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Abstract

The likelihood function plays an essential role in statistical analysis. It helps to estimate a set

of parameters of interest. To make inferences, usually one must specify a parametric model

given data, which is a challenging task because it requires speci�cation of a correct distribu-

tion, and this parametric model may be prone to bias that arises either from the estimation

of a parameter or an incorrect speci�cation of the probability distribution. Non-parametric

approaches are used as a remedy to overcome the misspeci�cation of the model but can be

computationally costly. In this dissertation, we proposed an alternative approach based on

Bayesian empirical likelihood for linear regression and penalized regression. This method is

semi-parametric because it combines a nonparametric and a parametric model. The advan-

tage of this approach is that it does not require the assumption of a parametric model nor the

linearity of estimators; that is, we avoided problems with model misspeci�cation. By using

a Hamiltonian Monte Carlo, we averted the problem of convergence and the daunting task

of �nding an adequate proposal density in the Metropolis-Hastings method. Additionally,

we showed that the maximum empirical likelihood estimator is consistent. Moreover, the

resulting posterior density under the Bayesian empirical likelihood framework lacks a closed



form, which makes it di�cult to obtain the exact distribution. For this purpose, we derived

the asymptotic distribution of the regression parameters in the linear regression along with

Bayesian credible intervals.

Index words: Empirical likelihood, Bayesian statistics, Hamiltonian Monte Carlo,
Penalized regression, Linear model, Asymptotic distribution
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Chapter 1

Introduction

Empirical likelihood (EL) is a nonparametric method �rst introduced by Owen (1988, 1990),

although it can be considered as an extension of calibration estimation in survey sampling

(Hartley and Rao, 1968; Deville and Sarndal, 1992). It is an estimation method inspired

by maximum likelihood but without assuming a parametric model for the data. Hence, we

avert the problem of model misspeci�cation. One of the advantages of the EL approach is

its �exibility to incorporate constraints and prior information (Kuk and Mak, 1989; Chen

and Qin, 1993; Owen, 2001). Qin and Lawless (1994) extended the work of Owen by linking

moment conditions and developing methods of combining information about parameters. In

some settings, Owen (1988, 1990, 2001) showed that EL inherits properties of a parametric

model. For instance, the limiting distribution of the likelihood ratio test based on EL for

a univariate mean is χ2. This parallels the result (Wilks, 1938) for parametric likelihood

ratio tests. Another feature of EL is that it admits a Bartlett correction (DiCiccio et al.,

1991); that is, the coverage error in EL can be reduced to n−2. Baggerly (1998) showed that

empirical likelihood is the only member of the Cressie-Read power divergence family to be

Bartlett-correctable. Also, one can obtain data-determined con�dence intervals through the

Wilks statistics, which does not require the estimation of variance (Owen, 2001).
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Empirical likelihood has also been extended to linear models, correlation models, ANOVA

and variance modeling (Owen, 1991, 2001), generalized linear models (Kolaczyk, 1994),

Bayesian settings (Lazar, 2003), weighted empirical likelihood (Wu, 2004), exponentially

tilted empirical likelihood (Schennach, 2007), covariance estimation (Chaudhuri et al., 2007),

generalized linear models incorporating population level information (Chaudhuri et al., 2008),

Bayesian empirical likelihood for small area estimation (Chaudhuri and Ghosh, 2011), and

Bayesian empirical likelihood for quantile regression (Yang and He, 2012). To sum up, EL is

considered a powerful approach, as an alternative to likelihood, compared to other methods

because without specifying a model to given data, it retains many desirables properties of

likelihood.

Next, we introduce the essential concepts of EL as well as its most important properties.

Most of the results can be found in the book Empirical Likelihood (Owen, 2001).

1.1 Empirical Likelihood

Suppose X1, · · · , Xn ∈ IR are iid random variables generated from an unknown distribution.

The cumulative distribution (CDF) is FXi
(xi) = P (Xi ≤ xi), where xi ∈ IR. Denote P (Xi <

xi) by F (x−i ) and P (Xi ≤ xi) by F (xi), so we can write wi = P (Xi = xi) = F (xi)− F (x−i ).

Let the notation 1δx represent the indicator function of event δx that takes the value 1 if the

assertion δx is true and 0 otherwise.

De�nition 1.1.1. The empirical cumulative distribution function (ECDF) of X1, · · · , Xn is

Fn(x) =
1

n

n∑
i=1

1Xi≤x,

where x ∈ IR. Using similar notation, one can de�ne the nonparametric likelihood of the

CDF F given X1, · · · , Xn ∈ IR with common CDF F as follows:

2



L(F ) =
n∏
i=1

(
F (Xi)− F (X−i )

)
=

n∏
i=1

wi.

The basic idea of Owen (1988) is to construct a multinomial distribution F (w1, · · · , wn) that

places probability wi on each observation. For each i = 1, · · · , n, the probability must be

non-negative and
n∑
i=1

wi = 1. (1.1)

For inference, we explore the empirical likelihood ratio

R(F ) =
L(F )

L(Fn)
=

n∏
i=1

nwi,

with constraints wi ≥ 0 and
∑n

i=1wi = 1. By de�nition, L(F ) = 0 if the distribution is

continuous.

An important property of the ECDF is that it is the nonparametric maximum likelihood

estimator (NPMLE) of the distribution F , that is, if X1, · · · , Xn ∈ IR are independent

random variables with a common CDF F , where Fn is their ECDF, then for any CDF F

and for F 6= Fn

L(F ) < L(Fn).

The NPMLE maintains the invariance property of maximum likelihood for functions. Given

a function T that depends on data with common CDF F and a parameter of interest θ, such

that θ = T (F ), the NPMLE of θ is θ̂ = T (Fn).

Suppose X1, · · · , Xn are iid random variables generated from a distribution F . We are

interested in estimating a p-dimensional parameter θθθ = T (F ). Godambe (1960) provided a

method of estimating equations that speci�es how θθθ should be determined:

E{g(Xi, θθθ)} = 000,

3



where g is a r × 1 vector-valued function and r ≥ p.

Example 1.1.1. Let {(Vi, Yi), i = 1, · · · , n} be a random sample. We are interested in esti-

mating the correlation ρ =
cov(VVV ,YYY )

σvσy
. To estimate ρ, we need to estimate µv = E(VVV ), µy =

E(YYY ), σv =
√
Var(VVV ), σy =

√
Var(YYY ), and σvy = E(V YV YV Y ). Let θθθT = (µv, µy, σ

2
v , σ

2
y, σvy).

The set of estimating equations for estimating ρ is as follows:

g1(VVV ,YYY ,θθθ) = VVV − µv,

g2(VVV ,YYY ,θθθ) = YYY − µy,

g3(VVV ,YYY ,θθθ) = (VVV − µv)2 − σ2
v ,

g4(VVV ,YYY ,θθθ) = (YYY − µy)2 − σ2
y,

g5(VVV ,YYY ,θθθ) = (V YV YV Y − µvµy)− σvy.

Let g = (g1, g2, g3, g4, g5)T . Then the solution to the estimating equation

1

n

n∑
i=1

g(Vi, Yi, θθθ) = 000

is an estimator ρ̂ =
σ̂vy
σ̂vσ̂y

for ρ.

Qin and Lawless (1994) linked estimating equations and empirical likelihood by using in-

formation about a parameter of interest regarding functions. Suppose that we have data

x1, · · · , xn from some unknown distribution F . We are interested in inference concerning

some function of F of p-dimension, θθθ(F ). When θθθ(F ) can be determined by an estimating

equation ggg(xi, θθθ), the empirical likelihood ratio function is de�ned by

R(θθθ) = sup
{
R(F )| wi ≥ 0,

n∑
i=1

wi = 1,
n∑
i=1

wiggg(Xi, θθθ) = 0
}

= sup
{ n∏
i=1

nwi| wi ≥ 0,
n∑
i=1

wi = 1,
n∑
i=1

wiggg(Xi, θθθ) = 0
}
,

(1.2)

4



Equation (1.2) maximizes the empirical likelihood ratio subject to constraints
∑n

i=1 wi = 1

and
∑n

i=1wiggg(Xi, θθθ) = 0. To maximize the constrained equation in (1.2), we use the La-

grange multiplier approach (Rockafellar, 1993). The Lagrangian equation to our maximiza-

tion problem is

l(θθθ, w1, · · · , wn,λλλ, γ) = n log(n) +
n∑
i=1

log(wi) − nλλλT
n∑
i=1

wiggg(Xi, θθθ) − γ
{ n∑
i=1

wi − 1
}

(1.3)

where λλλ and γ are Lagrange multipliers. Taking the derivative of (1.3) with respect to wi

and setting it equal to zero, we obtain

1

wi
− γ − nλλλTggg(Xi, θθθ) = 0, for each i = 1, · · · , n

wi =
1

γ + nλλλTggg(Xi, θθθ)
.

(1.4)

To estimate γ, we multiply (1.4) by
n∑
i=1

wi, which ful�lls the condition in (1.1)

n∑
i=1

wi(
1

wi
− γ − nλλλTggg(Xi, θθθ)) = 0

n− γ
n∑
i=1

wi − n
n∑
i=1

wiλλλ
Tggg(Xi, θθθ) = 0

γ̂ = n.

(1.5)

We �nd that the maximum empirical likelihood estimator of the weight is simply

ŵi =
1

n(1 + λλλTggg(Xi, θ̂θθ))
.

5



The result is an equation in terms of θθθ where λλλ ∈ Rp+1 is a function of θθθ that solves

n∑
i=1

ggg(Xi, θθθ)

1 + λλλTggg(Xi, θθθ)
= 000.

1.2 Empirical Likelihood for Univariate Mean

In this section, we present a particular example of the general approach from Qin and Lawless

(1994) with a speci�c univariate estimating equation. Let the population mean, µ ∈ IR,

be our parameter of interest. Suppose X1, · · · , Xn are independent random variables with

common CDF F and E(Xi) = µ. The population mean can be estimated by µ̂ =
1

n

∑n
i=1 xi.

The estimating equation has the following form:

g(xi, µ) = xi − µ.

By linking the above estimating equation and EL, the empirical likelihood ratio for the

univariate mean is de�ned as follows:

R(µ) = sup
{ n∏
i=1

nwi | wi ≥ 0,
n∑
i=1

wi = 1,
n∑
i=1

wi(xi − µ) = 0
}
.

Maximizing
n∏
i=1

nwi is equivalent to maximizing
n∑
i=1

log(nwi) under the two constraints
n∑
i=1

wi =

1 and
n∑
i=1

wi(xi − µ) = 0. We solve the optimization problem by using the Lagrange approach

l(µ, λ, γ) =
n∑
i=1

log(nwi) − λ

n∑
i=1

wi(xi − µ) − γ(1 −
n∑
i=1

wi) (1.6)

where λ and γ are the Lagrange multipliers. The �rst-order conditions for the maximization

of (1.6) with respect to wi, γ, and λ are

6



1

wi
= γ + nλ(xi − µ)

n∑
i=1

wi = 1

n∑
i=1

wi(xi − µ) = 0.

(1.7)

Now, multiplying the �rst equation in (1.7) by wi, summing over i, and using the second

and third equations, we �nd that γ̂ = n and

ŵi = n−1
{

1 + λ(xi − µ)
}−1

.

Substituting the values of γ̂ and ŵi into equation (1.6) we obtain

l(µ, λ) = −
n∑
i=1

log(1 + λ(xi − µ)) (1.8)

where the value of λ is the solution of

m(λ) =
1

n

n∑
i=1

xi − µ

1 + λ(xi − µ)
= 0. (1.9)

For this example, the estimator of the mean is the same as the sample mean. Owen

(1990) proved that when X1, · · · , Xn are iid with �nite mean µ and �nite variance, then

−2 log(R(µ))
d−→ χ2

1.

Proof: The Lagrange multiplier λ is the solution to equation (1.9). Note thatm(0) = x̄ − µ.

Let denote σ̂2 =
1

n

n∑
i=1

(xi − µ)2. The Taylor expansion of m in the neighborhood of 0 gives

0 = m(λ) = m(0) + λm
′
(0) + oP (n−1/2)

= x̄ − µ − λσ̂2 + oP (n−1/2).

7



Thus,

λ =
x̄ − µ

σ̂2
+ oP (n−1/2) = OP (n−1/2).

Recall that the Taylor expansion of log(1 + x) is x − x2

2
+ O(x3). From equation (1.8)

we have

−2 log(R(µ)) = 2
n∑
i=1

log(1 + λ(xi − µ))

= 2nλ(x̄ − µ) − nλ2σ̂2 + oP (1)

=
2nλ(x̄ − µ)2

σ̂2
− n(x̄ − µ)2

σ̂2
+ oP (1)

=
nλ(x̄ − µ)2

σ̂2
+ oP (1)

d−→ χ2
1

�

This is an exciting result because it parallels the Wilk's test result provided that V ar(Xi) ∈

(0,∞). As such, it permits the construction of a rejection region, which can be used to build

tests and con�dence intervals for the functionals of interest. We reject the value of µ at

level α when −2 log (R(µ)) > χ2
1. The unrejected values of µ form a 100(1−α)% con�dence

region.

1.3 Fundamentals of Bayesian Inference

In this section, we present the fundamentals of Bayesian inference. Recall that in the fre-

quentist setting, the data are repeatable random samples where the underlying parameters

remain constant. However, in the Bayesian framework, the data are observed from the real-

ized sample, i.e., �xed, where the parameters are random variables. The core of the Bayesian

analysis is Bayes' theorem, which gives a coherent mathematical framework for updating our
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belief in light of new data. Let X = (X1, · · · , Xn) be independent random variables gener-

ated by a family of parametric models Π = {π(x|θθθ) : θθθ ∈ Θ}, where Θ is a parameter space

of possible values of θθθ, Θ ⊂ IRp, where p is known. In addition, we assume that the form

of the density π(x|θθθ) is known but θθθ is unknown. In addition to the model (likelihood), we

specify a prior distribution for θθθ, π(θθθ). By Bayes' rule, the posterior density (distribution

for θθθ given the data X) is :

π(θθθ| X) =
π(θθθ,X)

π(X)
=

π(θθθ)π(X|θθθ)
π(X)

(1.10)

where

π(X) =


∫
Θ

π(θθθ)π(X|θθθθθθθθθ) if X is continuous,

∑
Θ

π(θθθ)π(X|θθθ) if X is discrete.

The term π(X) is known as the marginal of X and can be omitted in equation (1.10) yielding

the unnormalized posterior density

π(θθθ|X) ∝ π(X|θθθ)π(X).

Often, the analytic derivation of the posterior distribution, where algebra starts to bury the

statistical science, is not easy, making the Bayesian inference a ponderous task. Fortunately,

the development of powerful computers has made Bayesian analytics more tractable and the

implementation of Markov Chain Monte Carlo (MCMC) approaches feasible. MCMC meth-

ods are a class of algorithms for sampling from a posterior distribution based on constructing

a Markov chain. It is a general method based on drawing values of a parameter, θ, from

approximate distributions and then correcting those draws to better approximate the target

posterior distribution, π(θ|x) (Gelman, 2006). The sampling is done sequentially, with the

distribution of sampled draws depending on the last value drawn; hence, the draws form a
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Markov chain. The Key to the method's success, however, is not the Markov property but

rather that the approximate distributions are improved at each step in the simulation, in

the sense of converging to the target distribution (Gelman et al., 2013). Next, we de�ne the

Markov chain and Monte Carlo. A Markov chain M is a discrete time stochastic process

{M0,M1, · · · } with the property that the distribution of Mt, given all previous values in the

process {M0,M1, · · · ,Mt−1}, only depends on Mt−1. That is,

P (Mt ∈ A|M0,M1, · · · ,Mt−1) = P (Mt ∈ A|Mt−1) for any set A.

For the distribution of Mt to converge, the chain needs to satisfy three properties:

• Irreducibility : A Markov chain is irreducible if the chain can reach any state from any

other state with positive probability and in a �nite amount of time.

• Aperiodicity : The chain is aperiodic if it does not get trapped in cycles. That is, the

chain does not oscillate between sets of states in a regular periodic fashion.

• Positive recurrent : For any state xi, the expected number of steps required for the

chain to return xi is �nite.

The term �Monte Carlo� was �rst used by Ulam and Von Neumann (Cooper et al., 1989). It

is a method of approximating an expectation by the sample mean of a function of simulated

random variables. Markov chain and Monte Carlo can be combined to solve some delicate

problems in areas such as Bayesian inference, molecular computational biology, bioinformat-

ics, etc. The idea is to construct a Markov chain that converges to the desired distribution

after many iterations. That is, MCMC allows us to estimate any statistic by ergodic averages.

E[h(t)]π ≈
1

s

s∑
i=1

h(t(i))
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where π is the posterior distribution of interest, E[h(t)] is the desired expectation and h(t(i))

is the ith simulated sample from π. One might refer to these papers that �red the initial

shots in the MCMC revolution that came to statistics (Metropolis et al., 1953; Hastings,

1970; Geman and Geman, 1984).

1.4 MCMC Methods

Many methods have been created for sampling from the posterior distribution. In this

section, we introduce two MCMC algorithms: Gibbs sampling and the Metropolis-Hastings

algorithm.

Gibbs Sampling Algorithm

Gibbs sampling is one of the MCMC algorithms that is suitable to generate samples from

the posterior distribution. The algorithm was named after the physicist Josiah Willard

Gibbs and described by brothers Stuart and Donald Geman in 1984. To produce samples

using the Gibbs method, we sweep through each variable to sample from its conditional

distribution with the remaining variables �xed to their current values (Lynch, 2007). For

example, let X1, X2, and X3 be random variables and set their initial values to x
(0)
1 ,x

(0)
2 , and

x
(0)
3 . At iteration i, we sample x

(i)
1 , x

(i)
2 , and x

(i)
3 from π(X1 = x1|X2 = x

(i−1)
2 , X3 = x

(i−1)
3 ),

π(X2 = x2|X1 = x
(i)
1 , X3 = x

(i−1)
3 ), and π(X3 = x3|X1 = x

(i)
1 , X2 = x

(i)
2 ), respectively. This

process continues until the chain converges. Algorithm 1 summarizes the Gibbs sampler

process.

Metropolis-Hastings Algorithm (MH)

The Gibbs sampler is useful when the posterior density has a standard distribution. However,

there are cases for which the posterior density is not of a known form. The Metropolis-
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Algorithm 1: Gibbs sampler algorithm.

Initialize x(0) ∼ π(x), π(x) is a proposal distribution.
for iteration i=1,2,... do
x1 ∼ π(X1 = x1|X2 = x

(i−1)
2 , X3 = x

(i−1)
3 , · · · , XS = x

(i−1)
S )

x2 ∼ π(X2 = x2|X1 = x
(i)
1 , X3 = x

(i−1)
3 , · · · , XS = x

(i−1)
S )

...

xS ∼ π(XS = xS|X1 = x
(i)
1 , X3 = x

(i)
3 , · · · , XS−1 = x

(i)
S−1)

end for

Hastings algorithm (Metropolis et al., 1953), named after Nicholas Metropolis, is a method

to produce samples from the posterior distribution for which direct sampling is di�cult.

Suppose we have a density Q that can generate candidate observations. We also refer to Q

as the jumping or proposal density. When the process is in state θθθ, we propose jumping to

point θθθ∗ with the candidate value drawn according to Q. We evaluate the proposed state by

calculating the acceptance probability of moving from our current value θθθ to the proposed

value θθθ∗

α (θθθθθθθθθ∗|θθθ) = min

{
1,

Q(θθθ|θθθ∗)π(θθθ∗)

Q(θθθ∗|θθθ)π(θθθ)

}
.

Q(θθθ|θθθ∗)π(θθθ∗)

Q(θθθ∗|θθθ)π(θθθ)
is the ratio of the target density for the proposed value versus the current

value multiplied by the ratio of the proposal density values. The algorithm consists of three

main components. First, generate a candidate sample from the proposal density. Second,

compute the acceptance probability α. Third, accept the candidate sample with probability

α or reject it with probability 1 − α. Algorithm 2 details the general Metropolis-Hastings

algorithm.
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Algorithm 2: Metropolis-Hastings algorithm.

Initialize x(0).
for iteration i=1,2,... do
Propose: xcand ∼ Q(x(i)|x(i−1))
Acceptance Probability:

α(xcand|x(i−1)) = min

{
1,
Q(x(i−1)|xcand)π(xcand)

Q(xcand|x(i−1))π(x(i−1))

}
u ∼ uniform(u; 0, 1)
if u < α then
Accept the proposal: x(i) ← xcand

else
Reject the proposal: x(i) ← x(i−1)

end if
end for

1.5 Bayesian Empirical Likelihood

Using EL under the Bayesian framework has captured the attention of many researchers.

Lazar (2003) discussed the validity of using EL as an alternative to the likelihood function

by exploring the characteristics of Bayesian inference with pro�le EL ratio in place of the

data density. She provided simulation via Monte Carlo and further discussion to assess the

validity and the appropriateness of the resulting posterior by using the method proposed

by Monahan and Boos (1992). Grendár and Judge (2009) showed that Bayesian empirical

likelihood (BEL) and Bayesian maximum a posteriori (MAP) estimators are consistent under

misspeci�cation of the model. They also demonstrated that the point estimators obtained by

empirical likelihood and Bayesian MAP are asymptotically equivalent. Rao and Wu (2010)

applied BEL to survey sampling; Chaudhuri and Ghosh (2011) to small area estimation;

Yang and He (2012) to quantile regression; and Mengersen et al. (2013) to approximate

Bayesian computation.

The BEL scheme is as follows. Let X1, · · · , Xn be independent random variables with an
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unknown distribution Fθθθ ∈ Fθθθ depending on a parameter θθθ = (θ1, · · · , θp) ∈ Θ ⊆ IRp. Fθθθ

is a family of distributions described by θθθ. By placing a prior distribution π(θθθ) on θθθ, the

posterior empirical likelihood density is

π(θθθ| X) =
R(θθθ)π(θθθ)∫

Θ

R(θθθ)π(θθθ)dθθθ
∝ R(θθθ)π(θθθ) (1.11)

where R(θθθ) is the pro�le empirical likelihood ratio.

1.6 Scope of Dissertation

In this dissertation, we propose a Bayesian approach based on empirical likelihood for lin-

ear regression, ridge regression, and least absolute shrinkage and selection operator (lasso)

regression. In the Bayesian framework, we replace the likelihood function with the pro�le

empirical likelihood ratio. This method is semi-parametric because it combines EL and

prior, which are a non-parametric and a parametric model, respectively. All Bayesian and

frequentist methods assume a statistical model to data. In contrast, the empirical likelihood

approach does not require the assumption of a parametric model. Hence, we avoid problems

with model misspeci�cation.

The ridge and lasso regressions impose l2 and l1 penalties, respectively, on the parame-

ters of the linear regression. We begin by deriving the pro�le empirical likelihood ratio for

the linear regression. Then, we derive BEL for ridge and lasso regression where we intro-

duce the penalty in the form of a hyperparameter. The ridge and lasso estimates can be

interpreted as Bayesian posterior mean estimates when the regression parameters have in-

dependent Normal and Laplace priors, respectively. The implementation of Gibbs sampling

and Metropolis-Hastings, under the BEL approach, has limitations and poses challenges.

Thus, we use the Hamiltonian Monte Carlo algorithm instead.
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Under certain conditions, and as n → ∞, we prove that the maximum empirical likeli-

hood estimator for the linear regression under the BEL framework is consistent. In addition,

we provide the asymptotic distribution for the posterior Bayesian empirical likelihood. More-

over, the hierarchical model provides a Bayesian method for selecting the ridge and lasso

parameters. As such, we place a di�use hyperprior on the shrinkage term.
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Chapter 2

Bayesian Empirical Likelihood for Linear

Regression

Penalized regression and Bayesian inference are gaining an important role in the era of Big

Data. Often, due to the volume of the predictor variables, the data su�er from a multi-

collinearity problem and variables selection is necessary. Ridge regression (Tikhonov and

Nikolayevich, 1943) treats the multicollinearity problem, and lasso regression (Tibshirani,

1996) addresses both variable selection and multicollinearity.

Some Bayesian and frequentist approaches for linear regression and penalized regression are

based on parametric likelihoods, in which most of the time we assume that data are nor-

mally distributed. In the Bayesian approach, the likelihood is paired with the conjugate,

non-conjugate, or noninformative parametric priors. Prior parameters are usually assumed

to be known and can be estimated by an empirical Bayesian analysis or treated through a

hyperprior.

We are interested in deriving a robust approach based on BEL for ridge and lasso models,

robust meaning here that the normality assumption on the data is not required. Both models

have a close connection to the Bayesian linear model. It su�ces to put a prior distribution
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on regression parameters to obtain the desired model such that the prior parameters depend

on the penalty coe�cient; for instance, placing double-exponential and normal priors lead to

the lasso and ridge regressions, respectively. Double-exponential distribution is presented in

the form of a mixture of normals with an exponential mixing density (Andrews and Mallows,

1974).

In this chapter, we derive BEL for the linear regression, discuss the limitations of Gibbs

sampler and Metropolis-Hastings algorithms, introduce Hamiltonian Monte Carlo, and con-

clude with some examples.

2.1 Pro�le Empirical Likelihood Ratio for Linear Regres-

sion

We begin with notation and de�nitions. We observe a set of n pairs (z1z1z1, y1), · · · , (znznzn, yn).

If we believe that the relationship between zizizi and yi is linear, then this association can be

explained by the following model:

yi = θ0 + θ1zi1 + θ2zi2 + · · ·+ θpzip + εi (2.1)

where zizizi = [zi1, · · · , zip]T and yi are the predictor and response variables, respectively, θ0 is

the unknown intercept, θj is the unknown slope for explanatory variable zij, and εi is the

error for data pair (zizizi, yi). We re-write model (2.1) as:

yi = xixixi
Tθθθ + εi
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where xixixi = [1, zizizi]
T and θθθ = [θ0, θ1, · · · , θp]T . Let X = (111,x1x1x1, · · · ,xpxpxp) be our design matrix.

In the linear model, our objective is to estimate the coe�cients by minimizing

n∑
i=1

(
yi − xixixiTθθθ

)2
(2.2)

such that
∑n

i=1 (yi − ŷi) = 0 where ŷi = xixixi
T θ̂θθ. Assuming that XTX is invertible, the value

that minimizes (2.2) is

θ̂̂θ̂θLS =
(
XTX

)−1
XTyyy.

The estimation of regression parameters can also be approached via estimating equations:

E
(
XT

(
yyy −Xθ̂̂θ̂θLS

))
= 0

Now, we can de�ne the pro�le empirical likelihood ratio for θθθ as follows:

R(θθθ) = max
wi

{ n∏
i=1

nwi| wi ≥ 0,
n∑
i=1

wi = 1,
n∑
i=1

wixixixi(yi − xixixiTθθθ) = 0
}

(2.3)

where www = {w1, · · · , wn} is the vector of weights of yyy = {y1, · · · , yn}. Equation (2.3)

describes a function on the n-dimensional simplex:

www = {w1, · · · , wn| wi ≥ 0,
n∑
i=1

wi = 1} ∈ ∆n−1.

To maximize Equation (2.3), we implement the Lagrange Multiplier method:

G =
n∑
i=1

log nwi − nλλλT
n∑
i=1

wixixixi(yi − xixixiTθθθ)− γ(1−
n∑
i=1

wi) (2.4)
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where λλλ = (λ1, · · · , λp+1)
′ ∈ Rp+1 and γ ∈ R are Lagrange multipliers. Di�erentiating

equation (2.4) with respect to wi and using the constraint in equation (2.3) :

∂G

∂wi
=

1

wi
− nλλλTxixixi(yi − xixixiTθθθ)− γ (2.5)

∂G

∂wi
= 0⇔

n∑
i=1

wi
∂G

∂wi
= 0 (2.6)

Equations (2.5) and (2.6) imply that γ̂ = n. Then

wi = n−1
{

1 + λλλTxixixi(yi − xixixiTθθθ)
}−1

(2.7)

where λλλ = λ(θ)λ(θ)λ(θ) satis�es p+ 1 equations given by

1

n

n∑
i=1

xixixi(yi − xixixiTθθθ)
1 + λλλTxixixi(yi − xixixiTθθθ)

= 000. (2.8)

Substituting the expression for wi into logR(θθθ) yields

logR(θθθ) = log
n∏
i=1

nwi = −
n∑
i=1

log
{

1 + λλλTxixixi(yi − xixixiTθθθ)
}

(2.9)

This is a particular example of the general approach from Qin and Lawless (1994) with

speci�c estimating equations for multiple regression.

To �nd the estimate of θθθ, we follow the Bayesian approach, where we replace the likelihood

with the pro�le empirical likelihood ratio. For a given prior π(θθθ), the empirical posterior
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density function is given by

π(θθθ|yyy, XXX, λλλ) ∝ R(θθθ)π(θθθ)

∝ exp
{
−

n∑
i=1

log(1 + λλλTxixixi(yi − xixixiTθθθ))
}
π(θθθ)

= exp

(
−

n∑
i=1

log(1 + λλλTxixixi(yi − xixixiTθθθ)) + log π(θθθ)

)
.

(2.10)

2.2 Estimation

In this section, we select a prior distribution for BEL for the linear regression as well as the

method of estimating the Lagrange multiplier. The normal distribution has the maximum

entropy (Jaynes, 1957). Thus, if mean and variance are given, a normal prior in some sense

has minimum information. We place the following priors:

π(θθθ|σ2) ∼ N(000,
1

σ2
A)

π(σ2) ∼ IG(a1, b1)

which is a normal distribution with vector mean 000 and covariance matrix A, whose pdf is

p(xxx) ∝ (2π)−p/2|A|−1/2 exp(−x
xxtA−1xxx

2σ2
), −∞ < xxx < ∞, where A is assumed to be known

and positive de�nite. IG(a1, b1) is the inverse gamma distribution whose pdf is p(x) ∝

x−(a+1) exp (−b/x). λλλ is the vector of the Lagrange multipliers, which is the root of equation

(2.8). To �nd its solution, we use the modi�ed Newton-Raphson method. There is another

approach that �nds an analytic solution to λλλ suggested by Chen and Van Keilegom (2009).

However, this approach fails to provide the optimum values for λ(θ)θ)θ)λ(θ)θ)θ)λ(θ)θ)θ) when θθθ is not around

the maximum likelihood estimator.

One can easily see that the minus derivative of equation (2.9) is equal to equation (2.8).

Thus, λλλ is the minimizer of equation L(λλλ) := −
n∑
i=1

log
{

1 + λλλTxixixi(yi − xixixiTθθθ)
}
. As discussed
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in Qin and Lawless (1994), the existence and uniqueness of λλλ are guaranteed provided that

the following conditions are satis�ed:

1. The vector 000 ∈ Rp+1 is within the convex hull of
{
xixixi(yi − xixixiTθθθ), i = 1, · · · , n

}
.

2. The matrix
n∑
i=1

AiAiAiAiAiAi
T

[1+λTAiAiAi]2
is positive de�nite where AiAiAi = xixixi(yi − xixixiTθθθ).

The domain L must exclude any λλλ for which some wi ≤ 0. Thus, we imposed the following

constraints:

1 + λλλTxixixi (yi − xixixiθθθ) > 0, i = 1, · · · , n. (2.11)

The original n-dimensional optimization problem is equivalent to a p+1-dimensional problem

of minimizing L(·) subject to the constraint (2.11) (Owen, 2001). It is easy shown that L(·) is

a convex function on any connected sets satisfying the above constraint. But, unfortunately,

L(λλλ) is not de�ned on the sets:

1 + λλλTxixixi (yi − xixixiθθθ) ≤ 0, i = 1, · · · , n.

Owen (2001) used a pseudo-logarithm function, which extends L(λλλ) outside the convex set:

log∗(z) =


log(z) , if z ≥ 1

n
,

log( 1
n
)− 1.5 + 2nz − (nz)2

2
, if z < 1

n
.

(2.12)

The objective function becomes:

L∗(λλλ) = −
n∑
i=1

log∗
(
1 + λλλTxixixi (yi − xixixiθθθ)

)
.
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That is, minimizing L(λλλ) is equivalent to minimizing L∗(λλλ) over λλλ ∈ Rp+1 without constraint.

Taking the derivative of log∗(z) with respect to z, we obtain

log
′

∗(z) =


1
z

, if z ≥ 1
n
,

2n− n2z , if z < 1
n

(2.13)

and taking derivative of equation (2.13) with respect to z gives

log
′′

∗(z) =


− 1
z2

, if z ≥ 1
n
,

−n2 , if z < 1
n
.

(2.14)

In general, one can easily obtain the gradient and Hessian matrix of L∗(λλλ) for the linear

model:

L.∗(λλλ) ≡ ∂L∗(λλλ)

∂λλλ
= −

n∑
i=1

log
′

∗(1 + λλλTxixixi(yi − xixixiTθθθ))(xixixi(yi − xixixiTθθθ)).

L..∗(λλλ) ≡ ∂2L∗(λλλ)

∂λλλ∂λλλT
= −

n∑
i=1

log
′′

∗(1 + λλλTxixixi(yi − xixixiTθθθ))(xixixi(yi − xixixiTθθθ))(xixixi(yi − xixixiTθθθ))T > 0.

We use the Newton-Raphson method to compute λλλ iteratively:

λλλk+1 = λλλk − [L..∗(λkλkλk)]
−1 L.∗(λkλkλk).

The process can be repeated until it converges to a �xed point. A convenient initial value

for λλλ is a zero vector, which corresponds to wi =
1

n
, for i = 1, · · · , n. This method works as

follows:

Step 0: Let λλλ0 = 000. Set k = 0, γ0 = 1 and ε = 10−8
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Step 1: Calculate ∆1(λkλkλk) and ∆2(λkλkλk) where

∆1(λkλkλk) =
n∑
i=1

xixixi(yi − xixixiTθθθ)
1 + λλλTxixixi(yi − xixixiTθθθ)

and

∆2(λkλkλk) =

(
−
[
xixixi(yi − xixixiTθθθ)

] [
xixixi(yi − xixixiTθθθ)

]T
(1 + λλλTxixixi(yi − xixixiTθθθ))2

)−1

∆1(λkλkλk)

if ||∆2(λkλkλk)|| < ε, stop the algorithm and report λkλkλk; otherwise go to Step 2.

Step 2: Calculate δk = γk∆2(λkλkλk). If 1+(λkλkλk−δk)Txixixi(yi−xixixiTθθθ) ≤ 0 for some i, let γk = γk/2

and repeat Step 2.

Step 3: Set λk+1λk+1λk+1 = λkλkλk − δk, k = k + 1 and γk = (k + 1)−
1
2 .

We have determined the method to estimate the Lagrange multipliers. To estimate our

parameter of interest, θθθ, in the linear regression, we use the Bayesian approach based on

EL. That is, the posterior empirical distribution of θθθ is proportional to the pro�le EL ratio

multiplied by priors. The EL ratio is given by:

R(θθθ) = exp
{
−

n∑
i=1

log(1 + λλλTxixixi(yi − xixixiTθθθ))
}

and in combination with the priors de�ned above yields the following posterior distribution:

π(θθθ, σ2|X,yyy) ∝ exp
{
−

n∑
i=1

log(1 + λλλTxixixi(yi − xixixiTθθθ))
}
×

exp

(
− 1

2σ2
θθθTA−1θθθ

)
×
(
σ2
)(a1+1)

exp
(
−b1/σ

2
) (2.15)

Equation (2.15) gives rise to the following sampling scheme:

23



• Sample θθθ from

π(θθθ|σ2 yyy, X) ∝ exp
{
−

n∑
i=1

log(1 + λλλTxixixi(yi − xixixiTθθθ))−
1

2σ2
θθθTA−1θθθ

}
. (2.16)

• Sample σ2 from IG

(
a1 + 1, b1 +

θθθTA−1θθθ

2

)
The posterior empirical likelihood of θθθ does not have a closed form, which makes the imple-

mentation of the Gibbs sampler impossible. One can think of implementing the Metropolis-

Hastings algorithm as it is suited to generate samples from a distribution that lacks an

analytic form. However, the implementation of MH is challenging and fails to achieve con-

vergence due to the nature of the posterior density support, which complicates the process

of �nding an e�cient proposal density for the MH algorithm. The surface of the posterior

empirical likelihood is rigid and not smooth with many local optimums. If we select initial

values far from the global optimum, the MH algorithm, often, get trapped in cycles. For

instance, we apply BEL for the linear model on Old Faithful Geyser data (Härdle, 1991) in

Yellowstone National Park, Wyoming, USA. The objective of that experiment was to study

the waiting time between eruptions and the duration of the eruption for the Old Faithful

geyser. The MLE of the slope is 0.0756. Figure 2.1 shows the trace plots of the slope, based

on Metropolis-Hastings, by using di�erent initial values. We choose the Normal distribu-

tion as jumping density. It is clear that MH is sensitive to the starting value under the EL

framework. In addition, the chains do not mix well. The problem of convergence is due to

the intricacy of its support. Often, the chain gets trapped in a region and never reaches the

global optimum. To observe this, we consider 100 independent and identically distributed

bivariate observations xi = (xi1, xi2), i = 1, · · · , 100; we assume that yi = θ1xi1 + θ2xi2 + ei

where θ1 = 2, θ2 = 5, and ei is the error term. Figure 2.2 depicts the perspective plot of

log (π(θθθ|σ2, X,yyy)) for various values of θ1 and θ2. We can see that the support is non-convex

24



0 2000 4000 6000 8000

−1
1

−1
0

−9
−8

−7
−6

−5
−4

Initial value = −5

iteration

slo
pe

0 2000 4000 6000 8000

0.
04

85
0.

04
90

0.
04

95
0.

05
00

0.
05

05
0.

05
10

Initial value = 0

iteration

slo
pe

0 2000 4000 6000 8000

0
1

2
3

4
5

6
7

Initial value = 0.0756

iteration

slo
pe

0 2000 4000 6000 8000

4
5

6
7

8
9

Initial value = 10

iteration

slo
pe
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where its surface is rigid and not smooth. That is, if we start from values far from the global

optimum, the chain gets trapped in some local optimum. Therefore, we are required to tune

the Metropolis-Hastings to �nd a good proposal density with the appropriate variance that

allows us to reach all states frequently and provides a high acceptance rate. Instead, we

use the Hamiltonian Monte Carlo algorithm (HMC), which converges quickly towards target

distribution. In HMC, distances between successive generated points are large. Thus, it

requires fewer iterations to get the representative sampling.

Figure 2.2: Perspective plot of log (π(θθθ,X,yyy)) for various values of θ1 and θ2.
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2.3 Hamiltonian Monte Carlo for Bayesian Empirical Like-

lihood

In this section, we present a summary of Neal's (2011) Hamiltonian Monte Carlo. HMC,

also known as Hybrid Monte Carlo, is an MCMC method to generate posterior samples for

which direct sampling is di�cult. It borrows an idea from physics to apply to the local

random walk behavior in the Metropolis algorithm, thus allowing it to move much more

rapidly through the target distribution (Gelman et al., 2013). HMC uses the gradient of the

density and the Hamiltonian system to sample successive states for the Metropolis-Hastings

algorithm with a high jump and large acceptance probability. This reduces the correlation

between successive sampled states, which allows for a quicker convergence. The Hamiltonian

system is a dynamic system controlled by Hamilton's equation. To better understand the

Hamiltonian system, let us consider a physical interpretation in the two-dimensional case.

Imagine that, under a gravitational �eld, a particle is moving over a continuous surface of

varying heights. That is, the state of this evolution consists of the position of the particle,

given by a two-dimensional vector v, and the momentum of the particle, given by a two-

dimensional vector u. In physics, the momentum of the particle is equal to its mass times

its velocity. The total energy of the particle is equal to its potential energy U(v) plus its

kinetic energy K(u). Moreover, the potential energy of the particle is proportional to the

height of the surface at its current position, and its kinetic energy is equal to ||u||2/2m. u

is the momentum of the particle at its current position, and m is its mass. One interesting

property of the Hamiltonian system is that the total energy of the particle, as it moves up

or down, remains constant, and what changes are its potential energy and its kinetic energy.

The underlying logic of HMC sampling is as follows. To sample from a posterior distribution

π(θ|x), we treat the parameter θ as a particle and denote its value as its current position.
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We de�ne the potential energy and the kinetic energy as

U(θ) = − log{π(θ|x)}

K(u) =
1

2
uTM−1u

where u = (u1, u2, · · · , us)T is the momentum vector and M is the mass matrix, also known

as the dispersion matrix. K(u) rises from Gaussian distribution N(0, M) where M is a

symmetric positive de�nite matrix. We choose M . In this dissertation we set M equals the

identity matrix. The total energy or Hamiltonian system is de�ned as

H(θ, u) = U(θ) +K(u).

The position of θ and the momentum u of the particle change over time and are determined

by the partial derivatives of the Hamiltonian system. One should keep in mind, as mentioned

above, that the total energy remains constant as the particle moves. These partial derivatives

give rise to the so-called Hamiltonian equations of motion

dθ

dt
=
∂H

∂u
= M−1u,

du

dt
= −∂H

∂θ
=− ∂U(θ)

∂θ
=
∇π(θ|x)

π(θ|x)
.

(2.17)

Neal (2011) showed that these Hamiltonian equations are reversible, invariant, and volume-

preserving, which make the Hamiltonian system suitable for MCMC sampling schemes.

When π(θ|x) lacks a closed form, the equations (2.17) lack analytic solutions. Thus, the

solution is approximated at discrete time steps. Following Neal (2011), we apply the leapfrog

integration method to approximate the solution of the Hamiltonian equations. First, a small

step size ϑ is selected. Then, given the current value of θ and u at time t, the position and
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momentum at time t+ ϑ are updated as follows:

u

(
t+

1

2
ϑ

)
= u(t)− 1

2
ϑ
∂U(θ(t))

∂θ
,

θ (t+ ϑ) = θ(t) + ϑM−1u

(
t+

1

2
ϑ

)
,

u (t+ ϑ) = u

(
t+

1

2
ϑ

)
− 1

2
ϑ
∂U(θ(t+ ϑ))

∂θ

Sometimes the approximation introduces errors, and an accept-reject algorithm is required

to conserve the invariant property of HMC (Neal, 2011). The procedure works as follows: In

the �rst step, new values for the momentum vector u are randomly drawn from a Gaussian

distribution N(0, M), independently of the current values of θ. In the second step, starting

with the current state, (θ, u), a Hamiltonian system is simulated for L steps using the leapfrog

method, with a step size of ϑ. At the end of this L-step trajectory, the proposed state (θ∗, u∗)

is accepted with probability

min [1, exp (−H(θ∗, u∗) +H(θ, u))] = min [1, exp (−U(θ∗) + U(θ)−K(u∗) +K(u))] (2.18)

where U(θ) = − log(π(θ|x)) and K(u) =
1

2
uTM−1u. If the proposed state is rejected, the

next state is the same as the current state. Gelman et al. (2013) suggested that the HMC is

optimally e�cient when its acceptance rate is approximately 65%. For a reader who would

like to see in detail the properties of the above method, Neal (2011), Section 2, might be a

useful reference. Next, we introduce two illustrative examples. In the �rst example, we use

the HMC to sample from a bivariate normal distribution. The second example is BEL for

the mean using Darwin's data (Darwin, 1876).
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Example: Bivariate Normal

In this example, we use the Hamiltonian Monte Carlo to sample from a bivariate normal

distribution:

π(xxx) ∼ N

µµµ = [1, 5]T ,Σ =

 1 0

0 1




To sample from π(xxx), we need to determine the expression for U(xxx) and
∂U(xxx)

∂xxx
. The potential

energy function U(xxx) can be de�ned as U(xxx) = − log(π(xxx)). That is,

U(xxx) ∝ (x− µx− µx− µ)T Σ−1 (x− µx− µx− µ)

2
∂U(xxx)

∂xxx
= (x− µx− µx− µ)T Σ−1

Using the expressions of U(xxx) as the potential energy and
∂U(xxx)

∂xxx
as the kinetic energy, we

implement the HMC method for the bivariate normal in R. Figure 2.3 displays a simulation

0 5 10

0
2

4
6

8
10

12

x1

x2

Figure 2.3: Hamiltonian Monte Carlo samples from bivariate normal with mean [1, 5]T , variances
equal to 1, and correlation zero.
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of 10000 samples from bivariate normal distribution. We implement HMC to sample from

the same distribution in which the initial values are, with µµµ = [10, 0]T , far from the mean.

The green points are the �rst 5000 HMC samples. It is obvious that the HMC estimate is

rapidly approaching the area of high density. In addition, HMC samples explore the space

well and are scattered all around the data cloud.

Example: Bayesian Empirical Likelihood for the Mean

In this example, we apply BEL for the mean on Darwin's data (Table 2.1), which was meant

to determine if cross-fertilized plants grew taller than self-fertilized plants (Darwin, 1876).

To estimate the mean, we use the results obtained in Section 1.2. We place N(a0, σ0) prior

on µ where a0 = 2.6067 (equals the sample mean) and σ0 = 0.1 (small variance) are assumed

to be known such that. The empirical posterior density of µ is

π(µ|xxx) ∝ exp

(
−

n∑
i=1

log [1 + λ(xi − µ)]− 1

2σ2
0

(µ− a0)2

)
.

Table 2.1: The outcome of a classic experiment by Darwin (1876).

Cross Self Height Cross Self x

23.5 17.4 6.1 18.3 16.5 1.8
12.0 20.4 -8.4 21.6 18.0 3.6
21.0 20.0 1.0 23.3 16.3 7.0
22.0 20.0 2.0 21.1 18.0 3.0
19.1 18.4 0.7 22.1 12.8 9.3
21.5 18.6 2.9 23.0 15.5 7.5
22.1 18.6 3.5 12.0 18.0 -6.0
20.4 15.3 5.1

To sample from the above distribution, we implement HMC where the negative loga-

rithm posterior density and the gradient of the negative logarithm posterior density are
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∑n
i=1 log [1 + λ(xi − µ)] +

1

2σ2
0

(µ− a0)2 and
∑n

i=1

1

1 + λ(xi − µ)
+
µ− a0

σ2
0

, respectively. The

number of iterations used is 5000 with 1000 burn-in. We set L = 10 and ϑ = 0.1.
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Index
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Figure 2.4: Trace plot for the parameter µ after 5000 iterations with 1000 burn-in; red line is the

OLS estimate.

Figure 2.4 shows the trace plot for the parameter µ after 5000 iterations with 1000 burn-

in where the red line is the OLS estimate (µ̂ = 2.606667). This plot displays a well-behaved

MCMC output, and the center of the chain appears to be around a value with reasonable

�uctuations. This indicates that the chain is mixing well. The acceptance rate is 68.73%,

which suggests that the HMC is working e�ciently. The empirical posterior mean estimate

is 2.607813, which is close to the OLS value. The standard error is 0.02058 and the standard

deviation of the data is 4.71.
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Figure 2.5 depicts the distribution of the weights when µ̂ = 2.607813 and λ evaluated at µ̂.

As expected, they are around the value of
1

n
and they sum to one.

2.4 Illustrative Examples

In this section, we present two examples of linear regression using the Bayesian approach

based on EL. We use two real datasets: cancer data (Rice, 1988) and prostate cancer data

(Stamey et al., 1989).

We implement a building block of Hamiltonian Monte Carlo and Gibbs sampler to sample

from Equation (2.15) in both cases. First, we sample from the distribution of π(θθθ|σ2, X,yyy)

using the HMC approach. This method requires �nding the gradients of the negative loga-
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rithm empirical posterior density:

−log (p(θθθ|X,yyy) =
n∑
i=1

log
[
1 + λλλTxixixi

(
yi − xixixiTθθθ

)]
+

1

2σ2
θθθTA−1θθθ

−∂ log (p(θθθ|X,yyy))

∂θθθ
= −

n∑
i=1

λλλTxixixixixixi
T

1 + λλλTxixixi (yi − xixixiTθθθ)
+

1

σ2
θθθTA−1.

Second, we sample σ2 from Inverse gamma with shape a1 + 1 and rate b1 + θθθTA−1θθθ/2.

Example 1 : Cancer Data

In this example, we apply the linear regression to the cancer data provided by Rice (1988).

We implement the Bayesian approach based on EL. Each data point is from a county in

North Carolina, South Carolina, or Georgia. For each county, the number of adult white

women living there in 1960 is given, as is the number of deaths due to breast cancer among

adult white females from 1950 through 1969 inclusive. There are 301 counties in the dataset;

a more detailed description of these data is given in Owen (1991). The response variable is

the value for breast cancer mortality, and the predictor variable is the adult white female

population. We implement an MCMC sampling scheme using 5000 iterations with 1000

burn-in. We use a building block of HMC and Gibbs sampler. To sample θθθ, we implement

the HMC scheme where the step size and the number of leapfrog steps are set to ϑ = 0.025

and L = 10 , respectively. On the other hand, we use the Gibbs sampler to generate samples

from the distribution of σ2.

Figure 2.6 suggests that the slope of the adult white female population parameter has a

unimodal bell-shaped distribution. Also, it appears from the trace plot in Figure 2.7 that the

center of the chain is around the OLS estimate with reasonable �uctuation. This indicates

that the chain is mixing well. From the autocorrelation plot in Figure 2.8, it is clear that

the HMC sample has a correlation that decreases quickly as the lag increases. Table 2.2
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Figure 2.6: Histogram of θ along with kernel density curve.
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OLS estimate.
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gives the estimate of the slope, based on the HMC, and the OLS estimate. We provide the

estimate based on the posterior mean where the burn-in is set to 1000. It is evident that

the posterior mean estimate is relatively close to the OLS estimate. The acceptance rate

is approximately 70%, which suggests that the HMC is working e�ciently. By the results

presented above, we conclude that the rate of cancer deaths per 1000 population is 3.564.

And because deaths were counted over 20 years, the annualized rate is 3.564/20 = 0.178

per thousand. The intercept, θ̂0 = −0.0526, is obtained by subtracting the product of the

average of the population and the slope from the average of deaths due to breast cancer. In

addition, the �rst quantile, second, and third quantiles are 3.489, 3.561, and 3.635, respec-

tively.

Our approach is semi-parametric where we did not assume any distribution to data. We

obtained similar results compared to the OLS approach, but our procedure provides small

standard error, which indicates that the sample of the slope of the adult white female popu-
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lation is an accurate re�ection of the population. Also, another advantage is that we have the

entire posterior distribution of our parameter of interest, which can be summarized through

mean, median, standard deviation, quantiles, etc.

Table 2.2: Posterior summary statistics for cancer data provided by Rice (1988).

Posterior percentiles

Parameter OLS estimate
Posterior mean

estimate

S.E. of the posterior

mean
25% 50% 75%

Slope 3.578 3.564 0.006 3.489 3.561 3.635

Example 2: Prostate Cancer Data

In this example, we use the prostate cancer data from a study by Stamey et al. (1989). The

data examined the correlation between the level of prostate speci�c antigen (PSA) and a

number of clinical measures in 97 men who were about to receive a radical prostatectomy.

The aim of this study is to predict the log of PSA (lpsa) from a number of measurements

including log cancer volume (lcavol), log prostate weight (lweight), age, log of benign pro-

static hyperplasia amount (lbph), seminal vesicle invasion (svi), log of capsular penetration

(lcp), Gleason score (gleason), and percent of Gleason scores 4 or 5 (pgg45). We implement

the MCMC sampling scheme using 5000 iterations and 1000 burn-in. For HMC, the step

size and the number of leapfrogs are set to ϑ = 0.04 and L = 10, respectively. The data are

centered and scaled. Table ?? presents the BEL posterior estimates of the eight variables

described above along with their OLS estimates, standard errors, and percentiles. The poste-

rior means are quite close to the OLS estimates with small standard errors. The acceptance

rate is approximately 62%. The trace plots of the posterior quantities are displayed in Figure

2.9. It is clear that the center of each chain is around the OLS estimate with reasonable

�uctuation, which indicates the chain is mixing well. Figure 2.10 shows that all parameters
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have unimodal bell-shaped distributions. The autocorrelation plots depicted in Figure 2.11

suggest that the HMC samples, for each predictor variable, have a correlation that decreases

quickly as the lag increases.

Posterior percentiles

Parameter OLS estimate
Posterior mean

estimate

S.E. of the posterior

mean
25% 50% 75%

lcavol 0.5994 0.5936 0.0080 0.5416 0.5932 0.6466

lweight 0.1955 0.2119 0.0082 0.1548 0.2066 0.2622

age -0.1267 -0.1224 0.0066 -0.1664 -0.1231 -0.0797

lbph 0.1346 0.1180 0.0075 0.068 0.1190 0.1667

svi 0.2748 0.2732 0.0084 0.2182 0.2764 0.3301

lcp -0.1278 -0.1178 0.0102 -0.1861 -0.1190 -0.0514

gleason 0.0282 0.0242 0.0091 -0.0365 0.0260 0.0851

pgg45 0.1106 0.1052 0.0109 0.0301 0.1024 0.1758

38



0 1000 2000 3000 4000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Trace of lcavol

iteration number

0 1000 2000 3000 4000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Trace of lweight

iteration number

0 1000 2000 3000 4000

−0
.3

−0
.2

−0
.1

0.
0

0.
1

Trace of age

iteration number

0 1000 2000 3000 4000

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

Trace of lbph

iteration number

0 1000 2000 3000 4000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Trace of svi

iteration number

0 1000 2000 3000 4000

−0
.4

−0
.2

0.
0

0.
2

Trace of lcp

iteration number

0 1000 2000 3000 4000

−0
.3

−0
.1

0.
1

0.
3

Trace of gleason

iteration number

0 1000 2000 3000 4000

−0
.2

0.
0

0.
2

0.
4

Trace of pgg45

iteration number

Figure 2.9: Trace plots for variables lcavol, lweight, age, lbph, svi, lcp, gleason, and pgg45 for

prostate cancer data (Stamey et al., 1989). The red line in each trace plot represents the OLS

estimate.
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Figure 2.10: Histograms of the posterior distribution for variables lcavol, lweight, age, lbph, svi,

lcp, gleason, and pgg45 along with the kernel density curve for prostate cancer data (Stamey et al.,

1989).
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Figure 2.11: Autocorrelation plots of the posterior distribution for variables lcavol, lweight, age,

lbph, svi, lcp, gleason, and pgg45 for prostate cancer data.
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2.5 Summary

In this Chapter, we proposed an alternative approach to linear regression by using the

Bayesian method based on EL. The implementation of MCMC algorithms such as the Gibbs

sampler and Metropolis-Hastings was challenging. The resulting posterior distribution lacked

an analytic form, and therefore we could not apply the Gibbs sampler. In addition, due to

the intricacy of the support of the posterior empirical density, implementation of Metropolis-

Hastings is a daunting task. We used instead the Hamiltonian Monte Carlo algorithm that

exploits information from the gradients to avoid random walk and move faster toward regions

of high density. The implementation of HMC is easy as it only requires the derivation of

the gradient. It is not recommended to use the numerical approach to compute the gradient

because it makes the algorithm too slow to calculate. Therefore, we should be cautious with

its derivation.

In the next Chapter, we prove that the maximum empirical likelihood estimator is con-

sistent. Also, we show that if we place a normal prior on θθθ, and under certain assumptions,

the posterior EL for regression parameters is asymptotically normal. This applies to the lin-

ear regression, ridge regression, and lasso regression. As discussed previously, the penalized

regression has a close connection to BEL for linear regression. The penalty term is presented

in the form of a hyperprior. Note that in the lasso case we use the Laplace distribution as

a prior using the representation of Andrews and Mallows (1974), which has the form of a

mixture of normals with an exponential mixing density.
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Chapter 3

Properties of the Regression Parameters

Under Bayesian Empirical Likelihood

In this Chapter, we show that the maximum empirical likelihood estimator, θ̂θθ = argmax
θθθ

−∑n
i=1 log

(
1 + λλλTg(Xi, yi, θθθ)

)
, is consistent, and the posterior empirical density for θθθ, under

certain conditions, and as n→∞, is asymptotically normal. Also, we show that the asymp-

totic distribution of minus the logarithm-posterior EL is chi-square with p degrees of freedom,

where p is the number of covariates. The consistency is an asymptotic property, which is

important because it guarantees that the estimator becomes more precise and accurate when

we collect more data.

The posterior empirical density of θθθ does not have a closed form, and a good approxi-

mation is required because the asymptotic distribution has a theoretical importance. For

instance, one can derive Bayesian credible regions. Now, we introduce the de�nition of a

consistent estimator. Suppose a random sample θθθ = (θ1, · · · , θn) = θθθn has a joint density

π(θθθn|X). We denote an estimator T (θθθ) for a sample θθθn by Tn = T (θθθn). In studying the

behavior of Tn for large sample size, we will consider the sequence of estimator {Tn}. For
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example, if T (θθθ) is the sample mean, then the sequence of estimators is

{
θ1,

θ1 + θ2

2
.
θ1 + θ2 + θ3

3
, · · · , θ̄n, · · ·

}
.

Consistency is the property of a sequence of estimators rather than a single estimator, al-

though we say �consistent estimator�.

3.1 Consistency of the Maximum Empirical Likelihood

Estimator

To prove the consistency of the MELE, Yang and He (2012) used the theorem of consis-

tency of M-estimators in Van der Vaart (1989), the quadratic expansion approximating the

EL function (Molanes Lopez et al., 2009), and P -measurable class of measurable functions

(Kosorok, 2008). Our proof uses the theorem of M-estimators in Van der Vaart (1989), but

it is completely di�erent than the approach of Yang and He (2012).

Let Θ denote the parameter space. We assume that Θ is compact. Let θ0θ0θ0 be the true pa-

rameter. Assume that f(X,yyy,θθθ) = − log
(
1 + λλλTg(θθθ)

)
is a continuous function of yyy at each

θθθ and g(X,yyy,θθθ) is the estimating equations. Assume that there exists a dominating function

d(X,yyy) such that E [d(X,yyy)] <∞, and ||f(X,y,θθθy,θθθy,θθθ)|| ≤ d(X,yyy). Then the MELE

θ̂̂θ̂θ = argmax
θθθ∈Θ

Rn(θθθ) = argmax
θθθ∈Θ

−
n∑
i=1

log
(
1 + λλλTg(Xi, yi, θθθ)

)
is a consistent estimator of θ0θ0θ0.

Proof. To prove the consistency of θθθ, we use Theorem (5.7) of Van der Vaart (1989):

Theorem 3.1.1. Let Mn be random functions and let M be a �xed function of θθθ such that
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for every ς > 0

sup
θθθ∈Θ

|Mn(θθθ)−M(θθθ)| p−→ 0

sup
||θθθ−θθθ0||>ς

M(θθθ) < M(θθθ0).

Then any sequence of estimators θ̂θθn with Mn(θ̂θθn) ≥ Mn(θθθ0)− oP (1) converges in probability

to θθθ0.

We have

Rn(θθθ) = −
n∑
i=1

log
(
1 + λλλTg(Xi, yi, θθθ)

)
= −

n∑
i=1

log
(
1 + λλλTgi(θθθ)

)
where gi(θθθ) = g(Xi, yi, θθθ) and λλλ satis�es:

n∑
i=1

gi(θθθ)

1 + λλλTgi(θθθ)
= 000.

LetMn(θθθ) =
Rn(θθθ)

n
= − 1

n

∑n
i=1 log

(
1 + λλλTgi(θθθ)

)
, andM(θθθ) be the expected value ofMn(θθθ).

That is,

M(θθθ) = E(Mn(θθθ))

= − 1

n

n∑
i=1

E
[
log
(
1 + λλλTgi(θθθ)

)]
= −E

[
log
(
1 + λλλTgn(θθθ)

)]
, by i.i.d

= −E
[
log
(
1 + λλλTg(θθθ)

)]
where g(θθθ) = gn(Xn, yn, θθθ) and λλλ satis�es:

E

(
g(θθθ)

1 + λλλTg(θθθ)

)
= 000. (3.1)
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Now we show that for ς > 0

sup
||θθθ−θ0θ0θ0||>ς

M(θθθ) < M(θ0θ0θ0).

We have M(θ0θ0θ0) = −E
[
log
(
1 + λλλTg(θ0θ0θ0)

)]
and by de�nition E(g(θ0θ0θ0)) = 000, which implies

that λλλT = 000. Therefore, M(θ0θ0θ0) = −E [log (1 + 0)] = 0. Too see this, we use Chen and

Van Keilegom (2009)'s approach. The equation
gi(θθθ)

1 + λλλTgi(θθθ)
= 000 can be simpli�ed to

1

n

n∑
i=1

gi(θθθ)
(
1 + λλλTgi(θθθ)

)
+

1

n

n∑
i=1

gi(θθθ)
λλλTgi(θθθ)gi(θθθ)

Tλλλ

1 + λλλTgi(θθθ)
= 000.

The last term on the left hand side is Op(1/n), which is negligible relative to the �rst term.

Therefore,

λλλ =

∑n
i=1 gi(θθθ)∑n

i=1 gi(θθθ)gi(θθθ)
T

+ op(n
−1/2)

=

∑n
i=1Xi

(
yi −XT

i θθθ
)∑n

i=1 [Xi (yi −XT
i θθθ)] [Xi (yi −XT

i θθθ)]
T
.

Hence when θθθ = θ0θ0θ0, λλλ = 000.

Let Γ(θθθ, r) denote an open sphere centered at θθθ with radius r such that for θθθ 6= θ0θ0θ0:

lim
r→0

sup
θθθ∗∈Γ(θθθ,r)

− E
[
log
(
1 + λλλTg(θθθ∗)

)]
= sup

θθθ∗∈Γ(θθθ,0)

− E
[
log
(
1 + λλλTg(θθθ∗)

)]
= −E

[
log
(
1 + λλλTg(θθθ)

)]
= E

[
log

(
1

1 + λλλTg(θθθ)

)]
.
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We know that log(x) ≤ x− 1 for all x > 0. Thus for
1

1 + λλλTg(θθθ)
> 0, we have:

log

(
1

1 + λλλTg(θθθ)

)
≤ 1

1 + λλλTg(θθθ)
− 1

=
−λλλTg(θθθ)

1 + λλλTg(θθθ)
.

(3.2)

By applying the expectation, we obtain

sup
||θ−θ0θ−θ0θ−θ0||>ς

M(θθθ) = −E
[
log
(
1 + λλλTg(θθθ)

)]
= E

[
log

(
1

1 + λλλTg(θθθ)

)]
≤ −λλλTE

[
log

(
g(θθθ)

1 + λλλTg(θθθ)

)]
= 0 (by Equation (3.1)) .

We showed that M(θ0θ0θ0) = 0. Therefore, sup
||θ−θ0θ−θ0θ−θ0||>ς

M(θθθ) < 0 = M(θ0θ0θ0) for θθθ 6= θ0θ0θ0. Thus, the

second condition of Theorem (5.7) of Van der Vaart (1989) is satis�ed.

Now, we need to show that the �rst condition in Van der Vaart's (1998) theorem is ful�lled.

Under the following assumptions:

1 Θ is compact.

2 f(X,yyy,θθθ) = − log
(
1 + λλλTg(θθθ)

)
is continuous at each θθθ ∈ Θ for almost all yyy's and mea-

surable function of yyy at each θθθ. Actually, the function log
(
1 + λλλTg(θθθ)

)
is continuous

and de�ned when 1 + λλλTg(θθθ) > 0.

3 There exists a dominating function d(X,yyy) such that E(d(X,yyy)) <∞ and ||f(X,yyy,θθθ)|| <

d(X,yyy). From (3.2), one can see that f(X,yyy,θθθ) is dominated by

d(X,yyy) =
−λλλTg(θθθ)

1 + λλλTg(θθθ)
,
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and by uniform law of large numbers (Jennrich, 1969), we have that E(f(X,yyy,θθθ)) is contin-

uous in θθθ, and

sup
θθθ∈Θ

||Mn(θθθ)−M(θθθ)|| = sup
θθθ∈Θ

|| − 1

n

n∑
i=1

log
(
1 + λλλTgi(θθθ)

)
−
(
−E

[
log
(
1 + λλλTg(θθθ)

)])
||

= sup
θθθ∈Θ

|| 1
n

n∑
i=1

f(Xi, yi, θθθ)− E [f (X,yyy,θθθ)] || a.s−→ 0

We know that convergence almost surely implies convergence in probability. Therefore,

sup
θθθ∈Θ

||Mn(θθθ)−M(θθθ)|| p−→ 0. Then, θ̂θθ is a consistent estimator.

To prove the �rst condition of Van der Vart's theorem, we used the uniform law of large

number that implies the convergence in probability. In contrast, Yang and He (2012) relied

on the empirical process theory and the concept of the P-measurable class of measurable

function (Kosorok, 2008). Yang and He (2012) assumed that the estimating equation is twice

continuously di�erentiable and applied the Taylor expansion to prove the second condition of

Van der Vart's theorem. In contrast, we used the concept of a bounded function. In addition,

Yang and He (2012)'s proof requires assumptions about the smoothness of the estimating

equation because it involves an indicator function.

Next, we demonstrate that, under certain regularity conditions and n→∞, the posterior

empirical likelihood is asymptotically normal.

3.2 Asymptotic Distribution of the Posterior Empirical

Likelihood

First, assume that we place a normal prior on θθθ with mean θ0θ0θ0 and covariance matrix A. We

assume that A is known and is positive de�nite. Under certain regularity conditions, and as

n → ∞, the posterior distribution of θθθ converges to normal, with mean mn and covariance
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Jn, where

Jn = J(θ̂nθnθn) + A−1

mn = J−1
n

[
A−1θ0θ0θ0 + J(θ̂nθnθn)θ̂n̂θn̂θn

]
and θ̂nθnθn is the pro�le maximum empirical likelihood estimate of θθθ, θ0θ0θ0 is the prior mean, and

J(θ̂nθnθn) is minus the second derivative of the log empirical likelihood evaluated at θ̂nθnθn.

Proof. The posterior empirical distribution of θθθ is

π (θθθ|X,yyy) ∝ R(θθθ)π (θθθ) .

∝ exp

(
log

n∏
i=1

[
1

1 + λTλTλTxixixi(yi − xixixiTθθθ)

]
− 1

2
(θθθ − θ0θ0θ0)TA−1(θθθ − θ0θ0θ0)

)
.

= exp

(
log π(X,yyy|θθθ)− 1

2
(θθθ − θ0θ0θ0)TA−1(θθθ − θ0θ0θ0)

)

where,

π(X,yyy|θθθ) =
n∏
i=1

1

1 + λTλTλTxixixi(yi − xixixiTθθθ)
.

Similar to Bernardo and Smith (1994), we expand the logarithm term about its maxima θ̂n̂θn̂θn,

assumed to be determined by setting O log π(X,yyy|θθθ) = 000, we obtain:

log π(θθθ|X,yyy) = log π(X,yyy|θ̂n̂θn̂θn)− 1

2
(θθθ − θ̂n̂θn̂θn)TA−1(θθθ − θ̂n̂θn̂θn) +Rn

where Rn is the reminder and is small for large n.

In addition, we have: log
(
π(X,yyy|θ̂n̂θn̂θn)

)
= −1

2

(
θθθ − θ̂n̂θn̂θn

)T
J(θ̂n̂θn̂θn)

(
θθθ − θ̂n̂θn̂θn

)
where :

J(θ̂n̂θn̂θn) =

(
−∂

2 log π(X,yyy|θθθ)
∂θi∂θj

)
θθθ=θ̂n̂θn̂θn

.
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If we assume n is large and ignore constants of proportionality, we have:

π(θθθ|X,yyy) ∝ exp

{
−1

2

(
θθθ − θ̂n̂θn̂θn

)T
J(θ̂n̂θn̂θn)

(
θθθ − θ̂n̂θn̂θn

)
− 1

2
(θθθ − θ0θ0θ0)TA−1(θθθ − θ0θ0θ0)

}
= exp

{
−1

2

((
θθθ − θ̂n̂θn̂θn

)T
J(θ̂n̂θn̂θn)

(
θθθ − θ̂n̂θn̂θn

)
+ (θθθ − θ0θ0θ0)TA−1(θθθ − θ0θ0θ0)

)}
= exp

{
−1

2

(
θTθTθTJ(θ̂n̂θn̂θn)θθθ − θTθTθTJ(θ̂n̂θn̂θn)θ̂n̂θn̂θn − θ̂n̂θn̂θnJ(θ̂n̂θn̂θn)θθθ + θ̂n̂θn̂θnJ(θ̂n̂θn̂θn)θ̂n̂θn̂θn + θTθTθTA−1θθθ − θTθTθTA−1θ0θ0θ0

)}
+ exp

{
−1

2

(
−θT0θ

T
0θ
T
0 A
−1θθθ + θT0θ

T
0θ
T
0 A
−1θ0θ0θ0

)}
∝ exp

{
−1

2

(
θTθTθT
[
J(θ̂n̂θn̂θn) + A−1

]
θθθ − 2θTθTθTJ(θ̂n̂θn̂θn)θ̂n̂θn̂θn + 2θTθTθTA−1θ0θ0θ0

)}
= exp

{
−1

2

(
θTθTθT
[
J(θ̂n̂θn̂θn) + A−1

]
θθθ − 2θTθTθT

[
J(θ̂n̂θn̂θn)θ̂n̂θn̂θn + A−1θ0θ0θ0

])}
.

Setting Jn = J(θ̂nθnθn) + A−1 and mn = J−1
n

[
A−1θ0θ0θ0 + J(θ̂nθnθn)θ̂n̂θn̂θn

]
, we have:

π(θθθ|X,yyy) ∝ exp

{
−1

2

(
θTθTθTJnθθθ − 2θTθTθTJnmn

)}
.

We complete the square above by adding and subtracting mT
nJnmn. Therefore,

π(θθθ|X,yyy) ∝ exp

{
−1

2

(
[θθθ −mn]T Jn [θθθ −mn]

)}
,

is the kernel of Np (mn, Jn), with mn and Jn de�ned above.

Next, we derive the Bayesian credible intervals. First, we need to �nd the asymptotic

distribution of minus the logarithm of the posterior empirical likelihood.

3.3 Bayesian Credible Regions

Bayesian credible regions are intervals in the domain of the posterior probability distribution.

Recall that the frequentist con�dence intervals do not have straightforward probabilistic
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interpretations; however, the Bayesian credible regions can be interpreted as having a high

probability of containing the unknown quantity. In this section, we derive the Bayesian

credible intervals for the posterior empirical distribution of θθθ. We prove, under certain

regularity conditions, and as n→∞, that −2 log (π(θθθ|X,yyy)) converges in distribution to χ2
p

as n→∞.

Proof. We need the following theorem:

Theorem 3.3.1. If xxx ∼ N(µµµ,ΣΣΣ) is a vector of order p and ΣΣΣ is positive de�nite, then

(xxx− µµµ)T ΣΣΣ−1 (xxx− µµµ) −−−→
n→∞

χ2
p.

We showed, under certain regularity conditions and as n → ∞, that θθθ ∼ N(mn, Jn).

Therefore, −2 log (π(θθθ|X,yyy)) ∝ (θθθ −mn)T Jn (θθθ −mn). Now, it su�ces to show that Jn =

A−1 + J(θ̂n̂θn̂θn) is positive de�nite matrix. A−1 is positive de�nite because , by assumption, A

is positive de�nite. Now, we compute the second derivative of negative log π(X,yyy|θθθ):

∂

∂θθθT

(
n∑
i=1

log
[
1 + λTxixixi(yi − xixixiTθθθ)

])
= −

n∑
i=1

λTxixixixixixi
T

1 + λTxixixi(yi − xixixiTθθθ)

∂

∂θθθ∂θθθT

(
−

n∑
i=1

log
[
1 + λTxixixi(yi − xixixiTθθθ)

])
=

n∑
i=1

(xixixixixixi
T )TλλTxixixixixixi

T

(1 + λTxixixi(yi − xixixiTθθθ))2 > 0

because the denominator is positive and the numerator has a quadratic form. Therefore,

it implies that Jn is positive de�nite because the sum of two positive de�nite matrices is

positive de�nite. Thus, −2 log (π(θθθ|X,yyy))
D−−−→

n→∞
χ2
p.

For 0 < α < 1, the property presented above provides an asymptotic justi�cation for tests

that reject the value of θθθ at level α, when −2log(θθθ|X,yyy) > χ2,1−α
p . The unrejected values

of θθθ form a 100(1-α)% Bayesian empirical credible regions. For numbers 0 < α1 < α2 < 1

where α = α1 + α2, we �nd quantiles 0 < c1 < c2 < ∞ of the χ2
p distribution that satisfy
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p
[
χ2,1−α
p ≤ cj

]
= αj, for j = 1, 2; then

α2 − α1 = p [c1 < −2 log(θθθ) < c2|X,yyy]

= p
[
−c2

2
< log(θθθ) < −c1

2
|X,yyy

]
= p

[
e−c2/2 < θθθ < e−c1/2|X,yyy

]
.

The shortest possible interval enclosing (1−α)% of the posterior mass is known as the Highest

Posterior Density (HPD) con�dence interval. Usually, HPDs are found by a numerical search.

To �nd the HPD, we use function hdi in package HDInterval (Meredith and Kruschke, 2016).

3.4 Example

We apply BEL for linear regression to the prostate cancer data introduced in Section 2.4. We

run an MCMC sampling scheme with 5000 iterations. For the HMC algorithm, the step size

and the number of leapfrogs are 0.04 and 10, respectively. The posterior inferences about θθθ

are exhibited in Table 3.1. The second, third, fourth, and �fth columns of the Table repre-

sent the posterior mean, the highest 95% probability density intervals, the 95% equal-tailed

credible regions, and the 95% con�dence intervals of each clinical variable, respectively. For

instance, the posterior mean of the slope of age is -0.1224 and the 95% highest posterior

density interval is [-0.2492, 0.0099]. That is, we are 95% sure that the value of the slope of

age is between -0.2492 and 0.0099. Note that the predictor age has the shortest range. In

contrast, the predictor pgg45 has the highest range. Figure 3.1 depicts the posterior distri-

butions of 5000 draws for each clinical variable along with kernel density. The vertical lines

in blue are the lower and upper values of the highest density interval. One can conclude that

these intervals are approximately symmetric. Consequently, the 95% equal-tailed credible

regions are quite similar to the 95% HPD intervals.
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Figure 3.1: The 95% highest (posterior) density region for each clinical predictor in the prostate

data (Stamey et al., 1989).
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Table 3.1: Summaries of the posterior distribution of coe�cients in linear regression using the

prostate cancer data (Stamey et al., 1989), along with the 95% highest (posterior) density intervals,

the 95% equal-tailed credible regions, and the 95% con�dence intervals.

Predictor
variable

Posterior mean
for θj

95% HPD for θj

95% equal-tailed
credible region for
θj

95% con�dence
interval for θj

lcavol 0.5936 [0.4375, 0.7505] [0.4419, 0.7488] [0.4220, 0.7767]

lweight 0.2119 [0.0603, 0.3807] [0.0599, 0.3736] [0.0510, 03401]

age -0.1224 [-0.2492, 0.0099] [-0.2408, 0.0144] [-0.2690, 0.0157]

lbph 0.1180 [-0.0286, 0.2648] [-0.0200, 0.2683] [-0.0106, 0.2797]

svi 0.2732 [0.1082, 0.4378] [0.1137, 0.4370] [0.1017, 0.4479]

lcp -0.1178 [-0.3187, 0.0810] [-0.3113, 0.0812] [-0.3456, 0.0901]

gleason 0.0242 [-0.1524, 0.2049] [-0.1451, 0.2049] [-0.1664, 0.2229]

pgg45 0.1052 [-0.1019, 0.3263] [-0.0964, 0.3229] [-0.1029, 0.3240]
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Chapter 4

Bayesian Empirical Likelihood for Lasso

and Ridge Regression

4.1 Introduction

The objective of statistical inference is to �nd estimates that improve prediction accuracy

and model interpretability. Constantly, when we have many predictors, certain variables are

highly correlated and using the ordinary least square yields estimates with high variances.

When the predictor variables are highly correlated, it is normally impossible to interpret

estimates of individual coe�cients. The multicollinearity problem and variable selection

have been handled in a variety of di�erent ways. For instance, one can use the variance

in�ation factors (VIF) (Kutner et al., 2004) and remove predictors with VIF higher than

10. VIF is a measure that determines how much the variance of an estimated regression

parameter is increased because of collinearity. Another approach is to use partial least

squares (PLS) regression (Wold, 1966) or principal components analysis (PCA) (Pearson,

1901). PLS regression is a method that reduces the predictor variables to a smaller set of an

uncorrelated component by projecting the predicted variables and the predictor variables to
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a new space. On the other hand, PCA is a technique that reduces the number of predictor

variables by using an orthogonal transformation. It transforms a set of predictor variables to

a set of values of linearly uncorrelated variables known as principal components. Also, one

can consider using stepwise regression (Efroymson, 1960) or best subsets regression (Kutner

et al., 2004). Stepwise regression is an automatic method of selecting predictor variables

that proposes a single regression model. In each step, a predictor is considered for addition

or deletion from the set of explanatory variables based on some criterion like R-squared,

Mallows Cp, PRESS, Akaike information criterion, Bayesian information criterion, or false

discovery rate. The best subsets regression is a technique that works similarly to stepwise

regression, and the main di�erence is that it provides multiple regression models. Another

approach to tackle this type of problem is to use ridge regression or lasso regression. Both

methods impose constraints on the regression parameters. The constraint is presented in the

form of a vector norm, where lasso regression uses the l1 norm and ridge regression uses the

l2 norm. The key di�erence between those two norms is the shape of the constraint. The

constraint has a diamond shape under the l1 norm. However, it has a circle shape under the

l2 norm. The ridge and lasso regressions have a close connection to the Bayesian linear model

when the regression parameters have independent Normal and Laplace priors, respectively.

In this Chapter, we propose an alternative semi-parametric Bayesian approach based on

empirical likelihood, which does not require the assumption of a parametric likelihood for

the errors. It is semi-parametric because it combines the pro�le empirical likelihood ratio

and priors, which are non-parametric and parametric, respectively.

Introduction to Ridge

Ridge regression (Tikhonov and Nikolayevich, 1943), also known as the method of linear

regularization, penalizes the size of the regression coe�cients by imposing an l2 penalty.
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That is, it minimizes a penalized residual sum of squares,

min
θθθ

(
1

2
||yyy −Xθθθ||22 + α||θθθ||22

)
(4.1)

where

α ≥ 0,

θθθ is a p× 1 vector,

yyy is a n× 1 vector,

X is a p× p matrix.

α is a complexity parameter that controls the amount of shrinkage. It is used to overcome the

multicollinearity problem in data by adding a small positive value (α ≥ 0) to the diagonal

element of the XTX matrix from multiple regression. The larger the value of α, the greater

the amount of shrinkage (Hastie et al., 2009). The l2 norm of a coe�cient vector θθθ is given

by ||θθθ||22 =
p∑
j=1

θ2
j . The term α||θθθ||22 is referred to as the ridge penalty. The solution to the

ridge regression problem is given by:

θ̂θθ
ridge

=
(
XTX + αIII

)−1
XTyyy. (4.2)

The ridge solution is quite similar to the ordinary least squares solution (OLS) but with a

value, α, added to the diagonal of XTX. It is easy to note that the solution presented in

equation (4.2) equals to OLS when α=0 and equals to zero when α → ∞. As shown in

Figure 4.1, the constraint has a circle form with no sharp points. That is, the intersection

between the constraint area and the contour of ellipses will not occur on an axis, and so some

ridge regression coe�cients do not shrink to zero. Moreover, θ̂θθ
ridge

is a biased estimator of θθθ

but with a small variance compared to the variance of the OLS estimate. In the case of an
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Figure 4.1: The geometry underlying the estimation of the lasso (left) and ridge regression (right).

The solid blue area is the constraint region |θ1| + |θ2| ≤ t and θ2
1 + θ2

2 ≤ t, respectively, while the
red ellipses are the level sets of the loss function ||y − xθ||22 (Source: James et al. (2013))

orthonormal design matrix, the ridge estimator scales the OLS estimator by
1

1 + α
. Next,

we introduce the lasso regression.

Introduction to Lasso

The least absolute shrinkage and selection operator is a regression method that involves

penalizing the absolute size of the regression coe�cient and was introduced by Tibshirani

(1996). It performs both variable selection and regularization. Given the vector of predictors

X = x1x1x1, · · · ,xpxpxp, we would like to predict n observed response yyy via a linear model. The lasso

solves the following regularized optimization problem:

min
θθθ

(
1

2
||yyy −Xθθθ||22 + α||θθθ||1

)
, (4.3)
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where

α ≥ 0,

θθθ is a p× 1 vector,

yyy is a n× 1 vector,

X is a p× p matrix.

by using l1 penalty. α is a complexity parameter that controls the amount of shrinkage.

The l1 norm of a coe�cient vector θθθ is given by ||θθθ||1 =
p∑
j=1

|θj|. It has the e�ect of forcing

some of the coe�cient estimates to be exactly equal to zero when the tuning parameter α

is su�ciently large (James et al., 2013). That is, this penalty term leads to feature/model

selection. Fan and Li (2001) showed that the lasso is the only model that produces a sparse

solution among lq penalized estimators (q ≥ 1). As depicted in Figure 4.1, the lasso solution

occurs where the boundary of the feasible set �rst coincides with the level sets of the loss

function.

Note that the lasso penalty contains the absolute value; thus, the objective function in

equation (4.3) is not di�erentiable. Therefore, in general, the lasso solution lacks a closed

form. This requires implementation of an optimization algorithm to �nd the minimizing

solution. In the special case of an orthonormal design matrix, a closed form solution for

lasso can be derived

θ̂j
lasso

= S
(
θ̂j
OLS

, α
)

where S, the soft-thresholding operator, is de�ned as

S(x, α) =


x− α if x > α

0 if |x| ≤ α

x+ α if x < −α
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When α = 0, then the lasso simply gives the ordinary least squares �t. On the other

hand, when α is su�ciently large, the lasso method provides a model in which all coe�cient

estimates equal zero. Similar to ridge regression, lasso produces a biased estimator with a

small variance.

To sum up, the lasso produces interpretable models that retain a subset of predictors and

generate more accurate predictions compared to ridge regression. Moreover, the shrinkage

term makes the lasso and ridge regression estimates biased, but it reduces the variance,

which results in a bias/variance trade-o�. It is worth noting that the OLS estimates are

scale equivariant; however, the penalized regression coe�cients can change when multiplying

a given predictor by a constant because of the penalty term in the objective function. This

change is why it is necessary to apply lasso and ridge after standardizing the predictors. In

the next section, we present the Bayesian empirical likelihood for ridge regression.

4.2 Bayesian Empirical Likelihood for Ridge Regression

Ridge regression has a close connection to Bayesian linear regression. Noting the form of the

penalty term in (4.1), one can conclude that the ridge regression parameters have independent

and identical Normal priors. The shrinkage parameter, α, is introduced in the model in the

form of a hyperparameter. Encouraged by this connection, we consider a semi-parametric

Bayesian model using a Normal prior of the form

π(θθθ|σ2, α) =

p∏
j=1

√
α

2πσ2
e
−
α

2σ2
θ2j

σ2 ∼ IG(a, b)

(4.4)

where IG denotes the inverse gamma distribution with shape parameter a and scale param-
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eter b. Note that α plays the role of prior precision. For example, a small (large) value of

α leads to a wider (more concentrated) prior. By replacing the likelihood function with the

pro�le EL ratio in the Bayesian setting, we have the following hierarchical representation of

the full model:

R(θθθ) ∼ exp

(
−

n∑
i=1

log
(
1 + λλλTxixixi

(
yi − xixixiTθθθ

)))
,

θθθ|σ2, α ∼ N(0p×10p×10p×1,
σ2

α
Ip×pIp×pIp×p),

σ2 ∼ IG(a, b),

σ, α > 0.

(4.5)

To estimate the intercept, θ0, we could place a �at prior. But because we standardized both

the predictor and response variable, the intercept is zero. The full conditional distribution

of θθθ and σ2 is given by:

π
(
θθθ, σ2|X,yyy, α

)
∝ exp

(
−

n∑
i=1

log
(
1 + λλλTxixixi

(
yi − xixixiTθθθ

)))( 1

σ2

)p/2+a+1

exp

(
− 1

σ2

[
b+

α

2
θT θθT θθT θ
])

The full conditional for σ2 is inverse-gamma with shape parameter p/2 + a and scale param-

eter b+
α

2
θT θθT θθT θ. The full conditional distribution for θθθ does not have a closed form:

π
(
θθθ|σ2, α,X,yyy

)
∝ exp

(
−

n∑
i=1

log
(
1 + λλλTxixixi

(
yi − xixixiTθθθ

))
− α

2σ2
θT θθT θθT θ

)
(4.6)

We use a building block of HMC and Gibbs sampler to sample θ and σ2, respectively. The

implementation of the HMC requires the gradient of minus the logarithm empirical posterior
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density of θθθ:

negative log -likelihood: − log
(
π
(
θθθ|σ2, α

))
=

n∑
i=1

log
(
1 + λλλTxixixi

(
yi − xixixiTθθθ

))
+

α

2σ2
θT θθT θθT θ

gradient:− ∂ log ( π (θθθ|σ2, α))

∂θθθ
=

n∑
i=1

−λTλTλTxixixixixixiT

1 + λλλTxixixi (yi − xixixiTθθθ)
+
α

σ2
θTθTθT

We implemented a function in R for the Bayesian ridge based on empirical likelihood. Table

4.1 describes arguments and outputs of this function.

Table 4.1: Summary of the function implemented in R for the Bayesian ridge based on empirical

likelihood.

Arguments Outputs

x : Design matrix. posteriorbeta: Posterior mean estimate of θθθ.
y : Predictor variable. beta: HMC samples of θθθ.
nsim: Number of iterations. Sigma2 : Sample of σ2.
nwarm: Number of iteration for burn-in. weights : Empirical likelihood weights:

e: Stepsize for the leapfrog steps. wi = n−1

(
1

1 + λ̂̂λ̂λTxixixi(yi − xixixiT θ̂̂θ̂θ)

)
L: Number of leapfrog steps. -2LLR: -2 log likelihood ratio.
shrinkage: Penalty coe�cient. p.value: The observed p-value by χ2 approximation.

lambda: Lagrange multiplier value evaluated at the posterior
mean estimate.

grad : Gradient value of lambda.
hess : Hessian matrix of lambda.

The asymptotic distribution of θθθ under the Bayesian ridge model based on EL is easily

obtained. Let θ̂nθnθn be the pro�le maximum likelihood estimate of θθθ and let

J(θ̂nθnθn) =

(
∂2

∂θi∂θj

n∑
i=1

log
(
1 + λλλTxixixi(yi − xixixiTθθθ)

))
θθθ=θ̂n̂θn̂θn

. (4.7)

By the result presented in Section 3.2, the posterior distribution of θθθ converges to normal,
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with mean mn1 and covariance Jn1 where

Jn1 = J(θ̂nθnθn) +
σ2

α
Ip×p

mn1 = J−1
n1 J(θ̂nθnθn)θ̂nθnθn.

Next, we derive the Bayesian empirical likelihood for lasso.

4.3 Bayesian Empirical Likelihood for Lasso Regression

Similar to the ridge, lasso has a close connection to the Bayesian linear model. Tibshi-

rani (1996) suggested that the lasso estimates can be interpreted as posterior mode esti-

mates. That is, using a hierarchical model, one can place an independent identical double-

exponential prior, also known as Laplace distribution, on the parameters of the model.

Several authors suggested using Laplace distribution as a prior (Figueiredo, 2003; Bae and

Mallick, 2004; Yuan and Lin, 2005). Motivated by this, Park and Casella (2008) consid-

ered a fully Bayesian analysis using a conditional double-exponential prior. We consider a

conditional prior speci�cation of the form

π(θθθ|σ2, α) =

p∏
j=1

λ

2
√
σ2

exp
(
−α|θj|/

√
σ2
)
. (4.8)

Andrews and Mallows (1974) showed that the Laplace distribution can be represented as a

scale mixture of normals with an exponential mixing density (See Appendix A):

a

2
e−a|z| =

∫ ∞
0

1

2πs
e−z

2/(2s)a
2

2
e−a

2s/2ds, a > 0. (4.9)

Figure 4.2 shows that the Laplace distributions are sharply peaked at their mean where a

high scale value yields a probability density near to zero. Another notable feature is that
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Figure 4.2: Laplace distribution with mean zero and di�erent values of the scale parameter along

with normal density with mean zero and standard deviation 1.

the Laplace distribution assigns a higher density around its mean compared to the Normal

density. Using the hierarchical representation of Park and Casella (2008) where we replace

the likelihood function by the pro�le empirical likelihood ratio for linear model, our hierar-

chical representation of the full model becomes
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R(θθθ) ∼ exp

(
−

n∑
i=1

log
(
1 + λλλTxixixi

(
yi − xixixiTθθθ

)))
,

θθθ|σ2, τ 2
1 , · · · , τ 2

p ∼ Np(000, σ
2Dτ ),

Dτ = diag
(
τ 2

1 , · · · , τ 2
p

)
,

σ2, τ 2
1 , · · · , τ 2

p |α ∼ πσ2dσ2

p∏
j=1

α2

2
e−α

2τ2j dτ 2
j ,

σ2, τ 2
1 , · · · , τ 2

p > 0.

(4.10)

We avoid placing a prior distribution on the intercept by standardizing both the predictor

variables and the response variable. After integrating out τ 2
1 , · · · , τ 2

p , the conditional prior

on θθθ has the desired form (4.8). We choose π(σ2) = IG(a, b). One can also impose a

noninformative prior π(σ2) = 1/σ2 on σ2. Conditioning on σ2 guarantees the unimodality

of the full posterior distribution (See Appendix B). The parameter τ 2τ 2τ 2 can be viewed as

a latent parameter that assigns di�erent weights to the p covariates. The full empirical

posterior distribution is:

π(θθθ, σ2, τ 2
1 , · · · , τ 2

p |X,yyy, α) ∝ exp

(
−

n∑
i=1

log
(
1 + λλλTxixixi

(
yi − xixixiTθθθ

)))( 1

σ2|Dτ |

)1/2

exp

(
− 1

2σ2
θθθTD−1

τ θθθ

)

(σ2)−a−1 exp

(
− b

σ2

) p∏
i=1

α2

2
exp

(
−α2τ 2

j /2
)
.

(4.11)

Equation (4.11) gives rise to the following sampling scheme:

1. Sample θθθ from

π(θθθ|σ2, τ 2
1 , · · · , τ 2

p ) ∝ exp

(
−

n∑
i=1

log
(
1 + λλλTxixixi

(
yi − xixixiTθθθ

)))
exp

(
− 1

2σ2
θθθTD−1

τ θθθ

)

This is a nonstandard distribution. We use the Hamiltonian Monte Carlo algorithm
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to sample from it.

2. Sample σ2 from inverse-gamma with shape parameter p/2 + a and scale parameter

b+
1

2
θθθTD−1

τ θθθ. One has to be cautious in selecting a and b. The smaller the values, the

better the estimates are, because a large precision allows sampling from a probability

density that is near to zero. That is, when choosing a large penalty, it forces the

estimates to shrink toward zero.

3. Sample 1/τ 2
j from inverse-Gaussian with mean and shape equals to

√
α2σ2

θ2
j

and α2,

respectively (derivation is presented in Appendix C).

We implement a building block of the HMC and Gibbs sampler to sample θθθ, σ2, and

τ 2
1 , · · · , τ 2

p . The gradient of minus the logarithm empirical likelihood density of θθθ:

− log -likelihood: − log
(
π
(
θθθ|σ2, τ 2

1 , · · · , τ 2
p , α
))

=
n∑
i=1

log
(
1 + λλλTxixixi

(
yi − xixixiTθθθ

))
+
θθθTDτ−1θθθ

2σ2

gradient:− ∂ log ( π (θθθ|σ2, α))

∂θθθ
=

n∑
i=1

−λTλTλTxixixixixixiT

1 + λλλTxixixi (yi − xixixiTθθθ)
+

1

σ2
θθθTD−1

τ

We have also implemented a function in R that performs the Bayesian lasso based on em-

pirical likelihood. Table 4.2 describes arguments and outputs of this function.

The asymptotic distribution of θθθ under the Bayesian lasso model based on EL is easily ob-

tained. Similarly to the ridge, let θ̂nθnθn be the pro�le maximum likelihood estimate of θθθ and

J(θ̂nθnθn) be as de�ned in Equation (4.7). By the result presented in Section 3.2, the posterior

distribution of θθθ converges to normal, with mean mn2 and covariance Jn2 where

Jn2 = J(θ̂nθnθn) + σ2Dτ

mn2 = J−1
n2 J(θ̂nθnθn)θ̂nθnθn.
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Table 4.2: Summary of the function implemented in R for the Bayesian lasso based on empirical

likelihood.

Arguments Outputs

x : Design matrix posteriorbeta: Posterior mean estimate of θθθ.
y : Predictor variable. beta: HMC samples of θθθ.
nsim: Number of iterations. Sigma2 : Sample of σ2.
nwarm: Number of burn-in weights : Empirical likelihood weights:

e: Stepsize for the leapfrog steps. wi = n−1

(
1

1 + λ̂̂λ̂λTxixixi(yi − xixixiT θ̂̂θ̂θ)

)
L: Number of leapfrog steps. -2LLR: -2 log likelihood ratio.
shrinkage: Penalty coe�cient. p.value: The observed p-value by χ2 approximation.
PriorS1: Shape parameter of the prior on σ2. estimate.
PriorS2: Scale parameter of the prior on σ2. lambda: Lagrange multiplier evaluated at the

posterior mean
grad : Gradient value of lambda.
hess : Hessian matrix of lambda.
invTau2 : Samples of 1/τ 2

j .

4.4 Illustrative Examples

In this Section, we provide three illustrative examples of the methods derived in Sections

4.2 and 4.3. The �rst example uses simulated data, and the remaining examples are based

on real datasets. In Section 4.5, we provide credible interval regions, HPD, and posterior

distribution for the Bayesian lasso and ridge methods based on empirical likelihood.

Simulation

In this example, we use simulated data to investigate the performance of the Bayesian ridge

and the Bayesian lasso based on empirical likelihood. We simulate a data set that consists
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of 150 observations and 40 covariates from the following model:

yyy = θTθTθTXXX + εεε

where θθθ =

−3,−3, 4, 3,−1, 0, 0, 0, 0, 0, 0, 0, · · · , 0︸ ︷︷ ︸
35 coe�cients are equal to 0

 and ε is normal with mean 0 and stan-

dard deviation 4. Figure 4.3 shows the Bayesian lasso (top) and the Bayesian ridge (bottom)

posterior mean estimates based on empirical likelihood over a grid of α values, using 5000

iterations with 1000 burn-in for each value of α. For lasso, the range of α is [0, 20], whereas,

for the ridge, the range of α is [0, 100]. For the HMC method, the step size and the number

of leapfrog steps are set to ϑ = 0.01 and L = 10, respectively. At each iteration, we use

the modi�ed Newton-Raphson to estimate the Lagrange vector λλλ. We scale both predictors

and the response variable so that the intercept is 0. The HMC Bayesian empirical likelihood

lasso and ridge estimates were posterior means computed over a grid of α. Each curve cor-

responds to a predictor variable. The Figure shows the path of each variable against the

range of values of α. In the lasso case, it is evident that as we increase the value of α, the

coe�cients shrink to zero. More speci�cally, the predictors x2 and x5 shrink toward zero

faster compared to predictors x1, x3 and x4; x5 has the quickest decrease rate. Similarly, in

the ridge case, the coe�cients of predictors shrink to the neighborhood of zero as we increase

the value of α but never attain zero.

Prostate Cancer Data

We apply the Bayesian lasso and ridge methods, based on empirical likelihood, on the

prostate cancer data set presented in Example 2.4. We compare our results with the fully

parametric Bayesian approach. To sample θθθ, we use the HMC scheme with 5000 iterations

and 1000 burn-in. For the lasso case, we choose L = 10 and ϑ = 0.025. In contrast, for

the ridge case we set ϑ = 0.01 and L = 10. At each iteration, we use the modi�ed Newton-
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Figure 4.3: Lasso and ridge path for the simulated data using HMC Bayesian empirical likelihood.
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Raphson to estimate the Lagrange vector λλλ. We scale both predictors and the response

variable so that the intercept is 0. Figure 4.4 compares the Bayesian lasso based on empiri-

cal likelihood and the Bayesian lasso on the prostate cancer data. In both approaches, the

estimates were posterior means computed over a grid of α. For α, we used a range of [0,

1500]. The Figure shows paths of these estimates as their respective shrinkage parameter

changes. It is evident that both methods provide almost identical results. In addition, one

can conclude that the clinical predictors log cancer volume, log prostate weight, and seminal

vesicle invasion have more in�uence on the log of prostate speci�c antigen. Moreover, all

coe�cients shrink to zero for a shrinkage parameter larger than 100. Similarly, Figure 4.5

compares posterior means estimate for the Bayesian ridge based on empirical likelihood and

Bayesian ridge on the prostate cancer data. The Figure depicts the paths of these estimates

over a range of values of the shrinkage parameter. Both methods provide similar results.

As expected, coe�cients do not shrink exactly to zero. Moreover, it is obvious that the

predictor variables log cancer volume, seminal vesicle invasion, and log prostate weight have

the lowest decrease rate compared to other predictor variables and are more in�uential on

the level of prostate-speci�c antigen.
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Figure 4.4: Lasso path for the prostate cancer data using HMC Bayesian empirical likelihood

(top) and Bayesian method (bottom)
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Figure 4.5: Ridge path for the prostate cancer data using HMC Bayesian empirical likelihood

(top) and Bayesian method (bottom)
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Diabetes Data

We apply the Bayesian lasso and ridge methods, based on empirical likelihood, on the dia-

betes data provided by Efron et al. (2004). Data are scaled, consist of 442 diabetes patients,

and examined the relationship between 10 baseline variables and a quantitative measure of

disease progression one year after baseline. These variables are age, sex, body mass index,

average blood pressure, and six blood measurements.

To sample θθθ, we use the HMC scheme with 5000 iterations and 1000 burn-in. For the lasso

method, we choose ϑ = 0.025 and L = 10, whereas, for the ridge method, we choose ϑ = 0.01

and L = 10. Figure 4.6 compares posterior mean estimates for the Bayesian lasso based on

empirical likelihood and Bayesian lasso on the diabetes data. The Figure shows the paths

of these estimates as their respective shrinkage parameter changes. For α, we used a range

of [0, 1500]. It is evident that both methods provide almost identical results. Also, one can

conclude that the predictor variables sex, age, s1, s2, s4, and s6 have the faster decrease

rate and are less in�uential on the disease progress compared to other predictors. Similarly,

Figure 4.7 compares posterior mean estimates for the Bayesian ridge based on empirical

likelihood and the Bayesian ridge. The Figure depicts the path of these estimates over a

range of values for the shrinkage parameter. Similarly to lasso, the range of α is [0, 1500].

Both methods provide similar results. As expected, these coe�cients do not shrink exactly

to zero.
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Figure 4.6: Lasso path for the diabetes data using HMC Bayesian empirical likelihood (top) and

Bayesian method (bottom)
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Figure 4.7: Ridge path for the diabetes data using HMC Bayesian empirical likelihood (top) and

Bayesian method (bottom)

4.5 Estimation of the Shrinkage Parameter

The selection of the penalty, α, is crucial because each value of α corresponds to a �tted

model. To select an optimal value of α for lasso and ridge regression, one can use certain

empirical approaches, such as Akaike information criterion AIC (Akaike, 1974), Bayes infor-

75



mation criterion BIC (Schwarz, 1978), cross-validation CV (Geisser, 1993), or Generalized

cross-validation GCV (Craven and Wahba, 1978). The most frequent method used is K-fold

cross-validation, which works as follows. Given data (X,yyy) , we partition them into K parts.

This gives us K pairs: (X1, y1y1y1), · · · , (XK , yKyKyK). Let ni be the number of points in the ith pair

(Xi, yiyiyi) and let θθθ
(−i)
penalized be the lasso or ridge solution obtained using data pair (X(−i), yyy(−i)).

Given a range of plausible values for α, we de�ne the average cross-validation mean squared

error as:

CV MSE(α) =
1

K

K∑
i=1

1

ni

∣∣∣∣∣∣(yiyiyi(−i) −X(−i)
i θ

(−i)
penalizedθ
(−i)
penalizedθ
(−i)
penalized

)∣∣∣∣∣∣2
2

where (−i) means that the ith cross-validation mean squared error is calculated without the

ith partition. Every data point appears in the testing set exactly once, and k − 1 times in

the training set. The way how we partition the data does not matter; we use k = 5. The

disadvantage of this method is that it is computationally costly.

The optimal value of α, denoted by α∗, is the value that minimizes the average cross-validated

mean squares error:

α∗ = argminαCV MSE(α)

Note that α is a continuous parameter and considering all its possible values is not practically

feasible. Thus, one has to be cautious in the discretization of its range. In the Bayesian set-

ting, Park and Casella (2008) discussed the implementation of an empirical Bayes approach

with an EM algorithm. In this dissertation, we use an approach that treats the shrinkage

coe�cient as a random parameter by placing a hyperprior on it. The disadvantage of this

method is that the conditional posterior distribution of the shrinkage parameter does not

involve data at all.

For lasso, we use three di�erent hyperpriors: gamma distribution, uniform distribution, and

beta distribution. On the other hand, for the ridge model, we only use a gamma distribution

as a hyperprior. Placing a uniform hyperprior on α results in unknown truncated function,

76



which makes its implementation very challenging. Also, one has to be careful in choosing the

hyper-hyperparameters because, in the Bayesian lasso approach, α controls the distribution

of 1/τ 2
j that regulates the weight of the covariates.

As a remedy, we divide data into two sets: training and validation. Apply K-fold cross-

validation on training data and retrieve the value, αtraining, that results in a small predic-

tion error. After that, we place a prior on the shrinkage parameter and choose its hyper-

hyperparameters such that the posterior estimate is around the αtraining.

Lasso Case

Park and Casella (2008) placed a gamma distribution with shape r and rate d on α2. In this

case, factoring the equation (4.11) by this prior leads to the following posterior conditional

distribution:

π(α|τ 2
1 , · · · , τ 2

p ) ∝ (α2)p+r−1 exp

(
−α2

[
d+

1

2

p∑
j=1

τ 2
j

])
,

which is a gamma distribution with shape p+ r and rate d+
1

2

∑p
i=1 τ

2
j . An alternative way

is to consider a class of uniform priors on α2 of the form:

π(α2) =
1

η2 − η1

; α2 > 0, 0 ≤ η1 < η2.

When this prior is used in equation (4.11), the full conditional distribution of α2 is a truncated

gamma

π(α2|τ 2
1 , · · · , τ 2

p ) ∝ G(p,
1

2

p∑
j=1

τ 2
j )I(η1≤α2≤η2).

To sample from the above function, we use the fact that the distribution function for the

truncated gamma is just a linear function of the gamma distribution. That is, if S(x) is the

cumulative distribution function of the gamma distribution and s(x) is the density, and we
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are truncating such that η1 ≤ x ≤ η2, then the density function is :

s[η1,η2](x) =
s(x)

s(η2)− s(η1)

and

S[η1,η2](x) =
S(x)− S(a)

S(η2)− S(η1)
∼ uniform[0, 1].

To sample the truncated gamma random variable, we generate a random uniform u ∼

uniform[0, 1] and compute

S−1 [S(η1 + u (S(η2)− S(η1)))] .

A di�erent selection is to use a more �exible distribution. Los Campos et al. (2009) placed

a beta distribution with shapes ν1 and ν2 on α̃ =
α

u
, where u > 0 is an upper bound on α.

That is,

π(α) = Beta (α̃(α)|ν1, ν2)
∣∣∣∂α̃(α)

∂

∣∣∣ ∝ Beta
(α
u
|ν1, ν2

)
.

If we know that the shrinkage parameter α ∈ (0, 1), we can use a beta distribution without

the constraint. When the constrained beta distribution is used in (4.11), the full conditional

distribution of α ( not on α2) is:

π(α|τ 2
1 , · · · , τ 2

p ) ∝ (α)2p+ν1−1 (u− α)ν2−1 exp

(
−α

2

2

p∑
j=1

τ 2
j

)
,

which lacks a closed form. For its implementation, we use the Hamiltonian Monte Carlo

where the negative logarithm empirical posterior distribution is:

− log
(
π(α|τ 2

1 , · · · , τ 2
p )
)
∝ (1− 2p− ν1) logα + (1− ν2) log (u− α) +

α2

2

p∑
j=1

τ 2
j
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and the gradient is

− ∂

∂α
log
(
π(α|τ 2

1 , · · · , τ 2
p )
)

=
1− 2p− ν1

α
+ (ν2 − 1)

1

u− α
+ α

p∑
j=1

τ 2
j .

Note that the posterior distributions of α and α2 presented above do not depend on data.

Example

We use the diabetes data from Efron et al. (2004) presented in Section 4.4. As discussed

above, choosing the hyper-hyperparameters is challenging because they control the value

of α and, hence, the amount of shrinkage. We split the data into 50% training and 50%

testing, and applied 5-fold cross-validation over a grid of α values on the training set. The

lasso parameter that minimized the average cross-validation mean square was 0.25. Thus,

we choose hyper-hyperparameters such that the mean of the hyperprior is around 0.25. We

run an MCMC with 5000 iterations and 1000 burn-in.

Table 4.3 presents the posterior mean estimates of the shrinkage parameter under three

di�erent hyperpriors. All values are near to 0.25. Figure 4.8 displays the trace plot and the

kernel density for the shrinkage parameter when gamma is chosen as the hyperprior. The

estimates are around the center with reasonable �uctuation, which indicates that the chain

is mixing well. From the kernel density plot, one can see that the distribution is unimodal.

Figure 4.9 presents the trace plot and the kernel density for the shrinkage parameter when

the hyperprior is distributed as beta. The estimates are around the center with reasonable

�uctuation, which indicates that the chain is mixing well. From the kernel density plot, one

can see that the distribution is unimodal and right-skewed. Figure 4.10 exhibits the trace

plot and the kernel density when the shrinkage hyperprior follows the uniform distribution.

The estimates are around the center with values a bit shifted to the left of the center and

with reasonable �uctuation, which indicates that the chain is mixing well. From the kernel
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density plot, one can see that the distribution is unimodal and right-skewed with a heavy

tail.

Table 4.4 represents the posterior mean estimates of the Bayesian lasso based on empirical

likelihood using di�erent hyperpriors. The values of the estimates, in each case, look quite

similar. From Figures 4.11, 4.12, and 4.13, it appears that the trace plots are around their

centers with reasonable �uctuations, which indicate that the chains have good mixing. Table

4.5 provides the 95% highest posterior density intervals and the 95% equal-tailed credible

regions. It seems that, under di�erent hyperpriors, they are quite similar.

Table 4.3: Posterior mean of the shrinkage parameter for the Bayesian lasso based on empirical

likelihood under gamma, beta, and uniform hyperpriors.

Hyperprior Gamma Beta Uniform

Estimate of the shrinkage parameter 0.2265 0.2324 0.2177

Table 4.4: Posterior mean estimates for the Bayesian lasso based on empirical likelihood method,

using gamma, beta, uniform distributions as hyperprior on the penalty term.

Hyperprior AGE SEX BMI BP S1 S2 S3 S4 S5 S6

Gamma -0.012 -0.083 0.287 0.079 -0.032 -0.005 -0.104 0.026 0.370 0.054

Beta -0.011 -0.082 0.287 0.079 -0.027 -0.007 -0.106 0.024 0.367 0.054

Uniform -0.012 -0.085 0.288 0.080 -0.030 -0.007 -0.108 0.025 0.370 0.054
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Figure 4.8: Trace plot (a) and histogram along with the kernel density (b) of the posterior

mean estimates for the shrinkage parameter under gamma hyperprior in the BEL lasso; using 5000

iterations with 1000 burn-in
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Figure 4.9: Trace plot (a) and histogram along with the kernel density (b) of the posterior mean

estimates for the shrinkage parameter under beta hyperprior in the BEL lasso; using 5000 iterations

with 1000 burn-in
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Table 4.5: The 95% highest posterior density intervals and the 95% credible regions of the posterior

distribution of the coe�cients in the lasso model using the diabetes data, under gamma, beta,

uniform distributions as hyperprior on the penalty term.

Gamma hyperprior Beta hyperprior Uniform hyperprior

Variables 95% HPD 95% HPD 95% HPD
(95% credible regions) (95% credible regions) (95% credible regions)

AGE [-0.092, 0.066] [-0.092, 0.067] [-0.097, 0.069]
([-0.089, 0.066]) ([-0.089, 0.067]) ([-0.102, 0.062])

SEX [-0.183, 0.013] [-0.178, 0.015] [-0.177, 0.009]
([-0.180, 0.010]) ([-0.176, 0.012]) ([-0.172, 0.009])

BMI [0.167, 0.406] [0.170, 0.410] [0.169, 0.406]
([0.173, 0.407]) ([0.175, 0.409]) ([0.170, 0.400])

BP [-0.024, 0.196] [-0.02, 0.194] [-0.026, 0.194]
([-0.017, 0.197]) ([-0.023, 0.192]) ([-0.027, 0.188])

S1 [-0.166, 0.088] [-0.161, 0.090] [-0.160, 0.086]
([-0.159, 0.091]) ([-0.162, 0.085]) ([-0.158, 0.083])

S2 [-0.123, 0.106] [-0.118, 0.104] [-0.129, 0.097]
([-0.122, 0.105]) ([-0.118, 0.101]) ([-0.134, 0.089])

S3 [-0.223, 0.015] [-0.231, 0.012] [-0.231, 0.016]
([-0.222, 0.008]) ([-0.225, 0.011]) ([-0.228, 0.014])

S4 [-0.087, 0.160] [-0.088, 0.149] [-0.085, 0.151]
([-0.081, 0.163]) ([-0.086, 0.147]) ([-0.085, 0.148])

S5 [0.235, 0.504] [0.233, 0.493] [0.235, 0.504]
([0.233, 0.496]) ([0.237, 0.492]) ([0.240, 0.502])

S6 [-0.029, 0.151] [-0.029, 0.149] [-0.034, 0.151]
([-0.029, 0.147]) ([-0.027, 0.146]) ([-0.029, 0.152])

83



0 1000 2000 3000 4000

−0
.2

0.0

Trace plot of 
AGE

Index

Histogram distribution
 of AGE

De
ns

ity

−0.3 −0.2 −0.1 0.0 0.1 0.2

0
4

8
12

0 1000 2000 3000 4000

−0
.25

−0
.05

Trace plot of 
SEX

Index

Histogram distribution
 of SEX

De
ns

ity

−0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05

0
4

8
12

0 1000 2000 3000 4000

0.1
0.3

0.5

Trace plot of 
BMI

Index

Histogram distribution
 of BMI

De
ns

ity

0.1 0.2 0.3 0.4 0.5

0
4

8
12

0 1000 2000 3000 4000

0.0
0.2

Trace plot of 
BP

Index

Histogram distribution
 of BP

De
ns

ity

−0.1 0.0 0.1 0.2 0.3

0
4

8
12

0 1000 2000 3000 4000

−0
.4

−0
.1

0.2

Trace plot of 
S1

Index

Histogram distribution
 of S1

De
ns

ity

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

0
4

8
12

0 1000 2000 3000 4000

−0
.2

0.1

Trace plot of 
S2

Index

Histogram distribution
 of S2

De
ns

ity

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
4

8
12

0 1000 2000 3000 4000

−0
.3

−0
.1

0.1

Trace plot of 
S3

Index

Histogram distribution
 of S3

De
ns

ity

−0.3 −0.2 −0.1 0.0 0.1

0
4

8
12

0 1000 2000 3000 4000

−0
.2

0.1
0.3

Trace plot of 
S4

Index

Histogram distribution
 of S4

De
ns

ity

−0.2 −0.1 0.0 0.1 0.2 0.3

0
4

8
12

0 1000 2000 3000 4000

0.2
0.4

0.6

Trace plot of 
S5

Index

Histogram distribution
 of S5

De
ns

ity

0.1 0.2 0.3 0.4 0.5 0.6

0
4

8
12

0 1000 2000 3000 4000

−0
.10

0.1
0

Trace plot of 
S6

Index

Histogram distribution
 of S6

De
ns

ity

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0
4

8
12

Using Gamma distribution as prior

Figure 4.11: Trace plot and histogram along with the kernel density of the posterior mean es-

timates for the BEL lasso coe�cients under gamma hyperprior; using 5000 iterations with 1000

burn-in
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Figure 4.12: Trace plot and histogram along with the kernel density of the posterior mean esti-

mates for the BEL lasso coe�cients under beta hyperprior; using 5000 iterations with 1000 burn-in
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Figure 4.13: Trace plot and histogram along with the kernel density of the posterior mean es-

timates for the BEL lasso coe�cients under uniform hyperprior, using 5000 iterations with 1000

burn-in
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Ridge Case

Contrary to the lasso case, a hyperprior is placed on α (not α2). That is, if we assume that

α follows a gamma distribution with shape r and rate d, then in combination with (4.5) the

resulting conditional posterior distribution is:

π(α|θθθ) ∝ αr−1 exp

(
−α
[
d+

θT θθT θθT θ

2σ2

])
,

which is a gamma distribution with shape r and rate d+
θT θθT θθT θ

2σ2
.

Example

We use the same example presented in Example 4.5. We split the data into 50% training

and 50% testing, and performed 5-fold cross-validation over a range of values of α on the

training set. The ridge parameter that minimizes the average cross-validation mean square

was 0.32. Thus, the hyper-hyperparameters are chosen such that the posterior mean is

around 0.32. We run an MCMC with 5000 iterations and 1000 burn-in. The posterior mean

of the shrinkage parameter is 0.2912, which is close to 0.32. Figure 4.14 presents the trace

plot and the kernel density for the shrinkage parameter when the hyperprior distribution is

gamma. The estimates are around the center with reasonable �uctuation, which indicates

that the chain is mixing well. From the kernel density, one can see that the distribution is

right-skewed and has the shape of gamma distribution.

Table 4.6 represents the posterior mean estimates of the Bayesian ridge based on empirical

likelihood under the gamma hyperprior. From Figure 4.15 it appears that the trace plots

are around their centers with reasonable �uctuations, which indicate that the chains have

good mixing. Table 4.7 provides the 95% highest posterior density intervals and the 95%

equal-tailed credible regions. It seems that both the HPD and credible regions are quite

similar.
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Figure 4.14: Trace plot (a) and histogram along with the kernel density (b) of the posterior

mean estimates for the shrinkage parameter under gamma hyperprior in the BEL ridge; using 5000

iterations with 1000 burn-in

Table 4.6: The posterior mean estimates for the Bayesian ridge based on the empirical likelihood

method using gamma distribution as hyperprior on the penalty term.

Hyperprior AGE SEX BMI BP S1 S2 S3 S4 S5 S6

Gamma -0.037 -0.131 0.300 0.117 -0.113 0.043 -0.117 0.012 0.397 0.073
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Table 4.7: The 95% highest posterior density intervals and the 95% credible regions of the posterior

distribution of the coe�cients in the ridge model using gamma distribution as hyperprior on the

penalty term.

Variables 95% HPD 95% credible regions

AGE [-0.142, 0.065] [-0.142, 0.060]

SEX [-0.228, -0.031] [-0.220, -0.027]

BMI [ 0.186, 0.409] [ 0.187, 0.406]

BP [-0.012, 0.237] [-0.010, 0.232]

S1 [-0.500, 0.245] [-0.501, 0.234]

S2 [-0.258, 0.356] [-0.257, 0.346]

S3 [-0.323, 0.097] [-0.321, 0.090]

S4 [-0.205, 0.222] [-0.201, 0.216]

S5 [ 0.230, 0.574] [ 0.235, 0.573]

S6 [-0.026, 0.175] [-0.025, 0.171]
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Figure 4.15: Trace plot and histogram along with the kernel density of the posterior mean es-

timates for the BEL ridge coe�cients under gamma hyperprior; using 5000 iterations with 1000

burn-in
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4.6 Summary

In this Chapter, we derived the Bayesian lasso and ridge based on empirical likelihood.

We compared them to the full parametric Bayesian approach, and the results were similar.

We discussed the estimation of the penalty term. Using the Bayesian approach, placing a

hyperprior on the penalty term yields a conditional posterior distribution for α that does

not depend on data. This makes it too sensitive to the hyper-hyperparameters and a bit

challenging to determine the class of distributions to place on α. Another approach is to use

the empirical Bayes by Marginal Maximum Likelihood (Casella, 2001).

Following Casella's (2001) approach, one can use a Monte Carlo expectation-maximization

algorithm that complements the HMC and Gibbs sampler and provides marginal maximum

likelihood. Each iteration involves running the block of HMC and Gibbs sampler using α

estimated from the sample of the previous iteration. That is, iteration k uses α estimated

in iteration k − 1. For instance, in the lasso case, Equation (4.11) yields the complete-data

log-likelihood:

−
n∑
i=1

log
(
1 + λλλTxixixi(yiyiyi − xixixiTθθθ)

)
− 1

2
log σ2 −−1

2
log |DτDτDτ | −

1

2σ2
θθθTD−1

τ θD−1
τ θD−1
τ θ

− (a+ 1) log σ2 − b

σ2
+ p logα2 − α2

2

p∑
j=1

τ 2
j .

The expectation step involves taking the expected value of the above distribution, conditional

on yyy and under α(k−1), to obtain:

Q(α|α(k−1)) = p logα2 − α2

2

p∑
j=1

Eα(k−1)

[
τ 2
j |yyy
]

+ term not involving α.
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The maximization step maximized Q(α|α(k−1)) over α to obtain the next estimate. In this

case we have

α(k) =

√
2p∑p

j=1Eα(k−1)

[
τ 2
j |yyy
] .

Park and Casella (2008) suggested to use the following initial value:

α(0) =
p

√
ˆσ2
LS∑p

j=1 | ˆθLSj |

where ˆσ2
LS and ˆθLSj are estimated from the least squares approach.
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Chapter 5

Summary and Directions for Future

Research

5.1 Summary

We proposed a new approach for linear regression, ridge regression, and lasso regression

based on Bayesian empirical likelihood. These are considered semi-parametric models be-

cause they combined a non-parametric and a parametric part. By using the pro�le EL ratio

instead of likelihood, we avoided the potential problem of model misspeci�cation.

The Bayesian EL ratio approach was straightforward. However, the resulting posterior

distribution was intractable with complex and non-convex support. The nature of the sup-

port made the implementation of the traditional Markov Chain Monte Carlo algorithms

di�cult. First, the application of the Gibbs sampler was impossible because the kernel of

the posterior distributions was unknown. Second, the implementation of the Metropolis-

Hastings sampler was very challenging because it required the estimation of the proposal

density and its parameters. In fact, even if we proposed a correct jumping density, the

algorithm converged only when the parameters were equal to the maximum likelihood esti-
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mator. If we started with a value far from the global optimum, the chain got trapped and

never converged. To overcome this, we used the Hamiltonian Monte Carlo (Neal, 2011). The

HMC used the gradient information to reduce random walk behavior, which led to faster

convergence. It only required the derivation of the gradient and the values that control the

HMC process. These values can be found by trial and error. Chaudhuri et al. (2017) showed

that, under certain assumptions, once the parameters are inside the support, they never go

outside and always jump back to the interior of the support if they reach its boundary.

We discussed that the penalized regression has a close connection to the Bayesian linear

model. It su�ced to place a prior distribution on the parameters of the model where the

penalty was introduced in the form of a hyperprior. For this reason, we started �rst with the

derivation of BEL for the linear regression by deriving its empirical likelihood ratio. That is,

to obtained the ridge regression and lasso regression, we multiplied the empirical likelihood

ratio by the appropriate priors. For instance, we obtained the lasso model and ridge model

if we placed the double exponential, using Andrews and Mallows' (1974) representation, and

the normal distribution on the regression parameters, respectively. We compared our ap-

proach to a pure Bayesian approach, and we obtained similar results but the BEL was more

robust because it did not rely on making, e.g., normality assumption on the data.

The penalty term α plays a major role in the shrinkage of the parameters. That is,

they shrink to zero as we increase the value of α. To estimate its value, one can use cross-

validation. In this dissertation, we treated it as a random parameter, and we placed a

hyperprior distribution on it. We used a family of gamma, uniform and beta distributions.

The disadvantage of this approach was that the resulting posterior distribution for α did

not depend on the data, which made it very sensitive to the hyper-hyperparameters. For

instance, let us assume that we placed a gamma prior with shape a and rate b on the

shrinkage coe�cient. Then, the posterior conditional distribution of α is an updated gamma

distribution with shape a + constant1 and rate b + constant2. Then, the mean posterior
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will be around
a+ constant1

b+ constant2
, which will be feed into the rest of the model. To investigate

the value of α we divided data into two datasets: training and validation. We ran a 5-fold

cross-validation on the training set and determined the value α∗ that minimized the mean

squared error. Then we chose the hyper-hyperparameters a and b based on the value of α∗.

Moreover, the estimating equations forced the introduction of the Lagrange multiplier

λλλ in the convex hull, which depends on the values of the regression parameters θθθ. In our

approach, at each iteration, we sampled θθθ and found λλλ that solved equation (2.8). Thus, it

required a careful design of the algorithm to �nd λλλ because of the constraints imposed by

the weights in equation (2.7). We followed the same approach presented by Owen (2001),

which uses the concept of the convex duality.

5.2 Directions for Future Research

There are many various directions for future research that extend our work. We now list

some future research directions based on the results we obtained.

Pure Hamiltonian Monte Carlo Approach

In the course of this research, we used a building block of MCMC methods to estimate our

parameters of interest. Precisely, we implemented a block of HMC and Gibbs sampler. An

alternative approach is to use only the HMC approach. We have seen that the Hamiltonian

Monte Carlo method leads to a quicker convergence by rapidly reaching the space of high

density. Subsequently, it will increase the speed and improve the e�ciency of the algorithm.

For instance, we have seen that the full joint empirical posterior distribution for the ridge
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regression is

π(θθθ, σ2|X,yyy, α) ∝
(

1

σ2

)p/2+a+1

exp

(
−

n∑
i=1

log
[
1 + λλλTxixixi(yi − xixixiTθθθ)

]
− 1

σ2

[
b+

αθθθTθθθ

2

])
.

(5.1)

The negative log of equation (5.1) is:

n∑
i=1

log
[
1 + λλλTxixixi(yi − xixixiTθθθ)

]
+

1

σ2

[
b+

αθθθTθθθ

2

]
+

1

σ2

(
b+

αθθθTθθθ

2

)
(5.2)

Let θ1θ1θ1 = (θθθ, σ2)T be our parameters of interest. The gradient of equation (5.2) with respect

to each parameter is

∂

∂θ1θ1θ1

(
− log(π(θθθ, σ2|X,yyy, α))

)
∝
(
∂

∂θθθ

(
− log(π(θθθ, σ2|X,yyy, α))

)
,

∂

∂σ2

(
− log(π(θθθ, σ2|X,yyy, α))

))T
=

(
n∑
i=1

−λλλxixixixixixiT

1 + λλλTxixixi(yi − xixixiTθθθ)
+
α

σ2
θθθT ,

p/2 + a+ 1

σ2
+
b+ αθθθTθθθ/2

σ4

)T

.

In this case, our model has p+ 2 parameters, which are represented by a single vector where

the parameter σ2 is restricted under the model to be positive.

Similarly, the full joint empirical posterior distribution for the lasso regression is

π(θθθ, σ2, τ 2
1 , · · · , τ 2

p |X,yyy) ∝ exp

(
−

n∑
i=1

log
(
1 + λλλTxixixi

(
yi − xixixiTθθθ

)))( 1

σ2|Dτ |

)1/2

exp

(
− 1

2σ2
θθθTD−1

τ θθθ

)

(σ2)−a−1 exp

(
− b

σ2

) p∏
i=1

α2

2
exp

(
−α2τ 2

j /2
)
.

(5.3)

The negative log of equation (5.3) is

n∑
i=1

log
(
1 + λλλTxixixi

(
yi − xixixiTθθθ

))
+

log(σ2|Dτ |)
2

+
θθθTD−1

τ θθθ

2σ2
+(a+1) log(σ2)+

b

σ2
+

p∑
j=1

α2τ 2
j

2
. (5.4)
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Let θ2θ2θ2 = (θθθ, τττ , σ2)T be our parameters of interest where τττ = (τ 2
1 , · · · , τ 2

p ). The gradient of

equation (5.4) with respect to each parameter is

∂

∂θ2θ2θ2

(
− log π(θθθ, σ2, τττ |X,yyy)

)
=



− ∂

∂θθθ
log π(θθθ, σ2, τττ |X,yyy)

− ∂

∂τττ
log π(θθθ, σ2, τττ |X,yyy)

− ∂

∂σ2
log π(θθθ, σ2, τττ |X,yyy)


where

− ∂

∂θθθ
log π(θθθ, σ2, τττ |X,yyy) =

n∑
i=1

−λλλxixixixixixiT

1 + λλλTxixixi(yi − xixixiTθθθ)
+
θθθTDτ

σ2

− ∂

∂σ2
log π(θθθ, σ2, τττ |X,yyy) =

1

2σ2
− θθθTDτθθθ

2σ4
− b

σ4

− ∂

∂τj
log π(θθθ, σ2, τj|X,yyy) =

1

2τ 2
j

+
τ 2
j

2

[
θ2
j

σ2
+ α2

]
.

Our model has 2p + 2 parameters, which are represented by a single vector where the pa-

rameters τ 2
1 , · · · , τ 2

p , σ
2 are restricted under the model to be positive.

Ridge Regression

The l2 penalty in ridge regression has a nice form such that the solution of θθθ has a closed

form:

θ̂θθ = (XTX + αIp×pIp×pIp×p)
−1XTyyy. (5.5)

Therefore, instead of including the penalty term in the form of a hyperprior, one can the use
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solution in (5.5) as the estimating equation to maximize our pro�le likelihood:

R(θθθ) = max
wi

{ n∏
i=1

nwi| wi ≥ 0,
n∑
i=1

wi = 1, wwwT
(
XTX + αIp×pIp×pIp×p

)
θθθ = wwwTXTyyy

}

and place a normal prior on θθθ with known parameters. Note that:

wwwT
(
XTX + αIp×pIp×pIp×p

)
θθθ −wwwTXTyyy = www

(
XTX + αIp×pIp×pIp×pIp×pIp×pIp×p

T
)
θθθ −wwwTXTyyy

=
n∑
i=1

wi
([
xixixixixixi

T + αiiiiiiiiiiii
T
]
θθθ − xixixiyi

)
=

n∑
i=1

wi
([
xixixixixixi

T + α
]
θθθ − xixixiyi

)
where iiiiii is the i

th row of Ip×p and iiiiiiiiiiii
T = 1. Using steps similar to those presented in Section

2.2, the pro�le likelihood ratio is given by −
∑n

i=1 log
(
1 + λλλT [xixixiyi − (xix

t
ixix
t
ixix
t
i + α)θθθ]

)
where λλλ

satis�es p equations given by:

1

n

n∑
i=1

xixixiyi − (xix
t
ixix
t
ixix
t
i + α)θθθ

1 + λλλT [xixixiyi − (xix
t
ixix
t
ixix
t
i + α)θθθ]

= 000.

Bayesian Empirical Likelihood by Placing a Prior Distribution on

Weights w1, · · · , wn

The method presented in this dissertation is based on the empirical distribution of θθθ under

an informative prior on θθθ. The pro�le log EL ratio for the linear regression is

lEL(θθθ) = −
n∑
i=1

log
{

1 + λλλTxixixi
[
yi − xixixiTθθθ

]}
= n log n+

n∑
i=1

logwi ∝ log
n∏
i=1

wi

and depends on weights. An alternative approach is to treat (w1, · · · , wp) as unknown

parameters by placing a prior distribution on w1, · · · , wn instead of θθθ. The maximum of the

pro�le empirical likelihood ratio, R(www) ∝
∏n

i=1wi, is computed by maximizing wi subject
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to
∑n

i=1wi = 1 and wi ∈ (0, 1). One can consider placing a Dirichlet distribution prior

D(γ1, · · · , γn) on (w1, · · · , wn). The Dirichlet distribution of order n ≥ 2 with parameters

γ1, · · · , γn > 0 has a probability density function:

π(w1, · · · , wn|γ1, · · · , γn) =
1

B(γγγ)

n∏
i=1

wγi−1
i , ∀wi ∈ (0, 1),

where
∑n

i=1wi = 1 and B(γγγ) =
Γ(γ1, · · · , γn)

Γ(γ1)Γ(γ2), · · · ,Γ(γn)
. The posterior distribution of

(w1, · · · , wn) given X is a Dirichlet distribution D(γ1 + 1, γ2 + 1, · · · , γn + 1) and is given by:

π(w1, · · · , wn|X) ∝
n∏
i=1

wγii . (5.6)

This approach is similar to the Bayesian bootstrap (Rubin, 1981) that places a Dirichlet prior

on the parameter of interest. An appropriate choice of the Dirichlet prior is the improper

Dirichlet-Haldane prior (Aitkin, 2008) corresponding to γi = 0 , ∀ i = 1, · · · , n. The

distribution in equation (5.6) can be approximated by Markov Chain Monte Carlo; however,

it is di�cult to translate knowledge about www into knowledge of λλλ and θθθ. Recall that:

ŵi = n−1
{

1 + λ̂λλ
T
xixixi(yi − xixixiT θ̂θθ)

}−1

.

The relationship between the weights and θθθ is not a straightforward transformation. It is

not easy to estimate the value of θθθ from the weights, which are p + 1 and n dimensional

vectors, respectively.

When p � n

When the sample size is smaller than the number of predictor variables, we encounter two

problems. First, the curse of dimensionality is acute. Second, there is insu�cient informa-
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tion, degrees of freedom, to estimate the full model. Penalized regressions were introduced

to overcome the sparsity problem and to deal with data where p >> n. For example, the

lasso regression imposes a l2 penalty on regression parameters and tends to �nd an estimate

of θθθ that is equal to zero.

Our approach is Bayesian based on the EL method, and we believe it will fail in the case

when p >> n. We incorporated the estimating equations in the convex hull to maximize

our pro�le empirical likelihood ratio. However, XTX is not invertible when p > n because

it is not of full rank. Hence, wi = 0, for i = 1, · · · , n. The estimating equations for linear

regression are XTXθθθ −XTyyy. One can set Σ̃ = XTX + cI by adding a small value c to the

diagonal of XTX. Then, use Σ̃ in the estimating equations instead of XTX. But the main

question is how we choose a value for c.
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Appendix A

MIXTURE OF NORMALS WITH AN

EXPONENTIAL MIXING DENSITY

Let z|s ∼ N(0, s) and s ∼ exp(λ2/2). Then we have:

fZ(z) =

∫ ∞
0

fZ|s(z)fs(s)d(s).

Now, �nd the moment generating function for Z:

MZ(t) = EZ(ezt)

=

∫ ∞
−∞

ezt
∫ ∞

0

1√
2πs

e−z
2/2sλ

2

2
e−sλ

2/2dsdz

=

∫ ∞
0

λ2

2
e−sλ

2/2

∫ ∞
−∞

ezt−z
2/2s

√
2πs

dzds.
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Note that:

∫ ∞
−∞

ezt−z
2/2s

√
2πs

dz =
1√
2πs

∫ ∞
−∞

e−
1
2s [z2−2szt]dz

=
1√
2πs

∫ ∞
−∞

e−
1
2s [z2−2tsz+(ts)2−(ts)2]dz

=

(
e

(ts)2

2s

)(
1√
2πs

∫ ∞
−∞

e−
1
2s

(z−ts)2dz

)
= e(ts)2/2s.

The integral is equal to one because the second term is N(ts, s). We have:

MZ(t) =

∫ ∞
0

λ2

2
e
−
−sλ2

2
+
st2

2 ds

=
λ2

2

∫ ∞
0

e−s/2[λ
2−t2]ds

=
λ2

2(λ2−t2)
2

(
e−s/2(λ

2−t2)
)∞

0

=
λ2

λ2 − t2

=
1

1− t2

λ2

, t2 <
1

λ2
,

which is the moment generating function of the Laplace distribution with mean 0 and scale

1

λ
.

110



Appendix B

UNIMODALITY UNDER PRIOR

The heuristic proof in Park and Casella (2008) applies equally to the Bayesian empirical

likelihood. We show that the joint posterior distribution π(θθθ, σ2|yyy) of θθθ and σ2 > 0 under

the prior

π(θθθ, σ2) = π(σ2)

p∏
j=1

α

2
√
σ2

exp

(
−α|θj|√

σ2

)
is unimodal for typical choices of π(σ2) and any choice of α ≥ 0, such that for every c > 0

the upper level set {
(θθθ, σ2) : π(θθθ, σ2|yyy) > c, σ2 > 0

}
is connected. The log-posterior distribution for θθθ and σ2 is proportional to:

log(π(σ2)) +

(
−

n∑
i=1

log
[
1 + λλλTXi(yi −XT

i θθθ)
])
− α√

σ2
||θθθ||.

The second term is clearly concave in θθθ because its second derivative with respect to θθθ is

negative:

∂

∂θθθT

(
−

n∑
i=1

log
[
1 + λλλTXi(yi −XT

i θθθ)
])

=
n∑
i=1

λλλTXiX
T
i

1 + λλλTXi(yi −XT
i θθθ)

∂

∂θθθ∂θθθT

(
−

n∑
i=1

log
[
1 + λλλTXi(yi −XT

i θθθ)
])

= −
n∑
i=1

λλλ(XiX
T
i )TXiX

T
i λλλ

T

(1 + λλλTXi(yi −XT
i θθθ))

2 < 0

because the denominator is positive and the numerator has a quadratic form and thus pos-
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itive. The third term is clearly concave in σ2 (the second derivative of l1-norm is 0). If we

chose σ2 to be an inverse gamma or invariant prior
1

σ2
, then log(σ2) is clearly a concave

function. The sum of concave functions is also concave. Therefor, the log posterior function

for (θθθ, σ2) is unimodal.
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Appendix C

DISTRIBUTION of τ2j

For j = 1, · · · , p, the conditional posterior density of τ 2
j is(

1/τ 2
j

)1/2
exp

(
−1

2

(
α2τ 2

j +
θ2
jσ

2

τ 2
j

))
=
(
1/τ 2

j

)1/2
exp

(
− 1

2τ 2
j

[
α2(τ 2

j )2 +
θ2
j

σ2

])
=
(
1/τ 2

j

)1/2
exp

(
− α2

2τ 2
j

[
(τ 2
j )2 +

θ2
j

α2σ2

])
.

For simplicity, let µ =

√
α2σ2

θ2
j

and τ 2
j = w, then

(
1/τ 2

j

)1/2
exp

(
−1

2

(
α2τ 2

j +
θ2
jσ

2

τ 2
j

))
= (1/w)1/2 exp

(
− α

2

2w

[
w2 +

1

µ2

])
= (1/w)1/2 exp

(
− α2

2µ2w

[
(µw)2 + 1

])
= (1/w)1/2 exp

(
− α2

2µ2w
[1− µw]2 − α2

2µ2w
2µw

)
∝
(
α2

2πw

)1/2

exp

(
− α2

2µ2w
[1− µw]2

)
.

Chhikara and Folks (1989) showed that if X followed an Inverse Gaussian (IG) distribution

with mean µ and shape α2 then its inverse,
1

w
, has the density above. Hence,

fW (w;µ, α2) = wµ2fX(w;
1

µ
,
α2

µ2
).

Therefore,
1

τ 2
j

∼ IG(

√
α2σ2

θ2
j

, α2).
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