

DISCOVERING A REGULATORY NETWORK TOPOLOGY BY MARKOV CHAIN

MONTE-CARLO ON GPGPUS WITH SPECIAL REFERENCE TO THE

BIOLOGICAL CLOCK OF NEUROSPORA CRASSA

by

AHMAD MANSOUR AL-OMARI

 (Under the Direction of Jonathan Arnold)

ABSTRACT

 Bioinformatics in its interdisciplinary aspects comprises sciences of computers,

medicine, biology, mathematics, and statistics. In essence, Bioinformatics uses computers

to find causes of diseases and medical solutions. This dissertation addresses all of these

sciences to solve one of the most important problems in system biology: solving large

systems of ordinary differential equations (ODEs) describing how genetic networks

behave using Markov Chain Monte-Carlo (MCMC) and parallel algorithms on General

Purpose Graphical Processing Units (GPGPU). We used in this research Neurospora

crassa, whish is a model organism that is widely explored and studied[1-5], due to its

simplicity and its relatedness to the human beings. We predicted and understood the

dynamics and the products of all of 2,418 genes that are believed to be under the control

of the biological clock in Neurospora crassa. A genetic network that explains

mechanistically how the biological clock functions in the filamentous fungus Neurospora

crassa has been built and validated against over 31,000 data points from microarray

experiments by harnessing the power of the GPGPU and exploiting the hierarchical

structure of that genetic network. Various mathematical models, statistical models, and

numerical algorithms, such as Galerkin’s method, in conjunction with Finite Element

Method (FEM) piecewise hat functions, Adaptive Runge Kutta method (ARK), and

Gauss-Legendre quadrature method are proposed and used on the GPU to accomplish the

purpose of this thesis.

INDEX WORDS: Bioinformatics, Biological Clock, Neurospora crassa, Systems

Biology, Genetic Network, Adaptive Runge Kutta, Ordinary differential equations

Graphical Processing Unit, GPGPU, Galarkin, Finite Element Method, Piecewise

Elements, Parallelization Strategies, supernet

DISCOVERING A REGULATORY NETWORK TOPOLOGY BY MARKOV CHAIN

MONTE-CARLO ON GPGPUS WITH SPECIAL REFERENCE TO THE

BIOLOGICAL CLOCK OF NEUROSPORA CRASSA

by

AHMAD MANSOUR AL-OMARI

B.Sc., Hijjawi for Engineering Tech. College, Yarmouk University, Jordan, 2004

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2015

© 2015

Ahmad Mansour Al-Omari

All Rights Reserved

DISCOVERING A REGULATORY NETWORK TOPOLOGY BY MARKOV CHAIN

MONTE-CARLO ON GPGPUS WITH SPECIAL REFERENCE TO THE

BIOLOGICAL CLOCK OF NEUROSPORA CRASSA

by

AHMAD MANSOUR AL-OMARI

 Major Professor: Jonathan Arnold
 Committee: Heinz-Bernd Schüttler
 Thiab Taha
 Suchendra Bhandarkar

Electronic Version Approved:

Julie Coffield
Interim Dean of the Graduate School
The University of Georgia
May 2015

iv

DEDICATION

 This dissertation is lovingly dedicated first and foremost to my beloved respective

parents Mansour and Zakiah who have been my constant source of inspiration, love, and

encouragement, second to my beloved wife Reem who has given me the drive and

discipline to tackle any task with enthusiasm and determination, third to my beloved

daughter Rand and son Hashim who are my future, fourth to all of my respective sisters

and brothers, fifth to my lovely back-home country Jordan, and finally to my great

universities The University of Georgia and Yarmouk University. Without every single

one of them, this project would not have been made possible. May GOD bless amply all

of them.

v

ACKNOWLEDGEMENTS

 First and foremost, I would like to thank THE ALMIGHTY GOD (ALLAH).

Who gave me the gift of life, health, this opportunity to pursue my study of Ph.D. and

gain much more of knowledge. Then my special gratitude and grateful goes to my

advisor Prof. Jonathan Arnold who advises me to stay focused, structured and

motivated. Without his patience, comments, and reviewing after me, I would not reach

my goal. I found my inspiration in his words of encouragement. Thanks so much. I

would like to thank greatly my committee members including; Prof. Heinz-Bernd

Schüttler for not getting tired of my intensive and extensive questions and taking a long

time to teach and correct me where and when I was short. Thanks so much. Prof. Thiab

Taha, thank you for his valuable advices by showing me always the best ways that

helped me to achieve my goals in addition to involving me in different workshops and

lectures to strengthen my research knowledge. Thanks so much. Prof. Suchendra

Bhandarkar for his valuable advices and comments during my study. Thanks so much.

Finally, I would like to thank the CUDA Research and Teaching Centers in the Computer

Science Department at UGA for allowing me to carryout my calculations using GPUs.

UGA, through the efforts of Prof. Taha, was selected by Nvidia as a 2011 CUDA

Teaching center and in 2014-2015 as a CUDA Research Center and many thanks to the

people in the Georgia Advanced Computing Resource Center (GACRC) for providing the

needed help and equipment (GPGPUs), especially Prof. Shan-ho Tsai. May GOD bless

you all abundantly

vi

TABLE OF CONTENTS

1 INTRODUCTION AND LITERATURE REVIEW ... 1

2 SOLVING NONLINEAR SYSTEMS OF FIRST ORDER ORDINARY

DIFFERENTIAL EQUATIONS USING GALERKIN FINITE ELEMENT METHOD 5

2.1 INTRODUCTION .. 7

2.2 NUMERICAL METHODS .. 9

2.3 RESULTS AND DISCUSSIONS .. 16

2.4 CONCLUSION .. 31

2.5 ACKNOWLEDGEMENTS .. 32

3 SOLVING LARGE NONLINEAR SYSTEMS OF FIRST-ORDER ORDINARY

DIFFERENTIAL EQUATIONS WITH HIERARCHICAL STRUCTURE USING MULTI-

GPGPUS AND AN ADAPTIVE RUNGE KUTTA ODE SOLVER .. 33

3.1 INTRODUCTION .. 35

3.2 METHODS ... 39

3.3 RESULTS ... 44

3.4 DISCUSSION ... 49

3.5 CONCLUSION .. 52

3.6 ACKNOWLEDGEMENT .. 52

4 D ISCOVERING REGULATORY NETWORK TOPOLOGIES USING ENSEMBLE

METHODS ON GPGPUS WITH SPECIAL REFERENCE TO THE BIOLOGICAL

CLOCK OF NEUROSPORA CRASSA ... 53

4.1 INTRODUCTION .. 55

vii

4.2 MATERIALS AND METHODS .. 66

4.3 RESULTS AND DISCUSSION .. 81

4.4 CONCLUSION ... 93

5 CONCLUSION AND FUTURE WORK ... 96

 REFERENCES…………………………………...………………………..…………..99

 APPENDIX A…………………………………………..………………………………….110

viii

LIST OF TABLES

Table 2.1: (Initial Conditions at t=0) .. 18

Table 2.2: (Parameters Values) ... 18

Table 2.3: Errors in the solution over the time period [0 10] are shown as a function of

the number of hat functions for the single ODE (example 1). The maximum relative

errors have been calculated using different numbers of hat functions and the

solutions compared with the ARK method (with absolute and relative errors for

ARK equal to 1x10-­‐!") ... 18

Table 2.4: Errors in the solution over the time period [0 10] are shown as a function of

number of hat functions for the toggle switch (example 2). The max local and global

relative errors have been calculated using different number of hat functions and the

solutions compared with the ARK method (with absolute and relative errors for

ARK equal to 1x10-­‐!") ... 21

Table 2.5: Maximum local relative errors of the Galerkin solution over the time period [0

200] for varied numbers of hat functions for the clock model (example 3). The

maximum local and global relative errors have been calculated using different

numbers of hat functions and the solutions, compared with the ARK method (with

absolute and relative errors for ARK equal to1x10-­‐!") .. 23

Table 3.1: Initial conditions at t=0 and parameters values ... 44

Table 3.2: A comparison of the simulation of a large clock genetic network on Kepler K-

20x GPUs vs. a Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@ 3.10GHz]

ix

Extreme Edition Processor with 2436 clock-controlled genes providing 2436 slave

modules to the system of ODEs. The time required for solving the whole 2436 slave

modules once using –O2 and –O3 optimization flags on the CPU equals to 64090 ms

while without optimization flags equals to 159150 ms .. 46

Table 4.1. Average χ2ave in 20 replicates of each of 5 model ensembles with CSP-1 as

activator or repressor and varying Hill coefficients. Models tend to perform

progressively worse from left to right. In the second and third columns the CSP-1

protein is hypothesized to be a repressor with Hill coefficient for the repressor being

2 or 4 while the remaining regulators are hypothesized to be activators. In

succeeding columns all regulators are hypothesized to be activators with varying

Hill coefficients. .. 78

Table 4.2 One-way analysis of variance on average χ2
ave in Table (4.1) across 5 model

ensembles of regulation of a circadian network. The 5 model ensembles are listed in

Table (3.1). .. 79

Table 4.3 Primer pairs for target genes (NCU00685, NCU09843, NCU00476,

NCU04166, and NCU08903) and endogenous controls (NCU05995 and rDNA). .. 79

Table 4.4. At least one regulator rpn-4 (NCU01640) cannot be excluded from the

hierarchy in Figure (4.1) and Figure (4.2) without a highly significant loss of

goodness of fit. The χ2
WCC is for the model in Figure (4.3), in which WCC is the

only regulator hypothesized. Average χModel2 is for a model in which the named

transcription factor in column 1 is removed. The χ2
ALL is for a model which there are

4 activators and 1 repressor, namely in Figure (4.10). All starred (*)χ2 differences

are significant at less than the 0.001 level. ... 88

x

Table 4.5 :Averages of binding strengths (µ’s) (over 40,000 sweeps) of each of 6

transcription factors to 5 targets in ribosome biogenesis in Eq. (5) with ± standard

errors. Numbers in green highlight predicted targets of NUC01640 and NCU06108

cognate proteins. ... 91

xi

LIST OF FIGUERS

Figure 2.1:Display of Several hat functions ... 9

Figure 2.2: The solutions for the single nonlinear ODE and the effect of averaging on the

numerical solution. .. 15

Figure 2.3: Maximum relative error (on a log scale) decreases linearly with the log of the

number of hat functions for the single nonlinear ODE compared with the exact

solution. Different numbers of hat functions (1x10!, 1x10!, 1x10!, 1x10!, 1x10!,

and 1x10!) over the solution interval [0 10] are used. ... 17

Figure 2.4: Solutions of the exact, Galerkin, and the ARK methods using 1x10! hat

functions over the time period [0 10] ODE .. 19

Figure 2.5: The solutions of the exact and Galerkin methods using relatively few number

of hat functions (50 hat functions) over time period [0 10] for the single nonlinear

ODE. Such a solution is sufficient for biological problems with acceptable accuracy

and high stability using few hat functions. ... 20

Figure 2.6: The maximum global relative error (on a log scale) among all of the species

(global error of two species) for ODEs of the genetic network of the toggle switch

decreases approximately linearly with the log of the number of hat functions. These

results are based on the comparison with the ARK method (with absolute and

relative errors for ARK are equal to 1x10-­‐!"). Different numbers of hat functions

xii

(1x10!, 1x10!, 1x10!, 1x10!, 1x10!, and 1x10!) over the solution interval [0 10]

are used. .. 21

Figure 2.7: The solutions of u(t) using the Galerkin method with 1x10! hat functions and

the ARK method over the time period [0 10] for the genetic network of the toggle

switch .. 23

Figure 2.8: The solutions of v(t) using the Galerkin method with 1x10! hat functions and

the ARK method over the time period [0 10] for the genetic network of the toggle

switch. ... 24

Figure 2.9: The maximum global relative error (on a log scale) among the whole species

(seven species) for ODEs of the genetic network of the biological clock of

Neurospora crassa decreases approximately linearly with the log of the number of

hat functions compared with the ARK method (with absolute and relative errors for

ARK equal to 1x10-­‐13). Different numbers of hat functions (2x10!, 1x10!, 1x10!,

1x10!, 1x10!, and 1x10!) over solution interval [0 200] are used. 24

Figure 2.10: The solution of f1(t) using the Galerkin and the ARK method using 1x103

hat functions over the time period [0 200] for the genetic network of the biological

clock of Neurospora crassa. .. 25

Figure 2.11: The solution of fr(t) using the Galerkin and the ARK methods using 1x10!

hat functions over the time period [0 200]for the genetic network of the biological

clock of Neurospora crassa ... 25

Figure 2.12: The solution of fp(t) using the Galerkin and the ARK methods using 1x103

hat functions over the time period [0 200] for the genetic network of the biological

clock of Neurospora crassa ... 26

xiii

Figure 2.13: The solution of w(t) using the Galerkin and the ARK methods using 1x103

hat functions over the time period [0 200] for the genetic network of the biological

clock of Neurospora crassa. .. 26

Figure 2.14: The solution of up(t) using the Galerkin and the ARK methods using 1x10!

hat functions over the time period [0 200] for the genetic network of the biological

clock of Neurospora crassa ... 27

Figure 2.15: The solution of ur1(t) using the Galerkin and the ARK methods using

1x10! hat functions over the time period [0 200] for the genetic network of the

biological clock of Neurospora crassa. ... 27

Figure 2.16: The solution of ur0(t) using the Galerkin and the ARK methods using

1x10! hat functions over the time period [0 200] for the genetic network of the

biological clock of Neurospora crassa. ... 28

Figure 2.17: n subinterval with a hat function for each of these subintervals divided into k

test grid points used to estimate the quality of the solution. One or more hat

function(s) could be assigned to one slave processor. .. 31

Figure 3.1: A genetic network for the biological clock from[4]. Molecular species (i.e.,

reactants or products) in the network are represented by boxes. The white-collar-1

(wc-1), white-collar-2 (wc-2), frequency (frq), and clock controlled gene (ccg) gene

symbols are sometimes superscripted 0, 1, r0, r1, indicating, respectively, a

transcriptionally inactive (0) or active (1) gene or a translationally inactive (r0) or

active (r1) mRNA. Associated protein species are indicated with capitals. A phot (in

yellow) symbolizes the photon species. Reactions in the network are represented by

circles. Arrows pointing to circles identify reactants; arrows leaving circles identify

xiv

products; and bi-directional arrows identify catalysts. The labels on each reaction,

such as S4, also serve to denote the rate coefficients for each reaction. Reactions

labeled with an S, L, or D denote transcription, translation, or degradation reactions,

respectively. Reactions without products, such as D7, are decay reactions. From[5].

... 37

Figure 3.2:The whole genetic network consisting of 2436 slave modules (subunits) to be

solved by the GPUs. The subunits are independent from each other but depend on

the clock master module consisting of genes, wc-1, wc-2, frq, and their products.

The subunits have the same mathematical form (ODEs) but different parameters.

Identifying this huge genome scale network is beyond the fastest serial computer in

the existence. Thus, the GPUs are necessary for solving such a network. This figure

shows a modified genetic network for the biological clock from[4] in the genome.

The notation to describe this network is the same as in Figure (3.1). An abbreviation

of the notation for the clock controlled genes is now given: g0 = [ccg0] =

concentration of ccg0; g1 = [ccg1] D concentration of ccg1; gr = [ccgr1] =

concentration of ccgr1; gp = [CCG] = concentration of CCG. 40

Figure 3.3: The time required for solving 2436 slave modules just one time using a

NVIDIA GPU(s) [Kepler K-20x Tesla] over an extreme edition of optimized CPU

[Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@ 3.10GHz]. Using four of the

GPUs to solve our target genetic network 800,000 times shown in the Figure (3.2) to

fit the observed data requires just twelve days while using the CPU requires a year

and six months. ... 41

xv

Figure 3.4: The achieved speed up using Multi-GPU [NVIDIA Kepler K-20x Tesla] over

an extreme edition of CPU [Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@

3.10GHz]. Red line shows the speed up without using the –O2 and -O3 flags for

CPU optimization(C++ code/g++ compiler) and blue line shows the speed up with

using –O2 and -O3 flags for CPU optimization. ... 42

Figure 3.5: The relationship between number of thread blocks (slave modules) to be

solved on the device and the required time. The jump in time is due to exceeding the

maximum number of TBs running simultaneously on the device. If GPU is capable

of running several N blocks simultaneously. Then from 1 to N blocks takes same

time to complete. ... 48

Figure 3.6: The relationship between number of thread blocks (slave modules) to be

solved on the device and the speed up. The drop in the speed up is due to exceeding

the maximum number of TBs running simultaneously on the device, given that the

time of the CPU is monotonically increasing. .. 48

Figure 4.1: Supernet. Where each of the 2,418 genes is hypothesized to be regula4ted,

potentially, by all of the six active transcription factors. .. 58

Figure 4.2: True net. The inferred regulation from fitting the supernet to available data by

the ensemble method. Each of the 2,418 genes is inferred to be regulated by some

of the six transcription factors. .. 58

Figure 4.3: The simplest model is one in which all 2,418 genes are regulated by one

transcription factor, WCC. Molecular species (i.e., reactants or products) in the

network are represented by boxes. The white-collar-1 (wc-1), white-collar-2 (wc-2),

frequency (frq), and clock controlled gene (ccg) gene symbols are sometimes

xvi

superscripted 0, 1, r0, r1, indicating, respectively, a transcriptionally inactive (0) or

active (1) gene or a translationally inactive (r0) or active (r1) mRNA. The notational

convention for protein species is all capitals. A phot (box in yellow) symbolizes the

photon species. Reactions in the network are represented by circles. Arrows pointing

to circles identify reactants; arrows leaving circles identify products; and bi-

directional arrows identify catalysts. The labels on each reaction, such as S4, also

double as the rate coefficients for each reaction. Reactions with an A or B label are

either activation or deactivation reactions. Reactions labeled with an S, L, or D

represent transcription, translation, or degradation reactions, respectively. Reactions

without products, such as D7, are used to indicate decay reactions. Reaction labeled

C1 produces an alternative mRNA for the wc-1 gene. Reactions labeled C2 or C3

form complexes (WCC) with or without light. All of these reaction labels double as

rate constants. In the more realistic model studied in this paper, an additional five

proteins, shown as “ellipses” in Figure (4.1), are hypothesized as potential

alternative regulators for each ccg. Redrawn from Al-Omari et al.[66] 59

Figure 4.4: Our new algorithm with no shared memory and one slave module per thread

(in Blue) and with a speedup of 250 to 650-fold outperforms our published

algorithm with shared memory (in red) and a block of 32 threads per slave module

and with a 13-75 fold speedup. The performance of each algorithm is given both as a

function of the number of GPUs and the number of slave modules. These algorithms

compute the dynamics of genomic scale networks on GPU(s) and make tractable

ensemble methods on genomic scale networks. The dips in the speed up are due to

exceeding the maximum number of thread blocks running simultaneously on the

xvii

device, given that the time of the CPU is monotonically increasing as in Figure

(4.5). .. 64

Figure 4.5: The time to solve a genome scale network makes tractable ensemble methods

for genome scale networks on a GPU. The number of thread blocks (slave modules)

to be solved on the device (Red) and on the CPU (Blue) determines in part the

required computational time. The left Y-axis shows the CPU time while the right Y-

axis shows the GPU time. The dips in the GPU time are due to exceeding the

maximum number of thread blocks running simultaneously on the device. If a GPU

is capable of running N blocks simultaneously, then from 1 to N blocks takes the

same time to complete. The time of the CPU is monotonically increasing as function

of slave modules. .. 65

Figure 4.6: The solution of g1(t) using the numerical exact and the ARK methods using

NG =32 Gauss-Legendre quadrature points over the time period [0,48] h for the

genetic network of the biological clock of N. crassa agree. NG=6 between the red

dots and the max absolute error is 10-4 ... 66

Figure 4.7: The network of 2,418 putative clock-controlled genes fits to experimental

data using the ensemble method very well. The predictions (orange and purple) and

the observation data (black dots) are shown in 3 dimensions. The modules in Figure

(4.3) are ordered based on the similarity of their profiles. .. 82

Figure 4.8: An ensemble of genetic networks predicts the mRNA levels overall of 2,418

putative clock-controlled genes (model used here where m=4 and all of regulators

are activators). The predictions fit the experimental data within a standard error. The

observed data computed using = ln(y!,!
!"#.)-< ψ!"> vs. time and the predictions

xviii

computed using < ln F!,! t, θ, µμ >vs. time. The figures predictions for the other

models are very close to this figure. ... 82

Figure 4.9: Putative ccgs are assigned to each of the six regulators (WCC, NCU07392,

NCU01640, NCU06108, NCU00045, NCU07155). The highest µ average over the

40,000 accumulation sweeps of the 2,418 genes indicates the candidate-binding

regulator for that gene. .. 84

Figure 4.10: A genetic network consisting of 2,418 slave modules and a master module

for the clock mechanism with repressor (NCU00045). There are 4 positive

activators (NCU07392, NCU01640, NCU06108, NCU07155) and a repressor

(NCU00045) under control of WCC, to be identified by the ensemble simulation[4,

66] 85

Figure 4.11: The best model ensemble (histogram of χ2 values most shifted to the left)

has Hill coefficient m = 4 for the activators and m=4 for the repressor CSP-1. The

histograms of χ2 values are computed for model ensembles with different Hill

coefficients and with/without a repressor using Eqs.(5,10,11) (m=1,2,and 4). 86

Figure 4.12: A regulatory genetic network for the six regulators (WCC, NCU07392,

NCU01640, NCU06108, NCU00045, NCU07155) and the putative clock-controlled

genes. The number on the arrow indicates how many annotated genes that are

regulated by a particular regulator and participating in a particular pathway or

function (small green boxes). .. 89

Figure 4.13: Regulator binding strength and target gene functions. The strength of

regulator binding is computed by asking: what is the average of µ’s across the

xix

40,000 accumulation sweeps that is assigned to a group of genes that have the same

function or pathway? ... 90

Figure 4.14: Change in Relative expression (RQ) of 4 of 5 target genes involved in

ribosome biogenesis were correctly predicted as circadian or not circadian by the

network model under knockout of NCU001640 (blue in Figure (4.10)) and

NCU06108 (green in Figure (4.10)). RQ was determined by RT-qPCR (See

Materials and Methods) using ubiquitin as endogenous control. 93

1

CHAPTER 1

1 INTRODUCTION AND LITERATURE REVIEW

 Systems biology or systeomics concerns the biochemical reactions that happen in

the biological systems components consisting of numerous and complex life processes

such as protein-protein interactions, signal transduction, enzymes and substrates, and

other cell reactions. Understanding and discovering these biochemical reactions

underlying a complex process requires the use of computational and mathematical

modeling of biological systems.

Genetic networks as a part of the systems biology deal with complex biochemical

interactions and signaling and describe time-dependent concentrations of molecular

species, such as genes, their RNAs, and their proteins as well as their substrates. These

networks can be expressed as a system of coupled nonlinear ordinary differential

equations (ODEs). Understanding such networks enables us to discover the biochemistry

and genetic activity of a cell and how the cell evolves as a function of time (including its

metabolic networks, signal transduction, and cell cycle models). Many problems could be

solved and understood once these ODEs are solved. For example, human diseases like

prostate cancer, and the phenotype of other complex traits, such as the development of an

organ, and the biological clock of an organism could be so described. The problem facing

biologists working to understand a genetic network is that the model parameters are

mostly unknown, and the experimental data are noisy and limited for molecular

2

quantitative studies. Most genetic networks, such as that for the biological clock, are part

of much larger modules controlling fundamental processes in the cell, such as

metabolism, development, or response to environmental signals. As an example, the

biological clock controls the circadian rhythms of about 2,418 distinct genes in the

genome (with 11,000 genes) of a model system, the filamentous fungus, Neurospora

crassa[5]. Predicting and understanding the dynamics of all of these genes and their

products in a genetic network describing how the clock functions is a challenge and

beyond the current capability of the fastest serial computers.

In the ensemble method, MCMC methods are used to generate random samples of

models, including the initial conditions and parameters values, that actualize how the

clock and 2,418 genes behave. For each model sampled, we need to solve a large system

of ODEs describe the genetic network millions of times. Solving all of these models

needs years for one simulation. We developed novel parallel algorithms on the General

Purpose Graphical Processing Unit (or GPGPU) and ensemble methods, which use

Markov Chain Monte Carlo, to fit and discover a regulatory network of unknown

topology composed of 2,418 genes describing the entire clock circadian network, a

network that is found from bacteria to humans, by harnessing the power of the GPGPU

[6]and utilizing the hierarchical structure of that genetic network.

The organization for the rest of this dissertation as the following;

1) CHAPTER 2, we developed and propose a new numerical technique to solve nonlinear

systems of initial value problems for nonlinear first-order differential equations that

model genetic networks in systems biology using the Galerkin finite element method with

3

piecewise hat functions. The accuracy of this algorithm is high as adaptive Runge Kutta

with a potential of parallelization in the ensemble method.

2) CHAPTER 3, we developed a parallelized version of the Adaptive Runge Kutta

(ARK) method on the GPGPU that helps to solve very large systems of ODEs. For

example, ODEs that belongs to a large genetic network describing clock can be used to

determine genome-level dynamics.

 3) CHAPTER 4, We implemented a novel “variable–topology supernet” ensemble

method[4, 7-9] using MCMC simulations to fit and discover a regulatory network of

unknown topology comprising 2,418 genes describing the entire clock circadian network,

a network that is found from bacteria to humans, and we improved the parallelized ARK

method on the GPU[6] and developed a faster algorithm on the GPU with an accuracy

enough for the first-order linear ODEs of the biological problems, such as the genetic

network that describing the clock of Neurospora crassa, using Gauss-Legendre

quadrature method on the GPU[10]. For brevity, two novel approaches are used here to

overcome the long time simulation problem. The first approach is to parallelize the

classic ARK ODE solver on the GPGPU designated for solving general ODEs problems

including linear and non-linear systems of ODEs where the achieved speed up over an

extremely fast CPU and optimized C++ code is shown in Figure (4.5), which is about 237

fold for a single GPU, and the second approach is to parallelize the numerical exact

integral (EI) solution formula on the GPGPU using Gauss Quadrature rule designated

specifically for solving the first order linear ODEs that describes our network where the

4

achieved speed up ~142 fold over ARK method on the GPU described above. The goal in

the MCMC methods is to select parameters that make the predicted solution fit to the

experimental data as measured by some figure of merit, such as the chi-squared statistic

with respect to the experimental data and the predicted solution. A fast ODE solver is

critical to implementing MCMC methods on large networks.

This novel software[10] enabled us to discover a broad array of functions for clock-

controlled genes as well as the gene regulators for those genes [10]as it is shown in

Figure (4.12) within a few days instead of years using a GPGPU. We were able to infer

the function of each regulator in Figure (4.12). We were able to discover how the clock-

controlled genes were organized into a regulatory network. We found for the first time

an explicit regulatory connection between the clock and ribosome biogenesis, which can

now be tested. Each of these advancements were made possible by a new computational

approach using GPUs.

4) CHAPTER 5, Conclusion summarizes our discovered findings and future work that

can be done to improve our findings and algorithms.

5

CHAPTER 2

2 SOLVING NONLINEAR SYSTEMS OF FIRST ORDER ORDINARY

DIFFERENTIAL EQUATIONS USING GALERKIN FINITE ELEMENT

METHOD

Ahmad Al-Omari, Heinz-Bernd Schüttler, Jonathan Arnold, Thiab Taha

IEEE ACCESS Journal

Reprinted here with permission of publisher

Received April 5, 2013, accepted May 27, 2013, date of publication June 17, 2013, date

of current version July 1, 2013.

Copyright@2013 by IEEE

 Digital Object Identifier 10.1109/ACCESS.2013.2269192

6

ABSTRACT

 Abstract- A new numerical technique to solve nonlinear systems of initial value

problems for nonlinear first-order differential equations (ODEs) that model genetic

networks in systems biology is developed. This technique is based on finding local

Galerkin approximations on each sub-interval at a given time grid of points using

piecewise hat functions. Comparing the numerical solution of the new method for a

single nonlinear ODE with an exact solution shows that this method gives accurate

solutions with relative error 1.88x10!!! for a time step 1x10!!. The new method is

compared with the Adaptive Runge Kutta (ARK) method for solving systems of ODEs,

and the results are comparable for a time step 2x10!!. It is shown that the relative error

of the Galerkin method decreases approximately linearly with the log of the number of

hat functions used. Unlike the ARK method, this new method has the potential to be

parallelizable and to be useful for solving biological problems involving large genetic

networks. A NSF commissioned video illustrating how systems biology helps us

understand a fundamental process in cells is included.

INDEX WORDS: biological clock, Galerkin Method, Finite Element Method, Hat

Function, Newton-Raphson Method, ordinary differential equation, toggle switch,

systems biology.

7

2.1 INTRODUCTION

 In the new cross-disciplinary field of systems biology merging genomics,

bioinformatics and engineering the focus is on using networks of genes and their products

to predict fundamental processes in the cell[11]. The field began in the 1990s with the

assembly of biochemical pathways to describe the functioning of entire cells[12-14]. The

field was transformed with the development of new genomics technologies[11, 15, 16]to

measure how many genes and proteins behave simultaneously in cells. We are now

poised to describe the cellular dynamics of an entire cellular network[17, 18]. The

challenge is to be able to simulate such large networks. The dynamics of these cellular

networks are often described by very large systems of ordinary differential equations[9].

One of the major problems in systems biology is solving large systems of ordinary

differential equations describing how genetic networks behave[19], a challenge arising in

other areas of science and engineering as well[20]. The Galerkin method has been

employed for solving different kinds of ordinary differential equations[21-28]. Here we

show how Galerkin’s method can be used in conjunction with Finite Element Method

(FEM) piecewise hat functions to solve systems of nonlinear first-order ordinary

differential equations (ODEs). Here our method is applied to systems of ODEs describing

several genetic networks[29, 30]. The importance of these networks to our daily lives is

summarized in an NSF commissioned video attached[31]. The idea behind the method is

to find local Galerkin approximations to the solutions of the ODEs on each sub-interval

of a given mesh using a collection of hat functions. In addition to the fact that this method

is a new method for solving any nonlinear system of ODEs with high accuracy and

stability that is comparable with the ARK method, it has the potential to be parallelizable

8

and to be useful for solving biological problems that depend on solving systems of

nonlinear ODEs modeling genetic networks [19]. Since the data to identify such networks

are sparse and noisy (error being 10% of values measured or larger), such biological

problems can be solved quickly and with acceptable accuracy and high stability when a

small number of hat functions is used as shown in Figure (2.5). The high accuracy of the

ARK method, as an example, is not needed for these biological problems[8]. Our new

approach achieves the required biological accuracy and if so desired, gives results as

accurate as the ARK method. The basic idea of the new approach is to approximate each

element in the solution of a system of nonlinear first-order ODEs by a piecewise hat

function on one subinterval at a time. In this paper, this method is illustrated by solving

an initial value problem of: 1) a single nonlinear first-order differential equation; 2) a

system of nonlinear first-order differential equations for a genetic network describing the

toggle switch[32]; and 3) a system of nonlinear first-order differential equations for a

genetic network for the biological clock of the model fungal system, Neurospora

crassa[4] described in the video. The latter two initial value problems are central to

systems biology. It is to be noted that parallelizing the Jacobian matrix and the

integration functions in the Galerkin method can speed up the numerical computations of

a system of nonlinear first-order differential equations.

9

Figure 2.1:Display of Several hat functions

2.2 NUMERICAL METHODS

The Galerkin method is a very popular method for finding numerical solutions to partial

differential equations. As an example for the Finite Element Method (FEM), we use the

Galerkin method to approximate the solution of ordinary differential equations with a

piecewise linear function as a sum of basis functions (Hat Functions). By using FEM and

a weak formulation of the approximation method, which transfers the problem from a

system of ODEs to a system of algebraic equations, we find the solution for the ODEs by

solving these algebraic equations using the Newton-Raphson method. Three initial value

problems are considered to show the accuracy of our method. The first problem involves

solving only a single nonlinear first-order differential equation, and the other two cases

involve solving two systems of nonlinear first-order differential equations. In the first

example the new method is as accurate as the ARK method, and the other two examples

solutions by the new method are comparable with the ARK method.

10

2.2.1 GALERKIN ALGORITHM FOR SOLVING SYSTEMS OF ODES

A system of initial-value problems for nonlinear first order ODEs over a solution’s

interval [0 L] can be defined as

y’=V(y,t);

where y= V=

y(a)=b;

where S is the number of variables in a system of ODEs and in particular, the number of

molecular species in a genetic network.

Note that a single nonlinear first order ODE problem considered above can be solved as a

special case of the above system.

An approximate solution is expanded in terms of basis functions ϕ! t as

y! t = p!,!!
!!! ϕ!(t) (1)

N is the number of hat functions; p!" is a vector of unknowns expansion amplitudes that

we are solving for; and n labels the different molecular species; and the ϕ! t is a finite-

element basis function (hat function) defined on a grid of time points tj by

 ϕ! t =

!!!!!!
!!!!!!!

, t!!! ≤ t ≤ t!
!!!!!!
!!!!!!!

, t! ≤ t ≤ t!!!
 0 , otherwise

11

For example, the initial condition of the first species is given by y!(0)= p!,!, and the

solution for a specific species (n) at a specific time point (j) is given by y!(t!)= p!,!.

Since 𝜙! 𝑡! = 1 and 𝜙! 𝑡! = 0 for k=j.

An alternative to hat functions is using compactly supported wavelets[33],or other types

of finite-element basis functions, such as Hermite finite elements[8].

 Using the residual form

 (2)

 we impose a weak Galerkin formulation of an approximate solution to solve for as

weight variables

 (3)

2.2.2 THE ALGORITHM

 (4)

For arbitrary

 (5)

j = k −1,k,k +1;k = 1,...,L −1;n = 1,...,S (S is the number of species).

Define for a given fixed k; pk ,pk−1and pk+1; where p=pk+1

Rn(t)= pn, j
j

N

∑ φ j '(t)−Vn(yn (t),t)

pnj

0= φk (t)Rntk−1

tk+1∫ dt

0= φk (t)Rntk−1

tk+1∫ dt

pnj

Fk ,n (pn, j) = φk (t)Rntk−1

tk+1∫ (t)dt

12

f (p) =

Fk ,1(p
k−1, pk , p)

Fk ,2 (p
k−1, pk , p)

.

.

.

Fk ,S (p
k−1, pk , p)

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'

≡

f1(p)

f2 (p)

.

.

.
fS (p)

"

#

$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'

;

where p1,k are the solution points for the first ODE (species f1), pS ,k is the solution points

for the last ODE (species fS); k= 1, …, L-1.

Solving for f(p)=0 is done by using the Newton-Raphson method[34]. The procedure for

a Newton-Raphson scheme for solving this system of nonlinear algebraic equations can

be described by

a) Setting the initial iteration value to zero and assigning initial values for each

variable,

b) Calculating the Jacobian matrix J,

J (p) =

∂f1
∂p1

∂f1
∂p2

...
∂f1
∂pN

∂f2
∂p1

∂f2
∂p2

...
∂f2
∂pN

.

.

.

.

.

.

.

.

.

.

.

.
∂fS
∂p1

∂fS
∂p2

...
∂fS
∂pN

"

#

$
$
$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
'
'

13

c) Using the Newton-Raphson scheme to solve the system of algebraic equations,

which is obtained from f(p)=0, the solution is defined by

pi+1 = pi −Gi (6)

Gi = J
−1(pi) f (pi) (7)

J (pi)Gi = f (pi) (8)

The matrix G! can be obtained by using the Gaussian elimination method with scale

partial pivoting [34].

A central finite-difference formula has been used to find an approximation to the partial

derivatives of the Jacobian matrix.

For example, calculating a given value in the Jacobian is done by

∂fr
∂pu

≅
Δ p fr
Δpu

=
fT (pu +δ)− fT (pu −δ)

2δ (9)

;T = 0...S,u = 0...N

 The δ has been assigned a small value such as 1x10!!, so that the final ODEs solutions

for the above system do not change much by further reducing the δ value.

d) Calculating fT (pu +δ), fT (pu −δ) by using the Gauss quadrature rule[34] since 𝑓! is

an integration function in this approach.

e) Iterating until the convergence of all variables is achieved. Tolerance of 1x10!! is

sufficient for solving the above system by using the Newton-Raphson method.

14

f) Note that solving such a system of algebraic equations is obtained sequentially.

For example, the solution of the vector f (p
k+1) at fixed a time is obtained from the

solution of the vectors f (p
k−1) and f (p

k) .

What makes this Galerkin approach so attractive is the stability properties of the

algorithm and the ability to control rigorously the error[23, 24, 27, 28].

 In Figure (2.2) the solution of such systems is shown for the first initial value

problem described below using our proposed method, and the solution oscillates around

the exact solution. Therefore, to achieve a reasonably accurate solution with the lowest

possible number of hat functions, we propose that the initial guess for the Newton-

Raphson method on the oscillation time to be the average of p!!! and p! instead of just

p!. We check for an oscillation on p!!!,p!!! and p! and we assign the average of

p!!! and p! to p! if the oscillation happens on these points. The accuracy of the final

solution is based on the number of hat functions used for the solution (as the number of

hat functions increases, the accuracy increases).

15

Figure 2.2: The solutions for the single nonlinear ODE and the effect of averaging on the
numerical solution.

Figure (2.2) shows part of the solution for the nonlinear single ODE during the interval

[0 10] using 1000 hat functions. The numerical solution without averaging is shown in

blue, the exact solution in red, and the solution with averaging in green.

2.2.3 THE THREE INITIAL VALUE PROBLEMS CONSIDERED ARE

a) An initial value problem of a single nonlinear first ODE

 y'=-y-y2; (10)

with intial condition y(0)=1

that has the exact solution:

 y(t)=1/(-1+2et) (11)

b) An initial value problem of a system of nonlinear first order ODEs for a genetic

network of the toggle switch[32] as specified by

du/dt=α1/(1+vβ)-u (12)

16

dv/dt=α2 /(1+uγ)-v (13)

where; u(0)=0; v(0)=0 ; α1=2,α2 =4,β=2,γ=2

∝!= 2,∝!= 4, β = 2, γ = 2

c) An initial value problem of a system of nonlinear first order ODEs for a genetic

network of the biological clock of Neurospora crassa[4] as specified by

f1 '=A(fG -f1)wn -A' f1

fr '=S3(fG -f1)+S4f 1-D3fr

fp'=L3fr -D6fp

w'=E2up -D8w-nA(fG -f1) wn +nA' f1-Pwf p
m

up'=L1ur1-D4up-E2up

ur1'=C1 ur0 fp -D7 ur1

ur0'=V1-D1ur0-C1ur0fp

All of the parameter values of this clock network problem are given in Table (2.1) and

Table (2.2) [4].

2.3 RESULTS AND DISCUSSIONS

The new method yields solutions for fixed and specific time steps, and the accuracy is as

high as the ARK method if a large number of hat functions are considered as shown in

Table (2.3) and Figure (2.3). On the other hand, the accuracy of the solution is still

acceptable for biological problems if a fewer number of hat functions is considered as

shown in Figure (2.4) and Figure (2.5).

17

Figure 2.3: Maximum relative error (on a log scale) decreases linearly with the log of the
number of hat functions for the single nonlinear ODE compared with the exact solution.
Different numbers of hat functions (1x10!, 1x10!, 1x10!, 1x10!, 1x10!, and 1x10!)
over the solution interval [0 10] are used.

The maximum global relative error has been computed for the single nonlinear first ODE,

for the genetic network of the toggle switch, and for the genetic network of the biological

clock of Neurospora crassa using the following formula:

Max global relative error=
Maxk

2Maxn |Yk
Aprx. (tn)−Yk

Exact (tn) |
Maxn |Yk

Aprx. (tn) |+Maxm |Yk
Exact (tn) | (14)

 ;where k=1,2,…,S = number of species.

The single nonlinear first ODE has an exact solution, and for the other two cases we have

considered the approximate solutions of ARK with absolute and relative errors equal to

1x10!!" as exact solutions for them.

18

Table 2.1: (Initial Conditions at t=0)

Table 2.2: (Parameters Values)

Table 2.3: Errors in the solution over the time period [0 10] are shown as a function of
the number of hat functions for the single ODE (example 1). The maximum relative
errors have been calculated using different numbers of hat functions and the solutions
compared with the ARK method (with absolute and relative errors for ARK equal to
1x10!!")

Species Initial Condition
f1 0.00400782
fr 0.181388
fp 1.37307
w 0.0000663227
up 0.0000362815
ur1 0.212505
ur0 0.0000000252030

Parameters Value Parameters Value
A 0.0000462010 D8 0.00285475
A’ 0.566108 C2 1.66501
S1 9.22739 P 3.55829
S2 0.00353803 Ac 5.57336
S3 0.000000136553 Bc 1.82043
S4 9.07295 Sc 0.0149985
D1 1.35911 Lc 0.0111332
D2 2.77832 Dcr 0.268920
D3 0.223231 Dcp 0.269409
C1 0.0545178 vp 0.120699
L1 59.7062 u1 0.0124268
L2 35.3755 f0 0.692213
L3 0.798222 n 4
D4 0.00000947792 m 4
D5 0.00000179706 E2 vp*C2
D6 0.159737 fG f0+f1
D7 0.192918 V1 S1*u1

of hat functions Max relative error
1.0 E+02 0.0114304
1.0 E+03 0.000190308
1.0 E+04 3.34528064273916E-06
1.0 E+05 5.94604646865157E-08
1.0 E+06 1.05735181433986E-09
1.0 E+07 1.87646163866028E-11

19

Figure 2.4: Solutions of the exact, Galerkin, and the ARK methods using 1x10! hat
functions over the time period [0 10] ODE

2.3.1 THE THREE CASES THAT HAVE BEEN CONSIDERED TO SHOW THE

ACCURCY OF OUR METHOD

a) Solving an initial value problem of a single nonlinear first order ODE

We used the proposed algorithm to find solutions for the single nonlinear ODE with

various numbers of functions in the fixed intervals [0 10]. It has been found that the

accuracy increases approximately two orders of magnitude as the number of hat functions

increases by one order of magnitude as is shown in Table (2.3), Figure (2.3), and Figure

(2.4).

20

Figure 2.5: The solutions of the exact and Galerkin methods using relatively few number
of hat functions (50 hat functions) over time period [0 10] for the single nonlinear ODE.
Such a solution is sufficient for biological problems with acceptable accuracy and high
stability using few hat functions.

b) Solving ODEs of the genetic network of the toggle switch

 We used the proposed algorithm to find solutions for the toggle switch genetic

network with various numbers of hat functions and time steps over the solution interval

[0 10]. The solution is comparable with the ARK method (with absolute and relative

errors for ARK being 1x10!!") as is shown in Table (2.4), Figure (2.6), Figure (2.7), and

Figure (2.8).

From Table (2.4), we found that the errors coming from solving the v species in the

toggle switch are larger than the ones coming from the u species with varying numbers of

hat functions. Thus, the maximum global relative error equals to the maximum local

relative error of the v species. The Galerkin and the ARK methods give comparable

solutions for both variables u(t) and v(t) as shown in Figure (2.7) and Figure (2.8). The

two solutions by different methods are virtually indistinguishable.

21

Figure 2.6: The maximum global relative error (on a log scale) among all of the species
(global error of two species) for ODEs of the genetic network of the toggle switch
decreases approximately linearly with the log of the number of hat functions. These
results are based on the comparison with the ARK method (with absolute and relative
errors for ARK are equal to 1x10!!"). Different numbers of hat functions (1x10!, 1x10!,
1x10!, 1x10!, 1x10!, and 1x10!) over the solution interval [0 10] are used.

Table 2.4: Errors in the solution over the time period [0 10] are shown as a function of
number of hat functions for the toggle switch (example 2). The max local and global
relative errors have been calculated using different number of hat functions and the
solutions compared with the ARK method (with absolute and relative errors for ARK
equal to 1x10!!")

	

Number of
Hat
Functions

Maximum Local
Relative Error (u
Species)

Maximum Local
Relative Error (v
Species)

Maximum Global
Relative Error

1.0 E+02 2.82661552086085E-02 3.87113886066362E-02 3.87113886066362E-02

1.0 E+03 7.088438084833E-04 2.17995473439916E-03 2.17995473439916E-03

1.0 E+04 1.09812819646773E-05 3.77341709775271E-05 3.77341709775271E-05

1.0 E+05 1.12067920569916E-07 3.56779968791140E-07 3.56779968791140E-07

1.0 E+06 4.01110985582986E-09 1.28771772065253E-08 1.28771772065253E-08

22

c) Solving ODEs of the genetic network of the biological clock of Neurospora

crassa.

The proposed Galerkin algorithm yields the solution for the biological clock of

Neurospora crassa genetic network with various numbers of hat functions and time steps

over a larger solution interval [0 200]. The solution is comparable with the ARK method

(with absolute and relative errors for ARK equal to 1x10!!") as it is shown in Table (2.5)

and Figure (2.9), Figure (2.10), Figure (2.11), Figure (2.12), Figure (2.13), Figure (2.14),

Figure (2.15), and Figure (2.16).

Note that the accuracy is less than the second case 2) because we use the same number of

hat functions over a larger solution interval [0 200] for the genetic network of the

biological clock of Neurospora crassa instead of [0 10] for the former two cases. On the

other hand, we still can see in Table (2.5) that a total of 10,000 hat functions is sufficient

to obtain a relative error that is 0.07 or 7% or less. Again in (Fig. 9) there is a linear

relation between the maximum global relative error and the number of hat functions on a

log-log plot.

The solutions for this dynamical system in Figure (2.10), Figure (2.11), Figure (2.12),

Figure (2.13), Figure (2.14), Figure (2.15), and Figure (2.16) using the Galerkin and ARK

methods are indistinguishable using 1000 hat functions. Although the max global relative

error using 1000 hat functions over the interval [0 200] is of order of 30% as it is shown

in Table (2.5), in the figures we show that the solution is sufficiently good for biological

problems.

23

 Table 2.5: Maximum local relative errors of the Galerkin solution over the time period
[0 200] for varied numbers of hat functions for the clock model (example 3). The
maximum local and global relative errors have been calculated using different numbers of
hat functions and the solutions, compared with the ARK method (with absolute and
relative errors for ARK equal to 1x10!!")

Figure 2.7: The solutions of u(t) using the Galerkin method with 1x10! hat functions and
the ARK method over the time period [0 10] for the genetic network of the toggle switch

of Hat
Functions

Max
Local
Rel.
Error f1

Max
Local
Rel.
Error fr

Max
Local
Rel.
Error fp

Max
Local
Rel.
Error w

Max
Local
Rel.
Error
up

Max
Local
Rel.
Error
ur1

Max
Local
Rel.
Error
ur0 Max Global Error

2.00E+2 1.12E+0 9.30E-1 7.28E-1 1.01E+0 1.25E-1 9.35E-2 4.53E-2 1.11551250069628E+0
1.00E+3 2.34E-1 1.91E-1 1.00E-1 3.08E-1 1.21E-2 7.47E-3 5.60E-3 3.07789282736857E-1
1.00E+4 5.14E-2 3.71E-2 1.86E-2 6.92E-2 2.31E-3 1.17E-3 9.91E-4 6.91539734511926E-2
1.00E+5 6.20E-3 4.55E-3 2.28E-3 8.49E-3 2.86E-4 1.44E-4 1.22E-4 8.48562558931092E-3
1.00E+6 6.77E-4 5.00E-4 2.52E-4 9.33E-4 2.76E-5 1.43E-5 1.35E-5 9.33489762577023E-4
1.00E+7 5.94E-5 4.38E-5 2.20E-5 8.18E-5 2.49E-6 1.28E-6 1.18E-6 8.17589819877030E-5

24

Figure 2.8: The solutions of v(t) using the Galerkin method with1x10! hat functions and
the ARK method over the time period [0 10] for the genetic network of the toggle switch.

Figure 2.9: The maximum global relative error (on a log scale) among the whole species
(seven species) for ODEs of the genetic network of the biological clock of Neurospora
crassa decreases approximately linearly with the log of the number of hat functions
compared with the ARK method (with absolute and relative errors for ARK equal to
1x10!!"). Different numbers of hat functions (2x10!, 1x10!, 1x10!, 1x10!, 1x10!, and
1x10!) over solution interval [0 200] are used.

25

Figure 2.10: The solution of f1(t) using the Galerkin and the ARK method using 1x10!
hat functions over the time period [0 200] for the genetic network of the biological clock
of Neurospora crassa.

Figure 2.11: The solution of fr(t) using the Galerkin and the ARK methods using 1x10!
hat functions over the time period [0 200]for the genetic network of the biological clock
of Neurospora crassa

26

Figure 2.12: The solution of fp(t) using the Galerkin and the ARK methods using 1x10!
hat functions over the time period [0 200] for the genetic network of the biological clock
of Neurospora crassa

Figure 2.13: The solution of w(t) using the Galerkin and the ARK methods using 1x10!
hat functions over the time period [0 200] for the genetic network of the biological clock
of Neurospora crassa.

27

Figure 2.14: The solution of up(t) using the Galerkin and the ARK methods using 1x10!
hat functions over the time period [0 200] for the genetic network of the biological clock
of Neurospora crassa

Figure 2.15: The solution of ur1(t) using the Galerkin and the ARK methods using
1x10! hat functions over the time period [0 200] for the genetic network of the biological
clock of Neurospora crassa.

28

Figure 2.16: The solution of ur0(t) using the Galerkin and the ARK methods using
1x10! hat functions over the time period [0 200] for the genetic network of the biological
clock of Neurospora crassa.

2.3.2 A POTENTIAL PARALLELIZATION SCHEME FOR THE GALERKIN

METHOD

 Unlike the ARK method, which is inherently sequential for solving systems of

ODEs, the Galerkin method as stated before can be parallelized by parallelizing the

Jacobian matrix’s calculation and the integration functions. This parallelization will

speed up the numerical method of solving a system of nonlinear first-order differential

equations. Moreover, this new method allows us to parallelize the ensemble method[4]

for identifying genetic networks from real data on each variable (or species). Briefly, the

ensemble method suggests that instead of identifying one unique parameterization of the

model, we aim to identify an ensemble of models consistent with available experimental

data and use Monte Carlo simulation techniques to generate random samples of model

parameterizations (an ensemble) that represent the data well. This sampling process is

captured in an animation within the associated NSF commissioned video[31]. In other

29

words, in the ODE solving scenario a unique solution will be found by specifying the

initial conditions. In contrast, in the ensemble method since we don’t know the initial

conditions and other parameters values, which are required for solving systems of ODE, a

Monte Carlo procedure is used to generate several initial conditions and parameters

values, and while the Monte Carlo runs, it finds parameters that make the predicted

solution closer to the experimental data. Finding the parameters could be done by using

the Metropolis procedure[4], which minimizes the Chi-squared statistic comparing the

experimental data and the predicted solution. Mainly, there are two stages in the

ensemble method: the equilibration stage that is used to find parameters values that make

the ODE solution converge to the experimental data and the accumulation stage, which is

used to accumulate many sets of these parameters (i.e., the ensemble) that fit the

experimental data well. Averaging over the ensemble allows an assessment of fit to the

experimental data. Thus, averaging several solutions of the ODEs with different initial

conditions that fit the experimental data will be found from a random sample of

parameters that reproduce the experimental data.

 Using ARK in the ensemble method implies that the system of ODEs should be

re-solved for each proposed ensemble Monte Carlo updating step, and solving for the

time step t+h requires the solution at the prior t. To apply a parallelized Galerkin method

version instead of the ARK method version, suppose there are (n) hat functions

subintervals with (k) test grid points. The purpose of these test grid points is to sample

the quality of the solution, for each of the subintervals as shown in Figure (2.17). On the

one hand, Monte Carlo simulation will propose a set of parameters values and hat

30

function amplitudes, which are required for solving the system of ODEs using FEM

explained in this paper, for each subinterval. On the other hand, one or more

subinterval(s) could be assigned to one slave processor that will solve for the system of

ODEs given these parameters on its subinterval(s). Then for each of these test grid points

within this subinterval(s), the method evaluates the left hand side of the differential

equation and the right hand side of the differential equation and from the difference

between the left hand side and the right hand side will find the residual, which is given in

Equation 13. After that each processor will calculate its chi-squared statistic and send the

result back to a master processor. The master processor adds the resulting chi-squared

statistics up and either accepts or rejects the proposed parameters and amplitudes based

on the Metropolis procedure. The potential parallelizing procedures for the Galerkin

method are either through Message Passing Interface (MPI) or MPI with Graphics

Processing Units (GPUs). The result is a new parallel ensemble method, which we call

the super-ensemble method[8] because it combines the Monte Carlo search for

parameters with an approximation to the ODE solution (by the Galerkin Method).

31

Figure 2.17: n subinterval with a hat function for each of these subintervals divided into k
test grid points used to estimate the quality of the solution. One or more hat function(s)
could be assigned to one slave processor.

2.4 CONCLUSION

 A new method for solving systems of initial-value problems for nonlinear First-

order Ordinary Differential Equations using the Galerkin finite elements method

piecewise hat functions has been developed that gives as accurate a solution as the

Adaptive Runge Kutta method when a large number of hat functions are used, and

acceptable accuracy for the biological problems when a fewer number of hat functions is

used. On the other hand, unlike the adaptive Runge Kutta method, this method has the

potential to be parallelizable and to be useful for solving biological problems that depend

on solving large systems of nonlinear ODEs describing genetic networks and other

systems in engineering. Moreover, this method yields solutions not for arbitrary time

steps but for desirable fixed time steps.

As shown above we produce trajectories from the Galerkin method comparable

with the adaptive Runge Kutta method (with relative and absolute errors for the ARK are

32

equal to 1x10!!") by using a low number of hat functions (100 hat functions for the first

two cases over the interval [0 10] and 1000 hat functions for the last case over the

interval [0 200]). Developing this method to be faster than the traditional ODE solvers is

a potential study in the future especially when biological problems with large networks

are considered. Identifying large networks is complicated by having many parameters and

limited data[35]. One solution to this problem is the use of ensemble methods[4]. A

parallelized ODE solver enables faster sampling of the parameter space in ensemble

methods to identify what we know (i.e., is supported across the ensemble) and what we

do not know (i.e., is not supported across the ensemble) about a large system of ODEs.

2.5 ACKNOWLEDGEMENTS

This work was supported in part by the NSF under Grants NSF QSB-0425762 and the

NSF DBI-1062213 and the Department of Systems Engineering and Medical

Bioinformatics, Yarmouk University, Irbid, Jordan.

33

CHAPTER 3

3 SOLVING LARGE NONLINEAR SYSTEMS OF FIRST-ORDER ORDINARY

DIFFERENTIAL EQUATIONS WITH HIERARCHICAL STRUCTURE USING

MULTI-GPGPUS AND AN ADAPTIVE RUNGE KUTTA ODE SOLVER

Ahmad Al-Omari, Jonathan Arnold, Thiab Taha, Heinz-Bernd Schüttler

IEEE ACCESS Journal

Reprinted here with permission of publisher

Received October 7, 2013, accepted November 5, 2013, date of publication November

12, 2013, date of current version November 21,2013

Copyright@2013 by IEEE

Digital Object Identifier 10.1109/ACCESS.2013.2290623

34

ABSTRACT

 The Adaptive Runge Kutta Method (ARK) on multi-General-Purpose Graphical

Processing Units (GPGPUs or GPUs for short) is used for solving large nonlinear

systems of first-order ordinary differential equations (ODEs) with over ~10,000 variables

describing a large genetic network in systems biology for the biological clock. To carry

out the computation of the trajectory of the system, a hierarchical structure of the ODEs

is exploited, and an ARK solver is implemented in Compute Unified Device

Architecture/C++ (CUDA/C++) on GPUs. The result is a 75-fold speedup for

calculations of 2436 independent modules within the genetic network describing clock

function relative to a comparable CPU architecture. These 2436 modules span one-

quarter of the entire genome of a model fungal system, Neurospora crassa. The power of

a GPU can in principle be harnessed by using warp-level parallelism, instruction level

parallelism or both of them. Since the ARK ODE solver is entirely sequential, we

propose a new parallel processing algorithm using warp-level parallelism for solving

~10,000 ODEs that belong to a large genetic network describing clock genome-level

dynamics. A video is attached illustrating the general idea of the method on GPUs that

can be used to provide new insights into the biological clock through single cell

measurements on the clock.

INDEX WORDS: Bioinformatics, Biological clock, General-purpose graphical

processing unit, finite element method, ordinary differential equation, adaptive Runge-

Kutta integration, systems biology, warp-level parallelism.

35

3.1 INTRODUCTION

 In a systems biology approach bridging genomics, bioinformatics, and

engineering our goal is to explain the behavior of traits controlled by many genes, such as

carbon metabolism, the biological clock, development, and cancer in terms of

biochemical pathways found within living cells[11]. Since the 1990s, a variety of teams

have assembled large maps of biochemical pathways in a variety of organisms with this

goal in mind[12-14]. At the turn of the millennium it became possible to measure the

dynamics of genomic-scale pathways spanning a whole living system[11, 15, 16]. We

are now poised to describe the dynamics of an entire cell[17, 18]. A video is attached

describing how this can be achieved through the integration of genomics, bioinformatics,

and engineering[36].

Genetic networks describe time-dependent concentrations of molecular species,

such as genes, their RNAs, and their proteins as well as their substrates[20]. These

networks can be expressed as a system of coupled nonlinear first-order ordinary

differential equations (ODEs). Understanding such networks enables us to discover the

biochemistry and genetic activity of a cell and how the cell evolves as a function of time

(including its metabolism, signal transduction, and cell cycle). Many problems could be

solved and understood once these ODEs are identified. For example, human diseases like

prostate cancer, the phenotype of other complex traits such as development[37], and the

biological clock of an organism [5] could also be described. The most widely used

approach to modeling these biochemical pathways are nonlinear systems of first-order

ordinary differential equations[9].

36

GPUs have been used recently for solving computationally-intensive problems for

many applications[38-41] including those in Bioinformatics[42, 43], numerical

computations[44, 45], ray tracing[46],volume ray casting[47], computational fluid

dynamics[48], and weather modeling[49]. Here we harness this new computing approach

to develop new ODE solver methods employing Adaptive Runge Kutta Method

(ARK)[34] on GPUs to simulate large genetic networks and ultimately identify these

networks from available genomics data[4, 5, 19, 50].

A major proving ground for the new tools of systems biology has been the study

of the molecular basis of the biological clock[51]. The key problem is linking the model

identification of the clock to guiding expensive genomics experiments designed to

identify the underlying network[9]. This model-guided discovery process, which we call

computing life[5], requires the ability to simulate large nonlinear systems of first-order

ODEs.

 There are particular challenges to solving these ODEs. The system of ODEs is

usually large. The experimental data are noisy and limited from molecular quantitative

studies. More importantly, designing a new experiment is very expensive in terms of

money (using genomics experiments) and time. To overcome the problem of many

parameters and limited noisy data, new methods were developed for fitting these ODEs

called ensemble methods[4, 9, 50]. The ensemble approach overcomes the limited

genomics data on a particular network with many parameters by giving up on finding one

best model. Instead, the search in the ensemble approach is for an ensemble of 40,000+

37

models consistent with the data. Averaging is then done over the ensemble to make

predictions about the time-dependent behavior of the system. In order to implement these

ensemble methods the ODE solver must be very fast!

Using the ARK method in the ensemble approach implies that the system of

ODEs should be re-solved for each proposed ensemble Monte Carlo updating step, and

solving for the time step t+h requires the solution at the prior t. For example, solving a

genetic network as the one shown in Figure (3.1) [4] for the clock and constructing the

ensemble of the unknown parameters that fit the experimental data needs a very large

amount of time (i.e., 30 days on older processors). The diagram in Figure (3.2) specifies

a much larger system of ODEs with hierarchical structure. There is a master clock

module controlling 2436 slave modules each with 4 variables representing molecular

species concentrations. We need a new approach to solve problems on this genomic

scale.

Figure 3.1: A genetic network for the biological clock from[4]. Molecular species (i.e.,
reactants or products) in the network are represented by boxes. The white-collar-1 (wc-1),
white-collar-2 (wc-2), frequency (frq), and clock controlled gene (ccg) gene symbols are

38

sometimes superscripted 0, 1, r0, r1, indicating, respectively, a transcriptionally inactive
(0) or active (1) gene or a translationally inactive (r0) or active (r1) mRNA. Associated
protein species are indicated with capitals. A phot (in yellow) symbolizes the photon
species. Reactions in the network are represented by circles. Arrows pointing to circles
identify reactants; arrows leaving circles identify products; and bi-directional arrows
identify catalysts. The labels on each reaction, such as S4, also serve to denote the rate
coefficients for each reaction. Reactions labeled with an S, L, or D denote transcription,
translation, or degradation reactions, respectively. Reactions without products, such as
D7, are decay reactions. From[5].

 Mainly, besides making these ensemble methods broadly available, our goal is to

solve a genetic network shown in Figure (3.2) that consists of a master module (clock)

and 2436 slave modules (subunits). Solving such a genetic network using a CPU implies

that all of these subunits should be solved simultaneously and each subunit solved many

times sequentially. This makes the process of finding the unknown parameters in the

network using the ensemble method massively time consuming. In some cases where the

network consists of 2436 subunits[5], the ensemble method is beyond the capability of

the fastest serial computers. We developed an algorithm using the concept of warp-level

parallelism[52] with a GPU and ARK method that makes possible simulating 2436

subunits under clock control with a speed up of about 75-fold relative to a solution of

serial version on a CPU architecture. The code (see supplement for code + input file) is

written in C++/CUDA computer language for the GPU and is written in C++ and

compiled with g++ using –O2 and –O3 optimization flags for the CPU. What makes our

approach attractive is that as more subunits and ODEs are added, the speed up achieved

increases, if we consider the availability of the GPUs. The strategy we describe here for

solving large nonlinear systems of first-order ODEs is an alternative to another ODE

solver recently developed[53].

39

3.2 METHODS

The Warp-level parallelism concept is used to exploit and harness the power of a GPU

for solving 2436 systems of ODEs using the ARK method for a large genetic network

shown in Figure (3.2) describing the biological clock in N. crassa[5]. Since such a

genetic network consists of many subunits and all of these subunits have the same

mathematical form (as ODEs) as shown below but with different parameters, solving all

of these systems of ODEs once in parallel suits the SIMD (single instruction, multiple

data) and warp-level parallelism concepts (warp size for current NVIDIA GPUs is 32

threads). A common parallelization strategy in this category is to increase the number of

warps and consequently the number of thread blocks (TBs) per streaming multiprocessor

(SMX) on a GPU and decrease a TBs size (number of threads per block). In addition to

the fact that this optimization strategy increases the number of thread blocks assigned to

each SM, it provides more independent warps from other thread blocks when one warp is

stalled [54]. Figure (3.2) shows 2436 systems of nonlinear ODEs (slave modules) that

are needed to be solved to enable the implementation of the ensemble method with an

ARK ODE solver[4]. The independence of these slave modules enabled us to suggest an

algorithm to solve all of these modules in a parallel fashion using the ARK method and

multi-GPGPUs.

40

Figure 3.2:The whole genetic network consisting of 2436 slave modules (subunits) to be
solved by the GPUs. The subunits are independent from each other but depend on the
clock master module consisting of genes, wc-1, wc-2, frq, and their products. The
subunits have the same mathematical form (ODEs) but different parameters. Identifying
this huge genome scale network is beyond the fastest serial computer in the existence.
Thus, the GPUs are necessary for solving such a network. This figure shows a modified
genetic network for the biological clock from[4] in the genome. The notation to describe
this network is the same as in Figure (3.1). An abbreviation of the notation for the clock
controlled genes is now given: g0 = [ccg0] = concentration of ccg0; g1 = [ccg1] D
concentration of ccg1; gr = [ccgr1] = concentration of ccgr1; gp = [CCG] = concentration
of CCG.

In the Warp-level parallelism GPU(s) execute many warps concurrently. For example, on

the Kepler K20x GPU, the maximum number of warps per SM equals to 64 warps, and

the maximum number of TBs per SM equals to 16 TBs. Increasing the number of TBs

and decreasing the block size is a well considered optimization strategy especially when

the instruction level parallelism, i.e., thread code consists of multiple independent

instructions in sequence, is hard to implement in some algorithms[54]. For example, the

ARK method is in essence a sequential algorithm, and it is very hard to be parallelized by

41

instructional level parallelism because ARK doesn’t have independent instructions in

sequence and because the time taken by each warp is unpredictable[44]. To maximize the

usage of warp level parallelism we use a warp per block to solve the dynamics of the

slave module consisting of systems of nonlinear ODEs using the ARK method. The

pressure of using a large number of blocks to solve our genetic network (2436 blocks)

leads us to use multi-GPUs to increase the speed up as is shown in Figure (3.3) and

Figure (3.4).

Figure 3.3: The time required for solving 2436 slave modules just one time using a
NVIDIA GPU(s) [Kepler K-20x Tesla] over an extreme edition of optimized CPU
[Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@ 3.10GHz]. Using four of the GPUs
to solve our target genetic network 800,000 times shown in the Figure (3.2) to fit the
observed data requires just twelve days while using the CPU requires a year and six
months.

42

Figure 3.4: The achieved speed up using Multi-GPU [NVIDIA Kepler K-20x Tesla] over
an extreme edition of CPU [Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@
3.10GHz]. Red line shows the speed up without using the –O2 and -O3 flags for CPU
optimization(C++ code/g++ compiler) and blue line shows the speed up with using –O2
and -O3 flags for CPU optimization.

3.2.1 THE ALGORITHM

Each slave module can be described as an initial value problem of a system of nonlinear

first ODEs for a genetic network as is shown in Figure (3.2) and is specified by

𝑑𝑔!
𝑑𝑡 = 𝐵!𝑔! − 𝐴!𝑔!𝑤 𝑡

𝑑𝑔!
𝑑𝑡 = 𝐴!𝑔!𝑤 𝑡 − 𝐵!𝑔!

𝑑𝑔!
𝑑𝑡 = 𝑆!𝑔! − 𝐷!"𝑔!

𝑑𝑔!
𝑑𝑡 = 𝐿!𝑔! − 𝐷!"𝑔!

43

The variables in this subsystem are the concentrations of the clock-controlled genes (g0

and g1 in the inactive and active state, respectively), their mRNAs (gr), and proteins (gp).

The testing was done on Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@ 3.10GHz]

Extreme Edition processor and a Tesla GPU [Kepler K-20x] to measure the speed up of

our approach. A Kepler K-20x GPU handles double precision numbers and consists of 15

streaming multiprocessors (SMX), each (SMX) consisting of 192 SIMD cores and

handling up to 16 TBs with restriction for 2048 threads per SMX. The idea of the

algorithm is to assign each slave module to one TB consisting of 32 threads (a warp). The

load of 2436 slaves modules (systems of nonlinear ODEs equations) are distributed

equally across Multi-GPUs system with a potential for a slight decrease or increase in the

number of slave modules for the last GPU. For example, using four GPUs implies that to

launch a kernel (a function to be executed on the GPU) on each GPU involves

configurations of grid size equals to 609 thread blocks and a block size of 32 threads with

a total number of threads equals to 19,488 threads per GPU. Each warp is responsible for

solving a system of equations for one slave module. The number of slave modules (292)

that are strongly supported to be under clock control was determined by a series of

model-guided experiments[5].

3.2.2 THE PROCEDURE

a) Copying a file to the constant memory of each GPU that consists of a 200 time

point solution to interpolate for the variable w(t) appearing in the equations

above. Those time points come from the master clock module and are passed to

each slave module as is shown in Figure (3.2). All of the TBs need to access the

same file in the constant memory.

44

b) Each thread block executes a kernel, which contains the ARK ODE solver.

c) All threads in the same block hold the same data (i.e. initial conditions and

parameters values), and execute the same system of equations for an assigned

slave module.

d) ARK’s constants are declared in the constant memory of the GPU and are seen by

all of the threads.

e) Kernel configuration consists of a grid size equal to the number of slave modules

(609 slave modules per GPU) and a block size equals to a warp size.

Parameter values of this clock network problem are given in Table (3.1); all of the slave

modules have the same set of parameters for the sake of simplicity and accuracy, and

calculating performance of a CPU and GPU.

Table 3.1: Initial conditions at t=0 and parameters values

3.3 RESULTS

Identifying a large clock genetic network is beyond the capabilities of the fastest

CPU ever manufactured and needs a much more expensive super computer than the

GPUs that we use with high capabilities to solve such a network. The proposed parallel

procedure uses NVIDIA Kepler K-20x GPU(s) to solve a genetic network shown in

Species Initial
Conditions

Parameters Values

g0 13.4271 Ac 0.3005
g1 13.4348 Bc 37.2048
gr 1.2208 Sc 0.0086
gp 2.0982 Lc 11.4377
 Dcr 0.4105

Dcp 0.3589

45

Figure (3.2) within a very short period of time compared with the time required on a

CPU as is shown in Figure (3.3). The Ensemble method mentioned before needs this

genetic network to be solved 40,000+ sweeps for an equilibration stage (each sweep is

equivalent to solving the genetic network 10 times so that on average each variable out of

ten variables in a slave module is updated once) and 40,000+ sweeps for an

accumulations stage. The total number of sweeps to identify the genetic network of 2436

slave modules is shown in Figure (3.2) is 80,000+ sweeps. From Table (3.2), Figure (3.3),

and Figure (3.4), the solution for 2436 slave modules from over 80,000 sweeps needs a

CPU time of about one year and 6 months (considering 64090 milliseconds (ms) is

needed to solve the 2436 slave modules once), while solving the same number of slave

modules using just 4 GPUs needs about 12 days (considering 1346 ms is needed to solve

the 2436 slave modules once), which is feasible and doable. Algorithm performance

appears to plateau for 2436 slave modules somewhere between 4 and 6 GPUs in Figure

(3.4). The genome dynamics of 295 clock-controlled genes over a 48 hour window are

displayed in the attached video[36].

46

Table 3.2: A comparison of the simulation of a large clock genetic network on Kepler K-
20x GPUs vs. a Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@ 3.10GHz] Extreme
Edition Processor with 2436 clock-controlled genes providing 2436 slave modules to the
system of ODEs. The time required for solving the whole 2436 slave modules once using
–O2 and –O3 optimization flags on the CPU equals to 64090 ms while without
optimization flags equals to 159150 ms

3.3.1 ALGORITHM PERFORMANCE AS A FUNCTION OF THE NUMBER OF

SLAVE MODULES IN THE CLOCK NETWORK

In previous work, we identified a total of 2436 genes that were circadian in the N.

crassa genome[5], which is considerably more than the 292 reported clock-controlled

genes[5]. The simplest null hypothesis to be investigated is that all 2436 genes that have

a WCC binding site and are circadian in expression are in fact all clock-controlled

genes[55]. To test this hypothesis with the ensemble method would involve being able to

simulate the clock mechanism +2436 slave modules. We now do this and examine the

computational time of the algorithm as a function of the number of slave modules up to

2436 such modules.

In Figure (3.5) we depict the relationship between different numbers of slave modules

and time required for solving them using a fixed number of GPUs. Providing a brief

introduction for the Kepler K-20x Tesla architecture and the programming model helps to

elucidate the results in Figure (3.5) and Figure (3.6). The Kepler K-20x consists of 15

SMX with a maximum of TBs per streaming multiprocessor equals to 16 TBs. Thus,

#of
GPUs

GPU Time
[ms]

Speed up With –O2,
-O3 Flags

Speed up Without –O2,
–O3 Flags

1 5088 12.59630503 31.27948113
2 2733 23.45042078 58.23271131
3 1809 35.42841349 87.97678275
4 1346 47.61515602 118.2392273
5 1285 49.87548638 123.8521401
6 925 69.28648649 172.0540541
7 884 72.5 180.0339367
8 851 75.31139835 187.0152761

47

theoretically the device (GPU) can hold and run about 240 TBs simultaneously, given

sufficient hardware resources, such as a register file and shared memory. Considering the

sufficient resources, TBs do not leave a streaming multiprocessor until its execution is

finished [56], and once TBs finish their time span, the scheduler keeps launching new

TBs on these vacated SMXs for this kernel until all of the TBs have executed. For

example, from Figure (3.5), on one hand, the time required on a single GPU for solving

200 or (800/4) slave modules or TBs (each slave module assigned to exactly a TB) equals

to 462ms. On the other hand, the time required for solving 250 TBs (slave modules)

needs 823ms, almost double the amount of time. This jump in the time is due to the fact

that the device should solve theoretically 240 slave modules simultaneously until they

finish their execution, and then it should start a new pass by solving the next 240 TBs or

the rest of the available TBs simultaneously. Therefore, in this case, the 10 TBs

difference need almost the same amount of time that is required for solving of 240 slave

modules. As a matter of fact, although the theoretical number of TBs that can be run

simultaneously on the device equals to 240, in our algorithm and as it is shown in Figure

(3.5) and Figure (3.6), the number of blocks that can run simultaneously on the device is

about 224 TBs, and after this number of blocks a jump in the time occurs for even one

thread block more. The above clarifications should explain the scenario occurring on six

GPUs as is shown in blue Figure (3.5) and Figure (3.6). Based on the fact that the time of

the CPU is monotonically increasing with respect to the number of slave modules to be

solved serially, then the drop in the speed up is shown in Figure (3.6) from time to time

should be due to the jump in the time as is shown in Figure (3.5) given that the speed

up=Time used by the GPU(s)/Time used by the CPU.

48

Figure 3.5: The relationship between number of thread blocks (slave modules) to be
solved on the device and the required time. The jump in time is due to exceeding the
maximum number of TBs running simultaneously on the device. If GPU is capable of
running several N blocks simultaneously. Then from 1 to N blocks takes same time to
complete.

Figure 3.6: The relationship between number of thread blocks (slave modules) to be
solved on the device and the speed up. The drop in the speed up is due to exceeding the
maximum number of TBs running simultaneously on the device, given that the time of
the CPU is monotonically increasing.

49

3.4 DISCUSSION

 This new parallelization strategy for solving large systems of ODEs on GPUs

opens up the possibility of simulating genome dynamics. The parallelization strategy

means that it is now feasible potentially to use ensemble methods for fitting genome-

scale genetic networks when they have hierarchical structure. The need for such methods

stems from genomics data being noisy and sparsely distributed across the genome[4].

The key to this parallelization strategy is to identify hierarchical structure in the genetic

network. There is some experimental evidence that this hierarchical structure may be

widespread[57], and has been argued to be a feature of the clock network[55]. This

approach can be coupled with classic well-performing solvers, such as ARK, to make

possible model-guided discovery about genetic networks on a genomic scale[5].

The GPU is used in [58] to solve a system of ODEs for another oscillatory system, and

the maximum achieved speed up is 47-fold using a LSODA solver[59]. This system of

ODEs consists of 3 species, 6 reactions, and 8 parameters. In this paper, our proposed

parallel algorithm uses an ARK ODE solver to solve systems of ODEs and operates on a

much larger genome scale, consisting of 9744 species, 14616 reactions, and 24360

parameters. Our GPU implementation also leads to a higher speed up reaching up to 75-

fold.

Our approach can also be compared with an adaptive step size GPU ODE solver for

simulating electric cardiac activity[60]. Garcia et al.[60] developed a method for solving

systems of ~300 ODEs describing cardiac activity with a single precision accuracy and a

50

speed up of 9.07-fold while in our work here we solved a system of ~10,000 ODEs using

a double precision and a speed up of 75-fold.

 An inherent limitation of the parallelization strategy here is the use of sequential

ODE solvers, such as the ARK method. In order to calculate the trajectory at time t+h, it

is necessary to have solved with high accuracy the trajectory at time t first. The ARK

method is then inherently sequential. We recently developed an alternative

parallelization strategy using a Galerkin Finite Element Method with Hat Functions as

ODE solver[53], which is as accurate as the ARK method. It will be interesting to see

how this alternative compares with parallelization using the hierarchical structure of the

network. In comparison to [53], here in this paper another procedure using the ARK

method along with the power of GPUs are functioning to solve the large genetic network

using warp level parallelism, while in the Galerkin approach[53] is using instruction level

parallelism alongside warp level parallelism in the GPUs. The only caveat is that the

serial version of the Galerkin ODE solver is slower than ARK method and it is harder to

implement on the GPUs.

 A third parallelization strategy might involve a parallel implementation on

multiple CPUs with MPI to narrow the gap in performance between CPUs and GPUs in

Figure (3.4). We think the GPU is the preferred approach here for four reasons. One,

using MPI across multiple CPUs needs hundreds of CPU cores, a more expensive

strategy than multiple GPUs. Two, the thread on a GPU is very “lightweight” if it is

compared with the thread on a CPU. Three, sometimes launching a certain number of

51

threads on a CPU degrades the overall performance especially if the number of threads

exceeds the number of cores. Finally, the best practice for implementation of ensemble

methods has been serial implementations of solvers, and so we want to ascertain how the

use of a GPU based ODE solver changes the speed of the ensemble method relative to

best current practice.

 This methodology of the ARK method on a GPU is enabling a new approach to

understanding the kinetics of the cell on a genome scale. As captured in the attached

video, new approaches in nanotechnology are enabling the measurement of the clock in

single cells[36]. This will open a whole new area of inquiry about the clock. We can

begin to ask if the clock is truly stochastic with variation in the oscillators from cell to

cell and whether or not there is any cell-to-cell communication of oscillators in different

cells. To address these questions will require the solution to three methodological

challenges. New engineering approaches will be needed to make single cell

measurements[61]. As indicated in the video, this approach involves capturing individual

cells with microfluidics technology. New models will be needed to incorporate

stochastic behavior in the clock models [62]. While stochastic clock models have been

proposed, they have no empirical basis and have not been tested. Third, new

parallelization strategies will be needed to understand the large networks describing clock

behavior. The clock network in a single cell could involve potentially 2436 distinct

genes responding to the clock mechanism or equivalently, ¼ of the genome[5]. In this

paper, we have introduced the second of two strategies to address the fitting of genome

scale networks by the ensemble method. The time estimates in Table (3.1) implies that it

52

is now feasible to fit a genome-scale network to genome dynamics within a single cell,

like that of the clock, with ensemble methods needed to overcome noisy data that is

sparsely distributed across the genome. A 75-fold speedup of the simulation of a

hierarchical network on GPUs was achievable Table (3.1). This speedup is sufficient to

fit the entire clock network to the genome dynamics of a single cell.

3.5 CONCLUSION

In this paper we harness the power of multi-GPGPUs to solve many systems of nonlinear

ordinary differential equations that belongs to a large genetic network describing clock

genome-level dynamics using an Adaptive Runge Kutta ODE solver. Implementing the

proposed algorithm opens up a door to utilize the ensemble approach to overcome the

problem of many parameters and limited noisy genomics data on a particular network.

Consequently, understanding such networks enables us to discover the biochemistry and

genetic activity of a cell and how the cell evolves as a function of time (including its

metabolism, signal transduction, and cell cycle).

3.6 ACKNOWLEDGEMENT

This work was supported in part by the NSF under Grants NSF QSB-0425762 and the

NSF DBI-1062213 and the Department of Systems Engineering and Medical

Bioinformatics, Yarmouk University, Irbid, Jordan.

53

CHAPTER 4

4 D ISCOVERING REGULATORY NETWORK TOPOLOGIES USING ENSEMBLE

METHODS ON GPGPUS WITH SPECIAL REFERENCE TO THE BIOLOGICAL

CLOCK OF NEUROSPORA CRASSA

Ahmad Al-Omari, James Griffith, Michael Judge, Thiab Taha, Jonathan Arnold,

&H-Bernd Schüttler

IEEE ACCESS Journal

Reprinted here with permission of publisher

Received Jan 16, 2015, accepted February 1, 2015, date of publication February 3, 2015,

date of current version February 18, 2015.

Copyright@2015 by IEEE

Digital Object Identifier 10.1109/ACCESS.2015.2399854

54

ABSTRACT

Most genetic networks, such as that for the biological clock, are part of much larger

modules controlling fundamental processes in the cell, such as metabolism, development,

or response to environmental signals. For example, the biological clock is part of a much

larger network controlling the circadian rhythms of about 2,418 distinct genes in the

genome (with 11,000 genes) of the model system, Neurospora crassa. Predicting and

understanding the dynamics of all of these genes and their products in a genetic network

describing how the clock functions is a challenge and beyond the current capability of the

fastest serial computers. We have implemented a novel “variable–topology supernet”

ensemble method using Markov Chain Monte Carlo (MCMC) simulations to fit and

discover a regulatory network of unknown topology composed of 2,418 genes describing

the entire clock circadian network, a network that is found in organisms ranging from

bacteria to humans, by harnessing the power of the GPGPU and exploiting the

hierarchical structure of that genetic network. The result is the construction of a genetic

network that explains mechanistically how the biological clock functions in the

filamentous fungus N. crassa and is validated against over 31,000 data points from

microarray experiments. Two transcription factors are identified targeting ribosome

biogenesis in the clock network.

INDEX WORDS: Biological clock, General-purpose graphical processing unit, ensemble

method, supernet, systems biology, and regulatory network topologies.

55

4.1 INTRODUCTION

Systems biology provides a pathway-centered approach to understanding complex traits,

such as carbon metabolism[11], development[63], and cancer[64]. A major problem in

systems biology is reconstructing such pathways on a genomic scale[65]. Genome-wide

reconstruction of networks is particularly limited by three difficulties: (1) genomics data

are sparse and noisy with respect to the trait of interest; (2) the underlying network is

large; (3) the network topology is usually unknown. To overcome the first problem,

ensemble methods were introduced to identify genetic networks even in the presence of

sparse and noisy data[4, 50]. The key innovation was relinquishing finding one best

model consistent with the data, but instead, identifying an ensemble of models consistent

with the data available to predict systems behavior over time. To overcome the second

problem new parallel computing strategies were developed for ensemble methods on

General-Purpose Graphics Processing Units (GPGPUs)[66, 67]. The models being fitted

were described by systems of nonlinear ordinary differential equations (ODEs) as a first

approximation, and the solution to the second problem involved finding new ways to

solve large (~10,000 variables) first-order nonlinear ODEs. Here we introduce a novel

computational approach of network ensemble discovery that addresses all three problems

including identifying a network of unknown topology on a genomic scale and illustrate

its application to the large network of genes and their products associated with circadian

rhythms[66]. The associated biological question is: By what mechanisms do such a small

module as the clock mechanism, comprising only a single transcription factor (TF)

complex, exert control over nearly one quarter of the entire genome? In the example

below, the genomic scale network for the clock has ~38,000 parameters and ~31,000 data

56

points. Yet by averaging over the 40,000 members of the ensemble insights can be

obtained into how the circadian network is organized, and predictions can be made about

the whole system of 2,418 genes[5]. A video summary of the solution to this central

problem in systems biology is attached.

4.1.1 MODEL

Our model below has two components, an unknown regulatory component

(circles and ellipses in Figure (4.1) and Figure (4.2)) and the modules that control the

expression of individual genes under clock control (boxes in Figure (4.1) and Figure

(4.2)) with partially unknown regulatory topology. Our approach here rests on the key

idea that any network we may wish to reconstruct, hence referred to as the “true net”, can

be represented as a particular special case of a much more general network model,

referred to as the “variable-topology supernet”. This is illustrated in Figure (4.1) and

Figure (4.2) for a simple hierarchical transcriptional network, in which the clock

transcription factor WCC regulates 5 other transcription factors which in turn may

regulate hypothesized clock-controlled genes (ccgs) or be regulated by WCC directly.

Such genes will be referred to as putative ccgs.

The hypothetical true net in Figure (4.2) consists of specifying how each putative

ccg is regulated. The genetic network thus has an unknown true topology. Its supernet in

Figure (4.1) consists of the six regulatory species regulating each putative ccg. The

network kinetics, i.e., how fast each gene is converted into its product(s), is then

governed by the reaction rate coefficients assigned to each reaction link, both in the true

net and in the supernet. Clearly, the kinetics of the supernet will become identical to that

57

of the true net if we set to zero all supernet rate coefficients for those supernet reaction

links which are absent in the true net; and if we set the supernet rate coefficients to the

corresponding true net values for the subset of links that are present in the true net. We

refer to this situation by saying that the true net of Figure (4.2) is “embedded” in the

supernet in Figure (4.1).

The crucial point is that any network involving 2,418 genes can be embedded in

the supernet of Figure (4.1). While the true net is initially unknown, we can perform a

supernet ensemble simulation to find a MCMC sample of rate coefficients[4, 7] that is

consistent with the data. The simplest hypothesis is shown in Figure (4.3): the clock

transcription factor, WCC, alone is hypothesized to regulate all 2,418 genes.

 Figure (4.1) and Figure (4.2) show the whole genetic network consists of 2,418

slave modules and a master module for the clock mechanism. There are 5 transcriptional

regulators under clock control of the clock transcription factor, WCC, to be solved on the

GPU[4, 66].

58

Figure 4.1: Supernet. Where each of the 2,418 genes is hypothesized to be regula4ted,
potentially, by all of the six active transcription factors.

Figure 4.2: True net. The inferred regulation from fitting the supernet to available data by
the ensemble method. Each of the 2,418 genes is inferred to be regulated by some of the
six transcription factors.

59

Figure 4.3: The simplest model is one in which all 2,418 genes are regulated by one
transcription factor, WCC. Molecular species (i.e., reactants or products) in the network
are represented by boxes. The white-collar-1 (wc-1), white-collar-2 (wc-2), frequency
(frq), and clock controlled gene (ccg) gene symbols are sometimes superscripted 0, 1, r0,
r1, indicating, respectively, a transcriptionally inactive (0) or active (1) gene or a
translationally inactive (r0) or active (r1) mRNA. The notational convention for protein
species is all capitals. A phot (box in yellow) symbolizes the photon species. Reactions in
the network are represented by circles. Arrows pointing to circles identify reactants;
arrows leaving circles identify products; and bi-directional arrows identify catalysts. The
labels on each reaction, such as S4, also double as the rate coefficients for each reaction.
Reactions with an A or B label are either activation or deactivation reactions. Reactions
labeled with an S, L, or D represent transcription, translation, or degradation reactions,
respectively. Reactions without products, such as D7, are used to indicate decay
reactions. Reaction labeled C1 produces an alternative mRNA for the wc-1 gene.
Reactions labeled C2 or C3 form complexes (WCC) with or without light. All of these
reaction labels double as rate constants. In the more realistic model studied in this paper,
an additional five proteins, shown as “ellipses” in Figure (4.1), are hypothesized as
potential alternative regulators for each ccg. Redrawn from Al-Omari et al.[66]

4.1.2 THE SUPERNET

The genetic network exemplified in Figure (4.3) is one example of a genetic

network consisting of a master clock module controlling 2,418 slave modules (putative

60

ccgs and their products). This network specifies a system of nonlinear first order

differential equations under mass action kinetics. The rate coefficients are the labels on

the reactions in Figure (4.3). A gene, such as frq0, in the off state is activated into the on

state, frq1. This active gene is transcribed into a messenger RNA (mRNA), frqr. The

mRNA is translated into a protein, FRQ. The FRQ protein is the digital readout to the

cell on the time of day. IF FRQ is high, it is dusk; if FRQ is low, it is dawn. The FRQ

protein is the oscillator of the system. In turn the genes wc-1 and wc-2 are transcribed,

and their mRNAs, translated, to produce the activator (WCC), which starts the oscillator.

One of the functions of the FRQ protein is to destroy the activator WCC. The result is a

negative feedback loop that contributes to oscillations. The nonlinear component of the

entire network in Figure (4.3) is the clock mechanism in Figure (4.3) leading to

oscillations.

 All ccg slave modules have the same mathematical form of ODEs shown

below[4], but each has its own independent values, treated as ensemble MC variables[4,

8, 9, 50], for rate coefficients and initial conditions, as follows:

 dg!
dt = B!g! − A!g!S t (1)

dg!
dt = A!g!S t − B!g! (2)

dg!
dt = S!g! − D!"g! (3)

dg!
dt = L!g! − D!"g! 4

61

The dynamical variables here are the concentrations of the putative clock-controlled gene

(g0 and g1 in the inactive and active state, respectively), its mRNAs (gr), and its protein

(gp). See Figure (4.3) legend for parameters Ac, Bc, Sc, Lc, Dcr, and Dcp descriptions.The

supernet allows for possible regulation of the putative ccg by any one of the six possible

ccg-regulators, with S(t) denoting the weighted average of activator protein signals from

all six regulators:

S(t)= µμ! Reg! t ! + r!!
!
!!

!
µμ! Reg! t !!

!!! (5);

The “relative binding strength”, µk, is the weight of the kth regulator’s contribution to the

targeted ccg’s activation signal, with µk ≥ 0 and ∑k=0
5 µk = 1; [Regk] is the concentration

of regulator protein k; rk is the time-average of Regk(t) or the initial conditions defined

below for k=0,…,5 (see Materials and Methods); and m is the Hill coefficient for the

regulators. Regulators k=1-5 are themselves ccg products, assumed to be regulated by

WCC, i.e., having a fixed µ0=1. For any other, non-regulatory ccg, the µk, are ensemble

MC variables, randomly varied to fit the data.

4.1.3 THE PARALLEL ALGORITHM FOR IMPLEMENTING THE ENSEMBLE

METHOD ON A GENOMIC-SCALE GENETIC NETWORK OF UNKNOWN

TOPOLOGY

An ensemble method was used previously[4] to identify the clock mechanism

embedded in Figure (4.3) and took 60 days of simulation using older CPUs[4]. The

ensemble method was used herein to describe and discover the other larger part Figure

(4.3) (labeled subunits 1 through 2,418), consisting of a suite of 2,418 circadian genes.

We previously designed a method to solve a large genetic network consisting of systems

of ODEs with ~10,000 dynamical variables, using warp-level parallelism in which each

62

block has a warp (32 threads) and in which Adaptive Runge Kutta[34] (ARK) is used to

solve the system of ODEs with shared memory techniques. Here, we have developed

significantly improved and more efficient algorithms that are applicable for simulating

genetic networks, where putative ccgs are regulated independently of each other and each

ccg maintains its own data (not using shared memory). Figure (4.4) shows a comparison

between the previous algorithm[66] (in red), which uses ARK with a block of 32 threads

and shared memory to solve for a slave module, and the current algorithm(in blue) ,which

uses ARK with a single thread to solve for a slave module. The speed up of the current

algorithm using a single GPU for solving 2,418 systems of ODEs once in Figure (4.4)is

equal to 252-fold over a comparable CPU described [66], whereas the speed up of the

previous algorithm to solve the same number of ODEs (~2,418) using 8 GPUs is equal to

75-fold over the same CPU. Although the current ARK algorithm is much faster, the

previous one has an advantage over the current one in that it is applicable for a genetic

network that has a dependency between genes due to the use of the shared memory.

These two ARK algorithms can be applied to solve for both linear ODEs (the putative

ccg genes) and non-linear ODEs (the clock mechanism) of genetic networks in Figure

(4.3), implemented on GPUs, are now described.

A. THE ADAPTIVE RUNGE KUTTA ALGORITHM FOR SOLVING GENERAL
ODE SYSTEMS ON THE GPU

The algorithm uses a common parallelization strategy that increases the number of thread

blocks (TBs) per streaming multiprocessor and decreases thread blocks size (number of

threads per block); for instance, we use a block of 32 threads. This provides more

independent warps from other thread blocks when one warp is stalled[54]. In essence,

63

this new algorithm implies that each thread is responsible for solving a system of ODEs

(linear or non-linear) with different parameters and initial conditions using a modified

ARK algorithm that accommodates the GPU architecture. This algorithm utilizes

registers instead of shared memory since there is no dependency in the data among slave

modules. The achieved speed up is shown Figure	
 (4.4)	
 and Figure	
 (4.5) with the GPU

time as function of the number of slave modules (putative ccgs). An ensemble solution

routinely requires 80,000 sweeps[4], each sweep being equal to the number of unknown

parameters (16 parameters for each system of ODEs x 2,418 slave modules). Solving for

2,418 slave modules once on a CPU took 59,515 milliseconds as shown in Figure	
 (4.5).

The predicted CPU time for one ensemble run is 2.4 years. In contrast, solving the same

number of slave modules using a single GPU and this new parallel algorithm needed

about four days (considering 236.5 ms is needed to solve the 2,418 slave modules once as

shown in Figure	
 (4.5)). However, the time of 236.5 ms varies because MCMC will

generate for every proposed update a different set of parameters for the ODEs being

solved. Hence the number of iterations in the ARK method will increase or decrease

based on an ODEs’ set of parameters. We identified this genetic network in Figure	
 (4.1)

using the ARK parallelized algorithm and the MCMC algorithm in about 4 months. The

algorithm is detailed in Materials and Methods.

64

	

Figure 4.4: Our new algorithm with no shared memory and one slave module per thread
(in Blue) and with a speedup of 250 to 650-fold outperforms our published algorithm
with shared memory (in red) and a block of 32 threads per slave module and with a 13-75
fold speedup. The performance of each algorithm is given both as a function of the
number of GPUs and the number of slave modules. These algorithms compute the
dynamics of genomic scale networks on GPU(s) and make tractable ensemble methods
on genomic scale networks. The dips in the speed up are due to exceeding the maximum
number of thread blocks running simultaneously on the device, given that the time of the
CPU is monotonically increasing as in Figure (4.5).

65

Figure 4.5: The time to solve a genome scale network makes tractable ensemble methods
for genome scale networks on a GPU. The number of thread blocks (slave modules) to
be solved on the device (Red) and on the CPU (Blue) determines in part the required
computational time. The left Y-axis shows the CPU time while the right Y-axis shows the
GPU time. The dips in the GPU time are due to exceeding the maximum number of
thread blocks running simultaneously on the device. If a GPU is capable of running N
blocks simultaneously, then from 1 to N blocks takes the same time to complete. The
time of the CPU is monotonically increasing as function of slave modules.

B. THE NUMERICAL EXACT INTEGRAL SOLUTION ALGORITHM FOR
SOLVING LINEAR ODE SYSTEMS ON THE GPU.

Since the ARK method still needs significant time for solving this large system of ODEs

and since an alternative and a control to the ARK method is desirable, an independent

numerical exact integral (EI) solution for solving the first order linear ODEs in Eqs. (1-4)

was implemented using Gauss-Legendre quadrature[34] which fits exactly our ODEs

system described above in this paper, (see Materials and Methods). We found no

difference in the resulting solutions between the two methods as shown in Figure	
 (4.6),

where the max absolute error was 10-4 using just 32 Gauss-Legendre quadrature points.

This solution’s accuracy is sufficient for these biological problems[8]. The speed of the

66

numerical ODE solution did not depend on the set of parameters in a MCMC update

while it does in the case of ARK method. With the numerical exact integral solution

algorithm we solved the whole problem on the GPU within ~12 hours per MCMC,

instead of 4 months by ARK: a 240-fold speed up over ARK on the same GPU. However,

with both methods being highly accurate, the EI method applies only to first-order linear

ODEs (putative ccg part in Figure	
 (4.3)), while ARK applies to any ODE system as

mentioned before.

Figure 4.6: The solution of g1(t) using the numerical exact and the ARK methods using
NG =32 Gauss-Legendre quadrature points over the time period [0,48] h for the genetic
network of the biological clock of N. crassa agree. NG=6 between the red dots and the
max absolute error is 10-4

4.2 MATERIALS AND METHODS

All microarray data used for analysis in this paper came from Accession 13 entitled

“cycle 1” in the public database FFGED[68], and the description of the data collected

are described in Dong et al. [9]. In the cycle 1 dataset there are 2,436 features. Genes

that are QA-responsive were removed so as not confound results using later datasets

67

involving a QA-responsive promoter, leaving 2,418 genes for analysis. The “cycle 1”

data are also attached in the supplement.

4.2.1 OBTAINING THE REGULATOR [REGK] PROTEIN CONCENTRATIONS

A) The protein concentration [Reg0(t)] ≡ [WCC(t)] can be obtained from the earlier

biological clock ensemble simulations[4] on the simulation time interval [T0, T1]

= [0, 48]h.

B) Due to lack of CCG protein data for the 5 regulatory ccg modules, k=1,…,5 their

regulatory protein product concentrations, [Regk(t)] ≡ gp,k(t), are obtained as

follows:

1) Obtain an estimate for rate coefficients 𝐿! and 𝐷!", for the regulatory ccg-module

from the clock parameter set of the earlier clock ensemble simulations [4]

2) Obtain, for a sufficiently dense t-grid on simulation time interval [T0, T1], the

ensemble averages for the messenger RNA concentrations mk(t) ≡ gr,k(t), for the

5 regulatory ccg modules, k=1,…,5. Here, S(t) is replaced by [WCC(t)] in the

respective Eqs. (1,2) for each of the respective modules, k=1,…,5, under the

regulatory model assumption that the regulatory ccgs are activated by WCC only

(see Figure	
 (4.1)). Also, [WCC(t)] is again taken from the earlier ensemble

simulation results for the biological clock[4] .

3) Given as inputs the rate coefficient estimates, L! and D!", and the mRNA

concentration, mk(t) ≡ gr,k(t), for each regulatory ccg module k=1…5, we can

solve Eq. (4) for the module’s protein product [Regk(t)] ≡ gp,k(t). That is, written

in terms of mk(t) and [Regk(t)], Eq. (4) becomes

68

𝑑 𝑅𝑒𝑔!
𝑑𝑡 = 𝐿!𝑚! 𝑡 − 𝐷!" 𝑅𝑒𝑔! 𝑡 ;

𝑘 = 1,… ,5

which is solved for [Regk(t)] on simulation interval [T0, T1] = [0, 48] h with

initial condition rk by

 [Reg! t] = r!e!!!"! + e!!!"(!!!")
!

!!!!
 L!m! t! dt!;

k=1,…,5

To choose a value for the initial condition rk which is comparable in magnitude to typical

values of [Regk(t)] over the observation time interval [T0, T1], we require that rk

matches the time average of [Regk(t)]:

r! =
!

!!!!!
[Reg! t] dt

!!!!
!!!!

 ; k=1,…,5

Inserting the foregoing ODE solution equation for [Regk(t)] into the latter

equation for rk, , we obtain a simple linear algebraic equation for rk which is

easily solved, given the inputs L!, D!" and mk(t) on time interval [T0, T1],

These time-averaged, and also initial concentration values serve as the rk -

input values in Eqs. (5) and (10-12).

4.2.2 ENSEMBLE METHOD FOR DISCOVERING A GENOMIC-SCALE NETWORK

OF UNKNOWN TOPOLOGY:

There are two phases in the ensemble method: in the equilibration phase parameters

values are found that allow the ODEs solution to fit to the experimental data, and in the

accumulation phase many models or equivalently, sets of parameters, that represent the

experimental data well are accumulated. Averaging over these models captured in the

69

accumulation phase allows prediction about how the described genetic network will

behave. Thus, averaging many solutions of the ODEs (obtained by a MCMC method

utilizing the Metropolis algorithm) with different initial conditions and parameters values

allows an assessment of fit to the experimental data.

For best performance, unlike the equilibration phase which runs on a single GPU, the

accumulation phase can be run in two GPUs, one for solving ODE solutions that are used

in the χ2-calculation for the Metropolis Monte Carlo update; and the other for calculating

the results for the “MC Scores”, i.e., the ODE model solutions actually included in the

ensemble MC sample to average and compare to the experimental data. The former ODE

solutions (for χ2-calculation) need to be calculated only for the 13 time-grid points at

which observations were made; the latter (for inclusion in the ensemble MC sample) are

required, less frequently, but on a much denser grid of time points. Moreover,

overlapping the CPU and GPU jobs was considered and implemented in our simulation

code whenever possible. A detailed description of the ensemble MC method on GPUs for

the supernet is given right below.

The following steps describe the algorithm for the ensemble method[4, 50] for fitting and

discovering the 2,418 genes regulatory network.

A) Metropolis Monte Carlo updating algorithm for θ- and µ-variables, in model Eqs.

(1-5) where all six regulators, k=0,1,2,3,4,5, are activators:

I. Proposal step (Monte Carlo): A Mersenne Twister algorithm[69] residing

on the CPU is employed to draw all required random numbers u ∈ [0,1]

from a uniform distribution. In the proposal step we first decide randomly

for each of the 2,418 ccg slave modules, with 50% probability, to either

70

(a) update one of the module’s 10 so-called θ-variables[4] [initial

conditions and rate coefficient values in Eqs. (1-5) or in Eqs. (3,4,10,11)]

or (b) to update a pair of the module’s 6 weights, µk [CCG-Regulators

binding strengths]

a) The new θ-vector, θ’, for each ccg module is generated from the

old θ≡ [θ1 ,…, θ10] according to θ’j = θ’j + SWj (2u-1) where u ∈

[0,1] is a uniformly distributed random number drawn for each

module; the updated θ-component number, j, is likewise drawn

with uniform probability from j ∈ {1,2, …,10}; and 𝑆𝑊! is a step

width variable assigned to every initial condition and rate

coefficient MC variable, θj. Each SWj is to be continually adjusted

for optimal MC equilibration.

b) The proposed new regulator weights, µk‘, are from old µk in a total-

weight-preserving pairwise updating step, according to the following

procedure, for each ccg module:

1- A pair of weight indices, i and j, each from {0,1,…,5}, is

selected with uniform probability, with i≠j.

2- The new weights are calculated as µ’i =µi -Δµ and µ’j =µj +Δµ;

whereas µ’k =µk for all other k, with k ≠i and k≠j , and the

random change Δµ is generated as follows:

71

3- A step-width factor gji =r fji is calculated where r is a uniform

random number, r ∈ [0,1]; and fij is the max step-width value,

assigned to each weight-preserving µ-updating pair and

continually adjusted for optimal MC equilibration. Each fij

must be chosen to obey 0<fij <1 and fij= fji;

4- Then set Δµ=gjimin(µi, 1-µj) which ensures that Δµ≤ gjiµi ≤

µi and Δµ ≤ gji(1-µj) ≤ 1-µj . This then also ensures that

the proposed new weights obey 𝜇! ′ = 1!
!!! and 0≤ 𝜇!′ ≤

1;

5- For the 5 regulatory ccg modules set the weights for their own

regulation to µ0=1 and µ1,2,3,4,5=0 for the 𝑅𝑒𝑔!,!,!,!,! based on

the model assumption that all 5 regulators are active regulatory

ccgs are regulated only by Reg0 ≡ WCC

II. The CPU sends the 10 θ’s and the 6 µ’s for each ccg module to the GPU.

An ARK ODE solver resides on the kernel function (executed on the

GPU) and solves the 2,418 systems of ODEs of the slave ccg modules in

parallel and sends the solution back to the CPU.

III. Accept/Reject step (Metropolis): The ODE system, Eqs. (1-5) or (10-12)

for each non-regulatory ccg depends only on the six regulator proteins,

but not on any other non-regulatory ccg modules. Furthermore, the

regulator proteins are assumed to be independent of all non-regulatory ccg

modules. As a result, the θ- and µ-variables of each non-regulatory ccg

are also statistically independent of the θ- and µ-variables of all other

72

non-regulatory ccg modules in joint the ensemble likelihood function[4]

for the whole system of all ccg modules. In other words, the whole-

system ensemble likelihood function[4], Q, factorizes into independent

single-ccg likelihood functions, Q(n), for each non-regulatory ccg module

n. For that reason we can then perform the accept/reject steps of the θ-

and µ-variables separately and independently for each non-regulatory ccg

module. We thus apply the standard Metropolis criterion separately and

independently to each non-regulatory ccg, each with the Metropolis

acceptance probability Pacc
(n)=min [1,R(n)], as defined below. By drawing

a uniform random number r(n) ∈ [0, 1], the proposed change of the θ- or

µ- variables, for a given ccg n, is accepted when r(n)<Pacc
(n) , else rejected.

Here, the probability ratio R(n) is given in terms of the single-ccg

ensemble likelihood function Q(n)(θ, ψ, µμ) = (1/Ω(n)) exp[-H(n)(θ, ψ, µμ)]

by [4]

• R(n)=!
(!) (!!,! ,!!)
!(!) (!,! ,!)

= !"# (!!(!)(!!,! ,!!))
!"# (!!(!) ! ,! ,!)

=𝑒!!!(!)

• ΔH(!) = 𝐻 ! (𝜃!,𝜓 , 𝜇′)− 𝐻 ! (𝜃 ,𝜓 , 𝜇) =
!
!
[𝜒! ! 𝜃!,𝜓 , 𝜇! − 𝜒! ! 𝜃 ,𝜓 , 𝜇]

• 𝜒! ! 𝜃 ,𝜓 , 𝜇 =
!" !!,!

!"#. !!" !! ! ,! !!! !,!

!!,!
!"#.

!!,!
!"#.

 !
!!!

!

73

 Here n=1,2,…,N and N=2418-5=2413 is the total number of non-

regulatory ccg modules. M=13 is number of observation time points, tm,

at which experimental ccg mRNA concentration data, 𝑦!,!
!"#. have been

taken for ccg-module n. These experimental mRNA data are compared in

the χ!- function to the corresponding ODE model solutions for the

mRNA concentration, 𝐹! 𝜃, 𝜇 ≡ 𝑔!(𝑡!;𝜃 , 𝜇), obtained at time tm for

ccg module n, given the module’s ensemble MC variables (θ , µμ). We use

log-concentration difference residuals in the χ!-function because it is

"scale-factor free", i.e., it assigns the weight to each data point in χ!

independent of scale factor fluctuations. Data points (n,m) are assigned to

scale factor classes, c, such that two data points belong to the same class

if they both share the same unit conversion factor from experimental

concentration units (fluorescent photon counts) to model concentration

units; and c(n,m) denotes the class to which data point (n,m) has been

assigned [4]. The log of the unknown unit conversion factor, ψc, for each

class c is treated as an ensemble MC variable[4], on the same footing as θ

and µ. The updates of the ψ-variables are performed separately and with

a different procedure than θ- and µ- updates, as described below. In our

experimental data sets, each ccg slave module actually has the same log

unit conversion ψ! , i.e., there is only one scale factor class. However,

our approach applies generally to data sets requiring multiple scale factor

classes.

74

B) Müller-Box updates of unit conversion factor variables ψ .

At fixed θ and µ for all ccg modules, the whole-system ensemble likelihood

function, Q= !
!!! Q(n), results in an independent 1D Gaussian distribution for

each log unit conversion factor variable ψ!. We therefore update each ψ! by

drawing it from the appropriate 1D Gaussian distribution, without Metropolis,

using the Müller-Box algorithm[70]. Since all θ and µ are fixed, the draw from

this Gaussian distribution does not require a new solution of the model ODE

system. Also, using Müller-Box, we achieve100% acceptance for each ψ!-update.

The ψ!-updates are therefore very fast and are performed after each single-θ and

each pairwise µ-variable update.

C) Metropolis Monte Carlo updating algorithm for θ- and µ-variables, in model

Eqs.(10-12) where only five regulators, k=0,1,2,3,5, are activators and regulator k=4

(CSP-1) is a suppressor:

For this model, all six regular binding strengths, µk , are still constrained by

positivity µk ≥ 0 for k=0,1,…,5. However, only the weights of the five

activators, k=0,1,2,3,5, but not k=4, are subject to the normalization condition,

 !
!!!,!!! µk=1, while the weight of the suppressor (CSP-1) µ4≥ 0 has no upper

bound. (To avoid numerical problems in the ODE solution, in the MC simulations

a very large upper bound, µ4< 100 , was actually imposed.) This modification on

the weight constraints will allow both the suppressor and one of the five activators

to fully bind to the ccg at the same time and thus compete in the ccg’s regulation.

75

In this case, only the five activator weights, µ0, µ1, µ2, µ3, µ5, are updated by the

pairwise MC updating procedure b) described above, while weight µ4 is treated

like a θ-variable using the single-variable Metropolis MC updating procedure a).

The single-variable Metropolis updating procedure is of course also used again

for the θ-variables of each ccg module.

4.2.3 AN ENSEMBLE METHOD USING THE ADAPTIVE RUNGE KUTTA ON THE

GPU:

The ARK algorithm can be used for solving system of linear and non-linear ODEs. In this

paper, the ARK method is implemented on the GPU by assigning a thread to solve for a

single system of ODEs out of 2,418 systems, so in essence, we have 2,418 threads

solving the same system of ODEs, but each has a different set of parameters. We used the

registers on the GPU as they are the fastest memory holder to define any variable that is

required by the ARK method. On the other hand all of constant data, for instance, the

interpolation files, which are six files one for each regulator, and all of the ARK’s

constants to be defined on the constant memory of the GPU. This code organization

shows the best performance among other code organizations that were tested.

Algorithms were coded in CUDA/C++ and are attached as a supplement and in

sourceforge.net under the keyword vtens_ARK_clock1.

76

4.2.4 AN ENSEMBLE METHOD USING THE NUMERICAL EXACT SOLUTION ON

THE GPU:

The system of ODEs described above can be solved using a numerical exact integral

solution formula for solving the first order linear ODEs described above on the GPU

using CUDA/C++ (code attached) and in sourceforge.net under the keyword

vtens_EI_clock1.

1. The general first order linear ODE

𝑑𝑦(𝑡)
𝑑𝑡 + 𝑝 𝑡 𝑦 𝑡 = 𝑞 𝑡 (6)

is solved subject to initial condition 𝑦 𝑡 = 𝑦! at time 𝑡 = 𝑡! by:

𝑦 𝑡 = 𝑦!𝑒!!(!) + 𝑒!! ! 𝑒! !!!
!!

𝑞(𝑡!)𝑑𝑡! (7)

 ; where 𝐽 𝑡 = 𝑝(𝑡!)!
!!

𝑑𝑡′.

To avoid numerical overflows of the exponential function in the integrand, eJ(t’),

we rewrite and numerically implement Eq. (7) as follows:

𝑦 𝑡 = 𝑦!𝑒!!(!) + 𝑒! !!)!!(!
!

!!
𝑞(𝑡!)𝑑𝑡! (8)

2. Use the foregoing formula to solve the ODE for 𝑔!(𝑡), with 𝑔! 𝑡 replaced by

𝑔! 𝑡 = 𝑔!"! 𝑡 - 𝑔! 𝑡 ; where quantity

𝑔!"! 𝑡 is the total gene concentration which is constant in time t, and given

by: 𝑔!"! 𝑡 = 𝑔! 𝑡! + 𝑔! 𝑡! ; where 𝑔! 𝑡! and 𝑔! 𝑡! ; are the initial conditions

for 𝑔!(𝑡) and 𝑔!(𝑡), imposed at time 𝑡!=0

3. Use the solution for 𝑔!(𝑡) (tabulated and interpolated) and the same formula, Eq.

(7), to solve the ODE for the RNA concentration, 𝑔!(𝑡)

77

4. Use the solution for 𝑔!(𝑡) (tabulated and interpolated) same formula, Eq.(7), to

solve the ODE for the protein concentration, 𝑔!(𝑡).

5. The Gauss-Legendre (GL) quadrature method[71] approximates the integral for a

function 𝑓 𝑡 with t ∈[a, b] in terms of GL weights (𝑤!
!,!), GL roots (𝑡!

(!,!)),

for a given number of integration points, NG , with k∈{1,2,…, NG} as follows:

𝐼! = 𝑓 𝑡 ≈!
! 𝑤!

!,! 𝑓(𝑡!
(!,!))!!

!!! (9)

In this paper, we used NG =32 points to compute each 𝐽 𝑡 for the t-grid used in

Eq.(8) and NG =6 points in between each of these 32 t-grid points to compute

𝐽 𝑡′ for the t’-grid used in Eq. (8). The algorithm used to compute the GL

weights and roots is previously described[72].

4.2.5 REGULATORY NETWORK WITH CSP-1 (NCU00045) AS A REPRESSOR:

Fitting of the five distinct models in Figure (4.11) by MCMC using the ensemble method

with the numerical exact solution was replicated twenty times for a total of 100 MCMC

simulations. As can be seen in Figure (4.11) the χ2 distributions are approximately

normal, which implies that the mean of each of the χ2 distributions (χ2
ave) is going to be

normal. We performed a one-way analysis of variance on the average χ2
ave with the data

in Table (4.1).

A one-way analysis of variance was performed on the average chi-squared values

in Table (4.1)[73]. The analysis of variance is reported in Table (4.2). There is a

significant difference at less than 0.0001 level in the average chi-squared values in Table

(4.1). We then used the highly conservative Scheffe multiple comparison test to conclude

78

that only the ensembles with all activators and m=1 was significantly worse than the

ensemble with a repressor (m=4) and 4 activators at the 0.05 level[73]. The remaining

four model ensembles (other than the ensemble with all activators and m = 1) could not

be distinguished from the latter model ensemble with a repressor (m =1) and 4 activators

(m=4). There is too much overlap in the distributions of the chi-squared statistics across

the respective ensembles to distinguish them as reported in the body of this work and

Figure (4.11).

Table 4.1. Average χ2ave in 20 replicates of each of 5 model ensembles with CSP-1 as
activator or repressor and varying Hill coefficients. Models tend to perform
progressively worse from left to right. In the second and third columns the CSP-1 protein
is hypothesized to be a repressor with Hill coefficient for the repressor being 2 or 4 while
the remaining regulators are hypothesized to be activators. In succeeding columns all
regulators are hypothesized to be activators with varying Hill coefficients.

Model
(Replicate)

Repressor(m=4)
and 4
activators(m=4)

Repressor(m=2)
and 4
activators(m=4)

All activators
(m = 4)

All activators
(m = 2)

All activators (m
= 1)

1 65969 66134 65513 66141 68527
2 64729 64525 64317 64897 67155
3 65437 65779 66185 66883 69246
4 63095 63260 63694 64190 66787
5 63273 63457 63706 64251 66702
6 66287 65673 65774 66356 68758
7 65168 65330 65946 66515 69026
8 67354 66783 65820 66426 68857
9 65032 65263 66122 66640 68944
10 63606 63875 64065 64974 67863
11 65025 65222 66124 66631 69180
12 65078 65235 66085 66775 69109
13 62969 63317 63438 64526 66478
14 64868 65042 66077 66481 68803
15 63541 63610 66077 64792 67042
16 63832 64065 64849 65101 67635
17 63146 63323 63473 64114 66530
18 75717 75282 68817 69517 72172
19 66710 71261 69293 69351 72234
20 66879 66713 67618 68453 71100
Average 65386 65657 65650 66151 68607

79

Table 4.2 One-way analysis of variance on average χ2
ave in Table (4.1) across 5 model

ensembles of regulation of a circadian network. The 5 model ensembles are listed in
Table (3.1).

Table 4.3 Primer pairs for target genes (NCU00685, NCU09843, NCU00476,
NCU04166, and NCU08903) and endogenous controls (NCU05995 and rDNA).

4.2.6 REAL-TIME QUANTITATIVE POLYMERASE CHAIN REACTION (RT-

QPCR) OF REGULATOR TARGETS FOR CIRCADIAN RHYTHM TABLE

(4.5):

Knockout strains were obtained for NCU01640 and NCU06108[74] and crossed to a bd

strain (Fungal Genetics Stock Center Strain 1858 or 1859, respectively) to generate the

double mutants, bd, NCU01640KO and bd, NCU06108KO. Each of these double mutants

were assayed for circadian rhythms in the 5 target genes in Table (4.5), using ubiquitin

and rDNA as controls over a 48 h window. Replicate cultures of each strain were grown

in liquid culture and synchronized by an average of 26 h of light (7- micromoles per Liter

per second per meter squared) and then transferred to the dark to assay circadian rhythms

Source of Variation Degrees of Freedom Sum Of Squares Mean Squares F
Between Models 4 140351655.14 35087913.79 7.22
Between replicates within Models 95 461653940.25 4859515.16
Corrected Total 99 602005595.39

Locus Primer ID Strand Primer Sequence
NCU00685 685.PB.3i-F Forward 5'- ACG ACG TTG AGC TGC ATT T -3'
 685.PB.3i-R Reverse 5'- TTT GTA AAC GGT CGT CGC AG -3'
NCU09843 9843-3F Forward 5'- AGA TGG CGA TTA TCA CGA ATG G -3'
 9843-3R Reverse 5'- TTC CAT TCC CTT TCC CTT CC -3'
NCU00476 476-3F Forward 5'- CTA CAA AGT CCC TAC CCA TCT G -3'
 476-3R Reverse 5'- GTA ATC TCA TCC TCG CCC TG -3'
NCU04166 4166-3F Forward 5'- CCT GCG AGT CGA TGA GTT G -3'
 4166-R Reverse 5'- CAA TGA GAG CGT TGA TGG TG -3'
NCU08903 8903-3F Forward 5'- GTC ACC GCA TCA CTC TCC -3'
 8903-3R Reverse 5'- ACA AAA GAC GGG TGG CAG -3'
NCU05995
(polyubiquitin) ub-1F Forward 5'- CCG TGG CGG CCA GTA A -3'
 ub-1R Reverse 5'- TCT GAT TCT TGA TGA CGA GCA AG -3'
 (rDNA) rD-F Forward 5'-TCA AGC CGA TGG AAG TTT GAG-3'
 rD-R Reverse 5'-TGC GGC CCA GAA CAT CTA A-3'

80

of target genes, a cycle 1 experiment[5]. In these experiments the total growth time (50

h) of 13 replicate cultures was kept constant, and one flask was harvested for cells every

four hours over the 48 h observation period in the dark (D/D).

 Total RNA was harvested from the 13 cultures of each strain, each at a different

time point using a Spectrum Plant Total RNA kit (Sigma-Aldrich, St. Louis, MO, USA,

Inc.). All RNA samples were then treated with DNase (# EN0525, Thermo Scientific,

Pittsburgh PA, USA) according to manufacturer’s protocol (but omitting the supplied

buffer). The quality of the 26 RNA samples was assessed using an Agilent Technologies

RNA 6000 Nano LabChip (#5067-1511, Agilent Technologies, Inc., Santa Clara, CA,

USA) on an Agilent Technologies, Inc. 2100 Bioanalyzer , yielding RNA Integrity

Numbers (RIN) between 6.0-6.3. cDNA synthesis was carried out with a Superscript III

Ist Strand cDNA Synthesis Kit (Invitrogen, Inc., Grand Island, NY USA 18080-051).

RT-qPCR was carried out on an ABI-Prism 7500 with a Brilliant III Ultra-fast SYBR

Green qPCR Master Mix(#600882, Agilent Technologies, Inc.) or Brilliant II SYBR

Green qPCR Master Mix(#600828, Agilent Technologies, Inc.).

 For each target gene in Table (4.5) three primer pairs were tried and one selected

based on amplification plots and disassociation curves Table (4.3). Two genes were

considered for endogenous controls, 18S rDNA and ubiquitin. Both endogenous controls

had expression levels that were aperiodic, but ubiquitin had RNA levels more comparable

to those being measured in the targets and was selected as the endogenous control. The

reference time point was 48 h for relative change in expression. All selected primers had

81

a single amplification product from the disassociation curves, but the peaks for the

NCU04166 and ubiquitin primers in the disassociation curve were broader than the rest.

The five primers selected for the target genes and endogenous controls were validated by

5, 4-fold dilution series with correlations of at least 0.97[75]. All reactions were

compared to a control reaction only missing reverse transcriptase. These -RT controls

differed by ~2-5 cycles from the start of amplification from those with reverse

transcriptase. No-template controls tended to amplify after cycle 34, if at all, suggesting

minimal random contamination during qPCR plate setup. Relative gene expression (RQ)

was quantified by the ΔΔCT method, and the average threshold cycle for each time point

was normalized to ubiquitin at 48h for each strain. Periods of RQ series were estimated

by fitting a sinusoid by the method of maximum likelihood as described previously[76].

The parameters, namely y-intercept, amplitude, period, and phase, were computed by

maximum likelihood scoring initialized by a grid search.

4.3 RESULTS AND DISCUSSION

Comparison to Profiling Experiments: The ARK solver on GPUs to implement

MCMC methods was sufficient to describe and explain published profiling data on 2,418

putative ccgs as it is shown in Figure (4.7) and Figure (4.8). Five model ensembles were

identified by varying the Hill coefficients of the transcriptional regulator in Eq. (5), with

m=4, 2, or 1 and by varying the NCU00045 encoded regulator from an activator to a

repressor as shown below in Eqs. (10-12). The ensembles of the described genetic

networks predicted the mRNA levels for most of the genes, and as is shown Figure (4.7)

and Figure (4.8), the overall fit of the RNA profiling data on 2,418 genes was consistent

82

with ensemble predictions. The average contribution of a data point to the χ2 was 2.05

(and 2.02 with CSP-1 as a repressor, which was a little larger than the working model

(1.54)[5].

Figure 4.7: The network of 2,418 putative clock-controlled genes fits to experimental data
using the ensemble method very well. The predictions (orange and purple) and the
observation data (black dots) are shown in 3 dimensions. The modules in Figure (4.3) are
ordered based on the similarity of their profiles.

Figure 4.8: An ensemble of genetic networks predicts the mRNA levels overall of 2,418
putative clock-controlled genes (model used here where m=4 and all of regulators are

83

activators). The predictions fit the experimental data within a standard error. The
observed data computed using =ln(y!,!

!"#.)-< ψ!"> vs. time and the predictions computed

using <ln F!,! t, θ, µμ >vs. time. The figures predictions for the other models are very
close to this figure.

4.3.1 DISCOVERING THE REGULATORY NETWORK OF THE PUTATITVE

CLOCK-CONTROLLED GENES.

A variety of biological functions for the putative ccgs were identified previously[5].

By fitting the profiling data to the supernet in Eq. (5) and given µk (the regulator binding

strengths), k=0,…,5 we have been able to assign target genes and their functions to the

corresponding regulators, WCC, ADV-1 (NCU07392), RPN-4 (NCU01640) in

transcriptional control, product of NCU06108 in transcriptional control, repressor CSP-

1 (NCU00045)[77], and product of NCU07155 (in regulation of nitrogen and sulfur

metabolism). Each regulator has a corresponding binding strength (µk) to a target gene.

For example, the binding strengths, µ0 and µ5, correspond to WCC and NCU07155,

respectively. Having the ensemble average of binding strengths (µ’s) for the 2,418

targets, the highest µ average for each gene indicated the candidate-binding regulator for

that gene or slave module. In Figure (4.9), the number of genes assigned to each

regulator is displayed.

As shown in the video, the supernet reconstruction of the network via MCMC

converges quite quickly to the assignment of putative ccgs to regulators, i.e. to the

estimates of the binding strengths. In the video the dynamic assignment of putative ccgs

to regulators is shown during the equilibration stage of MCMC over the first 250 sweeps

(a sweep being a visit on average to each parameter in the model during MCMC). The

assignment(s) of 2,418 – 6 putative ccgs to 6 regulators is made in less than 250 sweeps.

84

Figure 4.9: Putative ccgs are assigned to each of the six regulators (WCC, NCU07392,
NCU01640, NCU06108, NCU00045, NCU07155). The highest µ average over the
40,000 accumulation sweeps of the 2,418 genes indicates the candidate-binding regulator
for that gene.

We tested whether or not the genetic network hierarchy could be simplified in Table

(4.4) and asked whether or not the regulation could simply be by WCC or simplified by

dropping one of the 5 other regulators. At least one activator (namely rpn-4

(NCU01640)) needed to be retained, and the data strongly supported at least one other

transcription factor under WCC control in the hierarchy in Figure (4.1) and Figure (4.2).

85

Figure 4.10: A genetic network consisting of 2,418 slave modules and a master module
for the clock mechanism with repressor (NCU00045). There are 4 positive activators
(NCU07392, NCU01640, NCU06108, NCU07155) and a repressor (NCU00045) under
control of WCC, to be identified by the ensemble simulation[4, 66] .

4.3.2 REGULATORY NETWORK WITH CSP-1(NCU00045) AS A REPRESSOR.

Sancar et al.[77] suggested that CSP-1 may be a repressor as a opposed to an activator in

Figure (4.10). We tested this hypothesis. Involving CSP-1 as a repressor instead of an

activator implies changing Eqs. (1,2 and 5) respectively to the following, with k=4 being

the CSP-1 protein:

𝑑𝑔!
𝑑𝑡 = 𝐵!𝑔! − 𝐴!𝑔!𝑆 𝑡 +

𝐴!𝑔! t µμ!
𝑟!
𝑟!

!
Reg! t ! (10)

𝑑𝑔!
𝑑𝑡 = 𝐴!𝑔!𝑆 𝑡 −

𝐵!𝑔! − 𝐴!𝑔! 𝑡 µμ!
𝑟!
𝑟!

!
 Reg! t ! 11

S(t)= µμ! Reg! t ! + 𝑟!!
!
!!

!
µμ! Reg! t !!

!!!,!!! (12);

86

For this model, the weights µk are constrained only by µk ≥ 0 and !
!!!,!!! µk=1, while

µ4≥ 0 has no upper bound, as described in Materials and Methods. Figure (4.10) shows

that the supernet in Figure (4.1) can be changed to involve the CSP-1 as a repressor

instead of an activator while Figure (4.11) shows χ2 values for a model ensemble with

different Hill coefficients value and with CSP-1 as an activator or repressor.

Figure 4.11: The best model ensemble (histogram of χ2 values most shifted to the left)
has Hill coefficient m = 4 for the activators and m=4 for the repressor CSP-1. The
histograms of χ2 values are computed for model ensembles with different Hill
coefficients and with/without a repressor using Eqs.(5,10,11) (m=1,2,and 4).

From Figure (4.11), we observe that for the three model ensembles with activators only

the ensemble without cooperativity (m = 1) has χ2 values substantially larger (and worse)

than those of the two ensembles with cooperativities, m=4 and 2. The χ2 values of the

model ensembles, with cooperativity m=4 and 2, overlapped each other, and the best fits

were achieved with Hill coefficients of m = 4 as shown in Figure (4.7) and Figure (4.8).

These results were consistent with earlier results[4] in that the model ensembles

overlapped with cooperativities of 2 and 4 and in that the χ2 values were lower with m=4.

87

However, treating CSP-1 (from NCU00045) as a repressor (see below) with Hill

coefficient of 2 or 4 yielded lower χ2-values but similar fit to the case with 5 activators

each with Hill coefficient of 4 (WCC, NCU07392, NCU01640, NCU06108, NCU07155).

Nonetheless, by replicating the ensemble fitting twenty times for each model, with a

different random MC initial for ensemble model parameter variables at the start of each

replica simulation (for a total of 100 MCMC runs), we find overlapping χ2 distributions

as in Figure (4.11) for all of the models except for the activator model ensemble with

m=1 (red) in Figure (4.11) (See Materials and Methods). We conclude one model

ensemble can be rejected, the models (in red) involving all activators and a Hill

coefficient of m=1.

4.3.3 DISCOVERING A BROAD ARRAY OF FUNCTIONS FOR CLOCK-

CONTROLLED GENES.

Putative ccgs found from the averages of the binding strengths (µ’s) in the model

ensemble and shown in Figure (4.9) were classified by their pathways and functions

using KEGG Mapper software[78]. Figure (4.12) shows the number of annotated genes

regulated by a particular regulator and participating in a particular pathway or function.

In Figure (4.13) we show the binding strength of a particular regulator associated with a

particular group of genes. There are distinct profiles for the regulators, and the binding

strengths are quite high for at least one regulator to each target. An additional test was

carried using the 862 genes that were inferred here to be regulated by WCC by asking

how many genes were identified out of 292 genes[4, 5][4, 5][4, 5] [4, 5][6, 9] that are

known to be regulated by WCC. The test showed that there were 153 clock-controlled

88

genes out of the 292 genes identified correctly while one sixth of the 292=~ 48 genes are

expected to be regulated by each regulator including WCC if target genes were assigned

at random to regulators.

Table 4.4. At least one regulator rpn-4 (NCU01640) cannot be excluded from the
hierarchy in Figure (4.1) and Figure (4.2) without a highly significant loss of goodness of
fit. The χ2

WCC is for the model in Figure (4.3), in which WCC is the only regulator
hypothesized. Average χ!"#$%! is for a model in which the named transcription factor in
column 1 is removed. The χ2

ALL is for a model which there are 4 activators and 1
repressor, namely in Figure (4.10). All starred (*)χ2 differences are significant at less than
the 0.001 level.

Excluding
Regulator

Average χ!""
! Average χ!"#$%! Average

 χ 2
ALL

χ 2
ALL -

χ!"#$%!
df

NCU07392 68659.9 63984.7 63542.6 442.1 2418
NCU01640 68659.9 66621.3 63542.6 3078.7* 2418
NCU06108 68659.9 64209.5 63542.6 666.9 2418
NCU00045 68659.9 64469.0 63542.6 926.4 2418
NCU07155 68659.9 64571.5 63542.6 1028.9 2418

89

Figure 4.12: A regulatory genetic network for the six regulators (WCC, NCU07392,
NCU01640, NCU06108, NCU00045, NCU07155) and the putative clock-controlled
genes. The number on the arrow indicates how many annotated genes that are regulated
by a particular regulator and participating in a particular pathway or function (small green
boxes).

90

Figure 4.13: Regulator binding strength and target gene functions. The strength of
regulator binding is computed by asking: what is the average of µ’s across the 40,000
accumulation sweeps that is assigned to a group of genes that have the same function or
pathway?

91

Table 4.5 :Averages of binding strengths (µ’s) (over 40,000 sweeps) of each of 6
transcription factors to 5 targets in ribosome biogenesis in Eq. (5) with ± standard errors.
Numbers in green highlight predicted targets of NUC01640 and NCU06108 cognate
proteins.

4.3.4 CRITICAL TEST OF GENETIC NETWORK PREDICTIONS USING RT-QPCR

As a critical test of the network in Figure (4.12), we focused on five annotated genes in

ribosome biogenesis[5] whose binding strengths suggested regulation by the two of the

six transcription factors, namely NCU01640 (rpn-4) or NCU06108. Genes NCU00685

(or ck-1a) and NCU09843 are predicted targets of RPN-4, and NCU00476, NCU04166,

and NCU08903 are predicted targets of the cognate protein of NCU06108 (as seen from

the highlighted binding strengths in green in Table (4.5)). The gene NCU00685 also

appears to be a target of WCC. All circadian genes had periods between 16 and 30

h[5][9] before introducing a knockout. The prediction was that knockouts of rpn-4 or

NCU06108 should alter expression of all five genes, although the target gene NCU00685

should retain some rhythm. The binding strengths of the transcription factors to the five

targets are summarized in Table (4.5), as estimated by the ensemble method.

The casein-kinase-1a (ck-1a or NCU00685) target gene is a ccg, directly regulated by

WCC, as determined previously[5]. Hence, a knockout of NCU01640 should not prevent

ck-1a from being circadian. Indeed, its circadian rhythm in Figure (4.14) is estimated

here at 25 ± 2 h by RT-qPCR. In contrast, a gene free from circadian control should have

Regulator

Target Genes
NCU00685 NCU09843 NCU00476 NCU04166 NCU08903

WCC 0.027±0.0028 0.061±0.0043 0.034±0.0029 0.032±0.0030 0.047±0.0036
NCU07392 0.105±0.0046 0.109±0.0054 0.100±0.0046 0.105±0.0049 0.098±0.0050
NCU01640 0.572±0.0077 0.509±0.0069 0.081±0.0042 0.076±0.0043 0.098±0.0040
NCU06108 0.110±0.0049 0.107±0.0053 0.57±0.0074 0.574±0.0080 0.574±0.0074
NCU00045 0.094±0.0054 0.119±0.0054 0.101±0.0047 0.105±0.0049 0.106±0.0049
NCU07155 0.091±0.0044 0.095±0.0047 0.110±0.0046 0.108±0.0049 0.112±0.0053

92

an abnormally long ‘period’ when tested for periodicity, making it indistinguishable from

a non-oscillating system. For example, rDNA levels followed a 48 h period here (over a

48 h observation window) when ubiquitin was used as the internal control in RT-qPCR

(see Materials and Methods). Accordingly, the periods of NCU04166 and NCU08903

shown in Figure (4.14) were 35 ± 4 h and 39 ± 2 h, consistent with loss of rhythm; the

peaks for these two genes were far apart in Figure (4.14). The remaining two genes,

NCU09843 and NCU00476, were found to have periods of 22 ± 2 and 20 ± 2 h consistent

with those observed in race tubes to assay circadian rhythms[5], but a periodicity test

based on amplitude was not significant for NCU00476 (P=0.0519)[76]. Results of the

same periodicity test for the remaining 4 targets were significant at the 0.05 level,

although the periodicity test based on amplitude for NCU09843 was barely significant

(P=0.0355). Retention of a circadian rhythm in NCU09843 could be due to another

transcription factor (e.g., WCC) transmitting the circadian signal (see Table (4.5)), mis-

assignment of the target to its predicted transcription factor by our algorithm, or other

regulatory mechanisms at work on circadian genes. Interestingly, the binding strength of

WCC to NCU09843 is stronger than to the other targets in Table (4.5).

93

Figure 4.14: Change in Relative expression (RQ) of 4 of 5 target genes involved in
ribosome biogenesis were correctly predicted as circadian or not circadian by the network
model under knockout of NCU001640 (blue in Figure (4.10)) and NCU06108 (green in
Figure (4.10)). RQ was determined by RT-qPCR (See Materials and Methods) using
ubiquitin as endogenous control.

4.4 CONCLUSION

New algorithms for solving large systems of ODEs in parallel on the general-purpose

graphical processing units (GPUs) allowed us to identify the dynamics of a genome-scale

genetic network of unknown regulatory topology Figure (4.1) and Figure (4.2) using a

supernet that consisted of 2,418 putative ccgs as shown in Figure (4.3). In over 40 years

of clock biology, a set of 295 genes that are circadian, light-responsive, and under WCC-

control have been identified and span a broad array of functions[5, 79]. To date these are

likely to be clock-controlled genes. In this paper, we successfully fitted the dynamics and

the rhythms of all 2,418 genes that are circadian in Figure (4.7) by ensemble methods

implemented on a GPU and assigned each of them a place in a larger regulatory

hierarchy. In addition to that, the simulation identified these genes’ regulators and

0

0.5

1

1.5

2

0 10 20 30 40 50 60

NCU00685
NCU09843
NCU00476
NCU04166
NCU08903

[t
a

rg
e

t
g

e
n

e
 m

R
N

A
]

Time (h)

94

assigned putative functions in Figure (4.12). The final best network identified involved a

hierarchical regulatory network in Figure (4.10) with CSP-1 acting as a repressor. In this

network rpn-4 (NCU01640) and NCU06108 were assigned to regulate ribosome

biogenesis in Figure (4.12). This connection between the clock and ribosome biogenesis

was previously reported[5] and has been recently confirmed in mouse[80]. This

connection of the clock to ribosome biogenesis raises the possibility that there are other

regulatory mechanisms at work beyond transcriptional control[81] in Figure (4.10).

Strengths of Supernet Method. One of the features of the model in Figure (4.1) was the

independent regulation of the target gene modules. Some of the target genes are likely to

interact with the clock module in Figure (4.3) or with each other. The supernet method

can be generalized by replacing the regulators with other kinds of regulatory modules

involving post-transcriptional regulation mechanisms. One example of alternative

regulatory modules would be the RNA operon[82]. Such alternative regulatory modules

have the effect of linking together certain clusters of target genes by new kinds of post-

transcriptional regulators and hence weakening the assumption of independence in target

gene modules. This approach is completely feasible to implement on GPUs.

 Another strength of ensemble methods in systems biology is data integration.

Ideker et al. [11] integrated RNA profiling data as used here with protein profiling data.

For example, under materials and methods we simplified the reconstruction problem by

assuming the initial concentration of the regulatory proteins was a time average of the

regulatory protein concentration because this is the kind of data most people have. This

95

assumption allowed us to calculate the trajectory of each regulatory protein. If one were

to have the time and resources, it would be useful to carry out Westerns on all of the

regulator proteins in Figure (4.10) to determine their protein profiles. We predict this

will allow us to differentiate the ensemble hypotheses in Figure (4.10) with protein

profiling data on the regulators.

 A third strength of the Supernet Method is the possibility of generalization to

multiple roles for regulators. In equations (10)-(12) we assumed each regulator had one

of two roles as activator or repressor. In the same way that there could be different

regulatory modules, there could also be a partition of the role of one regulator as activator

or repressor depending on the targets. The supernet method allows us the possibility of

generalizing equations (10)-(12) and to test a regulatory structure with multiple roles for

each regulator, depending on the target module.

96

CHAPTER 5

5 CONCLUSION AND FUTURE WORK

We discovered and proposed new parallel solvers for large systems of ordinary

differential equations on the general purpose graphical processing unit that help to

discover and solve an important biological problem of genetic network identification with

special reference to Neurospora crassa’s biological clock, including: (A) Galerkin finite

element method using piecewise hat functions explained in chapter 2, (B) two parallel

algorithms for the Adaptive Runge Kutta method explained in chapter 3 and 4 and (C)

and Gauss-Legendre quadrature method explained in chapter 4.

These solvers gave us the ability to discover a broad array of functions for clock-

controlled genes as well as the gene regulators for those genes [10]as it is shown Figure

(4.12) within few days instead of years using a GPGPU. We were able to infer the

function of each regulator in Figure (4.12). We were able to discover how the clock-

controlled genes were organized into a regulatory network. We found for the first time

an explicit regulatory connection between the clock and ribosome biogenesis, which can

now be tested. Each of these advancements were made possible by a new computational

approach using GPUs.

Moreover, we proposed various statistical, mathematical and numerical methods

throughout this dissertation. For examples, we showed for the first time how you could

97

use the Newton method for solving systems of algebraic equations along with the

Galerkin finite element method; we showed how to use Monte Carlo metropolis and

ensemble methods for solving large genetic network consisting of large systems of ODEs

using the heterogeneity of the CPU and the GPU; we described how to 1) use Müller-Box

updates for unit conversion factor variables, 2) obtain the regulator protein

concentrations, 3) use Metropolis Monte Carlo updating algorithm for θ-variable (initial

concentrations and parameters) and µ-variables(regulator binding strengths), 4) use for

the first time a statistical mathematical model for six active regulators that regulate 2413

genes and the change on that model when one of those active regulators becomes a

repressor, and we showed the procedure of the real-time quantitative polymerase chain

reaction (RT-qPCR) of regulator targets for circadian rhythm.

In the future, we wish to improve the method of Galerkin by applying alternative

numerical methods such as Quasi Newton method, supported wavelets or other types of

finite element basis functions, such as Hermite finite elements and compare the accuracy

and the speed of these alternative numerical methods with each other and with adaptive

Runge Kutta method. Moreover, we need to implement the Galerkin method on the GPU

and try to make it the fastest and the most accurate ODEs solver.

In addition to that we need to compare the impact of the three proposed ODE solvers on

the genetic network solution including the regulators’ genes assignment and the data

fitting. We need to show the difference in the results by involving CSP-1 (NCU00045) as

an active regulator and as a repressor. By the same token, we will apply Wang-Landau

98

algorithm as an alternative to the Metropolis Algorithm and see which will fit the data

better and have the results over average of hundreds of best simulations instead of one

simulation.

Finally, the supernet method can be generalized by replacing the regulators with other

kinds of regulatory modules involving post-transcriptional regulation mechanisms. One

example of alternative regulatory modules would be the RNA operon[82]. Such

alternative regulatory modules have the effect of linking together certain clusters of target

genes by new kinds of post-transcriptional regulators and hence weakening the

assumption of independence in target gene modules. This approach is completely

feasible to implement on GPUs.

99

REFERENCES

[1] C. Cogoni, and G. Macino, “Gene silencing in Neurospora crassa requires a protein homologous
to RNA-dependent RNA polymerase,” Nature, vol. 399, no. 6732, pp. 166-169, 1999.

[2] H. Tamaru, and E. U. Selker, “A histone H3 methyltransferase controls DNA methylation in
Neurospora crassa,” Nature, vol. 414, no. 6861, pp. 277-283, 2001.

[3] J. E. Galagan, S. E. Calvo, K. A. Borkovich, E. U. Selker, N. D. Read, D. Jaffe, W. FitzHugh, L.-
J. Ma, S. Smirnov, and S. Purcell, “The genome sequence of the filamentous fungus Neurospora
crassa,” Nature, vol. 422, no. 6934, pp. 859-868, 2003.

[4] Y. Yu, W. Dong, C. Altimus, X. Tang, J. Griffith, M. Morello, L. Dudek, J. Arnold, and H. B.
Schüttler, “A genetic network for the clock of Neurospora crassa,” Proceedings of the National
Academy of Sciences, vol. 104, no. 8, pp. 2809-2814, 2007.

[5] W. Dong, X. Tang, Y. Yu, R. Nilsen, R. Kim, J. Griffith, J. Arnold, and H. B. Schüttler, “Systems
biology of the clock in Neurospora crassa,” PloS one, vol. 3, no. 8, pp. e3105, 2008.

[6] A. Al-Omari, J. Arnold, T. Taha, and H. Schuttler, “Solving Large Nonlinear Systems of First-
Order Ordinary Differential Equations With Hierarchical Structure Using Multi-GPGPUs and an
Adaptive Runge Kutta ODE Solver.”

[7] D. Battogtokh, D. Asch, M. Case, J. Arnold, and H.-B. Schüttler, “An ensemble method for
identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa,”
Proceedings of the National Academy of Sciences, vol. 99, no. 26, pp. 16904-16909, 2002.

[8] Y. Huang, “Parameter estimation of chemical reaction networks.A Master thesis, Physics and
Astronomy Department, The University of Georgia.,” 2007.

[9] A. K. Chakraborty, and J. Das, “Pairing computation with experimentation: a powerful coupling
for understanding T cell signalling,” Nat Rev Immunol, vol. 10, no. 1, pp. 59-71, Jan, 2010.

[10] A. Al-Omari, J. Griffith, M. Judge, T. Taha, J. Arnold, and H.-B. Schüttler, “Discovering
Regulatory Network Topologies Using Ensemble Methods on GPGPUs with Special Reference to
the Biological Clock of Neurospora crassa,” IEEE , Access, vol. 3, pp. 27 - 42, 2015.

[11] T. Ideker, V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, J. K. Eng, R. Bumgarner, D. R.
Goodlett, R. Aebersold, and L. Hood, “Integrated genomic and proteomic analyses of a
systematically perturbed metabolic network,” Science, vol. 292, no. 5518, pp. 929-934, May 4,
2001.

[12] I. M. Keseler, J. Collado-Vides, A. Santos-Zavaleta, M. Peralta-Gil, S. Gama-Castro, L. Muniz-
Rascado, C. Bonavides-Martinez, S. Paley, M. Krummenacker, T. Altman, P. Kaipa, A.
Spaulding, J. Pacheco, M. Latendresse, C. Fulcher, M. Sarker, A. G. Shearer, A. Mackie, I.
Paulsen, R. P. Gunsalus, and P. D. Karp, “EcoCyc: a comprehensive database of Escherichia coli
biology,” Nucleic Acids Res, vol. 39, no. Database issue, pp. D583-D590, Jan, 2011.

[13] S. Okuda, T. Yamada, M. Hamajima, M. Itoh, T. Katayama, P. Bork, S. Goto, and M. Kanehisa,
“KEGG Atlas mapping for global analysis of metabolic pathways,” Nucleic Acids Res, vol. 36, no.
Web Server issue, pp. W423-W426, Jul 1, 2008.

[14] R. Overbeek, N. Larsen, G. D. Pusch, M. D'Souza, E. S. Jr, N. Kyrpides, M. Fonstein, N. Maltsev,
and E. Selkov, “WIT:integrated system for high-throughput genome sequence analysis and
metabolic reconstruction,” Nucleic Acids Res, vol. 28, pp. 123-125, 13 October, 2000.

[15] J. L. DeRisi, V. R. Iyer, and P. O. Brown, “Exploring the Metabolic and Genetic Control of Gene
Expression on a Genomic Scale,” Science, vol. 278, pp. 26-37, October 24, 1997.

[16] S. J. Maerkl, and S. R. Quake, “A systems approach to measuring the binding energy landscapes
of transcription factors,” Science, vol. 315, no. 5809, pp. 233-237, Jan 12, 2007.

[17] J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs, B. Bolival, Jr., N. Assad-
Garcia, J. I. Glass, and M. W. Covert, “A whole-cell computational model predicts phenotype
from genotype,” Cell, vol. 150, no. 2, pp. 389-401, Jul 20, 2012.

100

[18] M. W. Covert, E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson, “Integrating high-
throughput and computational data elucidates bacterial networks,” Nature, vol. 429, no. 6987, pp.
82-96, May 6, 2004.

[19] X. Tang, W. Dong, J. Griffith, R. Nilsen, A. Matthes, K. B. Cheng, J. Reeves, H. B. Schüttler, M.
E. Case, and J. Arnold, “Systems Biology of the qa Gene Cluster in Neurospora crassa,” PloS
ONE, vol. 6, no. 6, pp. e20671, 2011.

[20] S. H. Strogatz, “Exploring complex networks,” Nature vol. 410, pp. 268-276, 8 March, 2001.
[21] M. Delfour, F. Trochu, and W. Hagar, “Discontinuous Galerkin methods for ordinary differential

equations,” Mathematics of Computation, vol. 36, no. 154, pp. 455-473, 1981.
[22] M. Delfour, and F. Dubeau, “Discontinuous polynomial approximations in the theory of one-step,

hybrid and multistep methods for nonlinear ordinary differential equations,” Math. Comp, vol. 47,
pp. 169-189, 1986.

[23] C. Johnson, “Error estimates and adaptive time-step control for a class of one-step methods for
stiff ordinary differential equations ” Society for Industrial and Applied Mathematics(SIAM), vol.
25, no. 4, pp. 908-926, 1988.

[24] F. Dubeau, A. Ouansafi, and A. Sakat, “Galerkin methods for nonlinear ordinary differential
equation with impulses,” Numerical Algorithms, vol. 33, no. 1-4, pp. 215-225, 2003.

[25] H. Temimi, S. Adjerid, and M. Ayari, “Implementation of the Discontinuous Galerkin Method on
a Multi-Story Seismically Excited Building Model,” Engineering Letters, vol. 18, no. 18-27, 2010.

[26] B. L. Hulme, “One-step piecewise polynomial Galerkin methods for initial value problems,”
Math. Comp, vol. 26, pp. 415-426, 1972.

[27] D. Estep, “A posteriori error bounds and global error control for approximation of ordinary
differential equations,” Society for Industrial and Applied Mathematics(SIAM), vol. 32, no. 1, pp.
1-48, 1995.

[28] K. Bottcher, and R. Rannacher, “Adaptive error control in solving ordinary differential equations
by the discontinuous Galerkin Method, Technical Report, University of Heidelberg,” pp. 1-31,
1997.

[29] J. Arnold, R. T. Thiab, and L. Deligiannidis, “GKIN: a tool for drawing genetic networks,”
Network Biology, vol. 2, pp. 26-37, 2012.

[30] B. Aleman-Meza, Y. Yu, H. B. Schüttler, J. Arnold, and T. R. Taha, “KINSOLVER: A simulator
for computing large ensembles of biochemical and gene regulatory networks,” Computers &
Mathematics with Applications, vol. 57, no. 3, pp. 420-435, 2009.

[31] M. O'Brien, and M. Walton, “Biological Clocks.,” Science Nation,
 http://www.nsf.gov/news/special_reports/science_nation/biologicalclocks.jsp, 2010.

[32] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch in
Escherichia coli,” Nature, vol. 403, pp. 339-342, 2000.

[33] I. Daubechies, “Orthonormal bases of compactly supported wavelets II. variations on a theme,”
SIAM J. Math. Anal., vol. 24, no. 2, pp. 499-519, 1993.

[34] E. W. Cheney, and D. R. Kincaid, Numerical mathematics and computing: Brooks/Cole
Publishing Company, 2012.

[35] H. de Jong, and D. Ropers, “Strategies for dealing with incomplete information in the modeling of
molecular interaction networks,” Briefings in Bioinformatics, vol. 7, no. 4, pp. 354-363, 2006.

[36] T. R. Dickey, “Single Cell Measurements on the biological clock by microfluidics,” Video
attachment.

[37] J. Jaeger, S. Surkova, M. Blagov, H. Janssens, D. Kosman, and K. N. Kozlov, “Dynamic control
of positional information in the early Drosophila embryo,” Nature, vol. 430, no. 6997, pp. 368-
371, 2004.

[38] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston, J. Owens, M. Segal, M.
Papakipos, and I. Buck, "GPGPU: general-purpose computation on graphics hardware." p. 208.

[39] S. Ohshima, K. Kise, T. Katagiri, and T. Yuba, "Parallel processing of matrix multiplication in a
CPU and GPU heterogeneous environment," High Performance Computing for Computational
Science-VECPAR 2006, pp. 305-318: Springer, 2007.

[40] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell, "A
Survey of General‐Purpose Computation on Graphics Hardware." pp. 80-113.

101

[41] C. J. Thompson, S. Hahn, and M. Oskin, "Using modern graphics architectures for general-
purpose computing: a framework and analysis." pp. 306-317.

[42] W. Liu, B. Schmidt, and W. Müller-Wittig, “Performance analysis of general-purpose
computation on commodity graphics hardware: A case study using bioinformatics,” The Journal
of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 48, no. 3, pp.
209-221, 2007.

[43] M. Charalambous, P. Trancoso, and A. Stamatakis, "Initial experiences porting a bioinformatics
application to a graphics processor," Advances in Informatics, pp. 415-425: Springer, 2005.

[44] L. Murray, “GPU acceleration of Runge-Kutta integrators,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 23, no. 1, pp. 94-101, 2012.

[45] G. Khanna, “High-Precision Numerical Simulations on a CUDA GPU: Kerr Black Hole Tails,”
Journal of Scientific Computing, pp. 1-15, 2013.

[46] C. Gribble, and A. Naveros, "GPU ray tracing with rayforce." p. 98.
[47] T. L. Falch, J. B. Floystad, D. W. Breiby, and A. C. Elster, “GPU Accelerated Visualization of

Scattered Point Data,” IEEE Access, vol. 1, pp. 564-576, 2013.
[48] S. Park, and H. Shin, “Efficient generation of adaptive Cartesian mesh for computational fluid

dynamics using GPU,” International Journal for Numerical Methods in Fluids, vol. 70, no. 11, pp.
1393-1404, 2012.

[49] I. Demeshko, N. Maruyama, H. Tomita, and S. Matsuoka, "Multi-GPU implementation of the
NICAM atmospheric model." pp. 175-184.

[50] D. Battogtokh, D. K. Asch, M. E. Case, J. Arnold, and H. B. Schüttler, “An ensemble method for
identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa,”
Proceedings of the National Academy of Sciences, vol. 99, no. 26, pp. 16904-16909, 2002.

[51] H. Ukai, and H. R. Ueda, “Systems biology of mammalian circadian clocks,” Annual review of
physiology, vol. 72, pp. 579-603, 2010.

[52] J. Passerat-Palmbach, J. Caux, P. Siregar, and D. R. C. Hill, "Warp-level parallelism: Enabling
multiple replications in parallel on GPU." pp. 24-26.

[53] A. Al-Omari, H. B. Schuttler, J. Arnold, and T. Taha, “Solving Nonlinear Systems of First Order
Ordinary Differential Equations Using a Galerkin Finite Element Method,” Access, IEEE, vol. 1,
pp. 408-417, 2013.

[54] S. Ryoo, Program optimization strategies for data-parallel many-core processors: ProQuest,
2008.

[55] C.-H. Chen, C. S. Ringelberg, R. H. Gross, J. C. Dunlap, and J. J. Loros, “Genome-wide analysis
of light-inducible responses reveals hierarchical light signalling in Neurospora,” The EMBO
journal, vol. 28, no. 8, pp. 1029-1042, 2009.

[56] L. Chen, O. Villa, S. Krishnamoorthy, and G. R. Gao, "Dynamic load balancing on single-and
multi-GPU systems." pp. 1-12.

[57] D. Segre, A. DeLuna, G. M. Church, and R. Kishony, “Modular epistasis in yeast metabolism,”
Nature genetics, vol. 37, no. 1, pp. 77-83, 2004.

[58] Y. Zhou, J. Liepe, X. Sheng, M. P. H. Stumpf, and C. Barnes, “GPU accelerated biochemical
network simulation,” Bioinformatics, vol. 27, no. 6, pp. 874-876, 2011.

[59] A. C. Hindmarsh, “ODEPACK, A Systematized Collection of ODE Solvers, RS Stepleman et
al.(eds.), North-Holland, Amsterdam,(vol. 1 of), pp. 55-64,” IMACS transactions on scientific
computation, vol. 1, pp. 55-64, 1983.

[60] V. M. Garcia, A. Liberos, A. M. Climent, A. Vidal, J. Millet, and A. Gonzalez, "An adaptive step
size GPU ODE solver for simulating the electric cardiac activity." pp. 233-236.

[61] G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, no. 7101, pp.
368-373, 2006.

[62] D. Gonze, J. Halloy, and A. Goldbeter, “Robustness of circadian rhythms with respect to
molecular noise,” Proceedings of the National Academy of Sciences, vol. 99, no. 2, pp. 673-678,
2002.

[63] J. Jaeger, S. Surkova, M. Blagov, H. Janssens, D. Kosman, K. N. Kozlov, Manu, E. Myasnikova,
C. E. Vanario-Alonso, M. Samsonova, D. H. Sharp, and J. Reinitz, “Dynamic control of positional
information in the early Drosophila embryo,” Nature, vol. 430, no. 6997, pp. 368-371, Jul 15,
2004.

102

[64] E. Lee, J. de Ridder, J. Kool, L. F. Wessels, and H. J. Bussemaker, “Identifying regulatory
mechanisms underlying tumorigenesis using locus expression signature analysis,” Proceedings of
the National Academy of Sciences, vol. 111, no. 15, pp. 5747-5752, 2014.

[65] T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins, “Inferring genetic networks and
identifying compound mode of action via expression profiling,” Science, vol. 301, no. 5629, pp.
102-5, Jul 4, 2003.

[66] A. Al-Omari, J. Arnold, T. Taha, and H. Schuttler, “Solving Large Nonlinear Systems of First-
Order Ordinary Differential Equations With Hierarchical Structure Using Multi-GPGPUs and an
Adaptive Runge Kutta ODE Solver,” IEEE , Access, vol. 1, pp. 770-777, 2013.

[67] A. Al-Omari, H.-B. Schuttler, J. Arnold, and T. Taha, “Solving Nonlinear Systems of First Order
Ordinary Differential Equations Using a Galerkin Finite Element Method,” Access, IEEE, vol. 1,
pp. 408-417, 2013.

[68] Z. Zhang, and J. P. Townsend, “The filamentous fungal gene expression database (FFGED),”
Fungal Genetics and Biology, vol. 47, no. 3, pp. 199-204, 2010.

[69] M. Matsumoto, and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator,” ACM Transactions on Modeling and Computer
Simulation (TOMACS), vol. 8, no. 1, pp. 3-30, 1998.

[70] G. E. Box, and M. E. Muller, “A note on the generation of random normal deviates,” The annals
of mathematical statistics, vol. 29, no. 2, pp. 610-611, 1958.

[71] G.W. Snedecor and W. G. Cochran, Statistical Methods,	
 7th	
 ed.	
 Ames,	
 IA,USA: Iowa State Univ. Press,
1980, pp. 215_237	

[72] G. von Winckel, http://www.mathworks.com/matlabcentral/fileexchange/4540-legendre-gauss-
quadrature-weights-and-nodes, 2004.

[73] G. W. Snedecor, and W. G. Cochran, “Statistical Methods, 7nth Edition,” pp. 215-237, 1980.
[74] H. V. Colot, G. Park, G. E. Turner, C. Ringelberg, C. M. Crew, L. Litvinkova, R. L. Weiss, K. A.

Borkovich, and J. C. Dunlap, “"A high-throughput gene knockout procedure for Neurospora
reveals functions for multiple transcription factors" (vol 103, pg 10352, 2006),” Proceedings of
the National Academy of Sciences of the United States of America, vol. 103, no. 44, pp. 16614-
16614, Oct 31, 2006.

[75] S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan,
M. W. Pfaffl, and G. L. Shipley, “The MIQE guidelines: minimum information for publication of
quantitative real-time PCR experiments,” Clinical chemistry, vol. 55, no. 4, pp. 611-622, 2009.

[76] M. E. Case, J. Griffith, W. Dong, I. L. Tigner, K. Gaines, J. C. Jiang, S. M. Jazwinski, and G. C.
Study, “The aging biological clock in Neurospora crassa,” Ecology and Evolution, vol. 4, pp.
3494-3507, 2014.

[77] G. Sancar	
 et al “A Global Circadian Repressor Controls Antiphasic Expression of Metabolic
Genes in Neurospora ,” Molecular cell, vol. 44, no. 5, pp. 687-697, 2011.

[78] Online, “KEGG Mapper,” http://www.genome.jp/kegg/tool map_pathway1.html, 2014.
[79] R. M. de Paula, Z. A. Lewis, A. V. Greene, K. S. Seo, L. W. Morgan, M. W. Vitalini, L. Bennett,

R. H. Gomer, and D. Bell-Pedersen, “Two circadian timing circuits in Neurospora crassa cells
share components and regulate distinct rhythmic processes,” Journal of biological rhythms, vol.
21, no. 3, pp. 159-168, 2006.

[80] C. l. Jouffe, G. Cretenet, L. Symul, E. Martin, F. Atger, F. Naef, and F. d. r. Gachon, “The
circadian clock coordinates ribosome biogenesis,” Plos Biology, vol. 11, no. 1, pp. e1001455,
2013.

[81] J. M. Hurley, A. Dasgupta, J. M. Emerson, X. Zhou, C. S. Ringelberg, N. Knabe, A. M. Lipzen, E.
A. Lindquist, C. G. Daum, and K. W. Barry, “Analysis of clock-regulated genes in Neurospora
reveals widespread posttranscriptional control of metabolic potential,” Proceedings of the
National Academy of Sciences, pp. 201418963, 2014.

[82] J. Keene, B. Stillman, D. Stewart, and T. Grodzicker, “Biological Rhythms Workshop IA:
molecular basis of rhythms generation,” in Cold Spring Harbor symposia on quantitative biology,
Woodbury, NY, 2007, pp. 157-165.

103

APPENDIX A

Biography

AHMAD AL-OMARI received the B.Sc.

degree in Electrical and Computer

Engineering from Yarmouk University, Irbid,

Jordan, in 2004. He was a Teaching Assistant

and Lab Engineer with the Department of

Electrical and Computer Engineering,

Yarmouk University, from 2004 to 2010. He

was involved in more than 30 different projects on computers, communication, and

electronic engineering. He received a grant of over $150 000 from Yarmouk University

to pursue the Ph.D. degree in bioinformatics and in the same theme he received a

Teaching Assistant grant of over $133 000 from The University of Georgia. He is

currently a Research and Teaching Assistant and the Ph.D. degree in bioinformatics

under the supervision of Prof. Jonathan Arnold with the University of Georgia, Athens,

GA, USA, on systems biology and genetic networks. His current research interests

include parallel computation, systems biology, finite elements method, machine learning

and pattern recognition, biological circuits and gene networks, and numerical analysis.

