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In this work, we generalize Bertram’s work on rank two vector bundles on
a smooth irreducible projective curve to an irreducible singular curve C with
only one node as singularity. We resolve the indeterminancy of the rational map
φL : P(Ext 1

C(L,OC))→ SUC(2, L) defined by φL([0→ OC → E → L→ 0]) = E in
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An additional part is on the base locus of the generalized theta divisor Θr on
SUC(r, L) for a smooth curve C. Among our results, we show, using results of Ray-
naud, that the base locus is always non-empty when r ≥ 2g and L = OC .
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Introduction

The moduli spaces of semi-stable vector bundles with trivial determinant on a

smooth curve are one of the links between Mathematics and Physics which has

been studied at the end of the twentieth century and at the beginning of the current

one. There are several formulas about them which are known to the physicists, but

that are still to be proved by mathematicians, and this is the main motivation for

the following work. We want to understand those moduli spaces and their “cousins,”

which would be some similar and related moduli spaces. Also, we want to extend

known constructions to the case of singular curves.

The moduli spaces of semi-stable vector bundles on a smooth curve were con-

structed in the sixties by several people, including Mumford, Narasimhan, Ramanan,

and Seshadri. They are well understood in the case when the genus of the curve is

either 0 or 1, thanks to work of Grothendieck and Atiyah. In the case of a sin-

gular curve, the moduli spaces were constructed in the seventies by Newstead and

Seshadri, together with their natural compactifications using torsion-free sheaves.

The first part of this work deals with a construction of Bertram which uses

extensions of line bundles to study rank-2 vector bundles of fixed determinant on

a smooth curve. We generalize his construction to an irreducible curve C with one

node in the particular case when the degree of the fixed determinant is 3 or 4. The

idea is to look at extensions of L by OC , where L is a generic line bundle of degree

3 or 4, and consider the ‘forgetful’ map which sends an extension to the vector

bundle of rank 2 in the middle, forgetting the extension maps. This gives a rational

map from P(Ext 1
C(L,OC)) to SUC(2, L), a compactification of the moduli space
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SUC(2, L) of semi-stable vector bundles of rank 2 and determinant L. We resolve

the indeterminancy of the map by a sequence of three blow-ups with smooth centers.

A nice aspect of these blow-ups is that there exists at each stage a ‘universal bundle’

which gives the rational map in a natural way.

In the first chapter, we describe the rational map, and we relate coherent sheaves

on the curve to coherent sheaves on its normalization, N , with some extra structure.

The image of the rational map (on its domain of definition) is contained in the

dense open subset SUC(2, L) of SUC(2, L). In the second chapter, we blow-up the

extension space at a point, and we describe the new rational map. The curve is

naturally embedded in P(Ext 1
C(L,OC)), and we blow-up this space at the singular

point of the curve. The image of this map contains all non-trivial extensions of

L⊗(π∗ON )∗ by π∗ON which are push-forwards of extensions from the normalization.

In the third chapter, we blow-up the new space along a line. The image of the new

rational map contains all non-trivial locally-free extensions of L⊗ (π∗ON)∗ by π∗ON

of determinant L. Finally, in the fourth chapter, we blow-up the new space along

the strict transform of the curve. The induced map is a morphism, and the image

contains all non-trivial extensions of L(−q) by OC(q), where q is any smooth point

on the curve.

The second part of this work studies the base locus of the generalized theta

divisor on the moduli space of vector bundles of fixed rank and determinant on a

smooth curve. The generalized theta divisor is any divisor whose associated line

bundle is the unique ample generator of the Picard group of the moduli space.

In the fifth chapter, we give a short survey of the known results, and we prove two

new results. Among our results, we show that, if the degree of the vector bundle is

a multiple of the rank, and the rank is at least 2g, then the base locus is non-empty,

and we give a lower bound for its dimension. Moreover, we show that the base locus

is non-empty for smaller ranks if the curve is a covering of another smooth curve.
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The sixth and final chapter is a report on a conjecture introduced by Donagi and

Tu which generalizes a previous conjecture known to the physicists. The conjecture

expresses a duality between sections of multiples of the generalized theta divisors on

different moduli spaces of vector bundles. After reformulating the conjecture, and

supplying more evidence for it, we show how the conjecture would help in answering

questions about the base locus of the generalized theta divisor.

The appendices contain technical results needed in the first part of this work

that we did not want to include there to make the exposition more readable. The

first appendix studies extension spaces of torsion-free sheaves of rank 1 on a nodal

curve with one node, the second one studies similar extension spaces on the product

of a smooth variety with the curve, and the third one contains a result that we need

to prove the linearity of certain restrictions of our rational maps.



Chapter 1

Getting started

1.1 Background and notation

We extend Bertram’s construction (see [Ber89], [Ber92]) to the case of an irreducible

projective curve with one node, i.e., we use extensions to study the moduli spaces

of (S-equivalence classes1 of) semi-stable2 vector bundles of rank 2. Let

C an irreducible projective curve with one node p as singularity

π : N → C the normalization of C

p1, p2 the two points on N which map to p in C

g ≥ 2 the arithmetic genus of C

L a generic line bundle on C

SUC(2, L) the moduli space of (S-equivalence classes of) semi-stable

vector bundles of rank 2 and determinant L on C

SUC(2, L) the compactification of SUC(2, L) via torsion-free sheaves

(see [Ses82] and [New78])

Ext 1
C(L,OC) the vector space of extensions of L by OC

PL the projectivization of Ext 1
C(L,OC)

〈S〉 the vector subspace of a vector space V corresponding to

a linear subspace S ⊆ P(V )

TxX the tangent space to a variety X at the point x

1Two vector bundles E1 and E2 of rank 2 are S-equivalent if there exists a line bundle
F such that 2 degF = degE1 = degE2, F ⊆ E1 and either F ⊆ E2 or E2/F ⊆ E2.

2A bundle E of rank 2 is semi-stable if 2 deg F ≤ degE for every line subbundle F ⊆ E.

4
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The only exception to the table is that we shall use TpC to denote the projective

tangent plane to the curve at p, which is a 2-dimensional linear subspace of PL,

instead of the tangent plane itself.

Also, we shall abuse the notation at times. For example, a point x in PL corre-

sponds to a line through the origin in Ext 1
C(L,OC). If one extension on such a line

is 0 → OC → Ex → L→ 0, then all the non-trivial extensions on the line have the

middle vector bundle isomorphic to Ex. Therefore, we shall sometimes refer to Ex

as the “extension in Ext 1
C(L,OC) corresponding to x.” In other words, even if there

does not exist a unique extension determined by x, the middle vector bundles in the

extensions corresponding to x are all isomorphic, and we shall refer to any of them

as the “extension corresponding to x.”

Finally, for every extension space Ext 1(G,F ) and every map F → F ′ [resp.

G′ → G], there exists a linear homomorphism Ext 1(G,F ) → Ext 1(G,F ′) [resp.

Ext 1(G,F )→ Ext 1(G′, F )] given by the pull-back

0 −−−→ F −−−→ E −−−→ G −−−→ 0� � ||

0 −−−→ F ′ −−−→ E ′ −−−→ G −−−→ 0

[resp. the push-forward

0 −−−→ F −−−→ E −−−→ G −−−→ 0

||
� �

0 −−−→ F −−−→ E ′ −−−→ G′ −−−→ 0

].

We shall sometimes refer to these linear homomorphisms as “natural linear homo-

morhisms.”

1.2 Description of the rational map

We study the rational map φL : PL → SUC(2, L) defined as follows. Let x ∈ PL.

Then x corresponds to a line through the origin in the vector space Ext 1
C(L,OC).
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Each point on the line corresponds to an extension 0 → OC → E → L → 0 and

all the E’s (except for the one corresponding to the origin) are isomorphic. Define

φL(x) to be the equivalence class of E in SUC(2, L), that we shall denote by E.

Note that Ext 1
C(L,OC) is isomorphic to H0(C,L ⊗ ωC)∗ (see [Har77, III.6.7,

III.7.6]). Therefore, the linear system |L⊗ ωC | defines a rational map

ϕL⊗ωC
: C−→|L⊗ ωC|∗ 
 PL.

Let UL ⊆ PL be the open locus of semi-stable extensions.

Proposition 1.1. (1) If degL < 0, then UL = ∅.

(2) If 0 ≤ degL ≤ 2, then UL = PL.

(3) If 3 ≤ degL ≤ 4, then UL = PL \ ϕL⊗ωC
(C).

Remark. The same is true in the case of a smooth curve (see [Ber92, section 3]).

Proof. (1) If degL < 0, then every extension 0 → OC → E → L → 0 of L by

OC is not semi-stable because OC ⊆ E and degOC = 0 > degL = degE.

(2) This is equivalent to the following statement: If 0 ≤ degL ≤ 2, then every

non-trivial extension of L by OC is semi-stable. Let 0 → OC → E → L → 0 be a

non-trivial extension of L by OC , and suppose that E is not semi-stable. Then there

exists a torsion-free quotient F of E of rank 1 such that 2 degF < degE ≤ 2 3.

Therefore, degF ≤ 0.

Case I: degF < 0. Then the composition OC ↪→ E → F is the zero map, and the

map E → F factors through L. But this is not possible because deg F < 0 ≤ degL

and every map from L to F is zero4.

3This is a standard result about non-semi-stable torsion-free coherent sheaves (see, for
example, [New78]).

4This is clear if F is locally-free, and the same proof holds for a torsion-free sheaf (see
[LeP97, 5.3.3]).
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Case II: degF = 0. Consider the composition OC ↪→ E → F . If this is the zero

map, we obtain a contradiction as in case I. If it is not the zero map, then it has to

be an isomorphism5, and the extension is trivial.

(3) Let 3 ≤ degL ≤ 4, and let 0→ OC → E → L→ 0 be a non-trivial extension

of L by OC . If E is not semi-stable, then there exists a torsion-free quotient F of E

such that 2 degF < degE ≤ 4. Therefore, deg F ≤ 1. An argument similar to that

of part (2) above shows that degF cannot be ≤ 0, and therefore degF = 1. Since

degF < degL, the composition OC ↪→ E → F cannot be the zero map (or E → F

would factor through L), and this implies that OC ↪→ F . If F is locally-free, then

F = OC(q) for some q ∈ C \ {p}. If F is not locally-free, then F = π∗ON 6. The rest

of the proof follows from the following lemma.

Lemma 1.2. (1) If q is a smooth point of C (i.e., q �= p), then

ϕL⊗ωC
(q) = P(ker(Ext 1

C(L,OC)
ψq−→Ext 1

C(L,OC(q)))).

Moreover, ϕL⊗ωC
(p) = P(ker(Ext 1

C(L,OC)
ψp→ Ext 1

C(L, π∗ON ))).

(2) Let 0 → OC → E → L → 0 be a non-trivial extension, and let F be a

torsion-free sheaf with degF < degL. If there exists a surjective map E → F ,

then E ∈ ker(Ext 1
C(L,OC)

ψF→ Ext 1
C(L, F )). The converse is true if OC ⊆ F and

E �∈ kerψG for every torsion-free sheaf G such that OC ⊆ G � F .

Remark. The linear homomorphisms ψq, ψp, and ψF are the natural push-forward

maps defined by the inclusions of OC into OC(q), π∗ON , and F , respectively.

5Since the image is a subsheaf of the torsion-free sheaf F , if the map is non-zero, then
the image has rank 1 and degree ≤ degOC = 0; since this is also the degree of F , the map
is surjective. It is clearly also injective, since OC is torsion-free.

6A torsion-free non-locally-free coherent sheaf F of rank 1 on C is of the form π∗F
for some line bundle F on N (see [Ses82, VII.2, VII.10]). In our case, since degF = 1,
degF = 0, and OC ↪→ F implies that ON = π∗OC ↪→ F . Therefore, F = ON .
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Proof. (1) If q �= p, then ϕL⊗ωC
(q) is the hyperplane H0(C,L ⊗ ωC(−q)) in

H0(C,L⊗ ωC). In particular, it corresponds to the kernel of the dual linear homo-

morphism H0(C,L⊗ωC)∗ → H0(C,L⊗ωC(−q))∗. This homomorphism is the natural

linear homomorphism ψq when we identify Ext 1
C(L,OC) [resp. Ext 1

C(L,OC(q))] with

H0(C,L⊗ ωC)∗ [resp. H0(C,L⊗ ωC(−q))∗].

If q = p, then ϕL⊗ωC
(p) is the hyperplane ofH0(C,L⊗ωC) defined by the sections

vanishing at p. Since the sheaf generated by the regular functions which vanish at

p is the sheaf π∗(ON(−p1 − p2)) and its dual is π∗ON , ϕL⊗ωC
(p) corresponds to the

kernel of the linear homomorphism H1(C,L−1) → H1(C,L−1 ⊗ π∗ON), where we

identified H0(C,L⊗ωC)∗ with H1(C,L−1) (see [Har77,III.7.7]). If G is any coherent

sheaf, we can identify Ext 1
C(L,G) with H1(C,L−1⊗G) using [Har77, III.6.3, III.6.7],

and the linear homomorphism above becomes ψp as claimed.

(2) Let f be the surjective map E → F , and consider its composition with the

inclusion OC ↪→ E. This is a non-zero map OC ↪→ F . Otherwise, E → F would

factor through L and this is not possible because degF < degL and F is torsion-

free. Then we have a commutative diagram

0 −−−→ OC −−−→ E −−−→ L −−−→ 0� � ||

0 −−−→ F −−−→ ψF (E) −−−→ L −−−→ 0

,

and we need to prove that ψF (E) splits. The surjective map (−f + id) : E⊕F → F

contains OC in its kernel, and therefore it induces a surjective map from the quotient

ψF (E) = (E ⊕ F )/OC to F . This surjective map, composed with the inclusion

F ↪→ ψF (E) gives the identity on F , proving that ψF (E) is the trivial extension.

For the converse, assume that OC ⊆ F , E ∈ kerψF , and E �∈ kerψG for every

OC ⊆ G � F . Then there exists a commutative diagram

0 −−−→ OC −−−→ E −−−→ L −−−→ 0� � ||

0 −−−→ F −−−→ F ⊕ L −−−→ L −−−→ 0

.
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The composition E → F ⊕L→ F , where the second map is the projection onto the

first factor, must be surjective. Otherwise, its image would be a torsion-free sheaf G

such that OC ⊆ G � F . Indeed, OC is contained in the image because the composite

map OC ↪→ E ↪→ F ⊕ L→ F is non-zero.

From now on, we shall restrict ourselves to the first non-trivial case, i.e., when

degL is either 3 or 4.

Lemma 1.3. If degL ≥ 3, then ϕL⊗ωC
is an embedding.

Remark. Since ϕL⊗ωC
is an isomorphism onto its image, we shall identify C with

ϕL⊗ωC
(C) ⊆ PL.

Proof. By [Bar87, 3.14-3.18], we need to prove that, for every q, q′ ∈ C not both

equal to p,

H1(C,L⊗ ωC ⊗ Iq ⊗ Iq′) = H1(C,L⊗ ωC) = 0,

where Iq [resp. Iq′ ] is the ideal sheaf of the point q [resp. q′] 7, and that8

H1(C,L⊗ ωC ⊗ I2
p ) = H1(C,L⊗ ωC) = 0.

Case I: q, q′ �= p. Then, by Serre duality,

H1(C,L⊗ ωC ⊗ Iq ⊗ Iq′) 
 H0(C,L−1(q + q′))∗,

which is zero because deg(L−1(q + q′)) < 0.

Case II: q �= p and q′ = p. Since π∗ωC 
 ωN(p1 + p2) (see [Bar87, 3.7]), using the

projection formula we obtain ωC ⊗ Ip 
 π∗ωN , and

L⊗ ωC ⊗ Iq ⊗ Ip 
 L(−q)⊗ π∗ωN 
 π∗(π∗(L(−q))⊗ ωN).

7If q �= p, then Iq = OC(−q). If q = p, then Ip = π∗(ON (−p1 − p2)).
8The case of I2

p is a little different because I2
q = Iq ⊗ Iq for a smooth point q, but

I2
p �= Ip ⊗ Ip for the node p. We have that I2

p = π∗ωN (−2p1 − 2p2), and it is equal to
(Ip ⊗ Ip)/Tors .
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Therefore,

H1(C,L⊗ ωC ⊗ Iq ⊗ Iq′) 
 H1(N, π∗(L(−q))⊗ ωN) 
 H0(N, π∗(L−1(q)))∗

(see [Har77, Ex. III.4.1]), which is zero because deg(π∗(L−1(q))) < 0.

Case III: q = q′ = p. Then ωC ⊗ I2
p 
 π∗(ωN(−p1 − p2)) and

L⊗ ωC ⊗ I2
p 
 π∗(π∗L⊗ ωN(−p1 − p2)).

Therefore,

H1(C,L⊗ ωC ⊗ I2
p ) 
 H1(N, π∗L⊗ ωN(−p1 − p2)) 
 H0(N, π∗L−1(p1 + p2))

∗,

which is zero because deg(π∗L−1(p1 + p2)) < 0.

Remark. Lemma 1.2 shows that a smooth point q ∈ C ⊆ PL is the point

P(ker(Ext 1
C(L,OC)

ψq→ Ext 1
C(L,OC(q)))) and the singular point p is the point

P(ker(Ext 1
C(L,OC)

ψp→ Ext 1
C(L, π∗ON ))).

Lemma 1.4. The projective tangent plane to C at p is

TpC = P(ker(Ext 1
C(L,OC)

ψ1,2−→Ext 1
C(L, π∗(ON (p1 + p2))))).

Proof. It is easy to see that all the kernels involved in this proof have the right

dimension (for a formal proof, see lemma A.1). The line between the singular point

p and a smooth point q is given by P(ker(Ext 1
C(L,OC)→ Ext 1

C(L, π∗ON(q)))), this

being a 1-dimensional linear subspace of PL which contains both p and q. If we take

the limit as p �→ q along the branch corresponding to pi (i = 1, 2), we see that the

projective tangent line at p to that branch is

Xpi
:= P(ker(Ext 1

C(L,OC)−→Ext 1
C(L, π∗(ON (pi))))) (i = 1, 2).

Since P(ker(ψ1,2)) is a 2-dimensional linear subspace of PL which contains both Xp1

and Xp2, it is the projective tangent plane TpC to C at p.
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We end this section with an important way to describe the rational map φL
9.

Proposition 1.5. There exists a locally-free sheaf EL on PL × C such that

EL|{x}×C 
 φL(x)

for every x ∈ PL \ C. Moreover, EL is an extension in Ext 1
�L×C(L,O�L

(1)), and for

every a �= 0 in Ext 1
C(L,OC), if we identify π∗

�L
O�L

(1))|{[a]}×C with OC using a, EL

restricts on {[a]} × C to the extension a itself.

Proof. The vector space of extensions Ext 1
�L×C(L,O�L

(1)) is isomorphic to

Hom(Ext 1
C(L,OC),Ext 1

C(L,OC)) by lemma B.1. Let EL be the extension cor-

responding to the identity homomorphism. Then, if a �= 0 is an extension

0→ OC → Ea → L→ 0, EL|{[a]}×C is Ea by corollary B.2.

1.3 Relating sheaves on C to sheaves on N

p1

p2

� p

N C

Every extension 0→ OC → E → L→ 0 of L by OC pulls-back to an extension

0 → ON → π∗E → π∗L → 0 of π∗L by ON on N , because L is locally-free.

Therefore, if we denote by L the line bundle π∗L on N , there exists a natural map

π∗ : Ext 1
C(L,OC)→ Ext 1

N (L,ON).

Lemma 1.6. If we identify Ext 1
N(L,ON) with Ext 1

C(L, π∗ON ) via the projection

formula, the map π∗ : Ext 1
C(L,OC)→ Ext 1

N(L,ON) is the natural linear homomor-

phism ψp : Ext 1
C(L,OC)→ Ext 1

C(L, π∗ON).

9In the proposition, Ext 1
�L×C(L,O�L

(1)) actually denotes Ext 1
�L×C(π∗CL, π

∗
�L
O�L

(1)).
For an explanation of the notation, see appendix B.
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Proof. Note that π∗ is linear. Indeed, the diagrams which define the operations on

Ext 1
C(L,OC) pull-back to the diagrams which define the operations on Ext 1

N(L,ON)

for the corresponding images. Hence, since10 the dimension of Ext 1
C(L,OC) is equal

to g−1+degL, which is equal to dim Ext 1
N(L,ON)+1, it is enough to show that π∗

has the same kernel as ψp. Since both kernels are 1-dimensional, it suffices to show

that kerψp is contained in ker π∗.

We saw in lemma 1.2 that if an extension 0 → OC → E → L → 0 is in

the kernel of ψp, then E has π∗ON as quotient, and therefore π∗E has quotient

ON = (π∗(π∗ON ))/Tors . Since 0→ OC → E → L→ 0 is in the kernel of π∗ if and

only if π∗E has ON as quotient, the two kernels are the same.

Remark. The linear homomorphism π∗ : Ext 1
C(L,OC) → Ext 1

N(L,ON) gives a

rational map π∗ : PL → PL, where PL is P(Ext 1
N(L,ON)). This map is just the

projection from p.

The following lemma describes the fibers of π∗. For every vector bundle G of

rank r on N and for every r-dimensional subspace F (G) of G|p1 ⊕ G|p2 , define a

torsion-free sheaf G on C by

G := ker(π∗G−→((G|p1 ⊕ G|p2)/F (G))).

Bhosle shows in [Bho92] that the correspondence (G, F (G)) �→ G is one-to-one if

G is locally-free. I.e., if G is locally-free, then there exists a unique pair (G, F (G))

which satisfies the equality above. In such a case, G = π∗G.

Lemma 1.7. Let 0 → ON → E → L → 0 be a non-trivial extension of L by ON ,

and let F (E) be a 2-dimensional vector subspace of E|p1 ⊕ E|p2. Then the torsion-

free sheaf E := ker(π∗E → (E|p1 ⊕ E|p2)/F (E)) is in Ext 1
C(L,OC) if and only if

F (E)∩ (ON |p1 ⊕ON |p2) = F (OC) and the image of F (E) under the homomorphism

10For calculations of dimensions of extension spaces, see appendix A.
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E|p1 ⊕E|p2−→L|p1 ⊕L|p2 is contained in F (L). There is a P1 \ {pt} of such F (E)’s,

and the corresponding E’s are all the non-trivial extensions of L by OC such that

π∗E = E .

Proof. We need to find, for a fixed E ∈ Ext 1
N(L,ON), which F (E) give a com-

mutative diagram as the following.

0 0 0� � �
0 −−−→ OC −−−→ π∗ON −−−→

ON |p1 ⊕ON |p2
F (OC)

−−−→ 0� � �
0 −−−→ E −−−→ π∗E −−−→ E|p1 ⊕ E|p2

F (E)
−−−→ 0� � �

0 −−−→ L −−−→ π∗L −−−→ L|p1 ⊕L|p2
F (L)

−−−→ 0� � �
0 0 0

First of all, we need F (E)∩ (ON |p1 ⊕ON |p2) = F (OC) for OC to be contained in E.

Secondly, we want the bottom map in the following diagram to be well-defined:

E|p1 ⊕ E|p2
f−−−→ L|p1 ⊕L|p2� �

E|p1 ⊕ E|p2
F (E)

−−−→ L|p1 ⊕L|p2
F (L)

i.e., we need F (E) ⊆ f−1(F (L)).

In the projective space P(E|p1 ⊕ E|p2) 
 P3, such F (E)’s correspond to the lines

contained in the plane corresponding to f−1(F (L)) which pass through the point

corresponding to F (OC), except for the line corresponding to ON |p1⊕ON |p2. There-

fore, the F (E)’s that give an extension of L by OC for a fixed E are parametrized

by P1 \ {pt}.
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Since the rational map π∗ : PL → PL is the projection from p, if we blow-up PL

at p, we obtain a well-defined morphism PL,1 := BLpPL → PL.

p �

� �PL

PL,1 E1

PL

Under this morphism, the exceptional divisor E1 maps isomorphically onto PL.

This isomorphism corresponds to the isomorphism Ext 1
C(L, π∗ON ) 
 Ext 1

N(L,ON)

given by the projection formula. The preimage of a vector bundle E ∈ PL in PL,1 is

given by the E’s corresponding to the tuples (E , F (E)) described in the lemma, plus

a point in E1 corresponding to the only extension 0 → π∗ON → E → L → 0 of L

by π∗ON such that π∗E/Tors = E .



Chapter 2

The first blow-up

2.1 The first blow-up

Since the indeterminancy locus of the rational map φL : PL → SUC(2, L) is the curve

C ⊆ PL, to resolve the indeterminancy via a sequence of blow-ups with smooth

centers, we need to begin the process with the blow-up of PL at the singular point p

of C. By lemma 1.2, p is P(ker(ψp)), where ψp is the natural linear homomorphism

Ext 1
C(L,OC)→ Ext 1

C(L, π∗ON). Therefore, the exceptional divisor E1 of

PL,1 := BLpPL
ε1−→PL

is canonically isomorphic to P(Ext 1
C(L, π∗ON )) because we have the canonical iso-

morphisms

E1 
 P(N{p}/�L
) and N{p}/�L


 TpPL 

Ext 1

C(L,OC)

kerψp

 Ext 1

C(L, π∗ON ).

We saw in section 1.3 that there is a morphism PL,1 → PL which extends the

rational map π∗ : PL → PL, and that E1 maps isomorphically onto PL.

Theorem 2.1. (a) The composition φL ◦ε1 : PL,1−→SUC(2, L) extends to a rational

map φL,1 defined as follows: The image of a point x ∈ E1 corresponding to an

extension Ex in Ext 1
N(L,ON) is the torsion-free sheaf

Ex := ker(π∗Ex−→(E|p1 ⊕ E|p2)/(ON |p1 ⊕ON |p2)).

If E ′
x is the extension in Ext 1

C(L, π∗ON ) corresponding to x, then E ′
x maps to Ex

under the natural homomorphism Ext 1
C(L, π∗ON)

ψ−→Ext 1
C(L⊗ (π∗ON)∗, π∗ON ).

15
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(b) The indeterminancy locus of the rational map φL,1 : PL,1 → SUC(2, L) is the

union of the strict transform C̃1 of C and the line1

L1 := P(ker(Ext 1
C(L, π∗ON)

ψ−→Ext 1
C(L⊗ (π∗ON )∗, π∗ON))) ⊆ E1.

C̃1

L1

E1

We shall delay the proof of theorem 2.1 to the next section. Let us now understand

the situation better. The strict transform C̃1 of C is isomorphic to N and intersects

E1 at the two points p1, p2 lying on p. The following lemma describes L1.

Lemma 2.2. The points on L1 correspond to the directions in TpC, the projective

tangent plane to C at p. In particular, L1 is the line through p1 and p2 in E1.

Proof. It suffices to show that L1 contains p1 and p2. Let us show first that

pi = P(ker(Ext 1
C(L, π∗ON )

ψi−→Ext 1
C(L, π∗ON (pi)))) ⊆ P(Ext 1

C(L, π∗ON)) 
 E1 for

i = 1, 2. We already saw in the proof of lemma 1.4 that the projective line tangent

at p to the branch corresponding to pi is

Xpi
= P(ker(Ext 1

C(L,OC)→ Ext 1
C(L, π∗(ON (pi)))))

for i = 1, 2. Therefore,

〈pi〉 

〈Xpi
〉

〈p〉 

ker(Ext 1

C(L,OC)→ Ext 1
C(L, π∗(ON(pi))))

ker(Ext 1
C(L,OC)→ Ext 1

C(L, π∗ON ))

is equal to kerψi for i = 1, 2, as claimed.

1See lemma A.3 for a proof that dim(kerψ) = 2.
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To prove that p1, p2 ∈ L1, we need to show that kerψi ⊆ kerψ for i = 1, 2. By

the proof of lemma 1.2, a non-trivial extension E in Ext 1
C(L, π∗ON) is in the kernel

of ψi if and only if there exists a surjective map E → π∗ON (pi). Then there exists a

commutative diagram

0 0� �
L⊗ (π∗ON )∗ = L⊗ (π∗ON)∗� �

0 −−−→ π∗ON −−−→ E −−−→ L −−−→ 0

||
� �

0 −−−→ π∗ON −−−→ π∗ON (pi) −−−→ Cp −−−→ 0� �
0 0

.

Since L ⊗ (π∗ON )∗ ⊆ E, the extension is also in the kernel of ψ, i.e., there exists a

commutative diagram

0 −−−→ π∗ON −−−→ E −−−→ L −−−→ 0

||
� �

0 −−−→ π∗ON −−−→ π∗ON ⊕ (L⊗ (π∗ON)∗) −−−→ L⊗ (π∗ON )∗ −−−→ 0

.

To understand the image of φL,1|E1, it is important to understand the image of

the natural linear homomorphism ψ.

Lemma 2.3. There exists a commutative diagram

Ext 1
N(L,ON)

�−−−→ Ext 1
C(L, π∗ON)� �ψ

Ext 1
N(L(−p1 − p2),ON)

π∗−−−→ Ext 1
C(L⊗ (π∗ON)∗, π∗ON )

, (2.1)

the linear homomorphism π∗ is an isomorphism onto its image, and

Imψ 
 Ext 1
N(L(−p1 − p2),ON).
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Proof. There is a natural commutative diagram

Ext 1
N(L,ON)

π∗−−−→ Ext 1
C(π∗L, π∗ON )� �

Ext 1
N(L(−p1 − p2),ON)

π∗−−−→ Ext 1
C(L⊗ (π∗ON )∗, π∗ON)

,

where the vertical homomorphisms are pull-backs via the inclusions L(−p1−p2) ↪→ L

and L⊗ (π∗ON)∗ = π∗(L(−p1 − p2)) ↪→ π∗L, respectively. Since the vertical homo-

morphism on the right factors through Ext 1
C(L, π∗ON), to prove that (2.1) is commu-

tative, it is enough to show that the isomorphism Ext 1
N (L,ON)

�→ Ext 1
C(L, π∗ON)

factors through Ext 1
C(π∗L, π∗ON ).

Consider an extension 0 → ON → E → L → 0 of L by ON . Its image in

Ext 1
C(L, π∗ON ) is the only extension 0→ π∗ON → E → L→ 0 of L by π∗ON such

that E = π∗E/Tors . There exists a commutative diagram

0 0� �
π∗ON = π∗ON� �

0 −−−→ E −−−→ π∗E −−−→ Cp −−−→ 0� � ||

0 −−−→ L −−−→ π∗L −−−→ (L|p1 ⊕L|p2)/F (L) −−−→ 0� �
0 0

,

and it is clear that E is the pull-back of π∗E via the inclusion L ↪→ π∗L.

Since Ext 1
N(L,ON) → Ext 1

N (L(−p1 − p2),ON) is surjective2, the fact that

π∗ : Ext 1
N(L(−p1 − p2),ON ) → Ext 1

C(L ⊗ (π∗ON)∗, π∗ON ) is an isomorphism onto

its image follows from its injectivity, and dim Ext 1
N(L(−p1 − p2),ON) = dim Im π∗.

Indeed, Im π∗ = Imψ, and3 dim Im π∗ = dim Imψ = dim Ext 1
C(L, π∗ON)− 2, which

is equal to dim Ext 1
N(L(−p1 − p2),ON) = dim Ext 1

N (L,ON)− 2.

2Because Ext 2
N (Cp1 ⊕ Cp2,ON ) is zero, being N a smooth curve.

3For the calculations of the dimensions of these extension spaces, see appendix A.
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Corollary 2.4. The image φL,1(PL,1 \ (L1 ∪ C̃1)) of φL,1 in SUC(2, L) is given by

φL(PL \ C) ∪ {E ∈ SUC(2, L) | E = π∗E for some E ∈ Ext 1
N (L(−p1 − p2),ON )}.

2.2 Proof of theorem 2.1

To prove theorem 2.1, we need the following result.

Lemma 2.5. All non-trivial extensions

0−→π∗ON−→E−→L⊗ (π∗ON)∗−→0

in Ext 1
C(L⊗ (π∗ON)∗, π∗ON ) are semi-stable.

Proof. Assume that E is not semi-stable. Then there exists a torsion-free quotient

F of E of rank 1 and degree ≤ 1 (see [LeP97, section 5.3]). Consider the composite

map π∗ON ↪→ E → F . If it is the zero-map, then the morphism E → F factors

through L⊗ (π∗ON)∗, and this is not possible since deg(L⊗ (π∗ON )∗) > 1 ≥ degF .

If it is not the zero-map, then it is an inclusion because π∗ON is torsion-free, and this

implies that degF = 1 and F 
 π∗ON . But this can happen only if the extension

we started with is trivial.

Corollary 2.6. The natural map P(Ext 1
C(L⊗(π∗ON )∗, π∗ON))→ SUC(2, L) defined

by (0→ π∗ON → E → L⊗ (π∗ON)∗ → 0) �→ E is a morphism.

Remark. Since this morphism is always generically injective and injective for

g > 3 (or g > 2 for degL = 3) by lemma A.7, we shall usually think of

P(Ext 1
C(L ⊗ (π∗ON )∗, π∗ON)) as contained in SUC(2, L), i.e., if we say that a

map to SUC(2, L) is given by a map to P(Ext 1
C(L ⊗ (π∗ON)∗, π∗ON)), we are

actually talking about the composition with the morphism in the corollary. For our

purposes, the fact that for g = 2 or 3 there might be a locus where this morphism

is not injective is irrelevant, as it is irrelevant that there is a locus where φL is not
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injective. This shall become an issue when we study the fibers of the rational map,

which is not done in this work.

Proof (of theorem 2.1). Let us start with the geometric idea of the proof. We

already saw in section 1.3 that the space PL \ {p} is isomorphic to the space of pairs

(E , F (E)), with E ∈ PL and F (E) satisfying the conditions in lemma 1.7, and the

image of an extension 0 → OC → E → L → 0 corresponding to a pair (E , F (E))

via φL is exactly E = ker(π∗E → (E|p1 ⊕E|p2)/F (E)). A line through the point p in

PL corresponds to all such pairs for a fixed E .

Let x ∈ E1. It is clear from lemma 1.7 that, if φL,1(x) exists, then

φL,1(x) = Ex := ker(π∗E−→(E|p1 ⊕ E|p2)/(ON |p1 ⊕ON |p2)),

since ON |p1 ⊕ON |p2 is the natural limit of the planes F (E)’s for any fixed Ex. The

commutative diagram in the proof of lemma 1.7 changes into

0 0� �
π∗ON = π∗ON� �

0 −−−→ Ex −−−→ π∗Ex −−−→
E|p1 ⊕ E|p2
ON |p1 ⊕ON |p2

−−−→ 0� � ||

0 −−−→ π∗(L(−p1 − p2)) −−−→ π∗L −−−→ L|p1 ⊕L|p2 −−−→ 0� �
0 0

, (2.2)

showing that Ex is the image under ψ of the extension in Ext 1
C(L, π∗ON) corre-

sponding to Ex 4.

We saw in proposition 1.5 that there exists a locally-free sheaf EL on PL×C such

that EL|{x}×C 
 φL(x) for every x ∈ PL \ C. Let EL,1 be the torsion-free sheaf on

4Note that π∗(L(−p1 − p2)) 
 π∗(π∗L⊗ON (−p1 − p2)) 
 L⊗ (π∗ON )∗.
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PL,1 × C defined by5

EL,1 := ker((ε1, 1)∗EL−→OE1 � π∗ON ),

Note that the map is surjective because EL|{p}×C is isomorphic to P(kerψp), which

surjects onto π∗ON by lemma 1.2. Moreover, the sheaf OE1 � π∗ON is supported

on E1 × C, and so EL,1 defines the same map as EL on PL,1 \ E1 = PL \ {p}, i.e.,

EL,1|{x}×C 
 EL|{ε1(x)}×C for every x ∈ PL,1 \ E1.

If x ∈ E1, we have an exact sequence EL,1|{x}×C → (ε1, 1)∗EL|{x}×C → π∗ON → 0,

which completes to an exact sequence 0→ T → EL,1|{x}×C → EL|{p}×C → π∗ON → 0

on C, where T is the torsion sheaf T or�L,1×C
1 (OE1 � π∗ON ,O{x}×C), that we shall

show in section 2.3 to be isomorphic to π∗ON . Since EL|{p}×C fits in the commutative

diagram

0 0� �
L⊗ (π∗ON)∗ = L⊗ (π∗ON )∗� �

0 −−−→ OC −−−→ EL|{p}×C −−−→ L −−−→ 0

||
� �

0 −−−→ OC −−−→ π∗ON −−−→ Cp −−−→ 0� �
0 0

,

the kernel of EL|{p}×C → π∗ON is L ⊗ (π∗ON)∗, and EL,1|{x}×C is an extension of

L⊗ (π∗ON)∗ by π∗ON .

Therefore, by lemma 2.5, EL,1|{x}×C is semi-stable if and only if it does not split

as such extension. To conclude the proof of the theorem, we need to show that

EL,1|{x}×C (with x ∈ E1) is the trivial extension π∗ON ⊕ (L⊗ (π∗ON )∗) if and only if

5For the notation for torsion-free sheaves on the product of a variety with C, see
appendix B.
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x ∈ L1. We shall actually prove in proposition 2.9 that EL,1|E1×C induces the rational

map φL,1|E1 . In particular, EL,1|{x}×C 
 Ex for every x ∈ E1. Remember that Ex fits

in the diagram (2.2). It is not semi-stable if and only if π∗L(−p1− p2) ⊆ Ex ⊆ π∗Ex,

i.e.6, L(−p1 − p2) ⊆ Ex. Since Ex does not split, and so L �⊆ Ex, there are only three

possibilities:

0 −−−→ L(−p1 − p2) −−−→ Ex −−−→ ON(p1 + p2) −−−→ 0

0 −−−→ L(−p1) −−−→ Ex −−−→ ON (p1) −−−→ 0

0 −−−→ L(−p2) −−−→ Ex −−−→ ON (p2) −−−→ 0

,

and we know from Bertram’s work7 in [Ber89] and [Ber92] that the extensions in

Ext 1
N(L,ON) of this kind are exactly the ones on the secant line joining p1 and p2,

which is L1 under the identification E1 
 P(Ext 1
N (L,ON)).

2.3 Description of EL,1

In this section, we shall analyze EL,1 in more depth. We shall show that it is, in

some sense, “canonical,” by relating it to other universal sheaves, and we shall try

to understand in more depth what sheaf it is by putting it into exact sequences. The

main goal is to introduce the tools needed for the proof of proposition 2.9, that we

shall prove in the next section, stating that EL,1 induces the rational map φL,1.

Let us start by analyzing EL,1. We know that EL fits into an exact sequence8

0−→O�L
(1)−→EL−→L−→0

6If L(−p1−p2) ⊆ Ex, then π∗L(−p1−p2) maps to zero into (E|p1⊕E|p2)/(ON |p1⊕ON |p2)
which is isomorphic to L|p1 ⊕ L|p2 , and so it is contained in Ex.

7This result is identical to lemma A.5.
8For the notation for torsion-free sheaves on the product of a variety with C, see

appendix B.
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on PL×C, and we want to put EL,1 into a similar exact sequence on PL,1×C. Using

the definition of EL,1, we obtain the following commutative diagram on PL,1 × C:

0

↓

EL,1
↓ ↘ f1

0−→ε∗1O�L
(1) −→ (ε1, 1)∗EL −→ L−→0

↘ g1 ↓

OE1 � π∗ON
↓

0

Let us compute the image of g1. First of all, since the support of OE1 � π∗ON

is E1 × C, the support of Im g1 is contained in it. This means that we have the

following commutative diagram on E1×C, where the first row is exact because π∗
CL

is locally-free, and therefore T or�L,1×C
1 (π∗

CL,OE1×C) = 0:

0 −−−→ OE1×C −−−→ EL|{p}×C� �
0 −−−→ Im g1 −−−→ π∗ON� �

0 0

Since the map from OE1×C to π∗
Cπ∗ON is injective9, the map from OE1×C to Im g1

is both injective and surjective, i.e., Im g1 
 OE1×C .

9This is clear since it is not the zero map, and the sheaves OE1×C and π∗Cπ∗ON do not
contain torsion.
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This gives us a commutative diagram on PL,1 × C
0 0 0� � �

0 −−−→ A1 −−−→ EL,1 −−−→ B1 −−−→ 0� � �
0 −−−→ ε∗1O�L

(1) −−−→ (ε1, 1)∗EL −−−→ L −−−→ 0� � �
0 −−−→ OE1×C −−−→ OE1 � π∗ON −−−→ OE1×{p} −−−→ 0� � �

0 0 0

, (2.3)

where A1, EL,1, and B1 are defined by the exactness of the vertical exact sequences.

In particular, A1 
 π∗
�L,1

(ε∗1O�L
(1)⊗O�L,1

(−E1)).

This shows that EL,1 fits in the exact sequence

0−→ε∗1O�L
(1)⊗O�L,1

(−E1)−→EL,1−→B1−→0

on PL,1 × C, which restricts to the exact sequence

0−→OE1(1)−→EL,1|E1×C−→B1|E1×C−→0

on E1 × C. The restriction stays exact because OE1(1) is locally-free, and the map

OE1(1) → EL,1|E1×C is generically injective. Therefore, the image of any T or sheaf

which would appear on the left is 0.

Remark. We shall use this fact several times when restricting diagrams or short

exact sequences. When no comments are made about a sequence staying exact after

a restriction, the reason shall be the same as here, i.e., the first sheaf is locally-free,

and the first map is generically injective.

Lemma 2.7. There exists a short exact sequence

0−→OE1(1) � π∗ON−→EL,1|E1×C−→L⊗ (π∗ON)∗−→0

on E1 × C.
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In the proof, we shall need the following result.

Lemma 2.8. There are isomorphisms

T or�L,1×C
1 (OE1×C ,OE1×C) 
 π∗

E1
OE1(1),

T or�L,1×C
1 (OE1×{p},OE1×C) 
 OE1(1) � Cp,

T or�L,1×C
1 (OE1 � π∗ON ,OE1×C) 
 OE1(1) � π∗ON .

Proof. Consider the short exact sequence 0→ O�L,1
(−E1) → O�L,1

→ OE1 → 0

on PL,1 and its pull-back to PL,1×C. If we restrict it to E1×C [resp. E1×{p}], we

obtain the following exact sequence:

0−→T or�L,1×C
1 (OE1×C ,OE1×C)−→OE1(1)

0−→OE1×C
�−→OE1×C−→0,

[resp. 0−→T or�L,1×C
1 (OE1×{p},OE1×C)−→OE1(1) � Cp

0−→OE1×{p}
�−→OE1×{p}−→0],

which proves the first two isomorphisms. The third one follows from the first two

and the short exact sequence 0→ OE1×C → OE1 � π∗ON → OE1×{p} → 0.

Proof (of lemma 2.7). If we restrict the diagram (2.3) to E1 × C, we obtain10

0 0 0� � �
0 −−−→ OE1(1) −−−→ OE1(1) � π∗ON −−−→ OE1×{p}(1) −−−→ 0

�
� � �

0 −−−→ OE1(1) −−−→ EL,1|E1×C −−−→ B1|E1×C −−−→ 0

0

� � �
0 −−−→ OE1×C −−−→ π∗

CEL|{p}×C −−−→ L −−−→ 0

�
� � �

0 −−−→ OE1×C −−−→ π∗ON −−−→ OE1×{p} −−−→ 0� � �
0 0 0

.

10For the first row, see lemma 2.8.



26

It follows from the commutativity of the diagram that

ker(π∗
CEL|{p}×C−→π∗

C(π∗ON)) 
 ker(π∗
CL−→OE1×{p}) 
 π∗

C(L⊗ (π∗ON )),

which implies our statement.

2.4 Relation between EL,1 and φL,1

We shall prove in this section the following result.

Proposition 2.9. The sheaf EL,1 on PL,1 × C induces the rational map φL,1.

Let E ′ be the universal sheaf on P(Ext 1
C(L, π∗ON ))×C 
 E1×C corresponding

to the identity under the isomorphism

Ext 1
E1×C(L,OE1(1) � π∗ON ) 
 Hom (Ext 1

C(L, π∗ON),Ext 1
C(L, π∗ON))

described in lemma B.1 and its following remark. In particular, E ′|{x}×C 
 E ′
x for

every x ∈ E1, where E ′
x is the torsion-free sheaf which corresponds to the extension

x. The main step in the proof of proposition 2.9 is that E ′ maps to EL,1|E1×C under

the natural linear homomorphism

Ext 1
E1×C(L,OE1(1) � π∗ON)−→Ext 1

E1×C(L⊗ (π∗ON)∗,OE1(1) � π∗ON ),

induced by the short exact sequence 0→ L⊗ (π∗ON )∗ → L→ Cp → 0 pulled-back

from C to E1 × C.

Proof (of proposition 2.9). Let us pull-back the extension EL to PL,1 × C, and

then push it forward via the inclusion π∗
�L,1

(ε∗1O�L
(1)) ↪→ ε∗1O�L

(1) � π∗ON :

0 −−−→ ε∗1O�L
(1) −−−→ (ε1, 1)∗EL −−−→ L −−−→ 0� � ||

0 −−−→ ε∗1O�L
(1) � π∗ON −−−→ E ′0 −−−→ L −−−→ 0

(2.4)

The restriction of E ′0 to E1 × C splits. Indeed, ε∗1O�L
(1)|E1 
 OE1 , and since

Ext 1
E1×C(L, π∗ON ) 
 H0(E1,OE1) ⊗ Ext 1

C(L, π∗ON) by lemma B.1, we see that
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E ′0|E1×C splits as long as E ′0|{x}×C splits for some x ∈ E1. Restricting the diagram

(2.4) above to {x} × C for any x ∈ E1, we see that E ′0|{x}×C is the trivial extension

ψp(EL|{p}×C).

Therefore, there exists a surjective map E ′0 → OE1 �π∗ON , and we can define E ′1
to be its kernel:

0−→E ′1−→E ′0−→OE1 � π∗ON−→0.

There exists a commutative diagram on PL,1 × C similar to (2.3):

0 0� �
0 −−−→ A′

1 −−−→ E ′1 −−−→ L −−−→ 0� � ||

0 −−−→ ε∗1O�L
(1) � π∗ON −−−→ E ′0 −−−→ L −−−→ 0� �

OE1 � π∗ON = OE1 � π∗ON� �
0 0

,

with A′
1 
 (ε∗1O�L

(1)⊗O�L,1
(−E1)) � π∗ON . Moreover, we have the following com-

mutative diagram on PL,1 × C which relates E ′0 and E ′1 to EL and EL,1:
0 0� �

0 −−−→ EL,1
i1−−−→ (ε1, 1)∗EL −−−→ OE1 � π∗ON −−−→ 0� � ||

0 −−−→ E ′1
i′1−−−→ E ′0 −−−→ OE1 � π∗ON −−−→ 0� �

ε∗1O�L
(1) � Cp = ε∗1O�L

(1) � Cp� �
0 0

.

When we restrict the first two rows of this diagram to E1 × C, and we look at the

image of the restrictions of i1 and i′1 to E1 × C, we obtain the following diagram,
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where the first row is the exact sequence described in lemma 2.7.

0 −−−→ OE1(1) � π∗ON −−−→ EL,1|E1×C
i1|E1×C−−−−→ L⊗ (π∗ON)∗ −−−→ 0

||
� �

0 −−−→ OE1(1) � π∗ON −−−→ E ′1|E1×C
i′1|E1×C−−−−→ L −−−→ 0

.

This shows that EL,1|E1×C is the pull-back of E ′1|E1×C via the pull-back of the inclusion

L ⊗ (π∗ON )∗ ↪→ L from C to E1 × C. We shall now show that E ′1|E1×C is actually

the canonical sheaf E ′ ∈ Ext 1
E1×C(L,OE1(1) � π∗ON ) described above. This is a

summary of the steps used in the construction of E ′1|E1×C
11:

EL ∈ Ext 1
�L×C(L,O�L

(1))

↓ ↓

(ε1, 1)∗EL ∈ Ext 1
�L,1×C(L, ε∗1O�L

(1))

↓ ↓

E ′0 ∈ Ext 1
�L,1×C(L, ε∗1O�L

(1) � π∗ON )

↓ ↑

E ′1 ∈ Ext 1
�L,1×C(L, (ε∗1O�L

(1)⊗O�L,1
(−E1)) � π∗ON )

↓ ↓

E ′1|E1×C ∈ Ext 1
E1×C(L,OE1(1) � π∗ON )

Using the isomorphisms

Ext 1
Y×C(L, F �G) 
 H0(Y, F )⊗ Ext 1

C(L,G)

of lemma B.1, we can understand what extension E ′1|E1×C is by tracking the cor-

responding elements in these spaces. Let v0, . . . , vn be a basis of Ext 1
C(L,OC),

with Span {v0} = 〈p〉, and let v∗0, . . . , v
∗
n be the corresponding dual basis in

Ext 1
C(L,OC)∗ 
 H0(PL,O�L

(1)). Then EL corresponds to the element

n∑
i=0

v∗i ⊗ vi ∈ H0(PL,O�L
(1))⊗ Ext 1

C(L,OC).

11Note that one of the arrows goes in the other direction between the extension spaces.
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We have the following diagram12:

EL ←→
n∑
i=0

v∗i ⊗ vi ∈ H0(PL,O�L
(1))⊗ Ext 1

C(L,OC)

↓ ↓ ↓

(ε1, 1)∗EL ←→
n∑
i=0

v∗i ⊗ vi ∈ H0(PL,1, ε∗1O�L
(1))⊗ Ext 1

C(L,OC)

↓ ↓ ↓

E ′0 ←→
n∑
i=1

v∗i ⊗ ψp(vi) ∈ H0(PL,1, ε∗1O�L
(1))⊗ Ext 1

C(L, π∗ON)

↓ ↓ ↑

H0(PL,1, ε∗1O�L
(1)⊗O�L,1

(−E1))

E ′1 ←→
n∑
i=1

v∗i ⊗ ψp(vi) ∈ ⊗

Ext 1
C(L, π∗ON )

↓ ↓ ↓

E ′1|E1×C ←→
n∑
i=1

ψp(vi)
∗ ⊗ ψp(vi) ∈ H0(E1,OE1(1))⊗ Ext 1

C(L, π∗ON)

This proves our claim that E ′1|E1×C is E ′. Therefore, since EL,1|E1×C is the pull-back

of E ′1|E1×C via L ⊗ (π∗ON )∗ ↪→ L, and the pull-back corresponds to composing a

homomorphism in Hom (Ext 1
C(L, π∗ON),Ext 1

C(L, π∗ON)) with ψ to obtain an ele-

ment in Hom(Ext 1
C(L, π∗ON ),Ext 1

C(L⊗ (π∗ON )∗, π∗ON)), EL,1|E1×C corresponds to

ψ itself. This proves that, for any a ∈ Ext 1
C(L, π∗ON), a �= 0, EL,1|{[a]}×C is ψ(a) as

extensions of L⊗ (π∗ON)∗ by π∗ON .

This proves our proposition, since EL,1 defines φL,1 outside of E1.

12Note that ψp(v0) = 0.
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The second blow-up

3.1 The second blow-up

To resolve the indeterminancy of φL,1, we first blow-up PL,1 along the line L1 ⊆ E1.

Let

PL,2 := BLL1PL,1
ε2−→PL,1

ε1−→PL,

and let E2 ⊆ PL,2 be the exceptional divisor.

Theorem 3.1. (a) The composition φL,1◦ε2 : PL,2−→SUC(2, L) extends to a rational

map φL,2 satisfying the following: For each l ∈ L1, the rational map

φL,2|E2|l : E2|l−→SUC(2, L)

is the projectivization of a linear homomorphism NL1/�L,1
|l → H ′, where

H ′ = {detE 
 L} ⊆ Ext 1
C(L⊗ (π∗ON)∗, π∗ON ).

This linear homomorphism is an isomorphism if l �= p1, p2, and it maps NL1/�L,1
|pi

(i = 1, 2) surjectively onto Imψ ⊆ H ′.

(b) In particular, the indeterminancy locus of φL,2 : PL,2 → SUC(2, L) is the strict

transform C̃2 of C̃1.

Corollary 3.2. The image φL,2(PL,2 \ C̃2) of φL,2 in SUC(2, L) is given by1

φL(PL \ C) ∪ P(H ′).

1Remember that by P(H ′) we actually mean its image into SUC(2, L) by the morphism
described in corollary 2.6.
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We shall delay the proof of the theorem until section 3.3, after we study the

exceptional divisor in this section, and another important situation in section 3.2.

Note that the strict transform C̃2 of C̃1 is isomorphic to C̃1 and N , and it intersects

E2 at two points p̃1 and p̃2 lying over p1 and p2, respectively.

The first step in the proof of theorem 3.1 is the analysis of the exceptional divisor

E2, which is canonically isomorphic to P(NL1/�L,1
). It is a projective bundle over L1.

Since NL1/�L,1
is the normal bundle to L1 in PL,1, it contains the normal bundle to

L1 in E1, and we have the following exact sequence of vector bundles on L1:

0−→NL1/E1−→NL1/�L,1
−→NE1/�L,1

|L1−→0.

For each l ∈ L1, if we let Xl be the projective line in PL which passes through p and

corresponds to l, we obtain the following canonical isomorphisms:

NE1/�L,1
|l 


TlPL,1
TlE1

�−→ TpXl 

〈Xl〉
〈p〉 
 〈l〉

∩ ∩
Ext 1

C(L,OC)

〈p〉 
 Ext 1
C(L, π∗ON )

and

NL1/E1
|l 


TlE1

TlL1



Ext 1
C(L, π∗ON)

〈l〉
〈L1〉
〈l〉


 Ext 1
C(L, π∗ON)

〈L1〉
.

Since 〈L1〉 = kerψ, we have that, for every l ∈ L1, NL1/E1 |l is canonically Imψ. In

particular, it is independent from l, and for every l ∈ L1 we have the following exact

sequence

0−→Imψ−→NL1/�L,1
|l−→〈l〉−→0.

The geometric reason for the independence of NL1/E1
|l from l is simple. We saw that

the rational map φL,1|E1 : E1 → SUC(2, L) is given by the rational map

E1 
 P(Ext 1
C(L, π∗ON ))

�(ψ)−→P(Imψ) ⊆ P(Ext 1
C(L⊗ (π∗ON )∗, π∗ON)),
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which is the projection from L1. It is constant on each plane containing L1. Blowing-

up E1 at the line L1, we obtain a morphism

BLL1E1−→P(Imψ).

For each l ∈ L1, a point of P(NL1/E1 |l) corresponds to a plane through L1, and it

maps to the same point as the plane. The projectivization of each fiber of NL1/E1

maps isomorphically onto P(Imψ).

Lemma 3.3. The short exact sequence

0−→NL1/E1
−→NL1/�L,1

−→NE1/�L,1
|L1−→0

splits. If N = dim PL, then NL1/E1

 OL1(1)⊕N−2, and NE1/�L,1

|L1 
 OL1(−1).

Moreover, P(NE1/�L,1
|L1) is canonically isomorphic to T̃pC ∩ E2, where T̃pC is the

strict transform of TpC in PL,2 via ε2 ◦ ε1.

We shall denote P(NE1/�L,1
|L1) by L2. It is isomorphic to L1 via ε2|L2, and it

corresponds to a section of the projective bundle E2 → L1.

Proof. Claim 1: NL1/E1

 OL1(1)⊕N−2. There is a short exact sequence

0−→IL1/I2
L1
−→ΩE1|L1−→ΩL1−→0,

which together with the standard short exact sequence for Ω�n (see [Har77, II.8.13])

gives the following commutative diagram

0 0 0� � �
0 −−−→ IL1/I2

L1
−−−→ ΩE1 |L1 −−−→ ΩL1 −−−→ 0� � �

0 −−−→ ker f −−−→ OE1(−1)⊕N |L1

f−−−→ OL1(−1)⊕2 −−−→ 0� � �
0 −−−→ ker g −−−→ OE1 |L1

g−−−→ OL1 −−−→ 0� � �
0 0 0

.
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Since g is an isomorphism, IL1/I2
L1

 ker f 
 OL1(−1)⊕N−2, and so

NL1/E1 
 OL1(1)⊕N−2.

Claim 2: NE1/�L,1
|L1 
 OL1(−1). It is a standard fact about blow-ups (see [Har77,

II.8.24(c)]) that NE1/�L,1

 OE1(−1). The claim follows by restricting this isomor-

phism to L1.

Claim 3: The following short exact sequence splits:

0−→NL1/E1−→NL1/�L,1
−→NE1/�L,1

|L1−→0.

This follows from the fact that every extension of OL1(−1) by OL1(1)⊕N−2 splits.

Indeed,

Ext 1
L1

(OL1(−1),OL1(1)⊕N−2) 
 H1(L1,OL1(1)⊗OL1(1)⊕N−2)


 H1(L1,OL1(2)⊕N−2)


 ⊕N−2H1(L1,OL1(2)) = 0.

The last statement of the lemma follows from the description of NE1/�L,1
|L1 given

at the beginning of the section.

We conclude this section with the following important geometric fact.

Lemma 3.4. The two points p̃1 and p̃2 where the strict transform C̃2 of C intersects

the exceptional divisor E2 do not lie in the strict transform T̃pC of TpC.

This lemma is important because one of the main steps in the proof of theorem

3.1 is that the rational map φL,2 is defined everywhere on T̃pC, and this would not

be possible if C̃2 intersected it.

Proof. Let i ∈ {1, 2}. We need to show that, in PL,1, the tangent direction of

C̃1 at pi is not the same as the tangent direction of the strict transform X̃pi
of Xpi
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at pi, where Xpi
= P(ker(Ext 1

C(L,OC)→ Ext 1
C(L, π∗(ON(pi)))))

2 is the projective

line in PL tangent at p to the branch of C corresponding to pi.

There exists local coordinates at p such that Xpi
is parametrized by the map

t �→ (t, 0, . . . , 0), and the branch of C corresponding to pi is locally parametrized

by t �→ (t, α2t
2 + O(t3), . . . , αnt

2 + O(t3)) for some α1, . . . , αn. After blowing-up

PL at p, and choosing the local coordinates u1, . . . , un at pi in such a way that

(u1, . . . , un) �→ (u1, u1u2, . . . , u1un), X̃pi
is parametrized by t �→ (t, 0, . . . , 0), and C̃1

is parametrized by t �→ (t, α2t+O(t2), . . . , αnt+O(t2)).

Therefore, to prove that the tangent direction to C̃1 at pi is not the same as the

tangent direction of X̃pi
, it suffices to show that one of the αj ’s is not zero. Remember

that |L ⊗ ωC | is the linear system which defines the embedding of C in PL. If we

compose this embedding with the normalization π : N → C, the composition is the

morphism associated to the linear system W ⊆ |π∗(L⊗ ωC)| defined by

W = P({s ∈ H0(N, π∗(L⊗ ωC)) | s(p1) = s(p2)}).

In terms of this linear system, the condition that one of the αj ’s is not zero becomes

the condition that there exists an effective divisor D in the linear system W such

that D ≥ 2pi + p3−i but D �≥ 3pi + p3−i. Since

{D ∈W | D ≥ mpi + p3−i} = {D ∈ |π∗(L⊗ ωC)| | D ≥ mpi + p3−i}

for every m > 0, because D ≥ pi and D ∈ W implies that D ≥ pi + p3−i, to prove

our lemma we need to prove that

h0(N, π∗(L⊗ ωC)⊗ON(−2pi − p3−i)) = h0(N, π∗(L⊗ ωC)⊗ON(−3pi − p3−i)) + 1.

Since π∗ωC 
 ωN(p1 + p2), π
∗(L⊗ ωC)⊗ON (−mpi − p3−i) 
 π∗L⊗ ωN((1−m)pi)

for every integer m. In our case, m is 2 or 3, and m−1 is less than degL. Therefore,

2See the proof of lemma 1.4.
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h1(N, π∗(L ⊗ ωC) ⊗ ON (−mpi − p3−i)) = h0(N, π∗L−1 ⊗ ON ((m − 1)pi)) = 0, and

the result follows from the Riemann-Roch theorem.

3.2 Limits along lines in TpC through p

Before we proceed to the proof of theorem 3.1, it is important to study the following

situation: Let TpC be the projective tangent plane to C at p, and letX be a projective

line in TpC passing through p. As we saw in lemma 2.2, such lines are parametrized

by L1. Any such line Xl (l ∈ L1) intersects C at p (and possibly at other points, but

always a finite number), and there exists a rational map

φL|Xl
: Xl−→SUC(2, L),

which extends uniquely to a morphism ψl defined on the whole Xl. We are interested

in finding ψl(p). If Ml is the extension of Cp by π∗ON corresponding to a point

l ∈ L1 
 P(Ext 1
C(Cp, π∗ON)) 3, then4

Xl = P(ker(Ext 1
C(L,OC)−→Ext 1

C(L,Ml))).

The following lemma describes the Ml’s.

Lemma 3.5. If l �= p1, p2, then Ml is a line bundle of degree 2. If l = pi (i = 1, 2),

then Mpi
is π∗ON (pi).

Proof. All of the extensions of Cp by π∗ON (which are sometimes called “ele-

mentary transformations” of π∗ON ) are of the form

Ml = ker(π∗ON(p1 + p2)−→(ON(p1 + p2)|p1 ⊕ON(p1 + p2)|p2)/F (Ml)),

where F (Ml) is a one-dimensional vector subspace of ON (p1+p2)|p1⊕ON (p1+p2)|p2,

andMl is locally-free if and only if F (Ml) projects isomorphically onto ON(p1+p2)|p1
3For this isomorphism, see lemma A.3.
4The right side contains {p} = P(ker(Ext 1

C(L,OC) → Ext 1
C(L, π∗ON ))) and is con-

tained in TpC = P(ker(Ext 1
C(L,OC)→ Ext 1

C(L, π∗ON (p1 + p2)))).
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and ON(p1 + p2)|p2 (see [Bho92, 1.8]). It is clear that this happens for all F (Ml)
′s

except for the two vector subspaces F (Mpi
) = ON(p1 + p2)|pi

(i = 1, 2) for which

Mpi
= ker(π∗ON (p1 + p2)→ ON(p1 + p2)|p3−i

) = π∗ON (pi).

We are now ready to find ψl(p).

Lemma 3.6. Let l ∈ L1. Then ψl(p) is the unique (up to isomorphisms) torsion-free

sheaf El which can be written both as an extension

0−→π∗ON−→El−→L⊗ (π∗ON)∗−→0

and an extension

0−→L⊗M∗
l −→El−→Ml−→0.

In particular, it is locally-free if and only if l �= p1, p2.

Proof. Since for every x ∈ Xl\{p}, ψl(x) maps onto Ml by lemma 1.2, the same is

true for ψl(p). Indeed, it cannot surject onto something of smaller degree, or it would

not be semi-stable. Since ψl(p) is in SUC(2, L), the kernel of ψl(p)→ Ml must then

be L⊗M∗
l , and we have a short exact sequence 0→ L⊗M∗

l → ψl(p)→Ml → 0.

Since ψl(x) surjects onto L for every x ∈ Xl \ {p}, ψl(p) surjects onto some

torsion-free sheaf F ⊆ L, which must have deg F ≥ 2 because ψl(p) is semi-stable.

Moreover, F �= L because in that case ψl(p) would be an extension of L by OC , but

we know that the limit in PL is EL|{p}×C , which is not semi-stable. Since ψl(p) is an

extension of Ml by L ⊗M∗
l , and every map from Ml to F is zero5, the composite

map L ⊗M∗
l → ψl(p) → F is non-zero, and therefore L ⊗M∗

l ⊆ F ⊆ L, which

implies that F 
 L⊗ (π∗ON)∗.

Therefore, ψl(p) is both an extension of Ml by L ⊗M∗
l and of L ⊗ (π∗ON )∗ by

π∗ON , as claimed. There is only one such torsion-free sheaf (up to isomorphisms),

5Since they are both torsion-free shaves of degree 2, there exists a map between them
only if they are isomorphic, and this does not happen for a generic L.
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because such sheaves are all in the kernel of the natural linear homomorphism

Ext 1
C(Ml, L ⊗ M∗

l ) → Ext 1
C(Ml, L ⊗ (π∗ON )∗) by lemma 1.2 6, and the kernel is

one-dimensional, being isomorphic to Hom C(Ml,Cp).

We now give another description of El for l �= p1, p2. Pulling-back the short exact

sequence 0→ L⊗M−1
l → El → Ml → 0 to N , we obtain the short exact sequence

0 → L(−p1 − p2) → El → ON(p1 + p2) → 0, where El := π∗El. This follows from

the fact that π∗Ml 
 ON (p1 + p2). Indeed, Ml is locally-free because l �= p1, p2,

and Ml ⊆ π∗(ON(p1 + p2)). Therefore, π∗Ml is contained in ON(p1 + p2), which

is π∗π∗(ON(p1 + p2))/Tors . Since they have the same degree, they are isomorphic.

Moreover, since El surjects onto L ⊗ (π∗ON )∗ 
 π∗(L(−p1 − p2)), El surjects onto

L(−p1 − p2) 
 π∗π∗(L(−p1 − p2))/Tors , and the sequence above splits, i.e.,

El 
 ON (p1 + p2)⊕L(−p1 − p2).

This proves that, for all l ∈ L1, l �= p1, p2, El = π∗El is the same vector bundle

ON (p1 + p2) ⊕ L(−p1 − p2). To simplify the notation, we shall denote ON(p1 + p2)

by O′ and L(−p1 − p2) by L′. Let F (El) be the two dimensional vector subspace of

El|p1 ⊕El|p2 such that El = ker(π∗El → (El|p1 ⊕El|p2)/F (El)). Consider the inclusion

L′ ⊆ El. Since El ∈ Ext 1
C(Ml, L⊗M−1

l ), we have that

F (El) ∩ (L′|p1 ⊕L′|p2) = F (L⊗M−1
l ), F (El) ⊆ Span {L′|p1 ⊕L′|p2, F (Ml)}.

Looking at the inclusion O′ ⊆ E , we see that, since El surjects onto L ⊗ (π∗ON )∗,

F (El) ∩ (O′|p1 ⊕ O′|p2) = {0}. There is an A1 \ {0} of such F (El)’s: Let us show

that, as expected, they all give isomorphic El’s.

6Lemma 1.2 is about extensions of L by OC , but a similar statement is true about
extensions of Ml by L⊗M∗

l .
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In this picture of P(E|p1 ⊕ E|p2),

(1) (2)

(3)

(4)

(5)

(1) P(F (Ml))

(2) P(F (L⊗M−1
l ))

(3) P(O′|p1 ⊕O′|p2)
(4) P(L′|p1 ⊕L′|p2)
(5) P(L′|p1 ⊕L′|p2 ⊕ F (Ml))

the lines corresponding to the F (El)’s are the lines in the plane (5) going through

(2), except for the line (4) and the line joining (2) and (1).

Let us fix a basis of E|p1⊕E|p2 
 C4 such that the standard directions correspond

respectively to O′|p1, O′|p2, L′|p1, L′|p2, and F (Ml), F (L ⊗M−1
l ) are generated by

(1, l, 0, 0) and (0, 0, l, 1) respectively. Then F (El)m = Span {(0, 0, l, 1), (1, l,m, 0)} for

some m �= 0. The corresponding E’s are all isomorphic because the automorphism

φλ : O′ ⊕ L′ → O′ ⊕ L′ given by (a, b) �→ (λa, b) identifies F (El)m with F (El)m/λ.

We shall prove in proposition 3.16 that the points of L2 = T̃pC ∩ E2 
 L1 map

to these vector bundles El. The following lemma describes their geometry.

Lemma 3.7. The torsion-free shaves El (l ∈ L1) form a conic in a quadric Q in

P3 
 P(ker(Ext 1
C(L⊗ (π∗ON )∗, π∗ON )−→Ext 1

C(L⊗ (π∗ON)∗, π∗ON (p1 + p2)))).

Proof. For a proof that the dimension of the kernel above is really four, see lemma

A.6. For every l ∈ L1, let

Xl,1 := P(ker(Ext 1
C(L⊗ (π∗ON )∗, π∗ON)−→Ext 1

C(L⊗ (π∗ON)∗,Ml))),

Xl,2 := P(ker(Ext 1
C(L⊗ (π∗ON )∗, π∗ON)−→Ext 1

C(L⊗M∗
l , π∗ON))).

These are all lines by lemma A.6. For each l ∈ L1, Xl,1 and Xl′,2 span the plane

P(ker(Ext 1
C(L⊗ (π∗ON)∗, π∗ON )→ Ext 1

C(L⊗M∗
l′ ,Ml))).

The union of all these lines is a quadric Q. We shall show in lemma 3.9 that

H ′ := {detE 
 L} is a hyperplane in Ext 1
C(L⊗(π∗ON )∗, π∗ON ). Similarly, P(H ′)∩P3
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is a hyperplane in this P3, and the intersection of P(H ′) with Q is the conic in the

lemma, since we know that each El is contained in both.

For another proof of this lemma, using lemma B.5, see section 3.5.

3.3 Proof of theorem 3.1

As in the proof of theorem 2.1, we first give a geometric idea of the proof. We saw

in section 3.1 that the normal bundle NL1/�L,1
splits as NL1/E1

⊕ NE1/�L,1
|L1 , and

that NL1/E1|l is canonically isomorphic to Imψ for every l ∈ L1. Moreover, for each

l ∈ L1, there is a natural point in NE1/�L,1
|l, the point determined by the direction

of the strict transform X̃l of the line Xl described in section 3.2.

If l �= p1, p2, the image of the corresponding point in E2|l is the vector bundle El

described in lemma 3.6, and the statement in the theorem that φL,2|E2|l maps E2|l

isomorphically onto P(H ′) shall follow from the linearity of the map.

When l is p1 or p2, it is clear that φL,2 cannot be defined at the two points p̃1 and

p̃2 where C̃2 intersects E2. We shall see that the all the torsion-free sheaves which

are in the image of E2 are extensions of L⊗ (π∗ON)∗ by π∗ON , and we saw in lemma

2.5 that the only such extension which is not semi-stable is the trivial extension.

Therefore, even in this case, the statement in the theorem that φL,2|E2|l maps E2|l

onto P(Imψ) shall follow from the linearity of the map.

As for the first blow-up, let us construct a torsion-free sheaf EL,2 on PL,2×C such

that EL,2|{x}×C 
 φL,2(x) for every x ∈ PL,2 \ C̃2. We can construct EL,2, starting

with the torsion-free sheaf EL,1 corresponding to the rational map φL,1, as follows7

EL,2 := ker((ε2, 1)∗EL,1−→ε∗2OL1(1) � π∗ON).

7For the existence of the map in the definition of EL,2, for a proof of its surjectivity,
and for an in more depth analysis of the sheaf, see section 3.4.
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Moreover, the sheaf ε∗2OL1(1)�π∗ON is supported on E2×C, and so EL,2 defines the

same map as EL,1 on PL,2 \ E2 = PL,1 \ L1. The situation is very similar to the one

in the first blow-up, and it is easy to see that, for every l ∈ L1 and every x ∈ E2|l,

we have an exact sequence

0−→π∗ON−→EL,2|{x}×C−→EL,1|{l}×C−→π∗ON−→0.

Since EL,1|{l}×C 
 π∗ON ⊕ (L⊗ (π∗ON )∗) for every l ∈ L1, we obtain that, for every

x ∈ E2, EL,2|{x}×C is an extension of the following type:

0−→π∗ON−→EL,2|{x}×C−→L⊗ (π∗ON)∗−→0.

We shall prove in proposition 3.14 that the sheaf EL,2 induces the rational map φL,2.

In particular, for every l ∈ L1, the restriction of φL,2 to E2|l is a rational map

E2|l−→P(Ext 1
C(L⊗ (π∗ON )∗, π∗ON)),

that we want to prove to be linear, and to be a morphism for l �= p1, p2.

Lemma 3.8. For every l ∈ L1, the rational map

φL,2|E2|l : E2|l−→P(Ext 1
C(L⊗ (π∗ON )∗, π∗ON ))

is linear.

Proof. We give two different proofs.

First proof: We already saw in section 3.1 that, for every l ∈ L1, we have the

following commutative diagram:

E2|l
φL,2|E2|l−−−−−→ P(Ext 1

C(L⊗ (π∗ON)∗, π∗ON ))⋃ ⋃
P(NL1/E1 |l)

�−−−→ P(Imψ)

.

Since the morphism P(NL1/E1 |l) → P(Imψ) is a linear isomorphism, the map itself

is linear by proposition C.1.
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Second Proof: It follows from lemma 3.11 using lemma B.5.

Let us now show that H ′ is a hyperplane in Ext 1
C(L⊗ (π∗ON )∗, π∗ON).

Lemma 3.9. The closure of {E ∈ Ext 1
C(L ⊗ (π∗ON)∗, π∗ON ) | detE 
 L} in

Ext 1
C(L⊗ (π∗ON )∗, π∗ON) is a vector subspace of codimension 1.

Proof. It is enough to show that the closure of

P
(
{E ∈ Ext 1

C(L⊗ (π∗ON )∗, π∗ON ) | detE 
 L}
)

in P(Ext 1
C(L⊗ (π∗ON )∗, π∗ON )) is a linear hyperplane. Let E be a vector bundle in

Ext 1
C(L⊗ (π∗ON )∗, π∗ON ): What are the possible values for detE?

Consider the lines Xl,1 and Xl,2 that we defined in lemma 3.7. By lemma 1.2 8,

every vector bundle in Xl,1 surjects ontoMl. Therefore, if E is a non-trivial extension

in Xl,1, there exists a commutative diagram9

0 0� �
ker f = ker f� �

0 −−−→ π∗ON −−−→ E −−−→ L⊗ (π∗ON)∗ −−−→ 0

||
� �f

0 −−−→ π∗ON −−−→ Ml −−−→ Cp −−−→ 0� �
0 0

.

Hence, the vector bundles in Xl,1 are of the form 0 → L ⊗M∗
l′ → E → Ml → 0,

and the determinant of the locally-free such E’s is of the form L ⊗ Ml ⊗ M∗
l′ for

l, l′ ∈ L1 \ {p1, p2}. Similarly, all of the vector bundles E in Xl,2 are of the form

8Lemma 1.2 is about extensions of L by OC , but a similar statement is true about
extensions of L⊗ (π∗ON )∗ by π∗ON .

9This diagram also illustrates the isomorphism Xl,1 
 P(Hom C(L ⊗ (π∗ON )∗,Cp))
described in the proof of lemma A.6.
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0 → L ⊗M∗
l → E → Ml′ → 0, and so their determinant is of the same form as

above. Consider the rational map

det : P(Ext 1
C(L⊗ (π∗ON )∗, π∗ON))−→{L′ ∈ Pic3(C) | π∗L′ 
 π∗L} 
 P1.

It is defined on the locus of locally-free sheaves, and it extends to the locus of the

extensions which are not push-forwards of extension from N (see [Bho92, 4.7]). Since

it is an isomorphism on each line Xl,i with l �= p1, p2 and i ∈ {1, 2}, it is a linear

map by proposition C.2.

We conclude this section with the following proposition, which completes the

proof of theorem 3.1.

Proposition 3.10. For every l ∈ L1, l �= p1, p2, the rational map

E2|l → P(Ext 1
C(L⊗ (π∗ON )∗, π∗ON))

is an isomorphism onto its image P(H ′). If l = pi (i = 1, 2), then it maps E2|l onto

P(Imψ). In particular, if l �= p1, p2, then φ2|E2|l is a morphism.

Proof. We already saw in lemma 3.8 that the map is linear for every l ∈ L1.

Let xl be the point described at the beginning of the section, i.e., the point on

the intersection of the strict transform of the line Xl with E2. We shall prove in

proposition 3.16 that, if l �= p1, p2, EL,2|{xl}×C is isomorphic to the vector bundle El

of lemma 3.6. Therefore, in this case, the image of E2|l contains P(Imψ) and El.

Since El �∈ P(Imψ), the image of E2|l is the hyperplane H ′.

If l = pi (i = 1, 2), then the image is just P(Imψ). Indeed, we already know that

the map cannot be defined everywhere on E2|pi
(i = 1, 2) because it contains a point

on the strict transform C̃2 of C which is contained in the locus of indeterminancy

of φL,2. Therefore, it cannot be an isomorphism. Being a linear map, its image is

contained in a hyperplane, which has to be P(Imψ).
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3.4 Description of EL,2

We saw in section 2.3 that EL,1|E1×C is an extension

0−→OE1(1) � π∗ON−→EL,1|E1×C−→L⊗ (π∗ON )∗−→0,

and that it is the image of E ′ 10 under the natural linear homomorphism

Ext 1
E1×C(L,OE1(1) � π∗ON)−→Ext 1

E1×C(L⊗ (π∗ON)∗,OE1(1) � π∗ON ).

In particular EL,1|L1×C is the image of the universal sheaf corresponding to the line

L1. This implies that EL,1|L1×C splits as

(OL1(1) � π∗ON)⊕ (L⊗ (π∗ON)∗),

and we have the surjective map EL,1 → OL1(1) � π∗ON → 0 whose pull-back to

PL,2 × C appears in the definition of EL,2 in Section 3.3.

Using the definition of EL,2 and the short exact sequence with EL,1 that we saw

in section 2.3, we obtain the following commutative diagram on PL,2 × C:

0

↓

EL,2
↓ ↘ f2

0−→(ε2, 1)∗A1 −→ (ε2, 1)∗EL,1 −→ (ε2, 1)∗B1−→0

↘ g2 ↓

ε∗2OL1(1) � π∗ON
↓

0

.

Let us compute the image of g2. Since the support of the target sheaf ε∗2OL1(1)�π∗ON

is E2 × C, the support of Im g2 is contained in it. This means that we have the

10Remember that E ′ was the universal sheaf corresponding to P(Ext 1
C(L, π∗ON )) 
 E1.
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following commutative diagram on E2 × C:

0 −−−→ ε∗2OL1(1) −−−→ (ε2, 1)∗EL,1|L1×C� �
0 −−−→ Im g2 −−−→ ε∗2OL1(1) � π∗ON� �

0 0

.

The situation is similar to the one we saw for Im g1 in section 2.3: the map from

π∗
E2
ε∗2OL1(1) to ε∗2OL1(1) � π∗ON is injective, and so the map from π∗

E2
ε∗2OL1(1) to

Im g2 is injective and surjective, i.e.,

Im g2 
 π∗
E2
ε∗2OL1(1).

We have then the following commutative diagram on PL,2 × C:

0 0 0� � �
0 −−−→ A2 −−−→ EL,2 −−−→ B2 −−−→ 0� � �
0 −−−→ (ε2, 1)∗A1 −−−→ (ε2, 1)∗EL,1 −−−→ (ε2, 1)∗B1 −−−→ 0� � �
0 −−−→ ε∗2OL1(1) −−−→ ε∗2OL1(1) � π∗ON −−−→ ε∗2OL1(1) � Cp −−−→ 0� � �

0 0 0

, (3.1)

where A2, EL,2, and B2 are defined by the vertical exact sequences.

Now we want to show that, for every l ∈ L1, l �= p1, p2, EL,2|E2|l×C is the universal

bundle associated to H ′ when we identify E2|l with H ′. First of all, let us show the

following

Lemma 3.11. For every l ∈ L1, l �= p1, p2, there exists a short exact sequence

0−→OE2|l(1) � π∗ON−→EL,2|E2|l×C−→L⊗ (π∗ON )∗−→0

on E2|l × C.
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As for the proof of lemma 2.7, we shall need to restrict the diagram (3.1) to

E2 × C. Let us first calculate some torsion sheaves.

Lemma 3.12. There are isomorphisms

T or�L,2×C
1 (OE2×C ,OE2×C) 
 π∗

E2
OE2(−E2),

T or�L,2×C
1 (OE2×{p},OE2×C) 
 OE2(−E2) � Cp,

T or�L,2×C
1 (OE2 � π∗ON ,OE2×C) 
 OE2(−E2) � π∗ON ,

where OE2(−E2) denotes O�L,2
(−E2)|E2. Moreover, if F is a locally-free sheaf on E2,

then T or�L,2×C
1 (π∗

E2
F ⊗−,OE2×C) is π∗

E2
F ⊗ T or�L,2×C

1 (−,OE2×C).

Proof. The first part of this proof is the exact copy of the proof of lemma 2.8: We

just need to replace PL,1, E1, and OE1(1) with PL,2, E2, and OE2(−E2), respectively.

The last statement follows from the fact that if we tensor any exact sequence with a

locally-free sheaf, it stays exact. If we tensor any of the exact sequences that we used

to calculate the T or1 sheaves with π∗
E2
F , we see that T or�L,2×C

1 (π∗
E2
F ⊗−,OE2×C)

is π∗
E2
F ⊗ T or�L,2×C

1 (−,OE2×C).

Proof (of lemma 3.11). The restriction of diagram (3.1) to E2 × C is

0 0 0� � �
0 −−−→ F (−E2) −−−→ F (−E2) � π∗ON −−−→ F (−E2) � Cp −−−→ 0

�
� � �

0 −−−→ F (−E2) −−−→ EL,2|E2×C −−−→ B2|E2×C −−−→ 0

0

� � �
0 −−−→ F −−−→ (ε2, 1)∗EL,1|L1×C −−−→ (ε2, 1)∗B1|L1×C −−−→ 0

�
� � �

0 −−−→ F −−−→ F � π∗ON −−−→ F � Cp −−−→ 0� � �
0 0 0

,
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where we denoted the locally-free sheaf ε∗2OL1(1) [resp. ε∗2OL1(1)⊗OE2(−E2)] on E2

by F [resp. F (−E2)] to simplify the notation. This shows that B2|E2×C has torsion.

Also, for every l, B2|E2|l×C has torsion, and B2|E2|l×C/Tors is isomorphic to

ker((ε2, 1)∗B1|{l}×C−→OE2|l×{p}). It is clear that this kernel is just the pull-back

via (ε2, 1) of B1|{l}×C modulo torsion, which is π∗
C(L⊗ (π∗ON )∗). From the diagram,

it is clear that the kernel of the map EL,2|E2|l×C−→π∗
C(L⊗ (π∗ON)∗) is the same as

the kernel of the map EL,2|E2|l×C−→(ε2, 1)∗EL,1|{l}×C , which is OE2|l(1) � π∗ON .

We conclude the section with the following result, which follows directly from

the proof above, and that we shall need in section 4.4.

Lemma 3.13. There exists a short exact sequence

0−→(ε∗2OL1(1)⊗O�L,2
(−E2)|E2) � π∗ON−→EL,2|E2×C−→L⊗ (π∗ON )∗−→0

on E2 × C.

Proof. This follows directly from the diagram in the proof of lemma 3.11

by looking at the middle column and observing that the kernel of the map

(ε2, 1)∗EL,1|L1×C → ε∗2OL1(1) � π∗ON on E2 × C is11 π∗
C(L⊗ (π∗ON)∗).

3.5 Relation between EL,2 and φL,2

The main goal of this section is to prove the following result.

Proposition 3.14. The sheaf EL,2 on PL,2 × C induces the rational map φL,2.

For the proof, we need the following lemma.

Lemma 3.15. If Y ⊆ PL,2 is a smooth subvariety such that

codim(Y,PL,2) = codim(Y ∩E2, E2),

then T or�L,2×C
1 (OE2×C ,OY×C) = 0 and T or�L,2×C

1 (OE2×{p},OY×C) = 0.

11Remember that EL,1|L1×C splits.
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Proof. Consider the short exact sequence 0→ O�L,2
(−E2)

f→ O�L,2

g→ OE2 → 0

on PL,2 and its pull-back to PL,2×C. If we tensor it with OY×C , we obtain the exact

sequence

0−→T or�L,2×C
1 (OE2×C ,OY×C)−→O�L,2

(−E2)|Y
f |Y ×C−→OY×C

g|Y ×C−→O(Y ∩E2)×C−→0

on Y × C, where the zero on the left occurs because O�L,2×C is locally-free.

Since the codimension of Y ∩ E2 in Y is 1, g is zero on the dense open subset

(Y \(Y ∩E2))×C, and f is an isomorphism on it. Therefore, T or�L,2×C
1 (OE2×C ,OY×C)

is supported on (Y ∩E2)×C, and it must be zero, being a subsheaf ofO�L,2
(−E2)|Y×C ,

which is a locally-free sheaf on a bigger dimensional variety.

Consider now the short exact sequence 0→ (π∗ON )∗ → OC → Cp → 0 on C and

its pull-back 0→ OE2 � (π∗ON )∗ → OE2×C → OE2×{p} → 0 to E2 × C. If we tensor

this exact sequence with OY×C over O�L,2×C , we obtain the exact sequence

0−→T−→OY ∩E2 � (π∗ON )∗−→O(Y ∩E2)×C−→O(Y ∩E2)×{p}−→0

on (Y ∩ E2) × C, where T = T or�L,2×C
1 (OE2×{p},OY×C) and the zero on the left

is T or�L,2×C
1 (OE2×C ,OY×C). Just as above12, OY ∩E2 � (π∗ON)∗ → O(Y ∩E2)×C is an

isomorphism on the dense open subset (Y ∩ E2) × (C \ {p}), whose complement

has codimension 1, and therefore T or�L,2×C
1 (OE2×{p},OY×C) must be zero, being

supported on (Y ∩E2)×{p} and contained in the torsion-free sheaf OY ∩E2 �(π∗ON )∗,

which is supported on a bigger dimensional variety.

Proof (of proposition 3.14). It is clear that EL,2 defines φL,2 on PL,2\E2. On E2, we

shall divide the proof in two part. We shall first show that EL,2 defines the rational

map φL,2 on Ẽ1 ∩ E2 
 P(NL1/E1) ⊆ E2, where Ẽ1 is the strict transform of E1,

and then we shall prove in proposition 3.16 that, if l �= p1, p2, then EL,2|{xl}×C 
 El,

where El is the vector bundle of lemma 3.6.

12For another proof of T being 0, note that the map OY ∩E2 � (π∗ON )∗ → O(Y ∩E2)×C
is injective because it is the pull-back of the injective map (π∗ON )∗ → OC via the flat
morphism (Y ∩E2)× C → C.
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Since φL,2 agrees with the rational map defined by EL,2 on a dense open subset,

we have that φL,2(x) is EL,2|{x}×C whenever this is semi-stable. In particular, the

proposition will follow from the fact that EL,2 is semi-stable for every x ∈ E2 except

for x = p̃i, i = 1, 2, which are the only two points on E2 where we know that φL,2

cannot be defined.

Here is a picture of E2:

L2

L1
�

p̃1

xl

p̃2

p1 l p2

E2 ∩ Ẽ1

To prove that EL,2 defines the rational map φL,2 on Ẽ1 ∩ E2 
 P(NL1/E1
) ⊆ E2,

restrict the commutative diagram (3.1) to Ẽ1 × C to obtain:

0 0 0� � �
0 −−−→ A2| �E1×C −−−→ EL,2| �E1×C −−−→ B2| �E1×C −−−→ 0� � �
0 −−−→ σ∗OE1(1) −−−→ (σ, 1)∗EL,1|E1×C −−−→ (σ, 1)∗B1|E1×C −−−→ 0� � �
0 −−−→ σ∗OL1(1) −−−→ σ∗OL1(1) � π∗ON −−−→ σ∗OL1(1) � Cp −−−→ 0� � �

0 0 0

,

where σ : Ẽ1 → E1 is the restriction of ε2 to Ẽ1. The vertical columns are exact

because T or�L,2×C
1 (ε∗2OL1(1),O

�E1×C) = T or�L,2×C
1 (ε∗2OL1(1) � Cp,O �E1×C) = 0.

This is true because ε∗2OL1(1) 
 ε∗2O�L,1
(−E1) ⊗ OE2×C , and since ε∗2O�L,1

(−E1)
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is a locally-free sheaf, it is enough to show that T or�L,2×C
1 (OE2×C ,O �E1×C) and

T or�L,2×C
1 (OE2×{p},O �E1×C) are both 0, which was proved in lemma 3.15.

Since (σ, 1)∗EL,1|E1×C is an extension of π∗
C(L⊗ (π∗ON)∗) by σ∗OE1(1) � π∗ON ,

there exists a commutative diagram

0 0� �
0 −→ A′

2 −→ EL,2| �E1×C −→ L⊗ (π∗ON)∗ −→ 0� � ||

0 −→ σ∗OE1(1) � π∗ON −→ (σ, 1)∗EL,1|E1×C −→ L⊗ (π∗ON)∗ −→ 0� �
σ∗OL1(1) � π∗ON = σ∗OL1(1) � π∗ON� �

0 0

,

where A′
2 
 (σ∗OE1(1)⊗O

�E1
(−(Ẽ1 ∩ E2))) � π∗ON .

Using the isomorphisms Ext 1
Y×C(L, F �G) 
 H0(Y, F )⊗ Ext 1

C(L,G) of lemma

B.1 as we did in the proof of proposition 2.9, we have the following diagram13

EL,1|E1×C ←→
n∑
i=1

w∗
i ⊗ ψ(wi) ∈ H0(E1,OE1(1))⊗ V

↓ ↓ ↓

(σ, 1)∗EL,1|E1×C ←→
n∑
i=1

w∗
i ⊗ ψ(wi) ∈ H0(Ẽ1, σ

∗OE1(1))⊗ V

↓ ↓ ↑

EL,2| �E1×C ←→
n∑
i=3

w∗
i ⊗ ψ(wi) ∈ H0(Ẽ1,A′

2)⊗ V

↓ ↓ ↓

EL,2|( �E1∩E2|l)×C ←→
n∑
i=3

ψ(wi)
∗ ⊗ ψ(wi) ∈ H0(Ẽ1 ∩ E2|l,O �E1∩E2|l(1))⊗ V

,

13Note that ψ(w1) = ψ(w2) = 0.
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where w1, . . . , wn is a basis of Ext 1
C(L, π∗ON) such that Span {w1, w2} = kerψ,

w∗
1, . . . , w

∗
n is the corresponding dual basis of Ext 1

C(L, π∗ON )∗ 
 H0(E1,OE1(1)),

and we denoted Ext 1
C(L⊗ (π∗ON)∗, π∗ON ) by V to simplify the diagram.

This proves that EL,2|( �E1∩E2|l)×C corresponds to the inclusion when we identify the

vector space Ext 1
( �E1∩E2|l)×C(L⊗ (π∗ON)∗,O

�E1∩E2|l(1)�π∗ON) with the vector space

Hom(Imψ,Ext 1
C(L⊗ (π∗ON )∗, π∗ON )) as described in lemma B.1. In particular, for

every a ∈ Imψ, a �= 0, [a] ∈ P(Imψ) 
 P(NL1/E1
|l) 
 Ẽ1 ∩E2|l, and EL,2|{[a]}×C 
 a

as extensions of L⊗(π∗ON )∗ by π∗ON . The proposition now follows from proposition

3.16.

Proposition 3.16. For every l ∈ L1, l �= p1, p2, EL,2| �Xl×C induces the morphism

ψl : Xl → SUC(2, L) in a neighborhood of p. In particular, EL,2|{xl}×C 
 El, and

φL,2(xl) = El, where {xl} = E2 ∩ X̃l, and El is the vector bundle of lemma 3.6.

For the proof, we need the following lemma.

Lemma 3.17. The kernel of the natural push-forward Ext 1
C(L,OC)→ Ext 1

C(L,Ml)

equals the kernel of the natural pull-back Ext 1
C(L,OC)→ Ext 1

C(L⊗M−1
l ,OC).

Proof. We already saw in lemma 1.2 that if an extension is in the kernel of

ψMl
: Ext 1

C(L,OC)→ Ext 1
C(L,Ml), then the middle vector bundle surjects onto Ml

or π∗ON (or it splits). By lemma A.1, the dimension of this kernel is 2, and since the

subspace of vector bundles surjecting onto π∗ON is 1-dimensional, we can choose a

basis {E1, E2} of the kernel given by two extensions which surject onto Ml.

Since the dimension of the kernel of ψM−1
l

: Ext 1
C(L,OC)→ Ext 1

C(L⊗M−1
l ,OC)

is also 2 by lemma A.2, it is enough to show that E1 and E2 become trivial when

pulled-back via L⊗M−1
l ↪→ L, i.e., that there exists a commutative diagram (i = 1, 2)

0 −−−→ OC −−−→ Ei −−−→ L −−−→ 0

||
� �

0 −−−→ OC −−−→ OC ⊕ (L⊗M−1
l ) −−−→ L⊗M−1

l −−−→ 0

.
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For each i ∈ {1, 2}, since the kernel of the surjective map Ei → Ml is L⊗M−1
l , and

the composition of L ⊗M−1
l ↪→ Ei with Ei → L is the inclusion L ⊗M−1

l ↪→ L, it

follows that there exists a map L⊗M−1
l ↪→ ψM−1

l
(Ei) which gives the splitting.

Proof (of proposition 3.16). To simplify the notation throughout this proof, we

shall identify Xl with its strict transforms in PL,1 and PL,2, and therefore identify

the points xl ∈ E2 ⊆ PL,2, l ∈ L1 ⊆ E1 ⊆ PL,1, and p ∈ C ⊆ PL. Then El := EL|Xl×C

and El,i := EL,i| �Xl×C (i = 1, 2) are sheaves on Xl ×C which define the same rational

map Xl → SUC(2, L) on Xl \ {p}.

Since El|{p}×C and El,1|{p}×C are not semi-stable, the rational maps defined by El

and El,1 are not morphisms. We shall prove that El,2 induces a morphism in a neigh-

borhood of p, i.e., that El,2|{p}×C is semi-stable (and, in particular, it is isomorphic

to El).

There exists a short exact sequence 0→ OXl
(1)→ El → L→ 0 on Xl×C. If we

apply the functor HomXl×C(L⊗M−1
l ,−), we obtain

HomXl×C(L⊗M−1
l , El) ↪→ HomXl×C(L⊗M−1

l , L)→ Ext 1
Xl×C(L⊗M−1

l ,OXl
(1)).

The natural inclusion L ⊗M−1
l ↪→ L gives an element of HomXl×C(L ⊗M−1

l , L)

which maps to zero in Ext 1
Xl×C(L ⊗M−1

l ,OXl
(1)). Indeed, its image would be the

extension E ′l on Xl × C defined by:

0 −−−→ OXl
(1) −−−→ El −−−→ L −−−→ 0

||
� �

0 −−−→ OXl
(1) −−−→ E ′l −−−→ L⊗M−1

l −−−→ 0

,

which splits because El = v∗1 ⊗ v1 + v∗2 ⊗ v2 ∈ H0(Xl,OXl
(1)) ⊗ Ext 1

C(L,OC),

Span {v1, v2} = 〈Xl〉, and it maps to 0 ∈ H0(Xl,OXl
(1)) ⊗ Ext 1

C(L ⊗ M−1
l ,OC)

because v1 and v2 map to zero under the pull-back via L ⊗M−1
l ↪→ L by lemma

3.17. Therefore, there exists an inclusion π∗
C(L ⊗M−1

l ) ↪→ El, and a commutative
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diagram on Xl × C

0 0� �
L⊗M−1

l = L⊗M−1
l� �

0 −−−→ OXl
(1) −−−→ El −−−→ L −−−→ 0

||
� �

0 −−−→ OXl
(1) −−−→ G −−−→ Sp −−−→ 0� �

0 0

,

where G and Sp are defined by the exactness of the last two columns. In particular, Sp

is the pull-back from the second factor of a skyscreaper sheaf of degree 2 supported

at p. This skyscreaper sheaf is L/(L⊗M−1
l ) 
Ml/OC , and it fits into a short exact

sequence 0→ π∗ON/OC → Ml/OC →Ml/π∗ON → 0.

The idea of the proof is to show that El,2 ∈ Ext 1
Xl×C(OXl

(−1) �Ml, L⊗M−1
l ),

and that El,2|{p}×C is El.

Since El,1 can be defined as the kernel of El → O{p} � π∗ON 14, we have the

following commutative diagram on Xl × C:

0 0 0� � �
0 −−−→ OXl

−−−→ El,1 −−−→ Bl,1 −−−→ 0� � �
0 −−−→ OXl

(1) −−−→ El −−−→ L −−−→ 0� � �
0 −−−→ O{p}×C −−−→ O{p} � π∗ON −−−→ O{p}×{p} −−−→ 0� � �

0 0 0

.

14This is just the restriction of the short exact sequence defining EL,1 to Xl×C. It stays
exact because of lemma 3.15, since codim (Xl,PL,2) = codim ({p}, E2).
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Since the composition π∗
C(L⊗M−1

l ) ↪→ El → O{p} � π∗ON is the zero map, the line

bundle π∗
C(L⊗M−1

l ) is contained in El,1, and the following diagram is commutative.

0 0� �
L⊗M−1

l = L⊗M−1
l� �

0 −−−→ OXl
−−−→ El,1 −−−→ Bl,1 −−−→ 0

||
� �

0 −−−→ OXl
−−−→ G1 −−−→ Sp,1 −−−→ 0� �

0 0

,

where G1 and Sp,1 are defined by the exactness of the last two columns. In particular,

Sp,1 is an extension of OXl
(−1) � (Ml/π∗ON) by OXl

� (π∗ON/OC) because there

exists a commutative diagram

0 0� �
0 −−−→ OXl

� π∗ON
OC

−−−→ Sp,1 −−−→ OXl
(−1) � Ml

π∗ON
−−−→ 0

||
� �

0 −−−→ OXl
� π∗ON
OC

−−−→ Sp −−−→ OXl
� Ml

π∗ON
−−−→ 0� �

O{p}×{p} = O{p}×{p}� �
0 0

.

Moreover, Sp,1 is the image of Sp under the pull-back linear homomorphism via the

inclusion OXl
(−1) � (Ml/π∗ON ) ↪→ OXl

� (Ml/π∗ON).
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Similarly, we obtain three commutative diagrams describing El,2, which can be

defined as the kernel of El,1 → O{p} � π∗ON 15:

0 0 0� � �
0 −−−→ OXl

(−1) −−−→ El,2 −−−→ Bl,2 −−−→ 0� � �
0 −−−→ OXl

−−−→ El,1 −−−→ Bl,1 −−−→ 0� � �
0 −−−→ O{p}×C −−−→ O{p} � π∗ON −−−→ O{p}×{p} −−−→ 0� � �

0 0 0

;

0 0� �
L⊗M−1

l = L⊗M−1
l� �

0 −−−→ OXl
(−1) −−−→ El,2 −−−→ Bl,2 −−−→ 0

||
� �

0 −−−→ OXl
(−1) −−−→ G2 −−−→ Sp,2 −−−→ 0� �

0 0

;

15As for El,1, this is just the restriction of the short exact sequence defining EL,2 which
stays exact when restricted to Xl × C by lemma 3.15.



55

0 0� �
0 −−−→ OXl

(−1) � π∗ON
OC

−−−→ Sp,2 −−−→ OXl
(−1) � Ml

π∗ON
−−−→ 0� � ||

0 −−−→ OXl
� π∗ON
OC

−−−→ Sp,1 −−−→ OXl
(−1) � Ml

π∗ON
−−−→ 0� �

O{p}×{p} = O{p}×{p}� �
0 0

.

In particular, Sp,1 is the push-forward of Sp,2 via the natural homomorphism induced

by the inclusion OXl
(−1) � (π∗ON/OC) ↪→ OXl

� (π∗ON/OC). Under the natural

isomorphism Ext 1
Xl×C(OXl

(−1) �−,OXl
(−1) �−) 
 Ext 1

Xl×C(OXl
�−,OXl

�−),

Sp,2 maps to Sp, since they both map to Sp,1 under the natural linear homomorphisms

described above.

Indeed, those homomorphisms are injective, because, using lemma B.3, they

become the injective linear homomorphisms

HomXl
(OXl

,OXl
)−→HomXl

(OXl
(−1),OXl

)

and

HomXl
(OXl

(−1),OXl
(−1))−→HomXl

(OXl
(−1),OXl

)

tensored by the identity on Ext 1
C(Ml/π∗ON , π∗ON/OC). Therefore,

Sp,2 = π∗
Xl
OXl

(−1)⊗ Sp = OXl
(−1) � Ml

OC
,

and there exists a short exact sequence 0→ L⊗M−1
l → EL,2 → G2 → 0 on Xl×C,

where G2 is an extension of OXl
(−1) � (Ml/OC) by OXl

(−1).
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As observed above, we would like to show that G2 is OXl
(−1) � Ml. Consider

G2 ⊗ π∗
Xl
OXl

(1). It is an element of

Ext 1
Xl×C

(
OXl

� Ml

OC
,OXl×C

)

 H1

(
Xl × C,

(
Ml

OC

)
⊗ ωXl×C

)∗


 H1(Xl, ωXl
)∗ ⊗H0

(
C,

Ml

OC
⊗ ωC

)∗


 H0(Xl,OXl
)⊗ Ext 1

C

(
Ml

OC
,OC

)
,

and it is therefore a pull-back from C of an extension in Ext 1
C(Ml/OC ,OC). Since

(G2 ⊗ π∗
Xl
OXl

(1))|{x}×C is isomorphic to Ml for every x �= p, G2 is OXl
(−1) �Ml as

claimed. Therefore, there exists a short exact sequence

0−→L⊗M−1
l −→El,2−→OXl

(−1) �Ml−→0.

The proposition is now proved, because El,2|{p}×C cannot split, being an extension

of Ml by L ⊗M−1
l and an extension of L ⊗ (π∗ON )∗ by π∗ON , and therefore it is

semi-stable. By continuity, it must be isomorphic to El, that we proved to be the

limit of ψl(x) as x �→ p.

We conclude this chapter by giving another proof of lemma 3.7. Let us first show

that there exists a short exact sequence

0−→OL2(2) � π∗ON−→EL,2|L2×C−→L⊗ (π∗ON)∗−→0

on L2 × C. This follows by restricting the short exact sequence of lemma 3.13 to

L2 × C, and observing that (ε∗2OL1(1) ⊗ OE2(−E2))|L2 
 OL2(2). Now, by lemma

B.5, it suffices to show that the image of the induced rational map is contained

in the P3 defined in lemma 3.7, and this is clear because L2 ⊆ T̃pC, and TpC is

P(ker(Ext 1
C(L,OC)→ Ext 1

C(L, π∗(ON (p1 + p2))))).



Chapter 4

The third blow-up

4.1 The third blow-up

To resolve the indeterminancy of φL,2, we now blow-up PL,2 along C̃2. Let

PL,3 := BL
�C2

PL,2
ε3−→PL,2

ε2−→PL,1
ε2−→PL,

and let E3 ⊆ PL,3 be the exceptional divisor.

Theorem 4.1. The composition φL,2 ◦ε3 : PL,3−→SUC(2, L) extends to a morphism

φL,3 such that for each q ∈ C̃2, q �= p̃1, p̃2, the restriction of φL,3 to E3|q maps

E3|q isomorphically onto1 P(Ext 1
C(L(−q),OC(q))), and for i = 1, 2, its restriction

to E3|�pi
sends E3|�pi

isomorphically onto P(H ′).

Corollary 4.2. The image of φL,2 in SUC(2, L) is given by2

φL(PL \ C) ∪ P(H ′)
⋃

q∈C,q �=p
P(Ext 1

C(L(−q),OC(q))).

We shall prove theorem 4.1 in the next section, after we study the exceptional

divisor E3 in this section. We know that E3 is canonically isomorphic to N
�C2/�L,2

.

Let q �= p̃1, p̃2. Then we have the canonical isomorphisms

N
�C2/�L,2

|q 

TqPL,2
TqC̃2


 TqPL
TqC




Ext 1
C(L,OC)

〈q〉
TqC

,

1We identify here a point q on C̃2, q �= p̃1, p̃2, with its image q on C.
2Note that by P(H ′) [resp. P(Ext 1

C(L(−q),OC(q)))] we actually mean its image into
SUC(2, L) by the morphism described in corollary 2.6 [resp. 4.4].
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and so, to prove that E3|q �−→P(Ext 1
C(L(−q),OC(q))), it is necessary to prove that

TqC 

ker(Ext 1

C(L,OC)−→Ext 1
C(L(−q),OC(q)))

〈q〉 .

Since the secant line joining two smooth points q, q′ of C is3

P(ker(Ext 1
C(L,OC)−→Ext 1

C(L,OC(q + q′)))),

and Ext 1
C(L,OC(q+ q′)) 
 Ext 1

C(L(−q′),OC(q)), this follows when taking the limit

as q′ → q.

Let now q = p̃i with i ∈ {1, 2}. Then

N
�C2/�L,2

|
�pi

 T

�pi
PL,2

T
�pi
C̃2


 T
�pi
E2.

This contains the canonical hyperplane T
�pi
(E2|pi

) that maps isomorphically to Imψ.

Indeed, using lemma 3.3 and the fact that E2 
 P(NL1/�L,1
),

T
�pi
(E2|pi

) 

NL1/�L,1

|pi

〈p̃i〉

 NL1/E1

|pi
⊕OL1(−1)|pi

OL1(−1)|pi


 NL1/E1
|pi
,

which we already saw to be canonically isomorphic to Imψ in section 3.1. We

shall show in proposition 4.9 that the morphism P(T
�pi
(E2|pi

)) → SUC(2, L) fac-

tors through this canonical isomorphism, i.e., there exists a commutative diagram

E3|�pi

 P(T

�pi
E2) −−−→ φL,3(E3|�pi

) ⊆ SUC(2, L)

∪ ↑

P(T
�pi
(E2|pi

))
�−−−→ P(Imψ)

. (4.1)

We shall then show that the top map factors through an isomorphism E3|�pi

�→ P(H ′).

4.2 Proof of theorem 4.1

As for the other blow-ups, the strategy is to construct a universal sheaf EL,3 on

PL,3 × C, and then prove that EL,3 induces the expected rational map. In this case,

3See lemma A.5.
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we also want to prove that EL,3 induces a morphism, i.e., that EL,3|{x}×C is semi-

stable for every x ∈ PL,3. The definition of EL,3 is not as evident as in the other two

blow-ups, and we postpone it to section 4.3.

By construction, EL,3 shall agree with EL,2 on PL,3 \E3 = PL,2 \ C̃2, and we shall

show in propositions 4.7 and 4.8 that, if q ∈ C̃2, q �= p̃1, p̃2, then EL,3|E3|q×C induces

the isomorphism of E3|q with P(Ext 1
C(L(−q),OC(q))) described in section 4.1. To

prove that this induces a morphism from E3|q to SUC(2, L), we need to prove the

following result.

Lemma 4.3. All non-trivial extensions

0−→OC(q)−→E−→L(−q)−→0

in Ext 1
C(L(−q),OC(q)) are semi-stable.

Proof. This proof is identical to the one of lemma 2.5 when we change π∗ON into

OC(q) and L⊗ (π∗ON )∗ into L(−q).

Corollary 4.4. The natural map P(Ext 1
C(L(−q),OC(q))) → SUC(2, L) defined by

(0→ OC(q)→ E → L(−q)→ 0) �→ E is a morphism.

Note that this morphism is always generically injective and actually injective for

g > 3 (or g > 2 for degL = 3) by lemma A.7.

We now want to give the idea of the proof that EL,3|E3|
�pi
×C (i = 1, 2) induces an

isomorphism of E3|�pi
with P(H ′). We saw in chapter 3 that each fiber of E2 over L1,

except for the two special fibers over p1 and p2, maps isomorphically onto P(H ′),

while those two special fibers map onto P(Imψ), which is a hyperplane in P(H ′).

Therefore, for each point x ∈ P(H ′)\P(Imψ), there exists a section sx of E2 → L1

defined as follows: If q �= p1, p2, sx(q) is the unique point of E2|q that maps to x in

P(H ′). This defines a section on L1 \ {p1, p2}, which can be completed to a section
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of E2 → L1 by taking its closure. Note that its closure must satisfy sx(pi) = p̃i for

i = 1, 2, because p̃i is the only point on E2|pi
that does not map to P(Imψ), and

x �∈ P(Imψ).

We shall show that each such section has a different tangent direction at p̃1 and

p̃2, so that when we blow-up these two points in E2, the strict transforms of the

sx(L1)’s will not intersect and will define the map E3|�pi
→ P(H ′) by y �→ x with

{y} = s̃x(L1) ∩E3.

sx5

sx4

sx3

sx2

sx1

L1
�

p̃1 p̃2

p1 p2

E2 ∩ Ẽ1

From the definition of EL,3, it will be clear that, as in the case of the first two

blow-ups, φL,3(E3|�pi
) ⊆ P(Ext 1

C(L⊗ (π∗ON )∗, π∗ON)), and therefore, using diagram

(4.1), we can prove the following linearity result.

Lemma 4.5. For i = 1, 2, the rational map

φL,3|E3|
�pi

: E3|�pi
−→P(Ext 1

C(L⊗ (π∗ON )∗, π∗ON))

is linear.

Proof. The proof is the same as the one of lemma 3.8.

For each i ∈ {1, 2}, since the map is linear, and we know it to send the hyperplane

P(T
�pi
(E2|pi

)) isomorphically onto P(Imψ), to prove that it maps E3|�pi
isomorphically

onto P(H ′), it suffices to show that there exists a point y ∈ E3|�pi
that maps to some
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point x ∈ P(H ′) \P(Imψ). We shall prove in proposition 4.10 that, for every l ∈ L1,

l �= p1, p2, the point yl,i defined as the intersection of the strict transform of sEl
(L1)

with E3|�pi
maps to El for i = 1, 2, and this completes the proof of theorem 4.1.

4.3 Definition of EL,3

We shall define EL,3 as the kernel of a map (ε3, 1)∗EL,2 → (ε3, 1)∗(A2| �C2×C⊗F2), with

F2 a sheaf on C̃2×C such that F2|{q}×C 
 OC(q) if q �= p̃1, p̃2, and F2|{�pi}×C 
 π∗ON

for i = 1, 2. The map corresponds to a map EL → π∗
�L
O�L

(1)|C×C ⊗ F , where

F := I∗∆, I∆ being the ideal sheaf of the diagonal ∆ in C × C.

Before we define the map, let us study F in more detail.

Lemma 4.6. There exists a short exact sequence

0−→OC×C−→F−→ω−1
∆ −→0.

Moreover, F|{q}×C 
 OC(q) if q �= p, and F|{p}×C 
 π∗ON .

Proof. Starting with the short exact sequence 0→ I∆ → OC×C → O∆ → 0, and

applying the functor HomC×C(−,OC×C), we obtain the short exact sequence4

0−→OC×C−→F−→Ext1C×C(O∆,OC×C)−→0.

Moreover, Ext1C×C(O∆,OC×C) 
 Ext1C×C(O∆, ωC×C) ⊗ ω−1
C×C 
 ω∆ ⊗ ω−1

C×C 
 ω−1
∆

since ω∆ 
 Ext1C×C(O∆, ωC×C) (see [Eis95, 21.15]), and ωC×C |∆ 
 ω⊗2
∆ .

Now, for any q ∈ C, restricting the short exact sequence to {q} × C, we obtain

a short exact sequence 0→ OC → F|{q}×C → Cq → 0, which we need to prove does

not split.

It is enough to show that F|{q}×C is a torsion-free sheaf, and it is enough to

study the situation in a neighborhood of {q} × {q}. This is a nice local calculation,

4The sequence starts with HomC×C(O∆,OC×C) which is zero because OC×C is torsion-
free, and ends with Ext1C×C(OC×C ,OC×C) which is also zero (see [Har77, III.6.7]).
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which we shall not write up, though. We take this opportunity to use Macaulay 2

(see [M2]). If q �= p, then it is enough to study the following situation5. Let

R = C[x1, x2], I = (x1 − x2), S =
R

(x1)
,

and show that Hom R(I, R) ⊗R S 
 Hom S(I ⊗R S, S), where Hom R(I, R) ⊗R S

corresponds to I∗∆|{q}×C , and Hom S(I⊗R S, S) corresponds to (I∆|{q}×C)∗ 
 OC(q).

Here is the Macaulay 2 code:
i1 : R = QQ[x1,x2]
I = ideal (x1 - x2)
M = module I
J = ideal (x1)
S = R / J
N = Hom (M, R^1)
P = N ** S
Q = M ** S
R = Hom (Q, S^1)
P == R

The last line of the output will be “true” and it checks that the two modules are

the same. If q = p, then we need to prove that Hom R(I, R)⊗RS 
 Hom S(I⊗RS, S)

for

R =
C[x1, x2, y1, y2]

(x1y1, x2y2)
, I = (x1 − y1, x2 − y2), S =

R

(x1, y1)
.

The following Macaulay 2 code proves it6:
i1 : R = QQ[x1,x2,y1,y2] / (x1 * y1, x2 * y2)
I = ideal (x1 - x2, y1 - y2)
M = module I
J = ideal (x1, y1)
S = R / J
N = Hom (M, R^1)
P = N ** S
Q = M ** S
R = Hom (Q, S^1)
C = resolution P
D = resolution R
C.dd
D.dd

The last part of the code output shows that the two sheaves have the same

resolution, and in particular that F|{p}×C is torsion-free.

5This is enough because the completion of an analytic neighborhood of {q}×{q} is the
same as the completion C[[x, y]] of C[x, y].

6Note that this time we cannot just type “P==R” as before, because the two modules
do not live in the same space, one is a quotient of S2, and one is a sub-module. Therefore,
we look at their resolutions.
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We know that EL is the extension of π∗
CL by π∗

�L
O�L

(1) that corresponds to the

identity in Hom(Ext 1
C(L,OC),Ext 1

C(L,OC)). Since π∗
�L
O�L

(1)|C×C 
 π∗
1(L ⊗ ωC),

where π1 is the first projection C × C → C, we obtain the following short exact

sequence on C × C:

0−→π∗
1(L⊗ ωC)−→EL|C×C−→π∗

2L−→0.

The map π∗
1(L⊗ωC) ↪→ π∗

1(L⊗ωC)⊗F extends to a map EL|C×C → π∗
1(L⊗ωC)⊗F

if EL|C×C is in the kernel of the natural linear homomorphism

Ext 1
C×C(π∗

2L, π
∗
1(L⊗ ωC))−→Ext 1

C×C(π∗
2L, π

∗
1(L⊗ ωC)⊗F),

i.e., if EL|C×C is in the image of the natural linear homomorphism

Hom C×C(π∗
2L, π

∗
1(L⊗ ωC)⊗ ω−1

∆ )−→Ext 1
C×C(π∗

2L, π
∗
1(L⊗ ωC)).

Let us prove that this is the case. Since π∗
1(L ⊗ ωC) ⊗ ω−1

∆ is isomorphic to L on

∆ 
 C, Hom C×C(π∗
2L, π

∗
1(L⊗ ωC)⊗ ω−1

∆ ) 
 H0(∆,O∆) 
 C. Moreover,

Ext 1
C×C(π∗

2L, π
∗
1(L⊗ ωC)) 
 H1(C × C, (L⊗ ωC) � L−1)


 H0(C,L⊗ ωC)⊗H1(C,L−1)


 Ext 1
C(L,OC)∗ ⊗ Ext 1

C(L,OC),

which has the canonical identity element corresponding to EL|C×C . Clearly, the con-

stant section 1 of O∆ maps to the identity, and our claim is proved, i.e., there exists

a map EL|C×C → π∗
�L
O�L

(1)|C×C ⊗F as claimed at the beginning of the section.

This map is surjective because its restriction to {q}×C, q �= p, [resp. to {p}×C] is

the surjective map EL|{q}×C → OC(q) [resp. EL|{p}×C → π∗ON ] that makes EL|{q}×C

[resp. EL|{p}×C ] not semi-stable.

There exists a commutative diagram

EL,1| �C1×C −−−→ A1| �C1×C ⊗ F1 −−−→ 0� �
(σ, 1)∗(EL|C×C)

g−−−→ σ∗O�L
(1)|

�C1×C ⊗ (σ, 1)∗F −−−→ 0

,
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where σ : C̃1 → C is the restriction of ε1 to C̃1, and F1 is defined by the first

row being exact. Since the restriction of the short exact sequence defining EL,1 to

C̃1 × C stays exact by lemma 3.15 7 the cokernel of the vertical map on the left is

O{p1,p2} �π∗ON . Since the fiber of ker g at {pi}×C has degree 2 for i = 1, 2, it maps

to zero into π∗ON , and we obtain the following commutative diagram on C̃1 × C:

0 0� �
0 −−−→ ker g −−−→ EL,1| �C1×C −−−→ A1| �C1×C ⊗F1 −−−→ 0

||
� �

0 −−−→ ker g −−−→ (σ, 1)∗(EL|C×C)
g−−−→ σ∗O�L

(1)|
�C1
⊗ (σ, 1)∗F −−−→ 0� �

O{p1,p2} � π∗ON = O{p1,p2} � π∗ON� �
0 0

.

If we restrict to {q} × C, for q ∈ C̃1, q �= p1, p2, then F1|{q}×C 
 F|{q}×C 
 OC(q).

Let i ∈ {1, 2}. If we restrict the right column to {pi} × C, we obtain

0−→T−→F1|{p}×C−→F|{p}×C
�−→πCON−→0,

where T = T or �C1×C
1 (O{p1,p2} � π∗ON ,O{pi}×C).

To calculate this sheaf, consider 0 → O
�C1

(−pi) → O �C1
→ O{pi} → 0 on C̃1 and

its pull-back to C̃1 ×C. We want to tensor it with O{p1,p2} � π∗ON , and we do it in

two steps. We first tensor it with π∗
C(π∗ON ) to obtain

0−→O
�C1

(−pi) � π∗ON−→π∗ON−→O{pi} � π∗ON−→0,

where the map O
�C1

(−pi) � π∗ON → π∗ON is injective because it is an isomorphism

on the dense open subset (C̃1 \ {pi})×C whose complement has codimension 1, and

7Lemma 3.15 is about a subvariety Y ⊆ PL,2, but the same statement about Y ⊆ PL,1
with PL,2 [resp. E2] replaced by PL,1 [resp. E1] is also true, with the same proof.
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therefore the image of any torsion sheaf appearing on the left will be zero, being a

subsheaf of a torsion-free sheaf supported on a codimension 1 subvariety. Then we

tensor the short exact sequence with π∗
�C1
O{p1,p2} to obtain

0−→T−→O
�C1

(−pi)|{p1,p2} � π∗ON−→O{p1,p2} � π∗ON−→O{pi} � π∗ON−→0,

from which it is clear that T 
 O{pi} � π∗ON , and therefore F1|{pi}×C 
 π∗ON .

An identical process defines a sheaf F2 on C̃2 × C such that

EL,2| �C2×C −−−→ A2| �C2×C ⊗F2 −−−→ 0� �
EL,1| �C1×C −−−→ A1| �C1×C ⊗F1 −−−→ 0

,

where we identify C̃2 and C̃1 via the isomorphism ε2| �C2
. Since the cokernel of the

vertical maps is again O{�p1,�p2} � π∗ON , the exact same proof as above shows that

F2|{q}×C 
 OC(q) if q ∈ C̃2, q �= p̃1, p̃2, and F2|{�pi}×C 
 π∗ON for i = 1, 2.

We define EL,3 to be the kernel of the map (ε3, 1)∗EL,2 → (ε3, 1)∗(A2| �C2×C ⊗F2).

4.4 Relation between EL,3 and φL,3

Proposition 4.7. For every q ∈ C̃2, q �= p̃1, p̃2, φL,3|E3|q is a morphism, and it maps

E3|q isomorphically to P(Ext 1
C(L(−q),OC(q))).

Proof. We proved in section 4.1 that E3|q 
 P(Ext 1
C(L(−q),OC(q))), and there-

fore we need to show that under this identification, φL,3 is the identity map. The

proposition follows from proposition 4.8.

Proposition 4.8. The restriction of EL,3 to E3|q × C is the extension of π∗
CL(−q)

by OE3|q(1) �OC(q) that corresponds to the identity under the identification of this

extension space with Hom(Ext 1
C(L(−q),OC(q)),Ext 1

C(L(−q),OC(q))).

Proof. This proof is very similar to the proof of proposition 2.9. Let H ⊆ PL be a

linear hyperplane that contains q, does not contain p, and is transverse to the curve
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C at q (i.e., H does not contain TqC). Then H is isomorphic to its strict transform

in PL,2, which we shall still denote by H . It is clear that EL,2|H×C is EL|H×C , and

therefore it is an extension 0→ OH(1)→ EL,2|H×C → L→ 0 on H × C.

Let σ : H̃ → H be the blow-up of H at q, and let E ′ ⊆ H̃ be the exceptional

divisor. Then there exists a commutative diagram on H̃ × C:

0 0 0� � �
0 −−−→ σ∗OH(1)⊗O

�H(−E ′) −−−→ EL,3| �H×C −−−→ B3| �H×C −−−→ 0� � �
0 −−−→ σ∗OH(1) −−−→ (σ, 1)∗EL,2|H×C −−−→ L −−−→ 0� � �
0 −−−→ OE′×C −−−→ OE′ �OC(q) −−−→ OE′×{q} −−−→ 0� � �

0 0 0

,

where B3 is defined exactly in the same way we defined B1 and B2, and the columns

are exact because of lemma 3.15 8.

Let E ′H be the push-forward of (σ, 1)∗EL,2|H×C via σ∗OH(1) ↪→ σ∗OH(1)�OC(q):

0 −−−→ σ∗OH(1) −−−→ (σ, 1)∗EL,2|H×C −−−→ L −−−→ 0� � ||

0 −−−→ σ∗OH(1) �OC(q) −−−→ E ′H −−−→ L −−−→ 0

. (4.2)

Then the restriction of E ′H to E ′ × C splits. Indeed, σ∗OH(1)|E′ 
 OE′ , and since

Ext 1
E′×C(L,OC(q)) 
 H0(E ′,OE′) ⊗ Ext 1

C(L,OC(q)) by lemma B.1, we see that

E ′H |E′×C splits as long as E ′H |{x}×C splits for some x ∈ E ′. Resctricting the diagram

(4.2) above to {x} × C for any x ∈ E ′, we see that E ′H |{x}×C is the trivial extension

ψq(EL|{q}×C).

8In lemma 3.15, replace Y with H̃, and E2 ⊆ PL,2 with E3 ⊆ PL,3.
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Therefore, there exists a surjective map E ′H → OE′ � OC(q), and we can define

E ′H,1 to be its kernel:

0−→E ′H,1−→E ′H−→OE′ �OC(q)−→0.

Then there exists the following commutative diagram on H̃ × C:

0 0� �
0 −→ (σ∗OH(1)⊗O

�H(−E ′)) �OC(q) −−−→ E ′H,1 −−−→ L −−−→ 0� � ||

0 −→ σ∗OH(1) �OC(q) −−−→ E ′H −−−→ L −−−→ 0� �
OE′ �OC(q) = OE′ �OC(q)� �

0 0

.

Moreover, we have the following commutative diagram on H̃ × C that relates E ′H
and E ′H,1 to EL,2|H×C and EL,3| �H×C :

0 0� �
0 −−−→ EL,3| �H×C

i1−−−→ (σ, 1)∗EL,2|H×C −−−→ OE′ �OC(q) −−−→ 0� � ||

0 −−−→ E ′H,1
i′1−−−→ E ′H −−−→ OE′ �OC(q) −−−→ 0� �

σ∗OH(1) � Cq = σ∗OH(1) � Cq� �
0 0

.

When we restrict the first two rows of this diagram to E ′ × C, and we look at the

image of the restrictions of i1 and i′1 to E ′ × C, we obtain the following diagram,

where the first row shows that the restriction of EL,3 to E3|q × C 
 E ′ × C is an
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extension of π∗
CL(−q) by OE3|q(1) �OC(q):

0 −−−→ OE′(1) �OC(q) −−−→ EL,3|E′×C
i1|E′×C−−−−→ L(−q) −−−→ 0

||
� �

0 −−−→ OE′(1) �OC(q) −−−→ E ′H,1|E′×C
i′1|E′×C−−−−→ L −−−→ 0

.

This shows that EL,3|E′×C is the pull-back of E ′H,1|E′×C via the pull-back of the

inclusion L(−q) ↪→ L from C to E ′ × C. Here is a summary of how to construct

EL,3|E′×C 9:

EL,2|H×C ∈ Ext 1
H×C(L,OH(1))

↓ ↓

(σ, 1)∗EL,2|H×C ∈ Ext 1
�H×C(L, σ∗OH(1))

↓ ↓

E ′H ∈ Ext 1
�H×C(L, σ∗OH(1) �OC(q))

↓ ↑

E ′H,1 ∈ Ext 1
�H×C(L, (σ∗OH(1)⊗O

�H(−E ′)) �OC(q))

↓ ↓

E ′H,1|E′×C ∈ Ext 1
E′×C(L,OE′(1) �OC(q))

↓ ↓

EL,3|E′×C ∈ Ext 1
E′×C(L(−q),OE′(1) �OC(q))

Using the isomorphisms

Ext 1
Y×C(L, F �G) 
 H0(Y, F )⊗ Ext 1

C(L,G)

of lemma B.1, we can understand what extension EL,3|E′×C is by tracking the corre-

sponding elements in these spaces.

Let v0, . . . , vn be a basis of Ext 1
C(L,OC) with Span {v1, . . . , vn} = 〈H〉,

and Span {v0, v1} = 〈TqC〉. Let v∗0 , . . . , v
∗
n be the corresponding dual basis in

9Note that one of the arrows goes in the other direction between the extension spaces.
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Ext 1
C(L,OC)∗, with v∗1, . . . , v

∗
n a basis of 〈H〉∗ 
 H0(H,OH(1)). Then EL,2|H×C

corresponds to the element

n∑
i=1

v∗i ⊗ vi ∈ H0(H,OH(1))⊗ Ext 1
C(L,OC).

We have the following diagram, where ψ−q is the natural linear homomorphism

Ext 1
C(L,OC(q))→ Ext 1

C(L(−q),OC(q)) 10:

EL,2|H×C ←→
n∑
i=1

v∗i ⊗ vi ∈ H0(H,OH(1))⊗ Ext 1
C(L,OC)

↓ ↓ ↓

(σ, 1)∗EL,2 ←→
n∑
i=1

v∗i ⊗ vi ∈ H0(H̃, σ∗OH(1))⊗ Ext 1
C(L,OC)

↓ ↓ ↓

E ′H ←→
n∑
i=2

v∗i ⊗ ψq(vi) ∈ H0(H̃, σ∗OH(1))⊗ Ext 1
C(L,OC(q))

↓ ↓ ↑

H0(H̃, σ∗OH(1)⊗O
�H(−E ′))

E ′H,1 ←→
n∑
i=2

v∗i ⊗ ψq(vi) ∈ ⊗

Ext 1
C(L,OC(q))

↓ ↓ ↓

E ′H,1|E′×C ←→
n∑
i=2

w∗
i ⊗ ψq(vi) ∈ H0(E ′,OE′(1))⊗ Ext 1

C(L,OC(q))

↓ ↓ ↓

EL,3|E′×C ←→
n∑
i=2

w∗
i ⊗ wi ∈ H0(E ′,OE′(1))⊗ Ext 1

C(L(−q),OC(q))

,

where, for 2 ≤ i ≤ n, wi = ψ−q(ψq(vi)). Therefore, EL,3 corresponds to the identity

in Hom(Ext 1
C(L(−q),OC(q)),Ext 1

C(L(−q),OC(q))), as claimed.

We now prove that φL,3|�(T
�pi

(E2|pi))
factors through the canonical isomorphism

P(T
�pi
(E2|pi

))
�→ P(Imψ) described in section 4.1.

10Note that ψq(v1) = 0 and ker(ψ−q ◦ ψq) = Span {v0, v1}.
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Proposition 4.9. For i ∈ {1, 2}, the extension

EL,3|�(N{�pi}/E2|pi
)×C ∈ Ext 1

�(N{�pi}/E2|pi
)×C(L⊗ (π∗ON)∗,O�(N{�pi}/E2|pi

)(1) � π∗ON )

corresponds to the inclusion in Hom (Imψ,Ext 1
C(L ⊗ (π∗ON )∗, π∗ON )) under the

canonical identification N{�pi}/E2|pi

 Imψ.

Proof. Let i ∈ {1, 2}. We already saw in chapter 3 that EL,2|E2|pi×C induces the

linear map given by projection from p̃i, i.e., it corresponds to a linear homomorphism

NL1/�L,1
|pi
→ Ext 1

C(L⊗ (π∗ON )∗, π∗ON) of kernel 〈p̃i〉 and image Imψ (lemma B.1).

Therefore, we can find a basis w1, . . . , wn of NL1/�L,1
|pi

and a basis v0, . . . , vn of

Ext 1
C(L ⊗ (π∗ON )∗, π∗ON) such that 〈p̃i〉 = Span {w1}, Imψ = Span {v2, . . . , vn},

and Span {w1, wj} maps to Span {vj} for every 2 ≤ j ≤ n under the homomorphism

corresponding to EL,2|E2|pi×C . In particular, this sheaf corresponds to
∑n

j=2w
∗
j ⊗ vj

in H0(E2|pi
,OE2|pi

(1))⊗ Ext 1
C(L⊗ (π∗ON)∗, π∗ON ).

To simplify the notation, let us denote E2|pi
by X and its blow-up at p̃i by

σ : X̃ → X, with E ′ the exceptional divisor. Then there exists a short exact sequence

0−→EL,3| �X×C−→(σ, 1)∗EL,2|X×C−→OE′ � π∗ON−→0,

obtained by restricting the short exact sequence defining EL,3 to X̃ × C. It stays

exact because of lemma 3.15.

There exists the following commutative diagram on X̃ × C
0 0� �

0 −→ A� π∗ON −−−→ EL,3| �X×C −−−→ L⊗ (π∗ON )∗ −−−→ 0� � ||

0 −→ σ∗OX(1) � π∗ON −−−→ (σ, 1)∗EL,2|X×C −−−→ L⊗ (π∗ON )∗ −−−→ 0� �
OE′ � π∗ON = OE′ � π∗ON� �

0 0

,
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where A = σ∗OX(1)⊗O
�X(−E ′). If we restrict the first row to E ′ × C, we obtain a

short exact sequence

0−→OE′(1) � π∗ON−→EL,3|E′×C−→L⊗ (π∗ON )∗−→0.

Remember that E ′ is P(N{�pi}/E2|pi
). The following diagram, where we denoted

Ext 1
C(L ⊗ (π∗ON )∗, π∗ON) by V to simplify the notation, illustrates the steps we

took in finding EL,3|E′×C :

EL,2|X×C ←→
n∑
j=2

w∗
j ⊗ vj ∈ H0(X,OX(1))⊗ V

↓ ↓ ↓

(σ, 1)∗EL,2|X×C ←→
n∑
j=2

w∗
j ⊗ vj ∈ H0(X̃, σ∗OX(1))⊗ V

↓ ↓ ↑

EL,3| �X×C ←→
n∑
j=2

w∗
j ⊗ vj ∈ H0(X̃,A)⊗ V

↓ ↓ ↓

EL,3|E′×C ←→
n∑
j=2

v∗j ⊗ vj ∈ H0(E ′,OE′(1))⊗ V

.

Therefore, EL,3|E′×C corresponds to the inclusion Imψ ↪→ Ext 1
C(L⊗(π∗ON )∗, π∗ON ),

as claimed.

Let l ∈ L1, l �= p1, p2, and let Yl := sEl
(L1), where sEl

is the section of E2 → L1

defined in section 4.2. Remember that we denoted by yl,i the only point of intersection

of the strict transform Ỹl of Yl with E3|�pi
(i = 1, 2).

Proposition 4.10. The restriction of EL,3 to Ỹl × C is a non-zero element of

Ext 1
�Yl×C(L ⊗ (π∗ON ), π∗ON ) 
 H0(Ỹl,O�Yl

) ⊗ Ext 1
C(L ⊗ (π∗ON ), π∗ON ), where Ỹl

is the strict transform of Yl in PL,3. In particular EL,3|{yl,i}×C 
 El for i = 1, 2.

For the proof, we need the following result.

Lemma 4.11. The restriction of O�L,2
(−E2) to L2 
 P1 is OL2(1).
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Proof. Remember that L2 = T̃pC ∩E2. It is isomorphic to L1 = T̃pC ∩E1 via ε2,

and it is therefore the exceptional divisor of the blow-up of TpC at p. Therefore,

O�L,2
(−E2)|L2 = (O�L,2

(−E2)|�TpC
)|L2 = O

�TpC
(−L2)|L2 = OL2(1).

Proof (of proposition 4.10). We saw in lemma 3.13 that there exists a short exact

sequence 0→ (ε∗2OL1(1)⊗OE2(−E2)) � π∗ON → EL,2|E2×C → L⊗ (π∗ON )∗ → 0 on

E2 × C. If we restrict it to Yl × C, we obtain the short exact sequence

0−→OYl
(2) � π∗ON−→EL,2|Yl×C−→L⊗ (π∗ON)∗−→0,

because OE2(−E2)|Yl
= OYl

(1) since Yl and L2 are in the same linear system11.

Therefore, there exists the following commutative diagram on Ỹl × C 
 Yl × C:

0 0� �
0 −→ O

�Yl
� π∗ON −−−→ EL,3|�Yl×C −−−→ L⊗ (π∗ON)∗ −−−→ 0� � ||

0 −→ OYl
(2) � π∗ON −−−→ EL,2|Yl×C −−−→ L⊗ (π∗ON)∗ −−−→ 0� �

O{�p1,�p2} � π∗ON = O{�p1,�p2} � π∗ON� �
0 0

,

and EL,3|�Yl×C is an element of Ext 1
�Yl×C(L⊗(π∗ON), π∗ON). Since this is isomorphic to

H0(Ỹl,O�Yl
)⊗Ext 1

C(L⊗ (π∗ON ), π∗ON ) by lemma B.1, EL,3|�Yl×C is non-zero because

we know that EL,3|{y}×C does not split for every y ∈ Ỹl, y �= yl,1, yl,2.

11Each section of E2 → L1 corresponds to a line subbundle of NL1/�L,1
, which we saw

to be isomorphic to O ⊕OL1(−1), with O := OL1(1) ⊕ · · · ⊕ OL1(1). Both Yl and L2 are

images of sections of E2 → L1 of the form OL1(−1)
(α,id)−→O ⊕OL1(−1), since they both do

not intersect P(O) = P(NL1/E1
).
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4.5 Where to go next

As mentioned in chapter 2, the next step would be to study the fibers of the morphism

φL,3, and then to use the morphism to study the moduli space SUC(2, L). The most

interesting case would probably be when g = 2, since then dimSUC(2, L) = 3, and

dim PL = degL.

Next, since our rational maps factor through projective spaces like P(H ′) and

P(Ext 1
C(L(−q),OC(q))) when restricted to fibers of the exceptional divisors, we can

use our construction to study other different compactifications of SUC(2, L). We

are particularly interested in the following two other important compactifications of

this moduli space: The one introduced by Bhosle in [Bho92], which we used in this

work, and another one introduced by Gieseker in [Gie84]. Bhosle’s construction uses

generalized parabolic bundles, and Gieseker’s uses sheaves on semi-stable models of

the curve.

Finally, we would like to find a good way to generalize this construction to higher

degree. The indeterminancy locus is not as easy to calculate after the first blow-up,

even when degL = 5.



Chapter 5

The base locus of the generalized theta divisor

5.1 A brief survey

Let C be a smooth irreducible projective curve of genus g ≥ 2. For a positive integer

r and an integer d, let UC(r, d) be the moduli space of (S-equivalence classes of)

semi-stable1 vector bundles of rank r and degree d. If L is a line bundle on C,

let SUC(r, L) be the moduli space of (S-equivalence classes of) semi-stable vector

bundles of rank r and determinant L. If L1, L2 are two line bundles of degree d,

then2

SUC(r, L1) 
 SUC(r, L2).

Therefore, we shall denote this moduli space also by SUC(r, d) when we do not want

to emphasize which line bundle has been fixed as determinant.

Also, if d1 ≡ d2 (mod r), then3

SUC(r, d1) 
 SUC(r, d2) and UC(r, d1) 
 UC(r, d2).

Therefore, for each r, it is enough to consider degrees d such that 0 ≤ d < r.

1A vector bundle E of rank r and degree d is called semi-stable if, for every subbundle
F ⊆ E, r degF ≤ drkF .

2The isomorphism is E �→ E ⊗ L, where L is a line bundle such that Lr 
 L−1
1 ⊗ L2.

3The isomorphisms are both given by E �→ E⊗L, where L is an appropriate line bundle
of degree (d2 − d1)/r.
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Finally, if d1 + d2 = r, 0 < d1, d2 < r, then −d1 ≡ d2 (mod r), and

SUC(r, d1)
�−→ SUC(r,−d1) 
 SUC(r, d2)

UC(r, d1)
�−→ UC(r,−d1) 
 UC(r, d2)

E �→ E∗

and it is enough to consider degrees d such that 0 ≤ d ≤ r/2.

The Picard group of SUC(r, d) is generated by one ample line bundle (see

[DreNar89]), which we shall denote by Lr,d. If Θr,d is a divisor on SUC(r, d) such

that Lr,d = OSUC(r,d)(Θr,d), then Θr,d is called a generalized theta divisor. We are

interested in the base locus of its linear system.

If d = 0, a point in the base locus corresponds to a semi-stable vector bundle E

with integral slope4 µ(E) ≤ g − 1 such that H0(E ⊗ L) �= 0 for every line bundle L

of degree 0 5. This was proved by Beauville in [Bea88] for r = 2 and by Beauville,

Narasimhan and Ramanan in [BeaNarRam89] in general. Raynaud studied such

bundles in [Ray82], and Beauville summarizes his results as follows in [Bea95].

Theorem (Raynaud). (a) For r = 2, the linear system |Θ2,0| has no base points.

(b) For r = 3, |Θ3,0| has no base points if g = 2, or if g ≥ 3 and C is generic.

(c) Let n be an integer ≥ 2 dividing g. For r = ng, the linear system |Θr,0| has

base points.

Using the bundles constructed by Raynaud, we improve the result in part (c) of

his theorem.

Theorem 5.1. If r ≥ 2g, then |Θr,0| has base points. Moreover, the dimension of

its base locus is at least (r − 2g)2(g − 1) + 1 6.

4The slope of a vector bundle E is defined as µ(E) = degE/rkE.
5In particular, then, µ(E) ≥ 0.
6Note that n2(g − 1) + 1 is the dimension of UC(n, 0).
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We also prove that, for some covering curves, the base locus of |Θr,0| is non-empty

for ranks smaller than 2g.

Proposition 5.2. Let C̃ → C be an n : 1 covering of smooth irreducible projective

curves of genus g̃ and g, respectively. If s is a positive integer such that7

⌈ g
n

⌉
≥

⌈g
s

⌉
+ 1,

then there exists a vector bundle in the base locus of |Θ̃sg,0|, where Θ̃sg,0 is a gener-

alized theta divisor in SU
�C(sg, 0).

Remark. Note that the condition �g/n� ≥ �g/s�+ 1 implies that �g/n� ≥ 2. There-

fore, g/n > 1, i.e., n < g.

Corollary 5.3. For every covering as above with 1 < n < g, there exists an s

satisfying the condition above such that sg < 2�g, unless g = 4 and n = 2.

About stability of the vector bundles in the base locus, note that all of the vector

bundles constructed in the proof of theorem 5.1 are semi-stable and not stable, but

we prove the following8

Proposition 5.4. If r0 = min{r ∈ N | |Θr,0| has base points}, then every vector

bundle in the base locus of |Θr0,0| is stable.

To our knowledge, no stable bundles have been proved to exist in the base locus

of |Θr,0| if r > r0.

If d = 1, we have the following result proved by Brivio and Verra in [BriVer99]

for r = 2 and [BriVer02] in general.

Theorem (Brivio,Verra). The line bundle Lr,1 is very ample for every positive r.

7For a real number m, we denote by �m� the smallest integer ≥ m.
8This is probably a known fact to the experts in the area, but we could not find it in

the literature.
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In particular, the linear systems |Θr,1| are base-point-free.

To our knowledge, nothing is known about the base locus of the linear systems

|Θr,d| if 2 ≤ d ≤ r/2.

5.2 Proof of theorem 5.1

In this section, we shall set d = 0, and drop the degree from the notation of the

generalized theta divisor explained above. Also, since all of the moduli spaces of the

form SUC(r, L) for some line bundle L of degree 0 are isomorphic, we shall assume

that L = OC .

The proof of theorem 5.1 can be divided in two parts. We first use the bundles

constructed by Raynaud in [Ray82] to show that the base locus of |Θr| is always

non-empty if r = 2g, and then we prove the following lemma.

Lemma 5.5. If E is a vector bundle in the base locus of |Θr|, then, for every

F ∈ UC(n, 0), the vector bundles of the form (E ⊕F )⊗L (with L ∈ Pic0(C)) which

have trivial determinant are in the base locus of |Θr+n|. Moreover, the space of all

such bundles has dimension n2(g − 1) + 1.

As we saw above, Beauville says in [Bea95] that the linear system |Θr|has base

points for r = ng where n is an integer dividing g. What Raynaud actually constructs

is, for every n, a semi-stable vector bundle of rank ng and slope g/n such that

H0(E ⊗ L) �= 0 for every line bundle L of degree 0. Then, for g, n ≥ 2, we have

g/n ≤ g − 1.

If g is even, we are then done because n = 2 divides g, and we obtain base points

for r = ng = 2g. If g is odd, it is actually possible to construct, using Raynaud’s

bundle, another vector bundle with integral slope and the same property. This is

actually proved by Raynaud’s himself9:

9For our purposes we can say that a semi-stable vector bundle has the property (∗) if
0 ≤ µ(E) ≤ g − 1 and H0(E ⊗ L) �= 0 for every line bundle L of degree 0.
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Proposition ([Ray82, 1.7.2]). Let r0 be an integer. Every semi-stable vector

bundle on C of rank r ≤ r0 satisfies (∗) if and only if every stable vector bundle

of slope g − 1 and rank ≤ r0 does.

We shall prove this stronger statement.

Proposition 5.6. If E is a semi-stable vector bundle of slope µ(E) ≤ g−1 such that

H0(E ⊗ L) �= 0 for every line bundle L of degree 0, then there exists a semi-stable

vector bundle E ′ of rank ≤ rkE and slope �µ(E)�(≤ g − 1) with the same property.

Proof. If µ(E) is an integer, we can take E ′ = E. If µ(E) < �µ(E)�, let E1 be

an elementary transformation of E, i.e., 0 → E → E1 → Cp → 0, for some p ∈ C.

Clearly, rkE1 = rkE, and H0(E1 ⊗ L) ⊇ H0(E ⊗ L) �= 0 for every L ∈ Pic0(C).

Assume that E1 is not semi-stable. Let F1 ⊆ E1 be a subbundle of maximal

slope. Then both F1 and E1/F1 are semi-stable vector bundles. Moreover, the short

exact sequence 0 → F1 → E1 → E1/F1 → 0 induces, for every L ∈ Pic0(C), a long

exact sequence of cohomology

0−→H0(F1 ⊗ L)−→H0(E1 ⊗ L)−→H0((E1/F1)⊗ L)−→· · ·

which implies, by semi-continuity, that either H0(F1⊗L) �= 0 for every L ∈ Pic0(C)

or H0((E1/F1)⊗ L) �= 0 for every L ∈ Pic0(C). Let G be the vector bundle (either

F1 or E1/F1) for which this is true.
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Let F = E ∩ F1. Since µ(F1) > µ(E1) > µ(E), and E is semi-stable, F �= F1,

and we obtain the following commutative diagram

0 0� �
0 −−−→ F −−−→ F1 −−−→ Cp −−−→ 0� � ||

0 −−−→ E −−−→ E1 −−−→ Cp −−−→ 0� �
E/F = E1/F1� �

0 0

.

Since E is semi-stable, µ(F ) ≤ µ(E) < �µ(E)�, and therefore µ(F1) ≤ �µ(E)�. Also,

µ(E) ≤ µ(E/F ) = µ(E1/F1) < µ(E1) ≤ �µ(E)�.

To summarize, we proved that, if E1 is not semi-stable, then there exists a vector

bundle G of rank rkG < rkE1 with µ(E) ≤ µ(G) ≤ �µ(E)�, and H0(G⊗ L) �= 0 for

every L ∈ Pic0(C). If E1 is semi-stable, then we produced a vector bundle of rank

rkE with µ(E) < µ(E1) ≤ �µ(E)� with the same property. If E1 is semi-stable, let

E ′
1 = E1. Otherwise, let E ′

1 = G.

We can now repeat the process, starting with E ′
1 as E, and we can produce semi-

stable vector bundles E ′
i such that µ(E ′

i) ≤ �µ(E)�, and H0(E ′
i ⊗ L) �= 0 for every

L ∈ Pic0(C). The process ends (i.e., µ(E ′
i) = �µ(E)� for some i) after a finite number

of steps, because at each step either the rank decreases or the degree increases, and

rkE ′
i [resp. degE ′

i] is bounded below by 1 [resp. above by rkE ′
i · �µ(E)�].

We shall now prove lemma 5.5.

Proof (of lemma 5.5). Let E be a vector bundle in the base locus of |Θr|. There

are two special cases for which the proof is simpler: when n = 1 and when E is

stable. We shall explain how these two cases work as we go through the proof.
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Consider the set of extensions 0→ E⊗LF → WF → F → 0, where F ∈ UC(n, 0),

and LF is a line bundle such that LrF 
 detF ∗ 10. Let us show that WF is a vector

bundle of rank r + n that is in the base locus of |Θr+n|.

First of all, WF is semi-stable (see [LeP97, 5.3.5]). Also, note that, for a fixed

F , all extensions of F by E ⊗ LF are S-equivalent to (E ⊗ LF ) ⊕ F , so it suffices

to consider WF = (E ⊗ LF )⊕ F . Moreover, WF contains E ⊗ LF , and so, for every

L ∈ Picg−1C, H0(E ⊗LF ⊗L) �= 0⇒ H0(WF ⊗L) �= 0, since deg(LF ⊗ L) = g − 1,

and E is in the base locus of |Θr|. And WF has also trivial determinant; indeed,

detWF 
 det(E ⊗ LF )⊗ detF 
 detE ⊗ LrF ⊗ detF 
 detE 
 OC .

The idea for the rest of the proof is that at most a finite number of WF ’s have

the same S-equivalence class, and so the dimension of the vector bundles in the base

locus of |Θr+n| that we constructed is dimU(n, 0) = n2(g − 1) + 1.

Let ϕ : Pic0C × U(n, 0) → U(r + n, 0) be the morphism (L, F ) �→ (E ⊗ L) ⊕ F.

There is a natural embedding SUC(r + n,OC) ⊆ U(r + n, 0), and we claim that11

Claim. Let

B = ϕ(Pic0C × U(n, 0)) ∩ SUC(r + n,OC).

Then dimB = n2(g − 1) + 1, and B is contained in the base locus of |Θr+n|.

Proof. It is clear that B is contained in the base locus of |Θr+n|. The preimage of

SUC(r + n,OC) under ϕ is A = {(L, F ) ∈ Pic0C × U(n, 0) | Lr 
 detF ∗}, and

B = ϕ(A).

10If n = 1, the proof is a little bit simpler; we do not need to use LF , since detF ∗ is just
F−1. We can just use the set of extensions 0→ E ⊗ F−1 →WF → F r → 0, with F a line
bundle of degree 0.

11For n = 1, we use the map ϕ : Pic0C → SUC(r+1,OC) given by F �→ (E⊗F−1)⊕F r.
If we then let B = ϕ(Pic0C) ⊆ SUC(r + 1,OC), the claim is that B is contained in the
base locus of |Θr+1| and dimB = g.
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The claim now is that dimA = dimU(n, 0) and the general fiber of ϕ is finite.

We shall assume in what follows that F is a stable vector bundle; this does not effect

the computation since a generic element of U(n, 0) is stable.

Consider the second projection A → U(n, 0): it is surjective because for every

stable F ∈ U(n, 0) there exists L ∈ Pic0C such that Lr 
 detF ∗. Moreover, there

are only a finite number of them, and this proves the claim about the dimension.

Let ⊕ki=1Gr(E)i be the associated grading of E (see [LeP97, section 5.3]). Since

F is a stable bundle, the associated grading for ϕ(L, F ) is

k⊕
i=1

(Gr(E)i ⊗ L)⊕ F.

Let H ∈ B; it is of the form ϕ(L, F ) = (E ⊗ L) ⊕ F for some (L, F ) ∈ A. We

shall prove that there are only a finite number of (L′, F ′) ∈ A such that (E⊗L)⊕F

is S-equivalent to (E ⊗L′)⊕F ′, i.e., there exists a permutation σ ∈ Sk+1 such that,

for every i ∈ {1, . . . , k + 1}, Gr(ϕ(L, F ))i 
 Gr(ϕ(L′, F ′))σ(i)
12.

There are two cases13.

Case I: k ≥ 2. Then there exist at least one i ∈ {1, . . . , k} such that σ(i) is also

in {1, . . . , k}. Then, setting Gri = Gr(E)i for i = 1, . . . , k,

Gri ⊗ L 
 Grσ(i) ⊗ L′ ⇒ det(Gri ⊗ L) 
 det(Grσ(i) ⊗ L′)

⇒ det Gri ⊗ Ln 
 det Grσ(i) ⊗ (L′)n

⇒ (L′)n 
 det Gri ⊗ Ln ⊗ det Gr−1
σ(i),

where n = rkGri = rkGrσ(i), and there exist only a finite number of L′ with this

property. We shall show now that F ′ is uniquely determined. There are two subcases.

Subcase I: σ(k + 1) = k + 1. Then F ′ 
 F .

12For the case n = 1, the associated grading for H is
⊕k

i=1(Gr(E)i ⊗ F−1)⊕ F r.
13When E is stable, we only have the second case. See the note after the proof.
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Subcase II: σ(j) = k + 1 for some j �= k + 1. Then F ′ 
 Grj ⊗ L 14.

Case II: k = 1, i.e., E is stable. If σ = idS2, we use the same technique as before.

If σ(1) = 2 and σ(2) = 1, then F ′ is uniquely determined by E ⊗ L 
 F ′, and

E ⊗ L′ 
 F ⇒ det(E ⊗ L′) 
 detF

⇒ detE ⊗ (L′)r 
 detF

⇒ (L′)r 
 detE−1 ⊗ detF ;

again there are only a finite number of L′ that satisfy this property15.

Note that we could assume at the beginning of the proof that E is stable. Indeed,

assume for a second that we prove that, for E stable in the base locus of |Θr|, we

can costruct a family of semi-stable vector bundles in the base locus of |Θr+n| of

dimension n2(g−1)+1. As we shall prove in proposition 5.4, if the base locus of |Θr| is

not empty, there exist a stable vector bundle in the base locus of |Θr′| for some r′ ≤ r,

and doing the construction using the stable bundle, we would find a family of vector

bundles in the base locus of |Θr+n| of dimension (r+n−r′)2(g−1)+1 ≥ n2(g−1)+1,

which is what we want to prove.

We wrote the proof for the general case because many of the concrete examples

that have been provided so far of vector bundles in the base locus are examples of

vector bundles that are not known to be stable. The construction can be used for

those vector bundles to construct some other concrete vector bundles of higher rank

in the base locus of the generalized theta divisor.

We shall now end the section with the proof of proposition 5.4.

14For n = 1: Case I: k ≥ 2. Then there exist at least one i ∈ {1, . . . , k} such that
σ(i) ∈ {1, . . . , k}. Then Gri⊗F−1 
 Grσ(i)⊗(F ′)−1 ⇒ (F ′)n 
 detGr−1

i ⊗Fn⊗detGrσ(i),
where n = rkGri = rkGrσ(i), and there exist only a finite number of F ′ with this property.

15For n = 1: Case II: k = 1, i.e., E is stable. Since E is in the base locus of |Θr|, it
cannot be a line bundle; hence, σ = id. Then E ⊗ F−1 
 E ⊗ (F ′)−1 implies (F ′)r 
 F r,
and there exist again only a finite number of F ′ with this property.
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Proof. Let E be a vector bundle in the base locus of |Θr0|; E is in the same equiv-

alence class of its associated grading ⊕ki=1Gri. Since H0(E ⊗ L) �= 0 if and only if

there exists an i such that H0(Gri ⊗ L) �= 0, we see by semicontinuity that there

exists i such that Gri is in the base locus of |ΘrkGri
|. By the minimality of r0, k = 1,

and E is stable.

5.3 Filtrations of the Base Locus

We introduce here subspaces of |Θr| that we shall need to prove proposition 5.2.

Definition. For every n ∈ N, let

|Θr|n = {E ∈ SUC(r,OC) | ∀ F ∈ UC(n, n(g − 1)) H0(E ⊗ F ) �= 0}.

Note that |Θr|1 is the base locus of |Θr|.

Lemma 5.7. If m|n, then |Θr|n ⊆ |Θr|m. In particular, every |Θr|n is contained in

the base locus of the generalized theta divisor.

Remark. For every n ∈ N, we have a filtration of |Θr|1:

|Θr|1 ⊇ |Θr|n ⊇ |Θr|2n ⊇ |Θr|3n ⊇ · · ·

Proof. Suppose that n = lm, and let E ∈ |Θr|n. Then, if F ∈ UC(m,m(g − 1)),

⊕lF ∈ UC(n, n(g − 1)), and H0
(
E ⊗

(
⊕lF

))
�= 0⇒ H0(E ⊗ F ) �= 0.

The main result is the following.

Proposition 5.8. Let C̃ → C be an n : 1 covering of smooth irreducible projective

curves of genus g̃ and g ≥ 2, respectively. If E ∈ |Θr|n, then π∗E ∈ |Θ̃r|1.

Remarks. (1) It will be clear from the proof that the assumption E ∈ |Θr|n is strong.

What is really needed is that H0(C,E ⊗ F ) �= 0 for every F in the image of the

rational map π∗ : Pic�g−1C̃ → UC(n, n(g − 1)).
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(2) From [BeaNarRam89], we know that there exists and n : 1 covering for which

π∗ is dominant, and in that case we really need E ∈ |Θr|n.

Proof. This is clear since we know that H0(C̃, π∗E⊗L) �= 0⇔ H0(C,E⊗π∗L) �= 0

by the projection formula. If L is a line bundle of degree g̃ − 1, then π∗L is a vector

bundle of rank n and degree n(g−1). If π∗L is semi-stable, then H0(C,E⊗π∗L) �= 0

because E ∈ |Θr|n. If π∗L is not semi-stable, then it has a subbundle F of bigger

slope. This means that χ(E⊗F ) > 0, and soH0(C,E⊗π∗L) ⊇ H0(C,E⊗F ) �= 0.

5.4 Proof of proposition 5.2

Proof (of proposition 5.2). Since Raynaud showed in [Ray82] the existence of a semi-

stable vector bundle of rank sg and slope g/s with has sections when tensored by

any L ∈ Pic0(C), by proposition 5.6, there exists a semi-stable vector bundle E ′

of rank sg and slope �g/s� such that H0(E ′ ⊗ L) �= 0 for every L ∈ Pic0(C). By

tensoring with a suitable line bundle of degree −�g/s�, we can construct a vector

bundle E ∈ SUC(sg) such that H0(E ⊗ L) �= 0 for every L ∈ Pic	g/s
(C).

Let F ∈ UC(n, n(g − 1)), and let L be a line subbundle of F of maximal degree.

Mukai and Sakai proved in [MukSak85] that µ(F/L)− µ(L) ≤ g. Since

n(g − 1)− degL

n− 1
− degL ≤ g ⇐⇒ −n− n degL ≤ −g ⇐⇒ degL ≥ g

n
− 1,

this implies that every such F has a line subbundle L of degree ≥ �g/s�, and therefore

H0(E ⊗ F ) ⊇ H0(E ⊗ L) �= 0. Since this is true for every F ∈ UC(n, n(g − 1)),

E ∈ |Θsg |n. The result follows from proposition 5.8.
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Here is a table of values of s for small g:

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

g = 3 3

g = 4 4 4

g = 5 3 5 5

g = 6 3 6 6 6

g = 7 3 4 7 7 7

g = 8 3 4 8 8 8 8

g = 9 3 5 5 9 9 9 9

g = 10 3 4 5 10 10 10 10 10

For example, if g = 3, n = 2, |Θ27|2 in non-empty, and so |Θ̃27|1 is non-empty,

while g̃ ≥ 5, and 2�g ≥ 32.

For every n, if g = n2 + 1, then |Θ(n+1)g |n is non-empty, and so |Θ̃(n+1)g |1 is

non-empty, while g̃ ≥ n3 + 1, and 2�g ≥ 2n
3+1 ≥ (n+ 1)g; indeed,

2n
3+1 = 2 · (2n)n2 ≥ (n+ 1) · (n+ 1)n

2

= (n+ 1)g.

For every n, if g = n + 1, then |Θ(n+1)g |n is non-empty, and so |Θ̃(n+1)g |1 is

non-empty, while g̃ ≥ n2 + 1, and 2�g ≥ 2n
2+1 ≥ (n+ 1)g; indeed,

2n
2+1 = 2 · (2n)n ≥ (n+ 1) · (n+ 1)n = (n+ 1)g.



Chapter 6

The strange duality conjecture

6.1 Formulation of the conjecture

Let r be a positive integer, let d be an integer such that 0 ≤ d ≤ r/2, and let h be

their greatest common divisor. Then, for every F ∈ UC(r/h, (r(g − 1)− d)/h), it is

possible to define a divisor ΘF in SUC(r, d) [resp. UC(r, d)] as the closure of

{E ∈ SUC(r, d) [resp. UC(r, d)] | E is stable and H0(E ⊗ F ) �= 0}.

The strange duality conjecture, inspired by physicists in the case d = 0 (see

[Bea95, section 8]) and extended by Donagi and Tu to every degree in [DonTu94],

states that, if h = gcd(r, d), then for every F ∈ UC(r/h, d/h) and every positive

integer k,

H0(SUC(r, (detF )⊗h), kΘr,d)
∗ 
 H0(UC(rk/h, (r(g − 1)− d)k/h), hΘF ).

In particular, if k = 1, the strange duality conjecture would give a commutative

diagram

SUC(r, d) −−−→ |Θr,d|∗

↘ D
��

|hΘF |

where D(E) = ΘE, and the base locus of |Θr,d| would be isomorphic to

{E ∈ SUC(r, d) | H0(E ⊗ F ) �= 0 ∀F ∈ UC(r/h, (r(g − 1)− d)/h)}.
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6.2 Improvements on the evidence

We want to contribute here to the evidence in favor of the strange duality conjecture,

to add to the evidence in [Bea95] and [DonTu94].

Lemma 6.1. For every F ∈ UC(r/h, d/h),

dimH0(SUC(r, (detF )⊗h), hΘr,d)
∗ = dimH0(UC(r, r(g − 1)− d), hΘF ).

I.e., the two vector spaces in the strange duality conjecture have the same dimension

when k = h.

Proof. Let L ∈ Picg−1(C), and consider the isomorphism

UC(r, r(g − 1)− d) �−→ UC(r, d)

E �→ E∗ ⊗ L
.

Now, E ∈ ΘF ⊆ UC(r, r(g−1)−d) if and only if H0(E⊗F ) �= 0. Since χ(E⊗F ) = 0,

this is equivalent to

H0((E ⊗ F )∗ ⊗ ωC)∗ 
 H1(E ⊗ F ) �= 0.

Therefore, under the isomorphism above, ΘF gets identified with ΘF ∗⊗ωC⊗L−1 .

Indeed, as we saw above

H0(E ⊗ F ) �= 0⇐⇒ H0((E∗ ⊗ L)⊗ (F ∗ ⊗ ωC ⊗ L−1)) �= 0.

Therefore, since deg(F ∗ ⊗ ωC ⊗ L−1) = − deg F + rkF (g − 1) = (r(g − 1) − d)/h,

and rk(F ∗ ⊗ ωC ⊗ L−1) = rkF = r/h, we obtain

dimH0(UC(r, r(g − 1)− d), hΘF ) = dimH0(UC(r, d), hΘF ∗⊗ωC⊗L−1),

and this is equal to

dimH0(SUC(r, d), hΘr,d)

by [DonTu94, Theorem 1].
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6.3 If the conjecture is true...

In the case d = 0, we proved in chapter 5 that, for every k < g, if s is a positive

integer such that ⌈g
k

⌉
≥

⌈g
s

⌉
+ 1,

then there exists a vector bundle E ∈ SUC(sg, 0) satisfying

H0(E ⊗ F ) �= 0 ∀F ∈ UC(k, k(g − 1)).

If the strange duality conjecture is true, then a corollary would be that, for every

k < g, the base locus of |kΘr,0| is non-empty for r = sg with s as above1.

In the case d = 1, Brivio and Verra’s theorem mentioned in chapter 5 would

imply that for every E ∈ UC(r, 1) there exists an F ∈ UC(r, r(g − 1)− 1) such that

H0(E ⊗ F ) = 0.

6.4 Where to go next

Our main goal is to relate the two parts of this work by using calculations on nodal

curves to prove statements about a general smooth curve. This has already been done

succesfully in many other situations, and we hope to use the techniques developed

in Part I to prove some of the open problems mentioned in Part II.

For example, we would like to prove the following conjecture.

Conjecture. If the base locus of |Θr,d| is empty for a curve of genus g, then it is

also empty for a generic curve of any genus ≥ g.

The proof would use an irreducible nodal curve of arithmetic genus g + 1 with

the normalization equal to the curve of genus g with the empty base locus of |Θr|.

We would like to show that the base locus for the nodal curve is also empty.

1There is a table at the end of chapter 5 with values of s for small g.
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When d = 0, we would also like to produce more examples of smooth curves

when the base locus of |Θr,0| is non-empty for some r < 2g, where g is the genus of

the curve, and find a better upper bound for

r0(g) := min{r ∈ Z+ | |Θr,0| is non-empty for all curves of genus g}.

This would give examples of morphisms of SUC(r, 0) into projective space. Note

that the conjecture above, together with lemma 5.5 would imply that r0(g) is non-

decreasing as a function of g.



Appendix A

Dimensions of extension spaces

Let C be an irreducible projective curve with one node p as singularity, and let N

be its normalization.

Remark. Let F and G be torsion-free coherent sheaves on C of rank 1.

(1) If F and G are line bundles on C, then

Ext 1
C(F,G) 
 H0(C, ωC ⊗ F ⊗G−1).

(2) If F is locally-free and G = π∗G for some line bundle G on N , then

Ext 1
C(F, π∗G) 
 H1(N, π∗F−1 ⊗ G) 
 Ext 1

N(π∗F,G).

(3) If F = π∗F for some line bundle F on N , and G is locally-free, then

Ext 1
C(π∗F , G) 
 H0(N,F ⊗ π∗G−1 ⊗ π∗ωC)∗.

To compute the dimension of these cohomology spaces we use the Riemann-Roch

theorem on C or N .

Proof. The isomorphisms follow from the projection formula (see [Har77, ex.

II.5.1(d)]) and standard results on extension spaces (see [Har77, III.6.3, III.6.7,

III.7.6]).

The following lemma gives a formula for the dimensions needed in lemma 1.4.

Lemma A.1. Let L be a line bundle on C, and let F be a torsion-free coherent sheaf

of rank 1 on C containing OC. If degF < degL, then

dim(ker(Ext 1
C(L,OC)

ψF→ Ext 1
C(L, F ))) = degF.
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Proof. There exists a short exact sequence 0 → OC → F → S → 0, where S is

a skyscreaper sheaf with degree equal to degF . Consider the long exact sequence

associated to the functor Hom C(L,−):

0−→Hom C(L, S)−→Ext 1
C(L,OC)

ψF−→Ext 1
C(L, F )−→Ext 1

C(L, S)−→0,

where we started the sequence with Hom C(L, F ) which is 0 because degL > degF ,

and we ended the sequence with Ext 2
C(L,OC) 
 H2(C,L−1) which is also 0 because

L−1 is locally-free and we are on a curve.

Therefore, the dimension of the kernel of ψF is the dimension of Hom C(L, S),

which is equal to degF , being S a skyscreaper sheaf of that degree.

A similar lemma gives the dimension of the kernel of pull-back homomorphisms.

Lemma A.2. Let L be a line bundle on C, and let F be a torsion-free coherent sheaf

of rank 1 on C containing OC. If degF < degL, then

dim(ker(Ext 1
C(L,OC)

ψF∗→ Ext 1
C(L⊗ F ∗,OC))) = degF.

Proof. There exists a short exact sequence 0→ L⊗ F ∗ → L→ S → 0, where S

is a skyscreaper sheaf with degree equal to degF . Consider the long exact sequence

associated to the functor Hom C(−,OC):

0−→Ext 1
C(S,OC)−→Ext 1

C(L,OC)
ψF∗−→Ext 1

C(L⊗ F ∗,OC)−→0,

where the sequence starts with Hom C(L⊗ F ∗,OC) = 0 (because deg(L⊗ F ∗) > 0),

and ends with Ext 2
C(S,OC) = 0.

Therefore, dim(kerψF ∗) equals the dimension of Ext 1
C(S,OC) 
 H0(C, S ⊗ ωC),

which is equal to degF , being S ⊗ ωC a skyscreaper sheaf of that degree.

The following lemma studies the natural linear homomorphism ψ that appears

in theorems 2.1, 3.1, and 4.1.
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Lemma A.3. Let ψ : Ext 1
C(L, π∗ON) → Ext 1

C(L ⊗ (π∗ON )∗, π∗ON ) be the natural

pull-back linear homomorphism defined by the inclusion L⊗ (π∗ON )∗ ↪→ L. Then

dim(kerψ) = dim(cokerψ) = 2 and kerψ 
 Ext 1
C(Cp, π∗ON).

Proof. Consider the short exact sequence 0 → L ⊗ (π∗ON )∗ → L → Cp → 0.

Apply the functor Hom C(−, π∗ON ), and and consider the long exact sequence of

cohomology:

0−→Hom C(Cp, π∗ON)−→Hom C(L, π∗ON )−→Hom C(L⊗ (π∗ON)∗, π∗ON )−→

−→Ext 1
C(Cp, π∗ON )−→Ext 1

C(L, π∗ON )
ψ−→Ext 1

C(L⊗ (π∗ON )∗, π∗ON)−→

−→Ext 2
C(Cp, π∗ON )−→Ext 2

C(L, π∗ON )−→Ext 2
C(L⊗ (π∗ON )∗, π∗ON)−→· · ·

Since degL ⊗ (π∗ON)∗ ≥ deg π∗ON , we have that Hom C(L⊗ (π∗ON)∗, π∗ON ) = 0.

Moreover, Ext 2
C(L, π∗ON ) 
 H2(C,L−1 ⊗ π∗ON) 
 H2(N, π∗L−1) is also 0, and

therefore,

kerψ 
 Ext 1
C(Cp, π∗ON ), cokerψ 
 Ext 2

C(Cp, π∗ON).

To calculate the dimensions of these spaces, start with the short exact sequence

0 → OC → π∗ON → Cp → 0, and consider the long exact sequence of cohomology

for the functor Hom C(Cp,−):

0−→Hom C(Cp,OC)−→Hom C(Cp, π∗ON)−→Hom C(Cp,Cp)−→

−→Ext 1
C(Cp,OC)−→Ext 1

C(Cp, π∗ON)−→Ext 1
C(Cp,Cp)−→

−→Ext 2
C(Cp,OC)−→Ext 2

C(Cp, π∗ON )−→Ext 2
C(Cp,Cp)−→· · ·

As soon as i ≥ 2, we get an isomorphism Ext iC(Cp, π∗ON ) 
 Ext iC(Cp,Cp), because

Ext iC(Cp,OC) = 0. Moreover, Hom C(Cp,OC) = Hom C(Cp, π∗ON ) = 0 because OC

and π∗ON are torsion-free, and Hom C(Cp,Cp) 
 Ext 1
C(Cp,OC) 
 C. Therefore,

∀ i ≥ 1, Ext iC(Cp, π∗ON ) 
 Ext iC(Cp,Cp).
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The lemma follows from lemma A.4.

Lemma A.4. For all i ≥ 1,

dim Ext iC(Cp,Cp) = 2.

Proof. Since the completion of an analytic neighborhood of p is the same as the

completion C[[x, y]]/(xy) of C[x, y]/(xy), it is enough to check this for the curve

Spec (C[x, y]/(xy)), and we shall do this with the help of Macaulay 2.

In the following code, N will be the module corresponding to the quotient of

R = C[x, y]/(xy) by the ideal (x, y). It corresponds to Cp, and it is clear from the

output that Ext i(N,N) is two dimensional for every i.
i1 : R = QQ[x,y] / (x*y)
I = ideal (x, y)
M = module I
f = map(R^1, M)
N = cokernel f
Ext^1(N,N)
Ext^2(N,N)
Ext^3(N,N)
Ext^4(N,N)

We prove here a known result that we need in the proof of theorems 3.1 and 4.1.

Lemma A.5. The secant line joining two smooth points q, q′ ∈ C ⊆ PL is

P(ker(Ext 1
C(L,OC)−→Ext 1

C(L,OC(q + q′)))).

Proof. Let X := P(ker(Ext 1
C(L,OC) → Ext 1

C(L,OC(q + q′)))). It is enough to

show that q, q′ ∈ X and that X is a line. The first statement is obvious since the

natural linear homomorphism Ext 1
C(L,OC)→ Ext 1

C(L,OC(q+ q′)) factors through

Ext 1
C(L,OC(q)) and Ext 1

C(L,OC(q′)), respectively. The second statement follows

from lemma A.1.

The following lemma is needed in the proof of lemma 3.7.

Lemma A.6. (a) The kernel of the natural linear homomorphism

Ext 1
C(L⊗ (π∗ON )∗, π∗ON)−→Ext 1

C(L⊗ (π∗ON )∗, π∗ON(p1 + p2))
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has dimension 4.

(b) For every l ∈ L1, the kernels of the natural linear homomorphisms

Ext 1
C(L⊗ (π∗ON )∗, π∗ON)−→Ext 1

C(L⊗ (π∗ON )∗,Ml)

and Ext 1
C(L⊗ (π∗ON )∗, π∗ON )−→Ext 1

C(L⊗M∗
l , π∗ON)

have dimension 2.

Proof. (a) Consider the short exact sequence

0−→π∗ON−→π∗ON (p1 + p2)−→Cp ⊕ Cp−→0.

We know from the long exact sequence of cohomology associated to the functor

Hom C(L⊗ (π∗ON )∗,−) that the kernel of

Ext 1
C(L⊗ (π∗ON )∗, π∗ON)−→Ext 1

C(L⊗ (π∗ON)∗, π∗ON (p1 + p2))

is the image of

Hom C(L⊗ (π∗ON )∗,Cp ⊕Cp)−→Ext 1
C(L⊗ (π∗ON )∗, π∗ON),

and this is equal to the four-dimensional vector space HomC(L⊗ (π∗ON)∗,Cp⊕Cp)

itself because Hom C(L⊗ (π∗ON)∗, π∗ON (p1 + p2)) is zero for a generic L.

(b) The first part is very similar to part (a). Starting with the short exact

sequence 0 → π∗ON → Ml → Cp → 0, and considering the long exact sequence

of cohomology associated to the functor HomC(L ⊗ (π∗ON )∗,−), we see that the

kernel of Ext 1
C(L⊗(π∗ON)∗, π∗ON )→ Ext 1

C(L⊗(π∗ON)∗,Ml) is the two-dimensional

vector subspace Hom C(L⊗ (π∗ON)∗,Cp).

For the second part, consider the short exact sequence

0−→L⊗M∗
l −→L⊗ (π∗ON )∗−→Cp−→0.



95

The long exact sequence of cohomology associated to the functor Hom C(−, π∗ON)

shows that the kernel of

Ext 1
C(L⊗ (π∗ON )∗, π∗ON )−→Ext 1

C(L⊗M∗
l , π∗ON )

is the two-dimensional subspace Ext 1
C(Cp, π∗ON) because Hom C(L⊗M∗

l , π∗ON ) is

zero for a generic L.

The following lemma is very important, because we factor certain restrictions of

our rational maps through projective spaces of the form P(Ext 1
C(L⊗ F ∗, F )), with

F as in the lemma. The lemma shows that the rational map is defined exactly where

the map to P(Ext 1
C(L⊗ F ∗, F )) is defined.

Lemma A.7. Let F be a torsion-free sheaf of rank 1 on C such that OC ⊆ F ,

degF = 1. Then the natural rational map

P(Ext 1
C(L⊗ F ∗, F ))−→SUC(2, L)

defined by

(0→ F → E → L⊗ F ∗ → 0) �→ E

is a morphism1, and it is generically injective. Moreover, it is injective for g > 3 if

degL = 4 and for g > 2 if degL = 3.

Proof. The proof that the rational map is a morphism is an exact copy of the

proof of lemma 2.5 with L⊗ (π∗ON )∗ and π∗ON replaced by L⊗ F ∗ and F .

It is clear that the morphism is injective at a point E if h0(C,E) = 1, because

in that case there can be only one way to write E as an extension of L⊗ F ∗ by F .

Since χ(E) = degE + 2(1− g) = 5− 2g ≤ 1, and we know that h0(C,E) ≥ 1 since

OC ⊆ F ⊆ E, it is clear that a generic E ∈ Ext 1
C(L⊗ F ∗, F ) has h0(C,E) = 1.

To prove the last statement, consider the short exact sequence

0−→F−→E−→L⊗ F ∗−→0,

1We are assuming that degL is 3 or 4.
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and the corresponding long exact sequence

0−→H0(C, F )−→H0(C,E)−→H0(C,L⊗ F ∗)−→· · ·

· · ·−→H1(C, F )−→H1(C,E)−→H1(C,L⊗ F ∗)−→0.

Since χ(L⊗F ∗) = degL− 1+1− g = degL− g and L is generic, h0(C,L⊗F ∗) = 0

if g > degL− 1. In this case, h0(C,E) = h0(C, F ) = 1.



Appendix B

Analysis of extensions spaces on products of varieties

Throughout this appendix, C is an irreducible projective curve with only one node

p as singularity.

If a coherent sheaf on X × C, where X is an irreducible projective variety, is

of the type π∗
XF ⊗ π∗

CG for some coherent sheaves F on X and G on C, we shall

sometimes denote it by F �G. If it is a pull-back of a coherent sheaf F from one of

the factors, we shall sometimes denote it by F itself, if it is clear from the context

what is the base space for the sheaf. For example, π∗
CL on PL × C is sometimes

denoted just by L if we are writing an extension on PL × C.

Lemma B.1. Let Y be a smooth projective variety, let FY [resp. FC ] be a vector

bundle on Y [resp. C], and let G be a torsion-free sheaf on C. If H0(C, F ∗
C⊗G) = 0,

then

Ext 1
Y×C(FC , FY �G) 
 H0(Y, FY )⊗ Ext 1

C(FC , G).

If Y = P(V ) for some vector space V , and FY 
 O�(V )(1), this is also naturally

isomorphic to

Hom (V,Ext 1
C(FC , G)).

Proof. Since FC is locally-free, Ext 1
Y×C(FC , FY �G) 
 H1(Y ×C, FY �(F ∗

C⊗G)).

By the Künneth Formula (see [Kem93, Proposition 9.2.4]), this is isomorphic to

H0(Y, FY )⊗H1(C, F ∗
C⊗G) (remember that H0(C, F ∗

C⊗G) = 0), which is isomorphic

to H0(Y, FY )⊗ Ext 1
C(FC , G), as claimed.

If Y = P(V ) and FY 
 O�(V )(1), H0(Y, FY ) is canonically isomorphic to V ∗.

97
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Remark. The isomorphisms of lemma B.1 can be described as follows:

(1) H0(P(V ), FV )⊗ Ext 1
C(FC , G)

�−→Ext 1
�(V )×C(FC , FV �G).

If we start with an element of the form s⊗a, with s a section O�(V ) ↪→ FV and a an

extension 0 → G → Ea → FC → 0, we first pull a back to P(V ) × C, and then we

use the section π∗
�(V )s : π∗

CG ↪→ FV � G to push π∗
CEa forward to get an extension

Es⊗a in Ext 1
�(V )×C(FC , FV �G):

0 −−−→ G −−−→ Ea −−−→ FC −−−→ 0,

π∗
�(V)

s

� � ||

0 −−−→ FV �G −−−→ Es⊗a −−−→ FC −−−→ 0

.

(2) H0(P(V ),O�(V )(1))⊗ Ext 1
C(FC , G)

�−→Hom(V,Ext 1
C(FC , G)).

An element of the form s⊗a goes to the linear homomorphism mapping b to1 s(b) ·a.

(3) Ext 1
�(V )×C(FC ,O�(V )(1) �G)

�−→Hom(V,Ext 1
C(FC , G)).

An extension a of the form 0 → O�(V )(1) � G → Ea → FC → 0 goes to the linear

homomorpshim that sends v ∈ V to the extension obtained by restricting a to

{[v]} × C, and identifying (O�(V )(1) �G)|{[v]}×C with G using v:

0−→G−→Ea|{[v]}×C−→FC−→0.

In particular,

Corollary B.2. If V = Ext 1
C(FC , G), and EV ∈ Ext 1

�(V )×C(FC ,O�(V )(1)�G) is the

element that corresponds to the identity in Hom (Ext 1
C(FC , G),Ext 1

C(FC , G)), then,

for every non-zero extension a ∈ Ext 1
C(FC , G), EV |{[a]}×C is a when we identify

O�(V )(1) �G|{[v]}×C with G using a.

Here is a generalization of lemma B.1.

1Remember that s ∈ H0(P(V ),O�(V )(1)) 
 V ∗.
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Lemma B.3. Let Y be a smooth projective variety, let FY , GY be locally-free sheaves

on Y , and let FC , GC be quasi-coherent sheaves on C. Then, for every i ≥ 0,

Ext iY×C(FY � FC , GY �GC) 

⊕
j+k=i

Ext jY (FY , GY )⊗ Ext kC(FC , GC).

Proof. The vector space Ext iY×C(FY � FC , GY � GC) can be calculated as

Ep+q
∞ (Y × C) using the spectral sequence Ep,q

2 (Y × C) ⇒ Ep+q
∞ (Y × C), where

Ep,q
2 (Y × C) = Hp(Y × C, ExtqY×C(FY � FC , GY � GC)) (see [AltKle70, IV.2.4]).

Moreover

ExtqY×C(FY � FC , GY �GC) 
 π∗
Y F

∗
Y ⊗ π∗

YGY ⊗ ExtqY×C(π∗
CFC , π

∗
CGC)

(see [Har77, III.6.7]), and, by lemma B.4, this is (F ∗
Y ⊗GY )� ExtqC(FC , GC). There-

fore, by the Künneth formula (see [Kem93, Proposition 9.2.4]),

Hp(Y×C, (F ∗
Y⊗GY )�ExtqC(FC , GC)) 


⊕
j+l=p

Hj(Y, F ∗
Y⊗GY )⊗H l(C, ExtqC(FC , GC)).

Thus, the original spectral sequence Ep,q
2 (Y ×C)⇒ Ep+q

∞ (Y ×C) is induced by the

spectral sequence

El,q
2 (C) = H l(C, ExtqC(FC , GC)) =⇒ Ext l+qC (FC , GC) = El+q

∞ (C).

Therefore, since Hj(Y, F ∗
Y ⊗GY ) 
 Ext jY (FY , GY ), we obtain an isomorphism

Ei
∞(Y × C) 


⊕
j+k=i

Ext jY (FY , GY )⊗Ek
∞(C),

as claimed.

Lemma B.4. For any two quasi-coherent sheaves F and G on C and any smooth

projective variety Y ,

ExtiY×C(π∗
CF, π

∗
CG) 
 π∗

CExtiC(F,G).
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Proof. Let R• : · · · → F2 → F1 → F0 → F → 0 be a locally-free resolution of

F on C. Then its pull-back π∗
CR• : · · · → π∗

CF2 → π∗
CF1 → π∗

CF0 → π∗
CF → 0 to

Y × C is a locally-free resolution of π∗
CF . Since

ExtiY×C(π∗
CF, π

∗
CG) = Hi(HomY×C(π∗

CR•, π∗
CG))

(see [Har77, III.6.5]), and, for i ≥ 0,

HomY×C(π∗
CFi, π

∗
CG) 
 HomY×C(OY×C , π∗

CG)⊗ π∗
CF

∗
i


 π∗
CG⊗ π∗

CF
∗
i 
 π∗

C(G⊗ F ∗
i )


 π∗
C(HomC(OC , G)⊗ F ∗

i )


 π∗
C(HomC(Fi, G))

because Fi is locally-free, then ExtiY×C(π∗
CF, π

∗
CG) 
 Hi(π∗

C(HomC(R•, G))). Since

πC is flat, Hi(π∗
C(HomC(R•, G))) 
 π∗

C(Hi(HomC(R•, G))), and the lemma follows

because ExtiC(F,G) = Hi(HomC(R,G)).

Lemma B.5. If E is an extension of F by O�N(n) �G on PN ×C, then E induces

a rational map PN → P(Ext 1
C(F,G)) given by sections of O�N(n).

Proof. We saw in lemmas B.1 and B.3 that

Ext 1
�N×C(F,O�N(n) �G) 
 H0(PN ,O�N(n))⊗ Ext 1

C(F,G).

Let us first assume that E corresponds to a non-zero element of the form s ⊗ a in

H0(PN ,O�N(n))⊗Ext 1
C(F,G). Then the induced rational map will map to the point

[a], and it will send a point x ∈ PN to the extension φs⊗a(x) defined by restricting

E to {x} × C and identifying O�N(n)|{x}×C with OC . Note that it does not matter

which identification we choose, because the extensions we obtain are all multiples of

a, and they give a well-defined element in P(Ext 1
C(F,G)).

Note that E|{x}×C splits if and only if s(x) = 0. Indeed, since E corresponds to

s ⊗ a, it is defined by pushing π∗
Ca forward via π∗

�Ns : O�N � G → O�N(n) � G. If
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s(x) �= 0, then the restriction of E to {x}×C is a multiple of a, and if s(x) = 0, then

the restriction of E to {x} × C is the push-forward of a via the zero map G
0→ G,

which splits. Indeed, the push-forward is (Ea ⊕ G)/ ∼, where ∼ identifies G ⊆ Ea

with 0, and therefore we obtain F ⊕G.

Therefore, if E corresponds to an element of the form s ⊗ a, then the induced

rational map is exactly given by s:

PN → P0 = {[a]} ⊆ P(Ext 1
C(F,G))

x �→ s(x)

In general, if E corresponds to an element of the form
∑m

i=0 si⊗ai, with {a0, . . . , am}

a basis of Ext 1
C(F,G) and s0, . . . , sm ∈ H0(PN ,O�N(n)), the rational map is given

by:

PN → P(Ext 1
C(F,G))

x �→ (s0(x) : · · · : sm(x)).



Appendix C

Results on maps of projective spaces

This is probably a well-known result on rational maps between projective spaces

that we need in the proofs of linearity in chapters 3 and ??.

Proposition C.1. Let φ : Pm → Pn be a rational map given by sections of O�m(d)

with no common factor. Let Uφ be the open set where φ is regular, and let H be a

hyperplane in Pm. If H ⊆ Uφ, then φ|H is also given by sections of OH(d) with no

common factor.

Before we prove the proposition, let us point out the importance of the hypothesis

H ⊆ Uφ. Let φ : P2 → P2 be the rational map of degree 2 defined by φ(x0, x1, x2) =

(x2
0, x0x1, x

2
2). It is not defined only at the point (0, 1, 0).

If we restrict φ to the line L1 defined by x1 = 0, we get the degree 2 morphism

from L1 to itself given by φ|{x1=0}(x0, 0, x2) = (x2
0, 0, x

2
2).

On the other hand, if we restrict φ to the line L2 defined by x2 = 0, which

contains the point (0, 1, 0), then we get the degree 1 morphism from L2 to itself1

given by φ|{x2=0}(x0, x1, 0) = (x0, x1, 0).

The difference between L1 and L2 is that when we restrict the rational map to L2,

the degree 2 sections that define φ all have the common factor x0. When we simplify

the common factor, the degree drops. But the presence of the common factor implies

that the original rational map is not defined on the zero locus of the common factor

in L2.

1Note that the rational map restricted to L2 actually extends to the whole line.
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Proof (of proposition C.1). Let s0, . . . , sn ∈ H0(Pm,O�m(d)) be such that

φ(x) = (s0(x), . . . , sn(x)),

and let a0, . . . , am ∈ k be such that H has equation a0x0 + · · · + amxm = 0. We

shall assume that am �= 0, and identify H with Pm−1 by sending (x0, . . . , xm) to

(x0, . . . , xm−1). This is clearly an isomorphism with the inverse sending the point

(x0, . . . , xm−1) to (x0, . . . , xm−1,−(a0/am)x0 − · · · − (am−1/am)xm−1).

Then φ|H : Pm−1 → Pn is given by x �→ (s0(x), . . . , sn(x)), where, for i = 0, . . . , n,

si(x0, . . . , xm−1) = si

(
x0, . . . , xm−1,−

a0

am
x0 − · · · −

am−1

am
xm−1

)
.

Since the si’s are homogeneous polynomials of degree d in x0, . . . , xm, the si’s are

homogeneous polynomials of degree d in x0, . . . , xm−1. All is left to prove is that the

si’s do not have a common factor. But this is clear, because if they had a common

factor f , φ would not be defined on the non-empty locus {f = 0} ⊆ H , contradicting

the fact that H ⊆ Uφ.

A very similar proof actually proves a stronger statement:

Proposition C.2. Let φ : Pm → Pn be a rational map given by sections of O�m(d)

with no common factor. Let Uφ be the open set where φ is regular, and let L be a

linear subspace in Pm of dimension ≥ 1. If L ⊆ Uφ, then φ|L is given by sections of

OL(d) with no common factor.

As a corollary, we obtain a stronger statement.

Corollary C.3. Let φ : Pm → Pn be a rational map given by sections of O�m(d)

with no common factor. Let Uφ be the open set where φ is regular, and let L be a

linear subspace of Pm. If L contains a line L1 such that L1 ⊆ Uφ, then φ|L is given

by sections of OL(d) with no common factor.

Proof. If φ|L were given by sections of OL(d′) with d′ < d, then φ|L′ would be

given by sections of OL′(d′′) with d′′ ≤ d′ < d, contradicting Proposition C.2.
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(1989), 53-94.

[Eis95] D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry,

Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.

[Gie84] D. Gieseker, A degeneration of the moduli space of stable bundles, J. Dif-

ferential Geometry 19 (1984), 173-206.

[Har77] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52,

Springer-Verlag, Heidelberg, 1977.

[Kem93] G.R. Kempf, Algebraic Varieties, London Mathematical Society Lecture

Notes Series 172, Cambridge University Press, 1993.

[LeP97] J. Le Potier, Lectures on Vector Bundles, Cambridge studies in advanced

mathematics 54, Cambridge University Press, Cambridge, 1997.

[M2] D.R. Grayson, M.E. Stillman, Macaulay 2, a software system for research in

algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/



106

[New78] P.E. Newstead, Introduction to Moduli Problems and Orbit Spaces, Tata

Institute of Fundamental Research, Bombay, 1978.

[Ray82] M. Raynaud, Sections des fibrés vectoriels sur une coubre, Bull. Soc. Math.

France 110 (1982), no. 1, 103-125.

[Ses82] C.S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque 96,
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