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Abstract

Let g be a Lie superalgebra over the field C of complex numbers. Let t be a Lie sub-

superalgebra of g. In this thesis, we determine necessary conditions to identify the relative

cohomology ring H•(g, t; C) with a ring of invariants.

In this work we calculate the cohomology rings of the Lie superalgebras W (n) and S̄(n)

relative to degree zero components W (n)0 and S̄(n)0, respectively. The crucial point is that

these rings are finitely generated polynomial rings. Finite generation of these cohomology

rings allows one to define support varieties for finite dimensional W (n) (resp. S̄(n))-modules

which are completely reducible over W (n)0 (resp. over S̄(n)0). We calculate the support

varieties of all simple modules in these categories. Remarkably our computations coincide

with the prior notion of atypicality for Cartan type Lie superalgebras due to Serganova. We

also present new results on the realizability of support varieties which hold for both classical

and Cartan type Lie superalgebras.
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Chapter 1

Introduction

1.1 History

Representation theory is concerned with realizing a group or an algebra as a collection of

matrices. In this way, one can understand the way the group or algebra acts linearly on

a vector space, where the action respects the operations in the group or algebra. In the

process, one is able to understand more completely the structure of the group or algebra.

Representation theory has found applications in many areas, particularly where symmetry

arises. These areas include physics, chemistry and mathematics itself.

Suppose that g is a finite dimensional Lie superalgebra over the field C of complex

numbers. If V is a superspace on which there is an action of g which preserves the Z2-

grading and respects the bracket in g, then V is called a g-module. One often discusses

representations of g via the equivalent language of g-modules.

A Lie superalgebra g = g0̄⊕g1̄ is called classical if there is a connected reductive algebraic

group G0̄ such that Lie(G0̄) = g0̄ and an action of G0̄ on g1̄ which differentiates to the

adjoint action of g0̄ on g1̄. In [BKN1] Boe, Kujawa and Nakano initiated a study of the

representation theory of classical Lie superalgebras via a cohomological approach. Let us

first summarize what is known for the classical Lie superalgebras as given in [BKN1, BKN2].

The first fundamental result is that the relative cohomology ring H•(g, g0̄; C) is a finitely

generated commutative ring. Note that this result crucially depends on the reductivity of g0̄.

By applying invariant theory results in [LR] and [DK], it was shown under mild conditions

that a natural “detecting” subalgebra e = e0̄ ⊕ e1̄ of g arises such that the restriction map
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in cohomology induces an isomorphism

R := H•(g, g0̄; C) ∼= H•(e, e0̄; C)W ,

where W is a finite pseudoreflection group. The vector space dimension of the degree 1̄ part

of the detecting subalgebra and the Krull dimension of R both coincide with the combina-

torial notion of the defect of g previously introduced by Kac and Wakimoto [KW]. The fact

that R is finitely generated can be employed to define the cohomological support varieties

V(e,e0̄)(M) and V(g,g0̄)(M) for any finite dimensional g-module M . The variety V(e,e0̄)(M) can

be identified as a certain subvariety of e1̄ using a rank variety description [BKN1, Theorem

6.3.2]. For the Lie superalgebra g = gl(m|n) the support varieties of all finite dimensional

simple modules were computed in [BKN2]. A remarkable consequence of this calculation is

that the dimensions of the support varieties of a given simple module (over g or e) coincide

with the combinatorially defined degree of atypicality of the highest weight as defined by

Kac and Serganova.

Duflo and Serganova introduce associated varieties for finite dimensional modules of a

Lie superalgebra in [DS]. It remains unclear what connection, if any, exists between their

work and the cohomological support varieties considered in [BKN1, BKN2] and here.

1.2 Outline of the dissertation

Chapter 2 is concerned with preliminaries. In Section 2.1 we recall the notions of Lie super-

algebra, classical Lie superalgebra, and PBW Theorem. In Sections 2.2 and 2.3 we review

basic properties of representation theory for Lie superalgebras, we also record some facts

about the representation theory of rank one Lie superalgebras. In Section 2.4 we recall Kac

classification of simple Lie superalgebras over the complex numbers and we briefly define

these algebras. In the remaining sections of this chapter we discuss the representation theory

and atypicality for Lie superalgebras W (n) and S̄(n).

Chapter 3 is concerned with cohomology for Lie superalgebras. In this chapter we review

the relative cohomology for Lie superalgebras and record the properties we are going to need
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in the rest. After that we give necessary conditions to identify relative cohomology ring with

a ring of invariants and discuss when the ring of invariants will be finitely generated. We

also introduce the notion of a detecting subalgebra for a Lie superalgebra.

Chapter 4 is concerned with varieties for Lie superalgebras. Here we associate varieties

which are called support varieties to modules for Lie superalgebras. These varieties are affine

conical varieties. We prove a theorem which is called realization theorem in the theory of

support varieties. This theorem basically says that we can realize any conical subvariety as

variety of some module.

The real substance of this work appears in Chapter 5. In this chapter we give the first

application of the abstract theory defined in Chapters 3 and 4. Here we first identify the

relative cohomology ring for the simple Cartan Lie superalgebra g = W (n) relative to degree

zero component W (n)0 in the Z-grading. This has been done by using detailed representation

theory of g0 = W (n)0 which is isomorphic to gl(n) as a Lie algebra. After identification of the

relative cohomology ring H•(g, g0; C) with a ring of invariants the next step is to compute the

ring of invariants. This has been done by applying invariant theoretic results due to Luna and

Richardson. In particular we show that H•(g, g0; C) is a polynomial ring in n−1 variables. We

also prove that for any finite dimensional g-module M , H•(g, g0;M) is a finitely generated

H•(g, g0; C) module. By using this finite generation result we define support varieties for

finite dimensional modules. With the aid of results of Serganova on representations of g we

compute support varieties of all finite dimensional g modules which are completely reducible

over g0. We also show that the realization theorem proven in Chapter 4 holds for g.

In Chapter 6 we give a second application. Here following the work we have done for

W (n) we compute the relative cohomology ring for the Lie superalgebra g = S̄(n) relative

to the degree zero component g = S̄(n)0 which is isomorphic to gl(n) as a Lie algebra. In

particular we show that H•(g, g0; C) is a polynomial ring with n−2 variables. By using finite

generation theorem we defined support varieties for finite dimensional g-modules. By using

the fact that a simple module of W (n) is typical if and only if its superdmension is zero and
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results of Serganova on representations of g, we were able to compute support varieties of

all finite dimensional simple modules which are completely reducible over g0. We also show

that the realization theorem proven in Chapter 4 holds for g.

In Chapter 7 we discuss the connections between combinatorial notions defect and atyp-

icality defined for only basic classical Lie superalgebras introduced by Kac and Serganova

and our cohomology and support variety results for Lie superalgebras. Our cohomological

calculations for W (n) and S̄(n) show that we can extend the notions of defect and atypicality

to W (n) and S̄(n). New definitions of defect and atypicality agree with the earlier definitions

for basic classical Lie superalgebras and also the computations we have done show that the

Kac-Wakimoto conjecture holds for W (n) and S̄(n).

Finally, in Chapter 8, we discuss the connections between the representation theory of

Lie superalgebras and our support variety constructions. We present a conjecture relating

representation type for a Lie superalgebra to our support variety construction.



Chapter 2

Preliminaries

In this chapter we survey some necessary definitions and set some notation which will be

used throughout. Most of the arguments and details can be found in [Kac, Sch].

2.1 Lie Superalgebras

In this section, we introduce Lie superalgebras and the properties of them we will need in

the subsequent chapters.

Lie superalgebras are a topic of interest in physics in the context of supersymmetry [CNS].

Physicists call them Z2-graded Lie algebras but they are not Lie algebras. Lie superalgebras

occur in several cohomology theories, for example in deformation theory [CNS, MM].

In this thesis we will work over the field C of complex numbers.

Definition 2.1.1. A superspace is a Z2-graded vector space and, given a superspace V =

V0̄ ⊕ V1̄ and a homogeneous vector v ∈ V , we write v ∈ Z2 for the parity (or degree) of v.

Elements of V0̄ (resp. V1̄) are called even (resp. odd).

Example 2.1.2. If V = V0̄ ⊕ V1̄ and W = W0̄ ⊕W1̄ are two superspaces, then the space

HomC(V,W ) is naturally Z2-graded by f ∈ HomC(V,W )r (r ∈ Z2) if f(Vs) ⊆ Ws+r for all

s ∈ Z2.

Definition 2.1.3. A superalgebra is a Z2-graded, unital, associative algebra A = A0̄ ⊕ A1̄

which satisfies ArAs ⊆ Ar+s for all r, s ∈ Z2.

Example 2.1.4. Let Λ(n) be the exterior algebra in n variables ξ1, . . . , ξn. Then Λ(n)

becomes a superalgebra if one sets ξi = 1, for i = 1, . . . , n.

5
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Definition 2.1.5. A Lie superalgebra is a finite dimensional superspace g = g0̄ ⊕ g1̄ with a

bilinear map [−,−] : g× g→ g satisfying

(1) [gr, gs] ⊆ gr+s,

(2) [x, y] = −(−1)x y[y, x],

(3) (−1)x z[x, [y, z]] + (−1)x y[y, [z, x]] + (−1)y z[z, [x, y]] = 0,

for all r, s ∈ Z2 and homogeneous x, y, z ∈ g.

Observe that g0̄ is a Lie algebra and g1̄ is a g0̄-module under the adjoint action.

Example 2.1.6. Given any superalgebra A = A0̄⊕A1̄ one can define the super commutator

on homogeneous elements by

[a, b] = ab− (−1)a bba

and then extending by linearity to all elements. The algebra A together with the super

commutator then becomes a Lie superalgebra.

Example 2.1.7. Let V = V0̄⊕V1̄ be a Z2 graded vector space. Then the associative algebra

gl(V ) of endomorphisms of V has a natural Z2-grading as follows:

gl(V )0̄ = {f ∈ gl(V ) | f(Vr̄) ⊆ Vr̄, r̄ ∈ Z2},

gl(V )1̄ = {f ∈ gl(V ) | f(Vr̄) ⊆ Vr+1, r ∈ Z2}.

The algebra gl(V ) becomes a Lie superalgebra with the super commutator bracket.

Definition 2.1.8. A Lie superalgebra g = g0̄ ⊕ g1̄ is called classical if there is a connected

reductive algebraic group G0̄ such that Lie(G0̄) = g0̄ and an action of G0̄ on g1̄ which

differentiates to the adjoint action of g0̄ on g1̄.

Example 2.1.9. Let g = gl(m|n) be the set of all (m + n) × (m + n) matrices over the

complex numbers. If we write Ei,j (1 ≤ i, j ≤ m + n) for the matrix unit with a one in
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the (i, j) position, then the Z2-grading is obtained by setting Ei,j = 0̄ if 1 ≤ i, j ≤ m or

m+ 1 ≤ i, j ≤ m+ n, and Ei,j = 1̄, otherwise. That is, let

g0̄ =

 Am×m O

O Bn×n

 and g1̄ =

 O Cm×n

Dn×m O

 .

The bracket is given by super commutator,

[X, Y ] = XY − (−1)X Y Y X,

for homogeneous X, Y ∈ gl(m|n). Then gl(m|n) is a classical Lie superalgebra with g0̄
∼=

gl(m)× gl(n).

A superspace a = a0̄⊕a1̄ is called a subalgebra of g = g0̄⊕g1̄ if a0̄ = a∩g0̄, a1̄ = a∩g1̄ and

a is closed under the bracket. A subalgebra I of a Lie superalgebra g is an ideal if [I, g] ⊆ I.

Homomorphisms (isomorphisms, automorphisms) of Lie superalgebras are always assumed

to be consistent with the Z2-grading, i.e., they are homogeneous linear mappings of degree

0.

Definition 2.1.10. A universal enveloping superalgebra of the Lie superalgebra g is a super-

algebra U(g) together with a linear map i : g→ U(g) satisfying

i([x, y]) = xy − (−1)x yyx (2.1)

and such that for any other superalgebra A and any linear map i′ : g → A satisfying (2.1),

there is a unique homomorphism of superalgebras f : U(g) → A such that f ◦ i = i′ and

f(1) = 1.

We can construct U(g) as follows: Let T (g) be the tensor superalgebra over the space g

with the induced Z2-grading, and I be the ideal of T (g) generated by elements of the form

a⊗ b− (−1)a bb⊗ a− [a, b]. Set U(g) = T (g)/I. One can construct a basis for U(g) using the

following result.
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Theorem 2.1.11. (PBW Theorem) Let g = g0̄ ⊕ g1̄ be a Lie superalgebra, a1, . . . , am be

an ordered basis of g0̄ and b1, . . . , bn be a basis of g1̄. Then the vectors of the form

ai11 . . . a
im
m b

j1
1 . . . b

jn
n ik ∈ Z+ ∀ 1 ≤ k ≤ m, 0 ≤ jl ≤ 1 ∀ 1 ≤ l ≤ n

form a basis for U(g).

2.2 Representation theory of Lie superalgebras

Definition 2.2.1. Let V = V0̄ ⊕ V1̄ be a Z2 graded vector spcae. A representation ρ of a

Lie superalgebra g = g0̄ ⊕ g1̄ in V is a Lie superalgebra homomorphism ρ : g→ gl(V ). The

space V is called a g-module.

We have that V is a U(g)-module if and only if V is a g-module. A simple g-module is

a g-module V 6= 0 whose only submodules are V and 0.

Definition 2.2.2. Let M be a finite dimensional g-module. The superdimension of M is

defined to be sdimM = dimM0̄ − dimM1̄.

Example 2.2.3. If g = g0̄ ⊕ g1̄ is a Lie superalgebra , we have

ad : g→ gl(g)

defined by

adx(y) = [x, y].

One can easily check that ad is a Lie superalgebra homomorphism and is, therefore, a rep-

resentation of g, called the adjoint representation.

The restriction of ad to g0̄ is a representation of g0̄ in the vector space g. Since the

subspaces g0̄ and g1̄ are invariant under this representation the adjoint representation of the

Lie superalgebra induces a representation of the Lie algebra g0̄ in the odd space g1̄.

Definition 2.2.4. A module M is called finitely semisimple if it is isomorphic to a direct

sum of finite dimensional simple submodules.
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Lemma 2.2.5. (Schur’s Lemma) Let g be a Lie superalgebra and let V = V0̄ ⊕ V1̄ be a

finite dimensional simple g-module. Then

Homg(V, V )0̄ = C.Id, Homg(V, V )1̄ = C.u

where either u = 0 or else u2 = Id.

2.3 Rank one Lie superalgebras

The definition of rank varieties depends on restricting to rank one Lie superalgebras. Here we

summarize some basic results on finite dimensional representations of these Lie superalgebras.

As a background source we refer the reader to [BKN1, Section 5.2].

Let s be a Lie superalgebra generated by a single odd dimensional vector, x. There are

the following two possibilities for s.

Case I. We have [x, x] = 0. Then dim(s0̄) = 0, dim(s1̄) = 1, and s is a one dimensional

abelian Lie superalgebra concentrated in degree 1̄.

Case II. We have h := [x, x] 6= 0. Then dim(s0̄) = 1, dim(s1̄) = 1, and s is isomorphic to

the Lie superalgebra q(1) (see [Kac]).

Proposition 2.3.1. The following statements about the category of finite dimensional s-

modules hold.

(a) If s is as in Case I, then

(i) the trivial module L(0) := C is the only simple module.

(ii) the projective cover of L(0) is P (0) := U(s).

(iii) the module P (0) is self dual, hence injective.

(iv) the set {P (0), L(0)} is a complete set of indecomposable modules.

(b) Let s be as in Case II. Given λ ∈ C, let P (λ) := U(s)⊗U(s0̄) Cλ, where Cλ denotes C

viewed as an s0̄-module concentrated in degree 0̄ and h acts by the scalar λ. Let L(λ)

denote the head of P (λ).
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(i) The set {L(λ) | λ ∈ C} is a complete set of simple s-modules.

(ii) For all λ ∈ C, P (λ) is the projective cover of L(λ).

(iii) If λ 6= 0, then L(λ) = P (λ).

(iv) For all λ ∈ C, P (λ) is dual to some P (µ), hence injective.

(v) The set {L(λ) | λ ∈ C} ∪ {P (0)} is a complete set of indecomposable modules.

We remark that in both cases the modules P (λ) always satisfy

dim(P (λ)0̄) = dim(P (λ)1̄) = 1.

In particular, P (λ) is always two dimensional.

2.4 Simple Lie superalgebras

A Lie superalgebra g is said to be simple if its only ideals are {0} and g. Simple Lie superal-

gebras were classified in the 1970s by V. Kac. These superalgebras can be divided into three

groups.

1. Basic classical Lie superalgebras, i.e., Lie superalgebras which can be determined by

a Cartan matrix. These superalgebras have an invariant form and Cartan involution.

There are two families of such algebras sl(m|n) (factored by center when m = n)

and osp(m|n). The Lie superalgebra osp(4|2) has a one-parameter deformation, called

D(α). There are also two exceptional Lie superalgebras G3 and F4.

2. Strange Lie superalgebras Q(n) and P (n), the former consists of operators commuting

with an odd nondegenerate operator, the latter consists of operators preserving a non-

degenerate odd symmetric form.

3. Cartan Lie superalgebras W (n), S(n), S̃(n) and H(n), i.e., superalgebras of vector fields

on a supermanifold of pure odd dimension and its simple subalgebras.
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2.5 Representation theory and atypicality for W (n) and S̄(n)

In this section we briefly define Lie superalgebras W (n) and S̄(n). For detailed definitions

we refer the reader to Chapters 5 and 6, respectively.

Let Λ(n) denote the exterior algebra on n odd generators ξ1, . . . , ξn. Then W (n) is the

Lie superalgebra of derivations of Λ(n). An element D ∈ W (n) can be written in the form∑n
i=1 fi∂i, where fi ∈ Λ(n) and ∂i is the derivation defined by

∂i(ξj) = δij.

The Z-grading on Λ(n) induces a Z-grading on W (n) where ∂i has degree −1, so that

W (n) = W (n)−1 ⊕W (n)0 ⊕ · · · ⊕W (n)n−1

and W (n)0 is isomorphic to gl(n).

The superalgebra S(n) is the subalgebra of W (n) consisting of all elements D ∈ W (n)

such that div(D) = 0, where

div(
n∑
i=1

fi∂i) =
n∑
i=1

∂i(fi).

The superalgebra S(n) has a Z-grading induced by the grading of W (n)

S(n) = S(n)−1 ⊕ S(n)0 ⊕ · · · ⊕ S(n)n−2

and S(n)0 is isomorphic to sl(n).

Let E = Σn
i=1ξi∂i. In order to keep track of the Z-grading we will attach E to S(n) and

consider the subalgebra S̄(n) = S(n)⊕ CE of W (n).

Let g = W (n) or S̄(n) with a Z-grading

g = g−1 ⊕ g0 ⊕ · · · ⊕ gs.

Moreover, let g+ = g1 ⊕ · · · ⊕ gs and g− = g−1 so that g has a decomposition

g = g− ⊕ g0 ⊕ g+.

Throughout C(g,g0) will denote the category of g-modules which are finitely semisimple as

g0-module.
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2.6 Kac modules and Finite Dimensional Simple modules

Let g = W (n) or S̄(n). A Cartan subalgebra h of g coincides with a Cartan subalgebra of

g0. Fix a maximal torus h ⊆ g0 and a Borel subalgebra b0 of g0 . Let X+
0 ⊂ h∗ denote

the parametrizing set of highest weights for the simple finite dimensional g0-modules with

respect to the pair (h, b0) and let L0(λ) denote the simple finite dimensional g0-module with

highest weight λ ∈ X+
0 . We view L0(λ) as a g0-module concentrated in degree 0̄.

The Kac module K(λ) is the induced representation of g,

K(λ) = U(g)⊗U(g0⊕g+) L0(λ),

where L0(λ) is viewed as a g0⊕g+ via inflation through the canonical quotient map g0⊕g+ →

g0. By the PBW theorem for Lie superalgebras the module K(λ) is a finite dimensional

indecomposable object in C(g,g0). With respect to the choice of Borel subalgebra b0⊕ g+ ⊆ g

one has a dominance order on weights. With respect to this ordering K(λ) has highest weight

λ and, therefore, a unique simple quotient which we denote by L(λ). Conversely, every finite

dimensional simple module appears as the head of some Kac module (cf. [Ser, Theorem 3.1]).

From our discussion above one observes that the set

{L(λ) | λ ∈ X+
0 }

is a complete irredundant collection of simple finite dimensional g-modules.

2.7 Root Decomposition

Let g = W (n) or S̄(n). Recall from the previous section that we fixed a maximal torus

h ⊆ g0 ⊆ g. With respect to this choice we have a root decomposition

g = h⊕
⊕
α∈Φ

gα.

Many properties of root decompositions for semisimple Lie algebras do not hold in our case.

For example, a root can have multiplicity bigger than one, and α ∈ Φ does not imply that
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−α ∈ Φ. Still any root space gα is concentrated in either degree 0̄ or degree 1̄ and in this

way one can define a natural parity function on roots.

Let us describe the roots. If g = W (n), choose the standard basis ε1, . . . , εn of h∗ where

εi(ξj∂j) = δi,j for all 1 ≤ i, j ≤ n. Then the root system of g is the set

Φ = {εi1 + · · ·+ εik − εj | 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j ≤ n}.

If g = S̄(n), then the root system is the set

Φ = {εi1 + · · ·+ εik − εj | 1 ≤ i1 < · · · < ik < n, 1 ≤ j ≤ n}.

In either case the set of simple roots for g is

4 = {ε1 − ε2, . . . , εn−1 − εn}.

2.8 Typical and Atypical Weights

We consider Borel subalgebras b of g containing b0. Among such subalgebras we distinguish

bmax = b0 ⊕ g+ and bmin = b0 ⊕ g−. Let b denote either bmax or bmin. Then λ ∈ h∗ defines a

one dimensional representation of b which we denote by Cλ. The induced module Mb(λ) =

U(g) ⊗U(b) Cλ has a unique proper maximal submodule. We denote the unique irreducible

quotient by Lb(λ). In particular, if λ ∈ X+
0 , then L(λ) ∼= Lbmax(λ).

Denote by λ′ the weight such that Lbmin(λ′) ∼= L(λ). Let Φ(g−1) be the set of roots which

lie in g−1. By Serganova [Ser, Lemma 5.1],

λ′ = λ+
∑

α∈Φ(g−1)

α (2.2)

for a Zariski open set of λ ∈ h∗. Following Serganova, we call λ ∈ h∗ typical if (2.2) holds for

λ and otherwise λ is atypical. Serganova determines a necessary and sufficient combinatorial

condition for λ to be typical. Namely, by [Ser, Lemma 5.3] one has that the set of atypical

weights Ω for g = W (n) is

Ω = {aεi + εi+1 + · · ·+ εn ∈ h∗ | a ∈ C, 1 ≤ i ≤ n}.
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If g = S̄(n), then

Ω = {aε1 + . . . .+ aεi−1 + bεi + (a+ 1)εi+1 + · · ·+ (a+ 1)εn | a, b ∈ C, 1 ≤ i ≤ n}.



Chapter 3

Cohomology

One of our goals is to develop an algebro-geometric theory which unifies the representation

and cohomology theories of Lie superalgebras. For this purpose, it is important to use the

relative cohomology rather than ordinary Lie superalgebra cohomology. The latter is usually

non-zero in only finitely many degrees [Fu] and this will not capture much information about

the representation theory for finite dimensional Lie superalgebras. Relative cohomology for

Lie algebras was first defined by Hochschild [Hoc] and the super case is considered in Fuks

[Fu]. The main theme here is that once one accounts for the Z2-grading, results from the

purely even case hold here as well.

3.1 Relative Cohomology

In this section we outline basic definitions and results for relative cohomology. Let R be a

superalgebra and S be a subsuperalgebra. In particular we asume Sr = Rr ∩ S for r ∈ Z2.

Let

· · · →Mi−1
fi−1−→Mi

fi→Mi+1 → . . .

be a sequence of R-modules. We say this sequence is (R, S)-exact if it is exact as a sequence

of R-modules and if, when viewed as a sequence of S-modules, Kerfi is a direct summand

of Mi for all i.

An R-module P is (R, S)-projective if given any (R, S)-exact sequence

0→M1
f→M2

g→M3 → 0,

15
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and R-module homomorphism h : P → M3 there is an R-homomorphism h̃ : P → M2

satisfying g ◦ h̃ = h.

In particular, note that if P is a projective module, then it is automatically (R, S)-

projective. Also since g is assumed to be even, if h is homogeneous, then we can choose h̃

to be homogeneous of the same degree as h. More generally, if we write h = h0 + h1 where

hr ∈ HomR(P,M3)r (r = 0, 1), then we can lift each hr and h̃0 + h̃1 is a lift of h.

An (R, S)-projective resolution of an R-module is an (R, S)-exact sequence

· · · δ2→ P1
δ1→ P0

δ0→M → 0,

where each Pi is an (R, S)-projective module. We remind the reader that implicit in the

definition is the fact that maps δi are all assumed to be even.

The following lemma is proven as in [Kum].

Lemma 3.1.1. Let R be a superalgebra and S be a subsuperalgebra of R.

(a) If M is any S-module, then R⊗SM is an (R, S)-projective R-module. The Z2-grading

on R⊗S M is given in the usual way by:

(R⊗S M)i =
⊕
k+l=i
k,l∈Z2

Rk ⊗S Ml.

(b) Any R-module admits an (R, S)-projective resolution, namely,

· · · δ2→ R⊗S Ker δ0
δ1→ R⊗S M

δ0→M → 0. (3.1)

Here δi is the “multiplication” map R⊗SN → N given by r⊗n 7→ rn for any R-module

N .

Note that since the multiplication map is even, its kernel is an R-submodule of the domain

and, hence, we can recursively define the above sequence as indicated. Given an R-module

M with (R, S)-projective resolution P• →M , apply the functor HomR(−, N) and set

Exti(R,S)(M,N) = Hi(HomR(P•, N)).
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One can show that Ext•(R,S)(M,N) can be defined with the dually defined (R, S)-injective

resolutions, and it is functorial in both arguments and well defined. It is of interest to track

the Z2-grading. As we remarked earlier, HomR(Pi, N) is naturally Z2-graded and since δi

was assumed to be even the induced homomorphism HomR(Pi−1, N)→ HomR(Pi, N) is also

even. Consequently, Exti(R,S)(M,N) inherits a Z2-grading.

3.2 Relative Cohomology for Lie superalgebras

Let g be a Lie superalgebra, t ⊆ g be a Lie subsuperalgebra, and M be a g-module. For

p ≥ 0 set

Cp(g;M) = HomC(Λp
s(g),M),

where Λp
s(g) is the super wedge product. That is, Λp

s(g) is the p-fold tensor product of g

modulo the g-submodule generated by elements of the form

x1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xp + (−1)xk xk+1x1 ⊗ · · · ⊗ xk+1 ⊗ xk ⊗ · · · ⊗ xp

for homogeneous x1, . . . , xp ∈ g. Therefore, xk, xk+1 skew commute unless both are odd in

which case they commute.

Let dp : Cp(g;M)→ Cp+1(g;M) be given by the formula:

dp(φ)(x1 ∧ · · · ∧ xp+1) =
∑
i<j

(−1)σi,j(x1,...,xp)φ([xi, xj] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xp+1)

+
∑
i

(−1)γ(x1,...,xp,φ)xiφ(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xp+1), (3.2)

where x1, . . . , xp+1 and φ are assumed to be homogeneous, and

σi,j(x1, . . . , xp) := i+ j + xi(x1 + · · ·+ xi−1) + xj(x1 + · · ·+ xj−1 + xi),

γi(x1, . . . , xp, φ) := i+ 1 + xi(x1 + · · ·+ xi−1 + φ).

Ordinary Lie superalgebra cohomology is then defined as

Hp(g;M) = Ker dp/Im dp−1.
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The relative version of the above construction is given as follows. Define

Cp(g, t;M) = Homt(Λ
p
s(g/t),M).

Then the map dp induces a well defined map dp : Cp(g, t;M)→ Cp+1(g, t;M) and we define

Hp(g, t;M) = Ker dp/Im dp−1.

3.3 Relating Cohomology Theories

Let R be a superalgebra and S a subsuperalgebra. Given R-modules M and N one can define

cohomology with respect to the pair (R, S). In particular, if t is a Lie subsuperalgebra of g

then one can define cohomology for the pair (U(g), U(t)). The following proposition relates

the relative cohomology with the cohomology theories of (U(g), U(t)) and C(g,t), where C(g,t)

denotes the category of g-modules which are finitely semisimple as t-modules.

Proposition 3.3.1. Let t be a Lie subsuperalgebra of g, and M,N be g-modules in C = C(g,t)

and assume that g is finitely semisimple as a t-module under the adjoint action. Then,

(a) Ext•(U(g),U(t))(M,N) ∼= Ext•(U(g),U(t))(C,HomC(M,N)) ∼= H•(g, t; HomC(M,N));

(b) Ext•C(M,N) ∼= Ext•(U(g),U(t))(M,N).

Proof. (a) The proof given in [Kum], also see [BKN1, Lemma 2.3.1], can be used to prove the

statement. (b) According to [BKN1, Proposition 2.4.1], if L is a finite-dimensional simple

t-module and L̂ = U(g)⊗U(t) L then L̂ is (U(g), U(t))-projective and a projective module in

the category C. Now one can apply [BKN1, Corollary 2.4.2] with D = C.

3.4 Relating cohomology rings to invariants

In this section we give necessary conditions to identify the relative cohomology ring H•(g, t; C)

with a ring of invariants.
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Theorem 3.4.1. Let t be a Lie subsuperalgebra of g and u ⊆ g be a t-module. Then H•(g, t; C)

is isomorphic to the ring of invariants Λ•s(u
∗)t if

(a) Homt(Λ
p
s(g/t),C) ∼= Homt(Λ

p
s(u),C) for all p ≥ 0, and

(b) [u, u] ⊆ t.

Proof. By (a) one has

Cp(g, t; C) = Homt(Λ
p
s(g/t),C)

∼= Homt(Λ
p
s(u),C)

∼= Λp
s (u∗)t .

Now observe that in this case the differential dp in (3.2) is identically zero. Namely, in the

first sum of (3.2) each [xi, xj] is zero in the quotient g/t since [u, u] ⊆ t and the terms

in the second sum of (3.2) are zero since here M is the trivial module. Consequently, the

cohomology is simply the cochains themselves. Thus

Hp(g, t; C) ∼= Λp
s((g/t)

∗)t ∼= Λp
s(u
∗)t.

Example 3.4.2. Suppose that t = g0̄. Since super wedge product is symmetric product on

odd spaces and [g1̄, g1̄] ⊆ g0̄ we have the following important isomorphism

H•(g, g0̄; C) ∼= S(g∗1̄)g0̄ .

Corollary 3.4.3. Maintain the hypotheses of Theorem 3.4.1 and assume in addition that t is

a reductive Lie algebra. Let G be the connected reductive algebraic group such that Lie(G) = t.

Let M be a finite dimensional g-module. Then,

(a) The superalgebra H•(g, t; C) is finitely generated as a ring.

(b) H•(g, t;M) is finitely generated as an H•(g, t; C)-module.
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Proof. (a) Since H•(g, t; C) ∼= Λs(u
∗)t = Λs(u

∗)G and G is reductive this statement follows

from the classical invariant theory result of Hilbert [PV, Theorem 3.6].

(b) Observe that

HomC(Λ•s(g/t),M) ∼= Λ•s((g/t)
∗)⊗M

is finitely generated as a Λ•s((g/t)
∗)-module since M is finite dimensional. One can

invoke [PV, Theorem 3.25] to see that

HomC(Λ•s(g/t),M)G = HomG(Λ•s(g/t),M) = C•(g, t;M)

is finitely generated as a Λ•s((g/t)
∗)G ∼= H•(g, t; C)-module. One can now use the finite

generation of C•(g, t;M) over H•(g, t; C) to show that H•(g, t;M) is finitely gener-

ated over H•(g, t; C). Given r ∈ Hp(g, t; C) and x ∈ C•(g, t;M), we have d(rx) =

d(r)x + (−1)prd(x) = (−1)prd(x). The second equality follows from the fact that the

differentials for H•(g, t; C) are identically zero. Hence, d : C•(g, t;M)→ C•(g, t;M) is

a graded H•(g, t; C)-module homomorphism. Since H•(g, t; C) is finitely generated, any

subquotient of a finitely generated graded module is finitely generated.

There are lots of examples of rings of invariants which are not finitely generated (see

[Bl]). We make the following assumption for the relative cohomology ring H•(g, t; C):

Hypothesis 3.4.4. Given a Lie superalgebra g and a subalgebra t, assume that H•(g, t; C)

is a finitely generated C-algebra.

3.5 Detecting subalgebras

In [BKN1, BKN2] by applying invariant theory results in [LR] and [DK] the authors showed

that under suitable conditions a classical Lie superalgebra g admits a subalgebra e = e0̄⊕ e1̄
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such that the restriction map in cohomology induces an isomorphism

H•(g, g0̄; C) ∼= H•(e, e0̄; C)W ,

where W is a finite pseudoreflection group. In this section we will give an abstract definition

of a detecting subalgebra and in Chapters 5 and 6, explicit detecting subalgebras for W (n)

and S̄(n) will be constructed.

Definition 3.5.1. Let e = e0̄ ⊕ e1̄ be a subalgebra of g such that

(a) e is a classical Lie superalgebra, and

(b) the inclusion map e ↪→ g induces an isomorphism

H•(g, t; C) ∼= H•(e, e0̄; C)W

for some group W such that (−)W is exact.

A subalgebra with these properties will be called a detecting subalgebra for the pair (g, t).

The subsuperalgebra e can be viewed as an analogue of a Sylow subgroup with

H•(g, t; C) ∼= H•(e, e0̄; C)W

looking like a theorem involving transfer for finite groups.

Example 3.5.2. Let g = gl(m|n) = g0̄ ⊕ g1̄ and t = g0̄. As in [BKN1, Section 8.10], we can

take e1̄ ⊆ g1̄ to be the subspace spanned by the distinguished basis

xs := Em+1−s,m+s + Em+s,m+1−s for s = 1, . . . , r.

Let e0̄ be the stabilizer of e1̄ in g0̄. Then e = e0̄ ⊕ e1̄ is a detecting subalgebra of g.

For more examples of detecting subalgebras in the case of simple classical Lie superalge-

bras one can see [BKN1] and for the Lie superalgebras W (n) and S̄(n) one can see Chapters

5 and 6, below.

Since a pair (g, t) may not have a detecting subalgebra we make the following technical

assumption about the pair (g, t).

Hypothesis 3.5.3. The pair (g, t) has a detecting subalgebra.
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Varieties

One of the most useful innovations in representation theory is the support variety, which is

defined using cohomological operations. Support varieties were first defined for modules over

finite groups by Carlson [Ca1] in the early 1980’s and have been a key to learning more about

the representation theory of finite groups. The theory of support varieties was later extended

to the Frobenius kernel of an algebraic group scheme G (denoted G1) by Friedlander and

Parshall [FPa]. This work was refined and generalized to all infinitesimal group schemes by

Bendel, Friedlander and Suslin [SFB]. Later the work of [SFB] was generalized to all finite

group schemes by Friedlander and Pevtsova by introducing π-points [FPe]. Support varieties

for Lie superalgebras were defined by Boe, Kujawa and Nakano in [BKN1].

4.1 Support Varieties

Suppose that the Hypotheses 3.4.4 and 3.5.3 hold for the pair (g, t). That is, H•(g, t; C) is

finitely generated and there exists a classical subalgebra e of g such that restriction map

induces an isomorphism H•(g, t; C) ∼= H•(e, e0̄; C)W for some group W with (−)W exact.

Let M and N be g-modules such that H•(g, t; HomC(M,N))) is finitely generated as an

H•(g, t; C)-module.

Let

I(g,t)(M,N) = AnnH•(g,t;C)(H
•(g, t; HomC(M,N)))

be the annihilator ideal of this module. We define the relative support variety of the pair

(M,N) to be

V(g,t)(M,N) = MaxSpec(H•(g, t; C)/I(g,t)(M,N)),

22
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the maximal ideal spectrum of the quotient of H•(g, t; C) by I(g,t)(M,N). For short when

M = N , write

I(g,t)(M) = I(g,t)(M,M),

V(g,t)(M) = V(g,t)(M,M).

We call V(g,t)(M) the support variety of M . Let us remark that, just as for finite groups,

I(g,t)(M) is precisely the annihilator ideal of the identity element of H•(g, t;M∗⊗M) viewed

as a ring under the Yoneda product.

Since the detecting subalgebra e is classical H•(e, e0̄; C) ∼= S(e∗1̄)e0̄ is finitely generated

and one can define support varieties for the detecting subalgebra e. The canonical restriction

map

res : H•(g, t; C)→ H•(e, e0̄; C)

induces a map of varieties

res∗ : V(e,e0̄)(C)→ V(g,t)(C).

By the isomorphism H•(g, t; C) ∼= H•(e, e0̄; C)W one then has

V(e,e0̄)(C)/W ∼= V(g,t)(C).

In particular, V(e,e0̄)(M)/W and V(g,t)(M) can naturally be viewed as affine subvarieties of

V(g,t)(C). Since the defining ideals are graded these are conical varieties.

Furthermore, res∗ restricts to give a map,

V(e,e0̄)(M)→ V(g,t)(M).

Since V(e,e0̄)(M) is stable under the action of W we have the following embedding induced

by res∗,

V(e,e0̄)(M)/W ∼= res∗(V(e,e0̄)(M)) ↪→ V(g,t)(M). (4.1)
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4.2 Rank varieties

Let g be a Lie superalgebra and a = a0̄ ⊕ a1̄ be a subalgebra of g. Let M be an a-module.

Given an element x ∈ a, let 〈x〉 denote the Lie subsuperalgebra generated by x. Define the

rank variety of M to be

Vrank
a (M) = {x ∈ a1̄ |M is not projective as a U(〈x〉)-module} ∪ {0}.

We record some basic properties of rank varieties in the following proposition. For the

proofs we refer the reader to [BKN1, Proposition 6.3.1].

Proposition 4.2.1. Let M and N be finite dimensional a-modules. Then

(a) Vrank
a (M ⊗N) = Vrank

a (M) ∩ Vrank
a (N).

(b) Vrank
a (M∗) = Vrank

a (M).

(c) Vrank
a (M∗ ⊗M) = Vrank

a (M).

Hypothesis 4.2.2. We assume that the detecting subalgebra e has a rank variety description;

i.e., for any e-module M , Vrank
e (M) ∼= V(e,e0̄)(M).

The following theorem taken together with Proposition 4.2.1 shows that support varieties

for finite dimensional e-modules satisfy the desirable properties of a support variety theory

(cf.[BKN1, Theorem 6.4.2]).

Theorem 4.2.3. Suppose that the detecting subalgebra e has rank variety description, i.e,

Hypothesis 4.2.2 holds. Let M,N,M1,M2 and M3 be finite dimensional e-modules . Then,

(a) M is projective if and only if V(e,e0̄)(M) = {0}.

(b) V(e,e0̄)(M ⊕N) = V(e,e0̄)(M) ∪ V(e,e0̄)(N).

(c) If

0→M1 →M2 →M3 → 0
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is a short exact sequence, then

V(e,e0̄)(Mi) ⊆ V(e,e0̄)(Mj) ∪ V(e,e0̄)(Mk),

where {i, j, k} = {1, 2, 3}.

4.3 Invariants and ideals

As a matter of notation, if J is an ideal of some commutative ring A, then let Z(J) be the

variety defined by J. That is,

Z(J) = {m ∈ MaxSpec(A) | J ⊆ m} .

In particular, for a ∈ A let Z(a) denote the variety defined by the ideal (a).

Lemma 4.3.1. Let S be a finitely generated, commutative, graded algebra where each graded

summand is finite dimensional. Furthermore assume some group Γ acts semisimply on S

and the action repects the grading on S. Let i : SΓ → S be the canonical embedding. If J is

a graded ideal of S, then the ideal i−1(J) = JΓ. In addition, if I, J are both graded ideals of

S, then one has

(I + J)Γ = IΓ + JΓ. (4.2)

Proof. One first notes that one has the inclusion IΓ + JΓ ⊆ (I + J)Γ . However, as graded

Γ-modules one has

(I ⊕ J) / (I ∩ J) ∼= I + J.

By using the fact that taking fixed points under Γ is exact (because the action of Γ is

semisimple) one has

(I ⊕ J)Γ / (I ∩ J)Γ ∼= (I + J)Γ .

However, (I ∩ J)Γ = IΓ ∩ JΓ and (I ⊕ J)Γ = IΓ ⊕ JΓ. Thus one has

(I ⊕ J)Γ /
(
IΓ ∩ JΓ

) ∼= (IΓ + JΓ
)
. (4.3)
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On the other hand, considering IΓ and JΓ as Γ-modules one has

(
IΓ ⊕ JΓ

)
/
(
IΓ ∩ JΓ

) ∼= IΓ + JΓ. (4.4)

Using (4.3) and (4.4) to compare dimensions of the graded summands of (4.2), one sees that

the earlier inclusion must, in fact, be an equality.

Throughout the remainder of this chapter we assume the pair (g, t) satisfies

the Hypotheses 3.4.4, 3.5.3, and 4.2.2.

4.4 Tensor Products

One of the fundamental results in the theory of support varieties for finite group schemes is

that the support variety of the tensor product of two modules is the intersection of the two

modules’ support varieties. Lacking equality in (4.1) we are limited to the following analogue.

Lemma 4.4.1. Let M and N be e-modules for which H•(e, e0̄;M∗ ⊗M), H•(e, e0̄;N∗ ⊗N),

and H•(e, e0̄;M∗ ⊗N∗ ⊗M ⊗N) are finitely generated H•(e, e0̄; C)-modules. Then,

res∗
(
V(e,e0̄) (M ⊗N)

)
= res∗

(
V(e,e0̄) (M)

)
∩ res∗

(
V(e,e0̄) (N)

)
.

Proof. If M is a finite dimensional g-module and I(e,e0̄)(M) is the ideal which defines

V(e,e0̄)(M), then res∗
(
V(e,e0̄)(M)

)
is the variety defined by the ideal res−1

(
I(e,e0̄)(M)

)
. Recall

that

res : H•(g, t; C)
∼=−→ H•(e, e0̄; C)W ⊆ H•(e, e0̄; C).

If we identify H•(g, t; C) with its image under this map, one has res−1(J) = JW for any ideal

J in H•(e, e0̄; C). Furthermore, given an ideal I we write
√
I for the radical of the ideal.

By the tensor product property of e support varieties one has

res∗
(
V(e,e0̄) (M ⊗N)

)
= res∗

(
V(e,e0̄) (M) ∩ V(e,e0̄) (N)

)
.
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Applying the earlier remarks, at the level of ideals the above equality becomes√
I(e,e0̄)(M ⊗N)W =

√(
I(e,e0̄)(M) + I(e,e0̄)(N)

)W
.

However by (4.2) one has√(
I(e,e0̄)(M) + I(e,e0̄)(N)

)W
=
√
I(e,e0̄)(M)W + I(e,e0̄)(N)W .

As the latter ideal defines the variety res∗
(
V(e,e0̄) (M)

)
∩ res∗

(
V(e,e0̄) (N)

)
, this yields the

desired result.

4.5 Carlson modules

To prove realizability one needs to introduce a family of modules for which one can explicitly

calculate their support varieties. Let n > 0 and let ζ ∈ Hn(g, t; C). We can consider ζ to be

a g-homomorphism from the nth syzygy of the trivial module, Ωn(C), to C. Set

Lζ = Ker(ζ : Ωn(C)→ C) ⊆ Ωn(C).

These modules are often referred to as “Carlson modules.” As in the theory of support

varieties for finite group schemes the importance of the module Lζ is that one can explicitly

realize its support as the zero locus of ζ in MaxSpec(H•(g, t; C)).

The first step is to compute the support variety of Lζ over the detecting subalgebra.

Lemma 4.5.1. Given ζ ∈ Hn(g, t; C) and Lζ as above, then

V(e,e0̄)(Lζ) = V(e,e0̄)(Lres(ζ)) = Z(res(ζ)).

Proof. Given ζ ∈ Hn(g, t; C), we compute the e support variety of Lζ as follows. Construct

the short exact sequence of g-modules,

0→ Lζ → Ωn(C)
ζ−→ C→ 0.

Upon restriction to e one obtains the short exact sequence,

0→ Lζ ↓e→ Ωn(C) ↓e
res(ζ)−−−→ C→ 0.
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By using the graded version of Schanuel’s Lemma, Lζ ↓e∼= Lres(ζ) ⊕ P and Ωn(C) ↓e∼=

Ωn
e (C) ⊕ P , where Ωn

e (C) denotes Ωn(C) for the trivial e-module, Lres(ζ) is the Carlson e-

module for res(ζ) ∈ Hn(e, e0̄; C), and P is some projective e-module. Therefore, we have the

following short exact sequence of e-modules:

0→ Lres(ζ) ⊕ P → Ωn
e (C)⊕ P → C→ 0.

By the rank variety description of V(e,e0̄)(Lres(ζ)) one has that V(e,e0̄)(Lres(ζ)) = Z(res(ζ)).

Therefore, since Lζ ↓e∼= Lres(ζ) ⊕ P, one has that

V(e,e0̄)(Lζ) = V(e,e0̄)(Lres(ζ)) = Z(res(ζ)).

We should warn the reader that it may be that Lζ is infinite dimensional and, hence,

H•(g, t;L∗ζ ⊗ Lζ) is no longer necessarily finitely generated as an H•(g, t; C)-module. Let us

mention that since as e-modules Lζ ∼= Lres(ζ) ⊕ P and Lres(ζ) is finite dimensional (since the

projective indecomposible e-modules are finite dimensional by [BKN2, Proposition 5.2.2]),

this complication did not arise in Lemma 4.5.1. Similarily, when g is classical Lζ is necessarily

finite dimensional. However, if one wishes to consider support varieties for g whose Carlson

modules are not necessarily finite dimensional, then the issue can no longer be ignored. To

circumvent this difficulty one can instead choose to work with relative support varieties as

we now demonstrate.

Proposition 4.5.2. Let ζ1, . . . , ζs ∈ H•(g, t; C) be homogeneous elements with corresponding

Carlson modules Lζ1 , . . . , Lζs. Then,

(a) H•(g, t;L∗ζ1 ⊗ · · · ⊗ L
∗
ζs

) is finitely generated over H•(g, t; C).

(b) V(g,t)(Lζ1 ⊗ · · · ⊗ Lζs ,C) ⊆ ∩si=1V(g,t)(Lζi ,C)

Proof. (a) We will prove this by induction on s. For s = 1, consider the short exact sequence

0→ Lζ
α−→ Ωn(C)

ζ−→ C→ 0. (4.5)
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This induces a long exact sequence of H•(g, t; C)-modules:

· · · d−→ Hr(g, t; C)
ζ∗−→ Hr(g, t; Ωn(C)∗)

α∗−→ Hr(g, t;L∗ζ)
d−→ Hr+1 (g, t; C)→ · · · ,

where α∗ and ζ∗ are the maps induced by α and ζ, respectively, and d denotes the connecting

morphism in the long exact sequence.

For r ≥ 0, set

Ar = Hr(g, t; Ωn(C)∗)/Ker (α∗) ,

Br = Im (d) ⊆ Hr+1 (g, t; C) .

Let A• = ⊕rAr and B• = ⊕rBr. Note that

α•∗ : H•(g, t; Ωn(C)∗)→ H•(g, t;L∗ζ)

d• : H•(g, t;L∗ζ)
d−→ H• (g, t; C)

are H•(g, t; C)-module homomorphisms, where α•∗ and d• are the maps obtained by taking

the direct sum of the maps α∗ and d, respectively. Hence, A• and B• are H•(g, t; C)-modules

and from the long exact sequence given above one has the short exact seqence of H•(g, t; C)-

modules,

0→ A•
ᾱ•∗−→ H•(g, t;L∗ζ)

d̄•−→ B• → 0, (4.6)

where ᾱ•∗ and d̄• are the maps induced by α•∗ and d•, respectively.

However, for all r ≥ 0, Hr(g, t; Ωn(C)∗) ∼= Hn+r(g, t; C) by degree shifting. Taking the

direct sum of these maps yields an H•(g, t; C)-module isomorphism

H•(g, t; Ωn(C)∗) ∼= H•(g, t; C).

Therefore H•(g, t; Ωn(C)∗) is finitely generated over H•(g, t; C). Since H•(g, t; C) is a Noethe-

rian ring it follows that the quotient module A• is finitely generated over H•(g, t; C). Simi-

larily, since H•(g, t; C) is finitely generated over H•(g, t; C), the submodule B• is also finitely

generated. Finally, using (4.6) and the fact that H•(g, t; C) is Noetherian one has that

H•(g, t;L∗ζ) must be finitely generated over H•(g, t; C).
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For the inductive step we claim that if M is a module for which H•(g, t;M∗) is a

finitely generated H•(g, t; C)-module and ζ is a homogeneous element of H•(g, t; C), then

H•(g, t;M∗ ⊗ L∗ζ) is finitely generated over H•(g, t; C). The argument parallels the base case

considered above. Namely, consider the short exact sequence obtained by tensoring (4.5)

with M :

0→M ⊗ Lζ →M ⊗ Ωn(C)→M ⊗ C→ 0.

Note that by assumption (i) H•(g, t;M∗) is finitely generated over H•(g, t; C), and (ii)

H•(g, t;M∗ ⊗ Ωn(C)∗) is finitely generated over H•(g, t; C) by applying a dimension shift

argument (as in the s = 1 case). Applying the long exact sequence in cohomology and

arguing as in the base case shows that H•(g, t;M∗⊗L∗ζ) is finitely generated over H•(g, t; C).

(b) The statement clearly holds for s = 1. Now assume that the statement holds for s−1

factors. For a fixed i = 1, 2, . . . , s, set N = Lζ1 ⊗ · · ·⊗ L̂ζi ⊗ · · ·⊗Lζs . Consider the following

short exact sequence given by ζi,

0→ Lζi → Ωn(C)→ C→ 0.

By tensoring by N we obtain

0→ Lζi ⊗N → Ωn(C)⊗N → N → 0.

Therefore, by induction

V(g,t)(Lζ1 ⊗ · · · ⊗ Lζs ,C) ⊆ V(g,t)(Ω
n(C)⊗N,C) ∪ V(g,t)(N,C)

= V(g,t)(N,C)

⊆ V(g,t)(Lζ1 ,C) ∩ · · · ∩ ̂V(g,t)(Lζi ,C) ∩ · · · ∩ V(g,t)(Lζs ,C).

Since i is arbitrary we conclude that

V(g,t)(Lζ1 ⊗ · · · ⊗ Lζs ,C) ⊆ ∩si=1V(g,t)(Lζi ,C).
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4.6 Support Varieties for Carlson modules

We are now prepared to compute (relative) support varieties for the Carlson modules.

Proposition 4.6.1. Let ζ ∈ Hn(g, t; C) and Lζ be given as above. Then,

V(g,t)(Lζ ,C) = res∗
(
V(e,e0̄)(Lζ)

)
= Z(ζ). (4.7)

If Lζ is a finite dimensional g-module, then one has

V(g,t)(Lζ) = res∗
(
V(e,e0̄)(Lζ)

)
= Z(ζ). (4.8)

Proof. We first prove (4.8). Since

res∗ : V(e,e0̄)(Lζ)→ V(g,t)(Lζ),

one has that

res∗
(
V(e,e0̄)(Lζ)

)
⊆ V(g,t)(Lζ).

However, by Lemma 4.5.1 the variety res∗
(
V(e,e0̄)(Lζ)

)
is defined by the ideal res−1 ((res(ζ))) =

(ζ), where the equality of ideals follows from the explicit description of the map res . There-

fore, one has

Z(ζ) = res∗
(
V(e,e0̄)(Lζ)

)
⊆ V(g,t)(Lζ). (4.9)

On the other hand, one can use the proof given in [Ca2, Proposition 6.13] to show that

ζ2 annihilates H•(g, t;L∗ζ ⊗ Lζ). Let I(g,t)(Lζ) denote the annihilator of H•(g, t; C) acting on

this group (i.e., the ideal which defines the support variety). So we have ζ2 ∈ I(g,t)(Lζ).

This implies that I(g,t)(Lζ) contains the ideal generated by ζ2. This in turn implies that the

radical of the ideal I(g,t)(Lζ) contains the ideal generated by ζ. Thus the variety defined by

the ideal
√
I(g,t)(Lζ) is contained in Z(ζ), that is,

V(g,t)(Lζ) ⊆ Z(ζ). (4.10)

Combining equations (4.9) and (4.10) one has (4.8).
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To prove (4.7) one argues much as above. Namely, one has

res∗ : V(e,e0̄)(Lζ ,C)→ V(g,t)(Lζ ,C).

However, recall that Lζ ∼= Lres(ζ)⊕P as e-modules where P is a projective e-module. Also note

that by definition Lres(ζ) can be assumed to lie within the principal block of e. However, by

[BKN2, Proposition 5.2.2] the trivial module is the only simple module in the principal block

of e. Taken together with [Ben2, Proposition 5.7.1] these observations imply that V(e,e0̄) (Lζ) =

V(e,e0̄) (Lζ ,C). Then Lemma 4.5.1 implies that the variety res∗
(
V(e,e0̄)(Lζ)

)
is defined by the

ideal res−1 ((res(ζ))) = (ζ). Therefore, one has

Z(ζ) = res∗
(
V(e,e0̄)(Lζ ,C)

)
⊆ V(g,t)(Lζ ,C). (4.11)

On the other hand, one can once again use the proof given in [Ca2, Proposition 6.13] to

show that ζ2 annihilates H•(g, t;L∗ζ ⊗ Lζ). As for finite groups (cf. [Ben2, Section 5.7]), this

implies ζ2 annihilates H•(g, t;L∗ζ).and so is an element of the ideal which defines V(g,t)(Lζ ,C).

Just as before this implies

Vg(Lζ ,C) ⊆ Z(ζ). (4.12)

Combining equations (4.11) and (4.12) one has (4.7).

4.7 Realization Theorem

One important property in the theory of support varieties is the realizability of any conical

variety as the support variety of some module in the category. Carlson [Ca1] first proved this

for finite groups in the 1980s. Friedlander and Parshall [FPa] later used Carlson’s proof to

establish realizability for restricted Lie algebras. For arbitrary finite group schemes the finite

generation of cohomology due to Friedlander and Suslin [FS] allowed one to define support

varieties. In this generality the realizability of supports was established using Friedlander

and Pevtsova’s method [FPe] of concretely describing support varieties through π-points.
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In the classical Lie superalgebra setting the realizability of supports was established for

the detecting subalgebra e in [BKN1, Theorem 6.4.3]. The main tool to establish this theorem

is the tensor product theorem [BKN1, Proposition 6.3.1].

We are now ready to prove the realization theorem.

Theorem 4.7.1. Suppose that g satisfies the Hypotheses 3.4.4, 3.5.3 and 4.2.2. Let X be a

conical subvariety of V(g,t)(C). Then there exists a g-module M such that

V(g,t)(M,C) = X.

If the Carlson modules are finite dimensional for g then there exists a finite dimensional

g-module M such that

V(g,t)(M) = X.

Proof. First, express X as the zero locus of homogeneous elements ζ1, . . . , ζs ∈ H•(g, t; C).

That is, fix homogeneous elements ζ1, . . . , ζs ∈ H•(g, t; C) such that

X = Z(ζ1) ∩ · · · ∩ Z(ζs).

Let M = Lζ1⊗· · ·⊗Lζs . If Carlson modules are finite dimensional for g then one can combine

(4.8), Lemma 4.4.1, and the fact that V(g,t)(N1 ⊗ N2) ⊆ V(g,t)(N1) ∩ V(g,t)(N2) for any two

modules N1, N2 (cf. [BKN2, (4.6.4)]) to obtain

X = ∩si=1Z(ζi)

= ∩si=1V(g,t) (Lζi)

= ∩si=1 res∗
(
V(e,e0̄) (Lζi)

)
= res∗

(
V(e,e0̄)(M)

)
⊆ V(g,t) (M)

⊆ ∩si=1V(g,t) (Lζi)

= ∩si=1Z(ζi)

= X.
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It then follows that V(g,t)(M) = X.

The relative case is argued similarily using instead (4.7) and Proposition 4.5.2(b).



Chapter 5

Cohomology and support varieties for W (n)

5.1 W (n)

We begin by recalling the definition of the simple Lie superalgebras of type W (n). As a

background source we refer the reader to [Kac, Sch, Ser].

Assume that n ≥ 2. The Lie superalgebra W (n) may be described as follows. Let Λ(n) be

the exterior algebra of the vector space V = Cn. The algebra Λ(n) = ⊕nk=0Λk(n) is an asso-

ciative superalgebra of dimension 2n with a Z-grading given by total degree. The Z2-grading

is inherited from the Z-grading by setting Λ(n)0̄ = ⊕kΛ2k(n) and Λ(n)1̄ = ⊕kΛ2k+1(n).

A (homogeneous) superderivation of Λ(n) is a linear map D : Λ(n) → Λ(n) which

satisfies D(xy) = D(x)y + (−1)D xxD(y) for all homogenous x, y ∈ Λ(n). Set W (n) to

be the vector space of all superderivations of Λ(n). Then W (n) is a Lie superalgebra via the

supercommutator bracket. Furthermore, W (n) inherits a Z-grading,

W (n) = W (n)−1 ⊕W (n)0 ⊕ · · · ⊕W (n)n−1,

from Λ(n) by setting W (n)k to be the superderivations which increase the degree of a homo-

geneous element by k. The Z2-grading on W (n) is inherited from the Z-grading by setting

W (n)0̄ = ⊕kW (n)2k and W (n)1̄ = ⊕kW (n)2k+1. One can verify that [W (n)k,W (n)l] ⊆

W (n)k+l for all k, l ∈ Z. Most importantly this implies W (n)0 is a Lie algebra and W (n)k

(k = −1, . . . , n− 1) is a W (n)0-module under the adjoint action.

Every element of W (n) restricts to a linear map V → Λ(n). Conversely, every element of

W (n) arises in this way and so one has an isomorphism of vector spaces

W (n) ∼= Λ(n)⊗ V ∗.

35
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This identification will be useful for computations. Fix an ordered basis {ξ1, . . . , ξn} for V .

For each ordered subset I = {i1, . . . , is} of N = {1, . . . , n} with i1 < i2 < · · · < is, let

ξI = ξi1ξi2 · · · ξis . The set of all such ξI forms a basis for Λ(n). For 1 ≤ i ≤ n let ∂i be the

element of W (n) such that ∂i(ξj) = δij. An explicit basis for Λ(n) ⊗ V ∗ is then given by

the set of all ξI ⊗ ∂i, where here we identify ∂i with its restriction to V . We shall write ξI∂i

instead of ξI ⊗ ∂i. We use the isomorphism above to identify W (n) and Λ(n)⊗ V ∗.

In particular, one has W (n)0
∼= V ⊗ V ∗ ∼= gl(n) and the element ξi∂j corresponds to the

matrix unit Ei,j (i.e. the matrix with a one in the (i, j) position and zeros elsewhere). Also

W (n)−1
∼= V ∗ as a W (n)0-module. In general the basis elements ξI∂i belonging to W (n)k

are those with |I| = k + 1. Thus dimCW (n)k = n
(
n
k+1

)
and dimCW (n) = n2n.

We use the following notational conventions throughout this chapter. Set g = W (n) with

gi = W (n)i, i ∈ Z, and gı̄ = W (n)ı̄, ı̄ ∈ Z2. Moreover, let g+ = g1⊕· · ·⊕gn−1 and g− = g−1,

so that g has the lopsided triangular decomposition

g = g− ⊕ g0 ⊕ g+.

Throughout this chapter all g-modules will be assumed to be objects in the category C =

C(g,g0).

5.2 Cohomology in C(g,g0)

The goal of this section is to compute the cohomology ring R = H•(g, g0; C). The main result

is Theorem 5.3.1 which shows that R can be identified with a ring of invariants. Consequently,

one sees that R is finitely generated and H•(g, g0;M) is a finitely generated R-module for

any finite dimensional g-module M.

We begin by showing that the calculation of g0-invariants on Λ•s((g/g0)∗) reduces to

looking at g0-invariants on Λ•s
(
g∗−1 ⊕ g∗1

)
. This will be accomplished by using information

from the representation theory of g0
∼= gl(n).

Theorem 5.2.1. Let g = W (n) and let p ≥ 0. Then, Λp
s((g/g0)∗)g0 ∼= Λp

s(g
∗
−1 ⊕ g∗1)g0
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Proof. First observe that g/g0
∼= g−1 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gn−1 as g0-modules. We then have

Λp
s(g
∗
−1 ⊕ g∗1⊕g∗2 ⊕ · · · ⊕ g∗n−1)g0

∼=
⊕(

Λi−1
s (g∗−1)⊗ Λi1

s (g∗1)⊗ Λi2
s (g∗2)⊗ · · · ⊗ Λin−1

s (g∗n−1)
)g0

∼=
⊕

Homg0

(
C,Λi−1

s (g∗−1)⊗ Λi1
s (g∗1)⊗ Λi2

s (g∗2)⊗ · · · ⊗ Λin−1
s (g∗n−1)

)
∼=
⊕

Homg0

(
Λi−1
s (g−1),Λi1

s (g∗1)⊗ Λi2
s (g∗2)⊗ · · · ⊗ Λin−1

s (g∗n−1)
)

where the direct sums are taken over all nonnegative integers i−1, i1, . . . , in−1 such that

i−1 + i1 + · · ·+ in−1 = p.

Recall that g−1 is isomorphic to the dual of the natural g0-module and, since g−1 is

concentrated in degree 1̄, one has Λi−1
s (g−1) ∼= Si−1(g−1) as g0-modules. It is well known that

symmetric powers of the dual of the natural module are simple (cf. [Jan, II 2.16]) and so

Λi−1
s (g−1) is a simple g0-module with highest weight

µ = (µ1, . . . , µn) = (0, . . . , 0,−i−1).

Since g∗k
∼= Λk+1(V ∗) ⊗ V (−1 ≤ k ≤ n − 1), where V is the natural g0-module, and

since Λk+1(V ∗) (resp. V ) is a simple g0-module with highest weight (0, . . . , 0,−1, . . . ,−1)

(resp. (1, 0, . . . , 0)), the highest weight of g∗k will be the sum of these two weights,

(1, 0, . . . , 0,−1, . . . ,−1). Therefore the largest possible weight that could occur in the

weight space decomposition of the g0-module

A := (g∗1)⊗i1 ⊗ (g∗2)⊗i2 ⊗ · · · ⊗ (g∗n−1)⊗in−1

is

λ = (λ1, . . . , λn)

= (i1, 0, . . . , 0,−i1,−i1) + (i2, 0, . . . , 0,−i2,−i2,−i2) + · · ·+ (0,−in−1, . . . .,−in−1)

= (Σn−1
t=1 it,−in−1,−in−2 − in−1, . . . ,−Σn−1

t=2 it,−Σn−1
t=1 it,−Σn−1

t=1 it).
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If the Hom-space

Homg0(Λi−1
s (g−1),Λi1

s (g∗1)⊗ Λi2
s (g∗2)⊗ · · · ⊗ Λin−1

s (g∗n−1)) (5.1)

is non-zero, then the weight µ occurs in the weight space decomposition of the g0-module

A. However, if µ occurs in the weight space decomposition of this g0-module, then it has to

be less than or equal to λ in the dominance order; that is, Σk
i=1µi ≤ Σk

i=1λi for all k > 0. By

considering this inequality when k = n− 1 one obtains

0 ≤ −i2 − 2i3 − · · · − (n− 2)in−1.

Thus the Hom space in (5.1) is nonzero only when i2 = i3 = · · · = in−1 = 0. This gives the

stated result.

5.3 Calculation of the cohomology

The previous theorem can be used to show that the cohomology ring H•(g, g0; C) can be

identified with a ring of invariants. Recall that G0
∼= GL(n) denotes the connected reductive

group such that Lie(G0) = g0 and the adjoint action of G0 on g differentiates to the adjoint

action of g0 on g.

Theorem 5.3.1. Let g = W (n). Then,

H•(g, g0; C) ∼= S((g−1 ⊕ g1)∗)g0 = S((g−1 ⊕ g1)∗)G0 .

Proof. By Theorem 5.2.1 one has

Cp(g, g0; C) = Homg0(Λp
s(g/g0),C)

∼= Λp
s ((g/g0)∗)g0

∼= Λp
s

(
g∗−1 ⊕ g∗1

)g0

∼= Homg0(Λp
s(g−1 ⊕ g1),C).

Now observe that in this case the differential dp in (3.2) is identically zero. Namely, in the

first sum of (3.2) each [xi, xj] is zero in the quotient g/g0 since the bracket preserves the
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Z-grading and the terms in the second sum of (3.2) are zero since here M is the trivial

module.

As a consequence the cohomology can be identified with the cochains. It remains to

observe that since g−1 ⊕ g1 is concentrated in degree 1̄, one has

Cp(g, g0; C) ∼= Λp
s ((g−1 ⊕ g1)∗)g0 ∼= Sp ((g−1 ⊕ g1)∗)g0 = Sp ((g−1 ⊕ g1)∗)G0 .

5.4 Finite Generation Results

Let M be a finite dimensional g-module. By using the Yoneda product H•(g, g0;M) is a

module for the cohomology ring R. A result from invariant theory shows that this module

is finitely generated over R.

Theorem 5.4.1. Let M be a finite dimensional g-module. Then,

(a) The superalgebra H•(g, g0; C) is a finitely generated commutative ring;

(b) The cohomology H•(g, g0;M) is finitely generated as an H•(g, g0; C)-module.

Proof. Since g0 is a reductive Lie algebra the result follows from Corollary 3.4.3 and Theorem

5.3.1.

5.5 Invariant Theory Calculations

Recall from Theorem 5.3.1 that

R = H•(g, g0; C) ∼= S ((g−1 ⊕ g1)∗)g0 . (5.2)

Thus to compute R it suffices to compute the invariant ring on the right hand side of (5.2).

To do so we use a result of Luna and Richardson [LR]. First we require certain preliminaries.
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If G is an algebraic group which acts on a variety X, then we write g.x for the action of

g ∈ G on the element x ∈ X. Set

StabG(x) = {g ∈ G | g.x = x},

the stabilizer of x. An element x ∈ X is semisimple if the orbit G.x is closed in X. An

element x ∈ X is said to be regular if the dimension of the orbit G.x is of maximal possible

dimension among all orbits. Equivalently, x is regular if the dimension of StabG(x) is of

minimal dimension among all stabilizer subgroups.

The group G0 acts on g by the adjoint action and its action preserves the Z-grading of

g. Let

β : g−1 ⊕ g1 → g0

be the G0-equivariant map given by β(x, y) = [x, y] for all x ∈ g−1 and y ∈ g1.

Fix T ⊆ G0 to be the maximal torus consisting of all diagonal matrices. Then h = Lie (T ) ,

the Cartan subalgebra we fixed in Section 2.8.

The following lemma summarizes some well known results about the adjoint action of G0

on g0. See, for example, [CM, Hum].

Lemma 5.5.1. Let h ∈ h. Then,

(a) The element h is regular if and only if StabG0(h) = T ;

(b) The element h is regular if and only if all the eigenvalues of h are pairwise distinct

elements of C;

(c) An element x ∈ g0 is semisimple if and only if it is G0-conjugate to an element of h;

(d) An element of x ∈ g0 is semisimple and regular if and only if it is G0-conjugate to a

regular element of h;

(e) The semisimple regular elements of g0 form a dense open set in g0.
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Lemma 5.5.2. Let G be an algebraic group acting on the varieties X and Y. Let f : X → Y

be a G-equivariant map. Then the following statements hold true.

(a) If y ∈ Y and x ∈ f−1(y), then

StabG(x) ⊆ StabG(y).

(b) If y ∈ Y, then

G.f−1(y) = f−1 (G.y) .

In particular, if x ∈ f−1(y), then G.x ⊆ f−1(G.y).

Proof. To prove (a), let g ∈ StabG(x). Then g.y = g.f(x) = f(g.x) = f(x) = y, so g ∈

StabG(y).

To prove (b), let g.x ∈ G.f−1(y) for some g ∈ G and x ∈ f−1(y). Then f(g.x) = g.f(x) =

g.y, so g.x ∈ f−1(G.y). On the other hand, if z ∈ f−1(G.y), then f(z) = g.y for some g ∈ G.

That is, g−1.f(z) = f(g−1.z) = y. So g−1.z ∈ f−1(y) and, hence, z ∈ G.f−1(y).

We saw in Section 5.1 that g−1
∼= V ∗ as a g0-module and has basis {∂i}, g0 has basis

{ξi∂j}, and g1 = Λ2(V )⊗ V ∗ with basis {ξiξj∂k | i < j}), where 1 ≤ i, j, k ≤ n. Recall that

the isomorphism g0
∼= gl(n) is given by ξi∂j ↔ Ei,j, where Ei,j is the (i, j) matrix unit. In

particular, h is spanned by the set {ξi∂i | 1 ≤ i ≤ n}.

Lemma 5.5.3. Let h ∈ h be a semisimple regular element and write

h =
n∑
i=1

ciξi∂i,

with ci ∈ C. One then has the following.

(a) If c1, . . . , cn are all nonzero, then β−1(h) = ∅.

(b) If c1 = 0 and x ∈ β−1(h), then

x = a1∂1 +
n∑
l=2

cl
a1

ξ1ξl∂l +
∑
r,s,t

1<r<s

br,s,tξrξs∂t, (5.3)

where a1, br,s,t ∈ C and a1 6= 0.



42

Proof. We only sketch the calculation here. First, let x ∈ β−1(h) and write x ∈ g−1 ⊕ g1 in

our preferred basis:

x =
∑
i

ai∂i +
∑
i,j,k
i<j

bi,j,kξiξj∂k. (5.4)

By a direct calculation of β(x), one sees that if at 6= 0 for some 1 ≤ t ≤ n, then necessarily

ct = 0. Therefore, if all the coefficients of h are nonzero, then there is no x such that

β(x) = h. This proves part (a). Now say c1 = 0. Since h is regular, c2, . . . , cn are all nonzero

by Lemma 5.5.1(b). But then by the proof of part (a) one has a2 = · · · = an = 0. This

observation simplifies the calculation of β(x). Doing so and using that the image is equal to

h, one obtains (5.3).

Note that if h ∈ h has any entry equal to zero then up to G0-conjugacy (indeed up to

Weyl group conjugacy), one can assume it is in the upper left corner. Thus the general case

is easily deduced from part (b) of the lemma.

Proposition 5.5.4. Let h ∈ h be a semisimple regular element as in part (b) of the previous

lemma. Let x0 ∈ β−1(h) be chosen so that all the coefficents br,s,t are zero in (5.3). Then

x0 ∈ g−1 ⊕ g1 is a semisimple element.

Proof. First one computes StabG0(x) for any x ∈ β−1(h). By Lemma 5.5.2 and Lemma 5.5.1(a)

one has StabG0(x) ⊆ StabG0(h) = T. By part (b) of the previous lemma x is a linear combi-

nation of distinct weight vectors. From this one sees that t = diag(t1, . . . , tn) ∈ T fixes x if

t1 = 1. This is also sufficient in the case of x0. Otherwise there will be additional contraints

on t and the stabilizer will be a proper, smaller dimensional subgroup of

Tn−1 := {t = diag(t1, . . . , tn) ∈ T | t1 = 1}. (5.5)

Thus x0 has maximal stabilizer dimension, hence, minimal orbit dimension in the closed

set β−1(G.h). By the well known fact on the closure of orbits, it follows that G.x0 must be

closed.
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Let G be a reductive algebraic group acting on an affine variety X. Let π : X → X/G be

the canonical quotient map. An element ζ ∈ X/G is said to be principal if there is an open

neighborhood U such that ζ ∈ U ⊆ X/G and for any semisimple x, y ∈ π−1(U), the groups

StabG(x) and StabG(y) are conjugate in G [LR, Definition 3.2, Remark 3.3]. Let (X/G)pr

denote the set of principal elements of X/G. By [LR, Lemma 3.4] (X/G)pr is a nonempty,

dense, open subset of X/G.

Let

π : g−1 ⊕ g1 → (g−1 ⊕ g1)/G0 and p : g0 → g0/G0

denote the canonical quotient morphisms. Let ϕ : (g−1 ⊕ g1)/G0 → g0/G0 be the morphism

induced by the map p ◦ β : g−1 ⊕ g1 → g0/G0. That is, the following diagram commutes.

g−1 ⊕ g1 g0 g0/G0

(g−1 ⊕ g1)/G0

- -

? ���
���

���
���

���:

β p

π
ϕ

We observe that it follows from Lemma 5.5.1 that the set (g0/G0)pr is precisely the image

under p of the semisimple regular elements of h.

Proposition 5.5.5. Let x0 ∈ g−1 ⊕ g1 be as in Proposition 5.5.4. Then π(x0) is a principal

element of (g−1 ⊕ g1)/G0.

Proof. Let U := ϕ−1 ((g0/G0)pr). By definition, β(x0) is semisimple and regular, so

p(β(x0)) = ϕ(π(x0)) is principal in g0/G0. That is, π(x0) ∈ U. Therefore, U is a nonempty

open neighborhood of π(x0) in (g−1⊕g1)/G0. Let ζ ∈ U and let y ∈ g−1⊕g1 be a semisimple

element in π−1(ζ). Then ϕ(π(y)) = p(β(y)), so β(y) ∈ p−1(η) for some principal η ∈ g0/G0.

But then η = p(h) for some semisimple regular h ∈ h. However, since h is semisimple and

regular, it follows that p−1(η) = G0.h. That is, up to G0-conjugacy one can assume β(y)

is a semisimple regular element of h. However, this implies that y is of the form given in
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Lemma 5.5.3 and the stabilizer of such elements was computed in the proof of Proposi-

tion 5.5.4. By that calculation and the fact that y is semisimple one sees that the stabilizer

of y is Tn−1. Therefore, all semisimple elements in the fibers of U have stabilizer conjugate

to Tn−1 and so x0 is principal.

The stage is now set to apply the results of Luna and Richardson [LR, Corollary 4.4] to

calculate R. To do so requires certain preliminary calculations. Let x0 ∈ g−1 ⊕ g1 be the

semisimple element fixed in the previous section.

Let

H = StabG0(x0) = Tn−1, (5.6)

where the last equality is by the calculations made in the proof of Lemma 5.5.4. Let

N = NormG0(H) =
{
g ∈ G0 | gHg−1 = H

}
. (5.7)

Let us first calculate the group N.

Lemma 5.5.6. Let N = NormG0(H). Recall that T is the torus of G0. Let Σn be the per-

mutation matrices of G0 and let Σn−1 be the permutation matrices which normalize Tn−1.

Then,

N = TΣn−1.

Proof. The first step is to prove that N ⊆ NormG0(T ). Fix a semisimple regular element

t0 ∈ Tn−1 (for the action of G0 on itself by conjugation). Then T = StabG0(t0). Let n ∈ N .

We claim that nTn−1 fixes t0, hence nTn−1 = T , hence n ∈ NormG0(T ). Let t ∈ T and

consider

(ntn−1)t0(ntn−1)−1 = ntn−1t0nt
−1n−1.

However, since t0 ∈ Tn−1 and n−1 ∈ NormG0(Tn−1), one has that n−1t0n ∈ Tn−1 ⊆ T ; since

t ∈ T and T fixes T pointwise under conjugation, one has tn−1t0nt
−1 = n−1t0n. Thus,

ntn−1t0nt
−1n−1 = nn−1t0nn

−1 = t0.
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Therefore, ntn−1 ∈ StabG0(t0) = T. That is, as discussed above, n ∈ NormG0(T ) = TΣn.

One can now verify that T fixes H pointwise, and that the elements of Σn which stabilize

H are precisely Σn−1.

We next need to calculate f1̄ := (g−1 ⊕ g1)H .

Lemma 5.5.7. The subvariety f1̄ = (g−1 ⊕ g1)H is the C-span of the vectors

{∂1, ξ1ξi∂i | i = 2, . . . , n}.

Proof. Since H = Tn−1, f1̄ is simply the span of all weight zero vectors with respect to this

torus. Using the fixed basis of weight vectors for g−1 ⊕ g1 established in Section 5.1 it can

be seen that f1̄ is spanned by the given vectors.

5.6 Explicit Description of the cohomology

We can now give an explicit description of the cohomology ring R. Let Yi ∈ f∗1̄ be given by

Yi(ξ1ξj∂j) = δi,j (i, j = 2, . . . , n) and Yi(∂1) = 0. Let ∂∗1 ∈ f∗1̄ be given by ∂∗1(ξ1ξj∂j) = 0 for

all j = 2, . . . , n and ∂∗1(∂1) = 1.

Theorem 5.6.1. Restriction of functions defines an isomorphism,

H•(g, g0; C) ∼= S(f∗1̄)N = C[Y2∂
∗
1 , . . . , Yn∂

∗
1 ]Σn−1 ,

where Σn−1 acts on Y2∂
∗
1 , . . . , Yn∂

∗
1 by permutations. In particular, R is a polynomial ring in

n− 1 variables of degree 2, 4, . . . , 2n− 2.

Proof. The first isomorphism follows from (5.2) and [LR, Corollary 4.4]. Namely, x0 ∈ g−1⊕g1

is a semisimple element with π(x0) a principal element of (g−1⊕ g1)/G0 so it follows by [LR,

Corollary 4.4] that restriction of functions defines an isomorphism between S((g−1⊕ g1)∗)G0

and S(f∗1̄)N . Since T is a normal subgroup of N, one can first compute that S•(f∗1̄)T =

C[Y2∂
∗
1 , . . . , Yn∂

∗
1 ] and check that Σn−1 acts on this ring by permuting the variables. By a

well known result on invariants under a symmetric group, it follows that R is a polynomial
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ring generated by elementary symmetric polynomials in the Yi∂
∗
1 , where degree of Yi∂

∗
1 is

two.

Let f1̄ = (g−1 ⊕ g1)H ⊂ g1̄ be the subspace calculated in Lemma 5.5.7 and let

f0̄ = Lie(N) = Lie(T ) = h ⊂ g0̄.

One can verify by direct calculation that

[fr, fs] ⊆ fr+s (5.8)

for all r, s ∈ Z2. Thus f = f0̄⊕f1̄ is a Lie subsuperalgebra of g. By [LR, Lemma 2.5] f is unique

up to conjugacy in the sense that if one chooses another semisimple x ∈ g−1 ⊕ g1 such that

π(x) is principal, then following the aforementioned construction leads to a subsuperalgebra

which is G0-conjuate to f.

Applying the definition of relative cohomology in Section 3.2 one can calculate H•(f, f0̄; C)

as follows. First, note that the Z2-grading implies that the differentials defining H•(f, f0̄; C)

are identically zero (cf. the proof of [BKN1, Theorem 2.5.2]). Thus the cohomology is given

by the cochains; that is,

H•(f, f0̄; C) ∼= S (f∗1̄)f0̄ .

Furthermore, note that the elements of S(f∗1̄) which are invariant under f0̄ are simply those of

weight zero with respect to the torus T. Therefore, recalling that S(f∗1̄) ∼= C[∂∗1 , Y2, . . . , Yn],

one has

H•(f, f0̄; C) ∼= S (f∗1̄)T = C[Y2∂
∗
1 , . . . , Yn∂

∗
1 ].

The following theorem relates the g and f cohomology rings via the natural restriction

map.

Theorem 5.6.2. The inclusion map f ↪→ g induces a restriction map res : H•(g, g0; C) →

H•(f, f0̄; C) so that the following diagram commutes:
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H•(g, g0; C)
res

−−−→ H•(f, f0̄; C)

∼=
y y∼=

C[Y2∂
∗
1 , . . . , Yn∂

∗
1 ]Σn−1

⊆
−−−→ C[Y2∂

∗
1 , . . . , Yn∂

∗
1 ]

(5.9)

That is, the restriction map induced by inclusion gives the following graded algebra iso-

morphism,

H•(g, g0; C)
∼=−→ H•(f, f0̄; C)Σn−1 ∼= C[Y2∂

∗
1 , . . . , Yn∂

∗
1 ]Σn−1 .

In particular, both H•(g, g0; C) and H•(f, f0̄; C) are isomorphic to graded polynomial rings in

n− 1 variables.

Proof. The isomorphisms are a reinterpretation of Theorem 5.6.1 in terms of cohomology,

and the commutativity of the diagram can be checked directly.

5.7 Detecting Subalgebra for W (n)

Recall that H = Tn−1 = {diag(t1, . . . , tn) ∈ T | t1 = 1}. Let e0̄ = Lie(H) ⊂ g0 and e1̄ = f1̄.

Set

e = e0̄ ⊕ e1̄. (5.10)

As with f one can verify that e is a Lie subsuperalgebra of g. In fact one has

[e0̄, e0̄] = [e0̄, e1̄] = 0. (5.11)

One can also verify that the differentials defining H•(e, e0̄; C) are identically zero and so the

cohomology ring is again given by the cochains. In this case, however, e0̄ acts trivially on e1̄

and so one has

H•(e, e0̄; C) ∼= S(e∗1̄) = S (f∗1̄) ∼= C[∂∗1 , Y2, . . . , Yn].

Furthermore, the inclusion e ↪→ f defines a restriction map, res, so that the following diagram

commutes,

H•(f, f0̄; C)
res

−−−→ H•(e, e0̄; C)

∼=
y y∼=

C[∂∗1Y2, . . . , ∂
∗
1Yn]

⊆
−−−→ C[∂∗1 , Y2, . . . , Yn]

(5.12)
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Since H•(f, f0̄; C) ∼= H•(e, e0̄; C)T and H•(g, g0; C) ∼= H•(f, f0̄; C)Σn−1 we have the following

isomorphism

H•(g, g0; C) ∼= H•(e, e0̄; C)TΣn−1 .

As one can see from the discussion above the Lie subsuperalgebra e = e0̄ ⊕ e1̄ satisfies

all the assumptions of a detecting subalgebra; i.e., it is classical and the restriction map

res : H•(g, g0; C)→ H•(e, e0̄; C) induces the isomorphism

H•(g, g0; C) ∼= H•(e, e0̄; C)TΣn−1

with the group TΣn−1 being exact.

5.8 Support Varieties

The inclusion f ↪→ g induces a restriction map on cohomology which, in turn, induces maps of

support varieties. That is, given modules M and N in C(g,g0) one has M ∈ C(f,f0̄) by restriction

to f and one has maps of varieties

res∗ : V(f,f0̄)(M,N)→ V(g,g0)(M,N),

res∗ : V(f,f0̄)(M)→ V(g,g0)(M).

Viewing the support varieties as subvarieties of An−1 and using Theorem 5.6.2 one can

explicitly describe this map as the quotient by the action of Σn−1 on An−1 by permutation

of coordinates. Therefore one has

V(f,f0̄)(M)/Σn−1
∼= res∗

(
V(f,f0̄)(M)

)
⊆ V(g,g0)(M). (5.13)

We conjecture that the inclusion in (5.13) is in fact an equality for all finite dimensional

g-modules M ∈ C(g,g0).

By using the pair (e, e0̄) and the setup of Section 4.1 one can define the support variety

V(e,e0̄)(M) for any finite dimensional module M ∈ C(e,e0̄). Since H•(e, e0̄; C) is a polynomial
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ring in n variables, one can naturally identify the support variety of M with the conical

affine subvariety of the affine n-space

MaxSpec (H•(e, e0̄; C)) = V(e,e0̄)(C) ∼= An

defined by the ideal I(e,e0̄)(M).

Since by (5.11) the structure of e is of the type considered in [BKN1, Sections 5, 6],

[BKN1, Theorem 6.3.2] implies that one has a canonical isomorphism

V(e,e0̄)(M) ∼= Vrank
e (M) (5.14)

for any finite dimensional e-module M which is an object of C(e,e0̄). We identify the rank and

support varieties of e via this isomorphism.

5.9 Relating e and f Support Varieties

We now wish to relate the support varieties of e- and f-modules. Note that if M ∈ C(f,f0̄),

then via restriction it is an object in C(e,e0̄). Therefore, whenever M is finite dimensional one

has an induced map of varieties,

res∗ : V(e,e0̄)(M)→ V(f,f0̄)(M).

The present task is to better understand this map.

As a consequence of (5.12) one has that the map

res∗ : V(e,e0̄)(C)→ V(f,f0̄)(C).

is given by the canonical quotient map

V(e,e0̄)(C)→ V(e,e0̄)(C)/T.

That is, for M ∈ C(f,f0) one has

V(e,e0̄)(M)/T ∼= res∗
(
V(e,e0̄)(M)

)
⊆ V(f,f0̄)(C). (5.15)

In fact one has the following theorem.
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Theorem 5.9.1. Let M be a finite dimensional object in C(f,f0̄), then

V(e,e0̄)(M)/T ∼= res∗
(
V(e,e0̄)(M)

)
= V(f,f0̄)(M). (5.16)

Proof. The first isomorphism is (5.15). It remains to show that the map res∗ is surjective.

To do so first requires a better understanding of the relationship between e and f coho-

mology with coefficents in a finite dimensional f-module U . Recall the definition of the

cochains for relative cohomology in Section 3.2 and that e1̄ = f1̄. If U is a finite dimensional

module in C(f,f0̄), then the torus T acts on the cochains C•(e, e0̄;U) = Homf0̄(Λ•s(f1̄), U) by

(t.ϕ)(x) = tϕ(t−1x) for all t ∈ T, ϕ ∈ C•(e, e0̄;U), and x ∈ Λ•s(f1̄). If N is a T -module and

λ ∈ X(T ) is a weight, then write Nλ for the λ weight space of N . Since T acts semisimply

on C•(e, e0̄;U) one has

C•(e, e0̄;U) = C•(e, e0̄;U)T ⊕
⊕

λ∈X(T )
λ 6=0

C•(e, e0̄;U)λ

as T -modules. Observe that the action of T commutes with the differential in the definition

of relative cohomology. Thus one has

H(e, e0̄;U) = H(e, e0̄;U)T ⊕
⊕

λ∈X(T )
λ 6=0

H(e, e0̄;U)λ

∼= H(f, f0̄;U)⊕
⊕

λ∈X(T )
λ 6=0

H(e, e0̄;U)λ,

where the isomorphism follows from the equality C•(e, e0̄;U)T = C•(f, f0̄;U) and the exact-

ness of taking T invariants. In particular, one has

res : H(f, f0̄;U)
∼=−→ H(e, e0̄;U)T ⊆ H(e, e0̄;U). (5.17)

We are now prepared to prove the theorem. Let (a, a0̄) denote either (f, f0̄) or (e, e0̄).

Note that, just as for finite groups, an equivalent characterization of I(a,a0̄)(M) is the ideal of
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elements in H•(a, a0̄; C) which annihilate the element 1a,M ∈ Ext0
C(a,a0̄)

(M,M) corresponding

to the identity morphism. Note, too, that res(1f,M) = 1e,M for any f-module M and that

res(x.z) = res(x). res(z) for any x ∈ H•(f, f0̄; C) and z ∈ Ext•C(f,f0̄)
(M,M).

Since the ideal res−1
(
I(e,e0̄)(M)

)
defines the variety res∗

(
V(e,e0̄)(M)

)
, it suffices to prove

res−1
(
I(e,e0̄)(M)

)
= I(f,f0̄)(M).

Let x ∈ I(f,f0̄)(M). That is, x.1f,M = 0 and so

0 = res(x.1f,M) = res(x). res(1f,M) = res(x).1e,M .

That is, res(x) ∈ I(e,e0̄)(M) and so x ∈ res−1
(
I(e,e0̄)(M)

)
.

Conversely, let x ∈ res−1
(
I(e,e0̄)(M)

)
. Then

0 = res(x).1e,M = res(x). res(1f,M) = res (x.1f,M) .

However by (5.17) (applied to the case U = M∗ ⊗M) one has that res is injective and so

0 = x.1f,M . That is, x ∈ I(f,f0̄)(M). This proves (5.16).

Note that one outcome of the above proof is that for any finite dimensional module M

in C(f,f0̄) one has

Hp(f, f0̄;M) ∼= Hp(e, e0̄;M)T

for all p ≥ 0.

5.10 Properties of f Support Varieties

We record some basic properties of support varieties for f-modules which follow from the

rank variety description of e support varieties and the isomophism given in Theorem 5.9.1.

The situation is reminiscent of the connection between support varieties for the Frobenius

kernels Gr and GrT considered in [Nak]. Other properties of rank varieties can be found in

[BKN1, Theorem 6.4.2].

Theorem 5.10.1. Let M,N,M1,M2 and M3 be finite dimensional f-modules in C(f,f0̄). Then,
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(a) V(f,f0̄)(M ⊗N) = V(f,f0̄)(M) ∩ V(f,f0̄)(N);

(b) V(f,f0̄)(M
∗) = V(f,f0̄)(M);

(c) V(f,f0̄)(M
∗ ⊗M) = V(f,f0̄)(M);

(d) If

0→M1 →M2 →M3 → 0

is a short exact sequence, then

V(f,f0̄)(Mi) ⊆ V(f,f0̄)(Mj) ∪ V(f,f0̄)(Mk),

where {i, j, k} = {1, 2, 3}.

Proof. To prove part (a), one first notes that as a consequence of the rank variety description

one has by [BKN1, Proposition 6.3.1] that

V(e,e0̄)(M ⊗N) = V(e,e0̄)(M) ∩ V(e,e0̄)(N).

Then the above equality translates into the equality√
I(e,e0̄)(M ⊗N) =

√
I(e,e0̄)(M) + I(e,e0̄)(N).

Taking invariants with respect to T and applying (4.2), one obtains√
I(f,f0̄)(M ⊗N) =

√
I(e,e0̄)(M ⊗N)T

=
(√

I(e,e0̄)(M ⊗N)
)T

=
(√

I(e,e0̄)(M) + I(e,e0̄)(N)
)T

=
√
I(e,e0̄)(M)T + I(e,e0̄)(N)T

=
√
I(f,f0̄)(M) + I(f,f0̄)(N).

This proves the desired equality of varieties.

Part (b) is proven by a similar but easier argument and part (c) follows from parts (a)

and (b).
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Finally, to prove part (d) one observes that the rank variety description implies (cf.

[BKN1, Theorem 6.4.2(d)]) that one has

V(e,e0̄)(Mi) ⊆ V(e,e0̄)(Mj) ∪ V(e,e0̄)(Mk),

where {i, j, k} = {1, 2, 3}. One then argues as in part (a) using instead that(√
I(e,e0̄)(Mj)I(e,e0̄)(Mk)

)T
=
√
I(e,e0̄)(Mj)T I(e,e0̄)(Mk)T =

√
I(f,f0̄)(Mj)I(f,f0̄)(Mk).

Another important property of support varieties is their ability to detect projectivity.

This is illustrated by the following theorem.

Theorem 5.10.2. Let M be a finite dimensional module in C(f,f0̄). Then the following are

equivalent:

(a) The module M is projective in C(f,f0̄);

(b) The module M is projective in C(e,e0̄);

(c) The variety V(e,e0̄)(M) = {0}.

Proof. If M is a projective f-module, then it remains so upon restriction to e, hence one has

that (a) implies (b).

To prove (b) implies (a) it suffices to show

ExtiC(f,f0̄)
(M,L) = Hi(f, f0̄;M∗ ⊗ L) = 0

for all objects L in C(f,f0̄) and i > 0. Since e is an ideal in f one can consider the Lyndon-

Hochschild-Serre spectral sequence for the pairs (e, e0̄) ⊆ (f, f0̄):

Ei,j
2 = Hi

(
f/e, f0̄/e0̄; Hj(e, e0̄;M∗ ⊗ L)

)
⇒ Hi+j(f, f0̄;M∗ ⊗ L).

By assumption M is a projective object in C(e,e0̄) and so Hj(e, e0̄;M∗ ⊗ L) = 0 for j > 0 and

the spectral sequence collapses. That is, for i ≥ 0 one has

Hi (f/e, f0̄/e0̄; (M∗ ⊗ L)e) ∼= Hi(f, f0̄;M∗ ⊗ L).
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Since the objects of C(f,f0̄) are finitely semisimple as f0̄-modules and since f/e = f0̄/e0̄ is a one

dimensional subtorus of f0̄ one has Hi(f/e, f0̄/e0̄; (M∗ ⊗ L)e) = 0 for i > 0. It follows that

Hi(f, f0̄;M∗ ⊗ L) = 0 and so M is projective in C(f,f0̄).

The equivalence of (b) and (c) follows from [BKN1, Theorem 6.4.2(b)].

Note that it is not true that if V(f,f0̄)(M) = {0}, then M is projective as a f-module. One

can find examples of f-modules, M, so that V(e,e0̄)(M) 6= {0}, but by (5.16)

V(f,f0̄)(M) ∼= V(e,e0̄)(M)/T = {0}.

On the other hand, by the previous theorem M is not projective as an f-module since

V(e,e0̄)(M) 6= {0}.

5.11 Calculation of Support Varieties

Recall that for λ ∈ X+
0 we constructed the Kac module K(λ) in Section 2.6. The following

result shows that the g and f support varieties are zero for all Kac modules.

Proposition 5.11.1. Let λ ∈ X+
0 and N be a finite dimensional module in C(g,g0). Then,

(a) V(g,g0)(K(λ), N) = {0};

(b) V(g,g0)(K(λ)) = {0};

(c) V(f,f0̄)(K(λ)) = {0}.

Proof. We present a modified version of the argument used to prove [BKN2, Theorem

3.2.1]. First observe that part (b) follows immediately from part (a). Also, as in the proof

of [BKN2, Corollary 3.3.1], for part (a) it suffices to prove that for n sufficiently large,

ExtnC(g,g0)
(K(λ), N) = 0.

By Frobenius reciprocity, for all n we have

ExtnC(g,g0)
(K(λ), N) ∼= ExtnC(g0⊕g+,g0)

(L0(λ), N).
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Since g+ is an ideal in g0⊕g+ one can apply the Lyndon-Hochschild-Serre spectral sequence

to (g+, {0}) ⊆ (g0 ⊕ g+, g0):

Ei,j
2 = ExtiC(g0,g0)

(L0(λ),ExtjC(g+,{0})
(C, N))⇒ Exti+jC(g0⊕g+,g0)

(L0(λ), N).

Since C(g0,g0) consists of g0-modules which are finitely semisimple over g0, this spectral

sequence is zero for i > 0. That is, it collapses at the E2-page and yields

Homg0(L0(λ),ExtnC(g+,{0})
(C, N)) ∼= ExtnC(g0⊕g+,g0)

(L0(λ), N). (5.18)

According to the definition of relative cohomology, ExtnC(g+,{0})
(C, N) is a subquotient of

Λn
s ((g+)∗)⊗N . But Λn

s ((g+)∗) is positively graded by degree and N is finite dimensional so

for sufficiently large n (depending on λ), Λn
s ((g+)∗)⊗N contains no composition factors of

the form L0(λ). Thus ExtnC(g,g0)
(K(λ), N) = 0 for n� 0.

Finally, to prove part (c) it suffices to observe that the map res∗ : V(f,f0̄)(K(λ)) →

V(g,g0)(K(λ)) = {0} is finite-to-one. Since V(f,f0̄)(K(λ)) is a conical variety it follows that

it must be equal to {0}.

Recall that Serganova [Ser, Lemma 5.3] proved that the set of atypical weights for g is

Ω = {aεi + εi+1 + · · ·+ εn | a ∈ C, 1 ≤ i ≤ n}.

Moreover, she determined the characters of the simple g-modules by determining composition

series for the Kac modules. Serganova’s abridged results for finite dimensional simple modules

are presented in the following theorem.

Theorem 5.11.2. [Ser, Theorem 6.3, Corollary 7.6] Let λ ∈ X+
0 .

(a) If λ /∈ Ω then K(λ) ∼= L(λ).

(b) Let λ ∈ Ω.

(i) If λ = aεi+εi+1 + · · ·+εn with a 6= 0, 1, then there is the following exact sequence:

0→ L(λ− εi)→ K(λ)→ L(λ)→ 0. (5.19)
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(ii) The structure of K(0) and K(ε1 + · · ·+ εn) is described by the exact sequences

0→ L(−εn)→ K(0)→ L(0)→ 0, (5.20)

0→ L(0)→ K(ε1 + · · ·+ εn)→ L(ε1 + · · ·+ εn)→ 0. (5.21)

From the above theorem one has an alternative characterization of typical/atypical for

λ ∈ X+
0 : namely, λ is typical if and only if K(λ) is simple.

The following theorem presents the computation of support varieties of simple g-modules.

Our results demonstrate that L(λ) is typical if and only if the support variety of L(λ) is

zero.

Theorem 5.11.3. Let λ ∈ X+
0 and let L(λ) be finite dimensional simple g-module with

highest weight λ.

(a) If λ /∈ Ω then V(g,g0)(L(λ)) = V(f,f0̄)(L(λ)) = {0};

(b) If λ ∈ Ω then V(f,f0̄)(L(λ)) = V(f,f0̄)(C) and V(g,g0)(L(λ)) = V(g,g0)(C).

Proof. Part (a) is immediate from Proposition 5.11.1(c) and Theorem 5.11.2(a).

To prove part (b), first observe that it suffices to prove V(f,f0̄)(L(λ)) = V(f,f0̄)(C). Namely,

one will then have

V(g,g0)(C) = res∗
(
V(f,f0̄)(C)

)
= res∗

(
V(f,f0̄)(L(λ))

)
⊆ V(g,g0)(L(λ)) ⊆ V(g,g0)(C),

which implies the result for g. Furthermore, observe from Section 2.8 that

Ω ∩X+
0 = {aε1 + · · ·+ εn | a = 1, 2, 3, . . . } ∪ {bεn | b = 0,−1, . . . }.

We will repeatedly use two facts about support varieties of f-modules: the support variety

of a module in a short exact sequence is contained in the union of support variety of the

other two modules by Theorem 5.10.1(d), and the support variety of a Kac module is zero

by Proposition 5.11.1(c).
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Note that L(0) ∼= C and set V := V(f,f0̄)(C). From (5.20) it follows that V =

V(f,f0̄)(L(−εn)). One can now use the remarks from the previous paragraph and (5.19)

to recursively prove that V = V(f,f0̄)(L(−bεn)) for b = 2, 3, . . . . Similarly, we have

V = V(f,f0̄)(L(ε1 + · · · + εn)) from (5.21). Applying (5.19) recursively shows that V =

V(f,f0̄)(L(aε1 + · · ·+εn)) for all a = 2, 3, . . . . Note that all elements of Ω∩X+
0 were considered

above and thus the theorem is proven.

5.12 Realization of Support varieties

The goal of this section is to show that a realization theorem holds for g. Recall that C =

C(g,g0) denotes the category of g-modules which are finitely semisimple as g0-modules and Lζ

denotes the Carlson module corresponding to the homogeneous element ζ ∈ H•(g, g0; C). We

also remind the reader that Carlson modules may not be finite dimensional which is why we

are going to work with relative support varieties.

Let us summarize what we know about the pair (g, g0):

(1) Ext•C(M,N) ∼= H•(g, g0;M∗⊗N) for g-modules M,N ∈ C. Since g is finitely semisimple

as a g0-module under the adjoint action the isomorphism follows from Proposition 3.3.1.

(2) H•(g, g0; C) is a polynomial ring with n−1 variables (Theorem 5.6.1). Thus Hypothesis

3.4.4 holds for g.

(3) g has a detecting subalgebra e (Section 5.7) and e support varieties have rank variety

descriptions (Section 5.8); i.e., Hypotheses 3.5.3 and 4.2.2 hold for g.

(4) V(e,e0̄)(Lζ) = V(e,e0̄)(Lres(ζ)) = Z(res(ζ)). This follows from Lemma 4.5.1.

(5) Ext•C(Lζ1 ⊗ · · · ⊗ Lζs ,C) is finitely generated over H•(g, g0; C). This follows from (1)

and Proposition 4.5.2.

(6) V(g,g0)(Lζ1 ⊗ · · · ⊗ Lζs ,C) ⊆ ∩si=1V(g,g0)(Lζi ,C) This follows form (1) and Proposition

4.5.2.
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(7) V(g,g0)(Lζ ,C) = res∗
(
V(e,e0̄)(Lζ)

)
= Z(ζ) This follows from Proposition 4.6.1.

We are now ready to prove the realization theorem for g .

Theorem 5.12.1. Let X be a conical subvariety of V(g,g0)(C). Then there exists a g-module

M ∈ C such that

V(g,g0)(M,C) = X.

Proof. As we have seen from the discussion above the Hypotheses 3.4.4, 3.5.3 and 4.2.2 hold

for g. Since the assumptions hold the result follows from Theorem 4.7.1.



Chapter 6

Cohomology and support varieties for S̄(n)

6.1 S(n)

Since W (n)0 is canonically isomorphic to gl(n), W (n) has a natural structure of a gl(n)-

module. The action on W (n) of the center of gl(n) is well-known so we may restrict our

attention to the sl(n)-module structure of W (n).

Let h be a Cartan subalgebra of sl(n). Choose a set of simple roots of sl(n) with respect

to h and let ω1, . . . , ωn−1 be the fundamental weights. Since W (n)k ∼= Λk+1(V ) ⊗ V ∗, the

representation of sl(n) in W (n)k is equivalent to L(ωk+1) ⊗ L(ωn−1), −1 ≤ k ≤ n − 1. On

the other hand we have L(ωk+1)⊗ L(ωn−1) ∼= L(ωk+1 + ωn−1)⊕ L(ωk) if 0 ≤ k ≤ n− 2.

Let −1 ≤ k ≤ n − 2. Then the subspace of W (n)k ∼= Λk+1(V ) ⊗ V ∗ corresponding to

L(ωk+1+ωn−1) is denoted by S(n)k. It is easy to see that S(n) =
⊕n−2

k=−1 S(n)k is a subalgebra

of W (n) and Z-grading induces the Z2-grading. Note also that S(n)0
∼= sl(n).

6.2 Basis for S(n)

We now describe basis elements for S(n). Let N = {1, . . . , n} and let I be an ordered subset

of N . A spanning set for each S(n)k can be defined as follows and contains two distinct

types of elements. Those elements of type (I, k) are all those of the form ξI∂i with i 6∈ I and

|I| = k + 1. Those of type (II, k) are of the form ξAhij where i, j 6∈ A and |A| = k. Here by

definition hij = ξi∂i − ξj∂j.

The type I elements are all linearly independent, and their span S(n)Ik is independent of

the span S(n)IIk of the type II elements. The type II elements are not independent however,

59
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since hij + hjk = hik. We reduce the set of type II elements to a basis for S(n)IIk as follows.

For each A with |A| = k, order the complement B = N −A in the natural way as a subset of

N and let i be the first element of B. Select those element of the form ξAhij where i < j ∈ B.

These are easily seen to be independent and span S(n)IIk .

The calculations used to justify the last statement are essentially the same as those

showing that the standard basis for the Lie algebra sl(n) is indeed a basis. This is not an

accident as the restriction of the isomorphism W (n)0
∼= gl(n) carries S(n)0 onto sl(n). Under

this the type (I,0) basis elements ξi∂j correspond to the off-diagonal matrix units Eij and

the type (II,0) basis elements h2j to the diagonal elements E22 − Ejj.

6.3 S̄(n)

Let E = Σn
i=1ξi∂i. In order to keep track of the Z-grading we will attach E to S(n) and

consider the subalgebra S̄(n) = S(n) ⊕ CE of W (n). The Lie superalgebra S̄(n) admits a

Z-grading and in this grading S̄(n)0
∼= gl(n) and S̄(n)k = S(n)k for 6= 0. We use the following

notational convention throughout this chapter. Set g = S̄(n) with gi = S̄(n)i, i ∈ Z, and

gı̄ = S̄(n)ı̄, ı̄ ∈ Z2. Moreover, let g+ = g1⊕· · ·⊕gn−2 and g− = g−1, so that Lie superalgebra

has a lopsided triangular decomposition

g = g− ⊕ g0 ⊕ g+.

A g-module will be assumed to be an object in the category C = C(g,g0).

6.4 Cohomology in C(g,g0)

We begin by showing that the calculation of g0-invariants on Λ•s((g/g0)∗) reduces to looking

at the g0-invariants on Λ•s(g
∗
−1⊕g∗1). This will be accomplished by using detailed information

about the representation theory of g0.

Theorem 6.4.1. Let g = S̄(n) and let p ≥ 0. Then, Λp
s((g/g0)∗)g0 ∼= Sp(g∗−1 ⊕ g∗1)g0 .
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Proof. First observe that g/g0
∼= g−1 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gn−2 as g0-modules. We then have

Λp
s(g
∗
−1 ⊕ g∗1⊕g∗2 ⊕ · · · ⊕ g∗n−2)g0

∼=
⊕(

Λi−1
s (g∗−1)⊗ Λi1

s (g∗1)⊗ Λi2
s (g∗2)⊗ · · · ⊗ Λin−2

s (g∗n−2)
)g0

∼=
⊕

Homg0

(
C,Λi−1

s (g∗−1)⊗ Λi1
s (g∗1)⊗ Λi2

s (g∗2)⊗ · · · ⊗ Λin−2
s (g∗n−2)

)
∼=
⊕

Homg0

(
Λi−1
s (g−1),Λi1

s (g∗1)⊗ Λi2
s (g∗2)⊗ · · · ⊗ Λin−2

s (g∗n−2)
)

where the direct sums are taken over all nonnegative integers i−1, i1, . . . , in−2 such that

i−1 + i1 + · · ·+ in−2 = p. Now one can argue as in the proof of the Theorem 5.2.1.

The previous theorem can be used to show that the cohomology ring H•(g, g0; C) can be

identified with a ring of invariants. Let G0
∼= GL(n) be the connected reductive group such

that Lie(G0) = g0 and the adjoint action of G0 on g differentiates to the adjoint action of g0

on g.

Theorem 6.4.2. Let g = S̄(n). Then,

H•(g, g0; C) ∼= S(g∗−1 ⊕ g∗1)g0 = S(g∗−1 ⊕ g∗1)G0 .

Proof. This follows from Theorem 6.4.1 and the argument used in the proof of the Theorem

5.3.1.

Theorem 6.4.3. Let M be a finite dimesional g = S̄(n)-module.

(a) The superalgebra H•(g, g0; C) is a finitely generated commutative ring.

(b) The cohomology H•(g, g0;M) is finitely generated as an H•(g, g0; C)-module.

Proof. Follows from Theorem 6.4.2 and Theorem 3.4.3.

6.5 Invariant theory Calculations

Fix the same notation as in the previous section. The Lie superalgebra g = S̄(n) admits a

Z-grading and g0
∼= sl(n)⊕C ∼= gl(n) as a Lie algebra. In light of [BKN1], we are interested

in the natural problem of computing the relative cohomology for the pair (g, g0).
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By Theorem 6.4.1, we can reduce the calculation via the following isomorphism:

R = H•(g, g0; C) ∼= S• (W ∗)g0 , (6.1)

where W := g−1 ⊕ g1. Thus to compute R, it suffices to compute the invariant ring on the

right hand side of (6.1). To do so, we use the technology of [LR]. The first step is to obtain

an element x0 ∈ W which is semisimple and principal in the sense of [LR].

The group G0 acts on g by the adjoint action and its action preserves the Z-grading of

g. Let β : W → g0 be given by β(x, y) = [x, y] where x ∈ g−1 and y ∈ g1. Note that this

map is G0-equivariant.

Fix T ⊆ G0 to be the maximal torus consisting set of all diagional matrices and h ⊆ g0

to be h = Lie (T ) , the Cartan subalgebra of g0.

Recall that g−1 = V ∗ as a g0-module and has basis {∂i | 1 ≤ i ≤ n}, g0 has basis

{ξi∂j | 1 ≤ i, j ≤ n} and g1 has basis {ξiξj∂k | 1 ≤ i 6= k, j 6= k ≤ n, i < j} ∪ {ξ1h2j | 3 ≤

j ≤ n} ∪ {ξih1k | 2 ≤ i 6= k ≤ n}.

Lemma 6.5.1. Let h ∈ h be a semisimple regular element and write

h =
n∑
i=1

ciξi∂i

Then we have the following.

(a) If all the entries of h are nonzero, then β−1(h) = ∅.

(b) If h = diag(c1, c1 + c3 + . . .+ cn, c3, . . . , cn) and x ∈ β−1(h), then

x = a1∂1 +
n∑
i=3

ci
a1

(ξ1ξ2∂2 − ξ1ξi∂i) +
∑
r,s,t
r 6=s 6=t
1<r<s

br,s,tξrξs∂t, (6.2)

where a1, br,s,t ∈ C, and a1 6= 0.

Proof. We only sketch the calculation here. First, let x ∈ β−1(h), and write x ∈ g−1 ⊕ g1 in

our preferred basis:

x =
∑
i

ai∂i +
n∑
l=3

b1,lξ1h2l +
∑
i,k

2≤i 6=k≤n

di,kξih1k +
∑
i,j,k

1<i<j

ei,j,kξiξj∂k.
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By a direct calculation of β(x), one sees that if at 6= 0 for some 1 ≤ t ≤ n, then necessarily

ct = 0. Therefore, if all the entries of h are nonzero, then there is no x such that β(x) = h.

This proves part (a). Now let c1 = 0. By our earlier remark, a2 = · · · = an = 0. This

observation simplifies the calculation of β(x). Doing so and using that the image is equal to

h, one obtains (6.2).

Note that if h ∈ h has any entry equal to zero then up to G0-conjugacy (indeed up to

Weyl group conjugacy), one can assume it is in the upper left corner. Thus the general case

is easily deduced from part (b) of the lemma.

Proposition 6.5.2. Let h ∈ h be a semisimple regular element as in part (b) of the previous

lemma. Let x0 ∈ β−1(h) be chosen so that all the coefficents br,s,t are zero in (6.2). Then

x0 ∈ g1 ⊕ g1 is a semisimple element.

Proof. First one computes StabG0(x) for any x ∈ β−1(h). By Lemma 5.5.2 and Lemma 5.5.1(a)

one has StabG0(x) ⊆ StabG0(h) = T. By part (b) of the previous lemma x is a linear com-

bination of distinct weight vectors. From this one sees that t = diag(t1, t2, . . . , tn) ∈ T fixes

x if t1 = t2 = 1. This is also sufficient in the case of x0. Otherwise there will be additional

contraints on t and the stabilizer will be a proper, smaller dimensional subgroup of

Tn−2 := {t = diag(t1, t2 . . . , tn) ∈ T | t1 = t2 = 1}. (6.3)

Thus, x0 has maximal stabilizer dimension, hence minimal orbit dimension in the closed set

β−1(G.y). But by the well known fact on the closure of orbits, it follows that G.x0 must be

closed.

Let

π : g−1 ⊕ g1 → (g−1 ⊕ g1)/G0 and p : g0 → g0/G0



64

denote the canonical quotient morphisms. Let ϕ : (g−1 ⊕ g1)/G0 → g0/G0 be the morphism

induced by the map p ◦ β : g−1 ⊕ g1 → g0/G0. That is, the following diagram commutes.

W g0 g0/G0

(g−1 ⊕ g1)/G0

- -

? ���
���

���
���

�:

β p

π
ϕ

Figure 6.1:

Proposition 6.5.3. Let x0 ∈ g−1 ⊕ g1 be as in Proposition 6.5.2. Then π(x0) is a principal

element of (g−1 ⊕ g1)/G0.

Proof. Let U := ϕ−1 ((g0/G0)pr). By definition, β(x0) is semisimple and regular, so

p(β(x0)) = ϕ(π(x0)) is principal in g0/G0. That is, π(x0) ∈ U. Therefore, U is a nonempty

open neighborhood of π(x0) in (g−1⊕g1)/G0. Let ζ ∈ U and let y ∈ g−1⊕g1 be a semisimple

element in π−1(ζ). Then ϕ(π(y)) = p(β(y)), so β(y) ∈ p−1(η) for some principal η ∈ g0/G0.

But then η = p(h) for some semisimple regular h ∈ h. However since h is semisimple and

regular, it follows that p−1(η) = G0.h. That is, up to G0-conjugacy one can assume β(y)

is a semisimple regular element of h. However, this implies that y is of the form given in

Lemma 6.5.1 and the stabilizer of such elements was computed in the proof of Proposi-

tion 6.5.2. By that calculation and the fact that y is semisimple one sees that the stabilizer

of y is Tn−2. Therefore all semisimple elements in the fibers of U have stabilizer conjugate

to Tn−2 and so π(x0) is principal.

Now that we’ve proved that the element x0 ∈ W considered above satisfies the require-

ments of the Luna-Richardson theorem [LR] (i.e., that x0 is semisimple and π(x0) is principal),

we can calculate R using their theory. Namely,

Let

H = StabG0(x0) = Tn−2 = {t = (t1, t2, . . . , tn) ∈ T | t1 = t2 = 1}, (6.4)
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and let

N = NormG0(H). (6.5)

We first need to calculate the group N.

Lemma 6.5.4. Let N = NormG0(H). Recall that T is the torus of G0. Let Σn be the per-

mutation matrices of G0 and let Σn−2 be the permutation matrices which normalize Tn−2.

Then,

N = TΣn−2.

Proof. The first step is to prove that N ⊆ NormG0(T ). Fix a semisimple regular element

t0 ∈ Tn−2 (for the action of G0 on itself by conjugation). Then T = StabG0(t0). Let n ∈ N .

We claim that nTn−1 fixes t0, hence nTn−1 = T , hence n ∈ NormG0(T ). Let t ∈ T and

consider

(ntn−1)t0(ntn−1)−1 = ntn−1t0nt
−1n−1.

However, since t0 ∈ Tn−2 and n−1 ∈ NormG0(Tn−2), one has that n−1t0n ∈ Tn−2 ⊆ T ; since

t ∈ T and T fixes T pointwise under conjugation, one has tn−1t0nt
−1 = n−1t0n. Thus,

ntn−1t0nt
−1n−1 = nn−1t0nn

−1 = t0.

Therefore, ntn−1 ∈ StabG0(t0) = T. That is, as discussed above, n ∈ NormG0(T ) = TΣn−1.

One can now verify that T fixes H pointwise, and that the elements of Σn−1 which

stabilize H are precisely Σn−2.

We next need to calculate f1̄ = WH .

Lemma 6.5.5. The subvariety f1̄ = WH is the C-span of the vectors

{∂1, ξ1ξ2∂2 − ξ1ξi∂i | i = 3, . . . , n}.

Proof. Since H = Tn−2, f1̄ is simply all weight zero vectors with respect to this torus. Using

our choice of weight basis for W, it is straightforward to see that f1̄ is spanned by the given

vectors.
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6.6 Explicit Description of the cohomology

We are now give an explicit description of the cohomology ring R. Let Zk ∈ f∗1̄ be given by

Zk(ξ1ξ2∂2 − ξ1ξi∂i) = δi,k (i, k = 3, . . . , n) and Zk(∂1) = 0. Let ∂∗1 be given by ∂∗1(ξ1ξ2∂2 −

ξ1ξi∂i) = 0 for all i = 3, . . . , n and ∂∗1(∂1) = 1.

Theorem 6.6.1. Restriction of functions defines an isomorphism,

H•(g, g0; C) ∼= S•(f∗1̄)N = C[Z3∂
∗
1 , . . . , Zn∂

∗
1 ]Σn−2 ,

where Σn−2 acts on Z3∂
∗
1 , . . . , Zn∂

∗
1 by permuations. Therefore, R is a polynomial ring in

n− 2 variables of degree 2, 4, . . . , 2n− 4.

Proof. The first isomorphism is the Luna-Richardson Theorem of [LR]. Since T is a normal

subgroup of N, one can first compute that S•(f∗1̄)T = C[Z3∂
∗
1 , . . . , Zn∂

∗
1 ]. It’s straightforward

to check that Σn−2 acts by permuting the variables Z3∂
∗
1 , . . . , Zn∂

∗
1 . This gives the stated

result.

Let f1̄ = (g−1 ⊕ g1)H ⊂ g1̄ be the subspace calculated in Lemma 6.5.5 and let

f0̄ = Lie(N) = Lie(T ) = h ⊂ g0̄.

One can verify by direct calculation that

[fr, fs] ⊆ fr+s (6.6)

for all r, s ∈ Z2. Thus f = f0̄⊕f1̄ is a Lie subsuperalgebra of g. By [LR, Lemma 2.5] f is unique

up to conjugacy in the sense that if one chooses another semisimple x ∈ g−1 ⊕ g1 such that

π(x) is principal, then following the aforementioned construction leads to a subsuperalgebra

which is G0-conjugate to f.

Applying the definition of relative cohomology in Section 3.2 one can calculate H•(f, f0̄; C)

as follows. First, note that the Z2-grading implies that the differentials defining H•(f, f0̄; C)
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are identically zero (cf. the proof of [BKN1, Theorem 2.5.2]). Thus the cohomology is given

by the cochains; that is,

H•(f, f0̄; C) ∼= S (f∗1̄)f0̄ .

Furthermore, note that the elements of S(f∗1̄) which are invariant under f0̄ are simply those of

weight zero with respect to the torus T. Therefore, recalling that S(f∗1̄) ∼= C[∂∗1 , Z3, . . . , Zn],

one has

H•(f, f0̄; C) ∼= S (f∗1̄)T = C[Z3∂
∗
1 , . . . , Zn∂

∗
1 ].

The following theorem relates the g and f cohomology rings via the natural restriction

map.

Theorem 6.6.2. The inclusion map f ↪→ g induces a restriction map res : H•(g, g0; C) →

H•(f, f0̄; C) so that the following diagram commutes:

H•(g, g0; C)
res

−−−→ H•(f, f0̄; C)

∼=
y y∼=

C[Z3∂
∗
1 , . . . , Zn∂

∗
1 ]Σn−2

⊆
−−−→ C[Z3∂

∗
1 , . . . , Zn∂

∗
1 ]

(6.7)

That is, the restriction map induced by inclusion gives the following graded algebra iso-

morphism,

H•(g, g0; C)
∼=−→ H•(f, f0̄; C)Σn−2 ∼= C[Z3∂

∗
1 , . . . , Zn∂

∗
1 ]Σn−2 .

In particular, both H•(g, g0; C) and H•(f, f0̄; C) are isomorphic to graded polynomial rings in

n− 2 variables.

Proof. The isomorphisms are a reinterpretation of Theorem 6.6.1 in terms of cohomology

and the commutativity of the diagram can be checked directly.

6.7 Detecting subalagebra for S̄(n)

Recall that H = Tn−2 = {diag(t1, t2, . . . , tn) ∈ T | t1 = t2 = 1}. Let e0̄ = Lie(H) ⊂ g0 and

e1̄ = f1̄. Set

e = e0̄ ⊕ e1̄. (6.8)
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As with f one can verify that e is a Lie subsuperalgebra of g. In fact one has

[e0̄, e0̄] = [e0̄, e1̄] = 0. (6.9)

One can also verify that the differentials defining H•(e, e0̄; C) are identically zero and so the

cohomology ring is again given by the cochains. In this case, however, e0̄ acts trivially on e1̄

and so one has

H•(e, e0̄; C) ∼= S(e∗1̄) = S (f∗1̄) ∼= C[∂∗1 , Z3, . . . , Zn].

Furthermore, the inclusion e ↪→ f defines a restriction map, res, so that the following diagram

commutes,

H•(f, f0̄; C)
res

−−−→ H•(e, e0̄; C)

∼=
y y∼=

C[∂∗1Z3, . . . , ∂
∗
1Zn]

⊆
−−−→ C[∂∗1 , Z3, . . . , Zn]

(6.10)

Since H•(f, f0̄; C) ∼= H•(e, e0̄; C)T and H•(g, g0; C) ∼= H•(f, f0̄; C)Σn−2 we have the following

isomorphism

H•(g, g0; C) ∼= H•(e, e0̄; C)TΣn−2 .

As one can see from the discussion above the Lie subsuperalgebra e = e0̄ ⊕ e1̄ satisfies

all the assumptions of a detecting subalgebra; i.e., it is classical and the restriction map

res : H•(g, g0; C)→ H•(e, e0̄; C) induces the isomorphism

H•(g, g0; C) ∼= H•(e, e0̄; C)TΣn−2

with the group TΣn−2 being exact.

6.8 Support Varieties for S̄(n)

By using the pair (e, e0̄) and the setup of Section 4.1 one can define the support variety

V(e,e0̄)(M) for any finite dimensional module M ∈ C(e,e0̄). Since H•(e, e0̄; C) is a polynomial

ring in n− 1 variables, one can naturally identify the support variety of M with the conical

affine subvariety of the affine (n− 1)-space

MaxSpec (H•(e, e0̄; C)) = V(e,e0̄)(C) ∼= An−1
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defined by the ideal I(e,e0̄)(M).

Since by (6.9) the structure of e is of the type considered in [BKN1, Sections 5, 6], [BKN1,

Theorem 6.3.2] implies that one has a canonical isomorphism

V(e,e0̄)(M) ∼= Vrank
e (M) (6.11)

for any finite dimensional e-module M which is an object of C(e,e0̄). We identify the rank and

support varieties of e via this isomorphism.

The inclusion e ↪→ g induces a restriction map on cohomology which, in turn, induces

maps of support varieties. That is, given modules M and N in C(g,g0) one has M ∈ C(e,e0̄) by

restriction to e and one has maps of varieties

res∗ : V(e,e0̄)(M,N)→ V(g,g0)(M,N),

res∗ : V(e,e0̄)(M)→ V(g,g0)(M).

Serganova [Ser, Lemma 5.3] proved that the set of atypical weights for g is

Ω = {aε1 + · · ·+ aεi−1 + bεi + (a+ 1)εi+1 + · · ·+ (a+ 1)εn | a, b ∈ C, 1 ≤ i ≤ n}.

Let σ = ε1 + · · ·+ εn. For each λ ∈ Ω, λ 6= aσ there exists a unique λ = λ− aσ such that

λ is atypical for W (n). Since dimL(aσ) = 1, we have

L(λ) ∼= L(λ)⊗ L(aσ).

Moreover, she determined the characters of the simple g-modules by determining compo-

sition series for the Kac modules. Serganova’s abridged results for finite dimensional simple

modules are presented in the following theorem

Theorem 6.8.1. [Ser, Theorem 6.3, Theorem 8.6] Let λ ∈ X+
0 .

(a) If λ /∈ Ω then K(λ) ∼= L(λ).

(b) Let λ ∈ Ω and L′(λ) denote the irreducible W (n)-module with highest weight λ restricted

to S̄(n). If λ 6= aσ − εn, then L′(λ) = L(λ).
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We remark that from the theorem above one can deduce immediately that for λ ∈ X+
0 :

λ /∈ Ω (i.e., λ is typical) if and only if K(λ) is simple.

The following theorem presents the computation of support varieties of simple g-modules.

Our results demonstrate that L(λ) is typical if and only if the support variety of L(λ) is

zero.

Theorem 6.8.2. Let λ ∈ X+
0 , K(λ) be the associated Kac module and let L(λ) be the finite

dimensional simple g-module with highest weight λ. Then

(a) V(g,g0)(K(λ)) = {0}.

(b) If λ /∈ Ω then V(g,g0)(L(λ)) = {0}.

(c) If λ ∈ Ω then V(g,g0)(L(λ)) = V(g,g0)(C). In this case the support variety has dimension

n− 2.

Proof. For part (a) it suffices to prove that for n sufficiently large, ExtnC(g,g0)
(K(λ), K(λ)) = 0.

By Frobenius reciprocity, for all n we have

ExtnC(g,g0)
(K(λ), K(λ)) ∼= ExtnC(g0⊕g+,g0)

(L0(λ), K(λ)).

Since g+ is an ideal in g0⊕g+ one can apply the Lyndon-Hochschild-Serre spectral sequence

to (g+, {0}) ⊆ (g0 ⊕ g+, g0):

Ei,j
2 = ExtiC(g0,g0)

(L0(λ),ExtjC(g+,{0})
(C, K(λ)))⇒ Exti+jC(g0⊕g+,g0)

(L0(λ), K(λ)).

Since C(g0,g0) consists of g0-modules which are finitely semisimple over g0, this spectral

sequence is zero for i > 0. That is, it collapses at the E2 page and yields

Homg0(L0(λ),ExtnC(g+,{0})
(C, K(λ)) ∼= ExtnC(g0⊕g+,g0)

(L0(λ), K(λ)). (6.12)

Now one can argue as in the proof of the Proposition 5.11.1.

Part (b) can be deduced from Part (a) and Theorem 6.8.1(a).
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For part (c), first observe that

Ω ∩X+
0 = {aε1 + aε2 · · ·+ aεn−1 + bεn | a, b ∈ Z, b ≤ a}.

Moreover, it suffices to show that if λ ∈ Ω ∩X+
0 then V(e,e0̄)(L(λ)) = V(e,e0̄)(C). Namely, one

will then have

V(g,g0)(C) = res∗
(
V(e,e0̄)(C)

)
= res∗

(
V(e,e0̄)(L(λ))

)
⊆ V(g,g0)(L(λ)) ⊆ V(g,g0)(C),

which implies the result for g.

There are two cases we need to consider: λ = aσ and λ 6= aσ.

If λ = aσ, since dimL(aσ) = 1, sdimL(λ) 6= 0, then by [BKN1, Corollary 6.4.1]

V(e,e0̄)(L(λ)) = V(e,e0̄)(C).

Now if λ 6= aσ, then there exists an atypical weight λ̄ for W (n) such that L(λ) = L(λ̄)⊗

L(aσ). One can also easily observe from Theorem 5.11.2 that a simple finite dimensional

module for W (n) is atypical if and only if its superdimension is zero. Since λ̄ is atypical

for W (n), sdimL(λ̄) 6= 0 and thus sdimL(λ) = sdimL(λ̄) 6= 0. Now again from [BKN1,

Corollary 6.4.1] it follows that V(e,e0̄)(L(λ)) = V(e,e0̄)(C).

6.9 Realization of Support varieties

The goal of this section is to show that a realization theorem holds for g. Recall that C =

C(g,g0) denotes the category of g-modules which are finitely semisimple as g0-module and Lζ

denotes the Carlson module corresponding to the homogeneous element ζ ∈ H•(g, g0; C). We

also remind the reader that Carlson modules may not be finite dimensional which is why we

are going to work with relative support varieties.

Let us summarize what we know about the pair (g, g0):

(1) Ext•C(M,N) ∼= H•(g, g0;M∗⊗N) for g-modules M,N ∈ C. Since g is finitely semisimple

as a g0-module under the adjoint action the isomorphism follows from Proposition 3.3.1.
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(2) H•(g, g0; C) is a polynomial ring with n−2 variables (Theorem 6.6.1). Thus Hypothesis

3.4.4 holds for g.

(3) g has a detecting subalgebra e (Section 6.7) and e support varieties have rank variety

descriptions (Section 6.8), i.e., Hypotheses 3.5.3 and 4.2.2 hold for g.

(4) V(e,e0̄)(Lζ) = V(e,e0̄)(Lres(ζ)) = Z(res(ζ)). This follows from Lemma 4.5.1.

(5) Ext•C(Lζ1 ⊗ · · · ⊗ Lζs ,C) is finitely generated over H•(g, g0; C). This follows from (1)

and Proposition 4.5.2.

(6) V(g,g0)(Lζ1 ⊗ · · · ⊗ Lζs ,C) ⊆ ∩si=1V(g,g0)(Lζi ,C). This follows from (1) and Proposition

4.5.2.

(7) V(g,g0)(Lζ ,C) = res∗
(
V(e,e0̄)(Lζ)

)
= Z(ζ). This follows from Proposition 4.6.1.

We are now ready to prove the realization theorem for g.

Theorem 6.9.1. Let X be a conical subvariety of V(g,g0)(C). Then there exists a g-module

M ∈ C such that

V(g,g0)(M,C) = X.

Proof. As we have seen from the discussion above the Hypotheses 3.4.4, 3.5.3 and 4.2.2 hold

for g. Since the assumptions hold the result follows from Theorem 4.7.1.



Chapter 7

Defect, Atypicality and superdimension

7.1 Defect

Let g be a classical Lie superalgebra and h be a maximal torus contained in g0̄. Let Φ be the

set of roots with respect to h. We have Φ = Φ0̄ ∪ Φ1̄ where Φ0̄ (resp. Φ1̄) is the set of even

roots (resp. odd roots). The positive roots will be denoted by Φ+ and negative roots by Φ−.

If g is a basic classical Lie superalgebra, with the non-degenerate bilinear form denoted by

(−,−), Kac-Wakimoto [KW] defined the defect of g, denoted by def(g), to be the dimension

of a maximal isotropic subspace in the R-span of Φ.

The defects for various simple basic classical Lie superalgebras are given as follows

Example 7.1.1. def(sl(m|n)) = min(m,n), def(sl(n|n)) = n, def(osp(2m + 1|2n)) =

def(osp(2m|2n)) = min(m,n), and the exceptional Lie superalgebras D(2, 1;α), G(3), and

F (4) all have defect 1.

7.2 Atypicality

Let g be a basic classical Lie superalgebra as above. Let λ ∈ h∗ be a weight. The atypicality

of λ, denoted by atyp(λ), is the maximal number of mutually orthogonal positive isotropic

roots α ∈ Φ+ such that (λ+ ρ, α) = 0, where ρ = 1
2
(Σα∈Φ+

0̄
α− Σα∈Φ+

1̄
α).

Note that atyp(λ) ≤ def(g). Let L(λ) be a simple finite dimensional g-module with

highest weight λ. The atypicality of L(λ), is defined to be atyp(λ).

Kac and Wakimoto give the following conjecture relating the superdimension of simple

finite-dimensional g-modules with the atypicality of the module [KW].
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Conjecture 7.2.1 (Kac-Wakimoto). Let g be a simple basic classical Lie superalgebra and

L(λ) be a finite dimensional simple g-module. Then sdimL(λ) = 0 if and only if atyp(L(λ)) <

def(g).

As suggested in [BKN1] one can extend the definitions of defect and atypicality as follows:

If g = W (n) or S(n) (resp. g is classical) define the defect of g to be the Krull dimension of

H•(g, g0; C) (resp. H•(g, g0̄; C)). In particular, this new definition would allow us to define the

notion of defect for simple classical Lie superalgebras with no non-degenerate bilinear form,

W (n) and S̄(n). These cohomological and combinatorial definitions do not agree for sl(n|n).

Namely, def(sl(n|n)) = n, whereas Krull dimension of H•(sl(n|n), sl(n|n)0̄; C) = n− 1.

Define the atypicality of a simple module L(λ) with highest weight λ to be dim(V(e,e0̄)(L(λ))/W ).

These new definitions extend the Kac-Wakimoto Conjecture to simple basic classical Lie

superalgebras and Cartan type Lie superalgebras W (n) and S̄(n).



Chapter 8

Representation Type

8.1

Indecomposable modules of a finite dimensional algebra provide a complete description of

all the modules of the algebra. Therefore, classification of the indecomposable modules for

a fixed finite dimensional algebra A is a central theme in the representation theory of such

algebras. The algebra A will fall into one of three classes depending on the classifiability

of its indecomposable modules. If there are only finitely many isomorphism classes of inde-

composable A-modules, then we say that A has finite representation type, and if there are

infinitely many such isomorphism classes, then A has infinite representation type. If A has

infinite representation type, it can be further classified as having tame representation type or

wild representation type. In the former case all but finitely many indecomposable A-modules

of a given dimension can be parametrized by essentially one parameter of base field. If A

is wild, then the classification of the indecomposables is harder than bringing two matrices

simultaneously into Jordan from, a problem which is generally considered hopeless.

8.2

Germoni [Ger] investigated the representation type for the Lie superalgebra sl(m|n). He

proved that if m,n ≥ 2 then sl(m|n) has wild representation type. Germoni also conjectured

that this should hold for blocks of atypicality greater than or equal to two. Later, Shomron

[Sho] proved that each block of the Lie superalgebra W (n) has wild representation type for

n ≥ 3. Both cases are based on studying the Ext1 quiver.
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Recently Farnsteiner [Far, Theorem 3.1] showed that if the dimension of the support

variety of some simple module in a block for a finite group scheme has dimension at least

three, then the block has wild representation type. The proof chiefly depends upon using the

finite group scheme analogue of the above realizability result to construct sufficiently many

indecomposable modules in the block. With these results in mind we present the following

conjecture relating the representation type of Lie superalgebras with our construction of

support varieties for both the classical and Cartan type Lie superalgebras.

8.3

There is a slight difference in the way that the support varieties and detecting subalgebras

are defined in the two cases. We will fix a common notation which allows us to treat both

cases more or less simultaneously. Let g be a classical Lie superalgebra with a polar and

stable action of G0̄ on g1̄ as in [BKN1] or let g = W (n) or S̄(n). Let C = C(g,g0̄) if g is classical

and C = C(g,g0) if g = W (n) or S̄(n). Let

H• =


H•(g, g0̄; C), if g is classical;

H•(g, g0; C), if g = W (n) or g = S̄(n).

If M and N are objects in C for which Ext•C(M,N) (resp. Ext•C(M,M)) is a finitely generated

H•-module, then write Vg(M,N) for the corresponding relative support variety (resp. Vg(M)

for the corresponding support variety).

Conjecture 8.3.1. Let B be a block of C. If there exists a simple module S in B with

dimVg(S) ≥ 3, then B has wild representation type.

In light of Conjecture 8.3.1 and Germoni’s conjecture on the representation type of the

blocks of sl(m|n), it is worthwhile to note that by the calculations in [BKN2] one has that if

B is a block of gl(m|n) of atypicality k, then

Vg(S) ∼= Ak

for all simple modules S in B.
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