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ABSTRACT 

The need for interoperability arises in the discipline of simulation and modeling, 

particularly when the components of a simulation environment need to communicate with each 

other or communicate with outside entities including other simulation environments. Ontologies 

can be used to facilitate this interoperability between the different entities in the real world. This 

thesis describes ways to semi-automatically facilitate the interoperation between two ontologies 

and between a modeling ontology and specific simulation software packages. In the first stage, 

the interoperation is between any domain ontology that may contain a conceptual model 

describable in Discrete Event Simulation (DES) modeling terms, and the Discrete Event 

Modeling Ontology (DeMO). This is achieved through ontology mediation. In the second stage, 

the DeMO ontology is made to interoperate with specific simulation software packages in order 

to produce executable code that conforms to the software. The paper discusses methods to enable 

interoperation in this context. 
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CHAPTER 1 

INTRODUCTION 

 

Software systems and services cater to specific needs and are inflexible in terms of collaborating 

with other systems to share and exchange knowledge. This is because each of these systems uses 

a vocabulary with an intended meaning known and interpretable only to them. However, if these 

systems used a shared vocabulary, then interoperation between them can be achieved and this 

could lead to many advantages such as collaboration and composability. One of the best and 

proven ways to enable interoperation between systems and agents is by using ontologies. An 

ontology represents knowledge in a formal and structured way and is also machine-readable, 

thereby making it easy for systems to use as a shared vocabulary. However, simply developing 

and maintaining ontologies are not sufficient to enable interoperation between these systems. 

Since there is no centralized authority overseeing the development of ontologies, there exist 

many different ontologies describing the same domain in different terms and their structural 

frameworks could be different too. Due to this, though systems ground their semantics within 

ontologies, it is still hard for them to interoperate. A way to overcome this roadblock is through 

ontology mediation. Since ontologies are written in a formal language and since many of them 

are decidable, it is possible to perform mediation between two ontologies that correspond to each 

other on a semantic level. Through ontology mediation, the knowledge of two or more systems 

can be combined, shared and utilized between them, thus enabling interoperation. 
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In recent times, the use of ontologies in modeling and simulation is being considered to enable 

interoperation between the components of simulation systems. Most simulation software 

packages today allow the user to create simulation models using graphical drag and drop 

schemes. For more flexibility, many tools such as MATLAB/Simulink [Ong, 1998], AutoMod 

[Roher, 2003] (which includes a simulation software package, a tool for experimentation and 

analysis and one for making AVI movies of built-in 3-D animation), Micro Saint [Bloechle and 

Schunk 2003] (supports discrete-event models and used to simulate real life processes) and 

Arena [Bapat and Sturrock, 2003] (can be used to simulate both discrete and continuous 

systems), allow users to develop simulation models using their specific simulation languages. 

However, this requires the domain experts to have sufficient knowledge about modeling and 

simulation. If there was a way for the domain ontologies, capturing the essential knowledge 

about conceptual domain models, to interoperate with the simulation software packages, then the 

domain experts will be relieved of the requirement for them to have in-depth knowledge about 

modeling and simulation. However, this would require that the simulation software package be 

able to interoperate with almost every domain ontology and this poses a very complex problem 

to the simulation software developer. If the domain ontology were to interoperate with a 

common modeling ontology and the modeling ontology with the simulation software, then it 

significantly drops the complexity on both sides, i.e., from the domain expert's point of view and 

from that of the simulation software. This interoperation between the two ontologies can be 

enabled through ontology mediation. 

 

This thesis discusses ontology driven simulation aided by ontology mediation techniques. We 

have developed a system, DeMOForge, that uses the Discrete-event Modeling Ontology (DeMO) 
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as its modeling ontology, and it interoperates with the JSIM simulation software package to 

produce executable simulation code. Domain experts wishing to simulate the conceptual models 

from their domain ontologies can use DeMOForge to transform their models into discrete-event 

models in DeMO and run the simulation. DeMOForge provides a mapping tool and a 

transformation tool that enables interoperation between the domain ontologies and DeMO 

through ontology mediation. It also provides a code generator that interoperates with the DeMO 

ontology and the simulation software, JSIM, to produce executable simulation code that can be 

run using JSIM. 

 

The rest of this thesis is organized as follows: Chapter 2 discusses background information 

related to this thesis, Chapter 3 discusses the problem statement and solution strategies explored 

and undertaken, Chapter 4 discusses the implementation of the DeMOForge tool and Chapter 5 

concludes the thesis and discusses future work. 
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CHAPTER 2 

BACKGROUND 

 

2.1 Ontology 

One of the shortest yet informative definitions of an ontology states that it "is an explicit 

specification of a conceptualization" [Gruber, 1993]. Conceptualization in this context refers to a 

particular view of the world chosen for representation. The representation is knowledge 

structured in the form of concepts belonging to a particular domain linked together with 

relationships. In other words, an ontology can be defined as a formal specification of this 

knowledge representation. Today, ontologies are used extensively all over the world to structure 

and represent knowledge in order for people and machines alike to use and reuse this knowledge 

for various purposes. Ontologies, in the view of modern science, consists of concepts or classes 

which are typically nouns describing tangible or intangible entities, relationships or properties 

which link these concepts to one another and other such entities that help in specifying, 

structuring and formalizing knowledge in a machine readable way. Ontologies have to be 

machine readable as they play a very important role in the interoperation of different systems, 

and they do this by sharing the knowledge that they represent in a standard way. Ontologies also 

help such systems and agents in grounding their beliefs and the actions that they perform [Singh 

and Huhns, 2005].  

Ontologies are used in the fields of artificial intelligence, the Semantic Web, software 

engineering, biomedical informatics and information architecture to name a few. The most 
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common languages used to build, represent and express ontologies are the Resource Description 

Framework (RDF) [Miller and Schloss, 1997] and the Web Ontology Language (OWL) 

[McGuiness and Harmelen, 2002]. While RDF is restricted to defining resources, it is often used 

with the constructs (classes and subclasses, property domains and ranges) of RDF-Schema 

(RDFS) [Brickley and Guha, 1999] which help in structuring these resources. Ontology editors 

may be used to develop and maintain ontologies and Protégé [Noy et al., 2001] is one of the most 

popular ontology editors. In this thesis, we use ontologies written in OWL and developed in 

Protégé. 

 

2.2 OWL 

The Web Ontology Language (OWL) is a language for knowledge representation, recommended 

by the World Wide Web Consortium, primarily used to structure knowledge and write them in 

the form of ontologies. OWL is written in XML and it is the successor of Darpa Agent Markup 

Language and Ontology Inference Layer (DAML+OIL) [Horrocks et al., 2001]. OWL is a family 

of three sub-languages based on the expressiveness that each allows: OWL-Lite which is the 

least expressive, OWL-DL which is based on Description Logic and OWL-Full which is the 

most expressive of the three. OWL Lite is used when only a classification of concepts along with 

a few simple constraints are required, OWL-DL is for users who need maximum expressiveness 

while still being decidable [McGuiness and Harmelen, 2002] and OWL-Full though, being the 

most expressive, but is not decidable. Hence OWL-DL is the most popular sub-language and 

because it is based on Description Logic, it allows for consistency checks and making inferences 

on the knowledge. Popular Application Programmer Interfaces (API) used to work with OWL 
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are the Protégé-OWL API [Knublauch et al., 2004], the Jena API [Verzuilli, 2001] and the 

Manchester-OWL API [Bechhofer et al., 2003]. 

 

2.3 Modeling and Simulation and Discrete-Event Simulation (DES) 

Modeling is the process of generating abstract, conceptual, graphical and/or mathematical 

models of real world systems. Modeling is used when it is infeasible to test the real system due 

to reasons such as cost and time. Simulation, in computer science, refers to the execution of such 

models that represent a conceptual framework describing a system, by a computer program in 

order to investigate the processes and behaviors of the system [Arsham, 1995].  

Discrete-event simulation is used in scenarios where the processes and events within a system 

tend to occur as a chronological sequence, more specifically when significant changes which 

may affect state of the system, take place at discrete time instances [Park and Leemis, 2001]. The 

components of DES include clocks, events lists, random-number generators, statistics and ending 

conditions. 

 

2.4 Discrete-Event Modeling Ontology (DeMO) 

The Discrete Event Modeling Ontology (DeMO) is an ontology built and maintained by the 

Large Scale Distributed Information Systems (LSDIS) lab at the University of Georgia. DeMO is 

an ontology that encompasses the knowledge of the discrete-event simulation domain. The 

models in DeMO focus on how discrete states evolve over time. DeMO is useful to researchers 

who are involved in modeling and simulation [Miller et al., 2004]. DeMO is one of the primary 

components of Ontology Driven Simulation (ODS). DeMO is built using OWL-DL and its 

constructs. Below is a description of DeMO:  
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"DeMO has three top level classes: DeModel, ModelComponent and ModelMechanism as 

shown in Figure 1. The subclasses of ModelComponent define the building blocks of DES 

models, such as state, event, activity and process, while the subclasses of ModelMechanism 

define how components work within the model. The DeModel class splits into four first-level 

subclasses: StateOrientedModel, EventOrientedModel, ActivityOrientedModel and 

ProcessOrientedModel. Each of these classes defines a top level DES formalism, and the 

subclasses of these classes represent existing modeling techniques, such as Petri Nets, Markov 

Chains, Event Graphs, etc., for existing DES modeling formalisms. The subclasses are created by 

defining appropriate subclasses of ModelComponent which are associated with DeModel via 

OWL properties, then subclasses of ModelMechanism are defined explaining how the 

components work, finally, the mechanisms are associated with components via properties. Figure 

2 illustrates the structure of the first few levels of the DeMO DeModel class hierarchy." [Silver 

et al., 2009] 

 

 

 

Figure 1: DeMO DeModel, ModelComponent and ModelMechanism classes 
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Figure 2: DeMO DeModel class hierarchy 

 

 

2.5 JSIM 

JSIM is a tool built at the Large Scale Distributed Information Systems Lab, and it is a Java 

based simulation and animation environment [Nair and Miller, 1996]. Initially, JSIM provided a 

Java-based simulation language as well as a graphical user interface for the user to create a 

simulation model. Our work built code generators to produce simulation code by reading 

conceptual models instantiated in the DeMO ontology. Figure 3 shows the simulation and 

animation of a process interaction model. 
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                         Figure 3: Simulation of a Process Interaction Model in JSIM 

 

2.6 The Domain Ontology in Study: ReactO 

For the purpose of this thesis, the domain ontology that we are using which interoperates with 

DeMO is the Reaction Ontology (ReactO). ReactO is an ontology built and maintained by the 

Complex Carbohydrate Research Center (CCRC) at the University of Georgia. ReactO imports 

three other ontologies, namely GlycO, EnzyO and RO. The Glycomics Ontology, GlycO, 

focuses on modeling the structure and functions of glycans. The Enzyme ontology, EnzyO, 

contains knowledge about the enzymes that are involved in the biosynthesis and modifications of 

the glycans from the GlycO ontology. The Relation Ontology, RO, contains logical relations 

shared across different Open Biomedical Ontologies(OBO) [Smith et al., 2005]. ReactO is an 
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ontology that encompasses this knowledge along with the knowledge of reactions and 

biochemical pathways [Appendix A] based on the glycans and enzymes. The conceptual 

framework of the pathway as described in ReactO is shown in figure 4. The pathway class may 

have one or more reactions and each reaction may consume a source molecule which is catalyzed 

by an enzyme to generate an altered molecule. In our project, we will be talking about a specific 

biochemical pathway that is a part of the overall the N-Glycan Biosynthesis Pathway. 

 

Figure 4: The structure of the ‘reaction’ class: the main component of the ‘pathway’ class 

[York et al., 2009] 

 

2.7 Ontology Mediation 

Ontology mediation is an area of research which aims at finding correspondences between a set 

of ontologies in order to facilitate reuse and sharing of knowledge and also the interoperation 
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between two or more agents. It is often used to facilitate interoperation between systems that root 

their semantics within ontologies. Ontologies are being developed all over the world in homes, 

labs, schools and industries. Since there is no central authority to standardize the development of 

these ontologies, there exists several ontologies describing the same domain with the same or 

similar entities (classes, relationships and instances). Because of this, systems which employ 

these ontologies, either as their foundation or as an integral part, are not able to communicate and 

collaborate with each other to achieve a common or consolidated goal. Ontology mediation aims 

at minimizing if not eliminating these roadblocks and differences in order to allow these systems 

to interoperate with each other. 

Ontology mediation can be subdivided into three areas: ontology alignment, ontology mapping 

and ontology merging [Bruijn et al., 2006]. Ontology alignment is the process of comparing two 

ontologies and attempting to find similarities (semantic and syntactic) between every pair of 

corresponding entities (classes, relationships and instances), thus bringing the two ontologies 'in 

line' with one another. Ontology mapping is the process of representing these similarities or 

correspondences between the entities of the two ontologies in and storing them in a structured 

manner. Ontology merging is the process of merging the two ontologies based on their 

similarities, thereby combining the relevant knowledge and eliminating redundancy. 

In recent times, ontology mediation has been used in the Web Service Modeling Execution 

Environment (WSMX) [Mocan, 2004], to increase the efficiency of search and retrieval systems 

by using multi-agent systems [Rahimi et al., 2008], in multi-representation ontology-based 

information systems to facilitate interoperation [Benslimane, 2005], to bridge the gap between 

formal and informal knowledge [Marc and Ralf, 2005], for collaboration between heterogeneous 

venue services [Tan et al., 2003] and a proposal has been made to utilize ontology mediation 
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techniques in the Service Oriented Architecture (SOA) to improve Web service discovery and 

Web service composition [Polleres, 2006]. 

 

2.8 Semantic Web Rule Language (SWRL) 

The Semantic Web Rule Language (SWRL) is based on a combination of the OWL-DL with the 

Unary/Binary Datalog RuleML sublanguages of the Rule Markup Language [Horrocks, 2004]. 

SWRL provides the user with the capability of expressing rules which may be used to infer new 

knowledge or establish certain facts. Every rule is an implication between an antecedent (body) 

and consequent (head), i.e., "whenever the conditions specified in the antecedent hold, then the 

conditions specified in the consequent must also hold". Below is an example related to the 

ReactO ontology: 

 

(reaction(?r) ^ consumes (?r,?m) ^ molecule (?m)) 

      ^ (reaction(?r) ^ hasCatalyst(?r,?e) ^ enzyme(?e) ^ hasMichaelisConstant(?e, ?mc)) 

                                                               MichaelisConstant(?mc) ^ refersTo(?mc, ?m) 

 

In the above example, reaction, molecule, enzyme and MichaelisConstant are classes while 

consumes, hasCatalyst, hasMichaelisConstant and refersTo are properties within the ReactO 

ontology. The variables that substitute the instances of the classes are preceded by question 

marks (if the value of a particular variable is known then it can be used directly). The above rule 

simply establishes the fact that if a particular reaction consumes a molecule and is catalyzed by 

an enzyme which has a particular Michaelis Constant, then this Michaelis constant has to refer to 

the same molecule consumed by the reaction (this rule is used to ascertain the fact that a 
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particular Michaelis Constant exists between a molecule-enzyme pair participating in a 

biochemical reaction). Note, in more complex situations we would need a ternary predicate, such 

as rate_of (?m,?e,?mc), so that given a substrate molecule (?m) and an enzyme (?e), the 

Michaelis Constant ?mc is uniquely determined. 

Though SWRL is primarily a rule language, we can use it as a querying language as well and 

retrieve information by executing SWRL rules as queries. In this thesis, we use the rule language 

characteristics of SWRL to expedite the mapping process and the query language characteristics 

to retrieve the instances from the domain ontology in order to transform them into DeMO 

instances. 
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CHAPTER 3 

PROBLEM STATEMENT AND SOLUTION STRATEGIES 

 

Ontologies have the capability to capture and maintain domain knowledge in a structured fashion 

and this makes it easy to share knowledge across systems in the way in which it is intended, 

without loss of semantics or meaning. Ontologies are being developed in almost every domain 

these days and it is not surprising that the simulation experts began to analyze the use of 

ontologies in their discipline [Miller et al., 2004]. Since then, the development and use of 

ontologies in the field of modeling and simulation have surfaced and have become more popular 

as indicated by the following: 

 Discrete Even Modeling Ontology (DeMO) 

 The evaluation of the Command and Control Information Exchange Data Model 

(C2IEDM) [Tolk, 2005], as an interoperability-enabling ontology 

 The Process Interaction Modeling Ontology for Discrete Event Simulations (PIMODES) 

[Lacy, 2006] and the proposed Component Simulation and Modeling Ontology 

(COSMO) [Teo and Szabo, 2006] 

 The development of an ontology to represent ports for automated model composition – 

“ports define the locations of interaction at the boundaries of components or sub-

systems” [Liang and Paredis, 2003] 

With the use of ontologies, many doors open in the world of modeling and simulation with 

respect to factors such as interoperation, automation and knowledge representation. For systems 
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to communicate with each other, the way they represent knowledge must be standardized. 

Ontologies facilitate this exact requirement and they do so in a formal and structured fashion. 

Also, in many cases, inferences can be made from ontologies which further improve the 

interoperability capabilities between systems.  

 

As discussed earlier, there is a need for the knowledge encapsulated in domain ontologies, in the 

form of conceptual models, to be simulated and this would entail the domain expert to have in-

depth knowledge about simulation and simulation software packages to interoperate with every 

other domain ontology. This poses a complex situation to both the domain expert and the 

simulation software developer. We propose to solve this by having the domain ontologies 

interoperate with a common modeling ontology and the modeling ontology with the simulation 

software. This approach reduces the complexity on both sides of the modeling ontology. 

 

The DeMO ontology has been developed at the LSDIS lab and this ontology contains templates 

to capture knowledge about discrete event models such as activity oriented models, event 

oriented models, state oriented models and process oriented models. Instances from the 

ModelComponent and ModelMechanism classes may then be used to create instances of the 

DeModel class. Using DeMO as our common modeling ontology, we can have the domain 

ontologies interoperate with it and transform the knowledge to it. Then, the simulation software 

can interoperate with DeMO and read the models from it and perform the simulation. 

 

The interoperation between the domain ontology and the DeMO ontology will be facilitated by 

ontology mediation techniques. The alignment and mapping components of ontology mediation 
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will be used to achieve this. A portion of the structure of DeMO and ReactO and their respective 

entities can be seen in section 2. Our initial thoughts were to automate or semi-automate the 

alignment and mapping of DeMO and ReactO. In order to see if the alignment and mapping 

process can be automated, we tried a few existing ontology alignment/mapping tools. First we 

tried PROMPT [Noy et al., 2003] to see if its 'merge' component provided any intuitive 

suggestions while trying to merge DeMO and ReactO. The intention was not to merge the two, 

but if there was any kind of similarity, for example that between the Pathway class in ReactO 

and HybridFunctionalPetriNet class in DeMO, then PROMPT would have suggested merging 

these two classes together and we could have used the suggestions to perform an automated 

mapping; however since, PROMPT primarily identifies linguistic similarities, it could not 

provide any accurate suggestions. Then we tried FOAM [Ehrig et al., 2005] which is a tool that 

semi-automatically aligns two or more ontologies. It is based on similarity heuristics and 

concentrates on labels and structures. However FOAM, was of no avail either. Finally we looked 

at the results of the Ontology Alignment Evaluation Initiative, 2008 [Caracciolo et al. 2008] and 

tried one of its top contenders, RiMOM. RiMOM is a tool for ontology alignment that combines 

different strategies such as Edit-distance based strategy, WordNet based strategy, Vector-

similarity based strategy and few other strategies [Zhang et al., 2008] to find the optimal 

alignment results. Though RiMOM is far more advanced than PROMPT and FOAM, it failed to 

give any satisfactory mapping results. We did foresee this happening; however we decided to try 

it, to see if there was any scope for automatic or at least semi-automatic alignment/mapping 

between the two ontologies. The reason for this inaccuracy and void of automatic alignment and 

mapping is because there was no taxonomical similarities between the two ontologies, no lexical 

similarities between the entity labels (ex: between reaction and ContinuousTransition or between 
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molecule and ContinuousPlace) and no other significant semantic similarities. It might be 

unrealistic to expect such similarities from any domain ontology when compared to DeMO; 

however if the domain ontologist annotates his ontology with correspondence to DeMO, then 

newer ontology alignment and mapping tools which consider the annotations may be able to 

detect a few correspondences. However, due to the stated reasons, the mapping process will not 

rely on these automated alignment tools in order to establish the correspondences between the 

domain ontologies and the DeMO ontology. The mapping process will be fairly simple and will 

expect the domain expert to have only limited knowledge about DeMO. There are ways in which 

the mapping process will be user friendly and also assist the user in the process and this is 

discussed further in chapter 4. Further, use of common base ontologies such as RO or Basic 

Formal Ontology (BFO), could allow fine anchor points to be established in the ontology that 

could bootstrap further alignment. 

 

Once the correspondences between the domain ontology and the DeMO ontology have been 

established, the conceptual model from the domain ontology must be translated and transformed 

into the DeMO ontology in the form of DeMO instances. This will be an automated process. 

SWRL queries will be used in this process to retrieve instances from the domain ontology and 

SWRL rules will be used to formulate the structure of the model in DeMO and perform the 

transformation. One of the other popular query languages for ontologies is SPARQL (SPARQL 

Protocol and RDF Query Language) [Prud'hommeaux and Seaborne, 2004]. However, some of 

the advantages of SWRL over SPARQL are as follows: 

 



 

18 

1. SWRL can be used as a rule language and a query language unlike SPARQL, which is 

solely a query language. 

2. SWRL rules and queries can be stored and maintained within an ontology itself, thus 

allowing their reuse. 

 

A code generator should be developed which reads simulation models from DeMO and produces 

executable code based on these models. The code generator should also handle scenario 

management in the context of retrieving additional simulation input parameters from 

spreadsheets, databases or ontologies and it should have a layout manager which should aid in 

generating the graphical animation component of the executable simulation code. 

 

To summarize, DeMOForge should have three modules: a mapping module that establishes 

correspondences between the domain ontology and the DeMO ontology, a transformation 

module that transforms the conceptual model from ReactO to DeMO and a code generator 

module that reads the model from DeMO and generate executable code to perform the 

simulation. 
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CHAPTER 4 

DEMOFORGE - IMPLEMENTATION 

 

DeMOForge is the tool that we developed to solve the problem that is stated in the previous 

section. DeMOForge allows users to transform the conceptual models stored in their respective 

domain ontologies to DES models and then produces executable code conforming to specific 

simulation software packages, which can be used to simulate these models. DeMOForge ‎is 

divided into three phases: The mapping phase, the transformation phase and the code generation 

phase. The mapping phase helps the user in aligning the domain ontology with DeMO and 

creating the correspondences between them, the transformation phase converts the conceptual 

model from the domain ontology to one in the DeMO ontology and the code generation phase 

generates the executable code which simulates the model in a specific simulation package. The 

use of DeMOForge is illustrated by converting a portion of a biochemical pathway from the 

ReactO ontology to a Hybrid Functional Petri Net model in the DeMO ontology, with each of the 

three phases explained in detail. The architecture of DeMOForge is shown in figure 5.  
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Figure 5: Architecture of DeMOForge [Silver et al., 2009] 

 

4.1 The Mapping Phase 

In this phase, the domain expert loads his ontology in the opening window and specifies the 

name of the conceptual model, within the domain ontology, that he wishes to simulate. The name 
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of the conceptual model is required because the ontology may contain many models, but the user 

may want to simulate only one of these, for example the ReactO ontology may have many 

biochemical pathways instantiated in it, but the user may wish to simulate only one, in this case, 

we consider a portion of the N-Glycan Biosynthesis Pathway. DeMOForge then loads the classes 

of the domain ontology and the DeMO ontology as hierarchical trees, beside each other. As 

discussed earlier, automated ontology alignment is not possible in this context as the entities 

between the two ontologies do not hold any correspondences with each other syntactically or 

semantically. Therefore, the mapping process is computer-aided: however the domain expert is 

assisted in a host of ways to make this process as intuitive as possible. There are search boxes for 

each of the ontologies which the domain expert can use to find a particular class. Also, the 

choices are narrowed down when the domain expert clicks on a particular model in the DeMO 

ontology and it basically trims the class hierarchy and shows only those classes that are relevant 

to the particular model. A few more intuitive suggestions are shown to the user in the latter part 

of the mapping phase which will be discussed shortly. 

First the domain expert has to map the relevant roots of the conceptual models from both the 

ontologies and in this case he has to map the class "pathway" from the ReactO ontology to the 

class "HybridFunctionalPetriNet". As soon as he does this, the tool trims the ontologies and 

displays only those classes that are relevant to the pathway class in ReactO and 

HybridFunctionalPetriNet in DeMO. The user now sees a very few classes from which he has to 

continue setting up the mappings. He chooses to go the next level in the ReactO pathway which 

is the reaction class and he maps this to a ContinuousTransition and finally maps the Enzyme 

class to a ContinuousPlace and the Molecule class to the ContinuousPlace, as well. So, as can be 

seen, the mappings are not one to one. A single class in the domain ontology can be mapped to 
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multiple classes in the DeMO ontology and vice versa. If the user wishes to, he can save the 

mappings at any point by clicking the Save2Onto button. This saves the mapping information 

within DeMO itself. This serves two purposes. One is that these mappings can be reused and the 

next time the domain expert uses this tool, he does not have to go through the whole mapping 

process again, he has to just click Load4mOnto button which will load the mappings that were 

made with the current domain ontology and DeMO. The other use is discussed in chapter 5. 

Once the user is done creating the mappings, he clicks the 'Done Mapping' button. As soon as he 

does this, DeMOForge computes what information is required from the user in order to perform 

the transformation and the user is alerted of these requirements as shown in figure 6.  

 

 

Figure 6: The user being alerted (mappings in red) for extra information 
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For example, in the case of a Petri Net, information about the arcs is required which connects the 

instances of the Places to Transitions or vice versa. Without this information, a topology of the 

conceptual model cannot be built and thus the sequence of events will not be known. Also, there 

may be more than one way of retrieving the instances for a particular class. In such a case the 

user is alerted and the user will be shown all computed ways or paths of retrieving instances for a 

particular class and the user may choose a subset of these paths, for example, as shown in figure 

7, there are two ways of retrieving the instances of the Molecule class: Reaction-consumes-

Molecule or Reaction-generates-Molecule.  

 

 

Figure 7: Multiple ways to retrieve instances of a class 
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Both these paths will produce a different set of instances. Since both these are relevant in this 

context, the user selects both of them, and also specifies how exactly the molecule class is linked 

to the reaction class from the perspective of the DeMO Arcs. The Arc types shown in figure 8 

are the subclasses of the Arc class, however in ReactO, the arcs that connect the reactions to 

molecules (consumes and generates) or reactions to enzymes (has_catalyst) are properties; hence, 

unlike the class to class mapping this would be a property to class mapping. Table 1 shows the 

class to class mappings and table 2 shows the property to class mappings. 

 

Table 1: Mappings between corresponding ReactO and DeMO classes 

ReactO Ontology class DeMO Ontology class 

Pathway HybridFunctionalPetriNet 

Reaction ContinuousTransition 

Molecule ContinuousPlace 

Enzyme ContinuousPlace 

 

 

Table 2: Mappings between corresponding ReactO properties and DeMO classes 

ReactO Ontology property DeMO Ontology class 

Reaction consumes Molecule ContinuousInputArc 

Reaction generates Molecule ContinuousOutputArc 

Reaction has-Catalyst Enzyme ContinuousTestArc 
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4.2 Transformation Phase 

In the transformation phase, the instances of the conceptual model in ReactO are transformed to 

DeMO instances to conceptualize a DES model of the pathway. The transformation module uses 

the established mappings and the computed paths to every mapped class to retrieve those specific 

instances. It uses SWRL to retrieve the instances. First a simple transfer of the instances from 

ReactO to DeMO is done, where the instances of the classes mapped from ReactO are created as 

instances of the respective classes mapped in DeMO. Then DeMOForge fills out any missing 

information that does not require the intervention of the user and then finally it uses the extra 

information supplied by the user, for example the arc information, to link the transferred 

instances in DeMO to one another. The process is explained in finer detail below: 

 

1. SWRL queries will automatically be generated and used to retrieve the ReactO instances 

that represent the pathway model. As every SWRL query is generated, if the query 

contains classes for which instances have already been retrieved through a path which is 

the subset of the path used to retrieve instances for the current class, then these instances 

are used in the generated query. For example for the path, 

pathwayreactionhas_catalystenzyme, since instances for reaction have already 

been retrieved using the path, pathwayreaction, they will be used to retrieve the 

instances of the enzyme class. We are using a trial version of the Jess API (provided by 

Sandia National Laboratories) to execute SWRL queries (in the process of applying for 

an academic license). 

2. Previously defined mappings are used to create DeMO instances which correspond to the 

ReactO instances retrieved in step 1. 
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3. The structure of the DeMO Hybrid Functional Petri Net formalism is captured, and 

SWRL rules are generated according to the formalism. 

4. The SWRL rules created in step 3 along with the information given by the user (eg: Arc 

type information) are used create relationships between the DeMO instances so that they 

form a conceptual HybridFunctionalPetriNet model of the pathway. 

 

The illustration in figure 8 below explains this further and shows the conceptual model before 

transformation in the ReactO ontology and after transformation in the DeMO ontology. In figure 

8, only a tiny portion of the N_Glycan_Biosynthesis pathway with just one reaction is shown due 

to space constraints. 

 

 

Figure 8: Before and after transformation of Reaction1 (some entities have been trimmed 

due to space constraints) 
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4.3 Code Generation 

Once the transformation has been completed, the code generator can be used at any time to 

generate a JSIM executable simulation code of any DES model within DeMO. The code 

generator is isolated from the rest of the DeMOForge tool, programmatically, in terms of 

sequence of execution to make the application more flexible. In this case the user is asked for the 

name of the model again, which he wishes to simulate. The code generator looks up the model in 

DeMO and retrieves it, then stores it in a data structure which can handle the graph-based 

representation of the DES model and constructs a topology of the model internally. Also, the 

code generator notes the kind of DES model that needs to be simulated and detects the execution 

parameters or data values that are required in order to run this simulation, such as the token/fluid 

levels of the places. The user can feed these parameters from a spread sheet, a database or 

another ontology. The scenario management component of the code generator differentiates 

between the three and creates a hash-map of the variable parameters which will then be used 

during code generation (note, one generated model can be run under several scenarios). The code 

generator also has a layout manager which calculates the co-ordinates of each of the components, 

depending on the kind of DES model that will be simulated (for example the components of a 

process interaction model are different from those of a Hybrid Functional Petri Net model), and 

maps these co-ordinates on the canvas of the simulation engine. 

Once the code has been generated, the user may at any point simply run the generated executable 

to simulate the model and view the animation in JSIM. Figure 9 shows the simulation of the 

portion of the biochemical pathway, modeled as a Hybrid Functional Petri Net. The red ellipses 

are the places (ContinuousPlace), and the blue rectangles are the transitions 

(ContinuousTransition). The fluid levels of the places can also be seen inside of them. Figure 10 
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shows the state of equilibrium of each of the substrates after a certain point of time (800ms in 

this case). 

 

Figure 9: Simulation of the pathway model as a Hybrid Functional Petri Net in JSIM 

 

 

Figure 10: Simulation statistics in JSIM  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

As stated in section 3, we have developed a tool that enables the interoperation between a 

domain ontology and DeMO and transforms the conceptual model from the former to the latter. 

It then generates executable code which can be used to run the simulation of the conceptual 

model in JSIM. We used a portion of the N-Glycan Pathway instantiated in ReactO and the 

results obtained have been satisfactory and the application was able to generate the final product 

(DeMO with transformed model and executable simulation code). DeMOForge applied the 

methodologies of ontology mediation and facilitated the interoperability between ReactO 

(domain ontology) and DeMO (modeling ontology), particularly in the transformation of a 

conceptual biochemical model to a conceptual DES model. In fact, the techniques used in this 

paper such as mapping, knowledge retrieval and storage (via rule generation and rule execution) 

and transformation of knowledge can be used to facilitate interoperation between any two 

ontologies. We also discuss the use of rule systems to aid in the transformation process. The 

Semantic Web Rule Language (SWRL) was used to accomplish this. We not only use the rule 

system component of SWRL, but also use the querying system extensively. The use of SWRL in 

the process of ontology mediation in the context of ontology driven simulation has never been 

done before. 
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In a way, DeMO is learning about domain specific simulation models using the feature where it 

stores the mapping details within the ontology itself. Using this stored information about 

mappings and associated details between domain specific ontologies and DeMO, we can prompt 

the user with mapping suggestions, when a domain specific model with similar features as that of 

an already 'learned' model is being transformed into a DES model. As already discussed, it is 

hard to automatically align and map domain ontologies with DeMO. However, if ReactO has 

already been mapped to DeMO, then when an ontology with components similar to ReactO such 

as the Biochemistry Ontology [Dumontier, 2007] is to interoperate with DeMO, our tool can be 

programmed to align the previous mappings (documented knowledge) with the Biochemistry 

Ontology based on certain similarity measures thereby assisting the user in mapping the 

Biochemistry Ontology with DeMO. 

 

Also, suggestion features (e.g., when suggesting the arc types) can be improved and can be more 

specific in its suggestions, by applying semantic reasoning on like components between the two 

ontologies. For example, the property 'consumes' in ReactO is a synonym of 'input' which would 

imply that this relationship would correspond to a type of an InputArc in DeMO. 

 

Currently, we are laying the foundation to making the mapping process visually intuitive by 

displaying the model structures from the ontologies side by side as graphs with classes and 

properties rather than as class hierarchy trees as shown in figure 11. Using such a visually 

enhanced mapping tool, the user can simply click on a class in the domain ontology and then 

click on the corresponding class in DeMO, let the tool trim the ontologies or trim the ontologies 

himself by specifying parameters such as level depth and continue with the mapping. 
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Figure 11: Visual mapping process 
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APPENDIX A 

BIOCHEMICAL PATHWAYS AND PETRI NETS 

 

Biochemical Pathways 

Biochemical pathways can be defined as a network of reactions involving complex interactions 

between bio-molecules within a cell. Biochemical pathways include metabolic pathways, 

transduction pathways and gene regulatory pathways. 

A metabolic pathway is a network of reactions occurring in a cell. In every pathway, a molecule 

or a substrate is typically catalyzed by enzymes to produce a modified molecular product. An 

example of an enzyme catalyzed reactions is shown in Figure 12. 

 

Figure 12: An enzyme catalyzed reaction [Nimmagadda 2008] 

Signal-Transduction Pathways allow cells to perceive, process and respond to information 

incoming from outside the cell. 

Gene regulatory pathways focus on the cells operating at the gene level. They orchestrate the 

level of gene expressions on each cell, by deciding if a gene should be transcribed into RNA and 

if yes, how it will be done. 
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The N-Glycan biosynthesis pathway is a type of a metabolic pathway. 

 

Petri Nets 

A Petri-net is a mathematical modeling language used to describe discrete distributed systems. 

The formal definition of a Petri-net is given below [Petri, 1994]: 

Petri Net is a five tuple set, (P, T, F, W, M0), where: 

P = {p1 , p2 , ..., pm }, finite set of places 

T = {t1 , t2 , ..., tn }, finite set of transitions 

F  (P × T )U(T × P ), set of arcs 

W : F → {1, 2, ...}, weighting function 

M0 : P → {0, 1, ...}, initial marking 

The two types of vertices are places and transitions. Places are conditions and transitions are the 

discrete events that may occur. Directed arcs connect places to transitions or transitions to places 

but never a place to a place or a transition to a transition. Arcs may have weights assigned to 

them which define the amount of the place that must be produced before it can be supplied to a 

transition.  Petri-nets were invented by Carl Adam Petri to describe chemical processes [Petri, 

1962], aptly suiting our purpose of modeling a biochemical pathway as a Petri-net. 



 

39 

 

Figure 13: A Petri-net with four transitions and six places [Nimmagadda 2008] 

 

A Petri-net is shown in Figure 13. The rectangular boxes represent transitions; the circles 

represent places – a transition may have both input places and output places. And the lines with 

arrowheads represent the directed arcs. Figure 14 shows a classification of Petri-nets. 

 

Figure 14: Classification of Petri-nets 

 

Modeling a biochemical pathway as a Petri-net 

The illustration in figure 15 is that of a pathway for N-Glycan Biosynthesis and that in figure 16 

illustrates how a portion of this pathway is modeled as a Petri-net. By looking at these figures we 

can see how a pathway is analogous to a Petri-net. Molecules and enzymes in a pathway can be 

represented as places in a Petri-net. Reactions in a pathway can be represented as transitions in a 
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Petri-net. Hybrid modeling methodologies can be used to model pathways and the most suited 

methodology used for biochemical simulation is the Hybrid Functional Petri Net (HFPN). The 

HFPN retains all the characteristics of a Petri-net and also provides means of accurately 

describing the continuous features of a biochemical pathway. 

 

Figure 15: A Biochemical pathway [Mormen, 2008] 

 

 

Figure 16: Portion of the pathway modeled as a Petri-net [Nimmagadda 2008] 
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APPENDIX B 

USER GUIDE 

 

Installation Instructions 

1. Install Java (current system has been tested on Java 1.6): http://java.com 

2. Install Ant: http://ant.apache.org/ 

3. Download and unzip DeMOForge.zip (current location: 

http://cs.uga.edu/~jam/downloads/DeMOForge.zip) 

4. Download and unzip JSIM.zip (current location: 

http://cs.uga.edu/~jam/downloads/JSIM.zip) 

5. Download the JESS API (license required for full version) from 

http://www.jessrules.com/jess/download.shtml and copy and paste jess.jar into 

DeMOForge/lib/ProtegeOWL 

6. Go to the DeMOForge folder, and type 'ant' to compile 

7. Go to the JSIM folder, and type 'ant' to compile 

 

Execution and usage Instructions 

DeMOForge - Mapping and Transformation tool 

1. Run 'ant DeMOForge' from the DeMOForge folder. 

2. Load the domain ontology and the DeMO ontology (Figure 17 and Figure 18). 
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Figure 17: Ontology Load Screen 

 

 

Figure 18: Ontologies selected 
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3. The mapping tool is loaded as shown in Figure 19: The class hierarchies of the domain 

ontology and the DeMO ontology can be seen side by side. The status bar is at the bottom 

of the screen. 

 

Figure 19: DeMOForge Mapping tool 

 

4. Select the conceptual model class from the domain ontology and select the DES model 

formalism class that it corresponds to in the DeMO ontology and click „Map‟ (Figure 20). 

Classes can be browsed for through the class hierarchy trees or the user can enter a search 

term in the search box just below the tree display. 
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Figure 20: Aligning and mapping the ontologies 

 

5. As soon as the model classes are mapped, both the ontologies are trimmed and only those 

concepts related to the particular model classes are displayed as shown in Figure 21. 
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Figure 21: Trimmed Ontologies 

 

6. Continue with this process until all the corresponding classes have been mapped as 

shown in Figure 22. 
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Figure 22: Done Mapping 

 

7. At any point, the „Save To Onto‟ (Save to Ontology) button can be clicked to save the 

mappings in DeMO and the „Load To Onto‟ button can be used to load mappings from 

DeMO.  

8. For complex mappings, such as that for a firing rate equation, which involves the 

formation of an equation, based on the data-type values held by one or more individuals, 

the user can use the following convention to create equations in the Equations.txt file. 

DES_class_name = [ str[] + swrlImp[path,replaceClass,dataTypeValue] ]* 

str[] - can contain any string that is to be used in the equation 

swrlImp[] - can contain a specific SWRL query to retrieve instances 

path - path used to retrieve instances OR SWRL query 
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replaceClass - replace this particular class with its instances 

datatypeValue - specify data type property associated with the last class in the path, null 

if individual label is to be used 

* - any combination of str[] and swrlImp[] separated by a „+‟ sign 

Example: 

firing_rate_equation = swrlImp[enzyme --> has_kinetic_constant --> 

kinetic_constant,enzyme,has_float_value] + str[[S]/] + swrlImp[enzyme --> 

has_Michaelis_constant --> Michaelis_constant,enzyme,has_float_value] + str[+[S]] 

9. Click the „Done Mapping‟ button once all the mappings are created. 

10. The red colored mappings (Figure 23) are alerting the user as additional information is 

required pertaining to these mappings. 

 

Figure 23: Red colored mappings 
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11. Click on the red colored mappings to resolve them. The „Additional Details Required‟ 

window pops up (Figure 24) and the user has to select a path which will be used to 

retrieve the instances. The class listed at the end of the path is the class for which 

instances will be retrieved. For example reactionconsumesmolecule will return a 

different set of molecule instances when compared to reactiongeneratesmolecules. 

Along with the paths, the user may be asked to select an arc type if the node for which 

instances are being retrieved is a subclass of the Place class. In this case the user needs to 

select the arc that connects this place to its corresponding transition. 

 

Figure 24: Additional Details Required 

 

12.  If more than one of the paths is relevant in the context, click „One more path with this 

class-pair‟ and repeat step 9 (Figure 25). 
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Figure 25: One more path with this class-pair 

 

13.  Once all the mappings have been resolved, the user sees that the red colored mappings 

are reverted to the normal black color as shown in Figure 26. The user can now click the 

„Transform to DeMO‟ button. 
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Figure 26: Red colored mappings resolved 

 

14.  The user has to select the instance of the model which he wants to transform (Figure 27) 

 

Figure 27: Model instance selection for transformation 
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15.  The transformation of the model from the domain ontology to DeMO has been done. The 

user can now click the „Exit‟ button (Figure 28). 

 

Figure 28: Transformation complete 

 

DeMOForge - Mapping and Transformation tool 

 

1. Run 'ant CodeGenerator' from the JSIM folder. 

2. Load the DeMO ontology and click and click „Browse‟ model (Figure 29). 
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Figure 29: DeMOForge Code Generator – Load DeMO 

 

3. Select the instance of the model to be simulated as shown in Figure 30. 

 

Figure 30: Model Instance selection for Simulation 

 

4. Enter the simulation time (Figure 31) and press the „Generate Code‟ button. 
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Figure 31: Press ‘Generate Code’ 

 

5. The tool may need some additional data and it will prompt the user for it (Figure 32). The 

user can feed the data from a spreadsheet, a database or an ontology. 

 

Figure 32: Choices for data feed 
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6. In this case, the data is fed from a spreadsheet and the user has to enter the column 

numbers which contains the place names and the place concentrations (Figure 33). 

 

Figure 33: Data feed from spreadsheet 

 

7. The code will be generated. The user can type „ant ModelSim‟ from the root JSIM folder 

in order to simulate the model and view the animation. 
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APPENDIX C 

DEMOFORGE JAVADOC 

 

The JavaDoc for the DeMOForge tool can be found at the following download location: 

http://cs.uga.edu/~jam/downloads/DeMOForge.zip. 

Unzip the above file and open DeMOForge/doc/index.html 

The JavaDoc summary of the „demoforge‟ package is shown in Figure 34. 

 

Figure 34: JavaDoc summary of the ‘demoforge’ package 

 


