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ABSTRACT 

The availability of complete genomic sequences and microarray expression data calls for 

computational methods for characterizing transcriptome, the complete collection of alternative 

transcription units (ATU) and complete transcription units (CTU).  

Though numerous computational methods have been developed for prediction of operons 

(CTU), none of existing computational methods can deal with ATU. We present a new 

computational method for ATU prediction. The ATU was predicted based on variance of fold 

changes of expression level and intergenic distance. Then, CTU and ATU were combined to 

form the transcriptome of Escherichia coli.  

The alternative TU predictor achieves 93% prediction accuracy in estimating presence of 

ATU. The percentage of known ATUs correctly predicted and known single-gene CTU correctly 

predicted are 84.3% and 80.43% respectively. About 91.94% of transcriptome (include CTU and 

ATU) from multiple-genes operons are correctly predicted. 
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CHAPTER 1 

INTRODUCTION 

 

 

The availability of complete genomic sequences and microarray expression data calls for 

computational methods for reveal the regulatory of cell in prokaryotes. The prediction of operons, 

a set of genes that co-transcribed into a single mRNA, is the first step in reconstruction of a 

regulatory network at the genome-wide level [5].  

Numerous operons prediction methods have been proposed since 1990s. These methods 

include log-likelihood model [25], Bayesian network [1], logistic regression [21], neural network 

[4]], genetic algorithm [17], Hidden Markov model [35], decision tree [3] and graph-theoretic 

model [11]. Based on these prediction methods, a number of operon database have been 

developed, including Database of Prokaryotic Operons (DOOR) [13], MicrobesOnline [22], 

OperonDB [19], Operon Database (ODB) [26], RegulonDB [15] and DBTBS [27]. 

The prediction of transcriptions units (TUs), the smallest unit of transcription in prokaryotes, 

is the second step in reconstruction of a regulatory network at the genome-wide level. The 

prediction of transcriptions units has been implemented using some approaches, including hidden 

Markov models [30], multiple methods [6], probability of functional clusters of genes [12] and 

log- likelihood model [20]. However, these transcription unit prediction methods can not deal 

with alternative transcription unit. All the transcription units predicted from these TU prediction 

methods only include complete transcription unit.  
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Transcriptome is defined as the all transcribed regions encoded in the genome. 

Experimentally defining the complete transcriptome of prokaryotic organisms has been a 

challenging task, involving large, costly and labor-intensive experiments for sequencing of 

expressed sequence tag and full-length cDNA libraries. Hence, despite the fact that numerous 

species have been sequenced, only few transcriptomes have been extensively identified [36].  

Unlike the genome, which is essentially a static entity, the transcriptome can be modulated 

by regulatory factors under different experimental conditions. A multiple-promoters operon 

transcribes as a complete TU in most conditions, whereas it also may transcribes an alternative 

TU in some conditions. TUs transcribe together to give rise to an mRNA, which will be 

transported to cellular ribosomes to guide translation and protein synthesis. The transcriptome 

thereby serves as a link between an organism's genome and its proteome [32]. 

In prokaryotes such as Escherichia coli, operons are described adjacent genes that 

transcribed into a single mRNA [2] .For an operon including multiple promoters, a fraction of its 

genes can be present in several different alternative TUs in different conditions [7]. None of the 

existing operon predictors are able to deal with alternative TUs. 

We have presented a new computational method for TU prediction, which is able to predict 

alternative transcription units (ATU). Since the first model organism for molecular biology is 

Escherichia coli, we implemented the new TU predictor to produce the alternative transcription 

units of Escherichia coli. Then we combined alternative transcription units with complete 

transcription units to form the transcriptome of Escherichia coli. 
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CHAPTER 2  

LITERATURE REVIEW 

 

 

Transcriptome is defined as the all transcribed regions encoded in the genome. Unlike the 

genome, which is essentially a static entity, the transcriptome can be modulated by regulatory 

factors under different experimental conditions. Hence, transcriptome contain both complete 

transcriptions units (CTU) and alternative transcriptions units (ATU).  

Operons are described adjacent genes than transcribed into a single mRNA. A 

multiple-promoters operon transcribes as a CTU in most conditions, whereas it also may 

transcribes as an ATU in some conditions. Transcriptome transcribe together to give rise to an 

mRNA, which will be transported to cellular ribosomes to guide translation and protein synthesis. 

The transcriptome thereby serves as a link between an organism's genome and its proteome. 

2.1  OPERON 

An operon represents a functioning unit of adjacent genes in the complex hierarchical structure 

of biological processes in a cell of prokaryotes. 

2.1.1 TRANSCRIPTION  

DNA molecules are responsible for encoding the information necessary to build each protein or 

RNA molecular found in an organism [33]. The information flow DNA via RNA and thus to the 
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protein is described as central dogma of molecular biology, which includes the following three 

major stages. The information contained in DNA is duplicated by replication process. DNA 

directs the production of encoded messenger RNA through transcription. In the last stage of the 

information-transfer process, messenger RNA carries the encoded information to 

protein-synthesizing structures called ribosomes. Through a process named as translation, the 

ribosomes use this coded information to direct protein synthesis [37].  

Transcription is the process of synthesizing RNA copy using DNA as templates. To initiate 

a transcription process, then DNA double helix is unzipped, starting at the promoter site of a 

gene. After unzipping DNA double helix, one DNA strand serves as a template strand. RNA 

molecules are constituted by binding together ribonucleotides complementary to the template 

strand. Messenger RNA (mRNA) is synthesized from 5’ end to the 3’ end, whereas the template 

strand is read from 3’ end to 5’ end. After the transcription process, the mRNA will be 

transported to cellular ribosomes to guide translation and protein synthesis [37]. 

2.1.2 DEFINITION  OF  OPERON 

The operon concept was first proposed in the Proceedings of the French Academy of Science by 

the French microbiologists Francois Jacob and Jacques Monod in 1961. They described the 

regulatory mechanism of the lac operon of Escherichia coli, a system that allows the bacterium 

to repress the production of enzymes involved in lactose metabolism [18]. They were awarded 

Nobel Prize in Medicine in 1965 because of their distinguished research that gave impetus to the 

development of molecular biology.  

Francois Jacob and Jacques Monod defined an operon as a cluster of two or more 

contiguous genes transcribed from one common promoter that gives rise to a message RNA, 

http://en.wikipedia.org/wiki/Developmental_biology
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which is known as classical definition of operon [18]. According to RegulonDB database, they 

extend the definition to include the possibility of operons with only one gene for database 

purposes [25].  

2.1.3 OPERON  STRUCTURES   

An operon usually includes an active promoter, several structural genes and a terminator (Figure 

1.1). The promoter is a segment of DNA usually occurring upstream from a gene coding region 

and acting as a controlling element in the expression of that gene. The structural gene is a gene 

that codes for any RNA or protein product rather than a regulatory factor. The terminator is a 

DNA sequence that results in termination of transcription.  

 

 

 

Figure 1.1: Operon structures 

 

2.1.4 OPERON  PREDICTION 

With more and more prokaryotic genome sequences and microarray data available, the 

determination of operon structures at a genome-wide level has become the main focus.  
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2.1.4.1 EXPERIMENTAL DETERMINATION OF OPERON 

The presence of several genes in the same operon can be experimentally detected using several 

experiment techniques including northern blot, reverse transcription polymerase chain reaction, 

polar mutation and DNA microarray [34].  

Northern blotting involves the use of electrophoresis to separate RNA samples by size and 

detection with a hybridization probe complementary to part of or the entire target sequence.  

Reverse transcription polymerase chain reaction (RT-PCR) is a method of 

polymerase-chain-reaction amplification of nucleic acid sequences that uses RNA as the template 

for transcribing the corresponding DNA using reverse transcriptase.  

DNA microarray is a technique to monitor gene expression in thousands of genes. 

Thousands of probe DNAs are spotted or synthesized on microscope slides. Sample RNAs are 

labeled with fluorescent dyes. Gene expression levels in the sample are detected by hybridization 

of the labeled RNAs to the probes on the slide. 

Polar mutation is a mutation that affects the transcription of part of the gene or operon 

downstream of the mutant site. These mutations tend to occur early within the sequence of genes 

and can be nonsense, insertion mutations, which affects the rate of expression of downstream 

genes. 

2.1.4.2  PREDICTION  FEATURES  

Though experimental techniques mentioned above can determine whether genes belong to the 

same operon, they are too labor-intersive for genome-wide level application. To solve this 

problem, numerous computational methods have been developed for prediction of operons. 
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Most operon prediction methods divide adjacent gene pairs into two groups: operonic gene 

pairs and boundary gene pairs. Various features have been examined to distinguish between such 

gene pairs. These features include intergenic distance, genes functional classes, correlations 

between adjacent genes, codon usage, length ratio between a pair of gene, transcription signal, 

biological pathway, conservation of gene pairs and so on [34]. 

One of the most effective features for operon prediction is intergenic distance proposed by 

Salgado. They found that adjacent gene pairs within an operon (also known as operonic gene 

pairs) tend to have shorter intergenic distance, while gene pairs from two consecutive operons 

(also known as non-operonic gene pairs) tend to have longer distances [25]. The formula for 

intergenic distance is  

 

𝐷𝑖 = 𝐺𝑑𝑠𝑡𝑎𝑟𝑡 − (𝐺𝑢𝑒𝑛𝑑 + 1),                      (1.1) 

 

where 𝐺𝑑𝑠𝑡𝑎𝑟𝑡 is the start position of downstream gene and (𝐺𝑢𝑒𝑛𝑑) is the end position of 

upstream gene. 

Another effective feature is codon usage [1]. Bockhorst associated with each gene gk a set of 

codon bias vectors {𝑏  𝑎𝑘}, one for each amino acid. The elements of the bias vector are 

 

𝑏𝑎 ,𝑢𝑣𝑤
𝑘 = 𝑓  𝑢𝑣𝑤  𝑎 − 𝑓 (𝑢𝑣𝑤 |𝑎),                     (1.2) 

 

where uvw is a codon that codes for a, 𝑓 (uvw |a) is the frequency with which a is encoded by 

uvw over then whole genome.  
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The smoothed frequency with which a is coded for by uvw in then gene is  

 

𝑓  uvw  a =
nuvw +𝑓 (uvw |a )

 nxyzxyz ∈condons (a ) +1
 ,                    (1.3) 

 

where nuvw  is the number of times codon uvw appears in 𝑔𝑘 . 

The codon usage similarity between two genes is defined as  

 

𝑆𝑖𝑚(𝑔𝑘 , 𝑔𝑙) =  𝑏  𝑎
𝑘 ∙ 𝑏  𝑎

𝑙
𝑎                      (1.4) 

 

The widely used feature in gene expression data analysis is Pearson’s correlation coefficient, 

which measures the extent to which two gene expression patterns are similar with each other [37]. 

Given two data sets Oi and Oj from two genes respectively, Pearson’s correlation coefficient is 

defined as  

 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑂𝑖 , 𝑂𝑗   =
  𝑜𝑖𝑑−𝜇 𝑖 (𝑜𝑗𝑑 −𝜇 𝑗 )

𝑝
𝑑=1

   𝑜𝑖𝑑−𝜇 𝑖 
2𝑝

𝑑=1
   𝑜𝑗𝑑 −𝜇 𝑗  

2𝑝
𝑑=1

 ,             (1.5) 

 

where 𝜇𝑖  and 𝜇𝑗  are the means for 𝑂  𝑖  and 𝑂  𝑗 , respectively. The value of Pearson’s 

correlation coefficient ranges between -1 and 1 with a higher value indicating stronger similarity.  

2.1.4.3 PREDICTION  METHODS 

A wide range of computational methods have been used in operon prediction using various 

prediction features. These methods generally include log-likelihood model [25], Bayesian 
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network [1], logistic regression [21], neural network [4]], genetic algorithm [17], Hidden Markov 

model [35], decision tree [3] and graph-theoretic model [11]. 

Log-likelihood model is a model calculating distance log-likelihoods ratio for adjacent pairs 

of genes to be in the same operon. Salgado generated the following formula for the 

log-likelihood model 

 

𝐿𝐿 𝑑𝑖𝑠𝑡 = 𝑙𝑜𝑔
𝑁𝑜𝑝 (𝑑𝑖𝑠𝑡 )/𝑇𝑁𝑜𝑝

𝑁𝑛𝑜𝑝 (𝑑𝑖𝑠𝑡 )/𝑇𝑁𝑛𝑜𝑝
 ,                    (1.6) 

 

where 𝑁𝑜𝑝  and 𝑁𝑛𝑜𝑝  are pairs of genes in operons and at transcriptional boundaries 

respectively, at a distance [dist], whereas T𝑁𝑜𝑝  and 𝑇𝑁𝑛𝑜𝑝  are the total number of pairs of 

genes in operons and at the transcriptional boundaries respectively [25]. 

A Bayesian network is way of representing the joint probability distribution of a set of 

random variables that exploits the conditional independence relationships among the variables. 

Bockhorst formulated the chain rule 

 

𝑃𝑟 𝑋1,⋯⋯ , 𝑋𝑛 =  𝑃𝑟 𝑋𝑖|𝑋1,⋯⋯ , 𝑋𝑖−1 
𝑛
𝑖 ,             (1.7) 

 

where 𝑋𝑖  is the random variable [1].  

Logistic regression is used for prediction of the probability that gene pair i is an operon. 

Roback proposed the model 

 

ln(
𝑝𝑖

1−𝑝𝑖
) = 𝛽0 + 𝛽1 × 𝑐𝑜𝑟𝑖 ,1 + ⋯⋯ + 𝛽𝑝 × 𝑐𝑜𝑟𝑖 ,𝑝 + 𝛽𝑝+1 × 𝑑𝑖𝑠𝑡𝑖  ,    (1.8) 
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where 𝑑𝑖𝑠𝑡 is intergenic distance and 𝑐𝑜𝑟𝑙  is the correlation of expression among experiments 

in subset l (l=1,2, ⋯⋯, p) [21]. 

2.1.5 OPERON  DATABASES 

Based on numerous computational methods in operon prediction and experiment techniques, a 

lot of operon databases have been developed. Database of Prokaryotic Operons (DOOR) 

contains operons for 675 prokaryotic genomes [13], MicrobesOnline provides operons for 620 

genomes [22], OperonDB contains operons for 550 genomes [19], Operon Database (ODB) 

provides operons for 203 genomes [26], RegulonDB provides operons in E. coli only and 

DBTBS contains operons in B. subtilis only [15]. All operons in DOOR, OperonDB and 

MicrobesOnline are predicted by computational methods, while ODB, RegulonDB and DBTBS 

operons are based on experiments, literature and computational methods. 

Among these databases, DOOR developed by Computational Systems Biology Lab, ODB 

developed by Human Genome Center at University of Tokyo and RegulonDB developed by 

Program of Computational Genomics at Universidad Nacional Autónoma de México are widely 

used in genome studies. 

DOOR contains predicted operons of all sequenced prokaryotic genomes. All the operons in 

DOOR are predicted using computational methods. The operon database covers 675 complete 

archeal and bacterial genomes that include both chromosomal and plasmid gene pairs. This 

database also enables users to search desired operons and predict cis-regulatory [13]. 

ODB contains known operons of 203 genomes from prokaryotes and eukaryotes curated 

from the literature. Putative operons are also determined by orthologous gene prediction. This 
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database also supports operons prediction in 194 organisms using several features [26]. 

RegulonDB is a comprehensive database consisting of data from transcription regulation for 

E.coli K12, including operons, terminators, promoters, transcription units and regulatory 

pathways. This database is well curated from experimental data and literature [15]. 

2.2  TRANSCRIPTION  UNIT 

The stretch of DNA transcribed into an RNA molecule is called transcription units, which can be 

grouped into two categories: complete transcription units and alternative transcription units 

(Figure 1.2). The complete set of transcription units is defined as transcriptome. 

2.2.1 DEFINITION  OF  TRANSCRIPTION  UNIT 

A transcription unit is a set of one or more genes transcribed from a common promoter to 

produce a single messenger RNA. A transcription unit should include one or more genes, one 

active promoter, and one terminator. Transcription factor binding sites need not be components 

of a transcription unit. There is a one to one correspondence between transcription units and 

promoters (Figure 1.2).  

 

 

Figure 1.2: Transcription Unit structures 
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Although the definitions of transcription unit and operon generally contain promoters, 

terminators, we only deal with the structural genes of transcription unit and operon in this thesis. 

2.2.2 COMPLETE  TRANSCRIPTION  UNIT 

According to the definition of operon and transcription unit, an operon contains at least one 

transcription unit called complete transcription unit that includes all the genes in that operon. 

There is no difference between complete transcription unit and operon. 

2.2.3 ALTERNATIVE  TRANSCRIPTION  UNIT 

For operons that include multiple promoters, a transcription unit is defined for each promoter. A 

complex operon with several promoters contains several transcription units. 

An alternative transcription unit is a fraction of operon genes transcribed from a single 

promoter to produce a single messenger RNA. An alternative transcription unit should include 

one or more genes, one promoter, and one terminator (Figure 1.2). 

The differences between an alternative transcription unit and an operon are (1) an 

alternative transcription unit must include one promoter. (2) an operon may include more than 

one promoter. 

The E. coli operon for galactose utilization (gal) contains a glucose-dependent and a 

glucose-independent promoter. The E. coli tryptophan (trp) (Figure 1.2) and isoleucine-valine 

(ilv) operons have internal promoters leading to the expression of a fraction of genes in the 

operons [34]. 
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2.2.4 TRANSCRIPTION  UNIT  PREDICTION 

With more and more microarray expression data and complete genomic sequences available, the 

determination of properties at a genome-wide level has become an important issue. Numerous 

genome-wide operon prediction methods have developed since a number of prokaryotic genomes 

had been sequenced. However, only a few methods for transcription unit prediction methods 

have been proposed [23]. Among these transcription unit prediction methods, all the transcription 

units only include complete transcription unit. When an operon contains multiple promoters, 

several alternative transcription units can be transcribed under different conditions. None of 

existing transcription unit prediction methods are able to deal with this issue, and only limited 

attempts have been made for this problem [8]. 

Among these transcription unit prediction methods, Tjaden proposed hidden Markov 

models to predict transcription unit [30], Craven used both sequence information and gene 

expression data to predict transcription unit [6], Ermolaeva found functional clusters of genes 

based on conservation of gene positions across different genomes and Salgado adopted 

intergenic distances as the main feature in transcription unit prediction [12]. 

Table 1.1: Reported performances of TU prediction methods 

Prediction Methods Features TUs sensitivity 

HMM Sequence 59% 

Multiple Sequence and gene expression data 68% 

Probability Conserved gene clusters 50% 

Loglikelihood Intergenic distance, functional class 75% 
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Table 1.1 reveals the performances of these transcription unit (complete TUs) prediction 

methods [23]. All the prediction methods were tested on known transcription unit data of E. Coli, 

from the RegulonDB database. Most prediction methods predict transcription units with 50-75% 

sensitivity (percentage of known transcription units correctly predicted) [23]. The loglikelihood 

method achieves 75% sensitivity; HMM method achieves only 59% sensitivity; Multiple method 

achieves 68% of known transcription units correctly predicted; Probability achieves only 50% 

sensitivity. 

2.3  MICROARRAY  DATA  ANALYSIS 

The development of DNA microarray technology enables scientists to capture the gene 

expression on a genome-wide level. The expression levels of thousands of genes can be 

monitored using a single microarray chip. DNA microarray has generated a large number of gene 

expression data over the past several years. Numerous methods have been proposed to analyze 

gene expression microarray data for different purposes.  

2.3.1 K-FOLD  CHANGE 

Fold change method is used to find genes that are differentially expressed. The ratio for a gene is 

calculated as the average expression over all samples in a condition divided by the average 

expression over all samples in another condition.  

 

𝑟𝑎𝑡𝑖𝑜 =
𝜇1

𝜇2
 ,                             (1.9) 
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where 𝜇1 represents average of expression value over all samples in the first condition and 𝜇2 

represents average of expression value over all samples in the second condition. 

Since most genes express in the same biological pathway in different conditions, the ratios 

between two conditions should be around one. Genes that demonstrate a significant change 

between two conditions are considered as differentially expressed. 

To facilitate the selection process, the ratio between the two expression levels for several 

genes is first calculated. In general, an arbitrary threshold such as two-fold (log2x) or three-fold  

(log3x) change is selected and the ratio is considered to be significant if it is large than the 

threshold [9]. 

2.3.2 t-TEST 

The classical method for performing a hypothesis test on two groups observations data is the 

t-test, which was originally named as “student’s t-test” developed by William Sealy Gosset.  

2.3.2.1 PAIRED  t-TEST 

The paired t-test is used in paired data, which has a pair of observations for each gene. The null 

hypothesis is that the gene is not differentially expressed, denoted by H0: 𝜇 = 0. The alternative 

hypothesis is that the gene is differentially expressed, denoted by 𝐻α: 𝜇 ≠ 0. 

 

𝑥 = 𝑙𝑜𝑔2
𝑥1

𝑥2
 ,                          (1.10) 

 

𝑡 =
𝑥 

𝑠  𝑛 
 ,                            (1.11) 
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where 𝑥1 and 𝑥2 are a pair of expression value for each gene, 𝑥  is the mean of the log ratios, 

s is the standard deviation of log ratios and n is the number of samples. The null hypothesis is 

rejected or not rejected depends on p-value and a significance level. 

The significance of differentially-expressed genes depends not only on the average log ratio 

but also on both the population variability and the number of samples. The accuracy of the 

determination of differentially-expressed genes increases with the number of samples [28]. 

2.3.2.2 UNPAIRED  t-TEST 

The unpaired t-test is applicable to unpaired data which contains two unrelated groups of 

observations. The null hypothesis states that the means of the expression levels of a given gene 

in the two groups will be equal, denoted by H0: 𝜇1 = 𝜇2. The alternative hypothesis is that the 

means of the expression levels of a given gene in the two groups will be unequal, denoted by 

𝐻α: 𝜇1 ≠ 𝜇2. 

Both the equal-variance and unequal-variance unpaired t-test use the formula as follows: 

 

𝑡 =
𝑥 1−𝑥 2

 
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

 ,                             (1.12) 

 

where 𝑥 1 and 𝑥 2  are the means of expression levels of a given gene, 𝑠1
2  and 𝑠2

2  are the 

variances, and 𝑛1 and 𝑛2 are the sizes of the two groups. The null hypothesis is rejected or not 

rejected depends on p-value and a significance level. 
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2.3.3 NEIGHBORHOOD  ANALYSIS 

Neighborhood analysis is also available for the identification of differentially-expressed genes. 

Given the expression levels of gene g over all the conditions, the following score is defined as: 

 

𝑃 𝑔 =
𝜇1(𝑔)−𝜇2(𝑔)

𝜎1 𝑔 +𝜎2(𝑔)
 ,                        (1.13) 

 

where 𝜇1(𝑔) and 𝜇2(𝑔) are the mean of the expression levels of gene g in class 1 and class 2 

respectively, and 𝜎1 𝑔  and 𝜎2 𝑔  are the standard deviations of g in class 1 and class 2 

respectively. 

Large absolute values of 𝑃 𝑔  indicate a strong correlation between gene expression and 

class distinction, while a positive value indicates that g is more highly expressed in class 1 and a 

negative value indicates that g is more highly expressed in class 2 [29]. 

2.3.4 EUCLIDEAN  DISTANCE 

Euclidean distance is one of the most widely-used methods to measure the distance between two 

data. The distance between data Di and Dj in p-dimensional space is calculated: 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 (𝐷𝑖 ,𝐷𝑗 ) =   (𝐷𝑖𝑑 − 𝐷𝑗𝑑 )2𝑝
𝑑=1                      (1.14) 

 

However, the overall shapes of gene expression profiles are often of greater interest than the 

individual magnitudes of each feature. To solve this problem, a standardization process is usually 

performed before calculating the Euclidean distance [37]. 
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Dkj'=
𝐷𝑘𝑗 −𝜇𝑘

𝜎𝑘
  (1 ≤ 𝑗 ≤ 𝑝)                     (1.15) 

 

𝜇𝑘 =
 𝐷𝑘𝑑

𝑝
𝑑=1

𝑝
                              (1.16) 

 

𝜎𝑘 =  
1

𝑝
 (𝐷𝑘𝑑 − 𝜇𝑘)2𝑝

𝑑=1                        (1.17) 

 

2.3.5 K-MEANS  

The K-means algorithm is an extensively used partition-based clustering method. Given a 

per-specified parameter K, the algorithm partitions the data set into K disjoint subsets which 

optimize the following function: 

 

𝑉 =   |𝑂 − 𝜇𝑖|𝑂∈𝐶𝑖

2𝐾
𝑖=1  ,                    (1.18) 

 

where 𝑂 is a data in the cluster Ci and 𝜇𝑖  is the average of Ci..  

Therefore, the purpose of function 𝑉 is to minimize the sum of the squared distances of 

objects from their cluster centers [24]. 
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CHAPTER 3  

ALTERNATIVE TRANSCRIPTION UNITS PREDICTION 

 

 

According to definition, alternative transcription units only present in multiple-promoters 

operons rather than single-promoter operons. However, we lack the Escherichia coli promoter 

information at a genome-wide level. Therefore, the first step to predict alternative transcription 

units is to test whether an operon has an alternative transcription unit based on Database of 

Prokaryotic Operons (DOOR) and Many Microbe Microarrays Database (M3D). Based on 

variance of fold changes of within operon genes and intergenic distance, we predicted alternative 

transcription units of Escherichia coli.  

3.1  DATA  DESCRIPTION 

Operons of Escherichia coli from DOOR and microarray gene expression data of Escherichia 

coli from M3D were downloaded for the prediction of alternative transcription units. Known 

transcription units data of Escherichia coli were also downloaded from RegulonDB to evaluate 

the prediction.  

3.1.1 OPERON  DATA 

DOOR (Database of prOkaryotic OpeRons) is an operon database developed by Computational 

Systems Biology Lab (CSBL). The operons in the database are based on operon-prediction 
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program. The prediction algorithm is a data-mining classifier, which include Intergenic distance, 

Neighborhood conservation, Phylogenetic distance, information from short DNA motifs, 

Similarity score between GO terms of gene pairs and Length ratio between a pair of genes [8]. 

The complete operons of Escherichia coli strain K-12 substrain MG1655 were downloaded 

from DOOR (http://csbl1.bmb.uga.edu/OperonDB/displayNC.php?id=215). A number of 

operons which include at least one unexpressed gene based on M3D were eliminated.  

Among 827 operons in Escherichia coli strain K-12, 436 operons contain two genes, 170 

operons include three genes, 98 operons contain four genes, 55 operons include five genes, 37 

operons contain six genes, 14 operons include seven genes, 6 operons contain eight genes, 3 

operons include nine genes, 3 operons contain eleven genes, 3 operons include twelve genes and 

2 operons contain fifteen genes (Figure 2.1).  

 

 

Figure 2.1: The frequency distribution of operon sizes in Escherichia coli strain K-12 
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3.1.2 MICROARRAY  DATA 

Many Microbe Microarrays Database (M3D) is designed to facilitate the analysis and 

visualization of expression data in compendia compiled from multiple laboratories. M3D 

contains over a thousand Affymetrix microarrays for Escherichia coli, Saccharomyces cerevisiae 

and Shewanella oneidensis. The expression data is uniformly RMA normalized to make the data 

generated by different laboratories and researchers more comparable. The experimental condition 

metadata in M3D is curated with each chemical and growth attribute stored as a structured and 

computable set of experimental features. All versions of the RMA normalized compendia 

constructed for each species are maintained and accessible in perpetuity to facilitate the future 

interpretation and comparison of results published on M3D data [14].  

We also downloaded RMA normalized microarray gene expression data of Escherichia coli 

from M3D (http://m3d.bu.edu/norm). A number of genes which are not contained in Escherichia 

coli K12 operons based on DOOR were eliminated. Those eliminated genes are considered as 

single-gene CTU, which are unable to induce any alternative transcription units. 

The microarray data consists of expression level of 2543 genes. Each gene has 380 gene 

expression levels in 380 different conditions respectively. Figure 2.2 shows the frequency 

distribution of gene expression level of thrB under 380 conditions. The rang of gene expression 

level for thrB is from 7 to 13. Under 234 conditions, the gene expression level for thrB is around 

9. The mean and standard deviation of gene expression level for thrB under 380 conditions are 

9.23 and 0.95 respectively.  
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Figure 2.2: The frequency distribution of gene expression level of thrB 

 

Figure 2.3 shows the frequency distribution of average gene expression level of 380 

conditions for 2543 genes. The range of average gene expression level is from 3 to 15. About 

53.99% average gene expression level fall into the interval between 8 and 10. The histogram 

follows a Normal curve, with the peak at 8.5. 

 

 

Figure 2.3: The frequency distribution of average gene expression level for 2543 genes 
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The frequency distribution of standard deviation of gene expression level under 380 

conditions for 2543 genes is shown in Figure 2.4. The range of standard deviation of gene 

expression level is from 0.1 to 2.3. About 50.33% of standard deviation of gene expression level 

falls into the interval between 3 and 6. The histogram follows a right skewed curve, with the 

peak at 0.4. With the increase of standard deviation, the frequency decrease tardily. 

 

 

Figure 2.4: The frequency distribution of standard deviation of gene expression level for 2543 

genes 
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of transcriptional regulation. 

Experimentally confirmed and computational predicted transcription units data and operon 

data were downloaded from the RegulonDB (http://regulondb.ccg.unam.mx/) to evaluate the 

prediction of alternative TU. 

3.2   PREDICTION MODEL BUILDING PROCESS 

None of existing transcription unit prediction methods deals with alternative transcription unit 

[8]. All the transcription units predicted from these TU prediction methods only include complete 

transcription unit. We present a new computational method for alternative transcription unit 

prediction.  

3.2.1  FOLD  CHANGE 

The intricacy of the microarray experimentation process generally introduces bias into gene 

expression level measurements. Bias can be caused by the concentration and amount of DNA 

placed on the microarrays, lack of spatial homogeneity of the slides, the quantities of mRNA 

extracted from samples, scanner settings, saturation effects, background fluorescence and 

linearity of detection response [10].   

All the genes in the same operon transcribe from one common promoter to gives rise to a 

message RNA. The expression levels of genes in the same operon should be close to each other. 

However, the expression levels of genes in the same operon are totally different because of bias 

mentioned above. Figure 2.5 reveals the expression level of three genes in operon 3863 under 

380 conditions. Operon 3863 is a three-genes operon, including b0190, b0191 and b0192. The 

expression level of b0190 and b0191 are close to each other under most conditions, but the 



 

25 

 

expression level of b0192 is significantly different from other two genes. This is also revealed by 

the average of expression level of b0190, b0191 and b0192, which is 9.37, 9.53 and 8.23 

respectively.  

 

 

Figure 2.5: The expression level of three genes in operon 3863 under 380 conditions 

 

 

We use the fold change, the ratio of the measured value for an experimental sample to the 

value for another sample, to solve the problem that expression levels of genes in the same operon 
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condition divided by the expression level in another condition. The microarray data consists of 

expression level of 2543 genes. Each gene has 380 gene expression levels in 380 different 

conditions respectively. For any two conditions, each gene has a fold change. Therefore, each 

gene has 72010 fold change ratios. The formula of fold change is defined as follows: 
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𝑓𝑛𝑖𝑗 =
𝑒𝑛𝑖

𝑒𝑛𝑗
                            (2.1)  

 

where 𝑓𝑛𝑖𝑗  represents the fold change of gene n of condition i and condition j, e𝑛𝑖  represents 

the expression level of gene n in condition i, e𝑛𝑗  represents the expression level of gene n in 

condition j,  for 𝑛 = 1, ⋯⋯ 2543, 𝑖 = 1, ⋯⋯ 380, 𝑗 = 1, ⋯⋯ 380 and 𝑗 > 𝑖. 

 

 

Figure 2.6: The first 380 fold changes of three genes in operon 3863  

 

Though the expression levels of genes in the same operon are different, the fold change of 

genes in the same operon should be close to each other because they transcribe together. 72010 

fold changes of b0190, b0191 and b0192 were calculated based on formula 2.1. The first 380 

fold changes are shown in Figure 2.6. The fold changes of three genes are around one. There are 

no significant difference among the fold changes of b0190, b0191 and b0192. 
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3.2.2 VARIANCE  OF  FOLD  CHANGE 

For any two conditions, the fold change of genes in the same operon should be close to each 

other. Hence, the variance of fold changes of within operon genes should near zero. On the 

contrary, if fold change of genes in the same operon are totally different, the variance of fold 

changes of within operon genes would be far from zero. The formula for the variance of fold 

changes of within operon genes is generated as follows: 

 

𝑣𝑎𝑟𝑚𝑖𝑗 =
 [

𝑒𝑛𝑖
𝑒𝑛𝑗

−

( 
𝑒𝑛𝑖
𝑒𝑛𝑗

𝑝𝑚
𝑛=1 )

𝑝𝑚
]2𝑝𝑚

𝑛=1

𝑝𝑚−1
,                        (2.2) 

 

where 𝑣𝑎𝑟𝑚𝑖𝑗  represents variance of fold changes of genes in the operon m under condition i 

and condition j, e𝑛𝑖  represents the expression level of gene n in condition i, e𝑛𝑗  represents the 

expression level of gene n in condition j, pm is the size of operon m for 𝑚 = 1, ⋯⋯ 827, 𝑛 =

1, ⋯⋯𝑝, 𝑖 = 1, ⋯⋯ 380, 𝑗 = 1, ⋯⋯ 380 𝑎𝑛𝑑 𝑗 > 𝑖. 

In order to predict whether an operon include an alternative transcription unit, 827 operons’ 

variance of fold changes of within operon genes were calculated based on formula 2.2. 

If the variance of fold changes of within operon genes far from zero, the genes in the operon 

would not transcribe together. This presents the probability of existence of alternative 

transcription unit.   

Figure 2.7 shows the frequency distribution of variance of fold changes in operon 3863. The 

range of variance of fold changes is from 0 to 0.021. About 67.13% of variance of fold changes 

are less than 0.001 and 10.99% of variance of fold changes are larger than 0.003. The histogram 
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follows a right skewed curve, with the peak at 0.001. With the increase variance, the frequency 

decrease sharply. 

 

 

 

Figure 2.7: The frequency distribution of variance of fold changes in operon 3863  
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90% quantile of variance of fold changes for all operons. The function of 90% quantile of 

variance of fold changes is defined as follows: 
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𝑃𝑟 𝑉𝑎𝑟𝑖 < 𝑉𝑎𝑟90% = 0.9 ,                    (2.3) 

 

where 𝑉𝑎𝑟𝑖 represents the i-th variance of fold changes , 𝑉𝑎𝑟90% represents 90% quantile of 

variance of fold changes, for 𝑖 = 1, ⋯⋯ 72010.  

According to distribution of 90% quantile of variance of fold changes, all operons are 

grouped into three categories: operons without alternative transcription units, operons may 

contain alternative transcription units and operons with alternative transcription units. Operons 

without alternative transcription units were eliminated from the data. The other two groups of 

operons were kept for further analysis. 

 

 

Figure 2.8 The frequency distribution of 90% quantile of variance of fold changes for all 

three-gene operons. 
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All the operons’ 90% quantile of variance of fold changes were calculated based on formula 

2.3. Figure 2.8 shows the frequency distribution of 90% quantile of variance of fold changes for 

all three-gene operons. The three-gene operons are grouped into three categories: operons 

without alternative transcription units (90% quantile of variance less than 0.0025), operons may 

contain alternative transcription units (90% quantile of variance larger than 0.0025 and less than 

0.025) and operons with alternative transcription units (90% quantile of variance larger than 

0.025). Hence, we eliminated three-gene operons without alternative transcription units.    

3.2.4 99%  QUANTILE  OF  VARIANCE  OF  FOLD  CHANGES 

Multi-promoters operons generally transcribe as a complete transcription unit in most conditions, 

but they will transcribe as an alternative transcription unit under some conditions. The trp operon 

involved in tryptophan biosynthesis has two promoters, which give rise to a complete 

transcription unit and an alternative transcription unit. Transcription of the alternative 

transcription unit in vivo is approximately 15% of the complete transcription unit [16].  

Among 72010 variances of fold changes for each operon, most of them are close to zero, 

representing operons transcribe as a complete transcription unit. Hence, the largest portion of 

variances becomes the major concern because operons may transcribe as an alternative 

transcription unit under these conditions.  

The largest 1% of variances (720 variances) was outputted if the variance larger than 99% 

quantile of variance. The function of 90% quantile of variance of fold changes is defined as 

follows: 

 

𝑃𝑟 𝑉𝑎𝑟𝑖 < 𝑉𝑎𝑟99% = 0.99 ,                  (2.4) 
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where 𝑉𝑎𝑟𝑚𝑖  represents the i-th variance of fold changes , 𝑉𝑎𝑟99% represents 99% quantile of 

variance of fold changes, for 𝑖 = 1, ⋯⋯ 72010.  

All the operons’ 99% quantile of variance of fold changes were calculated based on formula 

2.4. Figure 2.9 shows the frequency distribution of 99% quantile of variance of fold changes for 

all three-gene operons. For each three-gene operon, if the variance larger than its 99% quantile of 

variance, it would be kept for further analysis. After this process, each three-gene operon has the 

largest 720 variance of fold changes.  

 

 

 

Figure 2.9 The frequency distribution of 99% quantile of variance of fold changes for all 

three-gene operons. 
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3.2.5 CONDITIONS  IDENTIFICATION 

Each operon has the largest 720 variance of fold changes. Identifying conditions in which 

operons transcribed as an alternative transcription unit is the next step. Since fold change is the 

ratio of expression level for any two conditions, there are totally 1440 conditions involved in 720 

variances for each operon. The frequency distribution of conditions from 1440 conditions for 

each operon is calculated. The three highest frequency conditions were recorded for further 

analysis. The probability of presence of alternative transcription units in these three conditions is 

relatively higher than other three conditions.  

 

 

Figure 2.10 The frequency distribution of conditions in operon 4124 
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The frequency distribution of conditions in 720 highest variances for operon 4124 is 

displayed in Figure 2.10. The frequency of condition 140, condition 143 and condition 363 are 

121, 126 and 122 respectively. These three conditions are recorded for further analysis.  

3.2.6 RATIO 

After conditions identification, each operon has three conditions in which the operon may 

transcribe as an alternative TU. The ratio between expression level and average expression level 

becomes the major concern. The function of ratio is defined as follows: 

 

𝑟𝑖𝑗 =
𝑒𝑖𝑗

 𝑒𝑖𝑗
380
𝑗=1 380 

 ,                           (2.5) 

 

where 𝑟𝑖𝑗  is the ratio of gene i under condition j and 𝑒𝑖𝑗  represents the expression level of gene 

i in condition j.  

The ratio of three identified conditions for each gene was calculated. If the ratio of 

contiguous genes within operon is close to each other, they probably transcribe together to give 

rise to an alternative TU.  

3.2.7 INTERGENIC DISTANCE 

Since the intergenic distance is one of the most effective features for predicting operon, we also 

used this feature in alternative TU prediction. If the intergenic distance between two adjacent 

genes is less than or equal to zero, we could not separate the two genes into two alternative TUs 

because there is no promoters or terminators between two genes. The formula of intergenic 

distance is defined as follows: 
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𝑑 =  
𝐺𝑑𝑠 − 𝐺𝑢𝑒  , 𝑠𝑡𝑟𝑎𝑛𝑑 = " + "
𝐺𝑢𝑠 − 𝐺𝑑𝑒  , 𝑠𝑡𝑟𝑎𝑛𝑑 = " − "

  ,                   (2.6) 

 

where 𝐺𝑑𝑠  is the start position of downstream gene, 𝐺𝑢𝑒  is the end position of upstream gene, 

𝐺𝑢𝑠  is the start position of upstream gene, 𝐺𝑑𝑒  is the end position of downstream gene, " + " 

represents that the direction of transcription is forward and  " − " represents that the direction 

of transcription is reverse. 

   The modified formula of intergenic distance is generated as: 

 

𝐷𝐼 =  
𝑑 − 1,   𝑑 > 0

𝑑, 𝑑 = 0
𝑑 + 1, 𝑑 < 0

  ,                       (2.7) 

 

where d is calculated from the formula 2.6.  

All the intergenic distances between two adjacent genes in the same operon were calculated 

based on modified formula of intergenic distance. Figure 2.11 shows the frequency distribution 

of intergenic distance within operon. 33.99% of intergenic distances are less than or equal to zero, 

which means there is no promoter or terminator between two genes. In other words, we could not 

separate the two genes into two alternative TUs if the intergenic distance between two adjacent 

genes is less than or equal to zero.  
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Figure 2.11 The frequency distribution of intergenic distances within operon 

 

 

3.2.8 K-MEANS ALGORITHM 

The K-means algorithm is a widely used partition-based clustering method. Given the ratio of 

three identified conditions for each gene and a per-specified parameter K=2, the algorithm 

partitions the data set into 2 disjoint subsets which minimize the following function: 

 

𝑉𝑡 =   |𝑟𝑖𝑗 − 𝜇𝑘𝑗 |𝐺𝑖∈𝑆𝑘

22
𝑘=1                      (2.8) 

 

where 𝑉𝑡  is the variance of operon t, 𝐺𝑖  is gene i within operon t, 𝑟𝑖𝑗  is the ratio of 𝐺𝑖  under 

condition j and 𝑆𝑘  is subset of operon t and 𝜇𝑘𝑗  represent the average ratio of subset 𝑆𝑘  under 

condition j.  
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Suppose the size of operon is n, there are totally (n-1) ways to divide the operon into 2 

subsets. Therefore, the purpose of function 𝑉𝑡  is to minimize the sum of the squared distances 

of genes from their subsets.  

If the intergenic distance between the last gene in first subset and the first gene in second 

subset is larger than zero, the second subset is generally considered as an alternative TU because 

it share the same terminator with the complete TU (Figure 1.2).  

3.3  RESULTS 

We implemented alternative TU predictor based on operon data from DOOR and evaluated 

alternative TU predictor based on TU and operon data from RegulonDB. However, there are 

some differences between predicted operons from DOOR and predicted operons from 

RegulonDB. So we evaluated alternative TUs in operons, which are contained in both DOOR 

and RegulonDB. Since RegulonDB is a incomplete TU database, we eliminated alternative TUs 

that are not included in RegulonDB. 

3.3.1 PRESENCE EVALUATION OF ALTERNATIVE TU IN OPERON 

The first step to predict alternative TU is to estimate whether an operon has an alternative TU.  

According to K-MEANS variance method, the operons are grouped into two categories: operons 

with alternative TU and operons without alternative TU. The operons being predicted correctly is 

coded as 1, whereas the operons with alternative TU being predicted to operons without 

alternative TU is coded as 0.  
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Table 2.1: Performances of presence of alternative TU in operon 

 

 

 

 

Table 2.1 shows the performances of presence of alternative TU in operon. 260 out of 277 

operons were predicted correctly compared with experimental identified TU data from 

RegulonDB. The alternative TU predictor achieves 93% prediction accuracy in estimating 

presence of alternative TU in Escherichia coli operons. The performance of presence of 

alternative TU in operons with different sizes is displayed in Appendix A. 

3.3.2 VALIDATION OF ALTERNATIVE TU PREDICTION 

K-means algorithm and intergenic distance were used in prediction of alternative TU. The 

alternative TUs being predicted correctly is coded as 1, whereas the alternative TUs being 

predicted incorrectly is coded as 0. 

Table 2.2 shows the performances of prediction of alternative TU in operon. 248 out of 294 

operons were predicted correctly compared with experimental identified TU data from 

RegulonDB. The alternative TU predictor achieves 84.3% prediction accuracy in prediction of 

alternative TU in Escherichia coli operons. The performance of prediction of alternative TU in 

operons with different sizes is displayed in Appendix B. 

 

Correct Frequency Percent 
Cumulative 

Frequency 

Cumulative 

Percent 

0 17 6.14 17 6.14 

1 260 93.86 277 100.00 
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Table 2.2: Performances of prediction of alternative TU in operon 
 
 

Correct Frequency Percent 
Cumulative 

Frequency 

Cumulative 

Percent 

0 46 15.65 46 15.65 

1 248 84.35 294 100.00 
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CHAPTER 4  

DERIVATION OF THE COMPLETE TRANSCRIPTOME 

 

 

In prokaryotes such as Escherichia coli, operons are described adjacent genes than transcribed 

into a single mRNA [2] .For an operon including multiple promoters, a fraction of its genes can 

be present in several different alternative TUs in different conditions [7]. None of the existing 

operon predictors are able to deal with alternative TUs. 

Since we have predicted the complete alternative TUs in Escherichia coli, we combine 

alternative transcription units with complete transcription units to form the transcriptome of 

Escherichia coli. 

4.1  COMPLETE  TRANSCRIPTION  UNIT 

Given the definition of operon and transcription unit, an operon contains at least one 

transcription unit called complete transcription unit that includes all the genes in that operon. 

We derived multiple-gene complete TU of Escherichia coli from operon data form DOOR. 

Since DOOR operon data contain operons with two or more genes, those eliminated genes that 

are not included in DOOR operon data are considered as single-gene complete transcription units. 

We combined single-gene complete TU with multiple-gene complete TU as complete TU.  
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Figure 3.1 The frequency distribution of complete TU size 

 

 

Figure 3.1 shows the frequency distribution of complete TU size. There are 2641 complete 

TUs in total. Single-gene complete TUs account for 66.53% of all complete TUs, two-genes 

complete TUs account for 17.91% and three-genes complete TUs account for 6.77% of all 

completE TUs. There are no complete TUs consist of ten, thirteen or fourteen genes.  

 

4.2  ALTERNATIVE  TRANSCRIPTION  UNIT 

The first step to predict alternative transcription units is to estimate whether an operon has an 

alternative transcription unit based on Database of Prokaryotic Operons (DOOR) and Many 

Microbe Microarrays Database (M3D). Based on variance of fold changes of within operon 

genes and intergenic distance, we predicted alternative TUs of Escherichia coli. 
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Figure 3.2 The frequency distribution of alternative TU size 

 

Based on prediction model described above, we derived 1027 alternative TUs. Figure 3.2 

reveals the frequency distribution of alternative TU size. Among these alternative TUs, 779 

alternative TUs contains only one gene, 142 alternative TUs include two genes, 62 alternative 

TUs consist of three genes. 

4.3  TRANSCRIPTOME 

The expression level of genome in Escherichia coli have been analyzed, using K-means 

algorithm and intergenic distance. The TU predictor revealed 1027 alternative TUs and 2641 

complete TUs. Transcriptome is defined as all transcribed regions encoded in the genome. Hence, 

transcriptome is a complete collection of alternative TUs and complete TUs.  
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Figure 3.3 The frequency distribution of TUs size 

 

 

Figure 3.3 shows the frequency distribution of TUs size. Transcriptome consist of 3668 

transcription units. 69.13% of TUs contain one gene, 16.77% of TUs include two genes, 6.57% 

of TUs consist of three genes and 7.52% of TUs contain three or more genes.  

4.4  RESULT 

4.4.1 EVALUATION OF SINGLE-GENE CTU 

We derived single-gene complete transcription units (CTU) from DOOR. Single-gene CTU was 

verified by single-gene operons from RegulonDB. Since RegulonDB is an incomplete TU 

database, we eliminated single-gene CTU that is not included in RegulonDB. The single-gene 

CTU predicted correctly is coded as 1, whereas the single-gene CTU being predicted incorrectly 

is coded as 0. 
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Table 3.1: Evaluation of single-gene CTU 

Correct Frequency Percent 
Cumulative 

Frequency 

Cumulative 

Percent 

0 351 19.57 351 19.57 

1 1443 80.43 1794 100.00 

 

Table 3.1 shows the percentage of known single-gene CTU correctly predicted. 80.43% of 

single-gene CTU is predicted correctly. All single-gene CTU were tested on single-gene operons 

from RegulonDB database. 

4.4.2 VALIDATION OF TRANSCRIPTOME 

Since the difference of predicted operons between DOOR and RegulonDB, we evaluated 

transcriptome in operons, which are contained in both DOOR and RegulonDB. TUs that are not 

included in RegulonDB were eliminated because we are unable to verify them. The TU predicted 

correctly is coded as 1, whereas the TU being predicted incorrectly is coded as 0. 

Table 3.2: Evaluation of transcriptome from multiple-genes operons 

Correct Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 46 8.06 46 8.06 

1 525 91.94 571 100.00 

 

 



 

44 

 

Table 3.2 shows the evaluation of transcriptome from multiple-genes operons. 91.94% of 

TUs (include CTU and ATU) from multiple-genes operons are correctly predicted. The 

evaluation of TUs in operons with different sizes is displayed in Appendix C. 
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CHAPTER 5 

CONCLUSION 

 

 

Transcriptome is defined as the all transcribed regions encoded in the genome. Experimentally 

defining the complete transcriptome of prokaryotic organisms has been a challenging task. Hence, 

despite the fact that numerous species have been sequenced, only few transcriptomes have been 

extensively identified. The availability of complete genomic sequences and microarray 

expression data calls for computational methods for characterizing transcriptome, the complete 

collection of alternative transcription units (ATU) and complete transcription units (CTU).  

Though numerous computational methods have been developed for prediction of operons 

(CTU), none of existing computational methods can deal with ATU. We have presented a new 

computational method for TU prediction, which is able to predict alternative transcription unit. 

Since the first model organism for molecular biology is Escherichia coli, we implemented the 

new TU predictor to produce the transcriptome of Escherichia coli.  

The first step to predict ATU is to test whether an operon has an ATU based on Database of 

Prokaryotic Operons (DOOR) and Many Microbe Microarrays Database (M3D). Then ATU of 

Escherichia coli was predicted based on variance of fold changes of within operon genes and 

intergenic distance. Lastly, single-gene CTU, multiple CTU and ATU were combined to form the 

transcriptome of Escherichia coli.  
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Predicted TUs were tested on known TUs of Escherichia coli from RegulonDB. The 

alternative TU predictor achieves 93% prediction accuracy in estimating presence of ATU in 

Escherichia coli operons. The percentage of known ATUs correctly predicted and known 

single-gene CTU correctly predicted are 84.3% and 80.43% respectively. 91.94% of TUs 

(include CTU and ATU) from multiple-genes operons are correctly predicted. 

We plan to use this computational prediction method in the prediction of operons (CTU) in 

the future. Based on the predicted result of both CTU and ATU, the transcriptome can be derived 

automatically when the microarray data are available. 
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APPENDICES 
 

APPENDIX A. 
 

THE PERFORMANCE OF PRESENCE OF ALTERNATIVE TU IN OPERONS WITH DIFFERENT SIZES  

 

 

frq=2 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 10 7.75 10 7.75 
1 119 92.25 129 100.00 

 

 

 

frq=3 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 4 6.25 4 6.25 
1 60 93.75 64 100.00 

  

 

frq=4 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 3 7.89 3 7.89 
1 35 92.11 38 100.00 
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frq=5 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 21 100.00 21 100.00 

  

 

  

frq=6 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 11 100.00 11 100.00 

  

   

frq=7 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 6 100.00 6 100.00 
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frq=8 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1 100.00 1 100.00 

  

  

frq=9 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1 100.00 1 100.00 

  

 

   

 

frq=11 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 2 100.00 2 100.00 
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frq=12 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 3 100.00 3 100.00 

  

   

frq=15 

 

ort Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1 100.00 1 100.00 
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APPENDIX B. 

 

THE PERFORMANCE OF PREDICTION OF ALTERNATIVE TU IN OPERONS WITH DIFFERENT SIZES 

 

 

frq=2 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 11 6.15 11 6．15 

1 168 93.85 179 100.00 

 

 

frq=3 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 11 26.83 11 26.83 

1 30 73.17 41 100.00 

 

 

 

 

 

frq=4 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 6 46.15 6 46.15 

1 7 53.85 13 100.00 
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frq=5 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 5 20 5 20 

1 20 80 25 100.00 

  

 

 

   

frq=6 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 9 39.13 9 39.13 

1 14 60.87 23 100.00 

  

 

 

 

frq=7 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 3 30 3 30 

1 7 70 10 100.00 

  

 

 

 

frq=8 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1 100.00 1 100.00 
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frq=9 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1 100.00 1 100.00 

  

 

 

 

 

frq=15 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 1 50 1 50 

1 1 50 2 100.00 
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APPENDIX C. 

 

THE EVALUATION OF TUS IN OPERONS WITH DIFFERENT SIZES 

 

 

frq=2 

 

dt Frequency Percent 
Cumulative 

Frequency 

Cumulative 

Percent 

0 11 3.57 11 3.57 
1 297 96.43 308 100.00 

 

 

frq=3 

 

dt Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

0 11 10.48 11 10.48 

1 94 89.52 105 100.00 

  

 

 

 

frq=4 

 

dt Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

0 6 11.76 6 11.76 

1 45 88.24 51 100.00 
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frq=5 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 5 10.87 5 10.87 

1 41 89.13 46 100.00 

  

 

   

 

frq=6 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 9 26.47 9 26.47 

1 25 73.53 34 100.00 

  

 

 

 

frq=7 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

0 3 18.75 3 18.75 

1 13 81.25 16 100.00 

  

 

 

 

frq=8 

 

dt Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1 100.00 1 100.00 
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frq=9 

 

dt Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

1 2 100.00 2 100.00 

  

 

 

frq=11 

 

dt Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

1 2 100.00 2 100.00 

  

 

 

frq=12 

 

dt Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

1 3 100.00 3 100.00 

  

 

 

frq=15 

 

dt Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

0 1 33.33 1 33.33 

1 2 66.67 3 100.00 
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