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ABSTRACT
Let H(z) =3, ., ¢n) _ 7%3:. Motivated by a conjecture of P. Erdos, Y.-K. Lau

developed a new method and proved #{1 <n <T:Hn)H(n+1) <0} >T.
We consider arithmetic functions f(n) = Zd‘n%d whose summation can be
expressed as ), . f(n) = ax + P(log(z)) + E(z), where « is a real number, P(x)

is a polynomial and the error term E(x) is of the from

po == 3 (1) 40 (55).

for ¢(z) = = — [z] — 3, and where y(z), k(z) and b, satisfy some general conditions.
We generalize Lau’s method and prove results about the number of sign changes
for these error terms. We illustrate our results with a list of well known arithmetic
functions. In particular, we prove the following generalization of Lau’s result:

Let f(n) = > 4. Y% be a rational valued arithmetic function and suppose the
b, = Bz + O <log+w> and ) _ b < zlog” =z, for some
Breal, D >0and A> 6+ %, respectively. Let

= b, ) b, Blog2mx 7,
O‘:Zﬁ’ Y = lim <ZE—Blogx>,E(x):Zf(n)—ozx—i-T—l—Eb.

—00
n=1 n<lz n<lx

sequence b, satisfies > __

Then, except when o = 0, or B = 0 and « is rational, we have
#1<n<T:EMEn+1)<0}>Te#{1<n<T:aEn)<0}>T.
We also study the error term A(xz) =Y. _ 7(n) —xlogx — (2y — 1)x and prove

n<x

#{1<n<T:AMAM+1) <0} >VT+0(1).
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NOTATION

The following notation and conventions are used systematically in the text.

We use Landau’s notation f(z) = O(g(x)) and Vinogradov’s f(z) < g(z) to both
mean that |f(z)| < Cg(z), for some positive constant C, which may be absolute or
depend upon various parameters, in which case these may be indicated in subscript.
Also, g(z) > f(x) means f(z) < g(x) and we write f(x) =< g(z) to indicate that
f(z) < g(z) and g(x) < f(x) hold simultaneously. Moreover, f(z) = o(g(x)) means

f(z) f(x)

xlggom =0, and f(z) ~ g(x) means JL%OE =1

In the opposite direction, we write f(x) = Q,(g(x)) and f(z) = Q_(g(z)) to
respectively denote that f(z,) > Cg(z,) and f(z,) < —Cg(x,)) holds for infinitely
many x, such that x, — oo, with a certain positive constant C'. Also, we write
f(z) = Q4(g(x)) to indicate that both f(z) = Q. (g(x)) and f(z) = Q_(g(x)) hold,
and f(z) = Q(g(x)) means that |f(z)| = Q. (9(x)).

Given a finite set A, we write |A| and #(A) to both mean the cardinality of A.

The integer and fractional parts of the real number z are denoted by [z] and {z},
respectively. Also, ¥(z) = {z} — % We write e(z) to denote exp(2miz).

a | b means a divides b, and a = b mod m means m | (a — b). The greatest
common divisor and the least common multiple of m and n are denoted by (m,n)
and [m, n], respectively.

Throughout this work, s = o + it is a complex variable, ((s) is the Riemann
Zeta function, «y is the Euler constant, ¢(n) is the Euler totient function, p(n) is the

Mobius function, 7(n) is the number of positive divisors of n, and o(n) is the sum

of the positive divisors of n.
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CHAPTER 1

OVERVIEW

Formally, an arithmetic function is simply a sequence of real or complex values.
In many arithmetic functions studied in Number Theory, their individual values
fluctuate widely, however in many cases summation smooths out the fluctuation
and it may be possible to find an asymptotic expression for the summation function.
This asymptotic expansion consists of a main term, which includes an average order,
and of an oscillating error term. Various authors have studied the properties of
these error terms, namely its order of magnitude, (2-estimates, mean value results,
distributions and the number of sign changes. The object of our study concerns
arithmetic functions for which the error term of the summation function involves
(x) ={x} — % In this work, we will mention the results about error terms that
exist in the literature for particular examples, but we will be mainly interested in
finding the number of times the error term changes sign. There are two kinds of sign

changes that we will consider:

1. If, given z and y, we have f(z)f(y) < 0, then we have (at least) one sign

change (or change of sign) in the interval [z, y].

2. If, given an integer n, we have f(n)f(n + 1) < 0 then we have a sign change

on integers (or change of sign on integers) at n.



1.1 INTRODUCTION

The most famous example of sign changes of error terms is related to the function

7(x). The prime number theorem states
m(z) = Li(z) + E(z),

where E(z) = o(Li(x)), and J. E. Littlewood [53] proved that E(z) changes of
sign infinitely often (for a full proof, see [28]), which disproved an old belief that
m(z) < Li(x), for all x (shared, among others by C. F. Gauss [21] and B. Riemann

[75]). In fact, Littlewood proved that

B(x) = 0. <\/Elogloglogx) |

log x

In two papers [83, 84|, the first assuming the Riemann hypothesis and the other
assuming it is false, S. Skewes proved that there must exist z < 101010964 such that
m(xz) > Li(z). After improvements on this bound by R. S. Lehman [52] and H. J.
J. te Riele [92], the best result is now 1.39 x 10316, obtained by C. Bays and R. H.
Hudson [4]. J. Kaczorowski [43] has worked on the number of sign changes of E(x)
and proved that Xg(7T') > logT', where Xg(T') denote the number of sign changes

of E(z) in [1,T]. J. Kaczorowski [42, 43] also obtained similar results for the error

terms ZA(n) —x and Zlogp — .
n<lx p<x
The motivation for our work was a paper by Y.-K. Lau [50], where he proves
that the error term, H(x), given by
¢(n) 6
hASLA H
Z " 7 + H(x)

n<x

has a positive proportion of sign changes on integers. This result implies a conjecture

stated by P. Erdos in 1967:

The error term, R(x), of the summation of ¢(n), has a positive proportion

of changes of sign on integers



3

The main tool Lau used to prove his theorem, was that the error term H(x) can

be expressed as

- 3 () o)

n<—%
- log5 T

Throughout this work, we will be interested in arithmetic functions such that
the asymptotic expansion of their summations have error terms of the form
by, x 1
H(z) = —n%(:x) ~y (%) +0 <W)> , (1.1)
where y(z), k(z) and the sequence b, satisfy some general conditions. In chapter 2,
we obtain some general results for the number of sign changes for functions H (z) of
the form (1.1).
We will study two classes of arithmetic functions for which Lau’s result can

be generalized. In chapter 3, we consider arithmetic functions f(n), such that

b
f(n) = ~4 and the sequence b, satisfies
din
an =Bx+ O < xA ) for some B real and A > 1 (1.2)
<o log”™ x
and
> by < xlog”x, for D> 0. (1.3)

n<x

We prove that these two conditions imply that the error term of Z f(n) is of the
n<x

form (1.1). Notice that this class is closed for addition, i. e. if f(n) and g(n) are

members of the class then also is (f + g)(n).
ba

In chapter 4, we consider arithmetic functions f(n), such that f(n) = = the
dln
sequence b, satisfies condition (1.3) and
S = o). (14)
n=1
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for some [ real and a function ¢(s) with a Dirichlet series expansion absolutely
convergent for ¢ > 1 — A, for some A > 0. Again, these two conditions imply that

the error term of Z f(n) is of the form (1.1).
n<lz
Our main theorem is a generalization of Lau’s result for some members of our

first class of arithmetic functions.
b
Theorem 1.1. Let f(n) = Z Ed be a rational valued arithmetic function and sup-

dln
pose the sequence b, satisfies

an:Ba:+O<l xA ) and Zbﬁ<<:clogD:c,

n<x 0g T n<x

D = b,
for some B real, D > 0 and A > 6 + —, respectively. Let o = Z —
2 n=1 n
by, Blog2
= (Zg B Blogw) and  H(x) = ;f(n) —ar+ e 2

Then, except when o =0, or B =0 and « s rational, we have

H(x) has a positive proportion of changes of sign on integers if and only

if aH(x) has a positive proportion of negative values on integers.

Theorem 1.1 will be obtained in chapter 3 as a corollary of the more general

theorem:

Theorem 1.2. Assume the sequence b, satisfies the hypothesis of theorem 1.1 and

define o, v, and H as in theorem 1.1. If o # 0 then
1. aH(x) has a positive proportion of positive values on integers;

2. If H(z) has a positive proportion of changes of sign on integers then aH (x)

has a positive proportion of negative values on integers;



)
3. If aH(x) has a positive proportion of negative values on integers then H(x)
has a positive proportion of changes of sign on integers or a positive proportion

of zeros.
For our second class of arithmetic functions, we obtain the following result:

b
Theorem 1.3. Let f(n) = Z Ed be a arithmetic function and suppose the sequence
din
b, satisfies

gy
bt log? d R
Zn<<mog r an Zns ¢"(s)g(s)

n<lz n=1

for some (3 real, D > 0, and a function g(s) with a Dirichlet series expansion abso-
lutely convergent for o > 1— X, for some A > 0. Let a = (#(2)g(2) and H(x) be the

error term of the asymptotic expansion ofz f(n). If a # 0, we have

n<x

1. aH(x) has a positive proportion of positive values on integers;

2. If H(x) has a positive proportion of changes of sign on integers then aH (x)

has a positive proportion of negative values on integers;

3. If aH(z) has a positive proportion of negative values on integers then H(x)
has a positive proportion of changes of sign on integers or a positive proportion

of zeros.

In chapters 3 and 4, we also exhibit examples for which our theorems can be
applied as well as examples illustrating the necessity of some of our conditions.

In chapter 5, we study the error term A(z) of the summation of the divisor
function 7(n). We apply the methods developed in chapter 2, but, unfortunately, we
are not able to obtain a corresponding theorem about the number of sign changes

on integers of A(z). Using a different method, we prove

Theorem 1.4. Let NA(T) denote the number of sign changes on integers of A(t),
in the interval [T,2T). Then, for sufficiently large T, Na(T) > V'T. Moreover,
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there exists a constant ci, and ty,t € [T,T + \/T] such that A(t;) < —clT% and
A(tg) Z ClT%.

In the rest of this chapter, we give a review of the literature related to the error
terms of some particular examples and explain the techniques we are going to use

to prove the results in chapters 2, 3, 4 and 5.

1.2 AN ERDOS’S CONJECTURE

As we noticed before, the proof of Erdos’s conjecture about the sign changes on
integers of the error term associated to the summation of ¢(x) motivated our work.

In this section, we state some results about this summation function and about the

¢(n)
-
P. G. L. Dirichlet [13] proved that

summation of

> o(n) = %xQ + R(z), (1.5)

n<x
with R(z) = O(z'™), for any ¢ > 0, and F. Mertens [57] (see [29, theorem 330])
obtained R(z) = O(zlogx). A related problem which is easier to handle, is the study

of the error term

S. S. Pillai and S. D. Chowla [69] studied the relationship between R(x) and H(x)

and obtained
R(z)

T

:H(x)JrO( ! ) (1.6)

log* x

1
So, Mertens result implies that H(z) = O(logz). Let ¢(z) =z — [z] — 3 In 1932,
S. Chowla [7] proved that

Ha)=- Y %’%(%Mo( = > (1.7)

log®
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From this it is immediate to obtain H(z) = O(logx). The best O-result is still the

one obtained by A. Walfisz [104]':
2 4
H(z)=0 ((10g93)3 (log logx)3> : (1.8)
On the other hand, Pillai and Chowla [69] proved that
R(x) = Q(xlogloglog z), (1.9)
and so
H(z) = Q(logloglog x). (1.10)

We say that a real valued function g has N changes of sign in the interval [1,T]
if [1, 7] can be partitioned into N 4 1 consecutive subintervals I;, i = 0,1,..., N,

satisfying
(i) For each i € {0,1,..., N} and any x,y € I;, g(x)g(y) > 0;

(ii) For each i € {0,1,...,N — 1}, there are z; € I; and z;,41 € I;;1, such that

9(7:)g(xip1) <0

The number of sign changes of g in [1, 7] is denoted by X, (7).
By averaging H on certain adequately chosen arithmetical progressions An + B
(n < z) of very large moduli A = A(z), P. Erdoés and H. N. Shapiro [17] showed
that (1.10) implies
H(z) = Q4 (loglogloglog x) , (1.11)

which implies that H(x) changes sign infinitely often. In 1987, this result was

improved to

H(z)=Q4 <(log log x)%> ,

!The proof proposed by Saltykov [76] of H(z) = O ((log x)% (log log $)1+€> is erroneous
and once corrected only yields Walfisz result (see [68]).
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by H. L. Montgomery [60] and independently by Pétermann [66, 67]. The natural
question that follows is: How many changes of sign does H(x) have in the interval
1,777

In 1986, Y.-F. S. Pétermann [63] studied this problem: First, using the following
result of S. Chowla [7],

/THQ(t)dt—iTJrO 1 (1.12)
1 - 2n? log*T )’ '

Pétermann proved that

4 72

#{ngT:O<H(n)<%}2(§—E>T

6
and, since H(z) decreases linearly by — on [n,n + 1), obtained
7T

Xp(T) > 2 (1 - g—i) T+ o(T). (1.13)

Let D be the distribution function of H(x) which is defined by

D(u) = lim % 41 <n<T:Hn) <u)

T—o0

P. Erdos and H. N. Shapiro [18] proved that D is a well defined continuous function.
This result allowed Pétermann [63] to refine (1.13). His argument goes as follows:
First, 0 < H(n) < % if and only if there is a change of sign from positive to
negative on [n, n—+1). Also, between any two changes of sign from positive to negative,
there must be a change of sign from negative to positive (notice that a change of

sign from negative to positive always takes place at an integer). Hence
6
Xp(T) =2 D(ﬁ> —D(0) ) T+ o(T). (1.14)

Although H(x) changes signs often, the first values of H(m), with m an integer,
are all positive. J. J. Sylvester [90], misled by these initial values, conjectured that

R(n) > 0 (and so H(n) > 0), for all integers n (see [90]). Notice that his table in
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[89] goes until n = 1000, and it can be seen there that R(820) < 0. M. L. N. Sarma
[77] rediscovered this counterexample in 1931. As we will see shortly, H(n) and R(n)
have a positive proportion of negative values. So, it is natural to ask: How many
changes of sign on the integers of the interval [1,7T], does H(n) have?
We say that an arithmetic function f(z) has a sign change on integers at © = n,
if f(n)f(n+1) < 0. The number of sign changes on integers of f(x) on the interval
[1,T7] is defined as

Ny(T) = #{n < T,n integer : f(n)f(n+1) < 0}.
In a letter to J. Steinig in 1967, Erdds [15] conjectured that
Np(T)>T

where R(x) is defined in (1.5). Later, Erdés [16] proposed the weaker Ng(T') = Q(T).

Many authors studied Ny (7T'), instead, and obtained results about Ng(7') using (1.6).
¢(n)

Since, for any integer N, Z
n

n<N
then H(N) is also irrational. So H(N) # 0 for all positive integer N. Figure 1.1

) ) 6 . )
is a rational number and —2N is irrational
T

shows the number of sign changes on integers, for some initial values of T". From this
data it seems Ny (7T) ~ 2—7;0 For n < 107, each occurrence of H(n) < 0 is isolated
and occurs when n is even.

The first result about the number of changes of sign on integers of H(n) was
obtained by J. H. Proschan [71], who, using the result (1.11) of Erdés and Shapiro,

proved

Ny (T) > IL(T),
where, IL(T) is the smallest k£ such that the 4k-fold iterated logarithm of 7" (to a
sufficiently large base) is less than 2. Y.-F. S. Pétermann [65] improved Proschan’s

result, to

Ny (T) > loglogT,



T 100 2x10° 3x10° 4x10° 5x10° 10 2x10*
Ny(T) 2 8 12 18 24 40 76
NHT(T) ~ | 500 250 250 222 208 250 263

T 3x 10 4x10* 5x 10° 10° 2x10° 3x10° 4x 10°
Ny(T) 120 158 196 384 754 1116 1484
NT(T) ~ | 250 253 255 260 265 269 270

H

T 5x10° 105 2x10° 3x 105 4x105 5x 105 107
Ny(T) 1868 3794 7496 11108 14804 18500 36808
NHT(T) ~ | 268 264 267 270 270 270 272

Figure 1.1: Sign Changes on Integers of H(x)

10

still using the method of Erdds and Shapiro [17] and a refinement of the method

that Pillai and Chowla used to obtain (1.9). Later, Pétermann [64] obtained

Ny (T) > exp (C’(log T)

for a constant C' > 0, using the result

3
5

(loglogT)’%) :

/OT H(t)dt =0 <Texp (—C(logT)%(loglogT)*é)> :

obtained by D. Suryanarayana [88]. Pétermann’s idea was the following: Let

J(T) = exp (~C(log )

3
5

(loglog T)_%>

and suppose H (x) stays negative on [T, T + ¢T'f(T')], for a positive constant c. Since

6
H(z) decreases linearly by — on [n,n + 1), this implies that
m

T

_1

On the other hand, for 0 < ¢ < Jih)

T

T+cTf(T) 3¢
/ H(t)dt < _FTf(T) + O(1).

, we have by Suryanarayana’s result,

T+cTf(T)
/ H(t) dt = O(Tf(T)),



11
where the implied constant is independent of ¢. It follows that H (z) stays negative on
intervals of length at most a7'f(T") in (T, 2T"), for some constant a > 0, for sufficiently
large T'. In the same paper, Pétermann proved that D(u) # 0 and 0 < D(u) < 1
for any real u, which implies that there is a positive proportion of negative values of
H(n). Let D(0) = a # 0. Since H(n) # 0 then, for sufficiently large T, the interval

a
(T,2T) contains at least §T integers at which H(z) is negative. This implies that

ol
there are at least ———— changes of sign on integers of H(z) in the interval.

24T f(T)
The conjecture of Erdés was finally proved in 1999, by Y.-K. Lau [50]:
Theorem 1.5 (Lau, 1999). Ng(T) > T and Nyx(T) > T, where the implied con-

stants are absolute.

The starting point for our work is Lau’s result, so we will explain how he obtained

Ny (T) > T. Using (1.7) and the expansion of ¢(x) as a Fourier series,

o0

1 S sin(2
- - sin(2mhu) ”k“ (1.15)
T
k=1

valid for non integer x, Lau was able to prove

/TQT (/tt+hH(u) du>2 dt < Th, (1.16)

for any fixed 1 < h < log" T. Lau’s argument to prove (1.16), will be generalized
in sections 2.2, 2.3 and 2.4. In the next section, we describe the main points of the
argument and we also explain how it was generalized.

Formula (1.16) implies that there must be many cancellations in intervals [t, t+h],
for some t’s. So, Lau’s idea was to prove that we cannot have many large subintervals
of [T, 2T, at which H(z) doesn’t change sign on integers. As before, if H(z) is always

negative in the interval [t, ¢ + h], then

/ H(u)du < _i(h—m.
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Therefore, if n is an integer such that H(m) < 0 for all integer m in [n, n+ 2h], then

n+h t+h 2
/ (/ H(u) du> dt > h*.
n t

But, D(0) # 0, so there are ¢T" integers in the interval [T, 27, at which H(z) is

we have

negative. Divide the interval [T, 27'] in subintervals of length h, and take one in each
three of those subintervals that have some n for which H(n) < 0. This clever division

c
allowed Lau to obtain —T intervals, separated by a distance of at least 2h, each

3h
with H(z) being negative on at least one integer. Let M be the number of the above

intervals for which exists a n, with H(m) < 0 for all m in [n,n + 2h], and let I be

the set formed by those n’s. Then

Z/Mh (/tHhH(u) du>2 dt > Mh?.

nel”m

T
Hence, by (1.16), M < 7 If T is sufficiently large, we can take a fixed h suitably

large, such that there are S%T - M > 6ihT intervals of length 2h for which there

are integers n and m with H(n) < 0 and H(m) > 0. But, as was noticed before,
H(m) # 0, for any integer m, so Ny (T) > T. Since D(u) is continuous, we can
find a ¢ such that, at least half of the above intervals have integers n and m, with

H(n) < =6 and H(m) > 4. From (1.6), also Ng(T) > T.
a(n)

Another example that was considered in the literature is f(n) = ——=. If we write
n

o(n) w2  log2mx vy
F@)=2 — -~ %=+t —5 T3

n<x

then F(z) also have infinitely many changes of sign. Pétermann [63] used a mean

log 2
square result of A. Walfisz [103] for F'(x) — w, from which it can be deduced
that
L 5
F(t)dt = —T(1 1 1.1
| Poa= i+ o), (117)
to obtain

Xp(T) > g (1 _ 7) T +o(T). (1.18)
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Later, Pétermann [64] also obtained Np(T') > T%™. As Y.-K. Lau remarked, his
method can be applied to obtain Np(7') > T'. In figure 1.2, we present the initial

values of Ng(T'), for small values of T.

T 10°  2x10° 3x10° 4x10° 5x10° 107 2 x 10
No(T) | 6 20 34 50 64 146 328
o ~ | 1667 100 882 80 81 685 61

T 3x10* 4x10* 5x 104 10° 2%x10° 3x10° 4 x10°
Np(T 510 684 872 1762 3526 5258 7046
T y~ | 5838 58.5 57.3 56.8 56.7 57.1 56.8

T 5x10° 6x10° 7x10° 8x10° 9 x 10° 10°
Np(T) 8820 10600 12334 14098 15890 17686
T -~ | 56.7 96.6 96.8 596.7 26.6 96.5

Figure 1.2: Sign Changes on Integers of F'(x)

1.3 NEw RESULTS

In order to generalize Lau’s result we will study a class of arithmetic functions that

have a behavior similar to gb(n)’ i. e. we consider functions f(n) such that, writing
n
ba
f(n) - E?
dn

the sequence b,, satisfies conditions (1.2) and (1.3):

an:BerO( - )

A
e log” x

Zbi < xlog? z,

n<x

for some constants A > 1, D > 0 and real B, respectively.

When b, = p(n) or b, = 1, both conditions are satisfied, so the corresponding

on) o)

functions belong to our class of arithmetic functions.
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Condition (1.2) allow us to prove

where o and ~, are constants, defined by

oobn
QIZE

n=1
= lim Z b g
fo o T—00 n Ogm
n<x
and, given 0 < C' < A — 1,

i == 3 S0 (5) 0 (e ) 0 (e )

X
n< c

—logh x

In sections 2.2, 2.3 and 2.4, we use condition (1.3) and its consequences (see

lemma 2.2), to refine Lau’s method, and prove

2T t+h 2 s
/ </ H(u) du) dt < Thz,
T t

for any constant h < log®T, where 0 < ¢ < 1.

Here, we will outline the main topics of Lau’s argument and our generalization.

Define
Hy(w)=-Y_ %w (g) . (1.19)

d<N

Using Cauchy’s inequality, one obtains

( [ duf s [ )

Also, using Cauchy’s inequality and interchanging the integrals,

2 2

dt+2 ( /t T H () — Hy(w) du) dar.

2

/2T </tt+h (H(u) — Hy(w) du) dt <’ /mh (H (u) — Hy(u))® du

T T
So, the idea is to estimate

/2T (/tHh Hy(u) du)2 dt and /TQTM (H(u) — Hy(u))* du.

T
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Notice that

Hw) = Hy(w) = — 3 %¢(%)+0(1 . )+0(10gA;C1u).

og u
u
N<n< rveam

We begin the process of evaluating the integrals using the Fourier series (1.15) for

the function ¥(z). After some calculations, we obtain
2T+
/ (H(u) — Hy(w))® du
e AN AN SN
< = Z — ,;IH/n sin <27TE> sin (27TE> du

m,n=N-+1 (Tym;n)

oY A
lOgQC T (log T)Q(A*C*l) :

In section 2.3, we clearly define X and n(T',m,n), but here it’s enough to know that

T
X< T T and n(T,m,n) > T. After using a trigonometric identity and evaluating
0g

the integral, we are left with the estimation of three double sums

/ ()~ Hyw) d<r Y il s L

T m
N<mn<X k=1
kn=Im

= 1
EpIRDY Ki(kn 1 Im)

mn<X k=1

°° 1
* Z [bmbal ; El|kn — lm|

m,n<X )
kn#lm

T T
+0 [ —5o + oo |- (1:20)
log™ T (logT)™" "~

In the case studied by Y.-K. Lau, b, = u(n), and so, |b,,b,] is 0 or 1, for any integers

m and n. Lau uses lemma 7 and 8 of S. D. Chowla [7] - of which lemma 1.6 and 1.7
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below, are generalizations, respectively - to estimate the two last sums and directly
estimates the first, obtaining

2T+h ) T
/T () = Hy ) du €+
So, if h < min{N,log* T}, then

h? / o (H(u) — Hy(u))* du < Th.

T

In our general case, the estimation of the sums in (1.20) becomes much harder,
in particular the third sum. We use a variety of elementary techniques (e. g. Holder’s
inequality in the from |Zuzvz| < (Z uﬁ)%(z v )% and Cauchy’s inequality), as

j k
well as (1.3) in order to obtain the following results,

D
Lemma 1.6. Let £ =4+ 5 then

> [bmbal Z k”k <<X(logX)

m,n<X
kn;ﬁlm

Lemma 1.7. If D > 0 satisfies condition (1.3), then
bunbn X (log X)'*% .
2 | |Zklk+l < X (log X)
mn<X k=1

Lemma 1.8. For any 0 > 0

These results imply that

2T+h T T T
/T (H(u) — Hy(v))? du < ~5 T — +
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If A is large enough, we can take C' = E 4+ 1 and 2(A — C' — 1) = ¢ > 0. Therefore,
taking h < min (log®7T,log T') and N > log® T, we obtain
2T+h
h2/ (H(w) — Hy(u))? du < Th.
T

Now, we evaluate the first integral

I [ duf a

From (1.15) and a few calculations,

t+h
Hy(u)du

t
>  cOoS (27TM) — CcoS (2%%)

WZ b —

m<N k=1

w2t in{ () G )

Hence, as |z|2 = 2Z,

2

/2T /HhHN(u)du dt =
1 - () =D (=) -1)
G 2 bt 2 (hi?

LD ) ) () )

After evaluating the integral and using |e(t) — 1| < min(1, [¢]), we are left with
2

2T | pt+h

/ / Hy(u)du| dt

<<Z|bb|zkl +Z|bb|z WRET]
m,n<N k= 1 m,n<N k=1 n

k’n;ﬁlm

i ( kh) min (1, @) . (1.21)
m n
m,n<N k=1

+T Y |bb|z

kn= lm
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Notice that the first term on the left is bounded by the second term. In the case

by, = p(m), Lau used lemma 7 of [7], and obtained

> Z T }<<N310gN

mn<N kil=1
kn#hn
. m n k .
For the third term, Lau took d = (m,n), a = R 6= p and v = —, which allowed
o

him to transform the minimum factors into

o (1 )\
min — )
" d
By considering the cases d < hy and d > h7vy, Lau was able to bound the corre-

sponding term in (1.21) by Th. Hence if N is a sufficiently small power of T, say

T%, then
2

oT / rt+h
/ (/ Hy(u) du> dt < Th.
T t

For general sequences b,,, we, again, need to develop a new method to estimate
the sums of (1.21). As before, we generalize Lau’s technique, using (1.3) and the
lemmas above. We obtain a weaker result, but still sufficient for our purposes. With

1
N =T1 as above, we prove

2T t+h 2 .
/ (/ Hy(u) du) dt < Th2.
T t
2T t+h 2 s
/ (/ H(u) du) dt < Thz.
T t

Although this result is weaker than (1.16), it will still allow us to obtain a result

Hence

about the number of sign changes on integers for this class of functions. More exactly,

we prove

b
Theorem 1.2. Let f(n) = Z Ed be an arithmetic function and suppose the sequence
dn
b, satisfies both conditions

b, = Bz + O d b < zlogP z,
Z X <log 1‘) an Z" rlog T

n<x n<x
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r—00

D by,
for B real, D > 0 and A > 6 + 5 respectively. Let v, = lim < g — — Blog x) ,
n
n<x
Blog2mx

a= —cde(x):Zf(n)—ax—l— 5

n=1 n<z

+ % If a # 0, then

1. #{1 <n<T:aH(n) >0} > T.

2. if Ny(T)>T, then #{1 <n < T :aH(n) <0} > T;

3.4f #{1<n<T:aH(n)<0}>T, then Ny(T) > T or zug(T) > T.

The following example shows that we cannot eliminate zg (7)) > T from part 3:

Example 1.1. Consider the sequence by =0, by =4, b3 =6, by = b5 =0, bg = —24
and b, =0 forn >6. Thena =1, B=0 and v, = 0. We will show later, in section

3.4, that if b, = 0 forn > N then f(n) := Z%d is periodic (see proposition 1.11). In
this example, f(1) = f(5) = f(6) =0, f(2d)|n: f3) = f(4) =2 and f(n) has period
6. So, H(n) is also periodic with period 6 and H(1) = —1, H(2) = 0, H(3) = 1,
H(4)=2,H(5)=1and H(6) =0. Hence, #{1 <n < T :aH(n) <0} = %—FO(l),

Ng(T) =0 and zu(T) = g +0O(1).

Part 3 is not as good as we would desire, but if other assumptions about the
constants B and a are made, we can prove that zy(7') is very small. In order to do

that, we use a corollary of A. Baker’s result on algebraic numbers [2, theorem 1],

Proposition 1.9 (Baker, 1967). Let o, ..., ay, and Do, ..., 3, denote nonzero alge-
braic numbers. Suppose that kK > n + 1, and let d and H denote, respectively, the

mazimum of the degrees and heights of By, ..., Bn. Then

|Bo + Brlog g + -+ + B log o, | > Ce~ (g H)

for some effectively computable number C' > 0.
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Hence, if aq,...,a, and By,..., 3, are nonzero algebraic numbers, then

60+5110g051 + - +ﬁnlogan 7& 0
From this we obtain

b
Theorem 1.10. Let f(n) = ng be a rational valued arithmetic function and

dn
. x
suppose the sequence b, satisfies an = Bx + O( v ) , for some real B and
na log”™ x
A > 1. Let r be a real number and
Blog?2
H(x) =Y f(n) o+ ==0= + 2.

n<x

by — bn
where v, = lim ( E — — Blog x) and o = E — - Then
T—00 n n

n<lx n=1

1. If B =0 and « is irrational then #{n < T,n integer: H(n) =r} < 1;
2. If B is a nonzero algebraic number then #{n < T,n integer: H(n) =r} < 2;

3. If B is transcendental then there exists a constant C' that depends on r and on

the function f(n), such that

H{n < T,n integer: H(n) =r} < (logT)°.

Using theorem 1.10 and parts 2 and 3 of theorem 1.2, we obtain theorem 1.1.

In the next few sections of chapter 3 we study examples of arithmetic functions
for which our theorems can be applied. In section 3.4, we consider sequences b,
with only a finite number of nonzero terms. These sequences, trivially, satisfy both

conditions (1.2) and (1.3). We prove

Proposition 1.11. Let b, be a sequence of real numbers such that b, =0 forn > N,

b
for some integer N. Then the sequence f(n) = Z Ed 15 periodic with period, say q,
din
dividing [1,2,...,N] and f(i) = f((i,q)), for any integer i.
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Reciprocally, if there exists q for which f(i) = f((i,q)), for all integers i, then
b, = 0 whenever n t q.

1
Moreover, using the above notation, we have o = — Z f(n) and v = f(q).
n<q

n
In section 3.5, we study the function ——. Since

¢(n)
n__ Z 12 (d)
n) " 2= old)
nu?(n) . : :
then b, = o) So, both conditions (1.2) and (1.3) are valid for this sequence
n
(and we can take A as large as we want). We have
3 1 log 2m + v + logp
Z C( )SE— 8T 2 +H($)

and we can apply the theorems above to the error term H(z), so that Ny(T) > T
if and only if #{1<n<T:H(n)<0}>T.
In 1900, E. Landau [49] proved that

(2)¢(3) log p log x
qu 2(6) <log:x+7 Z p+1>_0( . ),

n<x

which was improved by R. Sitaramachandrarao [80] in 1982:

Ey(z) =0 <M> .

Later, Sitaramachandrarao [81, Lemma 2.4] proved that

where

Clearly, we also have
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Therefore, we can apply our results to Fy(x) and obtain Ng,(T) > T if and only if
#{1<n<T:aH(n)<—-0}>T, for some § > 0.

One of the conditions for theorem 1.2 is that o # 0. In section 3.6, we prove the

following result:

Proposition 1.12. If b, is a completely multiplicative sequence satisfying condition

(1.3), then o # 0.

We end that section with a couple of examples of multiplicative and strongly
multiplicative sequences for which o = 0.

In section 3.7, we use the method developed in section 2.3 in order to obtain the
mean square of H(x). We prove the following theorem:
Theorem 1.13. Let f(n) = Z %i be an arithmetic function and suppose the

din
sequence b,, satisfies both conditions

an:Bx—i—O(l xA > and Zbi<<:vlogD93,

n<x og n<x
3D | — bn
for some B real, D > 0 and A > 7+ ——, respectively. Let a = Z —5
4 —~n
_ b,, Blog2mx
=1 — — Bl d H(x)= — —_— 4+ —.
= lim (; . og x) an () ; f(n) —az+ 5 + 5
Let g(n) = Zbd. Then,
dln
T > 2
x g°(n) x
H*(u)du = = O
frrmaes g3 0 ().
where L > 0.

The methods developed to prove theorem 1.2, also allow us to obtain Xy (7)) > T.
This is done in section 3.8. But to generalize (1.14), we would need to prove the
existence of distribution functions associated with the error terms H. This problem

was not studied in our work.
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1.4 METHODS OF COMPLEX ANALYSIS

For many sequences b,, satisfying conditions (1.2) and (1.3), the corresponding arith-

b
metic functions f(n) = Z Ed don’t have interesting expressions. For example,
dln

1. b, = A(n), where A is the Von Mangoldt’s function, i. e.

logp, if n =p” for some v > 1

0, otherwise

1, if n is a prime number

b, =
0, otherwise

3. b, = (=1)%™ 1. e. b, is the Liouville’s function.

On the other hand, the sequences b,, corresponding to the arithmetic functions

(n)

n)

n a(n)

a(n)’ ¢(n)’

() G e

for any real r # 0, don’t have simple expressions, and, in general, don’t satisfy

ST

2

or, more generally,

condition (1.2). In order to obtain a refinement of theorem 1.2 that can be applied
to the above functions, we use methods of complex analysis and Dirichlet series
expansions. First, we state some results about their summation functions. We start
with the Euler function. Following U. Balakrishnan and Y.-F. S. Pétermann [3], we
will write, for real r # 0,

[—7]

M\" ax+ Y ap(logx)™ %+ H(x,r), ifr <0
> () { s 1

a,x + H(x,r) ifr>0

n<x
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where «, and ag are constants. S. D. Chowla [6], proved that H(z,r) = O(log" z)

T}

p

and

for any positive integer r. In 1969, 1. I. II’'yasov [36] generalized Walfisz’s estimate
(1.8), obtaining

H(z,r)=0 <(10g ZB)% (log log ,CE)%) )
for 0 < r < 1. Ten years later, A. Sivaramasarma [82] obtained

H(z,r)=0 <(10g x)r_% (loglog I>%> ,

for r > 1. The best result to date about the order of H(z,r) is due to U. Balakrishnan

and Y.-F. S. Pétermann [3, theorem 4]. They proved that

H(x,r)=0 <(10gaz)¥ (loglogx)%> ,

for every real r # 0.

Now, we consider the sum of divisors function. We have

Brx + E(x,71), ifr<0

> (#) = ] (1.24)

n<z Brx + Z br(logz) " + E(z,r), ifr >0
k=0

where 3, and b are constants.
Instead of the error term E(x,2), R. A. Smith [85], considered a related function,

say F'(x), that can be expressed as F(z) = E(x,2) 4+ C'logz and proved that

F(z) =0 (<1ogx)%) .

Balakrishnan and Pétermann [3] also considered the error terms E(x,r) and obtained

E(z,r)=0 <(log :E)@ (loglog :Jc)4l3r‘> :
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In the same paper, they considered (2-estimates for both H(z,r) and E(z,r) and

proved the following results

(loglog x) \H) if r <0
H(z,r)=

(loglog x) Tl) ifr>20

(loglog x) |r|) ifr>0
E(z,r) = B

and
‘ .
( loglog z) 2 > ifr <0
Using the asymptotic expansions (1.23) and (1.24), Balakrishnan and Pétermann

obtained similar expressions for the sums of ¢"(n) and ¢"(n), for r > 0:

Ay

S0 n) = a4 Glar)

n<x

and
7]

S0 n) = e Y elogay ™ 4 Fia ),
n<zx k=0

where ¢, are constants. They also proved that G(x,r) = «"H(z,7)(1 + o(1)), and
F(z,r) =a2"E(x,r)(1 + o(1)). Therefore, O- and Q-results for G(x,r) and F(z,r)
can be derived from the corresponding results for H(z,r) and E(z, 7).

The arithmetic functions in (1.22) have Dirichlet series expansions of the form
¢(s)CP(s+1)g(s+ 1), where 3 only depends on r, and g(s) is absolutely convergent
for 0 > 1 — A, for some A > 0.

We use the following result to obtain theorem 1.3.

Proposition 1.14 (Balakrishnan & Pétermann [3], 1996). Let f(n) be a complex

valued arithmetic function satisfying

(5)CP(s 4+ 1)g(s + 1), (1.25)

for a complex number 3, and g(s) having a Dirichlet series expansion
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which is absolutely convergent in the half plane o > 1 — X for some A > 0. Let 3y be

the real part of 3. If
b
B — n
o) =32

then there is a real number b, 0 < b < 1/2, and constants B;, such that

C@o@e— 3 0 (L) +ol) i o < 0
n<y(z)
> fn) =
n<lz [Bo]
C@o@)+ Y Bllogn) 7 — 3 (D) wor), i >0,
\ j=0 n<y(2)

where y(z) = zexp (—(log z)?).

We are only interested in the cases when f(n) and g are real. For the proof of
this theorem, Balakrishnan and Pétermann used Hankel’s and Perron’s formulee, and
bounds on the zeta function in the critical strip. Below, we will explain the easier
case when (3 is an integer, using the residue theorem instead of Hankel’s.

Notice that, in proposition 1.14,

S I oy

n=1

b
which implies that f(n) = Z Ed. Reciprocally, we prove

dln

b
Lemma 1.15. Given a sequence of real numbers b, let f(n) = Z Ed' Then

din
fn) by by, 1
n<z n<x n<x m>%
for any s = o + it with 0 > 1. Define
- f(n) — bn
F(s) = d B = —
() ; o an () 2
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whenever the series in question exist. If the sequence b, satisfies the condition (1.3),

1. €.

Zbi < zlog” x,

n<lz

for D >0, then

foro > 1.

Now, we will explain how to get proposition 1.14 when [ is an integer. Let

d «
G(s) = —
n=1 n

be a Dirichlet series with abscissa of absolute convergence o,. Perron’s effective
formula (see [91, theorem II 2.2]) states,
1 c+ix s
S = G(s) = ds + O(z*™),
s

n<x 2 c—iz

where z > 1 and ¢ > max(0, 0,). The integral on the right can be computed if we
complete the segment from ¢ —ix to ¢+ ix into a closed contour and use the residue
theorem of complex analysis.

b
Let f(n) = Z Ed be a sequence of real numbers satisfying (1.25). Then
dln

SEOESSEE

n<x n<x
=) Gt (s)
n<lx n<lx n<lx
Using Perron’s formula, we evaluate Z b—" and Z b—" We have
© 7 n<x n n<x TLQ .
X bn
d o =((s+1g(s+1),

ns
n=1
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where ¢g(s) is absolutely convergent in the half plane 0 > 1 — X for some positive A.

So
b 1 etz xs
o B 1 N=d O c—1
D =5 ) Sl Dl + )T ds + 0@,
n<lz
for any 0 < ¢ < 1. It is known, that {(s+1) has no zero in the region o > —IICW,
0g

1
for any € < 3 (see [38, Chapter 6])2. There is also no zero of ((s + 1) in the region
|s| <1 (see [91, section II 5.2]).
1

Take 0 < n < min(\, 1), € < 3 and
8 $S
G(s) =C"(s+1)g(s + 1)?
In order to form a closed contour, say L, take the vertical line connecting the

points ¢ — iz and ¢ + iz, then join horizontally the points ¢ + ¢z and ¢ — ix with
(&1

~log'~(Jt)
that, inside L, ((s 4+ 1) has no zero and has one simple pole at s = 0. Moreover,

the curve o0 = , and join vertically the point —n with that curve. Notice
g(s + 1) is absolutely convergent inside L. Therefore, G(s) has a pole at s = 0 of
order §+ 1, if 8 > 0, and is analytic, if 5 < 0. By the residue theorem
L™ G ds = a(0) - o 6(5)d
— s)ds = ®(x) — — s)ds
2mi c—ix 2mi L\[c—iz,c+ix] ,

where, when (3 > 0, ®(x) is the residue of G(s) at s = 0, and, when 5 < 0, ®(z) = 0.

1
Since, close to s = 0, we have ((s + 1) = — 4+ v+ O(]s|), then
s

B
O(z) = Z Ajlog’ z,
=0

2N. M. Korobov [48] and 1. M. Vinogradov [99] obtained independently an upper bound
for ((s) in a region just to the left of ¢ = 1 which implies that ((s) has no zero in the
C

region o >1— — T
log3 [t[(log log [¢[)3
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for 5 > 0, where A; are computable constants. Since ((s + 1) = O(log|t|), inside L
(see [91, theorem II 3.7]), then

1
— G(s)ds =0 <a: rre log :B) + 0z

2mi L\ [c—iz,ctix]

= O (exp(—cq log° 7))

Therefore
O (exp(—colog® x)), if <0
Z bn _ B '
n<e ! ZAj log’ © + O (exp(—cglog®x)), if >0
=0

b
Now, we evaluate g —Z We have
n
n<zx

b 1 c+ix
== Bls+2 9" ds+ 0
> 3 | Clet2gls +2)7ds+ 0,

for any 0 < ¢ < 1. Take the vertical line [c — iz, ¢ + iz], connect horizontally its end
(&1

log'~“(|¢])”

to the same curve to form a closed contour L. Inside Ly, ¢°(s 4+ 2)g(s + 2)3:_ has a
s

points to the curve 0 = —1 — and connect vertically the point —1 — 7

simple pole at s = 0 and a pole of order (3, if 3 > 1, at the point s = —1. Therefore,

b ¢?(2)9(2) + O (exp(—cz log* z)), if §<1
> +1§0bm+mmemw@>ﬁmw
n<z - ;108 p 2 108 )

Jj=
After joining everything together, we obtain

( ¢?(2)g(2)x — Z %n¢ (%) + O (exp(—calogtz)), if B <0

n<x

B
Z fln ¢?(2)g(2)z + Z Djlog’ x — Z b—nw (E>

n n
n<x =0 n<z

+0 (exp(—colog z)), if 3>0
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bn :
Now, we just need to estimate Z — (—) Here, we follow Balakrishnan and

n
y<n<z

Pétermann [3, Lemma 2.5]), who proved that

) o(1), it g <1

n (T

O S

yanza > Ej(logz)’ ' +o(1), if B> 1
=0

and so proposition 1.14 is obtained, for any integer (3.

Define
> fn) =292, if 8 <0
H@)={ " 4] |
Zf(n) —(P(2)g(2)x — ZBj(logx)ﬁ’J, if >0

From proposition 1.14, there is an increasing function k(z), with

lim k(z) = oo,

Tr—00

such that
Ha) =— 3 2y (%) +o <L> |
n<y(z)
The methods developed in chapter 2, allow us to obtain

2

2T / rt+h ,
/ (/ H(u) du) dt < Thz2,
T ¢

for any constant h < min(log T, k?(T)), and using this result we prove theorem 1.3,

which we state here again:

b
Theorem 1.3. Let f(n) = Z Ed be a arithmetic function and suppose the sequence

din
b, satisfies conditions (1.3) and (1.4), i. e.

o0 b
4 D n_ B
g b, < xlog”z and E ~ ¢7(s)g(s)

n<x n=1



31
for some (3 real, D > 0, and a function g(s) with a Dirichlet series expansion abso-

lutely convergent for o > 1 — X, for some XA > 0. Let a = (#(2)g(2) and

> f(n)—ax, if <0
H)={ " g

Zf(n) —ar — ZBj(loga:)ﬁ’j, if >0

n<lx 7=0

where the constants B; are defined by proposition 1.14. If o # 0 then
1. #{1 <n<T:aH(n)>0}>1T;
2. if Ny(T)>T, then #{1 <n <T:aH(n) <0} > T;
3.4f #{1<n<T:aH(n)<0}>T, then Ny(T)>T or zu(T) > T.

We end chapter 4 proving that the list of examples in (1.22) satisfy the conditions

of theorem 1.3.

1.5 THE DIVISOR FUNCTION T7(n)

Let 7(n) denote the number of divisors of n. It was proved by P. G. L. Dirichlet [12]
that
D(x) := Z 7(n) =xlogx + (2y — 1)z + A(z), (1.26)

n<x

where

Ar)=—-23 ¢ (%) +0(1)
d<\/x

So A(x) = O(y/x). The Dirichlet’s divisor problem consists of determining as
precisely as possible the maximum order of A(z). G. H. Hardy conjectured that
A(z) = O(x1%€), for any ¢ > 0. Using only elementary methods, G. F. Voronoi [100]
proved that A(z) = O <x§ log :1:)
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In 1904, Voronoi [101] obtained the following explicit formula

Aw) =14 20 Z% os(dm/z — )

nln

327T2\/_.Z‘ iz 3 sm 47T\/n_——)+0( %), (1.27)

n=1

where §(z) = 7(x) if x is an integer and 0 otherwise. Next, we will give an idea of
how a truncated version of the above formula can be obtained (see [94, chapter XII]
for details).

The generating function of 7(n) is ¢*(s), i.

®

for o > 1. Let

be a Dirichlet series with abscissa of convergence o.. Then, Perron’s formula (see

91, theorem I1.2.1]) states,

1 c+100 s

F(s)—
Zan =5 (s) . ds,

n<z C—100

where z > 0, a, = 0 if x is not integer and ¢ > max(0, o..). Therefore, when z is not

an integer,

Im:ifmﬂ#%,

21 Joino S

for ¢ > 1. Considering the integral round the rectangle ¢ — iT', ¢ + T, —a + T,
—a — i1, where a > 0, we find a double pole at s = 1 and a simple pole at s = 0.

1
The residue at s = 0 is ¢*(0) = ~. Since, close to s = 1, we have,

((5) =~ +7+Olls — 1)

Then the residue at s = 1 is xlogz + (27 — 1)z. Moreover, using bounds on ((s),

c+iT s 2a c
2L ds =0 (L v
/_a+iTC (5)8 dsO(xa)—i-O(T).

can be proved that
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A similar result holds for the integral of CQ(s)x—, when s goes from —a—1T to c—1T.
5

Therefore,

1 —a+1iT s

D(x) ::Z (n )_a;logx+(2fy—1)x+1+— C*(s)—ds

4 2w J_,ir S

wo(5) o (%)

Using (1.26) and the functional equation of ((s), we obtain

I T A P T2 z°
sw=grgs [, c@Tero(F)+o(7)

| R z° T2 ¢
_Z+_' X(s)((l—s);ds—i—O(xa)%—O(?)

n<x

where

x(s) = 257571 sin(%sw)f‘(l —5).

After making the change of variable w = 1 — s, and using the well known relation
I'(w) = (w—1)T'(w—1), one can apply Bessel functions (see [93, (7.9.8) and (7.9.11)])

and obtain

A(z)

suw

éi - (Kl (4my/nz) + = 1/1(47r\/%)) (Z;G)+o<xc)

T

»-lkl>—‘

1\3

Take N < x, T = V/Nz,a =¢ > 0 and ¢ = 1 4 €. Using the asymptotic formulee

for Bessel functions (see [105]), a truncated form of (1.27) is obtained

cos (4%% - Z) +0 (xlyN_%> . (1.28)

§
n<n T*
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Define « as the least number such that A(z) < x**<, for every positive e. The

following bounds for o have been obtained:

3
% = 0.330000... van der Corput [97]
2
8—; = 0.329268... van der Corput [98]
15 : :
7o = 0:326086... Chih [5], Richert [74
12
37— 0.324324... Kolesnik [44]
346
1067 — 0.324273... Kolesnik [45]
35
108 — 0.324074... Kolesnik [46]
139 .
199 = 0.324009... Kolesnik [47]
7
55 0.318181... Iwaniec and Mozzochi [40], Heath-Brown and Huxley [32]
23
w5 = 0.315068...M. N. Huxley [34]

131
Recently, M. N. Huxley [35] obtained the bound % = 0.314904. Hence
A(x) =0 (x%é“) .
On the other hand, Hardy [25] proved® that

Ale) = QL (mi (log a:)% log log x) (1.29)

Q,(:c)

The Q_-result for A(x) has been gradually improved, culminating in the work of K.

NI

Corradi and I. Katai [9], who, in 1967, showed that for a positive constant c,

A(w) = - (i exp (e logloga) ! (ogloglog ) ) )

3Hardy stated
Q+ X
Ax) =
e

but the {2_-result cannot be obtained as it is by Hardy’s method (see [29, pp. 326])

PN NI

(log x)i loglog
(log :/c)i loglogz ),
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The first improvement on the €2, -result had to wait until 1981, when J. L. Hafner

[22] obtained

Ax) =Qy ( i (log x)% (loglog ac)i Bz ) oxp (—c(log log log x)%>>

Recently, K. Soundararajan [86], refined Hafner’s argument and obtained

5

Azx) =Q ( %(log x)%(log log m)%(%_l)(log log log x)_ﬁ) . (1.30)

Starting with Voronoi’s formula, we may model Wx_i\/iA(x) by a random trigono-

metric series Z T(z) cos(X,), where the X,, are independent random variables uni-
n=1 n4

formly distributed on [0, 27]|. Using estimates, obtained by H. L. Montgomery and

A. M. Odlyzko [61], for the probability of large values attained by this trigono-
metric series, Soundararajan also provided a heuristic justification that the Q-result
in (1.30) is the best possible up to (loglogz)°™.

These results seem to support Hardy’s conjecture, which is believed to be
extremely difficult. Therefore, it is natural to consider the mean values of A(x).

In [101], Voronofi also proved

/2T A(x)dx = éllT + (2%2\/_> gz n)n 1 sin <4wx/n_ - %)

647r3 T3 i n)n ~i cos (47r\/n_— %) +O(1). (1.31)

Notice that

cos (4mz/n — ) O(z'*N~2),

Z

<N”

3
1

which is easier to work with. Starting with this formula, a variation of (1.16) for the

function A(z) is obtained

Theorem 1.16. Let € > 0. For T sufficiently large and r < T%*QE,

2
2T 7 3(4(§) 3 3 1
2 _ 2 2 Tt+2e,.5—2¢ 5+2¢,.3—4e
/T (/t T A(u)du) L +O<T r >+O(T r )

VT
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From this, we were unable to get a new version of theorem 1.2. Going a step

further, we prove

Theorem 1.17. Let e > 0. Let T sufficiently large and r, X < T2 Fort € [T, 2T

and any h > 0, define
t+h
Ay = / A(u?) du.
t—h

Then,

7 2 3¢9 3 o~ T(n)
A v + Ay o ) dt = Ay e — 7 Ar X
/T ( t, I + t+X,ﬁ> 7T2C(3) r°+ 52 T ; . COS( ™ \/E)

+ O (T%+26T3746> 4 O(Tlfe) 4 O (T%+257a%725>

3
2

But, again, this result was not enough to prove that there are many cancellations
in small intervals, which would allow us to obtain results about the number of sign
changes.

Higher power moments of A(z) were considered by previous authors. The mean

of A?(x) was obtained by H. Crdmer [10], in 1922,

r ) o C4(%) %
/2 M) dt = 2T+ R(T), (1.32)

where R(T) = O <T %Jre). The error term above have been improved to O(T log® T)
by K. C. Tong [95] and to O(Tlog*T) by E. Preissmann [70]. As Heath-Brown
mentioned (For details, see [94, pag. 327]), a result of the form R(T) < F(T)
implies A(T) < (F(T)logT)3, but Y.-K. Lau and K.-M. Tsang [51] proved

T
1
/ R(t)dt = —ﬁ:ﬂ log”T + O (T%logT)
9 T
which implies R(T) = Q_(T log®T).
Using Cramer’s result (1.32) and Voronoi’s formula (1.31), we were able to prove

that there is a positive proportion of negative values for A(z), more exactly
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Theorem 1.18. There are positive constants c1,co and c3, such that, for T suffi-
ciently large,
#{1 <n<T: 617—1i < A(n) < CQT%} > 3T
and

#{1<n<T: —e, T < A(n) < —clTi} > csT.

D. R. Heath-Brown and K. Tsang had already proved that there is a positive

proportion of large values of |A(z)]:

Theorem (Heath-Brown & Tsang [33], 1994). Let 6 > 0 be any given small quantity.
Then for any T > Ty(9), there are at least 10V T log® T' disjoint intervals of length
20V Tlog™> T in [T,2T), such that |A(z)| > (c5 — 6)x1 whenever x lies in any of

these subintervals. The positive constants cq1,co and c3 can be computable.

A few years earlier, K.-M. Tsang obtained asymptotic expansions for the third

and fourth moments of A(z):

Theorem (Tsang [96], 1992).

g 3¢y 1 ar
/2A3(t)dt: a T4+O(T28+),

2873
T 362 45 4 o
/2 AYt)dt = 647T4T2 +0 (Tzs* ) 7
where

=) (afla+0) %Z % (@) (R (a9

a,B=1 =1

_ S 7(k)T()T(m)7(n)

2= . 121 (k‘lmn)%

VR l= i/

For larger powers of A(z), A. Ivié¢ [37], showed that

T
/ A dt < T,
2



38

for any 0 < A < % and any ¢ > 0. In an important paper, D. R. Heath-Brown
[31] prove the existence of a distribution function for 271 A(z) and extended Ivié’s
result for A < ?, using the estimate of Iwaniec and Mozzochi [40] for A(z). Using
Huxley’s estimate, Ivi¢’s result is easily extended to A < %

The question about the number of sign changes was also considered for this
function. In 1969, J. Steinig [87], proved a general result about the number of sign
changes of error terms associated with the coefficients of Dirichlet series that satisfy
a certain functional equation. In particular, Steinig obtained X (T) > 4VT — A,
where A is a constant independent of T'. By a different method, A. Ivi¢ and H. J. J.
te Riele [39] proved that A(x) changes sign in [z, z + ¢y/z], for x sufficiently large.

Later, D. R. Heath-Brown and K.-M. Tsang obtained

Theorem (Heath-Brown & Tsang [33], 1994). For any real-valued function f(t)
satisfying |f(t)] < citt, the function A(t) + f(t) changes sign at least once in the
interval [T, T 4 coV/T), for large T. In particular, there exists ty,ty € [T, T 4 ¢iV/T]
such that A(ty) < —Cgt% and A(ty) > cgté

Since A(z) varies at most logz in the interval [n,z|, where n = [z], this result
implies that Ny (T) > VT.
In order to obtain an explicit lower bound for the number of sign changes on

integers of A(x), we prove that,

trp+h te_1+h to+h t1+h
/ / / / A2)dtg dty --- dty_p At
t tk_1—h

2kﬂ.k+1\/_\/_ ;

E sin® (4mhy/n) cos (47rtk\/_ - —) + O (h*'t)

34
n4
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7(n)

—, the sum on
n

for any € > 0, k,h > 1 and t,, sufficiently large. Since (*(s) = Z

n=1

the right is smaller than ¢? (% + g) We choose k and h such that

3 k
in® (47h) > P (= + 5 ) -1
sin® (4wh) > ¢ 4—1-2

For these values of k and h, the multiple integrations of A(x?) changes sign whenever

the first term of the sum changes sign. From this we obtain theorem 1.4:

Theorem 1.4. Let Nao(T) be the number of sign changes on integers of A(t), for
T <t <2T. Then, for sufficiently large T', NA(T) > VT. Moreover, there exists a

constant ¢1, and t1,ty € [T,T + \/T] such that A(ty) < —clT% and A(ty) > clTi.

1.6 MORE FUNCTIONS

Let r(n) denote the number of representations of n as the sum of two squares. It is

well known that

r(n) =4 x(n), (1.33)

dn

where x(n) is the non principal of modulus 4, i. e.

0 if 2|n
x(n) = 1 if n=1 mod4

—1 if n=—-1 mod4

Using formula (1.33) or by counting the number of lattice points in a circle, it can

be proved that

Z r(n) =tz + P(x),

n<zx

where P(x) = O(y/x) (see, for example, [29]). The above estimation of P(x) was
obtained by C. F. Gauss [20], and Sierpinski [79] obtained P(z) = O(z3). In [25],
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G. H. Hardy investigated the function A(x) together with the function P(x) and

obtained the (2-result
P() = . (« (log)?)
In the same journal, Hardy [26] obtained average results for A(z) and P(x). Since

then, many results concerning A(x) have been associated with similar results for

P(z) (e. g. [22, 33, 34, 35, 86, 96]). In particular,
P(z) =0 <$fﬁé+e)

and

5

P(z) =Q ( i(log x)i(log log x)%(ﬁ_l)(log loglog x)_§> :
The conclusions of theorem 1.18 remain valid if we replace A(z) by P(x). This can

be proved using the result of G. H. Hardy and E. Landau [27]

and the result of H. Crdmer [10]

/2T wzz< )T§+O<T;’;+e>

Notice that the above implies that the mean value of P(z) is 0 while the mean value

1
of A(z) is 7 by Voronoi’s result.

There is also a Voronoi type formula for P(x) (see [38, equation (13.74)])

ﬁlﬁﬁw

Zr(n cos(2my/nx + — ) O (z) .

n

Mw

n=1

Using this formula, we can obtain
Theorem. Let Np(T) denote the number of sign changes on integers of P(t), for
T <t < 2T. Then, for sufficiently large T', Np(T') > VT. Moreover, there exists

positive constants ¢; and ¢z, and ty,ty € [T, T + CQ\/T] such that P(t;) < —clTi and

P(tg) Z ClTi.
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For any integer n, let 7,(n) be the number of ways of expressing n as a product
of k factors. Consider the error term
Ag(z) = Zm(n) — xPy(log ),
n<x

where Py is a polynomial of degree k — 1. From [94, equation (12.4.6)], we have

L 1 m3(n) 1
Aj(t) = —=t3 cos<67rnt3>+OT€,
)= 5t 3 2 e (ontan)t) +o(r)
for any € > 0, T sufficiently large and T' < t < 2T'. Since (*(s) = E 7—3(?), for s > 1,

n=1

we can use the method developed to prove theorem 1.4 and obtain Na,(T') > T's.

The reader may have noticed that many of the papers mentioned above refer to
the behavior of the zeta function on the critical line or to the function E(7). This
function E(T") denotes the error term in the asymptotic formula for the mean square

of the Riemann zeta-function on the critical line, i. e.

C<%+it>

It have been proved that, if E(t) < ¢ then |((3 +it)| < t2 (see [94, Notes for

2 T
dt —Tlog [ — ) = (2v = 1T
og(%) (2y-1)

Chapter 7]). In 1949, F. V. Atkinson [1] found a Voronoi’s type formula for E(7T)

which, for N < T, may be written as
E(T) = 2y(T) + Zo(T) + O(log? T),

where
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andN’:z E_(Nz NT
2

27r+ 4

1
z
1 + 2—> . The functions e(T,n), f(T,n) and g(T,n) are
T
defined below

e(T,n) = (1+%)_Z

-1
9T\ 2 - (7m>é
— | arcsinh ( —
™ 2T

f(T,n) = 2Tarcsinh (%)

T s
T.n)=TI1 — | =T+ —.
o) = Tog (51 ) =T+

D. R. Heath-Brown [30] used the Voronoi’s type formula above to prove the following

theorem:

Theorem.

/TE2(t) dt = ( 2 f: 72(n)> T3 +0 (Tg 10g5T> .
2 3v2r &= i

As for A(z), the error term above has been improved to O(Tlog’T) by T.
Meurman [59]. J. L. Hafner and A. Ivi¢ [23] proved that the average of E(T) is

T

Theorem.

/TE(T)olt—er+l 20 ii(—l)”msin P LA +0(T%10 T)
9 B 2\ 7 o ni 2 4 &

With the two results above we can prove a version of theorem 1.18 for E(t).

In the paper mentioned above Hafner and Ivié obtained also Q-results for E(T):

E(t) = Q4 {(T log T)i(log logT) e exp <—clx/log log log T)}
loglog T
E(t)=Q_ Tiexp | e (loglog 7 5
(logloglogT')1

Many authors (e.g. [55, 62, 58]) found analogues of Atkinson’s formula to other

, 1 3 o
error terms, e. g. error terms of mean square of ((o + it), for 3 <o < 1 or similar
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error terms associated with Dirichlet L-functions. With these formulas, they obtained
O-, Q- and mean square results for those error terms (see K. Matsumoto’s survey
[56]). It seems plausible that results about sign changes, can be obtained for these

or more general error terms, but these problems were not considered in our work.



CHAPTER 2

ERROR TERMS

The main tool Y.-K. Lau used to obtain theorem 1.5, was what he called his Main
Lemma, where he proves that if
6
H(z) = Z o) _ —T

n 2
n<x

then
2

2T / pt+h
/ (/ H(u) du) dt < Th,
T t

for sufficiently large T and any 1 < h < log*T. As we explained in the previous

chapter, Lau’s argument depends essentially on the formula (1.7):

== 3 5e(5) o ().

- log5 T

Many arithmetic functions have summations with error terms that can be expressed
with a similar formula. In this chapter, we obtain a generalization of Lau’s Main

Lemma for functions similar to H(x), above, satisfying some general conditions:

Main Lemma. Suppose H(x) is a function that can be expressed as
b x 1
= Y e (P o L),
== )T (77)

where each b,, is a real number and

1. for some D > 0, we have y(x) < and Z b} < xlog” x;

(lOg $)5+% n<lz

44
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2. k(x) is an increasing function, satisfying lim k(z) = oo.

Then, for all large T and fived h < min (log T, k*(T)), we have

/T Y ( /t i du)2 dt < Thi. 2.1)

In section 2.5, we use the Main Lemma to prove the following general theorem,

from which theorems 1.2 and 1.3 are corollaries.

Theorem 2.1. Suppose H(x) is a function that can be expressed as
b x 1
H = — n el ol —
() Z n¢ <n) + <k:(:z:)) ’

n<y(z)
where by, y(x) and k(x) satisfy the hypothesis of the Main Lemma, for some D > 0.
Suppose also that H(x) = H([z]) — a{z} + 8(x), where a # 0 and 0(x) = o(1) and
let <€ {<,=,<}. If

#{1<n<T:aH(n)<0}>T

then exists a positive constant co and coT disjoint subintervals of [1,T|, with each of
them having at least two integers, n and m, such that o« H(n) < 0 and oH(m) > 0.

Moreover,
1. #{1 <n<T:aH(n) >0} >T.
2. if Ny(T)>T, then #{1 <n <T:aH(n) <0} > T;

3.4f #{1<n<T:aH(n)<0}>T, then Ny(T)>T or zu(T) > T.

2.1 PRELIMINARY RESULTS

Before we prove the Main Lemma we need a technical result for sequences b,, satis-

fying condition (1.3):



Lemma 2.2. Let b, be a sequence of real numbers satisfying (1.3), i. e.

By(N):= Y by < Nlog” N,

n<N

for some D > 0. Then

1.
By(N) =312 < Nlog? N,
n<N
2.
By(N) =Y |bu] < Nlog® N
n<N
3.
by n
Z — < (log N)
n<N n
J.

Z‘ IOgN)1+4

n<N

5. For any 6 > 0,

where T(n) is the number of divisors of n.

Remark. If H(x) can be expressed in the form (1.1), then (2.5) implies

DIESY |b ( (1x)><<(10gx)1+g

n<y(z)

Proof: The inequality (2.2) follows at once from Cauchy’s inequality:

[N

%
(Z bj;) < Nlog? N

n<N

d o< (Zl)

n<N n<N

Using the Cauchy Inequality again, we obtain (2.3).

46

(2.2)

(2.5)

(2.7)
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To prove (2.4) we use partial summation. Let By(t) = Z b2, then
n<N

by /WdBﬂﬂ

- t

n<N

- OO%§N>+/WB§w&

= O <log1+% N)

Using By (t) instead of Bs(t), we get (2.5). Now, we prove the last statement in
the lemma. Take any 6 > 0. Theorem 315 of Hardy & Wright [29] tells us that
4]

7(n) = O(n°) for any € > 0. So, take € < 7 Then

bl bl
Z n_z7-<n) < Z n27ie

n>N n>N

By partial summation,

by [ dBult)
ZnQ—e o t2—e

n>N

z{Bﬁqw+Q—d/w&®dt

N t3f€

1 > tlogPt
- ofsi) o ([ )

t(t<log” ) 1
3 part Hence,

Since t<log” t < t9, for sufficiently large ¢, then

for any 0 > 0. a
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2.2 THE MAIN LEMMA

We are going to prove the Main Lemma, assuming a technical result, which will be
proved in the next two sections.

For any integer N, define

av
iy
=
I

|
&
<
—
Ul R
~
o
X

d<N
Lemma 2.3. Suppose H(x) is a function that can be expressed as
b x 1
o= 3 () ro( L),
0=-3 ()0 (m)
n<ly(x

where each b, is a real number and

1. for some D > 0, we have y(z) < 5 and Z bﬁ < zlogP x;
5+5

(log x) n<a
2. k(x) is an increasing function, satisfying lim k(z) = oo.

D
Take 6 > 0 and D > 0 satisfying condition 1, above. Let E = 4 + 5 Then,

a) For all large T, any Y < T and N < y(T), we have

T+Y ) Y Y 5
/T (H(u) — Hy(u))” du < Ni=s + 2T +y(T+Y)(logT)";
b) For all large T, N < y(T) and fized 1 < h < min (log T, k*(T)), we have

2

2T s pt+h ,
/ (/ Hy(u) du) dt < Th? + N3(log N)*~.
T ¢

Proof of the Main Lemma: Assume the two results of lemma 2.3 and take
N = Ti. An application of Cauchy’s inequality in the form (a + b)? < 2(a2 + b?)
gives us

( /t ™ du>2 dt <2 ( /1t " ) du)

2 2

dt+2 < /t o (H(u) — Hy(u)) du> dt
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Since N = T’ then, for sufficiently large T, N3log” N < T. So, using part b) of

lemma 2.3, we have
2T t+h 2 s .
/ ( / Hy (u) du) dt < Th2 + N3log? N < Thz.
T t

Also, using Cauchy’s inequality and interchanging the integrals,

2

[ (] - sy a) ar <o [ (7 0 - e an)

2T+h min(u,2T)
< h/ / (H(u) — Hy(uw))*dt |du
T max(u—h,T")

< i / (H (1) — Hy(w)? du

T

T+h, T+h
N3 " R2(T)

<<h2(
<« T+Th<Th?

since y(2T + h) < and h < min(log T, k*(T')). Hence

T
(log T)E+1

2T t+h 2 .
/ </ H(u) du) dt < Thz2.
T t

2.3 StEP 1

+y(2T + h) (log T)E)

In this section, we will prove part a) of lemma 2.3 using the three technical lemmas

1.6, 1.7 and 1.8, stated in section 1.3. We finish this section with the proof of these

three lemmas.
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Using expression (1.1) and Cauchy’s inequality in the form (a +b)? < 2(a® + b?),

we obtain
y(u) ’
T+y T+y 2 b (U Y
[ - ansa [T 30 B (2) ) aus o ().
T T m=N+1

Let (T, m,n) = max (T, (m), y~(n)), then

2

(u) y(T+Y)
[ () ) e X e (e (2

1
The Fourier series of ¢(u) = u — [u] — 5 when wu is not an integer, is given by
B _l i sin( 27rl€u (2.9)
T
k=1

so we obtain

y(T+Y)

2
2oy by

mn=N-+1 k=1

T+Y
sin 27T—u sin 27rl—u du
k;l (Tymn) m n

which is equal to

y(T+Y)

1
PZ mn kl

m,n=N-+1

T+Y
s(27ru (ﬁ—l—i))—cos <27ru (ﬁ—i)) du.
2 (Tomm) m n m n

Next, we estimate the integral above. For the first term we get

T+Y
k [ 1
cos | 2mru | — + — du<<ﬁ.
n(T,m.,n) m n (5 +3)

If ﬁ = i, then
m n
T+Y k? l
/ CoS (27ru <— — —>> du <Y,
n(T,m,n) m n
otherwise

T+Y k l 1
/ cos (27ru (———)) du<<ﬁ.
n(Tym,n) m.on o

Part a) of lemma 2.3 will follow from the next three lemmas.
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D
Lemma 1.6. Let £ =4+ 5 as in lemma 2.8. Then

> [bmbal Z k”k <<X(logX)

mn<X =
kn;élm

Lemma 1.7. If D > 0 satisfies condition (1.3), then

boba| S« X (log X)*
> | |Zk:lk+l)<< (log )

m,n<X k=1

Lemma 1.8. For any d > 0

Z [ i<< 1
mn kl N1-9

N<m,n<X k=1
kn=Im

To finish the proof of part a) of lemma 2.3 we just need to take X = y(7T' +Y)

in the previous lemmas. Hence

T+Y
/T (H(u) — Hy(u)? du < N}lfts +y(T+Y) (log T)E n k?(/T)

Proof of lemma 1.7: Since the arithmetical mean is greater or equal then the

geometrical mean, we have

2. ’bb’zmknﬂm 22 ‘bb‘zmm

m,n<X k,l=1
bl
< Z zmi
<m<X ﬁ)

(2)(2%)

2.4)
% X (log x)1+% 0
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Proof of lemma 1.8: For the second sum, take d = (m,n), m = da and n = dg.

Since kn = Im, then a|k and §|l. Hence k = oy, say, and [ = (3. Since

=1 1 <1 7%(m,n)?
DT JE AL 210
= kl  af = v 6 mn
kn=Ilm
Then,
Z |bmbn| > 1 . 7T'2 Z \bmbn|(m, n)2
mn kK 6 m2n?
N<mn<X k=1 N<m,n<X

IA
o3
g

o
g
T

In order to obtain the result stated in the lemma we have to prove that

2

b,
Slay M« I

d<X N<m<X
dlm

The next step will be to estimate the inner sum using Holder inequality, in the
1 3
I AR
form | Z w;v;| < (Z u?) (Z v,f)
i j k
2

|6 b 1
pD B B D > e

ol
e

N<m<X N<m<X N<M<X
dim d|m d|M
M
Take 3 = v then
3
2 3
1 1 1\ 1 Rk
Z W :ﬁ @ <<$min{1,m} (212)
N<M<X N <X
d —d
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We complete the proof of lemma 1.8 using Cauchy’s inequality and the estimate

(2.6). Take any § > 0, then

NI

1
bbn| o= 1 1. )2 bt
> - Zg<<23mm L+ > 2
N<mn<X kfmlzzl;n d<X N<dT7lT%X

N

D<X | N<m<Xx
Dim

[N

“|(wzers) ¥ (A

d<N d>N N<m<X D|m

N|=

1 bl

N<m<X

< 55

Proof of lemma 1.6: This lemma is a generalization of Hilfssatz 6 in [102] of

A. Walfisz. Notice first that

- 1 - 1
b, by, —_— | <2 b by, —_
Z | |Z kl|kn — Im)| Z | |Z kl|kn — Im)|
mn<X k=1 m<n<X k?zéézlin

knz#lm

Like in [102] we begin by separating the interior sum into four terms.

;kl\kn—lm]: DD <kl|kn—zm|)

k,l=1 k,l=1 k,l=1 k,l=1

kn,;élm lmgl%" Im>2kn I%"<lm<kn kn<lm<2kn
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For the first term, we just need to use the estimate (2.3) and the fact that

Z% < log x.

<z

> fbwbal Y Tl [fn — Im)| < 20> (bwbal Y =

m<n<X k=1 m<n<X k=1
lmg%” lmgl%"
= 2 b bal 5
= 2 ) bl ZkQ >
m<n<X <k:n
by | o logk’ logX
< ¥ it (E )
m<n<X =1
[6n]
< log X Y EE Y by
n<X n m<n
< (logX)" %S b

n<X

< X (logX)'*

The second term is treated similarly, except here we also use (2.5).

oo 1 oo 1

m<n<X m<n<X k=1
kng%” kng%”
|| <
=2 > bl le >
m<n<X k<lm
b | logl
< ¥ wl s
m<n<X
5 Lol
< Sy
n<X m<n
D
< (log X)TT Y " |by|
n<X

< X (logX)'*
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The estimation of the third term is more complicated and we will have to use a
2m
different approach. In this case, we have 7 < T SO
n
> 1

Z [bmbal Z kl|kn — Im)|

m<n<X k=1
%L<lm<kn

bn| o= 1
<2 Z ’bm’% k2 Z knTlm

<n<X k=1 kn kn
msnx m << poe

|bn| . 1 m
2 b | — —
* Z bm] n Zk’2 kn —Im
m<n<X k=1 En_jqjchn
Now,
[b] o 1 1 [ 1

2o nlmE > 2 m )= 2 el 2 g
m<n<X k=1 [<kn_q m m<n<X k=1 lg%—l

< X (log X)1+g

kn n
as in the first term. If there exists an integer | with — — 1 <[ < —, then m 1 kn.
m

kn
In this case, kn —Im =m {—} and m < n. So, we have to estimate
m

1

b, 0o
Z |bm||T’ Z ERE (2.13)

m<n<X k=1 m
mtkn




o6

k 1

Notice that the fractional part of il is at least —. So, when k£ > m, we can estimate
m m

(2.13), using (2.3).

S Y e 3l

m<n<X m<n<X

bn
< Z‘n—lZ!bm!

n<X m<n

< (log X)) Z by

n<X

<X (logX)g

We are left with the estimation of

> Y

m<n<X k<m

Since m 1 kn, then, given k and n, we can take ay,, such that 1 < ag, < m and

ak,n, = kn mod m. Then,

16, 1 b,
> [ §:k2{_n}§ > |bm|—‘n|k§ ,CQZ
m <m ’

m<n<X k<m m<n<X
mfkn
1 |bn |
< — > mbm| Y = (21
a,k<X max(a,k)<m<X m<n<X

kn=amod m
We need to estimate the inner sums. In order to do that, we will partition the
interval [1, X] in intervals of the form [, 2M) and apply Cauchy’s inequality. Take
1< P<Q <X, then,

OICTEED DI S DI

P<m<2P QR<n<2Q P<m<2P Q<n<2Q
kn=amod m kn=amod m
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Next, we apply Cauchy’s inequality twice, first to the first sum on the right and

afterwards to the second sum.

2 2

S e S g( 5 bﬁw) S

P<m<2P Q<n<2Q P<M<2P P<m<2P Q<n<2Q
kn=amod m kn=amod m

Lrogfry | Y o2 Y

P<m<2P QR<n<2Q Q<N<2Q
kn=amod m kN=amod m

< PlogzP Y <1+ Q) S

m
P<m<2P (k,m) Q<n<2Q
kn=amod m

1
Since m < 2P < 2@, we have Q > 3 Using also (k,m) < k, we obtain
m
k
1+ % < BQ—. Therefore,
(k,m) m

Z |bm| Z |bn| < Plog% P Z 3% Z bi

m
P<m<2P QR<Nn<2Q

P<m<2P Q<n<2Q
kn=amod m

kn=amod m

<<P¥loggP Sl Y

QR<N<2Q P<m<2P
mlkn—a

<kQ(ogP)? Y 02 r(kn—a)

Q<n<2Q
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By a theorem of S. Ramanujan [72], we have Z 7%(n) ~ X log® X (for a proof see
n<X
[106]). So, by another application of Cauchy inequality and condition (1.3), we obtain

( Z b2 T n—a)) < ( Z bi)( Z Tz(kn—a)>
Q<n<2Q Q<n<2Q Q<n<2Q

< Qlog"Q Y (n)

kQ—a<n<2kQ—a

< kQ*logPT X,

Therefore,

(ST

Ol

by
S mlbal Y % <

P<m<2P Q<n<2Q
kn=amod m

( logPQ Z v:oT n—a))

Q<n<2Q

1

< (k:Q (log X)? (kQ*logP*® X) )

Qv

< Pki (log X)'*

The number of of pairs of intervals of the form ([P,2P),[Q,2@Q)) that we have to
consider is at most < log® X, hence

by
Z#mez:7<ZMZmMW

a,k<X a<m<X m<n<X a,k<X
kn=amod m

< X (log X)**

We still have to estimate the fourth term

S 1
Z [bm b Z kl|kn — Im)|

mn<X k,l=1
kn<lm<2kn
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We will use the method we developed in order to estimate the third term. In this

1 m
case, we have 7 < e SO
n

[e.9]

1

b bn _

Z | | Z kl|kn — Im)|
m<n<X k,l=1
kn<lm<2kn
AR m
< 2 lbmlSE ZkQ > N\
m<n<X kn <l<%

The first case is again easy to estimate,

SIS W (l_lk_n)

m<n<X Im +1<l<2k:n m
o0
DRTECD SRS B
n k? [
m<n<X k=1 1< kn
m

< X (logX)'*

k k k k
If—n l<—n+1,thenl:—n+1—{—n}andagainm)(kn(som<n).
m m m

Hence we need to estimate

b 1
5 bl Y ey

m<n<X
m{’kn

k 1
Since 1 — {_n} is at least — we again obtain, for k > m,
m

m
Z b Z‘X’ Z by,

m<n<X m<n<X

w\b

< X (logX)
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where we used inequalities (2.3) and (2.5). Therefore, we are left with the estimation

of
by 1
bl — D
PR )
Given k and n, take ay, such that 1 < ay,, <m and a;, = —kn mod m, then
[ 1
bl — D . 7m0y
2 M 2 )
mtkn
|n|
< m@z;X| ml n Z k2
bn
SPIFLIND SRLTNED S
a,k<X ¢ max(a,k)<m<X m<n n

kn=a mod m

So, we are in the same situation as in (2.14). Hence

o0

1 4+
by b —— < X (log X
2 lubal > gy € X (o X)

m<n<X k=1
kn<lm<2kn

This completes the proof of Lemma 1.6. O

2.4 StEP II

In this section we will finalize the proof of the Main Lemma by proving part b) of
lemma 2.3.

From equation (2.9), we can get

j€ﬁ¢(u)du _ -%

CJ\;‘_
/\
8
@A,
E\
[\
3
w
£
N——
o,
I

<% 2wku)du)
- %i (1))
> (5

1 — coskat 1
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where we used Lebesgue dominated convergence theorem. Using the definition of

Hy stated in (2.8), we obtain

t+h bm t+h u
/t Hy(w)du = — )" E/t v()du

m<N
b [
= — Z — ma(v) dv
m J+

1 © oS (2WW) — cos (271'%)
- ) Z bmz k2

m<N k=1

As usual, let us write e(t) for ™. Then

o (R o (R o (k) o (_kt
e (k1Y o (221 (M) o () ¢ () — e (—Et)

m m

So,

—1)e (%) (e(—KE) 1
/HN 47T2Z Z )(m)(( m) )

m<N

Therefore, using |2]* = 2z,

oT | pt+h
167 / / Hy(u)du
v |Ji

(e ()~ 1) 2) (e (h220) -
T CCR TR

<Je () () ( () o) (- 25) )

dt
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After multiplying the terms inside the integral above, we obtain the following four

terms that we will estimate below:

Tkt It Ih  kh Tkt
el———)dt+e|——— el———) dt
T m n n m T n m

Notice that,

2T 1
e27mrt dtl = : ‘647m"T o e47m"T
T |27ir|

1

mr|

for any r # 0. We begin with the last term and use |e(t) — 1)| < 2. Then

S bub, i (e () =1 (fk:(l;f) —e(3) /:Te (%t N %) A&t

mn<N k,l=1
2T
It Kkt
foe ()
T n m

<4 > fbmbnl Y @

mn<N k=1
> 1
< by | S
2 el 2 o)

< 3 bl > 5 (1) () m

m,n<N k=1

< N3 (log N)'*72 .
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where we used lemma 1.7 in the last step. The third term is treated similarly and

we obtain
R MACEIIAE B HEC N
mn<N mnkJ:l (kl)g T c n m

< N3 (log N)'*+2 .

Now, if kn = Im, then

2T 2T
e e () [ (Y o
T m n n m) Jr n o m

If kn # Im then,

/2T <k;t lt) <lh kh)
el———)dt+e| ———
T m n n m

Let’s study first the case when kn # Im.

5 b, 3 CEIDEED Y 7 iy,

2T (lt kt) 1
/ el ——— ) dt 7 ;
T nom |a—z|

kl)? m_n
mn<N k=1 ( ) T
- knlm
S (e (%h) _1) (6 (—%)—1)6(%_%) T
_I_m;mebn = (kl)Q \/7: € (E — E) dt
B kn#£lm

> 1

mn<N k=1
kn#lm

< Y bwbal D (%) (?)m

mn<N k,l=1
kn#lm

< N3logh N,
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by Lemma 1.6. If kn = ml, we will use |e(t) — 1| < min(2,6m7|t|) instead. The
expression obtained has some similarities with lemma 1.8. We are going to use the

same argument to prove:

kh\ . Ih 3
> [bumbl Z ( E) min (1%) <h (2.15)
mn<N kl;l l;n

As in Lemma 1.8, take d = (m,n), a =

d
L — 1,— ) = 3= el
;<kl>2mln<’m>mln(’n> aﬁv(m(d))

kn=Ilm

If d < h, we obtain

and if h < d < N, then

S () - 05

=1 y<d >4

< (1) (1) <(3)

Therefore,

m,n<N k=1
kn= lm
(mn)~ 1 (. V)
= b by, — 1
m;N| | m2n2 ; 74 min ) (m,n)

IA
2]
Q&
M
SEd
wi
WE
A
5
=
VR
—
7

d<N m,n<N y=1 v
d:(m,n)
2 2
< Sles e w3y ax
m2 m2
d<h m<N h<d<N m<N
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The second sum on the right above, will be estimated using inequality (2.11), which
states

2

b1 | 1
DX i | <
d<X NZTSX

for, since d|m we have m > h, so,

2

2 |bm| 1+6
Ry d> 5| <At
h<d<N m<N
dlm
To estimate the first term we begin with Holder inequality:

2

2
s bal | o g | 5 Lol 1
DA E | =X | | e
d<h m<N d<h m<N M<N
dlm dlm d|M

1
The third sum is O (ﬁ) (similar to (2.12)). Then

ol

N[

2

Sl DL I DOET IR 3] I ol
d<h m<N m MgNM

d<h d<m<N
dlM

- (ch)% |y b

m2
d<h D<h | D<m<N
D|m

N

3 |bm|4
<ty ey,
m<N D<h
D|m
1
3 ‘bM‘4 ’
< h2 (> -r(m) |
m<N

b |*
But equation (2.6) implies that g | 2| 7(m) — 0 as N — oo. In particular,
m
m>N

m<N

bt
we have Z | 2| 7(m) = O(1), where the implied constant doesn’t depend on N.
m

Therefore, we obtain inequality (2.15) and part b) of lemma 2.3, follows. O
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2.5 A GENERAL THEOREM

In this section, we prove theorem 2.1, from which the main theorems 1.2 and 1.3,

will be deduced.

Theorem 2.1. Suppose H(x) is a function that can be expressed as

o)== 3 20 (3)+0 (7).

n<y(z)

where each b, is a real number and

1. for some D > 0, we have y(z) < and Z b} < xlog” x;

(lOg $)5+% n<z

2. k(z) is an increasing function, satisfying lim k(zx) = oc.
Suppose also that H(x) = H([z]) — a{x} + 0(x), where o # 0 and 6(x) = o(1). Let
<e{<, =<} If#{1 < n < T :aH(n) < 0} > T then there exists a positive
constant ¢y and coT disjoint subintervals of [1,T], with each of them having at least

two integers, m and n, such that aH(m) > 0 and aH(n) < 0.

Moreover

1. #{1<n<T:aH(n) >0} >T.

2. if Ngy(T)>T, then #{1 <n <T:aH(n) <0} > T;

34f #H{1<n<T:aH(n)<0}>T, then Ny(T)>T or zg(T) > T.
Proof: From the Main Lemma, we have

2T t+h 2 .
/ (/ H(u) du) dt < Th=.
T ¢

for all large T" and h < min (log T, k*(T)).
Assume #{1 <n < T :«aH(n) <0} > T and let ¢ > 0 be a constant such that,

if T be a sufficiently large number, then

#{1 <n<2T:aH(n) <0} > T.
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Take T large. Divide the interval [1,27] into subintervals of length h, where h is a
sufficiently large constant (we will see later how large it must me) satisfying h <

cr
logT". Then at least 7 of those subintervals must have at least one integer n with

aH(n) < 0. Let C be the set of the subintervals which satisfy that property. Write
C={J.]1<r<R}

where the subintervals are indexed by its position in the interval [1,27] and where

T R
R > % Define K, = J3,_o, for 1 < s < 3 and let D be the set of these subintervals.

We have #(D) > % Notice that any two members of D are separated by a distance
of at least 2h.

Let M be the number of sets K in D for which there exists an integer n € K
such that aH(n) < 0 and aH(m) < 0 for every integer m € (n,n + 2h), and let S

be the set of the corresponding values of n.

Lemma 2.4.

for some absolute constant c;.
Proof: Since H(z) = H([z]) — a{z} + 0(x), then
aH(z) — aH([z]) = —a*{z} + af(2).
So, if = is sufficiently large and not an integer then
5 4 3,
—1° {z} < aH(z) —aH([z]) < —1¢ {z}. (2.16)

Let ny be the smallest integer such that any non integer x > n; satisfies condition
(2.16). If #{n € S:n >mny} =0 then M < ny, so, the lemma is clearly true for

sufficiently large T. Otherwise, #{n €S :n>n} > M —ny; > M.
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Take n € S with n > ny and t € [n,n + h]. Then for any integer m € [t,t + hl,

aH(m) < 0. Moreover,

h—1

t+h [t]+1
H(u)du = H(u)du +
/t () (wdu+Y

t

[t]+j+1 t+h
/ H(u)du + H(u) du.
[t

j=1 1+ [t]+h

Now, for any 1 < j < h,

[t]+j+1 [t]+5+1
[ e = [T ) H )+ HE ) da

[t]+5 1+3

[t]+5+1 [t]+j+1
= / (H(u) — H([t] + 7)) du+/ H([t] + j) du.
[t]+i [t+i
Therefore, by (2.16),
[+5+1 L/ 3
/ aH(u)du < / (—Za2x> dx + aH([t] + 7)
0

[t]+7

because aH ([t] + j) < 0. Since [t] > n, we also have

/twl at (u)du < /{1 (—204%) dz+aH([t]) (1 - {t}) <0

t}

and

t+h {t} 3

/ aH(u)du < / (——a2x> dr + aH ([t] + h){t} <O0.

[t]+h 0 4

Hence,
t+h 3
/ aH(u)du < —§a2(h - 1)
t

and so

/t o H(u)du

To finalize the proof of this lemma we are going to use condition (2.1):

2T t+h 2 .
/ </ H(u) du) dt < Thz2.
T t

> Zlal(h - 1)
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Take an integer r = r(7') such that 2" > (log T)3+% then, using (2.1) and (2.7), we

obtain

[ [ duf gt = /5‘ ( /“”mu) duy dt
+Z/ ( o )du)th

r

L2 242 3 Z
< 2rh (log )% +h2 <2
]:

< Th?

since h < logT'. On the other hand,

/02T (/tHhH(u) du>2 dt > Z/M </tt+hH(u) du)2 dt
> Z/n+h( lo|(h ))fit

nes

n>ni
> Mh?
Hence M < ¢;—5 for some absolute constant c;. O
2
. : : T : .
If h is a suitably large integer such that clh— @T (its enough to pick
6o\ 2
h > (ﬂ) ), then there are at least éT intervals K in D such that aH(n) < 0
c

for some integer n € K and o« H(m) > 0 for some integer m lying in (n, n+2h). Hence,

take ¢y = 6ih and, for each of the above 6£hT intervals, take I = K U (n,n + 2h).
Now, we prove part 1. Suppose #{1 < n < T : aH(n) < 0} > T. Take T

sufficiently large and take the order relation ‘<’ to be ¢ <’. Therefore, we have c¢oT

integers m in the interval [1, 277, for which aH (m) is positive. So, in this case,

#{1<n<T:aH(n)>0}>T.
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If we don’t have #{1 <n < T :aH(n) <0} > T, then, we must have aH(n) > 0

for almost all n € [1,7], i. e.
#{1<n<T:aH(n)>0}=T(1+o(1)).

Next, we prove part 3. Take ‘<’ to be ‘<’. Then, there exists a positive constant
co and ¢oT disjoint subintervals of [1,7], with each of them having at least two
integers, m and n, such that H(m) > 0 and H(n) < 0. Therefore, in each of those
intervals we have at least one [ with either H(l) =0 or H(1)H(l + 1) < 0. Whence,
o (T) > %OT or Ny(T) > 27,

2
If Ny(T) > T then, for sufficiently large T,

#{1<n<T:HnHMn+1) <0} >cT,

for some positive constant co. Therefore, between 1 and T', there are more than c,T
integers n such that aH(n) <0, i.e. #{1 <n < T :aH(n) <0} > T for all large

T'. This proves part 2. O



CHAPTER 3

A CLASS OF ARITHMETIC FUNCTIONS

In this chapter, we consider arithmetic functions f(n) such that f(n) = Z — and
din
the sequence b, satisfies conditions (1.2) and (1.3), i. e. for some B, A > 1 and

D >0,

B(x) ;:an:BHO( xA )

<o log”™ x

and

Zbi < zlog” x,

n<z
We will determine the asymptotic expansion of Z f(n) and will apply the Main
Lemma to its error term, H(z). The Main Lemmff)vill enable us to prove theorem
1.2. If the arithmetic functions are rational valued (as they are in most of the cases
studied), we prove a result about how frequently can H(z) take any given value,
using a theorem of A. Baker. This result, together with theorem 1.2 enable us to
prove theorem 1.1, which generalizes Lau’s theorem. In sections 3.4, 3.5 and 3.6, we
examine some examples for which our conditions are satisfied and so the conclusions
of the theorems are true. In section 3.7, we obtain mean square results for H(x),

and, in section 3.8, we generalize Pétermann’s results (1.13) and (1.18) and prove

Xu(T)>T.

71
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3.1 PRELIMINARY RESULTS

In this section, we will prove some elementary results about this class of arithmetic

functions.

Using condition (1.2), we immediately obtain the following lemma:

Lemma 3.1. Let b, be a sequence of real numbers satisfying (1.2), for some con-

stants B and A > 1, then there exist constants 7y, and o such that

by 1
= log™ " x
00 bn
> 5 o= (3.2)
n=1

by, B 1
S - Zio( ) (33)
n x xlog™ " x

Proof: Let R(x) = Z b, — Bz. Using partial summation, we get

n<x

Sl [1a0
el n - t

- [
R(x) n /9” Bt + R(t) &t

T _ 12

= B+

Since A > 1 and using condition (1.2), we obtain

/ R0 g <</ A
. 1 . tlog™t

1
L —F),
logA*1 x
: : * R(t) : :
which converges to zero as x — co. Therefore, lim 2 dt exists. Let’s define
T— 00 1

* R(t
%:/1 tg)dt+B.
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Hence,
by o > 1
yob B+Blog:p+/ R(t)dt—/ B0 g yo (L
n<z n 1= t? T t2 log x

1
= Blogz +%+0( —55—
g Vo (10gA_1£L')

Next, we prove (3.3),

bu /°° dB(1)

n2

8
~
no

n>x

B 1 “ B 1
- 2.0 +2/ Plo(-t ) a
x (xlogAx) . t? (tQIOgAt)

Notice that, if b, = u(n), then a = (71(2) = %, B =0, =0 and A can be
m

2
any real number greater than 1. If b, = 1, then a = %, B =1, v =~ and, again,

A can be any real number greater than 1.

We will be interested in functions f(n) that can be written as

fy =",

dn

where b, satisfy conditions (1.2) and (1.3). If b, = pu(n), then f(n) = M, which
n
o

is the function studied by Y.-K. Lau. When b,, = 1, then f(n) = ﬂ If the first

n
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condition is satisfied, the summation function of f(n) will have an explicit main

1
term and an error term that depends on the function ¥ (z) = = — [z] — 3

Lemma 3.2. Let b, be a sequence of real numbers as in lemma 3.1, and let

b
f(n) = j Then
dln

n<—2
- logc x

forany 0 < C < A—1.

Proof: We have

S - LY

n<z n<z d|n

b
- >
dse

- >y

d<zx m<g
->¥a
d
m<z d<>
Next, we will separate the double sum above in two parts. Let 0 < C' < A — 1 and
y = log® . Then

AP EDIPI

x x
n<y d<Z y<n<wz d<2

- Zzbd Zbd21 (3.5)

n<y d<Z y<n<E
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In order to evaluate the first term on the right, we start with an application of

formula (3.1). We obtain

bq 1
Z ZE _ Z(Blogx—Blogn+’Yb+O<m>>

nly d<Z n<[y]

= — ogn b —y
= Bly|logz BZIg +7[y]+0<10g’4_1(§))

n<[y]

Now, by Stirling formula,

> togn = il iogh] - b + <54 + 22 0 ()

1
Notice that, log[y] = log (y < — @>) =logy + O <—> Hence,
Yy Yy

Z Z%:B[y](logx—log[y]+1)+7b[y]_w+0( 3—1 )—i—O(é)

n<y d<Z log" " x

For the second term, we get

>y - (g -m)

a<z * y<n<t a<z
o bd bd X 1 bd bd
- & Zdw(d> 22 g W2
d<z <z <= <z
- yE e X (G Xd
= d>2 <z <z
By lemma 3.1, we have
00 bd B
ﬁ = ax,
d=1
b
x —‘; = By+0 ?{490 :By+0( yA )
>z y log™x

and
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Using the three results above, we evaluate the second double sum on the right of

(3.5), obtaining

YUY t=ar-my -3 %y (5) - BEEED - pyoge —logy)

dg% y<n<% d<Z

Notice also that

Blyl(logy —logly]) = Bly] (—k’g (1 - %))
= B{y}+0 G)

Hence, joining everything together, we obtain

H) = Y fn) - (ax _ Blogtne _ %>

n<x

bd X 1 1
-~ X PG o) o (o)

d<—2,

— log® =z

3.2 GENERALIZATION OF LAU’S THEOREM

In this section, we will prove theorem 1.2. We begin with some definitions and

notation.

The distribution function of H(x) is given by

D(u) = lim% #{1<n<T:H(n) <u}

T—o00
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whenever the limit exists. We say that D(u) is symmetric if D(u) + D(—u~) = 1.

Let’s also define

ZyT) = #Ha<T: f(z) =0}

2¢(T) = #{n <T,n integer: f(n) = 0}.
We state theorem 1.2 again:

b
Theorem 1.2. Let f(n) = Z Ed be an arithmetic function and suppose the sequence
dn
b, satisfies both conditions

an:Bx+O<l xA ) and Zbﬁ<<xlogDa:,

n<x og T n<x

oobn

D
for some B real, D > 0 and A > 6 + —, respectively. Let o = Z —,
2 n?

n=1

Blog?2
VbZJL%<Z%—Blogx) and H(x):Zf(n)—(m+y+%_

n<x n<x

If a # 0, then
1. #{1 <n<T:aH(n) >0} >T.
2. if Ngy(T)>T, then #{1 <n <T:aH(n) <0} > T;
3.4f #{1<n<T:aH(n)<0}>T, then Ny(T) > T or zu(T) > T.

Remark. The result of Y.-K. Lau uses the fact that, when

the distribution function D(u) exists and is continuous (proved by P. Erdds and H.
Shapiro [18]) and D(0) > 0 (obtained by Y.-F. Pétermann [64]). Since continuity of

D(u) implies zg(T) = o(T') then part 3 generalizes Lau’s result.
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Remark. In many applications, f(n) is rational for all n which in certain cases
enables us to guarantee that zg(T) is very small (see theorem 1.10, below), and so
we obtain Ny (T) > T in part 3. However, we cannot eliminate zy(T) > T from

part 3 in general, as example 1.1 demonstrates.

Proof: We just have to show that H(z) satisfies the conditions of theorem 2.1.

From lemma 3.2, for any x

H(z)— H([z]) = —af{x}-— g (log 27[x] — log 27x)

~ s} — glog (1 _ {i—})
~ oz} + g% L0 (%)

In lemma 3.2, we also obtained

by, z 1 1
Hw == 3 () 00 () O ()

x

- logc x

X

D
forany 0 < C < A—1. Take C =5+ —, y(x) and

2 - log® =

k(r) = min (logc z,logA ™1 z) .

D
Since A > 6 + > then C < A—1and A—C —1 > 0. Theorem 1.2 now follows

from theorem 2.1. O

In theorem 2.1, we proved above that if a function H(z) satisfies condition (2.1)

and decreases in all intervals of the form (n,n + 1), where n is an integer, then
#{1<n<T:H(n)<0}>T implies #{1<n<T:H(n)>0}>T.

Unfortunately, the converse is not true in general, as the following example shows.
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Example 3.1. Consider the arithmetic function f(n) = & for all integer n, where

0 is a real number. Then by = 0 and b, = 0 for all n > 1. Clearly, the sequence

b, satisfies conditions (1.2) and (1.3), and we have B = 0, o = 6§, v = § and
2

H(x)=24 (% - {x}) In this case, aH(n) = %, for all n. Hence, if § # 0,
#{1<n<T:aH(n)>0}=T and #{1<n<T:aH(n)<0}=0
We will prove that when H(z) has very few zeros then
#{1<n<T:H(n)<0}>T implies #{1<n<T:H(n)>0}>T,
and from this we obtain Ny (7T') > T'. More exactly, we prove
Theorem 3.3. Let f(n) = Z %1 be an arithmetic function and suppose the sequence

dn
b, satisfies both conditions

an:Bac+O<l xA ) and Zbi<<xlogDa:,

n<x og T n<x
D , — bn
for some B real, D > 0 and A > 6 + —, respectively. Let o = Z —
2 —n

Blog?2
VbZJL%<Z%—Blogx) and H(x):Zf(n)—(m+y+%_

n<lx n<x

If Zy(T) = o(T), then Ny(T) > T.

D
Proof: As in theorem 1.2, take C' =5+ —, y(z) °

5 and

B logc T

k(z) = min (log® =, logh=¢~! z) .

Then, the conditions of theorem 2.1 are satisfied, so, conditions (2.1), (2.7) and

(2.16), are still valid, i. e., for T" and =z sufficiently large, and h < min (log T, k*(T)),

2T t+h 2 .
/ (/ H(u)du> dt < Thz,
T t

H(z)| < (log )"+ 7 |

we have

5 32
1 {z} < aH(z) — aH([z]) < a1 {z}.
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From part 1 of theorem 1.2, we know that #{1 <n <T:aH(n) >0} >T. As in
the proof of theorem 2.1, we take T" and h large, and divide the interval [1, 27 into
subintervals of length h. Then we take those subintervals which have at least one
element n, with aH(n) > 0 and are separated by a distance of at least 2h. The idea
is to prove that we cannot have too many of the above subintervals satisfying the

condition:

there exists an integer n € J such that aH(n) > 0 and aH(m) > 0 for

all integer m € (n,n + 2h)

Let M be the number of sets satisfying the above condition and £ be the set of the
corresponding values of n. We are going to prove that

T
M§C3h—3

2
for some absolute constant C3. Let ny; be the smallest integer such that any non

integer « > n, satisfies condition (2.16). First we prove

/t " B du

where t € [n,n+ h], n > ny and n € L. Since Zy(T) = o(T), then the intervals

1
> fal(h— 1),

of the form [¢,t + h] where H(u) = 0, for some u, will be excluded. Notice that we
T
still have, for some constant ¢ > 0, % intervals, each one with at least one n for

which aH (n) > 0 and separated by a distance of at least 2h. Now, in each of those

3
intervals H(u) # 0, for every u, so aH(m) > ZQZ'

As in the proof of lemma 2.4,

h—1

/t " ) du = /t ) du t 3

=1

[t]+5+1 t+h
/ H(u)du + H(u)du

[t]+7 [t]+h

and, for any 1 < j < h,

[t]+5+1 [t]+7+1 [t]+j+1
/ H () du = / (H(w) — H({] + j)) du + / H( + ) du.
[t]+J [t]+J [t]+J
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5 3
Therefore, using the fact that —ZaQ{x} < aH(x)—aH([z]) < —Za2{x}, for any

x > nyi, we obtain

/[t1+j+1 wH(uw)du > /01 (_Za2x> dz + aH([t] + 7)

[t]+7

5 3
> —gOéZ + ZOJQ
1 2
> —
805

We also have

[+1
/t QH (1) du > —goﬂ (1 {1) + aH () (1 - {t))

and

t+h
/ aH(u)du > =202 {#}2 + aH([t] + ){t}.
[t]+h 8
which implies,
[t]+1 t+h
/ aH(u) du +/ aH(u)du > 0.
t [t]+h

Hence,

t+h 1
/ aH(u)du > §a2(h - 1)
¢

and so

/t H(u) du| > émy(h— ).
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Taking an integer r = r(7") such that 2" > (log T)3+% and using (2.1) and (2.7), we

obtain

[ [ duf gt = /5‘ ( /f”mu) duy dt
+Z/ ( o )du)th

T
< —h2 (log T)**7 + hi >
7=0

< Th?

since h < logT'. On the other hand,

/02T (/tHhH(u) du>2 dt > Z/M </tt+hH(u) du)2 dt
> Z/n+h( lo|(h ))fit

n>n1

> Mh?

T
Hence M < (C3—. Therefore, for a suitable large h, there are at least %T intervals
3

K (separated by a distance of at least 2h) such that aH(n) > 0 for some integer

n € K and aH(m) < 0 for some integer m lying in (n,n + 2h). Hence
#{1<n<T:aH(n)<0}>— 2h

To obtain Ng(T') > T, we just have to notice that for each n and m as above,

there are no integer n < k < m for which H(k) = 0. O
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3.3 RATIONAL ARITHMETIC FUNCTIONS

In some particular cases, with rational valued arithmetic functions f(n), we can
obtain a better result than part 3 of theorem 1.2. In this section, we prove such a

result. We will need the following consequence of [2, theorem 1] by A. Baker.

Proposition 3.4. Let aq,...,q, and By, ..., 3, denote nonzero algebraic numbers.

Then

Bo + Bilogay + - -+ By loga,, # 0

Using the result above, we will prove that, in certain conditions, the error term
of the summation of a rational valued arithmetic function, cannot take any given

value very often.

b
Theorem 1.10. Let f(n) = ng be a rational valued arithmetic function and

dln
suppose the sequence b, satisfies an = Bzr + O( mA ) , for some real B and
— log” x
A > 1. Let r be a real number and
Blog2mx
H = — P - T
0= 3 Jw) - ar+ =EEE 3,
where v, = lim Zb—n—Blo x (mda—ib—n Then
e e n<zx n © N n=1 n2 ‘

1. If B=0 and « is irrational then #{n < T,n integer: H(n) =1} < 1;
2. If B is a nonzero algebraic number then #{n < T,n integer: H(n) =r} < 2;

3. If B is transcendental then there exists a constant C' that depends on r and on

the function f(n), such that

#{n < T,n integer: H(n) =r} < (logT)C.
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Proof: Suppose that B = 0 and « is irrational. Suppose also that there are two
integers, say M # N, such that H(M) = H(N). Then
HSZMf(n)—aM—l—%:nSZNf(n)—aN—i-%.
But this implies that « is rational, a contradiction.
Next, suppose B is a nonzero algebraic number and that there are M > N > @)
integers, satisfying H(M) = H(N) = H(Q). We have

Blog2n M
Zf(n)—on—F%—l—%
n<M n<N

Blog2nN

which implies

Similarly,

Subtracting the second from the first, we obtain

prog [ G| L1 s i L s
<%>m M_QQ<n§M M_NN<n§M

We are going to prove that

(B ()

Since B is a nonzero algebraic number, the above implies that

1 1
=0 Y. - 2. fm#0.

Q<n<M N<n<M

Since the values of f(n) are rational, for any integer n, proposition 3.4 implies

Blog %Ml—Q Z f(n)_MiN Z f(n),

Q<n<M N<n<M



and so we get a contradiction, which implies #{n < T, n integer : H(n) =r} < 2,
for any real r.

In fact, instead of proving (3.6), we are going to prove that
MN=QQM=N « NM=Q (3.7)

for any positive integers M > N > Q. Clearly, this implies (3.6). The inequality

(3.7) is just a particular case of the geometric mean-analytic mean inequality

1
n n 1 n
: < = , .
({1) <55 o9
i=1 i=1
where equality only happens if u; = us = -+ = u,. In fact, taking n = M — Q,

up=Mfor1 <i<N—-Qandu;, =Q for N—Q <1< M — @, we obtain

1

N-QAM-N\ o
(rv-eguyte < L

(N =QM + (M- N)Q) =N

Hence, we obtain (3.7) and part 2 of the lemma.

Finally we prove part 3. Suppose r is a real number such that

Let Q@ < N < M be the three smallest positive integers in the above set. Then

Blog EZ))M —ig o -y X s

Y M-Q Q<n<M N<n<M

Suppose L is such that H(L) =r. Then L > N > @, and as in part 2.

T e D D (I Sy )
Q

(é) L=e <n<L N<n<L

The two expressions above are nonzero. After we cross multiply them, we obtain

—— | =mlog
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for some rational r;. Therefore, there are four rational numbers ro, r3, 74 and r5, such
that

L2 = M™N"™Q's.
Now, any prime dividing L must divide M N(@Q. Notice that, if p is a prime, £ is an
integer and p* < x then k < tﬁi

x, which have all prime divisors smaller than M is smaller than (log m)’r(M), . This

. Therefore, the number of integers smaller than

finishes our proof. O

As a corollary of theorem 1.2 and theorem 1.10 we obtain our main theorem 1.1:

b
Theorem 1.1. Let f(n) = Z Ed be a rational valued arithmetic function and sup-
din
pose the sequence b, satisfies

an:Bx+O< xA ) and Zbﬁ<<xlong,

n<x lOg x n<x
D ‘ — b
for some B real, D > 0 and A > 6 + —, respectively. Let o = Z —5
2 —~n

bn
% = lim <Z o Bloga:)

n<x

and
Blog2mx

H(x):Zf(n)—ax+T+5.

n<x

Then, except when o =0, or B =0 and « is rational, we have
Nuy(T)>T ifandonlyif #{1<n<T:aH(n)<0}>T
3.4 PERIODIC SEQUENCES

In this section, we study a family of sequences that trivially satisfy conditions (1.2)

and (1.3).
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If the terms of the sequence b,, are zero except for finite number of terms than
this sequence clearly satisfies conditions (1.2) (with B = 0) and (1.3). In this case

the sequence f(n) have a simple structure:

Proposition 1.11. Let b, be a sequence of real numbers such that b, = 0 forn > N,

b
for some integer Ny. Then the sequence f(n) = Z Ed 15 periodic with period, say q,
dln
dividing [1,2,..., No| and f(i) = f((i,q)), for any integer i.

Reciprocally, if there exists q satisfying f(i) = f((i,q)) for all integers i, then
b, =0 forntq.

1
Moreover, in this case, . = — Z f(n) and v, = f(Q)

n<q
Proof: Let L = [1,2,..., Ny and i be a positive integer. Suppose d | L + i. If
d < Ny, then d | L, so d | i. If d > Ny then by = 0. Hence

. b b .
fLai)= S M =S M= )
d|L+i dli
. , v q ) i q
Let ¢ be the period and g = (i,q). Then (-, =) = 1. Take a prime p = — mod =,
g9 9 g g
with p > Ny. Then pg =+ mod ¢ and

. b b
fi)=flpg) =) —=> 7 =1fl)
dlpg dlg
because, if d is a divisor of pg and p | d, then by = 0. Next, suppose f(i) = f((i,q)),

then,

S|

= > (g) f(d)

din

i=(d,q)

i|(n, d|n
|(n,9) (i)
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Let e = (n,q). Then there exists integers N and @), such that (N,Q) = 1, n = Ne

and ¢ = Qe. Write d = ir, then

YD M(E>

ile rIeN
(r,sQ)=1
e N
- Y0 X e (57
ile rQ
(r$)=1
N N
since (r, EiQ) = 1 implies (r, E) = 1. Now, if (E ,—) > 1 then p <E—) =0, on the
i i ir ir

N
—> =1 then (E ,N) =1, because (r, e) = 1. Therefore
i

other hand, if (E ,
i

(4 r

= X u(On(F)
o35 | N
= X (%)X ut)
(£ N)=1 T

k3

and the inner sum above will be equal to 1 if N = 1 and 0 otherwise. Hence, if n | ¢

then
o ()
dn

and b,, = 0 otherwise.

Since B = 0, then

n=1
Finally,
> b, b b
I W SN DN R PRI DR WL
n=1 d|q dlq n<q din n<q
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3.5 AN ERROR TERM OF LANDAU

o(n)

function and a result of R. Sitamarachandrarao [81] we can extend our results to the

We finish this chapter with the well known arithmetic function . Using this

1
error term associated to Z m which was studied by E. Landau [49] in the end
n

n<x

of the XIX century.

Notice that

2 b
Let b, = a (n)n Then f(n) = Z Ed. In [81], R. Sitaramachandrarao proved that

M¢(n)>n 240 (x%> |

(n

2

n<x

so condition (1.2) is satisfied for any A and with B = 1. Since, by Merten’s theorem

[(-2) 1 2) v

pln p<n
then
4

Sk =3 W) =30 (log'n) = O (zlog*z),

n<x n<x ¢ <n) n<x
and condition (1.3) is satisfied for D > 4.

. ¢(2)¢(3) log p :
In this case, « = —=—-——= and v, = v + . Notice that our error term
¢(6) ' Z p(p—1)

is different from the one studied by R. Sitaramachandrarao. In his article

o C)B) | loga
B =D 50" o) T

n<x

here

o n o C2)B) logx  log2m 7+ 30, R
H@O =250 ee "2 2

n<x

Since B = 1 we can apply theorem 1.10, and so z(7') < 2. Therefore, if

#{1<n<T:aH(n)<0}>T,



T 10° 2x10° 3x10° 4x10° 5x10° 10*

Nu(T)y | 38 84 132 180 224 444
T

~ | 263 23.8 22.7 22.2 22.3 22.5

T 3x10* 4x10* 5x 104 10° 2x10° 3 x10°

Ng(T) 1386 1862 2332 4666 9352 14064
T

~ | 216 21.5 214 21.4 214 21.3

T 5x10° 6x10° 7x10° 8x 10° 9 x 10° 10°

Ny(T) | 23410 28132 32834 37512 42220 46976
T ;R 214 21.3 21.3 21.3 21.3 21.3

Figure 3.1: Sign Changes on Integers of Landau’s error term

then Ny (T') > T In this particular example, we seem to have Ny (7T') >

as can be seen in figure 3.1.

3.6 MULTIPLICATIVE SEQUENCES

90

In the main theorems we assumed that «a # 0. In this section we will prove that

this must happen whenever the sequence b,, is completely multiplicative, i. e. for any

positive integers n and m, b,,, = b,b,,. We will also give examples of multiplicative

sequences (i. e. by = 1 and by, = b,by,, whenever (n,m)=1), for which a = 0.

Proposition 1.12. If b, is a completely multiplicative sequence satisfying condition

(1.3), then o # 0.

Proof: Using (2.3), it is plain that

[0l [bn|
Z?<oo and ZFIO(U'
n=1

n>x

Therefore, for any prime p,
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Hence,

Since

then, taking + — oo we obtain

b, by
Ikt
p
Since b,, is completely multiplicative, we can write the Euler product as
b\ !
a = H (1 — —Z) .
» p

Next, we apply logarithm to the left side and obtain

SR

p
which is
Sy
p m=l1 p
Notice that
— 10 o 1l
DD hR <Y s <
2m — 2
p m=1 mp n=1
SO
o bm
DD > oo
p m=l1 mp
which implies a # 0. |

Example 3.2. Consider the multiplicative sequence defined by by = 1, by = 1,
b3 =—-9,bs =—9 and b, =0 forn & {1,2,3,6}. Then o = 0.
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Even when the sequence b, is strongly multiplicative (i. e. is multiplicative and
by» = b, for any prime p and any v > 1), we cannot expect « to be nonzero, as the

following example illustrates:

Example 3.3. Define by, = —3 and bs,_1 = 1. This sequence satisfies both condi-
tions (1.2) and (1.3), but since

1 2 1 i
it TR LD D3

n even n odd

then o = 0.

3.7 MEAN SQUARE OF H(x)

In this section, we generalize the mean square results (1.12) and (1.17), for our class
of functions H(x). We are going to prove

ba . : :
Theorem 1.13. Let f(n) = Z i be an arithmetic function and suppose the

d|n
sequence b, satisfies both conditions

an:Bx+O<l xA ) and Zbﬁ<<xlong,

n<x o0g T n<x

3D — bn
or some B real, D >0 an > 7+ —, respectively. Let o = —,
B I, D>0and A>7 wely. L 5
4 —~n
, bn, Blog2mx
=1 — — Bl H(z) = — _ .
= lim <n§<x . ogx) and () néx f(n) —az+ 5 + 5

Let g(n) = Zbd. Then,

dln
T x 2
T 9 (n) x
H? =
/1 (u) du 5.2 3 +0 <long) ,

n=1

where L > 0.
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Proof: Notice that

/lx H2(u) du = /2 H2(u)du + O(1).

Suppose x > 1. From (3.4), we have

i == 3 () 0 () + O (o)

D
TakeE:4+§andC’:E+1.Then

2

wo-| ¥ B@)] | Z )] o(mm) o ()

e ne log™ x log™ x
b T 1 1
2 (= O —F———-— O

' nszmc () (bgA = )* (<1ogx>2<“1>)

Using (2.7), we obtain

o= 2 ()] o)

log™ x

D
where K = A—7— 3— Let y(z) = —&— and n(m,n) = max (2,5 (m),y " (n)).
4 log™ z
Then
y(w) ’ (@)
i =g u 2 bbby [* u u
— (= du = - — — ) du.
N EE) T STy A e

As in section 2.3 we use the Fourier series (2.9) to evaluate the integral. Since,

1 & 27rku

we obtain

<
=~
B

A, —

=1 [ k l
Z —/ sin (27T—u> sin <27r—u> du
kl n) m n

k=1 (m,

QS
||



which is equal to

[\

myn=1 k=1
Now,
e ko1 1
/ CcOS (27ru (— + —)) du < 77—+
n(m.n) m.on G+ )
Since y(x) = xC then, using lemma 1.7, we obtain
log™ x
> Ll 3 r
St LU kllkl logT
ko1
If — # — then
m’ n

so, using lemma 1.6,

10,00 T
Z mn Zk‘m n logT’

m,n=1 k=1
kn;élm

¢ ko1
/ cos (27ru <— - —>> du =z —n(m,n)
n(m;,n) mon

Next, take d = (m,n), m = da, n = df, k = ary and | = 3. We have

If kn = Im then

logcﬂ?
log® z) = -
y(zlog™ x) (log(x) + C loglog 2))° ~ *

so, y ! (z) < xlog® x. Therefore, using (2.10),

y(z) e y(x)
binby n(m,n) [bba| (m, m)*n(m, n)
— — <
Dol 2 TS o
m,n=1 k=1 m,n=1
kn=Im
|b | |b,,| 7 10g
2 m n
< Zd Y lalyn flnben
d<m<y(z) m<n<y(z)

dlm (m,n)=d
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(z) o0

1 <= byb 1 [ kool kool

— me E —/ cos [ 2mu | — + — —cos | 2mu [ — — — du.
2m mn kL J o) m n m n



95

We are going to estimate the inner sum using Holder inequality, in the form

: :
|ZU’UZ| < (Z u}l) (Z v,f) . Take § > 0, then, using (2.6),
i j k

1 3
4 4
4
Z |bn|logcn < Z bi Z 10g30n
n - n? n%
m<n<y(z) m<n<y(z) m<n<y(z)
din din din
1
ratd
<

mi_‘s\/a

Once again, we use Holder inequality,

PN
NI

4
s bl [y s
m%_(s — m2 5745
d<m<y(x) d<m<y(=z) d<m<y(x)

dlm dlm dlm

1

< d%—éd%—édl—é

Therefore,

y(:L') ) y(x) o
bimbn, , 1 d

Z ﬁ(TZln) < x}1+5z e

m,n=1 mn k=1 d=1 di%di°d~ \/E

< gits

Take L = min(K, 1). Joining everything together, we get

y(z) 00
¥ x bnb 1 x
/1 (1) du 27?2 mn kl * (10ng>
m,n=1 k=1
kn=Im
From lemma 1.8, we have
b i 1 1
Z < 1-6
i G2 KL (y(2)
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Then, using (2.10),

* 0 bob, e 1 T
H2(u) du = — e
/1 (u) du 272 m%; mn I;_l kl +O( )

logh x
kn=Ilm
T = bpbn(m,n)? x
= — ———+0
12 m;:I m?n? * logh x
We still have to prove that
6 <= bnb,(m,n)? = g}
2 m2n2 - Z 127 (3.9)
m,n=1 k=1

where g(k) = Z b,. We follow S. Chowla [7, lemma 5|. Notice that
nlk
2

gi=1D b

nlk

= Z bbim

m|k

nlk

——, therefore
(m,n)

G=Y_, D buby

vk o=y
(m,n)

:Zh”

v|k

Now, take v = [m,n]. Notice that v =

We also have
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So, we proved (3.9). Whence

In the case studied by Y.-K. Lau, b, = u(n), so g, = 1if n =1 and g, = 0 for
all n > 1. Therefore, we obtain (1.12). Suppose b,, = 1 for all n. The corresponding

error term is

then, we obtain formula (1.17)

/lx F2(u) du = 274;222&)3;(1 +o(1)

5m?
= mx(l +0(1))

which was proved by A. Walfisz [103].
In general, the generation function of g2 is not easy to determine. In the next
lemma, we give estimates for the sum

i g*(n)

n=1

that only depend on the sequence b,.

Lemma 3.5. Suppose g(n) = Zbd and suppose the sequence b, satisfies the con-
d|k
dition Zbi < zlogP x, for some D > 0. Then

n<x

Jun

o0 2

¢(2) (Z %) < Z gzn(;l) < (2) (Z bﬁ;gﬂ)

n=1
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Proof: We have

Hence

% B 7T_2 binbn(m,n)
2 2,2
—n 6 el men
2
2 o0 o0
i 2 b
<SP E
d=1 m=1
dlm

The infinite series in the right is absolutely convergent, since we proved in (2.11)

that, for any X > N,

b, 1
S| 2 Pl e

d<X N<m<X
dlm
Now, using Holder inequality,
2 L 2
(o] o 4 oo
S IR DOE 3 I Dusr
m2 - m2 M?
m=1 m=1 M=1
dlm dlm d|M
1
2 3
o 4 2
] ¢e
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Therefore,

[NIES

Yo _ 3 1 b
RS Dy DIF-
n=1 d=1 &n‘?:nl
, :
5 o 1 2 oo o bfn
<(2(2) (Z@) D25
d=1 D=1 B|:7rlL

N

3.8 ON Xy(T)

In this section, we prove that, under our usual conditions (1.2) and (1.3), we have a
positive proportion of sign changes for the error terms considered, i. e. Xy (T) > T.

We also show how to use the results proved in the previous section to obtain a lower

bound for Xy (7).

b
Theorem 3.6. Let f(n) = Z Ed be an arithmetic function and suppose the sequence
dln
b, satisfies both conditions

an:Bx+O< - > and Zbﬁ<<xlogD:1:,

A
n<x log x n<x
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e}

D
for some B real, D >0 and A > 6 + 5 respectively. Let o = Z

n=1

bn

5
n2

—00
n<x

. bn BlOgQ?TZL’ b
v, = lim (ZE—Blogx> and H(m):Zf(n)—ax+T+E_
If a # 0 then Xu(T) > T.

Proof: Suppose zi (1) > T, and take the order relation ‘ <’ to be ‘=" in theorem
2.1. Then there is a fixed constant h and ¢T" disjoint intervals, with ¢ > 0, with each
of them having at least two integers, m and n, such that a«H(m) > 0 and H(n) = 0.

Notice that, we have (2.16), i. e.
5, 3
—1¢ {z} <aH(z) — aH([z]) < ik {z}

so, if H(n) = 0, then, for any x € (n,n+ 1), aH(z) < 0. Therefore, Xy (T) > T.
If Zy(T) = o(T) then by theorem 3.3, Ngy(T) > T. Now, if n is an integer
such that H(n)H(n + 1) < 0 then there is a change of sign in [n,n + 1]. Therefore,
Xu(T)>T.
The last case we need to consider is Zy(T) — zx(T) > T. If H(z) = 0 for a non
integer = then we have one change of sign in the interval [n,n + 1), where n = [z].

Therefore, Xy (T) > T. O

In 1986, Y.-F. S. Pétermann proved the following general theorem

Theorem (Pétermann [63], 1986). Let H : [1,00) — R be such that for each n > 1,
H(x) = H([z]) — a{x} 4+ 0(z), where a # 0 is a constant, and 6(x) = o(1). Suppose

further that there is a constant K > 0 such that

/j H?*(u)du = Kz(1 + o(1))



Then, for T sufficiently large,

Xu(T) > g (1 - i—f) T+ o(T)

For the class of arithmetic functions studied in this chapter, we have

1 & g°(n)
K=
2%2; n?

from theorem 1.13. So, if

n2

o0 2 2.2
g“(n 20T
G(2) := E (n) < 5
n=1

we can explicitly find a constant ¢, that depends on G(2), such Xy (T) > ¢T.
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CHAPTER 4

MORE ARITHMETIC FUNCTIONS

Given a sequence of real numbers b,,, and a complex number s, we define

o0

bn
n=1 n
b
In this chapter, we consider arithmetic functions f(n), such that f(n) = Z Ed and

din
the sequence b,, satisfies condition (1.3)

Z b} < xlog” x
n<x
and condition (1.4)

B(s) = (*(s)g(s),

for some (3 real, D > 0, and a function ¢(s) with a Dirichlet series expansion abso-
lutely convergent for o > 1 — A, for some A > 0.

We will obtain new versions of the results from the previous chapter that can be
applied to the examples mentioned in section 1.4. Using proposition 1.14, we prove

theorem 1.3. Throughout this chapter, s = ¢ + it will denote a complex number.

4.1 A NEW VERSION OF THE MAIN THEOREM

In this section, we prove that the conditions of theorem 2.1 are valid for the error
terms associated with the arithmetic functions defined above and using this result

we prove theorem 1.3.
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We begin this section by proving an interesting connection between the function

f(n) and the sequence b,,. Let ((s) be the Riemann Zeta-function, that is

C(S):ZE’ if s=o0+itand o > 1.

din
by, bn, 1
Z fT(:) =(s) Z sl Z NSt me

n<x n<x n<x m>Z

for any s = o + it with 0 > 1. Define

F(s) = Z f(n) and B(s) = Z b—n,

whenever the series in question exist. If the sequence b, satisfies the condition (1.3),

1. €.

Zbﬁ < zlogP z,

n<x

for D >0, then
F(s) = ((s)B(s + 1),

for o > 1.

Proof: The first part is easy:

f(n) 1 ba
P Bl DD Db

n<x n<x din
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To prove the second part of the lemma, we just have to notice that under condi-

tion (1.3), and, for o > 1, lim Z 15| exists and

T—00
bq 1 < |bd|
A+l L= s = do+l L= mo
d<z m>% d<z m>d
1 |bd’ o—1
< zo—1 da+1d
d<zx
1
< :L‘J—l
So, taking xr — oo we obtain the stated result. O

U. Balakrishnan and Y.-F. S. Pétermann [3] proved that:

Proposition 1.14. Let f(n) be a complex valued arithmetic function satisfying

>0

for a complex number (3, and g(s) having a Dirichlet series expansion
00 cn
S) = _
g9(s) 2

which is absolutely convergent in the half plane o > 1 — X for some A > 0. Let 3y be

()¢’ (s + 1)g(s + 1),

the real part of (. If
b
B — n
) =30

then there is a real number b, 0 < b < 1/2, and constants B;, such that, taking

y(z) = zexp (—(logz)"),
C@or— 3 o (L) +ol) iy <0
n<y(z)

n<x [50}

¢?(2)g(2)x + ZBj(loga:)B_j - Z %nz/} <%> +o(1), if Bo >0,

Jj=0 n<y(x)

\
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Remark. The constants b and B; are all computable.

Remark. The proposition is valid for complex 3 and complex functions f(n), but

we will be only interested in the real version.
We are in conditions to prove theorem 1.3:

b
Theorem 1.3. Let f(n) = Z Ed be a arithmetic function and suppose the sequence
din
b, satisfies conditions (1.8) and (1.4), i. e.

b
b4 1 D d n _ B
E . <L zlog”x  an E — =("(s)g(s)

n<z n=1

for some (3 real, D > 0, and a function g(s) with a Dirichlet series expansion abso-

lutely convergent for o > 1 — X, for some X\ > 0. Let a = (?(2)g(2) and

> f(n) —az, if <0
Hw) =4 " 2 |

Zf(n) —ar — ZBj(logx)ﬁ’J, if >0

n<x 7=0

where the constants B; are defined by proposition 1.14. If o # 0 then
1. #{1<n<T:aH(n) >0} >T;
2. if Ny(T) > T, then #{1 <n < T :aH(n) <0} > T;
3. 4f #{1<n<T:aH(n)<0}>T, then Ny(T)>T or zu(T) > T.

Proof: We are going to use theorem 2.1. Notice that, for any ¢ > 0

ot (1o s (1- 1))

1
= log“x — cm log“ 'z + O (—)
x x

So, H(x) = H([z]) — a{z} + o(1). From proposition 1.14, there is an increasing

function k(z), with lim k(z) = oo, such that

T—00
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where y(z) = zexp (—(log z)"), for some 0 < b < 1/2. Hence, the result follows from

theorem 2.1. O

1.2 f(n) = (“’T”)>

Given r # 0 real, let f(n) = (@)T We have

i(%) _ H(1+(1—p‘1)T+(1—p‘1)T+___>

n=1

Consider the binomial theorem
1 = (1
(1+-) = ( > —.
p ; k) p*
Where we have infinitely many terms except when r is a nonnegative integer. The

series converges because

() -cn( ) o

the last equality is justified by the following limit.

n+z
— = lim 7( L )

2| n—oo NF

Euler used the fact that this limit always exists to define factorial of a number in general.
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N L9 G,
w(i> o 1+<p+2p33+ )

=((s)"(s+ 1) H (1 + (;2)((;:1)70 + p<s2422 + >
= ()¢ (s + Dge(s + 1),

1
with g¢,(s) having an Euler product absolutely convergent for ¢ > —. So, condition

(1.4) is satisfied.

Remark. If r > 0 then the main term of Z <@) is (7"(2)g-(2)z, with no
n
n<x
logarithmic terms, where g.(s) is defined above. When r = 1, ¢1(s) = 1 and we

recover the case studied by Y.-K. Lau.

b
Next, we prove condition (1.3). Since f(n) = Z Ed’ we have
d|n

P T ()gn(s)
by lemma 1.15.

Lemma 4.1.

=

S5 o s)i(s),

S

1
where h(s) is absolutely convergent for o > —.
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Proof: We have

Then

7’4 dl d2
- H(1+p_s+ps+l+ps+2+“.)

p

where the d; only depend on j, for each j. Since we want to find an Euler product
4

1 r
that is convergent for o > 50 we just have to get rid of the term —. This can be
p

done by multiplying the above by ( _’"4(3). Hence

> y 1\" rtd d
o= ¢ (8)H<1——) (1+—+ps—il+ps—i2+--~)

s
n=1 p p

SH
S

S
»
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Therefore,

4 (L) e
S o< yn(l)
n<x n=1

[e9)

b4
— :Ul—"_lo;z E __n

n=1 n1+ 10; ’

= eC:UCT4 14—L h. {1+ ¢
log log x

< 1z (log 93)7"4

where we used ((s) ~ ;@85 1. Hence, the sequence b, satisfies condition
S [—

(1.3), with D = r%. So, theorem 1.3 is valid for the arithmetic functions of the form

13 f(n) = (22)

Let r # 0 be a real number, here we have

ISR IR QUSRS

— » p p*
— ] (1 N (1+p;)r -1, A+p +p‘;3: —(1+p7Y) +)
= ((s)¢" (s + DGr(s +1)

where

ro ()
Gr(s+1) = H (1 - pstl - p2(§+1) - )
P

1+ 717”_1 1_|_ 71_|_ 727‘_ 1+ —1\"
><1—[1+( ) LAdpm ) —(A4pT)
ps p25

p
C1 Ca
= 14—+ ——+-- )
1;[ ( p2(s+1) ps+2

1
so G,(s) have an Euler product absolutely convergent for o > 3" Hence, condition

(1.4) is satisfied.
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Remark. When r < 0, the main term of Z (#) is C"(2)G,(2)x, with no
n<x

logarithmic terms, where G,(s) is defined above.

" b
As before, writing (@) = Z Ed’ we have
n

dn

E

b
2

. = ((s)Gi(s)

S

5— p2(s—1)
r -+ @ + (7‘) (1 +p—1>r—1 + .
- H 1+ . S : 25 -
» p p
Therefore,
. 4
r+ &) + r ~1yr-t !
© () a+pty ™)
_s = H 1 + S + 25 + o
L - p p

1
where H,.(s) has an Euler product that is convergent for o > 5 Condition (1.3)

follows as in the previous section. So, theorem 1.3 is valid for the arithmetic functions
a(n)

of the form f(n) = (_)T

n
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4.4 f@):(ﬂﬂy

Notice that

on) yrl4+p'4+p?+---+p "
o~ 11 —

pkn

=[G +p " +p2 44" Q+p " +p 2+ )

pkn

=T +2" + 4k *V + (k+ Dp ™ 4+ (k+ p TV 4

pk{n

<m<gmy
Fix r. Then Z o)

) is equal to the Euler product
nS
n=1
1+2p7 ' +2p24---) (142 ' +3p 2 43p°+---)
H<1+( 2% ) (+2p P+ )
. p p

We will analyze the case » = 1. The result will also follow for the other values of r

as in the two previous examples. With r = 1, we obtain

. a(n))’"
§ L:C(S)H 1+ P P _|_p p2 + ...
— ns , ps ps

()P (s + 1)m(s +1)

1
where 7;(s) has an Euler product that is convergent for ¢ > —. Taking b,, such that
o(n) ba

—, We can write
on) ~ 2= d
by, 2pt+2p72 + p2+p i+
Z s L+ s—1 2(s—1) +
n=1 p p p
249914 ... 1 -1
” p p
Therefore

n=1
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1
where 0;(s) has an Euler product that is convergent for o > 3 Again we can obtain

condition (1.3) and so the theorem 1.3 is also valid in this case. For general r, we

%0 (m)
> ATEE ()¢ s+ Dnls + 1),

n=1

have

- bfz 1674
— =" (s)0,(s),
n=1 n

As in the previous sections, condition (1.3) is valid. Hence, we can apply theorem
o(n)

1.3 for the arithmetic functions f(n) = (m) , where r # 0.
n

45 fln) = (22)

We define ¢,,(n) to be the number of distinct groups of m consecutive integers all
prime to and smaller than n. Notice that, if p | n is a prime number and m > p then
any set of m consecutive integers has one member divisible by p, so ¢,,(n) = 0. We

can write

m
n H (1 — —> if m is smaller than every prime factor of n
p

0 otherwise

These functions were studied as earlier as 1869 by V. Schemmel [78]. Let

ps p25
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Therefore, we have

a2 - e
— Cn(s)C(s) 1;[ (1 G ngl)r - 1)
=((s)"™(s+ Drp(s +1)
> = ()
and h N
> 2—4 = (" ()6 (5),

1
where v,.(s) and &.(s) have Euler products that are convergent for o > 3 Therefore,

theorem 1.3 can also be applied to these family of arithmetic functions.



CHAPTER 5

THE DIVISOR FUNCTION

Let A(x) =), ., 7(n) —xlogz — (27 — 1)z, where 7(n) is the number of divisors of
n. There is a very extensive literature about the error term A(z). Many properties
have been studied, namely, its maximum order, (2-estimates and estimates on its
moments. In this chapter, we study some other properties of A(x). For example, we
will prove A(z) has a positive proportion of pairs (z1, z3), such that A(z) < —cxi
and A(zy) > cxi, for some constant ¢ > 0; we will obtain an explicit result about
the number of sign changes; and we also obtain a version of Lau’s main lemma, for

the function A(x).

5.1 PRELIMINARY RESULTS

Let 7(n) denote the number of divisors of n. It was proved by Dirichlet [12] that

D(x) := ZT(TL) =zxlogx + (2y — 1)z + A(x).
n<lz
Our present interest in the arithmetic function A(z) is about the number of

its sign changes. First we will obtain an approximation to D(x) that isolates the

oscillating term of A(z).

Lemma 5.1.

D(z) =xlogz+ (2y — 1)z — 2 Z 1/1(2) —%—FQ({\/E}—{\/E}Q) +0 (%)

A<z

114
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Proof: Following Dirichlet we have
D(x) = Y 7(n)
= 2.1

n<z d|n

=2 2.1

d<z m<%

SDIDSED D JRTS 3p Wit

d<y/zx m<\/x d<\/x Jz<m<Z d>/xm<%

But
Y 1= > 1
d>y/zm<g m<Vz /r<d<Z
and
t= X (3 -va)
d<y/z /z<m<§ A<z
= X 3] - v,
i</
So,

i<y
(S Ee)-1E) v
d<yz A<z d<yz

We have the following estimate of the partial sums of the harmonic series (e.g. [91]),

forn > 1,

Z L + v+ ! ! +0 L
— = n — = — .
m & i 2n  12n? nt

m<n

In our case, we obtain

9 Z g:Qx <log V7] +7+2[\1/§] B 12[3/@2+O<$))

d<\/z
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Now,
log [va] = log (va - {va})

= log (vz) +log (1 — {\\;_i}>

g (vE) {g} O ()
and

ARG INa

w1 o(h)

Therefore

2 Z 3:xlogx—Q{\/E}\/E—{\/E}2+27x+\/§+{\/5}—é+0<i>.

X
A<z

Notice that

Ve]" = (Vi—{va}) =2 —2{Va} v+ {Va}.

Hence, after joining everything together we get:

D(x) =xlogz + (2y — 1)x—2d§5¢ (%) - % +2({Va} - {Va}?) + 0 (%) :
O

From this lemma we can see that the major oscillating term of A(z) is related to
¥ (x/n) and since this function seems to have a random behavior when n is close to
the square root of z, it makes sense to predict that the maximum order of A(x) is
21¢ as was conjectured by G. H. Hardy. The Q-results show us that |A(z)| can be
larger then 21 and as D. R. Heath-Brown and K. Tsang [33] proved (see pp. 37) ,
|A(x)] is this large very often. Since, for any § > 0, A(n+ 1) — A(n) is smaller than
n?, for n sufficiently large, it makes sense to expect that the number of sign changes

of A(z) between 1 and T is about T4~
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5.2 POSITIVE AND NEGATIVE VALUES OF A(z)

In this section, we prove that the inequalities A(z) < —czi and Ax) > cxi occur
very often.
In chapters 3 and 4, we prove that the error terms H () studied, satisfy condition

(2.16). We are going to prove a corresponding result for A(z):

Lemma 5.2. For any x > 1,
—{z}logz —29{z} < Az) — A([z]) < —{z}logz — (27 — 1){z} (5.1)
Proof: Using the definition (1.26) of A(x), we obtain

A(z) = A([z]) = —zlog x + [z]log[z] — (27 — 1){z}

As before, log[z] = logz — % — gx—x}; — «+-. Therefore
M)~ Ar) = () logr —2y{a + L WD A AT
= —{z}logz —29{z} + Z ;{fi": o
Since {z}" < {z}, for n > 1, and Z Tl) =1, then
RS €3
Z n(n+ 1)z" <z
for x > 1. a

In [26], G. H. Hardy proved that

/ " la®)dt = O,

for any € > 0. Next, we prove that the order of the above integral is exactly Ti.
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Lemma 5.3.
T
/|A(t)|dt:cTi(1+o(1)),
2
where ¢ # 0.

Proof: D. R. Heath-Brown [31, theorem 2] proved that, for any k£ € [0,9], the

mean value
L rX
x4 / A@)|* da
0
converges to a finite limit as X tends to infinity, which implies relation above for a

finite c. K.-M. Tsang [96, corollary 3] proved that, for any &k € [0, 9],
X k
/ A@@)|Fdo = X1+
0

So, ¢ # 0. O

In the same direction, H. Cramer proved

Proposition 5.4 (H. Cramer [10], 1922).

/2 ' A2(t) dt = 67{;(5()3)Tg +0 (T3+f>

The two results above allow us to prove that A(n) < 0, for a positive proportion

of the values of n.

Theorem 1.18. There are positive constants c1,co and c3, such that, for T suffi-
ciently large,

#{1 <n<T: ClT% < A(n) < CQT%} > 3T

and

#{1<n<T: —, T < A(n) < —clTi} > csT.
In particular

#{1<n<T:An)<0}>T and #{1<n<T:An)>0}>T
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Proof: From Voronoi’s result (1.31), we have

/T A(x)dx = ET + (2\/§7TQ>_1 Ti iT(n)n_i sin (47r\/n_ - %) +0 (Ti> ,

n=1

so, from lemma 5.3, we obtain

T C 5 T & 5
Aydt = (S +0o))TF  and / IA()]dt = (= +0(1)) T,
/1 A(t)>0 (2 > 1 Aw<o <2 )

Let ¢4 = % We have,

T
/ A(t)dt < ¢, T
10<A(t)§C4T21£

and
T 5
/ AW dE < )T
1—C4T%SA(1)<O
For any p > 0, let
T
A - / A d
Y a@izert
¢'(3)
672((3)

and let c5 >

. Then, by proposition 1.32, for T" sufficiently large,

) T
T2 >/ A1) dt
1

> /lT A(t)*dt

1
|A®)|>pTE

> pTiAp.

Therefore, A, < 3. Take p such that p > ¢4 and % < cy, 1. e. take
p p
(e
p>max| —,cq |,
Cy

T
/ IA)|dt < esT5.
1

1
INGIErE

then
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Hence, using (5.2),

T
/ A(t)dt > ¢,T1
1

1 1
e, TA<A(t)<pT 4
and
T 5
/ A@)]dt > esT"
1

1 1
—pT 4 <A(t)<—cyT4

On the other hand,

r

1 1
c,TA<A(t)<pT 4

T
At)dt < pTi/ 1dt
1

C4T%<A(t)<pT%
Since |A(t) — A([t])| = {t}logt + O(1), by (5.1), then, for any ¢; < ¢4, co > p

and T sufficiently large,

T
#{ISnST:clT}l<A(n)<CQT<11}2/ 1dt
1

1 1
e, TA<A(t)<pT 4

1 T
> — / A(t)dt
prs 1

1 1
e, TA<A(t)<pT 4

Y
p
The first result follows with c3 = @ Similarly,
p

#{1 <n<T: —027—1i < A(n) < —ClTi} > 3T

5.3 AVERAGE RESULTS

In this section, we will use Voronoi’s result (1.28), in order to obtain a new version

of Lau’s Main Lemma, for the error term A(x).
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Theorem 1.16. Let € > 0. For T sufficiently large and 1 < r < T%_%,

2
2T t+% (;) 3 3 1
2 > \2/ TtH2e,.5—2¢ 5+2€,.3—4e
/T (/t-r A(u)du) dt = 27T2C() Tr —|—O(T r )—i—O(T r >

VT
(5.3)

Proof: Instead of Voronoi’s explicit formula (1.27), we will use the truncated

form (1.28) that we state here again:

Z

<N”

cos <47r\/n_ — %) +0 <x%+eN’%> .

3
1

where 1 < N < z. In order to simplify the notation, write h = LT Let T <t <2T,

h
t—h§u§t+handN:T2,then\/_:\/2_5—1—0(%) and

Z

<N”

cos (47ru\/_ ) + O(T°).

3
1

Now, we can calculate the inner integral of (5.3).
t+h
/ A(u2
: T _ T .
47r2\/_ Z ;.: <sm <47T(t + h)v/n — Z> — sin (47r(t — h)vn — Z)> + O(hT*)
7T2\/_ Z

n<N "

sm (4mha/n) cos (47?15\/_ — —) + O(hT*). (5.4)

5
4

In the last equality we used sin(a + b) — sin(a — b) = 2sin b cos a. Taking the square,

< HhA(uQ) du)2 =

t—h

8;4 Z 7(m)7(n) sin (4mhy/m) sin (47hy/n)cos (47Tt\/— — —)cos <4ﬂ't\/— — —)

mn<N (mn

WQ\/_ Z Tn5 47rh\/_) cos <47Tt\/_ — —> O (hT) + O (h2T26>

1
n<N

T
Next, we will get an upper bound for the second term above. Since, for a < — we

have sina = a + O(a?), then we will separate the sum in consideration into two
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sums, in the first we take those small values of n for which we can use the Taylor

approximation of the function sinx with a small error.

Z ()Sm(47rh\/_)cos<4ﬁt\/_——> Ol|h Z é Z 7(n)

5 5
n4 ni na

n<N 1

n> 256h2

= 256h2

o

since, for the given €, we have 7(n) = O(n¢). Hence

7r2\/_ ;V 3 sm (4mh/n) cos (47rt\/_ - —) xO(hT) = O (h%—%T%JrE) . (5.5)

Therefore
2T t+h 2
1
/ (/ A(u?) du> dt = —; Z T<m)T(5 n) sin (4hy/m) sin (47hy/n)
T t—h 8 m,n<N (mn)Z
o n n 3_9em3te 2r14-2¢
X /T t cos (47rt\/ﬁ—z> oS (47rt\/_—z) dt+0<h2 T> > + O(R* T %)
(5.6)
Next, we analyze the integral of the right hand side. We have
2T - -
2/T t cos (47rt\/ﬁ — Z) cos (47rt\/_ — Z) dt
2T
- / t [sin (4rt(y/7m + /) + cos (4nt(y/m — V)] dt
T
2T 27
:/ tsin (47t(v/m + v/n)) dt+/ tcos (4mt(v/m — v/n)) dt (5.7)
T T

We will use integration by parts in both terms. We begin with the second term. If

m # n, then

/Qthos (4mt(v/m — /n)) dt = T sin (87T (v/m — v/n))

T 2m(y/m — v/n)
T .
T = v sin (47T (v/m — v/n))

1
O(W—ﬁ)?)
< r + 1
NoENO RS
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If m = n, then

/ tcos (4mt(v/m — v/n)) dt = ;TQ.

T
Now, we evaluate the first term of (5.7).

/2T tsin (4mt(v/m +/n)) dt = =

T

(\/mT—l— NG cos (47T (v/m + /n))

T
_ = NS cos (87T (v/m + v/n)) + O(1)
T

since m,n < N = T?. When m # n,

2T . T
/T tsin (471'25(\/%4- \/ﬁ)) dt < m

and if m =n,

2T ' T
/T tsin (4rt(v/m + v/n)) dt < NG

As before, we will separate the sum in (5.6) in two sums. When n is small we use the

Taylor approximation of the function sin z. When m = n and n is small, we obtain

5 5
n)z n)z
ngzsﬁl}ﬂ ( ) "§256th ( )

e X o (4)

"= 256n2

871T4 Z 7(n)? (47rh\/5)2 (2T2> Lol Z 7(n)? (47Th\/ﬁ)6

which is equal to

iTQhQ Z 7(n)?

3—4er2 2
— U0 (11T +0 (T,

(5.8)

<1 _
"= 556K2

2
where we used Z T<nz) = O(1) for the third term. Joining all the other terms
n

<_1
"= 55602

and writing r = hy/T, the equation (5.6) becomes

2
= U7 3 7(n)?
2 _ 2
/T (/t ) Au )du) dt = 27r2Tr E

—+ ST+ S+ S35+ 51+ 55
-7z T nz

25672

n<

+0 <T%+2er3725 +0 (T%+25T374e> + O(?”2T26) (59)
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Where

_T _
25672 <mn<N
m#n

T(m)7(n)
Sy=0 E - 5
mmen (Mn)1 |\/m —+/n|

m#n

7(n)®
S5=0|T TZ n3

The sum in the first term (5.9) can be expressed as an infinite sum plus an
error term and the infinite sum can be evaluated using the following result due to

Ramanujan

i) _ g7
¢(2s) ns
which is theorem 304 in Hardy & Wright’s book [29]. Since, for the given €, we have

)

n=1
7(n) = O(n°), then

3 s s TP 3 S tm? 8, e ()
D Dl st =Ll D s < XD Dl

T =1 T
<_T _ n _Tr
N=562 "> 25612

_ 30
X3

Tr2 1+ 0 (T%+267n3746>

The term S; has the same upper bound as the error term above,

3 e T(”)2 .9 r Lioc 3 4¢
@T Z " S1n 47Tﬁ\/ﬁ = O<T2 T ), (510)
T <n<N

25672

5
2
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For the next two terms we have to be more careful. Our first step will be to get rid

of the square roots in the denominator. We have
7(n)
Z mi(m—n)

) ey

Y
r 3
7= 25612 — 25612
m#n
We estimate the inside sum after making the change of variable, k =m —n
T(m 1

( ) < T¢ Z .

e k(k+mn)a

n<m725€r2
. 1
<T | T+
k< B(E 4 )T n<kh< T k(k +n)
logn
<75
n4
Hence,
2€,.2 1
So K T r"logT Z -
< T*r?log® T
< T2 (5.11)
Analogously,
Sy < Z 7(n) T(m)ym
5 5
TN ni A=y mi(m — n)
1 1
cre 3 Lyt
2522 <n<N n k<N k(k * n)Z
1 [log N 1
<TWR N — ( B4 —3)
T n4 n4 n4
256:2 <N
1+4e r?
< T (logT) <T)
(5.12)
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For S we don’t need to cancel T, so we can be more relaxed in our estimate. We,

again, make the change of variable k = m — n.

7(m)T(n) e 1 1
2 G- v <7 72

1
Lo N2
<N n<Nn n<m§Nm4(m n)

m;én
4e
ey dy ot

Nn k<N

Tor1. . N1
4

< T, (5.13)

Since 7(n) = O(nf),

n3
256r2 <N
7“47445
Whence,
2
27 t+ = 3¢4(3 )
/ / ﬁA(UZ)du dt — ¢ (2)2Tr2+0 <T§+267n3746) +O(T567’2)
T t——= 2¢(3)w

e (;ﬁ“j) +0 (Tt )
¢

_ 23((3()%) T2+ O <T4+2e 7—2e> L0 <T%+2€7’3_4E>

|

Notice that, even if A(u?) was always very large, say A(u?) = CT%(l +0(1)), for
all u € [T, 2T, we would obtain

/TQT (/}fﬁ A(u?) du>2 dt = 4*Tr*(1 4 o(1))

VT

which doesn’t contradict theorem 1.16, if ¢ is small enough. So, from theorem 1.16,

we cannot assure that A(x) must have many changes of sign. Our next step is to
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explore if we can find a constant, say X, such that, for some pairs of intervals

separated by a distance X — 2h, say
we have enough cancellations in the sum of the integrals

A(u?)du  and A(u?) du.
I Ip)

If exists X satisfying the above condition then we must have many changes of signs

for A(x).

Theorem 1.17. Let e > 0, T sufficiently large and 1 < r, X < T2 ¢ Fort e [T, 2T

and any h > 0, define

t+h
Ay = / A(u?) du.
t—h

Then,

T 2 3¢'G)
/T (At’\/rf "‘At-&-X,ﬁ) dtZT(QC(Q) Z g COS 47TX\/_)

L0 <T§+2e,r,3—45> LOT )40 (T%+2ET%—2E>
(5.15)

Moreover, for any X,
2T
/T (At + At x, f) dt < Tr?
Proof: First, we prove the second statement. The second term of (5.15) is of the
size of the first only if X is such that cos (47TX \/ﬁ) is almost always close to —1.
But, if for some n and X, cos (47TX \/ﬁ) is close to —1, then cos (47‘(’X \/R) is closed

to 1. Therefore, we have

i 5 COS 47rX\/_)

n2
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4(3
for some ¢ < =—2~. Hence, for any X, we cannot cancel the main term of (5.15), i

¢(3)

e. Tr? is the exact average order of

2T 9
/T (At,ﬁ + At—&—X,ﬁ) dt

Now, we evaluate the integral on the left of (5.15). Notice that

2T 2T ) )
/T Ay dt = / A} dt 40 (X7?)

a0
2¢(3)m?

TT2 + O (T%+26r%f2e> 4 O (T%+26r3746>
so we only need to calculate

2T
/ Ay At+X dt

T

,
Let h = — and N = T?. Using (5.4) and (5.5), we have
- 5 (5.4) and (5.5)

t+h t+X+h
AipArixn = (/ A(u?) du) (/ A(u?) du)
t—h t+X—h

(27?2\/_ Z sm 47Th\/_) cos (47Tt\/_— —))
o <\/t+—X Z T(n)

sin (4mhy/n) cos (4%(75 + X)vn — %))

= —‘M 7(m)7(n) sin (47rh\/_) sin (47Th\/_)

gt mn<N (mn)g
s T
X COS (47?15\/% - ) cos <47r(t + X)v/n — Z> dt
+0 <h%‘25t%+6> + O(h2t>)
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Next, we the integral,

oT
/ AppApsxp dt = # Z r(m)7(n) sin (47hy/m) sin (47hy/n)

5
T e N mn)a

X 2T\/mcos (47rt\/ﬁ — % Cos (47T(t + X)v/n — %) dt

+0 <h%—2ET%+E) + O(R2T+%) (5.16)
Using another trigonometric identity,
2T . -
2 Vit + X) cos <4ﬂt\/ﬁ—z> Cos (47T(t+X>\/_—Z) dt
T
27
= Vit + X)sin (4rt(v/m + v/n) + 47X /n)
T
2T
+ Vit + X)) cos (4mt(v/m — v/n) — 4nX+/n) At (5.17)
T

2
Now, v/t(t + X) :t<1+£+0 (X—>) We have,

2t 2
2T 52 T -

4 cos (47Tt\/ﬁ — Z> Cos (47?(t + X)v/n — Z> dt < X?logT
T
Therefore,
1

— rm)r(n) o) (47hy/m) sin (4hy/n) X2log T = O(T"~)

87T4 <N (mn)Z

We will use integration by parts in the next term,

/2T t sin (47Tt(\/% ++/n) + 47TX\/E) dt
cos (47T (v/m + v/n) + 4w X/n)

B T
dn(ym+ /)

B T
2 (/i + )
T

TR

cos (87T (v/m + v/n) + 47X /n) + O(1)
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We also have,

/2T X sin (47Tt(\/ﬁ ++/n) + 47TX\/5) dt
COS (47TT(\/E ++/n) + 47rX\/ﬁ)
cos (SWT(\/E ++/n) + 47TX\/E)

B X
Ar(v/m + /n)

B X
dm(y/m +/n)
T

<V

since X < T27¢. So, using r = h/T, (5.14) and the third part of (5.8),

T
— 4drh/m Amh —_— 2
sm(7r )51n(7r\/_) (\/ﬁ—i—\/ﬁ)«r
For the second term of (5.17), we have to distinguish two cases. If m # n, then

/Zthos (4mt(v/m — v/n) — AnX/n) dt

T

T .
— o (T =) sin (87T (v/m — v/n) — 47 X/n)
47r<\/n—zj_ NG sin (47TT(\/E —vn) — 47TX\/E) +0 (m)
T 1
< lvV/m — /| * (v/m — \/n)?

and
2T

X
; X cos (47rt(\/E —/n) — 47TX\/5) dt <« m

From (5.11), (5.12) and (5.13), we obtain

T 1
s 32 im0 ([t )

g>

m,n<N
m;én

& Sy + 83+ Sy < T2

If m = n, then

/Tthcos (4mt(v/m — /n) — AnX+/n) dt 3 ? cos (41X /n)
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and

/ZTX cos (4mt(vm —v/n) —4rX+/n) dt = TX cos (4 X /n) .

As in the proof of theorem 1.16, we will separate each of the sums

% 2 Z 7(n)* sin (47rh\/ﬁ)2 cos (47X /n)

5
n<N n2

and

1617r4 Z T(ng) sin (47rh\/ﬁ)2 coS (47TX\/ﬁ)

n<N T

into two sums, one with n < 5E672 for which we can use sinz = x + O(x3), and the

other with Ghz <n < N. Take again r = hy/T. Notice that
Lrx ¥ T b/ cos (4mX /i) < Xr?
167 < n3
ns 256h2
and

Njan

1 3 7(n)? 6 1ioe 34
= (X + 5T) > (4mha/n)° cos (4mX\/n) < T3+~

<t n
"> 256n2

We estimate the terms with large n as we did in (5.10),

1 3 7(n)?
T\ X+ T
1671 ( T3 > TZ

~— sin (47rh\/ﬁ)2 cos (47X v/n) < T2t 2ep3—de
nz
3562 <<V

So, we are left with

3

7(n)? 2
o T2 Z . (4mhy/n)” cos (4m X /n)
n< 256h2
3 7(n)?
= 2—71_2T7“2 2; n% COS (47TX\/E)
<3e?

3 - 2 \
= ﬁTT2 T(Ti) cos (47 X/n) + O <T§+26r3’46>
T 2

n=1 n
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Hence, joining everything together, we obtain

o1
/ ApnAryxpdt =

T

n2

i +— cos (47X /n) +O(T2+26 3— 46> +O(T' €)+O(T4+26 6)

5.4 CHANGES OF SIGN

In this section, we use a different approach to the problem of finding the number of

sign changes of A(x), for 1 <z < T. We need a technical lemma before we continue.

Lemma 5.5. Let € > 0 and let T be sufficiently large. Take h < T, k > 1 an integer

and N =T?. Take alsot =t, > T, then

tr+h  ptp_1t+h to+h pti+h
F(t, k) / / / / A(t2)dty dty --- dty_o Aty
ty_1—h

2kwk+1\/—\/_z e ,5 sin® (4mhy/n) cos <47rtk\/_— —) + O (RF'T¢) . (5.18)

Proof: We will use again the truncated form of Voronoi’s result (1.28):

cos 4%%——)—1—0(1’ 2 _%>,

<N ni
where 1 < N < z. Let h < T¢. Given £k > 1 and t > T, let t, = t and for any
1 <i<k, take ty_; € [tp_ir1 — h,tx_is1 + h]. We are going to prove, by induction,

that for every 1 <i < k, we have

h
thei = V1 Ool—]. 5.19
\V ik kTt (ﬁ) ( )
Since t, —h <t 1 <tp+hand /ity £ h =+t —i—O(h

i)
\/KZ\/EJFO(%).

then
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h
Now, suppose (5.19) is valid for some 1 <i < k, i. e. \/tp_i =Vt + O (7) We
k

are going to prove that (5.19) is also valid for ¢ + 1. We have

h
(i t l—|—O
i = /o (rk )

and
h h
_h 1
Vi 1+O( )

= > &=

AGU)
o)

Therefore, \/ty_(i+1) = Vi, + O ( ) Hence, (5.19) is valid for any &£ > 1 and
any 1 <1< k.

Take to,t; > T, N = T?. Then

O (\;%) Z TTST) cos <47rt0\/_ - —) = O (hT°). (5.20)
and, for k> 1, ty,....tx > T and 1 < j <k,
O (%) Z ;2(2 sin’ (47why/n) cos <47rt /n— —> =o(1), (5.21)

since h < T°. We are going to prove (5.18) by induction. Let N = T? and suppose

that k = 1. Take t; > T and tq € [t; — h,t; + h], then

Atd) = v Z r(n) cos(4mtoy/n — %) + 0O (T9)

V0 () o rtn 6
- 7r\/§ z;v . cos(4mtov/n — )—I—O(T)

COS (4mtgy/n — —) + O (hT")

n<N ni
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where we used (5.20) in the last step. Therefore,

t1+h
/ A(t2) dtg
t

17h

47r2\/_ Z e (sin (47?(151 + h)v/n — %)— sin (47r(t1 — h)v/n — Z))+ O(h2T)
7r2\/_ Z

n<N T

sm (4mha/n) cos (47Tt1\/_ - —) + O (hT).

5
4

Suppose we have (5.18), for some k > 1, i. e.

trp+h tp—1+h to+h t1+h
/ / : / / A(t3) dto dty --- dty_o dty_1 =

2kﬂk+1\/—\/_z sin” 47rh\/_) cos (47Ttk\/_—_)_|_0(hk+1Te)

n<N n

N\R‘

34
it

We are going to prove that the above implies

tpy1—h tr+h te_1+h to+h ti+h
/ / / : / / A(t3)dto dty --- dty_o dtp_1 | dty =
te41—h to—h t1—h

- 1 T(n) . E+1 T bt 2re
2’“+17r’f+2\/§v tht1 % e sin®*! (47hv/n) cos (47Ttk+1\/_ — Z) +0 (h"°T°)

Now, using (5.19) and (5.20),

/t'thrlh (\/_Z ?E ésm (4mha/n) cos (47rtk\/_——>> dty,

k+1—h
thr1—h
:/ w/tkHZ( 5 ~ sin® (4mha/n) cos (47rtk\/_——>) o(1) | dty
tht1—h n<N ats
Since,

thy1—h T
/ cos <47Ttk\/_— Z) dty,
¢

k+1—h
T

<sin <47T(tk+1 +h)vn — %) — sin (47T(tk+1 —h)vn — Z))
sin (47Th\/_) cos (47rtk.+1\/_ — —)

1
B 477\/_
7T\/_
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we obtain

tpy1—h tr+h te_1+h to+h t1+h
/ / / / / A(t2)dty dty - dty_p Aty | dty =
tpy1—h tpy_1—h to—h t1—h
L S T (/) cos (4mtisavin = ) +0 (h-217)
oktigktz, /o V T — N k+1 1

Hence, by induction, (5.18) is true for all £ > 1. |

We are in conditions of obtaining a different proof that Na(T) > Tz

Theorem 1.4. Let No(T) denote the number of sign changes of A(t), in the interval
[T,2T]. Then, for sufficiently large T', NA(T) > VT. Moreover, there exists a con-
stant c1, and ti,ty € [T, T + \/T] such that A(ty) < —clTi and A(ty) > clTi.

Proof: For h, k, N as in the previous lemma and ¢ > T, define ¢g(t, k) by

F(t, k)= m\ﬁ (Z T<+) sin® (4mhy/n) cos (47rt\/_— —> + g(t, k:)) :

<N Tt

Notice that, g(t, k) < R¥1 7727 Tt is well known [29, theorem 289] that

CQ(S) = Z T<n), for s> 1.

nS

n=1

Take 6 > 0 small and, for fixed h and k (we will later take explicit values for h and

k), take T sufficiently large so that, for any ¢t > T, |g(t, k)| < 0. Then, for any real

t>T,
3k
Z T§ { sin®(4mhy/n) cos (47rt\/_— —) +g(t, k)| < ¢ <— + —) —1+|g(t, k)|
nitz 4 2
2<n<N
3 k
2
1)
<¢ (4 + 2) +0
Since,
2k7.[_k+1\/§

F(t,k) =

Vi
sin®(47h) cos <47rt — %) + Z :L) sin® (4mhy/n) cos <47rt\/_ - %) + g(t, k)

o<n<N Tt?
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3 k
we want to find h and k such that sin® (47wh) > (2 (Z + 5) —1+6 and Rk to

take the smallest possible value. This happens for A = 0.084901... and k& = 4.

As we will see below, there is no lost if we take h = ﬁ instead. Notice that,

1 A 1
CZ(;;) _ZL::OBSSO&%..andshfl<IIW) — 0.684641 ... Take 7o = [T] + 1 + —

and z; = xg + %, for any ¢ > 1. Then

(e

Cos <47T:E,~ - Z> = (—1)".

Therefore, F(z;,4) > 0if ¢ is even and F(z;,4) < 0 if 7 is odd, i. e. F(t,4) changes

sign for t = t;, € (3, zs11). This implies that A(#3) changes sign when

4 2
toe ( — hk .Z’H_l—'_hk) (xl—ﬁ,xz—l-ll—;i) s

8 16 27 9
and so, A(t) changes sign in (:v? — 7% - o1 r? + 25 + %> Take only the

x; such that =0 mod 4, in this way, the intervals will be disjoint, since

8 16 14 49
i+ 1) — — (i + D)+ =2l + —x + —
(i +1)7 = @i+ D)+ oy =2+ 792+ 57
e 2T
23 29
227" " 1036

We proved that there are T+O(1) changes of sign in the interval (7%, 27?). Therefore
XA(T) > VT + O(1).

Let ¢ =

1
. Now, we prove the second part of the theorem take c¢; suffi-
1675/2

ciently small (it’s enough to take ¢; < 0.09655¢) and T sufficiently large such that
4
lg(t,4)| + < §, for all t > T. Take a = sin* (ﬁﬁ)’ then
c

“/Q”“@“__%_z:

7 m c
sin ( \/ﬁ) cos (47rt\/_ — —> +g(t,4) £ =
2<n<N T g 2 4 ¢

changes sign depending only on cos (47rt — %) as F(t,4) above. Hence, A(t) + o, T1

also changes signs in

11Tt 12177t 227 1936 )
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for any 4. Therefore, for every 0 < j < /T, exists t1,t, € [T+ jVT, T + (j + 1)VT)]
such that A(t;) < —;T and Alty) > 1T, Since A(t) changes at most logt in

intervals of the form [n,n + 1) (see (5.1)), we have Na(T) > VT + O(1) O
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