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ABSTRACT 

We present a methodology for characterizing the gaze behavior of viewers of animated 

displays. We introduce a transition graph called Viewing Behavior Model Graph (VBMG) to 

characterize the behavior of users with similar viewing patterns into separate groups. We apply 

this methodology to the viewing of program visualizations. In this method the user’s eye-fixation 

sequences are obtained using an Eye-Tracker and per-user viewing behavior models are created. 

We then cluster these per-user models to build VBMGs for each cluster. The VBMGs are useful 

because they help us classify users into separate groups, each user within a group having viewing 

behavior similar to others in the group. One useful application of VBMGs would be to 

dynamically capture viewing behavior and predict the cluster to which a user belongs, thus 

permitting on-the-fly adaptation of displays and other teaching materials. 
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CHAPTER 1 

INTRODUCTION 

 

 Visualizations have often been considered an effective way to promote the understanding 

of both abstract and concrete ideas [Baecker81, Tufte90]. Researchers have taken advantage of 

new technologies to help them understand difficult and otherwise incomprehensible data. In the 

context of Computer Science education, Program Visualization, also called Software 

Visualization or Algorithm Animation, can be used to help illustrate and present computer 

programs, processes, and algorithms. The idea of using algorithm animations as an aid in 

teaching and software development began with Baecker’s “Sorting out Sorting” video 

[Baecker81]. Algorithm animations can be used in education, to help students understand data 

structures and the mechanics of an algorithm.  They are also useful in software development to 

help programmers to debug and understand their code better.  

 Even though the idea of using program visualizations (PVs) to help users understand 

concepts has been around for a long time, PVs are yet to be accepted as being widely successful 

[Gurka96, Mulholland98, Hundhausen02]. Studies into the effectiveness of program 

visualizations have yielded mixed results. While some have shown improvement in viewer 

comprehension [Hansen00, Lawrence93] others have argued that there is no significant 

improvement in viewer comprehension [Gurka96, Mulholland98, Hansen00].  

 Our research tries to answer the question of why some visualizations are useful while 

others fail to yield any significant benefit. Based on previous research by members of our group 
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[Rhodes06a, Rhodes06b, Rhodes06c, Kraemer06], three key approaches were identified: dual-

coding, individual differences and levels of engagement. This thesis concentrates on 

understanding individual differences between viewing behaviors of users in program 

visualizations through the use of viewing behavior modeling.  

In this work we formulate a methodology to characterize viewing behavior of users in 

program visualizations. For a long time researchers have used stochastic models to model 

behavioral patterns [Jagerman96, Hlavacs99, Manavoglu03]. We build our methodology using 

one such stochastic model, The Markov Chain. For our study we use the SSEA software, System 

for Studying the Effectiveness of Animations, which is a testing environment to study 

visualization design [Kraemer06]. The SSEA interface is divided into four main areas: an 

animation area, a pseudo-code display, animation controls and a question area. We define three 

separate areas of interest (AOI) based on the requirements. We selected the Code area, the 

Animation area and the Animation’s Caption area as the three AOI. We selected these AOI with 

the understanding that these are the main areas that disseminate information about the algorithm 

and any user would be looking at only one of these areas at a time. 

Using an eye-tracker we record the users’ eye-gaze pattern while the user is using the 

SSEA system to study an algorithm. The eye-gaze patterns are the sequences of users’ eye-

fixations. The eye-gaze patterns are then mapped to the defined areas of interest (AOI), which 

results in the sequence of area of interests. These sequences of AOI are then used to build 

Transition Matrices which are essentially counts of the total number of transitions between any 

two AOI. The transition matrices are then used to calculate Transition Probability Matrices for 

each user, which model Markov Chains. The transition probability matrices are then clustered 

 2



based on a distance function. The final cluster matrices thus obtained are used to build the 

Viewing Behavior Model Graph (VBMG). 

The VBMG help us in addressing one common problem with visualizations, the problem 

of determining the level of abstraction and the type of information that program visualizations 

should display. While some visualization place more emphasis on animation and less on text, 

there are others which stress on textual description. This is an important issue since this tends to 

make program visualizations suitable only to one kind of user. Our methodology of identifying 

users into separate groups based on their viewing behavior will help in adapting the algorithm 

animation based on the individual needs of a user. For example, if a user follows the behavioral 

pattern of a previously identified group of users, then the algorithm animations can be adapted 

accordingly. 

In Chapter 2, we discuss related research that has been done to model user viewing 

behavior and to categorize viewing behavior of users in the domain of human-computer 

interaction. Chapter 3 provides a description of our methodology of characterizing viewing 

behavior. In Chapter 4, we present the data that was used for experimentation and evaluation. To 

test our method we created some synthetic data. We present both the manufactured data as well 

as the experimental data obtained from actual gaze patterns. We conclude our work in Chapter 5 

and discuss the results.  
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

 In the domain of program visualizations very few researchers have tried to assess 

individual differences in viewing behavior of users. The studies done in [Crosby95] support, to 

an extent, the theory that individual differences affect learning through algorithm animations but 

there has been little work done to model the viewing behavior in these animations. Although few 

studies have been done to characterize viewing behavior in evaluating the effect of individual 

differences in use of program visualizations, there has been some work done in other areas of 

HCI. Researchers have used viewing behavior modeling to understand user behavior and help 

improve the design of websites. The use of viewing behavior modeling has also been 

investigated in video sessions to aid in audiovisual production techniques. 

In this chapter we survey the various approaches that exist in modeling user behavior in 

various computer interfaces. We briefly describe the Markov Chains (Markov Model) concept 

and also it’s application in user behavior studies. Following this, we focus on past and present 

research on modeling user behavior. We discuss the work done by some researchers in different 

areas of Human Computer Interaction (HCI) where behavioral models have been used to 

characterize user viewing behavior. 
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2.1 Markov Chains 

 Models for simulating realistic user behavior have been studied by researchers for many 

years [Jagerman96, Manavoglu03]. Most of these models are represented by stochastic processes. 

User behavior models try to build the sequence of user interactions at a higher level of 

abstraction. One such model, the Markov Model (or Markov Chain), has been used extensively 

by researchers in modeling user behavior [Menasce99, Mongy, Hlavacs99, Manavoglu03].  

A Markov Chain is formed of a set of states S = {s1, s2, ……., sn} where ‘n’ is the 

number of states. There is an initial state s1, from which the process starts and then moves 

successively from one state to another [Grinstead]. The probability of the chain to move from 

state si to sj is denoted by pij [Kemeny74]. The probability pij does not depend on the previous 

state, i.e. state si-1. 

 The probabilities pij are called transition probabilities. If the process si remains in the 

same state then its probability is denoted as pii.  

 

Transition Matrix 

The probabilities pij; where i = {1, 2, …….., n}, j = {1, 2, …….., n} and n is the number 

of states; can be represented in form of a two dimensional matrix called a Transition Matrix.  

For example, consider the following transition matrix: 

 
 

The above transition matrix gives the probability of transition between three states X, Y 

and Z. Each row in the transition matrix gives the probability of going from that state to all other 
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states. For example, if the current state is X then the probability of being in the same state at the 

next time period is ¼ , the probability of next state being Y is ¼ and the probability of next state 

to be Z is ½ . Similarly we can get the probability of transition from any one state to any other 

state from the transition matrix. Predictably, the sum of each row is 1.  

 

Transition Graph 

 The transition matrix can be represented in pictorial form through a transition graph also 

called a state transition graph. The figure below shows the transition graph for the example 

transition matrix discussed above. 

 

 

Figure 2.1 State Transition Graph 

 

 The states of the probability matrix form the nodes of transition graph and the edges of 

the transition graph are labeled with the probability between each state. 
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2.2 Applications of Behavior Modeling 

 Markov Chains have been used in statistics [Freedman83], physics [Sokal89], genetics 

[Nix92], and psychology [Miller52] and even in music [McCormack96]. In psychology the 

Markov model has been used to predict the learning habits of animals as well as humans 

[Estes50]. As early as 1950 Estes built learning models based on probability matrices [Estes50].  

In the field of Human-Computer Interaction, the importance of behavior modeling is 

more apparent than ever before. As the user base of computers increases and so does its 

applications, it is desired that the user is presented with only relevant information. Since there is 

always a difference between individual needs and expectations of each person, computer-human 

interactions cannot be tied to one general standard. It is imperative that the users interact with the 

computers at a level that conforms to their ability and their needs. In this context Behavioral 

Models can prove to be very useful. Researchers are studying applications of behavioral models 

in all areas of HCI. One such application is computer based learning, where the educator would 

want to adjust the difficulty of tutorials based on the learning ability of a particular student. 

Therefore as the student starts the tutorial, the computer system can automatically adjust the 

difficulty level based on initial responses of the student and matching the responses to the stored 

behavior models. Another application, which has already been implemented to some extent, is 

targeted advertising on websites [Johnston06, Chatterjee98, Montgomery03]. The web logs of 

websites are used to build models and predict user behavior. The advertisers may analyze the 

sequence in which the user surfs the web-pages or the areas of web-pages that are viewed the 

maximum amount of time. This helps advertisers in targeting users with relevant advertisements 

and also to place the advertisements at the right location so that they attract user attention 

without being annoying.  
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Another important issue is that of security. The ever increasing usage of the internet also 

brings with it the problem of security of financial transactions as well as maintaining secrecy of 

confidential information. The behavior models can be used to detect unusual behavior and 

subsequent action can be taken. There are a number of other uses of behavior models such as to 

improve the organization of a Web site to better serve customers, to identify new trends in 

consumer behavior for improving profit, etc. Our particular interest is the application in program 

visualization and algorithm animations. 

  

2.3 Approaches to Modeling User Behavior 

 For a long time, researchers have been trying to build behavior models that can predict 

user behavior accurately. Researchers have followed different approaches in an effort to build a 

behavior model that would work best in that particular scenario. In the context of HCI, a survey 

of approaches to modeling user behavior found that Markov Chains have been the fundamental 

concept behind most of the approaches taken to model user behavior [Menasce99, Mongy, 

Manavoglu03]. Each approach differs in the methodology followed to build the behavioral 

model. Although not much work has been done to model viewing behavior in program 

visualizations, work has been done in other areas of HCI. We focus on some of the past and 

present work by other researchers in modeling and characterizing user behavior in the area of 

HCI.  

 Menasce et al. [Menasce99] use a behavioral model, called the Customer Behavior 

Model Graph (CBMG) for workload characterization of E-commerce sites. CBMGs are used to 

“describe the behavior of groups of customers who exhibit similar navigational patterns”. These 

CBMGs are then applied to derive relevant workload metrics for e-commerce sites, which could 
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help in performance evaluation and capacity planning. Metrics such as average session length, 

average number of items bought per customer and buy to visit ratio can be obtained from the 

CMBG. It has been discussed that the workload of an e-commerce website can be represented 

using the sequence of requests of different types made by a customer during his/her visit to the 

site. A sequence of requests can be browse, search, select, add to cart, and pay. These sequences 

of requests are represented using the Customer Behavior Model Graph (CBMG).  

 

 

Figure 2.2, [Menasce99], CBMG of an occasional buyer. 

 

 Figure 2.2 above shows a CBMG. It has one node for each type of request (or state). Each 

edge of the above graph is assigned a probability, which is the probability of transition from one 

state to another state. The idea here is that different types of users can be characterized by 

different CBMGs. Therefore we can have different graphs for frequent buyers, occasional buyers 

and window shoppers. These graphs for different categories of users can be built by analyzing 

the logs of e-commerce websites to identify navigation and buying patterns. The analysis uses a 

k-means clustering algorithm to identify groups of customers with similar navigational patterns. 

The Euclidean distance function is used to calculate the distance between two points represented 
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by a transition count matrix for each user. Once the clustering is completed, each cluster centroid 

represents the navigational pattern of a specific group of buyers. From these cluster centroids, 

transition probability matrices are calculated for each centroid. Thus a probability matrix is 

obtained for each buyer group that represents that groups’ CBMG. Once the CBMGs have been 

built, they can be used to provide varying levels of service to customers. When a customer logs 

on to the website and starts navigating, the system can match the navigation pattern of the user to 

the profiles already stored and thus provide an appropriate level of service based on their profile. 

A customer whose navigation pattern matches that of a frequent buyer would thus get priority 

treatment. 

 Mongy et al. [Mongy], discuss a similar approach to model user behavior in video 

sessions.  In a video an action log of a session is defined by a sequence of play, fast forward, 

rewind, etc. actions. These logs are analyzed to extract viewing behavior characteristics of users. 

The first order Markov models are employed to characterize viewing behavior into different 

categories such as “fast viewing of video”, “viewing of a specific video sequence” or “a 

complete viewing of the video”. The sequence of actions and their durations during a video 

session are used to construct the first order Markov models. It was important to consider time 

spent between each consecutive action, therefore to account for the time spent in each state it is 

assumed that the transition is done every one second. Thus if a user spends ‘n’ number of 

seconds in a state ‘x’, it is recorded as ‘n’ transitions from state ‘x’ to state ‘x’. The nodes of 

models are the actions such as play, rewind etc. and the edges are the transitions between these 

actions. Again, as in other applications, the edges are labeled with probabilities of transition 

between these actions. The characterization is done using a clustering algorithm that clusters the 
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transition matrices. The Kullbach-Leibler distance function [Kullbach93] is used to calculate the 

distance between two transition matrices.  

Table 2.1 and Figure 2.4 below show the transition matrix and the transition graph 

obtained after the analysis of action logs of video sessions. 

 

Table 2.1, [Mongy], Transition Matrix for a video session 
 

  PLAY PAUSE JUMP FFW RWD STOP 
PLAY 0.9 0.08 0 0 0 0.02 

PAUSE 0.21 0.54 0.07 0.08 0.05 0.05 
JUMP 0 1 0 0 0 0 

FFW 0 0.88 0 0.12 0 0 
RWD 0 0.85 0 0 0.15 0 
STOP 0 0 0 0 0 1 

 

 

 

Figure 2.3, [Mongy], Transition Graph of a video session 
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 It has been argued that the categorization of viewing behavior in a video session can help 

in information publishing through videos. One such application can be analysis of quality of 

video of a commercial advertisement. 

 The above discussed approaches help us in formulation of our methodology to 

characterize viewing behavior in program visualizations. In chapter 3, we explain our approach 

to this problem of modeling user viewing behavior.  
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CHAPTER 3 

METHODOLOGY 

  
As discussed earlier, viewing behavior modeling is essential to help us understand 

individual differences in viewing behavior. A viewing behavior model should represent the 

actual viewing behavior of users of an interface. Our method of building viewing behavior 

models provides such a characterization of the viewing behavior. In this chapter, first we give a 

high level description of our approach to build viewing behavior models. Later, we provide a 

more detailed description of our methodology. 

 

3.1 Metrics 

To evaluate the quality of the clustering algorithm that we implement in our methodology we use 

the metrics described in this section [Ray99]: 

1. Average Intra-Cluster Distance (dintra):  Average intra cluster distance is the average 

distance of all points Pi of a cluster from its centroid C. Therefore if there are N points in 

a cluster then the dintra is defined as follows: 

),(1d
1

intra CPd
N

N

i
i∑

=

=  

The function d(x1,x2) is the Euclidean distance between points x1, x2. For optimal 

clustering the average intra-cluster distance should be minimized. 
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2. Minimum Inter-Cluster Distance (dinter): Inter-cluster distance is the distance between 

clusters. It is calculated by computing the distance between centroid of two clusters C1 

and C2.  

dinter = d(C1,C2) 

Again, the distance function used here is the Euclidean Distance. For optimal clustering 

the clusters should be as far apart as possible and therefore the inter-cluster distance 

should be maximum. We use only minimum inter-cluster distance in our calculations 

since we want the smallest of the inter-cluster distance to be maximized, and other larger 

values will automatically be bigger than this value. 

 

3. Ratio Intra-Cluster Distance to Inter-Cluster Distance (r): Since we know for optimal 

clustering the intra-cluster distance should be minimum and the inter-cluster distance 

should be maximum, therefore the ratio r should be minimized to achieve good clustering. 

 

4. Errors: The number of errors in a clustering is equal to the number of points which are 

present in the wrong cluster. 

 

3.2 Overview of Methodology 

Below is a summary of the steps followed to build the viewing behavior model graphs. 

1. User Interface: For our study we use the SSEA interface, System for Studying the 

Effectiveness of Animations, which is a testing environment to study visualization design 

[Kraemer06].  The SSEA interface is divided into four main areas: an animation area, a 

pseudo-code display, animation controls and a question area.  
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2. Area of Interest: We divide the user interface into parts called Areas of Interest (AOI). 

The areas of interests are chosen such that the user is expected to focus on only one of 

them at a time.  These AOIs serve as the building block of our viewing behavior model. 

 

3. Eye-gaze sequence recording: Using an eye-tracker we record the users’ eye-gaze 

pattern while the user is using the SSEA system to study an algorithm. The eye-gaze 

patterns are converted to sequences of AOI. 

 

4. Build Transition Count Matrices: The sequences of AOI are used to build Transition 

Count Matrices, counts of total number of transitions between any two AOI, for each user. 

 

5. Calculate Transition Probability Matrices: The transition matrices are used to 

calculate Transition Probability Matrices for each user, which are basically Markov 

Chains. 

 

6. Clustering: The transition probability matrices are clustered using the K-means 

clustering algorithm [McQueen67]. The Euclidian distance is used to calculate the 

distance between the matrices. Running with multiple values of K, and using multiple 

runs for each value of K, and then selecting the "best" is part of the methodology. 

 

7. Viewing Behavior Model Graph: The final matrices of the centroids of each cluster 

obtained after clustering are used to build the Viewing Behavior Model Graph (VBMG). 
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3.3 Detailed Description 

  
3.3.1 User Interface 

In this study we use the System for Studying the Effectiveness of Animations (SSEA) 

[Kraemer06]. SSEA is a testing environment used to study visualization design.  The SSEA 

interface is divided into four main areas: an animation area, a pseudo-code display, animation 

controls and a question area as shown in the figure 3.1 below. 

 

 

Figure 3.1 SSEA Screenshot 
 

The animation and the pseudo-code in the visualization are synchronized such that the 

changes in the animation correspond to the highlighted code. The viewer can adjust the speed of 

animation playback using the controls above the animation area.  
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3.3.2 Area of Interest 

 As shown in the figure below, the SSEA interface is divided into units called Areas of 

Interest (AOI). 

  

 

2
1

3

Figure 3.2 SSEA Interface with marked AOI – Area 1:Code, 2:Animation, 3:Caption 

 
 

Since the SSEA interface is already divided into separate areas: an animation area, a 

pseudo-code display, animation controls and a question area, we can either assume each of these 

areas as a separate area of interest (AOI) or we can define our own AOI based on the 

requirements. In our work we selected three areas of interest. The first AOI is the Code area, the 

second AOI is the Animation area and the third AOI is the Animation’s Caption area. We 

selected these AOI with the understanding that these are the main areas that disseminate 
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information about the algorithm and any user would be looking at only one of these areas at a 

time, and since our purpose is to model behavior based on parts of the interface that are focused 

on by the user, it was a natural choice. 

 AOIs serve as the basic component of our viewing behavior model. We consider each 

AOI as a state in the model and thus the user’s gaze shifting from one AOI to another AOI are 

used as transitions in our behavior model.  

 

3.3.3 Eye-Gaze Sequence Recording 

 For recording the eye-gaze sequence, we recruited 12 subjects from the CSCI 4800 – 

Human Computer Interaction class at The University of Georgia. All necessary permissions and 

consents were obtained to conduct human subjects study. The subjects used the SSEA interface 

to study the quicksort algorithm. While the subjects were studying the algorithm, their eye 

movements were recorded using the ASL Eye-Trac 6000 System. 

 

 

Figure 3.3 ASL Eye Trac 6000 System, Courtesy: ASL Labs 
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 The Eye-Trac 6000 system records the eye fixations while the user is looking at the 

interface. The ASL Eyenal and Fixplot software provided with the Eye-Trac 6000 system were 

used to define the AOI, (explained in last section), in the user interface. The software is then 

used to superimpose the eye-fixation sequences on the Areas of interest. The following figure 

shows an example plot of eye-fixation sequence on the AOI. 

 

 

Figure 3.4 Eye-Fixation Sequence superimposed over the defined AOI 

 
  
 By superimposing eye-fixation over the AOI we get the sequence of AOI in which user 

moves his focus from one AOI to another AOI. 
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3.3.4 Building Transition Count Matrices 

 Once we have obtained the sequence of AOIs for each subject, we convert these 

sequences into transition count matrices. Transition count matrices are two dimensional arrays 

that store total number of transitions between any pair of AOIs. 

 

Table 3.1 Sample Transition Count Matrix 
 

 Off Controls Animation Caption PesudoCode Questions 
Off 13 0 6 6 4 4 

Controls 2 8 5 0 0 1 
Animation 6 6 265 30 1 16 
Caption 7 1 29 43 0 0 

PseudoCode 2 0 2 1 0 0 
Questions 4 0 17 0 0 57 

 

 
The table above shows a sample transition matrix obtained after recording the eye-gaze 

sequence of a human subject. As can be seen in the above transition matrix, there is an additional 

row for “Off”. This is used to take into account situations in which the user’s eye gaze shifts 

outside the screen area. Since we are using only Animation, Code, and Caption as our AOIs, we 

obtain the transition count matrix for each user for only these AOI. 

 

3.3.5 Calculate Transition Probability Matrices 

 Once we have the transition count matrix for a user, we calculate the transition 

probability matrix. Transition probability is the probability of transition from one AOI to another 

AOI. Thus the sum of probabilities in each row should be 1. 
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Table 3.2 Sample Transition Probability Matrix 
 

 Off Controls Animation Caption PesudoCode Questions 
Off .1 .1 .2 .1 .2 .3 

Controls .3 .1 .1 .1 .2 .2 
Animation .25 .25 .1 .1 .1 .2 
Caption 0 .1 .2 .2 .3 .2 

PseudoCode .2 .3 .1 .2 .1 .1 
Questions .1 .2 .3 .2 .1 .1 

 

 
 The Transition Probability Matrices are the two dimensional representations of the first 

order Markov models of the viewing behavior for each user. Thus we can use these viewing 

behavior models of all subjects to group behavior models into different clusters. 

 

3.3.6 Clustering 

  Once we have the transition probability matrices we perform clustering analysis which 

gives us a group of clusters that represent different viewing behavior patterns of subjects. The 

centroid of each cluster defines the final VBMG characteristics. There are various approaches 

available in the literature to cluster matrices [Everitt80, Menasce94]. We use the K-Means 

clustering algorithm to cluster the transition probability matrices [MCQUEEN67]. The Euclidian 

distance is used to calculate distance between the matrices. 

The K-means clustering algorithm works as follows: 

1. Assume K points in the space represented by points to be clusters. These K points are 

selected randomly from the points in space. The randomly selected K points are the initial 

group centroids. 

2. Choose one point randomly among the points which have not been already added to the 

cluster and assign the point to the centroid which is closest to that point. 

3. Recalculate position of the centroid to which the point has been added. 
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4. Repeat steps 2 and 3 until all points have been assigned to some cluster. 

5. Repeat steps 2 and 3 until no point changes the cluster of which it was part in the last 

iteration. 

The value K, which is the number of clusters, has to be provided to the algorithm. The 

clustering algorithm needs the definition of distance which is used to calculate the distance of 

one point (transition probability matrix in our case) from another. To calculate the distance 

between each probability matrix we used the Euclidian distance function. The Euclidian distance 

function is defined as follows, where P1, P2 are the two points between which we need to 

calculate the distance and n is the number of AOIs. 
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 When a point is to be added to a cluster, the new value of the centroid is calculated by 

taking the weighted mean of the centroid and the new point. For example, if a point P is to be 

added to the cluster C which already contains k points, the new values of centroid of the cluster 

are computed as follows: 
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 The clustering algorithm is run multiple times for each value of k ranging from 1 up to k-

1.  For each value of k we perform 20 iterations and select the “best” clustering for that value of 

k. The best clustering occurs when the ratio of intra-cluster distance to inter-cluster distance is 

minimum among the other 19 clustering possibilities. E.g. for 4 clusters we may have 6 different 

clustering permutations, from these 6 different clustering permutations we select the clustering 

which has the minimum ratio of intra-cluster distance to inter-cluster distance. This is done 

because we want the clustering to be as tight as possible. 
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3.3.7 Viewing Behavior Model Graph 

 Once the transition probability matrices have been clustered, we obtain groups of subjects 

who have similar viewing behavior in the program visualization. The centroid of each cluster is 

representative of the viewing behavior of its members. Finally we build the Viewing behavior 

model graph using the centroids of cluster matrices that are obtained. The centroid matrices give 

us the transition probability for each group of users. Thus a VBMG can be built using the AOIs 

as nodes and labeling the edges of the VBMG with the transition probabilities of the 

corresponding centroid. 

 

 

Figure 3.5 Sample Viewing Behavior Model Graph 
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The VBMG can help us in understanding viewing behavior of users in program 

visualizations. We can vary the number of clusters to compare and analyze the results. In 

Chapter 4, we present some experimental data generated in our study. Also, we present the 

results of testing that was performed using synthetic data to test our methodology. 
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CHAPTER 4 

EXPERIMENT AND EVALUATION 

 
 This chapter presents both real experimentatal data and synthetic data that was generated 

and also the results of our analysis of that data. First we present the synthetic data that we used to 

evaluate our methodology and the results obtained. Later we present the experimental data that 

was obtained from the eye-tracker during the experiments with human subjects. 

 

4.1 Manufactured Data 

To test our methodology of characterizing viewing behavior through clustering, we 

generated artificial raw data and then analyzed it using our algorithm. In order to mimic the 

actual viewing behavior we used pre-determined VBMGs to generate the gaze sequences and 

then used these gaze sequences to build transition matrices for each hypothetical user. In this 

section we first explain how we generated the gaze sequences and then present the results of our 

analysis of that data. 

 

Gaze Sequence Generation  

 While generating gaze sequences we wanted to generate sequences that would represent a 

specific type of viewing behavior. For this purpose, our gaze sequence generation method is a 

function of the VBMG for that specific viewing behavior. E.g. Table 1 shows a transition 

probability matrix for a VBMG, which represents the viewing behavior of a user whose gaze 

sequence would have exactly equal number of transitions from any one AOI to any other AOI. 
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We call this transition probability matrix a Seed Matrix because we use this matrix to generate a 

large number of gaze sequences, each sequence different from one another but representing the 

same viewing behavior as its seed matrix. 

 

Table 4.1 Sample Seed Matrix 
 

  AOI 1 AOI 2 AOI 3 AOI 4 AOI 5 
AOI 1 0.2 0.2 0.2 0.2 0.2 
AOI 2 0.2 0.2 0.2 0.2 0.2 
AOI 3 0.2 0.2 0.2 0.2 0.2 
AOI 4 0.2 0.2 0.2 0.2 0.2 
AOI 5 0.2 0.2 0.2 0.2 0.2 

 
 

Similar to the VBMG described above, we can have many seed matrices which in turn 

can be used to generate more gaze sequences. Table 2 shows a transition probability matrix for a 

VBMG which represents a different viewing behavior than what is represented by Table 1. The 

Euclidian distance between the matrices of Table 1 and Table 2 is 0.40. 

 

Table 4.2 Sample Seed Matrix 
 

 AOI 1 AOI 2 AOI 3 AOI 4 AOI 5 
AOI 1 0.3 0.15 0.15 0.1 0.3 
AOI 2 0.3 0.25 0.05 0.3 0.1 
AOI 3 0.2 0.25 0.15 0.1 0.3 
AOI 4 0.1 0.3 0.2 0.15 0.25 
AOI 5 0.3 0.15 0.25 0.15 0.15 

 
 

Since a gaze sequence is a sequence of AOIs, we need to decide the starting AOI in the 

sequence. To preserve the randomness we use a Start AOI probability matrix to randomly select 

the starting AOI. The start AOI probability matrix also allows us to emphasize more on 
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particular AOI if we need an AOI to be starting AOI more often. Table 3 shows an example of a 

start AOI probability matrix. 

 

Table 4.3 Starting AOI Probability Matrix 
 

AOI Probability 
Cumulative 
Probability

Control 0.1 0.1 
Question 0.1 0.2 
Animation 0.4 0.6 
Caption 0.2 0.8 
Code 0.2 1.0 

 
 

The seed matrices and the start AOI probability matrices are then used to build a number 

of eye gaze sequences for each type of viewing behavior represented by its VBMG. This is done 

as follows: 

1. A random number generator generates a random floating point number and matches it to 

the cumulative probability in starting AOI probability matrix; this gives us the first AOI 

at which the gaze sequence starts. 

2. After we obtain the starting AOI the next AOI is obtained as a function of the VBMG 

which is represented by the seed matrix. It follows the steps listed below: 

a. A random floating point number is generated. 

b. The random number is looked up in the transition probability matrix of the 

VBMG. The lookup is performed in the row corresponding to the AOI from last 

iteration. 

c. The column corresponding to the matched probability cell gives us the next AOI. 
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In our experiments we built sequences of length 1000, meaning each sequence had 1000 

transitions.  Once we have obtained gaze sequences, we use these sequences to build Transition 

Count Matrices, as explained earlier in Chapter 3, for use in our experiments. 

  

4.1.1 Manufactured Data Experiment I 

 In our first experiment we wanted to check the performance of our algorithm by 

examining if our approach yields the correct number of clusters or not. To test this we used three 

VMBGs, whose representative probability matrices are shown in Table 4, 5 and 6. 

 
Table 4.4 Seed Matrix 1 

 
 AOI 1 AOI 2 AOI 3 AOI 4 AOI 5 

AOI 1 0.2 0.2 0.2 0.2 0.2 
AOI 2 0.2 0.2 0.2 0.2 0.2 
AOI 3 0.2 0.2 0.2 0.2 0.2 
AOI 4 0.2 0.2 0.2 0.2 0.2 
AOI 5 0.2 0.2 0.2 0.2 0.2 

 

Table 4.5 Seed Matrix 2 
 

  AOI 1 AOI 2 AOI 3 AOI 4 AOI 5 
AOI 1 0.3 0.15 0.15 0.1 0.3 
AOI 2 0.3 0.25 0.05 0.3 0.1 
AOI 3 0.2 0.25 0.15 0.1 0.3 
AOI 4 0.1 0.3 0.2 0.15 0.25 
AOI 5 0.3 0.15 0.25 0.15 0.15 

 

Table 4.6 Seed Matrix 3 
 

  AOI 1 AOI2 AOI 3 AOI 4 AOI 5 
AOI 1 0.35 0.15 0.05 0.15 0.3 
AOI 2 0.3 0.25 0 0.35 0.1 
AOI 3 0.35 0 0.3 0 0.35 
AOI 4 0.05 0.3 0.35 0.05 0.25 
AOI 5 0.3 0.15 0.25 0 0.3 
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The table below lists the Euclidean distance between each pair of seed matrix. 

 

Table 4.7 Distances between Seed Matrices 
 

Seed Matrices Euclidean Distance 
[1, 2] 0.4000000000000000
[1, 3] 0.6519202405202640
[2, 3] 0.4690415759823420

 
 

We generated 20 gaze sequences from each of the three VBMGs of Table 4, 5 & 6, using 

the method described in earlier in this section. Therefore in total we get 60 gaze sequences. For 

each of these 60 gaze sequences we build transition count matrices for further analysis using the 

clustering algorithm. 

Once we have obtained 60 transition count matrices, we cluster these matrices using our 

algorithm. Our goal is to cluster the points such that the intra cluster distance is minimum and the 

inter cluster distance is maximum. It appears that this case would occur when the number of 

clusters is equal to the number of points but since we want fewer clusters therefore we use the 

ratio of intra-cluster distance to inter-cluster distance to help us decide on the number of clusters 

[Ray99]. Table 8 presents the ratio of intra-cluster distance to inter-cluster distance, for varying 

number of clusters k, obtained after clustering the 60 transition count matrices that were 

generated.  

For each value of k the clustering algorithm was run for 20 iterations and the clustering 

with best ratio of intra-cluster to inter-cluster distance was chosen. Since we want the clusters to 

be as tight as possible, the ideal clustering would be the one which has minimum intra-cluster 

distance within clusters and maximum inter-cluster distance between clusters. Therefore we 

selected the clusters with minimum ratio of intra-cluster to inter-cluster distance. 
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Table 4.8 Ratio intra-cluster/inter-cluster distances 
 

No. of 
Clusters 

Ratio 
intra-cluster/inter-cluster 

distance 
1 Infinity 
2 0.438654 
3 0.329148 
4 0.896797 
5 0.881402 
6 0.919299 
7 0.880399 
8 0.826609 
9 0.966546 
10 0.939831 
11 0.910447 
12 0.88944 
13 0.948472 
14 0.932206 
15 0.909169 
16 0.868453 
17 0.8458 
18 0.818492 
19 0.788443 
20 0.733161 
21 0.721524 
22 0.68925 
23 0.676002 
24 0.649048 
25 0.631596 
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Figure 4.1 Ratio of intra-cluster to inter-cluster distance Vs. Number of Clusters 

 

The graph in Figure 4.1 summarizes the result presented in table 8. It can be observed 

from Figure 4.1 that the local minimum of the value of ratio occurs when the number of clusters 

is 3. Also the value of ratio drops consistently if the number of clusters is increased to more than 

13. When the number of cluster is 1 then the value of ratio is Infinity. The local minimum of the 

ratio gives us the optimal value of number of clusters, which in this case are 3. This results 

confirms that our methodology successfully identifies the optimal number of clusters since we 

used 3 VBMGs to generate the transition matrices. 

 

4.1.2 Manufactured Data Experiment II 

 In the second experiment we evaluated how our algorithm worked with varying inter 

cluster distance between clusters. In this experiment we used 16 different VBMG and formed 15 
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pairs of VBMGs out of these 16 VBMGs. For each pair of VBMG we generated 100 transition 

count matrices, i.e. 50 transition count matrices for each VBMG in a pair. The VBMG pairs were 

built such that the distance between the two members of a pair of VBMG is in 

increasing/decreasing order. Table 9 presents the distance between pairs of VBMGs e.g. the 

distance between VBMG 1 and VBMG 2 is 0.1. Appendix A lists the transition probability 

matrices that represent these VBMGs. 

 

Table 4.9 Euclidean Distance between pairs of VBMGs 
 

VBMG Pair Distance B/W Members 
[1, 2] 0.1000000000000000
[1, 3] 0.1174734012447070
[1, 4] 0.1224744871391580
[1, 5] 0.1349073756323200
[1, 6] 0.1462873883832770
[1, 7] 0.1568438714135810
[1, 8] 0.1732050807568870
[1, 9] 0.1907878400283380
[1, 10] 0.2024845673131650
[1, 11] 0.2144761058952720
[1, 12] 0.2236067977499780
[1, 13] 0.2366431913239840
[1, 14] 0.2469817807045690
[1, 15] 0.2565151067676130
[1, 16] 0.2645751311064590

 
 

 The clustering algorithm was run to cluster the 100 transition probability matrices 

obtained from one pair of VBMG. In a similar manner the clustering algorithm was run for each 

of the 15 pairs of VBMGs. After all clustering is completed we wanted to examine the number of 

errors in clustering. As explained earlier, the number of errors in a clustering is equal to the 

number of points which are present in the wrong cluster. 
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 Table 10 presents the results obtained after clustering. The values are obtained after 

averaging over 20 runs. It can be noted that the average intra-cluster distance and the average 

inter-cluster distance obtained after clustering reflect the increasing distance between the seed 

matrices. 

 

Table 4.10 Results obtained after clustering 
 

VBMG 
Pair 

Distance B/W 
Members (Seeds) 

Avg Intra-Cluster 
Distance 

Avg Inter-Cluster 
Distance 

Avg 
Errors 

[1, 2] 0.1000000000000000 0.1173417853864970 0.1306165431059130 27.4
[1, 3] 0.1174734012447070 0.1152712322108770 0.1470241440340000 24.6
[1, 4] 0.1224744871391580 0.1222311243955490 0.1444823644935920 18.55
[1, 5] 0.1349073756323200 0.1291719977787420 0.1462268291804200 14.9
[1, 6] 0.1462873883832770 0.1333777582229840 0.1523380612606260 10.4
[1, 7] 0.1568438714135810 0.1284557914216670 0.1659769005746650 11.95
[1, 8] 0.1732050807568870 0.1330555942345680 0.1812232573037140 7.2
[1, 9] 0.1907878400283380 0.1349446493513590 0.1962068171524650 3.5
[1, 10] 0.2024845673131650 0.1383658380791800 0.2050781634818430 0.35
[1, 11] 0.2144761058952720 0.1360055618666270 0.2182623709135990 0.45
[1, 12] 0.2236067977499780 0.1370377641333890 0.2271584924650070 0.1
[1, 13] 0.2366431913239840 0.1367644676545480 0.2352209545138670 0.05
[1, 14] 0.2469817807045690 0.1366657378938260 0.2503640052591860 0
[1, 15] 0.2565151067676130 0.1370522243571290 0.2574533750190250 0
[1, 16] 0.2645751311064590 0.1367462122661020 0.2701286571244540 0

 
 

As expected, it can be seen from Table 10 that as the inter-cluster distance between the 

clusters increases, the number of errors decreases. Figure 4.2 presents the graph for the data in 

Table 10. This information can be useful for researchers when they need to make decisions such 

as whether there is any benefit of building different algorithm animations for groups whose 

viewing behavior is not very different. For example if the distance between two clusters is very 

small then there may be no significant benefit in building different algorithm animations for 

those two groups. 
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Figure 4.2 Number of Errors Vs. Distance between Seed Matrices 

 

4.2 Experimental Data 

As discussed in Chapter 3, we recruited 12 Human subjects from the CSCI 4800 – 

Human Computer Interaction class at The University of Georgia to record their eye-gaze 

sequences. All necessary permissions and consents were obtained. The subjects used the SSEA 

interface to study the Quick-sort algorithm. While the subjects were studying the algorithm, their 

eye movements were recorded using the ASL Eye-Trac 6000 System. The eye-gaze sequences 

obtained from the ASL system was used to construct transition count matrices and later transition 

probability matrices. For details refer to Chapter 3. We focused on only three areas of interest i.e. 

Animation area, Caption area, and Code area. 

Out of the 12 subjects the data from 3 was discarded because of problems such as color 

blindness, failed calibration and head movement. More details of the experimentation can be 
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found in [Kaldate07]. Appendix B lists the transition count matrices obtained from the ASL Eye-

Trac for each subject.  

Once we obtained the transition count matrices for the remaining 9 human subjects we 

used the varying number of clusters in our algorithm to analyze this data. This approach is 

similar to the one discussed in Section 4.2.1 used for analyzing manufactured data in 

Experiment-I. Table 11 presents the result of clustering and Figure 4.3 presents the graph. 

 

Table 4.11 Results obtained after clustering 
 

No. of 
Clusters 

Ratio 
intra-cluster/inter-cluster 

distance 
1 Infinity 
2 0.5881871835998510 
3 0.4957003798264610 
4 0.5210362744481650 
5 0.4147027386366350 
6 0.3354295145703010 
7 0.1865308564869910 
8 0.1240756359227120 

 
 

It can be observed from Figure 4.3 that the local minimum of ratio of intra-cluster to 

inter-cluster distance occurs at 3 clusters. Therefore we hypothesize that the viewing behavior of 

users can be categorized into three clusters. We aim to compare the results obtained here with the 

empirical experiments done in [Kaldate07]. 
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Figure 4.3 Ratio of intra-cluster to inter-cluster distance Vs. Number of Clusters 

 

Once we know that we can group the viewing behavior in three groups, we build a 

VBMG for each of these three groups. The cluster centroid represents the VBMG for each 

cluster. The edges of VBMGs are labeled with the transition probabilities in the centroid’s matrix. 

Figure 4.4, Figure 4.5, and Figure 4.6 represent VBMG for each of the cluster obtained from our 

experimental data. Appendix B lists the transition probability matrices for these VBMGs. 

It can be seen from Figure 4.4 that subjects in Cluster 1 have high probability of 

remaining in the Animation and Code area but lower probability of remaining in Caption area. 

Cluster 1 was formed by subjects 2, 3, 4, 7, and 10. 
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Figure 4.4 VBMG for Cluster 1 
 
  

     
 

Figure 4.5 VBMG for Cluster 2 
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In Figure 4.5 it can be seen that subjects in Cluster 2 have a high probability of remaining 

in the Animation and Caption area but lower probability of remaining in Code area. Cluster 2 

had only one member i.e. subject 9. Therefore, it appears that subjects in Cluster 1 focus less on 

Caption area while subjects in Cluster 2 read Code for lesser amount of time as compared to 

subjects in Cluster 1. 

 

 
 

Figure 4.6 VBMG for Cluster 3 
 

The chart in Figure 4.7 shows the percentage time spent by each user in the three AOIs. 

In the clustering algorithm the subjects 2, 3, 4, 7, and 10 were members on first cluster, subject 9 

forms the second cluster and subjects 5, 6 and 11 form the third cluster.  
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Figure 4.7 Percentage time in each AOI by each subject 

 

4.3 Correlation of VBMGs with Cognitive study 

 We calculated the correlation of the distance of subjects from their cluster centroid with 

various assessment scores obtained from study of individual differences based on the preference 

of learning style, perceptual, attention and cognitive capabilities. For details on cognitive study 

refer to [Kaldate07]. Because cluster 2 had only 1 subject, we were not able to calculate the 

correlation of cluster 2 with the cognitive studies. 
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4.3.1 Correlation of VBMG with Viewing Behavior 

We calculate a distance score for each point (subject) in a cluster using the formula (1 – 

distance-from-centroid). Thus the point closest to the centroid has a high score and a point 

further from the centroid has lower score. 

The correlation of the distance score as defined above and fixation duration at various 

areas of interest is shown in Table 4.12. From Table 4.12 we can see that participants belonging 

to cluster 1 has moderate positive correlation with fixation duration at code (0.422), whereas 

participants belonging to cluster 3 had moderate negative correlation with fixation duration at 

code (-0.671). Cluster 1 has high negative correlation with fixation duration at caption (-0.73) 

and cluster 2 has high positive correlation with fixation duration at caption (0.982). 

The participants in different clusters shows distinct viewing pattern in terms of code and 

captions. Participants in both the clusters have very low negative correlation with fixation at 

animation. Therefore we can say that there is not much of a difference in viewing pattern of 

animation for participants in both clusters. However, participants closely belonging to cluster 1 

(closer to centriod of cluster 1) are likely to seek more information from code rather than from 

caption and participants closely belonging to cluster 2 are likely to seek more  information from 

caption rather than from code. 

 

Table 4.12: Correlation of distances of subjects from centroid with fixation duration at 
areas of interest 

 
  Animation Code Caption 
Cluster 1 -0.10742 0.422209 -0.73609
Cluster 3 -0.08874 -0.67166 0.982997
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Figure 4.8: Correlation of distance of subjects from centroid with fixation duration 

 

4.3.2 Correlation of VBMG with paper based assessments 

The correlation of distance score with paper based assessments will give us insight on 

similarity of cognitive, attentional and perceptual capabilities of participants belonging to same 

cluster. Table 4.13 shows the correlation of distance from cluster centroid with scores on various 

paper based assessments. We see that cluster 1 has very low positive correlation for inference 

test (0.035) however cluster 3 shows very high positive correlation with this test (0.971). On 

figure classification test participants in cluster 1 shows low positive correlation (0.143) and 

participants in cluster 3 shows moderate negative correlation (-0.554). Cluster 1 has moderate 

positive correlation with surface development test (0.445) and cluster 3 has high negative 

correlation (-0.80). Size span test shows very low correlation for cluster 1 however, cluster 3 

shows moderate negative correlation (-0.592). 
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Table 4.13: Correlation of paper-based test and cluster distance 
 

  
Inference Test -

RL 3 Fig ClassI-3 
Surface Deve 

Vz-3 
Size Span 

Test 
Cluster 1 0.035458822 0.143751145 0.44527259 0.008915988
Cluster 3 0.971901132 -0.554819482 -0.802034802 -0.59206198

 
 

Correlation of Cluster distance with Paper-based assessments
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Figure 4.9: Correlation of cluster distance with scores on various paper based assessments 

 

From the Figure 4.9 we see the trend that participants closer to cluster 3 are good at fluid 

intelligence but they show negative trend for figure classification, surface development and size 

span test. These users tended to seek information from the captions rather than code. Participants 

in cluster 1 did not have significant correlation for inference test and size span test, but they 

show a positive trend figure classification and surface development abilities. These users tended 

to seek information from the code rather than from captions. 
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4.3.3 Correlation of VBMG with computer based assessments 

Correlation of distance scores and scores on computer based assessments are provided in 

Table 4.14. Cluster 1 shows low negative correlation (-0.20) and cluster 2 shows high positive 

correlation (0.91) with the reading span. Scores for symmetry span has low correlation for cluster 

1 (0.30) and moderate correlation for cluster 3 (0.516). Cluster 1 (-0.664) and cluster 2 (-0.487) 

showed moderate negative correlation with operating span. Both group had low positive 

correlation on the Color Stroop test, cluster 3 (0.345) with slightly higher correlation than cluster 

1(0.162). 

 

Table 4.14: Correlation of cluster distance with computer based assessments 
 

  R-Span S- Span O-Span Color Stroop 
Cluster 1 -0.20646 0.301437 -0.66419 0.1624415 
Cluster 3 0.919095 0.516455 -0.48709 0.3453204 
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Figure 4.10: Correlation of cluster distance with computer based assessments 
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Cluster 1 and cluster 3 exhibit different patterns on reading span. Participants closer to 

the centroid of cluster 3 are likely to have better reading span. Both clusters shows a similar 

pattern on the symmetry span, the operating span and the Color Stroop test. Participants closer to 

centroid are likely to have better symmetry span and better able to handle interference due to 

color, whereas they are likely to have low score on the operating span test. 

The clustering was based on the transition of fixation from one area of interest to another. 

The correlation of cluster distance with the various assessments shows whether participants with 

similar viewing pattern have other similarities. We observe that participants in cluster 3 have 

better fluid intelligence than participants in cluster 1, where as participants in cluster 1 have 

better visualization capability. The clusters did not show any difference in working memory 

capacity except for reading span. Participants in cluster 3 are likely to have better reading span 

than participants in cluster 1 and they also spent more time reading captions. 

 

4.3.4 Correlation of VBMG with post-test scores 

The correlation of distance scores and post-test scores are provided in Table 4.15. Cluster 

1 shows low negative correlation on post-test (-0.128) and cluster 2 shows moderate positive 

correlation (0.483) with the post-test. On subset of post-test with questions similar to pre-test 

participants in cluster 1 showed a low negative correlation (-0.250) and participants in cluster 3 

showed a high positive correlation. Participants in both the clusters have high positive correlation, 

cluster 3 showing higher correlation of (0.938) than cluster 1 (0.667). Figure 4.11 shows a bar 

chart for these correlations.  
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Table 4.15: Correlation of cluster distance with post-test scores and improvement from 
pre-test to post-test 

 
  Post-test Post-test Subset Improvement 
Cluster 1 -0.128965276 -0.250365993 0.667140135 
Cluster 3 0.483362594 0.773752196 0.938484852 

 

From Figure 4.11 we see that participants who are closer to cluster 3 tend to comprehend 

better from program visualization. However, the average score of participants in both clusters 

shows that participants in cluster 1 had better performance in post-test and had better 

improvement from post-test. Table 4.16 shows average scores of participants in these cluster for 

the pre-test, the post-test, the subset of post-test similar to pre-test and the improvement from 

pre-test to post-test. We see that participants belonging to cluster 1 tend to show better 

improvement than participants in cluster 3. 

 
Table 4.16: Average scores of pre-test, post-test and improvement for both clusters 

 
 
 Pre-test Post-test Post-test Subset Improvement 
Cluster 1 67.50% 72.50% 92.50% 25.00% 
Cluster 3 83.33% 70.83% 66.67% -16.67% 
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Figure 4.11: Correlation of cluster distance with post-test scores 

 45



 

 

CHAPTER 5 

CONCLUSION 

 

In this thesis we focused on understanding individual differences between viewing 

behaviors of users in program visualizations. We introduced a new approach to characterize 

viewing behavior of users of program visualizations. Our methodology of building Viewing 

Behavior Model Graphs (VBMG) to group viewing behavior of users of program visualizations 

into separate groups enables us to understand how different users view program visualization. A 

VBMG describes the gaze behavior, which is a sequence of areas of interests (AOI), for a user. 

Physically, a VBMG is a Transition Probability Matrix that stores the probabilities of transitions 

between different AOIs. Using the information available from VBMGs we can study how users 

within a group and in separate groups relate to each other in terms of their understanding of 

algorithms that are taught using program visualizations. 

In our experiments the user’s eye-fixation sequences are obtained using an Eye-Tracker. 

We then define AOIs for the program visualization interface and map the eye-fixation sequences 

to the AOIs. The mapping results in a sequence of AOIs for each user. We then use these AOI 

sequences to build VBMGs, physically represented by transition probability matrices, for each 

user. The per-user VBMGs are then clustered using a clustering algorithm to obtain VBMGs that 

represent a group of per-user VBMGs. 

We presented both synthetic data and the experimental data collected from 12 Human 

subjects. We also showed how to select the optimal number of clusters using different metrics. 
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The results obtained from the experiments were convincing. Our experiments showed that the 

users can be grouped into seperate groups based on their viewing behavior. More convincing 

results can be obtained if the number of human subjects is large.  

We believe that better understanding of individual differences in viewing behavior will 

enable us to create better program visualization systems. The level of abstraction problem is 

rightly addressed by this approach and the potential exists for the advanced program 

visualization systems will greatly benefit from this work. Also, this work will help us understand 

the relative importance of each type of information, namely animation, code, and captions, in 

program visualizations. 

If a user follows the behavioral pattern of a previously identified group of users, then the 

algorithm animations can be adapted accordingly. One useful application of VBMG would be to 

dynamically capture viewing behavior and predict the cluster to which a user belongs, thus 

permitting on-the-fly adaptation of displays and other teaching materials. 

 VBMGs can find application in many areas. One of the applications is computer-based 

learning where the approach of tutorials can be adjusted based on the abilities and preferences of 

a particular student. As a student studies using the tutorial, the visualization system can 

automatically adjust based on the viewing behavior of the student and matching the behavior to 

the stored VBMGs. For example, if a user is focusing more on animation, then the visualization 

system can make the animation window bigger. Another application is the targeted advertising 

on websites [Johnston06, Chatterjee98, Montgomery03]. The VBMG can be built to analyze user 

viewing behavior while the user surfs the web-pages or the areas of web-pages. This helps 

advertisers to place the advertisements at the right location so that they attract user attention 
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without being annoying. A method similar to VBMG, that of Customer Behavior Model Graphs 

has been applied for workload characterization of e-commerce websites. 

 In the future we will integrate this work with our other approaches in the study of 

program visualization. We also plan to recruit a larger number of Human Subjects and run the 

experiments again in hopes of obtaining a statistically significant result. We will compare the 

results we obtained in our experiments with the results obtained in the empirical study of 

algorithm animation systems [Kaldate07]. 
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APPENDIX A 

MANUFACTURED DATA 

  

Below are the transition probability matrices that were used to evaluate our algorithm as 

explained in Section 4.2.2 Manufactured Data Experiment II. Each of these matrices represent a 

VBMG and their pairs were used as seed matrices to simulate gaze behavior as explained in 

Chapter 4. 

 

0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

     
Table A.1 VBMG Transition Probability Matrix 1 

     
     

0.2 0.2 0.2 0.2 0.2 
0.25 0.25 0.2 0.15 0.15 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.1000000000000000 
     

Table A.2 VBMG Transition Probability Matrix 2 
     
     

0.2 0.2 0.2 0.2 0.2 
0.3 0.2 0.18 0.17 0.15 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.1174734012447070 
     

Table A.3 VBMG Transition Probability Matrix 3 
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0.2 0.2 0.2 0.2 0.2 
0.3 0.15 0.15 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.1224744871391580 
     

Table A.4 VBMG Transition Probability Matrix 4 
     
     

0.3 0.15 0.15 0.2 0.2 
0.15 0.21 0.21 0.21 0.22 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.1349073756323200 
     

Table A.5 VBMG Transition Probability Matrix 5 
     
     

0.3 0.15 0.15 0.2 0.2 
0.15 0.21 0.21 0.21 0.22 
0.15 0.21 0.21 0.22 0.21 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.1462873883832770 
     

Table A.6 VBMG Transition Probability Matrix 6 
     
     

0.3 0.15 0.15 0.2 0.2 
0.15 0.21 0.21 0.21 0.22 
0.13 0.23 0.21 0.22 0.21 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.1568438714135810 
     

Table A.7 VBMG Transition Probability Matrix 7 
 
 
 
 
 
 
 
 
     
     

 55



0.3 0.15 0.15 0.2 0.2 
0.3 0.15 0.15 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.1732050807568870 
     

Table A.8 VBMG Transition Probability Matrix 8 
     
     

0.3 0.15 0.15 0.2 0.2 
0.15 0.21 0.21 0.22 0.21 
0.3 0.15 0.15 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

0.16 0.24 0.2 0.2 0.2 
Euclidean Distance from VBMG 1 = 0.1907878400283380 

     
Table A.9 VBMG Transition Probability Matrix 9 

     
     

0.3 0.15 0.15 0.2 0.2 
0.14 0.22 0.21 0.22 0.21 
0.3 0.15 0.15 0.2 0.2 

0.16 0.24 0.2 0.2 0.2 
0.16 0.24 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.2024845673131650 
     

Table A.10 VBMG Transition Probability Matrix 10 
     
     

0.3 0.15 0.15 0.2 0.2 
0.14 0.22 0.21 0.22 0.21 
0.3 0.15 0.15 0.2 0.2 

0.16 0.24 0.2 0.16 0.24 
0.15 0.25 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.2144761058952720 
     

Table A.11 VBMG Transition Probability Matrix 11 
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0.3 0.15 0.15 0.2 0.2 
0.3 0.25 0.05 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.2236067977499780 
     

Table A.12 VBMG Transition Probability Matrix 12 
     
     

0.3 0.15 0.15 0.15 0.25 
0.14 0.22 0.21 0.22 0.21 
0.3 0.15 0.15 0.15 0.25 

0.16 0.24 0.2 0.16 0.24 
0.15 0.25 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.2366431913239840 
     

Table A.13 VBMG Transition Probability Matrix 13 
     
     

0.3 0.15 0.15 0.15 0.25 
0.14 0.22 0.21 0.22 0.21 
0.3 0.15 0.15 0.15 0.25 

0.16 0.24 0.2 0.16 0.24 
0.15 0.25 0.25 0.15 0.2 

Euclidean Distance from VBMG 1 = 0.2469817807045690 
     

Table A.14 VBMG Transition Probability Matrix 14 
     
     

0.3 0.15 0.15 0.15 0.25 
0.14 0.22 0.21 0.22 0.21 
0.3 0.15 0.15 0.15 0.25 

0.16 0.24 0.2 0.16 0.24 
0.15 0.25 0.25 0.12 0.23 

Euclidean Distance from VBMG 1 = 0.2565151067676130 
     

Table A.15 VBMG Transition Probability Matrix 15 
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0.3 0.15 0.15 0.2 0.2 
0.3 0.25 0.05 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 
0.1 0.3 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 

Euclidean Distance from VBMG 1 = 0.2645751311064590 
     

Table A.16 VBMG Transition Probability Matrix 16 
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APPENDIX B 

EXPERIMENTAL DATA 

  

 The data obtained from human subjects is presented below. For subject 1, 8 and 12 the 

data was corrupted and therefore was not used. 

 

   Animation Instruction Code  
 Animation 249 33 16  
 Instruction 31 49 0  
 Code 16 0 54  
      

Table B.1 Transition Count Matrix for Subject 2 
      
      
   Animation Instruction Code  
 Animation 265 47 29  
 Instruction 51 51 8  
 Code 32 6 58  
      

Table B.2 Transition Count Matrix for Subject 3 
      
      
   Animation Instruction Code  
 Animation 414 79 22  
 Instruction 83 90 12  
 Code 23 5 153  
      

Table B.3 Transition Count Matrix for Subject 4 
      
      
   Animation Instruction Code  
 Animation 584 60 49  
 Instruction 63 184 13  
 Code 45 12 82  
      

Table B.4 Transition Count Matrix for Subject 5 
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   Animation Instruction Code  
 Animation 307 94 11  
 Instruction 93 297 5  
 Code 14 0 34  
      

Table B.5 Transition Count Matrix for Subject 6 
      
      
   Animation Instruction Code  
 Animation 180 58 28  
 Instruction 57 119 18  
 Code 36 13 247  
      

Table B.6 Transition Count Matrix for Subject 7 
      
      
   Animation Instruction Code  
 Animation 199 96 13  
 Instruction 98 174 11  
 Code 15 10 24  
      

Table B.7 Transition Count Matrix for Subject 9 
      
      
   Animation Instruction Code  
 Animation 276 89 11  
 Instruction 83 42 5  
 Code 17 3 162  
      

Table B.8 Transition Count Matrix for Subject 10 
      
      
   Animation Instruction Code  
 Animation 134 44 16  
 Instruction 25 83 14  
 Code 23 11 86  
      

Table B.9 Transition Count Matrix for Subject 11 
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Following are the transition probability matrices of three clusters that were obtained after 

clustering data of the human subjects as discussed in Chapter 4. Each of the cluster matrices 

represents a VBMG for that group. 

 

  Animation Caption Code 
Animation 0.7654628694331660 0.1713426931501940 0.0631944374166389

Caption 0.4464121967472480 0.4998203670110880 0.0537674362416630
Code 0.1808009600274790 0.0301053489589401 0.7890936910135800

Represents Subject Number 2, 3, 4, 7, 10 
    

Table B.10 Transition Probability Matrix for Cluster 1 
    

    
  Animation Caption Code 
Animation 0.6461038961038960 0.3116883116883110 0.0422077922077922

Caption 0.3462897526501760 0.6148409893992930 0.0388692579505300
Code 0.3061224489795910 0.2040816326530610 0.4897959183673460

Represents Subject Number 9 
    

Table B.11 Transition Probability Matrix for Cluster 2 
    
    
  Animation Caption Code 
Animation 0.7595267077551130 0.1805131833657500 0.0599601088791360

Caption 0.2275562543564200 0.7133063035739940 0.0591374420695856
Code 0.2690247801758590 0.0593325339728217 0.6716426858513190

Represents Subject Number 5, 6, 11 
    

Table B.12 Transition Probability Matrix for Cluster 3 
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