
Leveraging Latent Textual Topology for
Standard Identification in Engineering Design

by

Matthew Booth Bowen

(Under the Direction of Beshoy Morkos and Benjamin Wagner)

Abstract

In engineering design, standards provide essential technical definitions and guidelines, reflecting best

practices recognized across the industry. These standards, developed by various Standard Developing

Organizations (SDOs), encapsulate technological expertise to enhance safety, reliability, productivity, and

efficiency in component and system design. However, the vast number and diversity of these documents

pose challenges for designers in selecting and implementing appropriate standards due to inconsistencies,

conflicting advice, and overlaps. This thesis proposes an information retrieval approach to improve prod-

uct development by linking product requirements with relevant engineering standards. It explores the

use of Artificial Intelligence techniques, including language embeddings, semantic search, and zero-shot

learning, to efficiently navigate this extensive information corpus. Additionally, the study investigates

the optimal contextual window using sentence-level and extensive project data, aiming to develop novel

frameworks for more effective engagement with the textual knowledge in engineering standards, thereby

aiding design engineers.

Index words: Large Language Models, Artificial Intelligence, Design Standards, Design

Requirements, Design Automation, BERT, GPT

Leveraging Latent Textual Topology for Standard Identification in

Engineering Design

by

Matthew Booth Bowen

B.S.A.E., University of Georgia, 2022

A Thesis Submitted to the Graduate Faculty of the

University of Georgia in Partial Fulfillment of the Requirements for the Degree.

MASTER of SCIENCE

Athens, Georgia

2024

©2024

Matthew Booth Bowen

All Rights Reserved

Leveraging Latent Textual Topology for Standard Identification in

Engineering Design

by

Matthew Booth Bowen

Major Professors: Beshoy Morkos

Benjamin Wagner

Committee: Haygriva Rao

Jidong Yang

Electronic Version Approved:

Ron Walcott

Dean of the Graduate School

The University of Georgia

May 2024

Dedication

This thesis is dedicated to my parents, who instilled in me an appreciation for education and hard work.

iv

Acknowledgments

“Work not for yourself, but always strive onward so that you may be able to pull another up." - D.W. Brooks

I would like to begin by thanking all who have helped me in this endeavor. Due to the support that

my friends and family have showered upon me, and the grace of God, I have been able to succeed in the

completion of this work. Special thanks are due to Dr. Morkos, who was willing to take a risk on me by

allowing me to start in his lab, and for his guidance and support that followed. Dr. Morkos has shown

me not only how to be a good researcher but also how to be a good engineer. Dr. Wagner, thank you for

being my rock and foundation throughout this work and always reminding me of what I am capable of.

To Dr. Rao and Yang, I am thankful for the time that you have put into me and this work over the past

months. Your insight has been invaluable. Cody Carroll and my other lab mates have been a constant

source of support and welcomed me with open arms at the beginning of my Master’s. Cody, thank you in

particular for the countless arguments; I know they helped to keep me sharp. Thanks are certainly due to

Logan, who helped me significantly in the final weeks by proofreading and helping me in the preparation

of this manuscript. Last but certainly not least, I would like to thank Kendall Kay for her constant support

and love throughout this challenge.

v

Contents

Acknowledgments v

List of Figures viii

List of Tables x

1 Introduction 1

2 Background 6

2.1 Design Standards . 7

2.2 Design Requirements . 10

2.3 Information Retrieval . 15

2.4 Language Representation In Vector Space . 19

2.5 Summary . 24

3 Methods 25

3.1 Review of Standard and Requirement Corpus . 25

3.2 Fine-tuning BERT for Standard-Requirement Classification 29

3.3 Analysing Fine-tuned Model . 31

3.4 Standard-Requirement Linking . 34

3.5 Standards Search Evaluation . 36

3.6 Standards Augmented Requirements Generation (SARG) 39

vi

4 Results 42

4.1 BERT Fine-tuned for SRC Task . 42

4.2 Efficacy of Embeddings for Standard-Requirement Linking 48

4.3 Efficacy of Search Framework with Document Chunk Embeddings 53

4.4 SARG Results . 55

5 Discussion 58

5.1 Addressing Research Questions . 58

5.2 Impact on Design Research and Practice . 60

5.3 Recommendations . 61

5.4 Limitations . 62

6 Conclusion and Future Work 63

Appendices 64

A UMAP Projections of SRC Manifold 64

B Term Frequency vs Word Attribution Plots 67

C UMAP Embeddings of Search Results 70

D Code for Fine-tuning BERT on SRC Task 74

E Analysing Fine-tuned Model 78

E.1 Executing Integrated Gradients . 78

E.2 Creating Word Attribution Histogram . 80

E.3 Creating Word Clouds . 81

F Code for SRC Task 83

F.1 Sampling Random Project Requirements . 83

vii

F.2 Upserting Standard Sub-clauses to Pinecone . 84

F.3 Executing SRC Task . 85

G Code for Standard Search Framework 88

G.1 Upserting Standard Document Chunks to Pinecone 88

G.2 ANNS Search . 91

G.3 ANNS Search with Cohere Rerank . 93

G.4 ANNS Search with GPT Rerank . 96

G.5 Plotting Search Framework Precision . 100

G.6 Visualizing Search Output Manifold Location . 102

H Code for SARG 107

Bibliography 121

viii

List of Figures

1.1 Research Logic Map . 5

2.1 Requirement-to-Standard Network Components 13

2.2 Multi-head Self-attention Mechanisms (Vaswani et al., 2017) 20

2.3 Transformer Encoder-Decoder Architecture (Vaswani et al., 2017) 21

2.4 BERT Pre-training (Vaswani et al., 2017) . 22

3.1 Standard-Requirement Linking Depiction . 34

3.2 Reranking of Search Results . 37

4.1 Standard-Requirement Classification Task Confusion Matrix 44

4.2 Standard-Requirement Manifold Before Fine tuning 45

4.3 Standard-Requirement Manifold After Fine-tuning 46

4.4 Histogram of Fine-tuned Model Word Attributions 47

4.5 Word Attribution Analysis Highlighting Key Determinants of ’Requirement’ Classifi-

cation . 47

4.6 Word Attribution Analysis Highlighting Key Determinants of ’Standard’ Classification 48

4.7 Project 1 Evaluator Results . 49

4.8 Project 2 Evaluator Results . 49

4.9 Project 3 Evaluator Results . 50

4.10 Project 4 Evaluator Results . 50

ix

4.11 Project 5 Evaluator Results . 51

4.12 Project 6 Evaluator Results . 52

4.13 Evaluation Results of Search Methods . 53

A.1 UMAP Projection of Standards and Requirements by Enity 65

A.2 UMAP Projection of Standards and Requirements by Enity 66

B.1 Frequency vs Attribution for "Requirement" Class 68

B.2 Frequency vs Attribution for "Standard" Class . 69

C.1 UMAP Projection of ANNS Search Results on Latent Standard Manifold 71

C.2 UMAP Projection of ANNS + Cohere Rerank Search Results on Latent Standard Manifold 72

C.3 UMAP Projection of ANNS + Zero-shot Rerank Search Results on Latent Standard

Manifold . 73

x

List of Tables

2.1 Example Requirements (NASA, 2024) . 11

3.1 Classification Task Requirement Training Corpus 26

3.2 Classification Task Standard Training Corpus . 27

3.3 Summary of the Standard-Requirement Corpus Metrics 28

3.4 Standard Vector Store Contents . 29

3.5 Standard Requirement Classification Fine-tuning Parameters 30

3.6 SRC Task UMAP Parameters . 33

3.7 SARG Industry Case Metrics . 41

4.1 SRC Task Training Metrics . 43

4.2 SRC Task Result Metrics . 43

4.3 Selected Word Attributions . 48

xi

Chapter 1

Introduction

Engineers, as curators of the product design process, spend considerable time and resources navigating

through the vast amounts of information stored as natural language (Jha and Mahmoud, 2019). This

is particularly evident throughout the design process, where engineers make critical decisions regarding

system requirements that shape the final product (Robertson and Robertson, 2012). These decisions

often involve referencing engineering standards, which are integral to guiding their choices and inevitably

become part of the design requirements. However, the identification of these standards is a laborious

task, involving many manual information retrieval steps. For example, a common method of searching

for standards that is put forward by Standard Developing Organizations (SDOs) is keyword or metadata

search. This requires the engineer to know the index structure of standards well enough to know which

keyword will return the most applicable response and this is where substantial valuable design time is

wasted. Additionally, many standards exist that designers would not know to search for. This identified

obstacle exists in several different presentations in design. Firstly, highly domain-competent engineers

who are proficient in the formal design process experience the standard identification task as a time sink.

Secondly, in smaller engineering firms, where the design process frequently involves less formality and tech-

nical documentation, standards are often not efficiently utilized due to a lack of awareness that applicable

standards exist.

1

Large Language Models (LLMs) have generated substantial excitement in recent years and have in-

creased in capability at a fast rate as the introduction of the transformer architecture (Vaswani et al., 2017)

gave rise to the BERT (Devlin et al., 2018a) and GPT (Radford et al., 2018) families of models. These mod-

els host the potential to reduce time spent doing mundane tasks and are proved to outperform humans

on many tasks such as code debugging (Haque and Li, 2023) and natural language content generation

(Rathore, 2023). In the engineering domain, these advancements in NLP (Natural Language Processing)

are readily applied in the area of engineering requirements for various useful tasks including functional

and non-functional classification (Mullis et al., 2023; Shankar et al., 2010; Shankar et al., 2020), require-

ment reuse (Mihany et al., 2016), and requirement traceability (Tian et al., 2023). However, a review of the

literature presents little exploration of the efficacy that large language models have in tasks surrounding

engineering standards. Therefore, the researchers look to answer the following three research questions.

• RQ 1 - How may requirements and standards be distinguishable through large language models?

• RQ 2 - Do language embeddings correlations exist between engineering project requirements and

standard document sub-clauses?

• RQ 3 - Do language embedding correlations exist between conceptual engineering project descrip-

tions with relevant standards?

Standards may arise in a design’s technical documentation either implicitly or explicitly with the former

not directly traceable. For example, an engineer could have inherent knowledge of the governing standards

for a particular design, and this would shape how he guided the design and generated the requirements

yet not explicitly reference the standard. This becomes an issue when standards, which evolve, change.

Without a formal certification process, products in production may not reflect the latest design practices

recommended by these standards. The first step in this traceability is automated correlation between

design projects and the relevant standards. This automated, and dynamic, information correlation and

retrieval task is where the researchers hypothesize that LLMs hold substantial potential. In contrast with

keyword-based or metadata information retrieval, large language models offer the ability to incorporate

2

semantics and context into the pipeline. This is done through natural language embeddings that serve

as high-dimensional representations of the meaning of a language input. The semantic search is framed

as populating a continuous vector space with inputs that occupy the natural language manifold and the

location of each input on the manifold is representative of the input’s meaning. The interaction with

this vector store is then executed by embedding the search query onto the manifold and extracting the

nearest point. Theoretically, the most contextually relevant information may then be returned. The

successful completion of standards retrieval, when integrated into an auto-generation process, then allows

the creation of Retrieval Augmented Generation (RAG) models capable of further creating engineering

documentation representing the information contained in retrieved engineering standards.

In work addressing RQ1, the BERT model is fine-tuned with a labeled dataset containing require-

ments and standards to evaluate the performance of this model on this task. This task, referred to as the

SRC Task (Standard-Requirement Classification Task), constructs foundational knowledge of BERT’s

performance with this type of engineering-specific language and its potential for detecting explicit ref-

erences to engineering standards for enhanced traceability. After fine-tuning the model, the researchers

employ the Integrated Gradients technique to collect word attributions for the corpus. The researchers

propose that this approach may help gain a more robust understanding of the black-box classification

predictions yielded by the fine-tuned BERT model, in addition to evaluating Matthew’s Correlation

Coefficient (MCC) for the model’s performance on unseen data.

RQ2 utilizes and evaluates language embeddings for the S2R Task (Standard-to-Requirement Task)

within the framework of using existing project requirements as search queries. This experiment is struc-

tured to use only the prescriptive information from engineering standard documents to populate the

vector space. To clarify, standard documents often contain substantial descriptive information, including

scope, terminology, normative references, figures, and tables. However, the prescriptive information in

these documents is usually presented as one or a few sentence statements concisely prescribing what the

designer must do to satisfy the standard. These items are often referred to as standard requirements. To

eliminate potential confusion in this thesis, the term ’standard requirements’ will henceforth be referred to

3

as ’standard sub-clauses.’ Notably, this approach provides the model with the minimum unit of contextual

relevance for both requirements and standard documentation.

RQ 3 explores the use of language embeddings for the S2R task in the context of early design, before

the generation of requirements or other prescriptive artifacts, where only high-level descriptions may

exist. To satisfy this research question, three different methodologies for embedding-based search are

evaluated on a ground-truth industry validation case. Additionally, by leveraging a larger context window

model, and employing chunking strategies, these experiments allow for the embedding of entire long-form

standard documents.

As an outcome of this research, the researchers developed the Standards Augmented Requirements

Generator (SARG) model that utilizes findings from the research questions of this work. This tool uses

the highest-performing embedding-based search method identified by experiments conducted to satisfy

RQ 3. The SARG model further synthesizes the standard documents returned by the search method and

presents the information to the designer in a more palatable, requirements-based format. Furthermore,

an industry expert evaluates the SARG tool’s output.

RQ 1 is evaluated on a labeled dataset generated from engineering standards and industry projects

hosted by the University of Georgia Model Lab. For RQ 2, industry project requirement sets are used to

evaluate language embedding-based search and are human-evaluated for relevancy. In RQ 3, an industry

case study is used to evaluate the different methods. Figure 1.1 depicts the research logic map for this thesis

and the tasks performed to satisfy each research question.

4

Figure 1.1: Research Logic Map

5

Chapter 2

Background

This chapter presents the foundational background of this work. Section 2.1 discusses the crucial role

of standards in engineering design, detailing their development, challenges in application, the evolution

of methods for managing and accessing standards, and the ongoing efforts to improve standards’ inter-

action through technological advancements. Then, Section 2.2 discusses the critical role of engineering

requirements in project design and explores the use of Natural Language Processing (NLP) methods

such as BERT for enhancing requirement management. This section also highlights the importance of

standards traceability and requirement reuse, underscoring the need for tools to link standards to require-

ments effectively, streamlining compliance and product development. Section 2.3 outlines the evolution

of information retrieval from early keyword indexing to advanced deep learning methods, emphasizing

the development of key concepts such as ranked retrieval, term frequency-inverse document frequency

(TF-IDF), and stemming, alongside the transition to vector space models and neural networks for im-

proved information retrieval. Section 2.4 describes the introduction of the Transformer architecture and

its significance in NLP, highlighting the development of pre-trained models such as BERT and GPT for

enhanced language embeddings. Lastly, Section 2.5 provides a summary of the chapter and refreshes key

findings in the literature.

6

2.1 Design Standards

Standards play a crucial role in the engineering design process, encompassing technical definitions and

guidelines meant for designers, manufacturers, and users, and serving as widely accepted best practices.

These standards, numbering in the hundreds of thousands, represent the current state of the art and

foster safety, reliability, productivity, and efficiency in both component and system design (ASME, 2024).

Design standards exist in two primary presentations: formal and informal. Formal standards are derived

either by consensus or from a regulatory basis, while informal standards can be framed at the enterprise

level, whereby enterprise design guidelines are specified (Galley-Taylor et al., 2011).

One of the initial steps towards standardizing component design began with the creation of a system

for interchangeable parts. The credit for this innovation is disputed between Eli Whitney and Simeon

North, but the significance of their system is unquestionable. Their work established a method by which

components were manufactured to precise standards by specialized workers and then assembled later

(Coulson, 1944). This approach was originally developed to expedite the production of muskets for the

nascent United States and was presented to government officials who would later mandate this uniformity

across other firearm factories. The collaboration between the industry and government, followed by the

adoption of this process in various facilities, marks a clear starting point for national standardization in

modern American industry (Bodner and Rouse, 2009).

The early push for developing standards was significantly driven by catastrophic failures, highlighting

the need for safety standards in the United States. A notable instance of this was the frequent occurrence

of boiler explosions during the 19th and early 20th centuries. From 1870 to 1910, the U.S. experienced over

10,000 such explosions. In response, the American Society of Mechanical Engineers (ASME) formulated

the first comprehensive boiler and pressure vessel code in 1914, which states and cities quickly adopted

voluntarily (ASME, 2010). This standard significantly mitigated the safety crisis, evidenced by the fact

that from 1974 to 1984, the U.S. did not report a single boiler explosion.

7

While the value of standards is clear, the sheer volume and diversity of these standards pose significant

challenges for designers in identifying or applying the relevant standards for their projects. Additionally,

these standards, developed by various Standard Developing Organizations (SDOs), can sometimes lack

uniformity, offer conflicting recommendations, or even be redundant. To mitigate these issues, organiza-

tions such as the American National Standards Institute (ANSI) work to streamline the procedures of

SDOs by accrediting these organizations to due process requirements for American National Standard

(ANS) designation (Mcclung, 2011). This effort endeavors to standardize engineering practices and pro-

mote alignment with international applications, with oversight from entities such as the International

Organization for Standardization (ISO) (Alonzo, 2010).

Furthermore, with design engineers spending over 55 percent of their time engaged with technical

documentation (Xia et al., 2017), more efficient interaction methods are required to work with sources

of engineering information such as engineering standards. In work done with engineers at Walt Disney

Corporation, Harrs et al. documented the frustrations that engineers face when attempting to retrieve

relevant standards using SDOs’ existing systems and databases. In this work, a new digital library and in-

formation retrieval system was created to interact with formal and informal engineering standards and was

well received by practitioners (Harrs, 2006). Notably, this referenced work illustrates well-documented ac-

counts of a large corporation and well-experienced engineers who are unsatisfied with the current method

of sourcing standards for engineering design. This demonstrates that the issue arises across the board for

large enterprises and small to medium enterprises alike, with the latter often not possessing developed

technical information architectures (De Jong and Marsili, 2006).

Entities hosting engineering standards have begun to recognize the user need for more efficient in-

teraction methods and are altering their storage architectures to be machine-actionable by converting

their content to eXtensible markup language (XML). An example of this effort is the Deutsches Institut

für Normung (DIN), which translates in English to the German Institute for Standardization. DIN

provides its standard database of 33,500 documents (DIN, 2024) hosted in XML format. Moreover, the

8

National Information Standards Organization (NISO) has recommended a standard XML schema, NISO

Standard Tag Suite, that will guide the consistency of standards hosted in XML format (NISO, 2017).

These developments have led to a new need to evaluate how best to interact with these machine-

actionable databases. Luttmer et al. evaluated various techniques for extracting prescriptive sentences from

the extensive DIN standards database. The researchers evaluated supervised and unsupervised techniques

on this task with the Support Vector Machine (SVM) model and fine-tuned BERT achieving the best

results as measured by F1-score (Luttmer et al., 2023). While this work demonstrates promise for using

BERT to mine these databases for key information, the core issue of project-relevant standard retrieval is

not addressed. Additionally, these methods lack agility by needing to be retrained each time the database is

updated. This raises serious constraints for implementation because of the evolutionary nature of standard

documents and the lack of multi-database applicability of this model.

Some of the earliest work done with trying to simplify processes around engineering standards arose

in civil engineering disciplines, dealing with structural codes. Early approaches included the implementa-

tion of tabular decision logic tables to help organizationally track the satisfaction of necessary structural

building codes and standards (Fenves, 1966). Following this work, a prototype software was created that

allowed the automated processing of design specifications in structural design. This software allowed for

the management of user-generated standard libraries and integrated the tabular decision logic tables in

automated flow with CAD and structural analysis (Cronembold and Law, 1988). This progression of

work verifies that interest exists in developing tools to ease the strain of working with standards. However,

these tools do not bridge the information retrieval gap that exists currently. Additionally, these tools

require highly specialized algorithms and are best used where standards repetitively apply to many designs.

More recently, a tool was prepared to assist in compiling standards documents used in the construction

industry and the partial automation of regulation conformance verification (Bouzidi et al., 2012). This

work presented a new domain ontology in Web Ontology Language that was used to semantically map

regulatory standards to project queries and automatically evaluate compliance.This work, while closer in

concept to bridging the project-relevant standard retrieval gap, still lacks practicality in implementation

9

outside of the defined domain due to the highly algorithmic equation compliance that is the focus of

many structural domain standards.

Similarly, Großer et al. present an Object-Role Modeling approach that employs graph-based methods

for the modeling of project documents as well as standard-to-requirement tailoring (Großer et al., 2022).

However, this approach relies on graph-based databases, which pose significant resource issues when

dealing with evolutionary documents such as requirements (B. Morkos et al., 2019; Summers et al., 2014)

and standards. Furthermore, this approach has only been applied to a single use case in the space domain,

where the interconnections between one project and one standard developing organization are assessed.

However, most engineering projects require leveraging standards from multiple originating sources with

varying ontologies, demanding a more flexible approach.

The following background sections present the fields of design requirements, information retrieval,

and language representation in vector space. Section 2.2 lays the foundation for design requirements’

prominence and importance in engineering technical documentation. Furthermore, requirement trace-

ability and reuse are explored in the context of value brought by dynamically mapping standards to require-

ments in the standard-requirement linking task and the identification of explicit standard appearances

in technical documentation. Then, Section 2.3 examines the development and current state of the art in

information retrieval and, specifically, the use of text embeddings in vector space information retrieval.

Section 2.4 develops the background on language representations in vector space by framing the paradigm

shift brought by the introduction of Transformers and their use for creating textual embeddings. Key

background is then presented for the BERT and GPT models that are at the forefront of natural lan-

guage processing following the introduction of Transformer architecture. Finally, Section 2.5 provides a

summary of the findings and existing gaps.

2.2 Design Requirements

Engineering requirements are fundamental to design and specify the purpose, goals, and constraints as-

sociated with design efforts (B. Morkos et al., 2014). These requirements serve as the formalization of

10

stakeholder needs and guide the product development process. Requirements serve such an important

purpose in design as they are known to greatly impact a project’s overall success (Beitz et al., 1996). These

requirements bound the design space for potential solutions and should be testable and unambiguous

(Shabi et al., 2021). The NASA Systems Engineering Handbook provides a guideline for generating re-

quirements and describes the appropriate usage of common terminology found in requirements such

as "shall", "should", or "will" (Shishko and Aster, 1995). Further details describing the formulation of re-

quirements can be found in the "Guide for Writing System Requirements" published by the International

Council on Systems Engineering (Group et al., 2019). Example product requirements specified by NASA

are detailed in Table 2.1.

Table 2.1: Example Requirements (NASA, 2024)
Example Product Requirements

The system shall operate at a power level of...
The software shall acquire data from the...

The structure shall withstand loads of...
The hardware shall have a mass of...

Many tools for requirements management exist in various industries, aiding in the management of

the requirements process from elicitation to verification (McLellan et al., 2010; B. Morkos et al., 2010a;

B. Morkos et al., 2010b). Throughout project development, requirements undergo the processes of elicita-

tion, specification, validation, and verification (Wiegers and Beatty, 2013). Requirements elicitation entails

engineers working closely with stakeholders to identify explicit and implicit stakeholder and project needs.

As the primary technical documentation in engineering projects, requirements are critical to project suc-

cess (Beitz et al., 1996; B. Morkos and Summers, n.d.). Then, the specification of elicited requirements

involves the further refinement of the requirements into clear and testable statements. Later, the vali-

dation process then initiates a review of the requirement corpus with the stakeholder for "consistency,

completeness, and correctness" (Kotonya and Sommerville, 1998) and ensures mutual agreement between

the engineering entity and the stakeholder. Finally, requirements verification is the process of confirming,

through techniques such as inspection, modeling, or expert analysis, that the requirements are satisfied

11

(Terry Bahill and Henderson, 2005). Recent focus on requirement changes and their propagation has

sparked significant research, leading to the development of studies exploring methods to effectively man-

age them Hein et al., 2021, 2022; Hein et al., 2015; Htet Hein et al., 2017; B. Morkos et al., 2012; B. Morkos

and Summers, 2010; Shankar et al., 2012; Summers et al., 2014). This includes innovative work as the

advent of NLP methods, such as BERT, led to the creation of many tools through research exploring

these tools’ interactions with information stored in engineering requirements and specification docu-

ments (Chen, 2022; Chen, Carroll, et al., 2023; Chen and Morkos, 2023; Chen et al., 2021; Chen, Wei,

et al., 2023). Moreover, because of comparable functional tasks, document structure, terminology, and

formality resolution, there exists significant potential for leveraging insights from the work conducted

on requirements when exploring NLP tools for engineering standards. Mullis et al. demonstrated the

potential of BERT in several requirement-focused tasks, including parent document classification and

functional classification through fine-tuning BERT (Mullis et al., 2023). Furthermore, Mullis et al. uti-

lized BERT textual embeddings to predict requirement change propagation throughout the hierarchy

of requirements structures. While researchers have made significant advances in understanding the ap-

plication of large language models to engineering requirements, a gap remains in comprehending how

LLMs could be utilized more efficiently for the retrieval and synthesis of engineering standards. With the

foundation developed for engineering requirements, the following section will discuss the implications

of the traceability of standards and their utility in facilitating requirement reuse.

2.2.1 Standards Traceability and Requirement Reuse

Variant products in a domain may often be subject to adherence to the same set of standards governing

that field. Furthermore, standards often exist at a higher level of abstraction than product requirements

in that multiple requirements must be satisfied to satisfy a standard. Figure 2.1 demonstrates different

network connection components that may exist in a project. To further clarify these network components,

explicit examples are provided below. In the first case, whereby the network connection is singular, REQ

1 is derived from and wholly satisfies STD 1.

12

Figure 2.1: Requirement-to-Standard Network Components

• REQ 1 : The system shall be equipped with a manually operable shutoff valve located between the

mechanical air vent and the pipeline.

• STD 1 : Where it would not be possible or practical to drain a pipeline to replace or repair mechanical

air vents, a shutoff valve should be installed between the pipe and the valve.

In the second case, whereby the satisfaction of one standard is dependent upon the satisfaction of multiple

requirements, an example is provided below. Similar logic may be applied in the third case.

• REQ 2 : The container shall prominently display the wire manufacturer’s name and/or brand,

distinct from other content.

13

• REQ 3 : The container shall include concise instructions for storage and handling, placed separately

from the manufacturer’s label.

• STD 2 : The container shall also carry, in a different location, the name and/or brand name of the

wire manufacturer, and necessary instructions for storing and handling.

While research surrounding the creation of tools for standard interaction remains in the nascent stages,

researchers have begun to recognize the need for more advanced tools and techniques. Rouland et al high-

lighted current issues stemming from a lack of standard-to-requirement traceability in software design.

In this work, an iterative and evolutionary process was proposed to aid the elicitation and management of

requirements based on standards in system software architecture. Moreover, the researchers highlight the

need for the development of tools to aid in standard-to-requirement traceability (Rouland et al., 2023). In

the medical device domain, Hauksdóttir et al, reaffirmed this need for traceability from product require-

ments to standards and highlighted that current requirement traceability frameworks do not incorporate

this need (Hauksdóttir et al., 2016). The primary contribution of this work was the development of a

reusable requirements (derived from standards) catalog schema to support practitioners in reuse. How-

ever, this tool requires the manual selection of initial relevant standards and the creation of generalized

requirements extracted from standard documentation. Furthermore, the researchers acknowledge that

their approach does not provide adequate traceability and that a more advanced approach is needed. With

the clear necessity for advanced standard interaction tools established, Section 2.3 details the chronolog-

ical advancement in the information retrieval domain, highlighting the revolutionary developments in

vector space information retrieval, which is utilized in the standard-requirement linking task in this work.

Then, Section 2.4 explores the development of the Transformer architecture for creating dense textual

representations, in the context of utilizing these embeddings for vector space information retrieval op-

erations. Section 2.4 also accentuates the importance of Transformers in the evolution of paradigmatic

pre-trained large language models (PLMs), providing a foundation for two existing PLMs utilized in this

work, namely BERT and GPT.

14

2.3 Information Retrieval

Information retrieval may be succinctly defined as the process of locating information pertinent to a user’s

query (Sanderson and Croft, 2012). This field has seen significant evolution driven by the fundamental

need to efficiently manage and retrieve information from expanding digital document collections. Fur-

thermore, the fundamental task existing in the field of information retrieval is the ad-hoc retrieval task in

which a user’s query is used to search a collection of documents for relevance (Guo et al., 2016).

Early work in IR (Information Retrieval) arose in the domain of library management. An early in-

novation that had radical effects was libraries’ shift to using keywords, derived from subject headings for

document indexing, as opposed to the current system of alphabetical arrangement (Taube et al., 1952).

However, the Boolean retrieval system, initially used for querying indexed documents, soon revealed its

limitations in terms of flexibility and user-friendliness. In response to the poor capability of Boolean

retrieval, researchers proposed an alternative approach with the concept of ranked retrieval. In ranked

retrieval’s nascent stages, as proposed by Luhn et al, ranked retrieval returned documents that were top-

ranked due to their relevancy to the user query. This approach employed statistical methods and required

manual labeling of keywords in the document collection, in addition to the assignment of weight based

on the importance of the keyword to the document (Luhn, 1957). The effectiveness of this ranked retrieval

method, demonstrated by Maron et al. through testing on 39 unique queries, demonstrated its superiority

over Boolean retrieval. (Maron et al., 1959). Another significant contribution by Luhn et al during this

period was the concept of word occurrence frequency in a document furnishing an important metric of

word significance (Luhn, 1958). This would later become known as term frequency (TF) weighting and

hold significance in future IR research efforts and applications. This concept laid the groundwork for

future research in IR, leading to the development of inverse document frequency (IDF).

The development of inverse document frequency (IDF) was based on the concept that the frequency

of word occurrence across a collection of documents was inversely proportional to its significance for

retrieval (Sparck Jones, 1972). In essence, this indicated that less common or more specific words present

15

within the document collection were more likely to yield valid responses to user queries. Researchers

found that amalgamating these metrics into Term Frequency-Inverse Document Frequency (TF-IDF),

where the resulting score reflects the importance of a term for a document in the collection, to be superior

to their individual use (Salton and Yang, 1973). This development represented a breakthrough in IR,

as this allowed for a more nuanced understanding of term importance within and across documents.

However, an early limitation of this method was that different linguistic forms of a word could dilute

the significance of the term’s core concept, leading to less effective retrieval outcomes. In light of this

limitation, IR researchers began to explore the utility of stemming to overcome the limitations brought

by word form variations.

Stemming algorithms, such as the Porter Stemmer, were developed to consolidate different morpho-

logical variants of a word to their base or root form (Porter, 1980). This approach significantly enhanced

the system’s ability to match lexical variants of words, thereby improving the precision of IR systems. By

addressing the variability in word forms, stemming provided a critical complement to the TF-IDF model,

ensuring that documents containing different forms of relevant terms could be more accurately identified

and ranked in response to a query. This rule-based approach to word matching became pivotal in refining

the effectiveness of IR systems, demonstrating the ongoing evolution of strategies to optimize document

retrieval in the face of linguistic complexity.

Until the mid-2000s, statistical language models predicated on N-gram methodologies constituted the

predominant framework for tasks within natural language processing (NLP). N-gram methods estimate

the probability of a sequence of words by calculating the conditional probability of each subsequent word

based on its antecedent N-1 words. Specifically, bigrams (N=2) incorporate the immediately preceding

word, whereas trigrams (N=3) incorporate the two preceding words for probability estimation. This

conditional probability is derived by enumerating the occurrences of N-length sequences within a corpus,

subsequently normalizing these counts by the frequency of sequences initiating with identical N-1 words.

Although an increment in N typically correlates with enhanced model performance, the computational

complexity associated with higher N values frequently constrains N to a maximum of 5. The relative

16

methodological simplicity of N-gram approaches enabled the training of models on voluminous corpora,

a notable example is Google’s 2006 release of a 5-gram dataset derived from a corpus encompassing over 1

trillion words (Brants and Franz, 2006). Despite the scale of such models, N-grams exhibit limitations in

adapting to the linguistic evolution that characterizes natural language, manifested by the generation of

novel word sequences. Hence, N-grams often exhibit limitations in transferring learned patterns from a

training dataset to a test set that contains novel sequences, resulting in an insufficient representation of

the complex meanings inherent in language.

The following section in this chapter will address advancements made in IR following the introduction

and adaptation of early vector space information retrieval techniques. This section details key foundational

developments that paved the way for the development of the revolutionary Transformer architecture,

which is further detailed in Section 2.4.

2.3.1 Vector Space Information Retrieval

Before the advent and adoption of vector space models and the later integration of deep learning methods

into IR, there were significant limitations in the state of the art in handling the complexity and variability of

language. Existing models and techniques struggled with linguistic variations such as synonyms, polysemy,

and different word forms often leading to imprecise search results. Additionally, these models could not

account for the context in which words were used, making discerning the relevance of documents beyond

keyword frequency challenging. The limitations of these early approaches brought to light the need for

more advanced models that could more effectively process the nuances of human language.

Advancements in the IR domain achieved substantial progress with the introduction of vector space

models, notably through the implementation of the bag-of-words (BoW) approach. By representing

documents and queries as sparse term vectors, where each unique word in the corpus contributes to the

vectors’ dimensionality, BoW facilitated a substantial methodological shift (Salton, 1962). This model

abstracted document content into a mathematical form, allowing for the efficient processing and compar-

ison of documents on a scale previously unattainable with traditional methods. Although BoW marked

17

a significant departure by emphasizing mathematical abstraction over linguistic precision, BoW did not

fully address the need for contextual awareness in language processing (Salton et al., 1975). Nonetheless,

the adoption of BoW and the optimization of sparse term vectors laid the groundwork for further in-

novations in IR, initiating the onset of a major paradigm shift towards incorporating neural network

techniques to effectively capture the context and semantics of language.

In this progression toward more sophisticated information retrieval (IR) methodologies, the advent

of word2vec marked a pivotal advancement. Developed by Mikolov et al., word2vec introduced two inno-

vative architectures: Continuous Bag of Words (CBOW) and continuous skip-gram. These architectures

significantly deviate from prior models by representing language within a continuous vector space, rather

than the discrete spaces characteristic of N-gram models. This representation is crucial for capturing

the nuanced relationships between words, addressing the earlier challenges of linguistic variation and

the contextual relevance of terms that had hindered traditional IR models. The CBOW model, for in-

stance, predicts a target word based on its surrounding context, both preceding and succeeding words,

without regard to their sequence. Conversely, the skip-gram model reverses this approach, predicting the

surrounding context provided a target word, thereby generating multiple training instances from a single

input word. This method enhances the model’s ability to understand the broader context in which words

appear, which served as a critical advancement over the bag-of-words model’s limitations in contextual

processing. While the development of word2vec represented substantial progress in the field, the model

held limitations, primarily because the model architecturally ignored the morphology of words.

Researchers attempted to address the limitations of word2vec with the development of Global Vec-

tors for Word Representation (GLoVe). GLoVe architecture relies on a global matrix factorization and

local context window methods by the use of global word-word co-occurrence statistics derived from the

corpus (Pennington et al., 2014). In the GLoVe model’s optimization process, a loss function, which is a

mathematical method evaluating the model’s accuracy by comparing predicted outcomes to actual ones,

includes a weighting mechanism. This mechanism moderates the model’s focus on both infrequent and

highly frequent word co-occurrences. This training method allowed the model to have higher efficacy in

18

representing words that can exist in different contextual frames. However, the vector representations from

GLoVe are still static embeddings, in that each word is assigned a single vector regardless of its context.

For example, the word "bank" would have the same representation whether used in a financial context

"bank account" or in a geographical context "river bank". This demonstrates that GLoVe is still limited in

grasping the nuances of language derived from contextual usage.

The limitations discussed in this section were primarily addressed by the introduction of the Trans-

former architecture and the development of multi-head self-attention mechanisms (Vaswani et al., 2017).

The following section will explore the Transformer architecture and the development of pre-trained LLMs

with the utilization of deep learning. Then, in Subsection 2.4.1 and Subsection 2.4.2 two primary pre-

trained LLMs that are utilized in this work, BERT, and GPT, are detailed.

2.4 Language Representation In Vector Space

The introduction of the Transformer architecture by Vaswani et al signifies paradigmatic transformation

in the representation of natural language and contextual meaning (Vaswani et al., 2017). This Transformer

architecture has driven innovation in the NLP field because of the superiority of multi-head self-attention

mechanisms. This mechanism processes an input sequence by applying multiple attention heads that

independently compute attention scores, which allows semantic features to be captured. The generated

attention scores determine how the model should weigh attention to other parts of the sequence when

processing a specific element. Furthermore, by utilizing multiple heads, this mechanism can attend to

different positions of the input sequence. The outputs of all heads are then concatenated and linearly

transformed to produce the final output allowing the model to integrate information from different repre-

sentational spaces. Figure 2.2 presents a visual representation of multi-head self-attention mechanisms. By

employing self-attention mechanisms, Transformers can process all parts of the input sequence simultane-

ously, thus making Transformers vastly more efficient for large-scale language tasks. The ability to apply

parallelization allows for faster training and the handling of longer inputs without the constraints brought

by the sequential nature of earlier RNN and LSTM-based methods. Because of the parallel processing

19

Figure 2.2: Multi-head Self-attention Mechanisms (Vaswani et al., 2017)

capabilities of Transformers and the drastically reduced resources needed to train a model, training models

on previously unfeasible large text corpora became possible. This effectiveness in handling large datasets

gave rise to pre-trained LLMs that are trained on general tasks and then leveraged on specific applications

via fine-tuning. This concept of pre-training on generalized language tasks and then fine-tuning was a

foundational development in the shift toward LLMs and is often referred to as Transfer Learning (Pan

and Yang, 2009). Figure 2.3 presents a depiction of the Transformer architecture whereby the encoder

and decoder portions of the model are represented.

The following sections explore two prominent PLMs, BERT and GPT, along with Retrieval Aug-

mented Generation (RAG) in greater detail followed by Section 2.5 summarizing the findings of this

chapter.

20

Figure 2.3: Transformer Encoder-Decoder Architecture (Vaswani et al., 2017)

2.4.1 Bidirectional Encoder Representations from Transformers (BERT)

The BERT model was introduced in 2017 by Devlin et al and sought to create a more effective language

model with an innovative bidirectional approach in training (Devlin et al., 2018b). The bidirectional

methodology of BERT allows the model to learn the context of unlabeled text from both the forward

and backward positions in a sequence. Bert is an encoder-based model trained with the objective of

predicting a masked word based only on the context of the nearby tokens. The encoder receives each of

the masked tokens that are conditioned on the remaining tokens in the sequence. This process makes

the decoder (Figure 2.3) unnecessary, as each masked token is analyzed in the context of the other tokens

in the sentence. BERT was trained with two separate tasks during pre-training: the "masked language

model" task and "next sentence prediction" task over a corpus of 3,300M words. Figure 2.4 depicts the pre-

21

Figure 2.4: BERT Pre-training (Vaswani et al., 2017)

training process used for the unsupervised training of BERT, specifically the next sentence prediction task.

The next sentence prediction task involves inputting two sentences, separated by a special "[SEP]" token,

and having the model predict whether the two sentences occurred alongside one another in the source

text. This task benefits BERT’s performance when later fine-tuned to sentence-level tasks. The masked

language model task involves randomly replacing a word in the input sequence with a special "[MASK]"

token and then training the model to predict the replaced word. This task is what allows BERT to create

word embeddings based on the bidirectional context of the forward and backward word in the sequence.

The BERT model family contains multiple variants, including ALBERT (Lan et al., 2019), RoBERTa

(Liu et al., 2019), ELECTRA (Clark et al., 2020), DistilBERT (Sanh et al., 2019), SpanBERT (Joshi et al.,

2020), TinyBERT (Jiao et al., 2019), and Sentence-BERT (sBERT) (Reimers and Gurevych, 2019).sBERT

represents an advanced modification leveraging a siamese structure, which processes two or more texts in

parallel, within a BERT network to derive semantically significant sentence embeddings. This approach is

especially effective for semantic search applications (Reimers and Gurevych, 2019). Furthermore, sBERT-

based semantic search successfully supports IR tasks including coronavirus information retrieval (Esteva

et al., 2021), IR for infrastructure damage queries (Kim et al., 2022), and the retrieval of relevant context

from NASA’s Lessons Learned Information System (Walsh and Andrade, 2022).

22

2.4.2 Generative Pre-Trained Transformer (GPT)

Brought to recent popularity by the rise of OpenAI’s ChatGPT, the GPT family of models is another

state-of-the-art method for NLP. While BERT is comprised of a stack of encoder blockers, GPT models

are constructed with decoder blocks. In these GPT models, the multi-head attention module with cross

attention is removed from the decoder due to the lack of an encoder in the pipeline. Because of this

architecture, the masked multi-head self-attention is only applied to the previous words in the input

sequence. The family of GPT models was initiated by the release of GPT-1 in 2018, followed by GPT-2 in

2019, GPT-3 in 2020, GPT-3.5 in 2022, and GPT-4 in 2023. Furthermore, OpenAI introduced ADA-002

in 2022, its second-generation model for embeddings-as-a-service, focusing on text embeddings. This

model is specifically recommended for tasks involving text similarity by OpenAI (2022). ADA-002 has

demonstrated superior performance in comparison to its predecessor, the first-generation embedding

model text-similarity-davinci-001, in most text similarity tasks. ADA-002 is also recognized for its greater

cost efficiency and reduced need for computational resources (Greene et al., 2022). OpenAI’s initial

embedding models were based on GPT technology (Neelakantan et al., 2022). Despite ADA-002’s status

as a commercial product of a proprietary nature, with no public disclosure of its architecture, training

data, or specific details following its late 2022 launch, its relevance has increased alongside the growing

interest in Large Language Models (LLMs) and embedding services. The research performed in this

thesis incorporates ADA-002 for semantic similarity analysis, noting that its embeddings feature 1536

dimensions (Greene et al., 2022), which the researchers must assume were derived from an LLM.

2.4.3 Retrieval-Augmented Generation (RAG)

Recent advances in LLMs have led to the prevalence of models capable of generation, a capability exempli-

fied by the GPT series. In recent years, researchers have suggested facilitating the models with the capability

of accessing internal memory via some IR techniques, so that they may acquire grounded information in

the generation process (Gu et al., 2018). This concept is now commonly known as Retrieval-Augmented

23

Generation (RAG). RAG has achieved state-of-the-art performance in many NLP tasks and attracted the

attention of the scientific community (Cai et al., 2021). Compared with traditional generation models,

this type of model has proven to hold important advantages (Li et al., 2022). Firstly, knowledge need not

be implicitly stored in the model parameters, but can instead be acquired and leveraged upon request,

leading to a superior potential in scalability. Second, RAG models generate text from a retrieved human-

written reference instead of from scratch, potentially allowing more complex and contextually relevant

text generation.

2.5 Summary

Existing studies demonstrate the need for improved tools for the retrieval and leveraging of engineer-

ing standards in design project management. Through a thorough review of the information retrieval

domain, researchers identify semantic search via sequence embeddings as a potential technique for the

Standard-Requirement Linking task. In this context, researchers identified OpenAI’s ADA-002 lan-

guage embeddings for evaluation in linking requirements with both structured formal requirements and

standard searches with product conceptual descriptions. BERT has proven useful in many tasks within

requirements engineering, leading to enhanced processes. However, researchers have not yet evaluated

these NLP methods for tasks related to engineering standards. Therefore, BERT embeddings will be

assessed for their ability to dynamically distinguish between requirements and standards. Furthermore,

this work endeavors to determine if sufficient semantic context exists in standard sub-clauses and individ-

ual requirements to accurately link user-generated requirements to standards for dynamic validation of

standard compliance and, inversely, for the reuse of requirements via standards. Additionally, to assess

the efficacy of a tool designed to bridge the gap in project-relevant standard retrieval during the early

stages of design, where technical documentation such as requirements may not yet exist, a semantic search

framework utilizing OpenAI’s ADA-002 embeddings will be evaluated. This evaluation will focus on

conceptual project descriptions and the relevancy of the returned standards to the user’s query.

24

Chapter 3

Methods

This chapter details the methodology underpinning the research conducted for this thesis. For reference,

readers may refer to 1.1 for an illustration of the models, tasks, metrics, and data used in the experiments

of this research. The chapter begins with a review of the completed experiments’ various data in Section

3.1. Then, Section 3.2 details the methodology surrounding the fine-tuning of BERT for the SRC task.

Section 3.3 encompasses various techniques utilized for evaluating the fine-tuned BERT model. The

methodology for the S2R task is described in Section 3.4, detailing both the execution of the experiment

and the evaluation of the approach. The execution and evaluation of three embedding-based search

approaches are then described in Section 3.5. Finally, Section 3.6 presents the model architecture and

evaluation for the SARG tool, an outcome of this research.

3.1 Review of Standard and Requirement Corpus

This section presents detailed descriptions of the requirements and standards datasets utilized in each eval-

uated task of this research. The researcher’s intent was to assemble datasets that are diverse and extensive

within feasible boundaries. Recognizing the significant impact of dataset composition on the results of

this study, comprehensive information is provided for each dataset.

25

3.1.1 Labeled Dataset for Fine-tuning BERT

This section outlines the training corpus used to fine-tune the BERT model for the Standard-Requirement

Classification (SRC) Task. Table 3.1 presents relevant statistics for the requirements included in the train-

ing corpus. Projects 1-4, originating from private industry, are confidential. However, these requirements

have been cited in numerous other publications (Beshoy Morkos and Summers, 2012; Chen and Morkos,

2023; Hein et al., 2018; Htet Hein et al., 2017; B. Morkos et al., 2014; B. W. Morkos, 2012; Mullis et al.,

2023). Projects 5 and 6 consist of publicly available requirements for design subsystems within the Square

Kilometre Array (SKA) project which is set to be the world’s largest radio telescope. Project 1 compiles

design requirements for a threaded pipe manufacturing production line and is the most extensive, having

250 requirements. Project 2 focuses on design requirements for manufacturing stations and equipment

for exhaust gas flaps. Project 3 enumerates the design requirements for industrial textile manufacturing

equipment and while being fourth in the order of magnitude of requirements contains the second-highest

vocabulary size, indicating a diversity in words and terminology used. Project 4 describes the design re-

quirements for a material handling system in the pipe threading manufacturing process and is the least

extensive with 37 requirements. On average, Project 6 contains the longest requirements, with an average

token length of 66.33, while Project 4 contains the shortest, with only an average token length of 21.03,

though this may be influenced by the substantially fewer requirements present in that document.

Table 3.1: Classification Task Requirement Training Corpus
ID Quantity Average Token Length Vocabulary Size

Project 1 350 22.65 1109
Project 2 159 35.39 1132
Project 3 214 31.41 1517
Project 4 37 21.03 318
Project 5 289 39.85 1477
Project 6 291 66.33 1661

Table 3.2 details the standard sub-clauses used in the training corpus to fine-tune the BERT model

for the standard-requirement classification task. This table provides a breakdown of the datasets utilized

to fine-tune the BERT model. Each entry in the table represents a different standard or set of standards,

26

indicated by an acronym. The ’Quantity’ column lists the number of sub-clauses or documents in the

training corpus for each standard. The ’Average Token Length’ column indicates the average length of the

tokenized text, which may reflect the complexity or verbosity of the language in each standard. Finally,

the ’Vocabulary Size’ column provides insight into the lexical diversity of each standard’s corpus, which

may have implications for the model’s ability to learn and generalize from the data. Overall, this table

summarizes the composition of the training data that will inform the model’s understanding of various

standards in the standard-requirement classification task.

Table 3.2: Classification Task Standard Training Corpus
ID Quantity Average Token Length Vocabulary Size

AASHTO 133 62.44 1654
AATCC 37 60.70 669

AHRI 20 68.35 408
ASABE 131 54.60 1300
ASTM 231 59.40 1914
AWWA 238 66.70 2089

IEEE 107 81.36 1559
ISO 17 60.65 283

MilSpec 9 52.67 185
CCSDS 46 64.49 548

Table 3.3 summarizes key metrics for the compiled standard-requirement dataset used for training the

BERT model. The ‘Token Length‘ statistics provide insights into the distribution of the text length across

the dataset after tokenization, which is a crucial pre-processing step for BERT’s input preparation. The

mean token length of 48.89 suggests that most of the text data is concise, whereas the maximum token

length of 414 indicates the presence of some more lengthy text items. The reader is reminded that the

items in this dataset are divided into their minimum contextual unit. For example, a common occurrence

in standard documents is where a standard sub-clause contains a level of prescriptive hierarchy lower. The

comparatively long max token length of the dataset may be attributed to this occurrence, though rare.

A median token length of 37.0 indicates that half of the texts are below this length, which is expected

given the usual brevity of standard-requirement texts. The ‘Vocabulary Size’ metric measures the diversity

27

of the dataset’s language, with a mean size of 34.525 indicating a modestly varied lexicon used across the

dataset. The maximum vocabulary size of 186 reflects the richest document in lexical diversity.

Table 3.3: Summary of the Standard-Requirement Corpus Metrics
Statistic Token Length Vocabulary Size

Mean 48.89 34.525
Median 37.0 30.0

Max 414 186

3.1.2 Standard-Requirement Linking Corpus

For the standard-requirement linking experiment, the researchers populated the vector store with the

standard subclauses also utilized in the SRC task. Key statistics for this dataset are described in 3.2. While

this dataset contains substantial diversity and content, the researchers acknowledge that this is not a per-

fect representation. However, the researchers believe that the dataset is comprehensive enough to provide

insight into language embedding efficacy for linking standards and requirements. Key limitations in cre-

ating a more expansive corpus for this task include the following: standards often exist behind paywalls,

limiting researchers to only procuring standards licensed through the University of Georgia, and the inten-

sive manual labor involved in extracting these sub-clauses from standard documents. Various automated

approaches were evaluated for this extraction; however, the heterogeneity of document structure and

hierarchical order led to little uniformity in outcome across the different document structures. With re-

quirements serving as the input for this evaluation, researchers randomly selected five requirements from

each industry project detailed in Table 3.1. This resulted in a combined 30 requirements that represent the

diversity of all projects while allowing for reasonable evaluation by human annotators.

3.1.3 Standard Vector Store for Search Evaluation

For the evaluation of standards search methods, the researchers compiled an expansive corpus of stan-

dard documents spanning various engineering domains. This corpus has been systematically curated to

28

facilitate the assessment of standard search methodologies. The contents and structure of this corpus

are delineated in Table 3.4. The table enumerates each Standard Developing Organization (SDO), the

quantity of documents sourced, and the number of chunks into which the documents for each SDO have

been segmented.

The ’chunks’ mentioned in the table are defined as fixed segments consisting of 1000 tokens each. Such

standardized segmentation allows for consistent contextual analysis across different documents, enabling

more equitable comparisons of search methods. Each chunk acts as a window of text within a document,

serving as an individual unit for retrieval and analysis in the testing of search algorithms. While the dataset

is not claimed to be exhaustive or without limitations, it showcases a considerable range of variability in

document length and complexity. This diversity is crucial for the thorough evaluation of search tools,

ensuring they are challenged with a broad spectrum of documents to reflect a multitude of real-world

conditions.

Table 3.4: Standard Vector Store Contents
ID Document Quantity Chunk Quantity

AASHTO 497 62.44
AATCC 175 60.70

AHRI 20 68.35
ASABE 10 89
ASTM 354 59.40
AWWA 173 66.70
CCSDS 26 81.36

IEEE 22 60.65

3.2 Fine-tuning BERT for Standard-Requirement Classification

The fine-tuning of large pre-trained models often allows better results in specific data sets (Dunn et al.,

2022). The initial standard and requirement populated dataset was divided into training and testing

datasets with 80% and 20% respectively allocated. Then, the training dataset was further partitioned into

training and validation datasets, in which 90% percent and 10% percent were respectively allocated. The

29

items contained in the datasets, requirements and standard document sub-clauses, were not preprocessed

beyond tokenization. Tokenization splits words in the dataset into "subtokens" that comprise BERT’s

pre-trained vocabulary. These subtokens are typically pieces of words that are the basic units of language

that BERT uses for embeddings.

This task uses the Python interface for BERT for Sequence Classification by Hugging Face (Wolf

et al., 2020), which consists of 12 encoded layers and 12 self-attention heads. The labeled dataset as de-

scribed in Table 3.1 and Table 3.2 was divided into test, train, and validation portions using the scikit-learn

train_test_split function (Pedregosa et al., 2011). The dataset was transformed from a labeled data frame

into a comma-separated values (CSV) format. This transformation facilitated processing with the Bert-

Tokenizer class’s from_pretrained method, provided by Hugging Face, utilizing the bert-base-uncased

pre-trained model (Wolf et al., 2020). The dataset was labeled with binary values, ’0’ for ’standard’ and

’1’ for ’requirement’, and then used to train the model. The training process was regulated by an early

stopping mechanism, which terminated training if the improvement in the Matthews Correlation Co-

efficient (MCC) was less than 0.01, to prevent overfitting and ensure training efficiency. The AdamW

optimizer was employed to minimize the model’s loss function during training. Unlike the traditional

Adam optimizer, AdamW introduces a decoupling of weight decay from the optimization steps, which

can lead to better training stability and model performance, especially in complex models and datasets

(Loshchilov and Hutter, 2017). The specific parameters used for training are detailed in Table 3.5.

Table 3.5: Standard Requirement Classification Fine-tuning Parameters
Parameter Selection

Warmup Ratio 0.1
Weight Decay 0.01

Optimizer AdamW
Learning Rate 2e-5

Metric MCC

30

3.3 Analysing Fine-tuned Model

Given the datasets’ mild imbalance in token length and quantity, the Matthews Correlation Coefficient

(MCC) was used to evaluate the model’s performance accurately. Detailed in Equation (3.1), MCC in-

cludes true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) in its calcula-

tion, providing a balanced performance measure that is particularly valuable for unbalanced datasets.

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3.1)

The MCC value ranges from -1 to 1, with 1 indicating perfect classification accuracy, 0 equivalent to random

chance, and -1 indicating complete disagreement between predictions and actual outcomes.

3.3.1 Calculation of Word Attributions by Integrated Gradients

In addition to assessing MCC to evaluate the performance of the fine-tuned model, the research team

utilized the Integrated Gradients technique, a method rooted in neural network interpretability, to gain

deeper insights into how the model trained on the labeled dataset. This approach involves analyzing word

attributions, which sheds light on the influence of specific words on the model’s predictive accuracy across

different classes (standard or requirement). By identifying which words significantly affect the model’s

ability to accurately predict the correct class, researchers can better understand the underlying mechanisms

of the model’s decision-making process. Integrated Gradients attribute the prediction of a neural network

to its input features by integrating the gradients for the inputs along the path from a baseline x′ to the

actual input x. The attribution of an input feature xi is computed as follows:

Attribution(xi) = (xi − x′
i)×

∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xi

dα

where: - xi is the i-th feature of the input x, - x′
i is the i-th feature of the baseline input x′, - F is the

model function, - ∂F (x)
∂xi

is the gradient of F with respect to xi, - α scales the input from the baseline x′ to

31

the actual input x, - The integral accumulates the gradients at all points along the path from the baseline

to the input.

In practice, the integral is approximated using a discrete summation over m steps:

Attribution(xi) ≈ (xi − x′
i)×

m∑
k=1

∂F (x′ + k
m
× (x− x′))

∂xi

× 1

m

where m is the number of steps used in the approximation, and the path from x′ to x is discretized

into m small steps.

Āw,c =
1

N

N∑
i=1

A(i)
w,c

where: - Āw,c is the average attribution of word w for class c, - A(i)
w,c is the attribution of word w for class

c in the i-th text, - N is the total number of texts where word w appears and class c is considered.

If considering two classes, c1 and c0 (for instance, "standard" and "requirement"), the difference in

attributions for word w is:

Dw = Āw,c1 − Āw,c0

where: - Dw is the difference in average attributions between classes c1 and c0 for word w, - Āw,c1 is the

average attribution of word w for class c1, - Āw,c0 is the average attribution of word w for class c0.

Words present in the corpus may be then ranked by the absolute value of their difference in attributions

to highlight those with the greatest impact on class distinction.

Visualizing Word Attributions

After the extraction of the word attributions from the fine-tuned model, the researchers utilized a his-

togram and word clouds to visualize the results. The histogram displays the frequency of word attribution

weights and provides insight into the distribution of the data and was plotted using Python’s Seaborn

visualization library. The attribution weights were filtered for outliers before the creation of the word

32

cloud visualizations as shown by Figure 4.5 and Figure 4.6. To filter the data, the Interquartile Range

(IQR) method was utilized to remove the outliers. The filtered attributions were then separated into

positive and negative attributions based on their values. Then, word clouds for both positive and negative

attributions were generated using the WordCloud library.

3.3.2 UMAP for visualizing Fine-tuned Embedding Space

After fine-tuning the BERT model, researchers utilized the embedding of the [CLS] token, positioned

at the start of each input sequence, as a representation for sequences in the labeled standard-requirement

dataset. This token’s embedding, derived from the model’s last hidden state and through the self-attention

mechanism of the transformer architecture, effectively captures the context and semantics of the sequence,

performing well in aggregate representation tasks (Devlin et al., 2018b).

Subsequently, the researchers employed Uniform Manifold Approximation and Projection (UMAP)

plots to demonstrate the differences in manifold representation between the pre-trained and fine-tuned

models. Upon completing the model’s training, the tokenizer and model weights were saved, enabling the

re-instantiation of the SRC model for embedding the dataset’s contents, as described in Tables 3.2 and 3.1.

UMAP, a technique for dimensionality reduction, models the high-dimensional embeddings in a graph,

projecting this graph into two dimensions while aiming to preserve the original topological structure. The

parameters crucial for UMAP projection’s repeatability and its documentation are provided in Table 3.6,

which were instrumental in creating Figures 4.2 and 4.3, as detailed in the results section.

Table 3.6: SRC Task UMAP Parameters
Parameter Selection

n_neighbors 1000
min_dist 1.00

metric cosine
random_state 44

33

3.4 Standard-Requirement Linking

This section details the methodology for the standard-requirement linking task, which is the primary task

performed by the researchers to answer research question two of this thesis. As a reminder, the reader

may refer to Section 3.1.2 for details surrounding input and database contents used in this experiment.

3.4.1 Executing Linking Task

Figure 3.1 presents a visual depiction of the standard-requirement linking task. The randomly sampled

project requirements are sent in iteration as queries to the Pinecone vector store, populated with standard

sub-clauses as detailed in Table 3.2, with the top parameter assigned as three. Therefore, for each inputted

requirement the three most relevant or nearby standard sub-clause items (as deemed relevant by Pinecones

ANNS) are outputted. The standard sub-clauses were embedded utilizing ADA-002 embeddings as well

as the sampled project requirements used for this experiment. The experimental framework for this task is

Figure 3.1: Standard-Requirement Linking Depiction

34

derived from the premise of requirements management software frameworks, which host project require-

ments in a hierarchical, structured database. In this setup, each requirement is represented as a single entity

with additional attributes. These attributes often include an integer ID (often representing parent/child

relationships) and the textual content or description of the requirement. Moreover, requirement entities

often contain traceability links that model the requirement’s relation to other requirements in the project.

This framework is designed to receive only the textual content of the requirement entity as a model input.

Furthermore, the model output adds a valuable attribute to the requirement entity through the creation

of parent/child and horizontal linking states between project requirements and engineering standards as

depicted in Figure 2.1. This facilitates the creation of verification structures, such as verification matrices

or other models, for standard compliance. Similarly, project documentation and standard documenta-

tion require that, to be in compliance with a specific standard document, all standard requirements or

sub-clauses must be met.

3.4.2 Human Evaluation

For the evaluation of language embeddings in the task of linking standards to requirements, the inputs and

outputs of the model were assessed pairwise by nine human annotators. These annotators were instructed

to evaluate each pair of requirements and standard sub-clauses as either relevant or not relevant. Further-

more, a definition of relevance was provided to the annotators before the evaluation session commenced.

The question posed was, ’Does this sub-clause enhance or provide valuable additional information to

the requirement?’ The group of annotators consisted of seven graduate engineering students and one

undergraduate engineering student. The evaluation survey comprised 90 items, and the sequence of the

survey for each participant was randomized to mitigate fatigue effects on the respondents’ results.

The respondents’ results were filtered for outliers before the calculation of the model performance.

The high level of technicality present in both the project requirements and the standard sub-clauses com-

bined with varied levels of previous knowledge caused some pairs to lack sufficient agreement to be con-

sidered for processing of the results. The researchers utilized the majority rank of the two response classes

35

for each requirement- standard link to calculate the performance of the model, represented as percentage

relevancy. Majority rank and human evaluation have been shown to be sufficient methods of evaluating

semantic search frameworks (Elbedweihy et al., 2015).

3.5 Standards Search Evaluation

To extensively assess the effectiveness of the embedding-based standards search framework, a practical

case study was conducted using an industry validation dataset. The study involved a collaboration with

a product designer, who supplied the research team with the standard documents employed in their

design methodology as well as a conceptual description of the product. This documentation underwent

preprocessing before its integration into our vector store database, culminating in the addition of 89

distinct chunks. The investigation then proceeded to evaluate three distinct standard document retrieval

approaches, employing the documents supplied by the product designer as a benchmark for precision.

The methodologies implemented for evaluation were as follows:

1. ANNS

2. ANNS with Cohere Rerank

3. ANNS with GPT Zero-shot Reranking

The first stage of retrieval in all three methods is the Approximate Near Neighbor Search (ANNS) tech-

nique further detailed in Subsection 3.5.1. The second method evaluated by this research combines ANNS

with a state-of-the-art reranking API endpoint offered by Cohere. Then lastly, a GPT Zero-shot reranking

approach was tailored to this task and evaluated. Figure 3.2 illustrates an abstraction of the reranking

approach of our embedding-based standards search.

36

Figure 3.2: Reranking of Search Results

3.5.1 ANNS

To investigate ANNS for extracting relevant standard documents from the vector store database, Pinecone’s

query API endpoint was utilized. This allowed the researchers to host the embedded standards in cloud

storage and interaction through API query calls. While Pinecone’s exact algorithms are proprietary, it is

known that typical ANNS methods are used. Most of the optimization done by Pinecone is expected to

be done to reduce latency as a client for the searches, especially in very large datasets.

Following the initial embedding of the product description via the text-embedding-ada-002 model,

the system extracted relevant standard documents, also embedded using the same model. This process was

facilitated by Pinecone’s query interface, which allows for the specification of the number of document

identifiers to be retrieved, prioritizing standard documents closest in the vector space as determined by

37

Pinecone’s Approximate Nearest Neighbor Algorithm. By employing strategies such as indexing, clus-

tering, hashing, and quantization, ANNS algorithms significantly narrow down the search space and

enhance lookup times, thereby improving both computation and storage efficiency at the expense of

some accuracy.

The essence of ANNS’s efficiency lies in its ability to focus on the true intrinsic dimensionality of the

data, striking a delicate balance between accuracy and performance. This method is particularly beneficial

for applications requiring similarity search, where the objective is to find items similar to a given query item

based on vector representations. In such contexts, the slight loss in precision due to the use of approximate

methods is usually outweighed by substantial gains in speed and scalability. Pinecone, while specifics are

proprietary, utilizes Locality Sensitive Hashing (LSH), indexing, clustering, and quantitation.

3.5.2 ANNS with Cohere Rerank

After evaluating the semantic search utilizing just the Pinecone Query endpoint, the research team applied

Cohere’s Rerank API to the initial retrieval results, utilizing Rerank as a cross-encoder to assess pairwise

relevance between the project description and each document chunk retrieved. This then yields a list

re-indexed according to Cohere’s relevance metric, designed to rank the documents from most to least

semantically relevant to the query or product description. As a reminder, in the context of this study,

this means that the standard document segments most pertinent to the project description will be ranked

highest.

3.5.3 ANNS with GPT Zero-shot Reranking

Finally, a GPT zero-shot approach was evaluated as the reranking agent. Utilizing the followingClassification

Prompt, each first-stage retrieval result was passed in iteration to the OpenAI’s Completions endpoint.

• CLASSIFICATION PROMPT = " You are an Assistant responsible for helping detect

whether the retrieved engineering standard is relevant to the project description. For a provided

38

input, you need to output a single token: "Yes" or "No" indicating the retrieved standard is relevant

to the project description query."

Additionally, the model was limited to only returning a binary classification by setting the logitbias

model parameter to the logit values for "Yes" and "No" and assigning maxtokens as 2. While this alone

would return a list of relevancy-filtered engineering standards, the ranking of the index is derived from the

logprobs output from the endpoint. This returns a logarithmic probability of the model’s assignment of

either "Yes" or "No" in the response. This allowed the researchers to then rank the list based on this proba-

bility, after conversion to non-logarithmic probability. The higher the probability of a "Yes" classification,

the more relevant the engineering standard is considered to be for the project description. Therefore, the

final ranking of retrieved engineering standards is directly derived from these probabilities.

3.5.4 Industry Validation

For the three approaches that the researchers evaluated, the benchmark case was formed from an industry

partner that provided the researchers with the standards that were used in the development of one of their

recent production products as well as a conceptual description of the product. As a reminder, in this

task, the standard documents identified by the industry partner were chunked and inserted into the vector

database alongside all other documents as detailed in Table 3.4.

3.6 Standards Augmented Requirements Generation (SARG)

The Standard Augmented Requirements Generator (SARG), is a special adaption of RAG that was

developed to synthesize design information and constraints contained in relevant engineering standards

documents. This information is then presented to the user as high-level requirements that summarize the

relevant topical requirements from the document and include citations to the source document for later

detailed reference by the designer. The GPT zero-shot re-ranking approach was utilized as the retriever

for the SARG pipeline, based on results from evaluations presented later in this paper.

39

3.6.1 Model Architecture

The use of the GPT Zero-shot augmented search allowed for only the responses deemed relevant (as-

signed "Yes") to be passed to the generation component of SARG. Then, these relevant retrieved standard

document chunks are passed in iteration to the GPT Completions endpoint, along with the project de-

scription and the GENERATION PROMPT . All prompts and code utilized for this framework

may be found in Appendix H. In summary, theGENERATION PROMPT asks the model to survey

the standard retrieval chunk and extract the contextually relevant information while maintaining citation

to the source document. This produced an output of N text files, where N is the number of retrieved

and reranked results that are passed to the generation function. The output of the generation function is

then compiled into one text file for processing and compilation by the compilation function. The model

is prompted again, with the COMPILATION PROMPT , which tasks the model with eliminating

contextual redundancy of the generated requirements and logically organizing the requirements based

on the project description. Lastly, the condensed requirements are passed to the model once again, with

the V ERIFICATION PROMPT , which is tasked with ensuring that proper requirements syntax

is used and once again verifying completeness, by comparing the output of the compilation step, the

generation step, and the project description.

3.6.2 Model Evaluation

The SARG tool was evaluated by for relevancy and compliance by the product owner used for the test case.

In addition, qualitative observations by the researchers are also provided for the generated requirements.

This provides multiple perspectives on the generated requirements in that both the model’s ability to

source and synthesize relevant information is accessed but also the syntactical quality in which it generates

requirements in this framework. Previous work on LLM-generated content describes industry expert

evaluation as a useful tool for assessing content (Jury et al., 2024). For this evaluation the inventor of the

product used to prompt SARG, an industry expert with more than 30 years of experience in engineer-

40

ing and design, was asked to evaluate auto-generated requirements using the metrics represented in 3.7.

The metrics were chosen from key features used to specify good requirements (Firesmith, 2003). The

percentage of requirements that passed the evaluation was then observed and discussed. In evaluation of

Table 3.7: SARG Industry Case Metrics
Metric Prompt

Relevance Is the requirement applicable to the product?
Compliance Does the product meet the requirement?

compliance, the product owner further surveyed the elicited requirements in observance of their products

conformance to guidelines or criteria present in the requirements.

41

Chapter 4

Results

Section 4.1 presents the results of the fine-tuned BERT model on the standard-requirement classification

task. In addition, Section 4.1 provides analytical results as yielded by the Integrated Gradients method

to further address research question one. Then, the results for the standard-requirement linking task

are presented in Section 4.2 along with UMAP projections visualizing the standard-requirement corpus

latent space. Then, Section 4.3 presents the efficacy of utilizing embeddings to help bridge the current

information retrieval gap existing with engineering standards. Finally, Section 4.4 presents results of an

outcome of this research, the SARG tool.

4.1 BERT Fine-tuned for SRC Task

Table 4.1 shows the results obtained by training the BERT model on the SRC task. The training loss de-

creases across each epoch of training as the model effectively learns the classification task. After the third

epoch, the early stopping function is triggered (by a decrease in MCC of greater than 0.01) and the model

completes training. The validation loss, which is representative of how well the model is generalizing on

unseen data, slightly increases in the third epoch signifying that if further training is completed generaliz-

ability will suffer. The MCC score of 0.901 for the last epoch indicates that the model is performing well

on the validation dataset. This performance is further evaluated using the testing dataset.

42

Table 4.1: SRC Task Training Metrics
Epoch Training Loss Validation Loss MCC

1 0.474 0.187 0.883
2 0.134 0.099 0.914
3 0.042 0.105 0.901

Table 4.2 illustrates the BERT model’s efficacy on the testing dataset through various performance

metrics. Precision represents the model’s accuracy in identifying true positives among all positive pre-

dictions, highlighting its ability to correctly distinguish standards and requirements without incorrectly

predicting assigning class levels. Recall represents the model’s capability to capture all relevant instances

within the dataset and is representative of the division of model-assigned class positives and ground-truth

positives in the dataset. F1-Score combines precision and recall into a single metric through the calculation

of the harmonic mean of precision and recall thus providing a comprehensive measure of the model’s

overall accuracy and reliability in classifying standards and requirements accurately. Support refers to the

number of ground-truth occurrences for each class in the dataset and is representative of the size of the

unseen dataset for the model.

Table 4.2: SRC Task Result Metrics
Label Precision Recall F1-Score Support

Requirements 0.97 0.96 0.96 255
Standards 0.95 0.96 0.96 201

The confusion matrix displayed in Figure 4.1 visualizes the fine-tuned model’s performance on the

test dataset. In review of methodology, counts for the model’s predicted requirement labels are indicated

along the matrix columns, and counts for the actual labels are indicated along the rows. Out of the 255

requirements in the test dataset, the model correctly labeled 245 for a recall of 96 percent. Furthermore,

out of the 201 standards in the test dataset, the model correctly labeled 193 for a recall of also 96 percent.

The overall performance of this model on the test dataset may be summarized by the MCC score of 0.92.

This indicates that there exists a high correlation between predicted labels and the actual labels present

43

in the dataset. These results indicate that a fine-tuned BERT model may be used to distinguish between

engineering requirements and standards.

Figure 4.1: Standard-Requirement Classification Task Confusion Matrix

UMAP manifold projections for the pre-trained and then fine-tuned BERT models are illustrated in

Figure 4.2 and Figure 4.2. Parameters used for the creation of these projections may be found in Table

3.6. Figure 4.2 demonstrates the topology of the standard-requirement classification training dataset, as

detailed in Tables 3.1 and 3.2, with standard sub-clauses represented by red plot items and project require-

ments by black plot items. The data points for both classes occupy a continuous and overlapping space

on the latent manifold, indicating a gradual transition between the classes, which supports the validity

of the training dataset for the evaluation of a binary classifier. Additionally, the lack of pronounced clus-

ter formation suggests that the model, when processing sentences or small paragraphs, does not cluster

project requirements or engineering standards based on low-level features such as syntactical occurrences

or parent document relationships. This observation suggests to researchers that the latent representation

from the pre-trained BERT model is capable of capturing high-level features. However, this projection

also implies that while the model is capturing context or semantics, it has not yet formed distinct clusters

for requirements and standards, indicating that the base embeddings have not achieved a sufficient level of

44

abstraction to discriminate between these classes on the latent manifold. This suggests to the researchers

that the latent manifold distribution is driven by topical or contextual arrangement.

Figure 4.2: Standard-Requirement Manifold Before Fine tuning

Figure 4.3 illustrates the BERT embedding space after fine-tuning. Two distinct and distant clusters

representing the classification of standards and requirements have formed, visually indicating the results

detailed in Table 4.1. This projection provides visual confirmation of the fine-tuned BERT model’s abil-

ity to correctly classify standards and requirements. Along with a qualitative analysis of the preceding

graphic, Figure 4.2, Figure 4.3 suggests that the model’s latent representations have reached a higher level

of abstraction, offering a more generalized distinction between requirements and standards.

To gain further insight into the black box performance of the fine-tuned BERT model, the researchers

applied the integrated gradients technique to the fine-tuned model as detailed in Section 3.3. Figure 4.4

illustrates the frequency, or number of words, that exist across different attribution values. As hypothesized

by the researchers, the distribution is Gaussian in nature, indicating that a majority of the words present in

either standards or requirements are somewhat common in attribution among the classes. This indicates

that the model is not reliant on a small subset of keywords but on the contextual and semantic layering

of common engineering terminology to correctly predict classes. The mean attribution of the analysis

is situated close to zero, further indicating that specific words or subsets of words do not bias the model

towards the prediction of a class unless the justification is enhanced by the context.

45

Figure 4.3: Standard-Requirement Manifold After Fine-tuning

Figure 4.5 illustrates the word cloud generated from the requirement class token attributions. This

analysis reveals a lexicon consisting of verbiage that one would anticipate in procedural and action-oriented

documents such as requirements documentation. Prominent terms in this depiction such as "submit,"

"include," and "fabrication," are suggestive of the dynamic processes inherent to engineering requirements.

Furthermore, these tokens are characteristically functional in nature, implying steps or components nec-

essary for the fulfillment of engineering tasks. Terms such as "planning" and "installation" reinforce this

characterization by highlighting the sequential or methodical aspects detailed in required in engineer-

ing requirements that guide engineering projects from inception to completion. Direct verbs, such as

“submit,” “include,” and “write” highlight the imperative tone found in requirements statements.

Figure 4.6 illustrates the word cloud generated from the standard class token attributions. The absence

of directive verbs typically associated with requirements highlights a more declarative tone consistent with

the descriptive nature of standards. Terms such as "specification", "procedures", and "verification" indicate

that this class of language is not characteristically prescribing actions but is delineating expectations and

definitions.

Modal verbs often found in requirements documentation such as shall, will, must, or should held

attribution weights of -0.184, -0.619, -0.2682, and -0.170 respectively. Thus, indicating that overall the

46

Figure 4.4: Histogram of Fine-tuned Model Word Attributions

Figure 4.5: Word Attribution Analysis Highlighting Key Determinants of ’Requirement’ Classification

model utilizes the presence of these words to predict the requirement class. Selected word attributions

are shown in Table 4.3. Wh-pronouns such as who, what, and whom are more indicative of standard pre-

diction and the researchers attribute this to the descriptive nature of standard documentation, detailing

guidelines for multiple organizational systems in contrast to the nature of requirements specifying guide-

lines for one system or component. Modal verbs such as may, might, can, and could are more indicative

of standard prediction while modal verbs such as would, should, shall, must, and will are more indicative

of requirement prediction. Additionally, the token “s”, a possessive ending, is more indicative of standard

prediction with an attribution of 0.110. The possessive ending, “s”, is indicative of standard prediction in

47

Figure 4.6: Word Attribution Analysis Highlighting Key Determinants of ’Standard’ Classification

which guidelines are specified for entities while requirements are singular in nature and assign targets or

goals to one entity.

Table 4.3: Selected Word Attributions
Wh-pronouns Attribution Modal Verbs Attribution

Who 0.223 May 0.215
What 0.154 Might 0.068

Whom 0.086 Can 0.044
Could 0.025
Should -0.017

Shall -0.184
Must -0.268
Will -0.620

4.2 Efficacy of Embeddings for Standard-Requirement Linking

This section details the results of the standard-requirement linking task. The methodology for this task is

detailed in Section 3.4 while relevant statistics for the corpus may be referenced in Subsection 3.1.2.

Figure 4.7 illustrates the raw results of human relevancy evaluation for Project 1. Project 1 details the

design requirements for a threaded pipe manufacturing production line. After analyzing the results at

the Project level, the S2R method achieved 50.0 % relevance accuracy.

48

Figure 4.7: Project 1 Evaluator Results

Figure 4.8 illustrates the raw results of human relevancy evaluation for Project 2. As a reminder, Project

2 focuses on design requirements for manufacturing stations and equipment for exhaust gas flaps. For the

Project requirements sampled from Project 2, the S2R method achieved 64.29 % relevance accuracy.

Figure 4.8: Project 2 Evaluator Results

Figure 4.9 illustrates the raw results of human relevancy evaluation for Project 3. Project 3 enumerates

the design requirements for industrial textile manufacturing equipment. Across the projects sampled and

evaluated, the S2R method performed second-best on this Project with a relevance accuracy of 69.23 %.

49

Figure 4.10 illustrates the raw results of human relevancy evaluation for Project 4. Project 4 describes

Figure 4.9: Project 3 Evaluator Results

the design requirements for a material handling system in the pipe threading manufacturing process.

For this Project, the S2R method achieved 36.36 % relevance accuracy, the second lowest of the projects

evaluated. Figure 4.11 illustrates the raw results of human relevancy evaluation for Project 5. Projects 5

Figure 4.10: Project 4 Evaluator Results

and 6 consist of publicly available requirements for design subsystems within the Square Kilometre Array

(SKA) Project. Specifically, Project 5 describes the design of a dish element, while Project 6 describes an

50

artifact responsible for correlating and beamforming. While these two requirement sets are derived from

the same system, there is little overlap between the requirements. Project 5 makes no mention of the

correlator and beamformer described in Project 6. Furthermore, a survey of Project 6 for the dish element

detailed in Project 5 reveals that it was mentioned in only 4 requirements.

Figure 4.11: Project 5 Evaluator Results

Figure 4.12 shows the raw results of human relevancy evaluation for Project 6, which describes an

artifact responsible for correlating and beamforming. While Project 5 attained a relevance accuracy score

of 84.62%, the highest among the projects, the relevance accuracy for Project 6 was calculated as 33.33%,

the lowest relevance accuracy in the group. Project 6 is unique from the other documents structurally in

that every requirement begins with the product’s name, "CSP_Mid.CBF," and other projects only contain

the product name occasionally, and in varied positions in the sentence.

After filtering out evaluation pairs from the analysis that did not show majority agreement on relevancy

assignment, the overall performance of the model is presented with an 81.2% relevance accuracy. This

suggests to the researchers that this method can be utilized with some success for dynamically linking

engineering standards to engineering requirements.

Figures A.2 and A.1 present UMAP projections of the latent manifold as yielded by language embed-

dings. Figure A.2 offers a broad view of the latent manifold, reinforcing key findings from the analysis

51

Figure 4.12: Project 6 Evaluator Results

using BERT in the previous section. Primarily, it shows that standards and requirements have significant

overlap on the latent contextual manifold when plotted together, thereby validating this approach for

standard-requirement linking.

Figure A.1 depicts the same data, yet labeled by origin. Standards sub-clauses originating from AASHTO,

ASABE, and ASTM are observed to be more tightly clustered than other groups depicted on the mani-

fold. Furthermore, Project 1 appears distinct from the other data on the right side of the projection, with

little overlap with other items. A noticeable cluster exists in the left-center of the depiction, comprised

of standard sub-clauses from CCSDS, which provides standards for space data communication and thus

hosts significant differences from other items in the dataset.

The framework’s performance on the testing dataset, alongside a qualitative analysis of the latent

manifold, indicates that this framework may be effective for the task of linking standard sub-clauses to

requirements.

52

4.3 Efficacy of Search Framework with Document Chunk Embed-

dings

Figure 4.13 illustrates the outcomes of the standard retrieval task. To clarify, precision within the industry

validation case refers to whether the extracted segment comes from documents deemed relevant by the

product owner. If so, that specific outcome is considered relevant, thereby contributing to the measure of

precision. It’s important to note there may be relevant standards within the retrieved items that were not

included in the product owner’s initial specifications. Nevertheless, to avoid subjectivity, such possibilities

are not reflected in the results. Instead, only the ’ground truth’ as determined by the product owner is

included.

Figure 4.13: Evaluation Results of Search Methods

The graph in Figure 4.13 illustrates the varying precision levels of three semantic search methods as the

retrieval index (k) increases. The ANNS semantic search method exhibits a steep decline in precision from

k=0 to k=5, indicating that the quality of results drops quickly as more items are retrieved. This method

experiences a brief improvement at k=13, matching the GPT zero-shot method’s performance before

continuing a general decline towards k=100. The noticeable fluctuation in precision early in the graph

is caused by the introduction of an irrelevant result at k=4. In contrast, the ANN semantic search with

53

Cohere Rerank demonstrates inconsistent precision across the range, with a notable decrease to below 20

percent precision by k=20. This suggests that this method struggles to appropriately correlate the project

description with relevant standards. The GPT zero-shot reranking method, however, maintains a 100

percent precision rate until k=13, at which point an irrelevant result is introduced. It’s important to note

that this method evaluated only 15 results as relevant, and these are predominantly placed within the top 13

results, explaining the smooth and steep decline in precision thereafter. In comparison, while the ANNS

method begins to surpass the GPT zero-shot method in precision after k=23, the initial retrieval (such as the

top 20 results) is significantly more precise with the GPT zero-shot approach. This indicates that the GPT

zero-shot method is more effective at ranking the most relevant results at the top of the retrieval list. The

behavior of these search methods is further explored by the use of the Uniform Manifold Approximation

and Projection (UMAP) dimensionality reduction technique. The initial first stage retrieval, ANNS-based

search as executed by Pinecone Query, top 100 results are visualized in Figure C.1. The darker elements

represent the retrieved results while the lighter elements depict the manifold projections of the standards

in the vector store.

Figure C.2 visualizes the results of the top 100 results, derived and reranked from an initial result of

500 by the ANNS-based search, and the result’s position on the manifold. Notably, this method utilizing

Cohere Rerank illustrates distinct clustering of results.

Figure C.3 highlights the manifold plotted results of the GPT Zero-shot method and illustrates a

distinct and centralized cluster of results, visualizing GPT’s ability to filter the contextually relevant docu-

ments to the conceptual project description. This depiction further validates the semantic search approach

as valuable, demonstrating that engineering standards relevant to a project exist in a unique space on the

contextual embedding manifold, and this space may be accessed through the embedding of a conceptual

description. In summary, ANNS first stage retrieval followed by GPT zero-shot reranking demonstrates

exciting performance for filtering contextually relevant engineering standards provided only a conceptual

project description as an input. The poor performance of Cohere Rerank is attributed to its training

54

on primarily question-answer tasks, which may not apply to the task of this work. Based on its superior

performance in this task, the GPT Zero-shot method was chosen for integration into the SARG pipeline.

4.4 SARG Results

The industry product owner surveyed the SARG-generated requirements and deemed 64 percent of the

generated requirements as relevant to the product and identified the product as compliant with 50 % of

the generated requirements. Example generated requirements are detailed below with the specific product

name and standard references filtered to protect proprietary information.

• Springs will have an average load rate within ±10 % tolerance for springs with five or more total

turns, calculated as per [standard] S6.1.

• Tolerance on the load rather than the height dimension of springs will be between 20 and 80 per-

cent of calculated solid capacity, not less than 65 % of the spring’s calculated solid capacity, as per

[standard]

• The [product name] will have all mechanisms designed with no protrusions in the direction of

rotation and provide PTO drive shaft guarding as specified in [standard] S5.5.1 and S5.5.2.

• Safety signs will be placed on the PTO drive shaft guard, outer driving member of PTO drive shafts,

and prominently to indicate the necessity of keeping guards in place, conforming to [standard] as

per [standard] S6.1 to S6.4.

• Guards for moving parts will minimize the possibility of inadvertent contact, requiring tools for

removal, and be designed to withstand a perpendicular static load of 1,200 N without permanent

deflection as per [standard] 10.2.1 and 10.2.3.

• The [product name] will incorporate a secondary power input connection (SPIC) and a PTO

drive shaft that meets the closed and extended length requirements, utilizing a universal joint or a

55

wide-angle constant velocity universal joint if operation angles exceed 50°, as specified in [standard]

Sections 3.2.4 to 3.6.

• A non-rotating PTO drive shaft guard and a PIC [SPTO] [SPIC] guard will be equipped, fully

covering and enclosing the PIC, SPTO, and SPIC, ensuring comprehensive protection as per [stan-

dard] Sections 3.9 to 3.11.

• The [product name] will be equipped with a rigid imperforate guard on the top and sides, meeting

the requirements of the foot probe test and the thrown-object test as outlined in [standard] to

ensure comprehensive protection.

In the follow-up observations shared by the product owner, it was discovered that the initial results

showed a relevancy of only 64%. This underestimation was found to be due to giving the responsibil-

ity for meeting specific spring standards to the company’s spring supplier. After taking this factor into

account, the true relevance of the requirements was adjusted to 100%. Additionally, when assessing the

product’s compliance, the product owner initially rated it at 50% compliance. However, upon closer

examination, the researchers found that the product was found in compliance with all but one of the

initially relevant requirements identified by the SARG process. The compliance metric was developed

to capture important information about the product, specifically looking for gaps in engineering docu-

mentation management or other common issues companies face in meeting standards, often due to a lack

of traceability in compliance. Furthermore, the researchers acknowledge the need for broader testing to

more accurately determine the SARG model’s effectiveness throughout the product development process,

especially in compliance verification and validation.

Overall, the model succeeded in capturing and synthesizing relevant information from the retrieved

engineering standards in a concise, requirements-structured manner. This enables designers to easily

constrain the design space to comply with standards while allowing for the natural development of product

form. Furthermore, the SARG tool can assist designers by ensuring that design recommendations from

engineering standards are realized early in the design process, potentially reducing iterations and costs.

56

Moreover, this implementation demonstrates the competence of Large Language Models (LLMs) in

retrieving and synthesizing relevant engineering standards, as well as eliciting tailored high-level project

requirements.

57

Chapter 5

Discussion

This chapter presents the dicussion of results of this thesis. Section 5.1 frames the result of this work to

answer research questions. Section 5.2 presents the expected impact on design research and practice of

this work. Finally, Section 5.3 presents key recommendations derived from this work. Limitations for this

thesis are then presented in Section 5.4.

5.1 Addressing Research Questions

RQ 1 - How may requirements and standards be distinguishable through large language models?

The high performance of the fine-tuned BERT model in the standard-requirement classification task

proves that requirements and standards may be distinguished by the use of language embeddings effec-

tively, highlighting the model’s capability to discern nuances in standards and requirements that may

elude manual detection. Moreover, this indicates that requirements and engineering standard sub-clauses

are sufficiently distinct for the model to leverage the differences in the syntactic and semantic view to per-

form well on unseen data. As a reminder to the reader, the training dataset used for this project contained

data points from six different industry requirement sets and ten unique standard-developing organiza-

tions. The heterogeneity of this dataset, while not claimed as perfect, leads the researchers to have high

confidence that this may serve as a generalized approach that may be leveraged in design practices for

58

detecting the explicit presence of standard line items in requirement sets. This brings value in the direct

appearance of a prescriptive standard sub-clause in requirement sets that may be flagged, allowing for

either manual insertion of incorporation by reference or for further automated links as proposed in the

standard-requirement linking task. Further augmenting the standard compliance traceability as well as

pathways for requirement reuse selection by parent standard selection for a project.

The blending of these data points on the latent manifold indicates a smooth transition between the

two classes, validating the training dataset’s appropriateness for a binary classification task. The absence

of distinct clustering suggests that the model does not rely on low-level features like syntax or document

origin for manifold but rather on high-level features captured by the pre-trained BERT model’s latent

representations. However, the lack of clear separation or clustering between standards and requirements

also suggests that the model’s base embeddings need further refinement to adequately distinguish between

these two classes based on their inherent characteristics further validating the need for fine-tuning the

BERT model.

The application of Integrated Gradients to the fine-tuned model and the plotting of term frequency

vs word attribution yields significant understanding in how requirements and standards may be distin-

guished through large language models. Additionally, by the analysis of the word attributions the re-

searchers were able to verify that the model’s ability to accurately classify information is not based on a

limited set of specific or rare keywords. Instead, it relies on the contextual and semantic structuring of

commonly used engineering terms. The average attribution of the analysis is near zero, further showing

that the model is not swayed toward classifying any particular category based on certain words or groups

of words unless the context substantially supports the reasoning.

RQ 2 - How may language embeddings correlate engineering project requirements to standard document

sub-clauses?

Due to limited data availability, the experiment for linking standards to requirements through lan-

guage embeddings, which shows promise, could not be conducted under ideal conditions. The approach

demonstrated reasonable accuracy in identifying relevant standard sub-clauses or guidelines to link with

59

requirements. However, this accuracy is constrained by the narrow context of individual line item require-

ments and standard sub-clauses. Initial impressions may suggest that the links generated are pertinent to

the given requirements, assuming the reader’s understanding is limited to the context provided by the

model. Upon closer examination of the source documents, a frequent misalignment in scope becomes

evident. Nonetheless, this limitation is mitigated in scenarios where engineering firms maintain a detailed

database of relevant standard documents, suggested to be vectorized and stored as sub-clauses. This prac-

tice is common among such firms, and in these instances, having a specific set of standard documents

helps to eliminate irrelevant content, ensuring only pertinent links are established.

RQ 3 - Do language embedding correlations exist between conceptual engineering project descriptions

with relevant standards? Through the evaluation of three different search models, the researchers con-

clude that language embedding correlations do exist between conceptual engineering project descriptions

and relevant standards. This is proven by the use of an industry validation case, which provides seldom-

acquired information regarding the standards used in the development of the product, as well as access to

the product designer. The narrowing of the search results through the refinement of methods further in-

dicates that relevant standards for a project do indeed occupy a localized space on the contextual manifold.

Furthermore, the ability of the GPT Zero-shot approach to accurately filter out irrelevant engineering

standards exhibits a high level of engineering and contextual reasoning by the model.

5.2 Impact on Design Research and Practice

This thesis advances knowledge in the NLP domain, exploring the application and performance of several

common NLP techniques on engineering standards. These standards are domain-specific concerning

common engineering terminology and reveal differences in how large language models process and per-

ceive them. The successful deployment of GPT-Zero shot as both a reranker and a relevancy filter for

engineering standards offers significant potential to enhance search processes for engineering standards

and design practices. Furthermore, the domain of requirements engineering, and specifically requirements

60

management, is advanced by the creation and evaluation of the standard-requirement classification model

and the evaluation of the standard-requirement linking framework. The standard-requirement classifica-

tion model has proven to be an effective approach for identifying “stray” engineering requirements that

may be placed in engineering documentation without explicit reference to a source standard, thereby en-

hancing compliance traceability, potentially reducing iterations and costs, and promoting product safety.

The S2R framework, proposed in this work for standard-requirement linking, offers practical benefits by

reducing the time spent on eliciting requirements for variant or adaptive designs within a similar solution

space. Since most variant designs must comply with regulatory, safety, environmental, or design guidelines,

this underscores the practicality of the approach to reduce the time spent in requirement elicitation for

designs in a similar solution space. While engineering standards currently lack thorough exploration, this

work aims to inspire future research in this area. Furthermore, given the scarcity of publications on engi-

neering standards, Section 2.1 of this thesis adds value by conglomerating the key, albeit rare, references

on the subject.

5.3 Recommendations

The primary recommendation of this work is for the benefit of Standard Developing Organizations. En-

hanced methods for interacting with engineering standards have been developed in this work, combating

the pain point designers often face with project-relevant standard retrieval. Furthermore, the researchers

encourage SDOs to adopt practices as depicted in this thesis to not only increase the use of their hosted

standards but to primarily lessen the pain point that designers currently face with current systems. Ad-

ditionally, through analysis of the fine-tuned BERT model, the researchers have developed knowledge

surrounding how LLMs interact with engineering standards and requirements alike. Through the analy-

sis of term frequency and word attribution, derived from the fine-tuned model’s weights, the researchers

may confidently recommend that TF or TF-IDF methods will not perform well on the task completed

by the fine-tuned model of highlighting the presence of engineering standards that are present without

appropriate reference or linking to the source document. Furthermore, as the fine-tuned model has been

61

shown to not use hyper-specific terms to predominantly distinguish requirements and standards, the re-

searchers believe that TF or TF-IDF methods will not suffice for the standard-requirement linking task as

proposed in this work, yielding to methods such as language embeddings or generative LLMs to perform

such tasks which can incorporate context and topical relevance. This poses great potential to reduce work-

flows surrounding potentially safety-critical processes, such as the selection of standards to be applied to

projects, often detailing safety guidelines for components or systems. In this light, firms and designers

are recommended to ensure that large language models and such tools developed in this work still have

human-in-the-loop verification procedures in place. The creation of new technology or tools that have

arisen alongside the popularity of large language models hosts great potential to enhance an engineer’s or

firm’s productivity. However, the liability remains placed on the engineer’s shoulders for the advancement

and assurance of the safety of society.

5.4 Limitations

The methods and results in this work are not without limitations. The various corpora used in the eval-

uation of the models and frameworks in this work are subject to inputs, or the richness of the training

corpus or database contents, and would benefit from enhanced size and variance. While the researchers

are confident that the conclusions drawn in this thesis are appropriate and sound, more data for the eval-

uation of this work would have proven useful. However, the researchers were subject to the feasible limits

of paywalls enforced by many SDOs for their standard documents and also by the proprietary nature of

engineering documentation surrounding product development. While the industry case study utilized

for evaluation in this work is robust, the researchers realize that more validation cases would have led to

greater confidence in the generalizability of the approaches. Additionally, the tasks in this work involve

using standard tools in unconventional ways. As such, there are no established methods for evaluation

within the domain. The limited availability of proprietary product documentation, which includes de-

tailed product requirements and compliance standards, further introduces ambiguity into the evaluation

methods.

62

Chapter 6

Conclusion and Future Work

This work establishes foundational knowledge on how large language models process two key components

of engineering design documentation, design requirements and design standards. Through the training

of a large language model, BERT, to distinguish between standards and requirements the researchers un-

covered key linguistic differences present in standards and requirements that may be leveraged in future,

optimized methods for these tasks surrounding design standards. This work has also presented the eval-

uation of three embedding-based techniques for retrieving project-relevant engineering standards. Our

results demonstrate that ANN-based initial retrieval, followed by reranking using GPT Zero-shot, effec-

tively and efficiently returns relevant engineering standards. The high precision of this approach enables

comprehensive and time-saving search results for designers early in the design phases. Furthermore, the

precision and additional relevancy filtering of this approach introduce less irrelevant noise into RAG

systems, such as SARG, producing a more palatable integration of standards for designers. Moreover, the

introduction of the SARG tool validates this framework as an effective means to further aid designers

during the early conceptual phases by developing formal, high-level compliance requirements. These

requirements aim to guide the design process and facilitate engineering decision-making procedures by

bridging the gap in project-relevant standard retrieval.

63

Appendix A

UMAP Projections of SRC

Manifold

64

Figure A.1: UMAP Projection of Standards and Requirements by Enity

65

Figure A.2: UMAP Projection of Standards and Requirements by Enity

66

Appendix B

Term Frequency vs Word

Attribution Plots

67

Figure B.1: Frequency vs Attribution for "Requirement" Class

68

Figure B.2: Frequency vs Attribution for "Standard" Class

69

Appendix C

UMAP Embeddings of Search

Results

70

Figure C.1: UMAP Projection of ANNS Search Results on Latent Standard Manifold

71

Figure C.2: UMAP Projection of ANNS + Cohere Rerank Search Results on Latent Standard Manifold

72

Figure C.3: UMAP Projection of ANNS + Zero-shot Rerank Search Results on Latent Standard Manifold

73

Appendix D

Code for Fine-tuning BERT on SRC

Task

import numpy as np

import pandas as pd

from transformers import BertForSequenceClassification

from transformers import Trainer , TrainingArguments , EarlyStoppingCallback

from datasets import load_metric

from sklearn . metrics import matthews_corrcoef as mcc

import matplotlib.pyplot as plt

import seaborn as sns

from cf_matrix import make_confusion_matrix

df = pd.read_csv("STDREQLabeled.csv")

df = df.sample(frac=1, random_state =42).reset_index(drop=True)

df = df.loc[(df.label == "standard") | (df.label == "requirement")]

requirements = df.text.tolist ()

labels = df.label.map({’standard ’: 1, ’requirement ’: 0}).tolist ()

train_text , test_text , train_labels , test_labels = train_test_split(

requirements ,

labels ,

74

random_state =41,

test_size =0.2

)

train_text , val_text , train_labels , val_labels = train_test_split(

train_text ,

train_labels ,

random_state =42,

test_size =0.1

)

tokenizer = BertTokenizerFast.from_pretrained(’bert -base -uncased ’)

train_encodings = tokenizer(train_text , truncation=True , padding=True)

val_encodings = tokenizer(val_text , truncation=True , padding=True)

test_encodings = tokenizer(test_text , truncation=True , padding=True)

model=BertForSequenceClassification.from_pretrained("bert -base -uncased")

metric = load_metric("matthews_correlation") #load MCC metric

def compute_metrics(eval_pred):

predictions , labels = eval_pred

predictions = np.argmax(predictions , axis =1)

return metric.compute(predictions=predictions , references=labels)

class StdReqDataset(Dataset):

def __init__(self , encodings , labels):

self.encodings = encodings

self.labels = labels

def __getitem__(self , idx):

item = {key: torch.tensor(val[idx]) for key , val in self.encodings

.items()}

item[’labels ’] = torch.tensor(self.labels[idx])

return item

75

def __len__(self):

return len(self.labels)

train_dataset = StdReqDataset(train_encodings , train_labels)

val_dataset = StdReqDataset(val_encodings , val_labels)

test_dataset = StdReqDataset(test_encodings , test_labels)

training_args = TrainingArguments(

output_dir=’./ results ’,

evaluation_strategy=’epoch’,

save_strategy=’epoch ’,

num_train_epochs =6,

per_device_train_batch_size =16,

per_device_eval_batch_size =16,

learning_rate =2e-5,

warmup_ratio =0.1,

weight_decay =0.01 ,

logging_dir=’./logs’,

logging_strategy=’epoch’,

load_best_model_at_end=True ,

metric_for_best_model=’eval_loss ’,

)

trainer = Trainer(

model=model ,

args=training_args ,

train_dataset=train_dataset ,

eval_dataset=val_dataset ,

compute_metrics=compute_metrics ,

callbacks =[

EarlyStoppingCallback(early_stopping_patience =1,

early_stopping_threshold =0.01)

76

]

)

trainer.train ()

predictions = trainer.predict(test_dataset)

preds = np.argmax(predictions.predictions , axis=-1)

mcc_test_labels = [label for label in test_labels]

mcc_preds = [label for label in preds.tolist ()]

print(mcc_preds)

print(mcc_test_labels)

print(mcc(mcc_test_labels , mcc_preds))

sns.set_context(’paper’)

labels = [’TN’,’FP’,’FN’,’TP’]

categories = [’Requirement ’, ’Standard ’]

cmap = sns.color_palette(’rocket ’, n_colors =200)

make_confusion_matrix(cf_matrix , categories=categories , cmap=cmap)

plt.savefig(’confusionmatrixsrc.png’, dpi =300)

model.save_pretrained(’savedmodels ’)

model.config.save_pretrained(’savedmodels ’)

tokenizer.save_pretrained(’savedmodels ’)

77

Appendix E

Analysing Fine-tuned Model

E.1 Executing Integrated Gradients

from transformers import AutoModelForSequenceClassification , AutoTokenizer

import pandas as pd

import json

from collections import defaultdict

from transformers_interpret import SequenceClassificationExplainer

from sklearn.model_selection import train_test_split

df = pd.read_csv("STDREQLabeled.csv")

df = df.sample(frac=1, random_state =42).reset_index(drop=True)

df = df.loc[(df.label == "standard") | (df.label == "requirement")]

requirements = df[’text’]. tolist ()

labels = df.label.map({’standard ’: "LABEL_1", ’requirement ’: "LABEL_0"}).

tolist ()

df_new = pd.DataFrame ({’text’: requirements , ’label’: labels })

model_directory = "savedmodels/"

model = AutoModelForSequenceClassification.from_pretrained(model_directory

)

78

tokenizer = AutoTokenizer.from_pretrained(model_directory)

cls_explainer = SequenceClassificationExplainer(model , tokenizer)

word_attributions_aggregated = {

"LABEL_0": defaultdict(list), # For ’requirement ’

"LABEL_1": defaultdict(list) # For ’standard ’

}

for index , row in df_new.iterrows ():

text = row[’text’]

For each class , calculate and collect word attributions

for class_name in ["LABEL_0", "LABEL_1"]:

word_attributions = cls_explainer(text , class_name=class_name)

Aggregate attributions by word for the current class

for word , score in word_attributions:

word_attributions_aggregated[class_name][word]. append(score)

word_attributions_avg = {

class_name: {word: sum(scores) / len(scores) for word , scores in

class_attributions.items()}

for class_name , class_attributions in word_attributions_aggregated.

items()

}

difference_in_attributions = {

word: word_attributions_avg["LABEL_1"].get(word , 0) -

word_attributions_avg["LABEL_0"].get(word , 0)

for word in set(word_attributions_avg["LABEL_1"]) | set(

word_attributions_avg["LABEL_0"])

}

with open(’word_attributions_avg.json’, ’w’) as f:

json.dump(word_attributions_avg , f)

79

with open(’difference_in_attributions.json’, ’w’) as f:

json.dump(difference_in_attributions , f)

E.2 Creating Word Attribution Histogram

import json

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from matplotlib import rcParams

file_path = "difference_in_attributions.json"

with open(file_path , ’r’) as file:

attributions_data = json.load(file)

attribution_values = np.array(list(attributions_data.values ()))

sns.set_theme(style="whitegrid")

rcParams.update ({’font.size’: 14})

plt.figure(figsize =(12, 6))

sns.histplot(attribution_values , bins=50, kde=False , color="skyblue",

edgecolor="black", label=’Attribution Values ’, log_scale =(False , True))

plt.xlabel(’Attribution Value ’, fontsize =16)

plt.ylabel(’Frequency ’, fontsize =16)

plt.xticks(fontsize =14)

plt.yticks(fontsize =14)

plt.axvline(np.mean(attribution_values), color=’red’, linestyle=’dashed ’,

linewidth=1, label=’Mean Attribution ’)

plt.legend(fontsize =13, title_fontsize =14)

plt.grid(True , which=’both’, linestyle=’--’, linewidth =0.5)

plt.savefig(’attribution_values_distribution.png’, dpi=300, format=’png’,

bbox_inches=’tight ’)

80

E.3 Creating Word Clouds

import json

import numpy as np

from wordcloud import WordCloud

import matplotlib.pyplot as plt

file_path = "difference_in_attributions.json"

with open(file_path , ’r’) as file:

attributions_data = json.load(file)

attribution_values = np.array(list(attributions_data.values ()))

lower_bound = np.percentile(attribution_values , 37.5)

upper_bound = np.percentile(attribution_values , 62.5)

filtered_attributions = {

token: value for token , value in attributions_data.items()

if (lower_bound < value < upper_bound) and not token.isdigit () and ’#’

not in token

}

positive_attributions = {token: value for token , value in

filtered_attributions.items () if value > 0}

negative_attributions = {token: abs(value) for token , value in

filtered_attributions.items () if value < 0}

wordcloud_pos = WordCloud(width =800, height =400, background_color=None ,

mode=’RGBA’).generate_from_frequencies(positive_attributions)

wordcloud_neg = WordCloud(width =800, height =400, background_color=None ,

mode=’RGBA’).generate_from_frequencies(negative_attributions)

def save_wordcloud(wordcloud , filename , dpi =300):

plt.figure(figsize =(10, 5))

81

plt.imshow(wordcloud , interpolation=’bilinear ’)

plt.axis(’off’)

plt.savefig(filename , format=’png’, transparent=True , dpi=dpi)

save_wordcloud(wordcloud_pos , ’standard_attributions.png’)

save_wordcloud(wordcloud_neg , ’requirement_attributions.png’)

82

Appendix F

Code for SRC Task

F.1 Sampling Random Project Requirements

import pandas as pd

file_path = "Sentence Requirements with document labels.xlsx"

df = pd.read_excel(file_path)

label_column = ’document ’

unique_labels = df[label_column]. unique ()

print(f"Unique Labels: {unique_labels}")

samples_per_label = 5

sampled_dfs = []

for label in unique_labels:

df_label = df[df[label_column] == label]

sampled_df = df_label.sample(n=samples_per_label , replace=False ,

random_state =2)

sampled_dfs.append(sampled_df)

final_sampled_df = pd.concat(sampled_dfs , ignore_index=True)

output_path = "Sampled Sentence Requirements with document labels.xlsx"

83

final_sampled_df.to_excel(output_path , index=False)

F.2 Upserting Standard Sub-clauses to Pinecone

import openai

from openai import OpenAI

import pinecone

import pandas as pd

import numpy as np

client = OpenAI(api_key= ’1234’)

pinecone.init(

api_key=’1234’,

environment=’gcp -starter ’

)

index = pinecone.Index(’standard -vectorstore ’)

csv_file_path = ’standard_labeled.csv’

df = pd.read_csv(csv_file_path)

print(df.head())

def get_embedding(text , model="text -embedding -ada -002"):

embedding = client.embeddings.create(input=[text], model=model).data

[0]. embedding

return embedding

def get_embeddings_batch(texts):

embeddings = []

for text in texts:

embeddings.append(get_embedding(text))

return embeddings

84

df[’batch_id ’] = np.arange(len(df)) // 20

unique_batches = df[’batch_id ’]. unique ()

for batch_id in unique_batches:

batch_df = df[df[’batch_id ’] == batch_id]

batch_texts = batch_df[’text’]. tolist ()

batch_embeddings = get_embeddings_batch(batch_texts)

data_to_upsert = [(str(id), embedding) for id, embedding in zip(

batch_df.index , batch_embeddings)]

index.upsert(vectors=data_to_upsert , namespace="SentencesNewFiltered")

print(f"Processed and upserted batch {batch_id}")

print("All batches processed.")

F.3 Executing SRC Task

import pinecone

import numpy as np

import openai

from openai import OpenAI

import tiktoken

import csv

import time

import pandas as pd

pinecone.init(

api_key=’1234’,

environment=’gcp -starter ’

)

85

pindex = pinecone.Index(’standard -vectorstore ’)

client = OpenAI(api_key= ’1234’)

csv_file_path = ’standard_labeled.csv’

df_standards = pd.read_csv(csv_file_path , usecols =[’text’, ’document ’])

df_standards[’ID’] = df_standards.index

print(df_standards.head())

csv_file_path = ’sampledrequirementsforEVAL.csv’

df_requirements = pd.read_csv(csv_file_path)

df_requirements[’ID’] = df_requirements.index + 1

print(df_requirements.head())

df_requirements[’document ’] = df_requirements[’document ’]. astype(str)

def get_embedding(text , model="text -embedding -ada -002", max_tokens =8191):

encoding = tiktoken.encoding_for_model("text -embedding -ada -002")

tokens = encoding.encode(text)

if len(tokens) > max_tokens:

tokens = tokens [: max_tokens]

truncated_content = encoding.decode(tokens)

return client.embeddings.create(input=[truncated_content],

model=model).data [0]. embedding

document_ids_per_input = {}

for idx , row in df_inputrequirements.iterrows ():

try:

requirement_embedding = get_embedding(row[’text’])

pinecone_results = pindex.query(vector=requirement_embedding ,

top_k=3, namespace=’SentencesNewFiltered ’, include_values=False)

document_ids = [result[’id’] for result in pinecone_results[’

matches ’]]

document_ids_per_input[idx] = document_ids

86

print(f"Processed row {idx}, retrieved {len(document_ids)}

document IDs")

except Exception as e:

print(f"Error processing row {idx}: {e}")

structured_results = []

df_standards[’ID’] = df_standards[’ID’]. astype(str)

for input_idx , document_ids in document_ids_per_input.items():

filtered_docs = df_standards[df_standards[’ID’].isin(document_ids)]

for _, doc in filtered_docs.iterrows ():

structured_results.append ({

"Input Index": input_idx ,

"Document Text": doc[’text’]

})

df_results = pd.DataFrame(structured_results)

csv_file_name = ’sentenceresultsforeval.csv’

df_results.to_csv(csv_file_name , index=False)

87

Appendix G

Code for Standard Search

Framework

G.1 Upserting Standard Document Chunks to Pinecone

import os

import openai

from openai import OpenAI

import pandas as pd

import time

import pickle

import pinecone

import tiktoken

pinecone.init(

api_key=’1234’,

environment=’gcp -starter ’

)

index = pinecone.Index(’standard -vectorstore ’)

client = OpenAI(api_key= ’1234’)

88

def chunk_tokens(file_content: str , file_name: str , token_limit: int =

1000):

if not os.path.exists(’chunks ’):

os.makedirs(’chunks ’)

enc = tiktoken.encoding_for_model("text -embedding -ada -002")

chunks = []

tokens = enc.encode(file_content , disallowed_special =())

chunk_number = 1

while tokens:

chunk = tokens [: token_limit]

chunk_text = enc.decode(chunk)

last_punctuation = max(chunk_text.rfind("."), chunk_text.rfind("?"

),

chunk_text.rfind("!"), chunk_text.rfind("\n

"))

if last_punctuation != -1 and len(tokens) > token_limit:

chunk_text = chunk_text [: last_punctuation + 1]

cleaned_text = chunk_text.replace("\n", " ").strip()

if cleaned_text and not cleaned_text.isspace ():

chunks.append(cleaned_text)

chunk_file_name = f"{file_name}_{chunk_number }.txt"

with open(os.path.join(’chunks ’, chunk_file_name), "w") as

file:

file.write(cleaned_text)

chunk_number += 1

tokens = tokens[len(enc.encode(chunk_text , disallowed_special =()))

:]

return chunks

89

def read_text_file(file_path):

with open(file_path , ’r’, encoding=’utf -8’) as file:

return file.read()

folder_path = ’documenttextfiles/’

for file_name in os.listdir(folder_path):

if file_name.endswith(’.txt’):

base_file_name = os.path.splitext(file_name)[0]

file_path = os.path.join(folder_path , file_name)

file_content = read_text_file(file_path)

chunks = chunk_tokens(file_content , base_file_name)

def get_embedding(file_content , model="text -embedding -ada -002", max_tokens

=8191):

encoding = tiktoken.encoding_for_model("text -embedding -ada -002")

tokens = encoding.encode(file_content)

return client.embeddings.create(input=[file_content], model=model).

data [0]. embedding

chunk_folder = ’chunks/’

file_count = 0

pinecone_data = []

for file_name in os.listdir(chunk_folder):

if file_name.endswith(’.txt’):

file_path = os.path.join(chunk_folder , file_name)

file_content = read_text_file(file_path)

embedding = get_embedding(file_content)

pinecone_data.append ((file_name , embedding))

file_count += 1

print(f"Embedded files: {file_count}")

with open(’validation_embeddings_chunks.pkl’, ’wb’) as f:

pickle.dump(pinecone_data , f)

90

print("Embeddings saved for Pinecone.")

batch_size = 100

for i in range(0, len(pinecone_data), batch_size):

batch = pinecone_data[i:i + batch_size]

index.upsert(vectors=batch , namespace="Chunks")

G.2 ANNS Search

import pinecone

import numpy as np

import openai

from openai import OpenAI

import tiktoken

import pandas as pd

import csv

pinecone.init(

api_key=’1234’,

environment=’gcp -starter ’

)

index = pinecone.Index(’standard -vectorstore ’)

client = OpenAI(api_key= ’1234’)

def get_embedding(file_content , model="text -embedding -ada -002", max_tokens

=8191):

encoding = tiktoken.encoding_for_model("text -embedding -ada -002")

tokens = encoding.encode(file_content)

return client.embeddings.create(input=[file_content], model=model).

data [0]. embedding

91

document_ids = []

try:

with open(’IndustryProductDescription.txt’, ’r’, encoding=’utf -8’) as

file:

file_content = file.read()

embedding = get_embedding(file_content)

pinecone_results = index.query(vector=embedding , top_k =100, namespace=

’Chunks ’, include_values=False)

document_ids = [result[’id’] for result in pinecone_results[’matches ’

]]

print(f"Retrieved {len(document_ids)} document IDs")

except Exception as e:

print(f"Error processing the text file: {e}")

table = [("ID", "Score")]

for match in pinecone_results["matches"]:

table.append ((match["id"], match["score"]))

folder_path = ’1000 Token Chunked Pinecone Artifacts/’

files_content_dict = {}

filenames_ordered = []

files_content_dict = {}

filenames_ordered = []

for row in table [1:]:

file_name = row[0]

file_path = os.path.join(folder_path , file_name)

92

if os.path.exists(file_path):

with open(file_path , ’r’, encoding=’utf -8’) as file:

content = file.read()

files_content_dict[file_name] = content

filenames_ordered.append(file_name)

df = pd.DataFrame ({

"Filename": filenames_ordered

})

print(df)

excel_file_path = ’ANNSResults.xlsx’

df.to_excel(excel_file_path , index=False)

print(f"DataFrame saved to {excel_file_path}")

G.3 ANNS Search with Cohere Rerank

import pinecone

import numpy as np

import openai

from openai import OpenAI

import tiktoken

import pandas as pd

import csv

pinecone.init(

api_key=’1234’,

environment=’gcp -starter ’

)

index = pinecone.Index(’standard -vectorstore ’)

93

client = OpenAI(api_key= ’1234’)

def get_embedding(file_content , model="text -embedding -ada -002", max_tokens

=8191):

encoding = tiktoken.encoding_for_model("text -embedding -ada -002")

tokens = encoding.encode(file_content)

return client.embeddings.create(input=[file_content], model=model).

data [0]. embedding

document_ids = []

try:

with open(’IndustryProductDescription.txt’, ’r’, encoding=’utf -8’) as

file:

file_content = file.read()

embedding = get_embedding(file_content)

pinecone_results = index.query(vector=embedding , top_k =100, namespace=

’Chunks ’, include_values=False)

document_ids = [result[’id’] for result in pinecone_results[’matches ’

]]

print(f"Retrieved {len(document_ids)} document IDs")

except Exception as e:

print(f"Error processing the text file: {e}")

table = [("ID", "Score")]

for match in pinecone_results["matches"]:

table.append ((match["id"], match["score"]))

folder_path = ’1000 Token Chunked Pinecone Artifacts/’

94

files_content_dict = {}

filenames_ordered = []

for row in table [1:]:

file_name = row[0]

file_path = os.path.join(folder_path , file_name)

if os.path.exists(file_path):

with open(file_path , ’r’, encoding=’utf -8’) as file:

content = file.read()

files_content_dict[file_name] = content

filenames_ordered.append(file_name)

contents_for_reranking = list(files_content_dict.values ())

rerank_results = co.rerank(

query=file_content ,

documents=contents_for_reranking ,

top_n =100,

model="rerank -english -v2.0",

)

reranked_filenames = [filenames_ordered[result.index] for result in

rerank_results]

structured_results = []

for result in rerank_results:

structured_results.append ({

"Document Index": reranked_filenames[result.index],

"Relevance Score": result.relevance_score

})

df_results = pd.DataFrame(structured_results)

95

excel_file_path = ’ANNSCohereResults.xlsx’

dfresults.to_excel(excel_file_path , index=False)

print(f"DataFrame saved to {excel_file_path}")

G.4 ANNS Search with GPT Rerank

import pinecone

import numpy as np

import openai

from openai import OpenAI

import tiktoken

import csv

import time

import pandas as pd

from tenacity import retry , wait_random_exponential , stop_after_attempt

import math

import os

pinecone.init(

api_key=’1234’,

environment=’gcp -starter ’

)

pindex = pinecone.Index(’standard -vectorstore ’)

client = OpenAI(api_key= ’1234’)

OPENAI_MODEL = "gpt -4-turbo -preview"

def get_embedding(file_content , model="text -embedding -ada -002", max_tokens

=8191):

encoding = tiktoken.encoding_for_model("text -embedding -ada -002")

tokens = encoding.encode(file_content)

return client.embeddings.create(input=[file_content], model=model).

data [0]. embedding

96

document_ids = []

reranked_docs = []

query_filename = ’IndustryProductDescription.txt’

try:

with open(query_filename , ’r’, encoding=’utf -8’) as file:

file_content = file.read()

requirement_embedding = get_embedding(file_content)

pinecone_results = pindex.query(vector=requirement_embedding , top_k=

num_to_return , namespace=’Chunks ’, include_values=False)

document_ids = [result[’id’] for result in pinecone_results[’matches ’

]]

print(f"Retrieved {len(document_ids)} document IDs")

df_export = pd.DataFrame(document_ids , columns =[’ID’])

csv_filename = ’pinecone_topk.csv’

df_export.to_csv(csv_filename , index=False)

except Exception as e:

print(f"Error processing the text file: {e}")

table = [("ID", "Score")]

for match in pinecone_results["matches"]:

table.append ((match["id"], match["score"]))

folder_path = ’1000 Token Chunked Pinecone Artifacts/’

files_content_dict = {}

filenames_ordered = []

97

for row in table [1:]:

file_name = row[0]

file_path = os.path.join(folder_path , file_name)

if os.path.exists(file_path):

with open(file_path , ’r’, encoding=’utf -8’) as file:

content = file.read()

files_content_dict[file_name] = content

filenames_ordered.append(file_name)

documentsforreranking = list(files_content_dict.values ())

tokens = [" Yes", " No"]

tokenizer = tiktoken.encoding_for_model(OPENAI_MODEL)

ids = [tokenizer.encode(token) for token in tokens]

ids[0], ids[1]

#7566, 2360

CLASSIFICATION_PROMPT = """You are an Assistant responsible for helping

detect whether the retrieved engineering standard is relevant to the

project description. For a given input , you need to output a single

token: "Yes" or "No" indicating the retrieved standard is relevant to

the project description query.

Project Description: {query}

Engineering Standard: {document}"""

@retry(wait=wait_random_exponential(min=1, max =40), stop=

stop_after_attempt (3))

def document_relevance(query , document):

response = client.chat.completions.create(

model=OPENAI_MODEL ,

messages =[{

98

"role":

"user",

"content":

CLASSIFICATION_PROMPT.format(query=query , document=document)

}],

logprobs=True ,

top_logprobs =1,

temperature =0,

logit_bias ={

7566: 1,

2360: 1

},

max_tokens =2,

)

return response

query = file_content

output_list = []

file_output_list = []

probability_list = []

for file_name , content in files_content_dict.items ():

try:

output = document_relevance(query , document=content)

output_list.append(output.choices [0]. message.content)

file_output_list.append(file_name)

logprob = output.choices [0]. logprobs.content [0]. logprob

probability_list.append(math.exp(logprob))

except Exception as e:

print(f"Error processing document {file_name }: {e}")

output_df = pd.DataFrame ({

99

"Relevant?": output_list ,

"Filename": file_output_list ,

"Relevancy Percentage":probability_list

})

print(output_df)

output_df[’Sort_Yes ’] = (output_df[’Relevant?’] == ’Yes’).astype(int)

reranked_df = output_df.sort_values(by=[’Sort_Yes ’, ’Relevancy Percentage ’

], ascending =[False , False])

reranked_df = reranked_df.drop(columns =[’Sort_Yes ’])

reranked_df = reranked_df.reset_index(drop=True)

reranked_rel_df = reranked_df[reranked_df[’Relevant?’] == ’Yes’]

reranked_rel_df = reranked_rel_df.reset_index(drop=True)

num_rows = len(reranked_rel_df)

print(f"The number of relevant standards returned for your project is {

num_rows}")

excel_file_path = "returnedstandardsgptreranked.xlsx"

reranked_rel_df.to_excel(excel_file_path , index=True)

print(f"DataFrame saved to {excel_file_path}")

G.5 Plotting Search Framework Precision

from pathlib import Path

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import matplotlib.ticker as ticker

path1 = Path("Validation Case Retrieval/resultswithGPTreranker.xlsx")

df1 = pd.read_excel(path1)

precision_values1 = df1[’Precision ’].head (100)

100

precision_percentages1 = precision_values1 * 100

df_percentages = pd.DataFrame ({’ANNS + GPT ZERO Shot’:

precision_percentages1.values })

print(df_percentages.head())

path2 = Path("Validation Case Retrieval/KMCresultswithcoherereranker.xlsx"

)

df2 = pd.read_excel(path2)

df_percentages[’ANNS + Cohere ’] = df2[’Precision ’].head (100) * 100

print(df_percentages.head())

path3 = Path("Validation Case Retrieval/VAL_Case_top_100.csv")

df3 = pd.read_csv(path3)

df_percentages[’ANNS’] = df3[’Precision ’].head (100) * 100

print(df_percentages.head (30))

df_reset = df_percentages.reset_index ()

df_melted = df_reset.melt(id_vars =["index"], var_name="Model", value_name=

"Precision")

models_to_plot = [’ANNS’, ’ANNS + Cohere ’, ’ANNS + GPT ZERO Shot’]

df_melted = df_melted[df_melted[’Model ’].isin(models_to_plot)]

plt.figure(figsize =(12, 6))

sns.lineplot(data=df_melted , x="index", y="Precision", hue="Model", style=

"Model", markers=False , dashes=True)

plt.xlabel(’Index (top K)’, fontsize =16)

plt.ylabel(’Precision (%)’, fontsize =16)

plt.xticks(fontsize =14)

plt.yticks(fontsize =14)

plt.legend(title=’Search Method ’, fontsize =13, title_fontsize =14)

plt.gca().xaxis.set_major_locator(ticker.MaxNLocator(nbins =22))

101

plt.grid(True)

plt.tight_layout ()

plt.xlim(0, 101)

outputpath = Path("Validation Case Retrieval/cosine_cohere_GPT_all")

plt.savefig(outputpath , dpi =300)

plt.show()

G.6 Visualizing Search Output Manifold Location

import pinecone

import pickle

import numpy as np

import pandas as pd

import os

import umap

import matplotlib.pyplot as plt

import seaborn as sns

import matplotlib.font_manager as font_manager

pinecone.init(

api_key=’1234’,

environment=’gcp -starter ’

)

def get_filenames(folder_path):

filenames = []

for filename in os.listdir(folder_path):

if os.path.isfile(os.path.join(folder_path , filename)):

filenames.append(filename)

return filenames

102

folder_path = ’1000 Token Chunked Pinecone Artifacts/’

file_list = get_filenames(folder_path)

df_ids = pd.DataFrame(file_list , columns =[’ID’])

with open(’1000 Token Chunked Pinecone Artifacts/

pinecone_embeddings_chunks.pkl’, ’rb’) as f:

pinecone_data_1 = pickle.load(f)

with open(’1000 Token Chunked Pinecone Artifacts/

validation_embeddings_chunks.pkl’, ’rb’) as f:

pinecone_data_2 = pickle.load(f)

df1 = pd.DataFrame(pinecone_data_1 , columns =[’filename ’, ’embedding ’])

df2 = pd.DataFrame(pinecone_data_2 , columns =[’filename ’, ’embedding ’])

df = pd.concat ([df1 , df2], ignore_index=True)

print(df.head())

embedding_df = pd.DataFrame(df[’embedding ’]. tolist ())

result_df = pd.concat ([df[’filename ’], embedding_df], axis =1)

df = result_df

print(df.head())

top_100_filenames_df = pd.read_csv(’GPTreranked.csv’)

top_100_filenames = set(top_100_filenames_df[’ID’])

folders_to_scan = [

’Document Level Text Files/AASHTO Text Files/’,

’Document Level Text Files/AATCC Text Files/’,

’Document Level Text Files/AHRI Text Files/’,

’Document Level Text Files/ASTM Text Files/’,

’Document Level Text Files/AWWA Text Files/’,

’Document Level Text Files/CCSDS TEXT Files/’,

’Document Level Text Files/IEEE Text Files/’,

103

’Document Level Text Files/ASABE Text Files/’,

]

def find_matching_folder(file_id , folders):

for folder in folders:

if os.path.exists(folder):

for file in os.listdir(folder):

file_prefix = file [:5]

if file_prefix in file_id:

return folder

return None

def is_top_100(file_id , top_100_filenames):

return file_id in top_100_filenames

df[’Matching_Folder ’] = df[’filename ’]. apply(lambda x:

find_matching_folder(x, folders_to_scan))

df[’Is_Top_100 ’] = df[’filename ’]. apply(lambda x: is_top_100(x,

top_100_filenames))

df.sort_values(’Matching_Folder ’, inplace=True)

folder_counts = df[’Matching_Folder ’]. value_counts ()

print(df)

print(folder_counts

features = df.drop(columns =[’filename ’, ’Matching_Folder ’, ’Is_Top_100 ’])

umap_model = umap.UMAP(n_neighbors =250, min_dist=1, n_components =2,

random_state =42, metric=’cosine ’)

umap_projection = umap_model.fit_transform(features)

104

font_path = ’eb-garamond .12- regular.ttf’

eb_garamond = font_manager.FontProperties(fname=font_path , size =22)

hex_colors = [’#000000 ’, ’#00 A3AD’, ’#004 E60’, ’#BA0C2F ’, ’#554 F47’,

’#66435A’, ’#9 EA2A2’, ’#D6D2C4 ’, ’#C8D8EB ’]

custom_palette = sns.color_palette(hex_colors)

plt.figure(figsize =(12, 8))

ax = plt.gca()

categories = df[’Matching_Folder ’]. unique ()

category_palette = {category: color for category , color in zip(categories ,

custom_palette)}

for category in categories:

idx = df[’Matching_Folder ’] == category

alpha_values = df.loc[idx , ’Is_Top_100 ’].map({True: 1.0, False: 0.09})

alpha_values = alpha_values.clip(0, 1)

ax.scatter(

umap_projection[idx , 0],

umap_projection[idx , 1],

color=category_palette[category],

alpha=alpha_values ,

label=category ,

s=50,

edgecolors=’white ’,

linewidth =1

)

plt.savefig(’umap_projectionsearch.png’, dpi=300, bbox_inches=’tight’,

format=’png’)

plt.show()

105

106

Appendix H

Code for SARG

import pinecone

import numpy as np

import openai

from openai import OpenAI

import tiktoken

import csv

import time

import pandas as pd

from tenacity import retry , wait_random_exponential , stop_after_attempt

import math

import os

pinecone.init(

api_key=’1234’,

environment=’gcp -starter ’

)

pindex = pinecone.Index(’standard -vectorstore ’)

client = OpenAI(api_key= ’1234’)

OPENAI_MODEL = "gpt -4-turbo -preview"

107

def get_embedding(file_content , model="text -embedding -ada -002", max_tokens

=8191):

encoding = tiktoken.encoding_for_model("text -embedding -ada -002")

tokens = encoding.encode(file_content)

return client.embeddings.create(input=[file_content], model=model).

data [0]. embedding

document_ids = []

reranked_docs = []

query_filename = ’IndustryProductDescription.txt’

try:

with open(query_filename , ’r’, encoding=’utf -8’) as file:

file_content = file.read()

requirement_embedding = get_embedding(file_content)

pinecone_results = pindex.query(vector=requirement_embedding , top_k=

num_to_return , namespace=’Chunks ’, include_values=False)

document_ids = [result[’id’] for result in pinecone_results[’matches ’

]]

print(f"Retrieved {len(document_ids)} document IDs")

df_export = pd.DataFrame(document_ids , columns =[’ID’])

csv_filename = ’pinecone_topk.csv’

df_export.to_csv(csv_filename , index=False)

except Exception as e:

print(f"Error processing the text file: {e}")

table = [("ID", "Score")]

for match in pinecone_results["matches"]:

table.append ((match["id"], match["score"]))

108

folder_path = ’1000 Token Chunked Pinecone Artifacts/’

files_content_dict = {}

filenames_ordered = []

for row in table [1:]:

file_name = row[0]

file_path = os.path.join(folder_path , file_name)

if os.path.exists(file_path):

with open(file_path , ’r’, encoding=’utf -8’) as file:

content = file.read()

files_content_dict[file_name] = content

filenames_ordered.append(file_name)

documentsforreranking = list(files_content_dict.values ())

tokens = [" Yes", " No"]

tokenizer = tiktoken.encoding_for_model(OPENAI_MODEL)

ids = [tokenizer.encode(token) for token in tokens]

ids[0], ids[1]

#7566, 2360

CLASSIFICATION_PROMPT = """You are an Assistant responsible for helping

detect whether the retrieved engineering standard is relevant to the

project description. For a given input , you need to output a single

token: "Yes" or "No" indicating the retrieved standard is relevant to

the project description query.

Project Description: {query}

Engineering Standard: {document}"""

109

@retry(wait=wait_random_exponential(min=1, max =40), stop=

stop_after_attempt (3))

def document_relevance(query , document):

response = client.chat.completions.create(

model=OPENAI_MODEL ,

messages =[{

"role":

"user",

"content":

CLASSIFICATION_PROMPT.format(query=query , document=document)

}],

logprobs=True ,

top_logprobs =1,

temperature =0,

logit_bias ={

7566: 1,

2360: 1

},

max_tokens =2,

)

return response

query = file_content

output_list = []

file_output_list = []

probability_list = []

for file_name , content in files_content_dict.items ():

try:

output = document_relevance(query , document=content)

output_list.append(output.choices [0]. message.content)

110

file_output_list.append(file_name)

logprob = output.choices [0]. logprobs.content [0]. logprob

probability_list.append(math.exp(logprob))

except Exception as e:

print(f"Error processing document {file_name }: {e}")

output_df = pd.DataFrame ({

"Relevant?": output_list ,

"Filename": file_output_list ,

"Relevancy Percentage":probability_list

})

print(output_df)

output_df[’Sort_Yes ’] = (output_df[’Relevant?’] == ’Yes’).astype(int)

reranked_df = output_df.sort_values(by=[’Sort_Yes ’, ’Relevancy Percentage ’

], ascending =[False , False])

reranked_df = reranked_df.drop(columns =[’Sort_Yes ’])

reranked_df = reranked_df.reset_index(drop=True)

reranked_rel_df = reranked_df[reranked_df[’Relevant?’] == ’Yes’]

reranked_rel_df = reranked_rel_df.reset_index(drop=True)

num_rows = len(reranked_rel_df)

print(f"The number of relevant standards returned for your project is {

num_rows}")

excel_file_path = "returnedstandardsgptreranked.xlsx"

reranked_rel_df.to_excel(excel_file_path , index=True)

print(f"DataFrame saved to {excel_file_path}")

GENERATION_PROMPT = """You are an Assistant tasked with generating

detailed product requirements solely based on the content of

engineering standard documents and a brief description of the product.

Your task is to filter and adapt those standards that are contextually

relevant to the product ’s specific needs and applications. When

creating these requirements , adhere to the guidelines below:

111

- ** Correct Terms Usage **:

- Use "Shall" for mandatory requirements.

- Use "Will" for statements of fact or declarations of purpose.

- Use "Should" for recommendations or goals.

- ** Requirements Formulation **:

- Start each requirement with "The project shall" followed by the

specific action or standard to be met , directly relating to the product

’s context and needs as described.

- Ensure the use of active voice throughout , clearly stating the

required actions.

- Maintain consistent terminology for the product and its components , as

specified in the engineering standard.

- Requirements must include any specified tolerances and be clear ,

concise , and devoid of implementation or operational methods.

- When referencing specific sections of the engineering standard

document , include the document filename in the reference (e.g., "as

specified in [Document Filename] S5.1").

- Critically assess the relevance of each section of the engineering

standard document to the product description. Only include standards

that are contextually relevant to the product ’s specific needs and

applications.

- ** Focused on Engineering Standards **:

- Directly extract and adapt requirements from the engineering standard

document , focusing on those aspects that are most relevant to the

product ’s compliance and performance.

- Emphasize translating the engineering standards into actionable

product requirements , rather than deriving them from the product

description.

112

- ** General Guidelines **:

- Ensure all requirements are grammatically correct and adhere to the

project ’s template and stylistic guidelines.

- State requirements in a positive manner , avoid "To Be Determined"

values whenever possible , provide rationale for requirements based on

the standard document , and logically organize requirements within the

document.

**Input **:

Product Description: {query}

Engineering Standard Document: {document}

Document Filename: {filename}

**Task **:

Based on the Engineering Standard Document provided and considering the

Product Description , generate product requirements that are fully

compliant with the standard. Focus on translating standards into

specific , actionable requirements for the product that are contextually

relevant to its specific needs and applications. Ensure these

requirements are complete and leave no room for ambiguity in compliance

and implementation. Include the document filename when making section

references (e.g., "[Document_Filename] S5.1"). Requirements unrelated

to the product ’s context may be omitted. YOU SHOULD ONLY RETURN GENERAL

REQUIREMENTS. NO OTHER DOCUMENT SECTIONS SHOULD BE PRESENT

"""

@retry(wait=wait_random_exponential(min=1, max =40), stop=

stop_after_attempt (3))

def generate_requirement(query , document ,filename):

response = client.chat.completions.create(

model=OPENAI_MODEL ,

messages =[{

"role":

113

"user",

"content":

GENERATION_PROMPT.format(query=query , document=document ,

filename=filename)

}],

temperature =0,

max_tokens =1000,

)

return response

relevant_retrieved_standards = reranked_rel_df[’Filename ’].head(num_rows).

tolist ()

print(relevant_retrieved_standards)

relevant_retrieved_standards_content = {}

for filename in relevant_retrieved_standards:

if filename in files_content_dict:

relevant_retrieved_standards_content[filename] =

files_content_dict[filename]

else:

print(f"Content for {filename} not found in files_content_dict.")

query = file_content

requirement_output_list = []

standard_source_list = []

output_directory = "SARG Results/"

for filename , content in relevant_retrieved_standards_content.items ():

try:

base_filename = os.path.splitext(filename)[0]

output_filename = os.path.join(output_directory , f"{base_filename}

_SARGv2.txt")

114

output = generate_requirement(query , document=content , filename=

base_filename)

requirement_output = output.choices [0]. message.content

requirement_output_list.append(requirement_output)

standard_source_list.append(filename)

base_filename = os.path.splitext(filename)[0]

output_filename = os.path.join(output_directory , f"{base_filename}

_requirements.txt")

with open(output_filename , "w") as file:

file.write(requirement_output)

except Exception as e:

print(f"Error processing document {filename }: {e}")

output_df = pd.DataFrame ({

"Requirements": requirement_output_list ,

"Filename": standard_source_list ,

})

folder_path = output_directory

output_file_path = "SARG Results/combined_requirements_output.txt"

files = os.listdir(folder_path)

with open(output_file_path , ’w’) as outfile:

for filename in files:

if filename.endswith(’.txt’):

file_path = os.path.join(folder_path , filename)

outfile.write(f"Filename: {filename }\n\n")

with open(file_path , ’r’) as infile:

contents = infile.read()

outfile.write(contents + "\n\n")

115

print(f"All text files have been combined into {output_file_path}")

with open(output_file_path , ’r’) as file:

RequirementFile=file.read()

COMPILATION_PROMPT = """You are an Assistant tasked with compiling and

reviewing a draft requirements document. Given the engineering

requirement document and a product description as inputs , you should

verify and or achieve the following:

- ** Verify Correct Terms Use**:

- The document should use "Shall" for mandatory requirements.

- The document should use "Will" for statements of fact or declarations

of purpose.

- The document should use "Should" for recommendations or goals.

- ** Requirements Formulation **:

- The document should Start each requirement with "The Project shall"

followed by the specific action or standard to be met , as dictated by

the engineering standard document.

- The document should use of active voice throughout , clearly stating

the required actions.

- The document should maintain consistent terminology for the product

and its components , as specified in the engineering standard.

- ** Eliminate Redundant Requirements **:

- Ensure that each requirement in your output is unique in detail.

- ** General Guidelines **:

- Logically organize requirements within the document by type of

requirement and then by component.

116

**Input **:

Product Description: {query}

Engineering Requirement Document: {document}

**Task **:

Based on the Engineering Requirement Document provided , generate a set of

refined product requirements that are fully compliant with all details

from the Engineering Requirement Document. Ensure that the requirements

you generate are high level requirements that consisely summarize all

of the detail in the input engineering requirement document. The

document should Start each requirement with "The Project shall"

followed by the specific action or standard to be met , as dictated by

the engineering standard document."""

@retry(wait=wait_random_exponential(min=1, max =40), stop=

stop_after_attempt (3))

def generate_requirement_document(query , document):

response = client.chat.completions.create(

model=OPENAI_MODEL ,

messages =[{

"role":

"user",

"content":

COMPILATION_PROMPT.format(query=query , document=document)

}],

temperature =0,

max_tokens =4096,

)

return response

query = file_content

117

document = RequirementFile

output = generate_requirement_document(query , document)

requirement_document_output = output.choices [0]. message.content

output_filename_document = f"SARG Results/Results_{OPENAI_MODEL }.txt"

with open(output_filename_document , "w") as file:

file.write(requirement_document_output)

VERIFICATION_PROMPT = """ You are an Assistant tasked with compiling and

reviewing a draft requirements document. Given the engineering

requirement document and a product description as inputs , you should

verify and or achieve the following:

- ** Ensure Completeness **:

- Ensure that the Engineering Requirement Document is fully represented

in the Final Requirement Document

- The document should use "Will" for statements of fact or declarations

of purpose.

- The document should use "Should" for recommendations or goals.

- The document should Start each requirement with "The Project shall"

followed by the specific action or standard to be met , as dictated by

the engineering standard document.

- ** Eliminate Redundant Requirements **:

- Ensure that each requirement in your output is unique in detail.

- ** General Guidelines **:

- Logically organize requirements within the document by type of

requirement and then by component.

118

**Input **:

Product Description: {query}

Engineering Requirement Document: {document}

Final Requirement Document: {final_doc}

**Task **:

Based on the Engineering Requirement Document provided , ensure that all

detail is represented in Final Requirement Document , while eliminating

redundancy , in your response.The document should Start each requirement

with "The Project shall" followed by the specific action or standard

to be met , as dictated by the engineering standard document.

"""

@retry(wait=wait_random_exponential(min=1, max =40), stop=

stop_after_attempt (3))

def generate_requirement_document_verified(query , document , final_doc):

response = client.chat.completions.create(

model=OPENAI_MODEL ,

messages =[{

"role":

"user",

"content":

VERIFICATION_PROMPT.format(query=query , document=document ,

final_doc=final_doc)

}],

temperature =0,

max_tokens =4096,

)

return response

query = file_content

final_doc = requirement_document_output

119

document = RequirementFile

output = generate_requirement_document_verified(query , document , final_doc

)

verified_requirement_document_output = output.choices [0]. message.content

output_filename_document = f"SARG Results/

final_combined_requirements_output.txt"

with open(output_filename_document , "w") as file:

file.write(verified_requirement_document_output)

print(verified_requirement_document_output)

120

Bibliography

(2022). https://openai.com/blog/new-and-improved-embedding-model

Alonzo, R. J. (2010). Chapter 2 - american versus global. In R. J. Alonzo (Ed.), Electrical codes, standards,

recommended practices and regulations (pp. 55–77). William Andrew Publishing. https://doi.

org/https://doi.org/10.1016/B978-0-8155-2045-0.10002-3

ASME. (2010). The history of asme’s boiler and pressure vessel code. https://www.asme.org/topics-

resources/content/the-history-of-asmes-boiler-and-pressure

ASME. (2024). ASME Standards Certification FAQ [Accessed: March 20, 2024]. https://www.asme.

org/codes-standards/publications-information/faq

Beitz, W., Pahl, G., & Grote, K. (1996). Engineering design: A systematic approach. Mrs Bulletin, 71.

Beshoy Morkos, P. S., & Summers, J. D. (2012). Predicting requirement change propagation, using higher

order design structure matrices: An industry case study. Journal of Engineering Design, 23(12),

905–926. https://doi.org/10.1080/09544828.2012.662273

Bodner, D., & Rouse, W. (2009). Handbook of systems engineering and management. Wiley. chapter

Organizational Simulation.

Bouzidi, K. R., Fies, B., Faron-Zucker, C., Zarli, A., & Thanh, N. L. (2012). Semantic web approach to

ease regulation compliance checking in construction industry. Future Internet, 4(3), 830–851.

Brants, T., & Franz, A. (2006). Web 1t 5-gram. Philadelphia, PA: LDC Data Consortium.

Cai, D., Wang, Y., Li, H., Lam, W., & Liu, L. (2021). Neural machine translation with monolingual

translation memory. Proceedings of the 59th Annual Meeting of the Association for Computational

121

https://openai.com/blog/new-and-improved-embedding-model
https://doi.org/https://doi.org/10.1016/B978-0-8155-2045-0.10002-3
https://doi.org/https://doi.org/10.1016/B978-0-8155-2045-0.10002-3
https://www.asme.org/topics-resources/content/the-history-of-asmes-boiler-and-pressure
https://www.asme.org/topics-resources/content/the-history-of-asmes-boiler-and-pressure
https://www.asme.org/codes-standards/publications-information/faq
https://www.asme.org/codes-standards/publications-information/faq
https://doi.org/10.1080/09544828.2012.662273

Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:

Long Papers), 7307–7318.

Chen, C. (2022). Realization of inter-model connections: Linking requirements and computer-aided design

(Doctoral dissertation). University of Georgia.

Chen, C., Carroll, C., & Morkos, B. (2023). From text to images: Linking system requirements to images

using joint embedding. Proceedings of the Design Society, 3, 1985–1994.

Chen, C., & Morkos, B. (2023). Exploring topic modelling for generalising design requirements in

complex design. Journal of Engineering Design, 34(11), 922–940.

Chen, C., Mullis, J., & Morkos, B. (2021). A topic modeling approach to study design requirements. In-

ternational design engineering technical conferences and computers and information in engineering

conference, 85383, V03AT03A021.

Chen, C., Wei, S., & Morkos, B. (2023). Bridging the knowledge gap between design requirements and

cad-a joint embedding approach. 2023 ASEE Annual Conference & Exposition.

Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as

discriminators rather than generators. arXiv preprint arXiv:2003.10555.

Coulson, T. (1944). The origin of interchangeable parts. Journal of the Franklin Institute, 238(5), 335–344.

Cronembold, J. R., & Law, K. H. (1988). Automated processing of design standards. Journal of computing

in civil engineering, 2(3), 255–273.

De Jong, J. P., & Marsili, O. (2006). The fruit flies of innovations: A taxonomy of innovative small firms.

Research policy, 35(2), 213–229.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018a). Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018b). Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805.

DIN. (2024). A Brief Introduction to Standards [Accessed: March 20, 2024]. https://www.din.de/en/

about-standards/a-brief-introduction-to-standards

122

https://www.din.de/en/about-standards/a-brief-introduction-to-standards
https://www.din.de/en/about-standards/a-brief-introduction-to-standards

Dunn, A., Dagdelen, J., Walker, N., Lee, S., Rosen, A. S., Ceder, G., Persson, K., & Jain, A. (2022).

Structured information extraction from complex scientific text with fine-tuned large language

models. arXiv preprint arXiv:2212.05238.

Elbedweihy, K. M., Wrigley, S. N., Clough, P., & Ciravegna, F. (2015). An overview of semantic search

evaluation initiatives [Semantic Search]. Journal of Web Semantics, 30, 82–105. https://doi.org/

https://doi.org/10.1016/j.websem.2014.10.001

Esteva, A., Kale, A., Paulus, R., Hashimoto, K., Yin, W., Radev, D., & Socher, R. (2021). Covid-19 infor-

mation retrieval with deep-learning based semantic search, question answering, and abstractive

summarization. NPJ digital medicine, 4(1), 68.

Fenves, S. J. (1966). Tabular decision logic for structural design. Journal of the Structural Division, 92(6),

473–490. https://doi.org/10.1061/JSDEAG.0001567

Firesmith, D. (2003). Specifying good requirements. Journal of Object Technology, 2(4), 77–87.

Galley-Taylor, M., Ferguson, A., & Hayward, G. (2011). Role of standards in design.

Greene, R., Sanders, T., Weng, L., & Neelakantan, A. (2022). New and improved embedding model.

Großer, K., Riediger, V., & Jürjens, J. (2022). Requirements document relations: A reuse perspective on

traceability through standards. Software and Systems Modeling, 21(6), 1–37.

Group, I. R. W., et al. (2019). Guide for writing requirements. INCOSE: San Diego, CA, USA.

Gu, J., Wang, Y., Cho, K., & Li, V. O. (2018). Search engine guided neural machine translation. Proceedings

of the AAAI Conference on Artificial Intelligence, 32(1).

Guo, J., Fan, Y., Ai, Q., & Croft, W. B. (2016). A deep relevance matching model for ad-hoc retrieval. Pro-

ceedings of the 25th ACM international on conference on information and knowledge management,

55–64.

Haque, M. A., & Li, S. (2023). The potential use of chatgpt for debugging and bug fixing. EAI Endorsed

Transactions on AI and Robotics, 2. https://doi.org/10.4108/airo.v2i1.3276

Harrs, S. (2006). Standards directory: An engineering and technology standards digital library and in-

formation retrieval system for the walt disney company (Doctoral dissertation). https://www.

123

https://doi.org/https://doi.org/10.1016/j.websem.2014.10.001
https://doi.org/https://doi.org/10.1016/j.websem.2014.10.001
https://doi.org/10.1061/JSDEAG.0001567
https://doi.org/10.4108/airo.v2i1.3276
https://www.proquest.com/dissertations-theses/standards-directory-engineering-technology/docview/304909870/se-2
https://www.proquest.com/dissertations-theses/standards-directory-engineering-technology/docview/304909870/se-2

proquest . com / dissertations - theses / standards - directory - engineering - technology/ docview/

304909870/se-2

Hauksdóttir, D., Ritsing, B., Andersen, J. C., & Mortensen, N. H. (2016). Establishing reusable re-

quirements derived from laws and regulations for medical device development. 2016 IEEE 24th

International Requirements Engineering Conference Workshops (REW), 220–228. https://doi.

org/10.1109/REW.2016.045

Hein, P. H., Kames, E., Chen, C., & Morkos, B. (2021). Employing machine learning techniques to assess

requirement change volatility. Research in engineering design, 32, 245–269.

Hein, P. H., Kames, E., Chen, C., & Morkos, B. (2022). Reasoning support for predicting requirement

change volatility using complex network metrics. Journal of Engineering Design, 33(11), 811–837.

Hein, P. H., Menon, V., & Morkos, B. (2015). Exploring requirement change propagation through

the physical and functional domain. International design engineering technical conferences and

computers and information in engineering conference, 57052, V01BT02A051.

Hein, P. H., Voris, N., & Morkos, B. (2018). Predicting requirement change propagation through investi-

gation of physical and functional domains. Research in Engineering Design, 29, 309–328.

Htet Hein, P., Morkos, B., & Sen, C. (2017). Utilizing node interference method and complex network cen-

trality metrics to explore requirement change propagation. International design engineering tech-

nical conferences and computers and information in engineering conference, 58110, V001T02A081.

Jha, N., & Mahmoud, A. (2019). Mining non-functional requirements from app store reviews. Empirical

Software Engineering, 24, 3659–3695.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., & Liu, Q. (2019). Tinybert: Distilling

bert for natural language understanding. arXiv preprint arXiv:1909.10351.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., & Levy, O. (2020). Spanbert: Improving pre-

training by representing and predicting spans. Transactions of the association for computational

linguistics, 8, 64–77.

124

https://www.proquest.com/dissertations-theses/standards-directory-engineering-technology/docview/304909870/se-2
https://www.proquest.com/dissertations-theses/standards-directory-engineering-technology/docview/304909870/se-2
https://www.proquest.com/dissertations-theses/standards-directory-engineering-technology/docview/304909870/se-2
https://www.proquest.com/dissertations-theses/standards-directory-engineering-technology/docview/304909870/se-2
https://doi.org/10.1109/REW.2016.045
https://doi.org/10.1109/REW.2016.045

Jury, B., Lorusso, A., Leinonen, J., Denny, P., & Luxton-Reilly, A. (2024). Evaluating llm-generated

worked examples in an introductory programming course.

Kim, Y., Bang, S., Sohn, J., & Kim, H. (2022). Question answering method for infrastructure damage

information retrieval from textual data using bidirectional encoder representations from trans-

formers. Automation in construction, 134, 104061.

Kotonya, G., & Sommerville, I. (1998). Requirements engineering: Processes and techniques. Wiley Pub-

lishing.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for

self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

Li, H., Su, Y., Cai, D., Wang, Y., & Liu, L. (2022). A survey on retrieval-augmented text generation. arXiv

preprint arXiv:2202.01110.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V.

(2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101.

Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary information.

IBM Journal of research and development, 1(4), 309–317.

Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of research and develop-

ment, 2(2), 159–165.

Luttmer, J., Prihodko, V., Ehring, D., & Nagarajah, A. (2023). Requirements extraction from engineering

standards–systematic evaluation of extraction techniques. Procedia CIRP, 119, 794–799.

Maron, M., Kuhns, J., & Ray, L. (1959). Probabilistic indexing: A statistical technique for document iden-

tification and retrieval. Thompson Ramo Wooldridge Inc, Los Angeles, California, Data Systems

Project Office, Technical Memorandum, 3.

Mcclung, B. (2011). Volunteerism for standards development [standards]. IEEE Industry Applications

Magazine, 17(2), 75–80.

125

McLellan, J. M., Morkos, B., Mocko, G. G., & Summers, J. D. (2010). Requirement modeling systems for

mechanical design: A systematic method for evaluating requirement management tools and lan-

guages. International Design Engineering Technical Conferences and Computers and Information

in Engineering Conference, 44113, 1247–1257.

Mihany, F. A., Moussa, H., Kamel, A., Ezzat, E., & Ilyas, M. (2016). An automated system for measur-

ing similarity between software requirements. Proceedings of the 2nd Africa and Middle East

Conference on software engineering, 46–51.

Morkos, B., Joshi, S., & Summers, J. D. (2012). Representation: Formal development and computational

recognition of localized requirement change types. International design engineering technical

conferences and computers and information in engineering conference, 45028, 111–122.

Morkos, B., Joshi, S., & Summers, J. D. (2019). Investigating the impact of requirements elicitation and

evolution on course performance in a pre-capstone design course. Journal of Engineering Design,

30(4-5), 155–179.

Morkos, B., Joshi, S., Summers, J. D., & Mocko, G. G. (2010a). Evaluation of requirements and data

content within industry in-house developed data management system. International Design En-

gineering Technical Conference.

Morkos, B., Joshi, S., Summers, J. D., & Mocko, G. G. (2010b). Requirements and data content evalu-

ation of industry in-house data management system. International design engineering technical

conferences and computers and information in engineering conference, 44113, 493–503.

Morkos, B., Mathieson, J., & Summers, J. D. (2014). Comparative analysis of requirements change

prediction models: Manual, linguistic, and neural network. Research in Engineering Design, 25,

139–156.

Morkos, B., & Summers, J. D. (2010). Requirement change propagation prediction approach: Results

from an industry case study. International Design Engineering Technical Conferences and Com-

puters and Information in Engineering Conference, 44090, 111–121.

126

Morkos, B., & Summers, J. D. (n.d.). Elicitation and development of requirements through integrated

methods. International Design Engineering Technical Conferences and Computers and Informa-

tion in Engineering Conference, 48999, 1007–1015.

Morkos, B. W. (2012). Computational representation and reasoning support for requirements change man-

agement in complex system design (Doctoral dissertation). Clemson University.

Mullis, J., Chen, C., Morkos, B., & Ferguson, S. (2023). Deep Neural Networks in Natural Language

Processing for Classifying Requirements by Origin and Functionality: An Application of BERT

in System Requirements. Journal of Mechanical Design, 146(4), 041401. https://doi.org/10.1115/1.

4063764

NASA. (2024). Appendix C: How to write a good requirement [Accessed: March 20, 2024]. https :

//www.nasa.gov/reference/appendix-c-how-to-write-a-good-requirement/

Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J. M., Tworek, J., Yuan, Q., Tezak, N., Kim, J. W.,

Hallacy, C., et al. (2022). Text and code embeddings by contrastive pre-training. arXiv preprint

arXiv:2201.10005.

NISO. (2017). Sts: Standards tag suite.

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data

engineering, 22(10), 1345–1359.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,

& Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12, 2825–2830.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation.

Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),

1532–1543.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.

127

https://doi.org/10.1115/1.4063764
https://doi.org/10.1115/1.4063764
https://www.nasa.gov/reference/appendix-c-how-to-write-a-good-requirement/
https://www.nasa.gov/reference/appendix-c-how-to-write-a-good-requirement/

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language understanding

by generative pre-training.

Rathore, D. B. (2023). Future of ai amp; generation alpha: Chatgpt beyond boundaries. Eduzone:

International Peer Reviewed/Refereed Multidisciplinary Journal, 12(1), 63–68. https : / / www.

eduzonejournal.com/index.php/eiprmj/article/view/254

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks.

arXiv preprint arXiv:1908.10084.

Robertson, S., & Robertson, J. (2012). Mastering the requirements process: Getting requirements right.

Addison-wesley.

Rouland, Q., Gjorcheski, S., & Jaskolka, J. (2023). Eliciting a security architecture requirements baseline

from standards and regulations. 2023 IEEE 31st International Requirements Engineering Confer-

ence Workshops (REW), 224–229. https://doi.org/10.1109/REW57809.2023.00045

Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Commun. ACM,

18(11), 613–620. https://doi.org/10.1145/361219.361220

Salton, G. (1962). Some experiments in the generation of word and document associations. Proceedings

of the December 4-6, 1962, fall joint computer conference, 234–250.

Salton, G., & Yang, C.-S. (1973). On the specification of term values in automatic indexing. Journal of

documentation, 29(4), 351–372.

Sanderson, M., & Croft, W. B. (2012). The history of information retrieval research. Proceedings of the

IEEE, 100(Special Centennial Issue), 1444–1451. https://doi.org/10.1109/JPROC.2012.2189916

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). Distilbert, a distilled version of bert: Smaller,

faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Shabi, J., Reich, Y., Robinzon, R., & Mirer, T. (2021). A decision support model to manage overspecifi-

cation in system development projects. Journal of Engineering Design, 32(7), 323–345.

128

https://www.eduzonejournal.com/index.php/eiprmj/article/view/254
https://www.eduzonejournal.com/index.php/eiprmj/article/view/254
https://doi.org/10.1109/REW57809.2023.00045
https://doi.org/10.1145/361219.361220
https://doi.org/10.1109/JPROC.2012.2189916

Shankar, P., Morkos, B., & Summers, J. D. (2010). A hierarchical modeling scheme with non functional

requirements. International design engineering technical conferences and computers and informa-

tion in engineering conference, 44113, 283–295.

Shankar, P., Morkos, B., & Summers, J. D. (2012). Reasons for change propagation: A case study in an

automotive oem. Research in Engineering Design, 23, 291–303.

Shankar, P., Morkos, B., Yadav, D., & Summers, J. D. (2020). Towards the formalization of non-functional

requirements in conceptual design. Research in engineering design, 31, 449–469.

Shishko, R., & Aster, R. (1995). Nasa systems engineering handbook. NASA systems engineering hand-

book/by Robert Shishko; with contributions by Robert Aster...[et al.]; edited by Randy Cassing-

ham.[Washington, DC?]: National Aeronautics and Space Administration,[1995], 6105.

Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval.

Journal of documentation, 28(1), 11–21.

Summers, J. D., Joshi, S., & Morkos, B. (2014). Requirements evolution: Relating functional and non-

functional requirement change on student project success. International design engineering tech-

nical conferences and computers and information in engineering conference, 46346, V003T04A002.

Taube, M., Gull, C. D., & Wachtel, I. S. (1952). Unit terms in coordinate indexing. American Documen-

tation, 3(4), 213–218. https://doi.org/https://doi.org/10.1002/asi.5090030404

Terry Bahill, A., & Henderson, S. J. (2005). Requirements development, verification, and validation

exhibited in famous failures. Systems engineering, 8(1), 1–14.

Tian, J., Zhang, L., & Lian, X. (2023). A cross-level requirement trace link update model based on

bidirectional encoder representations from transformers. Mathematics, 11(3). https://doi.org/10.

3390/math11030623

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I.

(2017). Attention is all you need. Advances in neural information processing systems, 30.

129

https://doi.org/https://doi.org/10.1002/asi.5090030404
https://doi.org/10.3390/math11030623
https://doi.org/10.3390/math11030623

Walsh, H. S., & Andrade, S. R. (2022). Semantic search with sentence-bert for design information re-

trieval. International Design Engineering Technical Conferences and Computers and Information

in Engineering Conference, 86212, V002T02A066.

Wiegers, K. E., & Beatty, J. (2013). Software requirements. Pearson Education.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Fun-

towicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T.,

Gugger, S., . . . Rush, A. (2020). Transformers: State-of-the-art natural language processing. In Q.

Liu & D. Schlangen (Eds.), Proceedings of the 2020 conference on empirical methods in natural lan-

guage processing: System demonstrations (pp. 38–45). Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-demos.6

Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A. E., & Li, S. (2017). Measuring program comprehension:

A large-scale field study with professionals. IEEE Transactions on Software Engineering, 44(10),

951–976.

130

https://doi.org/10.18653/v1/2020.emnlp-demos.6

	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background
	Design Standards
	Design Requirements
	Information Retrieval
	Language Representation In Vector Space
	Summary

	Methods
	Review of Standard and Requirement Corpus
	Fine-tuning BERT for Standard-Requirement Classification
	Analysing Fine-tuned Model
	Standard-Requirement Linking
	Standards Search Evaluation
	Standards Augmented Requirements Generation (SARG)

	Results
	BERT Fine-tuned for SRC Task
	Efficacy of Embeddings for Standard-Requirement Linking
	Efficacy of Search Framework with Document Chunk Embeddings
	SARG Results

	Discussion
	Addressing Research Questions
	Impact on Design Research and Practice
	Recommendations
	Limitations

	Conclusion and Future Work
	Appendices
	UMAP Projections of SRC Manifold
	Term Frequency vs Word Attribution Plots
	UMAP Embeddings of Search Results
	Code for Fine-tuning BERT on SRC Task
	Analysing Fine-tuned Model
	Executing Integrated Gradients
	Creating Word Attribution Histogram
	Creating Word Clouds

	Code for SRC Task
	Sampling Random Project Requirements
	Upserting Standard Sub-clauses to Pinecone
	Executing SRC Task

	Code for Standard Search Framework
	Upserting Standard Document Chunks to Pinecone
	ANNS Search
	ANNS Search with Cohere Rerank
	ANNS Search with GPT Rerank
	Plotting Search Framework Precision
	Visualizing Search Output Manifold Location

	Code for SARG
	Bibliography

