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ABSTRACT 

 Agricultural production is risky because it depends on weather which can vary from day 

to day. Thus, the risk associated with agricultural production can potentially be reduced by using 

historic weather data for a particular location to plan strategically to take advantage of favorable 

weather conditions or to avoid adverse weather conditions. This study uses historic weather 

information to explore and develop optimal irrigation and planting date for irrigated corn, cotton, 

peanut and soybeans in Southwestern Georgia. The value of such weather information is also 

estimated for the Georgia AEMN weather station at Camilla by developing a methodology that is 

able to estimate the value of site-specific weather information. The methodology involves the use 

of DSSAT and GIS. The analysis indicates that the estimated value of the weather information 

from the Camilla AEMN station is $847,502 per year for irrigated corn, cotton, peanut and 

soybeans. 
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CHAPTER 1 
 

INTRODUCTION 
 
1.1 Background 

Weather and climate information are vital inputs in many human endeavors throughout the 

world. Virtually all economic sectors and many public and private activities are affected to some 

extent by changes in weather and climate (Williamson et al., 2002). For instance, weather and 

climate variability affect our health and determine our heating and cooling requirement, clothing 

and nutritional needs (Maddison and Bigano, 2003). In particular, weather events can have a 

profound and dramatic effect on agricultural production across all regions of the world. Of all 

economic activities, agriculture is the most dependent on weather and climatic conditions 

(Adams et al., 2004).  

            The day-to-day variation in weather conditions represents a major source of risk and 

uncertainty in many agricultural production systems around the world. In fact, in the United 

States, weather events such as too much or too little rainfall accounts for the majority of crop 

failures (Ibarra and Hewitt, 1999). Variation in weather conditions is also associated with other 

forms of agricultural risks. Weather conditions such as high temperatures, high humidity or 

higher than normal rainfall, can create the right environment for the outbreak of diseases. They 

can also improve the conditions for insects and other pest that consume and weaken crops and 

spread diseases across fields (Fraisse et al., 2006). Similarly, unexpected factors such as drought, 

crop failure or abundance can result in dramatic changes in the prices of crops across markets. 

            Farmers do not have a choice over what weather condition they get in the next growing 

season and also do not know with certainty what weather conditions to expect across their fields. 

Thus, farmers and other decision makers in the agricultural sector make production decisions 
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based on their understanding of the general weather pattern for their region (Jones et al. 2000). 

This uncertainty usually results in conservative strategies that sacrifice some productivity to 

reduce the risk of production losses (Jones et al. 2000).  

            Since seasonal variation in weather plays an important role in the risks faced by the 

agricultural sector, one way to reduce that risk is to apply weather information to guide the 

decision making process in agricultural production.  Over the years, the National Oceanic and 

Atmospheric Administration (NOAA) and many other experimental and research institutions 

have made significant progress towards enhancing the accuracy of weather and climate 

prediction (Williamson et al, 2002). However, the potential for producers to benefit from this 

progress depends on their flexibility and willingness to adapt farming operations to the forecast, 

timing and accuracy of the forecast, and the effectiveness of the communication process (Fraisse 

et al, 2006).  

            Some farmers, especially the resourceful ones, are capable of adjusting their management 

decisions such as choice of cultivars, planting dates, irrigation water application, and rate and 

timing of fertilizer application among others, to take advantage of expected favorable conditions 

or reduce unwanted impacts, if they have timely and reliable predictions of weather into the 

season. It is now possible to model crop production at specific locations (if site-specific data are 

available) to provide farmers and other agricultural decision makers with the tools they need to 

make important production decisions. Given historic daily weather information, the Decision 

Support System for Agro technology Transfer (DSSAT V4.5) model can be used to evaluate the 

optimal crop management decisions that will yield the maximum returns for a given crop at a 

given location. The DSSAT, which is well calibrated and tested at many locations around the 
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world, is increasingly becoming popular among researchers (Amissah-Arthur, 2005). This 

approach, alongside other techniques is used by this study. 

            This current study uses historic daily weather information through crop simulation to 

explore and develop optimal irrigation and planting date for irrigated corn, cotton, peanut and 

soybean in Southwestern Georgia. The agricultural value of such weather information is also 

estimated for the Georgia Automated Environmental Monitoring Network (Georgia AEMN) 

weather station at Camilla by developing a methodology that is able to estimate the value of site-

specific weather information.    

 

1.2 Weather and Climate Information 

Even though weather and climate are often conflated in the popular media, these terms are 

different concepts and mean different things. The difference between weather and climate is 

basically the measure of time. Climate describes the long-term pattern of weather in a particular 

area (Paz and Hoogenboom, 2008). A period of 30 years is usually used to assess the climate of a 

given location.  

            Weather, on the other hand, is the day-to-day state of the atmosphere and its short 

(minute to minute) variation. There are a lot of components to weather. Weather includes 

sunshine, rain, cloud cover, snow, flooding, wind, hail, sleet, freezing rain, blizzards, ice storms, 

thunderstorms, steady rain from a cool front and from a warm front, excessive heat, heat waves 

and many more. In many places, the weather can change from minute-to-minute, hour-to-hour, 

day-to-day and even from season-to-season. Climate, however, is the average of weather over a 

long period of time and over a large area. In summary, climate is what one expects, like a hot 
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summer, and weather is what one gets, like a hot day with pop-up thunderstorms on a hot day 

(Paz and Hoogenboom, 2008). 

             

1.3 Weather and Climate Information Based Decisions in Agriculture 

The main concern in crop production is crop yield and as a result farmers make weather based 

decisions almost on daily basis to prevent crop failure and to protect their investment. The 

consequences of such decisions are often not known with certainty until sometime after the 

decision is made, and the resultant outcome can either be better or worse than expected (Fraisse 

et al, 2004). Weather-based decisions involve activities that should occur in a relatively shorter 

period of time into the future, usually in less than a week. Examples of such agricultural 

activities include; irrigation, frost protection, fertilizing, and harvesting. On the other hand, 

climate-based decisions are usually pre-season decisions and tend to be more strategic in nature 

(Fraisse et al, 2004). Examples of climate-based agricultural decisions include; choice of variety 

to plant, acreage allocation, pre-purchase of inputs, and marketing.   

            There has been an improvement in recent years in weather and climate predictions. 

However, there is still more room for improvement. It is currently not possible to forecast before 

the start of the season on which day a locality will have precipitation, storms or extreme 

temperature even though scientists have developed some ability to predict anomalies in the 

season average of the weather (Fraisse et al, 2004). The accuracy of weather and climate 

forecasts generally decreases as the lead-time increases. Weather forecasts are fairly accurate for 

the coming one to two days. As lead-time increases to three, four, or five or more days, accuracy 

decreases and there is only a small amount of accuracy with lead-time of five to seven days 

(Fraisse et al, 2004). 
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The Virtual Academy for the Semi Arid Tropics (VASAT) has grouped weather forecasts into 

three main categories: short range forecast - up 48 hours; extended forecast - up to 5 days; and 

long range forecast – from 30 days to the entire season.  Forecast accuracy of short range 

forecast is generally 70-80%. This is reduced to 60-70% and 60% for extended and long range 

forecast respectively (http://vasatwiki.icrisat.org/index.php/Types_of_weather_forecasting). 

Each type of forecasting has a role to play in farm operations and planning of agricultural 

activities. These are presented in Table 1.1.  

            Timing and accuracy of climate or weather forecasts are necessary for such forecasts to 

be useful to farmers and other users of climate and weather information. Perfect forecast 

information is useless if it is delivered to a farmer after the window of time for making decisions, 

and the same thing can be said of inaccurate forecasts delivered within the decision time window 

(Fraisse et al, 2004). 
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Table 1.1: Types of Weather and their Application in Agriculture 

Type of  
Forecast 

Forecast emphasis is on: Forecast  
Accuracy 

Agricultural Application 
 

 
 
 
 
24-48 hours 
forecast 

 
• High and low 

Temperature 
 
• Wind velocity and 

direction 
 
• Sunshine duration 
 
• Time and amount  
      of rain 

 
• Relative humidity 

 
 
 
 
 
70-80% 

 
• Timing of field operations. 
 
• Soil workability. 
 
• Drying rate of soil. 
 
• Irrigation scheduling. 
 
• Spray application. 
 
• Labor efficiency-working 

hours. 
• Frost Management 

 
 
 
 
 
 
 
 
Up to  
5 days 
forecast 
 

 
 
 
 
 
 

• Change in weather 
type 

 
• Sequence of rainy 

days 
 
• Strong wings 
 
• Extended dry wet 

spells 

 
 
 
 
 
 
 
 
 
60-70% 

 
• Determined depth of sowing 

for optimal seedling 
emergence. 

 
• Decide whether to sow or 

not. 
 
• Plan irrigation based on the 

expected rainfall. 
 
• Ensure maximum efficiency 

of spraying. 
 
• Decide to harvest or not to 

harvest. 
 
• Management of labor and 

equipment. 
 
• Plan for animal feed 

requirement. 
 
• Livestock protection from 

cold and heat. 
 

Source: (http://vasatwiki.icrisat.org/index.php/Types_of_weather_forecasting) 
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Table 1.1: Continued 

Type of  
Forecast 

Forecast emphasis is on: Forecast  
Accuracy 

Agricultural Application 
 

 
 
 
 
 
 
30 days 
forecast 

 
 
 
 
 
 

• Abnormalities in 
temperature and 
rainfall 

 
 
 
 
 
 
60% 

• Soil moisture management. 
 

• Pasture management. 
 

• Determine irrigation 
frequency. 

 
• Short term storage after 

harvest. 
 

• Decide to store for short term 
or market perishable 
products after harvest. 

 
• Avoiding chemical sprays if 

insects or disease are likely. 
 
 
 
Seasonal  
weather 
Forecast  

 
 
 
 

• Abnormalities in 
temperature and 
rainfall 

 
 
 
 
 
60% 

• Crop planning-marginal 
crops vs. normal crops. 

 
• Choose crop varieties to suit 

the expected weather. 
 

• Determine expected crop 
yield. 

 
• Plan area to be cultivated to 

get the required crop 
produce. 

Source: (http://vasatwiki.icrisat.org/index.php/Types_of_weather_forecasting) 
 

1.4 The Georgia Automated Environmental Monitoring Network 

Weather information is, and will continue to be an important input in the management decision 

making process of many human activities including agriculture. At the national level, the 

National Weather Service (NWS) is charged with the responsibility of weather monitoring and 

recording. The NWS is the lead forecasting outlet for the nation’s weather and supplies more 

than 25 different types of reports, warnings and weather watches (Paz and Hoogenboom, 2008). 
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In the state of Georgia, the NWS is the main supplier of short-term weather information. It 

operates the Automated Surface Observing System (ASOS) at major airports such as the 

Hartsfield-Jackson International Airport in Atlanta and many others locations across the State of 

Georgia (Hoogenboom et al., 2003). In addition, the NWS also manages a Cooperative Weather 

Observer Network that is operated mostly by volunteers (Hoogenboom et al., 2003).  

            The weather information provided by the NWS, in some cases, has a limited application 

to agriculture and other natural resource management. This is because the ASOS are located at or 

near major metropolitan airports. Most airports have a history of site relocations and instrument 

changes and/or are located within changing urban environments which has degraded the 

continuity of the long-term data.  In addition, urbanization and the resulting heat island influence 

(artificial warming) has made airport data unsuitable for agricultural use. Also, the Cooperative 

Weather Observer Network weather data, in most cases, are not available for weeks or months 

after the observations are taken and data quality may be an issue due to obsolete equipment and 

lack of effective quality control (NWS, 2009). 

 

In the light of these problems, an interdisciplinary committee, consisting of the University of 

Georgia’s Agricultural Experimental Stations, the University of Georgia’s Agricultural 

Extension Service, the United States Department of Agriculture (USDA)-  

Agricultural Research Service, and the National Weather Service (NWS), was formed in 1987 to 

study the need for a University of Georgia Automated Weather Station Network (Hoogenboom 

et al., 1991). The committee concluded in its final report that continuous long-term weather 

records are needed for many locations in Georgia and that real time data are also needed for 

applications in agricultural research management (Westbrook et al., 1988). 
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Following the recommendation of this committee, the College of Agriculture and Environmental 

Sciences of the University of Georgia in 1991 established the Georgia Automated Environmental 

Monitoring Network (Georgia AEMN) with the installation of four automated weather stations in 

Griffin, Tifton, Watkinsville and Midville (Hoogenboom, 2003). The number of Georgia AEMN 

weather stations increased steadily over time and by September of 2002 the 50th weather station 

was installed at Homerville in South Georgia (Hoogenboom, 2003). The network currently has 

79 weather stations across the State of Georgia.  The distribution of these weather stations is 

shown on figure 1.1.  

 

Figure 1.1: Georgia Automated Environmental Monitoring Network Stations 
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The main objective for establishing the Georgia AEMN Stations is to collect reliable weather 

data and other environmental variables for agriculture and related applications (Hoogenboom, 

1993). The Georgia AEMN stations are designed to collect air and soil temperature, barometric 

pressure, solar radiation, wind speed and direction, rainfall, relative humidity and soil moisture. 

Each Georgia AEMN station is a stand-alone unit that is powered by a battery. The battery is 

recharged with a solar panel during day light hours. Each station also has a modem and a 

dedicated phone line. There are also dedicated computers that download and process the weather 

data from the weather stations. The processed data is then disseminated to the public in near real-

time via the web at www.georgiaweather.net (Hoogenboom, 2003). 

 

1.5 Problem Statement   

Since its establishment in 1991, the Georgia Automated Environmental Monitoring Network has 

produced quality weather products for different applications in agriculture, natural resource 

management and other entities. The weather data recorded by the Georgia AEMN are made 

available to the public through the web at www.georgiaweather.net. This web site offers many 

different calculators, including growing degree-days, chilling hours, water balance, soil 

temperature, heating degree-days, cooling degree-days, rainfall, and average temperature 

(Hoogenboom, 2003). The website also provides a unique application of weather information on 

agricultural production by offering a crop simulation and yield analysis tool (Paz, et al., 2008). 

With this tool, users can estimate crop growth and yield as a function of their local weather 

conditions and management options. Weather products from the Georgia AEMN are also utilized 

by utility companies to manage their operations. Weather information from the Georgia AEMN 
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also played a crucial rule in the organization and overall success of the 1996 Olympic Games 

held in Atlanta Georgia in 1996 (Hoogenboom et al., 1998). 

           Operating and maintaining weather stations that records accurate weather information 

requires sufficient personnel and financial resources. Cuts in budgetary allocations to many 

institutions in recent times due to the economic slowdown, has the potential to affect the 

operations of existing Georgia AEMN weather stations and could possibly lead to the 

termination of some of these weather stations. The question then is, what will be the revenue lost 

for losing a Georgia AEMN weather station? 

 

1.6 Objectives of the Study 

The overall objective of this thesis is to develop a methodology that is able to estimate the value 

of site-specific weather information for irrigated agricultural management. This methodology is 

then applied to irrigation management in Southwest Georgia, although the methodology is 

applicable wherever the relevant data are available. The application of the methodology in 

Camilla entails the following specific objectives.   

1. To determine, in an expected utility framework, the optimal planting date and irrigation 

threshold for irrigated corn, cotton, peanut and soybean production in Camilla. 

2. To simulate average crop yield and estimate expected revenues for the four crops under 

consideration based on the optimal planting date and irrigation threshold. 

3. To estimate the lost revenue for losing the Camilla Georgia AEMN weather station, 

forcing growers in the study area to use weather data from other neighboring GEORGIA 

AEMN weather stations to make optimal irrigation decisions.  
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1.7 The Study Area 

Georgia is a coastal State located in the Southern part of the Unite States of America. The State 

of Georgia can be divided in to eight soil provinces or Major Land Resource Areas (MLRA) 

geographically. These include the Southern Appalachian, Sand Mountain, Blue Ridge, Southern 

Coastal Plain, Black Lands, Southern Piedmont, Sand Hill, and Atlantic Coast Flatwoods. A 

humid subtropical climate with mild winters and moist summers is characteristic of most of 

Georgia. These, combined with the variety of soil types from the coast to the mountains, makes 

Georgia an ideal place to produce a diverse variety of crops. The annual average rainfall varies 

from 40 inches in central Georgia to more than 75 inches in Northeast Georgia. Monthly average 

temperatures range from a high of 92.20 F to a low of 32.60 F. 

            Georgia is an important agricultural state and ranks first in the United States in the 

production of peanuts, pecans, broilers, and watermelons (USDA). In fact, Georgia produces 

almost half of all the peanuts produced in the United States each year (Georgia Farm Bureau). 

Georgia’s top ten commodities in order of their rank within the state are broilers, cotton, eggs, 

timber, horses, peanuts, dairy, greenhouse and container nursery. This ranking is based on the 

farm gate value of the commodities.  

            Irrigated agriculture is an important part of Georgia’s agricultural system. Over the years 

the number of farms and acres under irrigation in the State has increased significantly. According 

to USDA statistics, a total of 773, 066 acres of harvested cropped land were irrigated in 1997. 

This rose to 1,017,773 acres in 2007 representing about 32% increase in irrigated acres of all 

harvested crops in the Georgia over the period. At the individual crop level, 210,608 acres of 

harvested corn were irrigated in 2007. All cotton under irrigation in 2007 was 309,442 acres. The 

number of harvested acres under irrigation in 2007 for peanut and soybean were 182,332 and 
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35,285 acres respectively. Irrigated peanut, cotton, soybean and corn acres therefore accounted 

for about 72% of all harvested irrigated crops in Georgia in 2007 (USDA 2007 Census of 

Agriculture-County Data). Irrigated crops usually do better than non-irrigated crops under 

similar management practices and can therefore increase overall farm revenue if well managed. 

Irrigated agriculture can also reduce the risk and uncertainty associated with agricultural 

production generally. 

            Weather information is an important input in making optimal irrigation decisions for a 

particular location and for a particular crop. Site-specific weather information if available can be 

used as input in DSSAT to analyze and develop an efficient irrigation schedule for specific 

crops. This is important not only for efficient use of water but also for insuring that applied 

nutrients are not leached out by excessive watering or under utilized by crops for inadequate 

watering. 

            The actual study area location as shown on figure 1.2 is the Southwestern corner of the 

State of Georgia, consisting of seven Georgia AEMN weather stations at Fort Valley, Plains, 

Dawson, Arlington, Camilla, Attapulgus and Tifton. These weather stations are located either 

directly on a farm or at a research station (www.georgiaweather.net) and thus provide weather 

data that are representative for agricultural and environmental research and management. The 

selected stations also have at least ten years of continuous records of daily weather data, making 

it possible to assess crop yield over ten years using crop simulation models. The Georgia AEMN 

weather station at Camilla in Mitchell County is the main focus within the study area and 

referred to as the reference weather station. Mitchell County ranks third in Georgia based on the 

market value of its crop products (USDA 2007 Census of Agriculture-County Data). In addition, 

about 42% of all harvested cropland are irrigated in the County, making it an appropriate region 
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for a study that involves irrigated agriculture. Furthermore, significant number of acres of corn, 

cotton, peanut and soybean are under irrigation in the area. Specifically, the USDA statistics 

indicates that 12,452 acres of corn were irrigated in Mitchell County in 2007. This represents 

68% of all irrigated harvested corn in the County. The same statistics also shows that the 

percentage of irrigated cotton, peanut and soybean are about 34%, 40% and 26% respectively.  

 

  Figure 1.2 A Map of Georgia Showing the Study Area 
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1.8 Organization of the Study 

This thesis is organized into six chapters. Chapter one showcases a general introduction to the 

study. The review of exiting body of literature on value of weather information studies is 

presented in chapter two while the methodology is presented in chapter three. Chapter four 

showcases model specification, data sources and description. The empirical results is presented 

and discussed in chapter five. Conclusions and policy recommendations are drawn and presented 

in chapter six. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

2.1 Introduction 

The review of literature for this thesis begins with a look at the benefits associated with the use 

of weather information and the economic sectors that enjoy these benefits. There are potential 

impediments that could limit the use of weather information. These impediments are also 

reviewed and presented in this chapter. Also discussed in this chapter are the determinants of the 

value of weather information, value of weather information in efficient water management and 

the methodological approaches used by previous researchers to value weather information. The 

chapter concludes by looking at the values of weather information from different studies specific 

to the agricultural sector.  

 

2.2 Benefits and Beneficiaries of Weather Information 

The benefits as well as the beneficiaries of weather information are many and varied. There are 

many economic sectors that use weather information to make decisions regularly. For example, 

producers in the agricultural sector use weather information such as precipitation, temperature, 

and frost to determine when to plant their corps, when to irrigate and when to mitigate for frost 

damages (Houston et al., 2004). The agricultural sector is sensitive to changes in weather and 

therefore stands to benefit from the use of accurate and timely weather information. Accurate 

and timely weather information on precipitation for instance, can increase irrigation efficiencies 

and result in significant saving. Similarly agricultural producers can use historic weather 

information for a given location to help guide them plant their crop to avoid unfavorable weather 

events.  
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The aviation, trucking and shipping sectors also use weather information to make important 

routing decisions. The aviation sector is particularly vulnerable to weather induced traffic delays 

because bad weather in cities with major airports can have impacts that affect the whole system 

(Houston et al., 2004). The use of weather information allows air traffic control to make more 

efficient use of the air space, thereby reducing delays and flight cancellations (NOAA, 2003). It 

is also expected that the use of weather information in a timely manner will increase efficiencies 

in the trucking business and allow vessels to decrease transit times and reduce cargo losses due 

to severe weather conditions. 

            Governments, their ministries and agencies also use weather information in policy 

making, strategic and tactical planning that is aimed at the overall national well being of the 

economy. The use of weather information at the governmental level could be for mitigation or 

adoption to large-scale disasters such as epidemics, floods, drought, desertification, major 

snowfalls and icing of the waterways. 

            Other users or beneficiaries of weather information are the energy sector which utilizes 

weather information to estimate peak demand for energy and the household sector which uses 

weather forecast to make decisions such as what to wear, and when and where to go for vacation. 

In addition, international aid and donor agencies, and the banking, insurance, forestry, fisheries, 

tourism sectors all relay on weather information to make certain decisions. Finally, the 

Meteorological Department and other private institutions that produce and supply weather 

information and services may also benefit commercially from the activity.  
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2.3 Impediments to the Use of Weather Information 

Despite the potential benefits associated with the use of weather information, weather 

information, regardless of how accurate it is, has no value if it cannot be understood and used by 

the recipients to support the decision making process. Significant impediments exist in the use of 

weather information, even in advanced technological societies.  

            For most individual users of weather information, some of these impediments include a 

lack of awareness of the availability or incorrect belief about weather information availability. 

According to Changnon et al. (1988), users are either commonly unaware of what weather 

information is available or there is lack of knowledge about where to go to obtain more specific 

information.  

            The second impediment is related to the use of weather information. There is a 

continuous impression by some users about the quality of weather information. This may stem 

from a lack of atmospheric training and familiarity with weather information (Changnon et al., 

1988). Little belief in the accuracy (quality) of weather information could also stem from 

personal experiences, hearsay or bad publicity. In addition, most firms lack the flexibility in their 

operational systems and decision making models to utilize improved weather information. 

Furthermore, weather information provided to users may be too general and not spatially refined. 

This presents a challenge to the users in terms of difficulty of interpretation and sufficient 

application of such weather information to address their particular needs. These impediments 

need to be addressed for decision makers to reap the full benefits from use of weather 

information. 
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2.4 Determinants of Value of Weather Information 

Macaulay (2006) states that the value of information is essentially an outcome of choice in 

uncertain situations. Individual decision makers such as a farmer, a businessperson or a trucking 

company may be willing to pay for information depending on how uncertain they are about the 

weather, and what is at stake in the event of unfavorable weather. These individuals may be 

willing to pay for additional or improved information provided the expected cost is lower than 

the expected gain of the information (Macaulay, 2006). Specifically, the general conclusions 

from models of information such as (Hirshleifer et al., 1979 and McCall, 1982) are that the value 

of information depends on a variety of factors. 

            One factor that affects the value of weather information is how uncertain decision makers 

are. The value of information depends on the mean and spread of uncertainty surrounding the 

decision in question (Macaulay, 2006). Harris (2002) illustrates that the value of information can 

be measured based on how its value changes with changes in different attributes of information 

such as improve accuracy, greater frequency of collection or other characteristics of the data 

product itself. The value of information also depends on the value of the resultant output in the 

market. That is, the aggregate value of the resources or activities that are managed, monitored, or 

regulated (Macaulay, 2006). In other words, the willingness to pay for weather information 

relevant to crop production depends in part on the value of the output. Willingness to pay for or 

demand for weather information is therefore a derived demand.  

            How much it will cost decision makers to use the information to make decisions and the 

price of the next-best substitute for the information are factors that also play a part in 

determining the value of information. 
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Generally, there is positive a relationship between value of information and the decision maker’s 

level of uncertainty and what is at stake as an outcome of their decision. The larger the level of 

uncertainty and the larger the outcome of their decision, the more they will be willing to pay for 

information and hence the larger the value of information, all things being equal.  

            A decision maker usually has his/her own subjective probabilities about the quality of 

weather information. Thus, these values also depend on the person who is making use of the 

weather information. The value of information is zero when the subjective probability is at zero 

or one, since at these extremes, the farmer for example is already certain in his mind about the 

weather, for example whether it is going to rain or not. The implication for the value of 

information from this approach according to Macaulay are that information is without value 

when there are no costs associated with making the wrong decision and when there are no 

actions that can be taken in light of the information. 

            In a related development (Hilton, 1981) specifies four general determinants of the value 

of information as follows; (a) the structure of the decision set, (b) the structure of the decision 

environment (the manager, technology, environment and relative preference for outcome), (c) the 

manager’s initial beliefs about the distribution of the stochastic variables in the decision 

environment, and (d) the characteristics of the information system (timeliness, accuracy and 

relevance). Though most studies focused on the accuracy of the system, others characteristics are 

also important to decision makers. These characteristics include; (a) timing of the forecast (lead 

time), (b) predictive accuracy, (c) the number of future periods forecast at a given point in time, 

(d) specificity, that is how many separate values or categories a given parameter can assume, (e) 

spatial resolution (the potential divergence between regional weather and weather outcomes for a 
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specific location within the region), (f) the weather parameters to be forecast and (g) time span 

covered by a given forecast (for example, year, month or week). 

            Furthermore, the value of weather information could be affected by such programs as 

crop insurance, disaster assistance, fixed and counter cyclical payments, and commodity loans, 

among others. Cabrera et al (2007) in a study of value of climate information in North Florida 

concluded that farm programs substantially impacted the value of weather information. 

Specifically, the study points out that commodity loan and crop insurance programs reduce farm 

income variability and risk level of the enterprises. As a result, the inclusion of commodity loan 

and crop insurance programs tends to reduce the overall value of weather information, though 

the value could vary considerably depending on the risk aversion level of the farmer. 

 

2.5 Value of Weather Information in Efficient Water Management 

Agricultural production is virtually impossible without the use of water resources (rainfall and 

irrigation). Irrigated agriculture is estimated to provide 40% of worldwide food supplies and 

despite the fact that water use by non agricultural sectors continue to increase, irrigation 

continues to be the main water user on a global scale (Muralidharan et al., 2009). Irrigation has 

been identified as an important risk management tool in agricultural production. Irrigation is 

therefore, needed to reduce the risk associated with agricultural production and increase food 

production. At the same time, there is an increasing pressure to use water more efficiently in 

irrigated agricultural production. 

            The development and use of simulation tools to model crop production using weather 

information to take advantage of available rainfall and to schedule irrigation more efficiently is 

gaining popularity among researchers. For instance, Harman (2004) used a crop simulation 
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model linked to a utility function to evaluate the economic benefits of modifying cropping 

practices based on seasonal rainfall expectations. The study found the potential economic 

benefits of tailoring dry land cotton production practices to seasonal rainfall expectations to be 

from $17 to $21 million per year for the Texas High Plains. 

            In a related study, Gowing et al. (2000) studied real-time scheduling of supplemental 

irrigation using short-term weather information and an optimizing decision model. The approach 

is demonstrated for potatoes grown in eastern England under conditions that represent wet, dry 

and average years. The results of the study suggest that the model used can provide definite 

advantages in terms of practical on-farm water management. Specifically, the results show that 

applying the model to wet years would result in cost and water saving from unnecessary 

irrigation, resulting in increased profit and efficiencies of irrigation water use. In average and dry 

years, the benefit of the approach would derive from improved efficiency in the use of limited 

water supply. Generally, the irrigation schedules developed without weather information applied 

the highest amount of water in all seasons compared to irrigation scheduling that is developed 

using weather information 

            In addition, Wilks and Wolfe (1997) analyzed the economic value of weather information 

for lettuce irrigation in central New York State using a stochastic dynamic programming 

algorithm. The results suggest that irrigation is quite valuable, with the economic value of 

irrigation (scheduled according to a conventional, non-optimal rule) vs. no irrigation estimated at 

approximately $4,000 to $5,000 per hectare per year for lettuce. Optimal use of weather 

information to schedule irrigations is estimated to provide additional value of approximately 

$1,000 per hectare per year, much of which is derived from avoiding crop damage due to 

excessive soil moisture. 
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Furthermore, Fox et al. (1998) developed a framework based on a mean-variance model to 

characterize the value of precipitation forecast information to winter wheat producers in the 

province of Ontario, Canada. This theoretical framework was applied to precipitation forecast 

data from the Windsor and the London weather offices for the crop years of 1994 and 1995. The 

results reveals that the estimates of the value of precipitation forecast information averaged 

$100.00 (CDN)/ha per year for winter wheat. 

           

2.6 Economic Valuation of Weather Information 

In many countries around the world, weather information is provided and subsidized by their 

governments. Estimation of the economic value of weather information is therefore an important 

way to help justify public investment into technologies that are needed to provide the weather 

information. Different researchers have approached the estimation of the economic value of 

weather information differently. Some of these approaches are based on the decision theory to 

simulate ideal weather responses (Federico et al., 2005) 

            Using the decision theory, Federico et al. (2005) simulated maize yield in the pampas 

region with the Ceres-maize model (DSSAT v3.5). The data required for this simulation included 

daily weather series, soil parameters and initial soil conditions, crop genetic coefficients, and a 

description of selected crop management. The daily weather variables (max and min 

temperature, precipitation and solar radiation) were synthetically generated using the stochastic 

weather generator. Net returns were then calculated by multiplying the simulated yields by a 

constant output price and subtracting fixed and variable cost. Fixed cost included cost of seeds, 

fertilizer, herbicides and labor while variable cost included cost of harvesting and marketing. To 

derive an initial estimate of the value of seasonal forecast, Federico et al. (2005) compared the 
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management combination that maximized simulated average profits for each El Niño-Southern 

Oscillation (ENSO) phase with the management selected for neutral years with the assumption 

that management selected for neutral ENSO years is a representation of the preferred 

management in the absence of any weather information. Federico and others also reasoned that 

actual decisions frequently deviated from those of typical economic models, a second estimate of 

forecast value was therefore estimated by comparing the results for census managements selected 

for each extreme ENSO phase and the management selected for neutral years. This is an 

alternative and complementary approach and relies on observed or elicited decision, where the 

emphasis is on how weather forecasts information are actually interpreted and used, rather than 

ideal responses (Stern and Easterling; Stewart et al., 1997; Stewart et al., 2004). 

            Victor et al., (2006) also use the decision theory to evaluate the value of weather 

information by integrating weather, agronomic, economic and policy components in a farm 

decision model. The agronomic component simulated crop yield by ENSO phases using the 

longest historical daily weather available (Max and min temperatures, precipitation, radiation) 

for the study area. The economic component constituted the generation of synthetic prices to 

match with the simulated yields crop yields that were generated by the agronomic component of 

the study. Production cost for the crops used (peanut, cotton and maize) were also estimated 

within the economic framework. The whole farm model was then evaluated using a stochastic 

non-linear whole farm model to study the role of weather information in decision making and to 

estimate the value of the weather information. The study was also interested in finding out the 

effect of government policy on the value of weather information, hence the commodity loan 

program (CLP) and the crop insurance program (CIP) were introduced in the model to examine 

the direction of influence of these programs on the value of weather information, if there was 
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any. Crop simulation models are useful in that they allow decision makers to assess the outcome 

of a wide range of decision alternatives under different weather scenarios.  

            In a similar manner Jones et al. (2000) indicated that in light of the high cost of long-term 

field experiments and the long delay before results are available for a sufficient range of weather 

conditions, crop simulation is the only feasible way to examine the interaction between weather 

variability, management decisions, and crop yields. Jones et al., (2000) therefore combined crop 

simulation models and economic decision models to evaluate the potential benefits of tailoring 

crop production decisions to ENSO phases in Tifton Georgia. 

            Other researchers have also used the decision model and crop simulation to estimate the 

value of weather information (Wilks and Wolfe, 1998; Mjelde et al., 1999; Meza and Wilks, 

2003; Amissah-Arthur, 2005; Sonka et al., 1987; Fraisse et al., 2006). The decision theory and 

crop simulation models therefore seems to be a popular choice among researchers and an 

approach that is increasingly being used by researchers interested in estimating the economic 

value of weather information. 

            Other approaches other than the decision theory and crop simulation models have also 

been used to value weather information. For example, Rollings et al. (2003) use the willingness-

to-pay to assess the economic value of weather forecast information in Canada. Other methods 

that have also been used include; the game theory (lave, 1963 and Anderson, 1979), the Bayesian 

expected utility maximization (Baquet et al., 1976; Katz et al., 1982; Wilks and Murphy, 1985), 

the benefit-cost ratio (Mason, 1966), the Marshallian surplus (Bradford and Kelejian, 1978 and 

Antonovitz and Roe, 1984) and the Bayesian expected cost minimization (Stewart et al., 1984 

and Katz et al., 1982). The hedonic analyses have also been used to estimate the value of weather 

information. 
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2.7 Value of Weather Information for the Agricultural Sector  

There are many economic sectors that use weather information on seasonal or long-term basis to 

make different kinds of decisions. The value of weather forecast may vary from one sector of the 

economy to the other. Within the agricultural sector, the value of weather information is found to 

differ from one study to another. The difference in value is in part explained by the different 

methodological approaches used by different studies to arrive at these values. The values could 

also vary depending on whether seasonal or long-term weather is being analyzed or whether 

perfect or imperfect weather information is the subject of concern. Houston et al., (2004) 

provides a comprehensive summary of values of weather information from numerous studies on 

agriculture and other sectors of the economy. This summary is presented in Table 2.1 and 2.2.  

 

Table 2.1:  Agricultural Value of Long-Term Weather Information 

Type of Information Value of Weather Information Source 
 
 

ENSO predictions Imperfect: $297-$329 million/yr  
Perfect: $400 million/yr from US 
agriculture. 
 

 
Solow et al. (1998) 

ENSO early warning 
system 

Imperfect: $20-31 million/yr 
Perfect: $59-79 million/yr from 5 
important agricultural states in Mexico. 
 

 
Adams et al. (2003) 

 
 
ENSO predictions 

Imperfect: $168 million/yr  
Perfect: $254 million/yr from Southeast 
U.S. agricultural region. 
 

 
Adams et al. (1995) 

Source: Houston et al., (2004) 
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Table 2.1 Continued 
 
 
Type of Information 

 
Value of Weather Information 

 
Source 
 

 
Changes in ENSO 
frequency and strength 

 
$482-$592 million per year 
From global agriculture’s use of an 
ENSO monitoring and early warning 
system. 
 

 
 
Chen et al. (2002) 

 
ENSO predictions 

 
Imperfect: $507-$959/yr million 
Perfect: $1,768 million/yr from US 
agriculture. 
 

 
Chen et al. (2002) 

 
Southern African 
seasonal forecasts 

Imperfect: $178 million/year 
Perfect: $0.72 billion/year. 

 
Harrison and Graham 
(2001) 

 
Precipitation, 
temperature, and 
radiation forecasts 

 
Imperfect $0-$102/ha-yr from Texas 
sorghum producers. 

 
Hill et al. (1999) 

 
Precipitation, 
temperature, and 
radiation forecasts 

 
Imperfect: $0-11/ha-yr 
Perfect:$10-57/ha-yr from planning 
fertilizer applications on US and 
Canadian wheat fields. 
 

 
Hill et al. (2000) 

 
Precipitation and 
temperature forecasts 
 

 
Imperfect: $-159-$5/section-yr 
Perfect:$-49-129/section-yr from 
livestock ranchers in Texas.  
 

 
Jochec et al. (2001) 

 
Precipitation and 
temperature forecasts 

 
Imperfect: $848-$2,276/yr 
Perfect: $1,314-$2,800/yr derived from 
wool producers in Victoria Australia. 
 

 
 
Bowman et al. (1995) 

 
Precipitation, 
temperature, and 
radiation forecasts 
 

 
Perfect: $1.4-$3.2 billion over 10 years 
from making fertilizer application 
decisions in the Corn Belt region.  

 
Mjelde and Penson 
(2000) 

Source: Houston et al., (2004) 
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Table 2.1 Continued 
 
 
Type of Information 

 
Value of Weather Information 

 
Source 

 
 
Precipitation forecasts 

 
Imperfect: $1,170-14,520/farm 
Perfect: $19,900/farm from crop type, 
nitrogen application, Federal Farm 
Program participation, and crop 
insurance decisions. 

 
 
Mjelde et al. (1996) 

 
Precipitation forecasts 

 
Imperfect: $11/ha-yr  
perfect: $19/ha-yr derived from 
implementing wheat harvest strategies 
such as early harvesting, drying, and 
contract harvesting. 

 
 
Abawi et al. (1995) 

 
Precipitation forecasts 

 
Imperfect: $1.2-2.3/acre from fertilizer 
application level, planting date and 
seeding rate decisions. 
 

 
Mjelde et al. (1997) 

Source: Houston et al., (2004) 
 
 
 
Table 2.2 Agricultural Value of Short-Term Weather Information 
 
 
Type of Information 

 
Value of Weather Information 

 
Source 

 
 
Precipitation forecast 

 
Imperfect forecast:  
-$4.5 to +$27/ha-yr 
Perfect forecast: $3-$55/ha-yr Alfalfa 
dry hay production in Canada. 

 
 
Fox et al. 1999b 

 
 
Precipitation forecast 

 
Imperfect forecast:  
-$116 to +$276/ha-yr 
Perfect forecast: $0-$276/ha-yr Winter 
wheat production in Canada. 

 
 
Fox et al. 1999a 

 
 
Precipitation and frost 
timing 

 
Imperfect: 20% increase in profit for 
wheat producers in Australia 
Perfect: 15% of value of perfect 
forecasts is achieved by present  
Forecasts. 

 
 
Hammer et al. (1996) 

Source: Houston et al., (2004) 
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Table 2.2 Continued 
 
 
Type of Information 

 
Value of Weather Information 
 

 
Source 

 
 
Frost forecast 

 
Perfect forecast:  
$6,210/hectare/yr for apple orchards. 
$3,781/hectare/yr for pear orchards. 
$2,076/hectare/yr for peach orchards. 

 
 
Katz et al. (1982) 
 

 
 
Frost forecast 

 
Imperfect forecast: $2,642/ha-yr for 
pear orchards. 
Perfect forecast: $4,203/ha-yr for pear 
orchards. 

 
 
Baquet et al. (1976) 

 
Temperature forecasts 

 
Imperfect: $0.38-$1.09/dollar of 
insurance premium. 

 
Lou et al. (1994)* 

 
Precipitation, 
temperature, and wind 
forecasts 

 
Imperfect forecast: $379,248/yr for 
cotton producers in Australia. 

 
Anaman and Lellyett 
(1996) 

 
Precipitation and 
temperature forecasts 
 

 
Imperfect forecast: $1040-$1156/ha-yr 
for lettuce irrigation timing in a humid 
US climate.  

 
Wilks and Wolfe (1998) 

Precipitation, 
temperature, and 
evaporation forecasts 
 

 
Perfect forecast: $105/ha/yr for alfalfa. 

 
Wilks et al. (1993) 

Improved satellite 
imagery and sounder 
which improve short-
term (3-hr) temperature 
forecasts 
 

 
 
$9 million/year derived from 
improvements in frost mitigation. 
 

 
 
NOAA (2002) 

Improved satellite 
imagery and sounder 
which improve 
evapotranspiration 
estimates 
 

 
 
$33 million/year derived from improved 
irrigation efficiency. 
 

 
 
NOAA (2002) 

Source: Houston et al., (2004) 
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CHAPTER 3 
 

METHODOLOGY 
 

3.1 Introduction 

This chapter describes the methodology developed and used to accomplish the objectives of this 

thesis. The methodology is divided into three main sections. The first section involves the use of 

the Decision Support System for Agro-technological Transfer (DSSAT) crop model to simulate 

crop yield and irrigation water use at selected locations and on selected soils. The second section 

of the methodology uses an expected utility model, specifically the Constant Relative Risk 

Aversion (CRRA) utility function to identify the optimal irrigation threshold and planting date 

for selected crops. The third section of the methodology uses Thiessen polygon analysis in 

ArcGIS to spatially identify the nearest neighbors of a reference Georgia AEMN weather station 

and estimate the number of irrigated acres of selected crops on selected soils that are within the 

sphere of influence of the reference weather station. This makes it possible to apply Kriging and 

Zonal Statistics, also in ArcGIS, to assess the net revenue lost for losing the reference weather 

station, forcing farmers within the sphere of influence of the reference weather station to use 

weather information from different neighboring Georgia AEMN weather stations to make 

optimal production decisions. 

 

3.2 DSSAT Crop Simulations  

An approach that is increasingly being used to assess the agricultural value of weather 

information is the use of DSSAT to simulate crop production (Amissah, 2005).  DSSAT has 

been in use for more than 15 years by researchers in over 100 countries around the world 

(DSSAT Software). DSSAT is a computer software package that combines soil, crop and 
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weather data into standard formats for access by crop models and application programs (DSSAT 

Software). DSSAT allows the user to ask “what if” questions and makes it possible to predict 

crop yield, resource use, and environmental impact as a function of weather and soil data, 

genetics, and crop management options specified by the researcher. It also allows the user to 

simulate multiple-year outcomes of crop management strategies for different crops at any 

location in the world in minutes (provided site-specific data are available). This is important 

because it eliminates the high cost and long-term field experiments and the long delay before 

results are ready for any analysis (Jones et al., 2000).   

            Site-specific minimum weather data set required to run DSSAT are daily weather 

(maximum and minimum temperature, rainfall and solar radiation). In addition, data on the 

physical, chemical and morphological soil properties such as surface slope, soil color, 

permeability and soil drainage are utilized. Furthermore, crop management options data specified 

by the user are required. These management data include information on planting date, dates 

when soil conditions were  measured prior to planting, planting density, row spacing, planting 

depth, crop variety, irrigation and fertilizer practices (DSSAT Software). 

            Although predicted crop yield is the popular and most used output, DSSAT crop 

simulations produces a variety of outputs including; anthesis date, maturity date, harvest date, 

irrigation water used, number of irrigation applications, total precipitation received, nutrient 

uptake, nutrients leached out and byproducts among many others.  

            This thesis uses the seasonal analysis application in DSSAT (4.5) which allows multiple-

year crop simulations to predict the yield and irrigation water used. Ten years of weather data are 

used to simulate yield of corn, cotton, peanut and soybean at ten different irrigation thresholds on 
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two soils - the Tifton Loamy Sand (TLS) and Norfolk Loamy Sand (NLS). The different 

irrigation thresholds are discussed in detail under model specification in chapter four. 

 

3.3 Determination of Optimal Crop Production Strategy 

It is possible to identify from the results of a DSSAT crop simulation which crop management 

combination produces the highest crop yield. Crop yield alone, however, is not sufficient for 

determining an optimal crop production strategy. Hence the need for an economic optimization 

model that takes into account several parameters in identifying the optimal crop production 

strategy for a given crop.  

            The Constant Relative Risk Aversion (CRRA) utility function is widely used by 

researchers to identify the optimal crop production strategy that maximizes expected utility 

(Messina et al., 1999; Jones et al., 2000; Lin, 2008). This thesis utilizes the CRRA utility 

function to identify the crop production strategy (irrigation threshold and planting date) mix that 

maximizes expected utility based on given costs and prices, risk preferences, and crop yield 

simulated for each set of weather years in Southwestern Georgia. The functional form of the 

CRRA utility function used is parameterized as: 

 

     risk
NRUUtility

risk

−
=

−

1
)(

)1(

                                                                                                 (3.1)     

        

Where NR is the expected net returns to the decision maker, risk is the relative risk aversion 

coefficient. The estimation of expected utility for a given crop production strategy mix is based 

on the distribution of yield of each crop predicted by the DSSAT crop simulation models. 

Simulations are run over ten years of daily weather for each crop and we assume that all years 
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are equally likely to occur. It is also assumed that the decision makers (farmers) allocate land 

among cropping enterprises in a way that maximizes expected utility. Net returns (NR) is 

estimated via equation 3.2 below. 

 

TVCTRNR −=                                                                                                                    3.2 

 

TR is gross receipts or total revenue and TVC is total variable cost of the producer. Expected 

utility is estimated over all years for each planting date and irrigation threshold. The combination 

of planting date and irrigation threshold that yields the greatest expected utility is then identified. 

This is captured in equation 3.3. 

 

[ ]
10

,,

,

∑
= t

IPt

IP

U
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Where P and I are planting date and irrigation respectively, U is the expected utility at a given 

planting date and irrigation management over time t, where t = (1, 2,……..10). 

            The optimal combination of planting date and irrigation threshold identified in this 

expected utility framework is specific to the reference weather station, which is the location 

where weather data were collected.  

            The optimal planting dates and irrigation thresholds identified for the reference weather 

station are applied to the weather information of other relevant Georgia AEMN weather stations 

to simulate crop production. From this simulation, the discrete irrigation events (amount of water 

applied and the time of application) are obtained and applied back to the weather data of the 
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reference weather station and  yields, costs and expected net revenues estimated for each of the 

crops under consideration. The expected net revenues are estimated at this stage are subtracted 

from the expected net revenues estimated from the initial simulations specific to the reference 

weather station. The difference between these revenues (lost revenues) represents a change in 

expected welfare of producers. Measurement of the expected welfare change of the producer is 

further explained under section 3.4 

 

3.4 Measuring Expected Welfare Changes 

The present study uses an expected utility framework to select an optimal production strategy, 

consisting of an irrigation threshold and planting date, for each crop using weather data from the 

reference weather station (the Camilla AEMN weather station).  Implementing the optimal 

production strategy generates actual yields, revenues, costs, water use, and profits for a given set 

of weather conditions.  Implementing the production strategy under weather conditions for 

multiple years generates expectations for these variables.  The values these variables take on, 

however, are dependent not only on weather conditions, but also on the quality of information 

about actual weather conditions. 

 This study uses the proximity of a field to a weather station as a proxy for the quality of 

weather information.  The farther a field is from the site at which the weather information is 

collected, the lower the expected quality of that information.  As a result, producers are more 

likely to implement the optimal production strategy in a sub-optimal manner as information 

quality diminishes.  When producers are forced to use information from weather stations farther 

away from their fields, the expected net revenues generated by the optimal production strategy 
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are hypothesized to fall.  Figure 3.1 illustrates the hypothesized relationship between expected 

net revenues and the quality of information. 

 The change in expected welfare from the loss of a weather station is measured as the 

change in expected net revenues from producers utilizing lower quality information to implement 

the optimal production strategy.  This is represented by the vertical distance π1 π2 

 

Figure 3.1 Measure of Expected Welfare Changes  

Expected Net Revenues 

 

                                                                                                       f(Y) 
 π2                                                                                                        
                                                                                                            

 

 π1 

 

 

     0                                  Q1             Q2                                             Information Quality 
 

 

 

 

In this study, two crop production scenarios were considered. In the first scenario, optimal 

irrigation thresholds and planting dates were developed for peanut, cotton, corn and soybean 

using weather data from a referenced weather station (the Camilla AEMN weather station). 

These optimal strategies were used to simulate crop yield in Camilla. The quality of the weather 
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information from the reference weather station is represented by Q2 and the corresponding 

expected net revenue is π2 as show on figure 3.1. In the second scenario, it was assumed that if 

the referenced weather station is closed down for any reason, producers at Camilla will 

implement these optimal production strategies based on the weather data of the nearest AEMN 

weather station. We hypothesized that weather information from these other stations will be 

lower in quality and therefore result in lower expected net revenue. The Lower quality weather 

information is represented by Q1 and the associated lower expected net revenue is also 

represented by π1 as shown on figure 3.1. Thus the change in expected net revenue (producer 

welfare change) is the difference between π2 and π1.  

 

3.5 Spatial Analysis 

The first step in the spatial analysis involves the creation of Thiessen polygons also known as 

proximal polygons around the selected weather stations in the study area. The Thiessen polygons 

have a unique property that each polygon contains only one input point (weather station) and that 

any location within a polygon is closer to its associated point than to the point of any other 

polygon (ESRI Software). The Thiessen polygons are created first with all selected weather 

stations included and then re-created without the reference weather station. The two layers are 

then overlaid on top of each other to create a “union polygon”. The creation of the union polygon 

makes it possible to determine the sphere of influence of each weather station. This is important 

because it allows the estimation of the number of irrigated acres of selected crops for selected 

soils within the sphere of influence of each weather station.  

            The second step in the spatial analysis uses the Kriging technique, also in ArcGIS, to 

create an interpolated surface across the study area (the union polygon). Kriging is an advanced 
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geostatistical procedure in which the surrounding measured values are weighted to derive 

predicted values for unmeasured locations. In other words Kriging generates an estimated 

surface from a scattered set of points. Kriging is unique among the interpolation methods in that 

it provides an easy method for characterizing the variance, or the precision, of prediction (ESRI 

Software). The lost revenues from losing the reference weather station, relative to the other 

selected weather stations as described under the section 3.2, are used as the input for the Kriging 

exercise. 

            The final step under the spatial analysis applies Zonal Statistics to calculate the average 

interpolated value per hectare from the interpolated surface created through Kriging. Zonal 

Statistics is a spatial analysis tool that writes a statistical summary of the values in a raster layer 

that falls within the bounds of each zonal polygon (that is, minimum, maximum, mean, standard 

deviation and count) and report the results to a table (ESRI Software).   

 

Figure 3.2 Diagrammatic Presentation of the Decision Process 

Step 1 
Use DSSAT crop models to simulate crop yield for selected planting dates  and irrigation 
thresholds over a number of years for selected crops on selected soils at the location where 
weather data were collected (reference weather station). This is the first simulation. 

 
 
Step 2 
Use an economic optimization model (The Constant Relative Risk Aversion (CRRA) utility 
function) to identify the combination of planting date and irrigation threshold that maximizes 
expected utility over the years simulated at the reference weather station. This is referred to as 
the optimal strategy for the reference weather station. 

 
 
Step 3 
For each of the other selected neighboring weather stations to the reference station, simulate 
crop production to identify discrete irrigation events (amount of water applied and date of 
application), using the optimal strategy for the reference weather station from step 2 and the 
historic weather data from the neighboring weather stations. 
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Step 4 
Simulate yields for each year using the discrete irrigation events from step 3 and weather data 
from the reference weather station. 
 

 
 
 
Step 5 
Estimate expected net revenues based on the predicted crop yield in step 1 and step 4 and 
calculate the difference between those two net revenues (the difference is the lost in revenue 
from losing the reference weather station, and forcing farmers to use weather data from 
neighboring weather stations to make optimal irrigation decisions). 

 
 
Step 6 
Use the Thiessen polygon technique to create Thiessen polygons for all selected weather 
stations and another one without the reference weather station. Overlay the two Thiessen 
polygons to show which weather stations constitute the nearest neighbor of the reference 
station (this is called the union polygon). 

 
 
Step 7 
Use Kriging to create an interpolated surface for the union polygon created in step 6 with the 
expected net revenue lost estimated in step 5 as the input data. 

 
 
Step 8 
Use Zonal Statistics to calculate the average value of the interpolated surface created in step 7 
for each polygon in the Union polygon. 

 

This in effect, generates an estimate of the net revenue lost for using the optimal strategy for the 

reference weather station, but implementing that strategy based on the weather information from 

the neighboring weather stations. 
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CHAPTER 4 

MODEL SPECIFICATION 

  

4.1 Introduction 

This chapter describes the specific management practices, soil and weather data specified in the 

DSSAT crop simulations for corn, cotton, peanut, and soybean at the Georgia AEMN weather 

station at Camilla in Mitchell County. The specification of the Constant Relative Risk Aversion 

(CRRA) utility function and the economic data used to identify the combination of optimal 

irrigation and planting date are also discussed. Finally, the chapter describes how Thiessen 

polygons, Kriging, and Zonal Statistics are used in the framework of spatial analysis to estimate 

the net revenue lost for losing the Georgia AEMN weather station at Camilla. 

 

4.2 Crop Simulations 

As shown on the study area map, seven Georgia AEMN weather stations were selected for the 

present study. These weather stations are located at Arlington, Attapulgus, Camilla, Dawson, 

Tifton, Plains and Fort Valley. Three different sets of crop simulations were carried out. The first 

set of crop simulations were performed on the weather data of the Georgia AEMN weather 

station at Camilla (the reference weather station), using DSSAT to simulate crop yield for a 

range of planting and irrigation thresholds for corn, cotton, peanut, and soybeans. These 

simulations were done on two soils, the Norfolk Loamy Sand (NLS) and Tifton Loamy Sand 

(TLS). Site-specific weather data used to run the DSSAT crop model are daily weather 

(maximum and minimum temperature, rainfall and solar radiation). In addition, crop 

management data are specified for each crop simulated. The crop management data set varies 
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from one crop to another but is fixed across all years for each crop. The crop management data 

specified includes crop cultivar choice, planting population, planting date, irrigation and fertilizer 

applications. 

            Given the differences in resource endowment as well as differences in risk tolerance 

among farmers, different farmers are expected to plant their crops on different days within the 

planting window during the growing season. As a result, crop yield is expected to vary from one 

farmer to another. It is against this background that different planting dates and other crop 

management decision variables were examined through crop simulations to determine the 

optimal combination of planting dates and irrigation thresholds for the four crops considered. 

The specifications of the different crop management combinations set up in DSSAT are 

discussed for each crop in the following sections. 

 

4.3 Crop Management Data for Peanut Simulation  

Georgia is the number one producer of peanut in the United States, producing almost half of the 

entire peanut produced in the country.  A number of peanut varieties are available to Georgia 

farmers for planting. The Georgia Green, however, is a popular Peanut cultivar in Georgia and in 

the study area and therefore selected for the DSSAT peanut crop simulations. Georgia Green is a 

new runner-type cultivar that was released in 1995 by the University of Georgia peanut breeding 

program. Georgia Green is a very productive cultivar and also has a good stability across many 

environments. It also produces a significantly higher percentage of Total Sound Mature Kernels 

(TSMK). The cultivar has also shown good resistance to tomato spotted wilt virus and other 

peanut diseases and pests (Beasley et al, 2008). 
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The normal planting window for Georgia peanuts is April 15 - May 20, with a few South 

Georgia counties being able to plant slightly earlier. In all areas some plantings may be made in 

late May. These planting periods for Georgia Peanut are based on the recommendations of the 

UGA Cooperative Extension Services. Based on this recommended planting window, five 

planting dates were selected for the Peanut simulations. The planting dates are April 10, April 

20, April 30, May 10, and May 20.  

            In addition, ten automatic irrigation thresholds are specified for each of the five planting 

dates stated above. The automatic irrigation in DSSAT was set up to irrigate the top 30 cm of the 

soil any time the available soil moisture to plants falls to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 

80% and 90%. The last irrigation threshold is the no irrigation and means that the crop is 

simulated under rain fed condition. This wide range of irrigation thresholds were specified to 

increase the chance of identifying the most efficient irrigation threshold. 

            As show on table 4.1 below, 11kg/ha of Diammonium phosphate is applied once on the date 

of planting for each of the five planting dates. Planting method is dry seed and plants are 

distributed in rows. Row spacing and planting depths are 31 and 4 cm respectively. Simulations 

are based on plant population of 12.9/m2. These specifications are based on recommendations by 

peanut extension specialists (Beasley et al, 2008). 

            Ten years of weather data (1997 to 2006) are used to run the simulations. Thus, for each 

planting date there are 100 DSSAT runs. That is (one planting date, ten automatic irrigations and 

ten weather years). There are therefore, 500 DSSAT runs for the five planting dates. Simulations  

are done using the Tifton Loamy Sand and Norfolk Loamy Sand.  
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Table 4.1 Crop Management Data for Peanut Production 

Fertilizer Application Planting 
date 

Peanut 
cultivar 

Irrigation 
thresholds 

Type  Amount  
/Time  

Soil  
type 

Planting  
Method 

Planting  
Distribution 

Row  
Spacing 
(cm) 

Planting 
Depth 
(cm) 

Plant 
population 
/ m2 

04/10 Georgia 
green 

 Rain fed, 
10%,20%,30%, 
40%,50%,60%,  
70%, 80%,90% 

Diammonium 
phosphate 
 

11kg/ha on 
04/10 

NLS 

TLS 

Dry seed Row 31 4 12.9 

04/20 Georgia 
green 

Rain fed, 
10%,20%,30%, 
40%,50%,60%,  
70%, 80%,90% 

Diammonium 
phosphate 
 

11kg/ha on 
04/20 

NLS 

TLS 

Dry seed Row 31 4 12.9 

04/30 Georgia 
green 

Rain fed, 
10%,20%,30%, 
40%,50%,60%,  
70%, 80%,90% 

Diammonium 
phosphate 
 

11kg/ha on 
04/30 

NLS 

TLS 

Dry seed Row 31 4 12.9 

05/10 Georgia 
green 

Rain fed, 
10%,20%,30%, 
40%,50%,60%,  
70%, 80%,90% 

Diammonium 
phosphate 
 

11kg/ha on 
05/10 

NLS 

TLS 

Dry seed Row 31 4 12.9 

05/20 Georgia 
green 

Rain fed, 
10%,20%,30%, 
40%,50%,60%,  
70%, 80%,90% 

Diammonium 
phosphate 
 

11kg/ha on 
05/20 

NLS 

TLS 

Dry seed Row 31 4 12.9 

TLS and NLS are Tifton Loamy Sand and Norfolk Loamy Sand respectively 
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4.4 Crop Management Data for Corn Simulation 

Like Peanut, many different cultivars of corn are available each year for Georgia corn growers to 

plant.  Differences exist among cultivars in yield potential, maturity, disease resistance, grain quality 

and adaptability to different geographic areas of the state. Choosing the right cultivar for any 

production system is important since large genetic differences exist for the many traits of yield. The 

PIO31G98 Corn cultivar was select because of its wide use in the study area. 

             Depending on the location, planting dates for corn may range from early March in South 

Georgia to mid-May in north Georgia.  The recommendation by Lee Dewey, Extension grain 

agronomist, is that if soil temperatures are 550F and higher, and projections are for a warming 

trend, then corn planting can proceed. Seven planting dates were selected within the early March 

to mid-May planting window for the DSSAT corn simulations. These planting dates were March 

1, March 15, and March 30. The rest are April 15, April 30, May, 15 and May 30. 

            For each planting date, ten automatic irrigation thresholds were set up in DSSAT for 

Corn simulation. This means that for each planting date, DSSAT will simulate corn production 

100 times at ten different irrigation thresholds. These automatic irrigation thresholds include the 

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% available soil moisture to plants. The 

tenth irrigation threshold is the no irrigation (rain fed). 

            The other recommended management practices specified for Corn are shown on table 4.2. 

Urea (a nitrogenous fertilizer) is applied twice for each planting date. The first dose of 70kg/ha is 

applied on the day of planting and second dose of 90kg/ha is applied one month after the 

planting date. Plants are distributed in rows and planted as dry seed. Row spacing is 61 cm and 

planting depth is 7 cm. Simulations are based on a population of 7.2 plants/m2, the recommended 

rate for irrigated Corn. Simulations are done on two soils, Tifton Loamy Sand and Norfolk  

Loamy Sand.
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Table 4.2 Crop Management Data for Corn Production 
 

Fertilizer Application Planting 
date 

Corn  
Cultivar 

Irrigation 
thresholds 

Type  Amount /Time  

Soil  
type 

Planting  
Method 

Planting  
Distribution 

Row  
Spacing 
(cm) 

Planting 
Depth 
(cm) 

Plant 
population 
/ m2 

03/01 PIO31G98 Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Urea 70kg/ha on 03/01 
90kg/ha on 03/30 

NLS 
TLS 

Dry seed Row 61 7 7.2 

03/15 PIO31G98 Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Urea 70kg/ha on 03/15 
90kg/ha on 04/15 

NLS 
TLS 

Dry seed Row 61 7 7.2 

03/30 PIO31G98 Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Urea 70kg/ha on 03/30 
90kg/ha on 04/30 

NLS 
TLS 

Dry seed Row 61 7 7.2 

04/15 PIO31G98 Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Urea 70kg/ha on 04/15 
90kg/ha on 05/15 

NLS 
TLS 

Dry seed Row 61 7 7.2 

04/30 PIO31G98 Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Urea 70kg/ha on 04/30 
90kg/ha on 05/30 

NLS 
TLS 

Dry seed Row 61 7 7.2 

05/15 PIO31G98 Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Urea 70kg/ha on 05/15 
90kg/ha on 06/15 

NLS 
TLS 

Dry seed Row 61 7 7.2 

05/30 PIO31G98 Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Urea 70kg/ha on 05/30 
90kg/ha on 06/30 

NLS 
TLS 

Dry seed Row 61 7 7.2 

TLS and NLS are Tifton Loamy Sand and Norfolk Loamy Sand respectively  
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4.5 Crop Management Data for Soybean Simulation 

The DSSAT crop simulations for soybean were run over five planting dates. The specified 

planting dates are May 10, May 20, May 30, June 10 and June 20. These planting dates were 

selected to fall within the recommended soybean planting window for Georgia. According to the 

UGA Cooperative Extension Services, the optimum period for planting soybean in Georgia is 

from May 10 to June 10, but planting can begin as early as May 1 if soils are warm (>70oF) and 

tall-growing MG VI or VII varieties were used. Planting period can also be extended as late as 

June 30 if adapted tall growing late maturing varieties are used. 

            The MG VII is one of the recommended varieties of soybeans for Georgia by the UGA 

Cooperative Extension Services and therefore, selected for the DSSAT soybean simulations. Top 

soybean yields are generally obtained with row spacing of 20 to 30 inches (Woodruff et al., 

2008). In line with this recommended spacing, row spacing of 60 cm was specified in DSSAT 

for soybean simulations. Similar to corn and peanut, ten automatic irrigation thresholds were set 

up in DSSAT for each of the five planting dates selected for soybean simulation. A total of 

70kg/ha of ammonium phosphate was applied on date of planting. Soybean simulations were 

based on a population 20 plants/m2. Other recommended practices are show on table 4.3
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Table 4.3 Crop Management Data for Soybean Production 
Fertilizer Application Planting 

date 
Soybeans  
Cultivar 

Irrigation 
thresholds 

Type  Amount /Time  

Soil 
type 

Planting  
Method 

Planting  
Distribution 

Row  
Spacing 
(cm) 

Planting 
Depth 
(cm) 

Plant 
population 
/ m2 

05/10 MG VII Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Diammonium 
Phosphate 

70kg/ha on 05/10 
 

NLS 

TLS 

Dry seed Row 60 3 20 

05/20 MG VII Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Diammonium 
Phosphate 

70kg/ha on 05/20 
 

NLS 

TLS 

Dry seed Row 60 3 20 

05/30 MG VII Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Diammonium 
Phosphate 

70kg/ha on 06/30 
 

NLS 

TLS 

Dry seed Row 60 3 20 

06/10 MG VII Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Diammonium 
Phosphate 

70kg/ha on 06/10 
 

NLS 

TLS 

Dry seed Row 60 3 20 

06/20 MG VII Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 

Diammonium 
Phosphate 

70kg/ha on 06/20 
 

NLS 

TLS 

Dry seed Row 60 3 20 

TLS and NLS are Tifton Loamy Sand and Norfolk Loamy Sand respectively  
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4.6 Crop Management Data for Cotton Simulation 

 
Choosing the variety to plant is one of the most important steps in producing a cotton crop. 

Cotton producers not only choose a variety based on genetic performance but also on pest 

management traits. The DP 555 BG/RR variety has been successful in recent seasons and will no 

doubt be widely planted in 2009 (UGA Cooperative Extension Service). Based on this 

assessment, the DP 555 was selected for cotton simulations. 

            The best planting window for cotton varies from year to year. Soil temperature is an 

important consideration for planting. Generally, planting can safely proceed when the 10.2 cm 

soil temperatures reach 18.3 oC for 3 days and warming conditions are projected over the next 

several days. Planting in late April and early May has shown advantages in South Georgia (UGA 

Cooperative Extension Service). Five planting dates were selected to cover the recommended 

April-May planting window for Cotton in South Georgia. The plating dates include; April 1, 

April 15, April 30, May 15 and May 30. 

            Like corn, peanut and soybean, the DSSAT simulations for cotton were run over ten 

automatic irrigation thresholds for each of the five planting dates. These irrigation thresholds as 

usual include the 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and the no irrigation 

threshold.  

            Ammonium Nitrate fertilizer is applied in three dozes of 20kg/ha for each planting date. 

Planting method is dry seed and plants are distributed in rows. Row spacing is specified at 90 cm 

and planting depth is 4 cm. The DSSAT cotton simulation is based on a population of 14 

plants/m2. These recommended management practices for cotton are outlined in table 4.4 below.  
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Table 4.4 Crop Management Data for Cotton Production 

Fertilizer Application Planting 
 date 

Cotton 
Cultivar 

Irrigation 
thresholds 

Type  Amount /Time  

Soil  
type 

Planting  
Method 

Planting  
Distribution 

Row  
Spacing 
(cm) 

Planting 
Depth 
(cm) 

Plant 
population 
/ m2 

04/01 DP 555 
 

Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 
 

Ammonium 
Nitrate 

20kg/ha on 04/01 
20kg/ha on 04/24 
20kg/ha on 05/24 
 

NLS 

TLS 

Dry seed Row 90 4 14 

04/15 DP 555 
 

Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 
 

Ammonium 
Nitrate 

20kg/ha on 04/15 
20kg/ha on 05/06 
20kg/ha on 06/06 
 

NLS 

TLS 

Dry seed Row 90 4 14 

04/30 DP 555 
 

Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 
 

Ammonium 
Nitrate 

20kg/ha on 04/30 
20kg/ha on 05/21 
20kg/ha on 06/21 
 

NLS 

TLS 

Dry seed Row 90 4 14 

05/15 DP 555 
 

Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 
 

Ammonium 
Nitrate 

20kg/ha on 05/15 
20kg/ha on 06/05 
20kg/ha on 07/05 
 

NLS 

TLS 

Dry seed Row 90 4 14 

05/30 DP 555 
 

Rain fed,10%,  
20%, 30%, 40%, 
50%, 60%, 70%, 
80%, 90% 
 

Ammonium 
Nitrate 

20kg/ha on 05/30 
20kg/ha on 06/21 
20kg/ha on 07/21 
 

NLS 

TLS 

Dry seed Row 90 4 14 

TLS and NLS are Tifton Loamy Sand and Norfolk Loamy Sand respectively 
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 4.7   Determination of Optimal Irrigation Thresholds and Planting Dates  

The optimal combination of irrigation thresholds and planting dates for each crop are identified 

in an expected utility framework. The data used to determine the optimal irrigation thresholds 

and planting dates included average crop yield data, fertilizer cost, water cost, water application 

cost and other production variable costs. These data are described in detail under the data section 

later in this chapter. The first step in identifying the optimal combination of irrigation threshold 

and planting date for each crop is the estimation of expected net revenues. Expected net revenues 

are estimated via the following equation 4.1.   

t
i

t
i

t
i TVCTRNR −=                                                                                                               (4.1) 

Where t
iNR = Net revenue for crop i in year t 

            t
iTR  = Total revenue from producing crop i in year t 

           t
iTVC = Total variable costs of producing crop i in year t 

Total revenue is the product of average crop price and average crop yield simulated from 

DSSAT crop simulation models. The composition of total variable costs is discussed under 

economic data. The expected net revenues estimated from equation 4.1 and the risk aversion 

level of the producer are used to calculate expected utility through the Constant Relative Risk 

Aversion (CRRA) Utility Function. The (CRRA) Utility Function is specified as follows. 

 

risk
NRUUtility
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−
=

−

1
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)1(

                                                                                             
(4.2) 

                                                                                                                                                                                    
Where NR is the expected net revenue and risk is the risk aversion coefficient. Producers are 

classified into two risk aversion levels –moderately risk aversion with risk equal 1.1 and a 
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significant risk aversion with a relative risk aversion coefficient of 2.5. The risk aversion 

coefficients and the expected net revenues are then plugged into equation 4.2 to calculate the 

expected utility for each irrigation threshold across all planting dates. Finally, the average 

expected utility is calculated for each planting date to identify the combination of planting dates 

and irrigation thresholds that yield the highest average expected utility.  

 

4.8 Estimating the Net Revenue Lost for Losing the Camilla AEMN Weather Station 

The net revenue lost for losing the Camilla Georgia AEMN weather station is estimated through 

a combination of crop simulations and spatial analysis. The first step involves the use of DSSAT 

to simulate crop yield, cost and expected net revenues using weather data from the Camilla 

weather station. From this initial crop simulation, the optimal planting dates and irrigation 

thresholds are identified for each crop in an expected utility framework as described above. 

These optimal planting dates and irrigation thresholds are specific to the Camilla weather station. 

The second step involves the application of the optimal planting dates and irrigation thresholds to 

the weather data of the other selected Georgia AEMN weather stations (Arlington, Attapulgus, 

Dawson, Tifton, Plains, and Fort Valley) to simulate crop production. From this second 

simulation, the discrete irrigation events (amount of water applied and the time of application) 

are obtained and applied back to the weather data of the Camilla weather station and yield 

simulated for each of the crops under consideration. The expected net revenues estimated at this 

stage are subtracted from the expected net revenues estimated from the initial simulations 

specific to Camilla weather station. The difference between these revenues (lost revenues) is 

calculated and used as input data for the spatial analysis. We assumed that in the event of losing 

the Camilla weather station, farmers who used to depend on the Camilla station’s weather data, 
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will use weather data from their nearest neighbors. The Thiessen polygon application in ArcGIS 

is used to determine which stations constitute the nearest neighbors of the Camilla station. The 

Thiessen polygons are drawn with and without the Camilla weather station (reference station) 

and the two layers are overlaid on top of each other to show the sub polygons within the Camilla 

polygon and the weather stations they are nearest to. The various polygons are shown below. 

   Figure 4.1: Thiessen Polygons with all Selected Weather Stations 
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    Figure 4.2: Thiessen Polygons without the Camilla Station  
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   Figure 4.3: Thiessen Polygons Showing an Overlay of the with and without Camilla 
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As shown on figure 4.3, the overlay of the with and without Camilla polygons shows the sub 

polygons within the Camilla polygon and which stations these sub polygon are nearest to. In the 

event that the Camilla station is no more, producers located within the Camilla (A) sub-polygon 

will use weather information from Arlington, Camilla (B) will turn to the Tifton station for 

weather data, while Camilla(C) and Camilla (D) will use weather information from Attapulgus 

and Dawson respectively. 

           The lost revenues are used as input in the spatial analysis framework through kriging to 

create an interpolated surface across figure 4.3.  The average interpolated value is calculated for 

Camilla (A), Camilla (B), Camilla (C) and Camilla (D) using zonal statistics. To estimate the net 

revenue lost for losing the Camilla weather station, the average interpolated values for Camilla 

(A), Camilla (B), Camilla (C) and Camilla (D) are subtracted from the corresponding lost 

revenues at the weather stations at Arlington, Attapulgus, Tifton, and Dawson respectively. The 

difference represent the net revenue lost for losing the Camilla station and forcing producers to 

implement the Camilla optimal strategy using weather data from Arlington, Attapulgus, Tifton, 

and Dawson. 

 

4.9 Data 

4.10 Soil Data 

Norfolk Loamy Sand and Tifton Loamy Sand are common soil types in Georgia and the top two 

common soils in Mitchell County where the Camilla Georgia AEMN weather station is located. 

The soil data is obtained from the Southeast Climate Consortium Database. This database 

provides soil type information at the county level for counties in Georgia, Florida and Alabama. 

This database is available via the web at (http://www.agroclimate.org/tools/yieldRisk). 
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Furthermore, the USDA National Resources Conservation Services custom soil resource report 

provides data on actual acreage and proportional extent of soils for each County in Georgia. This 

database is also available at (http://www.mo15.nrcs.usda.gov/states/ga.html). The number of 

acres of NLS and TLS for all counties within the study area were obtained from this source.  

 

4.11 Economic Data 

The economic data used for this study include output prices and variable production input cost 

data for peanut, corn, cotton and soybean. Average output prices for peanut, corn, cotton and 

soybean were obtained from the UGA Center for Agribusiness and Economic Development. 

These prices are available through the web at http://georgiastats.uga/sasweb/cgi-bin/broker. 

All prices were converted to average price/ton for unit consistency using appropriate conversion 

factors. 

 

Table 4.5 2008 Average Prices for Peanut, Corn, Cotton and Soybean 

Crop Price 

Corn $ 0.24/lb 

Cotton $ 4.75/bu 

Peanut $ 0.685/lb 

Soybean  $ 8.77/bu 

Source: UGA Center for Agribusiness and Economic Development 

 

All variable costs except for fertilizer and irrigation costs were obtained from the 2008 South 

Georgia Crop Enterprise Estimates. Fertilizer prices used for this study are 2008 average US 
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fertilizer prices. The fertilizer price data comes from the National Agricultural Statistics Service 

of the USDA. These prices are documented and can be accessed from the USDA website at 

http://www.ers.usda.gov/Data/fertilizeruse/.  

 

Table 4.6 2008 Average USA Fertilizer Prices  

Fertilizer Price 

Urea $ 552/ton 

Diammonium Phosphate $ 850/ton 

Ammonium Nitrate $ 509/ton 

Source: National Agricultural Statistics Service of the USDA. 

 

Irrigation cost is assumed to consist of two parts: water cost (water price) and water application 

cost. Because water is not a market good, an explicit water price is not available in Georgia 

(Mullen et al., 2009). As a result, farm-level water pumping cost is used to approximate water 

price. In this study, water price is set to $ 0.1953/ha mm-1. This is calculated from the water costs 

estimate of $ 19.53/1000 m3 by Mullen et al (2009).  

            We approximate water application cost by the labor cost of irrigation water application. 

The hours of labor required depends on the type of irrigation system been used. This study 

assumes the irrigation system used is the non-towable center pivot irrigation system. The 

estimated labor hours required to run this type of irrigation system is two hour per application 

(Hogan et al., 2007). Labor costs consist of the hourly wage rate times the number of labor hour 

required. The average of 2008 agricultural wage rate for the Southeast is $ 9/hour (Agricultural 

Statistics Board, NASS, USDA). Thus the approximate water application cost is set to $ 18 per 
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application. Other variable costs are show on table 4.6 below.   These variable costs are costs per 

acre and thus were converted to costs per hectare.     

 

Table 4.7 2008 Variable Production Costs 

Crops  

Variable Costs Cotton Peanut Corn Soybean 

Seed 65 98 60 35 

Cover Crop Seed 17 17 17 17 

BWEP 2.5 - - - 

Chemicals 88 196 27 47 

Scouting 7.5 - - - 

Fuel and Lube 44 53 21 19 

Repairs and Maintenance 22 28 10 9 

Labor 19 24 9 8 

Insurance 13 17 20 14 

Drying and Cleaning - 40 57 - 

Interest on Operating Capital 23 25 24 12 

Marketing and Fees - 15 - - 

Total Variable Cost 300 512 243 161 

 Source: 2008 South Georgia Crop Enterprise Estimates (UGA Cooperative Extension) 
 
4.12 Weather Data 

Site-specific weather data used to run the DSSAT crop model are daily weather (maximum and 

minimum temperature, rainfall and solar radiation) collected at the selected Georgia AEMN 

weather station. The weather data were obtained from the University of Georgia’s Department of 

Biological and Agricultural Engineering (www.georgiaweather.net). Graphs of average monthly 

precipitation, maximum and minimum temperature and solar radiation for all the selected 

weather stations are documented in the appendix section. (Appendix C).  
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CHAPTER 5 

RESULTS 

 

5.1 Optimal Irrigation Thresholds and Planting Dates 

Farmers plant their crops on different dates during the planting season for the same crop. In other 

words, there is no particular day of the year when all farmers of a particular crop plant their 

crops.  The period of time within which sowing of a crop can be done is referred to as the 

planting window and this varies from one crop to another. In the same way, differences in soil 

type, amount of rainfall received as well as the crop that is being planted influences the amount 

of irrigation water to apply. Thus the first step was to identify the optimal planting date and 

irrigation threshold for corn, cotton, soybean, and peanut at the Camilla weather station.     

            The results of the optimal irrigation thresholds and planting dates that maximizes 

expected net returns to corn, cotton, soybean, and peanut at Camilla are presented in table 5.1. 

The results show different optimal planting dates and irrigation thresholds across the different 

crops and soils. The optimal planting date and irrigation threshold for corn planted on Norfolk 

Loamy Sand (NLS) at the Camilla AEMN weather station is May 15 and 50% automatic 

irrigation. The optimal mix for corn grown on TLS is May 30 and 40% automatic irrigation. At 

this optimal mix, the average expected water used is 173 and 185 mm/ha for TLS and NLS 

respectively. The results also show that soybean produces the best expected net returns when 

planted on May 10 on both NLS and TLS. The corresponding optimal irrigation threshold for 

soybean grown on NLS and TLS is 50% automatic irrigation for both soils.  

            Furthermore, the optimal planting date and irrigation threshold for cotton is April 15 for 

TLS and, April 1 for NLS. The optimal irrigation is 40% automatic irrigation for both soils.  
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Optimal planting date for Peanut is April 30 on NLS and May 20 on TLS and the corresponding 

optimal irrigation threshold is 60% and 70% automatic irrigation respectively. In terms of crop 

yield, NLS appears to produce the highest yield across planting dates and irrigation thresholds, 

except for soybean where TLS produces the highest crop yield. The results of the optimal 

strategies as reported in table 5.1 is based on the risk coefficient of 1.1. However, the results 

remain the same for the risk coefficient of 2.5 except for soybean (TLS) and corn (NLS).  The 

optimal planting date for soybean (TLS) at this risk level is May 20 and the optimal irrigation is 

40% automatic irrigation. That of corn (NLS) is May 30 and 40% irrigation    

      

Table 5.1 Optimal Irrigation Thresholds and Planting Dates at Camilla 

Crop Soil 
Type 

Optimal Irrigation 
   Threshold   
         (%) 

Optimal 
Planting 
Date 
 

Ave. yield 
(kg/ha)      

Expected net 
revenue ($/ha) 

Expected 
water used 
(mm/ha) 

Cotton TLS 
 

40 4/15 3425 4168 221 

Cotton NLS 
 

40 4/01 3646 4404 317 

Peanut TLS 
 

70 5/20 3660 496 158 

Peanut NLS 
 

60 4/30 5828 1433 258 

Corn TLS 
 

40 5/30 7719 557 173 

Corn NLS 
 

50 5/15 7963 592 185 

Soybean TLS 
 

50 5/10 3720 345 315 

Soybean NLS 
 

50 5/10 3610 397 295 

TLS and NLS are Tifton Loamy Sand and Norfolk Loamy Sand respectively 
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The difference in yield between the two soils could be due to differences in soil fertility and 

other physical and chemical soil properties that support plant growth. It also appears that, except 

for corn, early planting is more advantageous than late planting as the optimal planting dates for 

peanut, soybean and cotton are associated with the early planting dates in the planting window.  

The difference between the optimal planting dates for peanut on NLS and TLS are particularly 

wide and may not make sense agronomically. However, within the framework of the utility 

function used for this study, such choices make sense because the optimal planting dates were 

found to be associated with options that had the highest net revenue and the lowest standard 

deviation. This assessment holds true for both peanut on TLS and NLS. These summary statistics 

are available in the appendix section (Appendix D) 

 

5.2 Effects for Imposing Optimal Irrigation from other Station on the Camilla Station 

We hypothesized that implementing the Camilla optimal strategies based on the weather 

information from other AEMN weather will result in crop yield decline and some lost of 

revenue. To verify this hypothesizes, the optimal planting dates and irrigation thresholds 

developed based on Camilla’s weather and presented on table 5.1 was applied to the weather data 

from the other stations (Arlington, Attapulgus, Dawson, Fort Valley, Plains and Tifton) to 

simulate crop yield. Net revenues are then estimated based on this yield and the yield obtainable 

when Camilla’s own weather is used to simulate yield at Camilla and the difference in net 

revenue estimated.  

            When producers at Camilla implement their optimal strategy using the weather data  from 

neighboring AEMN weather stations, they lose yield and revenue. The lost revenue numbers are 

showcased in table 5.2. For instance if a producer at Camilla implements the Camilla optimal  
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strategy based on the weather data from Arlington to produce peanut at Camilla, net revenue will 

decline by  $65/ha and $51/ha respectively for NLS and TLS. Similarly, if the optimal strategy is 

implemented based on Tifton’s weather information to produce peanut at Camilla, the producer’s 

net revenue goes down by $154/ha and $208ha for NLS and TLS respectively. The same 

explanation hold true for the rest of table 5.2. 

 

Table 5.2 Change in Net Revenue ($/ha) 

Weather 
Stations 

Peanut 
(NLS) 

Peanut 
(TLS) 

Soybean 
(NLS) 
 

Soybean 
(TLS) 
 

Corn 
(NLS) 
 

Corn 
(TLS) 
 

Cotton 
(NLS) 

Cotton 
(TLS) 

 

Arlington -63 -51 -157 -178 -53 -120 

 

-64 -61 

 

Attapulgus -63 -98 -186 -184 -63 -75 

 

-47 -69 

 

Dawson -129 -2 -190 -129 -28 -103 

 

-48 -79 

 

Fort Valley -297 -8 -157 -150 -100 -107 

 

-69 -67 

 

Plains -84 -89 -140 -155 -28 -94 

 

-94 -95 

 

Tifton -154 -208 -168 -132 -52 -72 

 

-75 -92 

 
TLS and NLS are Tifton Loamy Sand and Norfolk Loamy Sand respectively 

 

5.3 Changes in Net Revenue from Losing the Camilla Weather Station 

One of the objectives of this thesis is to estimate the revenue lost for losing the Camilla weather 

station so that farmers who used to depend on it to develop optimal irrigation threshold and 
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planting date will now have to use neighboring weather stations to make their optimal production 

decisions. This objective was achieved with the use of GIS techniques (kriging and zonal 

statistics). The input data for this exercise is the lost revenues presented on table 5.2 above. The 

kriging technique uses the lost revenues to create an interpolated surface across the study area 

and zonal statistics estimates the mean interpolated value for each sub-polygon. In calculating 

the revenue lost for losing the Camilla weather station for each crop, the four sub-polygons 

(CamA, CamB, CamC and CamD) in the Camilla polygon and their closest neighbor (Arlington, 

Attapulgus, Tifton, and Dawson) are used (see figure 5.1 below). The dollar value for CamA, 

CamB, CamC and CamD as shown on figure 5.1 represents the average interpolated value per 

hectare for each of these sub-polygons. On the other hand, the dollar values for the other 

polygons on figure 5.1 are the lost revenues when those stations weather data are used to 

implement optimal strategies for Camilla (change in net revenues from table 5.2) 
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Figure 5.1 Kriging Results for Corn TLS 
 

 
 
 
The results of the net revenue lost from losing the Camilla station for corn simulated on TLS is 

presented in table 5.3. Column (2) shows the change in net revenue (net revenue lost) for corn 

simulated on TLS at Camilla, if Arlington, Attapulgus, Tifton or Dawson’s weather data is used 

to implement the optimal strategy for Camilla. Column (4) represents the average interpolated 

value for the Camilla sub polygons. Thus, the actual revenue lost from losing Camilla and 

depending on Arlington, Attapulgus, Tifton or Dawson is represented by column (5), which is 

Tifton 
($72/ha)

Plains  
( $94/ha) 

Fort Valley
( $107/ha)

Arlington 
($120/ha) 

Dawson 
($103/ha) 

Attapulgus
( $75/ha) 

CamA 
( $39/ha

CamB 
( $71/ha)

CamC  
($75/ha) 

CamD 
($65/ha)
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the difference between column (2) and column (4). As can be seen on figure 5.1, the sub 

polygons within the Camilla polygon (CamA, CamB, CamC and CamD) are of different sizes 

and the weighted average approach is used to account for these differences in area. Column (6), 

therefore, represents the proportion of each sub Camilla polygon and column (7) which is the 

product of (5) and (6) is the weighted average revenue lost from losing the Camilla weather 

station.  

 

Table 5.3 Results of the Net Revenue Lost from Losing Camilla (Corn TLS) 

Polygon Change  
in net 
revenue 
($/ha) 

Camilla sub-
Polygons 
(CSP) 

Average 
interpolated 
value for (CSP) 
($/ha)  

Lost net 
revenue 
(LNR) 
($/ha)  

Proportion 
of (CSP)  
area  

Weighted  
(LNR) 
($/ha) 

 
Arlington 

 
-120 

 
camA 

 
-39 
 

 
-81 
 

 
0.31 
 

 
-25 
 

 
Attapulgus 

 
-75 

 
camB 

 
-71 
 

 
-4 
 

 
0.29 
 

 
-1 
 

 
Tifton 

 
 -72 

 
camC 

 
-75 
 

 
+3 
 

 
0.24 
 

 
+1 
 

 
Dawson 

 
-103 

 
camD 

 
-65 

 
-38 
 

 
0.16 

 
-6 

Total  $-31/ha 

 

 
The positive number in column (7) for camC is interpreted to mean that producers of irrigated 

corn in camC are actually better off implementing the Camilla optimal strategy using Tifton’s 

weather data instead of Camilla which they are closest to. This is an unexpected result and could 

be due to topological effects in the landscape which was not taken into consideration by this 

thesis. The net effect, however, is negative as shown by the total of column (7) and means that 
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the total net revenue lost from losing the Camilla AEMN weather station and depending on 

Arlington, Attapulgus, Tifton and Dawson is $ 31/ha for irrigated corn grown on TLS. 

            Similar interpolated maps like figure 5.1 were created through kriging for cotton, peanut 

and soybean on NLS and TLS. These maps are available at the index section (Appendix A). The 

net revenue lost from losing Camilla and depending on Arlington, Attapulgus, Tifton and 

Dawson weather to produce cotton, peanut and soybean at Camilla were estimated in exactly the 

same manner as corn on table 5.3 above. The results are presented in tables 5.4 to 5.10. 

 

Table 5.4 Results of the Net Revenue Lost from Losing Camilla (Corn NLS) 

Polygon Change  
in net 
revenue 
($/ha) 

Camilla sub-
Polygons 
(CSP) 

Average 
interpolated 
value for (CSP) 
($/ha)  

Lost net 
revenue 
(LNR) 
($/ha)  

Proportion 
of (CSP)  
area  

Weighted  
(LNR) 
($/ha) 

 
Arlington 

 
-53 

 
camA 

 
-15 
 

 
-38 
 

 
0.31 
 

 
-12 
 

 
Attapulgus 

 
-63 

 
camB 

 
-31 
 

 
-32 
 

 
0.29 
 

 
-9 
 

 
Tifton 

 
 -52 

 
camC 

 
-26 
 

 
-26 
 

 
0.24 
 

 
-6 
 

 
Dawson 

 
-28 

 
camD 

 
-17 

 
-11 
 

 
0.16 

 
-2 

Total  $-29/ha 
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Table 5.5 Results of the Net Revenue Lost from Losing Camilla (Peanut NLS) 

Polygon Change  
in net 
revenue 
($/ha) 

Camilla sub-
Polygons 
(CSP) 

Average 
interpolated 
value for (CSP) 
($/ha)  

Lost net 
revenue 
(LNR) 
($/ha)  

Proportion 
of (CSP)  
area  

Weighted  
(LNR) 
($/ha) 

 
Arlington 

 
-63 

 
camA 

 
-25 
 

 
-38 
 

 
0.31 
 

 
-12 
 

 
Attapulgus 

 
-63 

 
camB 

 
-44 
 

 
-19 
 

 
0.29 
 

 
-6 
 

 
Tifton 

 
 -154 

 
camC 

 
-67 
 

 
-87 
 

 
0.24 
 

 
-21 
 

 
Dawson 

 
-129 

 
camD 

 
-68 

 
-61 
 

 
0.16 

 
-10 

Total  $-49/ha 

 

Table 5.6 Results of the Net Revenue Lost from Losing Camilla (Peanut TLS) 

Polygon Change  
in net 
revenue 
($/ha) 

Camilla sub-
Polygons 
(CSP) 

Average 
interpolated 
value for (CSP) 
($/ha)  

Lost net 
revenue 
(LNR) 
($/ha)  

Proportion 
of (CSP)  
area  

Weighted  
(LNR) 
($/ha) 

 
Arlington 

 
-51 

 
camA 

 
-23 
 

 
-28 
 

 
0.31 
 

 
-9 
 

 
Attapulgus 

 
-98 

 
camB 

 
-64 
 

 
-34 
 

 
0.29 
 

 
-10 
 

 
Tifton 

 
 -208 

 
camC 

 
-81 
 

 
-127 
 

 
0.24 
 

 
-30 
 

 
Dawson 

 
-2 

 
camD 

 
-42 

 
+40 
 

 
0.16 

 
+6 

Total  $-43/ha 
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Table 5.7 Results of the Net Revenue Lost from Losing Camilla (Cotton NLS) 

Polygon Change  
in net 
revenue 
($/ha) 

Camilla sub-
Polygons 
(CSP) 

Average 
interpolated 
value for (CSP) 
($/ha)  

Lost net 
revenue 
(LNR) 
($/ha)  

Proportion 
of (CSP)  
area  

Weighted  
(LNR) 
($/ha) 

 
Arlington 

 
-64 

 
camA 

 
-21 
 

 
-43 
 

 
0.31 
 

 
-13.33 
 

 
Attapulgus 

 
-47 

 
camB 

 
-42 
 

 
-5 
 

 
0.29 
 

 
-1.45 
 

 
Tifton 

 
 -75 

 
camC 

 
-46 
 

 
-29 
 

 
0.24 
 

 
-6.96 
 

 
Dawson 

 
-48 

 
camD 

 
-33 

 
-15 
 

 
0.16 

 
-2.4 

Total  $-24/ha 

 

 
Table 5.8 Results of the Net Revenue Lost from Losing Camilla (Cotton TLS) 

Polygon Change  
in net 
revenue 
($/ha) 

Camilla sub-
Polygons 
(CSP) 

Average 
interpolated 
value for (CSP) 
($/ha)  

Lost net 
revenue 
(LNR) 
($/ha)  

Proportion 
of (CSP)  
area  

Weighted  
(LNR) 
($/ha) 

 
Arlington 

 
-61 

 
camA 

 
-21 
 

 
-40 
 

 
0.31 
 

 
-12 
 

 
Attapulgus 

 
-69 

 
camB 

 
-43 
 

 
-26 
 

 
0.29 
 

 
-8 
 

 
Tifton 

 
 -92 

 
camC 

 
-47 
 

 
-45 
 

 
0.24 
 

 
-11 
 

 
Dawson 

 
-79 

 
camD 

 
-39 

 
-40 
 

 
0.16 

 
-6 

Total  $-37/ha 
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Table 5.9 Results of the Net Revenue Lost from Losing Camilla (Soybean NLS) 

Polygon Change  
in net 
revenue 
($/ha) 

Camilla sub-
Polygons 
(CSP) 

Average 
interpolated 
value for (CSP) 
($/ha)  

Lost net 
revenue 
(LNR) 
($/ha)  

Proportion 
of (CSP)  
area  

Weighted  
(LNR) 
($/ha) 

 
Arlington 

 
-157 

 
camA 

 
-60 
 

 
-97 
 

 
0.31 
 

 
-30 
 

 
Attapulgus 

 
-186 

 
camB 

 
-120 
 

 
-66 
 

 
0.29 
 

 
-19 
 

 
Tifton 

 
 -168 

 
camC 

 
-125 
 

 
-43 
 

 
0.24 
 

 
-10 
 

 
Dawson 

 
-190 

 
camD 

 
-106 

 
-84 
 

 
0.16 

 
-13 

Total  $-72/ha 

 

Table 5.10 Results of the Net Revenue Lost from Losing Camilla (Soybean TLS) 

Polygon Change  
in net 
revenue 
($/ha) 

Camilla sub-
Polygons 
(CSP) 

Average 
interpolated 
value for (CSP) 
($/ha)  

Lost net 
revenue 
(LNR) 
($/ha)  

Proportion 
of (CSP)  
area  

Weighted  
(LNR) 
($/ha) 

 
Arlington 

 
-178 

 
camA 

 
-61 
 

 
-117 
 

 
0.31 
 

 
-36 
 

 
Attapulgus 

 
-184 

 
camB 

 
-115 
 

 
-69 
 

 
0.29 
 

 
-20 
 

 
Tifton 

 
 -132 

 
camC 

 
-121 
 

 
-11 
 

 
0.24 
 

 
-3 
 

 
Dawson 

 
-129 

 
camD 

 
-101 

 
-28 
 

 
0.16 

 
-4 

Total  $-63/ha 
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Table 5.11 Summary of Net Revenue Lost 

Crop/Soil Net Revenue Lost ($/ha) 

Corn (NLS) 
 

-29 

Corn (TLS) 
 

-31 

Peanut (NLS) 
 

-49 

Peanut (TLS) 
 

-43 

Cotton (NLS) -24 
 

Cotton (TLS) -37 
 

Soybean (NLS) 
 

-72 

Soybean (TLS) -63 
 

 

Table 5.11 above gives a summary of the net revenue lost from losing the Camilla weather 

station for all four crops. This is used to estimate the total net revenue lost for losing the Camilla 

station for irrigated peanut, corn, soybean and cotton within the Camilla polygon.  Figure 5.2 is 

the entire Camilla polygon showing the portions of the counties surrounding Mitchell County 

that are found within it. Information on the total land area for each of these counties as well as 

the land area of the portions of each county that is within the Camilla polygon was used to 

determine the percentage of each county that is within the Camilla Polygon.  
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 Figure 5.2 The Camilla Polygon 

 

 

Information on total acres under crops, the total number of irrigated acres for all crops as well as 

for peanut, corn, soybean and cotton within the Camilla polygon, together with the net revenue 

lost summary information on table 5.11 and the land area of those counties forming the Camilla 

polygon were used to estimate the total net revenue lost from losing the Camilla station. The 

total net revenue lost estimation are presented on table 5.12 for corn NLS and TLS. The nine 

counties that form the Camilla polygon as shown on figure 5.2 above are listed. The proportions 

of the land area of each county within the Camilla polygon are also estimated and total irrigated 
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corn acres on NLS and TLS in the Camilla polygon were estimated based on these proportions. 

Tables showing the detailed estimation of the total irrigated NLS and TLS within the Camilla 

Polygon are documented in the appendix section of this thesis (Appendix B). The total net 

revenue lost for irrigated corn on NLS is simply the product of the total irrigated corn hectares 

on NLS for each county and the per hectare net revenue lost from losing the Camilla station for 

corn NLS (estimated on table 5.4). Thus, the total net revenue lost from losing the Camilla 

station for irrigated corn on NLS is $74,482 and that of corn TLS is $140,844 (Total of table 

5.12). 

 

Table 5.12 Total Net Revenue Lost for Losing Camilla (Corn NLS and TLS) 

County Proportion  
of county  
in Camilla 
polygon 

Total irrigated 
corn hectares  
on NLS in the 
Camilla Polygon 

Total irrigated 
corn hectares  
on TLS in the 
Camilla Polygon 
 

Total net 
revenue lost  
for irrigated 
cotton on 
NLS 

Total net 
revenue lost  
for irrigated 
cotton on 
TLS 

Baker 0.55 159.41 126.98 -4623 -3936 
Calhoun 0.01 9.39 8.39 -272 -260 
Colquitt 0.32 316.39 38.61 -9175 -1197 
Decatur 0.04 6.12 15.92 -177 -494 
Dougherty 0.67 80.78 373.69 -2343 -11584 
Grady 0.27 43.55 339.68 -1263 -10530 
Mitchell 1.00 1911.47 2511.94 -55433 -77870 
Thomas 0.46 38.21 940.32 -1108 -29150 
Worth 0.12 3.03 187.84 -88 -5823 
Total  $-74,482 $-140,844 

TLS and NLS are Tifton Loamy Sand and Norfolk Loamy Sand respectively 

The estimation of the total net revenue lost for losing the Camilla station for the other crops are 

done in the same way as corn NLS and TLS above and are presented in the following tables  
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Table 5.13 Total Net Revenue Lost for Losing Camilla (Cotton NLS and TLS) 
County Proportion  

of county  
in Camilla 
polygon 

Total irrigated 
cotton hectares  
on NLS in the 
Camilla Polygon 

Total irrigated 
cotton hectares  
on TLS in the 
Camilla Polygon 

Total net 
revenue lost  
for irrigated 
cotton on 
NLS 

Total net 
revenue lost 
for irrigated 
cotton on 
TLS 

Baker 0.55 174.18 138.74 -4180 -5133 

Calhoun 0.01 10.99 9.83 -264 -364 

Colquitt 0.32 1772.37 216.31 -42537 -8003 

Decatur 0.04 23.24 60.39 -558 -2234 

Dougherty 0.67 56.15 259.79 -1348 -9612 

Grady 0.27 19.25 150.13 -462 -5555 

Mitchell 1.00 2371.84 3116.93 -56924 -115326 

Thomas 0.46 16.08 395.66 -386 -14639 

Worth 0.12 10.36 640.65 -249 -23704 

Total  $-106,908 $-184,570 

TLS and NLS are Tifton Loamy Sand and Norfolk Loamy Sand respectively 

 

Table 5.14 Total Net Revenue Lost for Losing Camilla (Peanut NLS and TLS) 
County Proportion  

of county  
in Camilla 
polygon 

Total irrigated 
peanut hectares  
on NLS in the 
Camilla Polygon 

Total irrigated 
peanut hectares  
on TLS in the 
Camilla Polygon 

Total net 
revenue lost  
for irrigated 
peanut on 
NLS 

Total net 
revenue lost 
for irrigated 
peanut on 
TLS 

Baker 0.55 165.47 131.81 -8108 -5667 

Calhoun 0.01 5.23 4.68 -256 -201 

Colquitt 0.32 698.23 85.22 -34213 -3664 

Decatur 0.04 15.71 40.83 -770 -1756 

Dougherty 0.67 42.84 198.20 -2099 -8523 

Grady 0.27 7.39 57.64 -362 -2479 

Mitchell 1.00 1716.98 2256.35 -84132 -97023 

Thomas 0.46 7.64 188.10 -374 -8088 

Worth 0.12 7.22 446.63 -354 -19205 

 
Total 

 
$-130,668 

 
$-146,606 
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Table 5.15 Total Net Revenue Lost for Losing Camilla (Soybean NLS and TLS) 
 
County Proportion  

of county  
in Camilla 
polygon 

Total irrigated 
soybean hectares 
on NLS in the 
Camilla Polygon 
 

Total irrigated 
soybean hectares  
on TLS in the 
Camilla Polygon 

Total net 
revenue lost  
for irrigated 
peanut on 
NLS 

Total net 
revenue lost 
for irrigated 
peanut on 
TLS 

Baker 0.55 24.66 19.64 -1776 -1237 
Calhoun 0.01 0.57 0.51 -41 -32 
Colquitt 0.32 86.89 10.61 -6256 -668 
Decatur 0.04 5.93 15.39 -427 -970 
Dougherty 0.67 5.06 23.41 -364 -1475 
Grady 0.27 1.49 11.69 -107 -736 
Mitchell 1.00 51.12 67.18 -3681 -4232 
Thomas 0.46 20.64 508.03 -1486 -32006 
Worth 0.12 1.99 123.61 -143 -7787 
Total $-14,281 $-49,143 

TLS and NLS are Tifton Loamy Sand and Norfolk Loamy Sand respectively 

From the results presented on the tables above, it is now possible to estimate the total net revenue 

lost for losing the Camilla AEMN weather station for irrigated corn, cotton, peanut and soybean. 

From the results obtained, net revenue lost for irrigated corn on NLS and TLS within the Camilla 

polygon is $74,482 and $140,844 respectively if the Camilla weather station is eliminated. On 

the other hand, net revenue will decline by $130,668 and $146,606 for irrigated peanut on NLS 

and TLS respectively if the Camilla station is eliminated. Similarly, the loss in net revenue for 

irrigated cotton on NLS is $106,908 and $184,570 for irrigated cotton on TLS for losing the 

Camilla weather station. Finally, net revenues will decline by $14,281 and $49,143 for irrigated 

soybean on NLS and TLS respectively in the event that the Camilla station is terminated. Thus, 

the total net revenue lost for losing the  Camilla station is estimated at $847,502 for irrigated 

corn, cotton, soybean and peanut. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

6.1 Summary 

Many agricultural activities are affected negatively by unfavorable weather events. In fact, the 

agricultural sector is said to be the most weather dependent of all human activity. Thus, the day 

to day variation in weather conditions presents a major source of risk and uncertainty to the 

agricultural sector, especially field crops. Farmers largely do not have control over what weather 

conditions they get in any given growing season and also do not know with certainty what 

weather conditions to expect on their fields. As a result, many farmers make their production 

decisions based on their general understanding of weather pattern for their region. This 

uncertainty most often than not, results in conservative strategies that sacrifice some productivity 

to reduce the risk of production losses. 

            There has been significant progress in the generation and dissemination of weather 

information over the past years. However, the potential for farmers to benefit from this progress 

depends on their ability and willingness to adopt farming operations to the weather information, 

timing and accuracy of the weather information and the effectiveness of the communication 

process. Many resourceful farmers are capable of adjusting their management decisions to take 

advantage of expected favorable conditions or reduce unwanted impact if they have reliable 

information of the weather into the season. Fortunately, it is now possible with the use of 

DSSAT to model crop production at specific locations to provide farmers with the tools that they 

need to make important production decisions. 



75 
 

The National Weather Service is the primary supplier of short-term weather information for the 

citizens of the State of Georgia. However, the weather information generated by the National 

Weather Service is not representative of weather date needed for agricultural and environmental 

applications. This is largely because the detail weather information collected by the National 

Weather Service are around airport and large cities and are therefore influenced by runways and 

large concrete building. Because of these concerns, the College of Agriculture and 

Environmental Sciences of the University of Georgia in 1991 established the Georgia Automated 

Environmental Monitoring Network (Georgia AEMN) weather stations to collect reliable 

weather data and other environmental variables for agriculture and other related applications. 

The weather information generated from these stations is made available to the public through 

the web at www.georgiaweather.net. Many individual farmers, utility companies, businesses, 

researchers, the government and non governmental agencies have benefited in different ways 

from the weather information provided by the network. The network also contributed 

significantly to the planning and overall success of the 1996 Olympic Games held in Atlanta 

Georgia. 

            A lot of research work has been done on valuing weather information. However, the 

results of these studies have generated a wide range of values.  This is partly because of the 

differences in methodological approaches used by the different research efforts. In addition, the 

weather product being value and the scope of the valuation could also differ from one research to 

another. The use of DSSAT to model crop production, however, is becoming more popular 

among research valuing weather and climate information. 

  This thesis estimated the value of a Georgia AEMN weather station for irrigated cotton, corn, 

peanut and soybean by evaluating the net revenue lost for losing the Georgia AEMN weather 
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station at Camilla.  DSSAT is employed to simulate crop yield for the four crops considered.  A 

planting window consisting of a number of planting dates were specified for each crop and ten 

different levels of automatic irrigation specified for the simulations. The average crop yield for 

each planting date and irrigation threshold, together with the average prices of these crops and 

the total variable cost were used to estimate expected net revenues. The expected net revenues 

and two different levels of risk aversion coefficients were run through a constant utility function 

to determine the optimal planting date and irrigation threshold at Camilla for each crop using 

Camilla’s weather information. This initial optimal planting date and irrigation threshold 

developed based on Camilla’s weather were applied to the weather information of other selected 

Georgia AEMN weather stations (Arlington, Attapulgus, Dawson, Tifton, Fort Valley and 

Plains) to simulate crop yield. The discrete irrigation events were then obtained and applied back 

to Camilla’s weather to simulated yields of all the crops considered. The difference between the 

average yields for the two scenarios represents the change in yield for implementing the 

Camilla’s strategy using weather data from other stations. Expected net revenue changes  were 

also estimated and used in GIS through Kriging to created interpolated surfaces across the study 

area. Zonal statistics also in GIS was used to estimate the average interpolated value to determine 

that actual net revenue lost for losing the Camilla station for all crops considered. 

            The results of this research indicate that the optimal planting date and irrigation for corn 

on Norfolk Loamy Sand (NLS) at Camilla is May 15 at 50% automatic irrigation. That of corn 

on Tifton Loamy Sand (TLS) is May 30 at 40% irrigation. Soybean is May 10 at 50% irrigation 

for both NLS and TLS. The optimal mix for cotton is April 15 for NLS and April 1for TLS. 

Optimal irrigation threshold, however, is 40% for both soils. Peanut does best when planted on 

April 30 for NLS and May 20 for TLS. Optimal irrigation threshold is 60% for NLS and 70% for 
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TLS. These optimal strategies are based on the risk aversion coefficient of 1.1.  However, the 

results remains the same for the aversion coefficient of 2.5 except for corn NLS and soybean 

NLS. Finally, the total net revenue lost for losing the Camilla station for irrigated corn, cotton, 

peanut and soybean on NLS and TLS is estimated at $ 847,502 per year. 

 

6.2 Conclusions and Implications 

A number of conclusions can be drawn from the results of this research. First of all the results 

shows that the optimal planting date and irrigation thresholds are different for different crops and 

even different for the same crop planted on different soils. This is an important observation and 

implies that farmers do not have to assume that an optimal decision mix that works well for one 

crop will necessarily apply to another crop even if the two crops are planted under similar 

conditions. It is recommended that farmers consult with their county or district extension agents 

to get expert advice on the best management practices to adopt for the crops they intend to 

produce. 

            Secondly, the results points to an important conclusion about using the weather data of 

other weather stations to implement the optimal crop production strategies developed based on 

the weather data of the Camilla. The results present overwhelming evidence that using other 

weather stations data to implementing the Camilla optimal strategy will lead to losses in crop 

yield and eventually reduce expected net revenue. This implies that installing and maintaining 

weather stations like the Georgia AEMN at recommended intervals across agricultural 

production sites is ideal. It is therefore recommended that all existing Georgia AEMN weather 

stations be kept and new ones added where they are needed, if possible. 
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Furthermore, the results reveal that the Georgia AEMN weather stations are highly valuable. The 

estimated net revenue lost for losing the Camilla station alone for irrigated corn, cotton, peanut 

and soybean producers is $ 847,502 per year. This estimated net revenue lost is a conservative 

and a snap shot estimate of a particular time period. The estimated net revenue lost could be 

much higher if changes in irrigation permits leads to more irrigated acres and if other high value 

crops were included in the analysis. Changes in crop prices and crop production costs will also 

affect the result. We can, therefore, conclude that the Georgia AEMN weather stations contribute 

significantly to the agricultural sector and for that matter the general economy of the State of 

Georgia. As a result, every effort should be made to provide the needed funding to support all 

existing Georgia AEMN weather stations and if possible provide extra funds to purchase and 

install new stations where they may be needed. 

 

6.3 Limitations and Suggestion for Future Research 

This research estimated the value of site specific weather information generated by a Georgia 

AEMN weather station. This was done by estimating the net revenue lost for losing the Camilla 

Georgia AEMN weather station and forcing producers of irrigated corn, cotton, soybean and 

peanut within the sphere of influence of the Camilla station, to use weather data from 

neighboring weather stations to make optimal irrigation decisions. It is important to note that the 

analysis of this study is conditioned on some assumptions. 

            First of all, the sphere of influence of the Georgia AEMN Camilla weather station (the 

Camilla polygon in figure 5.2) was determined by using the Thiessen polygon approach in 

ArcGIS to draw Thiessen polygons around the selected Georgia AEMN weather stations. The 

size and shape of the Camilla polygon could change depending on which weather stations around 
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the Camilla station are selected. In reality, the sphere of influence of the Georgia AEMN Camilla 

weather station could be much smaller or much larger than what the Thiessen polygons suggest. 

Thus, future research should determine the sphere of influence of any referenced weather station 

by using some meteorological measure. 

            Secondly, we estimated the total number of irrigated hectares of corn, cotton, peanut and 

soybean in the Camilla polygon by assuming that Tifton Loamy Sand and Norfolk Loamy Sand 

as well as irrigated crops within the Camilla polygon are evenly distributed. Realistically, soils 

and irrigated crops may not necessarily be evenly distributed. To mitigate for this limitation, 

future research should conduct a soil and irrigation survey in the study area to determine the 

actual number of irrigated crops of interested.  

            Thirdly, although this study uses corn, cotton, peanut and soybean in analyzing the value 

of weather information from the Camilla station, many more crops are produced in the study area 

and could be use in the analysis. It is, therefore, suggested that future research efforts should be 

directed at using other crops to estimate the value of weather information from the Camilla 

station. This will give an important indication as to how the value of weather information 

changes or otherwise with different crops. 

            Finally, the methodology developed by this study is universal and can be applied to any 

crop that is simulated by DSSAT or other simulation software and any location in the world 

where the required site specific data are available. Applying the methodology of this research in 

other states and other countries will provide a broader perspective on the value of weather 

information. 
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APPENDICES 

APPENDIX A:  Kriging Results 

Figure A.1 Kriging Results for Corn NLS 

 

Tifton= $52/ha

Plains= $28/ha

Fort Valley= $100/ha

Arlington=$53/ha

Dawson= $28/ha

Attapulgus= $63/ha

CamA= $15/ha

CamB= $31/ha

CamC= $26/ha

CamD= $17/ha
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Figure A.2 Kriging Results for Peanut TLS 

 

Tifton= $208/ha

Plains= $89/ha

Fort Valley= $8/ha

Arlington=$51/ha 

Dawson= $2/ha

Attapulgus= $98/ha

CamA= $23/ha

CamB= $64/ha

CamC= $81/ha

CamD= $42/ha
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     Figure A.3 Kriging Results for Peanut NLS 

 

       

Tifton= $154/ha 

Plains= $84/ha

Fort Valley= $297/ha

Arlington=$63/ha 

Dawson= $129/ha

Attapulgus= $63/ha

CamA= $25/ha

CamB= $44/ha

CamC= $67/ha

CamD= $68/ha
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Figure A.4 Kriging Results for Cotton TLS 

         

Tifton= $92/ha 

Plains= $95/ha

Fort Valley= $67/ha

Arlington=$61/ha 

Dawson= $79/ha

Attapulgus= $69/ha

CamA= $22/ha

CamB= $43/ha

CamC= $47/ha

CamD= $39/ha
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    Figure A.5 Kriging Results for Cotton NLS 

 

           

Tifton= $75/ha 

Plains= $94/ha

Fort Valley= $69/ha

Arlington=$64/ha 

Dawson= $48/ha

Attapulgus= $47/ha

CamA= $21/ha

CamB= $42/ha

CamC= $46/ha

CamD= $33/ha
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     Figure A.6 Kriging Results for Soybeans TLS 

 

Tifton= $132/ha

Plains= $155/ha

Fort Valley= $150/ha

Arlington=$178/ha 

Dawson= $129/ha

Attapulgus= $184/ha

CamA= $61/ha

CamB= $115/ha

CamC= $121/ha

CamD= $101/ha
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Figure A.7 Kriging Results for Soybeans NLS 

 

Tifton= $168/ha 

Plains= $140/ha

Fort Valley= $157/ha

Arlington=$157/ha

Dawson= $190/ha

Attapulgus= $186/ha

CamA= $60/ha

CamB= $120/ha

CamC= $125/ha

CamD= $106/ha
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APPENDIX B: Detailed Estimation of Irrigated Hectares of TLS and NLS in Camilla Polygon 
 
Table: B.1 Total Hectares of Irrigated NLS under Corn in Camilla Polygon 
 
County 
 

Total 
number  
of NLS 
hectares  
in County 
 

Percentage 
of County  
in Camilla 
polygon 

Total number of 
NLS hectares  
in Camilla 
polygon 
 

Percentage of 
harvested 
irrigated 
hectares for all 
crops in county 

Irrigated 
NLS 
hectares in 
Camilla 
polygon 

Percentage 
of irrigated 
corn 
hectares in 
County 

Irrigated  
corn 
hectares in 
Camilla 
polygon 

Baker 2312.45 0.55 1271.85 0.43 542.43 0.29 159.41 

Calhoun 6412 0.01 64.12 0.45 29.03 0.32 9.39 

Colquitt 37866.72 0.32 12117.35 0.38 4659.26 0.07 316.39 

Decatur 3155.84 0.04 126.23 0.45 56.82 0.11 6.12 

Dougherty 1248.4 0.67 836.43 0.46 385.26 0.21 80.78 

Grady 3230 0.27 872.1 0.14 124.11 0.35 43.55 

Mitchell 19436 1.00 19436 0.38 7318.45 0.26 1911.47 

Thomas 1357.85 0.46 624.61 0.13 82.93 0.46 38.21 

worth 740 0.12 88.8 0.27 24.13 0.13 3.03 
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Table: B.2 Total Hectares of Irrigated TLS under Corn in Camilla Polygon 
 
County 
 

Total 
number  
of NLS 
hectares  
in County 
 

Percentage 
of County  
in Camilla 
polygon 

Total number of 
NLS hectares  
in Camilla 
polygon 
 

Percentage of 
harvested 
irrigated 
hectares for all 
crops in county 

Irrigated 
NLS 
hectares in 
Camilla 
polygon 

Percentage 
of irrigated 
corn 
hectares in 
County 

Irrigated  
corn 
hectares in 
Camilla 
polygon 

Baker 1842 0.55 1013.1 0.43 432.07 0.29 126.98 

Calhoun 5732 0.01 57.32 0.45 25.95 0.32 8.39 

Colquitt 4621.45 0.32 1478.86 0.38 568.64 0.07 38.61 

Decatur 8201.6 0.04 328.06 0.45 147.67 0.11 15.92 

Dougherty 5775.84 0.67 3869.81 0.46 1782.42 0.21 373.69 

Grady 25193.2 0.27 6802.17 0.14 968.04 0.35 339.68 

Mitchell 25541.6 1 25541.6 0.38 9617.46 0.26 2511.94 

Thomas 33419.4 0.46 15372.9 0.13 2041.1 0.46 940.32 

worth 45766 0.12 5491.92 0.27 1492.59 0.13 187.84 
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Table: B.3 Total Hectares of Irrigated NLS under Cotton in Camilla Polygon 
 
 
County 
 

Total 
number  
of NLS 
hectares  
in County 
 

Percentage 
of County  
in Camilla 
polygon 

Total number 
of NLS 
hectares  
in Camilla 
polygon 
 

Percentage of 
harvested 
irrigated 
hectares for all 
crops in county 

Irrigated 
NLS 
hectares in 
Camilla 
polygon 

Percentage 
of irrigated 
cotton 
hectares in 
County 

Irrigated  
cotton 
hectares in 
Camilla 
polygon 

Baker 2312.45 0.55 1271.85 0.43 542.43 0.32 174.18 

Calhoun 6412 0.01 64.12 0.45 29.03 0.38 10.99 

Colquitt 37866.72 0.32 12117.35 0.38 4659.26 0.38 1772.37 

Decatur 3155.84 0.04 126.23 0.45 56.82 0.41 23.24 

Dougherty 1248.4 0.67 836.43 0.46 385.26 0.15 56.15 

Grady 3230 0.27 872.1 0.14 124.11 0.16 19.25 

Mitchell 19436 1.00 19436 0.38 7318.45 0.32 2371.84 

Thomas 1357.85 0.46 624.61 0.13 82.93 0.19 16.08 

worth 740 0.12 88.8 0.27 24.13 0.43 10.36 
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Table: B.4 Total Hectares of Irrigated TLS under Cotton in Camilla Polygon 
 
County 
 

Total 
number  
of TLS 
hectares  
in County 
 

Percentage 
of County  
in Camilla 
polygon 

Total number 
of TLS hectares 
in Camilla 
polygon 
 

Percentage of 
harvested 
irrigated 
hectares for all 
crops in county 

Irrigated 
TLS 
hectares in 
Camilla 
polygon 

Percentage 
of irrigated 
cotton 
hectares in 
County 

Irrigated  
cotton 
hectares in 
Camilla 
polygon 

Baker 1842 0.55 1013.1 0.43 432.07 0.32 138.74 

Calhoun 5732 0.01 57.32 0.45 25.95 0.38 9.83 

Colquitt 4621.45 0.32 1478.87 0.38 568.64 0.38 216.31 

Decatur 8201.6 0.04 328.06 0.45 147.67 0.41 60.39 

Dougherty 5775.84 0.67 3869.81 0.46 1782.42 0.15 259.79 

Grady 25193.24 0.27 6802.17 0.14 968.04 0.16 150.13 

Mitchell 25541.6 1.00 25541.6 0.38 9617.46 0.32 3116.93 

Thomas 33419.37 0.46 15372.91 0.13 2041.1 0.19 395.66 

worth 45766 0.12 5491.92 0.27 1492.59 0.43 640.65 
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Table: B.5 Total Hectares of Irrigated NLS under Peanut in Camilla Polygon 
 
 
County 
 

Total 
number  
of NLS 
hectares  
in County 
 

Percentage 
of County  
in Camilla 
polygon 

Total number of 
NLS hectares  
in Camilla 
polygon 
 

Percentage of 
harvested 
irrigated 
hectares for all 
crops in county 

Irrigated 
NLS 
hectares in 
Camilla 
polygon 

Percentage 
of irrigated 
peanut 
 hectares in 
County 

Irrigated  
peanut 
hectares in 
Camilla 
polygon 

Baker 2312.45 0.55 1271.85 0.43 542.43 0.31 165.47 

Calhoun 6412 0.01 64.12 0.45 29.03 0.18 5.23 

Colquitt 37866.72 0.32 12117.35 0.38 4659.26 0.15 698.23 

Decatur 3155.84 0.04 126.23 0.45 56.82 0.28 15.71 

Dougherty 1248.4 0.67 836.43 0.46 385.26 0.11 42.84 

Grady 3230 0.27 872.1 0.14 124.11 0.06 7.39 

Mitchell 19436 1 19436 0.38 7318.45 0.23 1716.98 

Thomas 1357.85 0.46 624.61 0.13 82.93 0.09 7.64 

worth 740 0.12 88.8 0.27 24.13 0.30 7.22 
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Table: B.6 Total Hectares of Irrigated TLS under Peanut in Camilla Polygon 
 
 
County 
 

Total 
number  
of TLS 
hectares  
in County 
 

Percentage 
of County  
in Camilla 
polygon 

Total number of 
TLS hectares  
in Camilla 
polygon 
 

Percentage of 
harvested 
irrigated 
hectares for all 
crops in county 

Irrigated 
TLS 
hectares in 
Camilla 
polygon 

Percentage 
of irrigated 
peanut 
 hectares in 
County 

Irrigated  
peanut 
hectares in 
Camilla 
polygon 

Baker 1842 0.55 1013.1 0.43 432.07 0.31 131.81 

Calhoun 5732 0.01 57.32 0.45 25.95 0.18 4.68 

Colquitt 4621.45 0.32 1478.86 0.38 568.64 0.15 85.22 

Decatur 8201.6 0.04 328.06 0.45 147.67 0.28 40.83 

Dougherty 5775.84 0.67 3869.81 0.46 1782.42 0.11 198.20 

Grady 25193.24 0.27 6802.17 0.14 968.04 0.10 57.64 

Mitchell 25541.6 1 25541.6 0.38 9617.46 0.23 2256.35 

Thomas 33419.37 0.46 15372.91 0.13 2041.10 0.09 188.10 

worth 45766 0.12 5491.92 0.27 1492.59 0.30 446.63 
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Table: B.7 Total Hectares of Irrigated NLS under Soybean in Camilla Polygon 
 
 
County 
 

Total 
number  
of NLS 
hectares  
in County 
 

Percentage 
of County  
in Camilla 
polygon 

Total number of 
NLS hectares  
in Camilla 
polygon 
 

Percentage of 
harvested 
irrigated 
hectares for all 
crops in county 

Irrigated 
NLS 
hectares in 
Camilla 
polygon 

Percentage 
of irrigated 
soybeans 
hectares in 
County 

Irrigated  
soybeans 
hectares in 
Camilla 
polygon 

Baker 2312.45 0.55 1271.85 0.43 542.43 0.05 24.66 

Calhoun 6412 0.01 64.12 0.45 29.03 0.20 0.57 

Colquitt 37866.72 0.32 12117.35 0.38 4659.26 0.02 86.89 

Decatur 3155.84 0.04 126.23 0.45 56.82 0.10 5.93 

Dougherty 1248.4 0.67 836.43 0.46 385.26 0.01 5.06 

Grady 3230 0.27 872.1 0.14 124.11 0.01 1.49 

Mitchell 19436 1 19436 0.38 7318.45 0.01 51.12 

Thomas 1357.85 0.46 624.61 0.13 82.93 0.25 20.64 

worth 740 0.12 88.8 0.27 24.13 0.08 1.99 
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Table: B.8 Total Hectares of Irrigated TLS under Soybean in Camilla Polygon 
 
County 
 

Total 
number  
of TLS 
hectares  
in County 
 

Percentage 
of County  
in Camilla 
polygon 

Total number of 
TLS hectares  
in Camilla 
polygon 
 

Percentage of 
harvested 
irrigated 
hectares for all 
crops in county 

Irrigated 
TLS 
hectares in 
Camilla 
polygon 

Percentage 
of irrigated 
soybeans 
 hectares in 
County 

Irrigated  
soybeans 
hectares in 
Camilla 
polygon 

Baker 1842 0.55 1013.1 0.43 432.07 0.01 19.64 

Calhoun 5732 0.01 57.32 0.45 25.95 0.02 0.51 

Colquitt 4621.45 0.32 1478.86 0.38 568.64 0.019 10.61 

Decatur 8201.6 0.04 328.06 0.45 147.67 0.10 15.39 

Dougherty 5775.84 0.67 3869.81 0.46 1782.42 0.013 23.41 

Grady 25193.24 0.27 6802.17 0.14 968.036 0.012 11.69 

Mitchell 25541.6 1 25541.6 0.38 9617.46 0.01 67.18 

Thomas 33419.37 0.46 15372.91 0.13 2041.09 0.25 508.03 

worth 45766 0.12 5491.92 0.27 1492.59 0.08 123.61 
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APPENDIX C: Graphs of Monthly Averages of Rain, Solar Radiations and Temperature 
 
Table: C.1 Graph of Monthly Averages for Camilla 
  

                    
 
 Table: C.2 Graph of Monthly Averages for Dawson 
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Table: C.3 Graph of Monthly Averages for Arlington 

  
Table: C.4 Graph of Monthly Averages for Attapulgus 
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Table: C.5 Graph of Monthly Averages for Fort Valley 

 
 Table: C.6 Graph of Monthly Averages for Plains 
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Table: C.7 Graph of Monthly Averages for Tifton 
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APPENDIX D: Summary Statistics for Yield, Expected Net Revenue and Expected Water Use 
 
Crop Soil 

Type 
Optimal 
irrigation 
threshold  
   (%) 

Optimal 
planting 
date 
 

Ave. yield 
(kg/ha)      

Standard  
deviation 
of yield 

Expected net 
revenue ($/ha) 

Standard  
deviation 
of net revenue 

Expected 
water used 
(mm/ha) 

Standard  
deviation 
of water used 

Cotton TLS 
 

40 4/15 3425 204 4168 300 221 53 

Cotton NLS 
 

40 4/01 3646 185 4404 249 317 93 

Peanut TLS 
 

70 5/20 3660 339 496 215 158 40 

Peanut NLS 
 

60 4/30 5828 449 1433 295 258 86 

Corn TLS 
 

40 5/30 7719 523 557 109 173 47 

Corn NLS 
 

50 5/15 7963 790 592 171 185 66 

Soybean TLS 
 

50 5/10 3720 313 345 142 315 52 

Soybean NLS 
 

50 5/10 3610 339 397 137 295 50 
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