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ABSTRACT

The likelihood function plays an essential role in statistical analysis. It helps to estimate a set
of parameters of interest. To make inferences, usually one must specify a parametric model
given data, which is a challenging task because it requires specification of a correct distribu-
tion, and this parametric model may be prone to bias that arises either from the estimation
of a parameter or an incorrect specification of the probability distribution. Non-parametric
approaches are used as a remedy to overcome the misspecification of the model but can be
computationally costly. In this dissertation, we proposed an alternative approach based on
Bayesian empirical likelihood for linear regression and penalized regression. This method is
semi-parametric because it combines a nonparametric and a parametric model. The advan-
tage of this approach is that it does not require the assumption of a parametric model nor the
linearity of estimators; that is, we avoided problems with model misspecification. By using
a Hamiltonian Monte Carlo, we averted the problem of convergence and the daunting task
of finding an adequate proposal density in the Metropolis-Hastings method. Additionally,
we showed that the maximum empirical likelihood estimator is consistent. Moreover, the

resulting posterior density under the Bayesian empirical likelihood framework lacks a closed



form, which makes it difficult to obtain the exact distribution. For this purpose, we derived
the asymptotic distribution of the regression parameters in the linear regression along with

Bayesian credible intervals.
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Chapter 1

Introduction

Empirical likelihood (EL) is a nonparametric method first introduced by Owen (1988, 1990),
although it can be considered as an extension of calibration estimation in survey sampling
(Hartley and Rao, 1968; Deville and Sarndal, 1992). Tt is an estimation method inspired
by maximum likelihood but without assuming a parametric model for the data. Hence, we
avert the problem of model misspecification. One of the advantages of the EL approach is
its flexibility to incorporate constraints and prior information (Kuk and Mak, 1989; Chen
and Qin, 1993; Owen, 2001). Qin and Lawless (1994) extended the work of Owen by linking
moment conditions and developing methods of combining information about parameters. In
some settings, Owen (1988, 1990, 2001) showed that EL inherits properties of a parametric
model. For instance, the limiting distribution of the likelihood ratio test based on EL for
a univariate mean is x2. This parallels the result (Wilks, 1938) for parametric likelihood
ratio tests. Another feature of EL is that it admits a Bartlett correction (DiCiccio et al.,
1991); that is, the coverage error in EL can be reduced to n=2. Baggerly (1998) showed that
empirical likelihood is the only member of the Cressie-Read power divergence family to be
Bartlett-correctable. Also, one can obtain data-determined confidence intervals through the

Wilks statistics, which does not require the estimation of variance (Owen, 2001).



Empirical likelihood has also been extended to linear models, correlation models, ANOVA
and variance modeling (Owen, 1991, 2001), generalized linear models (Kolaczyk, 1994),
Bayesian settings (Lazar, 2003), weighted empirical likelihood (Wu, 2004), exponentially
tilted empirical likelihood (Schennach, 2007), covariance estimation (Chaudhuri et al., 2007),
generalized linear models incorporating population level information (Chaudhuri et al., 2008),
Bayesian empirical likelihood for small area estimation (Chaudhuri and Ghosh, 2011), and
Bayesian empirical likelihood for quantile regression (Yang and He, 2012). To sum up, EL is
considered a powerful approach, as an alternative to likelihood, compared to other methods
because without specifying a model to given data, it retains many desirables properties of
likelihood.

Next, we introduce the essential concepts of EL as well as its most important properties.

Most of the results can be found in the book Empirical Likelihood (Owen, 2001).

1.1 Empirical Likelihood

Suppose Xq,---, X, € IR are iid random variables generated from an unknown distribution.
The cumulative distribution (CDF) is Fy,(z;) = P(X; < z;), where z; € IR. Denote P(X; <
x;) by F(z;) and P(X; < ;) by F(x;), so we can write w; = P(X; = x;) = F(x;) — F(x;).
Let the notation 1, represent the indicator function of event d, that takes the value 1 if the

assertion ¢, is true and 0 otherwise.

Definition 1.1.1. The empirical cumulative distribution function (ECDF) of Xy, -+, X, is

1 n
Fufz) = — D xics
=1

where x € IR. Using similar notation, one can define the nonparametric likelihood of the

CDF F given Xi,---, X, € IR with common CDF F as follows:



L(F) = H (F(Xz) - F(X;» = le

i=1
The basic idea of Owen (1988) is to construct a multinomial distribution F'(wy,--- ,w,,) that
places probability w; on each observation. For each ¢+ = 1,--- ,n, the probability must be

non-negative and
> wi=1 (1.1)
i=1

For inference, we explore the empirical likelihood ratio

R(F) =

L(F -
L((Fn>) - gnw
with constraints w; > 0 and ).  w; = 1. By definition, L(F) = 0 if the distribution is
continuous.
An important property of the ECDF is that it is the nonparametric maximum likelihood
estimator (NPMLE) of the distribution F, that is, if X;,---,X,, € IR are independent
random variables with a common CDF F', where F}, is their ECDF, then for any CDF F
and for F' # F,

L(F) < L(F,).

The NPMLE maintains the invariance property of maximum likelihood for functions. Given
a function 7" that depends on data with common CDF F and a parameter of interest #, such
that 6§ = T(F), the NPMLE of 0 is § = T(F},).

Suppose Xi,---, X, are iid random variables generated from a distribution F. We are
interested in estimating a p-dimensional parameter 8 = T'(F'). Godambe (1960) provided a

method of estimating equations that specifies how € should be determined:

E{g(X;,0)} =0,



where g is a r x 1 vector-valued function and r > p.

Example 1.1.1. Let {(V;,Y;), i =1,--- ,n} be a random sample. We are interested in esti-
cov(V,Y)
0,0y

E(Y), 0, = \/Var(V), o, = /Var(Y), and o, = E(VY). Let 0" = (1, 1y, 07, 05, 0uy).

The set of estimating equations for estimating p is as follows:

mating the correlation p = . To estimate p, we need to estimate y, = E(V), p, =

gl(VaYaa) - V — Mo,
gg(V,Y,e) =Y - My,
93(V’Y’0) - (V - MU)Q - 057

94(VaY’0) = (Y - :uy)2 - 057

95(V’Y’0) = (VY - luvluy) — Ouy-

Let g = (g1, 92, 93, 94, g5)7. Then the solution to the estimating equation

1 n
~> Vi, ¥, 0)=0
n =1

Ouvy

A A

Oy0y

is an estimator p = for p.

Qin and Lawless (1994) linked estimating equations and empirical likelihood by using in-
formation about a parameter of interest regarding functions. Suppose that we have data
x1,- -+ ,x, from some unknown distribution F. We are interested in inference concerning
some function of F' of p-dimension, §(F). When 8(F) can be determined by an estimating

equation g(x;,0), the empirical likelihood ratio function is defined by

R(0) = sup{R(F)| w; >0, Xn:wi = l,iwig(Xi,é?) = O}
i=1 i=1

= Sup{ﬁnwi| w; > 0, zn:wi = 1,zn:wz‘g(Xz‘70) = 0}7
=1 =1 i=1

4

(1.2)



Equation (1.2) maximizes the empirical likelihood ratio subject to constraints > . w; = 1
and > ", w;g(X;,0) = 0. To maximize the constrained equation in (1.2), we use the La-
grange multiplier approach (Rockafellar, 1993). The Lagrangian equation to our maximiza-

tion problem is

10, wy, -, wy, A, v) = nlog(n Zlog w;) — n)\Tszg (X;,0) {sz—l}
(1.3)
where A and v are Lagrange multipliers. Taking the derivative of (1.3) with respect to w;

and setting it equal to zero, we obtain

1
— —y—nATg(X;,0) =0, for eachi=1,---,n
" (1.4)
1 .
Ww; = .
To estimate ~, we multiply (1.4) by > w;, which fulfills the condition in (1.1)
i=1

sz(a -7 —nAg(X;,0)) =0

i=1 !

n—’wai —nZwi)\Tg(Xi,H) =0 (1.5)

i=1 i=1

N =n.
We find that the maximum empirical likelihood estimator of the weight is simply

1
n(l1+ATg(X;,0))




The result is an equation in terms of @ where A € RP*! is a function of 8 that solves

=1

1.2 Empirical Likelihood for Univariate Mean

In this section, we present a particular example of the general approach from Qin and Lawless
(1994) with a specific univariate estimating equation. Let the population mean, u € IR,
be our parameter of interest. Suppose Xi,---, X, are independent random variables with

1
common CDF F and E(X;) = pu. The population mean can be estimated by j1 = —> " | z;.
n

The estimating equation has the following form:

9(901‘7 M) =T — K.

By linking the above estimating equation and EL, the empirical likelihood ratio for the

univariate mean is defined as follows:
R(p) = SUP{Hnwi |w; > 0, Zwi =1, sz(:ﬁz —p) = 0},
=1 i=1 i=1

n n n
Maximizing [ ] nw; is equivalent to maximizing > log(nw;) under the two constraints » | w; =
i=1 i=1 i=1

Land > w;(x; — p) = 0. We solve the optimization problem by using the Lagrange approach
=1

7

W, A y) = Zlog(nwz‘) - /\Zwi(%—ﬂ) - (1 - sz‘) (1.6)

where A and v are the Lagrange multipliers. The first-order conditions for the maximization

of (1.6) with respect to w;, v, and \ are



> wi =1 (1.7)

Now, multiplying the first equation in (1.7) by w;, summing over i, and using the second

and third equations, we find that 4 = n and

wi:n_l{l + Mz — u)}_l.

Substituting the values of 4 and w; into equation (1.6) we obtain

—Zlog(l + M — ) (1.8)

where the value of )\ is the solution of

—1§nj ~ 0 (1.9)
_nz:11+>\ ,U)_ . ‘

For this example, the estimator of the mean is the same as the sample mean. Owen
(1990) proved that when Xi,--- X, are iid with finite mean p and finite variance, then
—2log(R(p) —= 3.

Proof: The Lagrange multiplier A is the solution to equation (1.9). Note that m(0) = & — pu.

1
Let denote 62 = — > (x; — p)?. The Taylor expansion of m in the neighborhood of 0 gives

0 = m(\) = m(0) + M (0) + op(n~?)

=7 —p — A6® + op(n~'?).



Thus,

T — _ _
A= o + op(n 1/2) = Op(n 1/2).
z? ‘
Recall that the Taylor expansion of log(1 + ) is x — 5 * O(x3). From equation (1.8)

we have

~2l0g(R(1) = 2 log(l + Az — )

i=1
= 20A\(Z — p) — nA?6* + op(1)

2 = 2 = 2
_ n)\(x&z pw?*  on( - 0 + op(1)
= )2

|
This is an exciting result because it parallels the Wilk’s test result provided that Var(X;) €
(0,00). As such, it permits the construction of a rejection region, which can be used to build
tests and confidence intervals for the functionals of interest. We reject the value of u at
level @ when —21log (R(11)) > x?. The unrejected values of u form a 100(1 — a)% confidence

region.

1.3 Fundamentals of Bayesian Inference

In this section, we present the fundamentals of Bayesian inference. Recall that in the fre-
quentist setting, the data are repeatable random samples where the underlying parameters
remain constant. However, in the Bayesian framework, the data are observed from the real-
ized sample, i.e., fixed, where the parameters are random variables. The core of the Bayesian

analysis is Bayes’ theorem, which gives a coherent mathematical framework for updating our



belief in light of new data. Let X = (X3, -+, X,) be independent random variables gener-
ated by a family of parametric models IT = {7 (z|@) : 8 € O}, where O is a parameter space
of possible values of 8, © C IR?, where p is known. In addition, we assume that the form
of the density 7(x|@) is known but € is unknown. In addition to the model (likelihood), we
specify a prior distribution for 8, w(@). By Bayes’ rule, the posterior density (distribution

for @ given the data X) is :

-0 x) = ™0X) (1.10)

where
[ m(0)7(X10) if X is continuous,
m(X) = <®
S m(@)m(X10) if X is discrete.
o
The term (X ) is known as the marginal of X and can be omitted in equation (1.10) yielding

the unnormalized posterior density
(0| X) x 7(X|0)m(X).

Often, the analytic derivation of the posterior distribution, where algebra starts to bury the
statistical science, is not easy, making the Bayesian inference a ponderous task. Fortunately,
the development of powerful computers has made Bayesian analytics more tractable and the
implementation of Markov Chain Monte Carlo (MCMC) approaches feasible. MCMC meth-
ods are a class of algorithms for sampling from a posterior distribution based on constructing
a Markov chain. It is a general method based on drawing values of a parameter, 6, from
approximate distributions and then correcting those draws to better approximate the target
posterior distribution, 7(6|z) (Gelman, 2006). The sampling is done sequentially, with the

distribution of sampled draws depending on the last value drawn; hence, the draws form a



Markov chain. The Key to the method’s success, however, is not the Markov property but
rather that the approximate distributions are improved at each step in the simulation, in
the sense of converging to the target distribution (Gelman et al., 2013). Next, we define the
Markov chain and Monte Carlo. A Markov chain M is a discrete time stochastic process
{My, My, ---} with the property that the distribution of M, given all previous values in the
process { My, My, -+, M;_1}, only depends on M;_;. That is,

P(M, € A|My,M,--- ,M;_ 1) =P(M; € A|M;_;) for any set A.

For the distribution of M; to converge, the chain needs to satisfy three properties:

o Irreducibility: A Markov chain is irreducible if the chain can reach any state from any

other state with positive probability and in a finite amount of time.

e Aperiodicity: The chain is aperiodic if it does not get trapped in cycles. That is, the

chain does not oscillate between sets of states in a regular periodic fashion.

e Positive recurrent: For any state x;, the expected number of steps required for the

chain to return x; is finite.

The term “Monte Carlo” was first used by Ulam and Von Neumann (Cooper et al., 1989). Tt
is a method of approximating an expectation by the sample mean of a function of simulated
random variables. Markov chain and Monte Carlo can be combined to solve some delicate
problems in areas such as Bayesian inference, molecular computational biology, bioinformat-
ics, etc. The idea is to construct a Markov chain that converges to the desired distribution

after many iterations. That is, MCMC allows us to estimate any statistic by ergodic averages.

B0, ~ £ 30 h(t)

10



where 7 is the posterior distribution of interest, E[h(t)] is the desired expectation and h(t®)
is the i simulated sample from 7. One might refer to these papers that fired the initial
shots in the MCMC revolution that came to statistics (Metropolis et al., 1953; Hastings,

1970; Geman and Geman, 1984).

1.4 MCMC Methods

Many methods have been created for sampling from the posterior distribution. In this
section, we introduce two MCMC algorithms: Gibbs sampling and the Metropolis-Hastings

algorithm.

Gibbs Sampling Algorithm

Gibbs sampling is one of the MCMC algorithms that is suitable to generate samples from
the posterior distribution. The algorithm was named after the physicist Josiah Willard
Gibbs and described by brothers Stuart and Donald Geman in 1984. To produce samples
using the Gibbs method, we sweep through each variable to sample from its conditional
distribution with the remaining variables fixed to their current values (Lynch, 2007). For

example, let X7, X5, and X3 be random variables and set their initial values to xgo),xgo), and

xéo). At iteration 7, we sample xgi), xéi), and :péi) from 7(X; = 21| Xy = x(;_l), X3 = x:(f_l)),
(X = 29| Xy = xﬁ“,)@, = xéi_l)), and 7(X3 = x3|X; = xgi),Xg = :Ugi)), respectively. This

process continues until the chain converges. Algorithm 1 summarizes the Gibbs sampler

process.

Metropolis-Hastings Algorithm (MH)

The Gibbs sampler is useful when the posterior density has a standard distribution. However,

there are cases for which the posterior density is not of a known form. The Metropolis-

11



Algorithm 1: Gibbs sampler algorithm.

Initialize 29 ~ 7(z), 7(x) is a proposal distribution.
for iteration i=1,2,... do ‘ ‘
Ty ~ 7T(X1 = .’171|X2 = ‘Ig‘il),X:; = x:(;*l), ce ,XS = ngl))

Tg ~ 7T(X2 = I2|X1 = 3751)7)(3 — Iéi—1)7 e 7XS — xg—l))
o (Xe = el Xy = 2D x. =@ o x = O
zs ~m(Xg = wg| Xy =277, Xy = w7, -+, Xgoy = 1g.4)

end for

Hastings algorithm (Metropolis et al., 1953), named after Nicholas Metropolis, is a method
to produce samples from the posterior distribution for which direct sampling is difficult.
Suppose we have a density () that can generate candidate observations. We also refer to @)
as the jumping or proposal density. When the process is in state 8, we propose jumping to
point 0* with the candidate value drawn according to ). We evaluate the proposed state by

calculating the acceptance probability of moving from our current value @ to the proposed

value 6*
. Q(6]0")m(67) }
a@10) =min{ 1, —+1—F—-L5.
00 =min {1, G e
% is the ratio of the target density for the proposed value versus the current
T

value multiplied by the ratio of the proposal density values. The algorithm consists of three
main components. First, generate a candidate sample from the proposal density. Second,
compute the acceptance probability a. Third, accept the candidate sample with probability
a or reject it with probability 1 — a. Algorithm 2 details the general Metropolis-Hastings

algorithm.
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Algorithm 2: Metropolis-Hastings algorithm.

Initialize z(©.

for iteration i=1,2,... do
Propose: 24 ~ Q2@ |2(—1)
Acceptance Probability:

axemd|z(—1)) = min {1,

Q(x(i—1)|‘rcand)7r(xcand>
Q(:Ucand’x(ifl))ﬂ-(w(ifl))
u ~ uniform(u; 0, 1)

if w < o then

Accept the proposal: z() < geand
else
Reject the proposal: () « (-1
end if
end for

1.5 Bayesian Empirical Likelihood

Using EL under the Bayesian framework has captured the attention of many researchers.
Lazar (2003) discussed the validity of using EL as an alternative to the likelihood function
by exploring the characteristics of Bayesian inference with profile EL ratio in place of the
data density. She provided simulation via Monte Carlo and further discussion to assess the
validity and the appropriateness of the resulting posterior by using the method proposed
by Monahan and Boos (1992). Grendar and Judge (2009) showed that Bayesian empirical
likelihood (BEL) and Bayesian maximum a posteriori (MAP) estimators are consistent under
misspecification of the model. They also demonstrated that the point estimators obtained by
empirical likelihood and Bayesian MAP are asymptotically equivalent. Rao and Wu (2010)
applied BEL to survey sampling; Chaudhuri and Ghosh (2011) to small area estimation;
Yang and He (2012) to quantile regression; and Mengersen et al. (2013) to approximate
Bayesian computation.

The BEL scheme is as follows. Let Xi,---, X, be independent random variables with an

13



unknown distribution Fyp € Fy depending on a parameter 8 = (6, --- ,0,) € © C RP. Fy
is a family of distributions described by 8. By placing a prior distribution 7(@) on 0, the

posterior empirical likelihood density is

7(6] X) = x R(6)r(6) (1.11)

where R(0) is the profile empirical likelihood ratio.

1.6 Scope of Dissertation

In this dissertation, we propose a Bayesian approach based on empirical likelihood for lin-
ear regression, ridge regression, and least absolute shrinkage and selection operator (lasso)
regression. In the Bayesian framework, we replace the likelihood function with the profile
empirical likelihood ratio. This method is semi-parametric because it combines EL and
prior, which are a non-parametric and a parametric model, respectively. All Bayesian and
frequentist methods assume a statistical model to data. In contrast, the empirical likelihood
approach does not require the assumption of a parametric model. Hence, we avoid problems
with model misspecification.

The ridge and lasso regressions impose Iy and [; penalties, respectively, on the parame-
ters of the linear regression. We begin by deriving the profile empirical likelihood ratio for
the linear regression. Then, we derive BEL for ridge and lasso regression where we intro-
duce the penalty in the form of a hyperparameter. The ridge and lasso estimates can be
interpreted as Bayesian posterior mean estimates when the regression parameters have in-
dependent Normal and Laplace priors, respectively. The implementation of Gibbs sampling
and Metropolis-Hastings, under the BEL approach, has limitations and poses challenges.

Thus, we use the Hamiltonian Monte Carlo algorithm instead.
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Under certain conditions, and as n — oo, we prove that the maximum empirical likeli-
hood estimator for the linear regression under the BEL framework is consistent. In addition,
we provide the asymptotic distribution for the posterior Bayesian empirical likelihood. More-
over, the hierarchical model provides a Bayesian method for selecting the ridge and lasso

parameters. As such, we place a diffuse hyperprior on the shrinkage term.
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Chapter 2

Bayesian Empirical Likelihood for Linear

Regression

Penalized regression and Bayesian inference are gaining an important role in the era of Big
Data. Often, due to the volume of the predictor variables, the data suffer from a multi-
collinearity problem and variables selection is necessary. Ridge regression (Tikhonov and
Nikolayevich, 1943) treats the multicollinearity problem, and lasso regression (Tibshirani,
1996) addresses both variable selection and multicollinearity.

Some Bayesian and frequentist approaches for linear regression and penalized regression are
based on parametric likelihoods, in which most of the time we assume that data are nor-
mally distributed. In the Bayesian approach, the likelihood is paired with the conjugate,
non-conjugate, or noninformative parametric priors. Prior parameters are usually assumed
to be known and can be estimated by an empirical Bayesian analysis or treated through a
hyperprior.

We are interested in deriving a robust approach based on BEL for ridge and lasso models,
robust meaning here that the normality assumption on the data is not required. Both models

have a close connection to the Bayesian linear model. Tt suffices to put a prior distribution
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on regression parameters to obtain the desired model such that the prior parameters depend
on the penalty coefficient; for instance, placing double-exponential and normal priors lead to
the lasso and ridge regressions, respectively. Double-exponential distribution is presented in
the form of a mixture of normals with an exponential mixing density (Andrews and Mallows,
1974).

In this chapter, we derive BEL for the linear regression, discuss the limitations of Gibbs
sampler and Metropolis-Hastings algorithms, introduce Hamiltonian Monte Carlo, and con-

clude with some examples.

2.1 Profile Empirical Likelihood Ratio for Linear Regres-
sion

We begin with notation and definitions. We observe a set of n pairs (21,41), ", (2n, Yn)-
If we believe that the relationship between z; and y; is linear, then this association can be

explained by the following model:
Y; = 60 + 0121'1 + 9222'2 + -+ szip + € (21)

where z; = [2;1,- - ,zip]T and y; are the predictor and response variables, respectively, 6 is
the unknown intercept, ¢; is the unknown slope for explanatory variable z;;, and ¢; is the

error for data pair (2;,y;). We re-write model (2.1) as:

yi=xi 0+ €
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where z; = [1,%]" and 0 = [0y, 01, -+ ,0,]". Let X = (1,21, ,xp) be our design matrix.

In the linear model, our objective is to estimate the coefficients by minimizing

Z (v — 2,70)° (2.2)

i=1

such that Y7 | (y; — ¢;) = 0 where ¢; = z;70. Assuming that X7 X is invertible, the value

that minimizes (2.2) is

1

01 = (XTX) " XTy.

The estimation of regression parameters can also be approached via estimating equations:
E <XT (y . XéLS)) —0
Now, we can define the profile empirical likelihood ratio for 8 as follows:
R(0) = H%Uax{ﬁ nw;| w; > 0, iwi =1, iwizi(yi —2;,70) = 0} (2.3)
PN i=1 i=1

where w = {wy, -+ ,w,} is the vector of weights of y = {y1,---,yn}. Equation (2.3)

describes a function on the n-dimensional simplex:

w:{wlv"' 7wn|wi207 szzl} eAn—l‘

=1

To maximize Equation (2.3), we implement the Lagrange Multiplier method:

G= Z log nw; — nAT Zwixi(yi —2;70) — (1 — Z w;) (2.4)
i=1 i=1 i=1
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!

where A = (Aq,-++,\41) € RPY! and v € R are Lagrange multipliers. Differentiating

equation (2.4) with respect to w; and using the constraint in equation (2.3) :
oG 1

- T _ _
0 " nA z;(y; — 2;70) — v (2.5)

n

& wig =0 (2.6

(911)1

Equations (2.5) and (2.6) imply that 4 = n. Then
-1
m:n*@+ﬂh@—%%§ (2.7)

where A = A\(0) satisfies p + 1 equations given by

—Z nly -0 (2.8)

1+V%y—%%)

Substituting the expression for w; into log R(0) yields
log R(0) = log H nw; = — Z 1og{1 + M (y; — miTO)} (2.9)
i=1 i=1

This is a particular example of the general approach from Qin and Lawless (1994) with
specific estimating equations for multiple regression.
To find the estimate of 8, we follow the Bayesian approach, where we replace the likelihood

with the profile empirical likelihood ratio. For a given prior 7(@), the empirical posterior
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density function is given by

T(@ly, X, A) < R(@)7(0)

x exp{— Z log(1 + X'z;(y; — miTa))}W(e) (2.10)

=1

= exp (— > log(1+ N zi(y; — z:"9)) + log 7r(0)> :

=1
2.2 Estimation

In this section, we select a prior distribution for BEL for the linear regression as well as the
method of estimating the Lagrange multiplier. The normal distribution has the maximum
entropy (Jaynes, 1957). Thus, if mean and variance are given, a normal prior in some sense

has minimum information. We place the following priors:

1

m(6l0%) ~ N0, —A)

m(0?®) ~ IG(a1,b1)

which is a normal distribution with vector mean 0 and covariance matrix A, whose pdf is
A
202

and positive definite. [G(ay,b;) is the inverse gamma distribution whose pdf is p(z) o

p(x) o< (27m)7P2| A7/ 2 exp(— ), —00 < = < oo, where A is assumed to be known
2@ D exp (—b/x). X is the vector of the Lagrange multipliers, which is the root of equation
(2.8). To find its solution, we use the modified Newton-Raphson method. There is another
approach that finds an analytic solution to A suggested by Chen and Van Keilegom (2009).
However, this approach fails to provide the optimum values for A(@) when 0 is not around
the maximum likelihood estimator.

One can easily see that the minus derivative of equation (2.9) is equal to equation (2.8).
Thus, A is the minimizer of equation L(A) := — i log{l + AT (y; — :t,-TG)}. As discussed

=1
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in Qin and Lawless (1994), the existence and uniqueness of A are guaranteed provided that

the following conditions are satisfied:

1. The vector 0 € RP™ is within the convex hull of {z;(y; — 2;"0), i=1,--- ,n}.

n
2. The matrix ) % is positive definite where A; = z;(y; — z;19).
i=1

The domain L must exclude any A for which some w; < 0. Thus, we imposed the following
constraints:

L+ X2 (y; —x0) >0,i=1,--- ,n. (2.11)

The original n-dimensional optimization problem is equivalent to a p41-dimensional problem
of minimizing L(-) subject to the constraint (2.11) (Owen, 2001). It is easy shown that L(-) is
a convex function on any connected sets satisfying the above constraint. But, unfortunately,

L() is not defined on the sets:
1+AT.’E,;(yi —$,;0) < O, 1= 1,"- , M.
Owen (2001) used a pseudo-logarithm function, which extends L(X) outside the convex set:

log(z) cifz >
log,(z) = (2.12)

log(L) — 1.5+ 2nz — @ ,if 2 <

S|

3=

The objective function becomes:

L.A) == log, (1+A'z; (y; — z:0)) .

i=1
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That is, minimizing L(\) is equivalent to minimizing L, (\) over A € RP™! without constraint.

Taking the derivative of log,(z) with respect to z, we obtain

N =

) ,if 2 > =
log,(2) = (2.13)
2n—n?z ifz<

3=

3=

and taking derivative of equation (2.13) with respect to z gives

1 : 1
-z ,1f225,

log, (z) = (2.14)
-n? ifz< %

In general, one can easily obtain the gradient and Hessian matrix of L,(A) for the linear

model:
OL. (X "
L\ = a( ) = 3 log (1 4+ Xy, — 2:70)) (il — 70)).
=1
_ 0’L.(A)

Ly(A) = NN > logl (14 Nmi(y — 2:76)) (wi(ys — 2:"6)) (i — 2:76))" > 0.
=1

We use the Newton-Raphson method to compute X iteratively:
Mt = M = L] L.

The process can be repeated until it converges to a fixed point. A convenient initial value
1

for A is a zero vector, which corresponds to w; = —, for ¢ = 1,--- ,n. This method works as
n

follows:

Step 0: Let A\g =0. Set k =0, 7o =1 and ¢ = 1078
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Step 1: Calculate A;(Ax) and Ay(Ag) where

a:i(yi — $,;T0)
Al(Ak) = Z 1+ ATxi(yi _ xiTo)

i=1

and
(i (y; — 2:70)] [zi(yi — 2:79)]"
(1+ ATx;(y; — 2;79))*

Do(Ax) = <_ > Ar(Ae)

if ||Aa(Ak)|| < €, stop the algorithm and report Ag; otherwise go to Step 2.

Step 2: Calculate 0, = v Ao(Ag). If 1+ (A — %) xi(y; —2:70) < 0 for some i, let v, = v1./2
and repeat Step 2.

Step 3: Set Adgy1 = Ak — 0, k=k+ 1 and 7, = (k+ 1)_%.

We have determined the method to estimate the Lagrange multipliers. To estimate our
parameter of interest, , in the linear regression, we use the Bayesian approach based on
EL. That is, the posterior empirical distribution of € is proportional to the profile EL ratio

multiplied by priors. The EL ratio is given by:

R(O) = exp{ Y log(1 + X'zi(y; — 2;76)) |

i=1

and in combination with the priors defined above yields the following posterior distribution:

7(6,0%X,y) ocexp{ = 3" log(1 + ATai(y; — 2:70) | x
i=1 (2.15)

exp (—%OTAW) X (02)(a1+1) exp (—61/02)

Equation (2.15) gives rise to the following sampling scheme:
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e Sample 6 from

700y, X) o exp{— Y log(1 + ATz(y; — 2:76)) - 2%20@1—19}. (2.16)

=1

0T A0
e Sample o2 from IG (CL1 +1,b + )

The posterior empirical likelihood of 8 does not have a closed form, which makes the imple-
mentation of the Gibbs sampler impossible. One can think of implementing the Metropolis-
Hastings algorithm as it is suited to generate samples from a distribution that lacks an
analytic form. However, the implementation of MH is challenging and fails to achieve con-
vergence due to the nature of the posterior density support, which complicates the process
of finding an efficient proposal density for the MH algorithm. The surface of the posterior
empirical likelihood is rigid and not smooth with many local optimums. If we select initial
values far from the global optimum, the MH algorithm, often, get trapped in cycles. For
instance, we apply BEL for the linear model on Old Faithful Geyser data (Hérdle, 1991) in
Yellowstone National Park, Wyoming, USA. The objective of that experiment was to study
the waiting time between eruptions and the duration of the eruption for the Old Faithful
geyser. The MLE of the slope is 0.0756. Figure 2.1 shows the trace plots of the slope, based
on Metropolis-Hastings, by using different initial values. We choose the Normal distribu-
tion as jumping density. It is clear that MH is sensitive to the starting value under the EL
framework. In addition, the chains do not mix well. The problem of convergence is due to
the intricacy of its support. Often, the chain gets trapped in a region and never reaches the
global optimum. To observe this, we consider 100 independent and identically distributed
bivariate observations x; = (1, Zs2), ¢ = 1,- -+ ,100; we assume that y; = 012, + Oaxi0 + €;
where 0, = 2, §, = 5, and e; is the error term. Figure 2.2 depicts the perspective plot of

log (7(6]0o?, X,y)) for various values of §; and 6. We can see that the support is non-convex
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Figure 2.1: Trace plots for the slope using different initial values. Top left: 0§0):—5. Top right:
0%0) = 0. Bottom left: 0%0) =0.0756. Bottom right: ego) = 10.
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where its surface is rigid and not smooth. That is, if we start from values far from the global
optimum, the chain gets trapped in some local optimum. Therefore, we are required to tune
the Metropolis-Hastings to find a good proposal density with the appropriate variance that
allows us to reach all states frequently and provides a high acceptance rate. Instead, we
use the Hamiltonian Monte Carlo algorithm (HMC), which converges quickly towards target
distribution. In HMC, distances between successive generated points are large. Thus, it

requires fewer iterations to get the representative sampling.
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Figure 2.2: Perspective plot of log (7(8, X,y)) for various values of 6 and 6.
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2.3 Hamiltonian Monte Carlo for Bayesian Empirical Like-

lihood

In this section, we present a summary of Neal’s (2011) Hamiltonian Monte Carlo. HMC,
also known as Hybrid Monte Carlo, is an MCMC method to generate posterior samples for
which direct sampling is difficult. It borrows an idea from physics to apply to the local
random walk behavior in the Metropolis algorithm, thus allowing it to move much more
rapidly through the target distribution (Gelman et al., 2013). HMC uses the gradient of the
density and the Hamiltonian system to sample successive states for the Metropolis-Hastings
algorithm with a high jump and large acceptance probability. This reduces the correlation
between successive sampled states, which allows for a quicker convergence. The Hamiltonian
system is a dynamic system controlled by Hamilton’s equation. To better understand the
Hamiltonian system, let us consider a physical interpretation in the two-dimensional case.
Imagine that, under a gravitational field, a particle is moving over a continuous surface of
varying heights. That is, the state of this evolution consists of the position of the particle,
given by a two-dimensional vector v, and the momentum of the particle, given by a two-
dimensional vector u. In physics, the momentum of the particle is equal to its mass times
its velocity. The total energy of the particle is equal to its potential energy U(v) plus its
kinetic energy K(u). Moreover, the potential energy of the particle is proportional to the
height of the surface at its current position, and its kinetic energy is equal to ||u||?/2m. u
is the momentum of the particle at its current position, and m is its mass. One interesting
property of the Hamiltonian system is that the total energy of the particle, as it moves up
or down, remains constant, and what changes are its potential energy and its kinetic energy.
The underlying logic of HMC sampling is as follows. To sample from a posterior distribution

7(0|x), we treat the parameter 6 as a particle and denote its value as its current position.
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We define the potential energy and the kinetic energy as

U(0) = —log{m(0]x)}

1
K(u) = §uTM_1u
where u = (uy, Uy, ,us)” is the momentum vector and M is the mass matrix, also known

as the dispersion matrix. K (u) rises from Gaussian distribution N(0, M) where M is a
symmetric positive definite matrix. We choose M. In this dissertation we set M equals the

identity matrix. The total energy or Hamiltonian system is defined as

H@, u)=U(0) + K(u).

The position of # and the momentum u of the particle change over time and are determined
by the partial derivatives of the Hamiltonian system. One should keep in mind, as mentioned
above, that the total energy remains constant as the particle moves. These partial derivatives

give rise to the so-called Hamiltonian equations of motion

Y (2.17)
du  9H  9U(B) Vn(flx)
90 80  w(flx)

Neal (2011) showed that these Hamiltonian equations are reversible, invariant, and volume-
preserving, which make the Hamiltonian system suitable for MCMC sampling schemes.
When 7(6|z) lacks a closed form, the equations (2.17) lack analytic solutions. Thus, the
solution is approximated at discrete time steps. Following Neal (2011), we apply the leapfrog
integration method to approximate the solution of the Hamiltonian equations. First, a small

step size ¢ is selected. Then, given the current value of 6 and u at time ¢, the position and
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momentum at time ¢ + ¢ are updated as follows:
1 1 oU(0(t))
t+ =0 =u(t) — 90—
“(+2) wt) =305
1
O(t+9)=0(t) +9M *u (t - 519) :
1 1 oU(6(t +9))
t+)=ult+=0)—0—m———=
u(t+7) =u ( +3 > 5 50
Sometimes the approximation introduces errors, and an accept-reject algorithm is required
to conserve the invariant property of HMC (Neal, 2011). The procedure works as follows: In
the first step, new values for the momentum vector u are randomly drawn from a Gaussian
distribution N (0, M), independently of the current values of 6. In the second step, starting
with the current state, (6, u), a Hamiltonian system is simulated for L steps using the leapfrog
method, with a step size of . At the end of this L-step trajectory, the proposed state (6%, u*)

is accepted with probability
min [1,exp (—H (6", u") + H(f,u))] = min [1,exp (-=U(0") + U(0) — K(u") + K(u))] (2.18)

where U(0) = —log(m(0|z)) and K(u) = %UTM_lu. If the proposed state is rejected, the
next state is the same as the current state. Gelman et al. (2013) suggested that the HMC is
optimally efficient when its acceptance rate is approximately 65%. For a reader who would
like to see in detail the properties of the above method, Neal (2011), Section 2, might be a
useful reference. Next, we introduce two illustrative examples. In the first example, we use
the HMC to sample from a bivariate normal distribution. The second example is BEL for

the mean using Darwin’s data (Darwin, 1876).
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Example: Bivariate Normal

In this example, we use the Hamiltonian Monte Carlo to sample from a bivariate normal

distribution:
. 10
m(x)~N|p=I[15] Y=
01
. : oU (x) :
To sample from 7(x), we need to determine the expression for U(z) and o The potential

energy function U(z) can be defined as U(z) = —log(w(z)). That is,

(z—p)' S (x—p)

Ux) x 5
8%;:):) =(@-p' s

oU (z)

Using the expressions of U(z) as the potential energy and as the kinetic energy, we

implement the HMC method for the bivariate normal in R. Figure 2.3 displays a simulation

Figure 2.3: Hamiltonian Monte Carlo samples from bivariate normal with mean [1, S]T, variances
equal to 1, and correlation zero.
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of 10000 samples from bivariate normal distribution. We implement HMC to sample from
the same distribution in which the initial values are, with g = [10,0]", far from the mean.
The green points are the first 5000 HMC samples. It is obvious that the HMC estimate is
rapidly approaching the area of high density. In addition, HMC samples explore the space

well and are scattered all around the data cloud.

Example: Bayesian Empirical Likelihood for the Mean

In this example, we apply BEL for the mean on Darwin’s data (Table 2.1), which was meant
to determine if cross-fertilized plants grew taller than self-fertilized plants (Darwin, 1876).
To estimate the mean, we use the results obtained in Section 1.2. We place N (ag, 0¢) prior
on u where ag = 2.6067 (equals the sample mean) and oy = 0.1 (small variance) are assumed

to be known such that. The empirical posterior density of yu is

2
20§

(pla) o< exp (— ZlOg [1+ Az — p)] — L(M - a0)2> :

Table 2.1: The outcome of a classic experiment by Darwin (1876).

Cross ‘ Self ‘ Height ‘ Cross ‘ Self ‘ x

23.5 | 174 6.1 18.3 | 16.5 | 1.8
12.0 | 204 | -84 21.6 | 18.0 | 3.6
21.0 | 20.0 1.0 233 [ 163 7.0
22.0 | 20.0 2.0 21.1 | 18.0 | 3.0
19.1 | 184 0.7 22.1 | 12.8 | 9.3
21.5 | 18.6 2.9 23.0 | 155 | 7.5
22.1 | 18.6 3.5 12.0 | 18.0 | -6.0
204 | 15.3 5.1

To sample from the above distribution, we implement HMC where the negative loga-

rithm posterior density and the gradient of the negative logarithm posterior density are
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1 1 H— Qg .
" Jog [1 4+ Az — )] + —= (1t — ag)? and S , tively. Th
Yo log [T+ ANz — p)] + 207 (p—ag)* and > | Y- + -2 respectively. The

number of iterations used is 5000 with 1000 burn-in. We set L = 10 and ¥ = 0.1.

HMC Bayesian empirical likelihood
for mean

28
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Figure 2.4: Trace plot for the parameter p after 5000 iterations with 1000 burn-in; red line is the
OLS estimate.

Figure 2.4 shows the trace plot for the parameter p after 5000 iterations with 1000 burn-
in where the red line is the OLS estimate (4 = 2.606667). This plot displays a well-behaved
MCMC output, and the center of the chain appears to be around a value with reasonable
fluctuations. This indicates that the chain is mixing well. The acceptance rate is 68.73%,
which suggests that the HMC is working efficiently. The empirical posterior mean estimate
is 2.607813, which is close to the OLS value. The standard error is 0.02058 and the standard

deviation of the data is 4.71.
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Figure 2.5: Histogram of the weights w; = , forj = 1,---,15. The blue

vertical line represents the value of 1 = i
n 15
Figure 2.5 depicts the distribution of the weights when 1 = 2.607813 and A\ evaluated at fi.

1
As expected, they are around the value of — and they sum to one.
n

2.4 Illustrative Examples

In this section, we present two examples of linear regression using the Bayesian approach
based on EL. We use two real datasets: cancer data (Rice, 1988) and prostate cancer data
(Stamey et al., 1989).

We implement a building block of Hamiltonian Monte Carlo and Gibbs sampler to sample
from Equation (2.15) in both cases. First, we sample from the distribution of 7(0]0?, X,y)

using the HMC approach. This method requires finding the gradients of the negative loga-
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rithm empirical posterior density:

—log (p(01X,y) = Zlog [1 + Nl (yZ _ miTg)} 4 %GTA_W
i=1

0l 0| X - Mgz, T 1
B Og(p( | »y)) :_Z Z;T _i_;oTAfl.

0 L1+ N (y; — 2,79)

Second, we sample o2 from Inverse gamma with shape a; + 1 and rate b; + 67 A~'6/2.

Example 1 : Cancer Data

In this example, we apply the linear regression to the cancer data provided by Rice (1988).
We implement the Bayesian approach based on EL. Each data point is from a county in
North Carolina, South Carolina, or Georgia. For each county, the number of adult white
women living there in 1960 is given, as is the number of deaths due to breast cancer among
adult white females from 1950 through 1969 inclusive. There are 301 counties in the dataset;
a more detailed description of these data is given in Owen (1991). The response variable is
the value for breast cancer mortality, and the predictor variable is the adult white female
population. We implement an MCMC sampling scheme using 5000 iterations with 1000
burn-in. We use a building block of HMC and Gibbs sampler. To sample 8, we implement
the HMC scheme where the step size and the number of leapfrog steps are set to ¥ = 0.025
and L = 10 , respectively. On the other hand, we use the Gibbs sampler to generate samples
from the distribution of o2

Figure 2.6 suggests that the slope of the adult white female population parameter has a
unimodal bell-shaped distribution. Also, it appears from the trace plot in Figure 2.7 that the
center of the chain is around the OLS estimate with reasonable fluctuation. This indicates
that the chain is mixing well. From the autocorrelation plot in Figure 2.8, it is clear that

the HMC sample has a correlation that decreases quickly as the lag increases. Table 2.2
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Figure 2.7: Trace plot for the parameter 6 using 5000 iterations with 1000 burn-in; red line is the
OLS estimate.

35



Autocorrelation

ACF
0

05

Lag

Figure 2.8: Autocorrelation plot of 6.

gives the estimate of the slope, based on the HMC, and the OLS estimate. We provide the
estimate based on the posterior mean where the burn-in is set to 1000. It is evident that
the posterior mean estimate is relatively close to the OLS estimate. The acceptance rate
is approximately 70%, which suggests that the HMC is working efficiently. By the results
presented above, we conclude that the rate of cancer deaths per 1000 population is 3.564.
And because deaths were counted over 20 years, the annualized rate is 3.564/20 = 0.178
per thousand. The intercept, éo = —0.0526, is obtained by subtracting the product of the
average of the population and the slope from the average of deaths due to breast cancer. In
addition, the first quantile, second, and third quantiles are 3.489, 3.561, and 3.635, respec-
tively.

Our approach is semi-parametric where we did not assume any distribution to data. We
obtained similar results compared to the OLS approach, but our procedure provides small

standard error, which indicates that the sample of the slope of the adult white female popu-

36



lation is an accurate reflection of the population. Also, another advantage is that we have the
entire posterior distribution of our parameter of interest, which can be summarized through

mean, median, standard deviation, quantiles, etc.

Table 2.2: Posterior summary statistics for cancer data provided by Rice (1988).

Posterior percentiles

Posterior mean | S.E. of the posterior

Parameter | OLS estimate 25%  50% 5%

estimate

Slope 3.578 3.564 0.006 3.489 3.561 3.635

mean

Example 2: Prostate Cancer Data

In this example, we use the prostate cancer data from a study by Stamey et al. (1989). The
data examined the correlation between the level of prostate specific antigen (PSA) and a
number of clinical measures in 97 men who were about to receive a radical prostatectomy.
The aim of this study is to predict the log of PSA (Ipsa) from a number of measurements
including log cancer volume (lcavol), log prostate weight (lweight), age, log of benign pro-
static hyperplasia amount (Ibph), seminal vesicle invasion (svi), log of capsular penetration
(lep), Gleason score (gleason), and percent of Gleason scores 4 or 5 (pgg45). We implement
the MCMC sampling scheme using 5000 iterations and 1000 burn-in. For HMC, the step
size and the number of leapfrogs are set to ¥ = 0.04 and L = 10, respectively. The data are
centered and scaled. Table ?? presents the BEL posterior estimates of the eight variables
described above along with their OLS estimates, standard errors, and percentiles. The poste-
rior means are quite close to the OLS estimates with small standard errors. The acceptance
rate is approximately 62%. The trace plots of the posterior quantities are displayed in Figure
2.9. Tt is clear that the center of each chain is around the OLS estimate with reasonable

fluctuation, which indicates the chain is mixing well. Figure 2.10 shows that all parameters
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have unimodal bell-shaped distributions. The autocorrelation plots depicted in Figure 2.11

suggest that the HMC samples, for each predictor variable, have a correlation that decreases

quickly as the lag increases.

Posterior percentiles

Parameter | OLS estimate Posterior mean | S.E. of the posterior 25% 0% 5%
estimate mean
lcavol 0.5994 0.5936 0.0080 0.5416 0.5932  0.6466
lweight 0.1955 0.2119 0.0082 0.1548  0.2066 0.2622
age -0.1267 -0.1224 0.0066 -0.1664 -0.1231 -0.0797
Ibph 0.1346 0.1180 0.0075 0.068 0.1190 0.1667
svi 0.2748 0.2732 0.0084 0.2182 0.2764 0.3301
lep -0.1278 -0.1178 0.0102 -0.1861 -0.1190 -0.0514
gleason 0.0282 0.0242 0.0091 -0.0365 0.0260 0.0851
pggdh 0.1106 0.1052 0.0109 0.0301  0.1024  0.1758
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Figure 2.9: Trace plots for variables Icavol, lweight, age, lbph, svi, lcp, gleason, and pggdb for
prostate cancer data (Stamey et al., 1989). The red line in each trace plot represents the OLS
estimate.
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Figure 2.10: Histograms of the posterior distribution for variables lcavol, lweight, age, 1bph, svi,
lep, gleason, and pgg4h along with the kernel density curve for prostate cancer data (Stamey et al.,
1989).
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Figure 2.11: Autocorrelation plots of the posterior distribution for variables lcavol, lweight, age,
Ibph, svi, lcp, gleason, and pgg4h for prostate cancer data.
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2.5 Summary

In this Chapter, we proposed an alternative approach to linear regression by using the
Bayesian method based on EL. The implementation of MCMC algorithms such as the Gibbs
sampler and Metropolis-Hastings was challenging. The resulting posterior distribution lacked
an analytic form, and therefore we could not apply the Gibbs sampler. In addition, due to
the intricacy of the support of the posterior empirical density, implementation of Metropolis-
Hastings is a daunting task. We used instead the Hamiltonian Monte Carlo algorithm that
exploits information from the gradients to avoid random walk and move faster toward regions
of high density. The implementation of HMC is easy as it only requires the derivation of
the gradient. It is not recommended to use the numerical approach to compute the gradient
because it makes the algorithm too slow to calculate. Therefore, we should be cautious with
its derivation.

In the next Chapter, we prove that the maximum empirical likelihood estimator is con-
sistent. Also, we show that if we place a normal prior on 8, and under certain assumptions,
the posterior EL for regression parameters is asymptotically normal. This applies to the lin-
ear regression, ridge regression, and lasso regression. As discussed previously, the penalized
regression has a close connection to BEL for linear regression. The penalty term is presented
in the form of a hyperprior. Note that in the lasso case we use the Laplace distribution as
a prior using the representation of Andrews and Mallows (1974), which has the form of a

mixture of normals with an exponential mixing density.
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Chapter 3

Properties of the Regression Parameters

Under Bayesian Empirical Likelihood

In this Chapter, we show that the maximum empirical likelihood estimator, 6 = arg‘rgnax —
o, log (1 + AT g(X;, yi,O)), is consistent, and the posterior empirical density for 8, under
certain conditions, and as n — oo, is asymptotically normal. Also, we show that the asymp-
totic distribution of minus the logarithm-posterior EL is chi-square with p degrees of freedom,
where p is the number of covariates. The consistency is an asymptotic property, which is
important because it guarantees that the estimator becomes more precise and accurate when
we collect more data.

The posterior empirical density of 8 does not have a closed form, and a good approxi-
mation is required because the asymptotic distribution has a theoretical importance. For
instance, one can derive Bayesian credible regions. Now, we introduce the definition of a
consistent estimator. Suppose a random sample 8 = (64,--- ,6,) = 0,, has a joint density

7(60,]X). We denote an estimator 7'(@) for a sample 8,, by T,, = T'(6,). In studying the

behavior of T,, for large sample size, we will consider the sequence of estimator {7,}. For
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example, if 7'(f) is the sample mean, then the sequence of estimators is

>
3

g, ittt 5
1, 9 . 3 3 ) .

Consistency is the property of a sequence of estimators rather than a single estimator, al-

though we say “consistent estimator”.

3.1 Consistency of the Maximum Empirical Likelihood
Estimator

To prove the consistency of the MELE, Yang and He (2012) used the theorem of consis-
tency of M-estimators in Van der Vaart (1989), the quadratic expansion approximating the
EL function (Molanes Lopez et al., 2009), and P-measurable class of measurable functions
(Kosorok, 2008). Our proof uses the theorem of M-estimators in Van der Vaart (1989), but
it is completely different than the approach of Yang and He (2012).

Let © denote the parameter space. We assume that © is compact. Let 6y be the true pa-
rameter. Assume that f(X,y,0) = —log (1+ATg(f)) is a continuous function of y at each
0 and g(X,y,0) is the estimating equations. Assume that there exists a dominating function

d(X,y) such that F [d(X,y)] < oo, and || f(X,y,0)|] < d(X,y). Then the MELE

A

0 = argmax R, (0) = argmax — Z log (14 A"g(X;,:,0))
0co 0co Py

is a consistent estimator of 6.

Proof. To prove the consistency of 8, we use Theorem (5.7) of Van der Vaart (1989):

Theorem 3.1.1. Let M, be random functions and let M be a fized function of @ such that
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for every ¢ >0

sup| M, (8) — M(8)] 2 0
6cO

sup M(0) < M(0,).

[10—60]|><

Then any sequence of estimators 6, with Mn(OAn) > M, (80) — op(1) converges in probability

to 60.

We have

n

R,.(0) = — Z log (1 + Mg(X;, yi,0)) = — Z log (1 + Ag:(9))

i=1 =1
where ¢;(8) = g(Xi,v:,0) and X satisfies:
zn: 9i(0) —0
— 1+ ATg;(0) '

Let M, (6) = 1.(6) = 1 " log (1 + ATg;(0)), and M () be the expected value of M,,(8).
n n =1

That is,

M(6) = E(M,(8))
_ _% > B [log (14 X75:(6))]
=—F [log (1 + )\Tgn(ﬂ))} , by i.i.d
= —E [log (1+X"g(9))]

where ¢(0) = g,(X,, yn,0) and X satisfies:

E (Hf’/\(—%> = 0. (3.1)
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Now we show that for ¢ > 0

sup M(8) < M(6y).
|16—60|1><

We have M(fy) = —F [log (1+ATg(6p))] and by definition E(g(fp)) = 0, which implies
that AT = 0. Therefore, M(6y) = —FE [log(1+0)] = 0. Too see this, we use Chen and

Van Keilegom (2009)’s approach. The equation % =0 can be simplified to
1 < T - /\Tgl g:(0)"Xx
EZgz(er)(u,\ g:(0 Z 1+/\T 0 =0.

1=1 =1

The last term on the left hand side is O,(1/n), which is negligible relative to the first term.
Therefore,

— 2?11 92(0) 0 n_1/2

A= Z?:l g:(0)g:(6)T + 0y )
= 22;1 X, (3/@' — XlTO) |
S X (5 — XTO)] (X, (v — X76)]"

Hence when 8 = 6y, A = 0.

Let T'(@,r) denote an open sphere centered at @ with radius r such that for 6 # 6p:

lim sup — E[log (1+A"g(0*))] = sup — E[log(1+A"g(6"))]

r—0g=cT(8,r) 6+cT'(8,0)

=—-F [log (1 + )\Tg(o))]

- F {log (1—}—/\;%)} '
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1
We know that log(z) < x — 1 for all x > 0. Thus for T N30 > 0, we have:

1 1
< _
tog <1 T ATg<o>> = T4 AT90)
~ATg(0

) (3.2)
1+ A\g(8)

By applying the expectation, we obtain

sup M(0) = —F [log (1+X"g(8))

[16—60||>< }
efulrotn)
< ME [lOg( @)

=0 (by Equation (3.1)).

We showed that M(6p) = 0. Therefore, sup M(f) < 0 = M () for 6 # 6. Thus, the
16—60]><

second condition of Theorem (5.7) of Van der Vaart (1989) is satisfied.

Now, we need to show that the first condition in Van der Vaart’s (1998) theorem is fulfilled.

Under the following assumptions:
1 © is compact.

2 f(X,y,0) = —log (1 + /\Tg(B)) is continuous at each 8 € © for almost all y’s and mea-
surable function of y at each 6. Actually, the function log (1 + )\Tg(O)) is continuous
and defined when 1+ ATg(8) > 0.

3 There exists a dominating function d(X,y) such that F(d(X,y)) < oo and || f(X,y,0)|| <
d(X,y). From (3.2), one can see that f(X,y,8) is dominated by

—A"g(0)

d(X,y) = IESOk
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and by uniform law of large numbers (Jennrich, 1969), we have that E(f(X,y,)) is contin-

uous in @, and

sup|| M, (6) — M(@)] = supl| - % Zbg (1+X7g:(0)) — (—E [log (1 +A"g(8))]) ||

1 — a.s
— - X ui,0) — Ef (X,4,0)]]] <50
?elan;:lf( Y;,0) Lf (X,y,0)]||

We know that convergence almost surely implies convergence in probability. Therefore,

sup|| M, (8) — M()|| 2 0. Then, 8 is a consistent estimator. O
0co

To prove the first condition of Van der Vart’s theorem, we used the uniform law of large
number that implies the convergence in probability. In contrast, Yang and He (2012) relied
on the empirical process theory and the concept of the P-measurable class of measurable
function (Kosorok, 2008). Yang and He (2012) assumed that the estimating equation is twice
continuously differentiable and applied the Taylor expansion to prove the second condition of
Van der Vart’s theorem. In contrast, we used the concept of a bounded function. In addition,
Yang and He (2012)’s proof requires assumptions about the smoothness of the estimating
equation because it involves an indicator function.

Next, we demonstrate that, under certain regularity conditions and n — oo, the posterior

empirical likelihood is asymptotically normal.

3.2 Asymptotic Distribution of the Posterior Empirical

Likelihood

First, assume that we place a normal prior on @ with mean 6y and covariance matrix A. We
assume that A is known and is positive definite. Under certain regularity conditions, and as

n — oo, the posterior distribution of @ converges to normal, with mean m,, and covariance
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Jn, where

Jo = J(0,) + A7

My = J-1 A9y + J(a;)a‘n]
and 0;, is the profile maximum empirical likelihood estimate of @, 6y is the prior mean, and

J(0,) is minus the second derivative of the log empirical likelihood evaluated at 6.

Proof. The posterior empirical distribution of € is

(0|1 X,y) x R(@)m (@) .

1 1 T 4-1
X exp <logH [1+/\T93i(yz‘ —miTﬂ)] - 5(0—00) A (0—00)> :

i=1

= exp (10g (X,y|0) — %(9 —00)" A7 (6 - 00))

where,
n

m(X,y8) = [ [

=1

1
1+ ATz (y; — 2:70)

Similar to Bernardo and Smith (1994), we expand the logarithm term about its maxima 0;,,
assumed to be determined by setting V log w(X,y|@) = 0, we obtain:
. 1 . .
log 7(6] X, y) = log 7(X, ylfa) — (6 — 62)7 A0 — 6) + R,

where R, is the reminder and is small for large n.

A

In addition, we have: log (W(X,yh‘fn)) = —% (0 — én>T J(0n) <0 — 0:,) where :

s 0%logm(X,yl0)
7 n) = (_ 00,00 )ozo‘,..
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If we assume n is large and ignore constants of proportionality, we have:

(01X, y) o exp {—% (6-6.) 76.) (0 -46.) - %(0 —86)TA (O — oo>}
— exp {—% <(a _ o‘,,)T 7(6,) (e . 0;) +(0—60)"A (O - 00)) }
= exp {—% (oTJ(a‘n)a — 0T T (66, — 6,.7(6,)0 + 6,7(6,)6, + 6T A~19 — 0TA‘100> }

(—0{A‘10 + 0(1;/1_100) }

+
@]

]
o}
—N
|
[NSRIE

(67 [162) + A7) 0 — 267 16,16, + 26746, ) }

(oT [J(o;) + A-l] 9 — 207 [J(o‘,,)o; + A—loo} ) } .

A~ ~

Setting J,, = J(6,) + A~' and m,, = J ! [A_100 - J(O,,)HA,,}, we have:
(0] X,y) x exp {—% (OTJnﬂ — 20TJnmn)} )

We complete the square above by adding and subtracting m?ZJ,m,,. Therefore,

(0| X,y) o exp {—% ([0 — mn]T Jn [0 — mn])} ;

is the kernel of N, (m,, J,), with m,, and J, defined above. O

Next, we derive the Bayesian credible intervals. First, we need to find the asymptotic

distribution of minus the logarithm of the posterior empirical likelihood.

3.3 Bayesian Credible Regions

Bayesian credible regions are intervals in the domain of the posterior probability distribution.

Recall that the frequentist confidence intervals do not have straightforward probabilistic
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interpretations; however, the Bayesian credible regions can be interpreted as having a high
probability of containing the unknown quantity. In this section, we derive the Bayesian
credible intervals for the posterior empirical distribution of 8. We prove, under certain
regularity conditions, and as n — oo, that —2log (7(f|X,y)) converges in distribution to x>

as n — 0.

Proof. We need the following theorem:

Theorem 3.3.1. Ifx ~ N(u,X) is a vector of order p and X is positive definite, then

(@—p)' =7 @ —p) — X

n—oo

We showed, under certain regularity conditions and as n — oo, that § ~ N(m,,J,).
Therefore, —2log (7(8|X,y)) o (6 —my)" J, (8 — m,). Now, it suffices to show that .J, =
A4 J(OA,,) is positive definite matrix. A~! is positive definite because , by assumption, A

is positive definite. Now, we compute the second derivative of negative log (X, y|0):

n

9 znzl [1+ \T2i(y; — 2;70)] __Z Nz ”
o007 2 0g Ti\Y; — X4 = I )\Txi(yi _-'L'iTo)

=1

0 i - (a:imiT)T)\ATximiT
——— | =) log [1+ N ai(y; —2;"0)] | = >0
90007 < ; og [1+Nmify — = ﬂ) 2 (14 ATy, — 2;76))?

i=1

because the denominator is positive and the numerator has a quadratic form. Therefore,
it implies that J,, is positive definite because the sum of two positive definite matrices is

positive definite. Thus, —2log (7(8]|X,y)) ECN X,%- ]
n—oo

For 0 < a < 1, the property presented above provides an asymptotic justification for tests
that reject the value of 6 at level a, when —2log(0|X,y) > x2'~*. The unrejected values
of § form a 100(1-a)% Bayesian empirical credible regions. For numbers 0 < a; < ag < 1

where o = a1 + g, we find quantiles 0 < ¢; < ¢ < o0 of the XZ% distribution that satisfy
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p 3T < o] = aj for j =1,2; then

ay —ap =pleg < —2log(0) < 2| X,y

_ [ _a
—p |- <log(6) < —F Xy

=p [6762/2 <0< e’cl/2|X,y] :

The shortest possible interval enclosing (1—a)% of the posterior mass is known as the Highest
Posterior Density (HPD) confidence interval. Usually, HPDs are found by a numerical search.

To find the HPD, we use function hdi in package HDInterval (Meredith and Kruschke, 2016).

3.4 Example

We apply BEL for linear regression to the prostate cancer data introduced in Section 2.4. We
run an MCMC sampling scheme with 5000 iterations. For the HMC algorithm, the step size
and the number of leapfrogs are 0.04 and 10, respectively. The posterior inferences about 6
are exhibited in Table 3.1. The second, third, fourth, and fifth columns of the Table repre-
sent the posterior mean, the highest 95% probability density intervals, the 95% equal-tailed
credible regions, and the 95% confidence intervals of each clinical variable, respectively. For
instance, the posterior mean of the slope of age is -0.1224 and the 95% highest posterior
density interval is [-0.2492, 0.0099]. That is, we are 95% sure that the value of the slope of
age is between -0.2492 and 0.0099. Note that the predictor age has the shortest range. In
contrast, the predictor pgg45 has the highest range. Figure 3.1 depicts the posterior distri-
butions of 5000 draws for each clinical variable along with kernel density. The vertical lines
in blue are the lower and upper values of the highest density interval. One can conclude that
these intervals are approximately symmetric. Consequently, the 95% equal-tailed credible

regions are quite similar to the 95% HPD intervals.
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Figure 3.1: The 95% highest (posterior) density region for each clinical predictor in the prostate
data (Stamey et al., 1989).
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Table 3.1: Summaries of the posterior distribution of coefficients in linear regression using the
prostate cancer data (Stamey et al., 1989), along with the 95% highest (posterior) density intervals,
the 95% equal-tailed credible regions, and the 95% confidence intervals.

Predictor
variable

Posterior mean

for ‘9]'

95% HPD for 6,

95% equal-tailed
credible region for
0

95% confidence
interval for 6;

lcavol

0.5936

[0.4375, 0.7505]

[0.4419, 0.7488]

[0.4220, 0.7767]

lweight

0.2119

[0.0603, 0.3807]

0.0599, 0.3736]

[0.0510, 03401]

age

-0.1224

[-0.2492, 0.0099)]

[-0.2408, 0.0144]

-0.2690, 0.0157]

0.1180

[-0.0286, 0.2648]

[-0.0200, 0.2683]

[-0.0106, 0.2797]

Ibph

SVl

0.2732

[0.1082, 0.4378]

0.1137, 0.4370]

0.1017, 0.4479]

lep

-0.1178

[-0.3187, 0.0810]

[-0.3113, 0.0812)

[-0.3456, 0.0901]

gleason

0.0242

[-0.1524, 0.2049]

-0.1451, 0.2049)]

-0.1664, 0.2229]

pgg4d

0.1052

[-0.1019, 0.3263)

[-0.0964, 0.3229]

[-0.1029, 0.3240]
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Chapter 4

Bayesian Empirical Likelihood for Lasso

and Ridge Regression

4.1 Introduction

The objective of statistical inference is to find estimates that improve prediction accuracy
and model interpretability. Constantly, when we have many predictors, certain variables are
highly correlated and using the ordinary least square yields estimates with high variances.
When the predictor variables are highly correlated, it is normally impossible to interpret
estimates of individual coefficients. The multicollinearity problem and variable selection
have been handled in a variety of different ways. For instance, one can use the variance
inflation factors (VIF) (Kutner et al., 2004) and remove predictors with VIF higher than
10. VIF is a measure that determines how much the variance of an estimated regression
parameter is increased because of collinearity. Another approach is to use partial least
squares (PLS) regression (Wold, 1966) or principal components analysis (PCA) (Pearson,
1901). PLS regression is a method that reduces the predictor variables to a smaller set of an

uncorrelated component by projecting the predicted variables and the predictor variables to
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a new space. On the other hand, PCA is a technique that reduces the number of predictor
variables by using an orthogonal transformation. It transforms a set of predictor variables to
a set of values of linearly uncorrelated variables known as principal components. Also, one
can consider using stepwise regression (Efroymson, 1960) or best subsets regression (Kutner
et al., 2004). Stepwise regression is an automatic method of selecting predictor variables
that proposes a single regression model. In each step, a predictor is considered for addition
or deletion from the set of explanatory variables based on some criterion like R-squared,
Mallows Cp, PRESS, Akaike information criterion, Bayesian information criterion, or false
discovery rate. The best subsets regression is a technique that works similarly to stepwise
regression, and the main difference is that it provides multiple regression models. Another
approach to tackle this type of problem is to use ridge regression or lasso regression. Both
methods impose constraints on the regression parameters. The constraint is presented in the
form of a vector norm, where lasso regression uses the [; norm and ridge regression uses the
[ norm. The key difference between those two norms is the shape of the constraint. The
constraint has a diamond shape under the /; norm. However, it has a circle shape under the
[y norm. The ridge and lasso regressions have a close connection to the Bayesian linear model
when the regression parameters have independent Normal and Laplace priors, respectively.
In this Chapter, we propose an alternative semi-parametric Bayesian approach based on
empirical likelihood, which does not require the assumption of a parametric likelihood for
the errors. It is semi-parametric because it combines the profile empirical likelihood ratio

and priors, which are non-parametric and parametric, respectively.

Introduction to Ridge

Ridge regression (Tikhonov and Nikolayevich, 1943), also known as the method of linear

regularization, penalizes the size of the regression coefficients by imposing an [y penalty.
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That is, it minimizes a penalized residual sum of squares,

) 1
mjn (51— X6IE + al612) (4.0
where

a >0,
0 is a p x 1 vector,
y is an x 1 vector,

X is a p X p matrix.

« is a complexity parameter that controls the amount of shrinkage. It is used to overcome the

multicollinearity problem in data by adding a small positive value (o > 0) to the diagonal

element of the X7 X matrix from multiple regression. The larger the value of o, the greater

the amount of shrinkage (Hastie et al., 2009). The Iy norm of a coefficient vector 8 is given

by |10]]5 = il 07. The term «||@]|3 is referred to as the ridge penalty. The solution to the
=

ridge regression problem is given by:

~ridge

0" = (XX +al)” XTy. (4.2)

The ridge solution is quite similar to the ordinary least squares solution (OLS) but with a
value, o, added to the diagonal of X7X. It is easy to note that the solution presented in
equation (4.2) equals to OLS when a=0 and equals to zero when o« — o0. As shown in
Figure 4.1, the constraint has a circle form with no sharp points. That is, the intersection
between the constraint area and the contour of ellipses will not occur on an axis, and so some
ridge regression coefficients do not shrink to zero. Moreover, 9ridge is a biased estimator of

but with a small variance compared to the variance of the OLS estimate. In the case of an
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8, 8

Figure 4.1: The geometry underlying the estimation of the lasso (left) and ridge regression (right).
The solid blue area is the constraint region [61] + 02| < t and 07 + 3 < ¢, respectively, while the
red ellipses are the level sets of the loss function ||y — x6||3 (Source: James et al. (2013))

1
orthonormal design matrix, the ridge estimator scales the OLS estimator by Toa Next,
!

we introduce the lasso regression.

Introduction to Lasso

The least absolute shrinkage and selection operator is a regression method that involves
penalizing the absolute size of the regression coefficient and was introduced by Tibshirani
(1996). It performs both variable selection and regularization. Given the vector of predictors
X =xy,- - ,xp, we would like to predict n observed response y via a linear model. The lasso

solves the following regularized optimization problem:

i 1
mjn (3lly — X618 + ol ). (4.9
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where

a >0,
0 is a p x 1 vector,
y is an x 1 vector,

X is a p X p matrix.

by using [; penalty. « is a complexity parameter that controls the amount of shrinkage.

p
The 3 norm of a coefficient vector 8 is given by [|@]|; = > |6;|. It has the effect of forcing

7j=1
some of the coefficient estimates to be exactly equal to zero when the tuning parameter «

is sufficiently large (James et al., 2013). That is, this penalty term leads to feature/model
selection. Fan and Li (2001) showed that the lasso is the only model that produces a sparse
solution among [, penalized estimators (¢ > 1). As depicted in Figure 4.1, the lasso solution
occurs where the boundary of the feasible set first coincides with the level sets of the loss
function.

Note that the lasso penalty contains the absolute value; thus, the objective function in
equation (4.3) is not differentiable. Therefore, in general, the lasso solution lacks a closed
form. This requires implementation of an optimization algorithm to find the minimizing
solution. In the special case of an orthonormal design matrix, a closed form solution for

lasso can be derived
~ lasso ~ OLS
6" = 3 <9j ,a)

where S, the soft-thresholding operator, is defined as

r—a ifz>«
S(z,a) =140 if |z| < «

r+a ifz<—a
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When o = 0, then the lasso simply gives the ordinary least squares fit. On the other
hand, when « is sufficiently large, the lasso method provides a model in which all coefficient
estimates equal zero. Similar to ridge regression, lasso produces a biased estimator with a
small variance.

To sum up, the lasso produces interpretable models that retain a subset of predictors and
generate more accurate predictions compared to ridge regression. Moreover, the shrinkage
term makes the lasso and ridge regression estimates biased, but it reduces the variance,
which results in a bias/variance trade-off. It is worth noting that the OLS estimates are
scale equivariant; however, the penalized regression coefficients can change when multiplying
a given predictor by a constant because of the penalty term in the objective function. This
change is why it is necessary to apply lasso and ridge after standardizing the predictors. In

the next section, we present the Bayesian empirical likelihood for ridge regression.

4.2 Bayesian Empirical Likelihood for Ridge Regression

Ridge regression has a close connection to Bayesian linear regression. Noting the form of the
penalty term in (4.1), one can conclude that the ridge regression parameters have independent
and identical Normal priors. The shrinkage parameter, «, is introduced in the model in the
form of a hyperparameter. Encouraged by this connection, we consider a semi-parametric

Bayesian model using a Normal prior of the form

where IG denotes the inverse gamma distribution with shape parameter a and scale param-
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eter b. Note that « plays the role of prior precision. For example, a small (large) value of
« leads to a wider (more concentrated) prior. By replacing the likelihood function with the
profile EL ratio in the Bayesian setting, we have the following hierarchical representation of

the full model:

R(0) ~ exp (— Z log (1+ Az (y; — xiTo))> )

=1

0_2

6|0?, a ~ N(Opx1, o), (4.5)
0'2 ~ [G(G, b),

o, a > 0.

To estimate the intercept, 6y, we could place a flat prior. But because we standardized both
the predictor and response variable, the intercept is zero. The full conditional distribution

of @ and o? is given by:

n 1\ P/2tatl 1 N
™ (0,0°|X,y,a) o exp (— Z log (1 +M2; (y; — xﬁG))) (E) exp (_F [b + 507'0})

=1

The full conditional for o2 is inverse-gamma with shape parameter p/2 + a and scale param-

eter b + %OTG. The full conditional distribution for @ does not have a closed form:

™ (0]0%, o, X,y) o exp (— Z log (1+X'z; (y; —z;70)) — iHTG) (4.6)

, 202
1=1

We use a building block of HMC and Gibbs sampler to sample § and o2, respectively. The

implementation of the HMC requires the gradient of minus the logarithm empirical posterior
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density of :

negative log-likelihood: —log (7 (8|0” a)) = E log (14+X'a; (y; —z:'9)) + %0710
o
i=1
, Olog (7 (0lo% ) A" a p
d t: — = _0
gracien 09 Z:; 1+ Nz (g —270) | o

We implemented a function in R for the Bayesian ridge based on empirical likelihood. Table

4.1 describes arguments and outputs of this function.

Table 4.1: Summary of the function implemented in R for the Bayesian ridge based on empirical
likelihood.

Arguments ‘ Outputs
z: Design matrix. posteriorbeta: Posterior mean estimate of 6.
y: Predictor variable. beta: HMC samples of 6.
nsim: Number of iterations. Sigma2: Sample of o2
nwarm: Number of iteration for burn-in. | weights: Empirical likelihood weights:
e: Stepsize for the leapfrog steps. w; =nt = ! ~ )
1+ ATz (y; — 2;76)
L: Number of leapfrog steps. -2LLR: -2 log likelihood ratio.
shrinkage: Penalty coefficient. p.value: The observed p-value by x? approximation.
lambda: Lagrange multiplier value evaluated at the posterior
mean estimate.
grad: Gradient value of lambda.
hess: Hessian matrix of lambda.

The asymptotic distribution of  under the Bayesian ridge model based on EL is easily

obtained. Let 6, be the profile maximum likelihood estimate of 8 and let

) 0 - T T
J(on) = ((90189] Z_leog (1 +A xi(yi —Z; 0)))0 . (47)

On

By the result presented in Section 3.2, the posterior distribution of 8 converges to normal,
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with mean m,,; and covariance J,; where

My = J T (0n) 0.

Next, we derive the Bayesian empirical likelihood for lasso.

4.3 Bayesian Empirical Likelihood for Lasso Regression

Similar to the ridge, lasso has a close connection to the Bayesian linear model. Tibshi-
rani (1996) suggested that the lasso estimates can be interpreted as posterior mode esti-
mates. That is, using a hierarchical model, one can place an independent identical double-
exponential prior, also known as Laplace distribution, on the parameters of the model.
Several authors suggested using Laplace distribution as a prior (Figueiredo, 2003; Bae and
Mallick, 2004; Yuan and Lin, 2005). Motivated by this, Park and Casella (2008) consid-
ered a fully Bayesian analysis using a conditional double-exponential prior. We consider a

conditional prior specification of the form

7(6|c?, ) ﬁ = exp <—oz|0j|/\/§> . (4.8)

Andrews and Mallows (1974) showed that the Laplace distribution can be represented as a

scale mixture of normals with an exponential mixing density (See Appendix A):

a o0 ]_ 2 a2 2
A _alz| _ —22/(25) 8 —a%s/2 g > 0. 4.9
26 /0 _27TS€ 5 e S, a ( )

Figure 4.2 shows that the Laplace distributions are sharply peaked at their mean where a

high scale value yields a probability density near to zero. Another notable feature is that

63



12
|

- alpha=0.4

- alpha=0.5

- alpha=0.6

08

- alpha=0.7

alpha=0.8

06

Normal density

04

02

00

Figure 4.2: Laplace distribution with mean zero and different values of the scale parameter along
with normal density with mean zero and standard deviation 1.

the Laplace distribution assigns a higher density around its mean compared to the Normal
density. Using the hierarchical representation of Park and Casella (2008) where we replace
the likelihood function by the profile empirical likelihood ratio for linear model, our hierar-

chical representation of the full model becomes
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R(0) ~ exp <— Z log (1 + ATz; (y; — $iT0))> :
i=1
0|c% 12, - - ,TpQ ~ N, (0, a’D,),

D, =diag (7, , 7)), (4.10)

»p

P 2
a” 2.2
ol T, ,7';\04 ~ mo?do? H -5¢ T deZ,
7j=1
2
o511, > 0.
We avoid placing a prior distribution on the intercept by standardizing both the predictor
variables and the response variable. After integrating out 72, - - - ,T;, the conditional prior
on @ has the desired form (4.8). We choose m(0?) = IG(a,b). One can also impose a
noninformative prior 7(c?) = 1/0% on ¢?. Conditioning on ¢? guarantees the unimodality
of the full posterior distribution (See Appendix B). The parameter 72 can be viewed as

a latent parameter that assigns different weights to the p covariates. The full empirical

posterior distribution is:

n 1 1/2 1 -
70,0272, - 775|X,y, @) X exp (— Zlog (1 + Nz (yZ - xiTa))> (02|DT|) exp (—T‘QQTDT 10)

i=1

(0?)-* exp (_%) 1 %2 exp (~a?r2/2)

=1

(4.11)

Equation (4.11) gives rise to the following sampling scheme:

1. Sample 0 from

(@l 72, - ,T;) X exp (— Zlog (1 + ATz (yl — :1:,~T0))> exp (—%‘zaTD;lo)

i=1

This is a nonstandard distribution. We use the Hamiltonian Monte Carlo algorithm
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to sample from it.

2. Sample ¢? from inverse-gamma with shape parameter p/2 + a and scale parameter
b+ %OTD;W. One has to be cautious in selecting a and b. The smaller the values, the
better the estimates are, because a large precision allows sampling from a probability
density that is near to zero. That is, when choosing a large penalty, it forces the

estimates to shrink toward zero.

3. Sample 1 /7'j2 from inverse-Gaussian with mean and shape equals to

respectively (derivation is presented in Appendix C).

We implement a building block of the HMC and Gibbs sampler to sample 6, o2, and

T ,7'5. The gradient of minus the logarithm empirical likelihood density of 6:

. . Y 0TDT_10
_ log likelihood: — log ( - (0’02’ 7_12’ - ’Tp27 a)) = ; log (1 + /\Txi (yz - x,-TG)) + 202
| dlog ( (8]0, ) i Nz, T L ora
dient: — : - 20 P
gradien 90 Z 1+ ATz (y; — 2:70) Tt

=1

We have also implemented a function in R that performs the Bayesian lasso based on em-
pirical likelihood. Table 4.2 describes arguments and outputs of this function.

The asymptotic distribution of @ under the Bayesian lasso model based on EL is easily ob-
tained. Similarly to the ridge, let 6, be the profile maximum likelihood estimate of @ and

J(0,) be as defined in Equation (4.7). By the result presented in Section 3.2, the posterior

distribution of @ converges to normal, with mean m,, and covariance J,» where

Jna = J(On) + 02D,

My = J3 T (0n) 0.

n
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Table 4.2: Summary of the function implemented in R for the Bayesian lasso based on empirical

likelihood.

Arguments

‘ Outputs

z: Design matrix

y: Predictor variable.

nstm: Number of iterations.
nwarm: Number of burn-in

e: Stepsize for the leapfrog steps.

L: Number of leapfrog steps.
shrinkage: Penalty coefficient.
PriorS1: Shape parameter of the prior on 2.

PriorS2: Scale parameter of the prior on 2.

posteriorbeta: Posterior mean estimate of 6.
beta: HMC samples of 6.

Sigma2: Sample of o2.

weights: Empirical likelihood weights:

w; =N

) 1
1+ ATa;(y; — 2:76)

-2LLR: -2 log likelihood ratio.

p.value: The observed p-value by x? approximation.
estimate.

lambda: Lagrange multiplier evaluated at the
posterior mean

grad: Gradient value of lambda.

hess: Hessian matrix of lambda.

invTau2 : Samples of 1/77.

4.4 Illustrative Examples

In this Section, we provide three illustrative examples of the methods derived in Sections

4.2 and 4.3. The first example uses simulated data, and the remaining examples are based

on real datasets. In Section 4.5, we provide credible interval regions, HPD, and posterior

distribution for the Bayesian lasso and ridge methods based on empirical likelihood.

Simulation

In this example, we use simulated data to investigate the performance of the Bayesian ridge

and the Bayesian lasso based on empirical likelihood. We simulate a data set that consists
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of 150 observations and 40 covariates from the following model:
y=0TX +e

where § = | —3,-3,4,3,—1,0,0,0,0,0,0,0,--- ,0 | and € is normal with mean 0 and stan-

J/

~
35 coefficients are equal to 0

dard deviation 4. Figure 4.3 shows the Bayesian lasso (top) and the Bayesian ridge (bottom)
posterior mean estimates based on empirical likelihood over a grid of a values, using 5000
iterations with 1000 burn-in for each value of «. For lasso, the range of « is [0, 20|, whereas,
for the ridge, the range of a is [0, 100]. For the HMC method, the step size and the number
of leapfrog steps are set to ¥ = 0.01 and L = 10, respectively. At each iteration, we use
the modified Newton-Raphson to estimate the Lagrange vector A. We scale both predictors
and the response variable so that the intercept is 0. The HMC Bayesian empirical likelihood
lasso and ridge estimates were posterior means computed over a grid of a. Each curve cor-
responds to a predictor variable. The Figure shows the path of each variable against the
range of values of a. In the lasso case, it is evident that as we increase the value of «, the
coefficients shrink to zero. More specifically, the predictors x5 and x5 shrink toward zero
faster compared to predictors xy, x3 and x4; x5 has the quickest decrease rate. Similarly, in
the ridge case, the coefficients of predictors shrink to the neighborhood of zero as we increase

the value of o but never attain zero.

Prostate Cancer Data

We apply the Bayesian lasso and ridge methods, based on empirical likelihood, on the
prostate cancer data set presented in Example 2.4. We compare our results with the fully
parametric Bayesian approach. To sample 8, we use the HMC scheme with 5000 iterations
and 1000 burn-in. For the lasso case, we choose L = 10 and ¥ = 0.025. In contrast, for

the ridge case we set ¥ = 0.01 and L = 10. At each iteration, we use the modified Newton-
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Figure 4.3: Lasso and ridge path for the simulated data using HMC Bayesian empirical likelihood.
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Raphson to estimate the Lagrange vector A. We scale both predictors and the response
variable so that the intercept is 0. Figure 4.4 compares the Bayesian lasso based on empiri-
cal likelihood and the Bayesian lasso on the prostate cancer data. In both approaches, the
estimates were posterior means computed over a grid of a. For «, we used a range of [0,
1500]. The Figure shows paths of these estimates as their respective shrinkage parameter
changes. It is evident that both methods provide almost identical results. In addition, one
can conclude that the clinical predictors log cancer volume, log prostate weight, and seminal
vesicle invasion have more influence on the log of prostate specific antigen. Moreover, all
coefficients shrink to zero for a shrinkage parameter larger than 100. Similarly, Figure 4.5
compares posterior means estimate for the Bayesian ridge based on empirical likelihood and
Bayesian ridge on the prostate cancer data. The Figure depicts the paths of these estimates
over a range of values of the shrinkage parameter. Both methods provide similar results.
As expected, coefficients do not shrink exactly to zero. Moreover, it is obvious that the
predictor variables log cancer volume, seminal vesicle invasion, and log prostate weight have
the lowest decrease rate compared to other predictor variables and are more influential on

the level of prostate-specific antigen.
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Figure 4.4: Lasso path for the prostate cancer data using HMC Bayesian empirical likelihood
(top) and Bayesian method (bottom)
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Ridge Path using
HMC Bayesian Empirical Likelihood
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Figure 4.5: Ridge path for the prostate cancer data using HMC Bayesian empirical likelihood
(top) and Bayesian method (bottom)
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Diabetes Data

We apply the Bayesian lasso and ridge methods, based on empirical likelihood, on the dia-
betes data provided by Efron et al. (2004). Data are scaled, consist of 442 diabetes patients,
and examined the relationship between 10 baseline variables and a quantitative measure of
disease progression one year after baseline. These variables are age, sex, body mass index,
average blood pressure, and six blood measurements.

To sample 0, we use the HMC scheme with 5000 iterations and 1000 burn-in. For the lasso
method, we choose ¥ = 0.025 and L = 10, whereas, for the ridge method, we choose ¥ = 0.01
and L = 10. Figure 4.6 compares posterior mean estimates for the Bayesian lasso based on
empirical likelihood and Bayesian lasso on the diabetes data. The Figure shows the paths
of these estimates as their respective shrinkage parameter changes. For «, we used a range
of 0, 1500]. It is evident that both methods provide almost identical results. Also, one can
conclude that the predictor variables sex, age, sl, s2, s4, and s6 have the faster decrease
rate and are less influential on the disease progress compared to other predictors. Similarly,
Figure 4.7 compares posterior mean estimates for the Bayesian ridge based on empirical
likelihood and the Bayesian ridge. The Figure depicts the path of these estimates over a
range of values for the shrinkage parameter. Similarly to lasso, the range of « is [0, 1500].
Both methods provide similar results. As expected, these coefficients do not shrink exactly

to zero.
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LASSO Path using Bayesian EL
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Figure 4.6: Lasso path for the diabetes data using HMC Bayesian empirical likelihood (top) and
Bayesian method (bottom)
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Ridge Path using Bayesian EL approach
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Figure 4.7: Ridge path for the diabetes data using HMC Bayesian empirical likelihood (top) and
Bayesian method (bottom)

4.5 Estimation of the Shrinkage Parameter

The selection of the penalty, «, is crucial because each value of a corresponds to a fitted
model. To select an optimal value of « for lasso and ridge regression, one can use certain

empirical approaches, such as Akaike information criterion AIC (Akaike, 1974), Bayes infor-

I0)



mation criterion BIC (Schwarz, 1978), cross-validation CV (Geisser, 1993), or Generalized
cross-validation GCV (Craven and Wahba, 1978). The most frequent method used is K-fold
cross-validation, which works as follows. Given data (X,y) , we partition them into K parts.
This gives us K pairs: (X1,%), -, (Xk,yx). Let n; be the number of points in the i** pair

(Xi,y:) and let 0" be the lasso or ridge solution obtained using data pair (X%, y(=9).

penalzzed
Given a range of plausible values for a, we define the average cross-validation mean squared
error as:

-~ 1 (=) 2
CV]WSE = Z n_ ( z 0penahzed> ‘ )2

where (—i) means that the i’ cross-validation mean squared error is calculated without the

h partition. Every data point appears in the testing set exactly once, and k — 1 times in
the training set. The way how we partition the data does not matter; we use k = 5. The
disadvantage of this method is that it is computationally costly.

The optimal value of o, denoted by o, is the value that minimizes the average cross-validated
mean squares error:

*

o = argmin,CV ysp(a)

Note that « is a continuous parameter and considering all its possible values is not practically
feasible. Thus, one has to be cautious in the discretization of its range. In the Bayesian set-
ting, Park and Casella (2008) discussed the implementation of an empirical Bayes approach
with an EM algorithm. In this dissertation, we use an approach that treats the shrinkage
coefficient as a random parameter by placing a hyperprior on it. The disadvantage of this
method is that the conditional posterior distribution of the shrinkage parameter does not
involve data at all.

For lasso, we use three different hyperpriors: gamma distribution, uniform distribution, and
beta distribution. On the other hand, for the ridge model, we only use a gamma distribution

as a hyperprior. Placing a uniform hyperprior on « results in unknown truncated function,
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which makes its implementation very challenging. Also, one has to be careful in choosing the
hyper-hyperparameters because, in the Bayesian lasso approach, « controls the distribution
of 1/77 that regulates the weight of the covariates.

As a remedy, we divide data into two sets: training and validation. Apply K-fold cross-
validation on training data and retrieve the value, o/  that results in a small predic-
tion error. After that, we place a prior on the shrinkage parameter and choose its hyper-

hyperparameters such that the posterior estimate is around the o/fr®nin9,

Lasso Case

Park and Casella (2008) placed a gamma distribution with shape r and rate d on . In this
case, factoring the equation (4.11) by this prior leads to the following posterior conditional

distribution:

7T(Oé|7—127 U 77_5) X (Oé2>p+7q71 exp <_052

R
d+§z7’j y

J=1

1
which is a gamma distribution with shape p 4+ r and rate d + B P sz. An alternative way

is to consider a class of uniform priors on a2 of the form:

m(a?) = ;> 0,0 < <

M2 —M

When this prior is used in equation (4.11), the full conditional distribution of o is a truncated

gamma

212
m(a?|rE, - 72 7,) x G(p, 5 ZT (m<a2<ns)-

To sample from the above function, we use the fact that the distribution function for the
truncated gamma is just a linear function of the gamma distribution. That is, if S(x) is the

cumulative distribution function of the gamma distribution and s(x) is the density, and we
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are truncating such that 17 < z < 1, then the density function is :

8[771,772](‘77) = $<772> — 5(771)
and
Stpme) (7) = ole) - 5ta) uniform|0, 1].

S(n2) — S(m)

To sample the truncated gamma random variable, we generate a random uniform u ~

uniform[0, 1] and compute

STHS(m +u (S(m) — S(n1)))].

A different selection is to use a more flexible distribution. Los Campos et al. (2009) placed

«
a beta distribution with shapes v, and 15 on & = —, where u > 0 is an upper bound on «a.
u

That is,
0a(«)
9,

7(a) = Beta (a(«)|v1, vo)

a
‘ x Beta (—\yl, 1/2) )
U

If we know that the shrinkage parameter o € (0,1), we can use a beta distribution without
the constraint. When the constrained beta distribution is used in (4.11), the full conditional

distribution of « ( not on o?) is:

2 P
71-(O[|7—127 T 7Tp2) X (a)2p+V1—1 (u - a)V2—1 exXp <_% Z Tj2> ’
j=1

which lacks a closed form. For its implementation, we use the Hamiltonian Monte Carlo

where the negative logarithm empirical posterior distribution is:

—log (m(arg, - ,7'5)) x (1 —=2p—uvy)loga+ (1 —wy)log(u— )+ Q—ZTf
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and the gradient is

0 1—2p—v 1
—%log (7r(oz|7’12,~-- ,7'5)) e (ry — 1) +&Z7'j2.

Note that the posterior distributions of o and a? presented above do not depend on data.

Example

We use the diabetes data from Efron et al. (2004) presented in Section 4.4. As discussed
above, choosing the hyper-hyperparameters is challenging because they control the value
of a and, hence, the amount of shrinkage. We split the data into 50% training and 50%
testing, and applied 5-fold cross-validation over a grid of o values on the training set. The
lasso parameter that minimized the average cross-validation mean square was 0.25. Thus,
we choose hyper-hyperparameters such that the mean of the hyperprior is around 0.25. We
run an MCMC with 5000 iterations and 1000 burn-in.

Table 4.3 presents the posterior mean estimates of the shrinkage parameter under three
different hyperpriors. All values are near to 0.25. Figure 4.8 displays the trace plot and the
kernel density for the shrinkage parameter when gamma is chosen as the hyperprior. The
estimates are around the center with reasonable fluctuation, which indicates that the chain
is mixing well. From the kernel density plot, one can see that the distribution is unimodal.
Figure 4.9 presents the trace plot and the kernel density for the shrinkage parameter when
the hyperprior is distributed as beta. The estimates are around the center with reasonable
fluctuation, which indicates that the chain is mixing well. From the kernel density plot, one
can see that the distribution is unimodal and right-skewed. Figure 4.10 exhibits the trace
plot and the kernel density when the shrinkage hyperprior follows the uniform distribution.
The estimates are around the center with values a bit shifted to the left of the center and

with reasonable fluctuation, which indicates that the chain is mixing well. From the kernel
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density plot, one can see that the distribution is unimodal and right-skewed with a heavy
tail.

Table 4.4 represents the posterior mean estimates of the Bayesian lasso based on empirical
likelihood using different hyperpriors. The values of the estimates, in each case, look quite
similar. From Figures 4.11, 4.12, and 4.13, it appears that the trace plots are around their
centers with reasonable fluctuations, which indicate that the chains have good mixing. Table
4.5 provides the 95% highest posterior density intervals and the 95% equal-tailed credible

regions. It seems that, under different hyperpriors, they are quite similar.

Table 4.3: Posterior mean of the shrinkage parameter for the Bayesian lasso based on empirical
likelihood under gamma, beta, and uniform hyperpriors.

Hyperprior Gamma | Beta | Uniform

Estimate of the shrinkage parameter | 0.2265 | 0.2324 | 0.2177

Table 4.4: Posterior mean estimates for the Bayesian lasso based on empirical likelihood method,
using gamma, beta, uniform distributions as hyperprior on the penalty term.

Hyperprior | AGE | SEX | BMI | BP S1 S2 S3 S4 S5 S6

Gamma | -0.012 | -0.083 | 0.287 | 0.079 | -0.032 | -0.005 | -0.104 | 0.026 | 0.370 | 0.054
Beta -0.011 | -0.082 | 0.287 | 0.079 | -0.027 | -0.007 | -0.106 | 0.024 | 0.367 | 0.054

Uniform | -0.012 | -0.085 | 0.288 | 0.080 | -0.030 | -0.007 | -0.108 | 0.025 | 0.370 | 0.054
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Figure 4.8: Trace plot (a) and histogram along with the kernel density (b) of the posterior
mean estimates for the shrinkage parameter under gamma hyperprior in the BEL lasso; using 5000
iterations with 1000 burn-in
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Figure 4.9: Trace plot (a) and histogram along with the kernel density (b) of the posterior mean
estimates for the shrinkage parameter under beta hyperprior in the BEL lasso; using 5000 iterations
with 1000 burn-in
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Figure 4.10: Trace plot (a) and histogram along with the kernel density (b) of the posterior
mean estimates for the shrinkage parameter under uniform hyperprior in the BEL lasso, using 5000
iterations with 1000 burn-in
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Table 4.5: The 95% highest posterior density intervals and the 95% credible regions of the posterior
distribution of the coefficients in the lasso model using the diabetes data, under gamma, beta,
uniform distributions as hyperprior on the penalty term.

Gamma hyperprior

Beta hyperprior

Uniform hyperprior

Variables 95% HPD 95% HPD 95% HPD
(95% credible regions) | (95% credible regions) | (95% credible regions)

AGE [-0.092, 0.066] [-0.092, 0.067] [-0.097, 0.069]
([-0.089, 0.066]) ([-0.089, 0.067)) ([-0.102, 0.062])

SEX [-0.183, 0.013] [-0.178, 0.015] [-0.177, 0.009]
([-0.180, 0.010]) ([-0.176, 0.012)]) ([-0.172, 0.009])

BMI 0.167, 0.406) [0.170, 0.410] [0.169, 0.406]
([0.173, 0.407]) ([0.175, 0.409]) ([0.170, 0.400])

BP [-0.024, 0.196] [-0.02, 0.194] [-0.026, 0.194]
([-0.017, 0.197]) ([-0.023, 0.192)]) ([-0.027, 0.188])

S1 [-0.166, 0.088] [-0.161, 0.090] [-0.160, 0.086]
([-0.159, 0.091]) ([-0.162, 0.085]) ([-0.158, 0.083])

S2 [-0.123, 0.106] [-0.118, 0.104] [-0.129, 0.097]
([-0.122, 0.105]) ([-0.118, 0.101]) ([-0.134, 0.089])

33 [-0.223, 0.015] [-0.231, 0.012] [-0.231, 0.016]
([-0.222, 0.008]) ([-0.225, 0.011]) ([-0.228, 0.014])

34 [-0.087, 0.160] [-0.088, 0.149] [-0.085, 0.151]
([-0.081, 0.163)) ([-0.086, 0.147)) ([-0.085, 0.148])

35 [0.235, 0.504] [0.233, 0.493] [0.235, 0.504]
([0.233, 0.496]) ([0.237, 0.492]) ([0.240, 0.502])

36 [-0.029, 0.151] [-0.029, 0.149] [-0.034, 0.151]

([-0.029, 0.147])

([-0.027, 0.146])

([-0.029, 0.152])
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Figure 4.12: Trace plot and histogram along with the kernel density of the posterior mean esti-
mates for the BEL lasso coefficients under beta hyperprior; using 5000 iterations with 1000 burn-in
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Ridge Case

Contrary to the lasso case, a hyperprior is placed on « (not o?). That is, if we assume that
«a follows a gamma distribution with shape r and rate d, then in combination with (4.5) the
resulting conditional posterior distribution is:

m(alf) x " exp (—a {d + ﬂD ,

202

T

which is a gamma distribution with shape r and rate d + 552
o

Example

We use the same example presented in Example 4.5. We split the data into 50% training
and 50% testing, and performed 5-fold cross-validation over a range of values of o on the
training set. The ridge parameter that minimizes the average cross-validation mean square
was 0.32. Thus, the hyper-hyperparameters are chosen such that the posterior mean is
around 0.32. We run an MCMC with 5000 iterations and 1000 burn-in. The posterior mean
of the shrinkage parameter is 0.2912, which is close to 0.32. Figure 4.14 presents the trace
plot and the kernel density for the shrinkage parameter when the hyperprior distribution is
gamma. The estimates are around the center with reasonable fluctuation, which indicates
that the chain is mixing well. From the kernel density, one can see that the distribution is
right-skewed and has the shape of gamma distribution.

Table 4.6 represents the posterior mean estimates of the Bayesian ridge based on empirical
likelihood under the gamma hyperprior. From Figure 4.15 it appears that the trace plots
are around their centers with reasonable fluctuations, which indicate that the chains have
good mixing. Table 4.7 provides the 95% highest posterior density intervals and the 95%
equal-tailed credible regions. It seems that both the HPD and credible regions are quite

similar.
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Figure 4.14: Trace plot (a) and histogram along with the kernel density (b) of the posterior
mean estimates for the shrinkage parameter under gamma hyperprior in the BEL ridge; using 5000
iterations with 1000 burn-in

Table 4.6: The posterior mean estimates for the Bayesian ridge based on the empirical likelihood
method using gamma distribution as hyperprior on the penalty term.

Hyperprior | AGE | SEX | BMI | BP S1 S2 S3 S4 S5 S6

Gamma | -0.037 | -0.131 | 0.300 | 0.117 | -0.113 | 0.043 | -0.117 | 0.012 | 0.397 | 0.073
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Table 4.7: The 95% highest posterior density intervals and the 95% credible regions of the posterior
distribution of the coefficients in the ridge model using gamma distribution as hyperprior on the

penalty term.

Variables 95% HPD 95% credible regions
AGE [-0.142, 0.065] [-0.142, 0.060]
SEX [-0.228, -0.031] [-0.220, -0.027]
BMI | 0.186, 0.409] [ 0.187, 0.406]

BP [-0.012, 0.237] [-0.010, 0.232]
51 [-0.500, 0.245] [-0.501, 0.234]
52 [-0.258, 0.356] [-0.257, 0.346]
S3 [-0.323, 0.097] [-0.321, 0.090]
54 [-0.205, 0.222] [-0.201, 0.216]
S5 | 0.230, 0.574] [ 0.235, 0.573]
S6 [-0.026, 0.175] [-0.025, 0.171]
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4.6 Summary

In this Chapter, we derived the Bayesian lasso and ridge based on empirical likelihood.
We compared them to the full parametric Bayesian approach, and the results were similar.
We discussed the estimation of the penalty term. Using the Bayesian approach, placing a
hyperprior on the penalty term yields a conditional posterior distribution for « that does
not depend on data. This makes it too sensitive to the hyper-hyperparameters and a bit
challenging to determine the class of distributions to place on a. Another approach is to use
the empirical Bayes by Marginal Maximum Likelihood (Casella, 2001).

Following Casella’s (2001) approach, one can use a Monte Carlo expectation-maximization
algorithm that complements the HMC and Gibbs sampler and provides marginal maximum
likelihood. Each iteration involves running the block of HMC and Gibbs sampler using «
estimated from the sample of the previous iteration. That is, iteration k£ uses « estimated
in iteration & — 1. For instance, in the lasso case, Equation (4.11) yields the complete-data

log-likelihood:
— z”: log (14 M'zi(y; — z:;"0)) — 1log o2 _1 log |D;| — L g7p-19
— 2 2 202 4

b a? &
—(a+1)logo?® — = + plog a? — ?er.
=1

The expectation step involves taking the expected value of the above distribution, conditional

on y and under a*~Y, to obtain:

2 P
Q(aja® V) = ploga? — % Z E, - [77]y] + term not involving .
j=1
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The maximization step maximized Q(a|a®*~V) over a to obtain the next estimate. In this

case we have

k) _ 2p
(6% = ) B .
Zj:l E k-1 [Tj |y}

Park and Casella (2008) suggested to use the following initial value:

p\ o}
Q0 — VLS

i—1 1071

where O'%S and HJ-ES are estimated from the least squares approach.
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Chapter 5

Summary and Directions for Future

Research

5.1 Summary

We proposed a new approach for linear regression, ridge regression, and lasso regression
based on Bayesian empirical likelihood. These are considered semi-parametric models be-
cause they combined a non-parametric and a parametric part. By using the profile EL ratio
instead of likelihood, we avoided the potential problem of model misspecification.

The Bayesian EL ratio approach was straightforward. However, the resulting posterior
distribution was intractable with complex and non-convex support. The nature of the sup-
port made the implementation of the traditional Markov Chain Monte Carlo algorithms
difficult. First, the application of the Gibbs sampler was impossible because the kernel of
the posterior distributions was unknown. Second, the implementation of the Metropolis-
Hastings sampler was very challenging because it required the estimation of the proposal
density and its parameters. In fact, even if we proposed a correct jumping density, the

algorithm converged only when the parameters were equal to the maximum likelihood esti-
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mator. If we started with a value far from the global optimum, the chain got trapped and
never converged. To overcome this, we used the Hamiltonian Monte Carlo (Neal, 2011). The
HMC used the gradient information to reduce random walk behavior, which led to faster
convergence. It only required the derivation of the gradient and the values that control the
HMC process. These values can be found by trial and error. Chaudhuri et al. (2017) showed
that, under certain assumptions, once the parameters are inside the support, they never go
outside and always jump back to the interior of the support if they reach its boundary.

We discussed that the penalized regression has a close connection to the Bayesian linear
model. It sufficed to place a prior distribution on the parameters of the model where the
penalty was introduced in the form of a hyperprior. For this reason, we started first with the
derivation of BEL for the linear regression by deriving its empirical likelihood ratio. That is,
to obtained the ridge regression and lasso regression, we multiplied the empirical likelihood
ratio by the appropriate priors. For instance, we obtained the lasso model and ridge model
if we placed the double exponential, using Andrews and Mallows’ (1974) representation, and
the normal distribution on the regression parameters, respectively. We compared our ap-
proach to a pure Bayesian approach, and we obtained similar results but the BEL was more
robust because it did not rely on making, e.g., normality assumption on the data.

The penalty term « plays a major role in the shrinkage of the parameters. That is,
they shrink to zero as we increase the value of a. To estimate its value, one can use cross-
validation. In this dissertation, we treated it as a random parameter, and we placed a
hyperprior distribution on it. We used a family of gamma, uniform and beta distributions.
The disadvantage of this approach was that the resulting posterior distribution for o did
not depend on the data, which made it very sensitive to the hyper-hyperparameters. For
instance, let us assume that we placed a gamma prior with shape a and rate b on the
shrinkage coefficient. Then, the posterior conditional distribution of « is an updated gamma

distribution with shape a + constantl and rate b + constant2. Then, the mean posterior
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will be around W, which will be feed into the rest of the model. To investigate
b + constant?2

the value of o we divided data into two datasets: training and validation. We ran a 5-fold
cross-validation on the training set and determined the value o* that minimized the mean
squared error. Then we chose the hyper-hyperparameters a and b based on the value of a*.

Moreover, the estimating equations forced the introduction of the Lagrange multiplier
A in the convex hull, which depends on the values of the regression parameters 6. In our
approach, at each iteration, we sampled 6 and found A that solved equation (2.8). Thus, it
required a careful design of the algorithm to find A because of the constraints imposed by

the weights in equation (2.7). We followed the same approach presented by Owen (2001),

which uses the concept of the convex duality.

5.2 Directions for Future Research

There are many various directions for future research that extend our work. We now list

some future research directions based on the results we obtained.

Pure Hamiltonian Monte Carlo Approach

In the course of this research, we used a building block of MCMC methods to estimate our
parameters of interest. Precisely, we implemented a block of HMC and Gibbs sampler. An
alternative approach is to use only the HMC approach. We have seen that the Hamiltonian
Monte Carlo method leads to a quicker convergence by rapidly reaching the space of high
density. Subsequently, it will increase the speed and improve the efficiency of the algorithm.

For instance, we have seen that the full joint empirical posterior distribution for the ridge
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regression is

1\ - 1 b’
7(0,0%|X,y,a) <§) exp | — Zlog 1+ X 2(y; —2:"0)] — = [b + 5 ] :

o2
i=1
(5.1)
The negative log of equation (5.1) is:
& 1 ad’0 1 o]
log [1 4+ XN'ai(y; —z:"0)] + — |b — (b 2
;Og[+ zi(y —x )]—FUQ[—F 2}—#02(—# 2) (5.2)

Let 6, = (6, 0)T be our parameters of interest. The gradient of equation (5.2) with respect

to each parameter is

% (— log(ﬂ(0,02|X,y,a))) x ((% (—log(w(O,ale,y,a))) , % (—10g(7r(0,02|X,y,a))))

T
B Z”: —Az;z; " L Qpr p/2+a+1 bt ab76/2
N — 14+ ATz (y; — 2,70) o2 o2 ot )

In this case, our model has p+ 2 parameters, which are represented by a single vector where
the parameter o2 is restricted under the model to be positive.

Similarly, the full joint empirical posterior distribution for the lasso regression is

- 1\ 1 o
7T(0,O'2,7'12,"' ,T;’X,y) X exp (—ZlOg (1—|—AT$, (yz —.'I:,TH))) (W) exp <_T‘_20TDT 10)
i=1 T

b\ o o
2y—a—1 22
(o7) exp (—;) E 5 oxXP (—a T /2) )
(5.3)
The negative log of equation (5.3) is

u log(a?|D,]) 67D ' b &K a’T!

T T T T 2 J
;:1 log (14+X'a; (y; —z:"0))+ 5 t—5.3 +(a+1)log(c )—f—;—l—}:l 5 (5.4)
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Let 6, = (8, 7, 0*)" be our parameters of interest where 7 = (77,---,72). The gradient of

equation (5.4) with respect to each parameter is

0
Y lOg7T(0, 027T‘X7 y)

00
a% (—logm(8,0% 7| X,y)) = _ﬁlogw(o,(;?,ﬂX,y)
X or
0
— 5310876, 0% 7| X y)
where
—% logm(0,0%,7|X,y) = Zz:; 1+ A;x/:?;itfx,Tﬁ) * 0:;12)7
_%bgﬁ(o,a?,r!)(,y) - % - 0;%70 - %
_%logﬂ(e,JQ,Tj’X>y) - 2%2 + %]2 [f—_]z + 0‘2} '

Our model has 2p + 2 parameters, which are represented by a single vector where the pa-

rameters 77, - - ,77,0° are restricted under the model to be positive.

Ridge Regression

The [, penalty in ridge regression has a nice form such that the solution of # has a closed

form:

0 = (X"X + alyy,) ' XTy. (5.5)

Therefore, instead of including the penalty term in the form of a hyperprior, one can the use
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solution in (5.5) as the estimating equation to maximize our profile likelihood:
R(6) = max{H nwi| w; >0, Y w; =1, w" (XX + alpxy) 0 = wTXTy}
toim i=1

and place a normal prior on @ with known parameters. Note that:

T (XTX + aIpxp) 0 —w' X'y =w (XTX + aIpprpxpT) 0 —w' Xy
= Z wW; ([ximiT + CYZ.,;Z.,'T} 0 — Il,'.iyi)
i=1

— Z w; ([miz:" + o] 0 — zy,)

i=1

where 4; is the i row of I,x, and 4;4;7 = 1. Using steps similar to those presented in Section
2.2, the profile likelihood ratio is given by — > log (1 + AT [z;y; — (z:zf + ) 0]) where A

satisfies p equations given by:

1 Z ziy; — (Tt + )6 _0o
L+ AT [y — (zat + )]

Bayesian Empirical Likelihood by Placing a Prior Distribution on
Weights wy,--- ,w,

The method presented in this dissertation is based on the empirical distribution of @ under

an informative prior on 6. The profile log EL ratio for the linear regression is
lgr(0) = — Zlog {1+ X'z [y —2"6]} =nlogn+ Zlogwi x logHwi
i=1 i=1 i=1

and depends on weights. An alternative approach is to treat (ws,---,w,) as unknown
parameters by placing a prior distribution on wy,--- ,w, instead of . The maximum of the

profile empirical likelihood ratio, R(w) o< []i_, w;, is computed by maximizing w; subject
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to Y -, w; = 1 and w; € (0,1). One can consider placing a Dirichlet distribution prior
D(v1,-++ ) on (wq,- -+ ,wy,). The Dirichlet distribution of order n > 2 with parameters

Y1, ,Y» > 0 has a probability density function:
W(wb e awnh/b T 7771) - L ﬁwzi_la vwl € (07 1))
B(y) -1

F(’yla e 77’”)

T(y)T(y2), -+, D)
(wq, -+ ,w,) given X is a Dirichlet distribution D(v; + 1,7+ 1, -+ ,7,+ 1) and is given by:

where Y " w; = 1 and B(y) = The posterior distribution of

i=1

This approach is similar to the Bayesian bootstrap (Rubin, 1981) that places a Dirichlet prior
on the parameter of interest. An appropriate choice of the Dirichlet prior is the improper
Dirichlet-Haldane prior (Aitkin, 2008) corresponding to v, = 0, V i = 1,--- ,n. The
distribution in equation (5.6) can be approximated by Markov Chain Monte Carlo; however,

it is difficult to translate knowledge about w into knowledge of A and 8. Recall that:

~T o

d; =0 {14 A aily, —x,-To)}l |

The relationship between the weights and 6 is not a straightforward transformation. It is
not easy to estimate the value of @ from the weights, which are p + 1 and n dimensional

vectors, respectively.

When p » n

When the sample size is smaller than the number of predictor variables, we encounter two

problems. First, the curse of dimensionality is acute. Second, there is insufficient informa-
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tion, degrees of freedom, to estimate the full model. Penalized regressions were introduced
to overcome the sparsity problem and to deal with data where p >> n. For example, the
lasso regression imposes a [y penalty on regression parameters and tends to find an estimate
of @ that is equal to zero.

Our approach is Bayesian based on the ELL method, and we believe it will fail in the case
when p >> n. We incorporated the estimating equations in the convex hull to maximize
our profile empirical likelihood ratio. However, X7 X is not invertible when p > n because
it is not of full rank. Hence, w; = 0, for ¢ = 1,--- ,n. The estimating equations for linear
regression are X7 X0 — XTy. One can set ¥ = X7 X + ¢I by adding a small value ¢ to the
diagonal of X7X. Then, use ¥ in the estimating equations instead of X7 X. But the main

question is how we choose a value for c.
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Appendix A

MIXTURE OF NORMALS WITH AN
EXPONENTIAL MIXING DENSITY

Let z|s ~ N(0,s) and s ~ exp(A?/2). Then we have:

f22) = [ fan)d0s)
0
Now, find the moment generating function for Z:

Mz(t) = Ez<62t)

:/OO ezt/OO Le—zz/Qs)ﬁe—s)\Q/stdz
oo 0 V2ms 2

0o zt—22/2s

/ T [T g
= —e ———dzds.
0o 2 oo V2T
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Note that:

00 _2t—22/2s 00
/ € dZ — 1 e—i [zg—Qszt] dZ
0o V2Ts V21s J

1 = — &[22 —2tsz+(ts)2—(s)?]
— e 25 z Sz S S dZ
V 27TS /oo

(ts)2 1 /OO _L( —t )2 ) 2
et e 2s e 2s Z=ts dZ — e(ts) /28.
( ) (\/ 218 J 0o

The integral is equal to one because the second term is N(ts,s). We have:

)2 —sA\? st?
_ ilad
My(t) :/ 7€ 2 2 ds
0
2 [e’s)
IETARRY B S
2 Jo
)\2 2_,2)\ X
_ —s/2( A2t
)
)\2
T2
1 9 1
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=%

which is the moment generating function of the Laplace distribution with mean 0 and scale
1

Y

110



Appendix B

UNIMODALITY UNDER PRIOR

The heuristic proof in Park and Casella (2008) applies equally to the Bayesian empirical
likelihood. We show that the joint posterior distribution (6, 0?%y) of 8 and o® > 0 under

the prior

=5

a al0;]
7(0,0?) = 7(c? exp(— j)
0. =) 17 -
is unimodal for typical choices of 7(¢?) and any choice of o > 0, such that for every ¢ > 0

the upper level set
{(0,02) (0, 0°%y) > ¢, o° > O}

is connected. The log-posterior distribution for  and o2 is proportional to:

log(m(0?)) + (— Zlog [1+ A7 X, (y; — X?@]) - \;{%WH.

=1

The second term is clearly concave in 6 because its second derivative with respect to 6 is

negative:
8 n
567 (- > log [1+ AT X;(y; — Xfa)]) -
i=1

0 3 "OANXGXT)TX XTAT
e | — lo 1—|—ATX1 Z—XZTO — _ 1< 14N
0006" ( 2 el v ﬂ) 2 X XTO)

because the denominator is positive and the numerator has a quadratic form and thus pos-

z”: M X XT
1+ M X;(y; — X['0)

i=1

=1
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itive. The third term is clearly concave in o2 (the second derivative of [;-norm is 0). If we
1

chose 0% to be an inverse gamma or invariant prior —, then log(c?) is clearly a concave
o

function. The sum of concave functions is also concave. Therefor, the log posterior function

for (@, 0?) is unimodal.

112



Appendix C

DISTRIBUTION of TJZ

For j =1,--- . p, the conditional posterior density of 7']2 is

1/2 1 s 1/2 1
(1/7}2) / exp (—5 (a27-j2 + ;—2)) = (1/7']2) / exp (—27_

e (2 e 5]

1
| — |
)
[N}
—~
h\]w
S~—
[N}
_l’_
U
_
N———

a’o?

62

J

For simplicity, let y = and 7'j2 = w, then

2\1/2 1 2_2 932'02 1/2
(1/7'j) exp —5 aTj—k? = (1/w) " exp

J

— (1/w)" exp

(
= (1/w)"2 exp (— ;ﬂw [(pw)? + 1])
(

2
(6] 2 [0
- 1— - 2
«

9 1/2
o [ 2 exp [ — [1— pw)’
2w P 22w K '

Chhikara and Folks (1989) showed that if X followed an Inverse Gaussian (IG) distribution

1
with mean ;o and shape o then its inverse, —, has the density above. Hence,
w

[\

fw(w;M,Oéz) = w,u2fX(w; ).

Y

’;M| Q

1
1
a’o?

1
Therefore, p ~ ]G( 0—32, Oéz).
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