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ABSTRACT 

 Bioinformatics in its interdisciplinary aspects comprises sciences of computers, 

medicine, biology, mathematics, and statistics. In essence, Bioinformatics uses computers 

to find causes of diseases and medical solutions. This dissertation addresses all of these 

sciences to solve one of the most important problems in system biology: solving large 

systems of ordinary differential equations (ODEs) describing how genetic networks 

behave using Markov Chain Monte-Carlo (MCMC) and parallel algorithms on General 

Purpose Graphical Processing Units (GPGPU). We used in this research Neurospora 

crassa, whish is a model organism that is widely explored and studied[1-5], due to its 

simplicity and its relatedness to the human beings.  We predicted and understood the 

dynamics and the products of all of 2,418 genes that are believed to be under the control 

of the biological clock in Neurospora crassa. A genetic network that explains 

mechanistically how the biological clock functions in the filamentous fungus Neurospora 

crassa has been built and validated against over 31,000 data points from microarray 

experiments by harnessing the power of the GPGPU and exploiting the hierarchical 



structure of that genetic network. Various mathematical models, statistical models, and 

numerical algorithms, such as Galerkin’s method, in conjunction with Finite Element 

Method (FEM) piecewise hat functions, Adaptive Runge Kutta method (ARK), and 

Gauss-Legendre quadrature method are proposed and used on the GPU to accomplish the 

purpose of this thesis. 
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CHAPTER 1 

1 INTRODUCTION AND LITERATURE REVIEW 

 Systems biology or systeomics concerns the biochemical reactions that happen in 

the biological systems components consisting of numerous and complex life processes 

such as protein-protein interactions, signal transduction, enzymes and substrates, and 

other cell reactions. Understanding and discovering these biochemical reactions 

underlying a complex process requires the use of computational and mathematical 

modeling of biological systems.  

 

Genetic networks as a part of the systems biology deal with complex biochemical 

interactions and signaling and describe time-dependent concentrations of molecular 

species, such as genes, their RNAs, and their proteins as well as their substrates. These 

networks can be expressed as a system of coupled nonlinear ordinary differential 

equations (ODEs). Understanding such networks enables us to discover the biochemistry 

and genetic activity of a cell and how the cell evolves as a function of time (including its 

metabolic networks, signal transduction, and cell cycle models). Many problems could be 

solved and understood once these ODEs are solved. For example, human diseases like 

prostate cancer, and the phenotype of other complex traits, such as the development of an 

organ, and the biological clock of an organism could be so described. The problem facing 

biologists working to understand a genetic network is that the model parameters are 

mostly unknown, and the experimental data are noisy and limited for molecular 
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quantitative studies. Most genetic networks, such as that for the biological clock, are part 

of much larger modules controlling fundamental processes in the cell, such as 

metabolism, development, or response to environmental signals.  As an example, the 

biological clock controls the circadian rhythms of about 2,418 distinct genes in the 

genome (with 11,000 genes) of a model system, the filamentous fungus, Neurospora 

crassa[5]. Predicting and understanding the dynamics of all of these genes and their 

products in a genetic network describing how the clock functions is a challenge and 

beyond the current capability of the fastest serial computers.  

 

In the ensemble method, MCMC methods are used to generate random samples of 

models, including the initial conditions and parameters values, that actualize how the 

clock and 2,418 genes behave. For each model sampled, we need to solve a large system 

of ODEs describe the genetic network millions of times. Solving all of these models 

needs years for one simulation.  We developed novel parallel algorithms on the General 

Purpose Graphical Processing Unit (or GPGPU) and ensemble methods, which use 

Markov Chain Monte Carlo, to fit and discover a regulatory network of unknown 

topology composed of 2,418 genes describing the entire clock circadian network, a 

network that is found from bacteria to humans, by harnessing the power of the GPGPU 

[6]and utilizing the hierarchical structure of that genetic network.  

The organization for the rest of this dissertation as the following;  

1) CHAPTER 2, we developed and propose a new numerical technique to solve nonlinear 

systems of initial value problems for nonlinear first-order differential equations that 

model genetic networks in systems biology using the Galerkin finite element method with 
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piecewise hat functions. The accuracy of this algorithm is high as adaptive Runge Kutta 

with a potential of parallelization in the ensemble method.  

 

2) CHAPTER 3, we developed a parallelized version of the Adaptive Runge Kutta 

(ARK) method on the GPGPU that helps to solve very large systems of ODEs. For 

example, ODEs that belongs to a large genetic network describing clock can be used to 

determine genome-level dynamics. 

 

 3) CHAPTER 4, We implemented a novel “variable–topology supernet” ensemble 

method[4, 7-9] using MCMC simulations to fit and discover a regulatory network of 

unknown topology comprising 2,418 genes describing the entire clock circadian network, 

a network that is found from bacteria to humans, and we improved the parallelized ARK 

method on the GPU[6] and developed a faster algorithm on the GPU with an accuracy 

enough for the first-order linear ODEs of the biological problems, such as the genetic 

network that describing the clock of Neurospora crassa, using Gauss-Legendre 

quadrature method on the GPU[10]. For brevity, two novel approaches are used here to 

overcome the long time simulation problem. The first approach is to parallelize the 

classic ARK ODE solver on the GPGPU designated for solving general ODEs problems 

including linear and non-linear systems of ODEs where the achieved speed up over an 

extremely fast CPU and optimized C++ code is shown in Figure (4.5), which is about 237 

fold for a single GPU, and the second approach is to parallelize the numerical exact 

integral (EI) solution formula on the GPGPU using Gauss Quadrature rule designated 

specifically for solving the first order linear ODEs that describes our network where the 
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achieved speed up ~142 fold over ARK method on the GPU described above. The goal in 

the MCMC methods is to select parameters that make the predicted solution fit to the 

experimental data as measured by some figure of merit, such as the chi-squared statistic 

with respect to the experimental data and the predicted solution.  A fast ODE solver is 

critical to implementing MCMC methods on large networks. 

 

This novel software[10] enabled us to discover a broad array of functions for clock-

controlled genes as well as the gene regulators for those genes [10]as it is shown in 

Figure (4.12) within a few days instead of years using a GPGPU. We were able to infer 

the function of each regulator in Figure (4.12).  We were able to discover how the clock-

controlled genes were organized into a regulatory network.  We found for the first time 

an explicit regulatory connection between the clock and ribosome biogenesis, which can 

now be tested.  Each of these advancements were made possible by a new computational 

approach using GPUs.  

 

4) CHAPTER 5, Conclusion summarizes our discovered findings and future work that 

can be done to improve our findings and algorithms. 
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ABSTRACT 

 Abstract- A new numerical technique to solve nonlinear systems of initial value 

problems for nonlinear first-order differential equations (ODEs) that model genetic 

networks in systems biology is developed. This technique is based on finding local 

Galerkin approximations on each sub-interval at a given time grid of points using 

piecewise hat functions. Comparing the numerical solution of the new method for a 

single nonlinear ODE with an exact solution shows that this method gives accurate 

solutions with relative error 1.88x10!!! for a time step 1x10!!. The new method is 

compared with the Adaptive Runge Kutta (ARK) method for solving systems of ODEs, 

and the results are comparable for a time step 2x10!!. It is shown that the relative error 

of the Galerkin method decreases approximately linearly with the log of the number of 

hat functions used. Unlike the ARK method, this new method has the potential to be 

parallelizable and to be useful for solving biological problems involving large genetic 

networks. A NSF commissioned video illustrating how systems biology helps us 

understand a fundamental process in cells is included. 

 

INDEX WORDS: biological clock, Galerkin Method, Finite Element Method, Hat 

Function, Newton-Raphson Method, ordinary differential equation, toggle switch, 

systems biology. 
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2.1 INTRODUCTION 

 In the new cross-disciplinary field of systems biology merging genomics, 

bioinformatics and engineering the focus is on using networks of genes and their products 

to predict fundamental processes in the cell[11]. The field began in the 1990s with the 

assembly of biochemical pathways to describe the functioning of entire cells[12-14].  The 

field was transformed with the development of new genomics technologies[11, 15, 16]to 

measure how many genes and proteins behave simultaneously in cells.  We are now 

poised to describe the cellular dynamics of an entire cellular network[17, 18].  The 

challenge is to be able to simulate such large networks.  The dynamics of these cellular 

networks are often described by very large systems of ordinary differential equations[9]. 

One of the major problems in systems biology is solving large systems of ordinary 

differential equations describing how genetic networks behave[19], a challenge arising in 

other areas of science and engineering as well[20].  The Galerkin method has been 

employed for solving different kinds of ordinary differential equations[21-28]. Here we 

show how Galerkin’s method can be used in conjunction with Finite Element Method 

(FEM) piecewise hat functions to solve systems of nonlinear first-order ordinary 

differential equations (ODEs). Here our method is applied to systems of ODEs describing 

several genetic networks[29, 30]. The importance of these networks to our daily lives is 

summarized in an NSF commissioned video attached[31]. The idea behind the method is 

to find local Galerkin approximations to the solutions of the ODEs on each sub-interval 

of a given mesh using a collection of hat functions. In addition to the fact that this method 

is a new method for solving any nonlinear system of ODEs with high accuracy and 

stability that is comparable with the ARK method, it has the potential to be parallelizable 
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and to be useful for solving biological problems that depend on solving systems of 

nonlinear ODEs modeling genetic networks [19]. Since the data to identify such networks 

are sparse and noisy (error being 10% of values measured or larger), such biological 

problems can be solved quickly and with acceptable accuracy and high stability when a 

small number of hat functions is used as shown in Figure (2.5). The high accuracy of the 

ARK method, as an example, is not needed for these biological problems[8]. Our new 

approach achieves the required biological accuracy and if so desired, gives results as 

accurate as the ARK method. The basic idea of the new approach is to approximate each 

element in the solution of a system of nonlinear first-order ODEs by a piecewise hat 

function on one subinterval at a time. In this paper, this method is illustrated by solving 

an initial value problem of: 1) a single nonlinear first-order differential equation; 2) a 

system of nonlinear first-order differential equations for a genetic network describing the 

toggle switch[32]; and 3) a system of nonlinear first-order differential equations for a 

genetic network for the biological clock of the model fungal system, Neurospora 

crassa[4] described in the video. The latter two initial value problems are central to 

systems biology.  It is to be noted that parallelizing the Jacobian matrix and the 

integration functions in the Galerkin method can speed up the numerical computations of 

a system of nonlinear first-order differential equations.  
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Figure 2.1:Display of Several hat functions 
 

2.2 NUMERICAL METHODS 

The Galerkin method is a very popular method for finding numerical solutions to partial 

differential equations. As an example for the Finite Element Method (FEM), we use the 

Galerkin method to approximate the solution of ordinary differential equations with a 

piecewise linear function as a sum of basis functions (Hat Functions). By using FEM and 

a weak formulation of the approximation method, which transfers the problem from a 

system of ODEs to a system of algebraic equations, we find the solution for the ODEs by 

solving these algebraic equations using the Newton-Raphson method. Three initial value 

problems are considered to show the accuracy of our method. The first problem involves 

solving only a single nonlinear first-order differential equation, and the other two cases 

involve solving two systems of nonlinear first-order differential equations. In the first 

example the new method is as accurate as the ARK method, and the other two examples 

solutions by the new method are comparable with the ARK method.  
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2.2.1 GALERKIN ALGORITHM FOR SOLVING SYSTEMS OF ODES 

A system of initial-value problems for nonlinear first order ODEs over a solution’s 

interval [0 L] can be defined as  

y’=V(y,t); 

 

 

where y=        V=  

 

y(a)=b;  

where S is the number of variables in a system of ODEs and in particular, the number of 

molecular species in a genetic network. 

Note that a single nonlinear first order ODE problem considered above can be solved as a 

special case of the above system. 

An approximate solution is expanded in terms of basis functions ϕ! t  as 

y! t = p!,!!
!!! ϕ!(t)                                                             (1) 

N is the number of hat functions; p!" is a vector of unknowns expansion amplitudes that 

we are solving for; and n labels the different molecular species; and the ϕ! t   is a finite-

element basis function (hat function) defined on a grid of time points tj  by 

 

 ϕ! t =   

!!!!!!
!!!!!!!

,           t!!! ≤ t ≤ t!  
!!!!!!
!!!!!!!

,         t! ≤ t ≤ t!!!
    0  , otherwise  
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For example, the initial condition of the first species is given by y!(0)=  p!,!, and the 

solution for a specific species (n) at a specific time point (j) is given by   y!(t!)=  p!,!. 

Since 𝜙! 𝑡! = 1 and 𝜙! 𝑡! = 0 for k=j. 

An alternative to hat functions is using compactly supported wavelets[33],or other types 

of finite-element basis functions, such as Hermite finite elements[8].  

 Using the residual form   

                                                                (2) 

 we impose a weak Galerkin formulation of an approximate solution to solve for  as 

weight variables 

                                                                 (3)   

2.2.2 THE ALGORITHM 

                                                                 (4)  

For arbitrary  

                                                                (5) 

j = k −1,k,k +1;k = 1,...,L −1;n = 1,...,S  (S is the number of species). 

Define for a given fixed k; pk ,pk−1and pk+1; where p=pk+1  

Rn(t)= pn, j
j

N

∑ φ j '(t)−Vn(yn (t),t)

pnj

0= φk (t)Rntk−1

tk+1∫ dt

0= φk (t)Rntk−1

tk+1∫ dt

pnj

Fk ,n ( pn, j ) = φk (t)Rntk−1

tk+1∫ (t)dt
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f ( p) =

Fk ,1( p
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.
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where p1,k  are the solution points for the first ODE (species f1 ), pS ,k is the solution points 

for the last ODE (species fS ); k= 1, …, L-1. 

Solving for f(p)=0 is done by using the Newton-Raphson method[34]. The procedure for 

a Newton-Raphson scheme for solving this system of nonlinear algebraic equations can 

be described by 

 

a) Setting the initial iteration value to zero and assigning initial values for each 

variable, 

 

b) Calculating the Jacobian matrix J, 

 

J ( p) =

∂f1
∂p1

∂f1
∂p2

...
∂f1
∂pN

∂f2
∂p1

∂f2
∂p2

...
∂f2
∂pN

.

.

.

.

.

.

.

.

.

.

.

.
∂fS
∂p1

∂fS
∂p2

...
∂fS
∂pN

"

#

$
$
$
$
$
$
$
$
$
$
$
$
$

%

&
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'
'
'
'
'
'
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c) Using the Newton-Raphson scheme to solve the system of algebraic equations, 

which is obtained from f(p)=0, the solution is defined by  

pi+1 = pi −Gi                                                                  (6) 

Gi = J
−1( pi ) f ( pi )                                                                          (7)  

J ( pi )Gi = f ( pi )                                                                             (8) 

 

The matrix G! can be obtained by using the Gaussian elimination method with scale 

partial pivoting [34]. 

A central finite-difference formula has been used to find an approximation to the partial 

derivatives of the Jacobian matrix. 

 

For example, calculating a given value in the Jacobian is done by  

∂fr
∂pu

≅
Δ p fr
Δpu

=
fT ( pu +δ)− fT ( pu −δ)

2δ                                                                (9)  

;T = 0...S,u = 0...N  

 

 The δ  has been assigned a small value such as 1x10!!, so that the final ODEs solutions 

for the above system do not change much by further reducing the δ value. 

d) Calculating fT ( pu +δ), fT ( pu −δ)  by using the Gauss quadrature rule[34] since 𝑓! is 

an integration function in this approach. 

e) Iterating until the convergence of all variables is achieved. Tolerance of 1x10!! is 

sufficient for solving the above system by using the Newton-Raphson method. 
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f) Note that solving such a system of algebraic equations is obtained sequentially. 

For example, the solution of the vector f ( p
k+1) at fixed a time is obtained from the 

solution of the vectors f ( p
k−1)  and f ( p

k ) . 

What makes this Galerkin approach so attractive is the stability properties of the 

algorithm and the ability to control rigorously the error[23, 24, 27, 28]. 

 

 In Figure (2.2) the solution of such systems is shown for the first initial value 

problem described below using our proposed method, and the solution oscillates around 

the exact solution. Therefore, to achieve a reasonably accurate solution with the lowest 

possible number of hat functions, we propose that the initial guess for the Newton-

Raphson method on the oscillation time to be the average of p!!!  and  p! instead of just 

p!. We check for an oscillation on p!!!,p!!! and p! and we assign the average of 

p!!!  and  p! to p! if the oscillation happens on these points. The accuracy of the final 

solution is based on the number of hat functions used for the solution (as the number of 

hat functions increases, the accuracy increases). 
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Figure 2.2: The solutions for the single nonlinear ODE and the effect of averaging on the 
numerical solution. 
 

Figure (2.2)  shows part of the solution for the nonlinear single ODE during the interval  

[0 10] using 1000 hat functions. The numerical solution without averaging is shown in 

blue, the exact solution in red, and the solution with averaging in green. 

2.2.3 THE THREE INITIAL VALUE PROBLEMS CONSIDERED ARE  

a)  An initial value problem of a single nonlinear first ODE 

 y'=-y-y2;                                                                   (10)  

with intial condition y(0)=1  

 

that has the exact solution:   

   y(t)=1/(-1+2et  )                                                                               (11) 

b) An initial value problem of a system of nonlinear first order ODEs for a genetic 

network of the toggle switch[32] as specified by 

du/dt=α1/(1+vβ  )-u                                                                             (12)  
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dv/dt=α2 /(1+uγ  )-v                                                                             (13)  

where; u(0)=0; v(0)=0 ; α1=2,α2 =4,β=2,γ=2  

∝!= 2,∝!= 4, β = 2, γ = 2 

c) An initial value problem of a system of nonlinear first order ODEs for a genetic 

network of the biological clock of Neurospora crassa[4] as specified by 

f1 '=A(fG -f1 )wn -A' f1     

fr '=S3(fG -f1 )+S4f 1-D3fr     

fp'=L3fr -D6fp      

w'=E2up -D8w-nA(fG -f1 ) wn +nA' f1-Pwf p
m

  

up'=L1ur1-D4up-E2up     

ur1'=C1 ur0  fp -D7  ur1     

ur0'=V1-D1ur0-C1ur0fp      

All of the parameter values of this clock network problem are given in Table (2.1) and 

Table (2.2) [4]. 

2.3 RESULTS AND DISCUSSIONS 

The new method yields solutions for fixed and specific time steps, and the accuracy is as 

high as the ARK method if a large number of hat functions are considered as shown in 

Table (2.3) and Figure (2.3). On the other hand, the accuracy of the solution is still 

acceptable for biological problems if a fewer number of hat functions is considered as 

shown in Figure (2.4) and Figure (2.5). 
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Figure 2.3: Maximum relative error (on a log scale) decreases linearly with the log of the 
number of hat functions for the single nonlinear ODE compared with the exact solution. 
Different numbers of hat functions (1x10!, 1x10!, 1x10!, 1x10!, 1x10!, and 1x10!) 
over the solution interval [0 10] are used.  
 

The maximum global relative error has been computed for the single nonlinear first ODE, 

for the genetic network of the toggle switch, and for the genetic network of the biological 

clock of Neurospora crassa using the following formula: 

Max global relative error=
Maxk

2Maxn |Yk
Aprx. (tn )−Yk

Exact (tn ) |
Maxn |Yk

Aprx. (tn ) |+Maxm |Yk
Exact (tn ) |                (14) 

      ;where k=1,2,…,S = number of species. 

The single nonlinear first ODE has an exact solution, and for the other two cases we have 

considered the approximate solutions of ARK with absolute and relative errors equal to 

1x10!!" as exact solutions for them. 
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Table 2.1: (Initial Conditions at t=0) 
 

 

 

 

 
 

Table 2.2: (Parameters Values) 

 

 

 

 

 

 

 
 
 
 

Table 2.3: Errors in the solution over the time period [0 10] are shown as a function of 
the number of hat functions for the single ODE (example 1). The maximum relative 
errors have been calculated using different numbers of hat functions and the solutions 
compared with the ARK method (with absolute and relative errors for ARK equal to 
1x10!!") 

 
 

 

 

 

Species Initial Condition 
f1 0.00400782 
fr 0.181388 
fp 1.37307 
w 0.0000663227 
up 0.0000362815 
ur1 0.212505 
ur0 0.0000000252030 

Parameters Value Parameters Value 
A 0.0000462010 D8 0.00285475 
A’ 0.566108 C2 1.66501 
S1 9.22739 P 3.55829 
S2 0.00353803 Ac 5.57336 
S3 0.000000136553 Bc 1.82043 
S4 9.07295 Sc 0.0149985 
D1 1.35911 Lc 0.0111332 
D2 2.77832 Dcr 0.268920 
D3 0.223231 Dcp 0.269409 
C1 0.0545178 vp 0.120699 
L1 59.7062 u1 0.0124268 
L2 35.3755 f0 0.692213 
L3 0.798222 n                                        4 
D4 0.00000947792 m 4 
D5 0.00000179706 E2  vp*C2 
D6 0.159737 fG f0+f1 
D7 0.192918 V1 S1*u1 

# of hat functions Max relative error 
1.0 E+02 0.0114304 
1.0 E+03 0.000190308 
1.0 E+04 3.34528064273916E-06 
1.0 E+05 5.94604646865157E-08 
1.0 E+06 1.05735181433986E-09 
1.0 E+07 1.87646163866028E-11 
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Figure 2.4: Solutions of the exact, Galerkin, and the ARK methods using 1x10! hat 
functions over the time period [0 10] ODE 

 

2.3.1 THE THREE CASES THAT HAVE BEEN CONSIDERED TO SHOW THE 

ACCURCY OF OUR METHOD 

a) Solving an initial value problem of a single nonlinear first order ODE 

We used the proposed algorithm to find solutions for the single nonlinear ODE with 

various numbers of functions in the fixed intervals [0 10]. It has been found that the 

accuracy increases approximately two orders of magnitude as the number of hat functions 

increases by one order of magnitude as is shown in Table (2.3), Figure (2.3), and Figure 

(2.4). 
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Figure 2.5: The solutions of the exact and Galerkin methods using relatively few number 
of hat functions (50 hat functions) over time period [0 10] for the single nonlinear ODE. 
Such a solution is sufficient for biological problems with acceptable accuracy and high 
stability using few hat functions. 
 

b) Solving ODEs of the genetic network of the toggle switch  

 We used the proposed algorithm to find solutions for the toggle switch genetic 

network with various numbers of hat functions and time steps over the solution interval 

[0 10]. The solution is comparable with the ARK method (with absolute and relative 

errors for ARK being 1x10!!") as is shown in Table (2.4), Figure (2.6), Figure (2.7), and 

Figure (2.8).  

From Table (2.4), we found that the errors coming from solving the v species in the 

toggle switch are larger than the ones coming from the u species with varying numbers of 

hat functions. Thus, the maximum global relative error equals to the  maximum local 

relative error of the v species. The Galerkin and the ARK methods give comparable 

solutions for both variables u(t) and v(t) as shown in  Figure (2.7) and Figure (2.8). The 

two solutions by different methods are virtually indistinguishable. 
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Figure 2.6: The maximum global relative error (on a log scale) among all of the species 
(global error of two species) for ODEs of the genetic network of the toggle switch 
decreases approximately linearly with the log of the number of hat functions. These 
results are based on the comparison with the ARK method (with absolute and relative 
errors for ARK are equal to 1x10!!"). Different numbers of hat functions (1x10!, 1x10!, 
1x10!, 1x10!, 1x10!, and 1x10!) over the solution interval [0 10] are used.  
 

Table 2.4: Errors in the solution over the time period [0 10] are shown as a function of 
number of hat functions for the toggle switch (example 2). The max local and global 
relative errors have been calculated using different number of hat functions and the 
solutions compared with the ARK method (with absolute and relative errors for ARK 
equal to 1x10!!") 

	
  

 

 

 

 

 

 

 

 

Number of 
Hat 
Functions 

Maximum Local 
Relative Error (u 
Species) 

Maximum Local 
Relative Error (v 
Species) 

Maximum Global 
Relative Error 

1.0 E+02 2.82661552086085E-02 3.87113886066362E-02 3.87113886066362E-02 

1.0 E+03 7.088438084833E-04 2.17995473439916E-03 2.17995473439916E-03 

1.0 E+04 1.09812819646773E-05 3.77341709775271E-05 3.77341709775271E-05 

1.0 E+05 1.12067920569916E-07 3.56779968791140E-07 3.56779968791140E-07 

1.0 E+06 4.01110985582986E-09 1.28771772065253E-08 1.28771772065253E-08 



 

22 
 

c) Solving ODEs of the genetic network of the biological clock of Neurospora 

crassa. 

The proposed Galerkin algorithm yields the solution for the biological clock of 

Neurospora crassa genetic network with various numbers of hat functions and time steps 

over a larger solution interval [0 200]. The solution is comparable with the ARK method 

(with absolute and relative errors for ARK equal to 1x10!!") as it is shown in Table (2.5) 

and Figure (2.9), Figure (2.10), Figure (2.11), Figure (2.12), Figure (2.13), Figure (2.14), 

Figure (2.15), and Figure (2.16). 

Note that the accuracy is less than the second case 2) because we use the same number of 

hat functions over a larger solution interval [0 200] for the genetic network of the 

biological clock of Neurospora crassa instead of [0 10] for the former two cases. On the 

other hand, we still can see in Table (2.5) that a total of 10,000 hat functions is sufficient 

to obtain a relative error that is 0.07 or 7% or less.  Again in (Fig. 9) there is a linear 

relation between the maximum global relative error and the number of hat functions on a 

log-log plot. 

The solutions for this dynamical system in Figure (2.10), Figure (2.11), Figure (2.12), 

Figure (2.13), Figure (2.14), Figure (2.15), and Figure (2.16) using the Galerkin and ARK 

methods are indistinguishable using 1000 hat functions. Although the max global relative 

error using 1000 hat functions over the interval [0 200] is of order of 30% as it is shown 

in Table (2.5), in the figures we show that the solution is sufficiently good for biological 

problems. 
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 Table 2.5:  Maximum local relative errors of the Galerkin solution over the time period 
[0 200] for varied numbers of hat functions for the clock model (example 3). The 
maximum local and global relative errors have been calculated using different numbers of 
hat functions and the solutions, compared with the ARK method (with absolute and 
relative errors for ARK equal to 1x10!!")  

 

 

 

Figure 2.7: The solutions of u(t) using the Galerkin method with 1x10! hat functions and 
the ARK method over the time period [0 10] for the genetic network of the toggle switch 

# of Hat 
Functions 

Max 
Local 
Rel. 
Error f1 

Max 
Local 
Rel. 
Error fr 

Max 
Local 
Rel. 
Error fp 

Max 
Local 
Rel. 
Error w 

Max 
Local 
Rel. 
Error 
up 

Max 
Local 
Rel. 
Error 
ur1 

Max 
Local 
Rel. 
Error 
ur0 Max Global Error 

2.00E+2 1.12E+0 9.30E-1 7.28E-1 1.01E+0 1.25E-1 9.35E-2 4.53E-2 1.11551250069628E+0 
1.00E+3 2.34E-1 1.91E-1 1.00E-1 3.08E-1 1.21E-2 7.47E-3 5.60E-3 3.07789282736857E-1 
1.00E+4 5.14E-2 3.71E-2 1.86E-2 6.92E-2 2.31E-3 1.17E-3 9.91E-4 6.91539734511926E-2 
1.00E+5 6.20E-3 4.55E-3 2.28E-3 8.49E-3 2.86E-4 1.44E-4 1.22E-4 8.48562558931092E-3 
1.00E+6 6.77E-4 5.00E-4 2.52E-4 9.33E-4 2.76E-5 1.43E-5 1.35E-5 9.33489762577023E-4 
1.00E+7 5.94E-5 4.38E-5 2.20E-5 8.18E-5 2.49E-6 1.28E-6 1.18E-6 8.17589819877030E-5 
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Figure 2.8: The solutions of v(t) using the Galerkin method with1x10! hat functions and 
the ARK method over the time period [0 10] for the genetic network of the toggle switch. 
 
 

 

Figure 2.9: The maximum global relative error (on a log scale) among the whole species 
(seven species) for ODEs of the genetic network of the biological clock of Neurospora 
crassa decreases approximately linearly with the log of the number of hat functions 
compared with the ARK method (with absolute and relative errors for ARK equal to 
1x10!!"). Different numbers of hat functions (2x10!, 1x10!, 1x10!, 1x10!, 1x10!, and 
1x10!) over solution interval [0 200] are used. 
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Figure 2.10: The solution of f1(t) using the Galerkin and the ARK method using 1x10! 
hat functions over the time period [0 200] for the genetic network of the biological clock 
of Neurospora crassa. 
 

 

Figure 2.11: The solution of fr(t) using the Galerkin and the ARK methods using 1x10! 
hat functions over the time period [0 200]for the genetic network of the biological clock 
of Neurospora crassa 
 



 

26 
 

 

Figure 2.12: The solution of fp(t) using the Galerkin and the ARK methods using 1x10! 
hat functions over the time period [0 200] for the genetic network of the biological clock 
of Neurospora crassa 
 

 

Figure 2.13: The solution of w(t) using the Galerkin and the ARK methods using 1x10! 
hat functions over the time period [0 200] for the genetic network of the biological clock 
of Neurospora crassa.  
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Figure 2.14: The solution of up(t) using the Galerkin and the ARK methods using 1x10! 
hat functions over the time period [0 200] for the genetic network of the biological clock 
of Neurospora crassa 
 

 

Figure 2.15:  The solution of ur1(t) using the Galerkin and the ARK methods using 
1x10! hat functions over the time period [0 200] for the genetic network of the biological 
clock of Neurospora crassa. 
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Figure 2.16:  The solution of ur0(t) using the Galerkin and the ARK methods using 
1x10! hat functions over the time period [0 200] for the genetic network of the biological 
clock of Neurospora crassa. 
 
 
2.3.2  A POTENTIAL PARALLELIZATION SCHEME FOR THE GALERKIN 

METHOD 

 Unlike the ARK method, which is inherently sequential for solving systems of 

ODEs, the Galerkin method as stated before can be parallelized by parallelizing the 

Jacobian matrix’s calculation and the integration functions. This parallelization will 

speed up the numerical method of solving a system of nonlinear first-order differential 

equations. Moreover, this new method allows us to parallelize the ensemble method[4] 

for identifying genetic networks from real data on each variable (or species). Briefly, the 

ensemble method suggests that instead of identifying one unique parameterization of the 

model, we aim to identify an ensemble of models consistent with available experimental 

data and use Monte Carlo simulation techniques to generate random samples of model 

parameterizations (an ensemble) that represent the data well.  This sampling process is 

captured in an animation within the associated NSF commissioned video[31]. In other 
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words, in the ODE solving scenario a unique solution will be found by specifying the 

initial conditions. In contrast, in the ensemble method since we don’t know the initial 

conditions and other parameters values, which are required for solving systems of ODE, a 

Monte Carlo procedure is used to generate several initial conditions and parameters 

values, and while the Monte Carlo runs, it finds parameters that make the predicted 

solution closer to the experimental data. Finding the parameters could be done by using 

the Metropolis procedure[4], which minimizes the Chi-squared statistic comparing the 

experimental data and the predicted solution. Mainly, there are two stages in the 

ensemble method: the equilibration stage that is used to find parameters values that make 

the ODE solution converge to the experimental data and the accumulation stage, which is 

used to accumulate many sets of these parameters (i.e., the ensemble) that fit the 

experimental data well. Averaging over the ensemble allows an assessment of fit to the 

experimental data. Thus, averaging several solutions of the ODEs with different initial 

conditions that fit the experimental data will be found from a random sample of 

parameters that reproduce the experimental data.  

 

 Using ARK in the ensemble method implies that the system of ODEs should be 

re-solved for each proposed ensemble Monte Carlo updating step, and solving for the 

time step t+h requires the solution at the prior t. To apply a parallelized Galerkin method 

version instead of the ARK method version, suppose there are (n) hat functions 

subintervals with (k) test grid points. The purpose of these test grid points is to sample 

the quality of the solution, for each of the subintervals as shown in Figure (2.17).  On the 

one hand, Monte Carlo simulation will propose a set of parameters values and hat 
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function amplitudes, which are required for solving the system of ODEs using FEM 

explained in this paper, for each subinterval. On the other hand, one or more 

subinterval(s) could be assigned to one slave processor that will solve for the system of 

ODEs given these parameters on its subinterval(s). Then for each of these test grid points 

within this subinterval(s), the method evaluates the left hand side of the differential 

equation and the right hand side of the differential equation and from the difference 

between the left hand side and the right hand side will find the residual, which is given in 

Equation 13. After that each processor will calculate its chi-squared statistic and send the 

result back to a master processor. The master processor adds the resulting chi-squared 

statistics up and either accepts or rejects the proposed parameters and amplitudes based 

on the Metropolis procedure. The potential parallelizing procedures for the Galerkin 

method are either through Message Passing Interface (MPI) or MPI with Graphics 

Processing Units (GPUs).  The result is a new parallel ensemble method, which we call 

the super-ensemble method[8] because it combines the Monte Carlo search for 

parameters with an approximation to the ODE solution (by the Galerkin Method). 
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Figure 2.17: n subinterval with a hat function for each of these subintervals divided into k 
test grid points used to estimate the quality of the solution. One or more hat function(s) 
could be assigned to one slave processor. 
 
 
2.4 CONCLUSION  

 A new method for solving systems of initial-value problems for nonlinear First-

order Ordinary Differential Equations using the Galerkin finite elements method 

piecewise hat functions has been developed that gives as accurate a solution as the 

Adaptive Runge Kutta method when a large number of hat functions are used, and 

acceptable accuracy for the biological problems when a fewer number of hat functions is 

used. On the other hand, unlike the adaptive Runge Kutta method, this method has the 

potential to be parallelizable and to be useful for solving biological problems that depend 

on solving large systems of nonlinear ODEs describing genetic networks and other 

systems in engineering. Moreover, this method yields solutions not for arbitrary time 

steps but for desirable fixed time steps.  

As shown above we produce trajectories from the Galerkin method comparable 

with the adaptive Runge Kutta method (with relative and absolute errors for the ARK are 
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equal to 1x10!!") by using a low number of hat functions (100 hat functions for the first 

two cases over the interval [0 10] and 1000 hat functions for the last case over the 

interval [0 200]). Developing this method to be faster than the traditional ODE solvers is 

a potential study in the future especially when biological problems with large networks 

are considered. Identifying large networks is complicated by having many parameters and 

limited data[35].  One solution to this problem is the use of ensemble methods[4].  A 

parallelized ODE solver enables faster sampling of the parameter space in ensemble 

methods to identify what we know (i.e., is supported across the ensemble) and what we 

do not know (i.e., is not supported across the ensemble) about a large system of ODEs. 
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ABSTRACT 

 The Adaptive Runge Kutta Method (ARK) on multi-General-Purpose Graphical 

Processing Units (GPGPUs or GPUs for short) is used for solving large nonlinear 

systems of first-order ordinary differential equations (ODEs) with over ~10,000 variables 

describing a large genetic network in systems biology for the biological clock.  To carry 

out the computation of the trajectory of the system, a hierarchical structure of the ODEs 

is exploited, and an ARK solver is implemented in Compute Unified Device 

Architecture/C++ (CUDA/C++) on GPUs.  The result is a 75-fold speedup for 

calculations of 2436 independent modules within the genetic network describing clock 

function relative to a comparable CPU architecture. These 2436 modules span one-

quarter of the entire genome of a model fungal system, Neurospora crassa. The power of 

a GPU can in principle be harnessed by using warp-level parallelism, instruction level 

parallelism or both of them. Since the ARK ODE solver is entirely sequential, we 

propose a new parallel processing algorithm using warp-level parallelism for solving 

~10,000 ODEs that belong to a large genetic network describing clock genome-level 

dynamics.  A video is attached illustrating the general idea of the method on GPUs that 

can be used to provide new insights into the biological clock through single cell 

measurements on the clock. 

INDEX WORDS: Bioinformatics, Biological clock, General-purpose graphical 

processing unit, finite element method, ordinary differential equation, adaptive Runge-

Kutta integration, systems biology, warp-level parallelism. 
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3.1 INTRODUCTION 

 In a systems biology approach bridging genomics, bioinformatics, and 

engineering our goal is to explain the behavior of traits controlled by many genes, such as 

carbon metabolism, the biological clock, development, and cancer in terms of 

biochemical pathways found within living cells[11]. Since the 1990s, a variety of teams 

have assembled large maps of biochemical pathways in a variety of organisms with this 

goal in mind[12-14].  At the turn of the millennium it became possible to measure the 

dynamics of genomic-scale pathways spanning a whole living system[11, 15, 16].  We 

are now poised to describe the dynamics of an entire cell[17, 18]. A video is attached 

describing how this can be achieved through the integration of genomics, bioinformatics, 

and engineering[36].  

 

Genetic networks describe time-dependent concentrations of molecular species, 

such as genes, their RNAs, and their proteins as well as their substrates[20]. These 

networks can be expressed as a system of coupled nonlinear first-order ordinary 

differential equations (ODEs). Understanding such networks enables us to discover the 

biochemistry and genetic activity of a cell and how the cell evolves as a function of time 

(including its metabolism, signal transduction, and cell cycle). Many problems could be 

solved and understood once these ODEs are identified. For example, human diseases like 

prostate cancer, the phenotype of other complex traits such as development[37], and the 

biological clock of an organism [5] could also be described.  The most widely used 

approach to modeling these biochemical pathways are nonlinear systems of first-order 

ordinary differential equations[9]. 
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GPUs have been used recently for solving computationally-intensive problems for 

many applications[38-41] including those in Bioinformatics[42, 43], numerical 

computations[44, 45], ray tracing[46],volume ray casting[47], computational fluid 

dynamics[48], and weather modeling[49].  Here we harness this new computing approach 

to develop new ODE solver methods employing Adaptive Runge Kutta Method 

(ARK)[34] on GPUs to simulate large genetic networks and ultimately identify these 

networks from available genomics data[4, 5, 19, 50]. 

 

A major proving ground for the new tools of systems biology has been the study 

of the molecular basis of the biological clock[51].  The key problem is linking the model 

identification of the clock to guiding expensive genomics experiments designed to 

identify the underlying network[9].  This model-guided discovery process, which we call 

computing life[5], requires the ability to simulate large nonlinear systems of first-order 

ODEs. 

 

  There are particular challenges to solving these ODEs.  The system of ODEs is 

usually large. The experimental data are noisy and limited from molecular quantitative 

studies. More importantly, designing a new experiment is very expensive in terms of 

money (using genomics experiments) and time.  To overcome the problem of many 

parameters and limited noisy data, new methods were developed for fitting these ODEs 

called ensemble methods[4, 9, 50].  The ensemble approach overcomes the limited 

genomics data on a particular network with many parameters by giving up on finding one 

best model.  Instead, the search in the ensemble approach is for an ensemble of 40,000+ 
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models consistent with the data.  Averaging is then done over the ensemble to make 

predictions about the time-dependent behavior of the system.  In order to implement these 

ensemble methods the ODE solver must be very fast!  

 

Using the ARK method in the ensemble approach implies that the system of 

ODEs should be re-solved for each proposed ensemble Monte Carlo updating step, and 

solving for the time step t+h requires the solution at the prior t. For example, solving a 

genetic network as the one shown in Figure (3.1)  [4] for the clock and constructing the 

ensemble of the unknown parameters that fit the experimental data needs a very large 

amount of time (i.e., 30 days on older processors).  The diagram in Figure (3.2) specifies 

a much larger system of ODEs with hierarchical structure.  There is a master clock 

module controlling 2436 slave modules each with 4 variables representing molecular 

species concentrations.  We need a new approach to solve problems on this genomic 

scale. 

 

Figure 3.1: A genetic network for the biological clock from[4]. Molecular species (i.e., 
reactants or products) in the network are represented by boxes. The white-collar-1 (wc-1), 
white-collar-2 (wc-2), frequency (frq), and clock controlled gene (ccg) gene symbols are 
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sometimes superscripted 0, 1, r0, r1, indicating, respectively, a transcriptionally inactive 
(0) or active (1) gene or a translationally inactive (r0) or active (r1) mRNA. Associated 
protein species are indicated with capitals. A phot (in yellow) symbolizes the photon 
species. Reactions in the network are represented by circles. Arrows pointing to circles 
identify reactants; arrows leaving circles identify products; and bi-directional arrows 
identify catalysts. The labels on each reaction, such as S4, also serve to denote the rate 
coefficients for each reaction. Reactions labeled with an S, L, or D denote transcription, 
translation, or degradation reactions, respectively. Reactions without products, such as 
D7, are decay reactions. From[5]. 
 
 Mainly, besides making these ensemble methods broadly available, our goal is to 

solve a genetic network shown in Figure (3.2)  that consists of a master module (clock) 

and 2436 slave modules (subunits). Solving such a genetic network using a CPU implies 

that all of these subunits should be solved simultaneously and each subunit solved many 

times sequentially. This makes the process of finding the unknown parameters in the 

network using the ensemble method massively time consuming. In some cases where the 

network consists of 2436 subunits[5], the ensemble method is beyond the capability of 

the fastest serial computers. We developed an algorithm using the concept of warp-level 

parallelism[52] with a GPU and ARK method that makes possible simulating 2436 

subunits under clock control with a speed up of about 75-fold relative to a solution of 

serial version on a CPU architecture. The code (see supplement for code + input file) is 

written in C++/CUDA computer language for the GPU and is written in C++ and 

compiled with g++ using –O2 and –O3 optimization flags for the CPU. What makes our 

approach attractive is that as more subunits and ODEs are added, the speed up achieved 

increases, if we consider the availability of the GPUs.  The strategy we describe here for 

solving large nonlinear systems of first-order ODEs is an alternative to another ODE 

solver recently developed[53]. 
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3.2 METHODS 

The Warp-level parallelism concept is used to exploit and harness the power of a GPU 

for solving 2436 systems of ODEs using the ARK method for a large genetic network 

shown in Figure (3.2) describing the biological clock in N. crassa[5]. Since such a 

genetic network consists of many subunits and all of these subunits have the same 

mathematical form (as ODEs) as shown below but with different parameters, solving all 

of these systems of ODEs once in parallel suits the SIMD (single instruction, multiple 

data) and warp-level parallelism concepts (warp size for current NVIDIA GPUs is 32 

threads). A common parallelization strategy in this category is to increase the number of 

warps and consequently the number of thread blocks (TBs) per streaming multiprocessor 

(SMX) on a GPU and decrease a TBs size (number of threads per block). In addition to 

the fact that this optimization strategy increases the number of thread blocks assigned to 

each SM, it provides more independent warps from other thread blocks when one warp is 

stalled [54].  Figure (3.2)  shows 2436 systems of nonlinear ODEs (slave modules) that 

are needed to be solved to enable the implementation of the ensemble method with an 

ARK ODE solver[4].  The independence of these slave modules enabled us to suggest an 

algorithm to solve all of these modules in a parallel fashion using the ARK method and 

multi-GPGPUs.  
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Figure 3.2:The whole genetic network consisting of 2436 slave modules (subunits) to be 
solved by the GPUs. The subunits are independent from each other but depend on the 
clock master module consisting of genes, wc-1, wc-2, frq, and their products. The 
subunits have the same mathematical form (ODEs) but different parameters. Identifying 
this huge genome scale network is beyond the fastest serial computer in the existence. 
Thus, the GPUs are necessary for solving such a network. This figure shows a modified 
genetic network for the biological clock from[4] in the genome. The notation to describe 
this network is the same as in Figure (3.1). An abbreviation of the notation for the clock 
controlled genes is now given: g0 = [ccg0] = concentration of ccg0; g1 = [ccg1] D 
concentration of ccg1; gr = [ccgr1] = concentration of ccgr1; gp = [CCG] = concentration 
of CCG. 
 

In the Warp-level parallelism GPU(s) execute many warps concurrently. For example, on 

the Kepler K20x GPU, the maximum number of warps per SM equals to 64 warps, and 

the maximum number of TBs per SM equals to 16 TBs. Increasing the number of TBs 

and decreasing the block size is a well considered optimization strategy especially when 

the instruction level parallelism, i.e., thread code consists of multiple independent 

instructions in sequence, is hard to implement in some algorithms[54]. For example, the 

ARK method is in essence a sequential algorithm, and it is very hard to be parallelized by 
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instructional level parallelism because ARK doesn’t have independent instructions in 

sequence and because the time taken by each warp is unpredictable[44]. To maximize the 

usage of warp level parallelism we use a warp per block to solve the dynamics of the 

slave module consisting of systems of nonlinear ODEs using the ARK method. The 

pressure of using a large number of blocks to solve our genetic network (2436 blocks) 

leads us to use multi-GPUs to increase the speed up as is shown in Figure (3.3) and 

Figure (3.4). 

 

Figure 3.3: The time required for solving 2436 slave modules just one time using a 
NVIDIA GPU(s) [Kepler K-20x Tesla] over an extreme edition of optimized CPU 
[Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@ 3.10GHz]. Using four of the GPUs 
to solve our target genetic network 800,000 times shown in the Figure (3.2) to fit the 
observed data requires just twelve days while using the CPU requires a year and six 
months. 
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Figure 3.4: The achieved speed up using Multi-GPU  [NVIDIA Kepler K-20x Tesla] over 
an extreme edition of CPU [Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@ 
3.10GHz]. Red line shows the speed up without using the –O2 and -O3 flags for CPU 
optimization(C++ code/g++ compiler) and blue line shows the speed up with using –O2 
and -O3 flags for CPU optimization. 
 

3.2.1 THE ALGORITHM 

Each slave module can be described as an initial value problem of a system of nonlinear 

first ODEs for a genetic network as is shown in Figure (3.2) and is specified by 

 

𝑑𝑔!
𝑑𝑡 = 𝐵!𝑔! − 𝐴!𝑔!𝑤 𝑡                      

𝑑𝑔!
𝑑𝑡 = 𝐴!𝑔!𝑤 𝑡 − 𝐵!𝑔!                       

𝑑𝑔!
𝑑𝑡 = 𝑆!𝑔! − 𝐷!"𝑔!                                          

𝑑𝑔!
𝑑𝑡 = 𝐿!𝑔! − 𝐷!"𝑔!                                     
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The variables in this subsystem are the concentrations of the clock-controlled genes (g0 

and g1 in the inactive and active state, respectively), their mRNAs (gr), and proteins (gp). 

The testing was done on Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@ 3.10GHz] 

Extreme Edition processor and a Tesla GPU [Kepler K-20x] to measure the speed up of 

our approach. A Kepler K-20x GPU handles double precision numbers and consists of 15 

streaming multiprocessors (SMX), each  (SMX) consisting of 192 SIMD cores and 

handling up to 16 TBs with restriction for 2048 threads per SMX. The idea of the 

algorithm is to assign each slave module to one TB consisting of 32 threads (a warp). The 

load of 2436 slaves modules (systems of nonlinear ODEs equations) are distributed 

equally across Multi-GPUs system with a potential for a slight decrease or increase in the 

number of slave modules for the last GPU. For example, using four GPUs implies that to 

launch a kernel (a function to be executed on the GPU) on each GPU involves 

configurations of grid size equals to 609 thread blocks and a block size of 32 threads with 

a total number of threads equals to 19,488 threads per GPU. Each warp is responsible for 

solving a system of equations for one slave module.  The number of slave modules (292) 

that are strongly supported to be under clock control was determined by a series of 

model-guided experiments[5]. 

3.2.2 THE PROCEDURE  

a) Copying a file to the constant memory of each GPU that consists of a 200 time 

point solution to interpolate for the variable w(t) appearing in the equations 

above. Those time points come from the master clock module and are passed to 

each slave module as is shown in Figure (3.2). All of the TBs need to access the 

same file in the constant memory.   
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b) Each thread block executes a kernel, which contains the ARK ODE solver. 

c) All threads in the same block hold the same data (i.e. initial conditions and 

parameters values), and execute the same system of equations for an assigned 

slave module. 

 
d) ARK’s constants are declared in the constant memory of the GPU and are seen by 

all of the threads. 

e)   Kernel configuration consists of a grid size equal to the number of slave modules 

(609 slave modules per GPU) and a block size equals to a warp size. 

 
Parameter values of this clock network problem are given in Table (3.1); all of the slave 

modules have the same set of parameters for the sake of simplicity and accuracy, and 

calculating performance of a CPU and GPU. 

 

Table 3.1: Initial conditions at t=0 and parameters values  
 

 

 

 

 

3.3 RESULTS  

Identifying a large clock genetic network is beyond the capabilities of the fastest 

CPU ever manufactured and needs a much more expensive super computer than the 

GPUs that we use with high capabilities to solve such a network. The proposed parallel 

procedure uses NVIDIA Kepler K-20x GPU(s) to solve a genetic network shown in 

Species Initial 
Conditions 

Parameters Values 

g0 13.4271 Ac 0.3005 
g1 13.4348 Bc 37.2048 
gr 1.2208 Sc 0.0086 
gp 2.0982 Lc 11.4377 
 Dcr 0.4105 

Dcp 0.3589 
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Figure (3.2)  within a very short period of time compared with the time required on a 

CPU as is shown in Figure (3.3). The Ensemble method mentioned before needs this 

genetic network to be solved 40,000+ sweeps for an equilibration stage (each sweep is 

equivalent to solving the genetic network 10 times so that on average each variable out of 

ten variables in a slave module is updated once) and 40,000+ sweeps for an 

accumulations stage.  The total number of sweeps to identify the genetic network of 2436 

slave modules is shown in Figure (3.2) is 80,000+ sweeps. From Table (3.2), Figure (3.3), 

and Figure (3.4), the solution for 2436 slave modules from over 80,000 sweeps needs a 

CPU time of about one year and 6 months (considering 64090 milliseconds (ms) is 

needed to solve the 2436 slave modules once), while solving the same number of slave 

modules using just 4 GPUs needs about 12 days (considering 1346 ms is needed to solve 

the 2436 slave modules once), which is feasible and doable.  Algorithm performance 

appears to plateau for 2436 slave modules somewhere between 4 and 6 GPUs in Figure 

(3.4).  The genome dynamics of 295 clock-controlled genes over a 48 hour window are 

displayed in the attached video[36]. 
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Table 3.2: A comparison of the simulation of a large clock genetic network on Kepler K-
20x GPUs vs. a Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@ 3.10GHz] Extreme 
Edition Processor with 2436 clock-controlled genes providing 2436 slave modules to the 
system of ODEs. The time required for solving the whole 2436 slave modules once using 
–O2 and –O3 optimization flags on the CPU equals to 64090 ms while without 
optimization flags equals to 159150 ms 

 
 

 

 

 

 

3.3.1 ALGORITHM PERFORMANCE AS A FUNCTION OF THE NUMBER OF 

SLAVE MODULES IN THE CLOCK NETWORK  

In previous work, we identified a total of 2436 genes that were circadian in the N. 

crassa genome[5], which is considerably more than the 292 reported clock-controlled 

genes[5].  The simplest null hypothesis to be investigated is that all 2436 genes that have 

a WCC binding site and are circadian in expression are in fact all clock-controlled 

genes[55].  To test this hypothesis with the ensemble method would involve being able to 

simulate the clock mechanism +2436 slave modules.  We now do this and examine the 

computational time of the algorithm as a function of the number of slave modules up to 

2436 such modules.  

In Figure (3.5) we depict the relationship between different numbers of slave modules 

and time required for solving them using a fixed number of GPUs. Providing a brief 

introduction for the Kepler K-20x Tesla architecture and the programming model helps to 

elucidate the results in Figure (3.5)  and Figure (3.6). The Kepler K-20x consists of 15 

SMX with a maximum of TBs per streaming multiprocessor equals to 16 TBs. Thus, 

#of 
GPUs 

GPU Time 
[ms]  

Speed up With –O2, 
-O3 Flags  

Speed up Without –O2, 
–O3 Flags 

1 5088 12.59630503 31.27948113 
2 2733 23.45042078 58.23271131 
3 1809 35.42841349 87.97678275 
4 1346 47.61515602 118.2392273 
5 1285 49.87548638 123.8521401 
6 925 69.28648649 172.0540541 
7 884 72.5 180.0339367 
8 851 75.31139835 187.0152761 
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theoretically the device (GPU) can hold and run about 240 TBs simultaneously, given 

sufficient hardware resources, such as a register file and shared memory. Considering the 

sufficient resources, TBs do not leave a streaming multiprocessor until its execution is 

finished [56], and once TBs finish their time span, the scheduler keeps launching new 

TBs on these vacated SMXs for this kernel until all of the TBs  have executed. For 

example, from Figure (3.5), on one hand, the time required on a single GPU for solving 

200 or (800/4) slave modules or TBs (each slave module assigned to exactly a TB) equals 

to 462ms. On the other hand, the time required for solving 250 TBs (slave modules) 

needs 823ms, almost double the amount of time. This jump in the time is due to the fact 

that the device should solve theoretically 240 slave modules simultaneously until they 

finish their execution, and then it should start a new pass by solving the next 240 TBs or 

the rest of the available TBs simultaneously. Therefore, in this case, the 10 TBs 

difference need almost the same amount of time that is required for solving of 240 slave 

modules. As a matter of fact, although the theoretical number of TBs that can be run 

simultaneously on the device equals to 240, in our algorithm and as it is shown in Figure 

(3.5) and Figure (3.6), the number of blocks that can run simultaneously on the device is 

about 224 TBs, and after this number of blocks a jump in the time occurs for even one 

thread block more. The above clarifications should explain the scenario occurring on six 

GPUs as is shown in blue Figure (3.5) and Figure (3.6). Based on the fact that the time of 

the CPU is monotonically increasing with respect to the number of slave modules to be 

solved serially, then the drop in the speed up is shown in  Figure (3.6) from time to time 

should be due to the jump in the time as is shown in Figure (3.5) given that the speed 

up=Time used by the GPU(s)/Time used by the CPU. 



 

48 
 

 

Figure 3.5: The relationship between number of thread blocks (slave modules) to be 
solved on the device and the required time. The jump in time is due to exceeding the 
maximum number of TBs running simultaneously on the device. If GPU is capable of 
running several N blocks simultaneously. Then from 1 to N blocks takes same time to 
complete.   
 

 

Figure 3.6: The relationship between number of thread blocks (slave modules) to be 
solved on the device and the speed up. The drop in the speed up is due to exceeding the 
maximum number of TBs running simultaneously on the device, given that the time of 
the CPU is monotonically increasing. 
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3.4 DISCUSSION 

 This new parallelization strategy for solving large systems of ODEs on GPUs 

opens up the possibility of simulating genome dynamics.  The parallelization strategy 

means that it is now feasible potentially to use ensemble methods for fitting genome-

scale genetic networks when they have hierarchical structure.  The need for such methods 

stems from genomics data being noisy and sparsely distributed across the genome[4].  

The key to this parallelization strategy is to identify hierarchical structure in the genetic 

network.  There is some experimental evidence that this hierarchical structure may be 

widespread[57], and has been argued to be a feature of the clock network[55].  This 

approach can be coupled with classic well-performing solvers, such as ARK, to make 

possible model-guided discovery about genetic networks on a genomic scale[5]. 

 

The GPU is used in [58] to solve a system of ODEs for another oscillatory system, and 

the maximum achieved speed up is 47-fold using a LSODA solver[59]. This system of 

ODEs consists of 3 species, 6 reactions, and 8 parameters. In this paper, our proposed 

parallel algorithm uses an ARK ODE solver to solve systems of ODEs and operates on a 

much larger genome scale, consisting of 9744 species, 14616 reactions, and 24360 

parameters.  Our GPU implementation also leads to a higher speed up reaching up to 75-

fold.  

 

Our approach can also be compared with an adaptive step size GPU ODE solver for 

simulating electric cardiac activity[60]. Garcia et al.[60] developed a method for solving 

systems of ~300 ODEs describing cardiac activity with a single precision accuracy and a 
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speed up of 9.07-fold while in our work here we solved a system of ~10,000 ODEs using 

a double precision and a speed up of 75-fold. 

 

 An inherent limitation of the parallelization strategy here is the use of sequential 

ODE solvers, such as the ARK method.  In order to calculate the trajectory at time t+h, it 

is necessary to have solved with high accuracy the trajectory at time t first.  The ARK 

method is then inherently sequential.  We recently developed an alternative 

parallelization strategy using a Galerkin Finite Element Method with Hat Functions as 

ODE solver[53], which is as accurate as the ARK method.  It will be interesting to see 

how this alternative compares with parallelization using the hierarchical structure of the 

network. In comparison to [53], here in this paper another procedure using the ARK 

method along with the power of GPUs are functioning to solve the large genetic network 

using warp level parallelism, while in the Galerkin approach[53] is using instruction level 

parallelism alongside warp level parallelism in the GPUs. The only caveat is that the 

serial version of the Galerkin ODE solver is slower than ARK method and it is harder to 

implement on the GPUs. 

 

 A third parallelization strategy might involve a parallel implementation on 

multiple CPUs with MPI to narrow the gap in performance between CPUs and GPUs in 

Figure (3.4).  We think the GPU is the preferred approach here for four reasons. One, 

using MPI across multiple CPUs needs hundreds of CPU cores, a more expensive 

strategy than multiple GPUs.  Two, the thread on a GPU is very “lightweight” if it is 

compared with the thread on a CPU.  Three, sometimes launching a certain number of 
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threads on a CPU degrades the overall performance especially if the number of threads 

exceeds the number of cores.  Finally, the best practice for implementation of ensemble 

methods has been serial implementations of solvers, and so we want to ascertain how the 

use of a GPU based ODE solver changes the speed of the ensemble method relative to 

best current practice.  

 

 This methodology of the ARK method on a GPU is enabling a new approach to 

understanding the kinetics of the cell on a genome scale.  As captured in the attached 

video, new approaches in nanotechnology are enabling the measurement of the clock in 

single cells[36]. This will open a whole new area of inquiry about the clock.  We can 

begin to ask if the clock is truly stochastic with variation in the oscillators from cell to 

cell and whether or not there is any cell-to-cell communication of oscillators in different 

cells.  To address these questions will require the solution to three methodological 

challenges.  New engineering approaches will be needed to make single cell 

measurements[61].  As indicated in the video, this approach involves capturing individual 

cells with microfluidics technology.  New models will be needed to incorporate 

stochastic behavior in the clock models [62].  While stochastic clock models have been 

proposed, they have no empirical basis and have not been tested.  Third, new 

parallelization strategies will be needed to understand the large networks describing clock 

behavior.  The clock network in a single cell could involve potentially 2436 distinct 

genes responding to the clock mechanism or equivalently, ¼ of the genome[5].  In this 

paper, we have introduced the second of two strategies to address the fitting of genome 

scale networks by the ensemble method.  The time estimates in Table (3.1) implies that it 
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is now feasible to fit a genome-scale network to genome dynamics within a single cell, 

like that of the clock, with ensemble methods needed to overcome noisy data that is 

sparsely distributed across the genome.  A 75-fold speedup of the simulation of a 

hierarchical network on GPUs was achievable Table (3.1).  This speedup is sufficient to 

fit the entire clock network to the genome dynamics of a single cell. 

 

3.5 CONCLUSION 

In this paper we harness the power of multi-GPGPUs to solve many systems of nonlinear 

ordinary differential equations that belongs to a large genetic network describing clock 

genome-level dynamics using an Adaptive Runge Kutta ODE solver. Implementing the 

proposed algorithm opens up a door to utilize the ensemble approach to overcome the 

problem of many parameters and limited noisy genomics data on a particular network. 

Consequently, understanding such networks enables us to discover the biochemistry and 

genetic activity of a cell and how the cell evolves as a function of time (including its 

metabolism, signal transduction, and cell cycle).   
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ABSTRACT 

Most genetic networks, such as that for the biological clock, are part of much larger 

modules controlling fundamental processes in the cell, such as metabolism, development, 

or response to environmental signals.  For example, the biological clock is part of a much 

larger network controlling the circadian rhythms of about 2,418 distinct genes in the 

genome (with 11,000 genes) of the model system, Neurospora crassa.  Predicting and 

understanding the dynamics of all of these genes and their products in a genetic network 

describing how the clock functions is a challenge and beyond the current capability of the 

fastest serial computers. We have implemented a novel “variable–topology supernet” 

ensemble method using Markov Chain Monte Carlo (MCMC) simulations to fit and 

discover a regulatory network of unknown topology composed of 2,418 genes describing 

the entire clock circadian network, a network that is found in organisms ranging from 

bacteria to humans, by harnessing the power of the GPGPU and exploiting the 

hierarchical structure of that genetic network.  The result is the construction of a genetic 

network that explains mechanistically how the biological clock functions in the 

filamentous fungus N. crassa and is validated against over 31,000 data points from 

microarray experiments.  Two transcription factors are identified targeting ribosome 

biogenesis in the clock network. 

 

INDEX WORDS: Biological clock, General-purpose graphical processing unit, ensemble 

method, supernet, systems biology, and regulatory network topologies. 



 

55 
 

4.1 INTRODUCTION 

Systems biology provides a pathway-centered approach to understanding complex traits, 

such as carbon metabolism[11], development[63], and cancer[64].  A major problem in 

systems biology is reconstructing such pathways on a genomic scale[65].  Genome-wide 

reconstruction of networks is particularly limited by three difficulties: (1) genomics data 

are sparse and noisy with respect to the trait of interest; (2) the underlying network is 

large; (3) the network topology is usually unknown. To overcome the first problem, 

ensemble methods were introduced to identify genetic networks even in the presence of 

sparse and noisy data[4, 50].  The key innovation was relinquishing finding one best 

model consistent with the data, but instead, identifying an ensemble of models consistent 

with the data available to predict systems behavior over time.  To overcome the second 

problem new parallel computing strategies were developed for ensemble methods on 

General-Purpose Graphics Processing Units (GPGPUs)[66, 67].  The models being fitted 

were described by systems of nonlinear ordinary differential equations (ODEs) as a first 

approximation, and the solution to the second problem involved finding new ways to 

solve large (~10,000 variables) first-order nonlinear ODEs.   Here we introduce a novel 

computational approach of network ensemble discovery that addresses all three problems 

including identifying a network of unknown topology on a genomic scale and illustrate 

its application to the large network of genes and their products associated with circadian 

rhythms[66]. The associated biological question is: By what mechanisms do such a small 

module as the clock mechanism, comprising only a single transcription factor (TF) 

complex, exert control over nearly one quarter of the entire genome? In the example 

below, the genomic scale network for the clock has ~38,000 parameters and ~31,000 data 
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points.  Yet by averaging over the 40,000 members of the ensemble insights can be 

obtained into how the circadian network is organized, and predictions can be made about 

the whole system of 2,418 genes[5].  A video summary of the solution to this central 

problem in systems biology is attached. 

 

4.1.1 MODEL 

Our model below has two components, an unknown regulatory component 

(circles and ellipses in Figure (4.1) and Figure (4.2)) and the modules that control the 

expression of individual genes under clock control (boxes in Figure (4.1) and Figure 

(4.2)) with partially unknown regulatory topology. Our approach here rests on the key 

idea that any network we may wish to reconstruct, hence referred to as the “true net”, can 

be represented as a particular special case of a much more general network model, 

referred to as the “variable-topology supernet”. This is illustrated in Figure (4.1) and 

Figure (4.2) for a simple hierarchical transcriptional network, in which the clock 

transcription factor WCC regulates 5 other transcription factors which in turn may 

regulate hypothesized clock-controlled genes (ccgs) or be regulated by WCC directly.  

Such genes will be referred to as putative ccgs. 

The hypothetical true net in Figure (4.2) consists of specifying how each putative 

ccg is regulated.  The genetic network thus has an unknown true topology. Its supernet in 

Figure (4.1) consists of the six regulatory species regulating each putative ccg. The 

network kinetics, i.e., how fast each gene is converted into its product(s), is then 

governed by the reaction rate coefficients assigned to each reaction link, both in the true 

net and in the supernet.  Clearly, the kinetics of the supernet will become identical to that 
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of the true net if we set to zero all supernet rate coefficients for those supernet reaction 

links which are absent in the true net; and if we set the supernet rate coefficients to the 

corresponding true net values for the subset of links that are present in the true net. We 

refer to this situation by saying that the true net of Figure (4.2) is “embedded” in the 

supernet in Figure (4.1). 

The crucial point is that any network involving 2,418 genes can be embedded in 

the supernet of Figure (4.1). While the true net is initially unknown, we can perform a 

supernet ensemble simulation to find a MCMC sample of rate coefficients[4, 7] that is 

consistent with the data.  The simplest hypothesis is shown in Figure (4.3):  the clock 

transcription factor, WCC, alone is hypothesized to regulate all 2,418 genes. 

 Figure (4.1) and Figure (4.2) show the whole genetic network consists of 2,418 

slave modules and a master module for the clock mechanism. There are 5 transcriptional 

regulators under clock control of the clock transcription factor, WCC, to be solved on the 

GPU[4, 66]. 
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Figure 4.1: Supernet. Where each of the 2,418 genes is hypothesized to be regula4ted, 
potentially, by all of the six active transcription factors.   
 
 
 

Figure 4.2: True net. The inferred regulation from fitting the supernet to available data by 
the ensemble method.  Each of the 2,418 genes is inferred to be regulated by some of the 
six transcription factors. 
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Figure 4.3: The simplest model is one in which all 2,418 genes are regulated by one 
transcription factor,  WCC.  Molecular species (i.e., reactants or products) in the network 
are represented by boxes. The white-collar-1 (wc-1), white-collar-2 (wc-2), frequency 
(frq), and clock controlled gene (ccg) gene symbols are sometimes superscripted 0, 1, r0, 
r1, indicating, respectively, a transcriptionally inactive (0) or active (1) gene or a 
translationally inactive (r0) or active (r1) mRNA. The notational convention for protein 
species is all capitals. A phot (box in yellow) symbolizes the photon species. Reactions in 
the network are represented by circles. Arrows pointing to circles identify reactants; 
arrows leaving circles identify products; and bi-directional arrows identify catalysts. The 
labels on each reaction, such as S4, also double as the rate coefficients for each reaction. 
Reactions with an A or B label are either activation or deactivation reactions. Reactions 
labeled with an S, L, or D represent transcription, translation, or degradation reactions, 
respectively. Reactions without products, such as D7, are used to indicate decay 
reactions. Reaction labeled C1 produces an alternative mRNA for the wc-1 gene. 
Reactions labeled C2 or C3 form complexes (WCC) with or without light.  All  of these 
reaction labels double as rate constants.   In the more realistic model studied in this paper, 
an additional five proteins, shown as “ellipses” in Figure (4.1), are hypothesized as 
potential alternative regulators for each ccg. Redrawn from Al-Omari et al.[66]  
 

4.1.2 THE SUPERNET 

The genetic network exemplified in Figure (4.3) is one example of a genetic 

network consisting of a master clock module controlling 2,418 slave modules (putative 
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ccgs and their products).  This network specifies a system of nonlinear first order 

differential equations under mass action kinetics.  The rate coefficients are the labels on 

the reactions in Figure (4.3). A gene, such as frq0, in the off state is activated into the on 

state, frq1.  This active gene is transcribed into a messenger RNA (mRNA), frqr.  The 

mRNA is translated into a protein, FRQ.  The FRQ protein is the digital readout to the 

cell on the time of day.  IF FRQ is high, it is dusk; if FRQ is low, it is dawn.  The FRQ 

protein is the oscillator of the system.  In turn the genes wc-1 and wc-2 are transcribed, 

and their mRNAs, translated, to produce the activator (WCC), which starts the oscillator.  

One of the functions of the FRQ protein is to destroy the activator WCC.  The result is a 

negative feedback loop that contributes to oscillations. The nonlinear component of the 

entire network in Figure (4.3) is the clock mechanism in Figure (4.3) leading to 

oscillations. 

  All ccg slave modules have the same mathematical form of ODEs shown 

below[4], but each has its own independent values, treated as ensemble MC variables[4, 

8, 9, 50], for rate coefficients and initial conditions, as follows: 

 

  dg!
dt = B!g! − A!g!S t                                                                                                                                                                                                                   (1) 

dg!
dt = A!g!S t − B!g!                                                                                                                                                                                                                    (2) 

dg!
dt = S!g! − D!"g!                                                                                                                                                                                                                                  (3) 

dg!
dt = L!g! − D!"g!                                                                                                                                                                                                                               4    
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The dynamical variables here are the concentrations of the putative clock-controlled gene 

(g0 and g1 in the inactive and active state, respectively), its mRNAs (gr), and its protein 

(gp). See Figure (4.3) legend for parameters Ac, Bc, Sc, Lc, Dcr, and Dcp descriptions.The 

supernet allows for possible regulation of the putative ccg by any one of the six possible 

ccg-regulators, with S(t) denoting the weighted average of activator protein signals from 

all six regulators: 

S(t)= µμ! Reg! t ! + r!!
!
!!

!
µμ! Reg! t !!

!!!                                              (5);  

The “relative binding strength”, µk, is the weight of the kth regulator’s contribution to the 

targeted ccg’s activation signal, with µk ≥ 0  and ∑k=0
5 µk = 1; [Regk]  is the concentration 

of regulator protein k; rk is the time-average of Regk(t) or the initial conditions defined 

below for k=0,…,5 (see  Materials and Methods); and m is the Hill coefficient for the 

regulators. Regulators k=1-5 are themselves ccg products, assumed to be regulated by 

WCC, i.e., having a fixed µ0=1. For any other, non-regulatory ccg, the µk, are ensemble 

MC variables, randomly varied to fit the data. 

4.1.3 THE PARALLEL ALGORITHM FOR IMPLEMENTING THE ENSEMBLE 

METHOD ON A GENOMIC-SCALE GENETIC NETWORK OF UNKNOWN 

TOPOLOGY  

An ensemble method was used previously[4] to identify the clock mechanism 

embedded in Figure (4.3) and took 60 days of simulation using older CPUs[4]. The 

ensemble method was used herein to describe and discover the other larger part Figure 

(4.3) (labeled subunits 1 through 2,418), consisting of a suite of 2,418 circadian genes.  

We previously designed a method to solve a large genetic network consisting of systems 

of ODEs with ~10,000 dynamical variables, using warp-level parallelism in which each 
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block has a warp (32 threads) and in which Adaptive Runge Kutta[34] (ARK) is used to 

solve the system of ODEs with shared memory techniques. Here, we have developed 

significantly improved and more efficient algorithms that are applicable for simulating 

genetic networks, where putative ccgs are regulated independently of each other and each 

ccg maintains its own data (not using shared memory). Figure (4.4) shows a comparison 

between the previous algorithm[66] ( in red), which uses ARK with a block of 32 threads 

and shared memory to solve for a slave module, and the current algorithm(in blue) ,which 

uses ARK with a single thread to solve for a slave module. The speed up of the current 

algorithm using a single GPU for solving 2,418 systems of ODEs once in Figure (4.4)is 

equal to 252-fold over a comparable CPU described [66], whereas the speed up of the 

previous algorithm to solve the same number of ODEs (~2,418) using 8 GPUs is equal to 

75-fold over the same CPU. Although the current ARK algorithm is much faster, the 

previous one has an advantage over the current one in that it is applicable for a genetic 

network that has a dependency between genes due to the use of the shared memory. 

These two ARK algorithms can be applied to solve for both linear ODEs (the putative 

ccg genes) and non-linear ODEs (the clock mechanism) of genetic networks in Figure 

(4.3), implemented on GPUs, are now described. 

A. THE ADAPTIVE RUNGE KUTTA ALGORITHM FOR SOLVING GENERAL 
ODE SYSTEMS ON THE GPU  

 

The algorithm uses a common parallelization strategy that increases the number of thread 

blocks (TBs) per streaming multiprocessor and decreases thread blocks size (number of 

threads per block); for instance, we use a block of 32 threads. This provides more 

independent warps from other thread blocks when one warp is stalled[54]. In essence, 
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this new algorithm implies that each thread is responsible for solving a system of ODEs 

(linear or non-linear) with different parameters and initial conditions using a modified 

ARK algorithm that accommodates the GPU architecture. This algorithm utilizes 

registers instead of shared memory since there is no dependency in the data among slave 

modules. The achieved speed up is shown Figure	
  (4.4)	
  and Figure	
  (4.5) with the GPU 

time as function of the number of slave modules (putative ccgs). An ensemble solution 

routinely requires 80,000 sweeps[4], each sweep being equal to the number of unknown 

parameters (16 parameters for each system of ODEs x 2,418 slave modules). Solving for 

2,418 slave modules once on a CPU took 59,515 milliseconds as shown in Figure	
  (4.5).   

The predicted CPU time for one ensemble run is 2.4 years.  In contrast, solving the same 

number of slave modules using a single GPU and this new parallel algorithm needed 

about four days (considering 236.5 ms is needed to solve the 2,418 slave modules once as 

shown in Figure	
   (4.5)). However, the time of 236.5 ms varies because MCMC will 

generate for every proposed update a different set of parameters for the ODEs being 

solved. Hence the number of iterations in the ARK method will increase or decrease 

based on an ODEs’ set of parameters. We identified this genetic network in Figure	
  (4.1) 

using the ARK parallelized algorithm and the MCMC algorithm in about 4 months. The 

algorithm is detailed in Materials and Methods. 
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Figure 4.4:  Our new algorithm with no shared memory and one slave module per thread 
(in Blue) and with a speedup of 250 to 650-fold   outperforms our published algorithm 
with shared memory (in red) and a block of 32 threads per slave module and with a 13-75 
fold speedup. The performance of each algorithm is given both as a function of the 
number of GPUs and the number of slave modules. These algorithms compute the 
dynamics of genomic scale networks on GPU(s)  and make tractable ensemble methods 
on genomic scale networks. The dips in the speed up are due to exceeding the maximum 
number of thread blocks running simultaneously on the device, given that the time of the 
CPU is monotonically increasing as in Figure (4.5). 
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Figure 4.5: The time to solve a genome scale network makes tractable ensemble methods 
for genome scale networks on a GPU.  The number of thread blocks (slave modules) to 
be solved on the device (Red) and on the CPU (Blue) determines in part the required 
computational time. The left Y-axis shows the CPU time while the right Y-axis shows the 
GPU time. The dips in the GPU time are due to exceeding the maximum number of 
thread blocks running simultaneously on the device. If a GPU is capable of running N 
blocks simultaneously, then from 1 to N blocks takes the same time to complete. The 
time of the CPU is monotonically increasing as function of slave modules. 
 

B. THE NUMERICAL EXACT INTEGRAL SOLUTION ALGORITHM FOR 
SOLVING LINEAR ODE SYSTEMS ON THE GPU.   
 

Since the ARK method still needs significant time for solving this large system of ODEs 

and since an alternative and a control to the ARK method is desirable, an independent 

numerical exact integral (EI) solution for solving the first order linear ODEs in Eqs. (1-4) 

was implemented using Gauss-Legendre quadrature[34] which fits exactly our ODEs 

system described above in this paper, (see Materials and Methods). We found no 

difference in the resulting solutions between the two methods as shown in Figure	
  (4.6), 

where the max absolute error was 10-4 using just 32 Gauss-Legendre quadrature points. 

This solution’s accuracy is sufficient for these biological problems[8]. The speed of the 
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numerical ODE solution did not depend on the set of parameters in a MCMC update 

while it does in the case of ARK method. With the numerical exact integral solution 

algorithm we solved the whole problem on the GPU within ~12 hours per MCMC, 

instead of 4 months by ARK: a 240-fold speed up over ARK on the same GPU. However, 

with both methods being highly accurate, the EI method applies only to first-order linear 

ODEs (putative ccg part in Figure	
   (4.3)), while ARK applies to any ODE system as 

mentioned before. 

 

Figure 4.6:  The solution of g1(t) using the numerical exact and the ARK methods using 
NG =32 Gauss-Legendre quadrature points over the time period [0,48] h for the genetic 
network of the biological clock of N. crassa agree. NG=6 between the red dots and the 
max absolute error is 10-4 
 
4.2 MATERIALS AND METHODS  

All microarray data used for analysis in this paper came from Accession 13 entitled 

“cycle 1” in the public database FFGED[68], and the description of the data collected 

are described in Dong et al. [9].  In the cycle 1 dataset there are 2,436 features.  Genes 

that are QA-responsive were removed so as not confound results using later datasets 
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involving a QA-responsive promoter, leaving 2,418 genes for analysis.  The “cycle 1” 

data are also attached in the supplement. 

4.2.1 OBTAINING THE REGULATOR [REGK] PROTEIN CONCENTRATIONS  

A) The protein concentration [Reg0(t)]  ≡  [WCC(t)] can be obtained from the earlier 

biological clock ensemble simulations[4] on the simulation time interval [T0, T1] 

= [0, 48]h. 

B) Due to lack of CCG protein data for the 5 regulatory ccg modules, k=1,…,5 their 

regulatory protein product concentrations, [Regk(t)] ≡ gp,k(t), are obtained as 

follows: 

1) Obtain an estimate for rate coefficients 𝐿! and 𝐷!", for the regulatory ccg-module 

from the clock parameter set of the earlier clock ensemble simulations [4] 

2) Obtain, for a sufficiently dense t-grid on simulation time interval [T0, T1], the 

ensemble averages for the messenger RNA concentrations mk(t) ≡  gr,k(t), for the 

5 regulatory ccg modules, k=1,…,5. Here, S(t) is replaced by [WCC(t)] in the 

respective Eqs.  (1,2) for each of the respective modules, k=1,…,5, under the 

regulatory model assumption that the regulatory ccgs are activated by WCC only 

(see Figure	
   (4.1)). Also, [WCC(t)] is again taken from the earlier ensemble 

simulation results for the biological clock[4] . 

3) Given as inputs the rate coefficient estimates, L! and D!", and the mRNA 

concentration, mk(t)  ≡ gr,k(t), for each regulatory ccg module k=1…5, we can 

solve Eq. (4) for the module’s protein product [Regk(t)] ≡ gp,k(t). That is, written 

in terms of mk(t)  and [Regk(t)], Eq. (4) becomes 
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𝑑 𝑅𝑒𝑔!     
𝑑𝑡 = 𝐿!𝑚! 𝑡 − 𝐷!"   𝑅𝑒𝑔! 𝑡 ; 

𝑘 = 1,… ,5 

which is solved for [Regk(t)] on simulation interval [T0, T1] = [0, 48] h  with 

initial condition rk by 

            [Reg! t ] = r!e!!!"! + e!!!"(!!!")
!

!!!!
  L!m! t! dt!; 

k=1,…,5  

To choose a value for the initial condition rk which is comparable in magnitude to typical 

values of [Regk(t)]  over the observation time interval [T0, T1], we require that rk 

matches the time average of [Regk(t)]:  

r! =
!

!!!!!
[Reg! t ]  dt

!!!!
!!!!

 ;    k=1,…,5 

Inserting the foregoing ODE solution equation for [Regk(t)] into the latter 

equation for  rk, , we obtain a simple linear algebraic equation for rk  which is 

easily solved, given the inputs L!, D!" and mk(t) on time interval [T0, T1], 

These time-averaged, and also initial concentration values serve as the rk -

input values in Eqs. (5) and (10-12). 

 

4.2.2 ENSEMBLE METHOD FOR DISCOVERING A GENOMIC-SCALE NETWORK 

OF UNKNOWN TOPOLOGY: 

There are two phases in the ensemble method: in the equilibration phase parameters 

values are found that allow the ODEs solution to fit to the experimental data, and in the 

accumulation phase many models or equivalently, sets of parameters, that represent the 

experimental data well are accumulated. Averaging over these models captured in the 
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accumulation phase allows prediction about how the described genetic network will 

behave. Thus, averaging many solutions of the ODEs (obtained by a MCMC method 

utilizing the Metropolis algorithm) with different initial conditions and parameters values 

allows an assessment of fit to the experimental data. 

For best performance, unlike the equilibration phase which runs on a single GPU, the 

accumulation phase can be run in two GPUs, one for solving ODE solutions that are used 

in the χ2-calculation for the Metropolis Monte Carlo update; and the other for calculating 

the results for the “MC Scores”, i.e., the ODE model solutions actually included in the 

ensemble MC sample to average and compare to the experimental data. The former ODE 

solutions (for χ2-calculation) need to be calculated only for the 13 time-grid points at 

which observations were made; the latter (for inclusion in the ensemble MC sample) are 

required, less frequently, but on a much denser grid of time points. Moreover, 

overlapping the CPU and GPU jobs was considered and implemented in our simulation 

code whenever possible. A detailed description of the ensemble MC method on GPUs for 

the supernet is given right below. 

The following steps describe the algorithm for the ensemble method[4, 50] for fitting and 

discovering the 2,418 genes regulatory network. 

A) Metropolis Monte Carlo updating algorithm for θ- and µ-variables, in model Eqs. 

(1-5) where all six regulators, k=0,1,2,3,4,5, are activators:  

I. Proposal step (Monte Carlo): A Mersenne Twister algorithm[69] residing 

on the CPU is employed to draw all required random numbers u ∈ [0,1] 

from a uniform distribution. In the proposal step we first decide randomly 

for each of the 2,418 ccg slave modules, with 50% probability, to either 
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(a) update one of the module’s 10 so-called θ-variables[4] [initial 

conditions and rate coefficient values in Eqs. (1-5) or in Eqs. (3,4,10,11)] 

or (b) to update a pair of the module’s 6 weights, µk [CCG-Regulators 

binding strengths] 

a) The new θ-vector, θ’, for each ccg module is generated from the 

old θ≡ [θ1 ,…, θ10]  according to θ’j = θ’j + SWj (2u-1) where u ∈ 

[0,1] is a uniformly distributed random number drawn for each 

module; the updated θ-component number, j, is likewise drawn 

with uniform probability from j ∈ {1,2, …,10}; and 𝑆𝑊! is a step 

width variable assigned to every initial condition and rate 

coefficient MC variable, θj. Each SWj is to be continually adjusted 

for optimal MC equilibration.  

 

b) The proposed new regulator weights, µk‘, are from old µk in a total- 

weight-preserving pairwise updating step, according to the following 

procedure, for each ccg module: 

1- A pair of weight indices, i and j, each from {0,1,…,5},  is 

selected with uniform probability, with i≠j. 

2- The new weights are calculated as µ’i =µi -Δµ and µ’j =µj +Δµ;  

whereas µ’k =µk for all other k, with k  ≠i and k≠j , and the 

random change Δµ is generated as follows: 
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3- A step-width factor gji =r fji    is calculated where r is a uniform 

random number, r ∈ [0,1]; and fij is the max step-width value, 

assigned to each weight-preserving µ-updating pair and 

continually adjusted for optimal MC equilibration. Each fij 

must be chosen to obey 0<fij <1 and  fij= fji; 

4- Then set Δµ=gjimin(µi, 1-µj ) which ensures that Δµ≤  gjiµi  ≤ 

µi    and   Δµ ≤  gji(1-µj )  ≤ 1-µj  . This then also ensures that 

the proposed new weights obey 𝜇!  ′ = 1!
!!!  and 0≤ 𝜇!′ ≤

1; 

5- For the 5 regulatory ccg modules set the weights for their own 

regulation to µ0=1 and µ1,2,3,4,5=0 for the 𝑅𝑒𝑔!,!,!,!,! based on 

the model assumption that all 5 regulators are active regulatory 

ccgs are regulated only by Reg0  ≡ WCC 

II. The CPU sends the 10 θ’s and the 6 µ’s for each ccg module to the GPU. 

An ARK ODE solver resides on the kernel function (executed on the 

GPU) and solves the 2,418 systems of ODEs of the slave ccg modules in 

parallel and sends the solution back to the CPU. 

III. Accept/Reject step (Metropolis): The ODE system, Eqs. (1-5) or (10-12) 

for each non-regulatory ccg depends only on the six regulator proteins, 

but not on any other non-regulatory ccg modules. Furthermore, the 

regulator proteins are assumed to be independent of all non-regulatory ccg 

modules. As a result, the θ- and µ-variables of each non-regulatory ccg 

are also statistically independent of the θ- and µ-variables of all other 
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non-regulatory ccg modules in joint the ensemble likelihood function[4] 

for the whole system of all ccg modules. In other words, the whole-

system ensemble likelihood function[4], Q, factorizes into independent 

single-ccg likelihood functions, Q(n), for each non-regulatory ccg module 

n.  For that reason we can then perform the accept/reject steps of the θ- 

and µ-variables separately and independently for each non-regulatory ccg 

module. We thus apply the standard Metropolis criterion separately and 

independently to each non-regulatory ccg, each with the Metropolis 

acceptance probability Pacc
(n)=min [1,R(n)], as defined below. By drawing 

a uniform random number r(n)    ∈ [0, 1], the proposed change  of the θ- or 

µ- variables, for a given ccg n, is accepted when r(n)<Pacc
(n) , else rejected. 

Here, the probability ratio R(n) is given in terms of the single-ccg 

ensemble likelihood function  Q(n)(  θ, ψ, µμ) = (1/Ω(n)) exp[-H(n)(  θ, ψ, µμ)]  

by [4] 

 

• R(n)=!
(!)  (!!,!  ,!!)
!(!)  (!,!  ,!)

= !"#  (!!(!)(!!,!  ,!!))
!"#  (!!(!) !  ,!  ,! )

=𝑒!!!(!) 

 

• ΔH(!) = 𝐻 ! (𝜃!,𝜓  , 𝜇′)− 𝐻 ! (𝜃   ,𝜓  , 𝜇) =
!
!
[𝜒!    ! 𝜃!,𝜓  , 𝜇! − 𝜒!    ! 𝜃   ,𝜓  , 𝜇 ] 

• 𝜒!    ! 𝜃   ,𝜓  , 𝜇   =
!" !!,!

!"#. !!" !! !  ,!   !!! !,!
  

!!,!
!"#.

!!,!
!"#.

  !
!!!

!
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        Here n=1,2,…,N and N=2418-5=2413 is the total number of non-

regulatory ccg modules.  M=13 is number of observation time points, tm, 

at which experimental ccg mRNA concentration data, 𝑦!,!
!"#. have been 

taken for ccg-module n. These experimental mRNA data are compared in 

the χ!- function to the corresponding ODE model solutions for the 

mRNA concentration, 𝐹! 𝜃, 𝜇 ≡ 𝑔!(𝑡!;𝜃   , 𝜇  ), obtained at time tm for 

ccg module n, given the module’s ensemble MC variables (θ  , µμ  ). We use 

log-concentration difference residuals in the χ!-function because it is 

"scale-factor free", i.e., it assigns the weight to each data point in χ! 

independent of scale factor fluctuations. Data points (n,m) are assigned to 

scale factor classes, c, such that two data points belong to the same class 

if they both share the same unit conversion factor from experimental 

concentration units (fluorescent photon counts) to model concentration 

units; and c(n,m) denotes the class to which data point (n,m) has been 

assigned [4]. The log of the unknown unit conversion factor, ψc, for each 

class c is treated as an ensemble MC variable[4], on the same footing as θ 

and µ. The updates of the ψ-variables are performed separately and with 

a different procedure than θ- and µ- updates, as described below. In our 

experimental data sets, each ccg slave module actually has the same log 

unit conversion  ψ! , i.e., there is only one scale factor class. However, 

our approach applies generally to data sets requiring multiple scale factor 

classes. 
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B) Müller-Box updates of unit conversion factor variables ψ  .  

At fixed θ and µ for all ccg modules, the whole-system ensemble likelihood 

function, Q=   !
!!! Q(n), results in an independent 1D Gaussian distribution for 

each log unit conversion factor variable ψ!. We therefore update each ψ! by 

drawing it from the appropriate 1D Gaussian distribution, without Metropolis, 

using the Müller-Box algorithm[70]. Since all θ and µ are fixed, the draw from 

this Gaussian distribution does not require a new solution of the model ODE 

system. Also, using Müller-Box, we achieve100% acceptance for each ψ!-update. 

The  ψ!-updates are therefore very fast and are performed after each single-θ and 

each pairwise µ-variable update. 

 

C) Metropolis Monte Carlo updating algorithm for θ- and µ-variables, in model 

Eqs.(10-12) where only five regulators, k=0,1,2,3,5, are activators and regulator k=4 

(CSP-1) is a suppressor:  

 

For this model, all six regular binding strengths, µk  , are still constrained by 

positivity µk ≥ 0  for k=0,1,…,5. However, only the weights of the five 

activators, k=0,1,2,3,5, but not k=4, are subject to the normalization condition, 

  !
!!!,!!! µk=1, while the weight of the suppressor (CSP-1) µ4≥ 0 has no upper 

bound. (To avoid numerical problems in the ODE solution, in the MC simulations 

a very large upper bound, µ4< 100  ,  was actually imposed.) This modification on 

the weight constraints will allow both the suppressor and one of the five activators 

to fully bind to the ccg at the same time and thus compete in the ccg’s regulation. 



 

75 
 

In this case, only the five activator weights, µ0, µ1, µ2, µ3, µ5, are updated by the 

pairwise MC updating procedure b) described above, while weight µ4 is treated 

like a θ-variable using the single-variable Metropolis MC updating procedure a). 

The single-variable Metropolis updating procedure is of course also used again 

for the θ-variables of each ccg module. 

 

4.2.3 AN ENSEMBLE METHOD USING THE ADAPTIVE RUNGE KUTTA ON THE 

GPU: 

The ARK algorithm can be used for solving system of linear and non-linear ODEs. In this 

paper, the ARK method is implemented on the GPU by assigning a thread to solve for a 

single system of ODEs out of 2,418 systems, so in essence, we have 2,418 threads 

solving the same system of ODEs, but each has a different set of parameters. We used the 

registers on the GPU as they are the fastest memory holder to define any variable that is 

required by the ARK method. On the other hand all of constant data, for instance, the 

interpolation files, which are six files one for each regulator, and all of the ARK’s 

constants to be defined on the constant memory of the GPU. This code organization 

shows the best performance among other code organizations that were tested.  

Algorithms were coded in CUDA/C++ and are attached as a supplement and in 

sourceforge.net under the keyword vtens_ARK_clock1. 
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4.2.4 AN ENSEMBLE METHOD USING THE NUMERICAL EXACT SOLUTION ON 

THE GPU: 

The system of ODEs described above can be solved using a numerical exact integral 

solution formula for solving the first order linear ODEs described above on the GPU 

using CUDA/C++ (code attached) and in sourceforge.net under the keyword 

vtens_EI_clock1.  

1. The general first order linear ODE  

𝑑𝑦(𝑡)
𝑑𝑡 + 𝑝 𝑡 𝑦 𝑡 = 𝑞 𝑡                                                                                                                                                                                                 (6) 

is solved subject to initial condition 𝑦 𝑡 = 𝑦! at time 𝑡 = 𝑡! by: 

𝑦 𝑡 = 𝑦!𝑒!!(!) + 𝑒!! ! 𝑒! !!!
!!

𝑞(𝑡!)𝑑𝑡!                                                                                                                                              (7)      

 ;  where  𝐽 𝑡 = 𝑝(𝑡!)!
!!

𝑑𝑡′. 

To avoid numerical overflows of the exponential function in the integrand, eJ(t’), 

we rewrite and numerically implement Eq. (7) as follows:  

𝑦 𝑡 = 𝑦!𝑒!!(!) + 𝑒! !!)!!(!
!

!!
𝑞(𝑡!)𝑑𝑡!                                                                                                                                        (8) 

2. Use the foregoing formula to solve the ODE for 𝑔!(𝑡), with 𝑔! 𝑡  replaced by 

𝑔! 𝑡 = 𝑔!"! 𝑡  - 𝑔! 𝑡 ; where quantity 

𝑔!"! 𝑡  is the total gene concentration which is constant in time t, and given 

by: 𝑔!"! 𝑡  = 𝑔! 𝑡!  + 𝑔! 𝑡! ; where 𝑔! 𝑡!  and 𝑔! 𝑡! ; are the initial conditions 

for 𝑔!(𝑡)  and 𝑔!(𝑡), imposed at time 𝑡!=0 

3. Use the solution for 𝑔!(𝑡) (tabulated and interpolated) and the same formula, Eq. 

(7), to solve the ODE for the RNA concentration, 𝑔!(𝑡) 
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4. Use the solution for  𝑔!(𝑡) (tabulated and interpolated) same formula, Eq.(7), to 

solve the ODE for the protein concentration,  𝑔!(𝑡). 

5. The Gauss-Legendre (GL) quadrature method[71] approximates the integral for a 

function  𝑓 𝑡  with t ∈[a, b] in terms of GL weights (𝑤!
!,! ), GL roots (𝑡!

(!,!)), 

for a given number of integration points, NG ,  with k∈{1,2,…, NG} as follows:  

𝐼! = 𝑓 𝑡 ≈!
! 𝑤!

!,! 𝑓(𝑡!
(!,!))!!

!!!                                                                                                                             (9)  

In this paper, we used NG =32 points to compute each 𝐽 𝑡  for the t-grid used in 

Eq.(8) and NG =6 points in between each of these 32 t-grid points to compute 

𝐽 𝑡′  for the  t’-grid used in Eq. (8). The algorithm used to compute the GL 

weights and roots is previously described[72]. 

 

4.2.5 REGULATORY NETWORK WITH CSP-1 (NCU00045) AS A REPRESSOR:  

Fitting of the five distinct models in Figure (4.11) by MCMC using the ensemble method 

with the numerical exact solution was replicated twenty times for a total of 100 MCMC 

simulations.  As can be seen in Figure (4.11) the χ2 distributions are approximately 

normal, which implies that the mean of each of the χ2 distributions (χ2
ave) is going to be 

normal.  We performed a one-way analysis of variance on the average χ2
ave with the data 

in Table (4.1). 

A one-way analysis of variance was performed on the average chi-squared values 

in Table (4.1)[73].  The analysis of variance is reported in Table (4.2).  There is a 

significant difference at less than 0.0001 level in the average chi-squared values in Table 

(4.1). We then used the highly conservative Scheffe multiple comparison test to conclude 



 

78 
 

that only the ensembles with all activators and m=1 was significantly worse than the 

ensemble with a repressor (m=4) and 4 activators at the 0.05 level[73].  The remaining 

four model ensembles (other than the ensemble with all activators and m = 1) could not 

be distinguished from the latter model ensemble with a repressor (m =1) and 4 activators 

(m=4).  There is too much overlap in the distributions of the chi-squared statistics across 

the respective ensembles to distinguish them as reported in the body of this work and 

Figure (4.11). 

Table 4.1. Average χ2ave in 20 replicates of each of 5 model ensembles with CSP-1 as 
activator or repressor and varying Hill coefficients.  Models tend to perform 
progressively worse from left to right. In the second and third columns the CSP-1 protein 
is hypothesized to be a repressor with Hill coefficient for the repressor being 2 or 4 while 
the remaining regulators are hypothesized to be activators.  In succeeding columns all 
regulators are hypothesized to be activators with varying Hill coefficients.  

 
 
 
 

Model  
(Replicate) 

Repressor(m=4) 
and 4 
activators(m=4) 

Repressor(m=2)
and 4 
activators(m=4) 

All activators 
(m = 4) 

All activators 
(m = 2) 

All activators (m 
= 1) 

1 65969 66134 65513 66141 68527 
2 64729 64525 64317 64897 67155 
3 65437 65779 66185 66883 69246 
4 63095 63260 63694 64190 66787 
5 63273 63457 63706 64251 66702 
6 66287 65673 65774 66356 68758 
7 65168 65330 65946 66515 69026 
8 67354 66783 65820 66426 68857 
9 65032 65263 66122 66640 68944 
10 63606 63875 64065 64974 67863 
11 65025 65222 66124 66631 69180 
12 65078 65235 66085 66775 69109 
13 62969 63317 63438 64526 66478 
14 64868 65042 66077 66481 68803 
15 63541 63610 66077 64792 67042 
16 63832 64065 64849 65101 67635 
17 63146 63323 63473 64114 66530 
18 75717 75282 68817 69517 72172 
19 66710 71261 69293 69351 72234 
20 66879 66713 67618 68453 71100 
Average 65386 65657 65650 66151 68607 
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Table 4.2 One-way analysis of variance on average χ2
ave  in Table (4.1) across 5 model 

ensembles of regulation of a circadian network.  The 5 model ensembles are listed in 
Table (3.1).  

 
 
Table 4.3 Primer pairs for target genes (NCU00685, NCU09843, NCU00476, 
NCU04166, and NCU08903) and endogenous controls (NCU05995 and rDNA). 

 
 
4.2.6 REAL-TIME QUANTITATIVE POLYMERASE CHAIN REACTION (RT-

QPCR) OF REGULATOR TARGETS FOR CIRCADIAN RHYTHM TABLE 

(4.5): 

Knockout strains were obtained for NCU01640 and NCU06108[74] and crossed to a bd 

strain (Fungal Genetics Stock Center Strain 1858 or 1859, respectively) to generate the 

double mutants, bd, NCU01640KO and bd, NCU06108KO. Each of these double mutants 

were assayed for circadian rhythms in the 5 target genes in Table (4.5), using ubiquitin 

and rDNA as controls over a 48 h window.  Replicate cultures of each strain were grown 

in liquid culture and synchronized by an average of 26 h of light (7- micromoles per Liter 

per second per meter squared) and then transferred to the dark to assay circadian rhythms 

Source of Variation Degrees of Freedom Sum Of Squares Mean Squares F 
Between Models 4 140351655.14 35087913.79 7.22 
Between replicates within Models 95 461653940.25 4859515.16  
Corrected Total 99 602005595.39   

Locus  Primer ID Strand Primer Sequence 
NCU00685 685.PB.3i-F Forward 5'- ACG ACG TTG AGC TGC ATT T -3' 
 685.PB.3i-R Reverse 5'- TTT GTA AAC GGT CGT CGC AG -3' 
NCU09843 9843-3F Forward 5'- AGA TGG CGA TTA TCA CGA ATG G -3' 
 9843-3R Reverse 5'- TTC CAT TCC CTT TCC CTT CC -3' 
NCU00476 476-3F Forward 5'- CTA CAA AGT CCC TAC CCA TCT G -3' 
 476-3R Reverse 5'- GTA ATC TCA TCC TCG CCC TG -3' 
NCU04166 4166-3F Forward 5'- CCT GCG AGT CGA TGA GTT G -3' 
 4166-R Reverse 5'- CAA TGA GAG CGT TGA TGG TG -3' 
NCU08903 8903-3F Forward 5'- GTC ACC GCA TCA CTC TCC -3' 
 8903-3R Reverse 5'- ACA AAA GAC GGG TGG CAG -3' 
NCU05995 
(polyubiquitin) ub-1F Forward 5'- CCG TGG CGG CCA GTA A -3' 
 ub-1R Reverse 5'- TCT GAT TCT TGA TGA CGA GCA AG -3' 
 (rDNA) rD-F Forward 5'-TCA AGC CGA TGG AAG TTT GAG-3' 
 rD-R Reverse 5'-TGC GGC CCA GAA CAT CTA A-3' 



 

80 
 

of target genes, a cycle 1 experiment[5].  In these experiments the total growth time (50 

h) of 13 replicate cultures was kept constant, and one flask was harvested for cells every 

four hours over the 48 h observation period in the dark (D/D). 

 

 Total RNA was harvested from the 13 cultures of each strain, each at a different 

time point using a Spectrum Plant Total RNA kit (Sigma-Aldrich, St. Louis, MO, USA, 

Inc.). All RNA samples were then treated with DNase (# EN0525, Thermo Scientific, 

Pittsburgh PA, USA) according to manufacturer’s protocol (but omitting the supplied 

buffer). The quality of the 26 RNA samples was assessed using an Agilent Technologies 

RNA 6000 Nano LabChip (#5067-1511, Agilent Technologies, Inc., Santa Clara, CA, 

USA) on an Agilent Technologies, Inc. 2100 Bioanalyzer , yielding RNA Integrity 

Numbers (RIN) between 6.0-6.3.  cDNA synthesis was carried out with a Superscript III 

Ist Strand cDNA Synthesis Kit (Invitrogen, Inc., Grand Island, NY USA 18080-051). 

RT-qPCR was carried out on an ABI-Prism 7500 with a Brilliant III Ultra-fast SYBR 

Green qPCR Master Mix(#600882, Agilent Technologies, Inc.) or Brilliant II SYBR 

Green qPCR Master Mix(#600828,  Agilent Technologies, Inc.). 

 

 For each target gene in Table (4.5) three primer pairs were tried and one selected 

based on amplification plots and disassociation curves Table (4.3).  Two genes were 

considered for endogenous controls, 18S rDNA and ubiquitin. Both endogenous controls 

had expression levels that were aperiodic, but ubiquitin had RNA levels more comparable 

to those being measured in the targets and was selected as the endogenous control.  The 

reference time point was 48 h for relative change in expression. All selected primers had 
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a single amplification product from the disassociation curves, but the peaks for the 

NCU04166 and ubiquitin primers in the disassociation curve were broader than the rest.  

The five primers selected for the target genes and endogenous controls were validated by 

5, 4-fold dilution series with correlations of at least 0.97[75]. All reactions were 

compared to a control reaction only missing reverse transcriptase.  These -RT controls 

differed by ~2-5 cycles from the start of amplification from those with reverse 

transcriptase. No-template controls tended to amplify after cycle 34, if at all, suggesting 

minimal random contamination during qPCR plate setup.  Relative gene expression (RQ) 

was quantified by the ΔΔCT method, and the average threshold cycle for each time point 

was normalized to ubiquitin at 48h for each strain.  Periods of RQ series were estimated 

by fitting a sinusoid by the method of maximum likelihood as described previously[76]. 

The parameters, namely y-intercept, amplitude, period, and phase, were computed by 

maximum likelihood scoring initialized by a grid search. 

 

4.3 RESULTS AND DISCUSSION 

Comparison to Profiling Experiments:  The ARK solver on GPUs to implement 

MCMC methods was sufficient to describe and explain published profiling data on 2,418 

putative ccgs as it is shown in Figure (4.7) and Figure (4.8). Five model ensembles were 

identified by varying the Hill coefficients of the transcriptional regulator in Eq. (5), with 

m=4, 2, or 1 and by varying the NCU00045 encoded regulator from an activator to a 

repressor as shown below in Eqs. (10-12). The ensembles of the described genetic 

networks predicted the mRNA levels for most of the genes, and as is shown Figure (4.7) 

and Figure (4.8), the overall fit of the RNA profiling data on 2,418 genes was consistent 
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with ensemble predictions. The average contribution of a data point to the χ2 was 2.05 

(and 2.02 with CSP-1 as a repressor, which was a little larger than the working model 

(1.54)[5].  

Figure 4.7: The network of 2,418 putative clock-controlled genes fits to experimental data 
using the ensemble method very well. The predictions (orange and purple) and the 
observation data (black dots) are shown in 3 dimensions. The modules in Figure (4.3) are 
ordered based on the similarity of their profiles. 
 

 

Figure 4.8: An ensemble of genetic networks predicts the mRNA levels overall of 2,418 
putative clock-controlled genes (model used here where m=4 and all of regulators are 
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activators). The predictions fit the experimental data within a standard error. The 
observed data computed using =ln(y!,!

!"#.)-< ψ!"> vs. time and the predictions computed 

using <ln F!,! t, θ, µμ >vs. time. The figures predictions for the other models are very 
close to this figure. 
 
4.3.1 DISCOVERING THE REGULATORY NETWORK OF THE PUTATITVE 

CLOCK-CONTROLLED GENES. 

A variety of biological functions for the putative ccgs were identified previously[5].  

By fitting the profiling data to the supernet in Eq. (5) and given µk (the regulator binding 

strengths), k=0,…,5 we have been able to assign target genes and their functions to the 

corresponding regulators, WCC, ADV-1 (NCU07392), RPN-4 (NCU01640) in 

transcriptional control,  product of NCU06108 in transcriptional control,  repressor CSP-

1 (NCU00045)[77], and product of NCU07155  (in regulation of nitrogen and sulfur 

metabolism).  Each regulator has a corresponding binding strength (µk) to a target gene. 

For example, the binding strengths, µ0 and µ5, correspond to WCC and NCU07155, 

respectively. Having the ensemble average of binding strengths (µ’s) for the 2,418 

targets, the highest µ average for each gene indicated the candidate-binding regulator for 

that gene or slave module.  In Figure (4.9), the number of genes assigned to each 

regulator is displayed. 

As shown in the video, the supernet reconstruction of the network via MCMC 

converges quite quickly to the assignment of putative ccgs to regulators, i.e. to the 

estimates of the binding strengths. In the video the dynamic assignment of putative ccgs 

to regulators is shown during the equilibration stage of MCMC over the first 250 sweeps 

(a sweep being a visit on average to each parameter in the model during MCMC).  The 

assignment(s) of 2,418 – 6 putative ccgs to 6 regulators is made in less than 250 sweeps.   
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Figure 4.9: Putative ccgs are assigned to each of the six regulators (WCC, NCU07392, 
NCU01640, NCU06108, NCU00045, NCU07155). The highest µ average over the 
40,000 accumulation sweeps of the 2,418 genes indicates the candidate-binding regulator 
for that gene.  

 

We tested whether or not the genetic network hierarchy could be simplified in Table 

(4.4) and asked whether or not the regulation could simply be by WCC or simplified by 

dropping one of the 5 other regulators.  At least one activator (namely rpn-4 

(NCU01640)) needed to be retained, and the data strongly supported at least one other 

transcription factor under WCC control in the hierarchy in Figure (4.1) and Figure (4.2). 
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Figure 4.10: A genetic network consisting of 2,418 slave modules and a master module 
for the clock mechanism with repressor (NCU00045).  There are 4 positive activators 
(NCU07392, NCU01640, NCU06108, NCU07155) and a repressor (NCU00045) under 
control of WCC, to be identified by the ensemble simulation[4, 66] . 
 
4.3.2 REGULATORY NETWORK WITH CSP-1(NCU00045) AS A REPRESSOR.  

Sancar et al.[77] suggested that CSP-1 may be a repressor as a opposed to an activator in 

Figure (4.10).  We tested this hypothesis.  Involving CSP-1 as a repressor instead of an 

activator implies changing Eqs. (1,2 and 5) respectively to the following, with k=4 being 

the CSP-1 protein: 

𝑑𝑔!
𝑑𝑡 = 𝐵!𝑔! − 𝐴!𝑔!𝑆 𝑡 + 

𝐴!𝑔! t     µμ!
𝑟!
𝑟!

!
Reg! t !                                                                                                                                                                                              (10) 

𝑑𝑔!
𝑑𝑡 = 𝐴!𝑔!𝑆 𝑡 − 

𝐵!𝑔! −   𝐴!𝑔! 𝑡     µμ!    
𝑟!
𝑟!

!
  Reg! t !                                                                                                                                                             11  

S(t)= µμ! Reg! t ! + 𝑟!!
!
!!

!
µμ! Reg! t !!

!!!,!!!                                       (12);  
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For this model, the weights µk are constrained only by µk ≥ 0  and   !
!!!,!!! µk=1, while 

µ4≥ 0 has no upper bound, as described in Materials and Methods.  Figure (4.10) shows 

that the supernet in Figure (4.1) can be changed to involve the CSP-1 as a repressor 

instead of an activator while Figure (4.11) shows χ2 values for a model ensemble with 

different Hill coefficients value and with CSP-1 as an activator or repressor. 

 

Figure 4.11: The best model ensemble (histogram of χ2 values most shifted to the left) 
has Hill coefficient m = 4 for the activators and m=4 for the repressor CSP-1. The 
histograms of χ2 values are computed for model ensembles with different Hill 
coefficients and with/without a repressor using Eqs.(5,10,11) (m=1,2,and 4). 
 

From Figure (4.11), we observe that for the three model ensembles with activators only 

the ensemble without cooperativity (m = 1) has χ2 values substantially larger (and worse) 

than those of the two ensembles with cooperativities, m=4 and 2. The χ2 values of the 

model ensembles, with cooperativity m=4 and 2, overlapped each other, and the best fits 

were achieved with Hill coefficients of m = 4 as shown in Figure (4.7) and Figure (4.8). 

These results were consistent with earlier results[4] in that the model ensembles 

overlapped with cooperativities of 2 and 4 and in that the χ2 values were lower with m=4. 
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However, treating CSP-1 (from NCU00045) as a repressor (see below) with Hill 

coefficient of 2 or 4 yielded lower χ2-values but similar fit to the case with 5 activators 

each with Hill coefficient of 4 (WCC, NCU07392, NCU01640, NCU06108, NCU07155). 

Nonetheless, by replicating the ensemble fitting twenty times for each model, with a 

different random MC initial for ensemble model parameter variables at the start of each 

replica simulation  (for a total of 100 MCMC runs), we find overlapping χ2 distributions 

as in Figure (4.11) for all of the models except for the activator model ensemble with 

m=1 (red) in Figure (4.11) (See Materials and Methods).  We conclude one model 

ensemble can be rejected, the models (in red) involving all activators and a Hill 

coefficient of m=1. 

 

4.3.3 DISCOVERING A BROAD ARRAY OF FUNCTIONS FOR CLOCK-

CONTROLLED GENES. 

Putative ccgs found from the averages of the binding strengths (µ’s) in the model 

ensemble and shown in Figure (4.9) were classified by their pathways and functions 

using KEGG Mapper software[78]. Figure (4.12) shows the number of annotated genes 

regulated by a particular regulator and participating in a particular pathway or function. 

In Figure (4.13) we show the binding strength of a particular regulator associated with a 

particular group of genes.  There are distinct profiles for the regulators, and the binding 

strengths are quite high for at least one regulator to each target. An additional test was 

carried using the 862 genes that were inferred here to be regulated by WCC by asking 

how many genes were identified out of 292 genes[4, 5][4, 5][4, 5] [4, 5][6, 9] that are 

known to be regulated by WCC. The test showed that there were 153 clock-controlled 
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genes out of the 292 genes identified correctly while one sixth of the 292=~ 48 genes are 

expected to be regulated by each regulator including WCC if target genes were assigned 

at random to regulators. 

Table 4.4.  At least one regulator rpn-4 (NCU01640) cannot be excluded from the 
hierarchy in Figure (4.1) and Figure (4.2) without a highly significant loss of goodness of 
fit. The χ2

WCC is for the model in Figure (4.3), in which WCC is the only regulator 
hypothesized. Average  χ!"#$%!  is for a model in which the named transcription factor in 
column 1 is removed. The χ2

ALL is for a model which there are 4 activators and 1 
repressor, namely in Figure (4.10). All starred (*)χ2 differences are significant at less than 
the 0.001 level. 

 

 

 

 

 

Excluding 
Regulator 

Average  χ!""
!  Average  χ!"#$%!  Average 

  χ 2
ALL 

χ 2
ALL -

χ!"#$%!  
df 

NCU07392 68659.9 63984.7 63542.6 442.1 2418 
NCU01640 68659.9 66621.3 63542.6 3078.7* 2418 
NCU06108 68659.9 64209.5 63542.6 666.9 2418 
NCU00045 68659.9 64469.0 63542.6 926.4 2418 
NCU07155 68659.9 64571.5 63542.6 1028.9 2418 
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Figure 4.12: A regulatory genetic network for the six regulators (WCC, NCU07392, 
NCU01640, NCU06108, NCU00045, NCU07155) and the putative clock-controlled 
genes. The number on the arrow indicates how many annotated genes that are regulated 
by a particular regulator and participating in a particular pathway or function (small green 
boxes). 
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Figure 4.13: Regulator binding strength and target gene functions. The strength of 
regulator binding is computed by asking: what is the average of µ’s across the 40,000 
accumulation sweeps that is assigned to a group of genes that have the same function or 
pathway? 
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Table 4.5 :Averages of binding strengths (µ’s) (over 40,000 sweeps) of each of 6 
transcription factors to 5 targets in ribosome biogenesis in Eq. (5) with ± standard errors. 
Numbers in green highlight predicted targets of NUC01640 and NCU06108 cognate 
proteins.  

 

4.3.4 CRITICAL TEST OF GENETIC NETWORK PREDICTIONS USING RT-QPCR  

As a critical test of the network in Figure (4.12), we focused on five annotated genes in 

ribosome biogenesis[5] whose binding strengths suggested regulation by the two of the 

six transcription factors, namely NCU01640 (rpn-4) or NCU06108. Genes NCU00685 

(or ck-1a) and NCU09843 are predicted targets of RPN-4, and NCU00476, NCU04166, 

and NCU08903 are predicted targets of the cognate protein of NCU06108 (as seen from  

the highlighted binding strengths in green in Table (4.5)).  The gene NCU00685 also 

appears to be a target of WCC.  All circadian genes had periods between 16 and 30 

h[5][9] before introducing a knockout. The prediction was that knockouts of rpn-4 or 

NCU06108 should alter expression of all five genes, although the target gene NCU00685 

should retain some rhythm.  The binding strengths of the transcription factors to the five 

targets are summarized in Table (4.5), as estimated by the ensemble method.   

The casein-kinase-1a (ck-1a or NCU00685) target gene is a ccg, directly regulated by 

WCC, as determined previously[5].  Hence, a knockout of NCU01640 should not prevent 

ck-1a from being circadian. Indeed, its circadian rhythm in Figure (4.14) is estimated 

here at 25 ± 2 h by RT-qPCR. In contrast, a gene free from circadian control should have 

 
Regulator 

Target Genes 
NCU00685 NCU09843 NCU00476 NCU04166 NCU08903 

WCC 0.027±0.0028 0.061±0.0043 0.034±0.0029 0.032±0.0030 0.047±0.0036 
NCU07392 0.105±0.0046 0.109±0.0054 0.100±0.0046 0.105±0.0049 0.098±0.0050 
NCU01640 0.572±0.0077 0.509±0.0069 0.081±0.0042 0.076±0.0043 0.098±0.0040 
NCU06108 0.110±0.0049 0.107±0.0053 0.57±0.0074 0.574±0.0080 0.574±0.0074 
NCU00045 0.094±0.0054 0.119±0.0054 0.101±0.0047 0.105±0.0049 0.106±0.0049 
NCU07155 0.091±0.0044 0.095±0.0047 0.110±0.0046 0.108±0.0049 0.112±0.0053 
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an abnormally long ‘period’ when tested for periodicity, making it indistinguishable from 

a non-oscillating system. For example, rDNA levels followed a 48 h period here (over a 

48 h observation window) when ubiquitin was used as the internal control in RT-qPCR 

(see Materials and Methods).  Accordingly, the periods of NCU04166 and NCU08903 

shown in Figure (4.14) were 35 ± 4 h and 39 ± 2 h, consistent with loss of rhythm; the 

peaks for these two genes were far apart in Figure (4.14). The remaining two genes, 

NCU09843 and NCU00476, were found to have periods of 22 ± 2 and 20 ± 2 h consistent 

with those observed in race tubes to assay circadian rhythms[5], but a periodicity test 

based on amplitude was not significant for NCU00476 (P=0.0519)[76]. Results of the 

same periodicity test for the remaining 4 targets were significant at the 0.05 level, 

although the periodicity test based on amplitude for NCU09843 was barely significant 

(P=0.0355).  Retention of a circadian rhythm in NCU09843 could be due to another 

transcription factor (e.g., WCC) transmitting the circadian signal (see Table (4.5)), mis-

assignment of the target to its predicted transcription factor by our algorithm, or other 

regulatory mechanisms at work on circadian genes.  Interestingly, the binding strength of 

WCC to NCU09843 is stronger than to the other targets in Table (4.5). 
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Figure 4.14: Change in Relative expression (RQ) of 4 of 5 target genes involved in 
ribosome biogenesis were correctly predicted as circadian or not circadian by the network 
model under knockout of NCU001640 (blue in Figure (4.10)) and NCU06108 (green in 
Figure (4.10)).  RQ was determined by RT-qPCR (See Materials and Methods) using 
ubiquitin as endogenous control. 
 
 
4.4 CONCLUSION 

New algorithms for solving large systems of ODEs in parallel on the general-purpose 

graphical processing units (GPUs) allowed us to identify the dynamics of a genome-scale 

genetic network of unknown regulatory topology Figure (4.1) and Figure (4.2) using a 

supernet that consisted of 2,418 putative ccgs as shown in Figure (4.3). In over 40 years 

of clock biology, a set of 295 genes that are circadian, light-responsive, and under WCC-

control have been identified and span a broad array of functions[5, 79]. To date these are 

likely to be clock-controlled genes. In this paper, we successfully fitted the dynamics and 

the rhythms of all 2,418 genes that are circadian in Figure (4.7) by ensemble methods 

implemented on a GPU and assigned each of them a place in a larger regulatory 

hierarchy. In addition to that, the simulation identified these genes’ regulators and 
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assigned putative functions in Figure (4.12).  The final best network identified involved a 

hierarchical regulatory network in Figure (4.10) with CSP-1 acting as a repressor.  In this 

network rpn-4 (NCU01640) and NCU06108 were assigned to regulate ribosome 

biogenesis in Figure (4.12).  This connection between the clock and ribosome biogenesis 

was previously reported[5] and has been recently confirmed in mouse[80].  This 

connection of the clock to ribosome biogenesis raises the possibility that there are other 

regulatory mechanisms at work beyond transcriptional control[81] in Figure (4.10). 

 

Strengths of Supernet Method.  One of the features of the model in Figure (4.1) was the 

independent regulation of the target gene modules.  Some of the target genes are likely to 

interact with the clock module in Figure (4.3) or with each other.  The supernet method 

can be generalized by replacing the regulators with other kinds of regulatory modules 

involving post-transcriptional regulation mechanisms.  One example of alternative 

regulatory modules would be the RNA operon[82].  Such alternative regulatory modules 

have the effect of linking together certain clusters of target genes by new kinds of post-

transcriptional regulators and hence weakening the assumption of independence in target 

gene modules.  This approach is completely feasible to implement on GPUs. 

 

 Another strength of ensemble methods in systems biology is data integration. 

Ideker et al. [11] integrated RNA profiling data as used here with protein profiling data.  

For example, under materials and methods we simplified the reconstruction problem by 

assuming the initial concentration of the regulatory proteins was a time average of the 

regulatory protein concentration because this is the kind of data most people have.  This 
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assumption allowed us to calculate the trajectory of each regulatory protein. If one were 

to have the time and resources, it would be useful to carry out Westerns on all of the 

regulator proteins in Figure (4.10) to determine their protein profiles.  We predict this 

will allow us to differentiate the ensemble hypotheses in Figure (4.10) with protein 

profiling data on the regulators.  

 

 A third strength of the Supernet Method is the possibility of generalization to 

multiple roles for regulators.  In equations (10)-(12) we assumed each regulator had one 

of two roles as activator or repressor.  In the same way that there could be different 

regulatory modules, there could also be a partition of the role of one regulator as activator 

or repressor depending on the targets.  The supernet method allows us the possibility of 

generalizing equations (10)-(12) and to test a regulatory structure with multiple roles for 

each regulator, depending on the target module.  

 

 

 

 

 

 

 

 

 

 



 

96 
 

 

 

CHAPTER 5 

5 CONCLUSION AND FUTURE WORK 

We discovered and proposed new parallel solvers for large systems of ordinary 

differential equations on the general purpose graphical processing unit that help to 

discover and solve an important biological problem of genetic network identification with 

special reference to Neurospora crassa’s biological clock, including: (A) Galerkin finite 

element method using piecewise hat functions explained in chapter 2, (B) two parallel 

algorithms for the Adaptive Runge Kutta method explained in chapter 3 and 4 and (C) 

and Gauss-Legendre quadrature method explained in chapter 4. 

 

These solvers gave us the ability to discover a broad array of functions for clock-

controlled genes as well as the gene regulators for those genes [10]as it is shown Figure 

(4.12) within few days instead of years using a GPGPU. We were able to infer the 

function of each regulator in Figure (4.12).  We were able to discover how the clock-

controlled genes were organized into a regulatory network.  We found for the first time 

an explicit regulatory connection between the clock and ribosome biogenesis, which can 

now be tested.  Each of these advancements were made possible by a new computational 

approach using GPUs. 

 

Moreover, we proposed various statistical, mathematical and numerical methods 

throughout this dissertation. For examples, we showed for the first time how you could 
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use the Newton method for solving systems of algebraic equations along with the 

Galerkin finite element method; we showed how to use Monte Carlo metropolis and 

ensemble methods for solving large genetic network consisting of large systems of ODEs 

using the heterogeneity of the CPU and the GPU; we described how to 1) use Müller-Box 

updates for unit conversion factor variables, 2) obtain the regulator protein 

concentrations, 3) use Metropolis Monte Carlo updating algorithm for θ-variable (initial 

concentrations and parameters ) and µ-variables(regulator binding strengths), 4) use for 

the first time a statistical mathematical model for six active regulators that regulate 2413 

genes and the change on that model when one of those active regulators becomes a 

repressor, and we showed the procedure of the real-time quantitative polymerase chain 

reaction (RT-qPCR) of regulator targets for circadian rhythm. 

 

In the future, we wish to improve the method of Galerkin by applying alternative 

numerical methods such as Quasi Newton method, supported wavelets or other types of 

finite element basis functions, such as Hermite finite elements and compare the accuracy 

and the speed of these alternative numerical methods with each other and with adaptive 

Runge Kutta method. Moreover, we need to implement the Galerkin method on the GPU 

and try to make it the fastest and the most accurate ODEs solver. 

 

In addition to that we need to compare the impact of the three proposed ODE solvers on 

the genetic network solution including the regulators’ genes assignment and the data 

fitting. We need to show the difference in the results by involving CSP-1 (NCU00045) as 

an active regulator and as a repressor. By the same token, we will apply Wang-Landau 
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algorithm as an alternative to the Metropolis Algorithm and see which will fit the data 

better and have the results over average of hundreds of best simulations instead of one 

simulation.  

Finally, the supernet method can be generalized by replacing the regulators with other 

kinds of regulatory modules involving post-transcriptional regulation mechanisms.  One 

example of alternative regulatory modules would be the RNA operon[82].  Such 

alternative regulatory modules have the effect of linking together certain clusters of target 

genes by new kinds of post-transcriptional regulators and hence weakening the 

assumption of independence in target gene modules.  This approach is completely 

feasible to implement on GPUs. 
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