’ with this property.
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Proof. Let E be a vector bundle in the base locus of |0,,[; E is in the same equiv-
alence class of its associated grading @®%_Gr;. Since H*(E ® L) # 0 if and only if
there exists an i such that H°(Gr; ® L) # 0, we see by semicontinuity that there
exists ¢ such that Gr; is in the base locus of Oy, |- By the minimality of ro, k = 1,

and F is stable. O

5.3 FILTRATIONS OF THE BASE Locus

We introduce here subspaces of |©,| that we shall need to prove proposition 5.2.

Definition. For every n € N, let
0., ={E € SU:(1,00) |V F € Us(n,n(g— 1)) H'(E® F) # 0}.

Note that |©,|; is the base locus of |©,].

Lemma 5.7. If m|n, then |©,|, C |O,|m. In particular, every |©,|, is contained in

the base locus of the generalized theta divisor.

Remark. For every n € N, we have a filtration of |©,];:
|®r|1 2 |@r|n 2 ‘@7‘|2n 2 ‘@7‘|3n 2 e

Proof. Suppose that n = im, and let £ € |©,|,. Then, if F' € Uc(m,m(g — 1)),
®'F € Uc(n,n(g—1)), and H° (E® (&'F)) #0= HY(E® F) #0. O

The main result is the following.

Proposition 5.8. Let C—Cbeann:l covering of smooth irreducible projective

curves of genus g and g > 2, respectively. If E € |©,|,, then m*E € \érh.

Remarks. (1) It will be clear from the proof that the assumption E € |©,|, is strong.
What is really needed is that H°(C, EF ® F') # 0 for every F in the image of the

rational map m, : Pic" 'C' — Ue(n, n(g — 1)).
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(2) From [BeaNarRam89], we know that there exists and n : 1 covering for which

T is dominant, and in that case we really need E € |©,|,.

Proof. This is clear since we know that H*(C,m™*E® L) # 0 < H(C,E®m,L) # 0
by the projection formula. If L is a line bundle of degree g — 1, then =, L is a vector
bundle of rank n and degree n(g—1). If 7, L is semi-stable, then H°(C, E®@m, L) # 0
because E € [0,|,. If m.L is not semi-stable, then it has a subbundle F' of bigger
slope. This means that x(E®F) > 0, and so H*(C, E®m, L) 2 H*(C, EQF) # 0. O

5.4 PROOF OF PROPOSITION 5.2

Proof (of proposition 5.2). Since Raynaud showed in [Ray82] the existence of a semi-
stable vector bundle of rank s9 and slope g/s with has sections when tensored by
any L € Pic’(C), by proposition 5.6, there exists a semi-stable vector bundle £’
of rank s9 and slope [g/s] such that H(E' ® L) # 0 for every L € Pic’(C). By
tensoring with a suitable line bundle of degree —[g/s]|, we can construct a vector
bundle E € SU¢(s9) such that H(E ® L) # 0 for every L € Pic/9*1(C).

Let F € Uc(n,n(g — 1)), and let L be a line subbundle of F' of maximal degree.
Mukai and Sakai proved in [MukSak85] that u(F/L) — u(L) < g. Since

—1) —deg L
nlg ) 7 °e —degL§g<:>—n—ndegL§—g<:>deng2—1,
n— n

this implies that every such F' has a line subbundle L of degree > [¢/s], and therefore
H(E® F) 2 H(E ® L) # 0. Since this is true for every F' € Ux(n,n(g — 1)),

E € |O44|,. The result follows from proposition 5.8. O
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Here is a table of values of s for small g:

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9

g=3 3

g=4 4 4

g=>5 3 5 5

g==6 3 6 6 6

g=71 3 4 7 7 7

g=38 3 4 8 8 8 8

g=9 3 5 5 9 9 9 9
g=10 3 4 5 10 10 10 10 10

For example, if g = 3,n = 2, |O7]2 in non-empty, and so |€)27|1 is non-empty,
while § > 5, and 29 > 32.
For every n, if g = n® + 1, then |©(,41)s], is non-empty, and so |é(n+1)g|1 is

non-empty, while § > n® + 1, and 29 > 27°+1 > (n + 1)9; indeed,
2 = 2. (2 > (n+1)- (n+1)" = (n+ 1)

For every n, if ¢ = n + 1, then (O, 41)9], is non-empty, and so ’é(n+1)g‘1 is

non-empty, while § > n? + 1, and 29 > 2"**1 > (n + 1)9; indeed,

2L — 2. (2" > (n+1)- (n41)" = (n+1)7.



CHAPTER 6

THE STRANGE DUALITY CONJECTURE

6.1 FORMULATION OF THE CONJECTURE

Let r be a positive integer, let d be an integer such that 0 < d < r/2, and let h be
their greatest common divisor. Then, for every F' € Uc(r/h, (r(g — 1) —d)/h), it is

possible to define a divisor ©p in SU(r, d) [resp. Uc(r, d)] as the closure of
{E € SUc(r,d) [resp. Us(r,d)] | E is stable and H(E ® F) # 0}.

The strange duality conjecture, inspired by physicists in the case d = 0 (see
[Bea95, section 8|) and extended by Donagi and Tu to every degree in [DonTu94],
states that, if h = ged(r,d), then for every F' € Uc(r/h,d/h) and every positive

integer k,
H(SUc(r, (det F)*™), kO,.4)* ~ H (Uc(rk/h, (r(g — 1) — d)k/h), hOF).

In particular, if & = 1, the strange duality conjecture would give a commutative
diagram
SUc(r,d) —— |0,.4]"
D lz
|hOF|

where D(E) = Op, and the base locus of |©, 4 would be isomorphic to

(B € SUe(r,d) | H(E @ F) £ 0YF € Us(r/h, (r(g — 1) — d)/h)}.

86
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6.2 IMPROVEMENTS ON THE EVIDENCE
We want to contribute here to the evidence in favor of the strange duality conjecture,
to add to the evidence in [Bea95] and [DonTu94].

Lemma 6.1. For every F' € Uc(r/h,d/h),
dim H°(SUc(r, (det F)*™), hO, 4)* = dim H(Uc(r,r(g — 1) — d), hOF).

L.e., the two vector spaces in the strange duality conjecture have the same dimension

when k = h.

Proof. Let L € Pic?”'(C), and consider the isomorphism

Uc(r,r(g — 1) —d) = Ue(r,d)
E — E*QL

Now, E € O CUc(r,r(g—1)—d) if and only if H'(E®F) # 0. Since x(F®F) = 0,

this is equivalent to
H(E®QF)*@uwe) ~H(E®F)#0.

Therefore, under the isomorphism above, ©p gets identified with ©p«g, er-1-

Indeed, as we saw above
HY EQF)#0<= H(F*®L)® (F*®wc® L)) #0.

Therefore, since deg(F* @ we @ L™') = —deg F' + tkF(g — 1) = (r(g — 1) — d)/h,
and tk(F* @ we ® L™') = rkF = r/h, we obtain

dim HO(UC(T’,T(Q —1)—d),hOF) = dim HO(UC(T’, d), hOpsgueor-1),

and this is equal to

dim HO(SUc(r, d), hO,.4)

by [DonTu94, Theorem 1]. O
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6.3 IF THE CONJECTURE IS TRUE...

In the case d = 0, we proved in chapter 5 that, for every k£ < g, if s is a positive

£2[2

then there exists a vector bundle E € SU¢(s%,0) satistying

integer such that

HY E®F)#0 YF €Uc(k k(g—1)).

If the strange duality conjecture is true, then a corollary would be that, for every
k < g, the base locus of |k©, o| is non-empty for r = s9 with s as above'.

In the case d = 1, Brivio and Verra’s theorem mentioned in chapter 5 would
imply that for every E € Ux(r, 1) there exists an F' € Us(r,7(g — 1) — 1) such that
HY(E®F)=0.

6.4 WHERE TO GO NEXT

Our main goal is to relate the two parts of this work by using calculations on nodal
curves to prove statements about a general smooth curve. This has already been done
succesfully in many other situations, and we hope to use the techniques developed
in Part I to prove some of the open problems mentioned in Part II.

For example, we would like to prove the following conjecture.

Conjecture. If the base locus of |©, 4| is empty for a curve of genus g, then it is

also empty for a generic curve of any genus > g.

The proof would use an irreducible nodal curve of arithmetic genus g + 1 with
the normalization equal to the curve of genus g with the empty base locus of |O,|.

We would like to show that the base locus for the nodal curve is also empty.

!There is a table at the end of chapter 5 with values of s for small g.
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When d = 0, we would also like to produce more examples of smooth curves
when the base locus of |©,.¢| is non-empty for some r < 29, where g is the genus of

the curve, and find a better upper bound for
ro(g) := min{r € Z* | |0,| is non-empty for all curves of genus g}.

This would give examples of morphisms of SUc(r,0) into projective space. Note
that the conjecture above, together with lemma 5.5 would imply that ry(g) is non-

decreasing as a function of g.



APPENDIX A

DIMENSIONS OF EXTENSION SPACES

Let C be an irreducible projective curve with one node p as singularity, and let N

be its normalization.

Remark. Let F' and G be torsion-free coherent sheaves on C' of rank 1.

(1) If F and G are line bundles on C, then
Ext H(F,G) ~ H(C,we ® F @ G™1).
(2) If F is locally-free and G = 7,G for some line bundle G on N, then
Ext &(F,m.G) ~ H' (N, 7" F ' ® G) ~ Ext \(7*F, G).
(3) If F' = 7, F for some line bundle F on N, and G is locally-free, then
Ext (7 F,G) ~ H' (N, F @ ™G~ @ m*we)*.

To compute the dimension of these cohomology spaces we use the Riemann-Roch

theorem on C or N.

Proof. The isomorphisms follow from the projection formula (see [Har77, ex.
I1.5.1(d)]) and standard results on extension spaces (see [Har77, II1.6.3, II1.6.7,
I11.7.6)). 0

The following lemma gives a formula for the dimensions needed in lemma 1.4.

Lemma A.1. Let L be a line bundle on C, and let F be a torsion-free coherent sheaf

of rank 1 on C' containing O¢. If deg F < deg L, then
dim (ker(Ext L(L, Oc) %5 Ext L(L, F))) = deg F.

90
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Proof. There exists a short exact sequence 0 — O — F' — S — 0, where S is
a skyscreaper sheaf with degree equal to deg F. Consider the long exact sequence

associated to the functor Hom ¢ (L, —):
0—Hom ¢(L, S)—Ext L(L, Oc)L5Ext L(L, F)—Ext L(L, $)—0,

where we started the sequence with Hom ¢ (L, F') which is 0 because deg L > deg F,
and we ended the sequence with Ext 2 (L, O¢) ~ H?(C, L™") which is also 0 because
L~ is locally-free and we are on a curve.

Therefore, the dimension of the kernel of ¢r is the dimension of Hom (L, S),
which is equal to deg F', being S a skyscreaper sheaf of that degree. O

A similar lemma gives the dimension of the kernel of pull-back homomorphisms.

Lemma A.2. Let L be a line bundle on C, and let F' be a torsion-free coherent sheaf

of rank 1 on C' containing O¢. If deg F < deg L, then
dim(ker(Ext L(L, 0c) 5 Ext L(L ® F*, O¢))) = deg F.

Proof. There exists a short exact sequence 0 — L ® F* — L — S — 0, where S
is a skyscreaper sheaf with degree equal to deg F'. Consider the long exact sequence

associated to the functor Hom ¢(—, O¢):
0—Ext 5(S, Oc)—Ext &(L, OC)MExt o(L® F*, Oc)—0,

where the sequence starts with Hom (L ® F*, O¢) = 0 (because deg(L ® F*) > 0),
and ends with Ext 3(S, O¢) = 0.
Therefore, dim(ker ¢p-) equals the dimension of Ext (S, O¢) ~ H°(C, S ® we),
which is equal to deg F', being S ® w¢ a skyscreaper sheaf of that degree. O
The following lemma studies the natural linear homomorphism ¢ that appears

in theorems 2.1, 3.1, and 4.1.
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Lemma A.3. Let ¢: Ext (L, 7.Ox) — Ext (L ® (7,.0y)*, 7.0y) be the natural

pull-back linear homomorphism defined by the inclusion L @ (m,.On)* < L. Then
dim(ker ) = dim(cokery)) =2 and kert ~ Ext ;(C,, m.O).

Proof. Consider the short exact sequence 0 — L ® (m,.Oy)* - L — C, — 0.
Apply the functor Hom ¢(—, 7.Oy), and and consider the long exact sequence of

cohomology:
0—Hom ¢(C,, 7,0y)—Hom ¢ (L, 7.0x)—Hom ¢(L ® (7.0n)", m.On)—
—Ext (C,, m.On)—Ext &(L, W*ON)LExté(L ® (m.On)*, 1.On)—
—Ext 2(C,, m.Oy)—Ext 5(L, 1.0n) —Ext &(L @ (m.On)*, mOn)— - - -

Since deg L ® (m.Op)* > deg 1.0y, we have that Hom ¢(L ® (7.0n)*, m.0On) = 0.
Moreover, Ext %(L, m.Oy) ~ H*(C,L7! ® m.Oy) ~ H*(N,7*L71) is also 0, and

therefore,
ker i) ~ Ext ,(C,, m.Op), cokery =~ Ext %(C,, m.Oy).

To calculate the dimensions of these spaces, start with the short exact sequence
0— O¢ — m0On — C, — 0, and consider the long exact sequence of cohomology

for the functor Hom «(C,, —):
0—Hom ¢(C,, O¢)—Hom ¢(C,, 7.0y)—Hom ¢(C,, C,)—
—Ext ¢.(C,, Oc)—Ext ((C,, m.0n) —Ext &(C,, Cp) —>
—Ext 2(C,, Oc)—Ext &(C,, m.On)—Ext 2(C,, C,)— - - -

As soon as i > 2, we get an isomorphism Ext (C,, m.Oy) ~ Ext . (C,, C,), because
Ext -(C,, O¢) = 0. Moreover, Hom ¢(C,, O¢) = Hom ¢(C,, m.Ox) = 0 because O¢

and 7,0y are torsion-free, and Hom ¢(C,, C,) ~ Ext (C,, O¢) ~ C. Therefore,

Vi>1, Exth(C,,m0Oy)~Exts(C,,C,).



93

The lemma follows from lemma A.4. O

Lemma A.4. Foralli > 1,
dim Ext &(C,, C,) = 2.

Proof. Since the completion of an analytic neighborhood of p is the same as the
completion C[[z,y]]/(zy) of Clx,y]/(zy), it is enough to check this for the curve
Spec (Clz, y]/(zy)), and we shall do this with the help of Macaulay 2.

In the following code, N will be the module corresponding to the quotient of
R = Clz,y]/(xy) by the ideal (x,y). It corresponds to C,, and it is clear from the

output that Ext’(N, N) is two dimensional for every 4.

il : R = QQlx,y] / (xxy)
I ideal (x, y)

M module I

f = map(R~1, M)

N = cokernel f
Ext~1(N,N)

Ext~2(N,N)

Ext~3(N,N)

Ext~4(N,N)

O

We prove here a known result that we need in the proof of theorems 3.1 and 4.1.

Lemma A.5. The secant line joining two smooth points q,q € C C Py, is
P(ker(Ext &(L, O¢)—Ext &(L, Oc(q + ¢')))).

Proof. Let X = P(ker(Ext (L, O¢) — Ext (L, Oc(q + ¢')))). It is enough to
show that ¢,¢' € X and that X is a line. The first statement is obvious since the
natural linear homomorphism Ext (L, O¢) — Ext &(L, Oc(q + ¢')) factors through
Ext &(L, Oc(q)) and Ext ;(L, Oc(q')), respectively. The second statement follows
from lemma A.1. O

The following lemma is needed in the proof of lemma 3.7.

Lemma A.6. (a) The kernel of the natural linear homomorphism

Ext é(L ® (m.On)*, m.ONn)—Ext }J(L ® (m.On)*, m.On(p1 + p2))
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has dimension 4.

(b) For everyl € Ly, the kernels of the natural linear homomorphisms
Ext (L ® (m.0n)*, m.0Nn)—Ext (L ® (1.0x)*, M)

and Ext (L ® (m.0n)*, 1.0xn)—Ext (L @ M, m.0Op)
have dimension 2.

Proof. (a) Consider the short exact sequence
0—m.On—m.On(p1 + p2) —C, & C,—0.

We know from the long exact sequence of cohomology associated to the functor

Hom ¢(L ® (m.On)*, —) that the kernel of
Ext (L ® (71,0x), m.0n)—Ext 5(L @ (7,05)*, 7.On (p1 + p2))
is the image of
Hom ¢(L ® (1.0n)*,C, ® C,)—Ext (L ® (7.0n)*, m.Ox),

and this is equal to the four-dimensional vector space Hom (L ® (m.On)*,C, & C,)
itself because Hom ¢(L @ (7.On)*, m.On(p1 + p2)) is zero for a generic L.

(b) The first part is very similar to part (a). Starting with the short exact
sequence 0 — m,Ony — M; — C, — 0, and considering the long exact sequence
of cohomology associated to the functor Hom (L ® (m.On)*, —), we see that the
kernel of Ext (L& (m.On)*, m.0n) — Ext (LR (m.On)*, M;) is the two-dimensional
vector subspace Hom ¢(L ® (m,.On)*, C,).

For the second part, consider the short exact sequence

0—L® M'—L® (m.0y)"—C,—0.
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The long exact sequence of cohomology associated to the functor Hom o(—, 7,.Ox)

shows that the kernel of
Ext &(L @ (7.0n)", m.0n)—Ext ((L ® M}, 7,0x)

is the two-dimensional subspace Ext &(C,, m.Ox) because Hom ¢(L ® M}, 7.0y ) is
zero for a generic L. O

The following lemma is very important, because we factor certain restrictions of
our rational maps through projective spaces of the form P(Ext (L ® F*, F)), with
F' as in the lemma. The lemma shows that the rational map is defined exactly where

the map to P(Ext (L ® F*, F)) is defined.

Lemma A.7. Let ' be a torsion-free sheaf of rank 1 on C such that O C F,

deg F = 1. Then the natural rational map
P(Ext H(L ® F*, F))—SUc(2, L)

defined by
0—=F—-FE—-LRF" —-0)—FE

is a morphism!, and it is generically injective. Moreover, it is injective for g > 3 if

deg L =4 and for g > 2 if deg L = 3.

Proof. The proof that the rational map is a morphism is an exact copy of the
proof of lemma 2.5 with L ® (7,Op)* and 7.0y replaced by L ® F* and F.

It is clear that the morphism is injective at a point E if h%(C, E) = 1, because
in that case there can be only one way to write E as an extension of L ® F™* by F.
Since x(E) =deg E +2(1 — g) =5 —2g < 1, and we know that h°(C, E) > 1 since
Oc C F C E, it is clear that a generic E € Ext (L ® F*, F) has h°(C, E) = 1.

To prove the last statement, consider the short exact sequence

0—F—FE—L® F"—0,

We are assuming that deg L is 3 or 4.
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and the corresponding long exact sequence
0—H°(C,F)—H°(C,E)—H"(C,L ® F*)— - - -
- —HYC,F)—H"(C,E)—H(C, L ® F*)—0.

Since Y(L® F*) =degL—1+1—g=deg L —gand L is generic, h°(C,L® F*) =0
if g > deg L — 1. In this case, h°(C, E) = h°(C, F) = 1. O



APPENDIX B

ANALYSIS OF EXTENSIONS SPACES ON PRODUCTS OF VARIETIES

Throughout this appendix, C' is an irreducible projective curve with only one node
p as singularity.

If a coherent sheaf on X x (', where X is an irreducible projective variety, is
of the type 7% F ® n5G for some coherent sheaves I’ on X and G on C, we shall
sometimes denote it by F'IXI G. If it is a pull-back of a coherent sheaf F' from one of
the factors, we shall sometimes denote it by F' itself, if it is clear from the context
what is the base space for the sheaf. For example, 7L on Py x C is sometimes

denoted just by L if we are writing an extension on Py x C.

Lemma B.1. Let Y be a smooth projective variety, let Fy [resp. F¢| be a vector
bundle on'Y [resp. C|, and let G be a torsion-free sheaf on C. If H*(C, F5®G) =0,
then
Exty, o (Fo, Fy XG) ~ H(Y, Fy) @ Ext {(F¢, G).
If Y = P(V) for some vector space V', and Fy ~ Opny(1), this is also naturally
1somorphic to
Hom (V, Ext &(Fe, G)).

Proof. Since Fg is locally-free, Ext y-, o(Fo, Fy XG) ~ HY(Y xC, FyR(F5®G)).
By the Kiinneth Formula (see [Kem93, Proposition 9.2.4]), this is isomorphic to
H(Y, Fy)®@ H(C, F},®G) (remember that H°(C, F,®G) = 0), which is isomorphic
to HO(Y, Fy) ® Ext ((F¢, G), as claimed.

IfY =P(V) and Fy >~ Opqy(1), H°(Y, Fy) is canonically isomorphic to V*. O

97
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Remark. The isomorphisms of lemma B.1 can be described as follows:
(1) H°(P(V), Fv) ® Ext {(Fo, G)——Ext by, o(Fo, Fy BG).

If we start with an element of the form s ® a, with s a section Op(y) — Fy and a an
extension 0 — G — E, — Fo — 0, we first pull a back to P(V') x C, and then we
use the section 7z s : 716G — Fy WG to push mg [, forward to get an extension
Eswa in Ext ]%,(V)Xc(FC, Fy X G):

0 —— G —>Ea ’FC 07

’Tﬁ;msl l I

0 — FWXRGE — &Ega —— Fo —— 0

(2)  HB(V), Opry (1)) @ Bxt b(Fe, G)—Hom (V, Ext L(Fe, G)).

An element of the form s®a goes to the linear homomorphism mapping b to' s(b)-a.

(3)  Extpuco(Fo, Opay (1) B G)—Hom (V, Ext ¢(Fc, G)).

An extension a of the form 0 — Opy(1) K G — &, — Fz — 0 goes to the linear
homomorpshim that sends v € V to the extension obtained by restricting a to

{lv]} x C, and identifying (Opy(1) X G)|{jyxc with G using v:
0—G—&|{yxc—Fc—0.

In particular,

Corollary B.2. IfV = Ext (F¢, G), and &y € Extpyy, o (Fo, Op) (1) RG) is the
element that corresponds to the identity in Hom (Ext {(Fe, G), Ext &(Fo, G)), then,
for every non-zero extension a € Ext;(Fg,G), Evl{ayxc 5 a when we identify

OP(V)(l) X G‘{[v]}xc with G using a.

Here is a generalization of lemma B.1.

"Remember that s € HO(P(V), Op(v)(1)) ~ V*.
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Lemma B.3. Let Y be a smooth projective variety, let Fy,Gy be locally-free sheaves
onY, and let Fo, Ge be quasi-coherent sheaves on C. Then, for everyi > 0,
Ext}, o(Fy B Fo, Gy B Ge) ~ @) Ext{(Fy,Gy) ® Ext & (Fe, Ge).
k=i
Proof. The vector space Exti .(Fy X Fgo, Gy X G¢) can be calculated as
EPFH(Y x C) using the spectral sequence EYY(Y x C) = EPF(Y x C), where
EYY Y x C) = HY(Y x C,Extl (Fy W Fo, Gy K Ge)) (see [AltKle70, IV.2.4]).

Moreover
SxthxC(FY & Fc, Gy g Gc) ~ W;F;; X W;GY (29 gxthXC(Wéch, WéGc)

see [Har77, I11.6.7]), and, by lemma B.4, this is (£} ® Gy ) X ExtL(Fe, Ge). There-
Y c

fore, by the Kiinneth formula (see [Kem93, Proposition 9.2.4]),

HP(Y xC, (Fy®@Gy)RExtE(Fe, Ge)) ~ @) H(Y, Fy®Gy)@H' (C, Extl(Fe, Ge)).

j+i=p
Thus, the original spectral sequence EYY(Y x C') = EXT9(Y x () is induced by the

spectral sequence
EY(C) = H'(C, Extl(Fo, Ge)) = Ext §(Fe, Go) = EF(C).
Therefore, since Hi(Y, Fy: ® Gy) ~ Ext?.(Fy, Gy), we obtain an isomorphism

EL(Y x C) ~ € Ext}(Fy,Gy) ® EL(C),
jtk=i
as claimed. OJ

Lemma B.4. For any two quasi-coherent sheaves F' and G on C' and any smooth

projective variety Y,

Eaxtly (TeF,m5G) ~ nnEats(F, G).
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Proof. Let Ry: -+ — Fy, — Fy — Fy — F — 0 be a locally-free resolution of
F on C. Then its pull-back 75 Re: -+ — wpFy — wpFy — niFy — n6F — 0 to

Y x C' is a locally-free resolution of 7/ F'. Since
Extt o (TEF, T5G) = H (Homy (75 Re, TeG))
(see [Har77, I11.6.5]), and, for i > 0,

HOmec(WéFiaWéG) = HomYXC(OYXCﬂTz'G)@WéF’i*

12

TG @me by = 7m6(G© FY)

12

To(Home(Oc, G) ® F')

12

o(Home(F;, G))

because F; is locally-free, then Extl, (75 F, 756G) ~ H! (w5 (Home(R,., G))). Since
o is flat, H' (7l (Home(R., G))) ~ w5 (H (Home(R., G))), and the lemma follows
because Exts(F,G) = H' (Home (R, G)). O

Lemma B.5. If £ is an extension of F by Opn(n) X G on PN x C, then € induces

a rational map PN — P(Ext H(F, G)) given by sections of Opn(n).
Proof. We saw in lemmas B.1 and B.3 that
Ext g, o(F, Opn(n) K G) =~ H'(PY, Opn(n)) @ Ext (F, G).

Let us first assume that £ corresponds to a non-zero element of the form s ® a in
H°(PN, Opn(n))@Ext (F, G). Then the induced rational map will map to the point
[a], and it will send a point z € P to the extension ¢sg,(x) defined by restricting
€ to {x} x C and identifying Opn(n)|z1xc With Oc. Note that it does not matter
which identification we choose, because the extensions we obtain are all multiples of
a, and they give a well-defined element in P(Ext ,(F, G)).

Note that £|(yxc splits if and only if s(z) = 0. Indeed, since € corresponds to

s ® a, it is defined by pushing 7f.a forward via m5ys : Opy MG — Opn(n) X G. If
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s(x) # 0, then the restriction of £ to {z} x C'is a multiple of a, and if s(x) = 0, then

the restriction of £ to {x} x C is the push-forward of a via the zero map G BN G,

which splits. Indeed, the push-forward is (E, ® G)/ ~, where ~ identifies G C E,
with 0, and therefore we obtain F' & G.

Therefore, if £ corresponds to an element of the form s ® a, then the induced

rational map is exactly given by s:

PY — P"={[d]} CP(Extc(F.G))
x — s(x)
In general, if £ corresponds to an element of the form )" s; ® a;, with {ao, ..., an}
a basis of Ext &(F,G) and s, ...,s,, € H(PY, Opn(y), the rational map is given
by:
PY — PExty(F,G))

r = (so(x):- - sp(x)).



APPENDIX C

RESULTS ON MAPS OF PROJECTIVE SPACES

This is probably a well-known result on rational maps between projective spaces

that we need in the proofs of linearity in chapters 3 and ?7?.

Proposition C.1. Let ¢ : P™ — P" be a rational map given by sections of Opm(d)
with no common factor. Let U, be the open set where ¢ is reqular, and let H be a
hyperplane in P™. If H C Uy, then ¢l is also given by sections of O (d) with no

common factor.

Before we prove the proposition, let us point out the importance of the hypothesis
H C Uy. Let ¢ : P — P? be the rational map of degree 2 defined by ¢(zg, x1,22) =
(23, zow1, 22). Tt is not defined only at the point (0,1,0).

If we restrict ¢ to the line L, defined by z; = 0, we get the degree 2 morphism
from L; to itself given by ¢z} (20,0, 22) = (2,0, x3).

On the other hand, if we restrict ¢ to the line Ly defined by zo = 0, which
contains the point (0,1,0), then we get the degree 1 morphism from L, to itself!
given by ¢|(z,=0y (%0, 71,0) = (20, 71,0).

The difference between Ly and L is that when we restrict the rational map to L,
the degree 2 sections that define ¢ all have the common factor xy. When we simplify
the common factor, the degree drops. But the presence of the common factor implies
that the original rational map is not defined on the zero locus of the common factor

in L2.

Note that the rational map restricted to Ly actually extends to the whole line.

102
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Proof (of proposition C.1). Let s, ..., s, € H'(P™, Opm(d)) be such that

¢(x) = (s0(2), - ., (),
and let aq,...,a, € k be such that H has equation agzg + -+ + apx, = 0. We
shall assume that a,, # 0, and identify H with P! by sending (zg,..., %) to
(0, .-+, Tm_1). This is clearly an isomorphism with the inverse sending the point
(0 -+ oy Tm—1) tO (X0, ..oy Tmo1, —(ag/am)T0 — -+ — (Am—1/Cm ) Tim—1)-

Then @|g: P! — P is given by z +— (5o(z), .. .,5,(2)), where, fori = 0,...,n,

_ . ) Um-1
Si(l‘OV")xm—l)_si Loy« -y Tm—1, ———To — " — Tm—1 ) -

m am

Since the s;’s are homogeneous polynomials of degree d in xy,...,x,,, the §;’s are
homogeneous polynomials of degree d in xy, ..., x,,_1. All is left to prove is that the
S;’s do not have a common factor. But this is clear, because if they had a common
factor f, ¢ would not be defined on the non-empty locus {f = 0} C H, contradicting
the fact that H C Us. O

A very similar proof actually proves a stronger statement:

Proposition C.2. Let ¢ : P™ — P" be a rational map given by sections of Opm(d)
with no common factor. Let Uy be the open set where ¢ is reqular, and let L be a
linear subspace in P™ of dimension > 1. If L C Uy, then ¢|L, is given by sections of

Or(d) with no common factor.
As a corollary, we obtain a stronger statement.

Corollary C.3. Let ¢ : P™ — P™ be a rational map given by sections of Opm(d)
with no common factor. Let Uy be the open set where ¢ is reqular, and let L be a
linear subspace of P™. If L contains a line Ly such that Ly C Uy, then ¢|L, is given

by sections of Or(d) with no common factor.

Proof. If ¢|;, were given by sections of Op(d') with d’ < d, then ¢|;, would be

given by sections of Op/(d”) with d” < d' < d, contradicting Proposition C.2. O
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