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Abstract

Let H(x) =
∑

n≤x
φ(n)

n
− 6

π2 x. Motivated by a conjecture of P. Erdös, Y.-K. Lau
developed a new method and proved #{1 ≤ n ≤ T : H(n)H(n + 1) < 0} À T.

We consider arithmetic functions f(n) =
∑

d|n
bd

d
whose summation can be

expressed as
∑

n≤x f(n) = αx + P (log(x)) + E(x), where α is a real number, P (x)
is a polynomial and the error term E(x) is of the from

E(x) = −
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ O

(
1

k(x)

)
,

for ψ(x) = x− [x]− 1
2
, and where y(x), k(x) and bn satisfy some general conditions.

We generalize Lau’s method and prove results about the number of sign changes
for these error terms. We illustrate our results with a list of well known arithmetic
functions. In particular, we prove the following generalization of Lau’s result:

Let f(n) =
∑

d|n
bd

d
be a rational valued arithmetic function and suppose the

sequence bn satisfies
∑

n≤x bn = Bx + O
(

x
logA x

)
and

∑
n≤x b4

n ¿ x logD x, for some

B real, D > 0 and A > 6 + D
2
, respectively. Let

α =
∞∑

n=1

bn

n2
, γb = lim

x→∞

(∑
n≤x

bn

n
−B log x

)
, E(x) =

∑
n≤x

f(n)−αx+
B log 2πx

2
+

γb

2
.

Then, except when α = 0, or B = 0 and α is rational, we have

#{1 ≤ n ≤ T : E(n)E(n + 1) < 0} À T ⇔ #{1 ≤ n ≤ T : αE(n) < 0} À T.

We also study the error term ∆(x) =
∑

n≤x τ(n)− x log x− (2γ − 1)x and prove

#{1 ≤ n ≤ T : ∆(n)∆(n + 1) < 0} >
√

T + O(1).

Index words: sign changes, error term, Euler function, divisor function.
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Notation

The following notation and conventions are used systematically in the text.

We use Landau’s notation f(x) = O(g(x)) and Vinogradov’s f(x) ¿ g(x) to both

mean that |f(x)| ≤ Cg(x), for some positive constant C, which may be absolute or

depend upon various parameters, in which case these may be indicated in subscript.

Also, g(x) À f(x) means f(x) ¿ g(x) and we write f(x) ³ g(x) to indicate that

f(x) ¿ g(x) and g(x) ¿ f(x) hold simultaneously. Moreover, f(x) = o(g(x)) means

lim
x→∞

f(x)

g(x)
= 0, and f(x) ∼ g(x) means lim

x→∞
f(x)

g(x)
= 1.

In the opposite direction, we write f(x) = Ω+(g(x)) and f(x) = Ω−(g(x)) to

respectively denote that f(xn) > Cg(xn) and f(xn) < −Cg(xn)) holds for infinitely

many xn such that xn → ∞, with a certain positive constant C. Also, we write

f(x) = Ω±(g(x)) to indicate that both f(x) = Ω+(g(x)) and f(x) = Ω−(g(x)) hold,

and f(x) = Ω(g(x)) means that |f(x)| = Ω+(g(x)).

Given a finite set A, we write |A| and #(A) to both mean the cardinality of A.

The integer and fractional parts of the real number x are denoted by [x] and {x},
respectively. Also, ψ(x) = {x} − 1

2
. We write e(x) to denote exp(2πix).

a | b means a divides b, and a ≡ b mod m means m | (a − b). The greatest

common divisor and the least common multiple of m and n are denoted by (m,n)

and [m,n], respectively.

Throughout this work, s = σ + it is a complex variable, ζ(s) is the Riemann

Zeta function, γ is the Euler constant, φ(n) is the Euler totient function, µ(n) is the

Möbius function, τ(n) is the number of positive divisors of n, and σ(n) is the sum

of the positive divisors of n.

v
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Chapter 1

Overview

Formally, an arithmetic function is simply a sequence of real or complex values.

In many arithmetic functions studied in Number Theory, their individual values

fluctuate widely, however in many cases summation smooths out the fluctuation

and it may be possible to find an asymptotic expression for the summation function.

This asymptotic expansion consists of a main term, which includes an average order,

and of an oscillating error term. Various authors have studied the properties of

these error terms, namely its order of magnitude, Ω-estimates, mean value results,

distributions and the number of sign changes. The object of our study concerns

arithmetic functions for which the error term of the summation function involves

ψ(x) = {x} − 1

2
. In this work, we will mention the results about error terms that

exist in the literature for particular examples, but we will be mainly interested in

finding the number of times the error term changes sign. There are two kinds of sign

changes that we will consider:

1. If, given x and y, we have f(x)f(y) < 0, then we have (at least) one sign

change (or change of sign) in the interval [x, y].

2. If, given an integer n, we have f(n)f(n + 1) < 0 then we have a sign change

on integers (or change of sign on integers) at n.

1
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1.1 Introduction

The most famous example of sign changes of error terms is related to the function

π(x). The prime number theorem states

π(x) = Li(x) + E(x),

where E(x) = o(Li(x)), and J. E. Littlewood [53] proved that E(x) changes of

sign infinitely often (for a full proof, see [28]), which disproved an old belief that

π(x) < Li(x), for all x (shared, among others by C. F. Gauss [21] and B. Riemann

[75]). In fact, Littlewood proved that

E(x) = Ω±

(√
x log log log x

log x

)
.

In two papers [83, 84], the first assuming the Riemann hypothesis and the other

assuming it is false, S. Skewes proved that there must exist x < 101010964

such that

π(x) > Li(x). After improvements on this bound by R. S. Lehman [52] and H. J.

J. te Riele [92], the best result is now 1.39 × 10316, obtained by C. Bays and R. H.

Hudson [4]. J. Kaczorowski [43] has worked on the number of sign changes of E(x)

and proved that XE(T ) À log T , where XE(T ) denote the number of sign changes

of E(x) in [1, T ]. J. Kaczorowski [42, 43] also obtained similar results for the error

terms
∑
n≤x

Λ(n)− x and
∑
p≤x

log p− x.

The motivation for our work was a paper by Y.-K. Lau [50], where he proves

that the error term, H(x), given by

∑
n≤x

φ(n)

n
=

6

π2
x + H(x)

has a positive proportion of sign changes on integers. This result implies a conjecture

stated by P. Erdös in 1967:

The error term, R(x), of the summation of φ(n), has a positive proportion

of changes of sign on integers
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The main tool Lau used to prove his theorem, was that the error term H(x) can

be expressed as

H(x) = −
∑

n≤ x
log5 x

µ(n)

n
ψ

(x

n

)
+ O

(
1

log20 x

)

Throughout this work, we will be interested in arithmetic functions such that

the asymptotic expansion of their summations have error terms of the form

H(x) = −
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ O

(
1

k(x)

)
, (1.1)

where y(x), k(x) and the sequence bn satisfy some general conditions. In chapter 2,

we obtain some general results for the number of sign changes for functions H(x) of

the form (1.1).

We will study two classes of arithmetic functions for which Lau’s result can

be generalized. In chapter 3, we consider arithmetic functions f(n), such that

f(n) =
∑

d|n

bd

d
and the sequence bn satisfies

∑
n≤x

bn = Bx + O

(
x

logA x

)
for some B real and A > 1 (1.2)

and
∑
n≤x

b4
n ¿ x logD x, for D > 0. (1.3)

We prove that these two conditions imply that the error term of
∑
n≤x

f(n) is of the

form (1.1). Notice that this class is closed for addition, i. e. if f(n) and g(n) are

members of the class then also is (f + g)(n).

In chapter 4, we consider arithmetic functions f(n), such that f(n) =
∑

d|n

bd

d
, the

sequence bn satisfies condition (1.3) and

∞∑
n=1

bn

ns
= ζβ(s)g(s), (1.4)
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for some β real and a function g(s) with a Dirichlet series expansion absolutely

convergent for σ > 1 − λ, for some λ > 0. Again, these two conditions imply that

the error term of
∑
n≤x

f(n) is of the form (1.1).

Our main theorem is a generalization of Lau’s result for some members of our

first class of arithmetic functions.

Theorem 1.1. Let f(n) =
∑

d|n

bd

d
be a rational valued arithmetic function and sup-

pose the sequence bn satisfies

∑
n≤x

bn = Bx + O

(
x

logA x

)
and

∑
n≤x

b4
n ¿ x logD x,

for some B real, D > 0 and A > 6 +
D

2
, respectively. Let α =

∞∑
n=1

bn

n2
,

γb = lim
x→∞

(∑
n≤x

bn

n
−B log x

)
and H(x) =

∑
n≤x

f(n)− αx +
B log 2πx

2
+

γb

2
.

Then, except when α = 0, or B = 0 and α is rational, we have

H(x) has a positive proportion of changes of sign on integers if and only

if αH(x) has a positive proportion of negative values on integers.

Theorem 1.1 will be obtained in chapter 3 as a corollary of the more general

theorem:

Theorem 1.2. Assume the sequence bn satisfies the hypothesis of theorem 1.1 and

define α, γb and H as in theorem 1.1. If α 6= 0 then

1. αH(x) has a positive proportion of positive values on integers;

2. If H(x) has a positive proportion of changes of sign on integers then αH(x)

has a positive proportion of negative values on integers;
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3. If αH(x) has a positive proportion of negative values on integers then H(x)

has a positive proportion of changes of sign on integers or a positive proportion

of zeros.

For our second class of arithmetic functions, we obtain the following result:

Theorem 1.3. Let f(n) =
∑

d|n

bd

d
be a arithmetic function and suppose the sequence

bn satisfies
∑
n≤x

b4
n ¿ x logD x and

∞∑
n=1

bn

ns
= ζβ(s)g(s)

for some β real, D > 0, and a function g(s) with a Dirichlet series expansion abso-

lutely convergent for σ > 1− λ, for some λ > 0. Let α = ζβ(2)g(2) and H(x) be the

error term of the asymptotic expansion of
∑
n≤x

f(n). If α 6= 0, we have

1. αH(x) has a positive proportion of positive values on integers;

2. If H(x) has a positive proportion of changes of sign on integers then αH(x)

has a positive proportion of negative values on integers;

3. If αH(x) has a positive proportion of negative values on integers then H(x)

has a positive proportion of changes of sign on integers or a positive proportion

of zeros.

In chapters 3 and 4, we also exhibit examples for which our theorems can be

applied as well as examples illustrating the necessity of some of our conditions.

In chapter 5, we study the error term ∆(x) of the summation of the divisor

function τ(n). We apply the methods developed in chapter 2, but, unfortunately, we

are not able to obtain a corresponding theorem about the number of sign changes

on integers of ∆(x). Using a different method, we prove

Theorem 1.4. Let N∆(T ) denote the number of sign changes on integers of ∆(t),

in the interval [T, 2T ]. Then, for sufficiently large T , N∆(T ) >
√

T . Moreover,
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there exists a constant c1, and t1, t2 ∈ [T, T +
√

T ] such that ∆(t1) ≤ −c1T
1
4 and

∆(t2) ≥ c1T
1
4 .

In the rest of this chapter, we give a review of the literature related to the error

terms of some particular examples and explain the techniques we are going to use

to prove the results in chapters 2, 3, 4 and 5.

1.2 An Erdös’s conjecture

As we noticed before, the proof of Erdös’s conjecture about the sign changes on

integers of the error term associated to the summation of φ(x) motivated our work.

In this section, we state some results about this summation function and about the

summation of
φ(n)

n
.

P. G. L. Dirichlet [13] proved that

∑
n≤x

φ(n) =
3

π2
x2 + R(x), (1.5)

with R(x) = O(x1+ε), for any ε > 0, and F. Mertens [57] (see [29, theorem 330])

obtained R(x) = O(x log x). A related problem which is easier to handle, is the study

of the error term

H(x) =
∑
n≤x

φ(n)

n
− 6

π2
x.

S. S. Pillai and S. D. Chowla [69] studied the relationship between R(x) and H(x)

and obtained

R(x)

x
= H(x) + O

(
1

log4 x

)
. (1.6)

So, Mertens result implies that H(x) = O(log x). Let ψ(x) = x− [x]− 1

2
. In 1932,

S. Chowla [7] proved that

H(x) = −
∑

n≤ x
log5 x

µ(n)

n
ψ

(x

n

)
+ O

(
1

log20 x

)
(1.7)
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From this it is immediate to obtain H(x) = O(log x). The best O-result is still the

one obtained by A. Walfisz [104]1:

H(x) = O
(
(log x)

2
3 (log log x)

4
3

)
. (1.8)

On the other hand, Pillai and Chowla [69] proved that

R(x) = Ω(x log log log x), (1.9)

and so

H(x) = Ω(log log log x). (1.10)

We say that a real valued function g has N changes of sign in the interval [1, T ]

if [1, T ] can be partitioned into N + 1 consecutive subintervals Ii, i = 0, 1, . . . , N ,

satisfying

(i) For each i ∈ {0, 1, . . . , N} and any x, y ∈ Ii, g(x)g(y) ≥ 0;

(ii) For each i ∈ {0, 1, . . . , N − 1}, there are xi ∈ Ii and xi+1 ∈ Ii+1, such that

g(xi)g(xi+1) < 0

The number of sign changes of g in [1, T ] is denoted by Xg(T ).

By averaging H on certain adequately chosen arithmetical progressions An + B

(n ≤ x) of very large moduli A = A(x), P. Erdös and H. N. Shapiro [17] showed

that (1.10) implies

H(x) = Ω± (log log log log x) , (1.11)

which implies that H(x) changes sign infinitely often. In 1987, this result was

improved to

H(x) = Ω±
(
(log log x)

1
2

)
,

1The proof proposed by Saltykov [76] of H(x) = O
(
(log x)

2
3 (log log x)1+ε

)
is erroneous

and once corrected only yields Walfisz result (see [68]).
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by H. L. Montgomery [60] and independently by Pétermann [66, 67]. The natural

question that follows is: How many changes of sign does H(x) have in the interval

[1, T ]?

In 1986, Y.-F. S. Pétermann [63] studied this problem: First, using the following

result of S. Chowla [7],

∫ T

1

H2(t) dt =
1

2π2
T + O

(
T

log4 T

)
, (1.12)

Pétermann proved that

#{n ≤ T : 0 < H(n) <
6

π2
} ≥

(
4

3
− π2

18

)
T

and, since H(x) decreases linearly by
6

π2
on [n, n + 1), obtained

XH(T ) ≥ 8

3

(
1− π2

24

)
T + o(T ). (1.13)

Let D be the distribution function of H(x) which is defined by

D(u) = lim
T→∞

1

T
#{1 ≤ n ≤ T : H(n) ≤ u}.

P. Erdös and H. N. Shapiro [18] proved that D is a well defined continuous function.

This result allowed Pétermann [63] to refine (1.13). His argument goes as follows:

First, 0 < H(n) <
6

π2
if and only if there is a change of sign from positive to

negative on [n, n+1). Also, between any two changes of sign from positive to negative,

there must be a change of sign from negative to positive (notice that a change of

sign from negative to positive always takes place at an integer). Hence

XH(T ) = 2

(
D(

6

π2
)−D(0)

)
T + o(T ). (1.14)

Although H(x) changes signs often, the first values of H(m), with m an integer,

are all positive. J. J. Sylvester [90], misled by these initial values, conjectured that

R(n) > 0 (and so H(n) > 0), for all integers n (see [90]). Notice that his table in
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[89] goes until n = 1000, and it can be seen there that R(820) < 0. M. L. N. Sarma

[77] rediscovered this counterexample in 1931. As we will see shortly, H(n) and R(n)

have a positive proportion of negative values. So, it is natural to ask: How many

changes of sign on the integers of the interval [1, T ], does H(n) have?

We say that an arithmetic function f(x) has a sign change on integers at x = n,

if f(n)f(n + 1) < 0. The number of sign changes on integers of f(x) on the interval

[1, T ] is defined as

Nf (T ) = #{n ≤ T, n integer : f(n)f(n + 1) < 0}.

In a letter to J. Steinig in 1967, Erdös [15] conjectured that

NR(T ) À T

where R(x) is defined in (1.5). Later, Erdös [16] proposed the weaker NR(T ) = Ω(T ).

Many authors studied NH(T ), instead, and obtained results about NR(T ) using (1.6).

Since, for any integer N ,
∑
n≤N

φ(n)

n
is a rational number and

6

π2
N is irrational

then H(N) is also irrational. So H(N) 6= 0 for all positive integer N . Figure 1.1

shows the number of sign changes on integers, for some initial values of T . From this

data it seems NH(T ) ≈ T

270
. For n ≤ 107, each occurrence of H(n) < 0 is isolated

and occurs when n is even.

The first result about the number of changes of sign on integers of H(n) was

obtained by J. H. Proschan [71], who, using the result (1.11) of Erdös and Shapiro,

proved

NH(T ) > IL(T ),

where, IL(T ) is the smallest k such that the 4k-fold iterated logarithm of T (to a

sufficiently large base) is less than 2. Y.-F. S. Pétermann [65] improved Proschan’s

result, to

NH(T ) À log log T,
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T 103 2× 103 3× 103 4× 103 5× 103 104 2× 104

NH(T ) 2 8 12 18 24 40 76
T

NH(T )
≈ 500 250 250 222 208 250 263

T 3× 104 4× 104 5× 104 105 2× 105 3× 105 4× 105

NH(T ) 120 158 196 384 754 1116 1484
T

NH(T )
≈ 250 253 255 260 265 269 270

T 5× 105 106 2× 106 3× 106 4× 106 5× 106 107

NH(T ) 1868 3794 7496 11108 14804 18500 36808
T

NH(T )
≈ 268 264 267 270 270 270 272

Figure 1.1: Sign Changes on Integers of H(x)

still using the method of Erdös and Shapiro [17] and a refinement of the method

that Pillai and Chowla used to obtain (1.9). Later, Pétermann [64] obtained

NH(T ) À exp
(
C(log T )

3
5 (log log T )−

1
5

)
,

for a constant C > 0, using the result

∫ T

0

H(t) dt = O
(
T exp

(
−C(log T )

3
5 (log log T )−

1
5

))
,

obtained by D. Suryanarayana [88]. Pétermann’s idea was the following: Let

f(T ) = exp
(
−C(log T )

3
5 (log log T )−

1
5

)

and suppose H(x) stays negative on [T, T + cTf(T )], for a positive constant c. Since

H(x) decreases linearly by
6

π2
on [n, n + 1), this implies that

∫ T+cTf(T )

T

H(t) dt ≤ −3c

π2
Tf(T ) + O(1).

On the other hand, for 0 ≤ c ≤ 1
f(T )

, we have by Suryanarayana’s result,

∫ T+cTf(T )

T

H(t) dt = O(Tf(T )),
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where the implied constant is independent of c. It follows that H(x) stays negative on

intervals of length at most aTf(T ) in (T, 2T ), for some constant a > 0, for sufficiently

large T . In the same paper, Pétermann proved that D(u) 6= 0 and 0 < D(u) < 1

for any real u, which implies that there is a positive proportion of negative values of

H(n). Let D(0) = α 6= 0. Since H(n) 6= 0 then, for sufficiently large T , the interval

(T, 2T ) contains at least
α

2
T integers at which H(x) is negative. This implies that

there are at least
αT

2aTf(T )
changes of sign on integers of H(x) in the interval.

The conjecture of Erdös was finally proved in 1999, by Y.-K. Lau [50]:

Theorem 1.5 (Lau, 1999). NR(T ) À T and NH(T ) À T , where the implied con-

stants are absolute.

The starting point for our work is Lau’s result, so we will explain how he obtained

NH(T ) À T . Using (1.7) and the expansion of ψ(x) as a Fourier series,

ψ(u) = − 1

π

∞∑

k=1

sin(2πku)

k
, (1.15)

valid for non integer x, Lau was able to prove

∫ 2T

T

(∫ t+h

t

H(u) du

)2

dt ¿ Th, (1.16)

for any fixed 1 ≤ h ¿ log4 T . Lau’s argument to prove (1.16), will be generalized

in sections 2.2, 2.3 and 2.4. In the next section, we describe the main points of the

argument and we also explain how it was generalized.

Formula (1.16) implies that there must be many cancellations in intervals [t, t+h],

for some t’s. So, Lau’s idea was to prove that we cannot have many large subintervals

of [T, 2T ], at which H(x) doesn’t change sign on integers. As before, if H(x) is always

negative in the interval [t, t + h], then

∫ t+h

t

H(u) du ≤ − 3

π2
(h− 1).
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Therefore, if n is an integer such that H(m) < 0 for all integer m in [n, n+2h], then

we have ∫ n+h

n

(∫ t+h

t

H(u) du

)2

dt À h3.

But, D(0) 6= 0, so there are cT integers in the interval [T, 2T ], at which H(x) is

negative. Divide the interval [T, 2T ] in subintervals of length h, and take one in each

three of those subintervals that have some n for which H(n) < 0. This clever division

allowed Lau to obtain
c

3h
T intervals, separated by a distance of at least 2h, each

with H(x) being negative on at least one integer. Let M be the number of the above

intervals for which exists a n, with H(m) < 0 for all m in [n, n + 2h], and let I be

the set formed by those n’s. Then

∑
n∈ I

∫ n+h

n

(∫ t+h

t

H(u) du

)2

dt À Mh3.

Hence, by (1.16), M ¿ T

h2
. If T is sufficiently large, we can take a fixed h suitably

large, such that there are
c

3h
T −M ≥ c

6h
T intervals of length 2h for which there

are integers n and m with H(n) < 0 and H(m) ≥ 0. But, as was noticed before,

H(m) 6= 0, for any integer m, so NH(T ) À T . Since D(u) is continuous, we can

find a δ such that, at least half of the above intervals have integers n and m, with

H(n) < −δ and H(m) > δ. From (1.6), also NR(T ) À T .

Another example that was considered in the literature is f(n) =
σ(n)

n
. If we write

F (x) =
∑
n≤x

σ(n)

n
− π2

6
x +

log 2πx

2
+

γ

2

then F (x) also have infinitely many changes of sign. Pétermann [63] used a mean

square result of A. Walfisz [103] for F (x)− γ + log 2π

2
, from which it can be deduced

that ∫ T

1

F 2(t) dt =
5π2

144
T (1 + o(1)), (1.17)

to obtain

XF (T ) ≥ 8

3

(
1− 15

4π2

)
T + o(T ). (1.18)
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Later, Pétermann [64] also obtained NF (T ) À T 0.71.... As Y.-K. Lau remarked, his

method can be applied to obtain NF (T ) À T . In figure 1.2, we present the initial

values of NF (T ), for small values of T .

T 103 2× 103 3× 103 4× 103 5× 103 104 2× 104

NF (T ) 6 20 34 50 64 146 328
T

NF (T )
≈ 166.7 100 88.2 80 78.1 68.5 61

T 3× 104 4× 104 5× 104 105 2× 105 3× 105 4× 105

NF (T ) 510 684 872 1762 3526 5258 7046
T

NF (T )
≈ 58.8 58.5 57.3 56.8 56.7 57.1 56.8

T 5× 105 6× 105 7× 105 8× 105 9× 105 106

NF (T ) 8820 10600 12334 14098 15890 17686
T

NF (T )
≈ 56.7 56.6 56.8 56.7 56.6 56.5

Figure 1.2: Sign Changes on Integers of F (x)

1.3 New Results

In order to generalize Lau’s result we will study a class of arithmetic functions that

have a behavior similar to
φ(n)

n
, i. e. we consider functions f(n) such that, writing

f(n) =
∑

d|n

bd

d
,

the sequence bn satisfies conditions (1.2) and (1.3):

∑
n≤x

bn = Bx + O

(
x

logA x

)

∑
n≤x

b4
n ¿ x logD x,

for some constants A > 1, D > 0 and real B, respectively.

When bn = µ(n) or bn = 1, both conditions are satisfied, so the corresponding

functions
φ(n)

n
and

σ(n)

n
belong to our class of arithmetic functions.
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Condition (1.2) allow us to prove

∑
n≤x

f(n) = αx− B log 2πx

2
− γb

2
+ H(x),

where α and γb are constants, defined by

α =
∞∑

n=1

bn

n2

γb = lim
x→∞

(∑
n≤x

bn

n
−B log x

)

and, given 0 < C < A− 1,

H(x) = −
∑

n≤ x

logC x

bn

n
ψ

(x

n

)
+ O

(
1

logC x

)
+ O

(
1

logA−C−1 x

)
.

In sections 2.2, 2.3 and 2.4, we use condition (1.3) and its consequences (see

lemma 2.2), to refine Lau’s method, and prove

∫ 2T

T

(∫ t+h

t

H(u) du

)2

dt ¿ Th
3
2 ,

for any constant h ¿ logc T , where 0 < c ≤ 1.

Here, we will outline the main topics of Lau’s argument and our generalization.

Define

HN(x) = −
∑

d≤N

bd

d
ψ

(x

d

)
. (1.19)

Using Cauchy’s inequality, one obtains

(∫ t+h

t

H(u) du

)2

dt ≤ 2

(∫ t+h

t

HN(u) du

)2

dt+2

(∫ t+h

t

(H(u)−HN(u)) du

)2

dt.

Also, using Cauchy’s inequality and interchanging the integrals,

∫ 2T

T

(∫ t+h

t

(H(u)−HN(u)) du

)2

dt ≤ h2

∫ 2T+h

T

(H(u)−HN(u))2 du

So, the idea is to estimate

∫ 2T

T

(∫ t+h

t

HN(u) du

)2

dt and

∫ 2T+h

T

(H(u)−HN(u))2 du.
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Notice that

H(u)−HN(u) = −
∑

N<n≤ u

logC u

bn

n
ψ

(u

n

)
+ O

(
1

logC u

)
+ O

(
1

logA−C−1 u

)
.

We begin the process of evaluating the integrals using the Fourier series (1.15) for

the function ψ(x). After some calculations, we obtain

∫ 2T+h

T

(H(u)−HN(u))2 du

≤ 2

π2

X∑
m,n=N+1

bmbn

mn

∞∑

k,l=1

1

kl

∫ 2T+h

η(T,m,n)

sin

(
2π

ku

m

)
sin

(
2π

lu

n

)
du

+ O

(
T

log2C T
+

T

(log T )2(A−C−1)

)
.

In section 2.3, we clearly define X and η(T,m, n), but here it’s enough to know that

X ¿ T

logC T
and η(T,m, n) ≥ T . After using a trigonometric identity and evaluating

the integral, we are left with the estimation of three double sums

∫ 2T+h

T

(H(u)−HN(u))2 du ¿ T
∑

N<m,n≤X

|bmbn|
mn

∞∑
k,l=1

kn=lm

1

kl

+
∑

m,n≤X

|bmbn|
∞∑

k,l=1

1

kl(kn + lm)

+
∑

m,n≤X

|bmbn|
∞∑

k,l=1

kn6=lm

1

kl |kn− lm|

+ O

(
T

log2C T
+

T

(log T )2(A−C−1)

)
. (1.20)

In the case studied by Y.-K. Lau, bn = µ(n), and so, |bmbn| is 0 or 1, for any integers

m and n. Lau uses lemma 7 and 8 of S. D. Chowla [7] - of which lemma 1.6 and 1.7
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below, are generalizations, respectively - to estimate the two last sums and directly

estimates the first, obtaining

∫ 2T+h

T

(H(u)−HN(u))2 du ¿ T

N
+

T

log4 T
.

So, if h ≤ min{N, log4 T}, then

h2

∫ 2T+h

T

(H(u)−HN(u))2 du ¿ Th.

In our general case, the estimation of the sums in (1.20) becomes much harder,

in particular the third sum. We use a variety of elementary techniques (e. g. Hölder’s

inequality in the from |
∑

i

uivi| ≤ (
∑

j

u4
j)

1
4 (

∑

k

v
4
3
k )

3
4 and Cauchy’s inequality), as

well as (1.3) in order to obtain the following results,

Lemma 1.6. Let E = 4 +
D

2
, then

∑
m,n≤X

|bmbn|
∞∑

k,l=1

kn 6=lm

1

kl | kn− lm| ¿ X (log X)E .

Lemma 1.7. If D > 0 satisfies condition (1.3), then

∑
m,n≤X

|bmbn|
∞∑

k,l=1

1

kl ( kn + lm)
¿ X (log X)1+D

2 .

Lemma 1.8. For any δ > 0

∑
N<m,n≤X

|bmbn|
mn

∞∑
k,l=1

kn=lm

1

kl
¿ 1

N1−δ
.

These results imply that

∫ 2T+h

T

(H(u)−HN(u))2 du ¿ T

N1−δ
+

T

(log T )C−E
+

T

log2C T

+
T

(log T )2(A−C−1)
.
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If A is large enough, we can take C = E + 1 and 2(A− C − 1) = c > 0. Therefore,

taking h ≤ min (logc T, log T ) and N > log2 T , we obtain

h2

∫ 2T+h

T

(H(u)−HN(u))2 du ¿ Th.

Now, we evaluate the first integral
∫ 2T

T

(∫ t+h

t

HN(u) du

)2

dt.

From (1.15) and a few calculations,
∫ t+h

t

HN(u)du

= − 1

2π2

∑
m≤N

bm

∞∑

k=1

cos
(
2π k(t+h)

m

)
− cos

(
2π kt

m

)

k2

=
1

4π2

∑
m≤N

bm

∞∑

k=1

1

k2

{[
e

(
kh

m

)
− 1

]
e

(
kt

m

)[
e

(
−k

(2t + h)

m

)
− 1

]}
.

Hence, as |z|2 = zz,
∫ 2T

T

∣∣∣∣
∫ t+h

t

HN(u) du

∣∣∣∣
2

dt =

1

16π4

∑
m,n≤N

bmbn

∞∑

k,l=1

(
e
(

kh
m

)− 1
) (

e
(− lh

n

)− 1
)

(kl)2

×
∫ 2T

T

e

(
kt

m

)
e

(
− lt

n

)(
e

(
−k

(2t + h)

m

)
− 1

) (
e

(
l

(2t + h)

n

)
− 1

)
dt.

After evaluating the integral and using |e(t)− 1| ¿ min(1, |t|), we are left with
∫ 2T

T

∣∣∣∣
∫ t+h

t

HN(u)du

∣∣∣∣
2

dt

¿
∑

m,n≤N

|bmbn|
∞∑

k,l=1

1

(kl)2
(

l
n

+ k
m

) +
∑

m,n≤N

|bmbn|
∞∑

k,l=1

kn 6=lm

1

(kl)2
∣∣ k
m
− l

n

∣∣

+ T
∑

m,n≤N

|bmbn|
∞∑

k,l=1

kn=lm

1

(kl)2
min

(
1,

kh

m

)
min

(
1,

lh

n

)
. (1.21)
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Notice that the first term on the left is bounded by the second term. In the case

bm = µ(m), Lau used lemma 7 of [7], and obtained

∑
m,n≤N

∞∑
k,l=1

kn6=lm

1

(kl)2
∣∣ k
m
− l

n

∣∣ ¿ N3 log N.

For the third term, Lau took d = (m,n), α =
m

d
, β =

n

d
and γ =

k

α
, which allowed

him to transform the minimum factors into
(

min

(
1,

hγ

d

))2

.

By considering the cases d ≤ hγ and d > hγ, Lau was able to bound the corre-

sponding term in (1.21) by Th. Hence if N is a sufficiently small power of T , say

T
1
4 , then ∫ 2T

T

(∫ t+h

t

HN(u) du

)2

dt ¿ Th.

For general sequences bn, we, again, need to develop a new method to estimate

the sums of (1.21). As before, we generalize Lau’s technique, using (1.3) and the

lemmas above. We obtain a weaker result, but still sufficient for our purposes. With

N = T
1
4 as above, we prove

∫ 2T

T

(∫ t+h

t

HN(u) du

)2

dt ¿ Th
3
2 .

Hence ∫ 2T

T

(∫ t+h

t

H(u) du

)2

dt ¿ Th
3
2 .

Although this result is weaker than (1.16), it will still allow us to obtain a result

about the number of sign changes on integers for this class of functions. More exactly,

we prove

Theorem 1.2. Let f(n) =
∑

d|n

bd

d
be an arithmetic function and suppose the sequence

bn satisfies both conditions

∑
n≤x

bn = Bx + O

(
x

logA x

)
and

∑
n≤x

b4
n ¿ x logD x,
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for B real, D > 0 and A > 6 +
D

2
, respectively. Let γb = lim

x→∞

(∑
n≤x

bn

n
−B log x

)
,

α =
∞∑

n=1

bn

n2
and H(x) =

∑
n≤x

f(n)− αx +
B log 2πx

2
+

γb

2
. If α 6= 0, then

1. #{1 ≤ n ≤ T : αH(n) > 0} À T.

2. if NH(T ) À T , then #{1 ≤ n ≤ T : αH(n) < 0} À T ;

3. if #{1 ≤ n ≤ T : αH(n) < 0} À T , then NH(T ) À T or zH(T ) À T.

The following example shows that we cannot eliminate zH(T ) À T from part 3:

Example 1.1. Consider the sequence b1 = 0, b2 = 4, b3 = 6, b4 = b5 = 0, b6 = −24

and bn = 0 for n > 6. Then α = 1, B = 0 and γb = 0. We will show later, in section

3.4, that if bn = 0 for n > N then f(n) :=
∑

d|n

bd

d
is periodic (see proposition 1.11). In

this example, f(1) = f(5) = f(6) = 0, f(2) = f(3) = f(4) = 2 and f(n) has period

6. So, H(n) is also periodic with period 6 and H(1) = −1, H(2) = 0, H(3) = 1,

H(4) = 2, H(5) = 1 and H(6) = 0. Hence, #{1 ≤ n ≤ T : αH(n) < 0} =
T

6
+ O(1),

NH(T ) = 0 and zH(T ) =
T

3
+ O(1).

Part 3 is not as good as we would desire, but if other assumptions about the

constants B and α are made, we can prove that zH(T ) is very small. In order to do

that, we use a corollary of A. Baker’s result on algebraic numbers [2, theorem 1],

Proposition 1.9 (Baker, 1967). Let α1, . . . , αn and β0, . . . , βn denote nonzero alge-

braic numbers. Suppose that κ > n + 1, and let d and H denote, respectively, the

maximum of the degrees and heights of β0, . . . , βn. Then

|β0 + β1 log α1 + · · ·+ βn log αn| > Ce−(log H)κ

,

for some effectively computable number C > 0.
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Hence, if α1, . . . , αn and β0, . . . , βn are nonzero algebraic numbers, then

β0 + β1 log α1 + · · ·+ βn log αn 6= 0

From this we obtain

Theorem 1.10. Let f(n) =
∑

d|n

bd

d
be a rational valued arithmetic function and

suppose the sequence bn satisfies
∑
n≤x

bn = Bx + O

(
x

logA x

)
, for some real B and

A > 1. Let r be a real number and

H(x) =
∑
n≤x

f(n)− αx +
B log 2πx

2
+

γb

2
,

where γb = lim
x→∞

(∑
n≤x

bn

n
−B log x

)
and α =

∞∑
n=1

bn

n2
. Then

1. If B = 0 and α is irrational then #{n ≤ T, n integer : H(n) = r} ≤ 1;

2. If B is a nonzero algebraic number then #{n ≤ T, n integer : H(n) = r} ≤ 2;

3. If B is transcendental then there exists a constant C that depends on r and on

the function f(n), such that

#{n ≤ T, n integer : H(n) = r} ¿ (log T )C .

Using theorem 1.10 and parts 2 and 3 of theorem 1.2, we obtain theorem 1.1.

In the next few sections of chapter 3 we study examples of arithmetic functions

for which our theorems can be applied. In section 3.4, we consider sequences bn

with only a finite number of nonzero terms. These sequences, trivially, satisfy both

conditions (1.2) and (1.3). We prove

Proposition 1.11. Let bn be a sequence of real numbers such that bn = 0 for n > N ,

for some integer N . Then the sequence f(n) =
∑

d|n

bd

d
is periodic with period, say q,

dividing [1, 2, . . . , N ] and f(i) = f((i, q)), for any integer i.
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Reciprocally, if there exists q for which f(i) = f((i, q)), for all integers i, then

bn = 0 whenever n - q.

Moreover, using the above notation, we have α =
1

q

∑
n≤q

f(n) and γb = f(q).

In section 3.5, we study the function
n

φ(n)
. Since

n

φ(n)
=

∑

d|n

µ2(d)

φ(d)
,

then bn =
nµ2(n)

φ(n)
. So, both conditions (1.2) and (1.3) are valid for this sequence

(and we can take A as large as we want). We have

∑
n≤x

n

φ(n)
=

ζ(2)ζ(3)

ζ(6)
x− log x

2
−

log 2π + γ +
∑

p
log p

p(p−1)

2
+ H(x)

and we can apply the theorems above to the error term H(x), so that NH(T ) À T

if and only if #{1 ≤ n ≤ T : H(n) < 0} À T .

In 1900, E. Landau [49] proved that

E0(x) :=
∑
n≤x

1

φ(n)
− ζ(2)ζ(3)

ζ(6)

(
log x + γ −

∑
p

log p

p2 − p + 1

)
= O

(
log x

x

)
,

which was improved by R. Sitaramachandrarao [80] in 1982:

E0(x) = O

(
(log x)

2
3

x

)
.

Later, Sitaramachandrarao [81, Lemma 2.4] proved that

E1(x) = xE0(x) + O(1),

where

E1(x) =
∑
n≤x

n

φ(n)
− ζ(2)ζ(3)

ζ(6)
x +

log x

2
.

Clearly, we also have

H(x) = xE0(x) + O(1).
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Therefore, we can apply our results to E0(x) and obtain NE0(T ) À T if and only if

#{1 ≤ n ≤ T : αH(n) < −δ} À T , for some δ > 0.

One of the conditions for theorem 1.2 is that α 6= 0. In section 3.6, we prove the

following result:

Proposition 1.12. If bn is a completely multiplicative sequence satisfying condition

(1.3), then α 6= 0.

We end that section with a couple of examples of multiplicative and strongly

multiplicative sequences for which α = 0.

In section 3.7, we use the method developed in section 2.3 in order to obtain the

mean square of H(x). We prove the following theorem:

Theorem 1.13. Let f(n) =
∑

d|n

bd

d
be an arithmetic function and suppose the

sequence bn satisfies both conditions

∑
n≤x

bn = Bx + O

(
x

logA x

)
and

∑
n≤x

b4
n ¿ x logD x,

for some B real, D > 0 and A > 7 +
3D

4
, respectively. Let α =

∞∑
n=1

bn

n2
,

γb = lim
x→∞

(∑
n≤x

bn

n
−B log x

)
and H(x) =

∑
n≤x

f(n)− αx +
B log 2πx

2
+

γb

2
.

Let g(n) =
∑

d|n
bd. Then,

∫ x

1

H2(u) du =
x

2π2

∞∑
n=1

g2(n)

n2
+ O

(
x

logL x

)
,

where L > 0.

The methods developed to prove theorem 1.2, also allow us to obtain XH(T ) À T .

This is done in section 3.8. But to generalize (1.14), we would need to prove the

existence of distribution functions associated with the error terms H. This problem

was not studied in our work.
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1.4 Methods of complex analysis

For many sequences bn satisfying conditions (1.2) and (1.3), the corresponding arith-

metic functions f(n) =
∑

d|n

bd

d
don’t have interesting expressions. For example,

1. bn = Λ(n), where Λ is the Von Mangoldt’s function, i. e.

bn =





log p, if n = pν for some ν ≥ 1

0, otherwise

2.

bn =





1, if n is a prime number

0, otherwise

3. bn = (−1)Ω(n), i. e. bn is the Liouville’s function.

On the other hand, the sequences bn corresponding to the arithmetic functions

n

σ(n)
,

σ(n)

φ(n)
,

φ(n)

σ(n)

or, more generally,

(
φ(n)

n

)r

,

(
σ(n)

n

)r

,

(
φ(n)

σ(n)

)r

(1.22)

for any real r 6= 0, don’t have simple expressions, and, in general, don’t satisfy

condition (1.2). In order to obtain a refinement of theorem 1.2 that can be applied

to the above functions, we use methods of complex analysis and Dirichlet series

expansions. First, we state some results about their summation functions. We start

with the Euler function. Following U. Balakrishnan and Y.-F. S. Pétermann [3], we

will write, for real r 6= 0,

∑
n≤x

(
φ(n)

n

)r

=





αrx +

[−r]∑

k=0

ak(log x)−r−k + H(x, r), if r < 0

αrx + H(x, r) if r > 0

(1.23)
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where αr and ak are constants. S. D. Chowla [6], proved that H(x, r) = O(logr x)

and

αr =
∏

p

(
1− 1

p

(
1−

(
1− 1

p

)r))
,

for any positive integer r. In 1969, I. I. Il’yasov [36] generalized Walfisz’s estimate

(1.8), obtaining

H(x, r) = O
(
(log x)

2
3 (log log x)

4
3

)
,

for 0 < r ≤ 1. Ten years later, A. Sivaramasarma [82] obtained

H(x, r) = O
(
(log x)r− 1

3 (log log x)
4
3

)
,

for r ≥ 1. The best result to date about the order of H(x, r) is due to U. Balakrishnan

and Y.-F. S. Pétermann [3, theorem 4]. They proved that

H(x, r) = O
(
(log x)

2|r|
3 (log log x)

4|r|
3

)
,

for every real r 6= 0.

Now, we consider the sum of divisors function. We have

∑
n≤x

(
σ(n)

n

)r

=





βrx + E(x, r), if r < 0

βrx +

[r]∑

k=0

bk(log x)r−k + E(x, r), if r > 0
(1.24)

where βr and bk are constants.

Instead of the error term E(x, 2), R. A. Smith [85], considered a related function,

say F (x), that can be expressed as F (x) = E(x, 2) + C log x and proved that

F (x) = O
(
(log x)

5
3

)
.

Balakrishnan and Pétermann [3] also considered the error terms E(x, r) and obtained

E(x, r) = O
(
(log x)

2|r|
3 (log log x)

4|r|
3

)
.
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In the same paper, they considered Ω-estimates for both H(x, r) and E(x, r) and

proved the following results

H(x, r) =





Ω±
(
(log log x)|r|

)
if r < 0

Ω±
(
(log log x)

|r|
2

)
if r > 0

and

E(x, r) =





Ω±
(
(log log x)|r|

)
if r > 0

Ω±
(
(log log x)

|r|
2

)
if r < 0

Using the asymptotic expansions (1.23) and (1.24), Balakrishnan and Pétermann

obtained similar expressions for the sums of φr(n) and σr(n), for r > 0:

∑
n≤x

φr(n) =
αr

r + 1
xr+1 + G(x, r)

and
∑
n≤x

σr(n) =
βr

r + 1
xr+1 + xr

[r]∑

k=0

ck(log x)r−k + F (x, r),

where ck are constants. They also proved that G(x, r) = xrH(x, r)(1 + o(1)), and

F (x, r) = xrE(x, r)(1 + o(1)). Therefore, O- and Ω±-results for G(x, r) and F (x, r)

can be derived from the corresponding results for H(x, r) and E(x, r).

The arithmetic functions in (1.22) have Dirichlet series expansions of the form

ζ(s)ζβ(s + 1)g(s + 1), where β only depends on r, and g(s) is absolutely convergent

for σ > 1− λ, for some λ > 0.

We use the following result to obtain theorem 1.3.

Proposition 1.14 (Balakrishnan & Pétermann [3], 1996). Let f(n) be a complex

valued arithmetic function satisfying

∞∑
n=1

f(n)

ns
= ζ(s)ζβ(s + 1)g(s + 1), (1.25)

for a complex number β, and g(s) having a Dirichlet series expansion

g(s) =
∞∑

n=1

cn

ns
,
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which is absolutely convergent in the half plane σ > 1− λ for some λ > 0. Let β0 be

the real part of β. If

ζβ(s)g(s) =
∞∑

n=1

bn

ns

then there is a real number b, 0 < b < 1/2, and constants Bj, such that

∑
n≤x

f(n) =





ζβ(2)g(2)x−
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ o(1), if β0 < 0

ζβ(2)g(2)x +

[β0]∑
j=0

Bj(log x)β−j −
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ o(1), if β0 > 0,

where y(x) = x exp
(−(log x)b

)
.

We are only interested in the cases when f(n) and β are real. For the proof of

this theorem, Balakrishnan and Pétermann used Hankel’s and Perron’s formulæ, and

bounds on the zeta function in the critical strip. Below, we will explain the easier

case when β is an integer, using the residue theorem instead of Hankel’s.

Notice that, in proposition 1.14,

∞∑
n=1

f(n)

ns
= ζ(s)

∞∑
n=1

bn

ns+1
,

which implies that f(n) =
∑

d|n

bd

d
. Reciprocally, we prove

Lemma 1.15. Given a sequence of real numbers bn, let f(n) =
∑

d|n

bd

d
. Then

∑
n≤x

f(n)

ns
= ζ(s)

∑
n≤x

bn

ns+1
−

∑
n≤x

bn

ns+1

∑

m> x
n

1

ms

for any s = σ + it with σ > 1. Define

F (s) :=
∞∑

n=1

f(n)

ns
and B(s) :=

∞∑
n=1

bn

ns
,
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whenever the series in question exist. If the sequence bn satisfies the condition (1.3),

i. e.
∑
n≤x

b4
n ¿ x logD x,

for D > 0, then

F (s) = ζ(s)B(s + 1),

for σ > 1.

Now, we will explain how to get proposition 1.14 when β is an integer. Let

G(s) =
∞∑

n=1

αn

ns

be a Dirichlet series with abscissa of absolute convergence σa. Perron’s effective

formula (see [91, theorem II 2.2]) states,

∑
n≤x

αn =
1

2πi

∫ c+ix

c−ix

G(s)
xs

s
ds + O(xc−1),

where x ≥ 1 and c > max(0, σa). The integral on the right can be computed if we

complete the segment from c− ix to c+ ix into a closed contour and use the residue

theorem of complex analysis.

Let f(n) =
∑

d|n

bd

d
be a sequence of real numbers satisfying (1.25). Then

∑
n≤x

f(n) =
∑
n≤x

bn

n

[x

n

]

= x
∑
n≤x

bn

n2
− 1

2

∑
n≤x

bn

n
−

∑
n≤x

bn

n
ψ

(x

n

)

Using Perron’s formula, we evaluate
∑
n≤x

bn

n
and

∑
n≤x

bn

n2
. We have

∞∑
n=1

bn

n

ns
= ζβ(s + 1)g(s + 1),
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where g(s) is absolutely convergent in the half plane σ > 1− λ for some positive λ.

So
∑
n≤x

bn

n
=

1

2πi

∫ c+ix

c−ix

ζβ(s + 1)g(s + 1)
xs

s
ds + O(xc−1),

for any 0 < c < 1. It is known, that ζ(s+1) has no zero in the region σ ≥ − c1

log1−ε(|t|) ,

for any ε <
1

3
(see [38, Chapter 6])2. There is also no zero of ζ(s + 1) in the region

|s| < 1 (see [91, section II 5.2]).

Take 0 < η < min(λ, 1), ε <
1

3
and

G(s) = ζβ(s + 1)g(s + 1)
xs

s
.

In order to form a closed contour, say L, take the vertical line connecting the

points c − ix and c + ix, then join horizontally the points c + ix and c − ix with

the curve σ = − c1

log1−ε(|t|) , and join vertically the point −η with that curve. Notice

that, inside L, ζ(s + 1) has no zero and has one simple pole at s = 0. Moreover,

g(s + 1) is absolutely convergent inside L. Therefore, G(s) has a pole at s = 0 of

order β + 1, if β ≥ 0, and is analytic, if β < 0. By the residue theorem

1

2πi

∫ c+ix

c−ix

G(s) ds = Φ(x)− 1

2πi

∫

L\[c−ix,c+ix]

G(s) ds,

where, when β ≥ 0, Φ(x) is the residue of G(s) at s = 0, and, when β < 0, Φ(x) = 0.

Since, close to s = 0, we have ζ(s + 1) =
1

s
+ γ + O(|s|), then

Φ(x) =

β∑
j=0

Aj logj x,

2N. M. Korobov [48] and I. M. Vinogradov [99] obtained independently an upper bound
for ζ(s) in a region just to the left of σ = 1 which implies that ζ(s) has no zero in the

region σ > 1− C

log
2
3 |t|(log log |t|) 1

3
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for β ≥ 0, where Aj are computable constants. Since ζ(s + 1) = O(log |t|), inside L

(see [91, theorem II 3.7]), then

1

2πi

∫

L\[c−ix,c+ix]

G(s) ds = O
(
x
− c1

log1−ε x log x
)

+ O(xc−1)

= O (exp(−c2 logε x))

Therefore

∑
n≤x

bn

n
=





O (exp(−c2 logε x)) , if β < 0
β∑

j=0

Aj logj x + O (exp(−c2 logε x)) , if β > 0

Now, we evaluate
∑
n≤x

bn

n2
. We have

∑
n≤x

bn

n2
=

1

2πi

∫ c+ix

c−ix

ζβ(s + 2)g(s + 2)
xs

s
ds + O(xc−1),

for any 0 < c < 1. Take the vertical line [c− ix, c + ix], connect horizontally its end

points to the curve σ = −1− c1

log1−ε(|t|) , and connect vertically the point −1 − η

to the same curve to form a closed contour L1. Inside L1, ζβ(s + 2)g(s + 2)
xs

s
has a

simple pole at s = 0 and a pole of order β, if β ≥ 1, at the point s = −1. Therefore,

∑
n≤x

bn

n2
=





ζβ(2)g(2) + O (exp(−c2 logε x)) , if β < 1

ζβ(2)g(2) +
1

x

β−1∑
j=0

Cj logj x + O (exp(−c2 logε x)) , if β > 1

After joining everything together, we obtain

∑
n≤x

f(n) =





ζβ(2)g(2)x−
∑
n≤x

bn

n
ψ

(x

n

)
+ O (exp(−c2 logε x)) , if β < 0

ζβ(2)g(2)x +

β∑
j=0

Dj logj x−
∑
n≤x

bn

n
ψ

(x

n

)

+O (exp(−c2 logε x)) , if β > 0
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Now, we just need to estimate
∑

y<n≤x

bn

n
ψ

(x

n

)
. Here, we follow Balakrishnan and

Pétermann [3, Lemma 2.5]), who proved that

∑
y<n≤x

bn

n
ψ

(x

n

)
=





o(1), if β < 1
β−1∑
j=0

Ej(log x)β−1−j + o(1), if β > 1

and so proposition 1.14 is obtained, for any integer β.

Define

H(x) =





∑
n≤x

f(n)− ζβ(2)g(2)x, if β < 0

∑
n≤x

f(n)− ζβ(2)g(2)x−
[β]∑
j=0

Bj(log x)β−j, if β > 0

From proposition 1.14, there is an increasing function k(x), with

lim
x→∞

k(x) = ∞,

such that

H(x) = −
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ O

(
1

k(x)

)
.

The methods developed in chapter 2, allow us to obtain

∫ 2T

T

(∫ t+h

t

H(u) du

)2

dt ¿ Th
3
2 ,

for any constant h ¿ min(log T, k2(T )), and using this result we prove theorem 1.3,

which we state here again:

Theorem 1.3. Let f(n) =
∑

d|n

bd

d
be a arithmetic function and suppose the sequence

bn satisfies conditions (1.3) and (1.4), i. e.

∑
n≤x

b4
n ¿ x logD x and

∞∑
n=1

bn

ns
= ζβ(s)g(s)
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for some β real, D > 0, and a function g(s) with a Dirichlet series expansion abso-

lutely convergent for σ > 1− λ, for some λ > 0. Let α = ζβ(2)g(2) and

H(x) =





∑
n≤x

f(n)− αx, if β < 0

∑
n≤x

f(n)− αx−
[β]∑
j=0

Bj(log x)β−j, if β > 0

where the constants Bj are defined by proposition 1.14. If α 6= 0 then

1. #{1 ≤ n ≤ T : αH(n) > 0} À T ;

2. if NH(T ) À T , then #{1 ≤ n ≤ T : αH(n) < 0} À T ;

3. if #{1 ≤ n ≤ T : αH(n) < 0} À T , then NH(T ) À T or zH(T ) À T.

We end chapter 4 proving that the list of examples in (1.22) satisfy the conditions

of theorem 1.3.

1.5 The divisor function τ(n)

Let τ(n) denote the number of divisors of n. It was proved by P. G. L. Dirichlet [12]

that

D(x) :=
∑
n≤x

τ(n) = x log x + (2γ − 1)x + ∆(x), (1.26)

where

∆(x) = −2
∑

d≤√x

ψ
(x

d

)
+ O(1)

So ∆(x) = O (
√

x). The Dirichlet’s divisor problem consists of determining as

precisely as possible the maximum order of ∆(x). G. H. Hardy conjectured that

∆(x) = O(x
1
4
+ε), for any ε > 0. Using only elementary methods, G. F. Voronöı [100]

proved that ∆(x) = O
(
x

1
3 log x

)
.
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In 1904, Voronöı [101] obtained the following explicit formula

∆(x) =
1

4
+

δ(x)

2
+

x
1
4

π
√

2

∞∑
n=1

τ(n)

n
3
4

cos(4π
√

nx− π

4
)

− 3

32π2
√

2
x−

1
4

∞∑
n=1

τ(n)

n
5
4

sin(4π
√

nx− π

4
) + O

(
x−

3
4

)
, (1.27)

where δ(x) = τ(x) if x is an integer and 0 otherwise. Next, we will give an idea of

how a truncated version of the above formula can be obtained (see [94, chapter XII]

for details).

The generating function of τ(n) is ζ2(s), i. e.

ζ2(s) =
∞∑

n=1

τ(n)

ns
,

for σ > 1. Let

F (s) =
∞∑

n=1

an

ns

be a Dirichlet series with abscissa of convergence σc. Then, Perron’s formula (see

[91, theorem II.2.1]) states,

∑
n<x

an +
ax

2
=

1

2πi

∫ c+i∞

c−i∞
F (s)

xs

s
ds,

where x > 0, ax = 0 if x is not integer and c > max(0, σc). Therefore, when x is not

an integer,

D(x) =
1

2πi

∫ c+i∞

c−i∞
ζ2(s)

xs

s
ds,

for c > 1. Considering the integral round the rectangle c − iT , c + iT , −a + iT ,

−a − iT , where a > 0, we find a double pole at s = 1 and a simple pole at s = 0.

The residue at s = 0 is ζ2(0) =
1

4
. Since, close to s = 1, we have,

ζ(s) =
1

s− 1
+ γ + O(|s− 1|).

Then the residue at s = 1 is x log x + (2γ − 1)x. Moreover, using bounds on ζ(s),

can be proved that
∫ c+iT

−a+iT

ζ2(s)
xs

s
ds = O

(
T 2a

xa

)
+ O

(
xc

T

)
.
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A similar result holds for the integral of ζ2(s)
xs

s
, when s goes from −a−iT to c−iT .

Therefore,

D(x) :=
∑
n≤x

τ(n) = x log x + (2γ − 1)x +
1

4
+

1

2πi

∫ −a+iT

−a−iT

ζ2(s)
xs

s
ds

+ O

(
T 2a

xa

)
+ O

(
xc

T

)

Using (1.26) and the functional equation of ζ(s), we obtain

∆(x) =
1

4
+

1

2πi

∫ −a+iT

−a−iT

ζ2(s)
xs

s
ds + O

(
T 2a

xa

)
+ O

(
xc

T

)

=
1

4
+

1

2πi

∫ −a+iT

−a−iT

χ2(s)ζ2(1− s)
xs

s
ds + O

(
T 2a

xa

)
+ O

(
xc

T

)

=
1

4
+

1

2πi

∞∑
n=1

τ(n)

∫ −a+iT

−a−iT

χ2(s)

n1−s

xs

s
ds + O

(
T 2a

xa

)
+ O

(
xc

T

)

where

χ(s) = 2sπs−1 sin(
1

2
sπ)Γ(1− s).

After making the change of variable w = 1 − s, and using the well known relation

Γ(w) = (w−1)Γ(w−1), one can apply Bessel functions (see [93, (7.9.8) and (7.9.11)])

and obtain

∆(x) =
1

4
− 2

π
x

1
2

∞∑
n=1

τ(n)

n
1
2

(
K1(4π

√
nx) +

π

2
Y1(4π

√
nx)

)
+ O

(
T 2a

xa

)
+ O

(
xc

T

)
.

Take N ¿ x, T =
√

Nx, a = ε > 0 and c = 1 + ε. Using the asymptotic formulæ

for Bessel functions (see [105]), a truncated form of (1.27) is obtained

∆(x) =
x

1
4

π
√

2

∑
n≤N

τ(n)

n
3
4

cos
(
4π
√

nx− π

4

)
+ O

(
x

1+ε
2 N− 1

2

)
. (1.28)
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Define α as the least number such that ∆(x) < xα+ε, for every positive ε. The

following bounds for α have been obtained:

33

100
= 0.330000... van der Corput [97]

27

82
= 0.329268... van der Corput [98]

15

46
= 0.326086... Chih [5], Richert [74]

12

37
= 0.324324... Kolesnik [44]

346

1067
= 0.324273... Kolesnik [45]

35

108
= 0.324074... Kolesnik [46]

139

429
= 0.324009... Kolesnik [47]

7

22
= 0.318181... Iwaniec and Mozzochi [40], Heath-Brown and Huxley [32]

23

73
= 0.315068...M. N. Huxley [34]

Recently, M. N. Huxley [35] obtained the bound
131

416
= 0.314904. Hence

∆(x) = O
(
x

131
416

+ε
)

.

On the other hand, Hardy [25] proved3 that

∆(x) =





Ω+

(
x

1
4 (log x)

1
4 log log x

)

Ω−
(
x

1
4

)
,

(1.29)

The Ω−-result for ∆(x) has been gradually improved, culminating in the work of K.

Corrádi and I. Kátai [9], who, in 1967, showed that for a positive constant c,

∆(x) = Ω−
(
x

1
4 exp

(
c (log log x)

1
4 (log log log x)−

3
4

))

3Hardy stated

∆(x) =





Ω+

(
x

1
4 (log x)

1
4 log log x

)

Ω−
(
x

1
4 (log x)

1
4 log log x

)
,

but the Ω−-result cannot be obtained as it is by Hardy’s method (see [29, pp. 326])
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The first improvement on the Ω+-result had to wait until 1981, when J. L. Hafner

[22] obtained

∆(x) = Ω+

(
x

1
4 (log x)

1
4 (log log x)

1
4
(3+log 4) exp

(
−c(log log log x)

1
2

))

Recently, K. Soundararajan [86], refined Hafner’s argument and obtained

∆(x) = Ω
(
x

1
4 (log x)

1
4 (log log x)

3
4
(2

4
3−1)(log log log x)−

5
8

)
. (1.30)

Starting with Voronöı’s formula, we may model πx−
1
4

√
2∆(x) by a random trigono-

metric series
∞∑

n=1

τ(n)

n
3
4

cos(Xn), where the Xn are independent random variables uni-

formly distributed on [0, 2π]. Using estimates, obtained by H. L. Montgomery and

A. M. Odlyzko [61], for the probability of large values attained by this trigono-

metric series, Soundararajan also provided a heuristic justification that the Ω-result

in (1.30) is the best possible up to (log log x)o(1).

These results seem to support Hardy’s conjecture, which is believed to be

extremely difficult. Therefore, it is natural to consider the mean values of ∆(x).

In [101], Voronöı also proved

∫ T

2

∆(x) dx =
1

4
T +

(
2π2

√
2
)−1

T
3
4

∞∑
n=1

τ(n)n−
5
4 sin

(
4π
√

nT − π

4

)

+
15

64π3
√

2
T

1
4

∞∑
n=1

τ(n)n−
7
4 cos

(
4π
√

nT − π

4

)
+ O(1). (1.31)

Notice that

∆(x2) =

√
x

π
√

2

∑
n≤N

τ(n)

n
3
4

cos(4πx
√

n− π

4
) + O(x1+εN− 1

2 ),

which is easier to work with. Starting with this formula, a variation of (1.16) for the

function ∆(x) is obtained

Theorem 1.16. Let ε > 0. For T sufficiently large and r ¿ T
1
2
−2ε,

∫ 2T

T

(∫ t+ r√
T

t− r√
T

∆(u2) du

)2

dt =
3ζ4(3

2
)

2π2ζ(3)
Tr2 + O

(
T

3
4
+2εr

3
2
−2ε

)
+ O

(
T

1
2
+2εr3−4ε

)
.
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From this, we were unable to get a new version of theorem 1.2. Going a step

further, we prove

Theorem 1.17. Let ε > 0. Let T sufficiently large and r,X ¿ T
1
2
−ε. For t ∈ [T, 2T ]

and any h > 0, define

At,h =

∫ t+h

t−h

∆(u2) du.

Then,

∫ 2T

T

(
At, r√

T
+ At+X, r√

T

)2

dt =
3ζ4(3

2
)

π2ζ(3)
Tr2 +

3

2π2
Tr2

∞∑
n=1

τ(n)2

n
3
2

cos
(
4πX

√
n
)

+ O
(
T

1
2
+2εr3−4ε

)
+ O(T 1−ε) + O

(
T

3
4
+2εr

3
2
−2ε

)

But, again, this result was not enough to prove that there are many cancellations

in small intervals, which would allow us to obtain results about the number of sign

changes.

Higher power moments of ∆(x) were considered by previous authors. The mean

of ∆2(x) was obtained by H. Crámer [10], in 1922,

∫ T

2

∆2(t) dt =
ζ4(3

2
)

6π2ζ(3)
T

3
2 + R(T ), (1.32)

where R(T ) = O
(
T

5
4
+ε

)
. The error term above have been improved to O(T log5 T )

by K. C. Tong [95] and to O(T log4 T ) by E. Preissmann [70]. As Heath-Brown

mentioned (For details, see [94, pag. 327]), a result of the form R(T ) ¿ F (T )

implies ∆(T ) ¿ (F (T ) log T )
1
3 , but Y.-K. Lau and K.-M. Tsang [51] proved

∫ T

2

R(t) dt = − 1

8π2
T 2 log2 T + O

(
T 2 log T

)

which implies R(T ) = Ω−(T log2 T ).

Using Crámer’s result (1.32) and Voronöı’s formula (1.31), we were able to prove

that there is a positive proportion of negative values for ∆(x), more exactly
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Theorem 1.18. There are positive constants c1, c2 and c3, such that, for T suffi-

ciently large,

#{1 ≤ n ≤ T : c1T
1
4 < ∆(n) < c2T

1
4} > c3T

and

#{1 ≤ n ≤ T : −c2T
1
4 < ∆(n) < −c1T

1
4} > c3T.

D. R. Heath-Brown and K. Tsang had already proved that there is a positive

proportion of large values of |∆(x)|:

Theorem (Heath-Brown & Tsang [33], 1994). Let δ > 0 be any given small quantity.

Then for any T ≥ T0(δ), there are at least c1δ
√

T log5 T disjoint intervals of length

c2δ
√

T log−5 T in [T, 2T ], such that |∆(x)| > (c3 − δ)x
1
4 whenever x lies in any of

these subintervals. The positive constants c1, c2 and c3 can be computable.

A few years earlier, K.-M. Tsang obtained asymptotic expansions for the third

and fourth moments of ∆(x):

Theorem (Tsang [96], 1992).

∫ T

2

∆3(t) dt =
3c1

28π3
T

7
4 + O

(
T

47
28

+ε
)

,

∫ T

2

∆4(t) dt =
3c2

64π4
T 2 + O

(
T

45
23

+ε
)

,

where

c1 =
∞∑

α,β=1

(αβ(α + β))−
3
2

∞∑

h=1

µ2(h)

h
9
4

τ(α2h)τ(β2h)τ((α + β)2h)

c2 =
∞∑

k,l,m,n=1√
k+
√

l=
√

m+
√

n

τ(k)τ(l)τ(m)τ(n)

(klmn)
3
4

For larger powers of ∆(x), A. Ivić [37], showed that

∫ T

2

∆(t)A dt ¿ T 1+A
4

+ε,



38

for any 0 ≤ A ≤ 35

4
and any ε > 0. In an important paper, D. R. Heath-Brown

[31] prove the existence of a distribution function for x−
1
4 ∆(x) and extended Ivić’s

result for A ≤ 28

3
, using the estimate of Iwaniec and Mozzochi [40] for ∆(x). Using

Huxley’s estimate, Ivić’s result is easily extended to A ≤ 184

19
.

The question about the number of sign changes was also considered for this

function. In 1969, J. Steinig [87], proved a general result about the number of sign

changes of error terms associated with the coefficients of Dirichlet series that satisfy

a certain functional equation. In particular, Steinig obtained X∆(T ) > 4
√

T − A,

where A is a constant independent of T . By a different method, A. Ivić and H. J. J.

te Riele [39] proved that ∆(x) changes sign in [x, x + c
√

x], for x sufficiently large.

Later, D. R. Heath-Brown and K.-M. Tsang obtained

Theorem (Heath-Brown & Tsang [33], 1994). For any real-valued function f(t)

satisfying |f(t)| ≤ c1t
1
4 , the function ∆(t) + f(t) changes sign at least once in the

interval [T, T + c2

√
T ], for large T . In particular, there exists t1, t2 ∈ [T, T + c1

√
T ]

such that ∆(t1) ≤ −c2t
1
4
1 and ∆(t2) ≥ c2t

1
4
2 .

Since ∆(x) varies at most log x in the interval [n, x], where n = [x], this result

implies that NH(T ) À √
T .

In order to obtain an explicit lower bound for the number of sign changes on

integers of ∆(x), we prove that,

∫ tk+h

tk−h

∫ tk−1+h

tk−1−h

· · ·
∫ t2+h

t2−h

∫ t1+h

t1−h

∆(t20) dt0 dt1 · · · dtk−2 dtk−1

=
1

2kπk+1
√

2

√
tk

t2k∑
n=1

τ(n)

n
3
4
+ k

2

sink
(
4πh

√
n
)
cos

(
4πtk

√
n− π

4

)
+ O

(
hk+1tεk

)
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for any ε > 0, k, h ≥ 1 and tk sufficiently large. Since ζ2(s) =
∞∑

n=1

τ(n)

ns
, the sum on

the right is smaller than ζ2

(
3

4
+

k

2

)
. We choose k and h such that

sink (4πh) > ζ2

(
3

4
+

k

2

)
− 1

For these values of k and h, the multiple integrations of ∆(x2) changes sign whenever

the first term of the sum changes sign. From this we obtain theorem 1.4:

Theorem 1.4. Let N∆(T ) be the number of sign changes on integers of ∆(t), for

T ≤ t ≤ 2T . Then, for sufficiently large T , N∆(T ) >
√

T . Moreover, there exists a

constant c1, and t1, t2 ∈ [T, T +
√

T ] such that ∆(t1) ≤ −c1T
1
4 and ∆(t2) ≥ c1T

1
4 .

1.6 More functions

Let r(n) denote the number of representations of n as the sum of two squares. It is

well known that

r(n) = 4
∑

d|n
χ(n), (1.33)

where χ(n) is the non principal of modulus 4, i. e.

χ(n) =





0 if 2 | n
1 if n ≡ 1 mod 4

−1 if n ≡ −1 mod 4

Using formula (1.33) or by counting the number of lattice points in a circle, it can

be proved that
∑
n≤x

r(n) = πx + P (x),

where P (x) = O(
√

x) (see, for example, [29]). The above estimation of P (x) was

obtained by C. F. Gauss [20], and Sierpinski [79] obtained P (x) = O(x
1
3 ). In [25],
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G. H. Hardy investigated the function ∆(x) together with the function P (x) and

obtained the Ω-result

P (x) = Ω+

(
x

1
4 (log x)

1
4

)
.

In the same journal, Hardy [26] obtained average results for ∆(x) and P (x). Since

then, many results concerning ∆(x) have been associated with similar results for

P (x) (e. g. [22, 33, 34, 35, 86, 96]). In particular,

P (x) = O
(
x

131
416

+ε
)

and

P (x) = Ω
(
x

1
4 (log x)

1
4 (log log x)

3
4
(2

1
3−1)(log log log x)−

5
8

)
.

The conclusions of theorem 1.18 remain valid if we replace ∆(x) by P (x). This can

be proved using the result of G. H. Hardy and E. Landau [27]

∫ T

2

P (t) dt = O(T
3
4 )

and the result of H. Crámer [10]

∫ T

2

P (t) dt =
1

3π2

∞∑
n=1

(
r2(n)

n
3
2

)
T

3
2 + O

(
T

5
4
+ε

)

Notice that the above implies that the mean value of P (x) is 0 while the mean value

of ∆(x) is
1

4
, by Voronöı’s result.

There is also a Voronöı type formula for P (x) (see [38, equation (13.74)])

P (x) =
x

1
4

π

∞∑
n=1

r(n)

n
3
4

cos(2π
√

nx +
π

4
) + O (xε) .

Using this formula, we can obtain

Theorem. Let NP (T ) denote the number of sign changes on integers of P (t), for

T ≤ t ≤ 2T . Then, for sufficiently large T , NP (T ) À
√

T . Moreover, there exists

positive constants c1 and c2, and t1, t2 ∈ [T, T + c2

√
T ] such that P (t1) ≤ −c1T

1
4 and

P (t2) ≥ c1T
1
4 .
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For any integer n, let τk(n) be the number of ways of expressing n as a product

of k factors. Consider the error term

∆k(x) =
∑
n≤x

τk(n)− xPk(log x),

where Pk is a polynomial of degree k − 1. From [94, equation (12.4.6)], we have

∆3(t) =
1

π
√

3
t

1
3

∑

n≤T 2

τ3(n)

n
2
3

cos
(
6π(nt)

1
3

)
+ O(T ε),

for any ε > 0, T sufficiently large and T ≤ t ≤ 2T . Since ζ3(s) =
∞∑

n=1

τ3(n)

ns
, for s > 1,

we can use the method developed to prove theorem 1.4 and obtain N∆3(T ) À T
1
3 .

The reader may have noticed that many of the papers mentioned above refer to

the behavior of the zeta function on the critical line or to the function E(T ). This

function E(T ) denotes the error term in the asymptotic formula for the mean square

of the Riemann zeta-function on the critical line, i. e.

E(T ) =

∫ T

0

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2

dt− T log

(
T

2π

)
− (2γ − 1)T

It have been proved that, if E(t) ¿ tα then |ζ(1
2

+ it)| ¿ t
α
2 (see [94, Notes for

Chapter 7]). In 1949, F. V. Atkinson [1] found a Voronöı’s type formula for E(T )

which, for N ³ T , may be written as

E(T ) = Σ1(T ) + Σ2(T ) + O(log2 T ),

where

Σ1(T ) =

(
2T

π

) ∑
n≤N

(−1)n τ(n)

n
3
4

e(T, n) cos(f(T, n)),

Σ2(T ) = −2
∑

n≤N ′

τ(n)

n
1
2

(
log

T

2πn

)−1

cos(g(T, n)),
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and N ′ =
T

2π
+

N

2
−

(
N2

4
+

NT

2π

) 1
2

. The functions e(T, n), f(T, n) and g(T, n) are

defined below

e(T, n) =
(
1 +

πn

2T

)− 1
4

[(
2T

πn

) 1
2

arc sinh
(πn

2T

) 1
2

]−1

f(T, n) = 2Tarc sinh
(πn

2T

) 1
2

+
(
2πnT + π2n2

) 1
2 − π

4
,

g(T, n) = T log

(
T

2πn

)
− T +

π

4
.

D. R. Heath-Brown [30] used the Voronöı’s type formula above to prove the following

theorem:

Theorem.

∫ T

2

E2(t) dt =

(
2

3
√

2π

∞∑
n=1

τ 2(n)

n
3
2

)
T

3
2 + O

(
T

5
4 log5 T

)
.

As for ∆(x), the error term above has been improved to O(T log5 T ) by T.

Meurman [59]. J. L. Hafner and A. Ivić [23] proved that the average of E(T ) is

π:

Theorem.

∫ T

2

E(T ) dt = πT +
1

2

(
2T

π

) 3
4
∞∑

n=1

(−1)n τ(n)

n
5
4

sin

(
4π

√
nT

2π
− π

4

)
+ O

(
T

2
3 log T

)

With the two results above we can prove a version of theorem 1.18 for E(t).

In the paper mentioned above Hafner and Ivić obtained also Ω-results for E(T ):

E(t) = Ω+

{
(T log T )

1
4 (log log T )

3+log 4
4 exp

(
−c1

√
log log log T

)}

E(t) = Ω−

{
T

1
4 exp

(
c2

(log log T )
1
4

(log log log T )
3
4

)}

Many authors (e.g. [55, 62, 58]) found analogues of Atkinson’s formula to other

error terms, e. g. error terms of mean square of ζ(σ + it), for
1

2
< σ <

3

4
or similar
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error terms associated with Dirichlet L-functions. With these formulas, they obtained

O-, Ω- and mean square results for those error terms (see K. Matsumoto’s survey

[56]). It seems plausible that results about sign changes, can be obtained for these

or more general error terms, but these problems were not considered in our work.



Chapter 2

Error Terms

The main tool Y.-K. Lau used to obtain theorem 1.5, was what he called his Main

Lemma, where he proves that if

H(x) =
∑
n≤x

φ(n)

n
− 6

π2
x

then ∫ 2T

T

(∫ t+h

t

H(u) du

)2

dt ¿ Th,

for sufficiently large T and any 1 ≤ h ¿ log4 T . As we explained in the previous

chapter, Lau’s argument depends essentially on the formula (1.7):

H(x) = −
∑

n≤ x
log5 x

µ(n)

n
ψ

(x

n

)
+ O

(
1

log20 x

)
.

Many arithmetic functions have summations with error terms that can be expressed

with a similar formula. In this chapter, we obtain a generalization of Lau’s Main

Lemma for functions similar to H(x), above, satisfying some general conditions:

Main Lemma. Suppose H(x) is a function that can be expressed as

H(x) = −
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ O

(
1

k(x)

)
,

where each bn is a real number and

1. for some D > 0, we have y(x) ¿ x

(log x)5+D
2

and
∑
n≤x

b4
n ¿ x logD x;

44
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2. k(x) is an increasing function, satisfying lim
x→∞

k(x) = ∞.

Then, for all large T and fixed h ≤ min (log T, k2(T )), we have

∫ 2T

T

(∫ t+h

t

H(u) du

)2

dt ¿ Th
3
2 . (2.1)

In section 2.5, we use the Main Lemma to prove the following general theorem,

from which theorems 1.2 and 1.3 are corollaries.

Theorem 2.1. Suppose H(x) is a function that can be expressed as

H(x) = −
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ O

(
1

k(x)

)
,

where bn, y(x) and k(x) satisfy the hypothesis of the Main Lemma, for some D > 0.

Suppose also that H(x) = H([x]) − α{x} + θ(x), where α 6= 0 and θ(x) = o(1) and

let ≺∈ {<, =,≤}. If

#{1 ≤ n ≤ T : αH(n) ≺ 0} À T

then exists a positive constant c0 and c0T disjoint subintervals of [1, T ], with each of

them having at least two integers, n and m, such that αH(n) ≺ 0 and αH(m) > 0.

Moreover,

1. #{1 ≤ n ≤ T : αH(n) > 0} À T.

2. if NH(T ) À T , then #{1 ≤ n ≤ T : αH(n) < 0} À T ;

3. if #{1 ≤ n ≤ T : αH(n) < 0} À T , then NH(T ) À T or zH(T ) À T.

2.1 Preliminary results

Before we prove the Main Lemma we need a technical result for sequences bn satis-

fying condition (1.3):
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Lemma 2.2. Let bn be a sequence of real numbers satisfying (1.3), i. e.

B4(N) :=
∑
n≤N

b4
n ¿ N logD N,

for some D > 0. Then

1.

B2(N) :=
∑
n≤N

b2
n ¿ N log

D
2 N, (2.2)

2.

B1(N) :=
∑
n≤N

|bn| ¿ N log
D
4 N (2.3)

3.
∑
n≤N

b2
n

n
¿ (log N)1+D

2 (2.4)

4.
∑
n≤N

|bn|
n
¿ (log N)1+D

4 (2.5)

5. For any δ > 0,
∑
n>N

b4
n

n2
τ(n) ¿ 1

N1−δ
, (2.6)

where τ(n) is the number of divisors of n.

Remark. If H(x) can be expressed in the form (1.1), then (2.5) implies

|H(x)| ≤
∑

n≤y(x)

|bn|
n

+ O

(
1

k(x)

)
¿ (log x)1+D

4 (2.7)

Proof: The inequality (2.2) follows at once from Cauchy’s inequality:

∑
n≤N

b2
n ≤

(∑
n≤N

1

) 1
2
(∑

n≤N

b4
n

) 1
2

¿ N log
D
2 N

Using the Cauchy Inequality again, we obtain (2.3).
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To prove (2.4) we use partial summation. Let B2(t) =
∑
n≤N

b2
n, then

∑
n≤N

b2
n

n
=

∫ N

1−

dB2(t)

t

= O
(
log

D
2 N

)
+

∫ N

1−

B2(t)

t2
dt

= O
(
log1+D

2 N
)

Using B1(t) instead of B2(t), we get (2.5). Now, we prove the last statement in

the lemma. Take any δ > 0. Theorem 315 of Hardy & Wright [29] tells us that

τ(n) = O(nε) for any ε > 0. So, take ε <
δ

2
. Then

∑
n>N

b4
n

n2
τ(n) ¿

∑
n>N

b4
n

n2−ε

By partial summation,

∑
n>N

b4
n

n2−ε
=

∫ ∞

N

dB4(t)

t2−ε

=

[
B4(t)

t2−ε

]∞

N

+ (2− ε)

∫ ∞

N

B4(t)

t3−ε
dt

= O

(
1

N1−2ε

)
+ O

(∫ ∞

N

t logD t

t3−ε
dt

)

Since tε logD t < tδ, for sufficiently large t, then
t(tε logD t)

t3
<

1

t2−δ
. Hence,

∑
n>N

b4
n

n2
τ(n) ¿ 1

N1−δ

for any δ > 0. 2
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2.2 The Main Lemma

We are going to prove the Main Lemma, assuming a technical result, which will be

proved in the next two sections.

For any integer N , define

HN(x) = −
∑

d≤N

bd

d
ψ

(x

d

)
(2.8)

Lemma 2.3. Suppose H(x) is a function that can be expressed as

H(x) = −
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ O

(
1

k(x)

)
,

where each bn is a real number and

1. for some D > 0, we have y(x) ¿ x

(log x)5+D
2

and
∑
n≤x

b4
n ¿ x logD x;

2. k(x) is an increasing function, satisfying lim
x→∞

k(x) = ∞.

Take δ > 0 and D > 0 satisfying condition 1, above. Let E = 4 +
D

2
. Then,

a) For all large T , any Y ¿ T and N ≤ y(T ), we have

∫ T+Y

T

(H(u)−HN(u))2 du ¿ Y

N1−δ
+

Y

k2(T )
+ y(T + Y ) (log T )E ;

b) For all large T , N ≤ y(T ) and fixed 1 ≤ h ≤ min (log T, k2(T )), we have

∫ 2T

T

(∫ t+h

t

HN(u) du

)2

dt ¿ Th
3
2 + N3(log N)E.

Proof of the Main Lemma: Assume the two results of lemma 2.3 and take

N = T
1
4 . An application of Cauchy’s inequality in the form (a + b)2 ≤ 2(a2 + b2)

gives us

(∫ t+h

t

H(u) du

)2

dt ≤ 2

(∫ t+h

t

HN(u) du

)2

dt+2

(∫ t+h

t

(H(u)−HN(u)) du

)2

dt
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Since N = T
1
4 then, for sufficiently large T , N3 logE N ¿ T . So, using part b) of

lemma 2.3, we have

∫ 2T

T

(∫ t+h

t

HN(u) du

)2

dt ¿ Th
3
2 + N3 logE N ¿ Th

3
2 .

Also, using Cauchy’s inequality and interchanging the integrals,

∫ 2T

T

(∫ t+h

t

(H(u)−HN(u)) du

)2

dt ≤ h

∫ 2T

T

(∫ t+h

t

(H(u)−HN(u))2 du

)
dt

≤ h

∫ 2T+h

T

(∫ min(u,2T )

max(u−h,T )

(H(u)−HN(u))2 dt

)
du

≤ h2

∫ 2T+h

T

(H(u)−HN(u))2 du

¿ h2

(
T + h

N1−δ
+

T + h

k2(T )
+ y(2T + h) (log T )E

)

¿ T + Th ¿ Th
3
2

since y(2T + h) ¿ T

(log T )E+1
and h ≤ min(log T, k2(T )). Hence

∫ 2T

T

(∫ t+h

t

H(u) du

)2

dt ¿ Th
3
2 .

2

2.3 Step I

In this section, we will prove part a) of lemma 2.3 using the three technical lemmas

1.6, 1.7 and 1.8, stated in section 1.3. We finish this section with the proof of these

three lemmas.
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Using expression (1.1) and Cauchy’s inequality in the form (a + b)2 ≤ 2(a2 + b2),

we obtain

∫ T+Y

T

(H(u)−HN(u))2 du ≤ 2

∫ T+Y

T




y(u)∑
m=N+1

bm

m
ψ

( u

m

)



2

du + O

(
Y

k2(T )

)
.

Let η(T, m, n) = max (T, y−1(m), y−1(n)), then

2

∫ T+Y

T




y(u)∑
m=N+1

bm

m
ψ

( u

m

)



2

du = 2

y(T+Y )∑
m,n=N+1

bmbn

mn

∫ T+Y

η(T,m,n)

ψ
( u

m

)
ψ

(u

n

)
du.

The Fourier series of ψ(u) = u− [u]− 1

2
, when u is not an integer, is given by

ψ(u) = − 1

π

∞∑

k=1

sin(2πku)

k
, (2.9)

so we obtain

2

π2

y(T+Y )∑
m,n=N+1

bmbn

mn

∞∑

k,l=1

1

kl

∫ T+Y

η(T,m,n)

sin

(
2π

ku

m

)
sin

(
2π

lu

n

)
du

which is equal to

1

π2

y(T+Y )∑
m,n=N+1

bmbn

mn

∞∑

k,l=1

1

kl

∫ T+Y

η(T,m,n)

cos

(
2πu

(
k

m
+

l

n

))
− cos

(
2πu

(
k

m
− l

n

))
du.

Next, we estimate the integral above. For the first term we get

∫ T+Y

η(T,m,n)

cos

(
2πu

(
k

m
+

l

n

))
du ¿ 1(

k
m

+ l
n

) .

If
k

m
=

l

n
, then

∫ T+Y

η(T,m,n)

cos

(
2πu

(
k

m
− l

n

))
du ≤ Y,

otherwise ∫ T+Y

η(T,m,n)

cos

(
2πu

(
k

m
− l

n

))
du ¿ 1∣∣ k

m
− l

n

∣∣ .

Part a) of lemma 2.3 will follow from the next three lemmas.
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Lemma 1.6. Let E = 4 +
D

2
as in lemma 2.3. Then

∑
m,n≤X

|bmbn|
∞∑

k,l=1

kn 6=lm

1

kl | kn− lm| ¿ X (log X)E

Lemma 1.7. If D > 0 satisfies condition (1.3), then

∑
m,n≤X

|bmbn|
∞∑

k,l=1

1

kl ( kn + lm)
¿ X (log X)1+D

2

Lemma 1.8. For any δ > 0

∑
N<m,n≤X

|bmbn|
mn

∞∑
k,l=1

kn=lm

1

kl
¿ 1

N1−δ

To finish the proof of part a) of lemma 2.3 we just need to take X = y(T + Y )

in the previous lemmas. Hence

∫ T+Y

T

(H(u)−HN(u))2 du ¿ Y

N1−δ
+ y(T + Y ) (log T )E +

Y

k2(T )

2

Proof of lemma 1.7: Since the arithmetical mean is greater or equal then the

geometrical mean, we have

∑
m,n≤X

|bmbn|
∞∑

k,l=1

1

kl(kn + lm)
≤ 2

∑
m,n≤X

|bmbn|
∞∑

k,l=1

1

kl
√

knlm

¿
( ∑

m≤X

|bm|√
m

)2

¿
( ∑

m≤X

1

)( ∑
M≤X

b2
M

M

)

(2.4)¿ X (log X)1+D
2 2
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Proof of lemma 1.8: For the second sum, take d = (m,n), m = dα and n = dβ.

Since kn = lm, then α|k and β|l. Hence k = αγ, say, and l = βγ. Since

∞∑
k,l=1

kn=lm

1

kl
=

1

αβ

∞∑
γ=1

1

γ2
=

π2

6

(m,n)2

mn
(2.10)

Then,

∑
N<m,n≤X

|bmbn|
mn

∞∑
k,l=1

kn=lm

1

kl
=

π2

6

∑
N<m,n≤X

|bmbn|(m,n)2

m2n2

=
π2

6

∑

d≤X

d2
∑

N<m,n≤X

(m,n)=d

|bmbn|
m2n2

≤ π2

6

∑

d≤X


d

∑
N<m≤X

d|m

|bm|
m2




2

In order to obtain the result stated in the lemma we have to prove that

∑

d≤X


d

∑
N<m≤X

d|m

|bm|
m2




2

¿ 1

N1−δ
(2.11)

The next step will be to estimate the inner sum using Hölder inequality, in the

form |
∑

i

uivi| ≤
(∑

j

u4
j

) 1
4
(∑

k

v
4
3
k

) 3
4




∑
N<m≤X

d|m

|bm|
m2




2

≤




∑
N<m≤X

d|m

b4
m

m2




1
2



∑
N<M≤X

d|M

1

M2




3
2

Take β =
M

d
, then




∑
N<M≤X

d|M

1

M2




3
2

=
1

d3


 ∑

N
d

<β≤X
d

1

β2




3
2

¿ 1

d3
min

{
1,

d3

N3

} 1
2

(2.12)
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We complete the proof of lemma 1.8 using Cauchy’s inequality and the estimate

(2.6). Take any δ > 0, then

∑
N<m,n≤X

|bmbn|
mn

∞∑
k,l=1

kn=lm

1

kl
¿

∑

d≤X

1

d
min

{
1,

d3

N3

} 1
2




∑
N<m≤X

d|m

b4
m

m2




1
2

¿
(∑

d≤X

1

d2
min

{
1,

d3

N3

}) 1
2




∑
D≤X




∑
N<m≤X

D|m

b4
m

m2







1
2

¿



(
1

N3

∑

d≤N

d +
∑

d>N

1

d2

) ∑
N<m≤X


 b4

m

m2

∑

D|m
1







1
2

≤
(

1

N

∑
N<m≤X

b4
m

m2
τ(m)

) 1
2

¿ 1

N1−δ
.

2

Proof of lemma 1.6: This lemma is a generalization of Hilfssatz 6 in [102] of

A. Walfisz. Notice first that

∑
m,n≤X


|bmbn|

∞∑
k,l=1

kn6=lm

1

kl | kn− lm|


 ≤ 2

∑
m≤n≤X


|bmbn|

∞∑
k,l=1

kn 6=lm

1

kl | kn− lm|


 .

Like in [102] we begin by separating the interior sum into four terms.

∞∑
k,l=1

kn6=lm

1

kl | kn− lm| =




∞∑
k,l=1

lm≤ kn
2

+
∞∑

k,l=1

lm≥2 kn

+
∞∑

k,l=1
kn
2

<lm<kn

+
∞∑

k,l=1

kn<lm<2 kn




(
1

kl | kn− lm|
)
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For the first term, we just need to use the estimate (2.3) and the fact that
∑

l≤x

1

l
¿ log x.

∑
m≤n≤X

|bmbn|
∞∑

k,l=1

lm≤ kn
2

1

kl | kn− lm| ≤ 2
∑

m≤n≤X

|bmbn|
∞∑

k,l=1

lm≤ kn
2

1

k2ln

= 2
∑

m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑

l≤ kn
2m

1

l

¿
∑

m≤n≤X

|bm| |bn|
n

∞∑

k=1

(
log k

k2
+

log X

k2

)

¿ log X
∑
n≤X

|bn|
n

∑
m≤n

|bm|

¿ (log X)1+D
4

∑
n≤X

|bn|

¿ X (log X)1+D
2

The second term is treated similarly, except here we also use (2.5).

∑
m≤n≤X

|bmbn|
∞∑

k,l=1

kn≤ lm
2

1

kl | kn− lm| ≤ 2
∑

m≤n≤X

|bmbn|
∞∑

k,l=1

kn≤ lm
2

1

kl2m

= 2
∑

m≤n≤X

|bn| |bm|
m

∞∑

l=1

1

l2

∑

k≤ lm
2n

1

k

¿
∑

m≤n≤X

|bn| |bm|
m

∞∑

l= 2n
m

log l

l2

¿
∑
n≤X

|bn|
∑
m≤n

|bm|
m

¿ (log X)1+D
4

∑
n≤X

|bn|

¿ X (log X)1+D
2
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The estimation of the third term is more complicated and we will have to use a

different approach. In this case, we have
1

l
<

2m

kn
, so

∑
m≤n≤X

|bmbn|
∞∑

k,l=1
kn
2

<lm<kn

1

kl | kn− lm|

< 2
∑

m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑
kn
2m

<l< kn
m

m

kn− lm

< 2
∑

m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑

l≤ kn
m
−1

(
1

kn
m
− l

)

+ 2
∑

m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑
kn
m
−1<l< kn

m

m

kn− lm
.

Now,

∑
m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑

l≤ kn
m
−1

(
1

kn
m
− l

)
=

∑
m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑

l≤ kn
m
−1

1

l

¿ X (log X)1+D
2

as in the first term. If there exists an integer l with
kn

m
− 1 < l <

kn

m
, then m - kn.

In this case, kn− lm = m

{
kn

m

}
and m < n. So, we have to estimate

∑
m<n≤X

|bm| |bn|
n

∞∑
k=1

m- kn

1

k2
{

kn
m

} (2.13)
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Notice that the fractional part of
kn

m
is at least

1

m
. So, when k ≥ m, we can estimate

(2.13), using (2.3).

∑
m<n≤X

|bm| |bn|
n

∞∑

k=m

m

k2
¿

∑
m<n≤X

|bm| |bn|
n

¿
∑
n≤X

|bn|
n

∑
m≤n

|bm|

¿ (log X)
D
4

∑
n≤X

|bn|

¿ X (log X)
D
2

We are left with the estimation of

∑
m<n≤X

|bm| |bn|
n

∑
k<m

m- kn

1

k2
{

kn
m

} .

Since m - kn, then, given k and n, we can take ak,n, such that 1 ≤ ak,n < m and

ak,n ≡ kn mod m. Then,

∑
m<n≤X

|bm| |bn|
n

∑
k<m

m- kn

1

k2
{

kn
m

} ≤
∑

m<n≤X

|bm| |bn|
n

∑

k<m

m

k2ak,n

≤
∑

a,k≤X

1

ak2

∑

max(a,k)<m≤X

m|bm|
∑

m<n≤X

kn≡a mod m

|bn|
n

(2.14)

We need to estimate the inner sums. In order to do that, we will partition the

interval [1, X] in intervals of the form [M, 2M) and apply Cauchy’s inequality. Take

1 ≤ P ≤ Q ≤ X, then,

∑
P≤m<2P

m|bm|
∑

Q≤n<2Q

kn≡a mod m

|bn|
n
¿ P

Q

∑
P≤m<2P

|bm|
∑

Q≤n<2Q

kn≡a mod m

|bn|.



57

Next, we apply Cauchy’s inequality twice, first to the first sum on the right and

afterwards to the second sum.




∑
P≤m<2P


|bm|

∑
Q≤n<2Q

kn≡a mod m

|bn|







2

≤
( ∑

P≤M<2P

b2
M

)


∑
P≤m<2P

∑
Q≤n<2Q

kn≡a mod m

|bn|




2

(2.2)¿ P log
D
2 P

∑
P≤m<2P




∑
Q≤n<2Q

kn≡a mod m

b2
n

∑
Q≤N<2Q

kN≡a mod m

1




¿ P log
D
2 P

∑
P≤m<2P




(
1 +

Q
m

(k,m)

) ∑
Q≤n<2Q

kn≡a mod m

b2
n




Since m ≤ 2P ≤ 2Q, we have
Q

m
≥ 1

2
. Using also (k, m) ≤ k, we obtain

1 +
Q
m

(k,m)

≤ 3
Qk

m
. Therefore,




∑
P≤m<2P


|bm|

∑
Q≤n<2Q

kn≡a mod m

|bn|







2

¿ P log
D
2 P

∑
P≤m<2P


3

Qk

m

∑
Q≤n<2Q

kn≡a mod m

b2
n




¿ P
3kQ

P
log

D
2 P

∑
Q≤n<2Q


b2

n

∑
P≤m<2P

m|kn−a

1




¿ kQ (log P )
D
2

∑
Q≤n<2Q

b2
n τ(kn− a)
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By a theorem of S. Ramanujan [72], we have
∑
n≤X

τ 2(n) ∼ X log3 X (for a proof see

[106]). So, by another application of Cauchy inequality and condition (1.3), we obtain

( ∑
Q≤n<2Q

b2
n τ(kn− a)

)2

≤
( ∑

Q≤n<2Q

b4
n

)( ∑
Q≤n<2Q

τ 2(kn− a)

)

¿ Q logD Q
∑

kQ−a≤n<2kQ−a

τ 2(n)

¿ kQ2 logD+3 X.

Therefore,

∑
P≤m<2P


m|bm|

∑
Q≤n<2Q

kn≡a mod m

|bn|
n


 ¿ P

Q

(
kQ (log P )

D
2

∑
Q≤n<2Q

b2
n τ(kn− a)

) 1
2

¿ P

Q

(
kQ (log X)

D
2

(
kQ2 logD+3 X

) 1
2

) 1
2

¿ Pk
3
4 (log X)1+D

2

The number of of pairs of intervals of the form ([P, 2P ), [Q, 2Q)) that we have to

consider is at most ¿ log2 X, hence

∑

a,k≤X

1

ak2

∑
a<m≤X

m|bm|
∑

m<n≤X

kn≡a mod m

|bn|
n

¿
∑

a,k≤X

k
3
4

ak2

∑
P,Q

P (log X)1+D
2

¿ X (log X)4+D
2

We still have to estimate the fourth term

∑
m≤n≤X

|bmbn|
∞∑

k,l=1

kn<lm<2 kn

1

kl | kn− lm|
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We will use the method we developed in order to estimate the third term. In this

case, we have
1

l
<

m

kn
, so

∑
m≤n≤X

|bmbn|
∞∑

k,l=1

kn<lm<2kn

1

kl | kn− lm|

<
∑

m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑
kn
m

<l< 2 kn
m

(
m

lm− kn

)

<
∑

m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑
kn
m

+1≤ l < 2 kn
m

(
1

l − kn
m

)

+
∑

m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑
kn
m

<l< kn
m

+1

(
m

lm− kn

)

The first case is again easy to estimate,

∑
m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑
kn
m

+1≤ l < 2 kn
m

(
1

l − kn
m

)

=
∑

m≤n≤X

|bm| |bn|
n

∞∑

k=1

1

k2

∑

l< kn
m

1

l

¿ X (log X)1+D
2

If
kn

m
< l <

kn

m
+ 1, then l =

kn

m
+ 1−

{
kn

m

}
and again m - kn (so m < n).

Hence we need to estimate

∑
m<n≤X

|bm| |bn|
n

∞∑
k=1

m- kn

1

k2
(
1− {

kn
m

}) .

Since 1−
{

kn

m

}
is at least

1

m
we again obtain, for k ≥ m,

∑
m<n≤X

|bm| |bn|
n

∞∑

k=m

m

k2
¿

∑
m<n≤X

|bm| |bn|
n

¿ X (log X)
D
2 ,
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where we used inequalities (2.3) and (2.5). Therefore, we are left with the estimation

of
∑

m<n≤X

|bm| |bn|
n

∑
k<m

m- kn

1

k2
(
1− {

kn
m

}) .

Given k and n, take ak,n such that 1 ≤ ak,n < m and ak,n ≡ −kn mod m, then

∑
m<n≤X

|bm| |bn|
n

∑
k<m

m- kn

1

k2
(
1− {

kn
m

})

≤
∑

m<n≤X

|bm| |bn|
n

∑

k<m

m

k2ak,n

=
∑

a,k≤X

1

ak2

∑

max(a,k)<m≤X

m|bm|
∑
m<n

kn≡a mod m

|bn|
n

.

So, we are in the same situation as in (2.14). Hence

∑
m≤n≤X

|bmbn|
∞∑

k,l=1

kn<lm<2 kn

1

kl | kn− lm| ¿ X (log X)4+D
2

This completes the proof of Lemma 1.6. 2

2.4 Step II

In this section we will finalize the proof of the Main Lemma by proving part b) of

lemma 2.3.

From equation (2.9), we can get

∫ t

0

ψ(u) du = − 1

π

∫ t

0

( ∞∑

k=1

sin(2πku)

k

)
du

= − 1

π

∞∑

k=1

(
1

k

∫ t

0

sin(2πku) du

)

=
1

π

∞∑

k=1

(
1

k

[
cos(2πku)

2πk

]t

0

)

=
1

2π2

∞∑

k=1

(
cos(2πkt)

k2
− 1

12

)
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where we used Lebesgue dominated convergence theorem. Using the definition of

HN stated in (2.8), we obtain

∫ t+h

t

HN(u) du = −
∑
m≤N

bm

m

∫ t+h

t

ψ(
u

m
) du

= −
∑
m≤N

bm

m

∫ t+h
m

t
m

mψ(v) dv

= − 1

2π2

∑
m≤N

bm

∞∑

k=1

cos
(
2π k(t+h)

m

)
− cos

(
2π kt

m

)

k2

As usual, let us write e(t) for e2πit. Then

cos

(
2πk

t + h

m

)
− cos

(
2π

kt

m

)
=

e
(

k(t+h)
m

)
+ e

(
−k(t+h)

m

)
− e

(
kt
m

)− e
(−kt

m

)

2

=
e
(

kt
m

) (
e
(

kh
m

)− 1
)

2
−

e
(
−k(t+h)

m

) (
e
(

kh
m

)− 1
)

2

=
e
(

kh
m

)− 1

2
e

(
kt

m

)[
1− e

(
−k

(2t + h)

m

)]

So,

∫ t+h

t

HN(u)du =
1

4π2

∑
m≤N

bm

∞∑

k=1

(
e
(

kh
m

)− 1
)
e
(

kt
m

) (
e
(
−k (2t+h)

m

)
− 1

)

k2

Therefore, using |z|2 = zz,

16π4

∫ 2T

T

∣∣∣∣
∫ t+h

t

HN(u)du

∣∣∣∣
2

dt

=

∫ 2T

T

∣∣∣∣∣∣
∑
m≤N

bm

∞∑

k=1

(
e
(

kh
m

)− 1
)
e
(

kt
m

) (
e
(
−k (2t+h)

m

)
− 1

)

k2

∣∣∣∣∣∣

2

dt

=
∑

m,n≤N

bmbn

∞∑

k,l=1

(
e
(

kh
m

)− 1
) (

e
(− lh

n

)− 1
)

(kl)2

×
∫ 2T

T

e

(
kt

m

)
e

(
− lt

n

)(
e

(
−k

(2t + h)

m

)
− 1

)(
e

(
l

(2t + h)

n

)
− 1

)
dt
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After multiplying the terms inside the integral above, we obtain the following four

terms that we will estimate below:

∫ 2T

T

e

(
kt

m
− lt

n

)
dt + e

(
lh

n
− kh

m

) ∫ 2T

T

e

(
lt

n
− kt

m

)
dt

− e

(
−kh

m

) ∫ 2T

T

e

(
− lt

n
− kt

m

)
dt− e

(
lh

n

) ∫ 2T

T

e

(
lt

n
+

kt

m

)
dt

Notice that,

∣∣∣∣
∫ 2T

T

e2πirt dt

∣∣∣∣ =
1

|2πir|
∣∣e4πirT − e4πirT

∣∣

≤ 1

π|r|

for any r 6= 0. We begin with the last term and use |e(t)− 1)| ≤ 2. Then

∣∣∣∣∣
∑

m,n≤N

bmbn

∞∑

k,l=1

(
e
(

kh
m

)− 1
) (

e
(− lh

n

)− 1
)
e
(

lh
n

)

(kl)2

∫ 2T

T

e

(
lt

n
+

kt

m

)
dt

∣∣∣∣∣

≤ 4
∑

m,n≤N

|bmbn|
∞∑

k,l=1

1

(kl)2

∣∣∣∣
∫ 2T

T

e

(
lt

n
+

kt

m

)
dt

∣∣∣∣

¿
∑

m,n≤N

|bmbn|
∞∑

k,l=1

1

(kl)2
(

l
n

+ k
m

)

¿
∑

m,n≤N

|bmbn|
∞∑

k,l=1

1

kl

(m

k

) (n

l

) 1

(lm + kn)

¿ N3 (log N)1+D
2 .
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where we used lemma 1.7 in the last step. The third term is treated similarly and

we obtain

∣∣∣∣∣
∑

m,n≤N

bmbn

∞∑

k,l=1

(
e
(

kh
m

)− 1
) (

e
(− lh

n

)− 1
)
e
(−kh

m

)

(kl)2

∫ 2T

T

e

(
− lt

n
− kt

m

)
dt

∣∣∣∣∣

¿ N3 (log N)1+D
2 .

Now, if kn = lm, then

∫ 2T

T

e

(
kt

m
− lt

n

)
dt + e

(
lh

n
− kh

m

) ∫ 2T

T

e

(
lt

n
− kt

m

)
dt = 2T.

If kn 6= lm then,

∫ 2T

T

e

(
kt

m
− lt

n

)
dt + e

(
lh

n
− kh

m

) ∫ 2T

T

e

(
lt

n
− kt

m

)
dt ¿ 1∣∣ k

m
− l

n

∣∣

Let’s study first the case when kn 6= lm.

∣∣∣∣∣∣∣

∑
m,n≤N

bmbn

∞∑
k,l=1

kn6=lm

(
e
(

kh
m

)− 1
) (

e
(− lh

n

)− 1
)

(kl)2

∫ 2T

T

e

(
kt

m
− lt

n

)
dt

+
∑

m,n≤N

bmbn

∞∑
k,l=1

kn 6=lm

(
e
(

kh
m

)− 1
) (

e
(− lh

n

)− 1
)
e
(

lh
n
− kh

m

)

(kl)2

∫ 2T

T

e

(
lt

n
− kt

m

)
dt

∣∣∣∣∣∣∣

¿
∑

m,n≤N

|bmbn|
∞∑

k,l=1

kn 6=lm

1

(kl)2
∣∣ k
m
− l

n

∣∣

¿
∑

m,n≤N

|bmbn|
∞∑

k,l=1

kn 6=lm

(m

k

)(n

l

) 1

kl |kn− lm|

¿ N3 logE N,
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by Lemma 1.6. If kn = ml, we will use |e(t) − 1| ≤ min(2, 6π|t|) instead. The

expression obtained has some similarities with lemma 1.8. We are going to use the

same argument to prove:

∑
m,n≤N

|bmbn|
∞∑

k,l=1

kn=lm

1

(kl)2
min

(
1,

kh

m

)
min

(
1,

lh

n

)
¿ h

3
2 (2.15)

As in Lemma 1.8, take d = (m,n), α =
m

d
, β =

n

d
and γ =

k

α
. So l = βγ. Then,

∞∑
k,l=1

kn=lm

1

(kl)2
min

(
1,

kh

m

)
min

(
1,

lh

n

)
=

1

α2β2

∞∑
γ=1

1

γ4

(
min

(
1,

hγ

d

))2

If d ≤ h, we obtain
∞∑

γ=1

1

γ4

(
min

(
1,

hγ

d

))2

=
π4

90
,

and if h < d ≤ N , then

∞∑
γ=1

1

γ4

(
min

(
1,

hγ

d

))2

=

(
h

d

)2 ∑

γ≤ d
h

1

γ2
+

∑

γ> d
h

1

γ4

¿
(

h

d

)2

+

(
h

d

)3

¿
(

h

d

)2

Therefore,

∑
m,n≤N

|bmbn|
∞∑

k,l=1

kn=lm

1

(kl)2
min

(
1,

kh

m

)
min

(
1,

lh

n

)

=
∑

m,n≤N

|bmbn|(m,n)4

m2n2

∞∑
γ=1

1

γ4

(
min

(
1,

hγ

(m, n)

))2

≤
∑

d≤N

d4
∑

m,n≤N

d=(m,n)

| bmbn|
m2n2

∞∑
γ=1

1

γ4

[
min

(
1,

hγ

d

)]2

¿
∑

d≤h


d2

∑
m≤N

d|m

|bm|
m2




2

+ h2
∑

h<d≤N


d

∑
m≤N

d|m

|bm|
m2




2
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The second sum on the right above, will be estimated using inequality (2.11), which

states

∑

d≤X


d

∑
N<m≤X

d|m

|bm|
m2




2

¿ 1

N1−δ
,

for, since d|m we have m > h, so,

h2
∑

h<d≤N


d

∑
m≤N

d|m

|bm|
m2




2

¿ h1+δ.

To estimate the first term we begin with Hölder inequality:

∑

d≤h

d4




∑
m≤N

d|m

|bm|
m2




2

≤
∑

d≤h

d4




∑
m≤N

d|m

|bm|4
m2




1
2



∑
M≤N

d|M

1

M2




3
2

The third sum is O

(
1

d3

)
(similar to (2.12)). Then

∑

d≤h

d4




∑
m≤N

d|m

|bm|4
m2




1
2



∑
M≤N

d|M

1

M2




3
2

¿
∑

d≤h

d




∑
d≤m≤N

d|m

|bm|4
m2




1
2

¿
(∑

d≤h

d2

) 1
2




∑

D≤h




∑
D≤m≤N

D|m

|bm|4
m2







1
2

¿ h
3
2




∑
m≤N

|bm|4
m2

∑
D≤h

D|m

1




1
2

¿ h
3
2

( ∑
m≤N

|bm|4
m2

τ(m)

) 1
2

.

But equation (2.6) implies that
∑
m>N

|bm|4
m2

τ(m) → 0 as N → ∞. In particular,

we have
∑
m≤N

|bm|4
m2

τ(m) = O(1), where the implied constant doesn’t depend on N .

Therefore, we obtain inequality (2.15) and part b) of lemma 2.3, follows. 2
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2.5 A general theorem

In this section, we prove theorem 2.1, from which the main theorems 1.2 and 1.3,

will be deduced.

Theorem 2.1. Suppose H(x) is a function that can be expressed as

H(x) = −
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ O

(
1

k(x)

)
,

where each bn is a real number and

1. for some D > 0, we have y(x) ¿ x

(log x)5+D
2

and
∑
n≤x

b4
n ¿ x logD x;

2. k(x) is an increasing function, satisfying lim
x→∞

k(x) = ∞.

Suppose also that H(x) = H([x])− α{x} + θ(x), where α 6= 0 and θ(x) = o(1). Let

≺∈ {<, =,≤}. If #{1 ≤ n ≤ T : αH(n) ≺ 0} À T then there exists a positive

constant c0 and c0T disjoint subintervals of [1, T ], with each of them having at least

two integers, m and n, such that αH(m) > 0 and αH(n) ≺ 0.

Moreover

1. #{1 ≤ n ≤ T : αH(n) > 0} À T.

2. if NH(T ) À T , then #{1 ≤ n ≤ T : αH(n) < 0} À T ;

3. if #{1 ≤ n ≤ T : αH(n) < 0} À T , then NH(T ) À T or zH(T ) À T.

Proof: From the Main Lemma, we have

∫ 2T

T

(∫ t+h

t

H(u) du

)2

dt ¿ Th
3
2 .

for all large T and h ≤ min (log T, k2(T )).

Assume #{1 ≤ n ≤ T : αH(n) ≺ 0} À T and let c > 0 be a constant such that,

if T be a sufficiently large number, then

#{1 ≤ n ≤ 2T : αH(n) ≺ 0} > cT.
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Take T large. Divide the interval [1, 2T ] into subintervals of length h, where h is a

sufficiently large constant (we will see later how large it must me) satisfying h ≤
log T . Then at least

cT

h
of those subintervals must have at least one integer n with

αH(n) ≺ 0. Let C be the set of the subintervals which satisfy that property. Write

C = {Jr | 1 ≤ r ≤ R}

where the subintervals are indexed by its position in the interval [1, 2T ] and where

R >
cT

h
. Define Ks = J3s−2, for 1 ≤ s ≤ R

3
, and letD be the set of these subintervals.

We have #(D) >
cT

3h
. Notice that any two members of D are separated by a distance

of at least 2h.

Let M be the number of sets K in D for which there exists an integer n ∈ K

such that αH(n) ≺ 0 and αH(m) ≤ 0 for every integer m ∈ (n, n + 2h), and let S
be the set of the corresponding values of n.

Lemma 2.4.

M ≤ c1
T

h
3
2

for some absolute constant c1.

Proof: Since H(x) = H([x])− α{x}+ θ(x), then

αH(x)− αH([x]) = −α2{x}+ αθ(x).

So, if x is sufficiently large and not an integer then

−5

4
α2{x} < αH(x)− αH([x]) < −3

4
α2{x}. (2.16)

Let n1 be the smallest integer such that any non integer x > n1 satisfies condition

(2.16). If #{n ∈ S : n ≥ n1} = 0 then M ≤ n1, so, the lemma is clearly true for

sufficiently large T . Otherwise, #{n ∈ S : n ≥ n1} ≥ M − n1 À M .
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Take n ∈ S with n ≥ n1 and t ∈ [n, n + h]. Then for any integer m ∈ [t, t + h],

αH(m) ≤ 0. Moreover,

∫ t+h

t

H(u) du =

∫ [t]+1

t

H(u) du +
h−1∑
j=1

∫ [t]+j+1

[t]+j

H(u) du +

∫ t+h

[t]+h

H(u) du.

Now, for any 1 ≤ j < h,

∫ [t]+j+1

[t]+j

H(u) du =

∫ [t]+j+1

[t]+j

(H(u)−H([t] + j) + H([t] + j)) du

=

∫ [t]+j+1

[t]+j

(H(u)−H([t] + j)) du +

∫ [t]+j+1

[t]+j

H([t] + j) du.

Therefore, by (2.16),

∫ [t]+j+1

[t]+j

αH(u) du <

∫ 1

0

(
−3

4
α2x

)
dx + αH([t] + j)

< −3

8
α2

because αH([t] + j) ≤ 0. Since [t] ≥ n, we also have

∫ [t]+1

t

αH(u) du <

∫ 1

{t}

(
−3

4
α2x

)
dx + αH([t]) (1− {t}) < 0

and ∫ t+h

[t]+h

αH(u) du <

∫ {t}

0

(
−3

4
α2x

)
dx + αH([t] + h){t} ≤ 0.

Hence, ∫ t+h

t

αH(u) du ≤ −3

8
α2(h− 1)

and so ∣∣∣∣
∫ t+h

t

H(u) du

∣∣∣∣ ≥
3

8
|α|(h− 1).

To finalize the proof of this lemma we are going to use condition (2.1):

∫ 2T

T

(∫ t+h

t

H(u) du

)2

dt ¿ Th
3
2 .
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Take an integer r = r(T ) such that 2r > (log T )3+D
2 then, using (2.1) and (2.7), we

obtain

∫ 2T

0

(∫ t+h

t

H(u) du

)2

dt =

∫ T
2r

0

(∫ t+h

t

H(u) du

)2

dt

+
r∑

j=0

∫ T

2j−1

T

2j

(∫ t+h

t

H(u) du

)2

dt

¿ T

2r
h2 (log T )2+D

2 + h
3
2

r∑
j=0

T

2j

¿ Th
3
2

since h ≤ log T . On the other hand,

∫ 2T

0

(∫ t+h

t

H(u) du

)2

dt ≥
∑
n∈S

∫ n+h

n

(∫ t+h

t

H(u) du

)2

dt

≥
∑
n∈S

n≥n1

∫ n+h

n

(
3

8
|α|(h− 1)

)2

dt

À Mh3

Hence M ≤ c1
T

h
3
2

for some absolute constant c1. 2

If h is a suitably large integer such that c1
T

h
3
2

<
c

6h
T (its enough to pick

h >

(
6c1

c

)2

), then there are at least
c

6h
T intervals K in D such that αH(n) ≺ 0

for some integer n ∈ K and αH(m) > 0 for some integer m lying in (n, n+2h). Hence,

take c0 =
c

6h
and, for each of the above

c

6h
T intervals, take I = K ∪ (n, n + 2h).

Now, we prove part 1. Suppose #{1 ≤ n ≤ T : αH(n) ≤ 0} À T . Take T

sufficiently large and take the order relation ‘≺’ to be ‘≤’. Therefore, we have c0T

integers m in the interval [1, 2T ], for which αH(m) is positive. So, in this case,

#{1 ≤ n ≤ T : αH(n) > 0} À T.
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If we don’t have #{1 ≤ n ≤ T : αH(n) ≤ 0} À T , then, we must have αH(n) > 0

for almost all n ∈ [1, T ], i. e.

#{1 ≤ n ≤ T : αH(n) > 0} = T (1 + o(1)).

Next, we prove part 3. Take ‘≺’ to be ‘<’. Then, there exists a positive constant

c0 and c0T disjoint subintervals of [1, T ], with each of them having at least two

integers, m and n, such that H(m) > 0 and H(n) < 0. Therefore, in each of those

intervals we have at least one l with either H(l) = 0 or H(l)H(l + 1) < 0. Whence,

zH(T ) >
c0

2
T or NH(T ) >

c0

2
T .

If NH(T ) À T then, for sufficiently large T ,

#{1 ≤ n ≤ T : H(n)H(n + 1) < 0} > c2T,

for some positive constant c2. Therefore, between 1 and T , there are more than c2T

integers n such that αH(n) < 0, i.e. #{1 ≤ n ≤ T : αH(n) < 0} > c2T for all large

T . This proves part 2. 2



Chapter 3

A class of arithmetic functions

In this chapter, we consider arithmetic functions f(n) such that f(n) =
∑

d|n

bd

d
and

the sequence bn satisfies conditions (1.2) and (1.3), i. e. for some B, A > 1 and

D > 0,

B(x) :=
∑
n≤x

bn = Bx + O

(
x

logA x

)
,

and
∑
n≤x

b4
n ¿ x logD x,

We will determine the asymptotic expansion of
∑
n≤x

f(n) and will apply the Main

Lemma to its error term, H(x). The Main Lemma will enable us to prove theorem

1.2. If the arithmetic functions are rational valued (as they are in most of the cases

studied), we prove a result about how frequently can H(x) take any given value,

using a theorem of A. Baker. This result, together with theorem 1.2 enable us to

prove theorem 1.1, which generalizes Lau’s theorem. In sections 3.4, 3.5 and 3.6, we

examine some examples for which our conditions are satisfied and so the conclusions

of the theorems are true. In section 3.7, we obtain mean square results for H(x),

and, in section 3.8, we generalize Pétermann’s results (1.13) and (1.18) and prove

XH(T ) À T .

71
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3.1 Preliminary Results

In this section, we will prove some elementary results about this class of arithmetic

functions.

Using condition (1.2), we immediately obtain the following lemma:

Lemma 3.1. Let bn be a sequence of real numbers satisfying (1.2), for some con-

stants B and A > 1, then there exist constants γb and α such that

∑
n≤x

bn

n
= B log x + γb + O

(
1

logA−1 x

)
(3.1)

∞∑
n=1

bn

n2
= α, (3.2)

∑
n>x

bn

n2
=

B

x
+ O

(
1

x logA−1 x

)
(3.3)

Proof: Let R(x) =
∑
n≤x

bn −Bx. Using partial summation, we get

∑
n≤x

bn

n
=

∫ x

1−

dB(t)

t

=

[
B(t)

t

]x

1−
+

∫ x

1−

B(t)

t2
dt

= B +
R(x)

x
+

∫ x

1−

Bt + R(t)

t2
dt

Since A > 1 and using condition (1.2), we obtain

∫ ∞

x

R(t)

t2
dt ¿

∫ ∞

x

dt

t logA t

¿ 1

logA−1 x
,

which converges to zero as x →∞. Therefore, lim
x→∞

∫ x

1−

R(t)

t2
dt exists. Let’s define

γb =

∫ ∞

1−

R(t)

t2
dt + B.
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Hence,

∑
n≤x

bn

n
= B + B log x +

∫ ∞

1−

R(t)

t2
dt−

∫ ∞

x

R(t)

t2
dt + O

(
1

logA x

)

= B log x + γb + O

(
1

logA−1 x

)

Next, we prove (3.3),

∑
n>x

bn

n2
=

∫ ∞

x

dB(t)

t2

=

[
B(t)

t2

]∞

x

+ 2

∫ ∞

x

B(t)

t3
dt

= −B

x
+ O

(
1

x logA x

)
+ 2

∫ ∞

x

B

t2
+ O

(
1

t2 logA t

)
dt

=
B

x
+ O

(
1

x logA x

)

The last result also implies
∞∑

n=1

bn

n2
= α < ∞

2

Notice that, if bn = µ(n), then α = ζ−1(2) =
6

π2
, B = 0, γb = 0 and A can be

any real number greater than 1. If bn = 1, then α =
π2

6
, B = 1, γb = γ and, again,

A can be any real number greater than 1.

We will be interested in functions f(n) that can be written as

f(n) =
∑

d|n

bd

d
,

where bn satisfy conditions (1.2) and (1.3). If bn = µ(n), then f(n) =
φ(n)

n
, which

is the function studied by Y.-K. Lau. When bn = 1, then f(n) =
σ(n)

n
. If the first
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condition is satisfied, the summation function of f(n) will have an explicit main

term and an error term that depends on the function ψ(x) = x− [x]− 1

2
.

Lemma 3.2. Let bn be a sequence of real numbers as in lemma 3.1, and let

f(n) =
∑

d|n

bd

d
. Then

∑
n≤x

f(n) = αx− B log 2πx

2
− γb

2
+ H(x),

where, for x > 1,

H(x) = −
∑

n≤ x

logC x

bn

n
ψ

(x

n

)
+ O

(
1

logC x

)
+ O

(
1

logA−C−1 x

)
, (3.4)

for any 0 < C < A− 1.

Proof: We have

∑
n≤x

f(n) =
∑
n≤x

∑

d|n

bd

d

=
∑

d≤x

bd

d

∑
n≤x

d|n

1

=
∑

d≤x

bd

d

∑

m≤x
d

1

=
∑
m≤x

∑

d≤ x
m

bd

d

Next, we will separate the double sum above in two parts. Let 0 < C < A − 1 and

y = logC x. Then

∑
m≤x

∑

d≤ x
m

bd

d
=

∑
n≤y

∑

d≤ x
n

bd

d
+

∑
y<n≤x

∑

d≤ x
n

bd

d

=
∑
n≤y

∑

d≤ x
n

bd

d
+

∑

d≤x
y

bd

d

∑

y<n≤x
d

1 (3.5)
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In order to evaluate the first term on the right, we start with an application of

formula (3.1). We obtain

∑
n≤y

∑

d≤ x
n

bd

d
=

∑

n≤[y]

(
B log x−B log n + γb + O

(
1

logA−1(x
n
)

))

= B[y] log x−B
∑

n≤[y]

log n + γb[y] + O

(
y

logA−1(x
y
)

)

Now, by Stirling formula,

∑

n≤[y]

log n = [y] log[y]− [y] +
log[y]

2
+

log 2π

2
+ O

(
1

y

)

Notice that, log[y] = log

(
y

(
1− {y}

y

))
= log y + O

(
1

y

)
. Hence,

∑
n≤y

∑

d≤ x
n

bd

d
= B[y] (log x− log[y] + 1)+γb[y]−B(log 2πy)

2
+O

(
y

logA−1 x

)
+O

(
1

y

)

For the second term, we get

∑

d≤x
y

bd

d

∑

y<n≤x
d

1 =
∑

d≤x
y

bd

d

([x

d

]
− [y]

)

= x
∑

d≤x
y

bd

d2
−

∑

d≤x
y

bd

d
ψ

(x

d

)
− 1

2

∑

d≤x
y

bd

d
− [y]

∑

d≤x
y

bd

d

= x

∞∑

d=1

bd

d2
− x

∑

d> x
y

bd

d2
−

∑

d≤x
y

bd

d
ψ

(x

d

)
−

(
1

2
+ [y]

) ∑

d≤x
y

bd

d

By lemma 3.1, we have

x

∞∑

d=1

bd

d2
= αx,

x
∑

d> x
y

bd

d2
= By + O

(
y

logA x
y

)
= By + O

(
y

logA x

)

and
∑

d≤x
y

bd

d
= B(log x− log y) + γb + O

(
1

logA−1 x

)
.
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Using the three results above, we evaluate the second double sum on the right of

(3.5), obtaining

∑

d≤x
y

bd

d

∑

y<n≤x
d

1 = αx−By −
∑

d≤x
y

bd

d
ψ

(x

d

)
− γb + B log x

2
−B[y](log x− log y)

+
B log y

2
− γb[y] + O

(
y

logA−1 x

)

Notice also that

B[y](log y − log[y]) = B[y]

(
− log

(
1− {y}

y

))

= B{y}+ O

(
1

y

)

Hence, joining everything together, we obtain

H(x) =
∑
n≤x

f(n)−
(

αx− B log 2πx

2
− γb

2

)

= −
∑

d≤ x

logC x

bd

d
ψ

(x

d

)
+ O

(
1

logA−C−1 x

)
+ O

(
1

logC x

)

2

3.2 Generalization of Lau’s Theorem

In this section, we will prove theorem 1.2. We begin with some definitions and

notation.

The distribution function of H(x) is given by

D(u) = lim
T→∞

1

T
#{1 ≤ n ≤ T : H(n) ≤ u}
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whenever the limit exists. We say that D(u) is symmetric if D(u) + D(−u−) = 1.

Let’s also define

Zf (T ) = #{x ≤ T : f(x) = 0}

zf (T ) = #{n ≤ T, n integer : f(n) = 0}.

We state theorem 1.2 again:

Theorem 1.2. Let f(n) =
∑

d|n

bd

d
be an arithmetic function and suppose the sequence

bn satisfies both conditions

∑
n≤x

bn = Bx + O

(
x

logA x

)
and

∑
n≤x

b4
n ¿ x logD x,

for some B real, D > 0 and A > 6 +
D

2
, respectively. Let α =

∞∑
n=1

bn

n2
,

γb = lim
x→∞

(∑
n≤x

bn

n
−B log x

)
and H(x) =

∑
n≤x

f(n)− αx +
B log 2πx

2
+

γb

2
.

If α 6= 0, then

1. #{1 ≤ n ≤ T : αH(n) > 0} À T.

2. if NH(T ) À T , then #{1 ≤ n ≤ T : αH(n) < 0} À T ;

3. if #{1 ≤ n ≤ T : αH(n) < 0} À T , then NH(T ) À T or zH(T ) À T.

Remark. The result of Y.-K. Lau uses the fact that, when

H(x) =
∑
n≤x

φ(n)

n
− 6

π2
x,

the distribution function D(u) exists and is continuous (proved by P. Erdös and H.

Shapiro [18]) and D(0) > 0 (obtained by Y.-F. Pétermann [64]). Since continuity of

D(u) implies zH(T ) = o(T ) then part 3 generalizes Lau’s result.



78

Remark. In many applications, f(n) is rational for all n which in certain cases

enables us to guarantee that zH(T ) is very small (see theorem 1.10, below), and so

we obtain NH(T ) À T in part 3. However, we cannot eliminate zH(T ) À T from

part 3 in general, as example 1.1 demonstrates.

Proof: We just have to show that H(x) satisfies the conditions of theorem 2.1.

From lemma 3.2, for any x

H(x)−H([x]) = −α{x} − B

2
(log 2π[x]− log 2πx)

= −α{x} − B

2
log

(
1− {x}

x

)

= −α{x}+
B

2

{x}
x

+ O

(
1

x2

)

In lemma 3.2, we also obtained

H(x) = −
∑

n≤ x

logC x

bn

n
ψ

(x

n

)
+ O

(
1

logC x

)
+ O

(
1

logA−C−1 x

)
,

for any 0 < C < A− 1. Take C = 5 +
D

2
, y(x) =

x

logC x
and

k(x) = min
(
logC x, logA−C−1 x

)
.

Since A > 6 +
D

2
, then C < A − 1 and A− C − 1 > 0. Theorem 1.2 now follows

from theorem 2.1. 2

In theorem 2.1, we proved above that if a function H(x) satisfies condition (2.1)

and decreases in all intervals of the form (n, n + 1), where n is an integer, then

#{1 ≤ n ≤ T : H(n) ≤ 0} À T implies #{1 ≤ n ≤ T : H(n) > 0} À T.

Unfortunately, the converse is not true in general, as the following example shows.
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Example 3.1. Consider the arithmetic function f(n) = δ for all integer n, where

δ is a real number. Then b1 = δ and bn = 0 for all n > 1. Clearly, the sequence

bn satisfies conditions (1.2) and (1.3), and we have B = 0, α = δ, γb = δ and

H(x) = δ

(
1

2
− {x}

)
. In this case, αH(n) =

δ2

2
, for all n. Hence, if δ 6= 0,

#{1 ≤ n ≤ T : αH(n) > 0} = T and #{1 ≤ n ≤ T : αH(n) ≤ 0} = 0

We will prove that when H(x) has very few zeros then

#{1 ≤ n ≤ T : H(n) ≤ 0} À T implies #{1 ≤ n ≤ T : H(n) > 0} À T,

and from this we obtain NH(T ) À T . More exactly, we prove

Theorem 3.3. Let f(n) =
∑

d|n

bd

d
be an arithmetic function and suppose the sequence

bn satisfies both conditions

∑
n≤x

bn = Bx + O

(
x

logA x

)
and

∑
n≤x

b4
n ¿ x logD x,

for some B real, D > 0 and A > 6 +
D

2
, respectively. Let α =

∞∑
n=1

bn

n2
,

γb = lim
x→∞

(∑
n≤x

bn

n
−B log x

)
and H(x) =

∑
n≤x

f(n)− αx +
B log 2πx

2
+

γb

2
.

If ZH(T ) = o(T ), then NH(T ) À T .

Proof: As in theorem 1.2, take C = 5 +
D

2
, y(x) =

x

logC x
and

k(x) = min
(
logC x, logA−C−1 x

)
.

Then, the conditions of theorem 2.1 are satisfied, so, conditions (2.1), (2.7) and

(2.16), are still valid, i. e., for T and x sufficiently large, and h ≤ min (log T, k2(T )),

we have
∫ 2T

T

(∫ t+h

t

H(u) du

)2

dt ¿ Th
3
2 ,

|H(x)| ¿ (log x)1+D
4 ,

−5

4
α2{x} < αH(x)− αH([x]) < −3

4
α2{x}.
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From part 1 of theorem 1.2, we know that #{1 ≤ n ≤ T : αH(n) > 0} À T . As in

the proof of theorem 2.1, we take T and h large, and divide the interval [1, 2T ] into

subintervals of length h. Then we take those subintervals which have at least one

element n, with αH(n) > 0 and are separated by a distance of at least 2h. The idea

is to prove that we cannot have too many of the above subintervals satisfying the

condition:

there exists an integer n ∈ J such that αH(n) > 0 and αH(m) ≥ 0 for

all integer m ∈ (n, n + 2h)

Let M be the number of sets satisfying the above condition and L be the set of the

corresponding values of n. We are going to prove that

M ≤ C3
T

h
3
2

for some absolute constant C3. Let n1 be the smallest integer such that any non

integer x > n1 satisfies condition (2.16). First we prove

∣∣∣∣
∫ t+h

t

H(u) du

∣∣∣∣ ≥
1

8
|α|(h− 1),

where t ∈ [n, n + h], n > n1 and n ∈ L. Since ZH(T ) = o(T ), then the intervals

of the form [t, t + h] where H(u) = 0, for some u, will be excluded. Notice that we

still have, for some constant c > 0,
cT

h
intervals, each one with at least one n for

which αH(n) > 0 and separated by a distance of at least 2h. Now, in each of those

intervals H(u) 6= 0, for every u, so αH(m) >
3

4
α2.

As in the proof of lemma 2.4,

∫ t+h

t

H(u) du =

∫ [t]+1

t

H(u) du +
h−1∑
j=1

∫ [t]+j+1

[t]+j

H(u) du +

∫ t+h

[t]+h

H(u) du

and, for any 1 ≤ j < h,

∫ [t]+j+1

[t]+j

H(u) du =

∫ [t]+j+1

[t]+j

(H(u)−H([t] + j)) du +

∫ [t]+j+1

[t]+j

H([t] + j) du.
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Therefore, using the fact that −5

4
α2{x} < αH(x)− αH([x]) < −3

4
α2{x}, for any

x > n1, we obtain

∫ [t]+j+1

[t]+j

αH(u) du >

∫ 1

0

(
−5

4
α2x

)
dx + αH([t] + j)

> −5

8
α2 +

3

4
α2

>
1

8
α2

We also have

∫ [t]+1

t

αH(u) du > −5

8
α2

(
1− {t}2

)
+ αH([t]) (1− {t})

and ∫ t+h

[t]+h

αH(u) du > −5

8
α2{t}2 + αH([t] + h){t}.

which implies, ∫ [t]+1

t

αH(u) du +

∫ t+h

[t]+h

αH(u) du > 0.

Hence, ∫ t+h

t

αH(u) du >
1

8
α2(h− 1)

and so ∣∣∣∣
∫ t+h

t

H(u) du

∣∣∣∣ >
1

8
|α|(h− 1).
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Taking an integer r = r(T ) such that 2r > (log T )3+D
2 and using (2.1) and (2.7), we

obtain

∫ 2T

0

(∫ t+h

t

H(u) du

)2

dt =

∫ T
2r

0

(∫ t+h

t

H(u) du

)2

dt

+
r∑

j=0

∫ T

2j−1

T

2j

(∫ t+h

t

H(u) du

)2

dt

¿ T

2r
h2 (log T )2+D

2 + h
3
2

r∑
j=0

T

2j

¿ Th
3
2

since h ≤ log T . On the other hand,

∫ 2T

0

(∫ t+h

t

H(u) du

)2

dt ≥
∑
n∈L

∫ n+h

n

(∫ t+h

t

H(u) du

)2

dt

≥
∑
n∈L

n≥n1

∫ n+h

n

(
3

8
|α|(h− 1)

)2

dt

À Mh3

Hence M ≤ C3
T

h
3
2

. Therefore, for a suitable large h, there are at least
c

2h
T intervals

K (separated by a distance of at least 2h) such that αH(n) > 0 for some integer

n ∈ K and αH(m) < 0 for some integer m lying in (n, n + 2h). Hence

#{1 ≤ n ≤ T : αH(n) < 0} ≥ c

2h
T

To obtain NH(T ) À T , we just have to notice that for each n and m as above,

there are no integer n < k < m for which H(k) = 0. 2
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3.3 Rational arithmetic functions

In some particular cases, with rational valued arithmetic functions f(n), we can

obtain a better result than part 3 of theorem 1.2. In this section, we prove such a

result. We will need the following consequence of [2, theorem 1] by A. Baker.

Proposition 3.4. Let α1, . . . , αn and β0, . . . , βn denote nonzero algebraic numbers.

Then

β0 + β1 log α1 + · · ·+ βn log αn 6= 0

Using the result above, we will prove that, in certain conditions, the error term

of the summation of a rational valued arithmetic function, cannot take any given

value very often.

Theorem 1.10. Let f(n) =
∑

d|n

bd

d
be a rational valued arithmetic function and

suppose the sequence bn satisfies
∑
n≤x

bn = Bx + O

(
x

logA x

)
, for some real B and

A > 1. Let r be a real number and

H(x) =
∑
n≤x

f(n)− αx +
B log 2πx

2
+

γb

2
,

where γb = lim
x→∞

(∑
n≤x

bn

n
−B log x

)
and α =

∞∑
n=1

bn

n2
. Then

1. If B = 0 and α is irrational then #{n ≤ T, n integer : H(n) = r} ≤ 1;

2. If B is a nonzero algebraic number then #{n ≤ T, n integer : H(n) = r} ≤ 2;

3. If B is transcendental then there exists a constant C that depends on r and on

the function f(n), such that

#{n ≤ T, n integer : H(n) = r} < (log T )C .
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Proof: Suppose that B = 0 and α is irrational. Suppose also that there are two

integers, say M 6= N , such that H(M) = H(N). Then

∑
n≤M

f(n)− αM +
γb

2
=

∑
n≤N

f(n)− αN +
γb

2
.

But this implies that α is rational, a contradiction.

Next, suppose B is a nonzero algebraic number and that there are M > N > Q

integers, satisfying H(M) = H(N) = H(Q). We have

∑
n≤M

f(n)− αM +
B log 2πM

2
+

γb

2
=

∑
n≤N

f(n)− αN +
B log 2πN

2
+

γb

2

which implies

α =
B

M −N
log

(
M

N

)
+

1

M −N

∑
N<n≤M

f(n).

Similarly,

α =
B

M −Q
log

(
M

Q

)
+

1

M −Q

∑
Q<n≤M

f(n).

Subtracting the second from the first, we obtain

B log




(
M
N

) 1
M−N

(
M
Q

) 1
M−Q


 =

1

M −Q

∑
Q<n≤M

f(n)− 1

M −N

∑
N<n≤M

f(n).

We are going to prove that

(
M

N

) 1
M−N

6=
(

M

Q

) 1
M−Q

. (3.6)

Since B is a nonzero algebraic number, the above implies that

1

M −Q

∑
Q<n≤M

f(n)− 1

M −N

∑
N<n≤M

f(n) 6= 0.

Since the values of f(n) are rational, for any integer n, proposition 3.4 implies

B log




(
M
N

) 1
M−N

(
M
Q

) 1
M−Q


 6= 1

M −Q

∑
Q<n≤M

f(n)− 1

M −N

∑
N<n≤M

f(n),
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and so we get a contradiction, which implies #{n ≤ T, n integer : H(n) = r} ≤ 2,

for any real r.

In fact, instead of proving (3.6), we are going to prove that

MN−QQM−N < NM−Q, (3.7)

for any positive integers M > N > Q. Clearly, this implies (3.6). The inequality

(3.7) is just a particular case of the geometric mean-analytic mean inequality

(
n∏

i=1

ui

) 1
n

≤ 1

n

n∑
i=1

ui, (3.8)

where equality only happens if u1 = u2 = · · · = un. In fact, taking n = M − Q,

ui = M for 1 ≤ i ≤ N −Q and ui = Q for N −Q < i ≤ M −Q, we obtain

(
MN−QQM−N

) 1
M−Q <

1

M −Q
((N −Q)M + (M −N)Q) = N

Hence, we obtain (3.7) and part 2 of the lemma.

Finally we prove part 3. Suppose r is a real number such that

#{n ≤ T : H(n) = r} ≥ 4.

Let Q < N < M be the three smallest positive integers in the above set. Then

B log




(
M
N

) 1
M−N

(
M
Q

) 1
M−Q


 =

1

M −Q

∑
Q<n≤M

f(n)− 1

M −N

∑
N<n≤M

f(n).

Suppose L is such that H(L) = r. Then L > N > Q, and as in part 2.

B log




(
L
N

) 1
L−N

(
L
Q

) 1
L−Q


 =

1

L−Q

∑
Q<n≤L

f(n)− 1

L−N

∑
N<n≤L

f(n).

The two expressions above are nonzero. After we cross multiply them, we obtain

log




(
M
N

) 1
M−N

(
M
Q

) 1
M−Q


 = r1 log




(
L
N

) 1
L−N

(
L
Q

) 1
L−Q


 ,
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for some rational r1. Therefore, there are four rational numbers r2, r3, r4 and r5, such

that

Lr2 = M r3N r4Qr5 .

Now, any prime dividing L must divide MNQ. Notice that, if p is a prime, k is an

integer and pk ≤ x then k ≤ log x

log p
. Therefore, the number of integers smaller than

x, which have all prime divisors smaller than M is smaller than (log x)π(M), . This

finishes our proof. 2

As a corollary of theorem 1.2 and theorem 1.10 we obtain our main theorem 1.1:

Theorem 1.1. Let f(n) =
∑

d|n

bd

d
be a rational valued arithmetic function and sup-

pose the sequence bn satisfies

∑
n≤x

bn = Bx + O

(
x

logA x

)
and

∑
n≤x

b4
n ¿ x logD x,

for some B real, D > 0 and A > 6 +
D

2
, respectively. Let α =

∞∑
n=1

bn

n2
,

γb = lim
x→∞

(∑
n≤x

bn

n
−B log x

)

and

H(x) =
∑
n≤x

f(n)− αx +
B log 2πx

2
+

γb

2
.

Then, except when α = 0, or B = 0 and α is rational, we have

NH(T ) À T if and only if #{1 ≤ n ≤ T : αH(n) < 0} À T

3.4 Periodic Sequences

In this section, we study a family of sequences that trivially satisfy conditions (1.2)

and (1.3).
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If the terms of the sequence bn are zero except for finite number of terms than

this sequence clearly satisfies conditions (1.2) (with B = 0) and (1.3). In this case

the sequence f(n) have a simple structure:

Proposition 1.11. Let bn be a sequence of real numbers such that bn = 0 for n > N0,

for some integer N0. Then the sequence f(n) =
∑

d|n

bd

d
is periodic with period, say q,

dividing [1, 2, . . . , N0] and f(i) = f((i, q)), for any integer i.

Reciprocally, if there exists q satisfying f(i) = f((i, q)) for all integers i, then

bn = 0 for n - q.

Moreover, in this case, α =
1

q

∑
n≤q

f(n) and γb = f(q).

Proof: Let L = [1, 2, . . . , N0] and i be a positive integer. Suppose d | L + i. If

d ≤ N0, then d | L, so d | i. If d > N0 then bd = 0. Hence

f(L + i) =
∑

d|L+i

bd

d
=

∑

d|i

bd

d
= f(i).

Let q be the period and g = (i, q). Then (
i

g
,
q

g
) = 1. Take a prime p ≡ i

g
mod

q

g
,

with p > N0. Then pg ≡ i mod q and

f(i) = f(pg) =
∑

d|pg

bd

d
=

∑

d|g

bd

d
= f(g),

because, if d is a divisor of pg and p | d, then bd = 0. Next, suppose f(i) = f((i, q)),

then,

bn

n
=

∑

d|n
µ

(n

d

)
f(d)

=
∑
d|n

i=(d,q)

µ
(n

d

)
f(i)

=
∑

i|(n,q)

f(i)
∑

d|n
i=(d,q)

µ
(n

d

)
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Let e = (n, q). Then there exists integers N and Q, such that (N,Q) = 1, n = Ne

and q = Qe. Write d = ir, then

bn

n
=

∑

i|e
f(i)

∑

r| ei N

(r, e
i
Q)=1

µ

(
e

i

N

r

)

=
∑

i|e
f(i)

∑

r|Q
(r, e

i
)=1

µ

(
e

i

N

r

)

since (r,
e

i
Q) = 1 implies (r,

e

i
) = 1. Now, if

(
e

i
,
N

r

)
> 1 then µ

(
e

i

N

r

)
= 0, on the

other hand, if

(
e

i
,
N

r

)
= 1 then

(e

i
,N

)
= 1, because (r,

e

i
) = 1. Therefore

bn

n
=

∑
i|e

( e
i
,N)=1

f(i)
∑

r|N
µ

(e

i

)
µ

(
N

r

)

=
∑

i|e
( e

i
,N)=1

f(i)µ
(e

i

) ∑

r|N
µ(r)

and the inner sum above will be equal to 1 if N = 1 and 0 otherwise. Hence, if n | q
then

bn = n
∑

d|n
f(d) µ

(n

d

)

and bn = 0 otherwise.

Since B = 0, then

γb =
∞∑

n=1

bn

n
=

∑

n|q

bn

n
= f(q)

Finally,

α =
∞∑

n=1

bn

n2
=

∑

d|q

bd

d2
=

1

q

∑

d|q

bd

d

q

d
=

1

q

∑

d|q

bd

d

∑

m≤ q
d

1 =
1

q

∑
n≤q

∑

d|n

bd

d
=

1

q

∑
n≤q

f(n).

2
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3.5 An error term of Landau

We finish this chapter with the well known arithmetic function
n

φ(n)
. Using this

function and a result of R. Sitamarachandrarao [81] we can extend our results to the

error term associated to
∑
n≤x

1

φ(n)
which was studied by E. Landau [49] in the end

of the XIX century.

Notice that

n

φ(n)
=

∏

p|n

(
1− 1

p

)−1

=
∏

p|n

(
1 +

1

p− 1

)
=

∑

d|n

µ2(d)

φ(d)

Let bn =
µ2(n)n

φ(n)
. Then f(n) =

∑

d|n

bd

d
. In [81], R. Sitaramachandrarao proved that

∑
n≤x

µ2(n)n

φ(n)
= x + O

(
x

1
2

)
,

so condition (1.2) is satisfied for any A and with B = 1. Since, by Merten’s theorem

∏

p|n

(
1− 1

p

)−1

≤
∏
p≤n

(
1− 1

p

)−1

∼ eγ log n,

then
∑
n≤x

b4
n =

∑
n≤x

µ2(n)
n4

φ4(n)
=

∑
n≤x

O
(
log4 n

)
= O

(
x log4 x

)
,

and condition (1.3) is satisfied for D ≥ 4.

In this case, α =
ζ(2)ζ(3)

ζ(6)
and γb = γ +

∑
p

log p

p(p− 1)
. Notice that our error term

is different from the one studied by R. Sitaramachandrarao. In his article

E1(x) =
∑
n≤x

n

φ(n)
− ζ(2)ζ(3)

ζ(6)
x +

log x

2

here

H(x) =
∑
n≤x

n

φ(n)
− ζ(2)ζ(3)

ζ(6)
x +

log x

2
+

log 2π + γ +
∑

p
log p

p(p−1)

2

Since B = 1 we can apply theorem 1.10, and so z(T ) ≤ 2. Therefore, if

#{1 ≤ n ≤ T : αH(n) < 0} À T,
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T 103 2× 103 3× 103 4× 103 5× 103 104 2× 104

NH(T ) 38 84 132 180 224 444 920
T

NH(T )
≈ 26.3 23.8 22.7 22.2 22.3 22.5 21.7

T 3× 104 4× 104 5× 104 105 2× 105 3× 105 4× 105

NH(T ) 1386 1862 2332 4666 9352 14064 18758
T

NH(T )
≈ 21.6 21.5 21.4 21.4 21.4 21.3 21.3

T 5× 105 6× 105 7× 105 8× 105 9× 105 106

NH(T ) 23410 28132 32834 37512 42220 46976
T

NH(T )
≈ 21.4 21.3 21.3 21.3 21.3 21.3

Figure 3.1: Sign Changes on Integers of Landau’s error term

then NH(T ) À T . In this particular example, we seem to have NH(T ) >
T

21.3
+ o(T ),

as can be seen in figure 3.1.

3.6 Multiplicative sequences

In the main theorems we assumed that α 6= 0. In this section we will prove that

this must happen whenever the sequence bn is completely multiplicative, i. e. for any

positive integers n and m, bnm = bnbm. We will also give examples of multiplicative

sequences (i. e. b1 = 1 and bnm = bnbm, whenever (n,m)=1), for which α = 0.

Proposition 1.12. If bn is a completely multiplicative sequence satisfying condition

(1.3), then α 6= 0.

Proof: Using (2.3), it is plain that

∞∑
n=1

|bn|
n2

< ∞ and
∑
n>x

|bn|
n2

= o(1).

Therefore, for any prime p,

∞∑
m=1

bpm

p2m
≤

∞∑
n=1

|bn|
n2

< ∞.
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Hence,
∏
p≤x

(
1 +

bp

p2
+

bp2

p4
+ · · ·

)
< ∞.

Since ∣∣∣∣∣
∞∑

n=1

bn

n2
−

∏
p≤x

(
1 +

bp

p2
+

bp2

p4
+ · · ·

)∣∣∣∣∣ ≤
∑
n>x

|bn|
n2

,

then, taking x →∞ we obtain

α =
∏

p

(
1 +

bp

p2
+

bp2

p4
+ · · ·

)
.

Since bn is completely multiplicative, we can write the Euler product as

α =
∏

p

(
1− bp

p2

)−1

.

Next, we apply logarithm to the left side and obtain

−
∑

p

log

(
1− bp

p2

)

which is
∑

p

∞∑
m=1

bm
p

mp2m
.

Notice that
∑

p

∞∑
m=1

|bm
p |

mp2m
≤

∞∑
n=1

|bn|
n2

< ∞

so
∑

p

∞∑
m=1

bm
p

mp2m
> −∞

which implies α 6= 0. 2

Example 3.2. Consider the multiplicative sequence defined by b1 = 1, b2 = 1,

b3 = −9, b6 = −9 and bn = 0 for n /∈ {1, 2, 3, 6}. Then α = 0.
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Even when the sequence bn is strongly multiplicative (i. e. is multiplicative and

bpν = bp for any prime p and any ν ≥ 1), we cannot expect α to be nonzero, as the

following example illustrates:

Example 3.3. Define b2n = −3 and b2n−1 = 1. This sequence satisfies both condi-

tions (1.2) and (1.3), but since

∑
n even

1

n2
=

π2

24
and

∑

n odd

1

n2
=

π2

8
,

then α = 0.

3.7 Mean square of H(x)

In this section, we generalize the mean square results (1.12) and (1.17), for our class

of functions H(x). We are going to prove

Theorem 1.13. Let f(n) =
∑

d|n

bd

d
be an arithmetic function and suppose the

sequence bn satisfies both conditions

∑
n≤x

bn = Bx + O

(
x

logA x

)
and

∑
n≤x

b4
n ¿ x logD x,

for some B real, D > 0 and A > 7 +
3D

4
, respectively. Let α =

∞∑
n=1

bn

n2
,

γb = lim
x→∞

(∑
n≤x

bn

n
−B log x

)
and H(x) =

∑
n≤x

f(n)− αx +
B log 2πx

2
+

γb

2
.

Let g(n) =
∑

d|n
bd. Then,

∫ x

1

H2(u) du =
x

2π2

∞∑
n=1

g2(n)

n2
+ O

(
x

logL x

)
,

where L > 0.
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Proof: Notice that

∫ x

1

H2(u) du =

∫ x

2

H2(u) du + O(1).

Suppose x > 1. From (3.4), we have

H(x) = −
∑

n≤ x

logC x

bn

n
ψ

(x

n

)
+ O

(
1

logC x

)
+ O

(
1

logA−C−1 x

)

Take E = 4 +
D

2
and C = E + 1. Then

H2(x) =




∑

n≤ x

logC x

bn

n
ψ

(u

n

)



2

+




∑

n≤ x

logC x

bn

n
ψ

(x

n

)

 O

(
1

logC x

)
+ O

(
1

log2C x

)

+




∑

n≤ x

logC x

bn

n
ψ

(x

n

)

 O

(
1

logA−C−1 x

)
+ O

(
1

(log x)2(A−C−1)

)

Using (2.7), we obtain

H2(x) =




∑

n≤ x

logC x

bn

n
ψ

(u

n

)



2

+ O

(
1

logK x

)

where K = A− 7− 3D

4
. Let y(x) =

x

logC x
and η(m,n) = max (2, y−1(m), y−1(n)).

Then

∫ x

2




y(u)∑
n=1

bn

n
ψ

(u

n

)



2

du =

y(x)∑
m,n=1

bmbn

mn

∫ x

η(m,n)

ψ
( u

m

)
ψ

(u

n

)
du.

As in section 2.3 we use the Fourier series (2.9) to evaluate the integral. Since,

ψ(u) = − 1

π

∞∑

k=1

sin(2πku)

k
,

we obtain

1

π2

y(x)∑
m,n=1

bmbn

mn

∞∑

k,l=1

1

kl

∫ x

η(m,n)

sin

(
2π

ku

m

)
sin

(
2π

lu

n

)
du
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which is equal to

1

2π2

y(x)∑
m,n=1

bmbn

mn

∞∑

k,l=1

1

kl

∫ x

η(m,n)

cos

(
2πu

(
k

m
+

l

n

))
− cos

(
2πu

(
k

m
− l

n

))
du.

Now, ∫ x

η(m,n)

cos

(
2πu

(
k

m
+

l

n

))
du ¿ 1(

k
m

+ l
n

)

Since y(x) =
x

logC x
then, using lemma 1.7, we obtain

y(x)∑
m,n=1

|bmbn|
mn

∞∑

k,l=1

1

kl
(

k
m

+ l
n

) ¿ T

log T

If
k

m
6= l

n
then

∫ x

η(m,n)

cos

(
2πu

(
k

m
− l

n

))
du ¿ 1∣∣ k

m
− l

n

∣∣ .

so, using lemma 1.6,

y(x)∑
m,n=1

|bmbn|
mn

∞∑
k,l=1

kn 6=lm

1

kl
∣∣ k
m
− l

n

∣∣ ¿
T

log T
,

If kn = lm then

∫ x

η(m,n)

cos

(
2πu

(
k

m
− l

n

))
du = x− η(m, n)

Next, take d = (m, n), m = dα, n = dβ, k = αγ and l = βγ. We have

y(x logC x) =
x logC x

(log(x) + C log log x))C
À x

so, y−1(x) ¿ x logC x. Therefore, using (2.10),

y(x)∑
m,n=1

bmbn

mn

∞∑
k,l=1

kn=lm

η(m,n)

kl
¿

y(x)∑
m,n=1

|bmbn| (m,n)2η(m,n)

m2n2

¿
y(x)∑

d=1

d2
∑

d≤m≤y(x)

d|m

|bm|
m2

∑
m≤n≤y(x)

(m,n)=d

|bn|n logC n

n2
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We are going to estimate the inner sum using Hölder inequality, in the form

|
∑

i

uivi| ≤
(∑

j

u4
j

) 1
4
(∑

k

v
4
3
k

) 3
4

. Take δ > 0, then, using (2.6),

∑

m≤n≤y(x)

d|n

|bn| logC n

n
≤




∑

m≤n≤y(x)

d|n

b4
n

n2




1
4



∑

m≤n≤y(x)

d|n

log
4
3
C n

n
2
3




3
4

¿ x
1
4
+δ

m
1
4
−δ
√

d

Once again, we use Hölder inequality,

∑

d≤m≤y(x)

d|m

|bm|
m

9
4
−δ
≤




∑

d≤m≤y(x)

d|m

b4
m

m2




1
4



∑

d≤m≤y(x)

d|m

1

m
7
3
− 4δ

3




3
4

¿ 1

d
1
4
−δd

7
4
−δd1−δ

Therefore,

y(x)∑
m,n=1

bmbn

mn

∞∑

k,l=1

η(m,n)

kl
¿ x

1
4
+δ

y(x)∑

d=1

d2

d
1
4
−δd

7
4
−δd1−δ

√
d

¿ x
1
4
+δ

Take L = min(K, 1). Joining everything together, we get

∫ x

1

H2(u) du =
x

2π2

y(x)∑
m,n=1

bmbn

mn

∞∑
k,l=1

kn=lm

1

kl
+ O

(
x

logL x

)

From lemma 1.8, we have

∑

m,n>y(x)

|bmbn|
mn

∞∑
k,l=1

kn=lm

1

kl
¿ 1

(y(x))1−δ
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Then, using (2.10),
∫ x

1

H2(u) du =
x

2π2

∞∑
m,n=1

bmbn

mn

∞∑
k,l=1

kn=lm

1

kl
+ O

(
x

logL x

)

=
x

12

∞∑
m,n=1

bmbn(m,n)2

m2n2
+ O

(
x

logL x

)

We still have to prove that

6

π2

∞∑
m,n=1

bmbn(m,n)2

m2n2
=

∞∑

k=1

g2
k

k2
, (3.9)

where g(k) =
∑

n|k
bn. We follow S. Chowla [7, lemma 5]. Notice that

g2
k =


∑

n|k
bn




2

=
∑
m|k
n|k

bnbm

Now, take ν = [m,n]. Notice that ν =
mn

(m,n)
, therefore

g2
k =

∑

ν|k

∑
mn

(m,n)
=ν

bmbn

=
∑

ν|k
hν

where hν =
∑

mn
(m,n)

=ν

bmbn. Hence

∞∑

k=1

g2
k

k2
=

∞∑
n=1

1

n2

∞∑
ν=1

hν

ν2

We also have

∞∑
ν=1

hν

ν2

∞∑
ν=1


 ∑

mn
(m,n)

=ν

bmbn




ν2

=
∞∑

m,n=1

bmbn(m,n)2

m2n2
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So, we proved (3.9). Whence
∫ x

1

H2(u) du =
x

2π2

∞∑
n=1

g2(n)

n2
+ O

(
x

logL x

)

2

In the case studied by Y.-K. Lau, bn = µ(n), so gn = 1 if n = 1 and gn = 0 for

all n > 1. Therefore, we obtain (1.12). Suppose bn = 1 for all n. The corresponding

error term is

F (x) =
∑
n≤x

σ(n)

n
− π2

6
x +

log 2πx

2
+

γ

2

In this case, gn = τ(n). Since

∞∑
n=1

τ 2(n)

ns
=

ζ4(s)

ζ(2s)

then, we obtain formula (1.17)
∫ x

1

F 2(u) du =
ζ4(2)

2π2ζ(4)
x(1 + o(1))

=
5π2

144
x(1 + o(1))

which was proved by A. Walfisz [103].

In general, the generation function of g2
n is not easy to determine. In the next

lemma, we give estimates for the sum

∞∑
n=1

g2(n)

n2

that only depend on the sequence bn.

Lemma 3.5. Suppose g(n) =
∑

d|k
bd and suppose the sequence bn satisfies the con-

dition
∑
n≤x

b4
n ¿ x logD x, for some D > 0. Then

ζ(2)

( ∞∑
n=1

bn

n2

)2

≤
∞∑

n=1

g2(n)

n2
≤ ζ3(2)

( ∞∑
n=1

b4
nτ(n)

n2

) 1
2
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Proof: We have
∞∑

n=1

g(n)

n2
=

∞∑
n=1

1

n2

∞∑
n=1

bn

n2

Therefore, using Cauchy’s inequality

( ∞∑
n=1

bn

n2

)2

≤
(

6

π2

)2 ∞∑
n=1

g2(n)

n2

∞∑
n=1

1

n2

Hence
∞∑

n=1

g2(n)

n2
≥ ζ(2)

( ∞∑
n=1

bn

n2

)2

On the other hand, by (3.9),

∞∑
n=1

g2
n

n2
=

π2

6

∞∑
m,n=1

bmbn(m,n)2

m2n2

≤ π2

6

∞∑

d=1

d2




∞∑
m=1

d|m

|bm|
m2




2

The infinite series in the right is absolutely convergent, since we proved in (2.11)

that, for any X > N ,

∑

d≤X

d2




∑
N<m≤X

d|m

|bm|
m2




2

¿ 1

N1−δ

Now, using Hölder inequality,




∞∑
m=1

d|m

|bm|
m2




2

≤




∞∑
m=1

d|m

b4
m

m2




1
2



∞∑
M=1

d|M

1

M2




3
2

≤




∞∑
m=1

d|m

b4
m

m2




1
2

ζ
3
2 (2)

d3
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Therefore,

∞∑
n=1

g2
n

n2
≤ ζ

5
2 (2)

∞∑

d=1

1

d




∞∑
m=1

d|m

b4
m

m2




1
2

≤ ζ
5
2 (2)

( ∞∑

d=1

1

d2

) 1
2




∞∑
D=1




∞∑
m=1

D|m

b4
m

m2







1
2

≤ ζ3(2)




∞∑
m=1

b4
m

m2

∑

D|m
1




1
2

≤ ζ3(2)

( ∞∑
m=1

b4
mτ(m)

m2

) 1
2

2

3.8 On XH(T )

In this section, we prove that, under our usual conditions (1.2) and (1.3), we have a

positive proportion of sign changes for the error terms considered, i. e. XH(T ) À T .

We also show how to use the results proved in the previous section to obtain a lower

bound for XH(T ).

Theorem 3.6. Let f(n) =
∑

d|n

bd

d
be an arithmetic function and suppose the sequence

bn satisfies both conditions

∑
n≤x

bn = Bx + O

(
x

logA x

)
and

∑
n≤x

b4
n ¿ x logD x,
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for some B real, D > 0 and A > 6 +
D

2
, respectively. Let α =

∞∑
n=1

bn

n2
,

γb = lim
x→∞

(∑
n≤x

bn

n
−B log x

)
and H(x) =

∑
n≤x

f(n)− αx +
B log 2πx

2
+

γb

2
.

If α 6= 0 then XH(T ) À T .

Proof: Suppose zH(T ) À T , and take the order relation ‘≺’ to be ‘=’ in theorem

2.1. Then there is a fixed constant h and cT disjoint intervals, with c > 0, with each

of them having at least two integers, m and n, such that αH(m) > 0 and H(n) = 0.

Notice that, we have (2.16), i. e.

−5

4
α2{x} < αH(x)− αH([x]) < −3

4
α2{x}

so, if H(n) = 0, then, for any x ∈ (n, n + 1), αH(x) < 0. Therefore, XH(T ) À T .

If ZH(T ) = o(T ) then by theorem 3.3, NH(T ) À T . Now, if n is an integer

such that H(n)H(n + 1) < 0 then there is a change of sign in [n, n + 1]. Therefore,

XH(T ) À T .

The last case we need to consider is ZH(T )− zH(T ) À T . If H(x) = 0 for a non

integer x then we have one change of sign in the interval [n, n + 1), where n = [x].

Therefore, XH(T ) À T . 2

In 1986, Y.-F. S. Pétermann proved the following general theorem

Theorem (Pétermann [63], 1986). Let H : [1,∞) → R be such that for each n ≥ 1,

H(x) = H([x])− α{x}+ θ(x), where α 6= 0 is a constant, and θ(x) = o(1). Suppose

further that there is a constant K > 0 such that

∫ x

1

H2(u) du = Kx(1 + o(1))
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Then, for T sufficiently large,

XH(T ) ≥ 8

3

(
1− 3K

α2

)
T + o(T )

For the class of arithmetic functions studied in this chapter, we have

K =
1

2π2

∞∑
n=1

g2(n)

n2

from theorem 1.13. So, if

G(2) :=
∞∑

n=1

g2(n)

n2
<

2α2π2

3

we can explicitly find a constant c, that depends on G(2), such XH(T ) ≥ cT .



Chapter 4

More Arithmetic Functions

Given a sequence of real numbers bn, and a complex number s, we define

B(s) =
∞∑

n=1

bn

ns
.

In this chapter, we consider arithmetic functions f(n), such that f(n) =
∑

d|n

bd

d
and

the sequence bn satisfies condition (1.3)

∑
n≤x

b4
n ¿ x logD x

and condition (1.4)

B(s) = ζβ(s)g(s),

for some β real, D > 0, and a function g(s) with a Dirichlet series expansion abso-

lutely convergent for σ > 1− λ, for some λ > 0.

We will obtain new versions of the results from the previous chapter that can be

applied to the examples mentioned in section 1.4. Using proposition 1.14, we prove

theorem 1.3. Throughout this chapter, s = σ + it will denote a complex number.

4.1 A new version of the main theorem

In this section, we prove that the conditions of theorem 2.1 are valid for the error

terms associated with the arithmetic functions defined above and using this result

we prove theorem 1.3.

102
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We begin this section by proving an interesting connection between the function

f(n) and the sequence bn. Let ζ(s) be the Riemann Zeta-function, that is

ζ(s) =
∑
n≥1

1

ns
, if s = σ + it and σ > 1.

Lema 1.15. Given a sequence of real numbers bn, let f(n) =
∑

d|n

bd

d
. Then

∑
n≤x

f(n)

ns
= ζ(s)

∑
n≤x

bn

ns+1
−

∑
n≤x

bn

ns+1

∑

m> x
n

1

ms

for any s = σ + it with σ > 1. Define

F (s) :=
∞∑

n=1

f(n)

ns
and B(s) :=

∞∑
n=1

bn

ns
,

whenever the series in question exist. If the sequence bn satisfies the condition (1.3),

i. e.
∑
n≤x

b4
n ¿ x logD x,

for D > 0, then

F (s) = ζ(s)B(s + 1),

for σ > 1.

Proof: The first part is easy:

∑
n≤x

f(n)

ns
=

∑
n≤x

1

ns

∑

d|n

bd

d

=
∑

d≤x

bd

ds+1

∑

m≤x
d

1

ms

=
∑

d≤x

bd

ds+1




∞∑
m=1

1

ms
−

∑

m> x
d

1

ms



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To prove the second part of the lemma, we just have to notice that under condi-

tion (1.3), and, for σ > 1, lim
x→∞

x∑
n=1

|bn|
nσ

exists and

∑

d≤x

bd

ds+1

∑

m> x
d

1

ms
≤

∑

d≤x

|bd|
dσ+1

∑

m> x
d

1

mσ

¿ 1

xσ−1

∑

d≤x

|bd|
dσ+1

dσ−1

¿ 1

xσ−1

So, taking x →∞ we obtain the stated result. 2

U. Balakrishnan and Y.-F. S. Pétermann [3] proved that:

Proposition 1.14. Let f(n) be a complex valued arithmetic function satisfying
∞∑

n=1

f(n)

ns
= ζ(s)ζβ(s + 1)g(s + 1),

for a complex number β, and g(s) having a Dirichlet series expansion

g(s) =
∞∑

n=1

cn

ns
,

which is absolutely convergent in the half plane σ > 1− λ for some λ > 0. Let β0 be

the real part of β. If

ζβ(s)g(s) =
∞∑

n=1

bn

ns

then there is a real number b, 0 < b < 1/2, and constants Bj, such that, taking

y(x) = x exp
(−(log x)b

)
,

∑
n≤x

f(n) =





ζβ(2)g(2)x−
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ o(1), if β0 < 0

ζβ(2)g(2)x +

[β0]∑
j=0

Bj(log x)β−j −
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ o(1), if β0 > 0,



105

Remark. The constants b and Bj are all computable.

Remark. The proposition is valid for complex β and complex functions f(n), but

we will be only interested in the real version.

We are in conditions to prove theorem 1.3:

Theorem 1.3. Let f(n) =
∑

d|n

bd

d
be a arithmetic function and suppose the sequence

bn satisfies conditions (1.3) and (1.4), i. e.

∑
n≤x

b4
n ¿ x logD x and

∞∑
n=1

bn

ns
= ζβ(s)g(s)

for some β real, D > 0, and a function g(s) with a Dirichlet series expansion abso-

lutely convergent for σ > 1− λ, for some λ > 0. Let α = ζβ(2)g(2) and

H(x) =





∑
n≤x

f(n)− αx, if β < 0

∑
n≤x

f(n)− αx−
[β]∑
j=0

Bj(log x)β−j, if β > 0

where the constants Bj are defined by proposition 1.14. If α 6= 0 then

1. #{1 ≤ n ≤ T : αH(n) > 0} À T ;

2. if NH(T ) À T , then #{1 ≤ n ≤ T : αH(n) < 0} À T ;

3. if #{1 ≤ n ≤ T : αH(n) < 0} À T , then NH(T ) À T or zH(T ) À T.

Proof: We are going to use theorem 2.1. Notice that, for any c > 0

logc[x] =

(
log x + log

(
1− {x}

x

))c

= logc x− c
{x}
x

logc−1 x + O

(
1

x

)

So, H(x) = H([x]) − α{x} + o(1). From proposition 1.14, there is an increasing

function k(x), with lim
x→∞

k(x) = ∞, such that

H(x) = −
∑

n≤y(x)

bn

n
ψ

(x

n

)
+ O

(
1

k(x)

)
,
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where y(x) = x exp
(−(log x)b

)
, for some 0 < b < 1/2. Hence, the result follows from

theorem 2.1. 2

4.2 f(n) =
(

φ(n)
n

)r

Given r 6= 0 real, let f(n) =

(
φ(n)

n

)r

. We have

∞∑
n=1

(
φ(n)

n

)r

ns
=

∏
p

(
1 +

(1− p−1)
r

ps
+

(1− p−1)
r

p2s
+ · · ·

)

= ζ(s)
∏

p

(
1− 1

ps

) (
1 +

(1− p−1)
r

ps
+

(1− p−1)
r

p2s
+ · · ·

)

= ζ(s)
∏

p

(
1 +

(1− p−1)
r − 1

ps

)

Consider the binomial theorem

(1 +
1

p
)r =

∞∑

k=1

(
r

k

)
1

pk
.

Where we have infinitely many terms except when r is a nonnegative integer. The

series converges because

(
r

k

)
= (−1)k

(
k − r − 1

k

)
= O

(
k−r−1

)
1

1the last equality is justified by the following limit.

1
z!

= lim
n→∞

(
n+z

n

)

nz
.

Euler used the fact that this limit always exists to define factorial of a number in general.
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Hence,

∞∑
n=1

(
φ(n)

n

)r

ns
= ζ(s)

∏
p


1 +

(
−r
p

+
(r
2)
p2 − (r

3)
p3 + · · ·

)

ps




= ζ(s)ζ−r(s + 1)
∏

p

(
1− 1

ps+1

)−r


1 +

(
−r +

(r
2)
p
− (r

3)
p2 + · · ·

)

ps+1




= ζ(s)ζ−r(s + 1)
∏

p

(
1 +

(−r
2

)− r2

p2(s+1)
+

(
r
2

)

ps+2
+ · · ·

)

= ζ(s)ζ−r(s + 1)gr(s + 1),

with gr(s) having an Euler product absolutely convergent for σ >
1

2
. So, condition

(1.4) is satisfied.

Remark. If r > 0 then the main term of
∑
n≤x

(
φ(n)

n

)r

is ζ−r(2)gr(2)x, with no

logarithmic terms, where gr(s) is defined above. When r = 1, g1(s) = 1 and we

recover the case studied by Y.-K. Lau.

Next, we prove condition (1.3). Since f(n) =
∑

d|n

bd

d
, we have

∞∑
n=1

bn

ns
= ζ−r(s)gr(s)

by lemma 1.15.

Lemma 4.1.
∞∑

n=1

b4
n

ns
= ζr4

(s)h(s),

where h(s) is absolutely convergent for σ >
1

2
.
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Proof: We have

∞∑
n=1

bn

ns
= ζ−r(s)gr(s) =

∏
p

(
1 +

p
(
(1− p−1)

r − 1
)

ps

)
.

Then

∞∑
n=1

b4
n

ns
=

∏
p

(
1 +

(
p
(
(1− p−1)

r − 1
))4

ps

)

=
∏

p


1 +

(
−r +

(r
2)
p
− (r

3)
p2 + · · ·

)4

ps




=
∏

p

(
1 +

r4

ps
+

d1

ps+1
+

d2

ps+2
+ · · ·

)

where the dj only depend on j, for each j. Since we want to find an Euler product

that is convergent for σ >
1

2
, we just have to get rid of the term

r4

ps
. This can be

done by multiplying the above by ζ−r4
(s). Hence

∞∑
n=1

b4
n

ns
= ζr4

(s)
∏

p

(
1− 1

ps

)r4 (
1 +

r4

ps
+

d1

ps+1
+

d2

ps+2
+ · · ·

)

= ζr4

(s)
∏

p

(
1− r4

ps
+

(
r4

2

)

p2s
− · · ·

)(
1 +

r4

ps
+

d1

ps+1
+

d2

ps+2
+ · · ·

)

= ζr4

(s)hr(s).

2
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Therefore,

∑
n≤x

b4
n ≤

∞∑
n=1

b4
n

(x

n

)1+ c
log x

= x1+ c
log x

∞∑
n=1

b4
n

n1+ c
log x

= ecxζr4

(
1 +

c

log x

)
hr

(
1 +

c

log x

)

¿ x (log x)r4

where we used ζ(s) ∼ 1

s− 1
as s → 1. Hence, the sequence bn satisfies condition

(1.3), with D = r4. So, theorem 1.3 is valid for the arithmetic functions of the form

f(n) =

(
φ(n)

n

)r

.

4.3 f(n) =
(

σ(n)
n

)r

Let r 6= 0 be a real number, here we have

∞∑
n=1

(
σ(n)

n

)r

ns
=

∏
p

(
1 +

(1 + p−1)
r

ps
+

(1 + p−1 + p−2)
r

p2s
+ · · ·

)

= ζ(s)
∏

p

(
1 +

(1 + p−1)
r − 1

ps
+

(1 + p−1 + p−2)
r − (1 + p−1)

r

p2s
+ · · ·

)

= ζ(s)ζr(s + 1)Gr(s + 1)

where

Gr(s + 1) =
∏

p

(
1− r

ps+1
+

(
r
2

)

p2(s+1)
− · · ·

)

×
∏

p

(
1 +

(1 + p−1)
r − 1

ps
+

(1 + p−1 + p−2)
r − (1 + p−1)

r

p2s
+ · · ·

)

=
∏

p

(
1 +

c1

p2(s+1)
+

c2

ps+2
+ · · ·

)

so Gr(s) have an Euler product absolutely convergent for σ >
1

2
. Hence, condition

(1.4) is satisfied.



110

Remark. When r < 0, the main term of
∑
n≤x

(
σ(n)

n

)r

is ζr(2)Gr(2)x, with no

logarithmic terms, where Gr(s) is defined above.

As before, writing

(
σ(n)

n

)r

=
∑

d|n

bd

d
, we have

∞∑
n=1

bn

ns
= ζr(s)Gr(s)

=
∏

p

(
1 +

(1 + p−1)
r − 1

ps−1
+

(1 + p−1 + p−2)
r − (1 + p−1)

r

p2(s−1)
+ · · ·

)

=
∏

p


1 +

r +
(r
2)
p

+ · · ·
ps

+

(
r
2

)
(1 + p−1)

r−1
+ · · ·

p2s
+ · · ·




Therefore,

∞∑
n=1

b4
n

ns
=

∏
p


1 +

(
r +

(r
2)
p

+ · · ·
)4

ps
+

((
r
2

)
(1 + p−1)

r−1
+ · · ·

)4

p2s
+ · · ·




=
∏

p

(
1 +

r4

ps
+

(
c1

ps+1
+

c2

ps+2
+ · · ·

)
+

(
d1

p2s
+

d2

p2s+1
+ · · ·

)
+ · · ·

)

= ζr4

(s)Hr(s),

where Hr(s) has an Euler product that is convergent for σ >
1

2
. Condition (1.3)

follows as in the previous section. So, theorem 1.3 is valid for the arithmetic functions

of the form f(n) =

(
σ(n)

n

)r

.
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4.4 f(n) =
(

σ(n)
φ(n)

)r

Notice that

σ(n)

φ(n)
=

∏

pk‖n

1 + p−1 + p−2 + · · ·+ p−k

1− p−1

=
∏

pk‖n

(
1 + p−1 + p−2 + · · ·+ p−k

) (
1 + p−1 + p−2 + · · · )

=
∏

pk‖n

(
1 + 2p−1 + · · ·+ kp−(k−1) + (k + 1)p−k + (k + 1)p−(k+1) + · · · )

Fix r. Then
∞∑

n=1

(
σ(n)
φ(n)

)r

ns
is equal to the Euler product

∏
p

(
1 +

(1 + 2p−1 + 2p−2 + · · · )r

ps
+

(1 + 2p−1 + 3p−2 + 3p−3 + · · · )r

p2s
+ · · ·

)
.

We will analyze the case r = 1. The result will also follow for the other values of r

as in the two previous examples. With r = 1, we obtain

∞∑
n=1

(
σ(n)
φ(n)

)r

ns
= ζ(s)

∏
p

(
1 +

2p−1 + 2p−2 + · · ·
ps

+
p−2 + p−3 + · · ·

p2s
+ · · ·

)

= ζ(s)ζ2(s + 1)γ1(s + 1)

where γ1(s) has an Euler product that is convergent for σ >
1

2
. Taking bn such that

σ(n)

φ(n)
=

∑

d|n

bd

d
, we can write

∞∑
n=1

bn

ns
=

∏
p

(
1 +

2p−1 + 2p−2 + · · ·
ps−1

+
p−2 + p−3 + · · ·

p2(s−1)
+ · · ·

)

=
∏

p

(
1 +

2 + 2p−1 + · · ·
ps

+
1 + p−1 + · · ·

p2s
+ · · ·

)

Therefore

∞∑
n=1

b4
n

ns
=

∏
p

(
1 +

(2 + 2p−1 + · · · )4

ps
+

(1 + p−1 + · · · )4

p2s
+ · · ·

)

= ζ16(s)θ1(s)
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where θ1(s) has an Euler product that is convergent for σ >
1

2
. Again we can obtain

condition (1.3) and so the theorem 1.3 is also valid in this case. For general r, we

have

∞∑
n=1

(
φ(n)
σ(n)

)r

ns
= ζ(s)ζ2r(s + 1)γr(s + 1),

∞∑
n=1

b4
n

ns
= ζ16r4

(s)θr(s),

As in the previous sections, condition (1.3) is valid. Hence, we can apply theorem

1.3 for the arithmetic functions f(n) =

(
σ(n)

φ(n)

)r

, where r 6= 0.

4.5 f(n) =
(

φm(n)
n

)r

We define φm(n) to be the number of distinct groups of m consecutive integers all

prime to and smaller than n. Notice that, if p | n is a prime number and m ≥ p then

any set of m consecutive integers has one member divisible by p, so φm(n) = 0. We

can write

φm(n) :=





n
∏

p|n

(
1− m

p

)
if m is smaller than every prime factor of n

0 otherwise

These functions were studied as earlier as 1869 by V. Schemmel [78]. Let

Cm(s) =
∏
p≤m

(
1 +

(1−mp−1)
r

ps
+

(1−mp−1)
r

p2s
+ · · ·

)−1
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Therefore, we have

∞∑
n=1

(
φm(n)

n

)r

ns
=

∏
p>m

(
1 +

(1−mp−1)
r

ps
+

(1−mp−1)
r

p2s
+ · · ·

)

= Cm(s)ζ(s)
∏

p

(
1− 1

ps

)(
1 +

(1−mp−1)
r

ps
+

(1−mp−1)
r

p2s
+ · · ·

)

= Cm(s)ζ(s)
∏

p

(
1 +

(1−mp−1)
r − 1

ps

)

= ζ(s)ζ−mr(s + 1)νr(s + 1)

∞∑
n=1

bn

ns
= ζ−mr(s)νr(s)

and
∞∑

n=1

b4
n

ns
= ζ(mr)4(s)ξr(s),

where νr(s) and ξr(s) have Euler products that are convergent for σ >
1

2
. Therefore,

theorem 1.3 can also be applied to these family of arithmetic functions.



Chapter 5

The divisor function

Let ∆(x) =
∑

n≤x τ(n)−x log x− (2γ− 1)x, where τ(n) is the number of divisors of

n. There is a very extensive literature about the error term ∆(x). Many properties

have been studied, namely, its maximum order, Ω-estimates and estimates on its

moments. In this chapter, we study some other properties of ∆(x). For example, we

will prove ∆(x) has a positive proportion of pairs (x1, x2), such that ∆(x1) < −cx
1
4

and ∆(x2) > cx
1
4 , for some constant c > 0; we will obtain an explicit result about

the number of sign changes; and we also obtain a version of Lau’s main lemma, for

the function ∆(x).

5.1 Preliminary results

Let τ(n) denote the number of divisors of n. It was proved by Dirichlet [12] that

D(x) :=
∑
n≤x

τ(n) = x log x + (2γ − 1)x + ∆(x).

Our present interest in the arithmetic function ∆(x) is about the number of

its sign changes. First we will obtain an approximation to D(x) that isolates the

oscillating term of ∆(x).

Lemma 5.1.

D(x) = x log x + (2γ − 1)x− 2
∑

d≤√x

ψ
(x

d

)
− 1

6
+ 2

({√x} − {√x}2
)

+ O

(
1√
x

)
.
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Proof: Following Dirichlet we have

D(x) =
∑
n≤x

τ(n)

=
∑
n≤x

∑

d|n
1

=
∑

d≤x

∑

m≤x
d

1

=
∑

d≤√x

∑

m≤√x

1 +
∑

d≤√x

∑
√

x<m≤x
d

1 +
∑

d>
√

x

∑

m≤x
d

1.

But
∑

d>
√

x

∑

m≤x
d

1 =
∑

m≤√x

∑
√

x<d≤ x
m

1,

and

∑

d≤√x

∑
√

x<m≤x
d

1 =
∑

d≤√x

([x

d

]
− [√

x
])

=
∑

d≤√x

[x

d

]
− [√

x
]2

.

So,

D(x) = 2
∑

d≤√x

[x

d

]
− [√

x
]2

= 2


 ∑

d≤√x

x

d
−

∑

d≤√x

ψ
(x

d

)
− 1

2

∑

d≤√x

1


− [√

x
]2

We have the following estimate of the partial sums of the harmonic series (e.g. [91]),

for n ≥ 1,
∑
m≤n

1

m
= log n + γ +

1

2n
− 1

12n2
+ O

(
1

n4

)
.

In our case, we obtain

2
∑

d≤√x

x

d
= 2x

(
log

[√
x
]
+ γ +

1

2 [
√

x]
− 1

12 [
√

x]
2 + O

(
1

x2

))
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Now,

log
[√

x
]

= log
(√

x− {√
x
})

= log
(√

x
)

+ log

(
1− {√x}√

x

)

= log
(√

x
)− {√x}√

x
− {√x}2

2x
+ O

(
x−

3
2

)

and

1

[
√

x]
=

1√
x

(
1 +

{√x}√
x

+ O

(
1

x

))
.

Therefore

2
∑

d≤√x

x

d
= x log x− 2

{√
x
}√

x− {√
x
}2

+ 2γx +
√

x +
{√

x
}− 1

6
+ O

(
1√
x

)
.

Notice that

[√
x
]2

=
(√

x− {√
x
})2

= x− 2
{√

x
}√

x +
{√

x
}2

.

Hence, after joining everything together we get:

D(x) = x log x + (2γ − 1)x− 2
∑

d≤√x

ψ
(x

d

)
− 1

6
+ 2

({√x} − {√x}2
)

+ O

(
1√
x

)
.

2

From this lemma we can see that the major oscillating term of ∆(x) is related to

ψ(x/n) and since this function seems to have a random behavior when n is close to

the square root of x, it makes sense to predict that the maximum order of ∆(x) is

x
1
4
+ε as was conjectured by G. H. Hardy. The Ω-results show us that |∆(x)| can be

larger then x
1
4 and as D. R. Heath-Brown and K. Tsang [33] proved (see pp. 37) ,

|∆(x)| is this large very often. Since, for any δ > 0, ∆(n + 1)−∆(n) is smaller than

nδ, for n sufficiently large, it makes sense to expect that the number of sign changes

of ∆(x) between 1 and T is about T
3
4
−ε.
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5.2 Positive and negative values of ∆(x)

In this section, we prove that the inequalities ∆(x) < −cx
1
4 and ∆(x) > cx

1
4 occur

very often.

In chapters 3 and 4, we prove that the error terms H(x) studied, satisfy condition

(2.16). We are going to prove a corresponding result for ∆(x):

Lemma 5.2. For any x > 1,

−{x} log x− 2γ{x} < ∆(x)−∆([x]) < −{x} log x− (2γ − 1){x} (5.1)

Proof: Using the definition (1.26) of ∆(x), we obtain

∆(x)−∆([x]) = −x log x + [x] log[x]− (2γ − 1){x}

As before, log[x] = log x− {x}
x
− {x}2

2x2
− · · ·. Therefore

∆(x)−∆([x]) = −{x} log x− 2γ{x}+
{x}2

x
− {x}2

2x
+
{x}3

2x2
− {x}3

3x2
+ · · ·

= −{x} log x− 2γ{x}+
∞∑

n=1

{x}n+1

n(n + 1)xn

Since {x}n ≤ {x}, for n > 1, and
∞∑

n=1

1

n(n + 1)
= 1, then

∞∑
n=1

{x}n+1

n(n + 1)xn
<
{x}
x

for x > 1. 2

In [26], G. H. Hardy proved that

∫ T

2

|∆(t)| dt = O(T
5
4
+ε),

for any ε > 0. Next, we prove that the order of the above integral is exactly T
5
4 .
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Lemma 5.3. ∫ T

2

|∆(t)| dt = cT
5
4 (1 + o(1)),

where c 6= 0.

Proof: D. R. Heath-Brown [31, theorem 2] proved that, for any k ∈ [0, 9], the

mean value

X−1− k
4

∫ X

0

|∆(x)|k dx

converges to a finite limit as X tends to infinity, which implies relation above for a

finite c. K.-M. Tsang [96, corollary 3] proved that, for any k ∈ [0, 9],

∫ X

0

|∆(x)|k dx ³ X1+ k
4 .

So, c 6= 0. 2

In the same direction, H. Crámer proved

Proposition 5.4 (H. Crámer [10], 1922).

∫ T

2

∆2(t) dt =
ζ4(3

2
)

6π2ζ(3)
T

3
2 + O

(
T

5
4
+ε

)

The two results above allow us to prove that ∆(n) < 0, for a positive proportion

of the values of n.

Theorem 1.18. There are positive constants c1, c2 and c3, such that, for T suffi-

ciently large,

#{1 ≤ n ≤ T : c1T
1
4 < ∆(n) < c2T

1
4} > c3T

and

#{1 ≤ n ≤ T : −c2T
1
4 < ∆(n) < −c1T

1
4} > c3T.

In particular

#{1 ≤ n ≤ T : ∆(n) < 0} À T and #{1 ≤ n ≤ T : ∆(n) > 0} À T
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Proof: From Voronöı’s result (1.31), we have

∫ T

2

∆(x) dx =
1

4
T +

(
2
√

2π2
)−1

T
3
4

∞∑
n=1

τ(n)n−
5
4 sin

(
4π
√

nT − π

4

)
+ O

(
T

1
4

)
,

so, from lemma 5.3, we obtain

∫ T

1 ∆(t)>0

∆(t) dt =
( c

2
+ o(1)

)
T

5
4 and

∫ T

1 ∆(t)<0

|∆(t)| dt =
( c

2
+ o(1)

)
T

5
4 .

(5.2)

Let c4 =
c

6
. We have,

∫ T

1
0<∆(t)≤c4T

1
4

∆(t) dt ≤ c4T
5
4

and ∫ T

1
−c4T

1
4≤∆(t)<0

|∆(t)| dt ≤ c4T
5
4

For any ρ > 0, let

Aρ =

∫ T

1
|∆(t)|≥ρT

1
4

|∆(t)| dt

and let c5 >
ζ4(3

2
)

6π2ζ(3)
. Then, by proposition 1.32, for T sufficiently large,

c5T
3
2 >

∫ T

1

∆(t)2 dt

≥
∫ T

1
|∆(t)|≥ρT

1
4

∆(t)2 dt

≥ ρT
1
4 Aρ.

Therefore, Aρ <
c5

ρ
T

5
4 . Take ρ such that ρ > c4 and

c5

ρ
< c4, i. e. take

ρ > max

(
c5

c4

, c4

)
,

then ∫ T

1
|∆(t)|≥ρT

1
4

|∆(t)| dt < c4T
5
4 .
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Hence, using (5.2),

∫ T

1
c4T

1
4 <∆(t)<ρT

1
4

∆(t) dt > c4T
5
4

and ∫ T

1
−ρT

1
4 <∆(t)<−c4T

1
4

|∆(t)| dt > c4T
5
4

On the other hand,

∫ T

1
c4T

1
4 <∆(t)<ρT

1
4

∆(t) dt < ρT
1
4

∫ T

1
c4T

1
4 <∆(t)<ρT

1
4

1 dt

Since |∆(t) − ∆([t])| = {t} log t + O(1), by (5.1), then, for any c1 < c4, c2 > ρ

and T sufficiently large,

#{1 ≤ n ≤ T : c1T
1
4 < ∆(n) < c2T

1
4} ≥

∫ T

1
c4T

1
4 <∆(t)<ρT

1
4

1 dt

>
1

ρT
1
4

∫ T

1
c4T

1
4 <∆(t)<ρT

1
4

∆(t) dt

>
c4

ρ
T.

The first result follows with c3 =
c4

ρ
. Similarly,

#{1 ≤ n ≤ T : −c2T
1
4 < ∆(n) < −c1T

1
4} > c3T

2

5.3 Average results

In this section, we will use Voronöı’s result (1.28), in order to obtain a new version

of Lau’s Main Lemma, for the error term ∆(x).
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Theorem 1.16. Let ε > 0. For T sufficiently large and 1 ≤ r ¿ T
1
2
−2ε,

∫ 2T

T

(∫ t+ r√
T

t− r√
T

∆(u2) du

)2

dt =
3ζ4(3

2
)

2π2ζ(3)
Tr2 + O

(
T

3
4
+2εr

3
2
−2ε

)
+ O

(
T

1
2
+2εr3−4ε

)
.

(5.3)

Proof: Instead of Voronöı’s explicit formula (1.27), we will use the truncated

form (1.28) that we state here again:

∆(x) =
x

1
4

π
√

2

∑
n≤N

τ(n)

n
3
4

cos
(
4π
√

nx− π

4

)
+ O

(
x

1
2
+εN− 1

2

)
.

where 1 ≤ N ¿ x. In order to simplify the notation, write h =
r√
T

. Let T ≤ t ≤ 2T ,

t− h ≤ u ≤ t + h and N = T 2, then
√

u =
√

t + O

(
h√
t

)
and

∆(u2) =

√
t

π
√

2

∑
n≤N

τ(n)

n
3
4

cos
(
4πu

√
n− π

4

)
+ O(T ε).

Now, we can calculate the inner integral of (5.3).

∫ t+h

t−h

∆(u2) du

=

√
t

4π2
√

2

∑
n≤N

τ(n)

n
5
4

(
sin

(
4π(t + h)

√
n− π

4

)
− sin

(
4π(t− h)

√
n− π

4

))
+ O(hT ε)

=

√
t

2π2
√

2

∑
n≤N

τ(n)

n
5
4

sin
(
4πh

√
n
)
cos

(
4πt

√
n− π

4

)
+ O(hT ε). (5.4)

In the last equality we used sin(a + b)− sin(a− b) = 2 sin b cos a. Taking the square,

(∫ t+h

t−h

∆(u2) du

)2

=

t

8π4

∑
m,n≤N

τ(m)τ(n)

(mn)
5
4

sin
(
4πh

√
m

)
sin

(
4πh

√
n
)
cos

(
4πt

√
m− π

4

)
cos

(
4πt

√
n− π

4

)

+

√
t

π2
√

2

∑
n≤N

τ(n)

n
5
4

sin
(
4πh

√
n
)
cos

(
4πt

√
n− π

4

)
×O (hT ε) + O

(
h2T 2ε

)
.

Next, we will get an upper bound for the second term above. Since, for a <
π

4
we

have sin a = a + O(a3), then we will separate the sum in consideration into two
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sums, in the first we take those small values of n for which we can use the Taylor

approximation of the function sin x with a small error.

∑
n≤N

τ(n)

n
5
4

sin
(
4πh

√
n
)
cos

(
4πt

√
n− π

4

)
= O


h

∑

n≤ 1
256h2

τ(n)

n
3
4


 + O




∑

n> 1
256h2

τ(n)

n
5
4




= O
(
h

1
2
−2ε

)

since, for the given ε, we have τ(n) = O(nε). Hence
√

t

2π2
√

2

∑
n≤N

τ(n)

n
5
4

sin
(
4πh

√
n
)
cos

(
4πt

√
n− π

4

)
×O(hT ε) = O

(
h

3
2
−2εT

1
2
+ε

)
. (5.5)

Therefore

∫ 2T

T

(∫ t+h

t−h

∆(u2) du

)2

dt =
1

8π4

∑
m,n≤N

τ(m)τ(n)

(mn)
5
4

sin
(
4πh

√
m

)
sin

(
4πh

√
n
)

×
∫ 2T

T

t cos
(
4πt

√
m− π

4

)
cos

(
4πt

√
n− π

4

)
dt + O

(
h

3
2
−2εT

3
2
+ε

)
+ O(h2T 1+2ε)

(5.6)

Next, we analyze the integral of the right hand side. We have

2

∫ 2T

T

t cos
(
4πt

√
m− π

4

)
cos

(
4πt

√
n− π

4

)
dt

=

∫ 2T

T

t
[
sin

(
4πt(

√
m +

√
n)

)
+ cos

(
4πt(

√
m−√n)

)]
dt

=

∫ 2T

T

t sin
(
4πt(

√
m +

√
n)

)
dt +

∫ 2T

T

t cos
(
4πt(

√
m−√n)

)
dt (5.7)

We will use integration by parts in both terms. We begin with the second term. If

m 6= n, then

∫ 2T

T

t cos
(
4πt(

√
m−√n)

)
dt =

T

2π(
√

m−√n)
sin

(
8πT (

√
m−√n)

)

− T

4π(
√

m−√n)
sin

(
4πT (

√
m−√n)

)

+ O

(
1

(
√

m−√n)2

)

¿ T

|√m−√n| +
1

(
√

m−√n)2
.
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If m = n, then ∫ 2T

T

t cos
(
4πt(

√
m−√n)

)
dt =

3

2
T 2.

Now, we evaluate the first term of (5.7).
∫ 2T

T

t sin
(
4πt(

√
m +

√
n)

)
dt =

T

4π(
√

m +
√

n)
cos

(
4πT (

√
m +

√
n)

)

− T

2π(
√

m +
√

n)
cos

(
8πT (

√
m +

√
n)

)
+ O(1)

¿ T√
m +

√
n

since m,n ≤ N = T 2. When m 6= n,
∫ 2T

T

t sin
(
4πt(

√
m +

√
n)

)
dt ¿ T

|√m−√n|
and if m = n, ∫ 2T

T

t sin
(
4πt(

√
m +

√
n)

)
dt ¿ T√

n

As before, we will separate the sum in (5.6) in two sums. When n is small we use the

Taylor approximation of the function sin x. When m = n and n is small, we obtain

1

8π4

∑

n≤ 1
256h2

τ(n)2

(n)
5
2

(
4πh

√
n
)2

(
3

4
T 2

)
+ O


T 2

∑

n≤ 1
256h2

τ(n)2

(n)
5
2

(
4πh

√
n
)6




+
1

8π4

∑

n≤ 1
256h2

τ(n)2

(n)
5
2

(
4πh

√
n
)2

O

(
T√
n

)

which is equal to

3

2π2
T 2h2

∑

n≤ 1
256h2

τ(n)2

n
3
2

+ O
(
h3−4εT 2

)
+ O

(
Th2

)
, (5.8)

where we used
∑

n≤ 1
256h2

τ(n)2

n2
= O(1) for the third term. Joining all the other terms

and writing r = h
√

T , the equation (5.6) becomes

∫ 2T

T

(∫ t+ r√
T

t− r√
T

∆(u2) du

)2

dt =
3

2π2
Tr2

∑

n≤ T
256r2

τ(n)2

n
3
2

+ S1 + S2 + S3 + S4 + S5

+ O
(
T

3
4
+2εr

3
2
−2ε

)
+ O

(
T

1
2
+2εr3−4ε

)
+ O(r2T 2ε) (5.9)
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Where

S1 =
3

32π4
T 2

∑
T

256r2 <n≤N

τ(n)2

n
5
2

sin2

(
4π

r√
T

√
n

)

S2 = O


r2

∑

m,n≤ T
256r2

m6=n

τ(m)τ(n)

(mn)
3
4 |√m−√n|




S3 = O


T

∑
T

256r2 <m,n≤N

m6=n

τ(m)τ(n)

(mn)
5
4 |√m−√n|




S4 = O




∑
m,n≤N
m6=n

τ(m)τ(n)

(mn)
5
4 |√m−√n|2




S5 = O


T

∑
T

256r2 <n≤N

τ(n)2

n3




The sum in the first term (5.9) can be expressed as an infinite sum plus an

error term and the infinite sum can be evaluated using the following result due to

Ramanujan

ζ4(s)

ζ(2s)
=

∞∑
n=1

τ 2(n)

ns
,

which is theorem 304 in Hardy & Wright’s book [29]. Since, for the given ε, we have

τ(n) = O(nε), then

3

2π2
Tr2

∑

n≤ T
256r2

τ(n)2

n
3
2

=
3

2π2
Tr2

∞∑
n=1

τ(n)2

n
3
2

− 3

2π2
Tr2

∑

n> T
256r2

τ(n)2

n
3
2

=
3ζ4(3

2
)

2ζ(3)π2
Tr2 + O

(
T

1
2
+2εr3−4ε

)

The term S1 has the same upper bound as the error term above,

3

32π4
T 2

∑
T

256r2 <n≤N

τ(n)2

n
5
2

sin2

(
4π

r√
T

√
n

)
= O(T

1
2
+2εr3−4ε), (5.10)
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For the next two terms we have to be more careful. Our first step will be to get rid

of the square roots in the denominator. We have

r2
∑

m,n≤ T
256r2

m6=n

τ(m)τ(n)

(mn)
3
4 |√m−√n|

¿ r2
∑

n≤ T
256r2

τ(n)

n
3
4

∑

n<m≤ T
256r2

τ(m)
√

m

m
3
4 (m− n)

.

We estimate the inside sum after making the change of variable, k = m− n.

∑

n<m≤ T
256r2

τ(m)

m
1
4 (m− n)

¿ T ε
∑

k≤ T
256r2

1

k(k + n)
1
4

¿ T ε




∑

k<n

1

k(k + n)
1
4

+
∑

n≤k≤ T
256r2

1

k(k + n)
1
4




¿ T ε log n

n
1
4

Hence,

S2 ¿ T 2εr2 log T
∑

n≤ T
256r2

1

n

¿ T 2εr2 log2 T

¿ T 3εr2 (5.11)

Analogously,

S3 ¿
∑

T
256r2 <n≤N

τ(n)

n
5
4

∑
n<m≤N

τ(m)
√

m

m
5
4 (m− n)

¿ T 1+4ε
∑

T
256r2 <n≤N

1

n
5
4

∑

k≤N

1

k(k + n)
3
4

¿ T 1+4ε
∑

T
256r2 <n≤N

1

n
5
4

(
log N

n
3
4

+
1

n
3
4

)

¿ T 1+4ε (log T )

(
r2

T

)

¿ T 5εr2. (5.12)
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For S4 we don’t need to cancel T , so we can be more relaxed in our estimate. We,

again, make the change of variable k = m− n.

∑
m,n≤N
m6=n

τ(m)τ(n)

(mn)
5
4 |√m−√n|2

¿ T 4ε
∑
n≤N

1

n
5
4

∑
n<m≤N

1

m
1
4 (m− n)2

¿ T 4ε
∑
n≤N

1

n
5
4

∑

k≤N

1

k2(k + n)
1
4

¿ T 4ε. (5.13)

Since τ(n) = O(nε),

S5 = O


T

∑
T

256r2 <n≤N

τ(n)2

n3




¿ r4−4ε

T 1−2ε
(5.14)

Whence,

∫ 2T

T

(∫ t+ r√
T

t− r√
T

∆(u2) du

)2

dt =
3ζ4(3

2
)

2ζ(3)π2
Tr2 + O

(
T

1
2
+2εr3−4ε

)
+ O

(
T 5εr2

)

+ O

(
r4−4ε

T 1−2ε

)
+ O

(
T

3
4
+2εr

3
2
−2ε

)

=
3ζ4(3

2
)

2ζ(3)π2
Tr2 + O

(
T

3
4
+2εr

3
2
−2ε

)
+ O

(
T

1
2
+2εr3−4ε

)

2

Notice that, even if ∆(u2) was always very large, say ∆(u2) = cT
1
2 (1 + o(1)), for

all u ∈ [T, 2T ], we would obtain

∫ 2T

T

(∫ t+ r√
T

t− r√
T

∆(u2) du

)2

dt = 4c2Tr2(1 + o(1))

which doesn’t contradict theorem 1.16, if c is small enough. So, from theorem 1.16,

we cannot assure that ∆(x) must have many changes of sign. Our next step is to
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explore if we can find a constant, say X, such that, for some pairs of intervals

separated by a distance X − 2h, say

(I1, I2) = ([t− h, t + h], [t + X − h, t + X + h]) ,

we have enough cancellations in the sum of the integrals

∫

I1

∆(u2) du and

∫

I2

∆(u2) du.

If exists X satisfying the above condition then we must have many changes of signs

for ∆(x).

Theorem 1.17. Let ε > 0, T sufficiently large and 1 ≤ r,X ¿ T
1
2
−ε. For t ∈ [T, 2T ]

and any h > 0, define

At,h =

∫ t+h

t−h

∆(u2) du.

Then,

∫ 2T

T

(
At, r√

T
+ At+X, r√

T

)2

dt =
3ζ4(3

2
)

π2ζ(3)
Tr2 +

3

2π2
Tr2

∞∑
n=1

τ(n)2

n
3
2

cos
(
4πX

√
n
)

+ O
(
T

1
2
+2εr3−4ε

)
+ O(T 1−ε) + O

(
T

3
4
+2εr

3
2
−2ε

)

(5.15)

Moreover, for any X,

∫ 2T

T

(
At, r√

T
+ At+X, r√

T

)2

dt ³ Tr2

Proof: First, we prove the second statement. The second term of (5.15) is of the

size of the first only if X is such that cos
(
4πX

√
n
)

is almost always close to −1.

But, if for some n and X, cos
(
4πX

√
n
)

is close to −1, then cos
(
4πX

√
4n

)
is closed

to 1. Therefore, we have
∣∣∣∣∣
∞∑

n=1

τ(n)2

n
3
2

cos
(
4πX

√
n
)
∣∣∣∣∣ < c,
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for some c <
ζ4(3

2
)

ζ(3)
. Hence, for any X, we cannot cancel the main term of (5.15), i.

e. Tr2 is the exact average order of

∫ 2T

T

(
At, r√

T
+ At+X, r√

T

)2

dt

Now, we evaluate the integral on the left of (5.15). Notice that

∫ 2T

T

A2
t+X, r√

T
dt =

∫ 2T

T

A2
t, r√

T
dt + O

(
Xr2

)

=
3ζ4(3

2
)

2ζ(3)π2
Tr2 + O

(
T

3
4
+2εr

3
2
−2ε

)
+ O

(
T

1
2
+2εr3−4ε

)

so we only need to calculate

∫ 2T

T

At, r√
T
At+X, r√

T
dt.

Let h =
r√
T

and N = T 2. Using (5.4) and (5.5), we have

At,hAt+X,h =

(∫ t+h

t−h

∆(u2) du

)(∫ t+X+h

t+X−h

∆(u2) du

)

=

( √
t

2π2
√

2

∑
n≤N

τ(n)

n
5
4

sin
(
4πh

√
n
)
cos

(
4πt

√
n− π

4

))

×
(√

t + X

2π2
√

2

∑
n≤N

τ(n)

n
5
4

sin
(
4πh

√
n
)
cos

(
4π(t + X)

√
n− π

4

))

+ O
(
h

3
2
−2εt

1
2
+ε

)
+ O(h2t2ε)

=

√
t(t + X)

8π4

∑
m,n≤N

τ(m)τ(n)

(mn)
5
4

sin
(
4πh

√
m

)
sin

(
4πh

√
n
)

× cos
(
4πt

√
m− π

4

)
cos

(
4π(t + X)

√
n− π

4

)
dt

+ O
(
h

3
2
−2εt

1
2
+ε

)
+ O(h2t2ε)
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Next, we the integral,

∫ 2T

T

At,hAt+X,h dt =
1

8π4

∑
m,n≤N

τ(m)τ(n)

(mn)
5
4

sin
(
4πh

√
m

)
sin

(
4πh

√
n
)

×
∫ 2T

T

√
t(t + X) cos

(
4πt

√
m− π

4

)
cos

(
4π(t + X)

√
n− π

4

)
dt

+ O
(
h

3
2
−2εT

3
2
+ε

)
+ O(h2T 1+2ε) (5.16)

Using another trigonometric identity,

2

∫ 2T

T

√
t(t + X) cos

(
4πt

√
m− π

4

)
cos

(
4π(t + X)

√
n− π

4

)
dt

=

∫ 2T

T

√
t(t + X) sin

(
4πt(

√
m +

√
n) + 4πX

√
n
)

+

∫ 2T

T

√
t(t + X) cos

(
4πt(

√
m−√n)− 4πX

√
n
)

dt (5.17)

Now,
√

t(t + X) = t

(
1 +

X

2t
+ O

(
X2

t2

))
. We have,

∫ 2T

T

X2

t
cos

(
4πt

√
m− π

4

)
cos

(
4π(t + X)

√
n− π

4

)
dt ¿ X2 log T

Therefore,

1

8π4

∑
m,n≤N

τ(m)τ(n)

(mn)
5
4

sin
(
4πh

√
m

)
sin

(
4πh

√
n
)
X2 log T = O(T 1−ε)

We will use integration by parts in the next term,

∫ 2T

T

t sin
(
4πt(

√
m +

√
n) + 4πX

√
n
)

dt

=
T

4π(
√

m +
√

n)
cos

(
4πT (

√
m +

√
n) + 4πX

√
n
)

− T

2π(
√

m +
√

n)
cos

(
8πT (

√
m +

√
n) + 4πX

√
n
)

+ O(1)

¿ T√
m +

√
n
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We also have,

∫ 2T

T

X sin
(
4πt(

√
m +

√
n) + 4πX

√
n
)

dt

=
X

4π(
√

m +
√

n)
cos

(
4πT (

√
m +

√
n) + 4πX

√
n
)

− X

4π(
√

m +
√

n)
cos

(
8πT (

√
m +

√
n) + 4πX

√
n
)

¿ T√
m +

√
n

since X ¿ T
1
2
−ε. So, using r = h

√
T , (5.14) and the third part of (5.8),

1

8π4

∑
m,n≤N

τ(m)τ(n)

(mn)
5
4

sin
(
4πh

√
m

)
sin

(
4πh

√
n
)
O

(
T√

m +
√

n

)
¿ r2

For the second term of (5.17), we have to distinguish two cases. If m 6= n, then

∫ 2T

T

t cos
(
4πt(

√
m−√n)− 4πX

√
n
)

dt

=
T

2π(
√

m−√n)
sin

(
8πT (

√
m−√n)− 4πX

√
n
)

− T

4π(
√

m−√n)
sin

(
4πT (

√
m−√n)− 4πX

√
n
)

+ O

(
1

(
√

m−√n)2

)

¿ T

|√m−√n| +
1

(
√

m−√n)2

and ∫ 2T

T

X cos
(
4πt(

√
m−√n)− 4πX

√
n
)

dt ¿ X

|√m−√n| .

From (5.11), (5.12) and (5.13), we obtain

1

8π4

∑
m,n≤N

m6=n

τ(m)τ(n)

(mn)
5
4

sin
(
4πh

√
m

)
sin

(
4πh

√
n
)
O

(
T

|√m−√n| +
1

(
√

m−√n)2

)

¿ S2 + S3 + S4 ¿ T 5εr2

If m = n, then

∫ 2T

T

t cos
(
4πt(

√
m−√n)− 4πX

√
n
)

dt =
3

2
T 2 cos

(
4πX

√
n
)
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and ∫ 2T

T

X cos
(
4πt(

√
m−√n)− 4πX

√
n
)

dt = TX cos
(
4πX

√
n
)
.

As in the proof of theorem 1.16, we will separate each of the sums

3

32π4
T 2

∑
n≤N

τ(n)2

n
5
2

sin
(
4πh

√
n
)2

cos
(
4πX

√
n
)

and

1

16π4
TX

∑
n≤N

τ(n)2

n
5
2

sin
(
4πh

√
n
)2

cos
(
4πX

√
n
)

into two sums, one with n ≤ 1

256h2
for which we can use sin x = x + O(x3), and the

other with
1

256h2
< n ≤ N . Take again r = h

√
T . Notice that

1

16π4
TX

∑

n≤ 1
256h2

τ(n)2

n
5
2

(
4πh

√
n
)2

cos
(
4πX

√
n
) ¿ Xr2

and

1

16π4
T

(
X +

3

2
T

) ∑

n≤ 1
256h2

τ(n)2

n
5
2

(
4πh

√
n
)6

cos
(
4πX

√
n
) ¿ T

1
2
+2εr3−4ε

We estimate the terms with large n as we did in (5.10),

1

16π4
T

(
X +

3

2
T

) ∑
T

256r2 <n≤N

τ(n)2

n
5
2

sin
(
4πh

√
n
)2

cos
(
4πX

√
n
) ¿ T

1
2
+2εr3−4ε

So, we are left with

3

32π4
T 2

∑

n≤ 1
256h2

τ(n)2

n
5
2

(
4πh

√
n
)2

cos
(
4πX

√
n
)

=
3

2π2
Tr2

∑

n≤ T
256r2

τ(n)2

n
3
2

cos
(
4πX

√
n
)

=
3

2π2
Tr2

∞∑
n=1

τ(n)2

n
3
2

cos
(
4πX

√
n
)

+ O
(
T

1
2
+2εr3−4ε

)
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Hence, joining everything together, we obtain

∫ 2T

T

At,hAt+X,h dt =

3

2π2
Tr2

∞∑
n=1

τ(n)2

n
3
2

cos
(
4πX

√
n
)

+ O
(
T

1
2
+2εr3−4ε

)
+ O(T 1−ε) + O

(
T

3
4
+2εr

3
2
−2ε

)

2

5.4 Changes of sign

In this section, we use a different approach to the problem of finding the number of

sign changes of ∆(x), for 1 ≤ x ≤ T . We need a technical lemma before we continue.

Lemma 5.5. Let ε > 0 and let T be sufficiently large. Take h ≤ T ε, k ≥ 1 an integer

and N = T 2. Take also t = tk ≥ T , then

F (t, k) :=

∫ tk+h

tk−h

∫ tk−1+h

tk−1−h

· · ·
∫ t2+h

t2−h

∫ t1+h

t1−h

∆(t20) dt0 dt1 · · · dtk−2 dtk−1

=
1

2kπk+1
√

2

√
tk

∑
n≤N

τ(n)

n
3
4
+ k

2

sink
(
4πh

√
n
)
cos

(
4πtk

√
n− π

4

)
+ O

(
hk+1T ε

)
. (5.18)

Proof: We will use again the truncated form of Voronöı’s result (1.28):

∆(x) =
x

1
4

π
√

2

∑
n≤N

τ(n)

n
3
4

cos(4π
√

nx− π

4
) + O

(
x

1+ε
2 N− 1

2

)
,

where 1 ≤ N ¿ x. Let h < T ε. Given k ≥ 1 and t ≥ T , let tk = t and for any

1 ≤ i ≤ k, take tk−i ∈ [tk−i+1 − h, tk−i+1 + h]. We are going to prove, by induction,

that for every 1 ≤ i ≤ k, we have

√
tk−i =

√
tk + O

(
h√
tk

)
. (5.19)

Since tk − h ≤ tk−1 ≤ tk + h and
√

tk ± h =
√

tk + O

(
h√
tk

)
, then

√
tk−1 =

√
tk + O

(
h√
tk

)
.
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Now, suppose (5.19) is valid for some 1 ≤ i < k, i. e.
√

tk−i =
√

tk + O

(
h√
tk

)
. We

are going to prove that (5.19) is also valid for i + 1. We have

√
tk−(i+1) =

√
tk−i + O

(
h√
tk−i

)

and

h√
tk−i

=
h

√
tk + O

(
h√
tk

)

=
h√
tk


 1

1 + O
(

h
tk

)



=
h√
tk

(
1 + O

(
h

tk

))

= O

(
h√
tk

)

Therefore,
√

tk−(i+1) =
√

tk + O

(
h√
tk

)
. Hence, (5.19) is valid for any k ≥ 1 and

any 1 ≤ i ≤ k.

Take t0, t1 ≥ T , N = T 2. Then

O

(
h√
t1

) ∑
n≤N

τ(n)

n
3
4

cos
(
4πt0

√
n− π

4

)
= O (hT ε) . (5.20)

and, for k ≥ 1, t0, . . . , tk ≥ T and 1 ≤ j ≤ k,

O

(
h√
tk

) ∑
n≤N

τ(n)

n
3
4
+ j

2

sinj
(
4πh

√
n
)
cos

(
4πtj

√
n− π

4

)
= o(1), (5.21)

since h ≤ T ε. We are going to prove (5.18) by induction. Let N = T 2 and suppose

that k = 1. Take t1 ≥ T and t0 ∈ [t1 − h, t1 + h], then

∆(t20) =

√
t0

π
√

2

∑
n≤N

τ(n)

n
3
4

cos(4πt0
√

n− π

4
) + O (T ε)

=

√
t1 + O

(
h√
t1

)

π
√

2

∑
n≤N

τ(n)

n
3
4

cos(4πt0
√

n− π

4
) + O (T ε)

=

√
t1

π
√

2

∑
n≤N

τ(n)

n
3
4

cos(4πt0
√

n− π

4
) + O (hT ε)
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where we used (5.20) in the last step. Therefore,

∫ t1+h

t1−h

∆(t20) dt0

=

√
t1

4π2
√

2

∑
n≤N

τ(n)

n
5
4

(
sin

(
4π(t1 + h)

√
n− π

4

)
− sin

(
4π(t1 − h)

√
n− π

4

))
+ O(h2T ε)

=

√
t1

2π2
√

2

∑
n≤N

τ(n)

n
5
4

sin
(
4πh

√
n
)
cos

(
4πt1

√
n− π

4

)
+ O

(
h2T ε

)
.

Suppose we have (5.18), for some k ≥ 1, i. e.

∫ tk+h

tk−h

∫ tk−1+h

tk−1−h

· · ·
∫ t2+h

t2−h

∫ t1+h

t1−h

∆(t20) dt0 dt1 · · · dtk−2 dtk−1 =

1

2kπk+1
√

2

√
tk

∑
n≤N

τ(n)

n
3
4
+ k

2

sink
(
4πh

√
n
)
cos

(
4πtk

√
n− π

4

)
+ O

(
hk+1T ε

)

We are going to prove that the above implies

∫ tk+1−h

tk+1−h

(∫ tk+h

tk−h

∫ tk−1+h

tk−1−h

· · ·
∫ t2+h

t2−h

∫ t1+h

t1−h

∆(t20) dt0 dt1 · · · dtk−2 dtk−1

)
dtk =

1

2k+1πk+2
√

2

√
tk+1

∑
n≤N

τ(n)

n
3
4
+ k+1

2

sink+1
(
4πh

√
n
)
cos

(
4πtk+1

√
n− π

4

)
+O

(
hk+2T ε

)

Now, using (5.19) and (5.20),

∫ tk+1−h

tk+1−h

(
√

tk
∑
n≤N

τ(n)

n
3
4
+ k

2

sink
(
4πh

√
n
)
cos

(
4πtk

√
n− π

4

))
dtk

=

∫ tk+1−h

tk+1−h

(
√

tk+1

∑
n≤N

(
τ(n)

n
3
4
+ k

2

sink
(
4πh

√
n
)
cos

(
4πtk

√
n− π

4

))
+ o(1)

)
dtk

Since,

∫ tk+1−h

tk+1−h

cos
(
4πtk

√
n− π

4

)
dtk

=
1

4π
√

n

(
sin

(
4π(tk+1 + h)

√
n− π

4

)
− sin

(
4π(tk+1 − h)

√
n− π

4

))

=
1

2π
√

n
sin

(
4πh

√
n
)
cos

(
4πtk+1

√
n− π

4

)
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we obtain

∫ tk+1−h

tk+1−h

(∫ tk+h

tk−h

∫ tk−1+h

tk−1−h

· · ·
∫ t2+h

t2−h

∫ t1+h

t1−h

∆(t20) dt0 dt1 · · · dtk−2 dtk−1

)
dtk =

1

2k+1πk+2
√

2

√
tk+1

∑
n≤N

τ(n)

n
3
4
+ k+1

2

sink+1
(
4πh

√
n
)
cos

(
4πtk+1

√
n− π

4

)
+O

(
hk+2T ε

)

Hence, by induction, (5.18) is true for all k ≥ 1. 2

We are in conditions of obtaining a different proof that N∆(T ) À T
1
2 .

Theorem 1.4. Let N∆(T ) denote the number of sign changes of ∆(t), in the interval

[T, 2T ]. Then, for sufficiently large T , N∆(T ) >
√

T . Moreover, there exists a con-

stant c1, and t1, t2 ∈ [T, T +
√

T ] such that ∆(t1) ≤ −c1T
1
4 and ∆(t2) ≥ c1T

1
4 .

Proof: For h, k, N as in the previous lemma and t ≥ T , define g(t, k) by

F (t, k) =
1

2kπk+1
√

2

√
t

(∑
n≤N

τ(n)

n
3
4
+ k

2

sink
(
4πh

√
n
)
cos

(
4πt

√
n− π

4

)
+ g(t, k)

)
.

Notice that, g(t, k) ¿ hk+1T− 1
2
+ε. It is well known [29, theorem 289] that

ζ2(s) =
∞∑

n=1

τ(n)

ns
, for s > 1.

Take δ > 0 small and, for fixed h and k (we will later take explicit values for h and

k), take T sufficiently large so that, for any t ≥ T , |g(t, k)| < δ. Then, for any real

t ≥ T ,∣∣∣∣∣
∑

2≤n≤N

τ(n)

n
3
4
+ k

2

sink
(
4πh

√
n
)
cos

(
4πt

√
n− π

4

)
+ g(t, k)

∣∣∣∣∣ ≤ ζ2

(
3

4
+

k

2

)
− 1 + |g(t, k)|

< ζ2

(
3

4
+

k

2

)
− 1 + δ

Since,

2kπk+1
√

2√
t

F (t, k) =

sink(4πh) cos
(
4πt− π

4

)
+

∑
2≤n≤N

τ(n)

n
3
4
+ k

2

sink
(
4πh

√
n
)
cos

(
4πt

√
n− π

4

)
+ g(t, k)
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we want to find h and k such that sink (4πh) > ζ2

(
3

4
+

k

2

)
− 1 + δ and hk to

take the smallest possible value. This happens for h = 0.084901 . . . and k = 4.

As we will see below, there is no lost if we take h = 1
11

instead. Notice that,

ζ2

(
11

4

)
− 1 = 0.588089 . . . and sin4

(
4

11
π

)
= 0.684641 . . .. Take x0 = [T ] + 1 +

1

16

and xi = x0 +
i

4
, for any i ≥ 1. Then

cos
(
4πxi − π

4

)
= (−1)i.

Therefore, F (xi, 4) > 0 if i is even and F (xi, 4) < 0 if i is odd, i. e. F (t, 4) changes

sign for t = tk ∈ (xi, xi+1). This implies that ∆(t20) changes sign when

t0 ∈ (xi − hk, xi+1 + hk) =

(
xi − 4

11
, xi +

27

44

)
,

and so, ∆(t) changes sign in

(
x2

i −
8

11
xi +

16

121
, x2

i +
27

22
xi +

729

1936

)
. Take only the

xi such that i ≡ 0 mod 4, in this way, the intervals will be disjoint, since

(xi + 1)2 − 8

11
(xi + 1) +

16

121
= x2

i +
14

11
xi +

49

121

> x2
i +

27

22
xi +

729

1936

We proved that there are T +O(1) changes of sign in the interval (T 2, 2T 2). Therefore

X∆(T ) >
√

T + O(1).

Let c =
1

16π5
√

2
. Now, we prove the second part of the theorem take c1 suffi-

ciently small (it’s enough to take c1 < 0.09655c) and T sufficiently large such that

|g(t, 4)|+ c1

c
< δ, for all t ≥ T . Take α = sin4

(
4

11
π

)
, then

c
√

t

(
α cos

(
4πt− π

4

)
+

∑
2≤n≤N

τ(n)

n
11
4

sin4
(π

2

√
n
)

cos
(
4πt

√
n− π

4

)
+ g(t, 4)± c2

1

c

)

changes sign depending only on cos
(
4πt− π

4

)
as F (t, 4) above. Hence, ∆(t)± c1T

1
4

also changes signs in

(
x2

i −
8

11
xi +

16

121
, x2

i +
27

22
xi +

729

1936

)
,
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for any i. Therefore, for every 0 ≤ j ≤ √
T , exists t1, t2 ∈ [T + j

√
T , T + (j + 1)

√
T ]

such that ∆(t1) ≤ −c1T
1
4 and ∆(t2) ≥ c1T

1
4 . Since ∆(t) changes at most log t in

intervals of the form [n, n + 1) (see (5.1)), we have N∆(T ) >
√

T + O(1) 2
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143
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