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Abstract

This dissertation develops a number of nonparametric inference procedures for time to

event data under right censoring. The type of event time data that we consider are broader

than the usual survival time data. They include some multistage models such as the com-

peting risk and also certain mark variables and covariates. More specifically, we address

the issue of testing the equality of two or more survival distributions when the population

membership information is not available for the right censored individuals. This can also be

regarded as testing the independence of failure time and cause in a competing risk problem

or, more generally, as testing the independence of a failure time and a mark variable. We

introduce a family of weighted log-rank tests based on the concept of assigning only a frac-

tion of a censored individual to each ‘at risk’ set of failures. The joint asymptotic normality

of our test statistics is explored through an asymptotic linear representation. In addition,

two resampling schemes are suggested as alternatives to the asymptotic distribution which

might be more useful in practice.

Another major accomplishment of this dissertation is to formulate a class of U -statistics

for right censored data problems that are based on the concept of data reweighting and are

valid for a kernel of arbitrary order. They are useful for asymptotically unbiased estimation



for certain mean-like functionals of the failure time distributions. We obtain a martingale

representation for these statistics which leads to their asymptotic normality. The issue of

efficiency gain through the use of a doubly robust version is also discussed. As a motivating

application of this estimation methodology, we construct a second test statistic for the testing

problem described earlier.

The finite sample properties of our estimators and statistical tests are studied through

extensive simulations and two well known data sets from existing literature are used for their

illustrations to real data problems.

Index words: Competing risk model, Dependent censoring, Doubly-robust, Fractional
risk, Kaplan-Meier, Kendall’s tau, Log-rank tests, Multistate models,
Right-censoring, U -statistic.
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Chapter 1

Introduction to Event Time Data

1.1 Event-time data

In general, “event time data” is a term used for describing a category of data that measure

the time to some event of interest. In such a study, a collection of individuals moves among

a finite (usually small) number of states/stages. In such cases, the event is a transition from

one stage to another. For example, it can be the time to an epileptic seizure in a medical

study, time to failure of a unit (or component) in reliability, and so on. Possible stages in this

context can be described as death, event, failure or transition to denote what happens at the

response time. Time to an event is considered a positive real-valued variable having a possibly

continuous distribution. The data structure can be (a) univariate or (b) multivariate. When

all time variables describe the time to the same type of event for various individuals, the

data are univariate, else when time variables describe multiple event times per individual,

the data are considered multivariate. In such a case, we do not assume independence between

event times. In addition to the survival or event times, there are often observable covariables

that can affect both the future events of interest and the censoring variable. While the value

of a time independent covariate is fixed and known at the beginning of a study, the modeling

of the effect of a time dependent covariate in terms of a stochastic process is much more

complex.

1
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1.2 Various incompleteness in data

Although the exact transition times (in continuous time) form the modeling basis of the

time-to-event data, often the times are incompletely observed. A host of incompletenesses

are encountered in practice most important being censoring (right and left) and truncation

(right and left). A brief mathematical description of various forms of censoring and truncation

might be helpful here.

Consider, for a specified individual under study, its true lifetime denoted by X and a

right censoring time denoted by CR. Generally, unless covariate information is available, the

X’s are assumed to be independent and identically distributed. The exact lifetime X of

an individual will be known if, and only if, X is less than or equal to CR. If X is greater

than CR, the only available information is that the individual is a survivor beyond CR and

the individual is thus right-censored. There can be several forms of right censoring such as

progressive type I, generalized type I, type II censoring, competing risk censoring, and so

on. An individual in a study is considered to be left-censored if the only information we

have is that its lifetime X is less than a left censoring time CL. In other words, the event of

interest had already occurred for the individual before the person is observed in the study at

time CL. If a study has both left-censored and right-censored data, then it is called doubly

censored data. Another notable feature arising in many survival studies is truncation. It

occurs in those survival data when only those individuals whose event time lies within a

certain observational window (YL, YR) are observed. An individual whose event time is not

within this interval is not observed and no information on this subject is available to the

investigator. This is in contrast to censoring where we have at least partial information

on each subject, i.e. we have at least the information that an individual has survived till

that censored time point. Because we are only aware of individuals with event times in the

observational window, the inference for truncated data is restricted to conditional estimation.
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Similar to censoring, there can be right truncation, left truncation and interval truncation.

Klein and Moeschberger (2003) provides a detailed description of several censoring-truncation

mechanisms. More severe forms of censoring deal with current status and interval censored

data. The former is a special case of the latter in which individuals are not monitored

constantly. Current status data represent the status of individuals inspected at a single

inspection time (i.e., a single snapshot) per individual. In the context of pure survival data,

it therefore records whether at the inspection time, denoted by C, a given individual failed,

or not. A form of interval censoring results in multistage models when each individual is

observed at multiple inspection times (i.e. multiple snapshots).

1.3 Multistage models

Multistage models are a type of multivariate time-to-event data in which individuals (or

experimental units) move through a succession of ‘stages’ corresponding to distinct states.

For example, in a multistage model for cancer progression, individuals could move from

a cancer-free stage through stages of increasing tumor severity, or could move to a state

representing death from any of the other stages. Multistage models with a finite number of

stages can be divided into two classes. In acyclic networks, each stage is entered at most once;

in cyclic networks, reentry into the same stage is allowed. Acyclic networks can be exploded

into an equivalent finite network which has a tree topology. Hence we will assume, without

loss of generality, that the network is a tree. Two central questions in studying multistage

models are (a) What is the probability that a randomly selected person is in stage j at

time t? and (b) What is the average length of time a person entering stage j spends before

moving to the next stage? More formally, the first of these questions asks what are the stage

occupation probabilities and the second question asks what is the mean waiting time in stage

j. Further details about multistage models can be found in Datta, Satten and Datta (2000a).



4

There are several special cases of multistage models. Traditional survival analysis is the

simplest example of a multistage model where individuals begin in an initial stage (alive,

say) and may move irreversibly to a second stage (death, say). The competing risk model is

another important example of a multistage model where a particular individual in a stage can

move to a second stage (death, say) because of several (k, say) rival causes. The competing

causes can be dependent or independent depending on the specified problem. For an example,

consider the data described in Hoel (1972). In a laboratory experiment designed to study the

effect of radiation on life length, two groups of RFM strain male mice were given a radiation

dose of 300 rad at an age of 5-6 weeks. The first group of 95 mice lived in a conventional

laboratory environment while the second group lived in a germ free environment. After the

death of the mice, necropsy was performed to ascertain whether the cause of death was

thymic lymphoma, reticulum cell sarcoma (both specific types of cancer), or other causes.

Another simple but well-known example of a multistage model is the three stage illness-death

model in which individuals can move from an initial stage (well) to either the illness or death

stages. In the irreversible version of this model, persons in the illness stage may subsequently

only move to the death stage; in the reversible version, ill persons may recover and move

back to the well stage. Datta, Satten and Datta (2000b) consider nonparametric estimation

of stage occupation probabilities in a three stage irreversible model.

1.4 Estimation approaches for event time data

Censored data problems, in various forms, arise frequently, if not always, in a variety of fields,

notably in biomedical research, in reliability and life testing, and also in market research.

More specifically, we are interested in different forms of censored ‘event-time’ data stemming

from the inability of the investigators to collect complete data due to design constraints or for

reasons beyond their control (e.g. loss to follow up). In the beginning, parametric approaches
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were developed to explain the survival mechanisms but gradually a transition to nonpara-

metrics occured because the parametric counterparts were often based upon unverifiable

assumptions and were thus prone to errors due to model misspecifications. For event his-

tory analysis, a major contribution was the 1975 Berkeley dissertation ‘Statistical Inference

for a family of Counting Processes’ written by Odd Aalen, where the basic nonparametric

statistical problems for censored data were studied in terms of the conditional intensity of

the counting process that records the events as time proceeds. Aalen showed that using the

martingale representation of a counting process, one can have a unified treatment to the

analysis of censored data models.

In a general multistage model, there can be broadly two types of estimation approaches.

We first describe the re-weighting approach which has its roots in sample survey. Generally

speaking, all the basic quantities we seek to estimate would be easily estimated in the absence

of right censoring. For example, stage occupation probabilities can be estimated by the

empirical proportion of persons in each stage at any given time. The first step is to express

the uncensored-data estimator in a linear (or average) form. The next step is to model the

process that governs the censoring process. Because each individual is censored at most once,

standard (univariate) survival process models can be used, such as Cox’s proportional hazards

models or Aalen’s linear hazard models. We use the model of the hazard of being censored

to weigh the observed (censored) data to reconstruct what the uncensored experiment would

have produced. The details of this approach for the estimation of the marginal survival

curve is given in Satten, Datta and Robins (2001). The common thread in this development is

‘approximate unbiasedness’ which makes the censored data answers match the corresponding

complete data answers ‘on the average’. This is based on the pioneering work by Robins and

Rotnitzky (1992), Robins (1993).

The second approach appears to be more traditional and there one models the hazard

of future events of interest. In a general multistage model the past history of the process,
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including the current stage, may affect its future evolution. It is theoretically possible to

model this dependence to obtain transition hazards between stages that are conditional on

an individual’s past history. In the Markovian version such dependence is explained only

through the currently occupied stage information. However, such conditional analyses do

not easily lead to answers to the marginal questions since ‘unconditioning’ or ‘marginalizing’

by averaging conditional hazards can be quite difficult.

Multistage models are often analyzed by fitting one of two models: a Markov model or a

semi-Markov model. In a Markov model, the past history of the process does not affect its

future evolution given the present stage. In a semi-Markov model, waiting times in each stage

are independently distributed. Nonparametric estimators of marginal quantities are available

for both of these models (Aalen and Johansen, 1978; Fleming, 1978a, 1978b; Lagakos et al.,

1978). Recently, nonparametric estimators have been given that do not make these structural

assumptions (Datta and Satten, 2001; Satten and Datta, 2002).

Even if there were no ‘external’ covariates, there are still ‘internal’ covariates generated

by an individual’s past history that may affect future transitions and censoring hazards (Cox,

1972). Another feature of the multistage model is that even if censoring time is independent of

the failure time, dependent censoring may be induced at the marginal level. This occurs when

there is correlation between failure and censoring times. If there is no additional information

on the nature of this correlation, then the problem is intractable (as for each individual,

only the earlier of the failure and censoring times is observed, Tsiatis, 1975). However, if this

dependence is carried by covariates so that for fixed levels of covariates, failure and censoring

times are uncorrelated, then it is possible to account for dependent censoring (Robins and

Rotnitzky, 1992; Robins, 1993; Robins and Finkelstein, 2000; Satten, Datta and Robins,

2001).
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1.5 Models for competing risk

In the next chapter of this dissertation, we focus on a population of event times consisting of

various sub-population of event times. Once such important model where this arises is called

the competing risk or multiple decrement model. For our purpose, it serves as an example

of a multistage model where the terminal stage is determined by the cause of failure and

corresponds to various subtypes of individuals.

Competing risk theory dates back to a memoir read in 1760 by Daniel Bernoulli before

the French Academy of Sciences and published in 1765. Typically, in real life, we can think

of competing causes of failure as several causes in action on a particular system and the

occurrence of one inhibits the occurrence of the other. Thus, one observes for each unit

simply a failure time and the cause of failure (or possibly censoring if there be any). Gail

(1975) provides a review of various models used in competing risk analysis.

Problems involving competing risks are quite common in medical and reliability appli-

cations. In cancer studies, common competing risks are relapse and death in remission (or

treatment related mortality). Interest often lies in estimating the rate of occurrence of the

competing risks, comparing these rates between treatment groups and modeling the effect

of covariates on the rate of occurrence of the competing risks. In reliability, competing risks

arise in the analysis of series systems of components where the failure of any component will

lead to system failure. One observes the time at which the system fails and which component

caused the system to fail. A nonparametric maximum likelihood estimator (NPMLE) for the

competing risk problem, along with martingale interpretations was proposed by Aalen (1976)

under the name ‘multiple decrement models’. These models/methods can be thought of as

a special case of the Aalen-Johansen theory of estimation of time-inhomogeneous Markov

processes (Aalen and Johansen, 1978).
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Competing risks are typically represented by a set of positive random variablesX1, . . . , XJ

where Xj is the potential (possibly unobservable) time to occurrence of the jth cause of

failure. We observe T=min(X1, . . . , XJ) and an indicator δ which tells which of the J risks

caused the failure, i.e. δ = j if T = Xj. A basic quantity in competing risk theory is the

cause specific hazard rate (CSHR), λj(t), which is the rate of occurrence of the jth failure

cause in the presence of all causes,i.e.

λj(t) = lim
∆t→0

P (t ≤ T ≤ t+ ∆t, δi = j|T ≥ t)

∆t
(1.5.1)

The cumulative cause-specific hazard function is defined as Λj(t) =
∫ t
0 λj(u)du. The

cause specific hazard rate can be computed from the joint survival function of the X’s,

S(x1, . . . , xj) = P (X1 > x1, . . . , Xj > xj) as

λj(t) =

[

−∂lnS(x1, . . . , xj)

∂xj

]

x1=...=xk=t

(1.5.2)

An alternative way to summarize the likelihood of a competing risk model occurring is

in terms of the cumulative incidence function (CIF) (also called sub-distribution function)

which is given as Gj(t) = P (T ≤ t, δ = j). We note that the cumulative incidence depends on

all J of the crude incidence rates. The function Gj(t) is a sub-distribution function with the

property that Gj(∞) = P (δ = j). The cumulative incidence function represents the chance

that competing risk j occurs in a world where individuals can fail from any of the causes.

An alternative formulation of the competing risk setup is in terms of a multistage model.

It was originally proposed by Prentice et al. (1978b) and recently discussed by Andersen et

al. (2002) and doesn’t require the construction of potential failure times for each cause of

failure. In the multistage model formulation, there are J+1 stages a subject may be in at any

point of time. The transient state is the one when the subject is alive and the other J states

are the absorbing states when the subject is dead for a given cause. The basic parameters

are the transition probabilities, Phj(s, t) which are the probabilities that an individual is in
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state j at time t given that he was in state h at time s. Here P00(0, t) is the probability a

subject is alive at time t and P0j(0, t) = Gj(t) as defined earlier.

1.6 Moment estimation for censored data

The estimation of the population mean by its sample counterpart is no longer valid in the face

of data incompleteness, most commonly being right-censoring. In the spirit of the celebrated

paper by Koul et al. (1981), very recently Datta (2005) illustrated the estimation of the mean

life time in case of right censored data through the concept of reweighting. To explain the

concept in a basic survival analysis setup, we have lifetimes T ∗ and censoring times C for a

set of n individuals. The observed data now become T = T ∗∧C with the censoring indicators

δ = I(T ∗ ≤ C). Define Kc(t)=P(C > t) to be the survival function of the censoring variable

C. Datta proved the identity

E

{

δT

Kc(T−)

}

= E{T ∗}

which is the theoretical basis for estimating the first moment E(T ∗) for censored data by the

sample average {∑n
i=1wiTi}/n where wi = 0 for a censored point and = {K̂c(Ti−)}−1 for an

observed life time. Hence, in order to compute the mean in a censored sample, we reweight

the observed failure times with inverse of the Kaplan-Meier estimator of the censoring times

and then compute the mean. The key behind this concept is also the notion of ‘approximate

unbiasedness’ described in Section 1.4. In Chapter 3, using the same idea of reweighting,

we introduce a right-censored version for a general kernel U -statistic, which is a cornerstone

in nonparametric statistical literature. This helps in asymptotically unbiased estimation of

some mean functional (as above) for censored data.
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1.7 Application of nonparametric methods for event time data

In this dissertation, we primarily consider the problem of testing the independence of time to

failure and cause of failure in a competing risk model. Competing risk data often come with

time to failure and cause of failures for a set of n individuals. Additionally there are right

censored observations present in the data which complicate the modeling. Dewan et al.(2004)

study several dependence structures between time to failure and cause of failure through

conditional probabilities. They also explain in detail the necessity of such testing procedures

in reliability, clinical trials, epidemiological follow-up studies, etc. In Chapters 2 and 3, we

describe novel nonparametric methods which provide a unified treatment to this problem

of competing risk. We also consider application of our testing methodology to two real life

data sets, viz. (a) Cell carcinoma data and (b) Stanford heart transplantation data. Both of

these datasets have two competing causes of failure along with right censored observations.

More details on these data sets appear in Section 2.6 of Chapter 2. Our methodology will

be particularly helpful for medical practitioners to assess the comparative severity of the

concerned set of diseases/cause of failure. In future, we plan to apply our testing tools to

more complicated data sets such as current status data and microarray data with survival

endpoints. More elaborate description of these types of data appears in Chapter 4 of this

dissertation.

1.8 Overview of the dissertation

This rest of this dissertation is organized as follows.

Chapter 2 introduces a novel nonparametric approach for testing the equality of two

or more survival distributions based on right censored failure times with missing member-

ship information. The standard log-rank test is not applicable here because the population

membership information is not available for right censored individuals. The performance of
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this test is validated through several simulation schemes and its functionality is assessed by

applying it to two real data sets.

Chapter 3 introduces a censored version of U -statistics (Hoeffding, 1948) with a general

kernel of size m obtained by a reweighting principle popularized by Robins (1993). Using

the Kendall’s τ kernel, we introduce a test which is applied to testing independence of time

to failure and cause of failure in a competing risk setup. As in Chapter 2, we study the

performance of this test statistic through simulation studies using different kernels and by

applying it to a real data set.

Chapter 4 provides the concluding note to this dissertation and summarizes the work

done so far. It also states a number of open problems which either I am currently working

on or plan to consider in the near future.
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2.1 Abstract

This paper introduces a novel nonparametric approach for testing the equality of two or more

survival distributions when the population membership information is not available for the

right censored individuals. Although such data structures arise in practice very often, this

problem has received less than satisfactory treatment in the nonparametric testing literature.

Currently there is no nonparametric test for this hypothesis in its full generality in the

presence of right censored data. We propose to use the imputed population membership for

the censored observations leading to fractional weights that can be used with a two sample

censored data test. We study a class of weighted log-rank tests obtained this way through

simulation. We obtain an asymptotic linear representation of our test statistic and propose

two resampling alternatives which might be easier to use in practice. We illustrate our testing

methodology using two real data sets.

Key Words: Competing risk model, Equality of survival curves, Fractional risk set, Log-rank

tests, Multistate models.

2.2 Introduction

Testing equality of two or more survival curves is a well studied problem in statistics. The

resulting methodologies, e.g., log-rank tests and Cox’s regression (in case there are covariates)

constitute some of the most used statistical techniques for survival or, more generally, time

to event data. The setup assumes that one has independent samples from two or more groups

whose survival functions are to be compared. Of course, most (if not all!) of the ‘time to

event’ data are subject to some form of censoring, right censoring being the most common.

A unified theoretical and methodological treatment of these problems is achieved through

counting process and related martingale techniques.
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One basic assumption in using the log-rank type test is that every individual including

those whose failure times are right censored is clearly identified to have come from one of two

or more independent populations. Now consider a situation where the population member-

ships are also unknown, along with their failure times, for the right censored individuals. For

example, consider a setup commonly referred to as a ‘competing risk or multiple decrement

model’ where individuals are subjected to more than one type of ‘risk factor’ leading to

more than one possible type of failures. If we are interested in studying the sub-populations

corresponding to different failure types, the membership information can only be found after

the individual actually fails. As a result, these important population membership indicators

will be unavailable for individuals who were right censored during an observational study.

Certainly, the standard multi-sample testing methods mentioned earlier won’t be applicable

without this information because it won’t be clear which ‘at risk’ set a censored person would

contribute to.

For a better explanation of the testing problem, let us consider the following real-life

examples. In a study analyzed by Lagakos (1978), the results of a lung cancer clinical trial

being conducted by the Eastern Cooperative Oncology Group were summarized. Patients suf-

fering from squamous cell carcinoma died either out of ‘local spread’ of disease or ‘metastatic

spread’ of disease; for other patients cause of death was unknown (due to right censoring).

A pertinent question to address would be whether the survival curves for the two groups

subjected to ‘different spreads’ of disease are the same or not. In another study, popularly

known as the Stanford Heart Transplantation Program, which began in October 1967 and

was analyzed by Crowley and Hu (1977) and many others, patients were admitted to the

Stanford program for heart replacement. The transplant recipients were subjected to mainly

two competing causes of failure, (here death), viz., transplant rejection, or other causes. How-

ever, this data set also contains right-censored observations for whom the (eventual) cause

of failure was not available. One might be interested in comparing the survival behavior of



18

those patients who died of ‘transplant rejection’ to those who died of ‘other causes’ since the

heart transplant. We revisit these data sets and answer these questions in Section 2.6.

The competing risk model is just one formulation where this problem arises. Of course,

the testing question in that setup translates to testing the independence of failure time and

the cause of failure. More generally, this question may arise in a variety of marginal (over

covariates) and marginal-conditional analyses (marginal over some covariates and conditional

over others) of event time data. For example, one may be interested in knowing whether

individuals who suffer at least one heart attack during their life time will have a shorter life

span than individuals who do not. Once again we can consider dividing all individuals into

two populations: (i) those who will suffer at least one heart attack during the course of their

lives and (ii) individuals who will not experience a single heart attack ever during their life

span. Certainly this information will not be available for an individual who, till the time of

follow-up, has not had a heart attack but was still living. For another example of a situation

where a group or population membership is not known in the beginning of a study, consider

a toxicologic experiment on animals where one is interested in studying the effect of a certain

carcinogenic agent which can also produce other adverse effects killing an animal before it

actually produces cancer. Amongst other things, the survival distribution of animals dying

from cancer caused by this agent was of interest. Animals are autopsied at death to study the

tumor growth and type through which their population membership was determined where

the subpopulation of interest is the animal group where the toxicologic agent would cause a

cancer death. Suppose, for some reason, the necessary autopsy could not be performed on

certain animals although their death times were known. Our approach would apply to this

situation where we would assign a fractional mass to each such individual towards the at risk

set of cancer death. Next suppose, one is comparing the survival times of animals dying from

cancer caused by two such agents applied to two sets of animals. Suppose, once again, for

certain animals in each set, we fail to determine whether they died of cancer or some other



19

adverse effect. Our testing methodology would handle such individuals by assigning them

fractional masses. Another approach would be to simply remove the censored observations

and compare the survival times of the animals that are known to have died of cancer.

However, as shown by a simple example in Section 2.7, removing censored observations may

result in a loss of power.

The rest of the article is organized as follows. Section 2.3 provides literature review of

existing tests somewhat related to our testing problem, where we also explain what’s different

about our testing problem. In Section 2.4, we develop our testing methodology. Section 2.5

deals with a number of simulation studies to check the finite sample performance of our test

statistic under different alternatives. Section 2.6 illustrates applications of our proposed test

to two real life data sets mentioned above. The paper ends with a discussion section (Section

2.7) followed by an appendix containing an outline of an asymptotic linear representation of

our test statistic.

2.3 Literature Review

Are the conditional distributions of failure times of individuals failing due to causes 1 and 2

the same ? Even though this question is very natural and arises frequently, it has received

very little attention in the nonparametric testing literature based on right censored data.

A somewhat related problem, however, has received much attention in the competing risk

framework, namely, testing the equality of cause specific hazard rates (CSHR). Approaches to

this problem are described in the next paragraph. Another related problem has also received

attention, namely testing the equality of the two (or more) sub-distribution functions or

cumulative incidence functions (CIF). Sub-distribution functions are defined as Gj(t) =

P (T ≤ t, δ = j), where T and δ are the time to failure and cause of failure respectively.

It is easy to see that equality of cause-specific hazard rates or the equality of cumulative
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incidence functions would imply that same percentage of failures would take place due to

different causes. However, there are situations where this is not expected; even then, one

may be interested in comparing the conditional distributions of the failure times due to

various causes. This is the testing problem that we are considering in this paper and using

the existing tests for equality of CSHR’s or CIF’s may lead to wrong size under our null

hypothesis. The existing tests for each of these testing problems are reviewed next.

Tests for equality of cause specific hazards are given in Bagai et al. (1989a, 1989b), but

they do not handle any censoring. Aly et al. (1994) and Sun and Tiwari (1995) proposed

tests for testing the equality of two CSHR’s in the presence of censoring. Generally speaking,

in order to compare the cause-specific hazards between groups, all other risks are equated

with censoring. A literature review also reveals at least three tests to compare the cumulative

incidence functions directly. The first test is due to Gray (1988) which is based on comparing

the (weighted) differences between the estimates of hazard rates of an improper random

variable and its pooled sample estimate. Choices of weight functions are also discussed.

The second test is due to Lin (1997) and is a variant of the Kolmogorov-Smirnov test with

a weight function. The third test is due to Pepe (1991) and is based on the integrated

difference between the weighted cumulative incidence functions. Lam (1998) and Carriere

and Kochar (2000) also provide some tests for equality of CSHR’s or CIF’s. Fine and Gray

(1999) proposed regression modeling of a hazard corresponding to a sub-distribution function.

The resulting methodology can provide tests of equality of CSHR’s or CIF’s.

The problem of comparing CSHR’s between groups is a somewhat different problem

in which the group memberships are assumed to be known. Lindkvist and Belyaev (1998)

generalized the log-rank statistic to provide a class of tests for comparing cause-specific

hazard rates from two competing causes of failure between two groups and Kulathinal and

Gasbarra (2002) extended these results to M(≥ 2) groups.
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There are only a limited number of papers dealing with the testing problem we are

interested in. The papers by Dykstra et al. (1998) and Kochar and Proschan (1991) provide

some restricted tests for testing the independence of time to failure and cause of failure

in a competing risk framework. Testing of dependence structures between failure time and

cause of failure expressed in terms of monotonicity properties of the conditional probabilities

involving failure times and failure cause are proposed very recently by Dewan et al.(2004).

They used a U -statistic approach which assumes no censored observations.

2.4 Tests Using Fractional Risk Sets

2.4.1 Notation

We consider the competing risk network as a multistate continuous time stochastic process

{Z(t), t ∈ T } with a finite state space S = {1, . . . , J, 0} having a tree topology and right-

continuous sample paths: Z(t+) = Z(t) where we assume that the states 1, . . . , J are

absorbing whereas state 0 is transient (the root node). Here T = [0, T ] where T is a large

possibly observed time point (≤ ∞). Typically, for applications, T will be taken to be the

largest time where some event (failure) took place. Let T ∗
i be the (possibly unobserved) time

the ith person leaves stage 0 for a failure (stage j, say). Let X∗
i denote the stage occupied

by the ith individual at time T ∗
i (i.e., its failure type). Let Ci be the censoring time for

the ith person. Let Ti = T ∗
i ∧ Ci denote the right censored failure time and δi denote the

failure/censoring indicator

δi =







j if T ∗
i ≤ Ci and X∗

i = j,

0 if T ∗
i > Ci.

(2.4.1)

Note that δi is an observable quantity for everybody but X∗
i is observed only for the uncen-

sored people and then the two are equal. It is further assumed that the censoring variable Ci is

independent of the entire collection of {T ∗
i , X

∗
i } and all the random variables are i.i.d. across
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the n individuals. Our data consist of the pairs (Ti, δi), 1 ≤ i ≤ n. Define the conditional

survival function Sj(t) as

Sj(t) = P (T ∗
i > t|X∗

i = j), 1 ≤ j ≤ J.

We are primarily concerned with the null hypothesis,

H0 : S1(t) = · · · = SJ(t)(≡ S(t), say), ∀ 0 ≤ t ≤ L,

where L ≤ T is a finite but large time point.

2.4.2 Test Statistic

A standard log-rank test would have been applicable if the individuals could be separated

into various groups depending on their failure types. Basically, the Nelson-Aalen estimators

of the (conditional) cumulative hazards for various groups could be compared amongst each

other. However, as indicated earlier, the difficulty now is that the subpopulation memberships

X∗
i ’s are not known for the censored people and simply ignoring (or deleting) them from the

‘at risk’ consideration will lead to a biased comparison which would lead to improper size

for the resulting tests. This is so because if the censored observations contribute full mass

to all ‘at risk’ sets then the resulting comparison is equivalent to comparing the CIF’s. As

explained earlier in Section 2.3, this would correspond to the wrong null hypothesis whenever

P (X∗
i = j) are not constant in j. Nevertheless, the Nelson-Aalen representation for various

subpopulations will be the starting point of our proposed method. To this end, we introduce

the following standard notations. Let Nj be the counting process counting the number of

observed failures of type j (i.e., number of transitions into stage j) in the time interval [0, t]:

Nj(t) =
n∑

i=1

I(Ti ≤ t, δi > 0, X∗
i = j),
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and let Yj(t) denote the number of individuals at risk of failing due to cause j or of getting

censored:

Yj(t) =
n∑

i=1

I(Ti ≥ t, X∗
i = j).

It is not difficult to see that Nj is computable from the observed data, since {δi > 0, X∗
i = j}

is the same as {δi = j}. Yj, on the other hand, is not computable, once again, due to the

unavailability of all the group membership data. Nevertheless, it will be helpful to recall the

definition of the Nelson-Aalen estimator (Andersen et al., 1993) of cumulative hazards of

failure amongst individuals of subpopulation (or failure type) j:

Λ̂j(t) =
∫ t

0

I(Yj(s) > 0)

Yj(s)
dNj(s). (2.4.2)

Note that Λ̂j(t) estimates the correct cumulative hazard corresponding to the conditional

distribution Sj(t), and not the so called cause specific cumulative hazard. When some individ-

uals are censored, we cannot classify their failure types. In the absence of such an identifier,

however, we may still assign a probability of each individual being in one of the J subpop-

ulations (something like an imputed subpopulation identifier). Once these probabilities are

known, we proceed with the supposition that the data be divided into J subpopulations,

the risk set of each subpopulation now contains fractional observations with the fractional

mass specified by an estimate of the probability that the observation belongs to a particular

subpopulation. Thus, we estimate Yj(t) by Y f
j (t), where Y f

j (t) denotes the ‘fractional risk

set’ corresponding to the jth cause of failure defined as (Satten and Datta, 1999; Datta et

al., 2000)

Y f
j (t) =

n∑

i=1

φ̂ijI(Ti ≥ t), (2.4.3)
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where φ̂ij is the estimated probability that the ith individual belongs to the jth subpopulation

according to its failure type. It is not hard to see that a reasonable choice for φ̂ij is given by

φ̂ij =







P̂j(Ti,∞), if δi = 0

1, if δi = j

0, if δi > 0, δi 6= j,

(2.4.4)

where P̂j(Ti,∞) is the nonparametric maximum likelihood estimator (NPMLE) or the Aalen-

Johansen estimator of the transition probability

Pj(s, t) = Pr{T ∗
i ≤ t, X∗

i = j|T ∗
i > s) at s = Ti, t = ∞

See Datta and Satten (2000) for the legitimacy of the above estimator (2.4.4). Specializing

Andersen et al. (1993) results for a Markov chain to a competing risk setup, we obtain

P̂j(s, t) =
∫

(s,t]







∏

(s,u)

(

1 − dN(v)

Y (v)

)






dNj(u)

Y (u)
(2.4.5)

In the expression (2.4.5), Y (t) =
n∑

i=1
I(Ti ≥ t) is the size of the ‘at risk’ set irrespective of

failure types, N(t) =
J∑

j=1
Nj(t) is the total number of observed failures of all types (total

number of stages entered) by time t. Since Nj and N are discrete with jumps only at the

failure times T ′
i s, the above integral can be replaced by sums leading to the following simpler

expression

P̂j(s, t) =
∑

s<Ti≤t

{

Ŝ(Ti−)

Ŝ(s)

}{

∆Nj(Ti)

Y (Ti)

}

where Ŝ is the Kaplan-Meier estimator of failure due to all causes and ∆Nj(Ti) is the number

of failures of type j at time Ti. Note that for a typical individual who had not failed up to and

including time s, the first term Ŝ(Ti−)/Ŝ(s) in the above summand computes the probability

that such an individual had not failed until time Ti and the second term ∆Nj(Ti)/Yj(Ti) is

the probability of its failing at time Ti and the failure is of type j given survival until that

time.
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A natural class of nonparametric test process {∆j(t), t ≥ 0} that are applicable to such a

setup is the class of weighted log-rank tests based on the weighted departures of the estimated

Λj compared to a pooled estimate of the common Λ under the null hypothesis given by

∆j(L) =
∫ L

0
W (t)






dNj(t) −

Y f
j (t)

Y f(t)
dN(t)






(2.4.6)

where W (t) is a non-negative, locally bounded, predictable weight process that provides a

flexible way to control the relative importance attached to differences in the estimated con-

ditional hazards at various time points, Y f
j (t) is as defined in (2.4.3) and Y f (t) =

J∑

j=1
Y f

j (t) is

the total fractional risk set at time t. The components of the vector ∆ = (∆1(L), . . . ,∆J(L))

are linearly dependent since
J∑

j=1
∆j(L) = 0. Let Σ̂ be an estimated variance covariance matrix

of the vector test statistic ∆ and let Σ̂− be its spectral (generalized) inverse. Our test statistic

is given by the quadratic form

T = ∆T Σ̂−∆ (2.4.7)

which has an asymptotic chi-squared distribution with J − 1 degrees of freedom under the

null hypothesis provided suitable regularity conditions are met.

2.4.3 Asymptotic Normality of ∆ and the Construction of Σ̂

The most commonly used tool for obtaining asymptotic distributions of estimators and test

statistics with right censored data is the counting process formulation and the associated

martingale techniques pioneered by Odd Aalen (Aalen, 1978) and used by numerous authors

since then. Certainly they work for the regular log-rank tests when subpopulation member-

ships are known. However, in the present context, the imputed subpopulation memberships

are based on the entire data set and in a sense the fractional at risk set at time t are func-

tions of future information as well (i.e., they are not predictable with respect to the natural

filtration process one considers). However we can still obtain asymptotic normality of the

test statistic by establishing the following asymptotic linear representation:
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∆j(L) =
n∑

i=1

Vi + oP (
√
n), (2.4.8)

where

Vi =
∫ L

0
w(t)dMj,i(t) −

∫ L

0
w(t)

yj(t)

y(t)
dM.,i(t)+

∫ L

0

w(t)

y(t)
{I(Ti ≥ t, Xi = j, δi = 0) − Pj(Ti,∞)I(Ti ≥ t, δi = 0)

+
∫ ∞

t

∫ ∞

z

S(u)

S(z)y(u)
Pj(u,∞)dM.,i(u)dn

C(z)

}

dn(t)

−
∫ L

0

w(t)yj(t)

y2(t)

J∑

j′=1

{I(Ti ≥ t, Xi = j′, δi = 0) − Pj′(Ti,∞)I(Ti ≥ t, δi = 0)

+
∫ ∞

t

∫ ∞

z

S(u)

S(z)y(u)
Pj′(u,∞)dM.,i(u)dn

C(z)

}

dn(t),

with

Mj,i = I(Ti ≤ t, δi > 0, Xi = j) −
∫ t

0
I(Ti ≥ s,Xi = j)dΛ(s),M.,i =

∑

j

Mj,i,

yj(t) = P (Ti ≥ t, Xi = j); y(t) =
∑

j

yj(t),

n(t) = P (Ti ≤ t, δi > 0), nC(t) = P (Ti ≤ t, δi = 0),

and w is the (in-probability) limit of the weight function W . We present an outline of the

derivation in the appendix. This representation also yields a closed form expression for Σ̂

obtained by the empirical variance covariance of V̂i, where V̂i is obtained by replacing all the

population quantities in Vi by their estimates. However, a close examination of the formulas

reveals that the resulting expression is computationally cumbersome and requires O(n3) order

of calculations. A more practical solution will be to use a resampling (bootstrap) scheme to

compute the estimated variance-covariance matrix Σ̂. Asymptotic validity (consistency) of

this bootstrap based estimate can be established deriving a similar linear representation

(2.4.8) for the resampled statisitc. The theoretical details are not pursued here.
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2.4.4 Bootstrap Based Tests

For testing problems, a resample scheme has to incorporate the null hypothesis. This is

achieved as follows:

(i) Let δ′i = I(δi > 0) denote the true failure indicators irrespective of the failure types,

1 ≤ i ≤ n. Generate i.i.d. resamples (T̂ ∗
i , δ̂

∗′
i ), 1 ≤ i ≤ n, from the empirical distribution

of the pairs {(Ti, δ
′
i) : 1 ≤ i ≤ n}.

(ii) We let δ̂∗i = 0, if δ̂∗′i = 0; otherwise, for δ̂∗′i > 0, generate δ̂∗i from a J-point distribution

with Prob{δ̂∗i = j} = Φ̂j/
J∑

k=1
Φ̂k, with

Φ̂j =
n∑

i=1

φ̂ij, 1 ≤ j ≤ J.

A typical bootstrap sample is given by (T̂ ∗
i , δ̂

∗
i ), i = 1, . . . , n.

(iii) Repeat steps (i) and (ii), a large number of times, say B, to obtain B sets of bootstrap

samples (T̂ ∗
i,b, δ̂

∗
i,b) and compute the corresponding test statistics ∆̂

∗

b , b = 1, . . . , B.

A bootstrap estimate of Σ̂ is given by the empirical variance-covariance matrix of the

∆̂
∗

b , 1 ≤ b ≤ B. Alternatively, we could use bootstrap to compute the p-value of a supremum

test that avoids computation of the variance-covariance matrix as

p̂ = B−1
B∑

b=1

I{max
1≤j≤J

|∆̂∗
j,b| ≥ max

1≤j≤J
|∆j |} (2.4.9)

and rejecting the null hypothesis for small values of p̂. The test based on (2.4.9) will be the

same as that based on (2.4.7) when J=2 since in this case ∆1 = −∆2 and ∆̂∗
1,b = −∆̂∗

2,b.

In the next section, we perform a number of simulation studies to assess the performance of

both these tests under a number of alternative hypotheses models.
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2.4.5 The Alternative Hypothesis

Log-rank tests for comparing survival curves are popular in the literature because of their

easy interpretability and availability in various ‘survival analysis’ computer packages. Differ-

ences in hazards (or the survival curves) leading to alternative hypotheses could occur in a

variety of ways, sometimes in early period of follow-up, or late or in the middle. It has been

established that the standard log-rank tests can have very low power with respect to some

alternative hypotheses. In addition, the choice of an ‘optimal’ test also depends upon the

sample sizes and the censoring patterns. When equal weights are given to all points on the

entire curve and proportional hazards assumption holds (under Lehmann alternatives), the

log-rank is the most powerful. However, they are insensitive to non-Lehmann alternatives

and under heavy censoring (Fleming et al., 1981). Similar properties are expected for our log-

rank tests as well. Other customized tests such as a test of trend (Klein and Moeschberger,

2003) can be proposed using the fractional risk set idea as well.

2.4.6 Choice of the Weight Process

In principle, one can use any of the huge arsenal of weights that are recommended for a

weighted log-rank test. The choice of W (ti) = 1 reduces the statistic similar to the popular

version of log-rank test. Several other choices can be considered such as that proposed by

Fleming and Harrington (1981), Harrington and Fleming (1982) popularly known as the Gρ

family which assigns more weights to early and late differences between the hazard rates

in the J populations. One can also give an extension analogous to the Gρ,γ family which is

more efficient for survival differences in the middle of the study (Fleming and Harrington,

1991). Recent choices of weight functions for testing when events are rare as of Buyske et

al. (2000), flexible weights for detecting early and/or late survival differences as of Wu and
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Gilbert (2000) or incorporating quality adjusted lifetime as of Zhao and Tsiatis (2001) can

also be considered with certain modifications to our test statistic.

2.5 Simulation Studies

To assess the performance of our test statistic, we conducted two different simulation schemes

to be described next each resulting in a two-cause (δ = 1, 2) competing risk model. We used

sample sizes of n = 50, 200 and a nominal level α = 0.05 was used in each case. Furthermore,

for each sample, a bootstrap replication size of B = 1000 was used. Finally the power was

computed by the proportion of rejection out of 2000 Monte-Carlo replications. The weight

function was taken to be unity and the largest observed failure time was used for L in all

cases.

2.5.1 Simulation Schemes

(i) Simulating causes prior to event times

Under this scheme, we generate data in such a way that the fraction of people under the two

groups remains constant no matter what sample size is chosen. This is done to illustrate the

effect of sample size on power while other settings remain comparable. We first simulate the

event (failure) indicators δi by setting the arm probability φ to be 0.25, 0.5 or 0.75 and letting

δ be 1 if a randomly generated uniform (0,1) random variable falls below φ, and 2 otherwise.

Next, lifetimes Ti are generated from a standard log-normal (= exp(N(0, 1)) distribution

for both subpopulations under the null hypothesis. For the alternative hypothesis, lifetimes

for the subpopulation δ = 1 are generated as in the null case; however, samples for the

δ = 2 subpopulations are generated as exp(N(−a, 1)) with a = 0(0.3)1.5, where the value in

parentheses indicate increments. The censoring times Ci are generated from the lognormal

distributions with the mean parameters 0.954 and 0, while keeping the variance parameter
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to be 1 in both cases, representing light (about 25%) and heavy (about 50%) censoring,

respectively. In all cases, we take the nominal level α to be 5%.

(ii) Simulating event times from a bivariate distribution

Consider a unit being exposed to two risks and let the notional (or latent) lifetimes of the

unit under the two risks be denoted by X and Y . In general, X and Y are dependent and

being lifetimes, they should be non-negative. In this simulation setup, we only observe (T, δ),

where T = min(X, Y ) is the failure time and δ = 2−I(X ≤ Y ) is the cause of failure. For the

null hypothesis, we generate (X ′, Y ′) from a bivariate normal distribution with mean vector

(0,0), and variance-covariance matrix ((1, ρ), (ρ, 1)), where ρ is chosen to be −0.5, 0 or 0.5.

For the alternative, we generate (X ′, Y ′) from a bivariate normal distribution with mean

vector (0, (1 − a)) and variance-covariance matrix ((1, ρa), (ρa, a2)), where a = 1(0.3)2.5.

Finally, we let X = exp(X ′) and Y = exp(Y ′). The censoring times are generated from log-

normal distributions with variance parameter 1 and mean parameters 0.954 and 0 leading

to light (8% - 17%) and moderately heavy (28% - 45%) censoring, respectively.

2.5.2 Results

First, we report the empirical sizes for the two simulation schemes in Table 2.1 and 2.2. The

empirical sizes of our tests are close to the nominal level 0.05 and within a 95% confidence

interval for the larger sample size although. The empirical sizes for n = 50 are also fairly

close to the nominal although they are marginally inflated in a few cases.

Figures 2.1 and 2.2 display arrays of plots illustrating the power curves under the two

schemes as a function of the alternative parameter a which was defined earlier and has

different interpretation under the two schemes. Once again, the set up is identical to the size

study above and includes two choice of sample sizes, namely, 50 and 200. The upper two

curves are for sample size 200 and the lower two for sample size 50. In each figure, we overlay
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Table 2.1: Size of imputed log-rank tests using α = 0.05 under simulation scheme (i)

Bootstrapped p-value test Chi-squared test
Light censoring Heavy censoring Light censoring Heavy censoring

φ φ φ φ
0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

n
50 0.049 0.061 0.063 0.062 0.059 0.058 0.045 0.054 0.058 0.053 0.049 0.055
200 0.051 0.053 0.049 0.054 0.053 0.047 0.047 0.046 0.047 0.048 0.043 0.045

n = sample size; φ = arm-probability.

the power curves obtained by our method with the power curves of a regular log-rank test

if the group information were known for all individuals. The solid lines correspond to the

standard log-rank tests with the knowledge of the group membership for everyone and the

dotted lines correspond to our chi-squared test. The bootstrap p-value approach was seen

to yield very similar power profiles as the Chi-squared test and hence we only included the

Chi-squared plots in our figures.

It is seen that a considerable increase in power is observed with an increase in sample

size. The power curves reveal that for low censoring and larger sample size, our imputed test

produces a power profile that is very close to the log-rank test with the additional information

about group membership for the censored observation. Heavy censoring has some adverse

effect on the empirical powers particularly under simulation setup (i). These tend to get

better with the larger sample size.

We have also studied the sensitivity of our results with respect to the selection of the

bootstrap replication size B. As mentioned earlier, all the values reported in Tables 2.1

and 2.2 were based on B = 1000, which was judged sufficient after balancing accuracy
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Figure 2.1: Power curves of our tests for Simulation scheme (i). The solid lines correspond
to the log rank tests for known population memberships and the dotted lines corresponds to
our Chi-squared test.
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Figure 2.2: Power curves of our tests for Simulation scheme (ii).The solid lines correspond
to the log rank tests for known population memberships and the dotted lines corresponds to
our Chi-squared test.
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Table 2.2: Size of imputed log-rank tests using α = 0.05 under simulation scheme (ii)

Bootstrapped p-valued test Chi-squared test
Censoring

Light Moderately Light Moderately
heavy heavy

ρ n
0.5 50 0.061 0.060 0.056 0.053

200 0.056 0.052 0.054 0.049

0 50 0.062 0.061 0.054 0.056
200 0.049 0.054 0.047 0.051

-0.5 50 0.053 0.064 0.047 0.061
200 0.051 0.057 0.049 0.051

n = sample size; ρ = correlation.

with computational burden. Table 2.3 reports the power values obtained using a variety of

bootstrap iterations for the simulation setup (ii) with ρ = 0.5 and n = 200. We here report

the power calculations based on three choices of B, namely, 200, 500 and 1000. In each case,

a Monte Carlo replication size of 2000 was used as before. As can be seen from Table 2.3,

the values were reasonably stable; in particular, the values corresponding to B = 500 and

B = 1000 differ by no more than 5 × 10−3.

2.6 Examples

We now illustrate our methods using the Cell Carcinoma data and the Stanford Heart Trans-

plant data mentioned in the introduction.
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Table 2.3: Power values for different bootstrap iterations under simulation scheme (ii)

Censoring B Size Power
a =1 a = 1.3 a = 1.6 a = 1.9 a = 2.2 a = 2.5

Low 200 0.052 0.630 0.957 0.992 0.998 1.000
500 0.052 0.643 0.958 0.993 0.997 0.999
1000 0.056 0.644 0.956 0.992 0.998 1.000

Moderately heavy 200 0.056 0.487 0.858 0.945 0.974 0.991
500 0.054 0.485 0.828 0.945 0.976 0.987
1000 0.052 0.480 0.833 0.941 0.978 0.984

2.6.1 Cell Carcinoma Data

The Cell Carcinoma data published in Lagakos (1978) has 194 affected patients with squa-

mous cell carcinoma out of which 83 patients failed with local spread (LS) of disease (Cause

1), 44 failed with metastatic spread (MS) of disease (Cause 2) and 67 have right-censored

failure times, i.e. about 35% censoring. The value of τ (the maximum value of event time)

was 101 days and the minimum event time was 1 day. The survival times of the LS patients

ranged from 1 day to 88 days and that of the MS patients from 2 days to 84 days. There were

a number of covariates in the data set but presently we ignore them. We are interested in

testing the hypothesis that the lifetime distributions in the groups are the same. We use the

bootstrap technique as described before with bootstrap replication size of 5000 to compute

the standard error of the test statistic. The value of ∆ (computed considering W (ti) = 1

and L = τ) for this data set turned out to be 2.014; the standard error was 6.75 and the

χ2 test statistic equaled 0.09. The bootstrapped p-value was 0.76. Thus, the null hypothesis

of equality of survival curves in the two disease categories was not rejected at the 5% level.
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Figure 2.3 shows the nonparametrically estimated cumulative hazard rates (2.4.2) for the two

types of disease spreads computed using fractional risk sets. The results are consistent with

our hypothesis testing findings in a sense that both the estimated conditional cumulative

hazards remain very close to each other.

2.6.2 Stanford Heart Transplant Data

We consider the subset ofN = 65 patients of the Stanford Heart Transplant data published in

Crowley and Hu (1977) as considered in Larson and Dinse (1985). Among these 65 patients

who received transplants, there were 29 (45%) rejection deaths (RD, coded as Cause 1),

12 (18%) deaths from other causes (OC, coded as Cause 2), and 24 (37%) right censored

observations. The value of τ was 1775 days and the minimum event time was 0 day. The

survival times of RD patients ranged from 10 days to 1350 days and that for the OC patients

from 0 to 551 days. Once again, a resample based on 5000 replications was used to compute

the standard error of the test statistic. The value of ∆ (computed similarly) for this data

set was 7.07 with a bootstrap estimated standard error of 3.58 leading to a Z(= ∆/SE(∆),

SE = standard error) test statistic value of 1.98 for the test statistic that was significant

at 5%. The bootstrap estimated p-value was 0.0426. We can conclude that the conditional

hazards for cause RD is lower than that of cause OC which is also supported by the plot of

the cumulative hazards of the two disease types considering fractional risk sets. See Figure

2.4 for the illustration.

2.7 Discussion

A weighted log-rank test for testing the equality of J survival functions has been proposed

when the subpopulation memberships of the right censored individuals in the study are

unknown. Such a structure arises naturally in practice. The concept of fractional risk was the
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key in breaking up the total risk set into J sub risk-sets (corresponding to J sub populations)

at every event time point and it thereby connects this testing problem to the traditional log-

rank testing methodology.

Due to the lack of a suitable martingale representation, the form of the estimated variance-

covariance matrix of the test statistics is computationally cumbersome and as a result we

propose a bootstrap scheme to carry out the test either by computing the bootstrap variance-

covariance matrix or by a bootstrap approximation of the p-values directly. While the two

procedures are asymptotically equivalent, based on a simulation study, the second approach

appears to be one notch better in terms of size and power in small to moderate samples.

As explained earlier in Section 2.2 and 2.3, if one choses to ignore the subpopulation

information for censored data and let them contribute full mass (whole observations) to all

‘at risk’ sets then the resulting test will have wrong size for our null hypothesis. If on the

other hand, the censored observations are thrown away (equivalent to contributing zero mass

to each ‘at risk’ set), the size would be maintained but there may be a substantial loss in

power. This is illustrated by a simple simulation scheme as follows. Suppose we generate equal

number of observations from two populations. Failure times in population 1 are generated

from a Uniform(0.9, 1.2) distribution and that for population 2 from Uniform(0.2+i, 3.1)

distribution, i = 0(0.1)0.3. The four values of i create four alternatives for the testing problem

that we are interested in. Censoring times are independently generated from a Uniform(0.9,

3.0) distribution. We choose a sample size of n = 50, a targeted nominal level of α = 0.5

and a bootstrap size of B = 1000 and an iteration size of N = 1000 to compute powers

empirically. Table 2.4 reports the power of our log-rank test based on fractional masses for

censored observations and that of a log-rank test where censored observations are removed

from the sample. We see up to nearly 30% power gain by imputing population membership

rather than removing the censored observations.
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Table 2.4: Power of imputed log-rank test and that of a standard log-rank after throwing
away the censored observations, each at 5% level

Population 1 Unif(0.9, 1.2)

Population 2 Unif(0.2,3.1) Unif(0.3, 3.1) Unif(0.4, 3.1) Unif(0.5,3.1)

Log-rank test 0.581 0.698 0.780 0.869

Log-rank (no censored) 0.449 0.551 0.645 0.781

Although in this paper we restrict our attention to the class of log-rank tests, the concept

of fractional risk set goes much further. In essence, it will enable us to propose versions

of other tests for testing equality of survival curves based on independent right-censored

samples that are based on risk sets, where the group membership is known for everyone, to

the present situation. Examples of such tests would include tests based on weighted difference

of Kaplan-Meier survival estimates of conditional survival functions for the J groups. The

conditional survival functions for the J groups can be obtained by normalizing the Aalen-

Johansen estimators or equivalently by Kaplan-Meier formulas using the fractional risk sets.

See Satten and Datta (1999) for this equivalence.

Our methodology can be applied to survival data in which the curves cross or differ

from each other in more general ways with simple modifications. The log-rank type of tests

are based upon weighted integrals of estimated differences between survival curves. Hence

for crossing survival curves, the positive differences will be negated by negative differences

leading to substantial loss of power. In such situations, we can modify our test statistic
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(2.4.6) as

∆j(L) =
∑

tk≤L

W (tk)|Uk,j|

or

∆j(L) =
∑

tk≤L

W (tk)U
2
k,j

where

Uk,j = ∆Nj(tk) −
Y f

j (tk)

Y f(tk)
∆N(tk).

Here ∆Nj(.) and ∆N(.) denote jumps in the respective processes. One can now resort to

the resampling technique introduced before to compute the null mean and variance of these

test statistics and turn them into asymptotically standard normal (or chi-squared). Alterna-

tively, one can compute the p-values directly via resampling as before without studentizing.

Performance of such tests statistics will be studied elsewhere.

The present methodology does not consider any covariates. It might be of interest in

some applications to ask whether the conditional survival functions in various groups are

equal given some available covariates. This will be pursued elsewhere.

2.8 appendix

2.8.1 Outline of linear representation

Using two triangulations and the fact that the conditional hazard rates are the same under

the null hypothesis we obtain from (2.4.6)

n−1/2∆j(L) = n−1/2
∫ L

0
w(t)dMj(t) − n−1/2

∫ L

0
w(t)

yj(t)dM(t)

y(t)

+n1/2
∫ L

0
w(t)







Yj(t)

Y (t)
− Y f

j (t)

Y f(t)






dn(t) + op(1), (2.8.1)

under H0, where dMj(t) = dNj(t) − Yj(t)dΛ(t), dM(t) =
∑

j
dMj(t), Λ denotes the common

conditional cumulative hazard rate under the null hypothesis and n(t), y(t), yj(t) are the in

probability limit of the averages n−1N(t), n−1(Y (t) and n−1Yj(t), respectively.



42

By Corollary 3.1 in Datta and Satten (2000), we have n−1{Yj(t) − Y f
j (t)} P−→ 0. Therefore,

we can express the third term on the RHS of (2.8.1) as

n−1/2
∫ L

0

{

w(t)

y(t)
{Yj(t) − Y f

j (t)} − w(t)yj(t)

y2(t)
{Y (t) − Y f(t)}

}

dn(t) + op(1). (2.8.2)

Next, by definition,

n−1/2
{

Yj(t) − Y f
j (t)

}

= n−1/2

{
n∑

i=1

I(Ti ≥ t, Xi = j, δi = 0) −
n∑

i=1

P̂j(Ti,∞)I(Ti ≥ t, δi = 0)

}

= n−1/2
n∑

i=1

{I(Ti ≥ t, Xi = j, δi = 0) − Pj(Ti,∞)I(Ti ≥ t, δi = 0}+

n−1/2
n∑

i=1

{Pj(Ti,∞) − P̂j(Ti,∞)}I(Ti ≥ t, δi = 0). (2.8.3)

Next express the second term on the RHS of (2.8.3) as

−n1/2
∫ ∞

0
{P̂j(z,∞) − Pj(z,∞)}I(z ≥ t)dnC(z) + op(1). (2.8.4)

The expression within the braces of (2.8.4) is the (0, j)-th element of the matrix P̂ (s, t) −

P (s, t) for s = z and t = ∞. Therefore by Andersen et al. (1993, 4.4.6), we have after some

algebra

n1/2{P̂j(z,∞) − Pj(z,∞)} = −n−1/2
n∑

i=1

∫ ∞

z

S(u)

S(z)y(u)
Pj(u,∞)dM.,i(u) + op(1). (2.8.5)

Combining (2.8.3), (2.8.4), and (2.8.5), we obtain the linear representation for the first part

of the expression with braces of RHS (2.8.2). A linear representation for the second part

follows in the same way by summing over j′ since Y (t) − Y f (t) =
∑

j′{Yj′(t) − Y f
j′ (t)}.

2.9 References

[1] Aalen, O.O. (1978). Nonparametric inference for a family of counting processes, Annals

of Statistics, 6, 701-726.



43

[2] Aly, E.A.A., Kochar, S.C. and McKeague, I.W. (1994). Some tests for comparing cumu-

lative incidence functions and cause-specific hazard rates, Journal of the American Sta-

tistical Association, 89, 994-999.

[3] Andersen, P.K., Borgan, ⊘, Gill, R.D. and Keiding, N. (1993). Statistical Models Based

on Counting Processes, Springer-Verlag: New York, 1993.

[4] Bagai, I, Deshpande, J. V. and Kochar, S. (1989a). Distribution-free tests for stochastic

ordering in the competing risks model, Biometrika, 76, 775-781.

[5] Bagai, I., Deshpande, J. V. and Kochar, S. (1989b). A distribution-free test for the

equality of failure rates due to two competing risks, Communications in Statistics,

Theory and Methods, 18, 107-120.

[6] Buyske, S., Fagerstrom, R. and Ying, Z. (2000). A Class of Weighted Log-Rank Tests for

Survival Data when the Event is Rare, Journal of the American Statistical Association,

95, 249-258.

[7] Carriere, K. C. and Kochar, S. C. (2000). Comparing sub-survival functions in a com-

peting risks model, Lifetime Data Analysis, 6, 85-97.

[8] Crowley, J. and Hu, M. (1977). Covariance Analysis of Heart Transplant survival Data,

Journal of the American Statistical Association, 72, 27-36.

[9] Datta, S. and Satten G. A. (2000). Estimating future stage entry and occupation prob-

abilities in a multistage model based on randomly right-censored data, Statistics and

Probability Letters, 50, 89-95.

[10] Datta, S., Satten, G. A. and Datta, S. (2000). Nonparametric estimation for three-stage

irreversible illness-death model, Biometrics, 56, 841-847.



44

[11] Dewan, I., Deshpande, J. V. and Kulathinal, S. B. (2004). On Testing Dependence

between Time to Failure and Cause of Failure via Conditional Probabilities, Scandina-

vian Journal of Statistics, 31, 79-91.

[12] Dykstra, R., Kochar, S. C. and Robertson, T. (1998). Restricted tests for testing inde-

pendence of time to failure and cause of failure in a competing risks model, Canadian

Journal of Statistics, 26, 57-68.

[13] Fleming, T. R. and Harrington, D. P. (1991) Counting Processes and Survival Analysis,

Wiley, New York.

[14] Fleming, T. R. and Harrington, D. P. (1981). A class of hypothesis tests for one and

two sample censored survival data, Communications in Statistics: Theory and Methods

A, 10, 763-794.

[15] Fleming, T. R., O’Fallon, J. R., O’Bien, P. C. and Harrington, D. P. (1980). Modified

Kolmogorov-Smirnov test procedures with application to arbitrarily right-censored data,

Biometrics, 36, 607-625.

[16] Gray, R. J. (1998). A class of K-sample tests for comparing the cumulative incidence

of a competing risk, Annals of Statistics, 16, 1141-1154.

[17] Harrington, D. P. and Fleming, T. R. (1982). A class of rank test procedures for censored

survival data, Biometrika, 69, 553-566.

[18] Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored

and Truncated Data, Springer, New York.

[19] Kochar, S. C. and Proschan, F. (1991). Independence of time and cause of failure in the

multiple dependent competing risks model, Statistica Sinica, 1, 295-299.



45

[20] Kulathinal, S. B. and Gasbarra, D.(2002). Testing equality of case-specific hazard rates

corresponding to m competing risks among k gorups, Lifetime Data Analysis, 8, 147-

161.

[21] Lagakos, S. W. (1978). A Covariate Model for Partially Censored Data subject to Com-

peting Causes of Failure, Applied Statistics, 27, 235-241.

[22] Larson, M. G. and Dinse, G. E. (1985). A mixture model for the regression analysis of

the competing risk data, Applied Statistics, 34, 201-211.

[23] Lin, D. Y. (1997). Non-parametric inference for cumulative incidence functions in

competing-risk studies, Statistics in Medicine, 16, 901-910.

[24] Lindkvist, H. and Belyaev, Y. (1998). A class of nonparametric tests in the competing

risk model for comparing two samples, Scandinavian Journal of Statistics, 25, 143-150.

[25] Pepe, M. S. (1991). Inference for events with dependent risks in multiple endpoint

studies, Journal of the American Statistical Association, 86, 770-778.

[26] Satten, G. A. and Datta, S. (1999). Kaplan-Meier representation of competing risk

estimates, Statistics & Probability Letters, 42, 299-304.

[27] Sun, Y. and Tiwari, R. C. (1995). Comparing cause-specific hazard rates of a com-

peting risks model with censored data, Analysis of Censored data. IMS Lecture Notes-

Monograph Series, 27, 255-270.

[28] Wu, L. and Gilbert, P. (2000). Flexible Weighted Log-Rank Tests Optimal for detecting

Early and/or Late Survival Differences, Biometrics, 58, 997-1004.

[29] Zhao, H. and Tsiatis, A. A. (2001). Testing Equality of Survival Functions of Quality-

Adjusted Lifetime, Biometrics, 57, 861-867.



Chapter 3

U - statistics for right censored data †

†Bandyopadhyay, D., and Datta, S. To be submitted to Journal of the American Statistical

Association

46



47

3.1 Abstract

A right-censored version of a U -statistic with a general kernel of size m is introduced by the

principle of a mean preserving reweighting scheme popularized by Jamie Robins and others.

Its extension to handle dependent censoring is also proposed. A doubly-robust version of

this reweighted U -statistic is also introduced to preserve consistency in the face of model

misspecifications. Using two different kernels, we study the performance measures of our

U -statistic by simulation. Its asymptotic normality and an expression of its standard error

are obtained through a martingale argument. The asymptotic normality is also assessed by

using probability-probability plots. Using a Kendall’s τ kernel, we obtain a test statistic for

testing independence of time to failure and cause of failure in a competing risk problem. Using

extensive simulation we study its performance by plotting its power curve. Its functionality

is also assessed by applying it on a real data set.

Key Words: Dependent censoring, Doubly-robust, Kaplan-Meier, Kendall’s tau, Right-

censoring, U -statistic.

3.2 Introduction

Consider a sequence of independent random variablesX1, . . . , Xn with a common distribution

function F . We estimate the population mean µ = EX1 by the sample mean X̄n = n−1
n∑

i=1
Xi.

Hoeffding (1948) suggested the name U -statistic and generalised the notion of averaging over

observations X1, . . . , Xn in the following way. Let h be a measurable function such that

h : R
m → R : (x1, . . . , xm) 7→ h(x1, . . . , xm)

symmetric in its m arguments and Eh2(X1, . . . , Xm) < ∞. Let Pnm be the collection

of ordered m indices out of n indices drawn without replacement such that Pnm =

{i : (i1, . . . , im) ∈ N
m : 1 ≤ i1 < . . . im ≤ n}. A U -statistic is obtained by averaging the
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‘terms’ h(xi1 , . . . , xim), i ∈ Pnm, as

Un(h) =
1
(

n
m

)

∑

Pnm

h(Xi1 , . . . , Xim) (3.2.1)

The U -statistic (3.2.1) is the nonparametric uniformly minimum variance unbiased estimator

of the regular functional

θ : L0 → R : F 7−→ θF = Eh(X1, . . . , Xm)

=
∫

...

Rm

∫

h(x1, . . . , xm)dF (x1) . . . dF (xm) (3.2.2)

where L0 is a subset of the set L of one-dimensional distribution functions. It is also the

minimizer with respect to α of

∑

Pnm

(h(Xi1 , . . . , Xim) − α)2

The function h is called a kernel of degree m and we assume E|h(X1, . . . , Xm)| <∞. Asymp-

totic properties of these statistics can be found in the work of Serfling (1980), Lee (1990),

Bickel and Lehmann (1979), Randles and Wolfe (1979) etc. The study of U -statistics is

important in several ways. In particular, under a positive variance condition, a U -statistic is

asymptotically linear and normally distributed. Many statistical functionals and estima-

tors are approximately U -statistics and so the theory provides an unified paradigm for

study of distributional properties in the field of nonparametrics. The simple structure of

U -statistics makes them ideal for studying general estimation processes like bootstrapping

(Janssen, 1997) and jackknifing and generalising asymptotic theory that concerns behav-

iors of sequences of sample means. Also, application of the theory generates new statistics

relevant to practical estimation problems.

In survival analysis of time-to-event data, subjects are followed from an initiating event

and observed till a failure has taken place. In such studies, the study of the response variable
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(here time to failure) becomes complicated due to the presence of several data incompleteness

mechanisms. Perhaps the most common of such mechanisms is right-censoring. This means

that apart from a set of survival times T ∗
i , i = 1, . . . , n with a common distribution F , there

exists another sequence of independent and identically distributed (iid) random variables

(here time) C1, . . . , Cn, with a common distribution G such that, in reality, one observes the

pairs Ti = T ∗
i ∧Ci, and δi = I(T ∗

i ≤ Ci), i = 1, . . . , n. Most of the theoretical development in

survival analysis with right censored data is based on the assumption of ‘random censoring’

(which is a stronger form of independent censoring). Under this model, one assumes that

the true failure time T ∗ is statistically independent of the corresponding censoring time C.

Furthermore, for simplicity of exposition we assume F is absoultely continuous.

A natural question is how the above definition and distribution theory of U -statistics

could be modified under this right-censoring model. The simplest case of a U -statistic is a

sample mean for a kernel of degree one; this amounts to using the empirical distribution of

the T ’s as an estimator of F for averaging that puts equal weight of 1/n at each data value.

But in case of censoring, using empirical distribution weights will lead to biased answers.

Several estimators of F exists in the survival analysis literature, the most notable being the

Kaplan-Meier estimator (Kaplan and Meier, 1958). In the usual counting process notation,

a Kaplan-Meier estimator of F is given by

1 − F̂ (x) =
∏

τi≤x

(

1 − ∆N(τi)

Y (τi)

)

where

N(t) =
n∑

i=1

I(Ti ≤ t, δi = 1) (3.2.3)

counts the number of observed failures in the time interval [0, t] and

Y (t) =
n∑

i=1

I(Ti ≥ t) (3.2.4)
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counts the number of individuals that are at risk of failure at time t; the τ are the distinct

ordered observed failures. Let Wi = F̂ (Ti) − F̂ (Ti−) be the weight assigned to Ti by the

Kaplan-Meier estimator. Define for a degree one kernel h,

U1n(h) =
∫

hdF̂ =
n∑

i=1

h(Ti)Wi (3.2.5)

This could be taken as a U -statistic of degree one for right censored data. For uncensored

random variables, it reduces to the usual sample mean. Stute and Wang (1993a) and Stute

(1995) provide a complete extension of the SLLN to this random censorship model. Akritas

(1986) and Gijbels and Veraberbeke (1991) consider one-sample U -statistics where the kernel

is of bounded variation. Stute and Wang (1993b) extend those results to their full generality

for multisample U -statistics. Bose and Sen (1999, 2002) introduce the following U -statistic

of degree two under random censorship where they normalized the weights:

U2n(h) =

∑

1≤i1<i2≤n
h(Ti1 , Ti2)Wi1Wi2

∑

1≤i1<i2≤n
Wi1Wi2

(3.2.6)

They name this U -statisitc a “Kaplan-Meier U -statistic of degree two for randomly right

censored data” and proved a strong law for it. They also show that the U -statistic defined via

this estimator is asymptotically normal. Their approach avoids the stringent assumptions of

Gijbels and Veraverbeke (1991) who consider similar functionals. But they wonder whether

similar limit theorems could be established for kernel of degree greater than two without

encountering formidable algebra. Another aspect of research in this direction is the estimation

of Kendall’s τ under random right censoring. Kendall’s τ has become a cornerstone kernel

of the U -statistic literature. It measures deviations among concordances and discordances.

Brown, Hollander and Korwar (1974), Weier and Basu (1980) and Oakes (1980) all propose

estimation under right-censoring but none of the estimators are consistent when the true

value of τ equals zero. Wang and Wells (2000) estimate τ using a suitable bivariate survival

estimator into the integral form that defines τ . Betensky and Finkelstein (1999) consider
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estimation of τ in a bivariate interval-censored data. In a somewhat relevant work, Martin

and Betensky (2005) consider testing the quasi-independence of failure time and truncation

times using conditional Kendall’s τ .

The rest of the paper is organised as follows. In Section 3.3, we discuss the concept of

weighted estimation with respect to survival analysis. In Section 3.4, we introduce our cen-

sored U -statistic under a random censoring setup. We also discuss very briefly (avoiding the-

oretical calculations) its extension to handle time dependent/independent covariates under

the dependent censoring paradigm. A doubly-robust version of the censored U -statistic is also

proposed to preserve consistency under certain model misspecifications. Section 3.5 studies

the performance of this test statistic through simulation studies with varying kernels. In

Section 3.6, we study the performance of this test for testing the independence between time

to failure and cause of failure in a competing risk model by using Kendall’s τ . The test is also

applied on a real data set. Section 3.7 presents some discussion and future work. We defer

the outline of the proof of asymptotic normality of the censored U -statistic to the Appendix.

3.3 Weighted estimation in survival analysis

The concept of weighted estimation seems to have its roots in the field of sample survey

with the Horvitz-Thompson estimator (Horvitz and Thompson, 1952) where the popula-

tion parameter of interest is estimated by a BLUE (Best Linear Unbiased Estimator) after

assigning specific weights to each unit of the population. In the context of survival analysis,

similar weighting schemes are considered by Koul, Susarla and Van Ryzin (KSV hereafter)

(1981) and in the pioneering work by Robins (Robins and Rotnitzky, 1992; Robins, 1993).

To describe it briefly, the usual approach in survival analysis is to equate the hazard of

failure in a censored experiment to that in the uncensored experiment and model it through

a parametric, semi-parametric or non-parametric family. KSV (1981) was the first to observe
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and make use of the following mean-preserving identity

E

(

δiTi

1 −G(Ti)

)

= E(T ∗
i ) (3.3.1)

in the context of deriving regression models for right censored data. Here G(.) is the dis-

tribution function of the censoring times. Note that the expression within parenthesis in

the left hand side of (3.3.1) is observable only if G is known. In reality this is not the case

and hence we replace G with its Kaplan-Meier estimator Ĝ. Thus, the weighted estimation

approach replaces a sample average in the uncensored experiment by a weighted sum in the

censored experiment. Furthermore, the weights are fairly simple to formulate; e.g., in the

simple case of a survival function estimation under random censorship, a true failure time

will be inversely weighted by the survival function of the censoring variable at the time of

failure, whereas a censored observation will receive zero weight. This is called inverse proba-

bility of censoring weighted (IPCW hereafter) estimation. The numerical calculation of these

weights requires a model for the hazard of censoring rather than the hazard of failure as in

the usual approach. The advantages of this approach are (i) specification of censoring hazard

is an easier problem at least in principle and more importantly the resulting estimator will

be relatively robust with respect to its misspecification since it enters the calculation in an

indirect way, (ii) formulation of the appropriate censored version of an estimator is simpler

since one does not need to connect it through the hazard rate and (iii) the resulting estimator

retains the sum form and is therefore suitable for theoretical analysis. In this context, Satten

and Datta (2001) showed that the Kaplan-Meier estimator of the survival function can be

represented as an IPCW average of identically distributed terms, the weights being related

to the survival function of the censoring times. Satten, Datta and Robins (2001) extend

the marginal survival function to dependent censoring in the presence of covariates through

this IPCW approach. More detail on this IPCW estimation scheme appears in the works of

Satten and Datta (2002) and Rotnitzky and Robins (2005). Satten and Datta (2001) and
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Datta (2005) showed the equivalence of IPCW approach with other approaches in simple

estimation problems without covariates.

3.4 U-statistics for Right Censored Data

3.4.1 Random censoring

For the bulk of this paper, we assume the standard right censoring model generating i.i.d

data Ti = min(T ∗
i , Ci) and δi = I(T ∗

i ≤ Ci), 1 ≤ i ≤ n. Under this model, the possibly

unobserved failure times T and the censoring time C are assumed to be independent. In the

next subsection, we briefly state how our approach can be extended to more general censoring

models where the dependence between failure and censoring times is carried through a set

of observed covariables.

Following the mean-preserving reweighting approach of Koul et al. (1981), we define a

censored data U -statistic based on kernel h as

U =
1
(

n
m

)

∑

Pnm

h(Ti1 , . . . , Tim)
∏

ℓ∈i
δℓ

∏

ℓ∈i
Kc(Tℓ−)

(3.4.1)

where Kc is the survival function of the censoring variable C. It is easy to see that U itself is

a U -statistic based on the pairs (Ti, δi),1 ≤ i ≤ n; its kernel H is of order m and is given by

H(Ti1 , δi1 ; . . . ;Tim, δim) =

h(Ti1 , . . . , Tim)
∏

ℓ∈i
δℓ

∏

ℓ∈i
Kc(Tℓ−)

(3.4.2)

It is easy to see that U is mean preserving since

E







h(Ti1 , . . . , Tim)
∏

ℓ∈i
δℓ

∏

ℓ∈i
Kc(Tℓ−)







= E








h(T ∗
i1
, . . . , T ∗

im)
m∏

j=1
I(T ∗

ij
≤ Cij )

m∏

j=1
Kc(T ∗

ij−)








= E







E








h(T ∗
i1
, . . . , T ∗

im)
m∏

j=1
I(T ∗

ij
≤ Cij )

m∏

j=1
Kc(T ∗

ij−)

∣
∣
∣
∣
∣
T ∗

i1
, . . . , T ∗

im














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= E








h(T ∗
i1
, . . . , T ∗

im)
m∏

j=1
Kc(T ∗

ij−)

m∏

j=1

E

(

I(T ∗
ij
≤ Cij)

∣
∣
∣
∣
∣
T ∗

i1 , . . . , T
∗
im

)








= E








h(T ∗
i1
, . . . , T ∗

im)
m∏

j=1
Kc(T ∗

ij−)

m∏

j=1

Kc(T
∗
ij
−)








= E
(

h(T ∗
i1
, . . . , T ∗

im)
)

= θ (3.4.3)

Note however, Kc is unknown in practice; it needs to be estimated by the Kaplan-Meier

formula where we reverse the role of censored and failed observations. Substituting this

estimator K̂c into (3.4.1) we get the following U -statistic that is calculable from right censored

data

Û =
1
(

n
m

)

∑

Pnm

h(Ti1 , . . . , Tim)
∏

ℓ∈i
δℓ

∏

ℓ∈i
K̂c(Tℓ−)

(3.4.4)

The expression in (3.4.4) is very similar to (3.2.6) above considered by Bose and Sen (2002)

for a kernel of size two except for the normalization. More generally the above U statistic is

related to the Kaplan-Meier U statistic of order m (by generalizing (3.2.6)) as follows:

Û =
nm

(
n
m

)

∑

Pnm

h(Ti1 , . . . , Tim)Wi1 . . .Wim (3.4.5)

where Pnm and Wij ’s are defined earlier. This follows from the Satten and Datta (2001)

result who showed that the Kaplan Meier estimator is equivalent to an IPCW estimator.

The weighted average form makes the asymptotic analysis of the U -statistic for right

censored data possible. For the theoretical analysis we introduce the following counting

process notations. Let N c
i (t) = I(Ti ≤ t, δi = 0) be the counting process of censoring for

the i th individual and M c
i (t) = N c

i (t)−
∫ t
0 α

c(u)Yi(u)du be the associated martingale where

αc is the censoring hazard and Yi(t) = I(Ti ≥ t). Also let n̄(t) = P (Ti ≤ t, δi = 1),

y(s) = P (Ti ≥ t) and
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w(s) =
1

y(s)

∫ ∞

s+

h1(u)

Kc(u−)
dn̄(u).

Theorem 3.1: We have, as n→ ∞,

√
n(Û − θ)

d−→ N(0, σ2)

where

σ2 = m2V ar

(

h1(T1)δ1
Kc(T1−)

+
∫

w(s)dM c
1(s)

)

.

with

h1(t1) = E(h(t1, T
∗
2 , . . . , T

∗
m)|T ∗

1 = t1).

An outline of the proof of the theorem is given in the Appendix. Note that the asymptotic

variance of Û is easy to estimate. Let

σ̂2 =
m2

n− 1

n∑

i=1

(Vi − V̄ )2,

Vi =
ĥ1(Ti)δi

K̂c(Ti−)
+ ŵ(Ti)δ

c
i −

n∑

j=1

ŵ(Tj)I(Ti ≥ Tj)δ
c
j

Y (Tj)

where the formulas for the estimated functions ĥ1 and ŵ are given in the Appendix. Then

the asymptotic standard error (SE) of Û will be given by n−1/2σ̂.

3.4.2 Dependent censoring

In many applications, one may observe failures along with a collection of covariables (fixed

or time varying) Zi = {Zij(s) : 0 ≤ s < t, j ≤ J} for the ith individual. We assume that the

Z are observable for all individuals including those whose failures are censored at least up to

time T . Dependent censoring in survival analysis occurs when there is correlation between

failure and censoring times. If this dependence is carried out by covariates such that for
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fixed levels of covariates failure and censoring times are uncorrelated, then it is possible to

account for dependent censoring. One can now postulate a model for that censoring hazard

conditional on the covariables which accounts for the dependence between the failure times

and the censoring times. This is implicit in the following technical condition on the hazard

for censoring:

lim
dt→0

P{t ≤ Ci < t+ dt, δi = 0|Zi(u), 0 ≤ u < t, Ti ≥ t, T ∗
i }

dt

= lim
dt→0

P{t ≤ Ci < t+ dt, δi = 0|Zi(u), 0 ≤ u < t, Ti ≥ t}
dt

(3.4.6)

The above equation means that given Z, the (future) failure time does not affect the current

hazard of being censored. We denote this censoring hazard by λc(t) and the corresponding

integrated hazard by Λc(t), i.e., Λc(t) =
∫ t
0 λc(s)ds. Under this setting, Kc can be defined as

Kc(t)= exp{−Λc(t)}.

A flexible hazard model increases the chance of obtaining an estimate of Kc that is close to

its true value. One such model is Aalen’s linear hazard model (Aalen 1980, 1989) where one

expresses the censoring hazard as

λc(t) =
p
∑

j=1

βj(t)Uij(t) (3.4.7)

where each βj(t) is an unknown function, and where we assume that the first components are

Ui0 ≡ 1, Uij(t) = φj(Zi(u) : 0 ≤ u < t) are predictable functions of the covariates, 1 ≤ j ≤ p.

We let Bj(t) =
∫ t
0 βj(s)ds and let Ui(t) be the vector (Ui0(t), . . . , Uip(t))

T . Then Aalen’s

estimator of the vector B(t) = (B0(t), . . . , Bp(t))
T is given by

B̂(t) =
n∑

i=1

I(Ti ≤ t)(1 − δi)A
−1(t)Ui(t) (3.4.8)

where the matrix A(t) is given by

A(t) =
n∑

i=1

I(Ti ≥ t)Ui(t)U
T
i (t) (3.4.9)
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Given the estimator B̂(t), we can write

Λ̂c(t|Zi(t)) =
p
∑

j=0

∫ t

0
Uij(t)dB̂j(t)

=
n∑

i′=1

I(Ti′ ≤ t)(1 − δi′)U
T
i (Ti′).A

−1(Ti′).Ui′(Ti′), t ≤ Ti (3.4.10)

This leads to an estimate of Kc(t) as K̂c(t) = exp{−Λ̂c(t)}. The formula for the censored

data U -statistic (3.4.4) remains intact; the only change needed is reflected in the definition

of K̂c. Aalen’s model is especially flexible because it fits a function βj(t) to describe the effect

of each covariate, even time-independent. This recipe was carried out in detail in Satten et

al. (2001) for extending the Kaplan-Meier in the case of dependent censoring. However, this

flexibility has limited the use of Aalen’s linear hazard model as a model for understanding

the effect of variables on survival times for many reasons, viz. (a) estimates of Λ̂c(t|Zi(t))

may not be monotone increasing and (b) the matrix A(t) may fail to have full rank at some

time τ . Details of the estimation of Kc(t) using Aalen’s linear hazard model while remaining

unaffected by the small sample difficulties stated above is described in Satten and Datta

(2004). Using similar martingale arguments as in Satten et al. (2001), the U defined above

with the choice of Kc remains unbiased for θ even if T and C are not independent but (3.4.6)

holds. As a part of future work, we would establish its asymptotic normality by combining

proof of Theorem 3.1 with the martingale arguments as in Satten et al. (2001).

3.4.3 A doubly-robust censored U-statistic

In general, estimators based on inverse probability weighting (IPW) may not be efficient.

Hence, a plausible proposal for the estimator in (3.4.4) to gain efficiency is to modify the esti-

mator into its doubly-robust (DR) (Robins et al.(1999), Section 7) version, say UDR. The esti-

mator is called ‘doubly-robust’ (DR) or ‘doubly-protected’ in this case because E(UDR) = θ,

if either (i) the model for λc is correctly specified or (ii) the model for T ∗|(T, δ, Z(T )) is
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correctly specified, although consistency is not preserved against the simultaneous misspec-

ification of both models. In reality, we cannot expect always the correctness of both the

models, hence the best one can achieve is a DR estimator. For more on doubly-robustness,

see the monograph by van der Laan and Robins (2003). We propose a DR estimator as

UDR =
1
(

n
m

)

∑

Pnm







h(Ti1 , . . . , Tim)
∏

ℓ∈i
δℓ

∏

ℓ∈i
Kc(Tℓ−)

−

∏

ℓ∈i
δℓ −

∏

ℓ∈i
Kc(Tℓ−)

∏

ℓ∈i
Kc(Tℓ−)

g
(

(Ti1 , δi1 , Zi1(Ti1)), . . . , (Tim, δim , Z im(Tim))
)







(3.4.11)

where g is a suitable chosen function of the observed data. Note that it follows by simple

conditional expectation argument that UDR remains unbaised for θ = Eh, no matter what

function g we choose; furthermore it is also a statistic of order m with the kernel HC , say.

Using the variance reduction property of a projection, one can see that the best choice of m

is such that the new kernel HC

(

(Ti1, δi1), . . . , (Tim , δim)
)

, say is the residual of the projection

of the original kernel H onto the space of mean zero functions

Λi0 =







∏

ℓ∈i
δℓ −

∏

ℓ∈i
Kc(Tℓ−)

∏

ℓ∈i
Kc(Tℓ−)

g
(

(Ti1 , δi1 , Zi1(Ti1)), . . . , (Tim , δim , Zim(Tim))
)







(3.4.12)

where g is arbitrary L2 function. By direct minimization of an L2 risk, we conclude

gopt = E
(

h(T ∗
i1
, . . . , T ∗

im)
∣
∣
∣(Ti1 , δi1, Z i1(Ti1)), . . . , (Tim , δim , Zim(Tim))

)

We can see more formally that indeed UDR will have smaller variance than U for each n,

since

V ar(UDR) =

(

n

m

)−1 m∑

k=1

(

m

k

)(

n−m

m− k

)

ζ2
k(HC),

(see for example, lemma A in Serfling, 1980), where ζ2
k(HC) is the variance of HC,k that is

the projection of HC onto the first k coordinates. However, it follows from definitions that
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HC,k is the residual of the projection of Hk onto a corresponding set of zero mean functions.

Therefore, ζ2
k(HC) ≤ ζ2

k(H) leading to V ar(UDR) ≤ V ar(U).

Once again, in practice, we need to substitute estimators K̂ and ĝopt in (3.4.11). Modeling

λc and estimation of K̂c has been discussed in the previous subsection. A working strategy

for computing ĝopt in the case of fixed covariates will be as follows. First fit a Cox’s model

to the observed data (Ti, δi, Z i), 1 ≤ i ≤ n leading to an estimated hazard of failure λ̂T (t)=

exp(β.Z)λ̂0(t). The following Monte Carlo calculations can then be used to compute ĝopt.

For each censored individual i, generate B independent replicates of T ∗ values T ∗
i1, . . . , T

∗
iB

from the estimated λ̂T (t), t ≥ Ti. This can be easily done by successive Bernoulli sampling

with success probabilities calculated using this hazard on a fine grid of time points. For an

uncensored individual i, let T ∗
ij = T ∗

i , 1 ≤ j ≤ B. Then ĝopt is given by

ĝopt = B−1
B∑

j=1

h(T ∗
i1j , . . . , T

∗
imj)

It can be easily checked using the equivalence of a reweighting and mean imputation (eg.,

Datta 2005) for estimating a mean using right censored data that the correction term will

be identically equal to zero when the order of the kernel is one and there is no covariates

(e.g., independent right censoring), there won’t be any gain in asymptotic efficiency since the

asymptotic variance of both U and ÛDR will be m2

n
ζ2
1(H). It is interesting to note however

that the correction term is not algebraically equal to zero for higher order kernels even in

absence of covariates as we show in Example 3.4.1.

Example 3.4.1

We consider computing the correction term for survival data without covariates which is

given as
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C =
1
(

n
m

)

∑

Pnm







∏

ℓ∈i
δℓ −

∏

ℓ∈i
Kc(Tℓ−)

∏

ℓ∈i
Kc(Tℓ−)






g
(

(Ti1 , δi1), . . . , (Tim, δim)
)

=
1
(

n
m

)

∑

Pnm







∏

ℓ∈i
δℓ

∏

ℓ∈i
Kc(Tℓ−)

− 1






E
(

h(T ∗
i1
, . . . , T ∗

im)
∣
∣
∣(Ti1 , δi1), . . . , (Tim, δim)

)

(3.4.13)

We consider a second order kernel h(x1, x2) = (x1 − x2)
2.

Data 1

T : 1, 3, 4+, 5

Here T denotes the failure times and T+ denotes a censored observation. Denote Ŝ and K̂c

as the Kaplan-Meier(KM) estimators of the failure times and censoring times. K̂c− denotes

the KM shifted one unit to the right. Table 3.1 displays the values of the KM at different

time points. Note that for computing m, 4+ takes value 5 with probability 1. We now try to

compute the different terms that contribute to the summation in (3.4.13).

Table 3.1: Kaplan Meier table for Data 1

T 1 3 4+ 5
δ 1 1 0 1
δc 0 0 1 0

Ŝ 3/4 1/2 1/2 0

K̂c 1 1 1/2 1/2

K̂c− 1 1 1 1/2

For (1, 3): (1
1
− 1).(1 − 3)2 = 0

For (1, 4+): −(1 − 5)2.1 = −16

For (1, 5): ( 1
1/2

− 1).(1 − 5)2 = 16
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For (3, 4+): −(3 − 5)2 = −4

For (3, 5): ( 1
1/2

− 1).(3 − 5)2 = 4

For (4+, 5): −(5 − 5)2.1 = 0

Adding all these terms gives us the value of the correction term C = 0.

Data 2

T : 1, 3+, 4, 5+, 6

We now construct the table as above which in this case is given in Table 3.2. The jump in the

Kaplan-Meier value (for failure times) at 4 is (4/5 − 8/15) = 4/15 and at 6 is (8/15 − 0) =

8/15. The total jump is 4/5. Thus, 3+ takes value 4 with prob. ( 4
15
/4

5
) = 1/3 and 6 with

prob. ( 8
15
/4

5
) = 2/3. Again, 5+ takes value 6 with probability 1. We now compute the different

terms that contribute to the summation in (3.4.13) as was done for Data 1.

Table 3.2: Kaplan Meier table for Data 2

T 1 3+ 4 5+ 6
δ 1 0 1 0 1
δc 0 1 0 1 0

Ŝ 4/5 4/5 8/15 8/15 0

K̂c 1 3/4 3/4 3/8 3/8

K̂c− 1 1 3/4 3/4 3/8

For (1, 3+): −(1 − 4)2.(1/3) − (1 − 6)2.(2/3) = −9+50
3

For (1, 4): ( 1
3/4

− 1).(1 − 4)2 = 9
3

For (1, 5+): −(1 − 6)2.1 = −25

For (1, 6): ( 1
3/8

− 1).(1 − 6)2 = 125
3

For (3+, 4): −(4 − 4)2.(1/3) − (6 − 4)2.(2/3) = −8
3

For (3+, 5+): −(4 − 6)2.(1/3) − (6 − 6)2.(2/3) = −4
3

For (3+, 6): −(4 − 6)2.(1/3) − (6 − 6)2.(2/3) = −4
3
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For (4, 5+): −(4 − 6)2.1 = −4

For (4, 6): ( 1
9/32

− 1).(4 − 6)2 = 92
9

For (5+, 6): −(6 − 6)2.1 = 0.

Adding these terms gives us:

(−9+50
3

+ 9
3

+ 50
3
) − 8+4+4

3
+ 92−36

9
− 0

= −16
3

+ 56
9

= 56−48
9

= 8
9
6= 0.

Hence the correction term C =
(

5
2

)−1
.8
9

is not equal to zero.

Example 3.4.2

We illustrate the computation of the DR U -statistic in presence of a binary covariate Z. A

natural model to assume in this case is that T ∗ and C are conditionally independent given

Z. Under this assumption, we could carry out the necessary computation by calculating the

Kaplan-Meier estimators of the failure and censoring times in the two groups separately.

This is illustrated through the following data set.

Data 3

T : 1, 3+, 4, 5, 6+, 7, 8

Z : 0, 0, 0, 1, 1, 1, 1

Here T denotes the failure time as above and Z denotes the binary covariate taking values

0 and 1. We construct the Kaplan-Meier table (Table 3.3) separately for the observations

in the two groups. The calculations are tabulated in Table 3.3. From the table, the jump

in the Kaplan-Meier value at 4 is (2/3 − 0) = 2/3, at 7 is (3/4 − 3/8) = 3/8 and at 8 is

(3/8−0) = 3/8. Thus, 3+ takes value 4 with prob. 1. Again, 6+ takes value 7 with prob. 1/2

and 8 with prob 1/2. We now compute the different terms that contribute to the summand

in (3.4.13) for Data 3.
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Table 3.3: Kaplan Meier table for Data 3

T 1 3+ 4 5 6+ 7 8
Z 0 0 0 1 1 1 1
δ 1 0 1 1 0 1 1
δc 0 1 0 0 1 0 0

Ŝ 2/3 2/3 0 3/4 3/4 3/8 0

K̂c 1 1/2 1/2 1 2/3 2/3 2/3

K̂c− 1 1 1/2 1 1 2/3 2/3

For (1, 3+): −(1 − 4)2.1 = −9

For (1, 4): ( 1
1/2

− 1).(1 − 4)2 = 9

For (1, 5): (1
1
− 1).(1 − 5)2 = 0

For (1, 6+): −(1 − 7)2.1/2 − (1 − 8)2.1/2 = −36+49
2

For (1, 7): ( 1
2/3

− 1).(1 − 7)2 = 36
2

For (1, 8): ( 1
2/3

− 1).(1 − 8)2 = 49
2

For (3+, 4): −(4 − 4)2.1 = 0

For (3+, 5): −(4 − 5)2.1 = −1

For (3+, 6+): −(4 − 7)2.1/2 − (4 − 8)2.1/2 = −9+16
2

For (3+, 7): −(4 − 7)2.1 = −9

For (3+, 8): −(4 − 8)2 = −16

For (4, 5): ( 1
1/2

− 1).(4 − 5)2 = 1

For (4, 6+): −(4 − 7)2.1/2 − (4 − 8)2.1/2 = −9+16
2

For (4, 7): ( 1
1/3

− 1).(4 − 7)2 = 18

For (4, 8): ( 1
1/3

− 1).(4 − 8)2 = 32

For (5, 6+): −(5 − 7)2.1/2 − (5 − 8)2.1/2 = −4+9
2
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For (5, 7): ( 1
2/3

− 1).(5 − 7)2 = 2

For (5, 8): ( 1
2/3

− 1).(5 − 8)2 = 9
2

For (6+, 7): −(7 − 7)2.1/2 − (8 − 7)2.1/2 = −1/2

For (6+, 8): −(7 − 8)2.1/2 − (8 − 8)2.1/2 = −1
2

For (7, 8): ( 1
4/9

− 1).(7 − 8)2 = 5
4

Adding these terms gives us 1
4
6= 0. Hence the correction term C is not equal to zero.

3.5 Simulation setup

In order to validate the performance of our test statistic for finite samples, we conducted

simulation studies based on randomly right-censored data with two different choices of the

kernel.

Example 1

For the kernel h(x1, x2) = 1
2
(x1 − x2)

2; x1, x2 ∈ R
1, the corresponding U -statistic equals s2,

the sample variance. Here θ(F ) = variance of F = σ2(F ) =
∫

(x − µ)2dF (x). We choose T ∗

from a Weibull distribution with shape parameter 2.3 and scale parameter 2.0. The censoring

times (C) are generated from a Weibull distribution with shape 1.5 and scale 4 to represent

25% censoring and Weibull with shape 0.3 and scale 5.0 to represent 50% censoring. We

choose sample sizes n=200, 500 and 1000 with iteration size 5000 for our simulations. The

theoretical variance of T ∗ is 0.6674 and we compare this with the mean of our re-weighted

U -statistic. We also compare the variance of the censored U -statistic with the asymptotic

variance in Table 3.5. Values within parenthesis denote asymptotic variance, all values being

multiplied by their respective sample sizes.

It is seen from Table 3.4 that the estimated sample variance from the censored data

(at both censoring levels) remains close to the true variance of the uncensored data. The
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Figure 3.1: Plot of nominal coverage vs empirical coverage of confidence intervals for the
population variance θF = σ2 with the line nominal=empirical overlayed
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Table 3.4: Estimated sample variance from censored data, true value being 0.6674.

Censoring level
n 0% 25% 50%

200 0.6667 0.6556 0.6640
500 0.6671 0.6615 0.6655
1000 0.6674 0.6640 0.6659

Table 3.5: Comparing asymptotic variance with empirical variance of the U -statistics for
Example 1. Values within parenthesis denote asymptotic variance

Censoring level
n 25% 50%

200 1.4632(1.4438) 1.9305(1.8586)
500 1.4487(1.4356) 1.9465(1.8839)
1000 1.4563(1.4317) 1.8921(1.8848)

precision however increases with higher sample sizes. From Table 3.5, we can see that

while comparing the asymptotic variance with the empirical variance of the U -statistic, the

former is smaller than the later. This is because the variance expression of the U -statistics

is a sum of positive terms, the dominating term increases to the asymptotic variance and

the nondominating ones disappear in the limit. The P-P plot (Figure 3.1) showing the

plot of empirical coverage of confidence intervals of our estimated U -statistic against the

nominal coverage (dotted line) is also examined with a plot of the line nominal=empirical

(solid line) overlayed. In particular, we are interested in the nature of the plot at the
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coverage level of 90% and above. Since the lines remain close to each other in all the sit-

uations, we can conclude the validity of the asymptotic normality of our censored U -statistic.

Example 2

For the kernel h(x1, x2) = I(x1+x2 ≤ 0); x1, x2 ∈ R
1, the corresponding U -statistic estimates

θ(F ) = PF (X1 + X2 ≤ 0). The U -statistic calculates the average number of pairs (Xi, Xj)

with X1 + X2 ≤ 0, and can be used as a test for investigating whether the distribution of

the observations is centered at zero. This test is asymptotically equivalent to the signed-rank

statistic of Wilcoxon. We choose T ∗ as the event times from a log-normal distribution with

parameter 0 and 1 and censoring times (C) from a lognormal distribution with parameters

(0.954, 1) and (0,1) to represent about 25% and 50% censoring. Sample sizes of n=200, 500

and 1000 along with iteration size of 5000 was chosen for our simulation. We take X =

log(min(T ∗, C)) and consider this to be (Xi, Xj) pair. We expect the mean of our censored

U statistic to be near 0.5, which is the value of θ under the assumption that the distribution

function is continuous and symmetric about 0. See Table 3.6 for the comparison. Similar

to Example 1, we compare the variance of the censored U -statistic with the asymptotic

variance. See Table 3.7 for details.

Table 3.6: Estimating the Wilcoxon signed-rank statistic, true value being 0.5.

Censoring level
n 0% 25% 50%

200 0.5061 0.4999 0.4967
500 0.5081 0.4998 0.4990
1000 0.4998 0.4996 0.4998
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Figure 3.2: Plot of nominal coverage vs empirical coverage of confidence intervals for the
population variance θF = PF (X1 +X2 ≤ 0) with the line nominal=empirical overlayed
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Table 3.7: Comparing asymptotic variance with empirical variance of the U -statistics for
Example 2. Values within parenthesis denote asymptotic variance

Censoring level
n 25% 50%

200 0.3739(0.3603) 0.5156(0.5006)
500 0.3560(0.3431) 0.4989(0.4826)
1000 0.3557(0.3441) 0.5230(0.5010)

From Table 3.6, it is seen that the censored U -statistic (at both censoring levels) estimates

the true value θF = 0.5 closely. Similar results to those of Example 1 were observed here

while comparing the asymptotic variance of the U -statistic with the empirical variance in

Table 3.7. Asymptotic normality in this case is also validated after examining the P-P Plot

in Figure 3.2.

3.6 Applications to testing

We can study the dependence structures between time to failure and cause of failure in a

competing risk setup using our censored version of the U -statistic. We consider the competing

risk network as a multistate continuous time stochastic process {Z(t), t ∈ T } with a finite

state space S = {0, 1, 2} having a tree topology and right-continuous sample paths: Z(t+) =

Z(t) where we assume that the states 1 and 2 are absorbing whereas state 0 is transient (the

root node). Here T = [0, τ ] where τ is a large possibly observed time point (≤ ∞). Typically,

for applications, τ will be taken to be the largest time where some event (failure) took place.

Let T ∗ be the (possibly unobserved) time that an individual leaves stage 0 for a failure and let

d∗ = S(T ∗) be the failure stage. Here we study the properties of the conditional probability
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function

Φi(t) = P (d∗ = i|T ∗ > t) =
Si(t)

S(t)
, i = 1, 2 (3.6.1)

where Si(t) = P (T ∗ > t, d∗ = i) denotes the sub-survival function and S(t) = P (T ∗ > t) is

the usual survival function. Specifically, we consider the problem of testing the null hypothesis

H0 : Φ1(t) = Φ2(t)

Note, H0 reduces to testing the independence of failure time and failure cause in a competing

risk model. Here we propose a test based on the concept of concordance and discordance

(using Kendall’s τ) to test this hypothesis that extends a test proposed by Dewan et al.(2004)

for uncensored data. The following notations are necessary for understanding the test sta-

tistic. A pair (T ∗
i , d

∗
i ) and (T ∗

j , d
∗
j) is a concordant pair if T ∗

i > T ∗
j , d∗i = 2, d∗j = 1 or T ∗

i < T ∗
j ,

d∗i = 1, d∗j = 2 and a discordant pair if T ∗
i > T ∗

j , d∗i = 1, d∗j = 2 or T ∗
i < T ∗

j , d∗i = 2, d∗j = 1.

The Kendall’s τ test statistic assigns a score +1 to a concordant pair and a score -1 to a

discordant pair. In other words, the kernel of the statistic is defined as

ψ1(T
∗
i , d

∗
i ;T

∗
j , d

∗
j) =







1 if T ∗
i > T ∗

j , d
∗
i = 2, d∗j = 1 or T ∗

i < T ∗
j , d

∗
i = 1, d∗j = 2

−1 if T ∗
i > T ∗

j , d
∗
i = 1, d∗j = 2 or T ∗

i < T ∗
j , d

∗
i = 2, d∗j = 1

0 otherwise.

(3.6.2)

The corresponding test statistic given by Dewan et al. (2004) is

U2 =

(

n

2

)−1
∑

1≤i<j≤n

ψ1(Ti, di;Tj, dj) (3.6.3)

Dewan et al. (2004) showed that under H0, n
1/2U2 converges in distribution to N(0, σ2

f ),

where σ2
f is consistently estimated by

σ̂2
1 = (4/3)φ̂(1 − φ̂)
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and

φ̂ = n−1
n∑

i=1

I(d∗i = 1)

In case of right censoring, T ∗ and d∗ are not observed for the censored individuals. Let C be

the right-censoring time. Our observed data is T ∗
i = T ∗

i ∧Ci and di = d∗i I(T
∗
i ≤ Ci), 1 ≤ i ≤ n.

Let δi = I(di = 0). An obvious adaptation of our definition of censored data U -statistic yields

the following generalization of the Dewan et al. (2004) test statistic

U2 =

(

n

2

)−1
∑

1≤i<j≤n

ψ1(Ti, di;Tj, dj)
δiδj

K̂c(Ti−)K̂c(Tj−)
, (3.6.4)

where K̂c is as in Section 3.4. Note that it is indeed computable from the censored data and

that it reduces to the Dewan et al. (2004) statistic if there is no censored data.

We reject the null hypothesis against the two sided alternative if |n1/2Û2/σ| > z1−α/2

where σ̂ is obtained as in Section 3.4 and z1−α/2 is the 100(1 − α/2)th percentile point of

the standard normal distribution. To assess the test’s performance, we conduct a simulation

study using sample sizes of n = 200, 500 and 1500 and a nominal level of α = 0.05. The

power is computed as the proportion of rejections out of 2000 Monte-Carlo replications. We

consider varying degrees of censoring rate. In case of uncensored data, we use the Dewan et

al. (2004) formula for the asymptotic standard error.

3.6.1 Simulating event times from a bivariate distribution

We consider a similar simulation scheme (scheme (ii)) as of Section 2.5.1. In general, X and Y

are dependent and being lifetimes, they should be non-negative. In this setup, we only observe

(T, δ), where T = min(X, Y ) is the failure time and δ = 2− I(X ≤ Y ) is the cause of failure.

For the null hypothesis, we generate (X ′, Y ′) from a bivariate normal distribution with mean

vector (0,0), and variance-covariance matrix ((1, ρ), (ρ, 1)), where ρ is chosen to be −0.5, 0 or

0.5. For the alternative, we generate (X ′, Y ′) from a bivariate normal distribution with mean

vector (0, (1 − α)) and variance-covariance matrix ((1, ρa), (ρa, a2)), where a = 1(0.1)1.5.
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Finally, we let X = exp(X ′) and Y = exp(Y ′). The censoring times are generated from log-

normal distributions with variance parameter 1 and mean parameters 0.954 and 0 leading

to light (8%-17%) and moderately heavy (28%-45%) censoring, respectively. In all cases, we

take the nominal level α to be 5%.

3.6.2 Results

We report the empirical sizes for the above simulation scheme in Table 3.8. The empirical

sizes of our test is close to the nominal level 0.05. During simulation, the effective sample size

for a negative correlation is higher than that of a positive correlation, hence the size values

are somewhat better in the case of negative correlation. It is also observed that the empirical

sizes are marginally inflated from the nominal value in a few cases for heavy censoring but

it stabilizes for higher sample sizes.

Table 3.8: Size of our U -statistics based test using α = 0.05 under simulation

Censoring
Light Moderately Uncensored

ρ n heavy (Dewan et.al. (2004))

0.5 200 0.067 0.07 0.052
500 0.061 0.067 0.051
1500 0.059 0.063 0.049

0 200 0.063 0.072 0.053
500 0.058 0.07 0.052
1500 0.048 0.055 0.051

-0.5 200 0.055 0.067 0.048
500 0.045 0.058 0.043
1500 0.047 0.049 0.052
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Figure 3.3: Power curves of U -statistic based tests for Simulation scheme (ii). The solid
lines correspond to the Dewan et.al. (2004) test without censoring and the dashed lines
corresponds to our U -statistic based test.
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Figure 3.3 displays arrays of plots illustrating the power curves as a function of the alternative

parameter a which was defined earlier. a = 1 corresponds to the null hypothesis. The set

up is identical to the size study above and includes two choices of sample size, namely, 200

and 500. In each figure, we overlay the power curves obtained by our censored U -statistic

using the Kendall’s τ kernel with the power curves of the test in Dewan et.al. (2004) that is

calculated using the full data. In the figure, solid lines denote power curves for the U -statistic

based test without censoring and dashed lines denote power curve under censoring. It is seen

that a considerable increase in power is observed with an increase in sample size. The power

curves reveal that for low censoring and larger sample size, our test statistic produces a

power profile that is very close to the full data test. However, heavy censoring has some

adverse effect on the empirical power which tend to get better with larger sample size.

3.6.3 A Real Data Example

We consider the Stanford Heart Transplantation Program data as described in Chapter 2 of

this dissertation. We formulate death due to ‘transplant rejection’ (coded as cause 1) and

due to ‘other causes’ (coded as cause 2) as the two competing risks. We try to test the null

hypothesis

H0 : Φ1(t) = Φ2(t)

against two alternatives

H1 : Φ1(t) 6= Φ2(t)

and

H2 : Φ1(t) ≤ Φ2(t)

The value of the U -statistic using the kernel given in (3.6.2) is 0.1204 and the value of

the standard error obtained by using Theorem 3.1 is 0.049. The value of the Z-statistic is

2.449. It is immediate that H1 is accepted for the two-sided test for testing H0 vs H1 at a
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5% level. For a one-sided test for testing H0 vs H2 (based on concordance and discordance

principle) using the same test statistic, it is expected that the number of discordances will

be larger than the number of concordances under H2. It can be seen from the data set that

the failure time due to cause 1 is much larger overall in comparison to failure time due to

cause 2. Hence the expected discordances should be larger than the expected concordances.

For this data set for testing H0 vs H2, we accept H2 thereby asserting that the probability of

death due to ‘transplant rejection’ is less than the probability of death due to ‘other causes’.

3.7 Discussion

In this chapter, we have proposed a censored version of the U -statistic in its true generality,

i.e. valid for a general kernel of size m using the technique of inverse probability weighting.

This provides substantial generalization over earlier results for a Kaplan-Meier U -statistic of

degree two (Bose and Sen, 2002). We also formulate a U -statistic under dependent censoring

where the dependence between failure times and censoring times can be explained through

a set of observed covariates. A further efficiency correction using the idea of doubly robust

(DR) estimators is proposed and two simple examples are illustrated.

A motivating application for this work was a Kendall’s τ test recently introduced by

Dewan et al. (2004) with uncensored data. This test examines the independence hypothesis

between time to failure and cause of failure in a competing risk setup. Since right censoring is

often present, if not always, with failure time data, its practical utility would be enhanced if

a right censored version were available. We obtain this as an easy application to our general

U -statistic methodology.

In future, we plan to develop the U -statistics methods in presence of covariates even

further. In particular, emphasis will be placed on the computation aspect of the DR approach
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which inhibits its practical utility somewhat. See the recent paper by Carpenter et al. (2006)

for a comparison between reweighting and imputation for a general missing data problem.

3.8 Appendix

Outline of asymptotic normality of Û

Using the Hoeffding’s decomposition (Hoeffding, 1948) of Û we get

√
n(Ũ − θ) =

m√
n

n∑

i=1

Hc
1(Ti, δi) + op(1), (3.8.1)

where Hc
1 = H1 − θ, with H1(t1, δ1) = E(H(T1, δ1, T2, δ2, . . . , Tm, δm)|T1 = t1, δ1).

Note that Hc
1(t1, δ1) = h1(t1)δ1/K(t1−) − θ, where

h1(t1) = E(h(t1, T
∗
2 , . . . , T

∗
m)|T ∗

1 = t1).

Moreover (3.8.1) holds uniformly in the kernel H over a suitable collection which will enable

us to replace K by its Kaplan Meier estimator K̂ implying

√
n(Û − θ) =

m√
n

n∑

i=1

{

h1(Ti)δi

K̂c(Ti−)
− θ

}

+ op(1). (3.8.2)

Now express the RHS of (3.8.2) as

m√
n

n∑

i=1

{

h1(Ti)δi
Kc(Ti−)

− θ

}

+
m√
n

n∑

i=1

{

1

K̂c(Ti−)
− 1

Kc(Ti−)

}

h1(Ti)δi + op(1) (3.8.3)

Note that
n∑

i=1
U(Ti)δiI(Ti ≤ τ) =

∫ τ
0 U(t)dN(t) for any bounded function U(t) where N(t) =

n∑

i=1
I(Ti ≤ t, δi = 1) is the counting process of failures in the right censored experiment.

Again, K̂c(·) = Kc(·)+op(1) and n−1N(·) = n̄(·) = P (Ti ≤ ·, δi = 1)+op(1). Using these,

the RHS of (3.8.3) reduces to

m√
n

n∑

i=1

{

h1(Ti)δi
Kc(Ti−)

− θ

}

−m
√
n
∫

h1

K2
c (t−)

(K̂c(t−) −Kc(t−))dn̄ + op(1)



77

Next note
√
n(K̂c(u−) − Kc(u−)) ≈ √

n(e−Âc(u−) − e−Ac(u−)), where Ac is the cumulative

censoring hazard and Âc is its Nelson-Aalen estimator for censoring,

≈ −
√
nKc(u−)(Âc(u−) − Ac(u−)), by the delta method

≈ − 1√
n
Kc(u−)

n∑

io=1

∫ u−

0

dM c
i (s)

y(s)
(see Andersen et al. (1993), page 178)

whereM c
i (t) = N c

i (t)−
∫ t
0 α

c(u)Yi(u)du is the martingale of the censoring process defined with

respect to the appropriate filtration, αc is the censoring hazard, N c
i (t) = I(Ti ≤ t, δi = 0)

is the counting process of the censored data, Yi(t) = I(Ti ≥ t) be the appropriate ‘at-risk’

process and y(t) = EYi(t). Hence,

m
√
n
∫

h1(u)

K2
c (u−)

(K̂c(u−) −Kc(u−))dn̄

≈ − m√
n

∫ ∞

0

h1(u)

K2
c (u−)

Kc(u−)
n∑

i=1

{
∫ u−

0

dM c
i (s)

y(s)

}

dn̄(u)

= − m√
n

n∑

i=1

∫ ∞

0

h1(u)

Kc(u−)

{
∫ u−

0

dM c
i (s)

y(s)

}

dn̄(u)

= − m√
n

n∑

i=1

∫ ∞

0

{
∫ ∞

s+

h1(u)

Kc(u−)

dn̄(u)

y(s)

}

dM c
i (s) (by Fubini’s theorem)

= − m√
n

n∑

i=1

∫ ∞

0
w(s)dM c

i (s)

where

w(s) =
1

y(s)

∫ ∞

s+

h1(u)

Kc(u−)
dn̄(u).

Combining both pieces we have the following asymptotic linear representation for Û as:

√
n(Û − θ) =

m√
n

n∑

i=1

{

h1(Ti)δi
Kc(Ti−)

+
∫ ∞

0
w(s)dM c

i (s) − θ

}

+ op(1).

Therefore, we have, as n→ ∞,

√
n(Û − θ)

d−→ N(0, σ2)

where

σ2 = m2V ar

(

h1(T1)δ1
Kc(T1−)

+
∫

w(s)dM c
1(s)

)

.
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Estimation of σ2: Note that

∫

w(s)dM c
i (s) = w(Ti)δ

c
i −

∫
w(s)I(Ti ≥ s)

Y (s)
dN c(s)

= w(Ti)δ
c
i −

∫
w(s)I(Ti ≥ s)

Y (s)
d





n∑

j=1

N c
j (s)





= w(Ti)δ
c
i −

n∑

j=1

∫ w(Tj)I(Ti ≥ Tj)

Y (Tj)
dN c

j (s)

= w(Ti)δ
c
i −

n∑

j=1

w(Tj)I(Ti ≥ Tj)δ
c
j

Y (Tj)

We define estimators of h1 and w by

ĥ1(u) = n−(m−1)
∑

1≤i2,...,im≤n

h(u, Ti2, . . . , Tim)
δi2 . . . δim

K̂c(Ti2−) . . . K̂c(Tim−)

ŵ(s) =
1

Y (s)

∫ ∞

s+

ĥ1(u)

K̂c(u−)
dN(u),

=
1

Y (s)

n∑

i=1

ĥ1(Ti)δi

K̂c(Ti−)
I[Ti > s]

Hence we can estimate σ2 by

σ̂2 =
m2

n− 1

n∑

i=1

(Vi − V̄ )2,

where

Vi =
ĥ1(Ti)δi

K̂c(Ti−)
+ ŵ(Ti)δ

c
i −

n∑

j=1

ŵ(Tj)I(Ti ≥ Tj)δ
c
j

Y (Tj)
.
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Chapter 4

Conclusions and Future Work

This dissertation considered some novel nonparametric approaches to inference in multistage

event time data, specifically competing risk. A major contribution is the introduction of a

right-censored version of the U -statistic (for a general kernel of size m) which provides sub-

stantial generalization over the Kaplan-Meier U -statistic of degree two proposed earlier by

Bose and Sen (2002). We also address a unified approach of testing the null hypothesis of

independence of time to failure and cause of failure (equivalently the equality of conditional

survival functions) which has not received much significance in the nonparametric testing

literature despite vast importance in studying the nature of competing risks (Dewan et al.

2004). We propose two different tests for studying the above null hypothesis, viz. (a) a

family of weighted log-rank type tests based on ‘fractional risk sets’ and (b) a U -statistic

based test with a Kendall’s τ kernel incorporating right censoring through a mean preserving

reweighing scheme. The former is based on the modification of the risk set through prob-

abilistic arguments while the latter induces reweighting of the observed failure times with

the survival function of the censored times through mean preservation. For (a), the test sta-

tistic leads to complicated asymptotics with often untractable variance which is estimated

through bootstrap resampling. For (b), the asymptotic normality is handled through regular

martingale techniques though asymptotics kicks in usually at a high sample size. In the case

of dependent censoring, the test statistic might become inconsistent if the probability model

of censoring is misspecified. This is taken care of through double-robustness methodology.

Using fractional risk sets, we introduce a new Nelson-Aalen type estimator of the cumulative

84
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conditional hazards. It is to be noted here that our testing methodology based on fractional

risk sets doesn’t confine itself to the realms of competing risks but is extendable to more

complicated tree networks. While extending this test to a tree network, we also need to check

the legitimacy of the Kaplan-Meier type estimator of the competing risk survival functions

at every step.

We provide several extensions to our direction of research. A number of future research

problems are proposed here. They will be pursued in near future.

4.1 Extension to weighted Kaplan-Meier type statistics

Since the familiar two-sample t-test cannot be generalized to a two sample censored data

problem, a natural approach to extending this test is to standardize an estimator of the

difference in means of survival functions of the two arms. This approach was first considered

by Pepe and Fleming (1989, 1991) in the context of a two-arm clinical trial. We can extend

their test to a bi-competing risk problem using the Satten and Datta (1999) representation of

the Kaplan-Meier type estimators of competing risks estimates. Clearly, this test will incor-

porate censoring through modifications achieved by ‘fractional risk sets’. More specifically,

in the notation of Chapter 2, our weighted KM test statistic has the form

∆(τ) =
∫ τ

0
Ŵ (t)

{

Ŝ1(t) − Ŝ2(t)
}

dt (4.1.1)

with

Ŝj(t) =
∏

ti≤t



1 − ∆Nj(ti)

Y f
j (t)



 (4.1.2)

where τ is some study duration, say the largest observed time of some event (say failure),

and

n1/2(Ŝj(t) − exp{−Λ̂j(t)}) P−→ 0 (4.1.3)
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for

Λ̂j(t) =
∫ t

0

∆Nj(u)

Y f
j (u)

(4.1.4)

is the Nelson-Aalen type estimator of the integrated conditional hazard rate for the jth risk.

Similarly, we have

n1/2(S(t) − exp{−Λ(t)}) P−→ 0 (4.1.5)

where

Λ(t) =
∫ t

0
α(u)du (4.1.6)

and α(t) is the hazard function under the null hypothesis of equality of two conditional

survival functions. Assume a predictable weight process Ŵ (t) such that

sup
u∈[0,t)

∣
∣
∣
∣Ŵ (t) − w(t)

∣
∣
∣
∣

P−→ 0 (4.1.7)

for some nonstochastic function w(t).

Under the null hypothesis, we have

n−1/2∆(τ) = n−1/2
∫ τ

0
Ŵ (t)

{(

Ŝ1(t) − S(t)
)

−
(

Ŝ2(t) − S(t)
)}

dt (4.1.8)

= n−1/2
∫ τ

0
Ŵ (t)(Ŝ1(t) − S(t))dt

︸ ︷︷ ︸

(I)

−n−1/2
∫ τ

0
Ŵ (t)(Ŝ2(t) − S(t))dt

︸ ︷︷ ︸

(II)

(4.1.9)

Now (I) implies

≈ n−1/2
∫ τ

0
Ŵ (t){exp(−Λ̂1(t)) − exp(−Λ(t))}dt (4.1.10)

Using triangulations, we obtain

exp(−Λ̂1(t)) − exp(−Λ(t))

= −S(t)

{
∫ t

0

dN1(u)

Y1(u)
−
∫ t

0
α(u)du+

∫ t

0

{

1

Y f
1 (u)

− 1

Y1(u)

}

dN1(u) (4.1.11)

and using the notation of the Appendix in Chapter 2, (4.1.10) reduces to

−S(t)

{
n∑

i=1

∫ t

0

dM1,i(u)

Y1(u)
+
∫ t

0

{

1

Y f
1 (u)

− 1

Y1(u)

}

dN1(u)

}

(4.1.12)
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We use similar triangulations for (II). Combining these and following the steps as described

in Appendix of Chapter 2, we can obtain the linear representation of this test statistic

and hence asymptotic normality is immediate. Once again, the expression would be very

cumbersome and one needs to resort to resampling techniques to compute the standard

error of this test. Note that this test statistic varies fundamentally from the usual two-

sample log-rank type test statistic for censored data which is entirely rank based. Hence

the power of this test statistic might not be sensitive to the magnitude of the difference of

survival times.

We conducted a small simulation study to assess the finite sample performance of this

test based on simulation scheme (ii) as described in Section 2.5.1 of Chapter 2. We choose

a sample of size n = 50 with two different censoring schemes, light (about 25%) and heavy

(about 50%) and use the empirical population variance to compute the test statistic. The

results appear in Table 4.1. The value a = 1 corresponds to the null hypothesis and the other

values of a denote departures from the null. The test is found to behave nicely at the 5%

level with steadily increasing power for the alternatives. As expected, there is lower power

for the heavy censoring than for the light censoring.

Table 4.1: Size/Power values for Kaplan-Meier based test under simulation scheme (ii)

a
ρ Censoring 1 1.3 1.6 1.9 2.2 2.5

0.5 Light 0.052 0.326 0.880 0.975 0.998 1.000
Heavy 0.061 0.265 0.684 0.903 0.947 0.982

0 Light 0.051 0.293 0.803 0.947 0.994 0.997
Heavy 0.051 0.216 0.635 0.896 0.958 0.983

-0.5 Light 0.048 0.285 0.740 0.939 0.996 0.997
Heavy 0.046 0.237 0.684 0.891 0.983 0.994
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Further theoretical details of this statistic along with simulation results will be pursued

later.

4.2 Generalization of the test in presence of covariates

It is often noticed that competing risk survival data appear with covariates, some of which

may be potential confounders. In such cases, it is perhaps more appropriate to test the inde-

pendence of failure time and cause (or equality of failure time distributions amongst groups)

conditional on the covariates. For example, the data in Lagakos (1978) related to lung cancer

clinical trial conducted by the Eastern Cooperative Oncology Group has three covariates:

Z1= performance status (ambulatory = 0, non-ambulatory = 1), Z2 = treatment (A=0,

B=1) and Z3 = age in years. Thus, the covariates can be both categorical or quantitative.

We will be interested in testing the null hypothesis

H0 : S(t|X = m,Z) = S(t|X = n,Z), ∀ 0 ≤ t ≤ τ and 1 ≤ m 6= n ≤ J, (4.2.1)

where, as beforeX ∈ {1, . . . , J} denotes the subpopulation membership. In general, the cause

X will be unknown for censored individuals; however the covariate information Z will be

assumed to be known for everyone. If X were known, we could proceed semi-parametrically.

We can model the marginal hazard (in presence of covariates) by the Cox proportional

hazards model (Cox, 1972)

λi(t|Zi, Xi) = λ0(t)e
βT Zi+γ.Xi+νT ZiXi (4.2.2)

where λ0(t) denotes the baseline hazard. In this framework, the null hypothesis reduces to

H01 : γ = 0; ν = 0 (considering ν to be of dimension k) which can be tested from the

standard Cox methodology of partial likelihood. Consider the vector θ = (βT , γ,νT )T and

let θ̂ be its partial likelihood estimate. Then under the null, a Wald-type Chi-squared test

can be proposed as

T = θ̂2Σ̂
−1

2
θ̂2 (4.2.3)
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where θ̂2 = (γ, νT )T , and Σ̂2 is its estimated asymptotic variance-covariance matrix. It is

expected that under the null hypothesis, T will have an asymptotically χ2 distribution with

J − 1 degrees of freedom. It is to be noted however that this test procedure cannot be used

if X is unknown for the censored individuals.

We would use the weighted estimating equation approach (Satten and Datta, 2004) to

construct the appropriate estimating equations that correspond to Cox’s partial likelihood

if indeed the Z were available. The partial likelihood score equation for estimating the

parameters θ can be written as (see, e.g. Andersen et al., 1993)

S(θ) =
∑

t

∫
{

W i −
A∗(t)

B∗(t)

}

dN i(t),

where W i = (Zi, Xi, Zi, Xi)
T , N i(t) = I(Ti ≤ t, δi = 0),

A∗(t) =
n∑

i=1

W ie
θT W iI(Ti ≥ t)

and

B∗(t) =
n∑

i=1

eθTW iI(Ti ≥ t)

Since part of W i is unavailable for the censored individuals, we modify A∗ and B∗ to

Â(t) =
n∑

i=1

W ie
θT W i

I(Ti ≥ t, δ > 0)

K̂c(Ti−)

and

B̂(t) =
n∑

i=1

eθT W i
I(Ti ≥ t, δi > 0)

K̂c(Ti−)

which are computable from the observed data, where K̂c(u) = exp{−Λ̂c(u|W )}. Following

earlier work by Satten and Datta (2004) we will advocate using Aalen’s linear model for

the censoring hazard λc(.|W ) which would yield the values for K̂c. More details on using

Aalen’s linear hazard model for estimating λc(.|W ) appears in Section 3.4.2. We will derive

a martingale representation for the resulting approximate score function in terms of the

martingales corresponding to both failure and censoring event counting processes following

approaches as in Satten, Datta and Robins (2001) and Satten and Datta (2004).
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4.3 Construction of tests for current status data

A great deal of recent interest focuses on nonparametric estimation based on current status

data, a more severe form of interval censored data. We will consider the same testing problem

with current status data. This type of incomplete data occurs when individuals are not mon-

itored constantly. Current status data represents the status of individuals who are inspected

only at a single random inspection time, i.e. a single snapshot per individual. In the context

of current status data, the data for the ith individual is the pair {Ci, s(Ci)}, where Ci is the

inspection time and s(Ci) represents one of the possibilities: the person is still alive at time

Ci or the person is dead due to cause j, say. Such data sets have been analyzed very recently

by Jewell et al. (2003), Ding and Wang (2004), Datta and Sundaram (2006), etc.

Important research problems in this direction are (a) construction of a version of the

log-rank test for testing equality of survival curves for various failure types that can be

computed from current status data and (b) establishing asymptotic distributions of the test

and conduct power study. In order to achieve this, we will replace the various risk processes

Yj(t) and the counting processes Nj(t) by their nonparametrically estimated conditional

expectations given the current status data {Ci, s(Ci), 1 ≤ i ≤ n}. The following construction

is adapted from Datta and Sundaram (2006).

Denote by Uj the (unobserved) transition time of an individual failing due to cause j

(= ∞ if this individual fails due to a cause other than j). Let N∗
j (t) denote the usual

counting process counting the number of type j failures in [0, t] with the complete data. By

the law of large numbers, we have

n−1N∗
j (t)

P−→ P{Uj ≤ t}

Consider the event that an individual has failed due to type j by time C denoted by (Uj ≤ C).

Now, I(Uj ≤ C) is computable from the available current status information since I(Uj ≤
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C) = I{s(C) = j}. Then, for any t ≥ 0,

E(I(Uj ≤ C)|C = t) = P{Uj ≤ t}.

Now, we can estimate nP{Ujj′ ≤ t} by a nonparametric kernel regression estimator

N̂j(t) =
n∑

i=1

I(Uj,i ≤ Ci)Kh(Ci − t)

ĝC(t)
(4.3.1)

with

ĝC(t) = n−1
n∑

i=1

Kh(Ci − t) (4.3.2)

where K is a probability density (kernel) and h = h(n) → 0 be a sequence of bandwidths

and Kh = h−1K(./h). Since P{Uj ≤ t} is monotonic in t, n−1N̂j(.) can be constructed by

isotonic regression of I(Uj ≤ t) on C, based on the pairs (Ci, I(Uj,i ≤ Ci)) using PAV (pooled

adjacent violators) algorithm (Barlow et al. 1972). Monotonocity is maintained through a

combination of isotonic regression followed by kernel smoothing using a log-concave density

(Mukerjee, 1988). Let N̂P
j (.) be the estimate obtained by standard PAV extended to the set

of non negative reals in the usual way

N̂P
j (t) =







NP
j (C(1)), if t ≤ C(1)

NP
j (C(i)), if C(i) ≤ t ≤ C(i+1); 1 ≤ i ≤ n,

NP
j (C(n)), if t ≥ C(n)

(4.3.3)

Let K > 0 be a differentiable, log-concave density and h = h(n) > 0 ↓ 0 be a bandwidth

sequence. Our final estimator of Nj(.) becomes

N̂j(t) = n−1
n∑

i=1

N̂P
j (Ci)Kh(Ci − t)

ĝC(t)
(4.3.4)

where Kh and ĝC (using the same K) are described before. Consistency of this class of

regression estimators was established in Mukerjee (1988). Construction of the at-risk process

is similar

Ŷj(t) =
n∑

i=1

I(si(Ci) = j)Kh(Ci − t)

ĝC(t)
. (4.3.5)
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Once again, we will combine this with the PAV estimators. Similar to Chapter 2, we can

now introduce a family of log-rank tests based on the above choices of N̂ and Ŷ . This

construction of a test statistic for current status data will once again involve an extremely

complicated structure for the variance-covariance matrix of the test process. Due to the

presence of smoothing, a smoothed version of resampling based approximation needs to be

introduced for its estimation. The exact relationship between the two will emerge from a

careful asymptotic analysis of the bootstrapped test process which will be part of the future

research.

4.4 Linking gene expression profiles to survival times

The recent development of DNA microarray technology allows simultaneous measurements of

the expression levels of thousands of genes and enhanced the impetus to explore the genetic

basis of patients’ clinical outcomes. Newer statistical methods are being developed for relating

gene expression profiles to censored survival data such as time to cancer recurrence or death.

From the statistical point of view, one challenge is that the time to cancer recurrence or

death is often right censored because during the course of follow ups, some patients may

still be cancer-free or alive and therefore techniques from survival analysis will be needed.

Perhaps, a greater challenge for the microarray gene expression data sets is that the sample

size of tissues or cell lines are usually very small compared to the number of genes from

expression arrays.

Two approaches happen to be common in this context. In order to increase the sample

size, one can first cluster tumor samples into several clusters based on gene expression pat-

terns across many genes and use Kaplan-Meier curves or log-rank tests to test whether there

is a difference in survival times among different tumor groups. But here the phenotype infor-

mation is completely ignored during clustering resulting in loss of efficiency. Otherwise, one
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can cluster genes first based on their expression on different samples and use the sample aver-

ages in a Cox model for survival outcome. Both methods are clustering dependent. Hastie et

al. (2001) proposed a tree harvesting method where a stepwise selection procedure is used

to select genes (or cluster of genes) that are related to the phenotypes using Cox propor-

tional hazards. Nguyen and Rocke (2002a) used the ‘partial least square’ (PLS) technique

for dimension reductions in the framework of Cox models by using residuals. They also used

the partial least squares technique for tumor and multi-class cancer classifications using gene

expression data (Nguyen and Rocke, 2002b; 2002c). Their method is limited to linear func-

tions of gene expression levels. In addition, use of residuals for parameter estimation in the

Cox model is not well established in survival analysis literature since there are many different

ways of defining residuals and hence the justification of their PLS algorithm is questionable.

We plan to consider a comparative study of various regression models to predict survival

using the gene expression values as covariates along with various regression procedures to

handle the ‘large p, small n’ problems. Recently, Gui and Li (2005) considered extension

of LASSO to Cox’s regression model. Datta, Le-Rademacher and Datta (2005) considered

AFT modeling using PLS and LASSO and compared the two methods under a variety of

simulation settings.For details regarding LASSO, see Efron et al. (2004). Li and Li (2004)

applied sliced inverse regression (SIR), a dimension reduction technique to the analysis of

censored microarray survival data. So far, no one has carried out a comparison of two different

regression models. Specifically, we plan to compare the predictive values of the Cox’s model

with LASSO versus AFT model with LASSO. In a simulation setting, the performances of

these models will be studied both under the correct models as well as incorrect models of

data generation. We also plan to undertake a comparative analysis of some publicly available

microarray-survival data such as the Michigan Cancer Study data. (Beer et al. 2002) using

data based cross validation approach.
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